
ETH Library

On Kahler metrisability of two-
dimensional complex projective
structures

Journal Article

Author(s):
Mettler, Thomas

Publication date:
2014-08

Permanent link:
https://doi.org/10.3929/ethz-b-000088114

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Monatshefte für Mathematik 174(4), https://doi.org/10.1007/s00605-014-0636-0

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000088114
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1007/s00605-014-0636-0
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Monatsh Math (2014) 174:599–616
DOI 10.1007/s00605-014-0636-0

On Kähler metrisability of two-dimensional complex
projective structures

Thomas Mettler

Received: 16 April 2013 / Accepted: 6 May 2014 / Published online: 27 May 2014
© Springer-Verlag Wien 2014

Abstract We derive necessary conditions for a complex projective structure on a
complex surface to arise via the Levi-Civita connection of a (pseudo-)Kähler metric.
Furthermore we show that the (pseudo-)Kähler metrics defined on some domain in the
projective plane which are compatible with the standard complex projective structure
are in one-to-one correspondence with the hermitian forms on C

3 whose rank is at
least two. This is achieved by prolonging the relevant finite-type first order linear
differential system to closed form. Along the way we derive the complex projective
Weyl and Liouville curvature using the language of Cartan geometries.

Keywords Complex projective geometry · Cartan geometry · Metrisability

Mathematics Subject Classification (2010) 53A20 · 53B10

1 Introduction

Recall that an equivalence class of affine torsion-free connections on the tangent
bundle of a smooth manifold N is called a (real) projective structure [11,38,39]. Two
connections ∇ and ∇′ are projectively equivalent if they share the same unparametrised
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600 T. Mettler

geodesics. This condition is equivalent to ∇ and ∇′ inducing the same parallel transport
on the projectivised tangent bundle PT N .

It is a natural task to (locally) characterise the projective structures arising via
the Levi-Civita connection of a (pseudo-)Riemannian metric. Liouville [25] made
the crucial observation that the Riemannian metrics on a surface whose Levi-Civita
connection belongs to a given projective class precisely correspond to nondegen-
erate solutions of a certain projectively invariant finite-type linear system of partial
differential equations. In [3] Bryant, Eastwood and Dunajski used Liouville’s observa-
tion to solve the two-dimensional version of the Riemannian metrisability problem. In
another direction it was shown in [29] that on a surface locally every affine torsion-free
connection is projectively equivalent to a conformal connection (see also [28]). Local
existence of a connection with skew-symmetric Ricci tensor in a given projective class
was investigated in [36] (see also [23] for a connection to Veronese webs). Liouville’s
result generalises to higher dimensions [30] and the corresponding finite-type differ-
ential system was prolonged to closed form in [14,30]. Several necessary conditions
for Riemann metrisability of a projective structure in dimensions larger than two were
given in [33]. See also [8,16] for the role of Einstein metrics in projective geometry.

Now let M be a complex manifold of complex dimension d > 1 with integrable
almost complex structure map J . Two affine torsion-free connections ∇ and ∇′ on T M
which preserve J are called complex projectively equivalent if they share the same
generalised geodesics (for the notion of a curved complex projective structure on
Riemann surfaces see [5]). A generalised geodesic is a smoothly immersed curve γ ⊂
M with the property that the 2-plane spanned by γ̇ and J γ̇ is parallel along γ . Complex
projective geometry was introduced by Otsuki and Tashiro [35,37]. Background on
the history of complex projective geometry and its recently discovered connection to
Hamiltonian 2-forms (see [1] and references therein) may be found in [26].

In the complex setting it is natural to study the Kähler metrisability problem, i.e. try
to (locally) characterise the complex projective structures which arise via the Levi-
Civita connection of a (pseudo-)Kähler metric. Similar to the real case, the Kähler
metrics whose Levi-Civita connection belongs to a given complex projective class
precisely correspond to nondegenerate solutions of a certain complex projectively
invariant finite-type linear system of partial differential equations [12,26,31].

In this note we prolong the relevant differential system to closed form in the surface
case. In doing so we obtain necessary conditions for Kähler metrisability of a complex
projective structure [∇] on a complex surface and show in particular that the generic
complex projective structure is not Kähler metrisable. Furthermore we show that the
space of Kähler metrics compatible with a given complex projective structure is alge-
braically constrained by the complex projective Weyl curvature of [∇]. We also show
that the (pseudo-)Kähler metrics defined on some domain in CP

2 which are compatible
with the standard complex projective structure are in one-to-one correspondence with
the hermitian forms on C

3 whose rank is at least two. A result whose real counterpart is
a well-known classical fact. This note concerns itself with the complex 2-dimensional
case, but there are obvious higher dimensional generalisations that can be treated with
the same techniques.

The reader should be aware that the results presented here can also be obtained
by using the elegant and powerful theory of Bernstein–Gelfand–Gelfand (BGG)
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On Kähler metrisability 601

sequences developed by Čap, Slovák and Souček [10] (see also the article of Calder-
bank and Diemer [6]). In particular, the prolongation computed here is an example of
a prolongation connection of a first BGG equation in parabolic geometry and may be
derived using the techniques developed in [18].

This note aims at providing an intermediate analysis between the abstract BGG
machinery and pure local coordinate computations. This is achieved by carrying out
the computations on the parabolic Cartan geometry of a complex projective surface.

2 Complex projective surfaces

2.1 Definitions

Let M be a complex 2-manifold with integrable almost complex structure map J
and ∇ an affine torsion-free connection on T M . We call ∇ complex-linear if ∇ J =
0. A generalised geodesic for ∇ is a smoothly immersed curve γ ⊂ M with the
property that the 2-plane spanned by γ̇ and J γ̇ is parallel along γ , i.e. γ satisfies the
reparametrisation invariant condition

∇γ̇ γ̇ ∧ γ̇ ∧ J γ̇ = 0. (1)

We call two complex linear torsion-free connections ∇ and ∇′ on M complex projec-
tively equivalent, if they have the same generalised geodesics. An equivalence class of
complex projectively equivalent connections is called a complex projective structure
and will be denoted by [∇]. A complex 2-manifold equipped with a complex projective
structure will be called a complex projective surface.

Remark 1 What we here call a complex projective structure was originally called a
holomorphic projective structure by Tashiro [37] and others. Once it was realised that
in general complex projective structures are not holomorphic in any reasonable way,
the name h-projective structure was used—and is still so in very recent times—see for
instance [15,21,26]. Furthermore, what we here call generalised geodesics are called
h-planar curves in the literature using the name h-projective. One might argue that
the notion of a complex projective structure can be confused with well-established
notions in algebraic geometry. For this reason complex projective is sometimes also
abbreviated to c-projective (see [2]).

Extending ∇ to the complexified tangent bundle T CM → M , it follows from the
complex linearity of ∇ that for every local holomorphic coordinate system z = (zi ) :
U → C

2 on M there exist unique complex-valued functions Γ i
jk on U , so that

∇∂z j ∂zk = Γ i
jk∂zi .

We call the functions Γ i
jk the complex Christoffel symbols of ∇. Tashiro showed [37]

that two torsion-free complex linear connections ∇ and ∇′ on M are complex projec-
tively equivalent if and only if there exists a (1,0)-form β ∈ Ω1,0(M, R) so that
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602 T. Mettler

∇′
Z W − ∇Z W = β(Z)W + β(W )Z (2)

for all (1,0) vector fields Z , W ∈ Γ (T 1,0 M).
Writing Γ i

jk and Γ̂ i
jk for the complex Christoffel symbols of ∇ and ∇′ with respect

to some holomorphic coordinates z = (zi ) and β = βi dzi , Eq. (2) translates to

Γ̂ i
jk = Γ i

jk + δi
jβk + δi

kβ j . (3)

Note that formally Eq. (3) is identical to the equation relating two real projectively
equivalent connections on a real manifold. In particular, similarly to the real case
(see [11,38]), the functions

Π i
jk = Γ i

jk − 1

3

(
Γ l

l jδ
i
k + Γ l

lkδ
i
j

)
(4)

are complex projectively invariant in the sense that they only depend on the coor-
dinates z. Moreover, locally [∇] can be recovered from the functions Π i

jk and two
torsion-free complex linear connections are complex projectively equivalent if and
only if they give rise to the same functions Π i

jk in every holomorphic coordinate
system.

A complex projective structure [∇] is called holomorphic if the functions Π i
jk are

holomorphic in every holomorphic coordinate system. Gunning [17] obtained rela-
tions on characteristic classes of complex manifolds carrying holomorphic projective
structures. The condition on a manifold to carry a holomorphic projective structure
is particularly restrictive in the case of compact complex surfaces. See also the beau-
tiful twistorial interpretation of holomorphic projective surfaces by Hitchin [19] and
Remark 4.

2.2 Cartan geometry

A complex projective structure admits a description in terms of a normal Cartan geom-
etry modelled on complex projective space CP

n , following the work of Ochiai [34]:
see [20] and [40]. The reader unfamiliar with Cartan geometries may consult [9]
for a modern introduction. We will restrict to the construction in the complex two-
dimensional case.

Let PSL(3, C) act on CP
2 from the left in the obvious way and let P denote the

stabiliser subgroup of the element [1, 0, 0]t ∈ CP
2. We have:

Theorem 1 Suppose (M, J, [∇]) is a complex projective surface. Then there exists
(up to isomorphism) a unique real Cartan geometry (π : B → M, θ) of type
(PSL(3, C), P) such that for every local holomorphic coordinate system z = (zi ) :
U → C

2, there exists a unique section σz : U → B satisfying

(σz)
∗θ =

⎛
⎜⎝

0 φ0
1 φ0

2

φ1
0 φ1

1 φ1
2

φ2
0 φ2

1 φ2
2

⎞
⎟⎠ (5)

123



On Kähler metrisability 603

where

φi
0 = dzi , and φi

j = Π i
jkdzk, and φ0

i = Πikdzk,

with

Πi j = Πk
ilΠ

l
jk − ∂Πk

i j

∂zk

and Π i
jk denote the complex projective invariants with respect to zi defined in (4).

Remark 2 Suppose ϕ : (M, J, [∇]) → (M ′, J ′, [∇]′) is a biholomorphism between
complex projective surfaces identifying the complex projective structures, then there
exists a diffeomorphism ϕ̂ : B → B ′ which is a P-bundle map covering ϕ and which
satisfies ϕ̂∗θ ′ = θ . Conversely, every diffeomorphism Φ : B → B ′ that is a P-bundle
map and satisfies Φ∗θ ′ = θ is of the form Φ = ϕ̂ for a unique biholomorphism
ϕ : M → M ′ identifying the complex projective structures.

Example 1 Let B = PSL(3, C) and let θ denote its Maurer-Cartan form. Setting
M = B/P 	 CP

2 and π : PSL(3, C) → CP
2 the natural quotient projection, one

obtains a complex projective structure on CP
2 whose generalised geodesics are the

smoothly immersed curves γ ⊂ CP
1 where CP

1 ⊂ CP
2 is any linearly embedded

projective line. This is precisely the complex projective structure associated to the
Levi-Civita connection of the Fubini-Study metric on CP

2. This example satisfies
dθ + θ ∧ θ = 0 and is hence called flat.

Let (π : B → M, θ) be the Cartan geometry of a complex projective struc-
ture (J, [∇]) on a simply-connected surface M whose Cartan connection satisfies
dθ + θ ∧ θ = 0. Then there exists a local diffeomorphism Φ : B → PSL(3, C)

pulling back the Maurer-Cartan form of PSL(3, C) to θ and consequently, a local
biholomorphism ϕ : M → CP

2 identifying the projective structure on M with the
standard flat structure on CP

2.

2.3 Bianchi-identities

Theorem 1 implies that the curvature form � = dθ + θ ∧ θ satisfies

� = dθ + θ ∧ θ =
⎛
⎜⎝

0 �0
1 �0

2

0 �1
1 �1

2

0 �2
1 �2

2

⎞
⎟⎠ (6)

with

�0
i = Liθ

1
0 ∧ θ2

0 + Kil j̄ θ
l
0 ∧ θ

j
0 , �i

k = W i
kl j̄ θ

l
0 ∧ θ

j
0

for unique complex-valued functions Li , Kil j̄ , and W i
kl j̄ on B satisfying W l

li j̄ = 0.

Note that by construction, with respect to local holomorphic coordinates z = (zi ), we
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604 T. Mettler

obtain

(σz)
∗W i

kl j̄ = −∂Π i
kl

∂ z̄ j
. (7)

Differentiation of the structure Eq. (6) gives

0 = d2θ i
0 = W i

lkj̄ θ
l
0 ∧ θk

0 ∧ θ
j
0 , and 0 = d2θ0

0 = Kikj̄ θ
i
0 ∧ θk

0 ∧ θ
j
0

which yields the algebraic Bianchi-identities

W i
lkj̄ = W i

kl j̄ , and Kikj̄ = Kki j̄ .

2.3.1 Complex projective Weyl curvature

The identities d2θ i
k = 0 yield

κ i
kl j̄ ∧ θ l

0 ∧ θ
j
0 = 0

with

κ i
kl j̄ = dW i

kl j̄ + W i
kl j̄

(
θ0

0 + θ0
0

)
+ Kkl j̄ θ

i
0 − W i

lsj̄ θ
s
k − W i

ksj̄ θ
s
l + W s

kl j̄ θ
i
s − W i

kls̄θ
s
l

which implies that there exist complex-valued functions W i
kl j̄ s̄ and W i

kl j̄s on B satis-
fying

W i
kl j̄ s̄ = W i

lkj̄ s̄ = W i
kls̄j̄ , W k

kl j̄ s̄ = W k
kl j̄s = 0, W i

kl j̄s = W i
lkj̄s

such that

dW i
kl j̄ =

(
W i

kl j̄s + δi
k Ksl j̄ + δi

l Kskj̄ − 3δi
s Kkl j̄

)
θ s

0 + W i
kl j̄ s̄θ

s
0 + ϕi

kl j̄ (8)

where

ϕi
kl j̄ = −W i

kl j̄

(
θ0

0 + θ0
0

)
+ W i

lsj̄ θ
s
k + W i

ksj̄ θ
s
l − W s

kl j̄ θ
i
s + W i

kls̄θ
s
j . (9)

Let End0(T M, J ) denote the bundle whose fibre at p ∈ M consists of the J -linear
endomorphisms of Tp M which are complex-traceless. It follows with the structure
Eqs. (6, 8, 9) and straightforward computations, that there exists a unique (1,1)-form
W on M with values in End0(T M, J ) for which

W

(
∂

∂zl
,

∂

∂zj

)
∂

∂zk
= (σz)

∗W i
kl j̄

∂

∂zi
= −∂Π i

kl

∂ z̄ j

∂

∂zi

123



On Kähler metrisability 605

in every local holomorphic coordinate system z = (zi ) on M . Here, as usual, we
extend tensor fields on M complex multilinearly to the complexified tangent bundle
of M . The bundle-valued 2-form W is called the complex projective Weyl curvature
of [∇]. We obtain:

Proposition 1 A complex projective structure [∇] on a complex surface (M, J ) is
holomorphic if and only if the complex projective Weyl tensor of [∇] vanishes.

2.3.2 Complex projective Liouville curvature

From d2θ0
i ∧ θ1

0 ∧ θ2
0 = 0 one sees after a short computation that

dLi = −4Liθ
0
0 + L jθ

j
i + Li jθ

j
0 + Li j̄ θ

j
0 (10)

for unique complex-valued functions Li j̄ , Li j on B. Using this last equation it is easy
to check that the π -semibasic quantity

(L1θ
1
0 + L2θ

2
0 ) ⊗

(
θ1

0 ⊗ θ2
0

)
(11)

is invariant under the P right action and thus the π -pullback of a tensor field λ on
M which is called the complex projective Liouville curvature (see the note of Liou-
ville [24] for the construction of λ in the real case).

Remark 3 In the case of real projective structures on surfaces, the projective Weyl
curvature vanishes identically. Furthermore, note that contrary to the complex projec-
tive Liouville curvature, the complex projective Weyl tensor exists as well in higher
dimensions, but also contains (2,0) parts (see [37] for details).

The differential Bianchi-identity (8) implies that if the functions W i
kl j̄ vanish iden-

tically, then the functions Kikj̄ must vanish identically as well. We have thus shown:

Proposition 2 A complex projective structure [∇] on a complex surface (M, J ) is flat
if and only the complex projective Liouville and Weyl curvature vanish.

Remark 4 In [22] Kobayashi and Ochiai classified compact complex surfaces carrying
flat complex projective structures. More recently Dumitrescu [13] showed among
other things that a holomorphic projective structure on a compact complex surface
must be flat (see also the results by McKay about holomorphic Cartan geometries
[27]).

2.3.3 Further identities

We also obtain

0 = d2θ0
i = κikj̄ ∧ θ

j
0 ∧ θk

0
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606 T. Mettler

with1

κikj̄ = − dKikj̄ + 1

2
εsk Li j̄ θ

s
0 − Kikj̄

(
2θ0

0 + θ0
0

)
+ Kskj̄ θ

s
i + Ksi j̄ θ

s
k −

− W s
ikj̄ θ

0
s + Kiks̄θ

s
j .

It follows that there are complex-valued functions Kikj̄ l and Kklı̄ j̄ on B satisfying

Kikj̄ l = Kki j̄ l , and Kklı̄ j̄ = Klkı̄ j̄ = Kkl j̄ ı̄

such that

dKikj̄ =
(

Kikj̄s + 1

4

(
εsk Li j̄ + εsi Lkj̄

))
θ s

0 + Kikj̄ s̄θ
s
0 + ϕikj̄ (12)

where

ϕikj̄ = −Kikj̄

(
2θ0

0 + θ0
0

)
+ Kskj̄ θ

s
i + Ksi j̄ θ

s
k − W s

ikj̄ θ
0
s + Kiks̄θ

s
j .

2.4 Complex and generalised geodesics

It is worth explaining how the generalised geodesics of [∇] appear in the Cartan
geometry (π : B → M, θ). To this end let G ⊂ P ⊂ PSL(3, C) denote the quotient
group of the group of upper triangular matrices of unit determinant modulo its center.
The quotient B/G is the total space of a fibre bundle over M whose fibre P/G is
diffeomorphic to CP

1. In fact, B/G may be identified with the total space of the
the complex projectivised tangent bundle τ : P(T 1,0 M) → M of (M, J ). Writing
θ = (θ i

j )i, j=0..2, Theorem 1 implies that the real codimension 4-subbundle of T B

defined by θ2
0 = θ2

1 = 0 descends to a real rank 2 subbundle E ⊂ T P(T 1,0 M). The
integral manifolds of E can most conveniently be identified in local coordinates. Let
z = (z1, z2) : U → C

2 be a local holomorphic coordinate system on M and write
φ for the pullback of θ with the unique section σz associated to z in Theorem 1. We
obtain a local trivialisation of Cartan’s bundle

ϕ : U × P → π−1(U )

so that for (z, p) ∈ U × P we have

(ϕ∗θ)(z,p) = (ωP )p + Ad(p−1) ◦ φz (13)

where ωP denotes the Maurer-Cartan form of P and Ad the adjoint representation of
PSL(3, C). Consider the Lie group P̃ ⊂ SL(3, C) whose elements are of the form

1 We write εi j for the antisymmetric 2-by-2 matrix satisfying ε12 = 1 and εi j for the inverse matrix.
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On Kähler metrisability 607

(
det a−1 b

0 a

)
(14)

for a ∈ GL(2, C) and bt ∈ C
2. By construction, the elements of P are equivalence

classes of elements in P̃ where two elements are equivalent if they differ by scalar
multiplication with a complex cube root of 1. The canonical projection P̃ → P will
be denoted by ν. Note that a piece N of an integral manifold of E that is contained in
τ−1(U ) is covered by a map

(z1, z2, p) : N → U × P̃

where p : N → P̃ may be taken to be of the form

p =
⎛
⎝

1
(a1)2+(a2)2 0 0

0 a1 −a2
0 a2 a1

⎞
⎠

for smooth complex-valued functions ai : N → C satisfying (a1)
2 + (a2)

2 �= 0.
We first consider the case where N is one-dimensional. We fix a local coordinate t

on N . It follows with (13) and straightforward calculations that

(
ϕ ◦ (z1, z2, ν ◦ p)

)∗
θ2

0 = a1 ż2 − a2 ż1

(
(a1)2 + (a2)2

)2 dt

where żi denote the derivative of zi with respect to t . Hence we may take

a1 = ż1 and a2 = ż2.

Writing β = (
ϕ ◦ (z1, z2, ν ◦ p)

)∗
θ2

1 and using (13) again, we compute

β =
[
ż1 z̈2 − ż2 z̈1 +

(
ż1 ż2(Π2

21 − Π1
11) + (ż1)2Π2

11 − (ż2)2Π1
12

)
ż1+

+
(

ż1 ż2(Π2
22 − Π1

12) + (ż1)2Π2
12 − (ż2)2Π1

22

)
ż2

] dt

(ż1)2 + (ż2)2 .

Note that since Π i
ik = 0 for k = 1, 2, it follows that β ≡ 0 is equivalent to (z1, z2)

satisfying the following ODE system

żi
(

z̈ j + Π
j

kl ż
k żl

)
= ż j

(
z̈i + Π i

kl ż
k żl

)
, i, j = 1, 2.

This last system is easily seen to be equivalent to the system (1). Consequently, the
one-dimensional integral manifolds of E are the generalised geodesics of [∇].

Note that in the case of two-dimensional integral manifolds the above computations
carry over where t is now a complex parameter, i.e. the two-dimensional integral
manifolds are immersed complex curves Y ⊂ M for which ∇Ẏ Ẏ is proportional to Ẏ
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608 T. Mettler

for some (and hence any) ∇ ∈ [∇]. This last condition is equivalent to Y being a totally
geodesic immersed complex curve with respect to ([∇], J ) (c.f. [32, Lemma 4.1]) .
A totally geodesic immersed complex curve Y ⊂ M which is maximally extended is
called a complex geodesic. Since the complex geodesics are the (maximally extended)
two-dimensional integral manifolds of E , they exist only provided that E is integrable.
We will next determine the integrability conditions for E . Recall that E ⊂ T P(T 1,0 M)

is defined by the equations θ2
1 = θ2

0 = 0 on B. It follows with the structure equations (6)
that

dθ2
0 = 0 mod θ2

0 , θ2
1

and

dθ2
1 = W 2

11j̄ θ
1
0 ∧ θ

j
0 mod θ2

0 , θ2
1 .

Consequently, E is integrable if and only if W 2
111̄

= W 2
112̄

= 0. As a consequence

of (8) and W 2
111̄

= 0 we obtain

0 = ϕ2
111̄

= −W 2
111̄

(
θ0

0 + θ0
0

)
+ W 2

1s1̄
θ s

1 + W 2
1s1̄

θ s
1 − W s

111̄
θ2

s + W 2
11s̄θ

s
j ,

which is equivalent to 2W 2
121̄

= W 1
111̄

. Using the symmetries of the complex projective
Weyl tensor we compute

W 1
111̄

= −W 2
211̄

= 2W 2
121̄

= 2W 2
211̄

,

thus showing that W 1
111̄

= W 2
121̄

= 0. From this we obtain

0 = ϕ1
111̄

= 2W 1
121̄

θ2
1 − W 2

111̄
θ1

2 + W 1
112̄

θ2
1 .

thus implying W 1
121̄

= W 2
111̄

= W 1
112̄

= 0. Continuing in this vein allows to conclude
that all components of the complex projective Weyl tensor must vanish. We may
summarise:

Proposition 3 Let (M, J, [∇]) be a complex projective surface. Then the following
statements are equivalent:

(i) [∇] is holomorphic;
(ii) The complex projective Weyl tensor of [∇] vanishes;

(iii) The rank 2 bundle E → P(T 1,0 M) is Frobenius integrable;
(iv) Every complex line L ⊂ T 1,0 M is tangent to a unique complex geodesic.

Remark 5 The standard flat complex projective structure on CP
2 is holomorphic and

the complex geodesics are simply the linearly embedded projective lines CP
1 ⊂ CP

2.
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On Kähler metrisability 609

Remark 6 Note that the integrability conditions for E are a special case of a more
general result obtained by Čap in [7]. There it is shown that E is part of an elliptic CR
structure of CR dimension and codimension 2, which the complex projective structure
induces on P(T 1,0 M). Furthermore, it is also shown that the integrability of E is
equivalent to the holomorphicity of the complex projective surface.

3 Kähler metrisability

In this section we will derive necessary conditions for a complex projective struc-
ture [∇] on a complex surface (M, J ) to arise via the Levi-Civita connection of a
(pseudo-)Kähler metric. There exists a complex projectively invariant linear first order
differential operator acting on J -hermitian (2,0) tensor fields on M with weight 1/3,
i.e sections of the bundle S2

J (T M)⊗(
�4(T ∗M)

)1/3
. This differential operator has the

property that nondegenerate sections in its kernel are in one-to-one correspondence
with (pseudo-)Kähler metrics on M whose Levi-Civita connection is compatible with
[∇] (see [12,26,31]).

3.1 The differential analysis

We will show that in the surface case, the (pseudo-)Kähler metrics on (M, J, [∇])
whose Levi-Civita connection is compatible with [∇] can equivalently be characterised
in terms of a differential system on Cartan’s bundle (π : B → M, θ).

Proposition 4 Suppose the (pseudo-)Kähler metric g is compatible with [∇]. Then,

writing π∗g = gi j̄ θ
i
0 ◦ θ

j
0 and setting hi j̄ = gi j̄

(
g11̄g22̄ − |g12̄|2

)−2/3
, we have

dhi j̄ = hi j̄

(
θ0

0 + θ0
0

)
+ his̄θ

s
j + hsj̄ θ

s
i + hiεs jθ

s
0 + h jεsiθ

s
0 (15)

for some complex-valued functions hi on B. Conversely, suppose there exist
complex-valued functions hi j̄ = h j ı̄ and hi on B solving (15) and satisfying(
h11̄h22̄ − |h12̄|2

) �= 0, then the symmetric 2-form

hi j̄

(
h11̄h22̄ − |h12̄|2

)−2
θ i

0 ◦ θ
j
0

is the π -pullback of a [∇]-compatible (pseudo-)Kähler metric on M.

Proof Let g be a (pseudo-)Kähler metric on (M, J ) and write g = gi j̄ dzi ◦ dzj for
local holomorphic coordinates z = (z1, z2) : U → C

2 on M . Denoting by ∇ the
Levi-Civita connection of g, the identity ∇g = 0 is equivalent to

∂gkj̄

∂zi
= gsj̄ Γ

s
ik and

∂gkj̄

∂zı
= gks̄Γ

s
i j ,
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where Γ i
jk denote the complex Christoffel symbols of ∇. Abbreviate G = det gi j̄ ,

then we obtain

∂G

∂zi
= G Γ s

si .

Hence, the partial derivative of hkj̄ = gkj̄ G−2/3 with respect to zi becomes

∂hkj̄

∂zi
= gl j̄ Γ l

ik G−2/3 − 2

3
gkj̄ Γ s

si G−2/3 = hl j̄

(
Γ l

ik − 2

3
Γ s

siδ
l
k

)

= hl j̄

(
Γ l

ik − 1

3
Γ s

siδ
l
k − 1

3
Γ s

skδ
l
i

)
− 1

3
hl j̄

(
Γ s

siδ
l
k − Γ s

skδ
l
i

)
.

Note that the last two summands in the last equation are antisymmetric in i, k, so that
we may write

−1

3
hl j̄

(
Γ s

siδ
l
k − Γ s

skδ
l
i

)
= h jεik

for unique complex-valued functions hi on U . We thus get

∂hkj̄

∂zi
= hsj̄Π

s
ik + h jεik . (16)

In entirely analogous fashion we obtain

∂hkj̄

∂zı
= hks̄Π

s
i j + hkεi j . (17)

Recall from Theorem 1 that the coordinate system z : U → C
2 induces a unique

section σz : U → B of Cartan’s bundle such that

(σz)
∗ θ0

0 = 0, (σz)
∗ θ i

0 = dzi , (σz)
∗ θ i

j = Π i
jkdzk . (18)

Consequently, using (16, 17, 18) we see that (15) is necessary.
Conversely, suppose there exist complex-valued functions hi j̄ = h j ı̄ and hi on B

solving (15) for which

(
h11̄h22̄ − |h12̄|2

)
�= 0.

Setting gi j̄ = hi j̄
(
h11̄h22̄ − |h12̄|2

)−2
we get

dgi j̄ = −gi j̄

(
θ0

0 + θ̄0
0

)
+ gis̄θ

s
j + gsj̄ θ

s
i + gi j̄ s̄θ

s
0 + gi j̄sθ

s
0 (19)
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with

gi j̄ s̄ = (hi j̄ hls̄ + his̄hl j̄ )ε
lkhk

(h11̄h22̄ − |h12̄|2)3 , and gi j̄k = (hi j̄ hks̄ + hkj̄ his̄)εsuhu

(h11̄h22̄ − |h12̄|2)3 .

It follows with (19) that there exists a unique J -Hermitian metric g on M such that

π∗g = gi j̄ θ i
0 ◦ θ

j
0 . Choose local holomorphic coordinates z = (z1, z2) : U → C

2 on
M . By abuse of notation we will write gi j̄ , gi j̄ s̄, gi j̄k for the pullback of the respective
functions on B by the section σz : U → B associated to z. From (19) we obtain

∂gi j̄

∂zs
= guj̄Π

u
is + gi j̄s = guj̄

(
Πu

is + gv̄u gi v̄s

)
= guj̄

(
Πu

is + δu
i bs + δu

s bi
) = guj̄ Γ

u
is

where we write

bi = his̄εsuhu

(h11̄h22̄ − |h12̄|2)11/3 and Γ i
jk = Π i

jk + δi
j bk + δi

kb j .

Likewise we obtain

∂gi j̄

∂zs
= giūΓ u

js .

It follows that there exists a complex-linear connection ∇ on U which is contained
in [∇] and whose complex Christoffel symbols are given by Γ i

jk . By construction,
the connection ∇ preserves g and hence must be the Levi-Civita connection of g.
Furthermore, ∇ being complex-linear implies that g is Kähler. This completes the
proof. ��

3.1.1 First prolongation

Differentiating (15) yields

0 = d2hi j̄ = εsiη j ∧ θ s
0 + εs jηi ∧ θ s

0 − (hsj̄ W s
ivū + his̄ W s

juv̄)θ
u
0 ∧ θv

0 (20)

with

ηk = dhk + hk

(
θ0

0 − θ0
0

)
− h jθ

j
k + εi j hkj̄ θ

0
i .

This implies that we can write
ηi = ai jθ

j
0 (21)

for unique complex-valued functions ai j on B. Equations (20) and (21) imply

εki a jl − εl j aik = h js̄ W s
ikl̄

− his̄ W s
jlk̄

(22)

Contracting this last equation with ε jlεik implies that the function
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h = −1

2
εi j ai j

is real-valued. We get

a jl = ε jl h − 1

2
εiuhsı̄ W s

jlū .

and thus

dhi = hi

(
θ0

0 − θ0
0

)
+ h jθ

j
i + his̄εslθ0

l +
(

εi j h − 1

2
εuvhsū W s

i j v̄

)
θ

j
0 .

Plugging the formula for ai j back into (22) yields the integrability conditions

hsj̄ W s
ikl̄

− his̄ W s
jlk̄

= 1

2
εl jεuvhsū W s

ikv̄ − 1

2
εkiε

uvhus̄ W s
jlv̄

This last equation can be simplified so that we obtain:

Proposition 5 A necessary condition for a complex projective surface (M, J, [∇]) to
be Kähler metrisable is that

h j s̄ W s
ikl̄

+ hls̄ W s
ikj̄ = hks̄ W s

jlı̄ + his̄ W s
jlk̄

(23)

admits a nondegenerate solution hi j̄ = h j ı̄ .

Remark 7 Note that under suitable constant rank assumptions the system (23) defines
a subbundle of the bundle over M whose sections are hermitian forms on (M, J ). For
a generic complex projective structure [∇] this subbundle does have rank 0.

3.1.2 Second prolongation

We start by computing

0 = d2hi ∧ θ1
0 ∧ θ2

0 = −
(

hi j̄ ε jk Lk

)
θ1

0 ∧ θ1
0 ∧ θ2

0 ∧ θ2
0

which is equivalent to

(
h11̄ h12̄
h21̄ h22̄

)
·
(

L2

−L1

)
= 0

which cannot have any solution with (h11h22 − |h12|2) �= 0 unless L1 = L2 = 0.
This shows:

Theorem 2 A necessary condition for a complex projective surface to be Kähler
metrisable is that it is Liouville-flat, i.e. its complex projective Liouville curvature
vanishes.
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Remark 8 Note that the vanishing of the Liouville curvature is equivalent to requesting
that the curvature of θ is of type (1,1) only, which agrees with general results in [9].

Assuming henceforth L1 = L2 = 0 we also get

0 = d2hi = (
εi jη + ϕi j

) ∧ θ
j

0 (24)

with

η = dh + 2hRe(θ0
0 ) + 2εi j Re(hiθ

0
j ) − 1

2
εkl hkı̄εi j K jsl̄θ

s
0

and

ϕi j = dri j + ri jθ
0
0 − rsiθ

s
j − rs jθ

s
i − hl W

l
i j s̄θ

s
0 + 1

2
εuv

(
hiū Kvsj̄ + h jū Kvsı̄

)
θ s

0

where

ri j = −1

2
εuvhsū W s

i j v̄ .

It follows with Cartan’s lemma that there are functions ai jk = aik j such that

εi jη + ϕi j = ai jkθ
k
0 .

Since ϕi j is symmetric in i, j , this implies

η = 1

2
ε j i ai jsθ

s
0 .

Since h is real-valued, we must have

ε j i ai js = εuvεkl hkū Klsv̄ .

Concluding, we get

dh = −2hRe(θ0
0 ) + 2εklRe(hlθ

0
k ) + 1

2
εi jεklRe(hkı̄ Klsj̄ θ

s
0).

This completes the prolongation procedure.

Remark 9 Note that further integrability conditions can be derived from (24), we
won’t write these out though.

Using Proposition 4 we obtain:
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Theorem 3 Let (M, J, [∇]) be a complex projective surface with Cartan geometry
(π : B → M, θ). If U ⊂ B is a connected open set on which there exist functions
hi j̄ = h j ı̄ , hi and h that satisfy the rank 9 linear system

dhi j̄ = 2hi j̄ Re(θ0
0 ) + his̄θ

s
j + hsj̄ θ

s
i + hiεs jθ

s
0 + h jεsiθ

s
0 ,

dhk = 2ihkIm(θ0
0 ) + hlθ

l
k + hkı̄εi jθ0

j +
(

εklh − 1

2
εi j hsı̄ W s

kl j̄

)
θ l

0,

dh = −2hRe(θ0
0 ) − 2εlkRe(hlθ

0
k ) + 1

2
εi jεklRe(hkı̄ Klsj̄ θ

s
0),

(25)

and (h11̄h22̄ − |h12̄|2) �= 0, then the quadratic form

g = hi j̄ θ
i
0 ◦ θ

j
0

(h11̄h22̄ − |h12̄|2)2

is the π -pullback to U of a (pseudo-)Kähler metric on π(U ) ⊂ M that is compatible
with [∇].
From this we get:

Corollary 1 The Kähler metrics defined on some domain U ⊂ CP
2 which are com-

patible with the standard complex projective structure on CP
2 are in one-to-one cor-

respondence with the hermitian forms on C
3 whose rank is at least two.

Proof Suppose the complex projective structure [∇] has vanishing complex projective
Weyl and Liouville curvature. Then the differential system (25) may be written as

dH + θ H + Hθ∗ = 0 (26)

with

H = H∗ =
⎛
⎝

h −h2 h1
−h2 −h22 h21
h1 h12 −h11

⎞
⎠

where ∗ denotes the conjugate transpose matrix. Recall that in the flat case θ = g−1dg
for some smooth g : B → PSL(3, C), hence the solutions to (26) are

H = g−1C
(

g−1
)∗

where C = C∗ is a constant hermitian matrix of rank at least two. The statement now
follows immediately with Theorem 3. ��
Remark 10 On can deduce from Corollary 1 that a Kähler metric g giving rise to flat
complex projective structures must have constant holomorphic sectional curvature. A
result first proved in [37] (in all dimensions).
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On Kähler metrisability 615

Remark 11 One can also ask for existence of complex projective structures [∇] whose
degree of mobility is greater than one, i.e. they admit several (non-proportional) com-
patible Kähler metrics. In [15] (see also [21]) it was shown that the only closed complex
projective manifold with degree of mobility greater than two is CP

n with the projective
structure arising via the Fubini-Study metric.
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8. Čap, A., Gover, A.R., Macbeth, H.R.: Einstein metrics in projective geometry. Geom. Dedicata 168(1),

235–244 (2014). doi:10.1007/s10711-013-9828-3
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