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Abstract

This paper proposes an integrated Bayesian statistical inference framework to characterize passenger
flow assignment model in a complex metro network. In doing so, we combine network cost attribute
estimation and passenger route choice modeling using Bayesian inference. We build the posterior density
by taking the likelihood of observing passenger travel times provided by smart card data and our prior
knowledge about the studied metro network. Given the high-dimensional nature of parameters in
this framework, we apply the variable-at-a-time Metropolis sampling algorithm to estimate the mean
and Bayesian confidence interval for each parameter in turn. As a numerical example, this integrated
approach is applied on the metro network in Singapore. Our result shows that link travel time exhibits
a considerable coefficient of variation about 0.17, suggesting that travel time reliability is of high
importance to metro operation. The estimation of route choice parameters conforms with previous
survey-based study, showing that showing that the disutility of transfer time is about twice of that of
in-vehicle travel time in Singapore metro system.

Keywords: Bayesian inference, Metro network, Travel time, Smart card, Route choice

1. Introduction

With the increasing demand and range of urban mobility, metro systems are playing more and more
important roles in urban transportation, particularly in high-density mega-cities. Taking Singapore’s
Mass Rapid Transit (MRT) system as an example, around two million metro trips were made daily
in the year 2012. Compared to other transport modes, metro systems have dedicated and exclusive
rail-based infrastructures, making it possible to provide superior service with higher speeds and larger
capacity. Due to their superiority, metro systems not only attract but also suffer from high passenger
demand — especially during rush hours when passenger demand exceeds its designed capacity for not
only trains, but also platforms — experiencing over-crowdedness, disturbances and disruptions time
and again. These adverse impacts can jeopardize passenger’s traveling experience and therefore should
be minimized. From operators’ point of view, understanding passenger demand and flow assignment
patterns in a complex metro network becomes crucial to maintaining service reliability and developing
efficient failure response strategies.

To characterize a passenger flow assignment model for metro network, two factors are of the most
importance: O-D demand matrix and route choice behavior. Because of the widely adopted tap-in-tap-
out fare collection system, the station-to-station OD matrix in a metro network is known; however the
route choice decisions are usually not directly observable, therefore a widely used approach is to first
develop a route choice model — characterized by some critical cost attributes influencing passenger
perception, such as in-vehicle time, number of transfers and fare paid — and then employ observed
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preference data to calibrate model parameters. Despite the mathematical modeling, in principle there
are two crucial issues to be solved in this approach before applying it on metro networks. The first is to
accurately measure each attribute in the model, such as different stages of travel time and transit fares
mentioned above. These values are used as input and assumed to be known in advance. In practice,
experimenters need to determine such network properties by using train operation data and field surveys.
However, accurate evaluation of route attributes, such as in-vehicle time, waiting time and transfer
time, could be challenging considering possible congestion or interruption scenarios. The second issue
is to obtain enough field observations, which register individual route choice preferences to support
parameter estimation. However, in practice one may encounter many difficulties. On one hand, in
the absence of detailed train operation logs recording train departure/arrival time and trajectories,
it is difficult to measure exact network attributes, such as in-vehicle time, waiting time and transfer
time. On the other hand, as most metro networks are designed as closed systems where passengers only
leave traces at boarding/alighting stations for the purpose of fare collection, operators have limited
knowledge on passenger route choice and trajectory within the system. In other words, we know little
about which train or which transfer station an individual passenger has taken during his/her trip in
the case where multiple alternative routes exist. In order to obtain passenger route choice preference
data, a conventional approach is to conduct field surveys in train stations, asking people the exact route
they will take to reach their destinations. However, some shortcomings of these methods have been
identified, such as being subject to bias and errors and being both time-consuming and labor-intensive
in conducting surveys and processing the data. In addition, since most surveys are conducted with
focus on particular location and time, the results are often limited in scale and diversity. As a result,
developing alternative methods to reveal individual route choice preference in large-scale networks
remains challenging.

The emergence and wide deployment of automated fare collection (AFC) systems open a new
data-driven approach for metro network analysis. Taking advantage of smart card-based fare collection
systems, in which individual passenger’s tapping-in/out transactions are recorded, researchers are now
able to better understand metro operation with large quantities of real-world observations (Pelletier
et al., 2011). Such data set also provides us with a good opportunity to study passenger behavior
in a data-driven approach. In doing so, researchers have tried to combine passenger travel time
information with train operation logs (Kusakabe et al., 2010; Sun and Xu, 2012; Zhou and Xu, 2012).
However, without further investigating travel time variability, these approaches essentially assume that
train services are always punctual to timetables and hence network cost attributes are assumed to be
deterministic, even though there is clear evidence showing that train services can be delayed/disrupted
by excessive passenger demand. On the other hand, owing to the uncertainty in travel time, the
difficulties in revealing individual trajectory from tap-in/tap-out information still remain, preventing
us from collecting accurate preference data. In view of these unsolved issues, this paper presents the
development and empirical verification of a new integrated metro assignment framework using Bayesian
inference approach. Taking advantage of large quantities of real-world observations provided by smart
card data, the suggested model simultaneously estimate network attributes and passenger route choice
preference. Consequently, the proposed framework utilizes only travel time observations along with static
network data to construct the passenger flow assignment model in a closed metro network. With low
social-economic cost and implementation convenience, such approach is appealing for metro operations
and maintenance.

Bayesian inference method is a well established statistical model which has been applied to various
transportation applications, including O-D estimation, route choice modeling and flow assignment
inference (Hazelton, 2008, 2010; Wei and Asakura, 2013). It enables us to find a posterior distribution
which integrates all our prior knowledge with the available observations. Although in this sense it is a
powerful tool for our inference problem, in practice it is difficult to implement such models owing to
the difficulty in computing the Bayesian posterior analytically. However, thanks to the rapid increase
of computational power, nowadays we can characterize properties of the Bayesian posterior using
computational approaches, of which the most notable one is Markov Chain Monte Carlo (MCMC)
methods (Robert and Casella, 2004; Robert, 2014). The proposed framework in this paper is also based
on solution algorithms provided by MCMC methods.

The contribution of this paper is threefold. First, we construct an integrated network characterization
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and flow assignment framework through a data-driven approach, allowing us to better understand
passenger route choice behavior from large quantities of smart card observations. Second, by taking
travel time variability caused by possible interruption during metro operation into consideration, our
model can better characterize network travel time and its uncertainty given any origin-destination (O-D)
pairs, providing better travel information to metro users. Finally, as will be shown in the following, the
Bayesian formulation has the capacity to estimate network cost attributes and characterize passenger
route choice model in a simultaneous manner, showing great potential in practice, in particular in cities
with large/complex metro networks such as Beijing, London, New York, Seoul and Tokyo.

This remainder of this paper is organized as follows: in Section 2, we review previous studies on
several related topics, including travel time reliability, passenger route choice behaviour, the use of smart
card data in understanding metro operation and flow assignment, and in particular the application of
Bayesian inference in transport network modeling; in Section 3, we propose the modelling framework,
which contains several components including reconstructing network, identifying choice set and building
the Bayesian inference model. In Section 4, we present the variable-at-a-time solution algorithm to
characterize Bayesian posterior distribution. As an illustration, we apply the proposed framework on
the simplified Singapore MRT network as a case study in Section 5. Finally, we conclude our study,
summarize our main findings and discuss future research directions in Section 6.

2. Literature Review

Travel time reliability on urban road networks has been documented extensively in the literature,
for both buses and private vehicles (Li et al., 2012; Strathman and Hopper, 1993; van Nes and van Oort,
2009). However, as mentioned, metro systems have long been considered as punctual to timetables
(except during service interruptions/disruptions) and metro travel time reliability has attracted little
attention in the literature. This is likely due to the lack of empirical observations regarding metro travel
time reliability, which has now become available with the emergence of smart card data.

The large quantities of smart card transactions offer us a great opportunity to investigate passenger
transit behavior and demand patterns (Bagchi and White, 2005). For example, Barry et al. (2002) first
used smart card data to estimate metro O-D demand. By analyzing transit smart card data in Seoul,
Park et al. (2008) suggested that smart card holders exhibit no difference from other users in terms of
travel behavior, and travel patterns can be analyses in an aggregated manner. Using the same data set,
Jang (2010) presented an empirical study on identifying transfer patterns of inter-modal transportation.
Apart from understanding travel behavior, smart card data have been used to improve public transit
services at strategic, tactical and operational levels as well. A comprehensive review of using smart
card data at different levels of management can be found in (Pelletier et al., 2011). Using passenger
demand extracted from smart card data in Singapore, Jin et al. (2014) studied a practical problem
about integrating localized bus service with metro network in order to enhance the resilience to service
disruptions of metro systems, offering new design principles of multi-modal transit networks. Using the
same data set, Sun et al. (2014) proposed three optimization models to design demand-driven timetables
for a single-track metro service. The results show that demand-sensitive timetables have great potential
in reducing passenger waiting time and crowdedness on trains.

Bus smart card systems record not only boarding/alighting stop/time, but also the ID of the vehicle.
Thus, it may play the same role as data collected from automated vehicle location (AVL) and automated
passenger counting (APC) systems (Lee et al., 2012). However, for metro systems, in which smart
card readers are not deployed on trains but at stations, we cannot identify the particular train that an
individual passenger takes from the transactions directly. Thus, it remains a challenge to understand
metro trips at a microscopic level, in particular when travel time variability is taken into account.
Besides, without an in-depth understanding of passenger route choice behavior, the flow assignment
problem still need to be studied carefully.

In terms of calibrating flow assignment models, the field has long been relying on collecting preference
data (e.g. stated preference and revealed preference) from field surveys and analyses. Thanks to the
emergence of smart card data, the challenge now may shift to reveal passenger route choice using
historical transactions rather than collecting route choice data with physical surveys. In doing so,
Kusakabe et al. (2010) developed a methodology to estimate the exact train which an individual
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passenger occupies during his/her journey. This method could be used to accurately estimate train
occupancy, which is an important factor influencing passenger’s perception on service quality. Zhou
and Xu (2012) proposed a maximum likelihood estimation method of individual passenger route choice
given his/her entry and exit times. Based on the individual estimation, a flow assignment model was
proposed to map the macroscopic passenger flow in reality for comparison. Given that the model
relies on service timetable, it cannot characterize special events such as passengers being left-behind
by a full train. Using the same data set in Beijing, Sun and Xu (2012) introduced the stochastic cost
nature of different segments of a metro trip — walking-in, waiting, transfer and walking-out. The
method first characterizes the distribution of travel time on each alternative and then uses the mean and
variance (moments) to estimate the weight parameter of each component. This approach also requires
accurate train operation timetables/logs as input, which may not available for other cases. However,
these studies essentially ignore the stochastic nature of train travel time between successive stations,
assuming that trains are always punctual to the scheduled timetable and requiring scheduled timetable
data as input. By analyzing real-world passenger travel in Singapore, we found clearly that there is an
increasing trend of standard deviation of travel time against mean travel time, suggesting that variability
increases with travel time. In order to infer the exact train that one passenger took in the absence
of operation logs, ? proposed a linear regression model to estimate train operation properties on a
single-track and used the results to compute individual trajectory during a metro trip. By aggregating
trajectories for all passengers by time, this method can help to identify train/service trajectory and
estimate spatial-temporal occupancy of trains. However, the approach is only applied on a single-track,
while at a network level the transfers and synchronization between different services need to be further
investigated. In a recent paper, Zhu et al. (2014) presented an framework to calibrate passenger flow
assignment model in metro networks based on genetic algorithm. The core of this framework is to
first generate candidate set by using statistically-based criteria and then use genetic algorithm to find
optimal solution.

All previous studies focus on one particular part of the overall problem. To our knowledge, in
the literature little attention was paid to deal with the case where both network characteristics and
passenger choice behavior are unavailable/unknown, and few researchers characterized route choice
behavior in metro networks in large scale. It remains a challenge to develop a comprehensive framework
which can solve both mentioned issues simultaneously using only travel time observations. In this sense,
the Bayesian computational tools become attractive as it builds a posterior distribution by simply
combining likelihood of the observable and our prior knowledge about the model (see Robert (2014)
for a review). In a previous study, Hazelton (2010) developed an unified framework which integrates
a statistical linear inverse structure with network-based transport model. The author illustrated the
performance of this framework by estimating perception parameters in logit route choice models in
Leicester, UK. The successful application of this model also inspired us to apply Bayesian inference
on metro networks in this paper. Despite calibrating choice models, Bayesian inference also exhibits
excellent performance in stochastic traffic assignment modeling (Wei and Asakura, 2013) and vehicle
travel time estimation using only Global Positioning System (GPS) data (Westgate et al., 2013). With
the help of Bayesian inference and large quantities of travel time observations provided by smart card
data , this paper introduces an integrated modeling framework to quantify both network attributes and
passenger route choice behavior.

3. Modeling Framework

To associate the observed passenger travel time with link costs and route choices, in this section we
first propose a network reconstruction process, which distinguishes transfer stations by services and adds
transfer links among different platforms correspondingly. Afterwards, we present a brief description
of the integrated inference problem and introduce all model parameters in this framework. Then, we
determine route choice set Rw for each O-D pair w. Given actual network configuration and property, in
doing so one may apply a brute-force-search (BFS) method or k-shortest path method. After obtaining
choice set, a Multinomial Logit (MNL) model is applied to measure the probability of choosing each
choice r among the available set Rw given route attributes, where travelers’ sensitivity to each attribute
is parameter to be estimated. Finally, as a key component of the proposed framework, a Bayesian
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inference model is built to estimate the unknown parameter vectors, by taking all registered travel time
from smart card transactions as observations.

3.1. Network reconstruction

In order to better model passenger travel time and route choice behavior, we reconstruct a metro
network following the examples illustrated in Fig. 1. In general, we can model each station as a single
node in a sense similar to a map. However, by doing so we essentially miss the transfer cost for
interchanging from one service to another (including walking and waiting), which is a crucial component
of total travel time. In order to take transfer cost into consideration, we reconstruct a metro network by
separating each transfer station as different nodes by services. For example in Fig. 1, nodes marked as
“T” represent an identical transfer station in the metro system; however, we distinguish them on each
metro service and add transfer links to characterize transfer cost (including waiting) from platforms of
one service to another. Essentially, in the case that n (n ≥ 2) services pass through a single transfer
station, C2

n transfer links will be created between every pair.

A

B

T

T

(a)

A

B

T

T

T

C

(b)

Figure 1: Reconstructing network by distinguishing transfer stations and adding transfer links

Despite that links could be directed as trains are operated in two-way, we model a metro network
as undirected in this study for simplification, assuming that bi-directional travel costs between two
adjacent stations are characterized by an identical distribution. In other words, we assume that two
reciprocal links have the same properties.

3.2. Problem description

We consider a general metro network G(N,A), consisting of a set of nodes N (|N | = n) and a set of
links A (|A| = m). As we use travel time as cost measure in this study, ‘cost’ and ‘time’ as treated the
same (interchangeable) throughout the paper. We assume that link travel time x = (x1, · · · , xa, · · ·xm)>

are random variables, in the sense that services are not punctual to exact timetables due to various
disturbances; as a result, stochastic travel time will be observed as in reality. This is also prerequisite
to apply Bayesian statistical inference in our framework. Despite the fact that statistical properties
of link travel time can be obtained from large quantities of service operation logs, the detailed train
arrival/departure time and trajectory data along the service is seldom available. In this case, the
Bayesian inference might be advantageous by taking unknown parameters as random variables and
using travel time transactions as observations.

Let W be the set of O-D pairs; Rw denotes the set of possible routes connecting O-D pair w; Tw is
the set of individual travel time obtained from those passengers traveling on O-D pair w, which is the
final observable in this framework. We denote T =

⋃
w∈W

Tw as the union of travel time observations

from all O-D pairs. We start by introducing a combination of four parameter vectors, which capture
different aspects of a metro system in our model:

• c : describing network link costs;
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• α : describing link cost variation (coefficient of variation);

• θ : describing passenger route choice behavior;

• m : describing extra cost on waiting/access/egress/failed boarding.

The details of these parameter vectors will be introduces in the following. In principle, our aim in
this study is to use available observations (travel time T ) to infer all the unknown parameters above.

To allow for travel time reliability in our model, we assume that link cost xa are random variables
characterized by normal distribution N (ca, (αca)

2), of which the standard deviation is in proportion to
its mean (σ = αµ). We assume that all link costs are independent. Thus, the overall distribution for all
links can be written as:

x ∼ N
(
c,diag{αc}2

)
, (1)

where c = (c1, · · · , ca, · · · cm)> represents the mean travel time for all links and α = σ/µ is the coefficient
of variance. The independent normality assumption of link cost is crucial in our modeling, as it provides
us a simplified way to measure route travel time given the additive property of normal distributions.

In modeling passenger route choice behavior in the metro network, we assume that choice probability
is characterized by a Multinomial Logit (MNL) model and the representative utility of each route is
measured as a linear combination of different route attributes with parameters θ = (θ1, · · · , θK)>.

As stated, the smart card system only provides us with the inter-tapping interval for each individual
traveler, which is treated as travel time observations. In spite of transfer costs, the inter-tapping interval
still involves in the access/egress walking time at boarding/alighting stations respectively, and waiting
time at boarding platforms. In order to capture these extra costs, we impose a universal cost y on all
O-D pairs and assume it to be characterized by a normal distribution:

y ∼ N
(
m,σ2y

)
, (2)

where m is an unknown parameter representing the mean of extra time and σy is standard deviation of
y.

Note that the normal distribution assumption of link travel time is not mandatory in the proposed
framework, but it will simplify the following step on calculating route cost. One can replace the normal
assumption with any other distributions to facilitate the modeling requirements.

3.3. Generating route choice set

Before modeling passenger route choice behavior, we need to generate a choice set Rw for each
O-D pair w, comprising all possible alternatives. In doing so, one may apply different strategies, such
as link elimination, labeling and k-shortest-paths. Nevertheless, given the limited size and its simple
structure of a metro network, a brute-fore-search (BFS) algorithm could be more advantageous than
other methods in generating choice sets in shorter time.

Note that the proposed network reconstruction processes may produce some redundant alternatives,
which are in principle illogical in reality, such as

• route with first link being a transfer link;

• route with last link being a transfer link;

• route containing two consecutive transfer links (appears where more than two services go through
the same transfer station).

To better model choice behavior, we identify those routes with previous attributes and discard them
when generating the final route choice set Rw.
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3.4. Bayesian formulation

In this subsection we derive the Bayesian posterior distribution of parameter vectors given travel
time observations. Based on the previous description, the unknown parameters are mean of link travel
time c, coefficient of variation α of link cost, parameters θ for the MNL route choice model and average
extra cost m. The observables we have are the travel time transactions for each O-D pair obtained from
smart card data.

Taken together, applying Bayes’ theorem on the unknown parameters and observations will give us
the posterior density

π (c, α,θ,m|T ) =
p (T |c, α,θ,m)π (c, α,θ,m)

p (T )
, (3)

where the denominator P (T ) is the marginal density for T over all unknown parameters

p (T ) =

∫ ∫ ∫ ∫
π (c, α,θ,m) p (T |c, α,θ,m) dcdαdθdm. (4)

With this formulation, P (T ) is in fact a normalizing constant expressed as high-dimensional integrals,
being independent of any unknown parameters. Thus, by further assuming that all unknown parameter
vectors (and all elements in each vector) are independent, we have

π (c, α,θ,m|T ) ∝ p (T |c, α,θ,m)π (c)π (α)π (θ)π (m) , (5)

where π (δ) is the prior distribution of unknown parameter δ. Note that the probability of observing
travel time T conditional on all unknown parameters equals the likelihood of all parameters given travel
time observations, which means p (T |c, α,θ,m) = L (c, α,θ,m|T ).

Next, we focus on the likelihood function L (c, α,θ,m|T ). By distinguishing travel time observations
by their O-D pairs, we can re-write the likelihood as

L (c, α,θ,m|T ) =
∏
w∈W

p (Tw|c, α,θ,m). (6)

As stated, there often exists more than one possible route for an O-D pair w, so that the probability
of observation travel time t from an individual also depends on the the alternative routes he/she may
take. Therefore, by applying the formula of total probability on each observation t against all possible
routes Rw, the probability of observing travel time t on O-D pair w can be expressed as

pw (t|c, α,θ,m) =
∑
r∈Rw

h (t|r, c, α,θ,m) fw (r|c, α,θ,m), (7)

where fw (r|c, α,θ,m) is the conditional probability of choosing route r from choice set Rw given all
model parameters, and h (t|r, c, α,θ,m) represents the conditional probability of observing travel time t
given that route r is taken on O-D pair w.

Based on our primary assumption that link costs all follow normal distribution independently, we
know that t|r, c, α,θ,m also follows a normal distribution given its additive property

t|r, c, α,θ,m ∼ N

(∑
a∈r

ca +m,α2
∑
a∈r

c2a + σ2y

)
, (8)

and thus

h (t|r, c, α,θ,m) =
1√

2π

(
α2
∑
a∈r

c2a + σ2y

) exp


(
t−

(∑
a∈r

ca +m

))2

2

(
α2
∑
a∈r

c2a + σ2y

)
 . (9)

To model passenger route choice behavior, we apply a Multinomial Logit (MNL) choice model,
which usually assumes that representative utility Vr on route r is a linear function of route attributes
Xr = (Xr1, · · · , XrK)> (which is a function of cost parameters)

Vr (θ; c, α,m) = θ>Xr =
∑
k

θkXrk, (10)
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where θk is sensitivity parameter for attribute Xrk. Researchers have tried to quantify the impact of
various attributes in determining passenger route choices in metro systems, such as in-vehicle time,
waiting time, walking time, number of transfers and occupancy (Raveau et al., 2014). However, we
cannot apply previous estimations directly since such behavioral parameters vary enormously from
system to system, from city to city. Thus, one of the main purposes of such modeling framework is to
infer parameter vector θ case by case (Hazelton, 2010). Taken together, when traveling on O-D pair w,
the conditional probability fw (r|·) of choosing route r conditional on other parameters (·) is

fw (r|c, α,θ,m) =
exp (Vr)∑

r′∈Rw

exp (Vr′)
. (11)

Therefore, the likelihood of O-D pair w can be given as

p (Tw|c, α,θ,m) =
∏
t∈Tw

(∑
r∈Rw

h (t|r, c, α,θ,m) fw (r|c, α,θ,m)

)
. (12)

Substituting Eqs. (6) and (12) in to Eq. (5), we can write the posterior probability as

π (c, α,θ,m|T ) ∝
∏
w∈W

(∏
t∈Tw

(∑
r∈Rw

h (t|r, c, α,θ,m) fw (r|c, α,θ,m)

))
× π (c)× π (α)× π (θ)× π (m)

(13)
Before implementing the Bayesian inference framework, we need to specify exact prior distributions

π (δ) for the unknown parameters c, α, θ and m. Prior distributions are important if the number
of observations is limited. However, for a metro system, the smart card system actually provide us
with large quantities of travel time observations, helping us to correct our prior knowledge to a great
extent. In practice, it would be better to propose prior distributions based on our experience or existing
knowledge about the systems. In the case that we almost have no information about the parameters, a
broad distribution such as uniform should be used.

The posterior distribution can provide not only point estimations for the unknown parameters
but also their Bayesian confidence interval and Bayesian p-values for the purpose of hypothesis tests.
However, in practice, it is usually impossible to get analytic estimations given its complex formulation.
In the next section, we show a computational way to obtain the posterior distribution.

4. Solution Algorithm

If the conditional distribution can be written in closed form, ideally one can compute the marginal
posterior distribution for each individual parameter analytically by calculating integrals. However, in our
case, this approach is essentially impossible due to the difficulties in deriving the posterior distribution
in Eq. (13) given its complicated formulation, the high-dimensional nature of the parameter space and
in particular the normalizing integrals appearing in the dominator of Eq. (3). For such problems, in
practice one usually uses the Monte Carlo Markov Chain (MCMC) approach to construct an updating
algorithm to generate δ(t+1) once we know δ(t) (Robert and Casella, 2004). The Metropolis-Hastings
(M-H) algorithm is a widely applied MCMC method, which enables us to sample candidate from a
posterior distribution without knowing the closed form (Metropolis et al., 1953; Hastings, 1970). In
each iteration, the M-H algorithm will generate a candidate from a pre-defined proposal distribution
and then determine whether to accept it by calculating acceptance probability, which is a function of
the ratio between target distribution density of the new candidate and the current sample respectively.
By this means, we clear out the normalizing constant during the sampling. On the other hand, the
Markov chain also shows advantages in a way that its stationary distribution is the target (or posterior)
distribution we want to sample. Therefore, after obtaining enough realizations δ(1), · · · , δ(M), one can
estimate property I of parameter δ using

Î =
1

M −B

M∑
i=B+1

f
(
δ(i)
)
, (14)
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where B is a fixed number representing the burn-in period and M is the total number of samples. The
burn-in samples are discarded as they might be biased given the arbitrarily chosen initial value δ(0).
After the burn-in period, the marginal distribution of the Markov chain is converging to its stationary
state. To better determine the length of burn-in period, researchers have proposed different techniques
in the literature (Geweke, 1992). The real characteristics of parameter δ can be measured using samples
drawn from the posterior distribution π after the burn-in stage.

Given the high-dimensional nature of the studied problem, we perform a Variable-at-a-Time
Metropolis sampling scheme (Metropolis et al., 1953). In doing so, we combine all parameter vectors in
the posterior distribution as a full vector

δ =
(
c>, α,θ>,m

)>
= (c1, · · · , cN , α, θ1, · · · θK ,m)> = (δ1, · · · , δN+K+2)

> . (15)

The variable-at-a-time Metropolis then performs Metropolis sampling scheme on each coordinate
of the parameter space in sequence, in the meanwhile other coordinates (parameters) remain fixed.

Essentially, we may take an arbitrary proposal distribution q
(
δ∗i |δ

(t)
i

)
to draw samples for the ith

coordinate, and accepting new candidate δ∗i based on M-H algorithm. However, in practice choosing
an appropriate proposal distribution is crucial to performing the sampling process effectively. For
simplicity, we apply a Gaussian random walk Metropolis (RWM) proposal to generate new candidates
in a sequential order, in which

δ∗i = δ
(t)
i + ε

(t)
i , (16)

where ε
(t)
i ∼ N

(
0, σ2i

)
and σi is the proposal standard deviation for the ith coordinate. In other words,

conditioning on the current sample, the new candidate follows a normal distribution δ∗i |δ
(t)
i ∼ N

(
δ
(t)
i , σ2i

)
.

Thus, for the symmetric Gaussian distribution proposal, we have q
(
δ∗i |δ

(t)
i

)
= q

(
δ
(t)
i |δ∗i

)
, which simplifies

the acceptance probability in M-H algorithm to

A
(
δ∗i , δ

(t)
i

)
= min

1,
π′ (δ∗i ) q

(
δ
(t)
i |δ∗i

)
π′
(
δ
(t)
i

)
q
(
δ∗i |δ

(t)
i

)
 = min

1,
π′ (δ∗i )

π′
(
δ
(t)
i

)
 , (17)

where π′ (δ′i) is the target (posterior) probability by changing only the ith parameter to δ′i and keeping
other parameters as their latest updated values. In other words, by updating parameters in sequential
order, π′ (δ′i) is calculated as the posterior density

π′
(
δ′i
)

= π
(
δ
(t+1)
1 , · · · , δ(t+1)

i−1 , δ′i, δ
(t)
i+1, · · · , δ

(t)
N+K+2|T

)
. (18)

Taken together, we summarize the variable-at-a-time Metropolis algorithm as the following processes:

Variable-at-a-Time Metropolis Sampling

(V1) Specify initial samples δ(0) =
(
c
(0)
1 , · · · , c(0)N , α(0), θ

(0)
1 , · · · , θ(0)K ,m(0)

)>
; set t← 1.

(V2) For δ(t), sampling new value δ
(t+1)
i conditional on its current value δ

(t)
i in sequential order

(i = 1, · · · , N +K + 2) using M-H sampling scheme (see following).

(V3) If t < M , set t← t+ 1 and return to Step (V1); Otherwise, stop sampling.

In order to avoid generating candidate from a high-dimensional distribution directly, the variable-at-
a-time generate new sample for each coordinate in turn in Step (V2). In doing so, new candidate on
each coordinate is sampled based on the following M-H scheme.

Metropolis-Hasting Sampling

(M1) Sample candidate value δ∗i using the Gaussian random walk proposal (see Eq. (16)).
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(M2) Compute acceptance probability using Eq. (17). The target (posterior) distributions are calculated
as:

π′ (δ∗i ) = p
(
T |δ∗i , δ

(t)
−i

)
π
(
δ∗i , δ

(t)
−i

)
/p (T )

∝ p
(
T |δ(t+1)

1 , · · · , δ(t+1)
i−1 , δ∗i , δ

(t)
i+1, · · · , δ

(t)
N+4

)
π (δ∗i ) , (19)

and

π′
(
δ
(t)
i

)
= p

(
T |δ(t)i , δ

(t)
−i

)
π
(
δ
(t)
i , δ

(t)
−i

)
/p (T )

∝ p
(
T |δ(t+1)

1 , · · · , δ(t+1)
i−1 , δ∗i , δ

(t)
i+1, · · · , δ

(t)
N+4

)
π
(
δ
(t)
i

)
, (20)

where δ
(t)
−i =

(
δ
(t+1)
1 , · · · , δ(t+1)

i−1 , δ
(t)
i+1, · · · , δ

(t)
M

)
is parameter set from the latest updated coordinates

except the ith (i.e. δ
(t)
i ). The normalizing constant p (T ), together with π

(
δ
(t)
−i

)
in both numerator

and dominator, can be canceled out when calculating π′ (δ∗i ) /π
′
(
δ
(t)
i

)
.

(M3) Sample a value δ
(t+1)
i according to the following:

δ
(t+1)
i =

{
δ∗i with probability A

(
δ∗i , δ

(t)
i

)
δ
(t)
i otherwise.

(21)

The variable-at-a-time Metropolis is a good genetic choice for high-dimensional problems as our
case, since it keeps only one dimension (i.e. the ith coordinate) as variable each time; while the general
Metropolis moving all coordinates at once, resulting in large rejection rate. For each unknown parameter,
the algorithm outputs a collection of iteration-stamped samples, whose stationary distribution is its
marginal posterior distribution.

5. Case Study

For the purpose of model illustration and verification, in this section we apply the proposed modeling
framework on Singapore’s Mass Rapid Transit (MRT) network. The Bayesian inference model is built
on real-world travel time (between tapping-in and tapping-out) observations collected on one day (19th,
March, 2012) in Singapore as an example.

5.1. Singapore MRT network

We only consider the arterial network of Singapore’s metro systems by removing extensions and
light rail transit services. Fig. 2 shows the basic structure of the adapted network, which consists of
four services (shown in different colors) and 88 stations. The reconstructed network contains 99 nodes
and 107 links, of which 95 are in-vehicle links and 12 are transfer links. In this network, most transfer
stations connect only two services. In the center of the figure we can see a special case that three services
pass through the same transfer station — Dhoby Ghaut. For this special case, three transfer links will
be created.

Table. 1 lists all transfer links and the corresponding platforms they connect.

5.2. Route choice behavior

In order to generate route choice set Rw, we performed BFS method described in the modeling
framework and removed all redundant alternatives. After obtaining choice setRw, we used an Multinomial
Logit model route choice model as defined in Eq. (11) to computed route choice probability. A variety
of studies on passenger route choice behavior have been conducted based on field survey data in the
literature (Guo and Wilson, 2007; Wardman and Whelan, 2011; Raveau et al., 2014). For instance,
Raveau et al. (2014) studied route choice behavior in two metro networks — London Underground and
Santiago Metro, by taking various attributes into consideration, including different time components,
transfer experience, level of crowdedness, network topology and other social-demographic characteristics.
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Figure 2: Adapted MRT network of Singapore used in this study (source: http://exploresg.com/mrt/)

Table 1: Transfer links in Singapore MRT network

station platform A platform B

Bishan NS17 CC15
Buona Vista EW21 CC22

City Hall EW13 NS25
Dhoby Ghaut NS24 CC1
Dhoby Ghaut NS24 NE6
Dhoby Ghaut NE6 CC1
HarbourFront NE1 CC29

Jurong East EW24 NS1
Outram Park EW16 NE3

Paya Lebar EW8 CC9
Raffles Place EW14 NS24

Serangoon NE12 CC13
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In fact, our modeling framework provides us with enough flexibility to apply diverse types of utility
function in the choice model. Nevertheless, in this study we only examined a simple example, in which
the representative utility Vr of route r is completely characterized by two attributes (K = 2): (1) total
in-vehicle travel time Xr1 =

∑
a∈r\rt

ca, and (2) total transfer time Xr2 =
∑
a∈rt

ca, quantifying route utility

as
Vr = θ1

∑
a∈r\rt

ca + θ2
∑
a∈rt

ca, (22)

where route r is considered as a set of links and rt is the set of transfer links in route r. In this formulation
we do not take transit fares and waiting time of the first stage into consideration, because fare is only
computed by the shortest alternative in distance (i.e. transit fares are the same for different route
alternatives) and waiting time of the first stage is assumed to be the same across all trips. Therefore,
both terms can be cancelled our in the utility function. Note that Vr is also a function of unknown
parameters. Under the above assumptions, the probability of choosing route r conditional on other
parameters is given by

fw (r|c, α,θ,m) =

exp

(
θ1

∑
a∈r\rt

ca + θ2
∑
a∈rt

ca

)
∑

r′∈Rw

exp

(
θ1

∑
a∈r′\r′t

ca + θ2
∑
a∈r′t

ca

) . (23)

5.3. Priors

In the Bayesian inference framework, prior distributions should be given in closed form as chosen
by the experimenter. Prior knowledge is crucial to inferring parameters when we have limited number
of observations. In our case, as all metro users have to use their smart cards to tap-in/-out for the
purpose of fare payment, large quantities of travel time observation is produced, stamped with both
spatial and temporal information. Although the large number of observations can help us to correct our
prior knowledge on the unknown parameters to a great extent, we still may benefit from an appropriate
prior distribution.

Previous travel experience in Singapore’s metro network indicates that travel time between two
successive stations is about 2min (Sun et al., 2012). We therefore assume a normal prior with µ = 2min

and σ = 1min on average link cost ca (for all links), giving that π (ca) = 1√
2π

exp
(
−1

2 (ca − 2)2
)

.

Given the independent link cost assumption, the total prior for all links can be expressed as π (c) ∝

exp

(
−1

2

∑
ca∈c

(ca − 2)2
)

. Here we do not assign different priors to distinguish in-vehicle links and

transfer links.
Extra cost y in a metro trip is also estimated based on previous study. We proposed that m ∼ N (4, 1)

— a normal distribution with mean 4min and variance 1min2. For the variance of extra cost, we take an
empirical value that σ2y = 1.5min2.

In terms of coefficient of variation α and route choice parameters θ = (θ1, θ2), we almost have no
available prior information to make a first guess. Therefore, we assigned uniform priors on these three
parameters: α ∼ U (0, 1) and θi ∼ U (−4, 0) for i = 1, 2.

5.4. Summary

The final parameter vector δ contains N +K + 2 = 111 elements. In each iteration, the variable-at-
a-time Metropolis updates these parameters in turn. We implemented the sampling algorithm described
in previous section using MATLAB. To avoid biased travel time observations, we discarded observations
from O-D pairs with less than 100 transactions and selected a subset (by choosing 100 observations
randomly) from each O-D pair in the remaining data sets as final observable Tw. The size of O-D
pair set is |W | = 1897; hence, total number of travel time observations used in this study is 189,700.
We employed Gaussian random walk Metropolis proposals on all the unknown parameters; however,
in order to build a well-mixed chain of realizations for each parameter, we chose different proposal
standard deviations to allow for their characteristics. For instance, the proposal standard deviations
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of in-vehicle links and transfer links are chosen as 0.2min and 0.5min, respectively. The initial values
and the corresponding proposal standard deviations for all parameters are listed in Table. 2. In fact,

the initial value δ
(0)
i for each parameter is chosen as the mean of its prior distribution. We conducted

computation experiments on a PC with an Intel Core i7 3.40GHz CPU and 16GB RAM. Considering the
large size of O-D pairs, calculating posterior density (or log-posterior density) becomes computationally
intensive. It takes about 30sec for each iteration of the variable-at-a-time sampling.

The sampling is run for M = 30000 iterations, of which B = 5000 are discarded as the burn-in
period. We observed significant serial correlation in the sampled values of each coordinate δi. Fig. 3
shows the autocorrelation plots for chains of α, θ1, θ2 and m. Despite a good acceptance rate for all
chains, we still found that the realizations are strongly dependent. To avoid such correlation, one may
use thinning approach to get spaced samples. For example, one may retain every 50th value generated
to obtain a subset with correlation less than 0.1. However, given the considerable cost in obtaining each
sample, in this study we did not thin the results (Geyer, 1992).
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Figure 3: Autocorrelation plots for chains of α, θ1, θ2 and m.

As stated, we started the MCMC algorithm using the initial value and proposal standard deviation
for each parameter as given in Table. 2. In total, 25000 effective samples for each parameter were drawn.
The Bayesian analysis provides us with not only a point estimator but also a distribution to construct
Bayesian confidence interval. The last two columns of Table. 2 show the final results of our inference
based on those effective samples, including the mean and 95% Bayesian conference interval (CI). As can
be seen, the large number of travel time observations have vastly corrected our biased prior knowledge
of the system.

We display the estimation results of link cost on the EW service (shown in green in Fig. 2) in Fig. 4.
The dots depict the mean values of each link and the corresponding errorbar shows the 95% Bayesian
confidence interval. As a guide, the two insets show the distribution of c1 and c28, which are the first
and last links on the East-West service. Despite the same initial values and proposal standard deviation
were used in the inference process, the MCMC algorithm has successfully distinguished cost attributes
for different links.

Fig. 5 displays the results of Bayesian inference on α, m, θ1 and θ2. In all the panels, the solid lines
depict the kernel density estimates of parameters. As comparison, the dashed lines depict their prior
distributions. The coefficient of variation α is characterized by a centralized distribution, the mean of
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Table 2: Parameter description and estimation

parameter prior σi proposal δ
(0)
i mean 95% Bayesian CI

α U(0, 1) 0.005 0.500 0.168 [0.167,0.169]
θ1 U(−4, 0) 0.050 -2.000 -0.462 [-0.473,-0.451]
θ2 U(−4, 0) 0.050 -2.000 -0.959 [-0.988,-0.931]
m N (4, 1) 0.010 4.000 3.270 [3.255,3.283]
c1 N (2, 1) 0.200 2.000 3.651 [2.584,3.718]
c2 N (2, 1) 0.200 2.000 2.947 [2.880, 3.013]
c3 N (2, 1) 0.200 2.000 3.660 [3.591, 3.728]
c4 N (2, 1) 0.200 2.000 3.107 [3.038, 3.169]
· · ·
c107 N (2, 1) 0.500 2.000 5.247 [5.151, 5.333]
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Figure 4: Link cost estimation (mean and 95% Bayesian confidence interval) for the EW line (shown in
green in Fig. 2). Link with ID n represents in-vehicle link between station EW n and EW n+ 1.
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Figure 5: Prior and posterior density for (a) α, (b) m, and (c) θ1 and θ2.

which is far from its initial value. The posterior mean and standard deviation are 0.1681 and 0.0006,
respectively. Although we expect that a flat normal prior N (4, 1) could characterize m, in contrast
the estimation process gives us a more centralized distribution shown in panel (b), with a very small
standard deviation of about 0.007min, suggesting that in average passengers may spend about 3min
in total as extra cost. In fact, the reason we did not get a distribution with higher variance is that
m only capture the mean of extra cost y, while the variance of extra cost is assumed to be known as
σ2y = 1.5min2. Thus, the result is consistent with our expectation, suggesting that we may use a more
appropriate prior distribution to characterize m.

Essentially, by combining the estimation results on link cost c, coefficient of variation α and extra
cost m, operators and agencies can better estimate travel time and its variability for all O-D pairs in
the network, helping metro users to better plan their trips. Both users and agencies can benefit from
such information.

Passenger route choice behavior is reflected in parameter θ. Panel (c) in Fig. 5 shows the distribution
of θ1 and θ2, respectively. The same uniform prior is also plotted as a guide. As can be seen, the
Bayesian inference has significantly distinguished the effect of transfer time from in-vehicle time. The
posterior mean of θ1 is -0.462 and its standard deviation is 0.006. For θ2, the posterior mean is -0.959
and the posterior standard deviation is 0.015. The significant difference between θ1 and θ2 suggests that
metro users value transfer time more than in-vehicle time. The result conforms to previous survey-based
studied in London Underground and Santiago Metro (Raveau et al., 2014). In addition, the inference
framework also provides Bayesian confidence interval for both θ1 and θ2.

Finally, we plot the joint posterior density for (θ1, θ2) in Fig. 6. To estimate the joint density, we
fixed all other parameters as the mean values of their effective samples (as provided in Table. 2) and
took only θ1 and θ2 as parameters. Clearly, the maximum value can be found around (−0.462,−0.959);
however, the density decreases at different speed given different parameter direction. The figure provides
us with two implications. On one hand, the peaked shape of joint posterior distribution shows that the
density is sensitive to the oscillation of both θ1 and θ2, suggesting that changing route choice parameters
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Figure 6: Contour plot of the joint posterior density for θ1 and θ2 when other parameters are set to be
mean values of their effective samples.

arbitrarily may strongly influence the assignment results. This also indicates that the proposed choice
model exhibits great potential in capturing passenger route choice behavior. On the other hand, one may
see that the slowest decrease could be achieved by increasing/decreasing (θ1, θ2) simultaneously. This
suggests that, instead of sampling each parameter separately, we may modify the Metropolis algorithm
to obtain the samples of θ1 and θ2 collectively by considering their correlation. By doing so, we may get
a faster convergence of the MCMC chains with less computation time.

In fact, in this numerical example we employed a simple model containing only two parameters to
characterize passenger route choice behavior. For this special case, only in-vehicle time and transfer time
are considered as important attributes influencing passenger perception. However, essentially one may
take more attributes into consideration in route choice modeling, such as level of crowdedness, number
of transfers (Raveau et al., 2014) and path correlation correction terms (Cascetta et al., 1996; Ben-Akiva
and Bierlaire, 1999). The proposed framework has the capacity to handle a more sophisticated route
choice model.

By using the route choice parameter θ, we computed the probability fw(r|c, α,θ,m) of choosing
route r for each O-D pair w. After integrating fw into O-D passenger demand, we obtained the flow
assignment results in the studied network. We depict the assignment profile in Fig. 7. In this figure,
panel (a) and (b) show the estimated link flow profiles based on passenger demand before 12p.m in both
directions, while panel (c) and (d) illustrate the flow assignment of passenger demand after 12p.m. As
can be seen, flow assignment shows strong heterogeneity given the specific passenger demand pattern.

6. Conclusion and Discussion

In this paper, we have made use of large quantities passenger travel time observations in a metro
network to develop an integrated Bayesian approach to infer both network attributes and passenger
route choice behavior. The advantage of this framework lies in the Bayesian statistical paradigm, which
requires limited/partial information as input, but provides comprehensive posterior knowledge of the
system.

Travel time reliability has been documented extensively in terms of urban road transport; however, as
another major component of public transit, metro system attracts little attention in previous literature.
One possible explanation is that metro systems have dedicated infrastructure. On the other hand,
this may also due to the lack real-world travel time and route choice observations, making researchers
underestimate its reliability issues: metro services have long been assumed punctual to timetables. The
emergence of smart card ticketing systems, as implemented in Singapore, provide us great opportunities
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Figure 7: Passenger flow assignment in MRT network (a-b) before and (c-d) after 12p.m.

to understand travel time reliability than ever before. The inference results for link travel time and
coefficient of variation offered by the proposed Bayesian framework could be applied in real-world
scenarios to better predict travel time and its variability, providing metro users with better travel
information.

As service reliability is highly determined by passenger demand (such as disruption caused by huge
demand in peak hours), passenger flow assignment problem in a complex metro network is particularly
important with respect to providing good services and sharing profit among operators. On the other
hand, knowing the number of passengers traveling on each link at given time is also a central question
in disruption/emergency scenarios, where operators have to make quick response such as introducing
shuttle bus services (Jin et al., 2013, 2014). Previous studies use discrete choice analysis extensively to
predict passenger choice behavior. However, such a model requires preference data and still displays
great variability in real-world estimation. In this context, revealing route choice from observed passenger
travel time, can be more advantageous (Kusakabe et al., 2010; Sun and Xu, 2012; Zhou and Xu,
2012; Zhu et al., 2014). Applying the inference results on real passenger demand, link flow profile
can be estimated in temporal scale, helping us to infer temporal train loading and measure level of
crowdedness. The results could also be used to reveal transfer demand to help us identify critical transfer
stations/platforms/facilities, providing valuable information to operators and agencies to better design
and operate the whole metro system.

Our results also have a number of potential implications for both practice and research. First, link
travel time and its variability is characterized using real-world travel time observations from smart card
transactions. This data-driven approach can be widely applied in other analyses. Second, the proposed
cost estimation framework may help operators identify the bottleneck of a metro network; the route
inference solution may contribute to better understand transit demand patterns, more accurate profit
sharing and more effective disruption/emergency response. Third, by applying this framework, we can
further reveal other service satisfactory indicators, such as the availability of seats, the standing and
walking times; hence, the results of this paper can applied on various choice modeling problems, serving
future decision making processes.

Acknowledgement

The research is funded by the National Research Foundation of Singapore, the funding authority of
the Future Cities Laboratory (FCL), Singapore-ETH Centre (SEC) and Singapore-MIT Alliance for

17



Research and Technolog (SMART). We thank Land Transport Authority of Singapore for providing the
CEPAS smart card data.

References

Bagchi, M., White, P. R., 2005. The potential of public transport smart card data. Transport Policy
12 (5), 464–474.

Barry, J. J., Newhouser, R., Rahbee, A., Sayeda, S., 2002. Origin and destination estimation in new york
city with automated fare system data. Transportation Research Record: Journal of the Transportation
Research Board 1817, 183–187.

Ben-Akiva, M., Bierlaire, M., 1999. Discrete choice methods and their applications to short term travel
decisions. Springer, pp. 5–33.

Cascetta, E., Nuzzolo, A., Russo, F., Vitetta, A., 1996. A modified logit route choice model overcoming
path overlapping problems: specification and some calibration results for interurban networks. In:
Proceedings of the 13th International Symposium on Transportation and Traffic Theory. Pergamon
Lyon, France, pp. 697–711.

Geweke, J., 1992. Evaluating the accuracy of sampling-based approaches to calculating posterior
moments. Vol. 4. Oxford University Press, pp. 169–193.

Geyer, C. J., 1992. Practical markov chain monte carlo. Statistical Science 7 (4), 473–483.

Guo, Z., Wilson, N., 2007. Modeling effects of transit system transfers on travel behavior: Case of
commuter rail and subway in downtown boston, massachusetts. Transportation Research Record
2006 (1), 11–20.

Hastings, W. K., 1970. Monte carlo sampling methods using markov chains and their applications.
Biometrika 57, 97–109.

Hazelton, M. L., 2008. Statistical inference for time varying origin-destination matrices. Transportation
Research Part B: Methodological 42 (6), 542–552.

Hazelton, M. L., 2010. Bayesian inference for network-based models with a linear inverse structure.
Transportation Research Part B: Methodological 44 (5), 674–685.

Jang, W., 2010. Travel time and transfer analysis using transit smart card data. Transportation Research
Record: Journal of the Transportation Research Board 2144, 142–149.

Jin, J. G., Tang, L. C., Sun, L., Lee, D.-H., 2014. Enhancing metro network resilience via localized
integration with bus services. Transportation Research Part E: Logistics and Transportation Review
63, 17–30.

Jin, J. G., Teo, K. M., Sun, L., 2013. Disruption response planning for an urban mass rapid transit
network. In: Transportation Research Board (TRB) 92nd Annual Meeting. Transportation Research
Board.

Kusakabe, T., Iryo, T., Asakura, Y., 2010. Estimation method for railway passengers’ train choice
behavior with smart card transaction data. Transportation 37 (5), 731–749.

Lee, D.-H., Sun, L., Erath, A., 2012. Study of bus service reliability in singapore using fare card data.
In: 12th Asia Pacific ITS Forum & Exhibition. Kuala Lumpur, Malaysia.

Li, Z., Tirachini, A., Hensher, D. A., 2012. Embedding risk attitudes in a scheduling model: Application
to the study of commuting departure time. Transportation Science 46 (2), 170–188.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., Teller, E., 1953. Equation of state
calculations by fast computing machines. Journal of Chemical Physics 21 (6), 1087–1092.

18



Park, J. Y., Kim, D. J., Lim, Y., 2008. Use of smart card data to define public transit use in seoul, south
korea. Transportation Research Record: Journal of the Transportation Research Board 2063, 3–9.
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