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Unsupervised Symmetric PolygonMeshMapping

The Dualism of Mesh Representation and Its Implementation for Many
Layered Self-OrganizingMap Architectures
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With this paper we present a fully automated semantic shape similarity detection
based on N-rings with further potential for shape synthesis in a topological
correct feature space. Therefore a way of symmetric encoding of geometry,
optimized for the use as feature-vector in self-organizing maps, is introduced.
Furthermore we present a modified kernel for the detection of the best matching
unit in self-organizing maps especially designed for a data topology differing
from the default predecessor/successor structure. Finally we provide the results
of a conducted experiment clustering building blocks of an area in Zürich,
Switzerland.

Keywords: Unsupervised Machine Learning, Geometry Clustering,
Self-organizing Map, Mesh Synthesis, Probabilistic Modelling

BACKGROUND
One intrinsic problemof the architectural designpro-
cess is the issue of how to compare different designs
and how to interpolate between them. As a neces-
sity for any synthesis driven design approach this
wicked problem has yet to be fully automatized, es-
pecially in consideration that existingmethods fail in
practicability because of expensivemanual data pre-
processing. So far in the field of architecture those
methods can be divided into two main groups, cor-
responding to the particular kinds of compared data:
either the comparison of shape determining rules in-
stead of a shape itself (cf. Stiny, Mitchell 1978; cf.
Fezer 2009; cf. Eastman 1972; cf. Rittel 1977; cf.
Alexander et al. 1977; cf. Dave et al. 1994) or the com-
parison of key figures computed as arbitrary shape

features of an underlying architecture (cf. Langen-
han et al. 2011; cf. Dillenburger 2010; cf. Derix et al.
2012). Clearly, for both approaches pre-processing
of data in different ways is necessary. While the first
group is focusing on the analysis of decision trees
leading to a shape, in order to allow sustaining a lim-
ited ability for synthesizing interpolated shapes, ex-
actly this ability rapidly decreaseswith the increasing
complexity of the solution-space; up to apointwhere
finally generalizable approaches like the highly ab-
stract Case Based Reasoning (cf. Dave et al. 1994)
need to fully sacrifice the ability for shape-synthesis
in order to maintain a certain kind of interpretable
and general ontology. Additionally, when compar-
ing shape determining rules a larger solution space
is mainly achieved by increasing the complexity of
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the underlying rule sets. This problem can be partly
avoided by comparing a set of designs according to
arbitrary figures (cf. Dillenburger 2010; cf. Derix et
al. 2012) or topology informed labels (cf. Langenhan
et al. 2011) rather than the decision trees describ-
ing the shapes preceding design processes. Such
highly abstract and generalized models for comput-
ing key figures provide easy applicable semantics for
a much larger solution space, because they mini-
mize the costs for a useful comparison by reducing
the amount of semantic information needed. While
these methods render only a handful basic architec-
tural elements required for being labelled during the
data pre-processing stage, the figures used for com-
parison lack the potential of being translated unam-
biguously into architectural shapes. Thus we iden-
tified that the potential for shape-synthesis on the
one hand and the generalizability of the labelling
method on the other hand tend to be mutually ex-
clusive. However, for a seamless integration of a pro-
cedure of this kind into any architectural design pro-
cess it is a necessity to provide both analysis and syn-
thesis capabilities. In order to do so and to provide
exactly those discussed processes this paper investi-
gates, inspired by actual developments in the field of
computer graphics, the potential of a method based
on a purely geometric representation of architecture.
The goal was to work with the latent semantics hid-
den underneath the topological contexts of themesh
geometries.

METHOD
Already known from different methods for architec-
ture or urban planning (cf. Stadler et al. 2007),
most approaches in computer graphics need to pre-
process the purely geometrical information provided
for enriching it with certain semantic or topological
information first. The main focus hereby lies on the
segmentation into semantically tagged shapes (cf.
Chaudhuri et al. 2011)which is necessary to compare
andcluster shapeelements according todifferent ge-
ometrical or topological features (cf. Funkhouser et
al. 2004) or to automatically label identical functions

(cf. van Kaick et al. 2013). Others even established a
workflow where this information is used to combine
existing shapes into meaningful new combinations
(cf. Chaudhuri et al. 2011). And thereby they provide
methods for both analysis and synthesis of polygon
meshes - the missing link for the architectural design
process. While themainproblemof those techniques
is the costly supervised or even manual segmenta-
tion, a problemalso leading to a growing demand for
pre-segmented data repositories (cf. van Kaick et al.
2013), this paper presents a way of substituting the
necessary semantic information by a purely contex-
tual one, analogue tounsupervised image (cf. Bengio
2009) and text processing (cf. Bellegarda 2004).

Mostmethods in clustering or probabilisticmod-
elling of geometry are either based on arbitrary fea-
ture descriptors for the mesh segments like angles,
diameters andmuchmore complicated ones (cf. Sidi
et al. 2011) or topology informed semantic labeling
(cf. Kalogerakis et al. 2012). We already described
those tactisc when previously mentioning the ways
of comparing designs in the field of CAAD. The two
problems arising are yet again the need for large la-
beled (pre-segmented) data sets and, regarding the
feature descriptors, the difficulty of how to decide
which of the vast amount of possible descriptors are
relevant for clustering ingeneral or if not a contextual
approachwould be preferable to the intrinsic one (cf.
Standfest et al. 2013). Both problems are shown to
be avoidable by using unsupervised learning meth-
ods for creating high-level features from only unla-
beled data (cf. Le et al. 2011). And undoubtedly
this is also part of the observable trend towards min-
imizing the amount of semantic information needed
for state of the art data analysis. To contribute to
this development, this paper is focusing on the prob-
lem of comparing unlabelled geometry data, by us-
ing both many layered neural networks and n-gram
inspired mesh processing. We show how emergent
descriptors allow clustering of architecture compara-
ble to stateof the art approaches ingeometry cluster-
ingwhile the samemethod still manages tomaintain
synthesizing abilities (figure 1).
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Figure 1
result of the
conducted
experiment on
clustering 48
randomly chosen
building blocks
according to the
latent semantics of
the unlabelled
mesh geometry

Figure 2
constructing a
2-ring (right) as a
collection of the
outer leaves of the
nested 1-rings
(middle) with the
corresponding root
1-ring (left)

Nested N-Rings
As an alternative to the popular goal of achieving se-
mantically correct sub graphs (cf. Kalogerakis et al.
2012) the segmentation of polygonmeshesmay also
aim for same sized patches. This can be done either
via intersecting the mesh with r radius balls (cf. Mi-
tra et al. 2006) or as in our case by creating patches
of similar underlying topology. Like N-grams in lan-
guageprocessing (Shannon2001 [1948]), small topo-
logic configurations instead of predefined subdivi-
sions nowcarry latent semantics. Thereforewe chose
to compare each triangle according to its topologic
neighbourhood, a format we further call N-ring (fig-
ure 2).

These N-rings of each triangle are strongly re-
lated to N-grams and are used to replace, from nat-
ural language strongly influenced, standard seman-
tics with its statistical model (cf. Bellegarda 2004).
To achieve a fully contextual encoding without in-
trinsic semantics (cf. Deleuze et al. 2008), we build
upon the dualism in mesh representation already
used for polygon mesh compression (cf. Rossignac

1999). Adopted for constrained Delaunay triangula-
tion (cf. Chew 1987) this means we work with the
triangle relations instead of the triangles themselves.
A shift easily accomplished by constructing the fold-
ing transformation for each pair of neighbours (fig-
ure 3). We define this fold by one rotation angle a
and one pair of relative uv transformations. Due to
the fact that certain angles appear much more often
than others (e.g. 180° where the mesh is planar or
90° as the most common edge) this design is espe-
cially optimized for architectural or urbangeometries
and supports thereby subsequent clustering efforts
(as doesminimizing the number of triangles by using
constrained Delaunay triangulation).

Figure 3
triangle folding
process, showing
the rotation axis as
well as the u- and
v-transformation
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Figure 4
composing a higher
level ring out of
four lower level
rings (red: root,
dark green: leave A,
cyan: leave B, light
green: leave C)

Analogue to this contextual encoding paradigm,
N-rings with distance greater than one edge may be
composed out of smaller rings as alternative to con-
structing them from scratch, allowing the hierarchi-
cal processing of geometry (figure 4). For robust-
ness reasons we designed those nested rings to cre-
ate overlapping branches, resulting in the compos-
ing of a N-ring of size i out of four N-rings of size i−1
or 4i−1 N-rings of size 1. This way we ensure a fixed
data topology for the whole recursive process. The
presented kind of segmentation is fully unsupervised
and works with any unlabelled triangular 2-manifold
polygon mesh without boundary. We optimize the
meshes before converting them into training vec-
tors (as basis for the obligatory Delaunay triangula-
tion planar straight-line graphs are detected first af-
ter reducing some noise like wielding vertices or flat-
tening of peaks). Nevertheless the underlying data
encoding topology differs fundamentally from well
investigated predecessor-successor patterns of data
streams (like text or audio signals) causing conse-
quences for the further below described best match-
ingunit (BMU) kernel of theused self-organizingmap
(SOM).

Mesh-SOM
The presented mesh segmentation allows working
with a fixed data topology for every nested N-ring of
arbitrary size in form of a tree graph with one root
node and three leave nodes, thus a star S3 with 3
edges what we further call a claw. Every node of
the graph is again a nested claw itself (with at least
one overlapping edge for connection purposes) and
may be decomposed until the lowest order of unir-
ing representation is reached (figure 5). Because the
SOM is trained layer by layer the conceptual complex-

ity of each level increases and therefore bigger trees
may be interpreted as more abstract features than
smaller ones - a common method when compared
to multi-level usage of Gabor filters (cf. Gabor 1946)
or N-grams which are essential for deep believe net-
works (cf. Bengio 2009). Thismeans thatwe compare
the triangles not only by its N-rings but according to
their immediatebut increasingly detailedneighbour-
hood. As a result overlapping edges (a third of the
branches is oriented towards the root claw) improve
the robustness of our encoding significantly.

Figure 5
nested hierarchical
data topology (red:
root, dark green:
leave A, cyan: leave
B, light green: leave
C) of level 1 (not
nested), level 2
(biring) and level 3
(3-ring)

Replacing predecessor/successor-pairs with
claws leads to a further change in the feature vec-
tor managing of our process. The clearly identifiable
root ring and the order of the claw's leaves deter-
mined by the normal of the initial triangle result in
only one remaining ambiguity: the index of the ini-
tial leave. When converted into a vector the values
of the root node are always the first few dimensions,
but the following topology of the three neighbour-
ing rings (the leaves) forms a 3x3 circulant matrix
C . For synthesis each nested claw (subring) needs to
be rotated for finding the matching fold of the root
claw (figure 6), because of this uncertainty. On the
other hand, for the analysis phase the BMU kernel
is adopted to find the best of three variations (the
most frequent initial claw) of a feature vector and is
thereby increasing the quality of its SOM.

Figure 6
circular data
topology leaves 3
possible index
leaves per claw
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This limitation to three possible combinations
per vector per SOM level allows to approach the un-
derlying combinatorical problem in a nested recur-
sivemanner (figure 7) which proofs to bemuch faster
than proceeding just the direct way. Only the ini-
tial learning level has twice the amount of variations
to be compared. The simple reason is that we try
to further densify the solution space of the SOM by
the possibility of flipping the normal of each triangle
(changing the order of its neighbours). Finally com-
paring the different variations of each vector is done
by adopting the used GPU SOM BMU kernel (cf. Wit-
tek 2013) to not only find the best matching unit, but
the best matching unit possible out of n variations -
we call this kernel further BMUofN. This modification
is the very reason why we are able to produce nec-
essary findings otherwise impossible to compute in
a time sensitive manner (table 1).

Figure 7
computational
costs due to
possible tree
combinations

Table 1
relation between
recursive and direct
data processing

The rest of the process is basically following the
2-grams based web-SOM method for uncovering la-
tent semantics of texts (cf. Ritter et al. 1989): For
each N-ring level one SOM is first sorting the con-
cepts (the different kinds of triangles) according to
its contexts in the form as described. For better train-
ing results those feature vectors are also standardized
but not normalized (cf. Blayo 1992). Subsequently a
so called domain map for each polygon mesh is cre-
ated. This is done by creating the domain feature
vectors on basis of histograms over the triangle map
which again is smoothened by a Gaussian convolu-
tion kernel (cf. Kaski et al. 1998). As a result we
get SOMs arranging the compared meshes accord-
ing to lower or higher level emergent features which
establishes a process of strictly unsupervised cluster-
ing of unlabelled architectural geometries. Summing
up, we present a way of algorithmic modelling (cf.
Breiman 2001) geometrical semantics as an alterna-
tive to the intrinsic ones providedby semantically en-
riched pre-processed data.

RESULTS
For a first test of the method we compared a set of
48 building blocks (the level of detail is 1) randomly
chosen from the area of Zürich Altstetten, leading
to the comparison of 3064 triangles in total. The
resulting U-matrices of the triangle maps (figure 8)
clearly show significant clustering of similar triangle
contexts. Although this kind of semantics may dif-
fer from the kind the humanmind would create. Fur-
ther research needs to be conducted in how far this
algorithmic modelled one is able to be used to sub-
stitute previously missing semantic classes (cf. Sidi
et al. 2011). In addition to the emergent clustering
we observed that our modified BMU kernel leads to
much clearer results, e.g. at the initial training level
(figure 8). Finally the rendering of the triangle map
of level 3 reveals the lack of necessary additional data
to do high quality high level abstraction. A problem
which is in accordance to the existing studies show-
ing the necessity of big data sets for deep learning
algorithms (cf. Le et al. 2011). This underdetermina-
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Figure 8
triangle maps with
toroid topology,
t.l.t.b.r.: level 1
(default kernel),
level 1 (modified
kernel), level 2
(modified kernel),
level 3 (modified
kernel). The color
scale reflects the
cluster borders,
blue cells are close
neighbours while
bright ones are
further apart.

tion of the achieved clustering as result of deficient
data is closely related to the concept of algorithmic
modeling itself (cf. Lyre 2004).

Table 2
SOM statistics (level
1* is calculated with
default BMU kernel
method)

Toquantify thequality of the SOMs regarding the
clustering for analysis purposes as well as the accu-
racy for synthesis purposes we used well established
figures like the topographic error and the quantiza-

tion error (cf. Uriarte et al. 2008). As a modification
of the last one mentioned we calculated the aver-
age Euclidian distance not only over the whole fea-
ture vector but instead over the single three dimen-
sional components each ring consists of. Thus the
component quantization error (QC -Error) is more re-
vealing in this context and is better suited for com-
paring the different SOM levels on a unified basis (ta-
ble 2). The computed statistics of the test scenario
emphasize the impressions we already got from U-
matrix renderings: first of all the significant differ-
ences between thedefault BMUkernel andourmodi-
fied onewhich is densifying the solution space. Then
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Figure 9
domain maps of
level 1 (based on
the distribution of
unirings), 2 (based
on the collection of
birings) and 3
(based on further
nested 3-rings)

we observe the lack of data resulting in a rather great
topographic errorwithin ourmost abstract SOM.And
finally we get positive results of our second level tri-
angle map regarding a convincing synthesizability.

Figure 10
sample deviation of
trained level-3
feature vector to its
original before (top)
and after (bottom)
leveling the error by
using the
underlying
redundancy

Despite the still limited dataset the three result-
ingdomainmaps already show reasonable clustering
and arrangements of the evaluated building blocks
(figure 9). Regardless of the significant quality differ-
ences between the underlying triangle maps of level
two and three the two corresponding domain maps
of these levels show surprisingly fewdifferences. This
is partly caused by the Gaussian convolution filter we

applied to smoothen thehistogramsandpartly result
of a probable limit of reasonable N-ring sizes - a limit
research in phrase-based language processing as al-
ready suggested (cf. Zollmann et al. 2008).

Finally our tests confirm the self-stabilizing ef-
fect of our robust nested encoding method (figure
10). When re-translating, the produced QC-errors of
level 3 feature vectors are between 30% and 40%
smaller than without redundancy and appear espe-
cially small in close neighborhood to the root trian-
gle.

CONCLUSION
The dominant outcome of this paper is a fully au-
tomated shape similarity detection with the poten-
tial for shape synthesis in a topological correct fea-
ture space. Therefore a way of symmetric encod-
ing of geometry, optimized for the use as feature-
vector in self-organizing maps, is introduced. The
conducted experiments further illustrate how differ-
ent unlabelled polygon meshes can be aligned ac-
cording to latent semantics. In future this could
have the potential of rendering expensive, manu-
ally edited, semantically enriched geometry reposi-
tories obsolete.The successful implementation of the
described techniques is directly connected to a vast
number of design related theories. One can interpret
the synthesized scenarios as concretization of possi-
bilities (cf. Flusser 1994) while the nodes of the SOM
itself can be viewed from an actor-network theory
perspective (cf. Wassermann 2010). The underlying
duality of the mesh encoding is discussed as double
articulation (cf. Deleuze et al. 2008) and the appli-

Shape, Form and Geometry 1 - Volume 1 - eCAADe 32 | 511



cation of the method enforces the opinion that de-
sign is rather a redesign than design ex nihilo (cf. La-
tour 2009). Of course, this also has an effect on the
discussions of authorship in architecture (cf. Carpo
2011) andon the role of geometric representations in
the design process and its communication (cf. Evans
2011).

Further consequences for the design process are
at least as manifold as the theoretic implications: in
future ageneralizable analysis of architectural andur-
ban structures is a necessity not only for synthesis
driven design approaches but also for any kind of ar-
chitectural impact assessment. Especially in consid-
eration of Big Data and algorithmic modelling, this
process is able to form a geometric data stream so
that other streams can bemapped onto, so datamin-
ing processes can finally re-manifest into geometric
output. As a next step in the development of this
methodology we are working on modified point set
registration (cf. Gelfand et al. 2005; Wang et al. 2008)
for re-translating the feature vectors of the domain
maps back into polygon meshes to better visualize
the output of the trained probabilistic shape space.
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