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A recent approach for generating populations of synthetic individuals 
through simulation is extended to produce households of grouped individ-
uals. The contingency tables of the generated populations match external 
controls on the individual and household levels while exhibiting far greater  
variety in composition than existing approaches can offer. The method 
involves a two-step approach. The first consists of a procedure based 
on Gibbs sampling, which has only recently been applied to population 
generation in transportation modeling and is generically called Markov 
chain Monte Carlo (MCMC). For this work, the model was generalized, 
and an extension was developed, hierarchical MCMC, which was able to 
generate a hierarchical structure. The second step, a postprocessing step, 
uses generalized raking (GR), which reweights the output from hierar-
chical MCMC to perfectly satisfy known marginal control totals on the 
individual and household levels. The application input data—a demo-
graphic sample and some known marginals from Singapore—added 
further complexities to the problem, which had not yet been explored in 
the current literature. Despite data challenges, consecutively applying the 
methods above produced realistic synthetic populations. Results confirm 
their goodness of fit and their generated hierarchical structures.

Activity-based transport demand models based on individual agents 
are widely regarded in research and practice as the most suitable 
tools for evaluating transport infrastructure and policy. These mod-
els require a population of agents that is representative of the actual 
population and that features sociodemographic attributes to be used 
in various behavioral submodels, which define, for example, activity 
schedule or mode choice.

Because of privacy concerns but also monetary constraints,  
individual-level data on the complete population are normally not 
available. As an alternative, statistical offices usually provide micro
samples with rather limited spatial resolution. For example, in the 
United States, public use microdata sample (PUMS) files contain 
records representing 5% or 1% samples of housing units and the people 
living in the occupied units. Alternatively, travel surveys conducted by 

governmental bodies usually also cover disaggregated information on 
a household and an individual level. However, other kinds of agents 
and hierarchies can be considered, such as employees and firms. To 
reconstruct statistically representative complete populations, various 
synthesis techniques have been proposed and applied in the literature.

The conventionally applied population synthesis techniques in 
transport modeling [see Müller and Axhausen for an overview (1)] 
apply variants of iterative proportional fitting (IPF), first introduced 
by Deming and Stephan (2). This technique operates only on cat-
egorical data, which can be organized in a contingency table that 
defines the control totals over multiple dimensions. The population 
is synthesized by replicating individuals and households as repre-
sented in the microsample. The desired contingency table is fitted 
by iterating over all controls in a round-robin fashion until conver-
gence; in each iteration, the cell values are rescaled uniformly to 
perfectly satisfy the current control.

To address the shortcoming that the basic configuration of IPF 
can control only for either individual- or household-level attributes, 
iterative proportional updating (3) and hierarchical IPF (4), as well 
as entropy-based methods (5, 6), have recently been introduced as 
techniques that ensure that expansion factors are consistent on both 
levels. However, a major drawback of IPF is that combinations of 
attributes that are not part of the reference sample cannot be gener-
ated; this problem is known as the “zero-cell problem.” Hence, the 
heterogeneity in regard to individual and household attributes in 
the resulting synthesized population is limited to the observations 
in the reference sample.

To overcome those issues, Farooq et al. proposed a Markov chain 
Monte Carlo (MCMC) simulation-based approach that uses partial 
views of the joint probability distribution (7). They successfully 
demonstrated that the resulting synthetic population not only out-
performed an IPF-based method in relation to fit with the actual 
full population, but also featured a higher level of heterogeneity. 
However, the proposed method is restricted to nonhierarchical data, 
and the extension of the method to generate associations between 
households and individual people has been identified as a relevant 
strand for further research. Another unaddressed problem is that 
MCMC does not allow for directly imposing any control totals on 
the synthetic population.

In this work, an extension of the MCMC simulation-based popu-
lation is proposed to combine individual and household attributes 
at the same time, in a process that is called hierarchical MCMC. 
Furthermore, generalized raking (GR) is introduced as a technique 
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to fit the simulated synthetic population to actual observed control 
totals (8). The proposed method is applied with travel survey data 
from Singapore, and the resulting synthetic populations are tested for 
representativeness and consistency on an individual and a household 
level.

Method

Two methods were combined: (a) an extension of the MCMC method 
that allows producing hierarchies of people grouped into house-
holds and (b) an optional postprocessing of the output from the first 
method to perfectly satisfy known control totals on the individual and 
household levels (7).

Markov Chain Monte Carlo

The technique used to generate populations belongs to the fam-
ily of Markov chain Monte Carlo (MCMC) methods. Farooq et al. 
first explored this approach for population generation in the field of 
transportation modeling to synthesize a population of individuals 
(iMCMC) (7). An extension to their approach has been developed; it 
is capable of synthesizing a hierarchical structure, grouping individu-
als into households (hMCMC). In what follows, the original approach 
is first explored, and then it is compared with the extended method.

iMCMC: Individual Population  
Synthesis Through MCMC

Instead of directly approximating the joint probability distribution of the 
attributes that describe the agents, iMCMC (schematized in Figure 1) 
exploits the conditional distributions of each variable with respect to 
all other variables or a subset of them, as in Farooq et al. (7). These 
conditionals are fitted a priori from an available demographic sample 
through a model, such as multinomial linear logistic regression.

The second step of iMCMC is to actually implement a Markov 
chain for the generation of agents through Gibbs sampling. Given 
an initial seed agent characterized by a vector of N attributes x(0) = 
(x(0)
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for all j = 1, 2, . . . , M − 1, where M is the number of categories for 
the ith attribute. Under the multinomial logit model, one category 
(the Mth in this equation) is chosen as the pivot category, that is, its 
conditional weight P(xiM|x1, . . . , xi−1, xi+1, . . . , xN) can be obtained 
from the normalization condition.

Gibbs sampling then ensures that the stationary probability distri-
bution of this Markov chain is the joint distribution P(X1, X2, . . . , XN).

As is usual with simulated Markov chains, to reset the memory of 
the initial seed, it is necessary to discard some sampled agents before 
collecting them for the new population (burn-in period). The first 
samples should be discarded even when the initial seed is made of 
randomly chosen variables. Indeed, if the seed is an improbable agent 
(something very likely with demographic data, for which the number 
of feasible combinations of attributes is low compared with the total), 
the new population would be too dependent on it, and not a fair sample 
of the joint distribution.

Another characteristic of Gibbs sampling is that two subsequently 
generated agents tend to have rather similar sets of attributes. To 
reduce autocorrelation, the generated chains are thinned and all but 
every kth observation are discarded.

The characteristics of this method, compared with the more 
common IPF-based approaches in transportation modeling, can be 
summarized as follows:

•	 The joint distribution, which is difficult to model, does not 
need to be accessed directly.
•	 Not too many assumptions on the underlying structure of the data 

are imposed, apart from considering the conditional distributions as 
smooth functions. Thus continuous variables can be considered instead 
of categorical ones. However, iMCMC cannot impose control totals 
(although the marginals obtained are similar to those of the reference 
sample), which makes a postprocessing operation necessary.
•	 iMCMC does not suffer from the IPF zero-cell problem, that is, 

nonexistent combinations of attributes in the reference sample are pos-
sible in the generated populations. Indeed, fitted conditionals under a 
smooth model such as the multinomial logit can never be completely 
zero, and since they are the transition weights of the MCMC Markov 
chain, some very unlikely, but possible, steps can lead to these com-
binations. However, if a category of an attribute is missing from the 
reference data set, no model to fit conditionals can consider it.

Consequently, the results of iMCMC are not too dependent on the 
reference sample, allowing as many heterogeneous new populations 
as desired. However, iMCMC can have some flaws when one deals 
with multipolarized data sets, as will be shown in the section on the 
demographic data sample.

hMCMC: Hierarchical MCMC

This extension of iMCMC, aimed at synthesizing populations with 
a hierarchical structure, is based on ordering the agents living in the 
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FIGURE 1    Diagram of iMCMC.
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same household according to their household roles. A “household 
role” variable can already be present in the reference sample as an 
individual variable [something usual in the data treated by the lit-
erature on transportation modeling, as in Pritchard and Miller (9)], 
or it has to be defined as in this work.

The general formulation of hMCMC (schematized in Figure 2) 
is based on the definition of three groups of agent types, each to be 
generated differently: (a) “owners,” (b) “intermediate types,” and 
(c) “others.” “Owners” are synthesized under iMCMC and also char-
acterized by variables on the household level. “Intermediate types,” 
in the case discussed here, are spouses and children. The predictors of 
their conditionals take into consideration some variables of the already 
generated agent types, so that the model of their conditionals becomes 
larger the further the intermediate type is from the respective owner. 
The number of intermediate types to be defined can vary according to 
the complexity of the model one wants to implement. The conditionals 
of “others” do not change and are dependent only on their owners and 
intermediate types, regardless of the step in which they are generated.

The segmentation of the household into owners, intermediate types, 
and others is performed with a rule-based approach. For instance, 
the owner of a household can be identified by a sequential selection 
process; first the person(s) with the highest reported “inc” (income) 
is selected, and this subsample can then be further screened for other 
selection criteria until a single agent is identified as the owner. Similar 
strategies are then also applied to classify the remaining people of 
the household. Referring to a conventional nuclear family model, the 
intermediate types can be described as “spouse” (second agent) and 
“child” (third agent).

However, those descriptions should be interpreted with care as 
the proposed MCMC approach does not impose a certain house-
hold composition model. Segmenting a single-parent household, for 
example, will identify a child as the first intermediate type, which is 
described here as spouse. The accordingly fitted conditionals for the 
first intermediate types will then ensure that the MCMC process will 
generate the appropriate number of household types, which might 
not necessarily correspond to the family model used to describe the 
different agent types.

Hence, to generate a household, its owner is sampled first accord-
ing to the iMCMC approach described in the previous subsection. 
This agent wholly represents its household since the variables char-
acterizing the household are drawn together. (An example of these 

kinds of variables can be the number of agents living there, hereafter 
referred to as “numpax.”)

Then, if numpax > 1 for the current owner, the other inhabitants of 
its household are also generated accordingly. In Gibbs sampling, the 
conditionals of these subsequent agents also depend on some attri-
butes of the already generated agents: for example, when the age of 
the spouse of a household is drawn, the corresponding conditional is

( )P AGE other_ variables , some_variables (3)SPOUSE SPOUSE OWNER

and drawing attributes for a child conditions on some attributes of the 
spouse as well. In the case of a large numpax, the attributes of type 
“other” are not used to condition the generation of later agents of 
the same type. This decision was made to keep the algorithm simple 
and avoid overfitting since most of the agents of the reference sample 
belonged to the first three types.

Fitting to Known Control Totals

Gibbs sampling, based on a reasonably specified and estimated joint 
probability distribution, will ensure that the simulated populations will 
be representative for the full population in regard to the variables used. 
However, this MCMC procedure does not ensure meeting stringent 
control totals as published by statistical offices or predefined scenarios. 
For that purpose, the simulated sample needs to be reweighted.

Earlier approaches to population synthesis [see Müller and 
Axhausen for a review (1)] are based on reweighting a reference 
sample to known control totals (fitting) and then using those weights 
as a probability distribution to sample from so as to produce synthetic 
populations that satisfy the controls (generation). These control 
totals specify the number of individuals or households with given 
characteristics in a geographic area.

Here such a reweighting technique is briefly introduced: generalized 
raking (GR), which is applied to the results of the hMCMC process (8).

Generalized Raking

Several extensions of the IPF algorithm to handle hierarchical 
structures have been proposed in the literature on transportation 
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FIGURE 2    Diagram of hMCMC.
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modeling (3–6, 10, 11). As shown in Müller and Axhausen, most of 
these techniques are very similar or in fact equivalent to (a special case 
of) the much more powerful GR, which is used in the domain of survey 
statistics to estimate weights for a survey to reflect known exogenous 
totals and is also capable of processing continuous variables (12).

For hierarchical structures, each category on the individual level is 
mapped to a count variable on the group level, which in this case cor-
responds to households, and the sum of each such count variable is con-
trolled. Households are identified by their signature, that is, the number 
of individuals for each category; households with identical signatures 
can be pooled for this algorithm to reduce run times.

Example: When the overall number of persons of each sex is con-
trolled for, two count variables sex = M and sex = F will be controlled 
for. The externally imposed distribution of the categorical sex vari-
able on the individual level is converted to a vector of desired sums 
over the sex = M and sex = F variables for the signatures. For a fam-
ily household with husband, wife, and one daughter, the signature 
has a value of 1 for sex = M and a value of 2 for sex = F. A single 
household where a mother lives with a son and a daughter would 
have the same signature with respect to the sex variables.

The estimation of weights is performed by solving a constrained opti-
mization problem with standard numerical methods. These weights, 
now on the household level, can be again treated as a probability distri-
bution; sampling from this distribution will lead to populations which, 
in expectation, satisfy the controls.

Here GR is used to postprocess an hMCMC synthetic population 
so that marginal controls on the individual and household level are 
perfectly satisfied. In this way, the hMCMC population can be used 
as a large reference sample for the usual fitting-generation approach 
described above.

As hMCMC is able to create as many households as desired, GR 
can also be applied to an oversampled population (i.e., where the 
sample size is greater or equal to the population size), which leads 
to improved heterogeneity of the final synthetic population.

Experiment

This section will describe the experiment to validate the discussed 
method in two steps:

•	 Synthesizing a population using hMCMC and
•	 Optional postprocessing by GR to fix its marginals.

In both cases, for one reference sample, one population about 
10 times the size of the sample is created by using hMCMC, some 
assumptions having been made on the reference data.

With GR, the hMCMC population is calibrated to the sample by 
using its marginals as control totals as a proof of concept. Validation 
is then performed by comparing interactions between attributes in the 
synthetic population with the reference sample, allowing assessment 
of the error introduced by the method.

In addition, a reweighting against actual marginal totals has been 
performed; here, the distribution of the resulting weights will be 
analyzed briefly.

Demographic Data Sample

The demographic sample used in this work was derived from the 
household records of the 2008 Household Interview Travel Survey of 
Singapore, commissioned by Singapore’s Land Transport Authority. 

It is unusual in population synthesis to use travel surveys as a source 
for reference samples, as the PUMS offered by many census authori-
ties makes possible larger, richer data sets that are coded consistently 
with any marginal totals those authorities might release. However, in 
the case of Singapore, the stewards of the census, Statistics Singa-
pore, release only summary information on the population, and no 
PUMS exists.

The sample consisted of 35,448 agents living in 10,640 different 
households, making up approximately 1% of the resident population 
of the island. From all the demographic variables surveyed, a selec-
tion of pertinent attributes was made; these are listed in Table 1 with 
their corresponding possible categories. The “ethnicity” attribute is a 
household variable as all the households of the sample were ethni-
cally homogeneous. For the “dwell” attribute, the various Housing 
and Development Board (HDB) classes correspond to public housing 
flats of various sizes and standards.

An additional household index uniquely identifies each household. 
This index, shared by agents living together, encoded the hierarchical 
structure of the sample.

By multiplying the number of possible categories per attribute 
from Table 1, there are 155,232 obtainable combinations, which is the 
number of considered possible distinct agents. It is much larger than 
the possible combinations explored in Farooq et al., 384 (7). How-
ever, the number of distinct agents actually present in the sample was 
just 8,687, and that fact led to problems with hMCMC.

While MCMC does not suffer from the IPF zero-cell problem, 
multipolarization of the reference data makes Gibbs sampling flawed. 
Consider a distribution in which nonzero probabilities are concen-
trated in “islands” surrounded by an “ocean” of zero or very low prob-
ability. Here, the Markov chain would need to perform a large number 
of very unlikely (or even impossible) steps to “pass the ocean between 
these islands” and sample from the whole joint distribution.

This multipolarization naturally arises when a large number of 
attributes are considered (the curse of dimensionality), but it can also 
occur with particularities of the data. In the present case, it manifested 
itself particularly for two variables of the reference sample that were 
included in initial experiments. As these variables reported the type 

TABLE 1    Attributes of Demographic Data Sample

Individual Level Household Level

Sex Age (years) Income (SGD) Ethnicity Dwell Numpax

F 4 No income Chinese Condo 1

M 9 Max. 1,000 Indian HDB 1/2 2

NA 14 Max. 1,500 Malay HDB 3 3

19 Max. 2,000 Other HDB 4 4

24 Max. 2,500 na HDB 5 5

29 Max. 3,000 na Landed 
  property

6

34 Max. 4,000 na 7

39 Max. 5,000 na Other 8

44 Max. 6,000 na na 9

49 Max. 7,000 na na 10

54 Max. 8,000 na na 11

59 Over 8,000 na na na

64 na na na na

65+ na na na na

Note: SGD = Singapore dollars (1 SGD = US$0.677096 in December 2008); 
max = maximum; NA = not available.
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of occupation and ongoing education, they applied only to subsets of 
the agents, namely, to people who were either economically active or 
students, respectively.

The problem was revealed through two exploratory data analysis 
techniques, multiple correspondence analysis (13) and self-organizing 
map analysis (14). These techniques showed that the data were clus-
tered mainly into three groups: (a) infants with unspecified gender 
(XXX) and lowest age level (age 4), (b) students with “no inc,” and 
(c) the economically active population, with their occupation specified.

Therefore, considering occupation and education (which were 
mainly responsible for the clusters) heavily polarized the refer-
ence sample into more than one cluster, and the fitted conditionals had 
some very low transition weights. Consequently, the populations pro-
duced by including these variables, while being considered acceptable 
by error measurement standards, showed many outliers. That outcome 
is why these attributes were not considered for the population synthe-
sis. However, exactly because these variables are very polarized, they 
are ideally suited to be added in a postprocess using the set of attributes 
included in the synthesis as predictors, for example, by applying 
statistical matching as in Müller and Axhausen (15).

Model

The proposed hMCMC requires agent types, and these had to be 
defined on the demographic sample used. As discussed previously, their 
role is to simply order the inhabitants of a household, which are then 
synthesized; however, instead of names such as Type 1, Type 2, and so 
on, specific names were chosen for clarity, resembling the procedure 
through which the types were defined:

•	 Owner. First agent of its household, with the highest income. 
If there is a conflict, the one with the highest age is chosen. If they 
are still multiple, the owner is identified randomly.
•	 Intermediate types:

– Second agent of the household, with the minimum age dis-
tance from the owner among those of the opposite sex. If no 
agent of the opposite sex is available, the agent with the mini-
mum age distance is chosen. If there are multiple agents, the 
spouse is identified randomly.

– Third agent of the household, with the maximum age dis-
tance from the owner. If there is a conflict, the agent with the 
maximum inc distance is chosen. If there are still multiple agents, 
the child is identified randomly.
•	 Other. Includes the remaining agents of the household.

In hMCMC these types were treated differently when their con-
ditionals were being fitted. To be as general as possible, these were 
dependent on all the other synthetic attributes and on as many vari-

ables as possible from the already generated types. Hence, while own-
ers were generated under iMCMC with all the attributes considered 
in the section on the demographic data sample (even the household 
ones), the synthetic variables of the intermediate types were only sex, 
age, and inc, conditioned by all the attributes of the already generated 
types living in the same household, as outlined in Table 2. However, 
incomplete models may also be considered.

For reasons of simplicity, in a father–son household the father 
will be classified as owner and the son as spouse. Using different 
models per household type is outside the scope of this paper.

Out of the 35,448 individuals in the reference sample, 7,927 were 
identified as other. However, only in 2,092 households were more than 
two individuals identified as other, as these households were com-
posed of five or more individuals. As a result of this comparably small 
number and to avoid overfitting, the decision was made to use the 
same conditionals for any agent of type other, that is, for numpax ≥ 4.

The GR postprocessing applied after hMCMC used all attributes 
of the reference sample as marginal controls: sex, age, and inc for 
individuals and ethnicity, dwell, and numpax for households. Con-
sequently, all one-dimensional marginal distributions, on the indi-
vidual and household level, were identical for the reference sample 
and the final synthetic population after GR was applied.

Implementation

The implementation of hMCMC used in this work fitted the condi-
tionals in R with multinomial linear logistic models and passed their 
parameters to Java, in which the probability weights were computed 
and used at each step of Gibbs sampling. The multinomial logit 
was chosen since the R package nnet through its function multinom 
proved very efficient.

It also managed to solve a possible problem of hMCMC: the 
number of categories of a variable characterizing a certain agent 
type can be different when this variable is involved in the genera-
tion of its agent type and when it conditions the generations of sub-
sequent types. The developed implementation succeeds in dealing 
with this issue by discarding the combinations of variables that 
cannot be interpreted by models of later agent types (i.e., through 
an acceptance–rejection sampling).

Another relevant detail is that since MCMC can be performed 
as long as necessary and stopped at any time, the number of con-
sidered steps of an iMCMC Markov chain is equal to the size 
of the generated population, while this approximatively holds for 
hMCMC. The uncertainty arises because the controllable size of 
the synthetic population in hMCMC is actually the number of 
owners, and the total of agents is then controlled by the owners’ 
numpax and by the number of owners that had to be removed 
because of the flaw of hMCMC discussed in the previous paragraph. 

TABLE 2    Attributes Involved in Conditionals Fitted per Agent

Role of Attribute Owner Spouse Children Other

Both predictor and  
response (synthesized)

Sex, age, income, ethnicity, 
dwell, numpax

Sex, age, income Sex, age, income Sex, age, income 

Only predictor  
(conditioning) 
 
 

na ETHNICITY, DWELL, 
NUMPAX, SEXOWNER, 
AGEOWNER, INCOWNER 

 

ETHNICITY, DWELL, 
NUMPAX, SEXOWNER, 
AGEOWNER, INCOWNER,  
SEXSPOUSE, AGESPOUSE, 
INCSPOUSE

ETHNICITY, DWELL, NUMPAX, 
SEXOWNER, AGEOWNER, INCOWNER,  
SEXSPOUSE, AGESPOUSE, INCSPOUSE,  
SEXCHILD, AGECHILD, INCCHILD 
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However, the fact that the size of the analyzed synthetic popula-
tion from hMCMC (354,178 agents) was actually very close to  
10 times the reference one (35,448) is evidence of the validity of 
the developed approach.

A number of owners 10 times larger was chosen because the 
results of hMCMC seemed to improve the larger the synthetic popu-
lation was; its Markov chains had more time to reach the more sep-
arate combinations in the attributes’ space and to properly explore 
the underlying joint distribution. Thus, it is possible to correctly 
obtain a small population from the hMCMC result only by sub-
sampling a larger one (e.g., by increasing the thinning or through 
decimation).

However, the GR postprocessing assigns natural weights that sum 
up to the required totals, which can be used for weighted sampling; in 
particular, the total number of individuals (as well as of households) 
is fixed. Then, the oversampling rate becomes a compromise between 
heterogeneity and computational efficiency, as the run time for GR 
depends on the heterogeneity of the underlying population.

The R package MultiLevelIPF was used for implementing GR (16). 
In the presence of very infrequent categories (such as numpax = 11), 
convergence could be achieved with only limited precision.

Results

The synthetic population is analyzed at each of the two steps of the 
procedure described in the section on the experiment and compared 
with the reference sample. In the following, the corresponding 
populations are labeled as follows:

•	 RS—reference sample,
•	 MCMC—at the end of hMCMC (in table headers: MC), and
•	 GR—after GR is used to impose the controls defined by the 

sample on the hMCMC population.

MCMC and GR populations both have 354,178 observations, about 
10 times larger than RS. The GR population is defined by the 
weighting; no sampling has been performed.

Individual Level

Results refer only to characteristics on an individual level. However, 
the related new population was still synthesized with hMCMC, and 
the generated hierarchical structure was simply ignored.

Figure 3 shows plots of the relative frequencies (normalized 
counts) of combinations of variables, thus allowing results of multi-
dimensional attributes to be displayed in two-dimensional pictures. 
The left-hand part of the figure shows all feasible combinations of 
categories for the individual variables age, sex, and inc, ordered 
by their frequency in RS. Since the results of MCMC and GR are 
very similar (with one notable exception discussed below), only GR 
results are displayed. The top part shows the relative frequency for 
both populations; the bottom part shows the absolute error of GR 
compared with RS. As expected, since more agents are involved, the 
error increases with increasing frequency in RS but remains mostly 
below 0.1%. The right-hand part shows the same analysis for the 
household variables ethnicity, dwell, and numpax; no links between 
the individuals in a household are analyzed here.
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FIGURE 3    Frequency of combinations of variables.
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Tables 3 and 4 report the five most recurrent individuals and 
households in RS, with their corresponding frequencies in the 
MCMC and GR synthetic populations. The failure of hMCMC to 
reasonably generate infants because of the flawed performance of 
Gibbs sampling with multipolarized distributions is obvious; in fact, 
these agents almost constitute a separate subsample of RS, given 
their (lack of) characteristics. However, the results are almost per-
fect after the application of GR, which fixed the marginals of sex 
and age.

To summarize Figure 3, standard root mean square errors will be 
provided. This error measure is typically used in the literature on 
transportation modeling and is defined by

∑ ∑ ( ) ( )= −
= =

SRMSE . . . ˆ . . . (4)
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In this equation, fm1, . . . , N
 and f̂m1, . . . , N

 are the relative frequencies of a 
combination of attributes that appear in the reference and synthetic 
population, with N the number of attributes. M1, . . . , MN is the prod-
uct of the number of categories each attribute can take, that is, the 
total of possible distinct agents.

On the individual level, the SRMSE of MCMC was 0.411, while 
with GR it became 0.122. The decrease is evident, in particular 
because GR fixed the frequencies of the infants. On the household 
level the improvement offered by GR is only minor: 0.117 after 
hMCMC and 0.116 after GR.

Finally, marginals are reported in Table 5. MCMC does not guar-
antee to respect the marginals of the reference sample, and although 
the MCMC marginals are still quite close to them, it is GR that offers 
an almost perfect match (recall that the marginals of the reference 
sample are used as control totals for GR).

Household Level

The plots and tables of this section actually consider the household 
composition, thus analyzing the goodness of the generated hierarchical 
structure.

Figure 4 shows box plots of the distributions of per-household 
means and standard deviations of age and inc. For computing these 
values, the categories were transformed to their numeric equiva-
lents. The distributions are analyzed for households with different 
dwell (top) and numpax (bottom).

TABLE 3    Most Recurrent Individuals and Households in RS

Attribute Frequency (%)

Sex Age (years) Income RS MC GR

NA 4 No income 4.97 2.92 4.93

F 65+ No income 4.58 4.88 4.57

M 9 No income 4.26 4.94 4.38

M 14 No income 4.17 4.25 4.07

M 19 No income 3.76 3.52 3.68

TABLE 4    Most Recurrent Chinese Individuals and 
Households in RS

Attribute Frequency (%)

Ethnicity Dwell Numpax RS MC GR

Chinese HDB 4 4 5.89 5.92 5.95

Chinese HDB 5 4 5.76 5.66 5.69

Chinese HDB 4 3 5.16 5.19 5.20

Chinese HDB 5 3 4.73 4.68 4.74

Chinese HDB 3 2 4.14 4.14 4.16

TABLE 5    Table of Marginals

Frequency (%)

Attribute Category RS MC GR

Sex F 48.68 49.49 48.68
M 46.36 47.57 46.36
NA 4.97 2.94 4.97

Age (years) Age 4 4.97 2.95 4.96
Age 9 7.96 8.87 7.96
Age 14 7.83 8.12 7.83
Age 19 7.85 7.49 7.85
Age 24 5.48 5.38 5.48
Age 29 6.53 6.61 6.53
Age 34 7.45 7.63 7.45
Age 39 8.01 8.14 8.01
Age 44 9.02 8.98 9.02
Age 49 8.17 8.25 8.17
Age 54 7.69 7.73 7.69
Age 59 5.61 5.76 5.61
Age 64 4.70 4.75 4.70
Age 65+ 8.73 9.33 8.73

Income No income (SGD) 53.37 52.79 53.37
Max. 1,000 4.99 4.96 4.99
Max. 1,500 6.16 6.29 6.16
Max. 2,000 6.82 6.96 6.82
Max. 2,500 7.62 7.64 7.62
Max. 3,000 4.40 4.50 4.40
Max. 4,000 6.53 6.55 6.53
Max. 5,000 3.54 3.62 3.54
Max. 6,000 2.05 2.10 2.05
Max. 7,000 0.90 0.94 0.90
Max. 8,000 0.61 0.61 0.61
Over 8,000 3.02 3.02 3.02

Ethnicity Chinese 71.68 71.70 71.68
Indian 12.66 12.60 12.66
Malay 12.34 12.42 12.34
Other 3.32 3.27 3.32

Dwell Condo 13.28 13.31 13.28
HDB 1/2 4.45 4.58 4.46
HDB 3 19.47 19.39 19.47
HDB 4 29.31 29.35 29.32
HDB 5 25.84 25.76 25.84
Landed property 6.67 6.62 6.67
Other 0.97 1.00 0.97

Numpax 1 10.55 10.74 10.60
2 20.23 20.30 20.23
3 23.52 23.31 23.52
4 26.02 25.98 26.02
5 13.22 13.42 13.21
6 4.53 4.28 4.51
7 1.32 1.26 1.29
8 0.44 0.42 0.41
9 0.10 0.14 0.11
10 0.03 0.08 0.05
11 0.02 0.07 0.04
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It can be seen that outliers in the age and inc distributions tend to be 
more present in the synthetic populations. This outcome is expected 
because of their larger sizes and the heterogeneity of MCMC, which 
permits the generation of combinations absent in RS. At the same 
time, there are no remarkable differences between MCMC and GR 
because the latter fixed mainly the marginals of variables such as sex, 
which does not modify the age and inc distributions per household. 
Besides, the box plots with numpax along the x-axis display a bet-
ter concurrence with RS at lower values, which can be explained by 
the definition of the conditionals of others and, more generally, the 
implicit assumptions made about the standard household composition 
through the definition of agent types.

The 10 most recurrent couples of owners and spouses in RS are 
illustrated in Table 6 to prove the validity of the generated matches; 
their frequencies in MCMC and GR are in fact quite close to those in 
RS. However, it seems that GR is not able to make the MCMC fre-
quencies closer to RS, at least not by using only univariate marginals 
as control totals.

Distribution of Weights

To assess the performance of the method in a more realistic sce-
nario, the hMCMC population has been calibrated also against 
countrywide controls obtained from the 2010 Singapore Census of 
Population (17). Here, the following controls were used:

•	 Ethnicity (person level),
•	 Age × sex × dwell (person level), and
•	 Dwell (household level).

The GR weights specify the expected number of copies of an item so 
that the resulting synthetic population satisfies the exogenous controls. 
An advantage of the proposed method is that the generated samples 
can be made arbitrarily large, thus leading to lower average weights 
and more heterogeneous populations. Table 7 shows the weights for 
the different populations; here, GR-marginals correspond to calibra-
tion against the aforementioned control totals. No weighting has been 
performed for the RS and MCMC population, and the reported val-
ues represent the uniform expansion factors that need to be applied to 
each observation to produce a full population. The ratio between the 
MCMC and RS expansion factors corresponds to the oversampling 
ratio. For GR and GR-marginals, most of the weights are reasonably 

close to the median; however the weights are more extreme for GR-
marginals because of the more restrictive control totals. In fact, very 
few observations are assigned a weight of zero, but only about 0.2% 
of observations have less than unit weight. The maximum weight for 
GR-marginals is less than the RS expansion factor, confirming that 
the population is more diverse, that is, any given household will be 
repeated only up to an expected 92.5 times, compared with the best-
case scenario of uniform weights for RS, in which households have to 
be repeated more than a hundred times.

Conclusions

The results demonstrate that hMCMC is able to solve the problem of 
generating new populations with a hierarchical structure and GR 
can be applied for postprocessing these hMCMC populations to 
impose selected control totals on them. In this way, it complements 
the inability of MCMC to set control totals, and it can also help 
to overcome the flaws of MCMC when one is dealing with multi
polarized data sets, as it was seen with the infants of the demographic 
sample explored here.

Exactly because of its lack of constraints, MCMC allows hetero
geneous new populations not suffering from the IPF zero-cell 
problem. However, this method should not be applied blindly as 
illustrated by the problems experienced with occupation and educa-
tion (compare with the section on data description). It is still pos-
sible to later impute additional attributes or categories that needed 
to be dropped because they contributed to data multipolarization in 
a postprocessing operation. Nevertheless, most likely such imputa-
tion would be performed individually for each attribute, and hence 
one could not control for potential correlation structures between 
these additional attributes.

TABLE 7    Quantiles of Distribution of Weights

Step 0% 25% 50% 75% 100%

RS na na 106.2 na na

MC na na 10.6 na na

GR 3.0 9.2 10.0 10.7 54.9

GR-marginals 0.0 7.6 10.2 12.7 92.5

TABLE 6    Most Recurrent Couples of Owners and Spouses in RS

Attributes of Owner and Spouse Frequency (%)

Sex Sex of Spouse Age Age of Spouse Income Income of Spouse RS MC GR

M F Age 65+ Age 65+ No income No income 2.44 1.68 1.62

M F Age 65+ Age 64 No income No income 0.66 0.54 0.53

M F Age 44 Age 44 Max. 2,500 No income 0.57 0.44 0.45

M F Age 44 Age 44 Max. 4,000 No income 0.45 0.36 0.37

M F Age 49 Age 49 Over 8,000 No income 0.41 0.37 0.37

M M Age 44 Age 44 Over 8,000 No income 0.40 0.35 0.35

M F Age 49 Age 49 Max. 2,000 No income 0.39 0.32 0.32

M F Age 54 Age 49 Max. 2,500 No income 0.39 0.32 0.33

M F Age 54 Age 54 Max. 4,000 No income 0.38 0.29 0.30

M F Age 49 Age 49 Max. 4,000 No income 0.37 0.32 0.33
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The presented case study is somewhat simplistic as it was fit only 
against control totals from an independent sample, in this case the 
population census, and the structure of the generated microsample 
was not verified against it. Ideally, results generated with the pro-
posed method would also be assessed for heterogeneity and cor-
relation structure with an independent microsample. For the case 
of Switzerland, the census even features a full microsample, which 
would be ideal for such analysis, especially to test the behavior of 
postimputed attributes.

Further lines of research can deal with alternative extensions of 
MCMC handling hierarchies. A simple idea may be to implement 
iMCMC with type-based variables, such as ageowner, so as to generate 
households with their fully characterized populations at once. How-
ever, the curse of dimensionality can easily break this algorithm, and 
one may ultimately be handling only a few possible combinations of 
attributes to obtain acceptable results.

Another possible development stems directly from the developed 
hMCMC method, in which the generation of agent types living  
together always follows a certain order: households with an owner 
and a child but no spouse are not considered in this work since the 
agent types have to be defined a posteriori. Hence, if one would have 
predefined types in the reference sample, it would be possible to make 
the generation of the other agents after owner not simply dependent 
on numpax but on some other variables, such as “has spouse” or “no. 
of children,” which could easily be deduced from this kind of data 
set. In that case, the first agent to be generated per household could 
actually be characterized only by household variables.
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