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S U M M A R Y
We propose a method for the design of seismic observables with maximum sensitivity to a
target model parameter class, and minimum sensitivity to all remaining parameter classes. The
resulting optimal observables thereby minimize interparameter trade-offs in multiparameter
inverse problems.

Our method is based on the linear combination of fundamental observables that can be any
scalar measurement extracted from seismic waveforms. Optimal weights of the fundamental
observables are determined with an efficient global search algorithm. While most optimal
design methods assume variable source and/or receiver positions, our method has the flexibility
to operate with a fixed source–receiver geometry, making it particularly attractive in studies
where the mobility of sources and receivers is limited.

In a series of examples we illustrate the construction of optimal observables, and assess the
potentials and limitations of the method. The combination of Rayleigh-wave traveltimes in
four frequency bands yields an observable with strongly enhanced sensitivity to 3-D density
structure. Simultaneously, sensitivity to S velocity is reduced, and sensitivity to P velocity
is eliminated. The original three-parameter problem thereby collapses into a simpler two-
parameter problem with one dominant parameter.

By defining parameter classes to equal earth model properties within specific regions, our
approach mimics the Backus–Gilbert method where data are combined to focus sensitivity in
a target region. This concept is illustrated using rotational ground motion measurements as
fundamental observables. Forcing dominant sensitivity in the near-receiver region produces an
observable that is insensitive to the Earth structure at more than a few wavelengths’ distance
from the receiver. This observable may be used for local tomography with teleseismic data.

While our test examples use a small number of well-understood fundamental observables,
few parameter classes and a radially symmetric earth model, the method itself does not impose
such restrictions. It can easily be applied to large numbers of fundamental observables and
parameters classes, as well as to 3-D heterogeneous earth models.

Key words: Numerical solutions; Inverse theory; Seismic tomography; Computational seis-
mology; Theoretical seismology; Wave propagation.

1 I N T RO D U C T I O N

1.1 Multiparameter seismic inversion

The characterization of the Earth’s internal state requires the com-
bined knowledge of a broad spectrum of physical properties that
may be inferred from seismic observations. Joint information on
P-velocity α, S-velocity β and density ρ, for instance, is needed to
independently constrain temperature and composition (e.g. Tram-
pert et al. 2004; Mosca et al. 2012). Seismic anisotropy can be
related to deformation (e.g. Hess 1964; Gung et al. 2003; Debayle

& Ricard 2013) and the presence of small-scale heterogeneity (e.g.
Backus 1962; Capdeville et al. 2010; Fichtner et al. 2013). The
attenuation of seismic waves indicates high temperatures or the
presence of fluids (e.g. Jackson et al. 2002; Jackson 2007; Dalton
et al. 2008), and lateral variations in density provide information on
convective flow (e.g. Ishii & Tromp 2001; Mosca et al. 2012).

Inferring the state of the Earth from seismic observations is
complicated because any observable d is sensitive to a wide
range of properties, or parameter classes mj. Arrival times of
seismic waves, for example, are sensitive to both velocity and
attenuation structure (e.g. Zhou 2009; Ruan & Zhou 2010).
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Wave amplitudes generally depend on attenuation and on purely
elastic heterogeneities that cause focusing and defocusing (e.g.
Dahlen & Baig 2002; Zhou et al. 2004). Shear wave splitting
is affected by intrinsic anisotropy and small-scale heterogene-
ity, including fine lamination (e.g. Backus 1962; Babuška &
Cara 1991).

All seismic inverse problems are ‘multiparameter problems’,
where trade-offs lead to uncertainties in and differences between
seismic earth models. The complete quantification of these trade-
offs requires fully probabilistic inversions (e.g. Sambridge &
Mosegaard 2002; Bodin & Sambridge 2009; Khan et al. 2013)
that are not feasible when the number of free parameters is large,
or when the solution of the forward problem is computational in-
tensive. While interparameter trade-offs are commonly recognized
as a key problem, the design of deterministic (i.e. not probabilistic)
multiparameter inversions is mostly guided by subjective choices
and technical convenience, instead of being driven by the physics
of the problem. The most widely used approaches are (1) ignor-
ing model parameters, (2) scaling, (3) sequential inversion and (4)
subspace methods.

Ignoring, for instance, the presence of 3-D heterogeneities in
attenuation and P velocity is common in surface wave tomography
(e.g. Yoshizawa & Kennett 2004; Fishwick et al. 2005; Debayle &
Ricard 2013). The neglected attenuation and P-velocity structures
may contaminate S-velocity models.

To reduce the effective number of model parameters, scaling re-
lations are also frequently applied. P-wave anisotropy, for instance,
may be scaled to S-wave anisotropy in surface wave tomography
(e.g. Panning & Romanowicz 2006; Nettles & Dziewoński 2008)
using, for instance, prior information from mineral physics (e.g.
Montagner & Anderson 1989). Similarly, density variations have
been scaled to seismic velocity variations in joint inversions of
gravity and seismic data (e.g. Tondi et al. 2000, 2009; Maceira
& Ammon 2009). Scaling implements prior assumptions. It there-
fore precludes the detection of those interesting cases where the
assumptions do not hold, for example, when density and velocity
heterogeneities are not correlated due to chemical heterogeneities.

Sequential inversion is widely used, for instance, in attenua-
tion tomography. First, velocity variations are constrained using
traveltime information. Subsequently, the amplitudes of seismic
waves are inverted for 3-D attentuation structure (e.g. Gung &
Romanowicz 2004; Kennett & Abdullah 2011). While practical,
this approach ignores that the velocity model will to some extent
be incorrect because the traveltimes used for its construction have
sensitivity to 3-D attenuation as well. Sequential inversion ignores
that any observable depends on more than one parameter class,
and it relies on the subjective decision that one parameter is more
important than another, and therefore should be considered first.

Subspace methods for multiparameter inversion (Kennett 1997;
Kennett et al. 1988) introduce a scaling between different parameter
classes that is determined by the data functional. While being prefer-
able to a priori scalings, the use of subspace methods constitutes a
subjective choice in itself, and it does not prevent the occurrence of
interparameter trade-offs.

1.2 The origin of interparameter mappings in
tomographic inversion

Interparameter mappings are an artefact of the regularization needed
to enforce a unique solution of otherwise ill-posed tomographic
systems. This can be seen most easily for the example of a generic

linear problem where variations in the observable data vector δd
are related to variations in the model parameter vector δm via a
sensitivity matrix G ,

δd = G δm . (1)

In the unrealistic case where G is invertible, δm is uniquely de-
termined by δd. The resolution matrix R is then equal to the unit
matrix, meaning that variations in one parameter class do not affect
the inferred variations in another parameter class. When G is not
invertible, the solution of the tomographic system is often defined
as the minimum of the quadratic misfit functional

χ (δm) = 1

2
(δd − G δm)TC−1

d (δd − G δm) + 1

2
δmTC−1

m δm,

(2)

where Cd and Cm are the data and model covariance matrices,
respectively (e.g. Nolet 2008). The normal equations that result
from forcing the derivative of (2) with respect to δm to zero are

δm = [GTC−1
d G + C−1

m ]−1GTC−1
d δd = L δd , (3)

with the pseudo-inverse L = [GTC−1
d G + C−1

m ]−1GTC−1
d . For the

simplest case of only two parameter classes denoted m1 and m2, we
have

m =
(

m1

m2

)
, G = (G1 G2) , (4)

and the pseudo-inverse takes the specific form

L = [GTC−1
d G + C−1

m ]−1GTC−1
d

=
(

GT
1 C−1

d G1 + C−1
m1

GT
1 C−1

d G2

GT
2 C−1

d G1 GT
2 C−1

d G2 + C−1
m2

)−1 (
GT

1

GT
2

)
C−1

d . (5)

Note that in eq. (5) the model covariance matrix is assumed block-
diagonal, which corresponds to the absence of interparameter trade-
offs. Ideally, the prior model covariances Cm1 and Cm2 reflect our—
to some degree subjective—a priori guess on the plausible vari-
ability within the model parameter classes m1 and m2, respectively.
More often, however, Cm1 and Cm2 are chosen pragmatically, that
is, such that the matrix [GTC−1

d G + C−1
m ] in eqs (3) and (5) be-

comes invertible. This regularization in the form of unavoidably
non-zero model covariances—whether idealistic or pragmatic—
introduces off-diagonal terms in the resolution matrix R = L G,
explicitly given by

R =
(

GT
1 C−1

d G1 + C−1
m1

GT
1 C−1

d G2

GT
2 C−1

d G1 GT
2 C−1

d G2 + C−1
m2

)−1

×
(

GT
1 C−1

d G1 GT
1 C−1

d G2

GT
2 C−1

d G1 GT
2 C−1

d G2

)
. (6)

Off-diagonal elements in R map variations in one parameter class
into inferred variations of the other parameter class. Moreover, the
regularization imposed on δm1 affects δm2, and vice versa, thereby
introducing additional interdependences that have no physical basis.

To avoid unphysical mappings, for instance, from m2 to m1, the
observables d should ideally be chosen such that the elements of
C−1/2

d G2 are much smaller than C−1/2
m2

, while keeping C−1/2
d G1 at

order of C−1/2
m1

or larger. Provided that such observables are available,
the resolution matrix condenses to

R = L G ≈
(

[GT
1 C−1

d G1 + C−1
m1

]−1[GT
1 C−1

d G1] 0

0 0

)
, (7)
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meaning that variations in m2 have little effect on the inferred
variations in m1. While illustrated here for the specific case of
a linear least-squares problem, the phenomenon that necessary
regularization induces interparameter trade-offs, is general and
methodology-independent. The challenge is therefore to construct
observables that have maximum sensitivity with respect to m1 and
minimum sensitivity with respect to m2.

1.3 Optimal experimental design

Optimizing sensitivity to and resolution of specific model sub-
spaces falls into the field of experimental design, for which an
extensive body of literature exists. In geophysics, most of the re-
search in experimental design focused on small-scale, exploration
or engineering applications where the positions of sources and/or
receivers is variable. Pioneering work was concerned with finding
receiver configurations for locating earthquakes (e.g. Rabinowitz &
Steinberg 1990; Hardt & Scherbaum 1994) and for ocean tomogra-
phy (e.g. Barth & Wunsch 1990) such that resolution is maximized
while keeping the financial and logistic effort as small as possible.
Under the assumption that the relation between model parameters
and data is nearly linear, tools from linear algebra can be used to
find a suitable balance between benefits and costs, expressed in the
form of a design objective function (e.g. Maurer & Boerner 1998;
Curtis 1999a; Curtis et al. 2004; Coles & Morgan 2009). Meth-
ods applicable to general non-linear problems were developed, for
instance, by van den Berg et al. (2003) and Winterfors & Curtis
(2008). For a comprehensive review on optimal experimental de-
sign in geophysics, the reader is referred to Curtis (2004a,b) and
Maurer et al. (2010).

A common characteristic of most experimental design methods
is that the type of measurement is fixed while sources and/or re-
ceivers are assumed mobile. This is the case, for instance, in trav-
eltime cross-hole tomography where traveltime measurements are
made on seismograms recorded by seismometers at variable depths
(e.g. Curtis 1999b). While being successful in exploration and en-
gineering geophysics, such methods are not directly applicable to
most regional- and global-scale problems where the ability to move
sources or receivers is limited. For instance, the location of earth-
quakes that act as sources in tomographic studies is largely con-
trolled by tectonic processes on which we have no influence. Fur-
thermore, the positioning of seismic stations is often dictated by
geographic or political circumstances.

The relative immobility of sources and receivers in regional- and
global-scale studies requires a different approach to experimental
design. Instead of moving sources and receivers while keeping the
type of measurement fixed, we propose to design optimal measure-
ments or observables based on a fixed source–receiver geometry.

1.4 Outline

In the following paragraphs, we develop and apply a method for the
design of seismic observables that reduce interparameter trade-offs
and mappings by having maximum sensitivity with respect to the
parameter class of interest while being as insensitive as possible
to all other parameter classes. These ‘optimal observables’ are de-
fined as a linear combination of ‘fundamental observables’ that are
generally sensitive to multiple parameter classes. Possible choices
of fundamental observables include, but are not limited to, finite-
frequency traveltimes and amplitudes of body and surface waves,
different types of waveform misfit in selected time intervals or vari-

ous measurements made on interstation correlations of deterministic
or quasi-random wavefields. The optimal weights in the linear com-
bination are determined in a two-stage optimization process that
requires the sensitivity kernels of the fundamental observables.

This paper is organized as follows: In Section 2, we develop a
general method that allows us to design optimal observables on the
basis of a collection of fundamental observables with less favourable
properties. The theory will be followed by a series of examples
where we design observables with maximum sensitivity to density
(Section 3.1), and maximum sensitivity in the near-receiver struc-
ture (3.2). These examples are primarily intended to illustrate the
methodology, and to reveal its potentials and limitations. Finally,
in Section 4, we discuss various details of our method, including
pre-requisites for the successful construction of optimal observ-
ables, the role of prior model covariance and parameter scaling, as
well as the use of optimal observables in iterative multiparameter
inversions.

In order to be independent of a specific inversion setup or dis-
cretization, we will mostly work in the continuous space domain.
The discrete versions of model parameters and sensitivity kernels
can be obtained by projection onto an application-specific set of
basis functions.

2 T H E O RY

2.1 Constructing optimal observables

We start our development with a set of fundamental observables
d1, . . . , dn, and a set of continuously distributed parameter classes
m1(x), . . . , m p(x), where x denotes the position vector. Fundamen-
tal observables can be, for instance, traveltimes in various frequency
bands; and possible parameter classes include P velocity, S velocity
and attenuation. Without loss of generality, we assume that the pa-
rameter class of interest corresponds to m1. Our goal is to find the
linear combination of fundamental observables

d =
n∑

i=1

wi di , (8)

that has maximum sensitivity to parameter class m1, while having
minimum sensitivity to all other parameter classes m2, . . . , mp. To
ensure well-posedness of this optimization problem, we constrain
the squared sum of the weights to equal 1, that is,

n∑
i=1

w2
i = 1 . (9)

Our task is to identify the appropriate vector of weighting coeffi-
cients w = (w1, . . . , wn)

T
. For this, we write the variation of the

combined observable d,

δd =
n∑

i=1

wiδdi , (10)

in terms of the Fréchet or sensitivity kernels Kij of the fundamental
observables, defined as

δdi =
p∑

j=1

∫
V

Ki j (x) δm j (x) d3x , (11)

with the earth model volume denoted by V. Eq. (11) is the space-
continuous version of eq. (1), with the sensitivity kernel Kij playing
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the role of the sensitivity matrix G. Inserting (11) into (10) gives

δd =
p∑

j=1

∫
V

K j (x) δm j (x) d3x , (12)

where the sensitivity Kj of the combined observable with respect to
parameter class mj is simply the weighted sum of the fundamental
sensitivities Kij,

K j (x) =
n∑

i=1

wi Ki j (x) . (13)

For d to be optimal, we require that the sensitivity power (Sieminski
et al. 2009)

Pj (w) =
∫

V
K 2

j (x) d3x (14)

is large for j = 1 and small for j > 1. We can cast this simultaneous
maximization and minimization of sensitivity powers, into a single
maximization problem by defining the objective functional

P(w) =
p∑

j=1

b j Pj (w) , (15)

with balancing coefficients b1 > 0 and bj>0 < 0. The balancing
coefficients control the extent to which the sensitivity power P1 is
maximized while the sensitivity powers Pj>1 are minimized. Choos-
ing, for instance, b1 large relative to the bj>1 will result in a combined
observable d that has large sensitivity with respect to m1, but the
sensitivities with respect to the remaining parameter classes mj>1

may also still be large. On the other hand, choosing b1 small rel-
ative to the bj>1 will only minimize sensitivity with respect to the
parameter classes mj>1 without necessarily maximizing sensitivity
with respect to m1. Thus, appropriate balancing is needed, as we
will explain in the following paragraphs.

Determining optimal weights wi and balancing coefficients bj

simultaneously, is a non-linear problem that can be computation-
ally expensive. To keep the computational burden at a manageable
level, we developed a two-stage procedure for the solution of the
optimization problem: Stage 1: We consider the balancing coef-
ficients bj constant, and we try to find weights wi that maximize
(15) subject to the constraint (9). The Lagrange function for this
constrained optimization problem is

L(w, λ) =
p∑

j=1

b j Pj (w) − λ

(
n∑

i=1

w2
i − 1

)
. (16)

Differentiating eq. (16) with respect to w, and using (13) and (14),
yields

∂L
∂wl

=
p∑

j=1

b j

∫
V

Kl j (x)

[
n∑

i=1

wi Ki j (x)

]
d3x − λwl , (17)

with l = 1, . . . , n. Setting the left-hand side of (17) to zero, and
defining the matrix

Mli :=
p∑

j=1

b j

∫
V

Kl j (x)Ki j (x) d3x (18)

with l, i = 1, . . . , n, condenses the optimization problem into the
eigenvalue equation

Mw = λw. (19)

All eigenvalues λ are real because M is symmetric. Furthermore,
we have P(w) = λ for ∂L

∂wl
= 0 (see Appendix A). Consequently, the

solution of the maximization problem is the weight eigenvector w
that corresponds to the maximum eigenvalue λmax of M. The size of
M is controlled by the number of fundamental observables, which
is typically small (in fact, around five in the examples shown later).
It follows that the computational costs for solving the eigenvalue
problem are generally low. Stage 2: So far, the solution vector w
of the maximization problem still depends on the balancing vector
b = (b1, . . . , bp)T that we assumed fixed in eq. (16), that is, w =
w(b). As an additional optimization step, the balancing coefficients
may be further tuned to improve the properties of the combined
observable d. For this, we draw test balancing vectors btest and
evaluate the criterion

P1[w(btest)]∏p
j=2 P j[w(btest)]

= max , (20)

which only involves the solution of the small eigenvalue problem
(19). We then choose the balancing vector for which (20) attains its
global maximum. In the applications of Section 3, we generate test
balancing vectors using a regular grid search.

We note that other criteria for finding optimal balancing coeffi-
cients may be used, depending on specific requirements and appli-
cations. Eq. (20) proved useful for our purposes.

2.2 Parameter classes

The method developed in Section 2.1 is very general, and does not
pose any restrictions on what we define as a parameter class. In
addition to physical properties such as P velocity and S velocity,
parameter classes can also be defined as physical properties in spe-
cific regions of the Earth. In this sense, m1 may, for instance, be the
S velocity in the D” region, and m2 the S velocity in the remaining
mantle and the crust. Using a suitable set of fundamental observ-
ables, our method may then be used to design observables with
primary sensitivity to D” structure. An example where sensitivity is
focused into a specific region, is shown in Section 3.2.

3 E X A M P L E S

To illustrate the construction of optimal observables, we provide
various examples in a regional tomography setting. In Section 3.1,
we focus on traveltime measurements used to construct combined
observables with primary sensitivity to 3-D density structure. This
will be followed, in Section 3.2, by the combination of rotational
and translational ground motion measurements into an observable
that is sensitive only to near-receiver structure.

For our experiments we compute synthetic wavefields for a
point source at 13.9 km depth beneath southern Greece. These are
recorded at 20.98◦ epicentral distance in Malaga, Spain, as illus-
trated in Fig. 1 (left-hand panel). In the interest of reproducibility,
we use the 1-D earth model ak135 (Kennett et al. 1995), and the
source parameters correspond to the Mw5.5 event in the southern
Greece region on 2010 January 18 taken from the Global CMT cat-
alogue (www.globalcmt.org). Velocity seismograms for the vertical
component and frequency bands from 60 to 90 s (solid line) and 90
to 130 s (dashed line) are plotted in the right-hand panel of Fig. 1.

3.1 Combining surface wave traveltimes to enhance
sensitivity to 3-D density variations

Trade-offs between parameter classes characterize inversions for
3-D density structure. While the Earth’s mass, moment of inertia and

file:www.globalcmt.org
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Figure 1. Left-hand side: source–receiver geometry for an event beneath southern Greece (longitude: 22.05◦E, latitude: 38.32◦N, depth: 13.9 km) and a
receiver located in Malaga, Spain (longitude: 4.43◦W, latitude: 36.76◦N, depth: 0.0 km). The epicentral distance is 20.98◦. The source mechanism is plotted
at the epicentre. Right-hand side: vertical-component seismograms of the displacement velocity. The frequency bands are 60–90 s (solid line) and 90–130 s
(dashed line). The Rayleigh-wave window is marked by a grey bar.

gravest normal modes constrain radial density structure to within
∼1 per cent over 200-km-depth intervals (Kennett 1998), 3-D den-
sity remains poorly known. Deterministic inversions are frequently
biased by convenience-driven assumptions, including the neglect
of compositional heterogeneities (e.g. Simmons et al. 2010) and
imposed correlations between velocities and density (Tondi et al.
2000, 2009). Joint deterministic inversions of gravity and normal-
mode data yield geodynamically plausible density heterogeneities
for the lower mantle (Ishii & Tromp 1999, 2001), but their reliability
remains debated mostly because sensitivity to density is small and
resolution estimates are biased by regularization (e.g. Resovsky &
Ritzwoller 1999; Romanowicz 2001; Kuo & Romanowicz 2002).
Probabilistic inversions for 3-D density avoid regularization (e.g.
Resovsky & Trampert 2003; Mosca et al. 2012) but are limited to
smaller numbers of model parameters.

A central problem in density tomography is that the sensitiv-
ity of traveltime measurements to density variations tends to be
small, oscillatory and parametrization-dependent. In isotropic mod-
els parametrized in terms of P-velocity α, S-velocity β and density
ρ, the traveltimes of body waves are nearly insensitive to density due
to backward scattering (Wu & Aki 1985; Tarantola 1986). While
not being close to zero, the sensitivities of surface wave traveltimes
are vertically oscillating, meaning that positive and negative con-
tributions of large-scale perturbations tend to cancel (e.g. Takeuchi
& Saito 1972). The alternative parametrization in terms of bulk
modulus κ , shear modulus μ and density, leads to large sensitvities
of body- and surface wave traveltimes to density, but also to strong
interparameter trade-offs.

In the following paragraphs, we try to construct combinations of
surface wave traveltime measurements with dominant sensitivity to
3-D density variations. As fundamental observables we use cross-
correlation time-shifts of vertical-component surface waves in the
period bands 30–40 s, 40–60 s, 60–90 s and 90–130 s, that we denote
by d1 = d30−40, d2 = d40−60, d3 = d60−90 and d4 = d90−130. Thus, the
number of fundamental observables is n = 4. The measurement time
window is indicated by grey shading in the synthetic seismograms
of Fig. 1. Sensitivity kernels needed in the optimization scheme are
computed with the help of adjoint techniques (e.g. Tarantola 1988;
Tromp et al. 2005; Fichtner et al. 2006; Liu & Tromp 2008; Chen
2011). Under the assumption that observed and synthetic waveforms
are sufficiently similar, the sensitivity kernels for cross-correlation
time-shift measurements are independent of observed data (Luo &

Schuster 1991), meaning that we can construct optimal observables
without requiring actual data.

Knowing that the inversion for 3-D density is a major challenge
in seismic tomography, our goals are modest and mostly centred
around a proof of the algorithmic concept introduced in Section 2.
Density is a difficult parameter that is well suited to illustrate the
functioning of our method, as well as potential pitfalls and limi-
tations. In a first numerical experiment, we construct an optimal
observable with minimum sensitivity to α and β, and maximum
sensitivity to the vertical density gradient ∂ rρ that can be related
to the pressure derivative of density, observable in mineral physics
experiments. This will be followed by a similar, though more diffi-
cult, attempt to find a optimal observable for density when the earth
model is parametrized in terms of the bulk modulus κ , the shear
modulus μ and density. In Section 3.1.3 we extend the analysis of a
single source–receiver pair to a realistic configuration with multiple
sources and receivers.

3.1.1 Optimal observable for the vertical density gradient ∂ rρ

To construct optimal observables for the vertical density gradient
∂ rρ, we start with the computation of sensitivity kernels for the
relative perturbations δln α, δln β and δln ρ, where the reference
values are taken from the 1-D earth model ak135 (Kennett et al.
1995). The kernels are displayed in the upper three rows of Fig. 2
for the frequency band from 60 to 90 s. The left-hand panels show
vertical slices through the source–receiver plane at 37.5◦N. The
right-hand panel contains vertical slices at 9.0◦E. While sensitivity
with respect to δln α is non-zero only within the upper ∼30 km,
sensitivity to δln β reaches its maximum around 80 km depth. The
density kernel is characterized by a sign change around 50 km
depth. It follows that density variations extending much more than
50 km in depth hardly affect 60 to 90 s surface wave traveltimes
because positive and negative contributions tend to cancel. This
characteristic is nearly period-independent.

As we demonstrate in Appendix B, the kernel for the vertical
density gradient, K∂r ρ , can be computed from Kρ via a simple
integral over radius from the centre of the Earth (r = 0) to the
surface (r = R):

K∂r ρ(θ, φ, r ) = −
r∫

r ′=0

Kρ(θ, φ, r ′) dr ′ . (21)
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Figure 2. Vertical slices through the sensitivity kernels of a 60–90 s surface wave traveltime with respect to the relative variations δln α (1st row), δln β (2nd
row) and δln ρ (3rd row). The 4th row displays slices through the relative density gradient kernel, that is, the kernel corresponding to δln ∂rρ.

Kernels for relative perturbations in the vertical density gradient,
δln ∂ rρ, are obtained from K∂r ρ by multiplication with a reference
value for ∂ rρ. In the case of the 1-D reference earth model ak135
(Kennett et al. 1995), this reference takes the nearly constant value
of 6.05 · 10−4 kg m−4 from 35 to 410 km depth. Vertical slices
through the sensitivity kernel for δln ∂ rρ are shown in the fourth
row of Fig. 2. Unlike Kρ , the density gradient kernel K∂r ρ does
not change sign with depth. It follows that variations of ∂ rρ ex-
tending over more than ∼50 km in depth will affect the traveltime
observations. Equipped with sensitivity kernels for δln α, δln β and
δln ∂ rρ in the individual period bands, we can now use the ma-
chinery developed in Section 2 to construct a composite observable
that is optimally sensitive to the vertical density gradient. The re-
sulting optimal weights are w1 = −0.11, w2 = 0.41, w3 = −0.73
and w4 = 0.54, meaning that, according to eq. (8), the optimal
observable takes the form

d = −0.11 d30−40 + 0.41 d40−60 − 0.73 d60−90 + 0.54 d90−130.

(22)

Sensitivity kernels corresponding to this optimal observable are
displayed in Fig. 3. Compared to the 60–90 s period band ker-
nels shown in Fig. 2, P-velocity sensitivity is almost completely
eliminated, and the maxima of S-velocity sensitivity is reduced by
∼50 per cent. Furthermore, the S-velocity kernel of the optimal
observable is oscillatory, meaning that large-scale variations in S
velocity have an even smaller effect. At the same time, the den-
sity gradient kernel maintains the same amplitude as within the
individual period bands.

A condensed version of the sensitivity kernels for the optimal
observable is shown in Fig. 4 in the form of horizontally averaged
kernels that emphasize their radial structure. While the sensitivity
of the optimal observable relative to ∂ rρ consists of a single lobe
with amplitude similar to the individual period band kernels, the
sensitivities to α and β differ significantly from their individual
contributions. Most importantly, and as seen in the vertical profiles
of Fig. 3, sensitivity to α is eliminated almost completely, meaning
that the original three-parameter inverse problem has reduced to a
two-parameter problem that does not suffer from trade-offs with
shallow P-velocity structure.

Figure 3. Vertical slices through the sensitivity kernels of the optimal observable d (eq. 22) with respect to the relative variations δln α (1st row), δln β (2nd
row) and δln ∂rρ (3rd row). Sensitivity to P velocity is nearly eliminated, and sensitivity to S velocity is significantly reduced, relative to kernels for the
individual period bands.
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Figure 4. Horizontally averaged sensitivity kernels with respect to α (left panel), β (centre panel) and ∂rρ (right panel). Kernels for the individual period
bands are plotted in black. Red curves represent the kernels corresponding to the optimal observable. Sensitivity of the optimal observable to α is forced to
almost zero, meaning that the original three-parameter problem has reduced to a two-parameter problem that is nearly independent of P velocity.

This first experiment indicates that the optimization algorithm
proposed in Section 2 indeed produces observables that have in-
creased sensitivity with respect to the target parameter, while hav-
ing reduced sensitivity with respect to the remaining parameters.
Remarkable aspects of this experiment are that relative sensitivity
to density structure can be enhanced, and sensitivity to P-velocity
structure can be nearly eliminated by combining only a small num-
ber of Rayleigh-wave traveltime measurements that by themselves
have weak sensitivity to density and strong sensitivity to P velocity
within the crust.

3.1.2 Changing parametrization: (α, β, ρ) → (κ , μ, ρ)

A complicating aspect of density tomography is the strong de-
pendence of the density kernel on the choice of free parameters
that can have profound effects on the result of deterministic reg-
ularized inversions (Cara et al. 1984). The effect of changing the

parametrization from α, β and ρ to the bulk modulus κ , shear
modulus μ and density, is visualized in Fig. 5 for the period band
60–90 s. While sensitivity with respect to κ is non-zero only in
the upper ∼30 km below the surface, sensitivity with respect to μ

reaches its maximum at depths between 50 and 100 km and tends
to zero towards the surface. The density kernel is characterized by
an opposite sign relative to the κ and μ kernels, but there is no sign
change with depth as in the α, β, ρ parametrization. Solving the
optimization problem produces the weights w1 = −0.28, w2 = 0.6,
w3 = −0.65 and w4 = 0.37 that we use to construct the optimal
composite observable. Vertical slices through and horizontal aver-
ages of the resulting sensitivity kernels are displayed in Figs 6 and
7. Similar to the P-velocity α in the previous example, sensitivity to
κ is strongly reduced, meaning that the optimal observable is effec-
tively sensitive to two parameters only. Sensitivity to μ, however,
remains comparatively large. The failure to strongly reduce shear
modulus sensitivity results from the nearly period-independent ge-
ometry of the density kernels, the horizontal averages of which

Figure 5. Cross-correlation time-shift kernels with respect to the bulk modulus κ (first row), the shear modulus μ (second row) and density ρ (third row)
for the frequency band 60–90 s. The vertical slices are shown at 37.5◦N (left-hand column) and 9.0◦E (right-hand column). The similarly shaped sensitivity
kernels for μ and ρ indicate that strong trade-offs exist between both parameters.
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Figure 6. Vertical slices through sensitivity kernels for the optimal observable in the κ , μ, ρ parametrization. While the sensitivity to κ is negligibly small,
sensitivity to μ remains large. The comparatively small reduction of sensitivity to μ results from the small variability in the geometry of the individual density
kernels for different period bands, shown in the right-hand panel of Fig. 7. The main effect of the optimization is to introduce additional sign changes with
depth in the sensitivity to μ.

Figure 7. Horizontally averaged sensitivity kernels with respect to κ (left panel), μ (centre panel) and ρ (right panel). Kernels for the individual period bands
are plotted in black. Red curves represent the kernels corresponding to the optimal observable. Sensitivity of the optimal observable to α is forced to almost
zero. The comparatively small variability in the geometry of the individual density kernels for different period bands limits the ability to find an optimal
observable with a density sensitivity that is significantly increased relative to the shear modulus sensitivity.

are shown in the right-hand panel of Fig. 7. The small geometric
variability reduces the ability to find linear combinations with fun-
damentally new properties, thereby illustrating a limitation of our
method that we further discuss in Section 4.1.

One of the main effects of the optimization algorithm is to in-
troduce additional sign changes with depth in the sensitivity to
μ. These sign changes reduce the impact of large-scale variations
in μ on the optimal observable. In the following section we will
further investigate this effect in a scenario with multiple sources
and receivers.

3.1.3 A synthetic tomography scenario

In this section, we apply the construction of optimal observables
to a configuration with multiple sources and receivers, as shown
in Fig. 8. This experiment is intended to serve several purposes:

(1) test the applicability of the optimization algorithm to multiple
source–receiver pairs, (2) check the reproducibility of the weight-
ing coefficients wi found for a single source–receiver pair in the
previous example and (3) test with actual measurements if density
truly becomes the dominant parameter.

Our scenario includes 10 shallow events in the Mediter-
ranean region, with epicentres taken from the Global CMT cat-
alogue (www.globalcmt.org). The positions of the 43 stations
in the experiment correspond to station locations in the seis-
mic networks IberArray (http://iberarray.ictja.csic.es) and ISIDe
(http://iside.rm.ingv.it/iside). This distribution of sources and re-
ceivers ensures a dense coverage of the Mediterranean region except
for the southeastern part.

For the construction of optimal observables, we again consider
cross-correlation time-shifts of vertical-component Rayleigh waves
for the frequency bands 30–40 s, 40–60 s and 90–130 s. We fur-
thermore impose that the optimal weights wi be the same for each

file:www.globalcmt.org
http://iberarray.ictja.csic.es
http://iside.rm.ingv.it/iside
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Figure 8. Left-hand side: source/receiver geometry of the synthetic tomography scenario. 10 seismic events visualized by their corresponding source
mechanisms encircle the Mediterranean Sea. The 43 receiver locations are marked by yellow triangles. Great circle paths are represented by black lines between
each source/receiver pair. Right-hand side: density perturbation of +15 per cent centred in the Tyrrhenian Sea at 13◦E, 39◦N and 150 km depth.

Figure 9. Comparison of cumulative time delays resulting from the density
heterogeneity (χ (δln ρ)) and the shear modulus heterogeneity (χ (δln μ))
shown in Fig. 8. The effect of the density heterogeneity is clearly dominant
for the optimal observable.

receiver and event. For this scenario, the optimization algorithm re-
produces exactly the same weights as in the single source–receiver
case of Section 3.1.2. This result is plausible, at least for a radi-
ally symmetric background model where surface wave sensitivity
kernels have translational invariance and depth profiles that are
nearly independent of epicentral distance. Differences in the source
mechanisms play a minor role. To test if the optimal observable
indeed reacts primarily to density perturbations, we add hetero-
geneities to the 1-D model, centred at 13◦E, 39◦N and 150 km depth
(see right-hand panel of Fig. 8). In a first simulation we computed
vertical-component seismograms for the individual frequency bands
and a +15 per cent density perturbation. For realistic earth models,
this value may be exaggerated, but it ensures that the traveltime
differences between the 1-D model and its perturbed version are
large and free of discretization errors. In a second simulation we
replaced the density perturbation by a −15 per cent shear modulus
perturbation. Following these simulations, we compute the cumu-
lative rms time delays χ observed for all source–receiver pairs for
both types of perturbations; and for the fundamental, as well as for
the optimal observable.

The result is displayed in Fig. 9 in the form of relative time delays
for density and shear modulus perturbations, χ (δln ρ)/χ (δln μ).
Within the individual period bands, the time delays produced by
the shear modulus heterogeneity is generally larger than the time
delays produced by the density heterogeneity of comparable size.
For the optimal observable, however, time delays due to the density

heterogeneity are more than 40 per cent larger, supporting the results
of the sensitivity analysis of Section 3.1.2 that already suggested the
dominance of density structure. This result furthermore confirms
that the optimization algorithm produces the desired results, and
indeed provides observables that mostly react to changes in the
target parameter class.

3.2 Sensitivity optimization involving translational and
rotational ground motion measurements

So far, we were concerned with the optimization of sensitivities
with respect to a set of structural parameters. In the following appli-
cation we demonstrate that our algorithm remains applicable when
the parameter classes are not structural parameters themselves, but
structural parameters within certain target regions of the Earth. We
consider the apparent S-velocity βa, defined at the receiver location
xr as the ratio of rms translational velocity and rotation amplitudes
of a seismic recording (e.g. Fichtner & Igel 2009):

βa(xr ) := 1

2

‖v(xr )‖2

‖ω(xr )‖2
. (23)

Quantities on the right-hand side of eq. (23) denote the veloc-
ity amplitude ‖v(xr )‖2

2 = ∫
v2(xr , t) dt and the rotation amplitude

‖ω(xr )‖2
2 = ∫

( 1
2 ∇ × u)2(xr , t) dt. The quotient rule of differenti-

ation implies that the sensitivity of βa is equal to the difference
between the sensitivities of ‖v(xr )‖2 and ‖ω(xr )‖2 :

Kβ (βa) = Kβ (‖v(xr )‖2) − Kβ (‖ω(xr )‖2). (24)

The key property of Kβ (βa) is that sensitivity is concentrated in the
immediate vicinity of the receiver, and tends to zero towards the
source (Fichtner & Igel 2009; Bernauer et al. 2012). This property
suggests a variant of local tomography with teleseismic data that is
fully independent of both traveltime measurements and deep Earth
structure far from the local target region (Bernauer et al. 2009).

Our aim is to reproduce the localization of sensitivity near the
receiver by constructing an optimal observable, instead of using the
definition of the apparent S-velocity βa from eq. (23). For this, we
define dv = ‖v‖2 and dω = ‖ω‖2 as our fundamental observables.
As first parameter class, we choose the S-velocity β within a region
R1 that extends 500 km around the receiver. The second parameter
class is the S velocity in the remaining part of the model, denoted
by R2. With the optimization scheme developed in Section 2, we
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Figure 10. Vertical slices at 37.5◦N through the sensitivity kernels G Kβ (‖v‖) (top left-hand side), G Kβ (‖ω‖) (centre left-hand side), (1 − G) Kβ (‖v‖) (top
right-hand side) and (1 − G) Kβ (‖ω‖) (centre right-hand side). The function G is a Gaussian function that is centred at the receiver position and has a half-width
of 500 km. The source–receiver geometry and the source characteristics are the same as in Fig. 1. The third row displays the kernels for the optimal observable
d = 0.71 (dv − dω). Shear wave sensitivity is entirely concentrated in the receiver region, and zero at distances of more than a few hundred kilometres from
the receiver.

construct an optimal observable d = wvdv + wωdω with maximum
sensitivity in R1 and minimum sensitivity in R2.

In the practical implementation, we write the variation of dv as

δdv =
∫

V
G Kβ (‖v‖) δβ d3x +

∫
V

(1 − G) Kβ (‖v‖) δβ d3x , (25)

where G is a Gaussian function that is centred at the receiver position
and has a half-width of 500 km. Similarly, for the variation of dω,
we have

δdω =
∫

V
G Kβ (‖ω‖) δβ d3x +

∫
V

(1 − G) Kβ (‖ω‖) δβ d3x . (26)

Eqs (25) and (26) are special cases of eq. (11) in the theoretical
developments, and they imply that the four kernels entering the
optimization scheme are G Kβ (‖v‖), G Kβ (‖ω‖), (1 − G) Kβ (‖v‖)
and (1 − G) Kβ (‖ω‖). These kernels are displayed in the first two
rows of Fig. 10. All kernels were computed with the same setup as
in Section 3.1 but for a frequency band of 40–100 s.

Inserting the sensitivity kernels in the optimization algorithm pro-
vides the weighting coefficients wv = 0.71 and wω = −0.71, mean-
ing that the observable with maximum sensitivity in the receiver
region and minimum sensitivity elsewhere is just the difference of
dv and dω, that is,

d = 0.71 (dv − dω) . (27)

The factor 0.71 ≈ √
1/2 results from the constraint that the squared

sum of all weights be equal to 1 (see eq. 9). The sensitivity kernel
corresponding to d is given by

Kβ (d) = 0.71
[
Kβ (‖v(xr )‖2) − Kβ (‖ω(xr )‖2)

] = 0.71 Kβ (βa),

(28)

and is shown in the third column of Fig. 10. This result is remarkable
for various reasons: First, the optimization scheme indeed succeeds
to focus sensitivity in the receiver region while completely erasing
sensitivity in any other part of the earth model. It follows that any
shear velocity perturbation more than a few hundred kilometres
from the receiver has no first-order effect on the optimal observ-
able d. Second, we fully reproduce the sensitivity of the apparent
S-velocity βa, up to a constant that results from the construction
procedure of the optimal observable. Third, the result illustrates

that kernels cannot be linked uniquely to an observable. Both βa

= dv/dω and d = dv − dω have, as a consequence of the quotient
rule, identical sensitivity kernels. Finally, we note that separating
the complete kernels into low- and high-frequency components, in-
stead of concentrating on different areas as in eqs (25) and (26),
also leads to exactly the same linear combination as in eq. (27). The
variations in dv and dω are expressed as

δdv =
∫

V
F ∗ Kβ (‖v‖) δβ d3x +

∫
V

(1 − F) ∗ Kβ (‖v‖) δβ d3x,

(29)

and

δdω =
∫

V
F ∗ Kβ (‖ω‖) δβ d3x +

∫
V

(1 − F) ∗ Kβ (‖ω‖) δβ d3x,

(30)

where F is a spatial high-pass filter and (1 − F) the corresponding
low-pass filter. This result shows that the sensitivity close to the
receiver in fact corresponds to the low-wavenumber contributions
of the sensitivity kernels for dv and dω.

4 D I S C U S S I O N

The series of examples shown in Section 3 illustrates the applica-
bility of the proposed method, but also raises various questions that
deserve a more detailed discussion. These include the circumstances
under which useful optimal observables can be designed, the role
of quasi-subjective prior covariances, actual multiparameter inver-
sion schemes based on optimal observables and the relation of our
method to experimental design and the Backus–Gilbert method.

4.1 Successfully designing optimal observables

The extent to which sensitivity with respect to the target parameter
class can be maximized while minimizing sensitivity with respect
to the remaining parameter classes depends critically on the shape
of the sensitivity kernels for the fundamental observables. A large
variability in the shape of the kernels generally favours the success-
ful construction of an observable that is truly optimal in the sense
of being sensitive to one parameter class only.
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In the example of Section 3.1.1, where we considered the sensitiv-
ity of Rayleigh-wave traveltimes to the vertical density gradient ∂ rρ,
the shape of the individual kernels was strongly period-dependent.
This dependence allowed us to reduce the sensitivity to α and β

while keeping the sensitivity to ∂ rρ at a high level.
We encountered a less favourable situation when changing

the parametrization to κ , μ and ρ in Section 3.1.2. In this
parametrization, the geometry of the density kernels is nearly
period-independent, which limits the ability to find linear com-
binations with fundamentally different properties.

Along these lines, it is clear that the success of our methodology
relies on the choice of fundamental observables. For the purpose of
illustration, we deliberately chose a small number of fundamental
observables, the physics of which are well understood. These ob-
servables allowed us to display both the functioning and limitations
of our method. For future applications, the range of fundamental ob-
servables should clearly be extended, to include, for instance, time-
and frequency-dependent amplitudes or various array-like measure-
ments like interstation correlations.

4.2 The role of prior model covariance and parameter
scaling

The problem of interparameter trade-offs in regularized inversions
has two components—one related to our prior assumptions on model
covariance, and one related to the structural sensitivity of specific
observables. The interplay of both components becomes most ap-
parent in the generalized inverse, given in eq. (5) for the case of two
parameter classes.

Normalizing, for instance, parameter class m1 by a very small
prior standard variation σ 1, will scale the corresponding G1 to σ1G1,
meaning that the generalized inverse L effectively becomes

L ≈
(

I 0

0 [G
T

2 C−1
d G2 + I]

)−1(
G

T

1

G
T

2

)
C−1

d . (31)

The corresponding resolution matrix would be

R ≈
(

0 0

0 [G
T

2 C−1
d G2 + I]−1[G

T

2 C−1
d G2]

)
, (32)

meaning that the prior assumption on model covariance causes δm1

to be completely unresolved. This illustrates the effect of the prior
on perceived resolution in deterministic inversions; and there is no
generic solution other than probabilistic inversions that are, how-
ever, not feasible for high-dimensional model spaces.

Our development focuses on the second component of interpa-
rameter trade-offs that is related to the choice of observable. In-
dependent of any prior assumptions, we ask how much sensitivity
with respect to one parameter can be increased relative to sensitivity
with respect to another parameter by designing optimal observables.
The usefulness of these optimal observables in an actual regularized
deterministic inversion also depends on the choices of prior covari-
ances for the various parameter classes. Prior knowledge on the
variability of model parameters can be naturally incorporated into
our approach by scaling model parameters by their prior standard
deviations.

4.3 Iterative inversion for multiple parameter classes

To use optimally designed observables in a tomographic inversion,
we propose to proceed as follows: Again using the case of two

parameter classes for illustration, we first construct an optimal ob-
servable d1 for m1 and a second optimal observable d2 for m2. The
linearized relation between observations and model parameters then
takes the form(

δd1

δd2

)
=

(
G11 G12

G21 G22

)(
δm1

δm2

)
. (33)

In the ideal, but hardly achievable, scenario where d1 is insensitive
to m2 and d2 is insensitive to m1, the off-diagonal contributions
G12 and G21 in eq. (33) cancel, and the two parameter classes are
decoupled. Under more realistic circumstances, G12 and G21 will
be non-zero but by construction smaller than the diagonal elements
G11 and G22. To emphasize the dominance of the diagonal terms,
we rewrite (33) as

G11δm1 = δd1 − G12δm2,

G22δm2 = δd2 − G21δm1. (34)

Following (Kennett & Sambridge 1998), the first iteration consists
in solving a regularized version of

G11δm(1)
1 = δd1,

G22δm(1)
2 = δd2. (35)

As a result of the enforced diagonal dominance, the first iterates
δm(1)

1 and δm(1)
2 will already be useful approximations to δm1 and

δm2. Subsequently, the off-diagonal terms are incorporated itera-
tively by solving regularized versions of

G11δm(i+1)
1 = δd1 − G12δm(i)

2 ,

G22δm(i+1)
2 = δd2 − G21δm(i)

1 , (36)

with i = 1, . . . . During the inversion, only the right-hand side of the
equations changes, meaning that it can be solved efficiently once
generalized inverses of G11 and G22 are constructed.

4.4 The influence of different reference models and the
effects of non-linearity on the inversion process

As outlined in Section 2, the construction of optimal observables
depends critically on the Fréchet or sensitivity kernels for the fun-
damental observables. Since the sensitivity kernels depend on the
properties of the earth model, the weights used to construct opti-
mal observables depend on the earth model, too. This implies that
sensitivity kernels for fundamental observables, as well as optimal
weights, should in principle be re-computed in each iteration of an
iterative non-linear inversion.

While iterative re-computations would be required in order to
obtain exactly the optimal observables, a more relaxed approach
can be taken in regional- to global-scale tomographies where the
variations from a 1-D background model are usually small. As
shown by Zhou et al. (2011), the geometry and amplitudes of surface
wave sensitivity kernels are only insignificantly affected by plausible
lateral heterogeneities in global earth models. A similar result for
body waves was presented by Mercerat & Nolet (2012). The weak
dependence of sensitivity kernels on percent-level heterogeneities
justifies the use of a 1-D earth model in our examples, and it also
reduces the computational cost of the proposed optimization scheme
because a re-computation of optimal weights in each iteration is
unlikely to be necessary.

Nevertheless, the proposed optimization algorithm is also ap-
plicable to local studies where the successive introduction of 3-D
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heterogeneities throughout the inversion may significantly affect the
characteristics of the sensitivity kernels of optimal observables.

4.5 Relation to the Backus–Gilbert method and
experimental design

The linear combination of data for optimal-design purposes, pro-
posed in eq. (8), is reminiscent of the Backus–Gilbert approach
for linear inverse problems with a single model parameter class
(Backus & Gilbert 1968). Backus and Gilbert suggested to combine
data as d = ∑n

i=1 wi di such that the composite sensitivity kernel
K (x) = ∑n

i=1 Ki (x) is close to δ(x − x0), thereby producing a direct
estimate of earth model properties via δd = ∫

K (x) δm(x) d3x ≈
δm(x0). The concept is therefore similar, but the design goal and
optimization scheme differ significantly.

As indicated already in Section 3.2, our method can be adapted
to mimic the Backus–Gilbert method. Defining parameter class 1 to
equal, for instance, S velocity at location x = x0, and parameter class
2 to equal S velocity at all other positions x �= x0, would produce an
optimal observable with an associated kernel that is as much δ-like
as allowed by the data. While theoretically appealing, this approach
would suffer from the same problems as the Backus–Gilbert method
itself: To compute a whole-earth model, the optimization procedure
needs to be repeated for all positions x; and the resulting earth
model may then not explain the data because the union of optimal
point estimates is not necessarily an optimal collective estimate.
This explains why applications of the Backus–Gilbert method are
relatively few in number (e.g. Chou & Booker 1979; Trampert &
van Heijst 2002).

As mentioned in the Introduction further links exist to experimen-
tal design frequently used to optimize the source–receiver geometry
in geophysical exploration (e.g. Curtis 1999b). Our method can be
used for a similar purpose by defining the fundamental observables
to be measurements for a collection of potential source–receiver
pairs. In the final experiment, only those source–receiver pairs with
a weight above a pre-defined threshold would then be used.

5 C O N C LU S I O N S

We developed a method for the construction of seismic observables
that have maximum sensitivity with respect to a target model pa-
rameter class, while having minimum sensitivity with respect to
all remaining parameter classes. This is achieved through the op-
timal linear combination of fundamental observables that can be
any scalar measurement extracted from seismic recordings. The
resulting optimal observables minimize interparameter trade-offs
that result from regularization in ill-posed multiparameter inverse
problems.

In a series of examples we have shown that surface wave trav-
eltime observations in different frequency bands can be combined
such that sensitivity to 3-D density structure increases substantially.
Simultaneously, sensitivity to S velocity (or shear modulus) is re-
duced, and sensitivity to P velocity (or bulk modulus) is practically
eliminated, thereby reducing a three-parameter problem into a sim-
pler two-parameter problem.

Using rotational ground motion measurements, allows us to con-
struct an observable with dominant sensitivity in the near-receiver
region, and zero sensitivity at more than a few wavelengths dis-
tance from the receiver. This observable is identical to the apparent
shear velocity βa (eq. 23), originally defined on the basis of purely
physical arguments (Fichtner & Igel 2009; Bernauer et al. 2012).

In the interest of reproducibility and clarity, our examples used a
small number of well-understood fundamental observables, few pa-
rameter classes and a radially symmetric earth model. The method
itself, however, does not impose such restrictions, and it can
easily be applied to large numbers of fundamental observables and
parameters classes, as well as to 3-D heterogeneous earth models.
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A P P E N D I X A : O P T I M A L E I G E N VA LU E

Given
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A P P E N D I X B : S E N S I T I V I T Y K E R N E L S
F O R V E RT I C A L D E N S I T Y G R A D I E N T S

To derive expressions for sensitivity kernels with respect to vertical
density gradients, ∂ rρ, we start with the general first-order expres-
sion that relates a change in the data δd to a change in density,
δρ:

δd =
π∫

θ=0

2π∫
φ=0

R∫
r=0

Kρ(θ, φ, r ) δρ(θ, φ, z) dθ dφ dr, (B1)

where R denotes the radius of the Earth. In eq. (B1), we incor-
porated the term r2sin θ in the spherical volume element in the

definition of the density kernel Kρ , thereby leaving a simple inte-
gral of Kρδρ over colatitude θ , longitude φ and radius r. Substituting
the identity

Kρ(θ, φ, r ) = ∂r

r∫
r ′=0

Kρ(θ, φ, r ′) dr ′ (B2)

into eq. (B1), yields

δd =
π∫

θ=0

2π∫
φ=0

R∫
r=0

⎡
⎣∂r

r∫
r ′=0

Kρ(θ, φ, r ′) dr ′

⎤
⎦ δρ(θ, φ, z) dθ dφ dr.

(B3)

Integrating by parts with respect to r, transforms (B3) into

δd =
π∫

θ=0

2π∫
φ=0

⎡
⎣ r∫

r ′=0

Kρ(θ, φ, r ′) dr ′

⎤
⎦ δρ(θ, φ, z) dθ dφ

∣∣∣∣∣∣
R

r=0

−
π∫

θ=0

2π∫
φ=0

R∫
r=0

⎡
⎣ r∫

r ′=0

Kρ(θ, φ, r ′) dr ′

⎤
⎦ ∂rδρ(θ, φ, z) dθ dφ dr.

(B4)

Recognizing that the vertical integral over the density kernel Kρ in
α − β − ρ parametrization is nearly zero (e.g. Takeuchi & Saito
1972), the first term on the right-hand side of (B4) can be ignored.
Using the identity ∂ rδρ = ∂ r(ρ − ρ0) = ∂ rρ − ∂ rρ0 = δ∂ rρ, eq.
(B4) simplifies to

δd = −
π∫

θ=0

2π∫
φ=0

R∫
r=0

⎡
⎣ r∫

r ′=0

Kρ(θ, φ, r ′) dr ′

⎤
⎦ δ∂rρ(θ, φ, z) dθ dφ dr.

(B5)

From eq. (B5) we see that the sensitivity kernel with respect to the
vertical density gradient ∂ rρ is given by the negative integral of Kρ

with respect to r:

K∂r ρ(θ, φ, r ) = −
r∫

r ′=0

Kρ(θ, φ, r ′) dr ′ . (B6)

With K∂r ρ we retrieve the generic expression relating a change in
data to a change in model parameters:

δd =
π∫

θ=0

2π∫
φ=0

R∫
r=0

K∂r ρ(θ, φ, r ) δ∂rρ(θ, φ, z) dθ dφ dr . (B7)

Kernels for relative perturbations δln ∂ rρ are obtained from K∂r ρ

by multiplication with a reference value for ∂ rρ. In the case of
the 1-D reference earth model ak135 (Kennett et al. 1995), used in
the examples of Section 3, ∂ rρ takes the nearly constant value of
6.05 · 10−4 kg m−4 from 35 to 410 km depth.


