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Abstract 

The nuclear Overhauser enhancement or effect (NOE) is the most important measure in 

liquid-state NMR. Thus, the NOE is the subject of numerous reviews and books. Here, the NOE 

is revisited in light of our recently introduced measurements of exact nuclear Overhauser 

enhancements (eNOEs), which enabled the determination of multiple-state 3D protein structures. 

This review encompasses all relevant facets from the theoretical considerations to the use of 

eNOEs in mutliple-state structure calculation. Important aspects include a detailed presentation of 

the relaxation theory relevant for the nuclear Overhauser effect, the estimation of the correction 

for spin diffusion, the experimental determination of the eNOEs, the conversion of eNOE rates 

into distances and validation of their quality, the distance-restraint classification and the protocols 

for calculation of structures and ensembles. 
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"... es ist ein gross Ergetzen, 

Sich in den Geist der Zeiten zu versetzen; 

Zu schauen, wie vor uns ein weiser Mann gedacht, 

Und wie wir's dann zuletzt so herrlich weit gebracht." 

 

 

Wagner in Faust. Eine Tragödie, Johann Wolfgang von Goethe  



 

 

5 

  

Contents 

 

1.Introduction...................................................................................................................................8  

 1.1. The NOE........................................................................................................................8 

 1.2. Back to the future: The eNOE.......................................................................................9 

2. Theoretical background...............................................................................................................11 

 2.1. The Master equation.....................................................................................................11 

 2.2. The relaxation matrix for NOESY analysis.................................................................15 

  2.2.1. Non-degenerate transitions...........................................................................15 

  2.2.2. Like spins......................................................................................................20 

  2.2.3. Near-degenerate transitions..........................................................................22 

 2.3. The Solomon equations...............................................................................................26 

 2.4. Conformational/chemical exchange............................................................................27 

 2.5. The spectral density function......................................................................................29 

  2.5.1. Simplifications..............................................................................................32 

  2.5.2. Simplifications for methyl groups................................................................34 

 2.6. Lipari-Szabo approximations.......................................................................................36 

 2.7. Experimental order parameters....................................................................................38 

 2.8. Practical expressions....................................................................................................40  

  2.8.1. NOEs and distances between single spins...................................................40 

  2.8.2. NOEs and distances between groups of equivalent spins............................43  

  2.8.3. Autorelaxation rate constants.......................................................................47  

  2.8.4. Continuous distance distribution..................................................................48 

  2.8.5. Expressions for molecular dynamics simulations.........................................50  



 

 

6 

 

3. Extraction of exact NOE rates ..................................................................................................52 

 3.1. Spin diffusion..............................................................................................................52  

 3.2. Full relaxation-matrix approach..................................................................................56  

  3.2.1. Iterative hybrid relaxation matrix approach with MD/DG..........................58 

  3.2.2. Direct iterative hybrid relaxation-matrix approach......................................59  

  3.2.3. Other programs.............................................................................................59 

  3.2.4. Inclusion of intermolecular exchange...........................................................60  

 3.3. Structure refinement against NOESY intensities........................................................61  

 3.4. Non-linear ISPA with correction for spin diffusion....................................................63  

  3.4.1. Correction for spin diffusion........................................................................67  

  3.4.2. Transfer function in the presence of conformational exchange...................74  

  3.4.3. Validation and selection of experimental buildups......................................76  

  3.4.4. Practical aspects, NMR spectroscopy...........................................................78  

  3.4.5. Impact of motion..........................................................................................87  

  3.4.6. Validation of experimental distances...........................................................92  

  3.4.7. Temperature dependence of amide proton-amide proton eNOEs...............99  

4. Structure calculation.................................................................................................................102 

 4.1. Structure calculation using the full matrix approach.................................................102  

  4.1.1. Nucleic acids...............................................................................................103 

  4.1.2. From peptides to proteins...........................................................................105 

 4.2. Ensemble calculation using conventional NOE-distance restraints..........................108  

  4.2.1. Restrained molecular dynamics (rMD) simulation.....................................108  

  4.2.2. Direct structural ensemble calculation........................................................109  

  4.2.3. Continuous distance distribution................................................................116  



 

 

7 

  

 4.3. Multiple-state structural ensemble calculation using eNOEs....................................116  

  4.3.1. Conventional structure calculation..............................................................117  

  4.3.2. Multiple-state structure calculation protocol...............................................118  

  4.3.3. Cross-validation of the ensemble................................................................122  

5. Outlook.....................................................................................................................................125  

 5.1. Future challenges: 14 questions.................................................................................125 

  5.1.1. Experimental...............................................................................................125 

  5.1.2. Ensemble calculation..................................................................................130  

6. Appendix..................................................................................................................................134  

7. References................................................................................................................................156 

8. Curriculum vitae.......................................................................................................................169 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

8 

 

1. Introduction 

 

1.1. The NOE 

The dipolar interaction between two spins, named for its discoverer, the nuclear Overhauser 

enhancement or effect (NOE) [1], has arguably become the most important phenomenon in 

nuclear magnetic resonance (NMR) spectroscopy. Two of the most popular and important books 

in the field stand for two important development stages of the NOE and NMR as a whole. The 

monolog by Noggle and Schirmer summarizes the state of the 1970s [2] when NMR was 

recorded in one dimension and the NOE was used to characterize small molecules. The second 

one by Wüthrich represents the leap in the 1980s when two-dimensional spectroscopy allowed 

protein and nucleic acid structure calculation from NOEs [3]. 

Since these groundbreaking discoveries, the application of the NOEs branched into many 

dedicated fields. This may be mirrored by a list of reviews in the Progress of Nuclear Magnetic 

Resonance Spectroscopy in which the NOE is the main subject from 1990 onward (making no 

claim to be complete): Reference [4,1990] covers the full relaxation matrix approach for 

structural studies; reference [5,1994] reviews NOE and rotating-frame Overhauser enhancement 

(ROE) theory and models for the description of motions; references [6,1994] and [7,1997]  

review the intermolecular interactions observed by NOEs; reference [8,1998] presents the theory 

of dipolar interaction in liquid- and solid-state NMR; reference [9,1998] reviews the use of 

ambiguous NOE restraints in structure calculation, and finally references [10,2005] and 

[11,2006] review again the intermolecular interactions observed by NOEs.  

The NOE was first described in 1953 when it was observed that saturation of the electron spin 

resonance causes a polarization of nuclear spins to an extent given by the ratio of the 
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gyromagnetic ratios of the two spins [1,12,13]. Although later extended, the simple theoretical 

description known as the Solomon equations formulated two years later remains the most 

practical formulation of the NOE [14]. It took another ten years until the dependence of the NOE 

on the distance between the two nuclear spins was used for conformational studies of small 

molecules in solution [15]. In 1972, it was observed that the NOE also transfers magnetization 

between molecules [16] and thus may serve as a tool to study bound ligand conformations [17]. 

The subject of this review is mostly the transient nuclear Overhauser effect as observed in 

two proton dimensions [3,18-22] or more. A quantitative analysis of the NOE is also key in 

techniques such as the saturated NOE (usually one-dimensional experiments with selective 

irradiation) [23,24] or the transferred NOE (trNOE) [6,25,26] but these topics are beyond the 

scope of the present work. As this review addresses the extraction of very accurate distances 

[27,28] and motional effects [29], strong focus is laid on the impact of dynamics on the spectral 

density function and exact understanding of the approximations that are employed. 

 

 

1.2. Back to the future: the eNOE 

What started out as "a new method for polarizing nuclei, applicable only to metals" 60 years 

ago [1] lead to the recent characterization of structural ensembles indicating the presence of 

correlated motion in a protein by the collection of many exact NOEs (eNOE) [30-32].  

Standard structure determination by NMR spectroscopy makes use of a large number of 

experimentally accessible NOE rates – typically up to 20 per residue in small proteins [3]. Since 

the NOE rate is inversely proportional to the sixth power of the distance between the two dipolar 

interacting spins, the strength of the NOE lies in the supply of a large number of through-space 



 

 

10 

 

distance restraints. Usually, these restraints are employed in a semi-quantitative manner at most 

because the measurement of NOEs is flawed by mobility, spin diffusion, low signal-to-noise ratio 

and technical limitations. 

In spite of all the progress in the NOE methodology, it seems that the tools employed today to 

measure and interpret NOEs are barely more sophisticated than those established in the 1980s. 

However, modern spectrometers  and computer hardware and software open up new possibilities. 

We have recently demonstrated that it is possible to obtain exact amide proton/amide proton 

NOEs (eNOEs) both in deuterated [33] and protonated protein samples [34]. To this purpose, we 

measured NOE buildups as a function of the NOESY mixing time and converted the NOEs into 

precise distances. For example, distances up to 5 Å obtained from a perdeuterated ubiquitin 

sample have an experimental random error of only 0.07 Å. Since the eNOE is a time- and 

ensemble-averaged observable, it contains both structural and dynamical information. The 

collection of potentially thousands of eNOEs throughout a biomacromolecule may serve as an 

excellent probe towards a more complete representation of both its structure and dynamics. 

Assignments can be performed with the same well-established methods as for conventional 

NOEs. In addition, the NOE is among the few observables that are measurable even for high 

molecular weight systems such as large proteins, protein complexes, or membrane proteins 

substituted in membrane-mimicking environments. 

We also established a new CYANA protocol which calculates multiple-state ensembles of 

structures in which the conformational restraints are required to be fulfilled on average over all 

members of the ensemble rather than for each individual conformer. 
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2. Theoretical background 

 

Most text books introduce the nuclear Overhauser effect and the differential equations describing 

the NOESY process (the Solomon equations) classically [35]. It is recommended to study this 

approach to obtain initial insight. Here the derivation is based on the quantum-chemical approach 

in combination with a classical treatment of the lattice. Only this approach provides the more 

subtle mechanisms that are also active. A detailed understanding of the these effects and the 

conditions for their neglect is important in the view of exact quantitative evaluation of NOEs.  

 

 

2.1. The Master equation 

The time evolution of a spin system is described by the Liouville-von Neumann equation 

[36,37]. 

 0 1( ) ( ), ( )
d

t i H H t t
dt
    

 
        (1) 

 t  is the density operator, 0H
 
is the stationary Hamiltonian and  1H t

 
is the stochastic 

Hamiltonian which couples the spins to the lattice. The equation may be expressed in the 

interaction frame by transformation of any operator K: 

0 0int ( )
iH t iH t

K t e Ke



 
         (2) 

Quantum mechanical and classical treatments of the nuclear spin system and the lattice, 

respectively, have proven most practical for NMR descriptions [38]. A quantum description of 
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the lattice has been presented by Goldman [39]. The semi-classical Master equation in the 

interaction frame is a solution to the Liouville-von Neumann equation:  

mix

int int int int

0 1 1 0

0

( ) ( ), ( ), ( )

t
d

t H t H t t d
dt

            
 
    (3) 

As NMR experiments deal with a large number of molecules, ensemble averaging over all 

stochastic Hamiltonians is used. The equilibrium density operator 0  is introduced ad hoc since 

in the semi-classical approach the Boltzmann equilibrium is not re-established. Additional 

assumptions used to obtain equation 3 may be looked up in the literature [36,37,39-41]. One 

common assumption, however, is not made here. The upper limit of the integral is usually 

replaced by infinity. In experiment, however, it is only carried out for the length of the mixing 

time tmix (typically 100 ms in a NOESY).  

The stochastic Hamiltonian can be decomposed into products of spin operators given by 

irreducible tensor operators of rank 2, Tm, and stationary random functions given by second order 

spherical harmonics, Fm, where m are coherence levels: 

 

2

1

2

( ) ( )m m

m

H t T F t


 
 
         (4.1) 

The conventions of reference [41] are used. Transformation of  1H t
 
into the interaction frame 

gives: 

int

1

,

( ) ( )
n
mi tn

m m

m n

H t T F t e



 
         (4.2) 
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The Tm operators are split into contributions corresponding to the differences between the 

eigenfrequencies of 
0H . More details are shown in equations A1-A18 in the Appendix. When 

 int

1H t  for all interactions a are inserted into equation 3, it takes the form: 

 
 

mix, ', ' ,
''int ', ' , int '*

0 ' 0 '

, ', , ', , ' 0

( ) 1 , , ( ) ( ) ( )
n a n a n a
m m m

t
i tm in a n a a a

m m m m

m m n n a a

d
t e T T t F t F t e d

dt

    


           

   

            (5) 

In the secular approximation only terms with , ', '

'

n a n a

m m    are retained. All other terms contain a 

rapidly oscillating component that averages them to zero. It is shown in the Appendix that m' can 

be replaced by -m (see equation A13). Back-transformation into the laboratory frame leads to the 

semi-classical Master equation for the expectation value of the operator B,  <B> = Trace(B<>): 

     0
0

ˆ ˆ( ) , ( ) ( )
d

B t i B H t B t B
dt

     
 
      (6) 

with the relaxation superoperator for non-degenerate transitions [37] 

' , , , '

, , , , ,'

ˆ ( ) ( 1) ( ) , ,
nd

nd

m aa n a n a n a

m m m m

m n n a a

B J T T B
     

  
 
      (7.1) 

 n
nd

 are those n' that fulfill , ', 'n a n a

m m   .
1
 The relaxation superoperator for degenerate transitions 

is 

' , , , '

, , , , ,'

ˆ ( ) ( 1) ( ) , ,
d

d

m aa n a n a n a

m m m m

m n n a a

B J T T B
     

  
 
      (7.2) 

                                                 
1
 Note that in reference [41] this condition is expressed with n = n'. This is not true, as 

2,D 3,D'

0 0    obviously also fulfills the condition (see equations A14 in the Appendix). 
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n
d
 are those n' that fulfill , ', 'n a n a

m m    with additional pathways from the fact that i - j = 0. 

'( )aa

mJ   is the spectral density function which carries the information on the fluctuating angular 

orientations and distances of the interaction vectors (vide infra). 

mix

' '*

0

( ) ( ) ( ) cos( )

t

aa a a

m m mJ F t F t d     
 
       (8) 

In a strict sense, cos( )  must be replaced by cos( ) sin( )ie i      . However, the second 

term causes a small frequency shift and does not affect the relaxation behavior. As this effect is 

not relevant for the current work, the simplification is justified.  

A convenient way to use the Master equation is to choose an (orthogonal) operator basis 

spanning the complete relevant Liouville subspace. The expectation values of these operators can 

be arranged in vector form b , such that the Master equation is written in matrix form: 

 
0

( ) ( ) ( )
d

b t A b t R b t b
dt

  
 
       (9) 

R is the relaxation matrix, and A is the matrix describing the unperturbed motion of the spin 

system.  

The complete relevant stationary and stochastic Hamiltonians for a N-proton system are: 

 CSI

0 0

1

(1 ) 2
N N

N

i i ij i j

i i j

H B I J I I
 

     
 
       (10.1) 

  
2

CSA 0
1 0 3 3

1

3
( ) ( ) ( ) ( )

4 ( ) ( )

N N
N

i i i j i ij j ij

i i j ij ij

H t B t I I I I r t I r t
r t r t 

  
        

 
 
   (10.2) 
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 is the gyromagnetic ratio of the proton,
 0B  the polarizing field vector, CSI

i  and CSA ( )i t  are the 

isotropic and anisotropic parts of the chemical shielding tensor of nucleus i (referred to as CSI 

and CSA tensors) in the laboratory frame, Jij the scalar coupling constant between spins i and j, 

0 is the permeability in vacuum,  denotes Planck’s constant divided by 2, and ( )ijr t  is the 

vector connecting nuclei i and j. The first term on the right-hand side of equation 10.1 integrates 

the isotropic chemical shielding tensor into the Zeeman Hamiltonian yielding the Larmor 

frequency CSI

0(1 )i iB    . The second term is the electron-mediated scalar coupling 

Hamiltonian. The first term on the right-hand side of equation 10.2 describes the chemical 

shielding anisotropy Hamiltonian and the second term is the dipolar Hamiltonian which is 

ultimately responsible for NOEs. The stochastic Hamiltonians formulated in the form of 

equations 4.1 and 4.2 can be looked up in the Appendix. 

 

 

2.2. The relaxation matrix for NOESY analysis 

2.2.1. Non-degenerate transitions 

Inspection of the Redfield Kite of the relaxation matrix R shows that in the presence of 

degenerate transitions cross-relaxation pathways are active within and between the longitudinal 

operators and zero-quantum coherences and never couple between different coherence orders 

[37]. In the absence of degenerate transitions (that is separated by at least the linewidth [40]), 

cross-relaxation is also forbidden between longitudinal and zero-quantum operators. In the ideal 

case, the pulse sequence prior to the NOESY mixing period creates only longitudinal 

magnetization away from the (macroscopic) Boltzmann equilibrium magnetization. Any residual 
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transverse magnetization is assumed to be dephased by a gradient and not considered further. The 

initial magnetization vector 0b  contains only nonzero elements for the polarization operators 

(longitudinal single-spin order) Ii,z. For non-near-degenerate transitions, the scalar coupling is 

usually weak (that is 2 ij i jJ   ). The terms proportional to Ii,xIj,x and Ii,yIj,y in H0 can be 

neglected and H0 commutes with Ii,z and the A-driven term in equation 6 vanishes. As a 

consequence, zero-, single- and higher-quantum coherences are never populated in the course of 

the mixing time in a NOESY experiment. The two conditions (non-degenerate transition and 

weak scalar coupling) are usually well fulfilled for resolved NOESY cross peaks, since the 

strongest scalar couplings between protons are 15 Hz which does not exceed a typical 

linewidth. In particular, those cross peaks for which it is not valid are very close to the diagonal 

peaks and are usually very difficult to evaluate quantitatively. The complete Master equation for 

a N spin-1/2 system can now be formulated in the subspace spanned by the population operators. 

b  is then built by (Ernst notation): 

 ,

1

1
2

2

i
N

i z

i

b I






 
 

         (11)

 



 

is a vector containing N elementsi which are either 0 or 1 (1  i   N). In total, 2
N
-1 

operators can be generated (the null vector which generates the identity operator is not included). 

Longitudinal multi-spin order terms are 0 at the outset of the mixing time and are subsequently 

created with decreasing efficiency as the order increases. For example, direct transfer from 

single-spin order can only occur to two- and three-spin order populations. In the following, the 

explicit solution of the relaxation matrix is shown if only longitudinal single-, two- and three-spin 

orders are considered. This subspace is sufficient to demonstrate all types of relaxation-matrix 
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elements. Extension to higher spin orders is straight-forward. The calculation of the matrix 

elements is presented in detail in the Appendix.  

1, 1,0

2, 2,0

3, 3,0

, ,0

1, 2,

1, 3,

1, ,

2, 3,

1, ,

1, 2, 3,

1, 2, 4,

2, 1, ,

...

2

2

...

2

2

...

2

4

4

...

4

z

z

z

N z N

z z

z z

z N z

z z

N z N z

z z z

z z z

N z N z N z

I I

I I

I I

I I

I I

I I

d

dt I I

I I

I I

I I I

I I I

I I I



 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1, 1,0

2, 2,0

3, 3,0

, ,0

1, 2,

1, 3,

1, ,

2, 3,

1, ,

1, 2, 3,

1, 2, 4,

2, 1, ,

...

2

2

( ) ( ) ...

( ) ( ) 2

2

...

2

4

4

...

4

z

z

z

N z N

z z

z z

z N z

z z

N z N z

z z z

z z z

N z N z N z

I I

I I

I I

I I

I I

I I

R A R B

R C R D I I

I I

I I

I I I

I I I

I I I



 

 
 
 
 
 
 










   
 













 
 

























 

 

D/CSA D/CSA

1 12 13 1N 12 13

D/CSA

12 2 23 2N 21

D/CSA

13 23 3 3N 31

1N 2N 3N N

D/CSA D/CSA D/D

12 21 12 23 1213

D/CSA D/CSA D/D

13 31 23 1213 13

... ...

0

0

... ... ...
( )

0 0

0 0

0 0

... ... ...

R A

      
 
     

     
 
 

     
 
      
 
      

 



D/CSA D/D D/D

1N 1213 1214

D/CSA D/D D/D

23 2131 2124

D/CSA D/D

32 3132

D/CSA D/CSA D/D

N1 NN-1 NN 2NN 1

D/D D/D D/CSA D/CSA D/CSA D/CSA

2N 121N 13 2123 13 23 14 24

D/D

3N 131N-1 12

0 ... 0 ... 0

0 0 0

0 0 0 0

... ...
( )

0 0

0 0

R B
 

  

  

 


  

           

    D/D D/CSA D/CSA

3132 12 320 0 0

... ... ... ...

 
 
 
 
 
 
 
 
 
 

     
 
 

 



 

 

18 

 

D/CSA D/CSA D/D D/D

1N N1 2N 121 3N 131N-1

D/CSA D/CSA D/D D/D

23 32 13 2123 12 3132

D/CSA

NN-1

D/D D/D D/D D/CSA D/CSA D/CSA D/CSA

1213 1213 3132 13 23 12 32

D/D D/D D/

1214 2124 14

0 0 ... ...

0 0

... ...

0 0 0 0 0
( )

0

0 0

N

R C

       

       




        

   CSA D/CSA

24

D/D

NN 2NN 1

0

... ...

0 0 0 ... 0 0 ... 

 
 
 
 
 
 
 
 
  
 
 
  

 

D/D

1N 1N-1 N1NN-1

D/CSA D/CSA

23 21 31

D/D D/CSA D/CSA

1N-1 N1NN-1 N-1N N 1N 2 NN 2

D/CSA D/CSA

21 31 123 24

24 124

D/CSA D/CSA

N 1N 2 NN 2 N-2N-1

0 ... 0 0 ... 0

0 0 0

... ... ...

0 0 0
( )

0 0 0

0 0 0 0

... ... ...

0 0 ... 0 0 ...

R D   

  

   

   

      


    

 

    N

 
 
 
 
 
 
 
 
 
 
 
 
 

   

            (12) 

i,ij andijk are the autorelaxation rate constants of Ii, 2Ii,zIj,z and 4Ii,zIj,zIk,z, respectively.  ij is 

the cross-relaxation rate constant between spins Ii and Ij (sometimes referred to as the 'NOE rate'). 

D/CSA

ij  (
D/D

ijik ) is the longitudinal cross-correlated relaxation rate constant between chemical shift 

anisotropy (CSA) and dipolar interactions (two dipolar interactions) [42]. The rate constants 

contain the following contributions [43]: 
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      (14.3) 

leak

iR  is the leakage rate caused by additional relaxation processes such as interaction with the 

solvent, paramagnetic reagents, NMR-active heteronuclei, etc. 
rigid

ijr  is the internuclear i-j 

distance in a hypothetically rigid structure. i is the difference between the parallel and 

perpendicular main components of a

i  of nucleus i. J() is the spectral density function at 

spectral frequency  as defined in equation 8. It depends on the exact nature of the vectors 

connecting spins Ii, Ij, and Ik (and CSA main axes), and is described below. It is noted that the 

cross-correlation terms usually contain an additional factor  2 cosP   which describes the angle 

 between the two interaction axes. Here this dependence is included in the spectral density 

function. In doing so, the assumption of isotropic molecular tumbling is released. 
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2.2.2. Like spins 

If the transitions are degenerate, diagonal and cross peaks appear at identical frequencies and 

can obviously not be evaluated separately in a spectrum. They may still be used by interpreting 

the sum of the single peaks. The relaxation rate constants are now calculated from equation 7.2 

rather than from 7.1. One way to treat them is to allocate an individual magnetization in b  to 

each proton and include the according relaxation rates for degenerate transitions [44,45]. In 

addition, exchange rates between the protons can also be included (vide infra).  

However, the subspace chosen here is not sufficient to exactly express the relaxation of 

magnetically equivalent spins. It is convenient to formally treat a group of N spins like one spin 

with N-fold spectral intensity [46]. This approach is most prominently applied to methyl groups 

and aromatic protons. The magnetization is written as 

, ,
1

N

i z i z
I I





 

      (15)

 

i

 

is a pseudo proton number in vector form including the protons i1 to iN. A corresponding 

spectral peak is N times more intense than one expected from a single proton. 

For a methyl group, the dipolar auto-relaxation rate is calculated by summation of the 

contributions listed in Tables A1 and A2 under consideration of both other protons resulting in a 

modified 
D

i iR
 

. 
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4 10 ( )i i i i i
R J J

r

  
        

    (16) 

This equation can also be understood from the fact that cross-relaxation between the methyl 

protons does not alter the overall methyl magnetization. Therefore, expression 16 is a sum of 
D

i iR
 
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and i i 
  (equations 13.4 and 14.1). The intramethyl distances methyli ir r

 
  do not fluctuate and 

can be factored out of the spectral density function. The CSA-induced relaxation rate is 

 
2 2

2
CSA,methyl methyl CSA,methyl02 B

( )
15

i i i i
R J


         (17) 

methyl

i


 
is an effective value whose directionality is parallel to the c3 symmetry axis due to fast 

methyl rotation as proposed in reference [47]. 

The cross relaxation rate constant between 
i

N and 
j

N

 

magnetically equivalent spins is 
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     (18) 

ij
  is 

i
N  times larger than expected for a single transfer pathway i i 

 . The summation can be 

absorbed into the spectral density functions. 
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     (19) 

The distance rigid

ij
r  is the distance between the pseudoatoms representing the groups i  and j . 

It is stressed again that there are also pathways due to cross-correlated relaxation that convert 

single into two- and three spin order terms and other non-observable irreducible modes within a 

methyl group [43,47,48]. These lead to non-exponential autorelaxation which cannot be 

accounted for in this simple model. An additional complication arises from the lost symmetry of 

the relaxation matrix R as 
j ij i ji

N N    and thus in general 
ij ji

   . A solution has been 

proposed for symmetrization [49]. 

It is worthy to note that explicit consideration of each individual atom with equal peak 

intensity treats spin diffusion mediated by such a spin group more realistically than a pseudo 

atom. For example, only this approach reveals that protons separated by 8 Å may appear to be 
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separated by 4 - 5 Å if an aromatic ring is located between them [45]. A simplified approach can 

be used for fast multiple-site exchange where one magnetization intensity (the sum) is used and 

the relaxation rate is the population-weighted average of the individual relaxation matrices [50]. 

A more general solution has been presented by [51]. 

 

 

2.2.3. Near-degenerate transitions 

The situation is different if the peaks are barely resolved. Then the transitions may be near-

degenerate. Remarkably, auto-correlated contributions to R are identical for degenerate and non-

degenerate transitions in the specific case of NOESY (see Appendix Table A2). There are, 

however, pathways to zero-quantum coherence between degenerate transitions mediated by 

cross-correlated relaxation (see Tables A5, A7 and A8). This implies that the formulae for non-

degenerate transitions can be used if the cross-correlation relaxation is sufficiently small. As a 

rule-of-thumb, it has to be taken into account if
 

2
' int

' 1 ( )n n

m m cH t     holds, where c is the 

effective molecular tumbling time (vide infra) [41]. In practice, this is relevant for spectral 

frequencies separated by no more than 2 to 20 s
-1

. This range is typically less than the line width 

for macromolecules.  

An additional complication arises if the spins are strongly scalar coupled [52-55], which can 

occur for protons if they have non- or near-degenerate transitions (for example, methylene 

protons). Then the basis chosen in equation 11 is no longer appropriate. Instead, the 

eigenfunctions of 0H  are linear combinations of the wavefunctions of the strongly coupled spins 

and the eigenvalues also depend on the scalar coupling constant. If the multiplets due to scalar 

coupling between spins i and j are not resolved, but the peaks still are (in the weak coupling limit 
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positioned at the frequencies of spin i and j, and for strong coupling increasingly intermixed with 

the frequencies of the coupling partner), the spectra can be analyzed by using equation 12 with 

modified terms. A derivation is provided in the Appendix. If the relaxation rate constants are 

dominated by the contributions from the spectral density function sampled at 
i j  , the 

following modifications may be used:   

  D D,Jstrong 2 J D1 sin 2ij ij ij ijR R R            (20) 

  Jstrong 2 J1 sin 2ij ij ij ij              (21) 

with 

 J
2

tan 2
ij

ij

i j

J
 

 
          (22) 

The scaling factor (1-sin
2
(2ij)) is plotted versus (i - j)/(2Jij) in the top panel of Figure 1. As 

shown in the bottom panel, the apparent peak separation (assuming the J coupling is not 

resolved) is nearly identical to the chemical shift difference for resolved peaks. This difference 

may then be used to estimate the scaling factor plotted in red. In methylene groups, Jij is typically 

-15 Hz, and the line widths in the study on GB3 presented in this review are typically 35 Hz and 

55 Hz in the direct and indirect 
1
H dimensions. An appreciable scaling can be active for resolved 

peaks. If they are separated by 35 Hz, the scaling factor is 0.85. If they are also resolved in the 

indirect dimension, the factor is still 0.9. A scaling by 99 % is obtained if the shift difference is 

ten times larger than the scalar coupling constant. In practice, however, the cross peaks appear 

larger than expected for weak coupling due to a second efficient mechanism of magnetization 

transfer depending purely on the strong scalar coupling. It arises from unequal conversion of 

transverse into longitudinal magnetization by the pulse sequence elements typically preceding the 

mixing period [55]. For example, it has been estimated that after a 3-second mixing period 70 % 



 

 

24 

 

of the intensities of the cross-peaks between the H(3) and H(4) protons in 2,6 

dicarboxynaphthalene stems from this effect, where (i - j)/(2Jij)   2 and the internuclear 

distance is 2.44 Å [52]. 

 

 

Figure 1. The effect of strong scalar coupling on the cross-relaxation rate. The scaling factor (1-sin
2
(2ij)) is shown 

versus (i - j)/(2Jij) (top panel) and versus (i - j)/2 for Jij = -15 Hz (bottom panel, red curve). The apparent 

peak separation is calculated as the chemical shift difference between the centers of the doublets {(12), (34)} and 

{(13), (24)} as provided in equation A28 in the Appendix (bottom panel, blue curve). Note that the apparent peak 

separation actually becomes zero as the shifts become identical because the outer lines approach zero intensity. 
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For the current purpose the most relevant manifestation is the one observed in a ABX-type 

system i-j-k, where spins i and j are strongly coupled, and NOEs are determined for the spin pairs 

i-k or j-k. In addition to the strong spin diffusion effect via j or i, respectively, both NOEs are 

altered by the partial mixing with the second strong coupling partner [50,53]. The cross-

relaxation rate between k and the atom of the pair i-j which is closer to k is reduced and the one 

further away is enhanced. For 
ik jk i jJ J    one obtains 

   Jstrong 2 J 2 Jcos sinik ik ij ik ij jk               (23.1) 

   Jstrong 2 J 2 Jcos sinjk jk ij jk ij ik               (23.2) 

The scaling factors are plotted versus (i - j)/(2Jij) in Figure 2. For a NOE between a spin i 

located in a methylene group i-j (Jij = -15 Hz) and an isolated spin k which is assumed to be 

infinitely distant from j, the scaling of the cross-relaxation rate constant is 0.96 and 0.98 if the 

methylene peaks are separated by 35 Hz and 55 Hz, respectively. On the other hand, the cross-

relaxation rate constant between j and k is 0.04 and 0.02 times ik instead of zero. The 

consequence for the practice is that spin diffusion dominates the strong coupling effect which is 

irrelevant for macromolecules. 

In addition, during the pulse sequence elements preceeding NOESY mixing antiphase terms 

are created that are partially converted into zero-quantum coherences by the 90º pulse which 

initiates the mixing process. These terms are notoriously difficult to suppress during mixing [57]. 
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Figure 2. The effect of strong scalar coupling on the cross-relaxation rate between the weakly coupled spins i-k, 

where i is strongly coupled to a third spin j. The scaling factors cos
2
(ij) and sin

2
(ij) are shown versus (i - 

j)/(2Jij)  in red and blue, respectively. cos
2
(ij) scales the cross-relaxation rate constant ik, which would be 

expected in case of weak coupling, and sin
2
(ij) scales the contribution from jk. 

 

 

2.3. The Solomon equations 

Further simplifications lead to the generalized form of the Solomon equations [14]. Bull 

shows that dipole/dipole cross-correlated relaxation has a rather small effect in NOESYs [58]. 

Cross-correlated relaxation between dipolar and CSA interactions is even smaller, since the 

proton i is typically only 10 ppm. Thus, there is no efficient transfer mechanism to populate 

two- and higher-spin orders. To a good approximation, the relevant NOESY process can be 

described by the Solomon equations, which are formulated in the reduced space spanned only by 

N single-spin order operators: 
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    (24) 

These equations are usually employed to analyze NOESY spectra. 

 

 

2.4. Conformational/chemical exchange 

Conformational and chemical exchange cause modulation of the Hamiltonians by shifting the 

Larmor frequency through the frequencies associated with each sampled conformation/state 

(among other changes). The Hamiltonians are then the sums over the contributions from each 

conformation for a specific spin. While the stationary Hamiltonian weights these contributions by 

the populations, the stochastic Hamiltonian uses time-modulated weights depending on the 

exchange rates. The effects can be derived quantum mechanically [41], but modified Bloch 

equations, the so-called McConnell equations are sufficient to give insight [59]. Analysis of the 

transverse components of the magnetization of spin i shows that peaks are not resolved in a 

spectrum if the difference between the chemical shifts of different states is smaller than the 

exchange rate (
ex ik  ), which is defined as the sum of the forward and reverse reaction rate 

constants [37,40,41]. This situation is called fast exchange (not to be confused with fast motion). 

The single apparent peak shows up at a population-weighted average frequency. Motion is then 

described within the spectral density function (see 2.5.). 
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If, on the other hand, the exchange is slow (
ex ik  ), separate components of the 

magnetization are resolved in a spectrum [60,61]. Corresponding peaks show up on the NOESY 

diagonal and the exchange process builds up cross peaks that are nearly indistinguishable from 

those induced by cross-relaxation. This type of dynamics cannot be described with the spectral 

density function. Instead, the process during the NOESY mixing time mix is given by the 

longitudinal component of the McConnell equations [59]. A Nex-site first-order exchange process 

in chemical equilibrium is assumed for spin i: 

, ,

rs

sr

k

i r i sk
I I           (25) 

The consequence is that each Ii,z magnetization is split into Nex components Iir,z in equation 24 

and a modified relaxation matrix R' = K + R is used, where K includes elements describing the 

exchange rates. The resulting subequation is 
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            (26) 

If the initial magnetic perturbation is nonselective, the components Iir,z are proportional to the 

populations of the exchanging sites. In the most extreme case, each Iir,z magnetization has a 

different autorelaxation rate and different cross-relaxation rates to other spins. It is common, 

however, to assume that the autorelaxation rate is the same for all r. If the exchange is very slow 
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(
ex

mix

1k


), no cross-peak buildup is observable during NOESY mixing and the diagonal 

peaks have population-weighted volumes. 

 

 

2.5. The spectral density function 

For ensemble-based structure calculations employing exact NOEs, it is important to 

understand the implications of the impact of the motional behavior of the molecule on the NOE. 

If a spin gives rise to a single peak, it is associated with a single spectral frequency. The complete 

information on motion which is accessible by the NOESY experiment is imprinted on the spectral 

density function. The spectral density function is obtained from equation 8: 

mix

' '

0

( ) ( )cos( )

t

aa aa m

mJ C d    
 
        (27) 

with the correlation function 

' '*( ) ( ) ( )aa m a a

m mC F t F t            (28) 

As F is a stationary random function, its dependence on t can be replaced by an evaluation at 0 

without loss of generality. As shown in the Appendix (equations A15-A18), the correlation 

function is independent of m and equation 28 can be further simplified: 

' ' '

0 0( ) ( ) (0) ( )aa m a a aaC F F C             (29) 
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Since F0 is proportional to the spherical harmonic Y20, F0 can be expressed in a molecule-fixed 

coordinate system (F0
int

) in combination with a time-dependent rotation relating the molecule-

fixed to the laboratory frame. Use of the Wigner rotation element 2 ,mol

0( )a

lD    gives [41]:  

   
2

' 2 ',mol 2* ,mol ',int* ,int

0 ' 0 '

, ' 2

( ) ( ) ( 0 ) ( ) (0)aa a a a a

l l l l

l l

C D D F F


          (30) 

If the overall molecular tumbling is independent from the internal motions, equation 30 can be 

written as 

   
2

' 2 ',mol 2* ,mol ',int* ,int

0 ' 0 '

, ' 2

( ) ( ) ( 0 ) ( ) (0)aa a a a a

l l l l

l l

C D D F F


          (31) 

It must be stressed that macromolecular dynamics are generally very complex. In particular, in 

partially folded or unfolded molecules, mode coupling and/or local diffusion must be accounted 

for. According models have been developed, but are beyond the scope of this review [62,63]. The 

formalism presented in the following is sufficient for quantitative NOE investigation in globular 

proteins.    2 ',mol 2* ,mol

0 ' 0( ) ( 0 )a a

l lD D    may be expressed in terms of the eigenvalues 1/p of 

the anisotropic molecular diffusion operator D:  

2 x y z

1 x y z

2 2

0

1 x y z

2 2

2

1/ 4

1/ 4

1/ 6( ' )

1/ 4

1/ 6( ' )

D D D

D D D

D D D

D D D

D D D





   

   

   

   

   

                   (32.1-5) 

x y x z y z
'

3

D D D D D D
D

 
 ;  

x y z

3

D D D
D

 
 ; 



 

 

31 

  

The derivation using the Green function for rigid body diffusion is lengthy and may be looked up 

in the literature [64]. The summation over l and l' can be rearranged into a summation over p 

[65,66]. The correlation function becomes an expression in which each p is the active molecular 

correlation time for a fractional correlation function of internal motion, '

int, ( )aa

pC  : 

2
/' '

int,

2

( ) ( )paa aa

p

p

C e C
 



           (33) 

with 

' rigid 3 rigid 3 2 2

int, 2 ' ' '3 3

'

' rigid 3 rigid 3

int, 1 ' ' '3 3

'

2
2

2

' rigid 3 rigid 3

int,0 ' 3 3

'

1 3
( ) ( ) sin sin sin 2 sin 2

4

1 3
( ) ( ) sin 2 sin 2 cos cos

4

3
sin sin

4N

1
( ) ( )
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a a a a a a

a a
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a a a a a a

a a

a

aa

a a

a a

C r r
r r

C r r
r r

C r r
r r





 
     

 

 
     

 






2

' '

2 2 2 2

' ' '2

2
2 2

'2

' rigid 3 rigid 3

int,1 ' ' '3 3

'

int

cos2 cos2

3 w
sin cos2 (3cos 1) sin cos2 (3cos 1)

4N

w
(3cos 1)(3cos 1)

4N

1 3
( ) ( ) sin 2 sin 2 sin sin

4

a a a

a a a a a a

a a

aa

a a a a a a

a a

C r r
r r

C

 
   

 
 

            
 
 
     
 

 
     

 

2
2 2

' '2

' rigid 3 rigid 3 2 2 2 2

,2 ' ' ' '3 3 2

'

2
2 2

'2

3w
sin sin cos2 cos2

4N

1 3 w
( ) ( ) sin cos2 (3cos 1) sin cos2 (3cos 1)

4N

(3cos 1)(3cos 1)
4N

a a a a

aa

a a a a a a a a

a a
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r r
r r

 
    

 
 

             
 
 
     
 

            (34.1-5) 

On the right-hand sides, the indices a and a' designate the interaction vectors of the 

corresponding interactions in polar angles in the molecule-fixed frame at time points 0 (a) and  

(a'), respectively. If a or a' is a CSA interaction, the distance is replaced by 1. The following 

abbreviations are used: 
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x y

2 2

3( );

3 ' ;

D D

D D

  

  

  
z x yw 2 2

N 2 w

D D D    

 
 

',rigid

int,

aa

pC  is the '

int,

aa

pC  coefficient in absence of internal motion. For cross-correlated relaxation (a 

  a'), the brackets in equations 34 can then be omitted, the distances are canceled out and  is set 

to 0. In the case of auto-correlated relaxation (a = a'),
 

,rigid ,rigid

int, int,

a aa

p pC C   is considerably simpler: 

,rigid 4 2

int, 2

,rigid 2 2

int, 1

2 2
,rigid 4 2 2 2 2 2

int,0 2 2 2

,rigid 2 2

int,1

2
,rigid 4 2 2

int,2 2 2

3
sin sin 2

4

3
sin 2 cos

4

3 3 w w
sin cos 2 sin cos2 (3cos 1) (3cos 1)

4N 2N 4N
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sin 2 sin

4

3w 3 w
sin cos 2 sin

4N 2N

a

a

a

a

a

C

C

C

C

C





  

  

 
         

  


  

2
2 2 2

2
cos2 (3cos 1) (3cos 1)

4N


      

 (35.1-5) 

 

 

2.5.1. Simplifications 

For practical purposes these expressions are of prohibitive complexity. In this paragraph, two 

widely used assumptions are made to reduce equations 32 to 35.  

For the majority of the macromolecules, the assumption of axially symmetric molecular 

tumbling is sufficient to describe relaxation measurements within experimental uncertainty. The 

relationship  -p =  p  leads to 
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 

 

' ' rigid 3 rigid 3 2 2

int, 2 int,2 ' ' '3 3

'

' ' rigid 3 rigid 3

int, 1 int,1 ' ' '3 3

'

' rigid 3 rigid 3

int,0 ' 3

'

1 3
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1 3
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a a a a a a
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C C r r
r r

C C r r
r r

C r r
r r





 
       

 

 
      

 

 2 2

'3

1
(3cos 1)(3cos 1)

4
a a

 
    

 

  (36.1-3) 

and  

2 z x=y

1 z x=y

0 x=y

1/ 4 2

1/ 5

1/ 6

D D

D D

D





  

  

 

         (37.1-3) 

Most often, isotropic molecular tumbling is assumed and the diffusion tensor reduces to a 

scalar with a single correlation time p = c. Equation 33 becomes 

2 2
/ /' ' rigid 3 rigid 3 *

int, ' 2 ' ' 23 3
2 , ' 2 '

1
( ) ( ) 1/ 5 ( ) ( ) 4 ( ) ( )c caa aa

p a a l a l a

p l l a a

C e C e r r Y Y
r r

   

 

       
 

(38)

 

 

It has been shown that independence between the fluctuations of the vector length and 

orientation is a good approximation for many proton-proton NOEs [67]. In general, however, 

caution has to be taken. '

int,

aa

pC  can then be factorized as 

    
   

3 3
' rigid rigid ',Y

int, ' int,3 3

'

1aa aa

p a a p

a a

C r r C
r r

        (39) 

For the isotropic molecular tumbling model a further simplification of equation 38 is obtained: 

/' rigid 3 rigid 3 2

' , '3 3

'

1 1
( ) ( ) ( ) (3cos 1)

2
caa

a a a a

a a

C r r e
r r

  
    

 
    (40)  

a,a' is the projection angle between the vectors a and a'. 
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2.5.2. Simplifications  for methyl groups 

The general expressions for methyl groups are complex, but they simplify under certain 

assumptions. First, it is noted that autorelaxation rate constants are only of secondary importance. 

Some approaches for distance extraction do not require any model because experimental rate 

constants are fitted and reused for the determination of cross-relaxation rate constants. Other 

approaches use predictions but the outcome of the cross-relaxation rate constants is relatively 

insensitive to the exact nature of the model. Therefore, a very simple model is employed to 

express autorelaxation in methyl groups. A detailed derivation is presented in the Appendix. It is 

assumed that the methyl rotation around the symmetry axis c3 happens instantaneously. 

D,methyl ( )
ij

J   can be evaluated by separation of the rotation around the c3 axis from the fluctuation 

of the c3 axis 

mix

D,methyl D( ),methyl

0

( ) ( )cos( )

t

i

i i
J C d    

 
       (41) 

with the correlation function 

 
2

2 /D( ),methyl methyl,prot D( ),methyl,c3

int,

2

( ) ( )pi i

p

p

C S e C
 



         (42) 

where 

 
3

2
methyl,prot prot prot

2 2

1 1
( ) ( )

3 4
i i i iS P P
   



   

       

(43) 

is the order parameter for the fast rotation around c3. The correlation function now has the same 

form as the one for a single proton with an additional factor. An additional simplification in 
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equation 16 is that the distance is constant, 
methyl( )i jr t r

 
  = 1.813 Å [68]. If the methyl 

autorelaxation rate constant for a 
13

C-labeled sample is calculated, the dipolar H-C interaction is 

calculated in an analog manner. Then,
 

methyl( )i j C ij C
r t r
  

  = 1.117 Å and since the angle between the 

c3 and the H-C axes is 110.9º, the squared order parameter is 1/9 [69]. 

For auto-correlated relaxation between two distinct groups of equivalent spins the spectral 

density function is (see equation 19) 

mix

D D( )

0

( ) ( )cos( )

t

ij

ij
J C d    

 
        (44) 

A similar simplification as used in equation 40 is not possible. If the molecular tumbling is 

isotropic, the correlation function is 

*2 2
2 ' 2/ /D( ) D( ) rigid 6

int, 3 3
2 , ' 2 1 1

( ( )) ( (0))1
( ) ( ) ( )

( ) (0)

ji

c c

NN
l i j l i jij ij

p ij
p l l i j i ji j

Y Y
C e C e r

N N r r

   

   

   

   

  
   


  

 

(45) 

If one group consists of a single spin 

*2 2
2 ' 2/ /D( ) D( ) rigid 6

int, 3 3
2 , ' 2 1

( ( )) ( (0))1
( ) ( ) ( )

( ) (0)

i

c c

N
l i j l i jij ij

p ij
p l l i j i ji

Y Y
C e C e r

N r r

 

 

   

  

  
   


  

  

(46) 

In more sophisticated models one internal correlation time is assigned to the rotation around 

c3 and a second one to the fluctuation of c3 [69], which are then used in the extended Lipari-

Szabo formalism [70], or a three-site jump-model with defined jump rates is employed [44]. The 

jump model (vide supra) can be implemented with a N x N submatrix for an N-site exchange 

[45]. The magnetization vector is enlarged by two dimensions per methyl group. As mentioned 

previously, a simplified approach for fast multiple-site exchange uses only one magnetization 
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intensity (the sum), where the relaxation rate is obtained from the population-weighted average of 

the individual relaxation rates [50]. 

 

 

2.6. Lipari-Szabo approximation 

Lipari and Szabo proposed to approximate the correlation function of the internal motion with 

a monoexponential decay with a single internal correlation time int [71,72]. At infinite time, the 

correlation function reaches the Lipari-Szabo order parameter. Practically, this order parameter is 

only sensitive to fast motion (int << p). By analog construction, generalized order parameters 

can be obtained from
 

'

int, ( )aa

pC  . Since in experiment the spectral density function integrates 

'

int, ( )aa

pC   over the NOESY mixing time tmix rather than the commonly assumed infinity, these 

order parameters for fast motion actually are '

int, mix( )aa

pC t . This distinction bears an important 

implication for the dependence on slow motion (vide infra). For practical purposes, the order 

parameters of fast motion are here defined as fractions of the according coefficient of a rigid 

molecule: 

 
'

2 int, mix',fast

',rigid

int,

( )aa

paa

p aa

p

C t
S

C
          (47) 

The correlation function becomes 

    int

'
2

2 2int,/ /' ',rigid ',fast ',fast

int, ',rigid
2 int,

( ) p

aa

paa aa aa aa

p p paa
p p

C
C e C S S e

C

   



  
     

    

    (48) 

'( )aaC   still contains an ensemble average which extends over all molecules. If there is additional 

slow motion present (int >> p), not all conformations are sampled by a single molecule during  
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p. If tmix > int, this requires that the averaging of '

int, ( )aa

pC   over all molecules has to be 

maintained. If the motion is even slower, that is tmix < int, the ergodic hypothesis breaks down. 

The averaging happens at the level of spectral intensities instead of the relaxation rates. In 

practice, it is usually reasonable to assume that the fast order parameter of a specific molecule is 

equal to the average over all molecules and the brackets can be omitted in equation 47. 

Insertion of expression 48 into equation 27 yields for the spectral density function 

 
 

 
 

'
2

2 2int,p eff,' ',rigid ',fast ',fast

int, 2 2',rigid
2 int,p eff,

(0)
( )

1 1

aa

p paa aa aa aa

p p paa
p p p

C
J C S S

C

   
     

         

  (49) 

with the effective correlation times 

eff, int

1 1 1

p p

 
  

          (50) 

A specific effective correlation time and order parameter of fast motion are associated with each 

'

int,

aa

pC  coefficient. Implications of equation 49 for cross-correlated relaxation are discussed in 

detail in reference [66]. Since dipolar auto-correlated relaxation is the dominant mechanism in 

NOESY spectroscopy, only the case of a = a' = D(i,j) is discussed further. The spectral density 

function is

 
 

   
 

2
2 6 2p eff,D( ) D( ),rigid D( ),fast rigid D( ),fast

int, 2 26
2

p eff,

1
( )

1 1

pij ij ij ij

p p ij p

p ij p

J C S r S
r

    
              

  (51) 

Isotropic molecular tumbling leads to 

 
 

   
 

2 6 2
D( ) ( ),fast rigid ( ),fastc eff

2 26

c eff

1
( )

1 1

ij D ij D ij

ij

ij

J S r S
r

  
    

       

  (52) 

with 
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eff c int

1 1 1
 

  
          (53) 

 
2

( ),fastD ijS  is the order parameter for fast internal motion of an isotropically tumbling molecule: 

   
       

     

 
 

*2
2 6 2 mix mix 2( ),fast rigid

3 3
2
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2

2
6 2rigid

3
2

Y ( , )Y ( 0 , 0 )4

5 0

Y ( , )4

5

q ij ij q ij ijD ij

ij

q
ij ij

q ij ij

ij

q
ij

t t
S r

r t r

r
r





   


 






   (54) 

 

 

2.7. Experimental order parameters

 

It is crucial to investigate what kind of order parameter can actually be extracted from an 

NOESY experiment. An experimentally accessible NOE order parameter is sensitive to all time 

scales. It may be defined by the true cross-relaxation rate constant normalized to the one expected 

for a rigid molecule, 

 
exp

2
( ),exp

rigid

ijD ij

ij

S





          (55) 

In general, it is not possible to relate the order parameter to a simple analytical expression. For 

macromolecules at high magnetic fields, however,  
2

p1    and all terms where the spectral 

density function samples frequencies other than 0 or  i j   can be neglected. The 

experimental order parameter can then be written as 
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 
     

2
2 6 2

D( ),rigid D( ),fast rigid D( ),fast

int, p eff,6
22

D( ),exp
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C S r S
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
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   
      

   






  (56) 

If the 
p  are not too different from each other, a useful approximation is   

       
2

2 2 6 2
D( ),exp D( ),rigid D( ),fast rigid D( ),fast

int, 6
2 p int

1 1

1

ij ij ij ij

p p ij p

p ij

S C S r S
r

   
           
   (57.1) 

If the molecule tumbles isotropically, the exact expression is 

       
2 2 6 2

D( ),exp D( ),fast rigid D( ),fast

6

c int

1 1

1

ij ij ij
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S S r S
r

 
   

    
 

    (57.2) 

For internal motions that are much faster than nanoseconds (
int p   ),  

2
D( ),expijS  is fully 

determined by the order parameters of fast motion as defined in equation 47 

   
2

2 2
D( ),exp D( ),rigid D( ),fast

int,

2

ij ij ij

p p

p

S C S


         (58.1) 

   
2 2

D( ),exp D( ),fastij ijS S          (58.2) 

 
2

D( ),expijS  is then simply the weighted sum of the squared Lipari-Szabo order parameters of fast 

motion, or the squared Lipari-Szabo order parameter of the isotropically tumbling molecule, 

respectively. 

For motion much slower than the molecular tumbling (
int p   ),  

2
D( ),expijS  is independent 

of the angular coordinates and of the diffusion tensor: 

   
2 6

D( ),exp rigid

6

1ij

ij

ij

S r
r

          (59) 
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2.8. Practical expressions

 

The simplest and most common way to extract distances from the measured cross-relaxation 

rate constant is to use equations 13.4 and 19 under the assumption of a rigid molecule and 

exclusively retention of the spectral density function sampling the frequency 
i j 0    (valid 

for  
2

p1   , vide supra). Motional effects are absorbed into the distance which must be 

replaced by an effective distance rij
eff

. In the following, NOEs involving single spins and groups 

of equivalent spins are treated separately.  

 

 

2.8.1. NOEs and distances between single spins

 

From equation 13.4 follows 

 

2 24 2 4 2 2
D( ),rigid ',rigid0 0

int, peff 6 eff 6
2

1 1
(0)

4 10 ( ) 4 10 ( )

ij aa

ij p

pij ij

J C
r r 

     
      

    
    (60) 

This formula is used for the prediction of the cross-relaxation rate constant if the diffusion tensor 

is known. If the molecule tumbles isotropically 

2 4 2

0 c

eff 64 10 ( )
ij

ijr

  
   

 
         (61) 

More commonly, the distance is extracted from the cross-relaxation rate constant. This is not 

straight-forward from equation 60 and all studies to date used equation 61 instead (most studies 

did not make an effort in proving the validity for the specific system). The effective distance is 

then 
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1 1
2 6 64 2

eff 0 c c

1

/ ns
56.94

4 10 / s
ij

ij ij

r


      
              

 Å      (62) 

If the molecular correlation time and the measured cross-relaxation rate constant are inserted in 

units of nanoseconds and in inverted seconds, respectively, the distance is obtained in units of 

Ångstrom. The relationship between the distances in a rigid molecule and the effective distances 

can be expressed with the order parameter: 

 

rigid

eff

1/3
D( ),exp

ij

ij
ij

r
r

S
           (63) 

Note that this holds true for motions on all timescales as well as for cases where (2 )J   cannot 

be neglected. 

It is noted that an exact extraction of the effective distance requires an accurate measurement 

of c. In particular, for non-isotope labeled samples this can be a challenging task. Very often the 

cross-relaxation rate of a spin pair of known distance was chosen as a reference and distances 

between other spin pairs have been derived as: 

1
6ref

eff ref

ij

ij

r r
 

    

           (63b) 

It is clear that this approach entails many traps that are widely discussed in literature [28,73-83] 

and are not repeated here . Instead, it is recommended to determine an exact values of c with 
15

N 

longitudinal and transverse relaxation measurements. 

All studies employ one of three approaches to use the effective experimental distance in 

structure calculations. The first and foremost way is to ignore motional effects completely and 
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relegate their impact into the experimental error and concomitantly to set large upper (and rarely 

also lower) limits: 

 
2

D( ),exp 1ijS            (64.1) 

and 

eff rigid

ij ijr r            (65.1) 

Despite of its simplicity, it has been shown that for the majority of NOEs this approximation is 

good [84]. 

Secondly, the simplest model accounting for motional effects is the so-called <r
-6

> averaging. 

All motion is treated as if it were slow and equation 57 gives the order parameter. 

   
2 6

D( ),exp rigid

6

1ij

ij

ij

S r
r

          (64.2) 

and 

-1/6

eff

6

1
ij

ij

r
r

           (65.2) 

It is clear that the contribution to r
eff

 of temporarily short distances to the NOE is overestimated if 

part of the motion is in fact fast. In an ensemble structure calculation, true short distances are 

rejected such that the structure becomes 'deflated'. 

In a third approach, <r
-3

> averaging is employed. All motion is treated as if it were fast, but 

the angular dependence is ignored. 
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   
2

2 6
D( ),exp rigid

3

1ij

ij

ij

S r
r

          (64.3) 

and 

-1/3

eff

3

1
ij

ij

r
r

           (65.3) 

On one hand, this model overestimates contributions to the NOE because it neglects the angular 

dependence of the fast motion. On the other hand, it underestimates contributions from slow 

motion. It is not easy to quantify the overall effect on the structure calculation. Note that the 

model is a compromise such that a priori structural knowledge is not required. 

 

 

2.8.2. NOEs and distances between groups of equivalent spins

 

For NOEs involving groups of equivalent spins, the pseudo-atom model is used. From 

equation 19 follows 

2 24 2 4 2 2
D( ),rigid D( ),rigid0 0

int,eff 6 eff 6
2

(0)
4 10 ( ) 4 10 ( )

ij iji i
p pij

pij ij

N N
J C

r r 

     
      

    
    (66) 

D( ),rigid

int,

ij

pC  contains the double sum over the spins of both groups and can in general not be 

simplified. Again, this formula can be used for the prediction of the cross-relaxation rate constant 

if the diffusion tensor is known. If the molecule tumbles isotropically 

2 4 2
c0

eff 64 10 ( )

i

ij

ij

N

r

  
   

 
         (67) 

and the effective distance between the pseudoatoms becomes 
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1
6

eff c

1

/ ns
56.94

/ s
ij i

ij

r N


 
  
  

Å        (68) 

Even if the multiplicity effect of the spins is absorbed into the effective distance between the 

pseudoatoms, a distinction is made between the dynamics within the groups of equivalent spins 

and between them. The effect of intra-group dynamics can be treated with equations 45 and 46. 

This averaging is employed in all three cases outlined above (rigid model, <r
-6

> averaging and 

<r
-3

> averaging). Once this averaging is carried out, the cases described by equations 63-65 are 

applied. The type of the intra-group averaging depends on the spin group and is in principle 

independent of the type of model given by 63-65. The procedure is obviously somewhat 

cumbersome. It is therefore convenient to calculate maximum errors induced by the intra-group 

motion if the pseudoatom is employed in a structure calculation. Then, equations 63-65 are also 

valid for groups of equivalent spins while the maximum error is absorbed into the allowed upper 

and lower limits for the structure calculation. 

The exact impact of intra group motion is difficult to predict because it depends on exact 

geometries. For example, a NOE to and from a methyl group depends not only on the distance 

but also on the orientation of the c3 axis. Thus, an a priori known structure is needed. Wüthrich 

et al. have defined pseudo-atom positions and calculated maximum allowed distances between 

these and individual group atoms in an amino-acid specific manner for all NOEs involving a 

backbone H

 or H

N
 proton [46]. In methyl and methylene groups the pseudoatom is placed 

centrally with respect to the protons. The pseudoatom representing both methyl groups in valine 

and leucine is located in the center of all six protons. If the H2/H6 and H3/H5 resonances in 

aromatic rings of phenylalanine and tyrosine are resolved, the pseudoatoms are placed at the C1 

and C4 positions, respectively. Otherwise, the pseudoatom representing all four protons is in the 
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center. For amide groups, it is located at N. A summary of the maximum possible distances 

between the positions of the pseudoatoms and the individual atoms,
 Qx   and ix  , is provided in 

Table 1. Intraresidual corrections are those for distances with two or three intervening dihedral 

angles. "Long range" distances are those that depend on more than three intervening dihedral 

angles. These corrections can also be used for non-stereoassigned diastereotopic resonances and 

overlapped peaks where only their sum can be evaluated.  

These limits can be narrowed if it is assumed that the protons exchange on a fast timescale. 

The maximum error is then the difference between the true 
ij

r  and the apparent eff

ij
r  distance as 

calculated from the experimental NOE. eff

ij
r  can be simulated with equations 45 and 66 inserted 

in 68. Corrections based on the Tropp model for fast methyl rotation and on <r
-6

> averaging for 

other processes such as slow aromatic flips have been calculated by several authors 

[44,45,85,86]. Corrections for distances to and from methyl groups have also been assessed from 

molecular dynamics simulation [84]. The various results for NOEs between a single atom and a 

pseudo-atom are presented in Table 1. The narrowest corrections are presented in bold numbers 

and recommended for use. In some cases, the corrections for the lower and upper limits are not 

equivalent and both values are indicated. 

Corrections for distances between two pseudoatoms have been obtained from the sum of each 

correction [85]. For methyl-methyl distances this implies lower and upper limits of -0.40 and 

+0.40 Å, respectively [85]. Another study proposed a similar lower limit, but obtained an upper 

limit of +1.15 Å for the most extreme configuration [87]. In the same study corrections for NOEs 

between an aromatic and a methylene group were simulated [87]. While the upper limit 

correction is again the sum of the individual corrections (+2.70 Å), the lower limit has a much 

larger correction of -1.40 Å) [87]. 
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Table 1. Pseudoatom corrections for experimentally determined distances between a single atom 

and a group of equivalent atoms. 
correction

ab

c
 [Å] 

CH3

 
CH2

 
CH3-CH3 

aromatic 

center 

aromatic 

C1, C4 
CONH2 NH3

+
 

rigid, 1 

dihed, intra 

H
N
 [46] 

 0.17 (G

)      

rigid, 1 

dihed, intra 

H

 [46] 

0.21 (A

) 0.21 (all


)      

rigid, 2 

dihed, intra 

H
N
 [46]

 

0.69 (A

) 0.62 (all


)      

rigid, 3 

dihed, intra 

H
N
 [46]

 

0.98 (VIT

) 0.87 (all


) 1.73 (V


)
 

    

rigid, 2 

dihed, intra 

H

 [46]

 

0.69 (VIT

) 0.65 (all


) 0.76 (V


)
 

    

rigid, 3 

dihed, intra 

H

 [46]

 

0.98 (IL

) 0.85 (KR


) 1.68 (L


)
 

1.96 0.98 (YFC1)   

rigid, 2 

dihed, seq 

H
N
 [46] 

 0.52 (G

)      

rigid, 3 

dihed, seq 

H
N
 [46] 

0.97 (A

) 0.86 (all


)      

rigid, long 

range [46]
 

1.03 0.88 (all) 2.31 (V

L

)
 

2.48/ 2.43 

(intra HN-

Q) 

2.13/ 1.89 

(intra HN-

C1)/ 1.11 

(intra HN-

C4) / 0.62 

(H-C4) / 

1.32 (seq 

HN-C4) 

  

motion [45] 
-0.15; 0.35 

(fast)    2.1 (slow)   

motion [87] 
-0.55; 0.63 

(fast) 

-0.19; 0.77 

(slow) 
  

-0.76; 1.93 

(slow) 
  

motion [85] 
-0.20; 0.20 

(fast) 

-0.20; 0.90 

(slow)

 

  
-0.70; 2.10 

(slow) 
  

motion [86] 0.40 (fast) 0.70 (slow) 
1.50 (fast, 

slow)
 

 2.00 (slow) 0.70 (slow)
 

0.40 (fast)
 

a 
Recommended corrections are indicated in bold numbers. If no more than three amino acid types contain the 

pseudo atom they are indicated in one-letter code. For distances between two pseudo-atoms it is recommended to 

sum the individual corrections. 

b 
If two values are listed separated by a semicolon, the first and the second values are the corrections to the lower 

and upper limit, respectively.  

c 
The models are identified by the type of motion assumed (rigid, fast, slow) and by the partner proton to which the 

distance is calculated (if any specific atom is used). References are indicated. 
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It is noteworthy that it has been shown that direct structural refinement over the distances 

between all individual atoms in a group puts narrower restraints on these groups [86]. However, 

this approach is only feasible with <r
-6

> averaging and fast motion may be treated incorrectly. 

 

 

2.8.3. Autorelaxation rate constants

 

As previously pointed out, the accuracy of the autorelaxation rate constant is less critical, as 

the analysis either does not require a model or approximate values are sufficient. Given the 

difficulty of choosing the appropriate molecular geometry required in equation 13.1, motional 

effects are of secondary nature. It is recommended to estimate the rate constants with the rigid 

model and isotropic tumbling. Since the CSA contribution is dominated by dipolar relaxation, 

CSA

iR  (equations 14.2) and leak

iR  may be set to zero. Alternatively, leak

iR   is sometimes set to a 

value between 0.5 and 2 s
-1

. The relevant term in the autorelaxation rate constant is 

2 24 2 4 2
D D,rigid0 0

rigid 6 rigid 6 rigid 6

/ ns1
(0) 56.94

4 10 ( ) 4 10 ( ) ( / Å)

c c
ij ij

ij ij ij

R J
r r r

       
           

s
-1

 (69) 

One exception to this approach is the dipolar autorelaxation within groups of equivalent 

spins. If the motion within the group is fast, the according order parameter may be included. In 

practice, the only relevant case for macromolecules is the methyl group. The fluctuation of the c3 

axis is assumed to be rigid but the proton rotation around it is treated as implied in equations 42 

and 43: 
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   

   

2 D( ),methyl,c3,rigid4 2 2
int,D,methyl 0

2 26
2methyl

D( ),methyl,c3,rigid5 2
int, 1

2
2

3 121

4 5 ( ) 41 1 2

1.22 10
s

/ ns/ 2 MHz

i

p p p

i
p

p pi i

i

p

p p
i

C
R

r

C







                 
 




 





  (70) 

It has been used that    
2 2

1 p pi i
       for macromolecules at fields typical in practice. 

Isotropic tumbling simplifies the expression to 

   

   

2 4 2
D,methyl 0

2 26

methyl

5
1

2

3 121 1

4 5 ( ) 41 1 2

1.22 10
s

/ 2 MHz / ns

c c

i

c ci i

ci

R
r



 
                

 




  

    (71) 

Again, the rate constant is easily obtained in units of s
-1

 if the correlation times are inserted in 

units of nanoseconds and the Larmor frequency in units of 2 MHz (e.g., for a polarizing field of 

700 MHz,  = 2 10
6
 700 s

-1
, and  / 2 MHz 700   ). 

The autorelaxation rate induced by dipolar interaction within the spin group is much weaker 

than those induced by interaction with remote spin because the spectral density functions do not 

sample the zero frequencies. It is therefore reasonable to neglect the contributions from equations 

67 and 68 in reasonably large molecules. 

 

 

2.8.4. Contiuous distance distributions  

The order parameters as defined above are all model-free in the sense that they do not rely on 

a physical model [71,72]. Although rare for NOE data, some models have been introduced to 

relate NOEs to realistic dynamical events. The Markley group proposed a method to derive a 
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continuous probability distribution of rotamers from a combination of scalar couplings and NOEs 

(CUPID) [88,89]. The distribution is expressed by means of truncated Fourier series (periodic 

functions of cosine and sine functions). 

Another way of interpretation of a continuous distance distribution is the determination of the 

distribution radius of a disordered group [90]. In this model, one spin is assumed the be in a rigid 

part of a molecule and a second spin is located in a disordered part with a uniform spherical 

distribution centered 
rigid

ijr  away from the first spin with radius Rp. The order parameter for fast 

motion is related to the somewhat different order parameter used by Iwahara and Clore  
2

D( ),ICijS  

as 

     
2 6 2

D( ),exp rigid D( ),IC

6

1ij ij

ij

ij

S r S
r

        (72) 

It can be shown that the r
-6

 averaged distance is 

    
36 6 2

rigid rigid

p

1 1

1 /ij
ij ij

r
r R r





        (73) 

By expressing 
6

1

ijr
 and  

2
D( ),ICijS  as functions of 

rigid

ijr  and Rp, it follows that expression 72 is 

1. The spectral density function then becomes 

 
 

   
 

      

2 6 2
D( ) ( ),fast rigid ( ),fastc eff

2 26

c eff

c eff

2 3 2
2

rigid
c eff

p

1
( )

1 1

1
1

1 11 /

ij D ij D ij

ij

ij

ij

J S r S
r

R r

  
    

       

  
   

    
       

   

  (74) 
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Note that the spectral density function contains  
6

rigid

ijr


 as a prefactor in reference [90]. If 
rigid

ijr  

and Rp become comparable the J(2) term is not negligible. In practice, the methodology was 

developed for the NOE between an unpaired electron of a paramagnetic center and a proton. 

 

 

2.8.5. Expressions for molecular dynamics simulations

 

It is common to compare experimental results with molecular dynamics simulations. 

Sometimes, NOEs are also used to generate restraints 
exp

ijr  for MD simulations by including a 

NOE term in the force field, 
NOE

ijV , as (in its simplest form) 

   
2

NOE MD NOE MD exp1

2
ij ij ij ijV r K r r    if 

MD exp

ij ijr r      

 NOE MD 0ij ijV r      if 
MD exp

ij ijr r      (75) 

with the force constant NOEK . More sophisticated forms may have linear dependencies for large 

violations or avoid forth-power terms [91,92], or the back-calculated values are forced not to be 

in worse agreement than the best previous ones such that they eventually approach the 

experimental values [93,94]. Since the trajectories contain time-ordered snapshots of the structure 

the correct prediction of NOEs from MD must be made with correct averaging. The simplest 

averaging procedure is the discrete <r
-6

> averaging: 

1/6

MD

6
1 ,

1N

ij

a ij a

r
r





 
   
 
           (76) 

We have previously also employed the <r
-3

> averaging including the angular dependence [33] 
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1/6

2 int,MD

3 3
1 1, ,

(cos )1
MN N

ab

ij

a bij a ij b

P
r

r r



 

 
   
 
         (77) 

where a and b run over the N structures in the MD set, P2 is the Legendre polynomial of second 

order and int,

M

ab  denotes the projection angle between the two internuclear vectors. 

 It has been proposed to use a memory function  with a characteristic decay time mem

 

[95]. 

   mem

1/

'/MD

mem 0

1
' '

q
t

q
t

ij ijr t e r t t dt




 

 
     

       (78) 

where q is either 3 or 6. Not surprisingly, structure refinements on test data sets have shown that 

time-averaged methods lead to truer pictures of conformational sampling [96]. As typical MD 

trajectories are no longer than a few nanoseconds a single copy of the molecule is likely not to 

sample the complete conformational space. In that case, the averaging can be carried out over 

multiple copies of the molecule [97-99]. The van Gunsteren group combined equations 76-78 

with ensemble averaging [91]: 

   mem

1/

'/MD(time,space)

mem 0

1
' '

q
t

q
t

ij ijr t e r t t dt




 
 

     
      (79) 

The ensemble averaging is Boltzmann-weighted ideally with the free energy. Practically, it is 

easier to use  the potential energy also averaged with a short memory function. 

It is often more convenient to write the correlation function as an expression of cartesian 

coordinates [100]: 

 

     

  

2 2 2 2 2 2 2 2

2 2 2 2

5 5

3 (0) (0) 3 ( ) ( ) 3 (0) (0) 3 ( ) ( )

1 1
3 (0) (0) 3 ( ) ( )

6 (0) ( )
9 (0) ( ) 9 (0) ( ) 9 (0) ( )

x r x t r t y r y t r t

C t z r z t r t
r r t

xy xy t xz xz t yz yz t

     
 
    
 
   
 

 

            (80) 
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3. Extraction of exact NOE rates 

 

In this chapter, the various procedures to extract exact NOE rates constants are discussed. In 

practice, it turned out that the most successful approaches depend on iterative protocols where 

preliminary values of the NOE rate constants are used to calculate preliminary structures. These, 

in turn, are used to back-predict theoretical NOEs which are used to improve the experimentally 

obtained values. Obviously, the extraction of the NOE rate constants is intertwined with the 

structure calculation and in the following subchapters it is attempted to present the methods as 

clearly as the complexity allows. In addition, it is difficult to separate biological applications 

from the methodical aspects as no standard protocol has emerged and each application required 

rethinking of the method. 

 

 

3.1. Spin diffusion 

All approaches to extract exact cross-relaxation rate constants make use of the simplifications 

inherent to the Solomon equations presented in equation 24 (which may be extended by equation 

26 if exchange causes appearance of additional peaks). For a N-spin 1/2 system, a 2D NOESY 

pulse sequence element produces in principle N x N peaks of which N are diagonal peaks and N x 

(N-1) are cross peaks. The evolution of the matrix I(t) containing the volumes or intensities of 

these peaks (not to be confused with magnetization operators) is obtained from equation 24 [19]. 

    
d

I t RI t
dt

            (81) 
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where the intensity matrix is 

 

       

   

     

     

11 12 1 1

21 22

1

2

. .

.

. . .

. . .

. . .

i N

i ii iN

N Ni NN

I t I t I t I t

I t I t

I t
I t I t I t

I t I t I t
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At t = 0, all off-diagonal elements are zero and the diagonal elements are the intensities at the 

outset of the NOESY mixing period. 
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In what follows R designates the relaxation matrix of the differential equation in the reduced 

space spanned by longitudinal single-order operators. The formal solution is obviously 

   0 e RtI t I            (84) 

and R is obtained from 

    
1

ln 0I t I
R

t

 
 


         (85) 

Many approaches have been proposed to obtain the exact cross-relaxation rate constants. It 

has been recognized early on that peak intensities are not only modified by direct magnetization 

transfer but also by transfer via a third or more spins [27,74,101]. These transfer pathways are 
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obtained from the second and higher orders of a Taylor expansion of the exponent in equation 84 

[79]. 

   2 21
1 ... 0

2
I t Rt R t I

 
    
 

        (86) 

The first two terms describe the linear-regime buildup. The third is the second-order term of the 

series: 
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The diagonal contribution is 

2 2 2
2 2 2 2 2

1 1 1
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 
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The second term denotes magnetization that is transferred to neighboring spins and immediately 

brought back to the original spin. The contribution to cross peaks is obtained from i j : 

 
2 2
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1 1
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 
                

 

       (89) 

The first two terms denote magnetization that is transferred directly with a damping due to 

autorelaxation of both spins. The third term is spin diffusion via one additional spin. This 

contribution to the cross peaks is very effective in NOESYs recorded on macromolecules. In 

particular, the need for a sufficient number of cross peaks often requests that the mixing times are 

chosen such that the buildup deviates far from the initial linear trend. To obtain exact cross-

relaxation rate constants, spin diffusion must be accounted for. In principle, 3D NOE-NOE 

spectroscopy allows one to dissect spin diffusion to some extent [102,103] and may even be used 
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for an assignment strategy without isotope labeling [104]. However, spin diffusion should be 

accounted for at all times during mixing to obtain reliable results. 

Most commonly, a full-matrix approach is used that converts spectral peak volumes or 

intensities recorded with a single NOESY mixing period into cross-relaxation rate constants by 

finding the solution of equation 84. At first glance, this appears the most elegant approach since it 

accounts correctly for spin diffusion. Indeed, it has been demonstrated in numerous publications 

that the cross-relaxation rate constants (and the distances) obtained from this approach are more 

accurate than those obtained from an isolated two-spin approximation (ISPA) [4,77,105,106]. 

There are, however, practical complications. For a macromolecule, the intensities of a majority of 

the cross peaks are weaker than the spectral noise level. In addition, many peaks are overlapped. 

In either case, I cannot be fully determined. The only way to correct for this is to supplement I 

with elements estimated from a preliminary structure obtained from conventional structure 

calculation methods. Also, it is difficult, if possible at all, to follow the propagation of errors 

(experimental errors, or those due to lack of data) because the complete system must be treated in 

one step of calculation. The calculation also requires a symmetric I matrix which usually requires 

extensive modification of the original experimental cross peak intensities. In our experience, it 

turned out that a non-linear ISPA with subsequent corrections for spin diffusion estimated with a 

full-matrix approach is superior in practice. On one hand, the data evaluation is straight-forward 

and all NOEs can be analyzed in an individual manner. On the other hand, iterative application 

converges to the solution of the complete full-matrix calculation. A study comparing a simpler 

non-linear ISPA to the full-matrix approach applied to simulated NOEs for the 21-residue 

endothelin arrived at similar conclusions [107]. An additional advantage is that the approach can 

easily take partial deuteration of the sample into account. In the following, the original full-

matrix approach, an alternative full-matrix approach based on direct refinement against 
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intensities and the non-linear ISPA with correction for spin diffusion are discussed. Since the 

later is novel and used by our laboratory it is discussed in more detail. 

 

 

3.2. Full relaxation-matrix approach 

Because the relaxation matrix R is symmetric (asymmetry due to pseudo atoms is neglected), 

the evolution of the peak intensities can be calculated by means of matrix diagonalization 

[27,108]: 

   1e 0RD t

R RI t U U I           (90) 

where the diagonal matrix containing the eigenvalues of the relaxation matrix R is  

1

R R RD U RU           (91) 

and UR contains the eigenvectors. For example, the program CORMA (COmplete Relaxation 

Matrix Analysis) is based on this calculation [4]. Rather than extracting the rate constants, 

structural models may then be used to predict intensities (vide infra) [108]. 

An alternative approach for prediction of the intensity matrix is to split the mixing time into 

sufficiently short intervals t and to apply the following operation iteratively [109,110]: 

     1I t t R t I t             (92) 

This method was slightly faster than the diagonalization approach in the specific application of 

reference [109] and yields intensities at intermediate times which may be useful in their own 

right.  
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Various algorithms for numerical integration have been compared [111]. It has been 

demonstrated that the Taylor series algorithm is superior to the Euler, the midpoint, and the 

fourth-order Runge-Kutta algorithms because NOE buildups are smooth curves. On the other 

hand, the Padé approximation with scaling and squaring, which is frequently used in computation 

algorithms due to its superiority over the Taylor approximation in the calculation of exponentials, 

has also been used [112]. It has also been pointed out that cross-relaxation rate constants between 

spins which are separated by more than a cutoff distance may be set to zero [113]. The 

complexity of the problem then reduces from N
3
 to Nncutoff

2
, where ncutoff is the average number of 

the spins within the cutoff. 

A slightly different diagonalization has been proposed to directly read out the relaxation matrix 

R from a NOESY spectrum [74]. 

 

  1lnI I IU D U
R

t






          (93) 

where the diagonal matrix contains the eigenvalues of     
1

0I t I


:  

    
11 0I I ID U I t I U
  

 
         (94) 

and UI contains the eigenvectors. In practice, most cross peaks are so weak that they 

disappear in the noise and their intensities must be set to zero. 
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3.2.1. Iterative hybrid relaxation matrix approach with restrained MD/DG 

A substantial leap forward constitutes the procedure underlying the IRMA (Iterative 

Relaxation Matrix Approach) program [76,114]. At the start, the intensity matrix I is constructed 

from R which is estimated from a preliminary structure by using equation 84. Then, the off-

diagonal elements for which the according intensity can be extracted from a NOESY experiment 

are replaced by those. This hyprid matrix is diagonalized to obtain an updated R matrix using 

equation 93. R is converted into distance constraints and used for a structure refinement by 

restrained molecular (rMD) simulation (it is pointed out that distance geometry (DG) approaches 

may be used instead). An iteration of these steps is carried out until convergence is achieved. The 

results of different mixing times are averaged. The strong diagonal peaks are treated purely 

theoretically (the leakage contribution is also considered in later versions). More recent versions 

of the program also consider local mobility such as methyl rotation and ring flips and order 

parameters of fast motion obtained from MD simulations. A stereospecific assignment of 

methylene protons is also included [115]. A slightly improved procedure predicts R from a 

bundle of structures rather than from a single structure (so-called "Ensemble" IRMA) [115]. This 

procedure, however, should not be confused with the calculation of a structural ensemble 

satisfying experimental rates on average and thus reflecting the true spatial sampling (vide infra). 

At least at the initial development stage, the upper and lower distance constraints were obtained 

from comparison to a NOE with a calibration distance [76]. Another problem is that back-

calculation of R from I may generate negative eigenvalues [81,116]. Then, the logarithm in 

equation 93 is inhibited and the eigenvalues may be set to zero or slightly positive values. 

Difficulties arising from the matrix diagonalization or from the propagation of experimental 

errors have been discussed [81]. 
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A similar procedure has been proposed by Summers et al. [117]. The differences are that 

distance geometry (DG) instead of rMD is used in each cycle (DSPACE program) and the 

intensity matrix is calculated by numerical integration (BKCALC and GNOE programs). There is 

also a stronger focus on the inclusion of leakage terms. 

 

 

3.2.2. Direct iterative hybrid relaxation matrix approach 

MARDIGRAS (Matrix Analysis of Relaxation for DIscerning GeometRy of an Aqueous 

Structure) is an approach which is very similar to IRMA [116]. I is calculated with the CORMA 

(COmplete Relaxation Matrix Analysis) program. The difference is that instead of running a 

computationally expensive rMD in every cycle, it directly enforces internal consistency for the 

diagonal and off-diagonal elements of R. Another program that employs the same approach is 

MORASS (Multispin or, alternately, Multiple Overhauser Relaxation AnalysiS and Simulation) 

[81,118,119]. 

 

 

3.2.3. Other programs 

CROSREL (CROSs RELaxation) calculates intensities or fits experimental data with full 

relaxation analysis by optimizing the correlation time or the diffusion tensor and the leakage term 

[120]. It is the first program to also analyze ROESY spectra with a full-relaxation matrix 

approach by including corrections for offset effects and J-coupling transfers ("HOHAHA"). It 

offers two alternatives to scaling of the cross-peak intensity by diagonal peak intensities 

extrapolated to zero mixing time. Either, it scales the cross-peak intensity by the diagonal-peak 
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intensity in the same spectrum if only one mixing time is recorded, or by minimizing the 

difference between calculated and experimental intensities. The later surely yields poorer values 

for the cross-relaxation rate constants but does not require diagonal peaks which are typically 

severely overlapped. 

The program FIRM (Full Iterative Relaxation Matrix) calculates NOE intensities and refines 

structures based on the hybrid matrix method [85]. Test structures were calculated with DIANA 

and molecular mechanics (MM)/MD with AMBER from simulated NOE sets. 

A program similar to MARDIGRAS, MIDGE (Model-Independent Distance GEneration) has 

been shown to converge independently of any starting structure [121]. Initial off-diagonal and 

diagonal values of a normalized intensity matrix I which are not determined experimentally may 

be set to 0 and any value between 0 and 1, respectively. During the iteration, diagonal elements 

are recalculated from off-diagonal elements. 

In a simpler approach which is implemented in the program DISCON, linear fits to the 

buildup curve are corrected for the second-order spin diffusion in an iterative manner [107,122]. 

 

 

3.2.4. Inclusion of intermolecular exchange 

The most extreme and complex exchange effects on NOEs occur in complexes between 

proteins, nucleic acids and ligands [16,17]. Thus, the NOE is an attractive tool to observe such 

intermolecular interactions [7,10]. Given the complexity of the underlying equations (see 

paragraph 2.4), full-matrix approaches including relaxation and conformational exchange are 

commonly used to get qualitative or semi-quantitative results. Although not of primary interest in 

this review, it is pointed out that these techniques rely on the same framework as presented here 
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and a large body of literature is dedicated to them [6,11,25,26,51,123-129]. The analysis is 

carried out on the atoms forming the binding pocket/surface and the ligand atoms by use of 2D 

transferred NOE experiments  and saturation transfer difference (STD) experiments. The 

programs CORCEMA (COmplete Relaxation and Conformational Exchange MAtrix), 

CORCEMA-ST and SICO (STD-NMR Intensity-restrained CORCEMA Optimization) can 

predict according intensities and refine torsion angles of the bound ligand [130-132]. A similar 

program is CORONA (Calculated OR Observed NOESY Analysis) [133]. These programs offer 

more options for detailed treatment of exchange phenomena than the previously discussed 

programs written for the use of single structure calculation. 

 

 

3.3. Structure refinement against NOESY intensities 

Rather than extracting the rate constants and generating distance constraints, structural 

models may be directly refined against NOESY intensities. Initial attempts were based on trial-

and-error procedures [108]. 

The first software which is based on direct optimization of NOESY intensities is 

COMATOSE (COmplete Matrix Analysis Torsion Optimized StructurE) which is only designed 

for the application to nucleic acids [134]. COMATOSE actually predates MARDIGRAS written 

by the same group. It is based on an iterative least-square refinement of structures yielding 

CORMA intensities. The following residuals are minimized 

 

2
2

exp calcI kI              (95) 

where k is a constant scaling factor applied to all the calculated intensities. This form does not 

focus on the impact of the shortest distances. To reduce the problem complexity and the number 
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of adjustable parameters, the conformation is defined by a limited set of torsion angles, sugar 

pucker parameters and residue coordinates and orientations. A problem with the approach is that 

as a least-squares minimizing routine, it is susceptible to getting trapped in local minima. It also 

uses a large amount of computer memory (which may be less of a problem nowadays). 

More sophisticated structural refinement is carried out by restrained MD (rMD) calculations 

or distance geometry (DG), where one term of the penalty function is the intensity violation 

expressed in equation 95 [80,135,136]. The gradient of the penalty function provides the force 

constant. The derivative of the intensity Icalc of the cross peak between spins i and j with respect 

to the coordinates of atom  can then be expressed as [135]  
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A computationally more efficient method of finding the left-hand side of equation 96 is [137]: 
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
 

         (97) 

A variant of equation 96 allows the derivates of Icalc with respect to any variable [138]. Such 

variables could be related to the dynamics of the molecules, for example,  
2

( ),fastD ijS  and int. 

An expression for the derivative in the dihedral angle space has also been derived and 

implemented in CIANA [139].  

Another software for direct structure refinement against intensities is DINOSAUR (DIrect 

NOe Simulation Approach for Unbelievable structure Refinement) which is based on IRMA and 

is also able to run time- and ensemble-averaged restrained MD simulations [99]. 
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3.4. Non-linear ISPA with correction for spin diffusion 

In the first step, all spin pairs giving rise to a cross peak are assumed to form a two-spin 

system i-j. The exact analytical solution of equation 84 is then [33]: 

NOE NOEλ λ

NOE NOE NOE NOE

ρ ρ ρ ρ( ) 1
1 1

(0) 2 λ λ λ λ

i j i jt tii

ii

I t
e e

I
  

   

     
       

     
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      (99) 

with 

  2

NOE 2
ρ ρ ρ ρ

λ σ
2 2

i j i j

ij

  
   

 
       (100) 

For practical purposes, equations 98.1 and 98.2 are approximated by a single-exponential decay 

[33]:  

ρ( )

(0)
itii

ii

I t
e
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
            (101.1) 

ρ( )

(0)

jtjj

jj

I t
e

I


           (101.2) 

The expression is now independent of the autorelaxation rate of the other spin and of the cross-

relaxation rate. 

The extraction of the cross relaxation rates is now carried out in three distinct steps (see 

Figure 3) [33,112]. In the following, the solutions given in equations 99 and 101 are written as 

transfer functions T
NOE

 and are generalized to (possibly) groups of magnetically equivalent spins. 
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First, the autorelaxation rate of spin i , 
i

 , and the intensity at zero mixing time, (0)
ii

I , is 

obtained from a two-parameter fit to the diagonal-peak decay. Similarly, 
j

  and are (0)
jj

I  

obtained. 

NOE( ) ( ) (0)
ii ii ii

I t T t I          (102.1) 

NOE( ) ( ) (0)
jj jj jj

I t T t I          (102.2) 

Then, the cross-relaxation rate between spins i  and j ,
ij

 , is obtained by inserting (0)
ii

I , 
i

  

and 
j

  into the equation describing the cross-peak buildup with initial magnetization on spin i , 

and (0)
jj

I , 
j

  and 
i

  into the one describing the cross-peak buildup with the initial 

magnetization on spin j , respectively: 

NOE( ) ( ) (0)
ij j ij ii

I t N T t I          (103.1) 

NOE( ) ( ) (0)
ji i ji jj

I t N T t I          (103.2) 

The multiplicities of magnetically equivalent spins 
j

N  and 
i

N  must be included if the initial 

magnetization is transferred to a group of equivalent spins. On the other hand, if the 

magnetization starts on a group of equivalent spins, the extracted cross-relaxation rate is not 

affected because the intensities on either side of 103.1 and 103.2 are accordingly scaled. 

Although not further discussed here, it has been proposed to replace (0)
ii

I  and (0)
jj

I  by the 

average of ( )
ii

I t  and ( )
jj

I t  in equations 103.1 and 103.2 [140]. The advantage is that one does 

not have to record spectra with multiple mixing times and extrapolate the diagonal intensities to 

the zero time point. Also, the transfer functions are modified such that the autorelaxation 

modulation is relegated to the diagonal peak intensities. The major drawback is that, as soon as 

the two initial diagonal peak intensities are not equal, the approach produces large errors. 
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We have shown that the impact of relayed magnetization via neighbour spins on the two-spin 

solution for the cross relaxation can be kept relatively small in practice [33]. It is, however, in 

general not completely negligible. Thus, in a third step, we calculate the relative contribution 

from the neighbor spins on the apparent cross-relaxation rate and expressed it as a correction 

factor p to the apparent rates. A previously known approximate structure is used and the final 

cross-relaxation rate is obtained as: 

app

ij ij ijp             (104) 

A similar correction factor obtained from a sparse matrix approach was applied to experimental 

distances in the ARIA program [113]. 

Alternatively, a correction factor for each spectral intensity at each mixing time can be 

calculated and an improved cross-relaxation rate is obtained from a new fit: 

app( ) ( ) ( )ij ij ijI t p t I t          (105) 

In this case, steps 2 and 3 are reversed since the cross-relaxation rate is fitted after the calculation 

of the correction factors. 

We have developed two different approaches to determine p. In the eNORA (Exact NOE by 

Relaxation matrix Analysis) approach, ij
app

 (or Iij
app

) is calculated with the full relaxation matrix 

approach described in equation 84 [112]. In the DOMINO (Diffusion Of Magnetization In 

NOESY) approach, individual correction contributions from each neighbor spin k are obtained 

from the exact solutions of three-spin systems ijk and are then summed up [33,34]. Importantly, 

this method can also be applied to partially deuterated proteins. Understanding the impact of spin 

diffusion and the correction is very crucial and is discussed in detail in the following section. 

While the full matrix approach is perfect in principle and many publications compared the 
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extracted rates to those obtained from ISPA, the DOMINO approach is new and only an 

approximation. Thus, this review focuses mainly on DOMINO. 

 

 

Figure 3. Flow chart outlining the procedure for the determination of eNOE cross-relaxation rates based on the 

corrections applied to the spectral intensities. As an example, the eNOE originating from the amide H of Gly9 (spin 

i, orange) and enhancing H
3

 of Asn8 (spin j, green) of GB3 is shown. (1) The diagonal peak intensities derived from 

the NOESY spectra are fitted to mono-exponential decay functions to extract the autorelaxation rates, ρi, ρj, and the 

initial intensities on spin i, Iii(0). (2) A buildup curve taking into account all magnetization pathways is simulated 

with the eNORA or DOMINO approach and apparent relaxation rates are determined. The simulation requires 

previously known 3D structure coordinates as input. Theoretical corrections are applied to the experimental spectral 

intensities at each mixing time. (3) The NOE buildup is fitted, the quality of the fit is evaluated and distance 
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restraints are generated. A structure calculation may be performed with the new distance restraints. This structure 

may be used as an input for (2) in a new cycle as indicated by the broken arrow. Note that steps 2 and 3 are reversed 

if the correction factors are applied to the apparent cross relaxation rate rather than the intensities. Adapted with 

permission from Orts, Vögeli and Riek, J. Chem. Theory Comput. 8 (2012) 3483-3492. Copyright 2012 American 

Chemical Society. 

 

Two simpler approaches have also been proposed to account for spin diffusion. In one 

approach, the linear term of a second-order polynomial fit to the transfer function is used to 

estimate the cross-relaxation rate constants [80,141]. In the second approach, distances are 

calculated from comparisons of the cross-relaxation rates corresponding to the distances under 

investigation and known reference distances at different mixing times. Extrapolation to the zero 

mixing time should provide distances that are approximately corrected for spin diffusion [80]. 

These approaches are not considered further here as they are inferior to methods based on a 

priori knowledge of structures. 

 

 

3.4.1. Correction for spin diffusion 

eNORA. In the eNORA routine [112], the diagonal peak intensities derived from the NOESY 

spectra are fitted to mono-exponential decay functions to extract the auto-relaxation rate 

constants, ρi, ρj, and the initial intensities, Iii(0) and Ijj(0). Then, cross peak buildup curves are 

simulated with the full relaxation matrix approach given in equation 84.
 
PDB coordinates of a 

previously known structure (such as a conventionally determined NMR structure or an X-ray 

structure) are required. Corrections for the intensities at each mixing time are derived from the 

simulation and applied to the experimental intensities. The corrected cross-peak buildup curves 
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are fitted by using ρi, ρj and Iii(0) and Ijj(0) as fixed input parameters and the cross relaxation rate 

constants ij and ji as free variables (if the correction is applied to the apparent experimental 

cross-relaxation rate instead of the intensities ij and ji are modified accordingly). The quality of 

the fit is evaluated and ij and ji are converted into distance restraints r using equation 62. A 

structure calculation is then performed with the new distance restraints. This new structure may 

be used again as an input for the next correction calculation and refinement of the structure. 

DOMINO. Instead of calculating the simulated intensities via the full relaxation matrix 

approach, individual correction contributions from each neighboring spin k obtained from the 

exact (numerical) solution of three-spin systems ijk are summed up [33,34]. 

 app( )

σ

σ σ σ

ij

ij k

ij ij ij

k

p 
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        (106) 

We have shown that this approach is in agreement with the eNORA approach for a large range of 

molecular overall tumbling times and NOESY mixing times where the spin diffusion is well 

traceable. A comparison of the cross-relaxation rates and the effective distances obtained from 

the eNORA and the DOMINO approach exemplified for spin pairs that were determined 

experimentally for GB3 [31] is shown in Figure 4. For a molecular tumbling time of ca. 4 ns 

mixing times as long as 100 ms produce virtually no difference between the methods. The largest 

systematic disagreement is obtained for NOEs which involve methylene protons. These 

differences are at least in part caused by different use of the pseudoatoms at the current stage of 

the programs. 
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Figure 4. Comparison of the full matrix relaxation approach (eNORA) and the sum of three-spin system approach 

(DOMINO) in calculating the corrections for spin diffusion for the determination of eNOE-derived distances for the 

protonated protein GB3. The calculations are based on a proton position-optimized X-ray structure of GB3 [142-

144]. Data are shown for spin pairs for which a good NOE buildup fit could be obtained experimentally [31]. In the 

left panel, the comparison between the correspondingly corrected eNOE rate constants are shown, while in the right 

panel the derived distances are shown, respectively. All the comparisons are shown for three series of four NOESY 

spectra with equidistant mixing-time steps simulated with maximal mixing times tmix,max of 10, 50 and 100 ms. The 

black lines indicate a slope of 1. The eNORA approach is indicated in the x-axis description as “full matrix”, while 

the DOMINO approach is indicated as a “sum 3 spins” on the y-axis. Reprinted with permission from Orts, Vögeli 

and Riek, J. Chem. Theory Comput. 8 (2012) 3483-3492. Copyright 2012 American Chemical Society. 
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Figure 5. A representative set of simulated NOE buildup curves of perdeuterated ubiquitin is shown during 0.2 s 

mixing time. The set includes spin pairs from all types of secondary structural elements. The green NOE buildup 

curves expressed as transfer functions Tij
NOE

 are calculated under the assumption of a two-spin system. Intensities 

simulated at the mixing times used in the analysis are calculated in presence of spin diffusion pathways via spins that 

are within 5 Å of both spins in the pair (red circles). Fits through these points assuming a two-spin system are shown 

as blue curves. 



 

 

71 

  

Spin diffusion in (partially) deuterated molecules. Almost all quantitative measurements of 

NOE buildups were conducted on protonated samples. In practice, this approach is limited to 

molecules no larger than ca. 35 kDa. To bypass this limitation, samples with partial deuteration 

are used to reduce spectral overlap and relaxation. We have recently shown that quantitative 

observation of NOE buildups is also possible in deuterated and perdeuterated samples [33,34]. 

The Kainosho group estimated across-disulfide bond distances from NOEs between 2 and 3 

protons in an otherwise deuterated sample without correction for spin diffusion [145]. Even in 

samples as highly deuterated as 99 % for H

 and 95 % for other carbon-bound protons, spin 

diffusion pathways through residual protons cannot be neglected. For example, in ubiquitin with 

an overall correlation time of 7.7 ns (measured at high concentration at 284 K), ρi is typically 2   

s
-1

 and the largest ij are ca. 1.5 s
-1

. We have fitted equations 101 and 99 up to mixing times of 90 

and 200 ms [33]. As shown in Figure 5, the approximations were good for most NOEs in the 

amide proton network without corrections for spin diffusion. An averaged overestimation of only 

9 % in the rate translates into an error of 1 % in the averaged distance. However, the 

approximation breaks down for protons in non-consecutive residues in the  helix and loops, 

where corrections of 10 to 50 % are required. A comparison of corrections for a perdeuterated 

and a protonated sample is shown in Figure 6. 
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Figure 6. Influence of spin diffusion on the determination of NOE rate constants between amide spin pairs in 

dependence of the NOE mixing time tmix and the overall correlation time c. The corrections which must be applied 

to apparent experimental cross-relaxation rate constants are shown for a perdeuterated (A) and a protonated protein 

(B). Representative spin pairs from ubiquitin are selected. Spins in a  helix separated by one, two and three residues 

are exemplified by spin pairs 27/28, 27/29 and 27/30, spins separated by one residue in a  strand by 15/16 and from 

different  strands by 2/15, and spins separated by two residues in a loop by 58/60. The ratio of c and tmix is fixed at 

10
-7

. For the perdeuterated protein, the deuteration level is assumed to be 99 % for H

 and 95 % for all other non-

exchangeable protons. Reprinted from Vögeli, Friedmann, Leitz, Sobol and Riek, J. Magn. Reson. 204 (2010) 290-

302. Copyright 2010 Elsevier Inc. 

 

For a higher residual proton level the effect is increased. For example, whereas the effect of 

spin diffusion via residual aliphatic protons in the helix is negligible, it is approximately linearly 

dependent on the protonation level for consecutive spin pairs in the  sheet and non-uniform for 

spin pairs between the  strands (Figure 7). 
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Figure 7. Influence of residual aliphatic protonation on the determination of NOE rate constants between sequential 

amide protons in an  helix (grey line) and a  sheet (blue line). Corrections to apparent experimental cross-

relaxation rates are calculated for spin pairs of amide protons of residues 15/16 and 27/28 of ubiquitin, assuming a 

mixing timetmix = 100 ms and c = 9.3 ns and fixing the deuteration level of all protons except for amide and H

 to 

95 %. Reprinted from Vögeli, Friedmann, Leitz, Sobol and Riek, J. Magn. Reson. 204 (2010) 290-302. Copyright 

2010 Elsevier Inc. 

 

In general, the pattern of the distribution of the residual protonation level is highly complex in 

a macromolecule. Popular deuteration schemes are deuteration between 70 and 90 % or methyl-

reprotonation in otherwise deuterated samples. In principle, an individual calculation of each 

possible isotopomer is required. To account for non-uniform deuterium levels at individual atom 

positions by a simple modification of the relaxation matrix has not been demonstrated yet. 

However, the problem can be significantly simplified if the calculation of the overall contribution 

is divided into individual contributions from 3-spin systems (DOMINO approach). The impact of 

the deuteration levels can be accounted for by scaling the according contribution by the residual 
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protonation level without restriction from non-uniformity in the deuteration level. As a rule-of-

thumb, it is recommended to maintain a constant product of the NOE mixing time and the overall 

tumbling time of ca. 5 x 10
-10

 s
2
 for deuterated samples, while for protonated samples the value is 

approximately 2.5 x 10
-10

 s
2
. 

 

 

3.4.2. Transfer function in the presence of conformational exchange 

The theory of conformational or chemical multi-site exchange is discussed in section 2.4. The 

two-site exchange process can easily be adapted in the non-linear ISPA framework. The exact 

solution of equation 26 for exchange between conformations 1 and 2 of spin i is given by 

references [57,61]. For conformational exchange (and possibly also for chemical exchange), there 

is no cross relaxation present. The transfer functions of the cross peaks connecting the two 

resonances associated with the states 1 and 2 are then 
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and the transfer functions of the diagonal peaks are 
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with 
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Usually, it is a good approximation to assume that i,1 = i,2 = i:  
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are the transfer functions of the diagonal peaks and 
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are the transfer functions of the cross peaks. 

For the case k12 = k21 = k in addition to i,1 = i,2 = i: 
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If chemical exchange (rather than conformational exchange) takes place between two spins 

they may also have non-vanishing cross relaxation. Prominent examples are exchangeable OH, 

NH, NH2 and water protons. Then, the transfer functions are [61]: 
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with 
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In general, it is difficult to separate the two mechanisms. Exchange effects in simple spin 

systems are analyzed in references [146]. For proteins, three-spin systems embracing an 

exchanging spin pair located in tyrosine residues are of particular interest. 

Solutions for an exchanging spin pair where both spins are jointly in either of the two 

conformations can be looked up in [6]. 

If k12 and k21 are much smaller than the inverse NOESY mixing time (that is, less than 10 s
-1

) 

the transfer functions given in equations 108 and 111 vanish such that the peak intensities of the 

two diagonal peaks decay with the according autorelaxation rates in a decoupled manner. In this 

case, two sets of distance restraints may be used in two separate structure calculations to obtain 

two conformations. 

 

 

3.4.3. Validation and selection of experimental buildups 

It is crucial to assess the quality of the NOEs. For example, the NOEs that produce unreliable 

cross-relaxation rates should only be interpreted conservatively or dismissed completely. One 

obvious benchmark is the correction factor p that should be as small as possible. It is also 

important to assess the quality of the buildup curve per se. This check should be available at 

different stages of the overall procedure (for example, before or after peak intensity correction for 

spin diffusion). The quality of the buildup fits is jeopardized by two main contributions: Firstly, 

the validity of the assumptions made in equations 99 and 101 (this depends, for example, on the 
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extent of spin diffusion or possible peak overlap); secondly, the signal-to-noise ratio. Different 

quality factors have been proposed to judge the agreement of the cross-peak buildup and the two-

spin approximation. We initially used the following expression [31]: 

 
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1mixexp

1 1
( ( )) ( ( ))
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i
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      (117) 

where Nmix is the number of mixing times and Iexp and Ifit are the experimental and back-predicted 

peak intensities, respectively. For the fits for protonated GB3, this quality factor was in close 

agreement with benchmarking by human inspection [31]. “Good fits” are obtained for  < 0.08 

and “bad fits” for  > 0.15 for the mixing times of 20, 30, 40, 50 and 60 ms. If these values are 

also appropriate on a more general level remains to be established. 

eNORA calculates two other values for quality assessment of the fits (see Figure 3) [112]. 

One is Pearson's correlation coefficient R
2
 and the other one Q: 
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In our experience, "good peaks" as obtained in the same data set as mentioned above have R
2
 

values larger than 0.8 which is set as a default value in eNORA. Note, however, that it is only a 

good criterion if the buildup is approximately linear as R
2
 is a measure for the linear dependence 

between Iexp and Ifit. Q is a variant of  where the normalization is modified. 
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For technical reasons, an exact experimental cross-relaxation rate constant can only be 

obtained if the buildups of both cross peaks caused by a spin pair i-j can be fitted (vide infra). In 

that case the two fitted values are combined to the experimental value as follows: 

exp exp fit fit

ij ji ij ji               (120) 

Note that it has also been proposed to use the arithmetic mean of the two fitted cross-relaxation 

rate constants [77]. The justification of equation 120 will be given in equation 124. 

 

 

3.4.4. Practical aspects, NMR spectroscopy 

NMR spectroscopy. All examples of structure calculations previous to ours presented in the 

following chapter are based on the determination of exact cross-relaxation rate constants from 

two-dimensional [
1
H,

1
H]-NOESY experiments. The introduction of isotope-labeling of heavy 

atoms enabled heteronuclear three-dimensional NOESY experiments that simplify the analysis of 

proton-proton NOEs significantly [147]. The possibilities offered by the large array of available 

3D and 4D NOESY experiments promise improvement in extraction of a large number of 

eNOEs. As of now we have used series of 3D [
15

N]-resolved or 3D [
15

N,
13

C]-resolved [
1
H,

1
H]-

NOESY spectra (see Figure 8). Two main types of these experiments, the NOESY-HXQC and 

HXQC-NOESY schemes, are distinguished, where X stands for S (single) or M (multiple). In the 

NOESY-HXQC, [
15

N,
1
H]-HXQC and [

13
C,

1
H]-HXQC elements [148,149] are employed 

simultaneously after indirect proton chemical shift evolution and [
1
H,

1
H]-NOE mixing (Figure 

8a). In the HXQC-NOESY, parallel [
15

N,
1
H]-HXQC and [

13
C,

1
H]-HXQC elements including the 

heteronuclear and the indirect proton chemical shift evolutions [148,149] are employed before 

[
1
H,

1
H]-NOE mixing (Figure 8b). The choice of the order of the elements gains an additional 
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significance for the measurement of eNOEs. The intensity of detected 
1
Hj magnetization ijI  

originating from the initial 
1
Hi magnetization with intensity init

iI  can be expressed as follows for 

HXQC-NOESY and for NOESY -HXQC [33]: 

   rec init HXQC NOE WS,acq

mix mixij i i ii ij jjI I T T T           (121) 

   rec init NOE HXQC

mix mixij i i ij jjI I T T            (122) 

rec

i  is the fractional part of the magnetization that has recovered during the interscan delay [37], 

HXQC

iiT  the loss of magnetization during the HXQC element, 
WS,acq

jjT  the loss of magnetization 

during the water suppression element and effects during acquisition (such as decoupling 

artefacts), and 
NOE

ijT  is provided by equation 99 for i j and by equation 101 for i j , 

respectively. If the NOESY element is placed after the HXQC element relaxation during HXQC 

is identical for the diagonal and every of its cross peaks since they share the same magnetization 

pathway (as long as 
WS,acq

jjT  can be assumed identical). 
NOE

ijT  can now be extracted by 

normalization of the cross-peak intensities ( i j ) to the diagonal peak intensity ( i j ) at 0t  : 

 
 

 
mixNOE

mix
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ij

ij

ii

I
T

I


           (123) 

The advantage of this approach is that ij  and ji  are obtained independently and can be used 

for error estimation. In addition, if one of the pathways cannot be evaluated (e.g. due to peak 

overlap) the cross-relaxation rate constant can still be obtained. On the other hand, if quantitative 

NOEs to aliphatic protons are evaluated, the water suppression sequence (typically 

WATERGATE or a binomial suppression) suppresses in part the 
1
H

 signals which results in a 

frequency-dependent 
WS,acq

jjT
 
value and hence the uniformity assumption is not valid anymore. 
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Similarly, if signal intensities rather than volumes are analyzed the non-uniform linewidth of 

various proton types also alters 
WS,acq

jjT . If one of the cross peaks is missing no value can be 

obtained or a larger error has to be tolerated. In our experience, superior water suppression is 

achieved with NOESY-HSQC experiments where it can be based on gradients and trim pulses. A 

more exact value for the cross-relaxation rate constants obtained from HXQC-NOESY with non-

uniform 
WS,acq

jjT  and all NOESY-HXQC is calculated as 

   
   

   
mix mixNOE NOE

mix mix
0 0

ij ji

ij ji

ii jj

I I
T T

I I

 
          (124) 

This equation is also the rationale behind equation 120. 

Another way to deal with the different magnetization pathways in NOESY-HXQC 

experiments is to determine 
HXQC

jjT  from a 2D HXQC experiment or to simulate it based on 

predicted relaxation rates [152]. For a conventional HSQC element, 
HXQC

jjT  is mostly determined 

by the transverse relaxation rates of 
1
Hj and 

15
Nj or 

13
Cj. In a sensitivity-enhanced HSQC (which 

is 2  more sensitive in principle [153]), however, additional non-uniform loss is caused by the 

fact that no INEPT delay allows simultaneously full magnetization transfer for CH1, CH2 and 

CH3 (or HN1 and HN2) groups [152]. 
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Figure 8. Pulse sequences of the 3D [
15

N,
13

C]-resolved [
1
H,

1
H]-NOESY experiments for the measurement of NOE 

buildups. Narrow and wide black bars indicate non-selective 90º and 180º pulses. The white bar and the curved shape 

indicate a trim pulse of 1 ms duration [150] and a Gaussian-shaped 90° pulse of 1 ms duration, respectively. The 

delay  = 1.7 ms is optimized for 
1
H–

13
C transfers. Unless indicated otherwise, all radio-frequency pulses are applied 

with phase x. a) 3D [
15

N,
13

C]-resolved NOESY-HSQC experiment. Alternatively,  can be set to 2.7 ms and the 
13

C 
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180º pulses during the transfers are shifted by 1 ms to optimize both the 
1
H–

15
N and 

1
H–

13
C transfers. The phase 

cycle is: 1 = {x, x, x, x, -x,-x,-x,-x}; 2 = {x, x,-x,-x}; 3 = {x,-x}; 4 = {x,-x}; rec = {-x, x, x,-x,  x,-x,-x, x}. b) 3D 

[
15

N,
13

C]-resolved HMQC-NOESY experiment. If only [
15

N]-resolution is desired, the 
13

C sequence is replaced by 

the one indicated in the box and  = 2.7 ms. The phase cycle is: 1 = {x, x, -x, -x}; 3 = {x,-x}; 4 = {x,-x}; rec = {-

x, x, x, -x}. In all experiments, quadrature detection in the 
1
H(t1) and simultaneous 

15
N/

13
C(t2) dimensions is achieved 

by the States-TPPI method [151] applied to the phases 1, 3, 4 and rec. 

 

Once the cross-relaxation rate constant is obtained by fitting, it has to be corrected for 

deuteration effects if exchangeable atoms (mostly amide protons) are in exchange with solvent 

deuterons (see Figure 9). The most common case is the D2O/H20 solvent where deuterated water 

is added for the lock signal. Very importantly, the correction is only applied if the spin that 

receives the magnetization is exchangeable (if the spin from which the initial magnetization 

originates is exchangeable, I(0) is also reduced and the effect is already accounted for in 

equations 123 and 124). The true cross-relaxation rate constant is then obtained as: 

fit

true

1 /100%

ij

ij
Deut


 


         (125) 

Deut is the D2O level in percent (%). In our experience, 3 % D2O is sufficient for a strong lock 

signal and causes minimal signal loss in the NOESY. 

To assess experimentally the effects of swapping the HXQC and the NOESY elements both 

pulse sequences were run and analysed with the triple-labeled GB3 sample (see also the next 

chapter) [34]. The slope in a correlation plot of the 
1
H

N
-
1
H

N
 cross-relaxation rate constants 

deviates by 1 % from 1 and Pearson’s correlation coefficient is 0.99. This shows that virtually no 

systematic error is introduced by swapping. If the cross-relaxation rate constants in both transfer 

directions are determined individually for the NOESY-HSQC experiment, the rmsd between the 

two symmetry-related cross-relaxation rate constants is circa twice as large as in the HMQC-
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NOESY experiment (0.82 s
-1

 versus 0.35 s
-1

). However, if both cross peaks can be evaluated, 

equation 124 can be used and the obtained NOE rates are equally accurate as those from the 

HXQC-NOESY experiment. 

 

 

Figure 9. The effect of deuteration of the solution on the apparent cross-relaxation rate. The situation where the 

initial magnetization is on an exchangeable proton is shown in A) and where the receiving proton is exchangeable in 

B). If the solvent is partially deuterated and in proton exchange with the molecule under study the apparent NOE 

may be described by a superposition of two microscopic possibilities. The diagonal and cross peaks expected in a 2D 

NOESY spectrum after 0 and a finite mixing time are schematically depicted in red on the left- and right-hand side, 

respectively. It is seen that in case A) both peaks are scaled by (1-Deut), whereas in case B) only the cross peak is 

rescaled and a correction has to be applied to the apparent cross-relaxation rate. 
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Typical experimental settings are four to six mixing times mix and a maximum value of ca. 5 

10
-10

 s
2
/c for deuterated samples and 2.5 10

-10
 s

2
/c for protonated samples. The spectra were 

recorded with 200(
1
H

indirect
) x 40(

15
N/

13
C) x 1024(

1
H

direct
) complex points, maximal evolution 

times tmax,1H = 22 ms, tmax,15N = 14 ms, tmax,13C = 8 ms, and tmax,1H = 102 ms, an interscan delay of 

1 s and 4 scans per increment which results in a measurement time of 1.5 days per spectrum. Of 

course, several parameters must be adjusted to the specific case, such as a longer interscan delay 

for larger proteins, etc. 
15

N-decoupling may be achieved with GARP [154] and 
13

C-decoupling 

with a p5m4 supercycle [155,156], for example consisting of CHIRP pulses [157]. 

The measurement of eNOEs is very sensitive to even slight distortion of the baseline. It is 

beyond the scope of this work to discuss the baseline correction procedures. The interested reader 

finds overviews on baseline corrections in references [11,35,40,77,158-161]. 

Distance Calculation. In our application, effective distances, which absorb all motional effects, 

are obtained from equations 62 and 68. As mentioned previously, this procedure is superior to the 

calibration with an NOE with a known distance between the interacting spins. The molecular 

tumbling can be assumed to be isotropic with a single effective correlation time c for most 

practical situations. The maximum error imposed on the extracted cross-relaxation rate constant 

and the distances can be estimated from the plot shown in Figure 10. For example, 3 % error is 

expected at most for the cross-relaxation rates but much less for most distances in the case of 

GB3 [34]. However, Withka et al. show that anisotropic tumbling cannot be neglected for a DNA 

with z x=y/D D  = 5 [162]. The error can be as large as 17 % for 4 Å distances. On the other hand, 

very importantly, they show that internal motions diminish the effect of anisotropic tumbling 

which may be one of the reasons that the simple r
-6

 relationship works so well in practice [162]. 

Duben and Hutton arrived at similar and more detailed conclusions [163]. 
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Figure 10. Variability of the spectral density J
rigid

 (A) and effective distance r
eff

 (B) of a rigid molecule versus the 

diffusion anisotropy 
z x=y/ /D D D D  . The variability is expressed as the maximal divided by the minimal 

value. The values for ubiquitin and GB3 are indicated in red and blue, respectively. Reprinted from Vögeli, 

Friedmann, Leitz, Sobol and Riek, J. Magn. Reson. 204 (2010) 290-302. Copyright 2010 Elsevier Inc. 

 

For the structure calculation (vide infra), we translated eff

ijr  into an upper and lower limit for a 

distance restraint. If both magnetization pathways had been analyzed following equation 124, the 

upper and lower distance bounds were both set to eff

ijr . If the NOE rate could be determined from 

one pathway only, the lower and upper distance bounds were set to 0.85 eff

ijr  and 1.15 eff

ijr , 

respectively. This choice was based on a comparison with a high accuracy structure where the 

violations appear approximately symmetrical. The corresponding cross-relaxation rate constants 

are twice (lower distance limit) and half as large (upper distance limit) as the exact value as 

shown in Figure 11. It may be argued that in practice the error is expected to be symmetric in the 

cross-relaxation rate constant rather than in the effective distance. Such a choice would result in a 

non-symmetric tolerance for the upper and lower distance limit. The advantages of such limits 

and the generality of the bounds used for the GB3 data sets are subject of ongoing research in our 

lab. 
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Figure 11. Relationship between the cross-relaxation rate constant and the corresponding distance. The black curve 

indicates the rate constant corresponding to the true distance. The blue and red curves are the resulting rate constants 

upon addition of 15 % to and subtraction of 15 % from the true distance, respectively. The inset shows a blow-up of 

the relationship for the long distances. 

 

In general, it appears very challenging to estimate the experimental error and thus a 

reasonable choice of upper and lower limits. The accuracy of the full matrix approach as such has 

been analyzed, in particular the impact of the diagonalization in combination with experimental 

errors [81,164]. Limitations of the method are demonstrated but it is not straight-forward to 

translate these results into rules for the choice of bounds. The influence of spin diffusion and 

internal motion in secondary structures has also been studied [75]. 
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3.4.5. Impact of motion 

If motion is not explicitly accounted for in the analysis of eff

ijr  as obtained from equations 62 

and 68, the question arises as to what influence dynamics has on the experimental values. It may 

be desirable to neglect its impact or estimate the induced error in a "rigid structure" analysis. One 

special case, the one concerning motion within a group of equivalent spins, has been discussed 

previously. Here, the fluctuation of the vector connecting atoms or pseudo atoms (if a group of 

equivalent spins is present) is considered. 

The amide proton-amide proton NOE order parameters due to fast motion have been 

estimated for ubiquitin [165]. The calculation is based on the experimentally determined H
N
-N 

order parameters obtained from relaxation measurements [166]. The nitrogen atoms were 

assumed to be located on a rigid backbone and the amide protons to sample a cone with Gaussian 

distributed weights (depending on the excursion from the average orientation) consistent with the 

H
N
-N order parameters. The results are plotted in Figure 12a and are rationalized by theoretical 

calculation shown in Figure 12b. As the large majority of the H
N
-N order parameters are larger 

than 0.8, all NOE order parameters fall between 0.95 and 1.1 with the majority clustered within 3 

% deviation around 1. The reasons for this effect are twofold. Firstly, the distances between two 

protons are larger than the H
N
-N distances. Secondly, the angular and distal effects counteract to 

a large extent [67]. Note also that the estimation constitutes an upper limit to the expected impact 

from fast motion because it is likely that the motions are in part correlated and thus reduce the 

effect. Very similar conclusions were drawn from the calculation of fast motion order parameters 

from the RDC-derived EROS ensemble 2k39 [167]. Conclusively, the impact of fast motion can 

be approximately neglected for H-H spin pairs as long as the local H-X order parameters are 
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larger than 0.5 [165], which is usually fulfilled in globular proteins except for highly flexible tails 

and loops. 

 

Figure 12. Relationship between order parameter of the NOE between backbone amide proton spins i and j, 

(SHH
fast

)
2
, and the local order parameters of the H

N
-N vectors of residues i and j, (SNH

fast
)

2
. A) Fast-motion NOE order 

parameters versus the product of the corresponding local order parameters of ubiquitin determined experimentally at 

288 K [166]. Consecutive residues in  helices,  sheets and loops are represented by open circles, and non-

consecutive residues by filled circles, respectively. For large and small values of (SHH
fast

)
2
 the involved residues are 

indicated. B) Theoretical surface plot showing (SHH
fast

)
2
 versus the product of two corresponding (SNH

fast
)

2
 (having 

identical values) and the distance between the two cones in the interval from 2 to 5 Å. The two conformational 

scenarios yielding the most extreme values, cones opposing (top surface) or facing each other (bottom surface), are 

illustrated. Facing yields an order parameter smaller than 1 while opposing larger than 1. Reprinted with permission 

from Leitz, Vögeli, Greenwald and Riek, J. Phys. Chem. B 115 (2011) 7648-7660. Copyright 2011 American 

Chemical Society. 

 

The situation is not as trivial if side-chain atoms are involved in the NOEs. Obviously, 

assumptions of Gaussian fluctuation around a single energy minimum conformation is an 

extreme simplification. A 800 ps molecular dynamics (MD) simulation of the cyclic decapeptide 
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antamanide in chloroform has been run to examine the order parameters of fast motion. It was 

concluded that independence between the fluctuations of the vector length and orientation is 

indeed a good approximation for many proton-proton NOEs. If the order parameter is larger than 

0.5 the approximation is always very rigorous. The largest violations are obtained mostly for 

NOE involving side-chain atoms of phenylalanine. The majority of all NOEs (including all 

backbone NOEs) have order parameters larger than 0.8. To assess the situation in a larger protein, 

Post estimated order parameters from a 102 picosecond trajectory of an MD simulation of 

lysozyme [84]. Overall, the order parameter is 0.91 with 0.94±0.36 and 0.87±0.29 for interior and 

surface NOEs. The radial contribution is 1.05±0.44 and 1.05±0.32 in both cases, and the angular 

contribution is 0.90±0.09 and 0.83±0.13. More than 10 % of the NOEs would give more than 10 

% error for the extracted distance. In these calculations, the rigid structure was an energy-

minimized average simulation structure. Without energy minimization, all the standard deviations 

are smaller by a factor of two. Most extreme averaging involves dihedral transitions. In the 

protein interior, half of the extreme intraresidue order parameter values involve side-chain 

arginine and lysine protons. An earlier MD trajectory of lysozyme has also been used to explore 

the impact of fast internal motions on NOEs [168]. Changes of apparent rates by as much as a 

factor 2 were reported for side chains. 

Similarly, MD simulations of a DNA octamer have been used to improve  the IRMA protocol 

(vide infra) [169]. Order parameters were obtained by averaging the plateau values of the 

correlation functions of 20 ps free MD trajectories. A similar convergence was observed for all 

values taken from averages over each type of proton pair. The observed range of mobility was S
2
 

= 0.92 for intrabase H6-H5 vectors to S
2
 = 0.60 for the interresidue vectors from H6/H8 to sugar 

H2'/H2''. The inclusion of these order parameters gave rise to small differences in the distance 

constraints of 10 % at most. 
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The use of order parameters derived from MD simulations of holo-forms of Protein Kinase A 

(PKA) increased the discrimination power of INPHARMA [129], a methodology to select docked 

ligand orientations by employing transferred NOEs [127,128]. The generic (not squared) order 

parameters Si and Sj are tabulated for different atom types involved in NOEs in Table 2. The 

NOE-specific squared order parameter is obtained by their product: 

 
2

gen gen gen

ij i jS S S           (126) 

 

 

Table 2. Generic atom-type specific order parameters.
a
 

 interresidual intraresidual 

 Sgen SD(Sgen)b
 

Sgen SD(Sgen)b
 

H

 0.95 0.03 0.90 0.05 

H
methyl

 0.62 0.04 0.52 0.04 

H
,methylene 0.82 0.05 0.77 0.06 

H
,methylene 0.70 0.06 0.65 0.07 

H
,methylene

 
0.64 0.08 0.55 0.09 

H
,methylene

 
0.47 0.07 0.37 0.05 

H
methylene,proline

 0.80 0.01 0.76 0.01 

H
methine

 0.86 0.04 079 0.05 

H
aromatic

 
0.73 0.09 0.83 0.09 

a 
Taken from reference 129. 

b 
Standard deviation. 

 

 

A similar table can be generated by the comparison of experimental cross-relaxation rate 

constants with those predicted from a highly accurate structure following equation 55. The 

averaged values for backbone amide proton-amide proton NOEs shown in Table 3 are obtained 

from a linear regression in a plot of experimental versus predicted rate constants of GB3 [33]. 

Only very slight differences are obtained between the isotropic and anisotropic model. A larger 

impact has the type of secondary element in which the spins are located. Overall, the average of 

the order parameters is circa 0.87. This is somewhat smaller than what is expected from the 
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considerations discussed above. The reason for this discrepancy remains elusive. The relative 

values of NOEs between consecutive residues in  sheet and across  sheets, however, is as 

expected (Figure 12). 

 

Table 3. Averaged order parameters  
2

exp

ijS  obtained from a comparison of experimental and 

calculated H
N
-H

N
 cross-relaxation rate constants of GB3

a
 assuming either isotropic or fully 

anisotropic tumbling
b
. 

model all all consec 
all non-

consec 
consec 

 strand 

between 

 strands 

consec 

 helix 

non-

consec 

 helix 

loops 

isotropic 0.86 0.84 0.95 1.03 0.96 0.88 0.89 0.83 

anisotropic 0.87 0.86 0.98 1.00 0.96 0.91 0.88 0.84 

a
 Coordinates are taken from the RDC-refined 1.1 Ǻ X-ray structure (PDB code 2OED) [142] with optimized 

proton positions [143,144]. 

b
 Diffusion tensor taken from reference [170]. 

 

Table 4. NOE order parameters  
2

exp

ijS
 
and Pearson’s correlation coefficients r of experimental versus 

predicted cross-relaxation rate constants ij, and slopes of linear regressions s and r of internuclear 

distances rij grouped into backbone and side-chain spins
a
. 

location of 

atom i 

location of 

atom j  
2

exp

ijS  r (ij) s (r ij) r (r ij) # spin pairs 

all all 0.75 0.93 0.97 0.92 295 

bb bb 0.84 0.97 0.99 0.98 112 

bb 
H

,H


, 

H


,Q

 

0.63 0.84 0.98 0.92 107 

bb sc, rest 0.50 0.71 0.96 0.77 57 

sc sc 0.24 0.05 0.91 0.82 19 

a
 Coordinates are taken from the RDC-refined 1.1 Ǻ X-ray structure (PDB code 2OED) [142] with optimized 

proton positions [143,144]. 
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Table 4 presents NOE order parameters involving spins located throughout the GB3 [31]. In 

addition, Pearson’s correlation coefficients of the plot are indicated as well as the slopes of linear 

regressions and correlation coefficients of corresponding plots showing the distances. Overall, the 

averaged order parameter is 0.75 and lower than the figure for amide proton-amide proton NOEs 

only. The further away from the backbone a spin is located the lower the values. This effect is 

due to increased motion in side chains. When one spin is located in the backbone and the other 

one at a  position the value is still 0.63. The order parameter between two side-chain spins drops 

to 0.24 (note, however, that the statistics is poor with only 19 evaluated NOEs and absence of any 

correlation with the predicted rate constants). Interestingly, the correlation between experimental 

and predicted distances is still high (slope almost 1, correlation coefficient almost 0.8). 

 

 

3.4.6. Validation of experimental distances 

We measured amide proton-amide proton NOE buildups with a series of 3D [
15

N]-resolved 

HMQC-NOESY experiments on a perdeuterated ubiquitin sample [33]. Then, we derived 

effective distance with equation 62 without applying any correction for spin diffusion. An 

excellent correlation is obtained with distances calculated from a high-resolution X-ray structure 

(Figure 13). The estimated experimental random error is 0.07 Å or on average circa 2 % for 

distances up to 5 Å. This error is smaller than the pairwise rms deviation from corresponding 

distances extracted from high-resolution NMR or X-ray structures (pdb codes: 1D3Z and 1UBQ, 

both 0.24 Å). Remarkably, it is also smaller than the pairwise rmsd between the corresponding 

distances in the X-ray and NMR structures (0.15 Å). eNOE-derived motions appear to have 

smaller amplitudes and are possibly of a different character than present in a 20 ns molecular 
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dynamic simulation of ubiquitin in water using the GROMOS force field [33]. Furthermore, a 

recently published ensemble of structures representing the conformational distribution over time 

scales up to milliseconds (pdb: 2K39) satisfies the NOEs obtained at 307 and 326 K better than 

the single X-ray structure [165]. However, NOEs at 284 K show a better correlation with the X-

ray structure which may be caused by the fact that the NMR restraints for the bundle were 

measured at 298 K [165,167]. 

 

Figure 13. Correlation plot showing H
N
-H

N
 distances obtained from the X-ray structure 1UBQ [171] with protons 

placed at ideal positions versus effective distances extracted from experimental cross-relaxation rates without 

correction for spin diffusion. Distances between two spins in the  sheet are red,  helix purple, and involving one or 

two spins in a loop blue. Distances between two spins of consecutive (nonconsecutive) residues in a secondary 

structural element are triangular (square). The slope of the black line is 1. Reprinted with permission from Vögeli, 

Segawa, Leitz, Sobol, Choutko, Trzesniak, van Gunsteren and Riek, J. Am. Chem. Soc. 131 (2009) 17215-17225. 

Copyright 2009 American Chemical Society. 
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Subsequently, Butts et al. showed the method yields very accurate distances (within a few 

percent of the true values) for rigid organic molecules as examplified on the model compound 

strychnine [172]. 1D and 2D NOESY experiments were conducted with 500 ms mixing times. 

Instead of determining the overall correlation time and correcting for spin diffusion, 

proportionality of cross-relaxation rate constants and r
-6

 was assumed.  

The approach was also used to demonstrate the calculation of exact distances from 

quantitative NOEs between the β-proton pairs across individual disulfide bonds [145]. To this 

end, BPTI was fully deuterated except for the β-proton pairs in cystein residues as previously 

mentioned. Even without correction for spin diffusion a high correlation between the 

experimental distances and distances in an X-ray structure was obtained.  

The next question is whether distances obtained from eNOEs measured on protonated 

macromolecular samples with a much denser spin network are of similar quality. We measured 

amide proton-amide proton NOE buildups with two series of 3D [
15

N]-resolved HMQC-NOESY 

and 3D [
15

N]-resolved NOESY-HSQC experiments on a deuterated GB3 sample (data sets DNC-

A and DNC-B), and a series of 3D [
15

N]-resolved NOESY-HSQC experiments on a protonated 

GB3 sample (data set NC) [34]. Table 5 compares the derived effective distances after correction 

for spin diffusion. All slopes of linear regressions through correlation plots of any two sets 

deviate from 1 by less than 2 %. All correlation coefficients are larger than 0.95 and larger than 

0.97 for distances derived from both cross peaks. Plots of the DNC-A and -B sets versus the NC 

set are shown in Figure 14. 
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Table 5. Slopes of linear regressions s and Pearson’s correlation coefficients r between effective 

H
N
-H

N
 distances rHN-HN

eff
 in GB3 originating from different experiments after correction for spin 

diffusion. 

dataset 

x axis 

dataset 

y axis 
s r 

DNC-A DNC-B 
0.989 

(0.993)a 

0.991 

(0.957)a 

DNC-A NC 1.009 0.971 

DNC-B NC 
1.017 

(1.015)a 

0.986 

(0.958)a 
a Spin pairs for which one or both cross peaks could be evaluated for DNC-B. 

 

 

 

Figure 14. Correlation plots of experimental effective distances r of GB3 obtained from a triple (DNC) versus those 

from a double labeled sample (NC). Corrections for spin diffusion have been applied. Distances are obtained from 

the triple labeled sample using experiment DNC-A (HMQC-NOESY, blue diamonds) or DNC-B (NOESY-HSQC, 

purple squares and green triangles, respectively, if both and only one cross peak could be fitted). Isotropic tumbling 

is assumed. The black line has a slope of 1. Reprinted from Vögeli, Friedmann, Leitz, Sobol and Riek, J. Magn. 

Reson. 204 (2010) 290-302. Copyright 2010 Elsevier Inc. 
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Figure 15.  Number of eNOE-derived distance restraints for GB3 versus residue number. The counts are classified as 

short-range (white), medium-range (gray), and long-range (black), where i and j are the residue numbers of the 

involved spins. Reprinted by permission of Taylor & Francis Ltd from Vögeli, Güntert and Riek, Mol. Phys. 111 

(2013) 437-454. 

 

Subsequently, we used a protonated GB3 sample to derive eNOE-based distance constraints 

between any proton types from a series of 3D [
15

N,
13

C]-resolved NOE [31]. Overall, 1092 

buildup could be fitted (typically satisfying the criterion  < 0.15 with defined in equation 117). 

562 of them constitute pairs of both transfer pathways of a specific spin system resulting in 562/2 

= 281 exact cross-relaxation rate constants. The remaining 530 do not have the corresponding 

counterpart and resulted in 530 less exact cross-relaxation rate constants. For the structure 

calculation (vide infra), H
N
-H

N
 distances were calculated from various data sets [31,33,34] and an 

average overall set was used which has a residue-averaged random error of only 0.06 Ǻ moving 
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31 NOEs obtained from a single cross peak to the group with 0 % error tolerance and yielding an 

additional 12 eNOEs (in total, 324 from both pathways/multiple H
N
-H

N
 data sets, and 499 from 

one pathway or pairs involving methyl groups). The sequence-specific distribution of the 

restraints is shown in Figure 15. 

The cross-relaxation rates were corrected for spin diffusion and converted into effective 

distances under the assumption of isotropic molecular tumbling following equations 62 and 68. 

The determined effective distances absorb all motional effects. Figure 16 shows correlation plots 

between the experimental effective and predicted distances. Statistics are listed in Table 4. The 

slope of the linear regression including all distances is 0.97, whereas it is 0.99 for backbone 

distances only. The slope drops as the protons are located further out in the side chains which is 

attributed to motion, as stated already above. Pearson’s correlation coefficient for all distances for 

which both pathways could be evaluated is 0.92, while for the backbone only it is 0.98. Inclusion 

of distances calculated from only one cross peak lowers it to 0.84 for all distances and 0.96 for 

the backbone. It can be concluded that the correlation between the experimental and true 

distances is very good. Taking into account that the reference structure was determined under 

different conditions and necessarily introduces an additional error from the shortcomings of a 

single conformer representation, the experimental eNOE data are of extraordinarily high 

precision. Since the quality factors  for NOEs for which a side-chain proton was involved are 

comparable to those for backbone NOEs, the precision and accuracy of these distances are 

expected to be similar to those in the backbone. However, the correlation of the distances 

between spins in the side chains is not as good as those in the backbone. This apparent 

discrepancy is mainly attributed to the more pronounced side-chain motion which is evidently 

insufficiently represented by the single-state X-ray reference structure. 
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Figure 16. Predicted versus experimental distances in GB3. Experimental distances were calculated under the 

assumption of isotropic molecular tumbling with a correlation time c = 4.15 ns at 298 K following equations 62 and 

68. Predictions are based on the 2OED structure with RDC-optimized backbone proton positions [142-144]. The 

panels show the distances between (top left) two spins located in the backbone (bb); (top right) one in the backbone 

and one being a side-chain H
(2,3)

/Q

; (bottom left) one in the backbone and one being another side-chain proton (sc, 

rest); and (bottom right) both in the side chain as indicated in the black boxes. Black lines indicate slope 1. Reprinted 

by permission of Taylor & Francis Ltd from Vögeli, Güntert and Riek, Mol. Phys. 111 (2013) 437-454. 
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3.4.7. Temperature dependence of amide proton-amide proton eNOEs 

It is evident that even minute changes in effective distances can be detected by eNOEs. These 

distances are sensitive to the average distances as well as their fluctuations. Thus, the eNOE is a 

very attractive tool for the detection of (translational) motions between atoms that are far apart in 

the sequence. We measured NOE buildups between amide protons in 
15

N,
13

C,
2
H-labeled 

ubiquitin at three temperatures (284, 307 and 326 K, Figure 17) [165]. The temperature changes 

cause strong alternation of the intensities because the cross-relaxation rates are approximately 

proportional to the overall tumbling time [3]. Even upon correction for the temperature effect on 

the tumbling time the rates are different (Figure 18). Comparisons among the three corrected data 

sets reveal that, whereas the rate constants decrease by 18 % from 284 to 307 K, those at 326 K 

decrease by 32 % as compared to those at 284 K. Subsequently, we calculated effective distances 

using equation 62. The average NOE increases translate into effective distance changes of 2.4 % 

and 4.0 % in the measured temperature ranges. The data demonstrates that the determination of 

quantitative NOEs is indeed a powerful tool for extracting small structural and dynamical 

changes in biomolecules. 
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Figure 17. Experimental amide proton-amide proton NOE buildup curves measured on deuterated ubiquitin at three 

temperatures. The involved spins are located in various secondary structural elements: sequentially along  strands, 

across  strands and sequentially and non-sequentially within the  helix. The x axis shows the mixing time (30, 60, 

90, and 200 ms for 284 K; 30, 60, 90, and 120 ms for 307 K; and 60, 90, 120, and 150 ms for 326 K), whereas  both 

NOE transfer functions T
NOE

ij and T
NOE

ji  are plotted on the y axis. Measured values are indicated by filled circles 

(blue, 284 K; green, 307 K; red, 326 K), and the fit of the data using the exact two-spin solution is illustrated by the 

black lines (without corrections for spin diffusion). Reprinted with permission from Leitz, Vögeli, Greenwald and 

Riek, J. Phys. Chem. B 115 (2011) 7648-7660. Copyright 2011 American Chemical Society. 

 

 



 

 

101 

  

 

Figure 18. Relative temperature-dependent changes of amide proton-amide proton NOE rate constants. Blue and red 

bars show the reductions of the τc-corrected σij (σij*) in percentages between 284 and 307 K, and between 284 and 

326 K, respectively. The corresponding residue numbers are indicated. Reprinted with permission from Leitz, 

Vögeli, Greenwald and Riek, J. Phys. Chem. B 115 (2011) 7648-7660. Copyright 2011 American Chemical Society. 
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4. Structure calculation 

 

Structure calculation using the full-matrix approach can hardly be separated from the 

extraction of cross-relaxation rates from NOEs and has been touched on in the previous chapter. 

Since no consensus procedure has emerged yet, it is also nearly impossible to separate the 

biological context from the specific method. First, the most innovative examples are reviewed. 

Soon after the first structure calculations it has been recognized that some NOEs can only be 

explained by multiple conformations. The development of the calculation of multiple-

conformation ensembles (sometimes referred to as sets) of structures rather than single structures 

is reviewed in the next section. Keeping in mind that scientific progress proceeds as a continuum 

rather than in large steps and the very large body of literature covering the topic, both sections are 

necessarily subjected to the authors personal selection of literature and many more references 

may be found in the listed reviews. In the last section, the approach to calculate an ensemble from 

eNOEs developed in our laboratory is discussed in more detail. 

 

 

4.1. Structure calculation using the full-matrix approach 

The first application of the full relaxation-matrix approach to 2D NOESY was probably the 

conversion of six cross-peak and four diagonal-peak intensities into six distances of the small 

molecule proflavine [173]. The distances were within 10 % of those obtained from an X-ray 

crystal structure. This important work was followed by an increasing number of applications to 

increasingly more challenging systems. Most applications have been carried out on nucleic acids 

rather than proteins. The structural characteristics of RNA and DNA are more subtle and often 
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small differences determine their function due to the lack of tertiary structure. In addition, the 

lower proton density (3.4 neighboring protons within a sphere of 3 Å in B-DNA versus 4.7 Å in a 

globular protein [4]) drove the development with more urgency. 

 

 

4.1.1. Nucleic acids 

The first primitive approach towards macromolecular structure calculation was undertaken on 

nucleic acid fragments. The very first report dates back to 1985 when James et al. used the full-

matrix approach to predict intensities from a standard DNA B-form and a energy-minimized 

DNA B-form structure obtained from AMBER. Both intensity sets were compared to 

experimental 2D NOESY spectra of the DNA octamer [d(GGAATTCC)]2 recorded with four 

mixing times assuming different correlation times [174]. In another application, they show that 

the DNA octamer [d(GGTATACC)]2 in solution is well represented by the regular B-form [175]. 

Subsequently, the same group analyzed the structure of the DNA fragment [d(A-T)5]2 using the 

same approach and showed that the data best corresponds to a wrinkled D form among many 

previously proposed forms based on NMR or X-ray diffraction [176].  

A 20 base-pair DNA fragment corresponding to the Trp operator of Escherichia coli was 

refined by minimizing the residuals of 153 predicted and back-calculated NOE intensities I in a 

NOE-difference spectrum (51 different NOEs at three different irradiation times!) [110]: 

 

2
2 2

exp calc /I I               (127) 

 is the standard deviation of I. 

The first example of a direct structure calculation via exact NOEs is the use of the IRMA 

program to obtain the DNA octamer d(GCGTTGCG):d(CGCAACGC) with an estimated 
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correlation time of 1 ns in 1989 [114]. 167 cross-peak volume buildups were obtained from a 

series of eight 2D [
1
H,

 1
H]-NOESY spectra with mixing times ranging from 5 to 200 ms. After 

100-300 steps of steepest-descent restrained energy minimizations, the restrained MD 

calculations were performed for 40 ps. The averaged MD structures were used as updated 

structure input after another energy minimization. After three IRMA cycles convergence was 

achieved for canonical A- and B-form starting structures. Convergence criteria were either 

convergence of the experimental distances or of the rms deviation between different starting 

structures. Importantly, all starting structures converged towards the B-form. Subsequently, the 

protocol has been improved on the same molecule by using the order parameters (which are 

usually set to 1) provided by equations 64.2 and, for methyl groups, 64.3 [169]. The values are 

obtained by averaging the plateau values of the correlation functions of 20 ps free MD 

trajectories. A similar convergence was observed when the values were taken from averages over 

each type of proton pair. 

Another pioneering application to nucleic acids was a structural refinement of the extrahelical 

adenosine tridecamer d(CGCAGAATTCGCG)2 with the MORASS program together with rMD 

calculations in AMBER [119,177]. Convergence was judged with the following percentage RMS 

figure and R factor (not to be confused with the relaxation matrix R): 
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The sum runs over all intensities (which could possibly also extend over different mixing times). 

The R factor criterion is analogous to that used in X-ray crystallography. However, the authors 

recommend the use of %RMS because it is not dominated by short distances. A 2D NOESY with 

150 ms mixing time yielded 258 constraints. The correlation time was estimated to be 4.5 ns. A 

crystal structure shows the extrahelical adenosine looped out way from the duplex. However, the 

NMR data established that it stacks into the duplex. Importantly, the ISPA approach alone was 

not able to place the extrahelical adenosine. 

Other R factors have also been proposed [82]: 
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         (130) 

This figure of merit relates the intensities to the coordinate space of the structure. The weak 

NOEs have again more weight than in the previous expression. The R factor has also been 

calculated with a well potential where the flat bottom dimension is determined by experimental 

errors [136]. 

 

 

4.1.2. From peptide to proteins 

As early as in 1986 exact distances derived from the full-relaxation matrix approach have 

been used in an additional force field in AMBER to analyze a complex of ristocetin pseudo-

aglycon and Ac2-Lys-D-Ala-D-Ala [73]. Subsequently, the same lab tested different refinement 

approaches with 37 highly accurate and 21 less accurate distances extracted with the full 

relaxation-matrix approach on cyclic peptide designed to inhibit human renin [178].  
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The MADRIGRAS program has been tested on 2D-NOESY data simulated for bovine 

pancreatic trypsin inhibitor (BPTI) [83]. The rms deviation of the NOE-derived structure from 

the correct structure improved by ca. 8-15 % relative to an ISPA-derived structure for a poor 

initial model, and even more for a better one. 

To the best of our knowledge, the first protein structure obtained from the full relaxation-

matrix approach with experimental data was that of a 18-residue peptide with an amino-acid 

sequence comprising the first zinc-finger like domain from the gag protein p55 of HIV in 1990 

[117]. A series of five 2D [
1
H,

1
H]-NOESY spectra with mixing times ranging from 5 to 500 ms 

yielded 226 distance constraints. The DSPACE distance geometry program was used to generate 

initial structures in the standard manner. The cycle between generation of the I and R matrices 

was reiterated with the BKCALC and GNOE programs. Early cycles were repeated until the 

predicted and experimental spectra were visually identical. Later cycles produced a match 

between calculated and experimental buildup and decay curves. Additional refinement steps such 

as simulated annealing were finally applied. 

The first refinement of a protein using the direct-intensity approach was carried out on the 29-

residue squash trypsin inhibitor CMTI-I [136]. An energy term for NOE intensities was included 

in X-PLOR [179]. NOE data was collected for a 2D NOESY series with mixing times 50, 100, 

150, 200 and 250 ms in H2O, and one with 150 ms in D2O. 235 cross peaks were used for all 

mixing times and additional 190 for 150 ms and longer. Refined NMR structure yielded R factors 

of 0.26 (X-ray averaging, equation 129) and 0.06 (I
1/6

 averaging, equation 130). 

In test applications of the FIRM program, the structures of the proteins motilin (22 amino 

acids) and parvalbumin (108 amino acids) were calculated with DIANA and molecular 

mechanics (MM)/MD with AMBER from simulated NOE sets [85]. It is shown that the R factors 

of accurate structures range from 0.31 to 0.39. Those of random structures range from 0.9 to 1.3. 
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Another early example is the structure determination of the 46-residue protein crambin (Pro-

22/Leu-25 species) consisting of two  helices and a short  sheet and containing three disulfide 

bridges (although the structure was previously known from X-ray diffraction) [115]. Data was 

recorded from a series of 2D NOESYs with mixing times 20, 40, 80, 120, 160 and 250 ms at a 

500 MHz magnet. The calculation was based on 411 IRMA distance restraints, 132 qualitative 

distance restraints, 31  dihedral angles from backbone scalar couplings and 13 1 dihedral 

angles from assignments of cross peaks. The IRMA restraints were calibrated using a 

proportionality constant corresponding to 3.5 Å and upper/lower bounds were obtained by 

adding/subtracting 10 %. The R factor (weights for different mixing times included) is shown to 

be somewhat lower for "Ensemble" IRMA than regular IRMA (0.35 versus 0.36). It is also 

shown that the result is independent of the starting model. 

More recently, many applications of a partial relaxation-matrix approach appeared in the field 

of structure calculation of ligand-protein complexes [26]. 

It must be noted that virtually in all studies distances were extracted by comparing cross-

relaxation rate constants to those of NOEs with known distances. This procedure is correct if the 

reference vector has a similar value for the order parameter and a similar extent of spin diffusion 

as the vector under investigation. This is a strong simplification and not recommended for future 

studies. Instead, the overall correlation time should be determined as shown, for example, in 

references [180] or [181]. 
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4.2. Ensemble calculations using conventional NOE-distance restraints 

The rationale behind ensemble calculation is that an NMR observable of the average structure 

is not equal to the average of the observables taken for each snapshot [182]. Some distances in 

the previously mentioned ristocetin pseudo-aglycon/Ac2-Lys-D-Ala-D-Ala complex derived 

from the full relaxation-matrix approach were inconsistent with energy-minimized structures 

[73]. Another 10 ps MD run revealed two clusters of low- energy structures with different 

orientations of the F and G rings. It was concluded that the NOEs are averaged over both 

conformations. The same effect on NOEs and scalar couplings has been demonstrated for the 

cyclic decapeptide antamanide which was known to undergo conformational exchange on a slow 

NMR time scale [183]. 

In the following, approaches to generate ensembles of structures are lined out. Two main 

categories may be distinguished. The first introduces an additional force field or similar into MD 

simulations, called restrained MD or rMD. As such, it is a time-averaged approach. The second 

one collects all other approaches, which calculate ensembles in more direct ways which are 

essentially conformational averages. Note that most of these approaches also employ rMD to 

some extent and a strict separation is somewhat arbitrary. 

 

 

4.2.1. Restrained molecular dynamcis simulation  

In a first systematic approach to account for NOE averaging, a 20 ps rMD simulation has 

been run with the memory function as proposed in equation 78 with q = 3 [95] on the 74-residue 

tendamistat with 842 distance restaints [92]. For that purpose, the force field was replaced by a 
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constructed force in order to avoid occasional large forces due to forth-power terms. The 

violations were shown to be reduced as compared to a conventional rMD run. 

A rMD simulation as proposed by Torda et al. [95] was also demonstrated for a nucleic acid, 

namely the DNA fragment [d(GTATAATG)].[d(CATATTAC)] [184]. It yielded the lowest R 

factors the group has ever obtained for a DNA octamer. A similar approach with DINOSAUR 

also yielded a lower R factor ( factorR  as defined in equation 130) for the previously mentioned 

protein crambin with a time-independent averaging or averaging with a memory constant of 5 ps, 

both calculated from a 50 ps trajectory, than for instantaneous restraints [99]. An ensemble-

average over 8 parallel MD trajectories showed similar characteristics. As expected, time-

averaged restraints result in larger fluctuations of the interproton vectors. 

In a further developed approach, MD trajectories based on simultaneous time- and space 

Boltzmann-weighted averaging have been shown to yield a more appropriate description of 

experimental NOE data than single-molecule methods for the small cyclic peptide analogue 

somatostatin [91].  

In attempts to augment the input data set, restraints for scalar coupling constants have been 

used to generate a rMD trajectory of antamanide [185] and an ensemble as exemplified on the 

side-chain conformation of a phenylalanine in a Ala-Phe-Ala tripeptide [98]. Subsequently, many 

ensemble calculations based on NOEs were supplemented with scalar coupling restraints. 

 

 

4.2.2. Direct structural ensemble calculation  

The first protocol to directly extract multiple conformations from NOE data (and other NMR 

data) was MEDUSA (Multiconformational Evaluation of Distance information Using a 
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Stochastically constrained minimization Algorithm) [186]. The protocol makes use of both 

distance restraints and anti distance restraints (that is, absence of a cross peak). First, a large set 

of static structures is generated by fulfilling all anti distance restraints and a subset of the distance 

restraints. Then, a clustering procedure selects an ensemble of structures that fulfills all distance 

restraints. MEDUSA was applied to antamanide with 23 distance restraints, 108 anti distance 

restraints and scalar couplings. From 1176 initial structures, a considerable number of pairs 

adequately satisfied the experimental data. 

Subsequently, more straight-forward procedures were introduced. A 15-residue peptide 

corresponding to the N-terminal sequence of bovine pancreatic trypsin inhibitor (BPTI) 

destabilized by replacement of the two cysteines by serines was synthesized to mimick a folding 

intermediate [97]. As it is disordered and presumably cannot satisfy NOEs with a single 

conformation well an ensemble-calculation protocol has been implemented. 93 initial buildup 

rates were converted into identical upper and lower distance restraints by calibration with the 

NOE between H

 and H


 in tyrosine. After calculating initial structures by a standard procedure, 

8-member ensembles were generated by performing energy minimization and molecular 

dynamics with <r
-3

> averaging. The work was carried out with a program suite consisting of 

Metrize, Optimize and Ensemble. It turned out that some local structure mediated mostly by an 

interaction between the aromatic ring of Tyr10 and the amide group of Gly12 is retained. 

 r
-6

-averaging was tested with X-PLOR 3.1 on an ensemble representations of GB3 (56 

residues, 854 distance restraints) and ragweed allergen Amb t V (40 residues, 1031 distance 

restraints) for which synthetic distance restraints were generated [187]. Violations were 

significantly reduced upon using twin conformers instead of one structure and the correct 

variability was reproduced. Using more structures appears to cause overfitting. This can be 
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validated by the violation of NOEs predicted from the calculated structures that were not used as 

input [188]. It is also recognized that the tightness of the upper and lower bounds critically 

determines the optimal number of structures to be used. The data set defining the loop 21-27 of 

Amb t V has been tested on the possibility of calculating two conformers with the relative 

populations as free variable [189]. Synthetic data for 25 %/75 % and 75 %/25 % populations have 

been created. Standard data is not sufficient to obtain the populations but distances with upper 

and lower bounds within 10 % deviation from the true value would serve the purpose. Real 

NOE/scalar coupling data sets for the proteins interleukin 4 (130 residues, 1735 NOE and 27 

hydrogen bond distance restraints) and interleukin 8 (71 residues, 1764 NOE and 116 hydrogen 

bond distance restraints) are analyzed and their effective B factors are compared to previously 

determined crystallographic B factors [187]. While one structure appropriately represents the 

interleukin 4 ensemble (with a B factor considerably lower than the X-ray analog), twin 

conformers are appropriate for interleukin 8. For the latter, the NMR and X-ray B factors are 

similar. The difference is driven by two conformations in the loop comprising residues 16-22. 

Unfortunately, details on the generation of the experimental distance restraints are not provided. 

If the authors chose upper and lower limits by changing the experimental distances by 10 % (as 

done with the synthetic data), the experimental error would be much larger than these 

adjustments since a regular procedure for NOE extraction has been most likely used. 

Upper and lower distance limits derived from initial NOE buildup curves were used for an 

ensemble calculation of the linear peptide YQNPDGSQA [122]. Only peaks of the major isomer 

(corresponding to trans-Pro-4) were analysed and resulted in 122 NOE restraints, 55 anti-NOE 

restraints and 41 angular restraints from scalar couplings. The NOE buildup curves were 

followed by 2D [
1
H,

1
H]-NOESY experiements with mixing times of 50, 150, 250, 350, and 450 

ms. The curves were iteratively corrected for second-order spin diffusion effects using the 
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program DISCON and normalized to the volumes of the diagonal peaks. The resulting distances 

were calibrated with a Tyrosine H

-H


 cross-relaxation rate and adjustments of at least +10 and -

20 % lead to upper and lower limits, respectively (the constraints were set more loose if an 

automated DISCON procedure produced a wider range). An initial conventional structure 

obtained with X-plor with heavy atom backbone rms devations of 0.26 Å produced a NOE 

violation average of 0.25 Å which could be reduced to 0.167 Å with modified atom sizes. A 

conventional structure calculation with the program CONGEN (CONformation GENerator) (rmsd 

0.22 Å) produced an average violation of 0.125 Å that could be increasingly lowered with two-, 

three- and four-member ensembles to 0.041 Å, 0.029 Å and 0.021 Å, respectively. In all 

ensembles, one member is similar to the conventional structure. The other members, however, are 

much less constrained. To avoid oversampling of the conformational space, ensembles were 

calculated by only employing the constraints in an averaged manner if they show a large violation 

in the conventional procedure. Now, the NOE violations are 0.058 Å, 0.046 Å and 0.042 Å. 

Order parameters predicted from these ensembles agree better with order parameters obtained 

from relaxation measurements and an MD simulation [190]. The results demonstrate that the 

conformational space is restricted by hydrogen bonds that produce a high population of -hairpin 

conformations. 

The MARDIGRAS program was used to back-calculate distances from synthetic NOEs 

simulated for an A- and a B-form of DNA [191]. In this way, it was shown that it is possible that 

the distances discern an ensemble of rapidly interchanging conformations from a single 

conformation. 

Clore and Schwieters resurrected the multiple-conformer ensemble calculation on the model 

proteins GB3 and ubiquitin by torison angle simulated annealing and Cartesian space 



 

 

113 

  

minimization in Xplor-NIH [192,193]. Major progress is achieved by the larger experimental 

data sets. Typically, the experimental input data comprised NOEs, scalar couplings (J) and 

residual dipolar couplings (RDCs) [194] measured in multiple alignment media. The minimized 

energy term is 

 

Etotal = ENOE(only UBQ) + EJ +  ERDC + Ecovalent_geometry + Enonbonded_contacts + ERAP + Eshape  

            (131) 

 

The NOE energy term is a flat-bottom (accounting for uncertainties) quadratic harmonic well 

with back-calculated distances taken as r
-6

-average. RDCs depend on the orientation of the vector 

spanned by two protons relative to a molecule-fixed frame and thus contain complementary 

information to the NOE input. A relative atomic position (RAP) term is introduced that prevents 

single members to stray too far from ensemble-averaged positions [192]. It was applied to the C

 

atoms. It has the same form as the NOE term, with the uncertainties replaced by an allowed 

distance deviation. A molecular shape term prevents excessive rotation and deformation of single 

members. Cross-validation on ubiquitin and GB3 shows that no further improvement is achieved 

if more than two structures are used [192,193]. S
2
(jump) for backbone H

N
-N vectors is usually 

larger than 0.8 with values as small as 0.3 for flexible residues. In GB3, extensive anticorrelated 

crankshaft motion is observed along the backbone [193]. 

Another improvement in ensemble averaged structure determination comes from an energy 

term for an order parameter obtained from relaxation measurements [93]. This order parameter is 

sensitive to sub-nanosecond dynamics [71,72]. In the DER (Dynamic Ensemble Refinement) 
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protocol the NMR observables were matched to values calculated for typically 16 copies of the 

molecule with biased molecular dynamics (BMD), a type of restrained MD:  

 

Etotal = ECHARMM + ENOE + ES2        (132) 

 

ECHARMM is the CHARMM force field energy and ES2 is the order parameter potential. NOE 

restraints are calculated with r
-3

-averages. Cross-validation of a ubiquitin ensemble was achieved 

by back-prediction of RDCs and scalar couplings whose comparison with experimental values 

showed a remarkable agreement. The same experimental data set has been subsequently used in 

the new algorithm MUMO (Minimal Under-restraining Minimal Over-restraining) to further 

improve the cross validation with independent RDC data and across-hydrogen bond scalar 

couplings [94]. This MD-based algorithm considers the fact that different NMR observables 

(here, NOEs and relaxation order parameters) have different optimal copy numbers to reproduce 

these and other observables. An analysis of synthetic data revealed the following important 

insights: Different copy numbers are optimal for reproduction of average conformations and 

spatial sampling. For (conventional) NOE data, the best average structure is produced with a 

single copy. The optimal number of copies to reproduce the spatial sampling and also for cross-

validation with independent RDCs and scalar couplings is two. Not surprisingly, increasing the 

number of NOEs causes an increase of the number of copies where overfitting occurs. On the 

other hand, it is predicted that using tight limits on NOE restraints, however, would be much 

more effective. Combining the conventional NOEs with order parameters yields optimal cross 

validation with motional observables (scalar couplings) for copy numbers of 8 or 16. However, 

the average structure is worse upon addition of order parameters and is better produced by a low 

copy number with NOEs only. Overall, NOEs are more prone to overfitting, while order 
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parameters are more prone to underfitting. In MUMO, the strengths are combined and NOEs are 

restrained for pairs of copies, while order parameter restraints are applied to 8 or 16 copies. 

Subsequently, Clore and Schwieters recalculated the GB3 ensemble including the ES2 term 

and a new term EBfactor reflecting the crystallographic B factor in X-plor-NIH [179,195]. EBfactor 

rendered ERAP unncecessary and was omitted. Now, the optimal ensemble contains between 4 and 

8 members. Still the ensemble embodies low-amplitude, high-probability, anisotropic motion in 

the backbone on the picosecond to nanosecond time regime. NMR observables predicted from 

the ensemble were in excellent agreement with independently measured, highly accurate data 

such as backbone H-H RDCs and scalar couplings  [196,197]. 

An ensemble of ubiquitin was recalculated from NOEs (r
-6

 averaging) and large sets of RDCs 

with the EROS protocol [167]. The refinement with the GROMACS package was achieved by 

simultaneous application of NOE and RDC restraints on subensembles of eight structures. The 

resulting ensemble with a mean backbone rmsd of 1.22 Å covers the complete spatial 

heterogeneity represented by 46 crystal structures. Each of these structures is within less than 0.8 

Å backbone rms devation from one NMR ensemble member. Since most of these structures are in 

complex with other molecules it was concluded that conformational selection is sufficient to 

explain the molecular recognition dynamics. The calucation is dominated by the RDC data which 

is sensitive to motions faster than tens of milliseconds. The authors conclude from comparison to 

other NMR observables (such as fast motion order parameters) that part of the dynamics oocurs 

in the 'blind' time window of nanoseconds to tens of microseconds. In a follow-up study, the 640-

member ensemble termed ERNST (Ensemble Refinement for Native proteins using a Single 

alignment Tensor) with a backbone rmsd of 0.83 Å was obtained using ensemble MD simulations 

restrained by 2663 NOEs and 1971 H
N
-N RDCs [198]. The structure calculations were carried 

out with the CHARMM27 force field in explicit solvent. To ensure that the structure of ubiquitin 



 

 

116 

 

was well-reproduced, the NOEs were restrained over pairs of structures. The ensemble was 

validated by comparison of predicted cross-correlated relaxation rates to independently measured 

rates. Finally, collective motions spanning the β-strands separated by up to 15 Å were identified 

and characterized. These correlations are in part mediated by the hydrogen-bonding network and 

link molecular recognition sites. 

For the sake of completeness, it is noted that further ensembles (and rMD simulations) were 

calculated without NOEs. The most prominent NMR observables for this purpose are RDCs and 

scalar couplings [199-202]. 

 

 

4.2.3. Contiuous distances distributions  

The determination of the distribution radius of a disordered group as lined out in section 

2.8.4. was demonstrated with NOEs between an unpaired electron of a paramagnetic center and a 

proton [90]. The distribution was determined for an EDTA-Mn
2+

 group covalently attached to a 

thymine base through a flexible linker in the SRY/DNA complex. Rp was determined together 

with the internal correlation time int from contributions to longitudinal and transverse relaxation 

observed at 600 and 800 MHz fields. Based on 22 vectors, Rp was determined to 6.9 Å. 

 

 

4.3. Multiple-state structural ensemble calculation using eNOEs 

The information content of upper (and lower) limit restraints derived from NOEs has been 

subject to theoretical studies [94,187,189,203]. It is clear that tighter constraints than those 

usually used would lead to better defined structural ensembles. In particular, addition of lower 
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limit restraints improve the definition further. It has also been shown that the sensitivity of a 

single NOE to the exact nature of conformation distributions is relatively low [204]. Instead, the 

power of the eNOEs for defining structures and dynamics lies in the cumulative effect of multiple 

eNOEs [32]. For example, it has been demonstrated that from many possible structures of the 

prostanoid analog SQ-28989 that are in agreement with exact NOEs at least two conformations 

are required to predict scalar couplings correctly [107]. Due to the technical challenges outlined 

above, all structural ensembles published as of now are obtained from conventional NOEs with 

one exception (to the best of the author's knowledge). As mentioned in the previous paragraph, 

upper and lower distance limits derived from initial NOE buildup curves were used for an 

ensemble calculation of the linear peptide YQNPDGSQA [122]. As summarized in section 3.4., 

we established a procedure to obtain effective distances of high precision from eNOEs for the 

protein GB3. In what follows, a protocol for multiple-state structure calculation in CYANA [205-

207] is presented and examplified with GB3 [30,31]. We use the term 'multiple-state' structure 

which is equivalent to the previously used 'multiple-conformer' structure. In doing so, a 

conformer may still be used to designate the outcome of one structure calculation (which includes 

several simultaneously obtained copies). In a conventional structure calculation, one conformer is 

produced per calculation and is obviously also one member of a bundle representation. 

 

 

4.3.1. Conventional structure calculation 

For the conventional structure calculation, 1953 upper distance limits calculated from the 

cross-peak intensities of the NOESY with a mixing time of mix = 100 ms resulted in 1041 

constituted meaningful restraints. Additional experimental restraints were 
3
JHN, 

3
JHNC’, and 
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3
JHNC scalar couplings [197], N-H

N
 and C


-H


 RDCs, and angular restraints from 

13
C

 chemical 

shifts. Using these restraints a standard structure calculation was performed with the software 

package CYANA [205-207] starting with 100 randomized conformers. Simulated annealing with 

50'000 torsion-angle dynamics steps was applied and the 20 conformers with the lowest final 

target function values were selected. The small rms deviations from the mean structure of 0.95 Å 

for the backbone atoms and 1.38 Å for all heavy atoms, respectively, indicate good convergence 

of the structure calculation. The 9 structures with the lowest target functions are shown in Figure 

20 on the left. 

 

 

4.3.2. Multiple-state structure calculation protocol 

For the multiple-state ensemble calculation, the set of effective distances presented in section 

3.4.6. was used. The following error tolerances were chosen: ±0 %, ±15 %, and ±20 % (-1 Å per 

methyl group for lower limit) for distances calculated from both cross peaks/multiple H
N
-H

N
 sets, 

one cross peaks, and those involving two methyl groups, respectively. For NOEs involving at 

least one aromatic proton H

 or H


 of Phe or Tyr an upper limit of 8 Å was used. In addition, the 

scalar couplings, RDCs and chemical shifts mentioned above were used. All of these observables 

are sensitive to motion on the millisecond timescale (the ’slow’ NMR timescale). 

 



 

 

119 

  

 

Figure 19. Target functions values (TF) obtained from structure calculations versus the number of simultaneously 

optimized states (a-c) and their rms deviations (d). The overall TF is shown in (a), the contributions from the eNOEs 

in (b), and those from the RDC, J coupling, van-der-Waals, C

 angular and bundling restraints in (c), respectively.  

 

As for the conventional structure calculation protocol, 100 conformers were calculated with 

the software package CYANA and the 20 conformers (here, 20 ensembles) with the lowest target 

function were then used to represent the calculated structure. Ensembles encompassing 1 to 9 

states of the entire protein were calculated simultaneously, using the same number of initial 

conformers and the same simulated annealing schedule as for the conventional structure 

calculation (see Figure 19). The squared differences between each eNOE-derived effective 

distance and the corresponding distance obtained by r
6

-averaging over the states is minimized. 

Similarly, the 
3
J coupling restraints and the RDC restraints were applied to the arithmetic mean 

of the corresponding quantities in the individual states. In addition, the angular restraints derived 
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from 
13

C chemical shifts are required to be fulfilled and steric repulsion between atoms of 

different states was excluded.  

Due to the r
6

-dependency long distances contribute minimally to the NOE. This may result 

in an unphysically loose packing of the ensemble. Bundling restraints were applied in order to 

keep the individual structural states together in space as far as permitted by the experimental 

restraints [192]. To this end weak upper distance bounds of 1.2 Å were applied to all distances 

between the same nitrogen and carbon atoms in different states. The weight of these bundling 

restraints was 100 times lower than for NOE upper distance bounds, except for the backbone 

atoms N, C

, C’, and C


, for which a 10 times lower weight than for NOEs was used. This weight 

is such that the restraints can easily be overridden by the experimental restraints and it also 

ensures that the different 1 rotamer states of the side chains are within the rms deviation without 

violating the bundling restraint. 

The number of states necessary to describe the experimental data is not known a priori. 

Therefore, an array of structure calculations with the number of states varying from 1 to 9 was 

performed (see Figure 19). Among these ensembles the one with the minimal number of states 

that satisfies the experimental data well is selected as the appropriate representative. This 

ensemble with X states is obtained if the three following criteria are fulfilled: (i) The target 

function drops significantly from state X - 1 to X, (ii) the target function does not drop 

significantly anymore upon an increase of the number of states to X + 1, and (iii) a jackknife error 

estimation does not produce a lower-than-random target function for omitted eNOEs upon an 

increase of the number of states to X + 1. Following these criteria, it appears that the ensemble 

with X = 3 states is an appropriate representation of the structure. The 20 three-state conformers 
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with the lowest target function were deposited in the protein data bank (PDB code 2lum, BMRB 

ID 18531). 

 

Figure 20. Heavy-atom structural representations of GB3 obtained from either the classical protocol with NOEs as 

experimental input, the classical protocol with eNOEs, or the ensemble-based protocol with eNOEs. Left: Bundle 

calculated with a classical protocol based on standard NOE measurements. Nine conformers are shown. Middle: 

Single-state bundle calculated with eNOEs. Nine conformers are shown. Right: 3 three-state ensembles obtained 

from eNOEs. The three most similar structures from each three-state conformer are grouped in gold, red and blue. 

Reprinted by permission from Macmillan Publishers Ltd: Vögeli, Kazemi, Güntert and Riek, Nat. Struct. Mol. Biol. 

19 (2012) 1053-1057, copyright 2012. 

  

9 members of the single-state bundle are shown in Figure 20 in the middle. The input data 

results in an extremely tight structure with a small backbone pairwise rms deviation of 0.11 Å 

and an all-heavy-atom rmsd of 0.60 Å only (compare to conventional bundle, left). Furthermore, 

the eNOE-based single-state NMR structure coincides closely with the RDC-optimized X-ray 

structure [142-144] with an rmsd of 0.57 Å for the backbone and 1.17 Å for all heavy atoms. 

However, the large target function value of 27.5 Å
2
 resulting from many distance restraint 
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violations indicates that the structure does not agree with the experimental data. The large 

number of violations of experimental restraints can be attributed to the motion-averaged nature of 

the measured NOE, while the structure calculation protocol is based on a single static structure. 

In contrast, the three-state ensemble shown on the right of Figure 20 yields rms deviations to the 

RDC-refined X-ray structure of 0.72 Å and 1.31 Å for the backbone or all heavy atoms, 

respectively. The increases are caused by the larger pairwise rmsd values of the ensemble (0.47 Å 

and an all-heavy-atom rmsd of 0.86 Å only). Interestingly, the entire  sheet and some of the 

loops undergo conformational exchange between the three states in a concerted fashion [30]. In 

contrast, the  helix appears to be decoupled from the conformational exchange of the  sheet. 

Another set of conformers selected to describe structural states of the  helix indicates that the 

backbone of the  helix shows also distinct structural states, but the correlation is weaker than for 

the  sheet and is localized to the residues that face the hydrophobic core. 

 

 

 

4.3.3. Cross-validation of the ensemble 

To validate the three-state ensemble representation of GB3, a comparison with independently 

obtained data and a check of the self-consistency of the input data was performed. The checks 

were undertaken in two ways (Figure 21a). First, the eNOE-derived distances obtained from both 

cross peaks were arbitrarily changed according to normal distributions with standard deviations 

of 5, 10, and 15 %, and all eNOE-derived distances by 10 %, respectively. The target function 

values of the corresponding structure calculations are considerably larger in all cases, for 

example by a factor of two in the case of 10 % changes. In a second check, the eNOE data is 
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cross-validated by a jackknife error estimation [188]. 10 structure calculations were run from 

which 10 % of the input distance restraints were randomly omitted (each NOE is omitted in 

exactly one calculation). Then, an overall target function was calculated by summing over the 

target functions calculated for the omitted data. This cross-validation target function tends to 

decrease with increasing number of states. The target function for the three-state ensemble is 40 

% lower than the one for the single-state structure. This outcome indicates that the three-state 

ensemble obtained with the reduced experimental data set is already close in structure to the one 

calculated with the entire data set. Therefore, the data set is at least in part over-determined. 

Independent checks for the three-state ensemble of GB3 may also be obtained by comparison of 

X-ray and NMR parameters that quantify spatial sampling. For example, the angular spatial 

sampling of the backbone H
N
-N vectors can be quantified by order parameters. Good agreement 

between those calculated from the ensemble and order parameters derived from RDCs measured 

under six alignment conditions [142-144] was obtained (Figure 21b). The minimal number of 

states previously determined to represent the data well is also the minimal number that yields 

satisfying order parameters. Another example constitutes a comparison between the obtained 

side-chain rotamer states and those in the 1.1 Ǻ X-ray structure with PDB code 1IGD [208]. For 

residues 15, 21 and 35, the same two rotamer states as in the crystal structure are observed. 

Furtheron, the NMR ensemble includes all the rotamer states observed in the crystal structures 

with the exception of residues 7 and 47. Scalar and residual dipolar couplings as well as cross-

correlated relaxation rates measured under liquid-state conditions are also in very good 

agreement with the rotamer states of the structural ensemble including residues 7 and 47. Some 

inconsistencies may be due to different sample conditions such as crystalline/liquid state or 

different buffer conditions. A very detailed comparison of the ensemble rotamer states with X-ray 

and NMR data is presented in reference [31]. 



 

 

124 

 

 

Figure 21. Cross-validation of the optimal number of states. (a) Backbone H
N
-N order parameters obtained for 

ensembles calculated with 2, 3, 4, 5, and 9 states versus the amino sequence of GB3 are shown. For comparison, 

order parameters obtained from RDCs are drawn in blue. (b) The cross-validation target functions (TF) for three-

state ensembles are shown. TFs obtained from a jackknife procedure are shown in blue, and upon random alteration 

of the distances obtained from both cross peaks by 5, 10, and 15 % in yellow, orange, and red, respectively, and upon 

random alteration of all distances by 10 % in pink. 
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5. Outlook 

 

In conclusion, it is shown how highly precise and accurate NOEs can be measured (exact 

NOEs, eNOEs). It is relatively simple to record and evaluate the data. A simple conversion 

results in very exact averaged distances which allow to uncover even small effects. In particular, 

the eNOE is very sensitive to translational motion between (groups of) spins. The quality of the 

experimental data recorded on the protein GB3 was sufficient the calculate multiple-state 

ensembles which can be regarded as a discrete three-dimensional representation of protein 

motion.  

At this point, our work is at a developing stage. We are currently exploring the potential of 

the method in answering biological questions. Nevertheless, there remains a number of open 

questions and challenges. Answering and overcoming these would pose major advances for the 

method. In the following, a list of the most important points (in the authors view, that is) are 

formulated.  

 

 

5.1. Future challenges: 14 questions 

5.1.1. Experimtental

 

1. Can a complete excitation profile be achieved in the heavy-atom dimension of a NOESY 

experiment? In our experiments used so far, eNOEs were only evaluated for spin pairs that 

involve at least one proton that is bound to a nitrogen or an aliphatic carbon atom. Pathways that 

involve chemical shift labeling of aromatic carbons were only analysed in a semi-quantitative 

manner because the rectangular carbon excitation pulse and its counterpart after the evolution do 
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not sufficiently excite the frequency range above 100 ppm. To a smaller extent, the same effect is 

one of the reasons for a looser choice of the upper and lower distance restraints if only one cross 

peak can be evaluated. One obvious solution is to run a second buildup series with a shifted 

carrier frequency. However, this is not attractive since it would double the measurement time. It 

is conceivable that two more dedicated pulses may be used to cover the full carbon frequency 

range, possibly with different time increments (much like the simultaneous use of 
15

N and 
13

C 

evolution). Such a procedure may even allow to record two different spectral widths and 

resolutions for the two covered carbon frequency ranges. 

 

2. How short must the mixing time be? eNOEs were obtained from NOESY experiments with 

mixing times which are shorter than used in conventional experiments. We provided a rule-of-

thumb which is based on the overall tumbling time and allows for reliable estimates for the 

correction for spin diffusion from an approximate (previously known) structure [112]. Many 

cross peaks are thus lost in the noise. Although longer mixing times cause larger uncertainties, 

theoretically, iterative structure calculation and spin diffusion correction should converge also for 

long mixing times.  

Previously, a simple approach to run longer NOESY mixing and thus extraction of many 

more and longer distances was based on a statistical analysis of the distance-intensity relationship 

[209]. Simulations of spectra of up to 400 ms mixing time for protonated proteins with 2 and 5 ns 

tumbling times show that possibly hundreds of additional peaks may be evaluated. Peaks 

corresponding to distances of 9 Å were observable. For example, for crambin with 5 ns tumbling 

time the peaks that were newly observed at 400 ms but not at 200 ms correspond to an average 

distance of 6.4 Å. Upper and lower bound limits may be obtained for these NOEs by using twice 

the standard deviation of the distance distribution, 1.5 Å.  
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3. How far can we see? For the perdeuterated sample of ubiquitin used in our analysis, the 

largest extracted distances are 8 Å. On one hand, the question is related to the previous one 

concerning the optimal mixing time. On the other hand, special isotope labelelling should allow 

to record NOESY spectra with cross peaks between spins that are further apart than the typical 5 

Å. Observation of NOEs over distances up to 12 Å in highly deuterated samples with protons 

incorporated into isoleucine 1-methyl sites has been reportet [210]. Optimal mixing times were 

1.25 and 0.8 s for ubiquitin and S crystallin in 2D NOESYs. The authors show that spin 

diffusion contributes no more than 12 % [210]. Obviously, another type of NOE, the historically 

previously observed dipolar interaction between a proton and an unpaired electron can be 

detected over distances of 25 Å [90]. 

 

4. How large can the studied systems be? Our detailed studies of eNOEs have been limited to 

the model proteins GB3 and ubiquitin with 6.5 and 8.5 kDa, respectively. Larger systems pose 

two fundamental challenges. First, large systems have large overall correlation times, which 

cause stronger transverse relaxation effects. As a consequence, magnetization is lost along the 

pathways during the pulse sequence. Longitudinal relaxation is reduced and thus the interscan 

delays must be increased. However, NOESY experiments belong the the group of experiments 

that can be used on very large systems because the transfer relies on longitudinal magnetization 

that is more favorable than transverse magnetization in terms of relaxation and the transfer is 

increasingly more efficient for increasing overall tumbling times. Theoretial considerations and 

experiements demonstrate that NOESY can be recorded with large deuterated proteins of several 

hundred kilodaltons [211].  
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The second limitation is caused by increased peak overlap for large systems. The problem is 

particularly pressing with respect to the diagonal peaks. Overcoming this hurdle is an active 

research field and holds promise for the future. Recording NOESYs with additional dimensions, 

such as 4D HXQC-NOESY-HXQC type pulse schemes would separate the two proton 

resonances by two heavy atom resonances [212]. In general, approaches to achieve a higher 

signal-to-noise ratio also allow a higher resolution. Mixed-time parallel (PARE) evolution in the 

[
1
H,

15
N]-HMQC element of the 3D NOESY achieved a gain of a factor 1.7 for a 125 kDa 

complex of tetrameric KscA and SDS mixed micelles [213]. Another way to make the 

experiments more efficient (and allowing higher resolution) is the use of sparse sampling 

[214,215]. Simple Fourier transform is not the optimal processing of the data. Initially, Maximum 

Entropy Reconstruction (MaxEnt) was proposed to take full advantage of the approach [216]. 

Sparse sampling may also be combined with multidimensional decomposition (MDD) [217]. 

Good spectral quality for a double 
13

C-esolved experiment was demonstrated with the 82 kDa 

Malate Synthase G [214]. Co-processing of the 4D spectra and a high-resolution 2D spectrum 

yielded 50-100 % more peaks as demonstrated with the integral human membrane protein 

VDAC-1 (overall tumbling time 70 ns due to detergent micelles) [218]. A challenge which is 

particularly emphasized for NOESY is the large dynamic range of the peak intensities (typically 

up to three orders of magnitude). Compressed sensing (CS) reconstruction of undersampled 3D 

NOESY promises to alleviate this problem substantially [215]. The dynamic range in time-shared 

4D NOESY experiments was also substantially improved with the SCRUB algorithm which 

efficiently removes artifacts introduced by sparse sampling [219]. This technique has been shown 

to achieve a dynamic range of 10000/1 and reproduce correct peak intensities and lineshapes with 

1.2 % of the data required for Nyquist sampling with 23 kDa and 29 kDa test samples. An 

alternative approach to reduce overlap is projection spectroscopy [220]. Simultaneous chemical 
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shift evolution on different spins can be used to resolve a maximum number of resonances. 

Detection of NOEs between amide protons has been demonstrated with a 2D spectrum where the 

[
1
H,

15
N]-HMQC element of a HMQC-NOESY is projected on a single mixed dimension for a 

protein-DNA complex of 121 kDa [221]. Automated projection spectroscopy (APSY) makes use 

of evolution in several mixed dimensions subjected to different angles within the space spanned 

by the indirect dimensions to automatically generate peak positions in this higher-dimensional 

space [222]. 

 

5. eNOEs in solid-state NMR? So far, efficient and exact determination of internuclear 

distances via solid-state NMR in uniformly-labelled samples has proven difficult. Techniques 

such as rotational resonance (R
2
) for homonuclear 

13
C-

13
C spin pairs and rotational echo double 

resonance (REDOR) for heteronuclear 
13

C-
15

N/
19

F spin pairs have been used to quantify 

distances between isolated spin pairs [223]. The uncertainty is smaller than 1 Å. However, it 

would be desirable to have an analog to liquid-state NOESY that delivers distances throughout 

the entire molecule. In such experiments, the longitudinal 
13

C magnetization may be exchanged 

while the proton decoupler is switched off (Proton Driven Spin Diffusion, PDSD) or operates at a 

weak field (Dipolar-Assisted Rotational Resonance, DARR) [224]. Due to the strong dipolar 

truncation in first-order recoupling small couplings cannot be detected. Instead, second-order 

recoupling sequences which exhibit a weaker truncation effect are used. Other experiments such 

as CHHC and NHHC make use of 
1
H-

1
H transfer [225]. For routine structure calculation, the 

results of several types of experiments are used. Typically, the presence of a cross peak is 

interpreted as an upper distance limit of 5 Å. The determination of the distance in a more 

quantitative manner is hampered by the fact that a powder-averaged spectrum cannot be exactly 
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described by a rate equation. Nevertheless, approximations have been used to extract quantitative 

distances [226].  

 

 

5.1.2. Ensemble calculation

 

6. How many eNOEs are needed? Since the cross-validation procedures indicated that the 

experimental data set of GB3 is in part over-determined, the question arises as to how much data 

is needed to obtain at least two distinct states in an ensemble. For example, we reduced the 

experimental input for the GB3 ensemble calculation by omitting the J coupling and the RDC 

data [31]. Interestingly, the rmsd is virtually identical for the three-state ensemble. However, 

extraction of the concerted motion is less straight-forward, although it is still present. Therefore, 

it is recommended to measure a small set of J couplings and/or RDCs in addition to the eNOEs. 

On the other hand, we did not use eNOEs involving pseudoatoms of methylene groups, only 

conventional upper limits for aromatics and very conservative restraints for methyl groups. We 

are currently working on the quantitative use of all these eNOEs. 

 

7. What is the best choice for upper and lower limits? So far, we have used limits that are 

symmetric about distance restraints. As already outlined in the text previously, more intuitively, 

the limits should be symmetric about the cross-relaxation rate constants. This choice, however, 

seems not substantiated by the comparison between the experimental distances and those 

extracted from the high-resolution structure. In addition, the generality of our choice of numeric 

tolerances if only one cross peak for a spin pair could be evaluated remains to be 

established/refined. 
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8. Is there a perfect cross-validation? Complete self-consistent over-determination will 

probably never be achieved. Typically, well-defined regions of a molecule may be partially 

overdetermined while other parts are strongly underdetermined. Although many cross-vaildation 

procedures have been proposed, an ideal self-consistency check is very difficult to establish. To 

account for the incomplete definition of an NMR structure an inferential structure determination 

protocol has been proposed [227]. For characterization of the stucture, Bayesian inference is used 

to derive a probability distribution [227]. The protocol was applied to the determination of an 

ensemble from averaged data [228].  

 

9. How can we represent segmental optimal numbers of states? In our approach, the entire 

molecule is represented with a uniform number of states. However, it is likely that flexible parts 

of the molecule require more states and rigid ones less for a proper representation. For example, 

one may wonder what happens in a segment with two very distinct, equally populated states if a 

three-state ensemble is calculated. 

It has been proposed to select only those restraints for ensemble averaging that cause a large 

violation in a conventional structure calculation [122]. 

As mentioned above, inferential structure determination may turn out to be the protocol of 

choice [227,228]. 

 

10. Can we correctly incorporate the time scales? In virtually all ensemble refinement 

protocols all NMR observables are averaged in a uniform manner, irrespective of the time 

windows they are sensitive to. To make things even worse, the NOE rate averages differently 

over short and long time scales, and the practical choice of averaging (r
-6

 versus r
-3

) seems rather 

heuristic in most publications. 
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11. Can/shall we incorporate anisotropic tumbling? All studies rely on the assumption of 

isotropic overall tumbling of the molecule. The reason is that the anisotropic model requires a 

priori knowledge of the structure and is mathematically more expensive. In principle, it is 

possible to adapt a method proposed for structure calculation with distances from ISPA to our 

purposes: Behling et al. periodically updated distance constraints (calculated with the anisotropic 

model) during energy minimization [229]. It is also unknown how large the effect of internal 

motion is on rendering the anisotropic more isotropic. 

 

12. Can we detect allosteric mechanisms? Efficient propagation of local perturbations through 

the protein must be mechanically mediated by coupled elements. In taking one extreme end of the 

point of view, a model has been proposed that bases allostery solely on the redistribution of 

atomic fluctuations about mean coordinates [230], and several examples have been reported since 

then [231-233]. In principle, such motion should be detectable with the eNOE method. 

 

13. Is fully automated software possible? We are currently working on a software solution that 

integrates as many steps in the entire procedure as possible. Ultimately, it is desirable to have an 

automated streamline encompassing peak fitting, buildup fitting, correction for spin diffusion and 

structure calculation. 

 

14. What do intermolecular eNOEs offer? Lastly, it is tempting to contemplate the NOE 

phenomenon mediated between different molecules, for example, the transferrred NOE or 

INPHARMA. Very interesting prospects offer RNA-protein and protein-protein complexes and 

binding of small ligands. It is clear that the underlying mathematics is complex, but in principle it 
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is the same as presented in this work. For example, pharmacophore applications may benefit from 

the use of exact NOEs.  
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6. Appendix 

 

The Master equation 

The stochastic Hamiltonians are expressed in terms of irreducible tensor operators of rank 2, 

Tm, and stationary random functions given by second order spherical harmonics, Fm: 

 

2

1

2

( ) ( )m m

m

H t T F t


 
 
         (A1.1) 

Transformation of  1H t
 
into the interaction frame gives: 

int

1

,
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n
mi tn
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H t T F t e



 
         (A1.2) 

with 

0 , n n n

m m mH T T    
 
          (A2) 

n

mT  and n

m  are the eigenfunctions and the eigenvalues of 
0 ,.H   . Note that many different 

conventions are used throughout the literature. Here, the conventions of reference [41] are chosen 

with the exception that the r dependence is absorbed into the stationary random function in order 

to maintain a time-dependence of r. The physical constants are collected into the irreducible 

tensor operators by introducing the following two factors for chemical shift anisotropy (CSA) and 

dipolar interactions: 

CSA( )

1

30
i iA   

 
         (A3.1) 
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ij
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i jA
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 
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  
         (A3.2) 

i is the difference between the parallel and perpendicular main components of a

i  of nucleus i. 

The expression is exact if the CSA tensor is symmetric. An anisotropic tensor can be constructed 

by the sum of two symmetric tensors [A1]. Since the polarizing magnetic field is directed along 

the z axis, 
0B  reduces to (0, 0, B0)

T
. Transverse operators are expressed with the raising and 

lowering operators defined as: 

, , ,i i x i yI I iI  
 
          (A4) 

For the CSA Hamiltonian of spin i (a = CSA(i)), Tm and Fm are 

CSA( )CSA( )

0 0 ,

4
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ii

i z

A
T B I 

 
         (A5.1) 
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1 CSA( ) 0 ,

i

i iT A B I  
 
         (A5.2) 

CSA( )

2 0iT 
 
           (A5.3) 

 CSA( ) *

24 ( ( ), ( ))i

m m i iF t Y t t   
 
        (A6) 

i and i are the polar angles defining the orientation of the tensor main axis of nucleus i. Y2m are 

the spherical harmonics of rank 2: 

   2
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5
, 3cos 1
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        (A7.1) 
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 2 1

15
, sin cos

8

iY e 

     
  

        (A7.2)
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        (A7.3)  

The asterisk designates the complex conjugate. The addition theorem for spherical harmonics 

of rank 2 is 
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      (A8) 

'aa  is the projection angle between the axes of interactions a and a'. 

Transformation of CSA( )i

mT

 

into the interaction frame yields only terms with n = 0: 

0, CSA( ) CSA( )i i

m mT T           (A9) 

and  

0, CSA( )

0 0i             (A10.1) 

0, CSA( )

1

i

i             (A10.2) 

For the dipolar Hamiltonian of spins i and j, Tm and Fm are (a = D(i,j)) 
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       (A12) 

i and i are the polar angles defining the orientation of the r vector connecting spins i and j. 

Transformation of  D( , )i j

mT

 

into the interaction frame gives terms with n = 1,2,3: 
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and 
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2,D( , )

1

i j
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 1,D( , )
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i j
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In the derivation of equation 5, the following properties are used: 
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Hubbard has shown the following useful properties of spherical harmonics 
lmY  [A2]: 
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      (A17) 

where 
, 'l l  is Kronecker's delta function. These properties imply the drastic simplifications for the 

correlation function used to derive equation 29. Equation A16 is a mathematical motivation for 

replacing t by 0 in the correlation function. From equations A15 and A17 follows 
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   (A18) 

As pointed out in the literature, equation A17 is true if the stochastic processes described by Fm 

are statistically independent [37,41,A3]. In the present case, perhaps a better argument for , 'm m  

is the fact that , ', '

'

n a n a

m m    cannot be fulfilled for 'm m   if i,j is in the range typically 

obtained for protons in high-field NMR. Thus, such contributions to the Master equation are non-

secular and averaged out independently from the exact nature of the correlation function. 
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In the derivation of equation 6, the following property is used: 

Trace(A[B,C]) = Trace([A,B]C) for any operators A, B, C    (A19) 

 

 

Non-degenerate and degenerate transitions in NOESY 

In the following, some explicit calculations are shown for the evaluation of the relaxation 

matrix R in equation 9. First, some useful spin operator commutation rules are recalled. 

, , ,,i z i iI I I 
               (A20) 

, , ,, 2i i i zI I I 
              (A21) 

, ,, 0i jI I 
        = x, y, z, +, -      (A22) 

[AB,C] = [A,C]B + A[B,C]  for any operators A, B, C     (A23) 

The following relationships can easily be verified (for example, by means of the Pauli 

matrices). 

, , ,
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2i i i zI I I             (A24) 

, ,
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4i z i zI I             (A25) 
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1

2i z i iI I I             (A26) 
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, , ,
1

2i i z iI I I            (A27) 

A complete evaluation of equations 7.1 and 7.2 for 
,i zb I  is provided in Tables A1-A8. 

Some examples for 
, ,2 i z j zb I I  are shown in Tables A9 and A10. It is assumed that the high-

temperature approximation holds and 0 0H  nulls all double commutators. Dipolar interaction 

with a = D(i,j) and a' = D(i,j) induces the non-degenerate and the additional degenerate auto-

correlated relaxation pathways listed in Tables A1 and A2, respectively. CSA auto-correlated 

relaxation is caused by a = CSA(i) and a' = CSA(i) from the non-degenerate relaxation pathways 

as listed in Table A3. There are no additional degenerate relaxation pathways. Pathways induced 

by cross-correlated relaxation between a = D(i,j) and a' = CSA(i) and vice versa for non-

degenerate and degenerate transitions are listed in Tables A4 and A5, respectively. Dipolar cross-

correlated relaxation between a = D(i,j) and a' = D(i,k) and vice versa for non-degenerate 

transition is treated in Table A6, and for degenerate transitions in Tables A7 (
j k   ) and A8 

(
i j   ). For 

, ,2 i z j zb I I , the non-degenerate transition cases for dipolar and CSA auto-

correlated relaxation are shown in Tables A9 and A10. Generalization to all other cases is trivial. 

Summation of all terms in Tables A1 and A3 whose double commutator yields 
,i zI  produces the 

auto-relaxation rate constants D

ijR  and CSA

iR , respectively. The same procedure produces the 

cross-relaxation rate constant ij when the double commutators yield ,j zI . Inspection of Table A2 

shows that dipolar auto-correlated relaxation is identical if non-degenerate transitions are 

included. Similar considerations with Tables A4 and A6 demonstrate that cross-correlated 

relaxation creates two- and three-spin order. Non-degenerate transitions add pathways to zero-
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quantum transitions (see Tables A5, A7 and A8). It is noted that this effect cannot be represented 

with the basis chosen in equation 11. 
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Table A1. Evaluation of the relaxation pathways with a = D(i,j) and a' = D(i,j) for non-

degenerate transitions and 
,i zb I . 

,n a

m  (-1)
m 

factor commutator 

0 1 
2

D( , )
8

3 i jA  , , , , , , ,, , ,0 0i z j z i z j z i z i z j zI I I I I I I         
 

i  -1 
2

D( , )i jA  
, , , , , , , , ,

, , , , , , , , , , , ,

, , ,

1, , 2
2

i j z i j z i z i j z i j z

i i j z j z i j z i j z i z j z j z i z

I I I I I I I I I

I I I I I I I I I I I I

   

   

        

         

 

i  -1 
2

D( , )i jA  
, , , , , , , , ,

, , , , , , , , , , , ,

, , ,

1, , 2
2

i j z i j z i z i j z i j z

i i j z j z i j z i j z i z j z j z i z

I I I I I I I I I

I I I I I I I I I I I I

   

   

         

           

 

j  -1 
2

D( , )i jA  
, , , , , , ,, , ,0 0i z j i z j i z i z jI I I I I I I  

         
 

j  -1 
2

D( , )i jA  
, , , , , , ,, , ,0 0i z j i z j i z i z jI I I I I I I  

         
 

i j 
 1 

2

D( , )i jA  

, , , , , , , , ,

, , , , , , , ,

, , , , , ,

, , , , , ,

, , ,

, ,

2 2

1 12 ( ) 2( )
2 2

i j i j i z i j i j

i i j j i j i j

i z j j i j z i

i z j z i z j z i z j z

I I I I I I I I I

I I I I I I I I

I I I I I I

I I I I I I

       

       

   

        

       

 

     

 

i j 
 1 

2

D( , )i jA  

, , , , , , , , ,

, , , , , , , ,

, , , , , ,

, , , , , ,

, , ,

, ,

2 2

1 12 ( ) 2( )
2 2

i j i j i z i j i j

i i j j i j i j

i z j j i j z i

i z j z i z j z i z j z

I I I I I I I I I

I I I I I I I I

I I I I I I

I I I I I I

       

       

   

         

         

 

     

 

i j   1 
2

D( , )
1

6 i jA  

, , , , , , , , ,

, , , , , , , ,

, , , , , ,

, , , , , ,

, , ,

, ,

2 2

1 12 ( ) 2( )
2 2

i j i j i z i j i j

i i j j i j i j

i z j j i j z i

i z j z i z j z i z j z

I I I I I I I I I

I I I I I I I I

I I I I I I

I I I I I I

       

       

   

        

       

 

     

 

i j   1 
2

D( , )
1

6 i jA  

, , , , , , , , ,

, , , , , , , ,

, , , , , ,

, , , , , ,

, , ,

, ,

2 2

1 12 ( ) 2( )
2 2

i j i j i z i j i j

i i j j i j i j

i z j j i j z i

i z j z i z j z i z j z

I I I I I I I I I

I I I I I I I I

I I I I I I

I I I I I I

       

       

   

         

         

 

     
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Table A2. Evaluation of the additional relaxation pathways with a = D(i,j) and a' = D(i,j) for 

degenerate transitions and 
,i zb I . 

,n a

m  (-1)
m 

factor commutator 

0 1 
2

D( , )
2

3 i jA  

, , , , , , , , ,

, , , , , , , ,

, , , , , , , , , ,

, , ,

, ,

1 1 0
2 2

i z j z i j i z i z j z i j

i z i j j z i z j z i j

i j j z i z i j i j i j

I I I I I I I I I

I I I I I I I I

I I I I I I I I I I

   

   

       

          

         

     

 

0
 

1 
2

D( , )
2

3 i jA  , , , , , , ,, , ,0 0i j i z j z i z i jI I I I I I I   
         

 

0 1 
2

D( , )
2

3 i jA  

, , , , , , , , ,

, , , , , , , ,

, , , , , , , , , ,

, , ,

, ,

1 1 0
2 2

i z j z i j i z i z j z i j

i z i j j z i z j z i j

i j j z i z i j i j i j

I I I I I I I I I

I I I I I I I I

I I I I I I I I I I

   

   

       

         

       

    

 

0
 

1 
2

D( , )
2

3 i jA  , , , , , , ,, , ,0 0i j i z j z i z i jI I I I I I I   
         

 

i j    -1 
2

D( , )i jA  
, , , , , , ,, , ,0 0i j z i z j i z i j zI I I I I I I  

         
 

i j  
 -1 

2

D( , )i jA  
, , , , , , ,, , ,0 0i j z i z j i z i j zI I I I I I I  

         
 

i j  
 -1 

2

D( , )i jA  

, , , , , , , , ,

, , , , , , , ,

, , , , , ,

, , , ,

, , ,

, ,

2 2

1 12 ( ) 2( ) 0
2 2

i z j i j z i z i z j i j z

i z i j z j i z j i j z

i j z j i z j i

i j i j

I I I I I I I I I

I I I I I I I I

I I I I I I

I I I I

   

   

   

   

         

         

  

  

 

i j    -1 
2

D( , )i jA  

, , , , , , , , ,

, , , , , , , ,

, , , , , ,

, , , ,

, , ,

, ,

2 2

1 12 ( ) 2( ) 0
2 2

i z j i j z i z i z j i j z

i z i j z j i z j i j z

i j z j i z j i

i j i j

I I I I I I I I I

I I I I I I I I

I I I I I I

I I I I

   

   

   

   

        

       

  

   
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Table A3. Evaluation of the relaxation pathways with a = CSA(i) and a' = CSA(i) for 

,i zb I . 

,n a

m  (-1)
m 

factor commutator 

0
 

1 
2 2

CSA( ) 0
8

3 iA B  , , , ,, , ,0 0i z i z i z i zI I I I           

i  -1 
2 2

CSA( ) 0iA B

 
, , , , , ,, , , 2i i i z i i i zI I I I I I   

           

i  -1 
2 2

CSA( ) 0iA B  
, , , , , ,, , , 2i i i z i i i zI I I I I I   

            

 

 

Table A4. Evaluation of the relaxation pathways with a = D(i,j) and a' = CSA(i) and vice versa 

for non-degenerate transitions and 
,i zb I . 

,n a

m  (-1)
m 

factor commutator 

0
 

1 D( , ) CSA( ) 0
8

3 i j iA A B  , , , , , ,, , ,0 0i z j z i z i z i z j zI I I I I I            

0 1 D( , ) CSA( ) 0
8

3 i j iA A B

 
, , , , ,, , ,0 0i z i z j z i z i zI I I I I          

i  -1 CSA( ) D( , ) 0i i jA A B

 
, , , , , , , , ,, , , 2i j z i i z i j z i i z j zI I I I I I I I I   

            

i  -1 CSA( ) D( , ) 0i i jA A B  
, , , , , , , , ,, , , 2i i j z i z i i j z i z j zI I I I I I I I I   

          
 

i  -1 CSA( ) D( , ) 0i i jA A B

 
, , , , , , , , ,, , , 2i j z i i z i j z i i z j zI I I I I I I I I   

             

i  -1 CSA( ) D( , ) 0i i jA A B  
, , , , , , , , ,, , , 2i i j z i z i i j z i z j zI I I I I I I I I   

           
 

 

Table A5. Evaluation of the additional relaxation pathways with a = D(i,j) and a' = CSA(i) and 

vice versa for degenerate transitions and 
,i zb I . 

,n a

m  (-1)
m 

factor commutator 

0 1 CSA( ) D( , ) 0
2

3 i i jA A B

 
, , , , , ,, , ,0 0i j i z i z i jI I I I I I   

            

0
 

1 CSA( ) D( , ) 0
2

3 i i jA A B  , , , , , , , , ,, , , 2i z i j i z i z i j i jI I I I I I I I I     
           

 

0 1 CSA( ) D( , ) 0
2

3 i i jA A B

 
, , , , , ,, , ,0 0i j i z i z i jI I I I I I   

            

0
 

1 CSA( ) D( , ) 0
2

3 i i jA A B  , , , , , , , , ,, , , 2i z i j i z i z i j i jI I I I I I I I I     
            
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Table A6. Evaluation of the cross-correlated relaxation pathways with a = D(i,j) and a' = D(i,k) 

and vice versa for non-degenerate transitions and 
,i zb I . 

,n a

m  (-1)
m 

factor commutator 

0
 

1 D( , ) D( , )
8

3 i j i kA A  , , , , , , ,, , ,0 0i z j z i z k z i z i z j zI I I I I I I            

0
 

1 D( , ) D( , )
8

3 i j i kA A  
, , , , , , ,, , ,0 0i z k z i z j z i z i z k zI I I I I I I        

 

i  -1 D( , ) D( , )i j i kA A

 

, , , , , , , , ,

, , , , , ,

, , ,

12 4
2

i j z i k z i z i j z i k z

i z j z k z i z j z k z

I I I I I I I I I

I I I I I I

   
         

   

i  -1 D( , ) D( , )i j i kA A

 

, , , , , , , , ,

, , , , , ,

, , ,

12 4
2

i j z i k z i z i j z i k z

i z j z k z i z j z k z

I I I I I I I I I

I I I I I I

   
          

   

i  
-1 D( , ) D( , )i j i kA A

 

, , , , , , , , ,

, , , , , ,

, , ,

12 4
2

i k z i j z i z i k z i j z

i z j z k z i z j z k z

I I I I I I I I I

I I I I I I

   
        

   

i  
-1 D( , ) D( , )i j i kA A

 

, , , , , , , , ,

, , , , , ,

, , ,

12 4
2

i k z i j z i z i k z i j z

i z j z k z i z j z k z

I I I I I I I I I

I I I I I I

   
         

   

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

146 

 

Table A7. Evaluation of the additional cross-correlated relaxation pathways with a = D(i,j) and a' 

= D(i,k) and vice versa for degenerate transitions with 
j k    and 

,i zb I . 

,n a

m  (-1)
m 

factor commutator 

j k    -1 D( , ) D( , )i j i kA A  
, , , , , , ,, , ,0 0i z j i z k i z i z jI I I I I I I  

            

j k    -1 D( , ) D( , )i j i kA A  
, , , , , , ,, , ,0 0i z k i z j i z i z kI I I I I I I  

        
 

j k    -1 D( , ) D( , )i j i kA A  
, , , , , , ,, , ,0 0i z j i z k i z i z jI I I I I I I  

            

j k    -1 D( , ) D( , )i j i kA A  
, , , , , , ,, , ,0 0i z k i z j i z i z kI I I I I I I  

        
 

i j

i k

 

  
 1 D( , ) D( , )i j i kA A  

, , , , , , , , , , , ,, , , 2i j i k i z i j i k i z j kI I I I I I I I I I I I         
            

i j

i k

 

  
 1 D( , ) D( , )i j i kA A  

, , , , , , , , , , , ,, , , 2i k i j i z i k i j i z j kI I I I I I I I I I I I         
          

 

i j

i k

 

  
 1 D( , ) D( , )i j i kA A  

, , , , , , , , , , , ,, , , 2i k i j i z i k i j i z j kI I I I I I I I I I I I         
         

 

i j

i k

 

  
 1 D( , ) D( , )i j i kA A  

, , , , , , , , , , , ,, , , 2i j i k i z i j i k i z j kI I I I I I I I I I I I         
             

i j

i k

 

  
 1 D( , ) D( , )

1
6 i j i kA A

 
, , , , , , , , , , , ,, , , 2i j i k i z i j i k i z j kI I I I I I I I I I I I         

            

i j

i k

 

  
 1 D( , ) D( , )

1
6 i j i kA A

 
, , , , , , , , , , , ,, , , 2i j i k i z i j i k i z j kI I I I I I I I I I I I         

             

i j

i k

 

  
 1 D( , ) D( , )

1
6 i j i kA A

 
, , , , , , , , , , , ,, , , 2i j i k i z i j i k i z j kI I I I I I I I I I I I         

            

i j

i k

 

  
 1 D( , ) D( , )

1
6 i j i kA A

 
, , , , , , , , , , , ,, , , 2i k i j i z i k i j i z j kI I I I I I I I I I I I         

           
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Table A8. Evaluation of the additional cross-correlated relaxation pathways with a = D(i,j) and a' 

= D(i,k) and vice versa for degenerate transitions with 
i j    and 

,i zb I . 

,n a

m  (-1)
m 

factor commutator 

0
 

1 D( , ) D( , )
2

3 i j i kA A  , , , , , , , , , , , ,, , ,i z j z i k i z i z j z i k i j z kI I I I I I I I I I I I     
             

0
 

1 D( , ) D( , )
2

3 i j i kA A  
, , , , , , ,, , ,0 0i k i z j z i z i kI I I I I I I   

          

0
 

1 D( , ) D( , )
2

3 i j i kA A  
, , , , , , , , , , , ,, , ,i z j z i k i z i z j z i k i j z kI I I I I I I I I I I I     

             

0
 

1 D( , ) D( , )
2

3 i j i kA A  
, , , , , , ,, , ,0 0i k i z j z i z i kI I I I I I I   

        
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Table A9. Evaluation of the relaxation pathways with a = D(i,j) and a' = D(i,j) for non-

degenerate transitions and 
, ,2 i z j zb I I . 

,n a

m  (-1)
m 

factor commutator 

0 1 
2

D( , )
8

3 i jA  , , , , , , , ,, , ,0 0i z j z i z j z i z j z i z j zI I I I I I I I         
 

i  -1 
2

D( , )i jA  

, , , , , ,

, , , , , , , , , ,

, , , , , , , ,

, , , ,

, , 2

, ( , 2 ,2 )

1, (2 0) 2 ,
4

1 2
2

i j z i j z i z j z

i j z i i z j z j z i j z i z j z

i j z i j z j z i j z i

i z j z i z j z

I I I I I I

I I I I I I I I I I

I I I I I I I I

I I I I

 

  

   

     

        

       

 

 

i  -1 
2

D( , )i jA  
 

 

, , , , , ,

, , , , , , , , , ,

, , , , , , , ,

, , , ,

, , 2

, , 2 ,2

1, 2 0 ,
2

1 2
2

i j z i j z i z j z

i j z i i z j z j z i j z i z j z

i j z i j z j z i j z i

i z j z i z j z

I I I I I I

I I I I I I I I I I

I I I I I I I I

I I I I

 

  

   

    

         

      
   

 

 

j  -1 
2

D( , )i jA  
 

 

, , , , , ,

, , , , , , , , , ,

, , , , , , , ,

, , , ,

, , 2

, , 2 ,2

1, 0 2 ,
2

1 2
2

i z j i z j i z j z

i z j i z i z j z j i z j i z j z

i z j i z j i z i z j j

i z j z i z j z

I I I I I I

I I I I I I I I I I

I I I I I I I I

I I I I

 

  

   

    

         

    
   

 

 

j  -1 
2

D( , )i jA  
 

 

, , , , , ,

, , , , , , , , , ,

, , , , , , , ,

, , , ,

, , 2

, , 2 ,2

1, 0 2 ,
2

1 2
2

i z j i z j i z j z

i z j i z i z j z j i z j i z j z

i z j i z j i z i z j j

i z j z i z j z

I I I I I I

I I I I I I I I I I

I I I I I I I I

I I I I

 

  

   

    

         

     
   

 

 

i j 
 1 

2

D( , )i jA  
 

 

 

, , , , , ,

, , , , , , , , , ,

, , , , , , , ,

, , , , , , , ,

, , 2

, , 2 ,2

, 2 2

, ,0 0

i j i j i z j z

i j i i z j z j i j i z j z

i j i j z j i j i z

i j i j i j i j

I I I I I I

I I I I I I I I I I

I I I I I I I I

I I I I I I I I

   

     

     

       

    

         

  
 

         
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i j 
 1 

2

D( , )i jA  
 

 

 

, , , , , ,

, , , , , , , , , ,

, , , , , , , ,

, , , , , , , ,

, , 2

, , 2 ,2

, 2 2

, ,0 0

i j i j i z j z

i j i i z j z j i j i z j z

i j i j z j i i z j

i j i j i j i j

I I I I I I

I I I I I I I I I I

I I I I I I I I

I I I I I I I I

   

     

     

       

    

         

   
 

         

 

i j   1 
2

D( , )
1

6 i jA  
 

 

 

, , , , , ,

, , , , , , , , , ,

, , , , , , , ,

, , , , , , , ,

, , 2

, , 2 ,2

, 2 2

, ,0 0

i j i j i z j z

i j i i z j z j i j i z j z

i j i j z j i i z j

i j i j i j i j

I I I I I I

I I I I I I I I I I

I I I I I I I I

I I I I I I I I

   

     

     

       

    

         

  
 

        

 

i j   1 
2

D( , )
1

6 i jA  
 

 

 

, , , , , ,

, , , , , , , , , ,

, , , , , , , ,

, , , , , , , ,

, , 2

, , 2 ,2

, 2 2

, ,0 0

i j i j i z j z

i j i i z j z j i j i z j z

i j i j z j i i z j

i j i j i j i j

I I I I I I

I I I I I I I I I I

I I I I I I I I

I I I I I I I I

   

     

     

       

    

         

   
 

        

 

 

 

Table A10. Evaluation of the relaxation pathways with a = CSA(i), CSA(j) and a' = CSA(i), 

CSA(j) for non-degenerate transitions and 
, ,2 i z j zb I I . 

,n a

m  (-1)
m 

factor commutator 

0
 

1 
2 2

CSA( ) 0
8

3 iA B  , , , , ,, ,2 ,0 0i z i z i z j z i zI I I I I        
 

i  -1 
2 2

CSA( ) 0iA B

 
 , , , , , , , , ,, ,2 ,2 2 2i i i z j z i i j z i z j zI I I I I I I I I   

           

i  -1 
2 2

CSA( ) 0iA B   , , , , , , , , ,, ,2 , 2 2 2i i i z j z i i j z i z j zI I I I I I I I I   
          

 

j
 -1 

2 2

CSA( ) 0iA B

 
 , , , , , , , , ,, ,2 ,2 2 2j j i z j z j i z j i z j zI I I I I I I I I   

           

j  -1 
2 2

CSA( ) 0iA B   , , , , , , , , ,, ,2 , 2 2 2j j i z j z j i z j i z j zI I I I I I I I I   
          
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Strong scalar coupling 

The derivation follows the formalism used in references [53,54]. The basis chosen in equation 

11 is not appropriate anymore if the scalar coupling constant becomes comparable to the 

difference of the Larmor frequencies of spins i and j. In what follows, the Master equation is 

derived for a two-spin system under neglect of CSA interaction and as a consequence, also of 

cross-correlated relaxation. Using the full expression for 
0H  as written in equation 10.1, equation 

A2 produces modified eigenfunctions and eigenvalues. The eigenvalues determine the 

frequencies at which the peaks are observed in a NOESY spectrum. Diagonalization of the matrix 

representation of 
0H  gives the following observable transition frequencies: 

 

 

 

 

2
2

2
2

2
2

2
2

(12)
2 2

(13)
2 2

(24)
2 2

(34)
2 2

i j i j

ij ij

i j i j

ij ij

i j i j

ij ij

i j i j

ij ij

J J

J J

J J

J J

    
       

 

    
       

 

    
       

 

    
       

 

             (A28.1-4) 

The eigenbasis of 
0H  is spanned by 

J J

J J

1

2 cos sin

3 sin cos

4

ij ij

ij ij

 

     

      

 

               (A29.1-4) 

where , , ,     are the basis functions of the Hilbert space with  and  being the 

spin states of spin i and j, respectively, and 
J

ij  is defined as 
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 J
2

tan 2
ij

ij

i j

J
 

 
          (A30) 

From A28 it can be seen that in the weak coupling limit ( 2 ij i jJ   ) the frequencies 

correspond to the Larmor frequencies of spins i and j, respectively, each split by 2 ijJ . However, 

as the coupling becomes stronger, the frequencies shift towards the center. If it is assumed that 

the multiplets due to scalar coupling are not resolved, but the peaks still are (that is, 

2 linewidthij i jJ     ), the spectra can be analyzed by using equation 12 with modified 

expressions. The basis that is introduced in equation 11 used to solve the Master is then replaced 

by operators referred to as magnetization modes,
 ,i zI  and ,j zI , which have predominantly i and j 

spin character, respectively, and , ,2 i z j zI I : 

, 1 2 3 4

, 1 2 3 4

, , 1 2 3 42

i z

j z

i z j z

I P P P P

I P P P P

I I P P P P

    

    

    

                (A31.1-3) 

Px is the population of the state x given in A29. The Master equation is: 

D,Jstrong Jstrong Jstrong, ,0 , ,0

Jstrong D,Jstrong Jstrong

, ,0 , ,0

Jstrong Jstrong D,Jstrong

, , , ,2 2

i z i i z i
i ij ij

j z j ij j ij j z j

ij ij ij
i z j z i z j z

I I I I

d
I I I I

dt

I I I I

          
              
       

   

    (A32) 

with 

D,Jstrong D,Jstrong leak D D,Jstrong D,Jstrong leak

i ij i ij ij ij iR R R R            (A33.1) 

D,Jstrong D

ij ij             (A33.2) 

Jstrong D,Jstrong

ij ij ij             (A33.3) 
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 D,Jstrong J D1
sin 2

2
ij ij ij              (A33.4) 

with 

  
2 4 2

D,Jstrong J D D0

rigid 6

3
1 cos 2 ( ) ( )

4 20 ( )
ij ij ij i ij j

ij

J J
r

  
           

    (A34.1) 

 
2 4 2

D,Jstrong 2 J D0

rigid 6

1
sin 2 ( )

4 10 ( )
ij ij ij i j

ij

J
r

  
     

 
     (A34.2) 

Note that there is a magnetization transfer pathway from single- to two-spin order even in the 

absence of cross-correlated relaxation. If only the contributions are retained that contain the 

spectral density function sampled at 
i j  , the following modification to the case in the weak 

coupling limit are obtained:   

  D D,Jstrong D D,Jstrong 2 J D1 sin 2ij ij ij ij ij ijR R R R            (A35.1) 

    Jstrong 2 J D,Jstrong 2 Jsin 2 1 sin 2ij ij ij ij ij ij ij                (A35.2) 

 

 

The Wigner rotation element 

The Wigner element is 

' '
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        (A36) 

where Wigner's small d-matrix is 
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            (A37) 

The Wigner rotation elements are related to the spherical harmonics as: 

1
2
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Simplified spectral density function for methyl groups 

D,methyl ( )
ij

J   can be treated by separation of the rotation around the c3 symmetry axis from the 

fluctuation of the c3 axis per se. 

mix
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i

i i
J C d    

 
       (A41) 

with the correlation function 
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In analogy to equation 30, the proton coordinates are transformed into the molecule-fixed frame 

and the according Wigner rotation elements are averaged independently. A second transformation 

(expressed by 
3c

i i 
 ) brings the polar coordinates of the proton-proton vectors into a frame fixed 

to the c3 axis. 
methyl( )i jr t r

 
  is rigid and can be separated from the averaging, which gives 

*

2 24q qF Y  . 

Now, it is assumed that the methyl rotation happens instantaneously. The Lipari-Szabo 

approximation then employs an internal correlation time for the fluctuation of the c3 axis. This 

fluctuation can be on a similar timescale as the methyl rotation (picoseconds) and effectively 

would absorb the correlation time of the methyl rotation. Due to the three-fold symmetry, only   

   prot * prot

20 20( ) ( 0 )i i i iY Y
   

   has nonzero values upon averaging. 
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In the second line, equation A40 is used to replace  2 c3

0l i iD
 

  by  2* c3

0l i iD
 

 . As the proton-proton 

vectors lie in the x-y plane of the c3 frame at all times, 
prot 90i i 
   . In the fourth line, 

c3

i i 
  is 

replaced by 3c

i
 , as the frame is the same for all three protons. The methyl axis rotation order 

parameter is defined as 
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(A44) 

The correlation function is now in the same form as the one for a single proton with an additional 

factor: 
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