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Impulsivity plays a key role in decision-making under uncertainty. It is a significant
contributor to problem and pathological gambling (PG). Standard assessments of
impulsivity by questionnaires, however, have various limitations, partly because impulsivity
is a broad, multi-faceted concept. What remains unclear is which of these facets
contribute to shaping gambling behavior. In the present study, we investigated impulsivity
as expressed in a gambling setting by applying computational modeling to data from
47 healthy male volunteers who played a realistic, virtual slot-machine gambling task.
Behaviorally, we found that impulsivity, as measured independently by the 11th revision
of the Barratt Impulsiveness Scale (BIS-11), correlated significantly with an aggregate
read-out of the following gambling responses: bet increases (BIs), machines switches
(MS), casino switches (CS), and double-ups (DUs). Using model comparison, we compared
a set of hierarchical Bayesian belief-updating models, i.e., the Hierarchical Gaussian Filter
(HGF) and Rescorla–Wagner reinforcement learning (RL) models, with regard to how well
they explained different aspects of the behavioral data. We then examined the construct
validity of our winning models with multiple regression, relating subject-specific model
parameter estimates to the individual BIS-11 total scores. In the most predictive model (a
three-level HGF), the two free parameters encoded uncertainty-dependent mechanisms
of belief updates and significantly explained BIS-11 variance across subjects. Furthermore,
in this model, decision noise was a function of trial-wise uncertainty about winning
probability. Collectively, our results provide a proof of concept that hierarchical Bayesian
models can characterize the decision-making mechanisms linked to the impulsive traits of
an individual. These novel indices of gambling mechanisms unmasked during actual play
may be useful for online prevention measures for at-risk players and future assessments
of PG.

Keywords: Hierarchical Gaussian Filter, Hierarchical Bayesian Model, Barratt Impulsiveness Scale, impulsivity,

pathological gambling

INTRODUCTION
Uncertainty is a fundamental aspect of human decision-making
(Bland and Schaefer, 2012). One general framework for assess-
ing decision-making under uncertainty is to view humans as
Bayesian learners. From this perspective, humans employ a gen-
erative model of sensory inputs to update beliefs about the state
of the world and choose actions in order to minimize prediction
errors (Knill and Pouget, 2004; Daunizeau et al., 2010; Friston
et al., 2010). When this predictive machinery breaks (due to dis-
ease or drugs), maladaptive behavior can arise. This aberrant
behavior can be formally examined and understood mechanis-
tically using different computational models (e.g., McGuire and
Kable, 2013). One interesting and clinically relevant case of poten-
tially harmful aberrant behavior that arises is impulsivity, i.e.,

actions without deliberation or forethought, particularly in the
face of uncertainty (Dickman, 1993; Sharma et al., 2014).

Impulsive responses under uncertainty play a crucial role in
disordered gambling, where players continue to bet money even
in the face of large losses and potentially catastrophic long-term
consequences. It has been found that standard measures of impul-
sivity and gambling severity scores are significantly correlated
(Alessi and Petry, 2003; Krueger et al., 2005). Pathological gam-
bling (PG) was therefore originally categorized as an “Impulse
Control Disorder Not Elsewhere Classified” in the Diagnostic and
Statistical Manual (DSM) Fourth Edition. It has recently been
relabeled “gambling disorder” and reclassified as an addictive dis-
order in the 5th edition of the DSM, due to the large number of
characteristics it shares with other addictions. This, however, does
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not question the relationship between impulsivity and disordered
gambling, since impulsivity is a central theme in addiction as well
(Holden, 2010; APA, 2013).

Impulsivity has been shown to have predictive power in assess-
ing a subject’s susceptibility to addiction (deWit, 2009; Leeman
et al., 2014). In the specific context of gambling, correlations
between gambling severity and more traditional questionnaire-
based measures of impulsivity, such as the Eysenck’s Impulsivity
Inventory, the Barratt Impulsiveness Scale (11th version; BIS-
11), the Urgency, Premeditation, Perseverance and Sensation-
Seeking (UPPS) scale, and the Dickman Impulsiveness scale,
have been reported (Monterosso and Ainslie, 1999; Rodriguez-
Jimenez et al., 2006; Whiteside and Lynam, 2009). More specif-
ically, changes in gambling severity were related to changes in
self-reported impulsivity scores (Blanco et al., 2009). Given this
evidence, impulsivity has been proposed as a potential predispos-
ing factor for PG (Vitaro et al., 1997; Brewer and Potenza, 2008;
Guerrieri et al., 2008; Stein, 2008).

However, impulsivity is a broad concept with many facets,
including spontaneous acts without planning or deliberation
(“acting without thinking”), excessive risk-taking, and a lack of
orientation to future outcomes (Patton et al., 1995; Robbins
et al., 2012). It is therefore conceivable that PG behavior involves
only a subset of these elements (Nower and Blaszczynski, 2006).
For example, response impulsivity (also referred to as “stop-
ping impulsivity”; Robbins et al., 2012), measured by deficits
in inhibitory control, showed mixed results when tested for in
pathological and problem gamblers. Lawrence et al. (2009) found
deficits in a Stop Signal Reaction Time Task (SSRT) with relation
to alcohol dependence but not in relation to gambling behaviors.
Similarly, Rodriguez-Jimenez et al. (2006) found decreased SSRT
accuracy only in gamblers also diagnosed with Attention Deficit
Hyperactivity Disorder (ADHD). Other studies, however, report
that pathological gamblers commit more commission errors in a
Go/NoGo task, indicative of impulse control problems (Fuentes
et al., 2006).

By contrast, measures of choice impulsivity (or “waiting
impulsivity”; Robbins et al., 2012) show a more consistent rela-
tion to gambling behavior. For example, higher discount rates
in delay discounting tasks have been associated with problem
and PG in a number of studies (Petry, 2001; Alessi and Petry,
2003; Peters and Büchel, 2011; Miedl et al., 2012). These deficits
correlate mainly with cognitive distortions, suggesting that dif-
ferences in the underlying belief structure of a gambler might
contribute to the types of impulsivity we see in disordered gam-
bling (Michalczuk et al., 2011). These findings are in line with
reported decision-making deficits of gamblers across a variety of
tasks (Goudriaan et al., 2005). This does, however, not explain
how different cognitive mechanisms related to impulsivity trans-
late into different gambling behaviors, from the recreational to
the pathological.

Classical analyses of impulsivity, in the context of gambling,
rest primarily on questionnaires (Eysenck and Eysenck, 1977;
Barratt, 1985; Monterosso and Ainslie, 1999; Whiteside and
Lynam, 2009). For many complex traits or psychological con-
structs (including impulsivity), self-report measures from ques-
tionnaires represent a gold standard. However, as they provide

a descriptive summary of processes that may be controlled by
factors not accessible through conscious introspection, they can
be subject to various confounds (Wilson and Dunn, 2004). A
promising alternative approach is to directly engage the subject
in a paradigm that unmasks pathological behavior and apply
a model that infers on the latent mechanisms underlying this
behavior. This notion is rapidly gaining attention, particularly
in the application to psychiatry (cf. “computational psychia-
try”; Moutoussis et al., 2011; Montague et al., 2012; Stephan
and Mathys, 2014), and represents the approach pursued in this
paper. To gain acceptance in the field, however, any model-based
approach of this sort will have to show construct validity with
respect to an established standard, i.e., a commonly used ques-
tionnaire (for a similar rationale, see Huys et al., 2012). In our
case, the BIS-11 represents one such widely accepted standard
way of assessing impulsivity, and we thus used this question-
naire as a reference point for demonstrating the plausibility of our
model-based characterization of impulsivity.

Formal modeling of the time series of responses during gam-
bling (whether pathological or not) has received surprisingly little
attention (one significant exception being Ligneul et al., 2012).
However, there have been several publications in the recent past
urging the community toward cognitive models of problem gam-
bling (i.e., Gobet and Schiller, 2011). Some analyses have been
motivated conceptually by reference to reinforcement learning
(RL) (Shao et al., 2013), but we are not aware of studies that have
directly applied a reinforcement-learning model to slot machine
gambling data. This may be because classical RL does not directly
relate to probabilistic inference on hidden states of the world per
se (e.g., states of slot machines) but assumes states and actions
to be given and accessible (Gershman and Niv, 2010). This lack
of an intrinsic concept of uncertainty (with respect to states of
the world) is not ideal for studying gambling behavior (Averbeck
et al., 2013; McGuire and Kable, 2013). This suggests the applica-
tion of Bayesian approaches, for which uncertainty is a core quan-
tity. Wetzels et al. (2010), for instance, use an Expectancy Valence
(EV) model to parameterize how subjects perceive wins and losses
when engaging in the Iowa Gambling Task (IGT), and argue for
the use of Bayesian cognitive models to explain gambling behav-
iors. Similarly, a recent call for increasing the role of mathematics
in the psychological intervention in problem gambling highlights
the need for further modeling approaches (Barboianu, 2013).

To yield mechanistic insights into gambling, we need to infer,
from measured behavior, the principles that govern an individ-
uals’ belief-updating processes. This can be achieved using a
Bayesian model of cognitive processes–one that illustrates how
sequences of latent states and their respective uncertainties are
transformed into observable responses. Bayesian models thus
allow for “triple inference,” with respect to perception (infer-
ence on states of the world), learning (estimating the parameters
that govern perceptual updates) and decision-making (the trans-
formation of beliefs into actions). These quantitative estimates
provide a more complete and mechanistically interpretable expla-
nation of behavior in an individual, reflecting perceptual and
decision-related nuances that simple summary statistics, such as
average accuracy or reaction time, may have hidden from the
experimenter (Mathys et al., 2011).
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In the present work, we treat the player as an (approxi-
mate) Bayes-optimal learner who invokes a hierarchical genera-
tive model of trial outcomes in order to infer on the probabilistic
structure of the game, allowing for optimal decisions under
uncertainty (cf. Daunizeau et al., 2010). Having seen a trial out-
come, the player updates his beliefs about trial-wise probabilities
of winning and how these change in time (i.e., whether the slot
machine is stable or volatile). Critically, these updates exhibit
individual approximate Bayes-optimality (Mathys et al., 2011),
governed by subject-specific parameters that couple the hierarchi-
cal levels of inference in the model. On any given trial, the ensuing
beliefs then provide a basis for a response model that prescribes a
probabilistic mapping from beliefs to responses.

A likely reason as to why there have been few attempts at for-
mal modeling of slot machine gambling may be that it is not
immediately obvious which of the many data features a naturalis-
tic slot machine paradigm affords should be used to formulate a
model for optimally predicting impulsivity (both in terms of sen-
sory inputs and motor responses). Notably, this cannot be decided
by standard statistical model comparison techniques since this
requires the data to be constant across models. Here, we address
this problem by examining construct validity. That is, for differ-
ent combinations of sensory and motor data features, we assess
the predictive power of the resulting model parameter estimates
in relation to an external and independent variable.

To summarize, in this proof of concept study we evalu-
ated the potential utility of a model-based approach to char-
acterizing gambling behavior, combining a naturalistic gam-
bling paradigm with generative (Bayesian) modeling to quantify
gambling-relevant aspects of impulsivity. For this, we sought to
establish construct validity in relation to standard questionnaire
measures of impulsivity. Specifically, we first tested 48 male par-
ticipants using a naturalistic slot-machine gambling paradigm
task where a variety of different gambling behaviors could be
expressed. We assessed the behavioral correlates in gambling
behavior with respect to the individuals’ impulsivity, as assessed
by the BIS-11 (Patton et al., 1995) and independently mod-
eled participants’ belief-updating mechanisms by a hierarchical
Bayesian framework (Hierarchical Gaussian Filter, HGF). Finally,
we examined whether the model parameter estimates would
predict the individuals’ impulsive traits (BIS-11 scores).

MATERIALS AND METHODS
EXPERIMENTAL PROCEDURE
Participants
Participants included 48 healthy male subjects (Table 1). All vol-
unteers gave written informed consent. The study was approved
by the ethics committee of the Faculty of Medicine at the
University of Cologne, Germany (study number 10-226). One
subject left the task early, and was excluded from the analyses.

The Barratt Impulsiveness Scale
The Barratt Impulsiveness Scale (version 11; BIS-11) was used
as an independent measure of impulsivity. It has a 50-year track
record in psychiatric diagnosis and was validated as a measure of
impulsivity in a series of studies (Moeller et al., 2001; Stanford
et al., 2009). Here, we used the German version of BIS-11 (Patton

et al., 1995). The BIS-11 is a 30-item self-report questionnaire
divided into 6 first-order and 3 second-order sub-scales (First-
order sub-scales: Attention, Motor, Self-control, Perseverance,
Cognitive Instability, Cognitive Complexity; Second-order sub-
scales: Attentional, Motor, Non-planning). We used the total score
as the external impulsivity measure in our analyses of construct
validity of computational models.

The Sensitivity to Punishment and Sensitivity to Reward
Questionnaire
The Sensitivity to Punishment and Sensitivity to Reward
Questionniare (SPSRQ) assesses the Behavioral Inhibition System
and the Behavioral Activation System in the two subscales
Sensitivity to Punishment (SP) and Sensitivity to Reward (SR),
respectively. The SR has been found to relate positively to the
Eysenck’s Impulsivity Inventory and also has a significant posi-
tive correlation with the Sensation-Seeking Scale (SSS) (Torrubia
et al., 2001). Here, we use this as a complementary scale, in
addition to BIS-11, to examine gambling; in contrast to other
impulsivity questionnaires, such as the UPPS Impulsive Behavior
Scale (Whiteside and Lynam, 2009), the BIS-11 lacks an isolated
sensation-seeking subscale, which we account for by using the
SPSRQ. In the context of gambling behavior the more relevant
measure will be the Sensivity to Reward subscale.

The South Oaks Gambling Screen
The South Oaks Gambling Screen (SOGS) is a self-administered
20-item questionnaire to screen for clincial populations with
problem and PG based on criteria stated by the third edition
of the Diagnostic Statistical Manual (DSM III). We assessed the
SOGS to account for potential confounds of PG behavior in our
analysis of impulsive gambling. The clincal cut-off of the SOGS
proposed by Lesieur and Blume (1987) is 5, while the cutoff
poposed by Tolchard and Battersby (1996) is 10. The mean score
of our healthy subjects was 1.12. 3 out of 47 subjects in our study
exceeded a SOGS score of 5, none of the subjects exceeded a SOGS
score of 10. As the SOGS has been reported to be overly sensi-
tive for assessments of the general population with a false positive
rate of 50% (Stinchfield, 2002), we decided to include all subjects
into the main analysis. We do not find a significant correlation
between the BIS-11 and the SOGS (r = 0.18, p = 0.2).

Slot-machine paradigm
We designed a naturalistic behavioral paradigm to approximate
the experience of true casino gambling by simulating a simple
Electronic Gambling Machine (EGM). In addition to flexibility
of design and ease of play, the literature suggests that EGMs have
a higher addiction potential than other gambling alternatives, and
increased access to these machines may lead to an increase in gam-
bling problems across the world, independent of cultural context
(Dowling et al., 2005; Lund, 2009). For these reasons, a slot-
machine experimental paradigm proved particularly appealing in
eliciting impulsive behavior from our subjects.

The features of the game, the design of slot-machines itself,
and the probability trace and pay-out percentage were inspired
by real slot machines in Swiss casinos, and allowed players sig-
nificant freedom to express different types of gambling behavior
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(Figure 1). To increase engagement in the task, participants gam-
bled with real money (20 Euros) that they symbolically received—
in addition to their show-up fee—before the start of the slot-
machine game. The actual payout (the sum of wins, losses, and
the show-up fee) took place after the game was completed. With
a view to future studies with PG patients, we designed the virtual
slot machine to resemble a realistic one, in the hope that this will
facilitate the emergence of underlying risk tendencies and allow
us to measure a broad spectrum of potentially relevant behav-
iors. We used industry-typical color and sound effects to increase
the subject’s engagement in the task, making the experiment as
entertaining and realistic as possible while keeping the response
options sufficiently simple such that subjects without previous
gambling experience could immediately understand the options
of the game. From a modeling perspective, a casino-like game
allows the experimenter to observe a rich set of behaviors that
go beyond trial-wise bets. For example, the behavior and self-
reports of many gamblers indicate that they are actively trying
to estimate whether a given machine is “hot” (i.e., whether it is
likely to produce wins) and switch to a new machine if it gets
“cold” (Parke and Griffiths, 2006). To review such behavior, our
paradigm offered four different slot machines, and the subject was
free to switch casinos and switch machines at any point in time.

Generally, at any point during the game, the player was able to:

• switch between four different slot machines,
• switch casinos and re-enter the casino on a new virtual day,
• add money from wallet to machine,
• place small or large bets on each trial,
• check the scores of different fruit combinations,
• accept the double-up (DU) option after a subset of wins.

Behavioral readout
Participants played 200 trials of the slot machine gambling task,
and could decide between 4 machines (see Figure 1) that differed
in their visual appearance but not in choice options. Players had
the option to switch between these machines at any point during
the game (machine switch, MS). Similarly, they could also leave
the virtual casino which would result in a cash-out of the money
that was currently on the machine. After a casino switch (CS),
participants had to reenter the casino on a “new day” in the vir-
tual world (while the underlying probability structure of the trials,
which was unknown to the subjects, continued) until they played
through a minimum number of 200 trials.

At the beginning of the game, participants could decide how
much of the money on their account they wanted to load into
the slot machine and which of the four machines they wanted to
play on. In each trial, they had to place one of two bets (low bet
= 20 Cents, high bet = 60 Cents) before starting the spinning of
all three wheels of the machine, one after another. After a delay
of 1 s, the wheels stopped spinning and displayed a combina-
tion out of 9 possible stimuli, all of which were pre-programmed
in the game. The magnitude of the win was determined by the
combination depicted; possible wins ranged from 5 Cents to 60
Euro (the Jackpot win for a large bet). Participants could look up
the win table at any point in time by pressing an extra button
on the machine. After 50% of the wins, the player was offered

a secondary gamble option, with a 50–50 chance of doubling
or losing the win amount (Figure 1). The decision to accept the
“DU” option had to be made within 3 s of the screen appearing,
enforcing rapid decision-making.

Perceptual input
To differentiate between different types of learning, we used
four different trial outcomes in the game: true wins, fake wins,
near-misses, and true losses (compare Figure 1). “True wins”
were wins, in which the monetary amount won was larger than
the original bet, whereas in “fake wins,” the monetary amount
received was smaller than the original bet placed. Fake wins have
been found to reinforce the sense of winning in slot machine
games, and were included here to identify whether these events
play a role in characterizing impulsivity (Jensen et al., 2013).
“Near-misses” refer to cases, where the bet was lost, but only
the last wheel was different (e.g., AAB). This type of trial out-
come has been shown to enhance gambling motivation, to lead
to physiological arousal and to activate reward-related brain areas
(Clark et al., 2009, 2012), all of which are related to subjective
skill-oriented cognitive gambling traits, such as illusion of control
(Billieux et al., 2012). Finally, “true losses” were cases in which all
symbols depicted were different. Upon winning, the player expe-
rienced one of two different win banners (Figure 1), depending
on the size of the win, where the distinction of “mega win” was
reserved for the top three largest win amounts. In the case of fake
wins, the same win-banner was shown to the player as for true
“non-mega” wins.

Underlying game structure
To ensure comparable inference trajectories, each participant
played the same sequence of 200 trials (with pre-determined
win/loss outcomes), but was given the option to continue gam-
bling past the end of this period if he desired. For comparison
across subjects and modeling purposes, we analyse performance
over the 200 trials only. Because the sequence of probabilities
and reward levels were fixed across subjects, variability in perfor-
mance could only result from the subject’s own betting behavior
and choices to engage in the DU option. Through systematic
simulations, we chose a trace of probabilities and reward levels
such that the mode of the return-to-player (RTP) for all types
of potential bet combinations was around 90%, which is higher
than the minimum required return to player of 70%, as stip-
ulated by norms for actual casino RTPs (Gaming Laboratories
International, 2011). The trace accounts for numerous relevant
variables that may determine gambling behavior:

• 40% of the trials were wins,
• 50% of the wins were fake wins,
• 50% of the winning trials were followed by a DU option,
• 18% of trials were near misses,
• pre-determined winning and losing streaks.

Figure 2 depicts two exemplary performance traces for two sub-
jects with BIS-11 score below (55) and above average (73).
Behavioral readouts are overlaid in different colors. Notably, the
more impulsive subject showed more behavioral activation and
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FIGURE 1 | Structure of slot machine game. After introductory instructions
and 5 training trials, the player “enters the casino.” He or she is then made to
chose a machine, place a bet and pull the lever. As in a standard slot machine,
the player watches the wheels spin and is then shown the trial outcome. On
50% of the win trials, the player is allowed to engage in a double-up option.
He or she is given 3 seconds to decide whether or not to gamble. On any
given trial, the player can also choose to switch the machine or switch

between casino visits (not shown). The trial outcomes can be clarified as
follows: “true wins” (small and big) were wins, in which the monetary
amount won was larger than the original bet. “Fake wins,” were trials in
which the monetary amount received was smaller than the original bet
placed. “Near-misses” are trials in which the outcome of the trial was a loss,
but only the last wheel was different (e.g., AAB), and true losses are trials in
which the amount bet was greater than the amount won.
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FIGURE 2 | Two exemplary performance traces for subjects with

different BIS-11 scores. (A) Subject with BIS-11 score below average (55).
(B) Subjects with BIS-11 score above average (73). Gray trace, performance
over the course of the game in EUR. Colored dots are overlayed to the
performance trace and reflect events of interest in a particular trial. MS

(orange), machine switch; CS (green), casino switch; DU (blue), double-up; BI
(red), bet increase. Notably, the more impulsive a subject (i.e., the higher a
subject’s BIS score), the more the subject exhibited behavioral activation
throughout the game, and in particular, in the more volatile phases of the
paradigm.

risk-seeking behavior throughout the game, in particular during
the more volatile phase.

DATA ANALYSIS
In addition to computational modeling described below, we used
classical multiple linear regression for analyzing the behavioral
data and for evaluating the construct validity of computational
models (i.e., testing relations between model parameter estimates
and BIS-11 scores). These analyses were performed using the
regstats function in the MATLAB Statistics Toolbox. To determine
how much the variance of an estimated regression coefficient
increased due to collinearity, we estimated the variance infla-
tion factor (VIF) for each regressor. In all analyses, a p-value
of <0.05 was considered significant; multiple tests were corrected
for by Bonferroni correction. For model comparison we used the
Bayesian Information Criterion (BIC).

COMPUTATIONAL MODELING
Generic considerations
This paper is concerned with a proof of concept demonstration
that generative modeling of gambling behavior can yield mech-
anistic descriptions of impulsivity in terms of individual beliefs
and belief-to-response mappings. A generative model is a model
which provides a joint probability distribution over all random
variables involved (e.g., observations and parameters). It specifies
a forward mapping from hidden parameters and states to measur-
able observations. Here, we will consider generative models which
are formulated under the “observing the observer” framework

(Daunizeau et al., 2010). Such models allow the experimenter to
infer upon the hidden states and parameters of an agent or subject
engaged in a task.

Critically, this class of models generate two things: sensory
inputs and motor responses. Therefore, when specifying a gen-
erative model of gambling, one must consider what aspects of
the sensory input administered and the behavioral responses
observed are to be predicted by the model. First, the player’s inter-
nal belief updating (mediated by the “perceptual model”) could
be informed by different aspects of trial outcomes to which he
has sensory access (“perceptual variables”). For example, does he
treat near-misses similar to wins of any sort, and does he distin-
guish between true wins and fake wins? Secondly, how is a given
belief transformed into a behavioral response or choice? A partic-
ular belief-to-response mapping constitutes what we refer to as a
“response model.” Importantly, in a naturalistic paradigm, many
different aspects of behavior can be observed (e.g., bets, DUs, MS,
etc.), and, similar to the perceptual variables above, a choice has
to be made regarding what the most relevant data features are that
should be predicted by the generative model. In other words, gen-
erative models could be constructed for different combinations of
perceptual and response variables.

In principle, finding the optimal model can be accomplished
by means of Bayesian model selection (BMS), which evaluates
the relative plausibility of competing models in terms of the log
evidence (MacKay, 2003) and represents a principled trade-off
between model fit and model complexity. However, a condition
for BMS is that the competing models predict identical data. This
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means that BMS can only proceed if both perceptual and response
variables are identical.

To deal with this issue, we implement a two-stage model selec-
tion in this paper. As described in the next section, we consider
five different “core models;” each of these represents a particu-
lar combination of a perceptual and a response model. We then
consider three different perceptual variables and four response
variables; this results in 12 sensory-motor datasets. For any of
these datasets, we can invert all five core models and select an
optimal model using BMS. In a second step, we can evaluate the

Table 1 | Descriptive statistics.

Characteristics Participants

Number, Gender 47, M

Age (years) 26 (3.5; 20 − 37)

BIS-11 total 65.19 (8.07, 51 − 86)

BIS-11 subscales

Attentional Attention 9.8 (2.09; 6 − 14)

Cognitive instability 6.9 (1.2; 5 − 10)

Motor Motor 15.8 (3.0; 10 − 25)

Perseverance 7.7 (1.6; 5 − 13)

Non-planning Self-control 13.0 (2.6; 8 − 18)

Cognitive complexity 11.8 (2.2; 6 − 16)

SPSRQ SR 12.5 (3.8; 6 − 20)

SP 8.6 (5.4; 0 − 20)

SOGS 1.12 (2.12; 0 − 9)

Behavioral readout

BI % 0.05 (0.4; 0 − 0.21)

DU % 0.53 (0.25; 0 − 1)

MS % 0.05 (0.07; 0 − 0.39)

CS % 0.07 (0.08; 0 − 0.29)

Group means are reported with standard deviation and range in parentheses.

BIS-11, Barratt Impulsiveness Scale (maximum score: 120); SPSRQ, Sensitivity

to punishment and reward questionnaire; SR, Sensitivity to Reward; SP,

Sensitivity to Punishment (maximum scores: 24); BI%, Bet increase percent-

age; DU%, Double-up percentage (in cases a double-up was offered); MS%,

Machine switch percentage, CO%, Casino switch percentage.

relative goodness of these 12 selected models by assessing their
construct validity against an external measure of impulsivity. To
this end, we use an independent questionnaire-based measure of
impulsivity (the BIS-11) and perform multiple regression analy-
ses of individual parameter estimates on individual questionnaire
scores, as described below.

Following this general overview of our modeling strategy, the
following paragraphs will unpack these ideas and specify both the
perceptual and response variables considered as well as the form
of the generative models employed.

Perceptual variables
We considered the three following pereptual variables which refer
to binary trial outcomes and are summarized in Table 2 (where
win is coded as 1 and loss as 0): (i) Win/Loss Gross (WLG); this
case treats real wins and fake wins as wins and near-misses as
losses; (ii) Win/Loss Net (WLN); this option only considers real
wins as wins and treats fake wins and near-misses as losses; (iii)
Overlearn (OL), where real wins, fake wins and near-misses are
all considered as wins.

Response variables
A naturalistic paradigm like ours allows for numerous readouts
of behavior, and thus, many possible response variables. Here, we
consider several combinations of readouts as candidate response
variables. As our intention is to explain how impulsivity is
manifested in a gambling paradigm, we use the BIS-11 to inform
the choice of response variables. Across factor analyses of the
BIS-11, conducted by Barratt (1985) and Patton et al. (1995),
respectively, the 2 second-order subscales, which were found
consistently include Motor Impulsiveness (the inclination to act
spontaneously and aimlessly) and Non-planning Impulsiveness
(the lack of future orientation and consideration of risks).
Guided by these two BIS-11 subscales, we focus on four candidate
response variables, bet increase (BI), double-up (DU), casino
switches (CS), and machine switches (MS). Specifically, we
considered nested combinations of these actions as response vari-
ables (see Table 2 and Figure 5). BI and DU reflect Non-planning
Impulsiveness, whereas CS and MS are best characterized by
Motor Impulsiveness. Quantitatively, we represent the players’
trial-by-trial responses for each of these variables in a binary

Table 2 | Composition of perceptual and response variables for the computational modeling.

Composition of model variables True win Fake win Near-miss True loss BI DU CS MS NS

PERCEPTUAL VARIABLES

WLN 1 0 0 0 – – – – –

OL 1 1 1 0 – – – – –

WLG 1 1 0 0 – – – – –

RESPONSE VARIABLES

{BI} – – – – 1 0 0 0 0

{BI, DU} – – – – 1 1 0 0 0

{BI, DU, CS} – – – – 1 1 1 0 0

{BI, DU, CS, MS} – – – – 1 1 1 1 0

Variables are binary and composed on a trial-by-trial basis for each of combinations shown. WLG, Win/Loss Gross; WLN, Win/Loss Net; OL, Overlearn; BI, Bet

increase; DU, double-up; CS, casino switch; MS, machine switch; NS, no switch (no change in behavior). Wins are encoded as 1, losses as 0.
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fashion and apply a boolean OR operator to the respective
response set (Table 2).

The reinforcement-learning and Bayesian models we consider
below link the expression of the above responses to the agent’s
internal beliefs and their uncertainy. Simply speaking, we are
modeling an agent for whom stronger beliefs of winning lead to
increasingly risk-seeking behavior and, at the same time, result in
an increasing frequency of erratic and sensation-seeking behavior
in terms of CS and MS. Critically, this probabilistic link between
beliefs and actions is governed by a subject-specific parame-
ter which, in some of the models described below, becomes a
function of the agent’s trial-wise uncertainty.

CORE MODELS
Hierarchical Gaussian Filtering
As motivated in the Introduction, this paper adopts a Bayesian
perspective on gambling. Specifically, we use a hierarchical
Bayesian belief-updating model, the HGF shown in Figure 3,
to infer upon the underlying belief structure guiding individ-
ual gambling behavior and its relation to an individual’s level of
impulsivity (Mathys et al., 2011, unpublished work). The HGF
represents a generic generative model of the sensory inputs an
agent receives. It consists of hierarchically coupled Gaussian ran-
dom walks, where this coupling is specified by subject-specific
parameters.

To illustrate its general structure, let us assume that we track
a quantity x1 in our environment which evolves as a Gaussian

random walk. Let us now characterize the variance of this random
walk as a function of a higher level, x2, which is itself a Gaussian
random walk. x2 now controls the step size of the random walk
performed at the first level via some transformation function f,
and thus determines our uncertainty about x1. We can continue
this hierarchical coupling up to some n-th level:

x(k)
i ∼ N

(
xk − 1

i , fi(xi + 1)

)
, i = 1, . . . n − 1 (1)

where a parameter ϑ determines the step-size on the highest
level n:

x(k)
n ∼ N

(
x(k − 1)

n , ϑ
)

(2)

Perceptual model of the HGF
Figure 3 shows the graphical model and the equations of a stan-
dard three-level HGF which we are using for the present analyses.
In this model, the lowest level, x1, corresponds to the perceived
variable (e.g., a win), barring sensory noise (which is negligible
in our case). The second level represents the evolution of the
probability of trial outcomes over time. Critically, its variance
depends on the third level which, in turn, represents the stabil-
ity of the environment (log-volatility). In our context, this model
describes how the player updates his beliefs about trial outcome
probabilities under the influence of a higher belief of how these
probabilities change in time (i.e., whether the slot machine is
stable or volatile).

FIGURE 3 | Schematic of Hierarchical Gaussian Filter (HGF). Different
levels of the hierarchy encode a subject’s estimates of different characteristics
of environmental uncertainty. The first level, x1, follows the trajectory of the
perceived variable in the environment, in the absence of perceptual noise. The

second level, x2, tracks the probability of trial outcomes over the course of the
paradigm. The step-size of the random walk by x2 depends on the highest
level, x3, that tracks the global volatility of the environment. This three-level
system underlies the player’s belief-updating process during the game.
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By linking beliefs to choices via a response model, we can invert
this model given measured responses; for details, see Mathys
et al. (2011, unpublished work). This model inversion allows
for inference on subject-specific model parameters, and thus, on
an individual’s hierarchical belief trajectories and their associ-
ated uncertainties. Notably, the posterior estimates of subject-
specific model parameters describe an individual’s approximation
to Bayes-optimal behavior.

In the HGF, model inversion rests on a variational approxima-
tion to full Bayesian learning which results in simple analytical
belief update equations (for a detailed derivation, see Mathys
et al., 2011). Intuitively, one would imagine that a belief update
occurs when an agent compares the predicted to the actual sen-
sory input, calculates an error term, and then back-propagates
this error up the hierarchy to adjust beliefs at all levels. In the HGF,
this occurs by passing back a prediction error that is weighted by
precision (inverse uncertainty). This precision term is (propor-
tional to) the inverse step size of the Gaussian random walk on
different levels.

The belief update equations generalize to the following form:
At any level i of the hierarchy, the belief on trial k (posterior

mean μ
(k)
i of the state xi) is updated in proportion to a precision-

weighted prediction error ε
(k)
i ; this is the product of the predic-

tion error δ
(k)
i − 1 from the level below and a precision ratio �

(k)
i :

μ
(k + 1)
i − μ

(k)
i ∝ �

(k)
i δ

(k)
i − 1 = ε

(k)
i (3)

where

�
(k)
i = π̂

(k)
i − 1

π
(k)
i

(4)

Here, π̂ (k)
i − 1 represents the precision of the prediction about input

from the level below, and π
(k)
i represents the precision of the belief

at the current level. Finally, the prediction error δk
i − 1 is simply

the difference between the actual value of a state (e.g., stimulus at
the lowest level of the hierarchy) and our expectation of its value:

δk
i

def= μk
i − μ̂k

i (5)

The equations above show that our network updates in a
manner similar to RL, in which the model trains on the error
signal between model predictions and observed data. A key
difference, however, is that the HGF not only provides estimates
of states, but also of their uncertainty (posterior variance or
precision); enabling a precision-weighting of prediction errors.
This precision weighting means that prediction errors lead to
greater updates the more precise (less uncertain) predictions
are. The HGF thus takes into account estimates of uncertainty
about the hidden hierarchically related processes which generate
sensory inputs. The detailed update equations for precisions (or
uncertainties) can be found in Mathys et al. (2011).

What do the parameters mean?
The HGF described above represents a Bayesian player who
updates his beliefs about trial outcome probabilities (at the 2nd
level) under the influence of a higher belief (at the 3rd level)
of how these probabilities change in time, i.e., whether the slot

machine is currently stable or volatile. This model has four
parameters of interest: three perceptual parameters (κ , ω, ϑ), and
one response parameter (β) which is described below.

κ and ω determine the step size of the random walk on the
second level of our hierarchy. Both of them contribute different
aspects of volatility: while ω is a fixed component of step size
variance at the second level, κ scales the influence of the third
level on the step size variance of the second level and can thus be
seen as a mediator for the dynamic component of volatility. The
analyses presented in this paper fix κ to unity, because of identi-
fiability problems that arise under some of the response models
chosen here. ϑ determines the step-size of the random walk on
the third level; in a sense, it represents an agent’s a priori belief on
the precision of his own inference at the second level. Collectively,
these subject-specific model parameters describe the coupling of
belief updates across levels and thus an individual approximation
to Bayes-optimal behavior.

Response model of the HGF
To model the players’ responses we use a softmax function, in
which we vary the nature of the decision temperature, β, in
Equation 6. This function describes a sigmoidal mapping from
the gambler’s beliefs to his chosen action:

p(y) = 1(
1 + exp

(−2β · x̂1
)) (6)

The free parameter β encodes the curvature of the softmax, and
thus decision noise, x̂1 is the present prediction of trial outcome
probability, and y is the binary response variable. An intuitive
interpretation of β is that it specifies how deterministically a
subject’s actions follow from his/her beliefs. The larger β, the
steeper the softmax curve, increasingly resembling a step func-
tion, and thus the more deterministic the relation between beliefs
and actions. Conversely, as β gets smaller decisions become less
determined by beliefs, i.e., choices become more stochastic or
exploratory.

We consider four classes of response models that will be tested
on each of the four aggregate response variables (see section
Response Variables). Here, we vary the nature of β (Models 1–3)
or the argument of our softmax response function (Model 4) (see
Figure 4):

• Model 1: β(k) = constant, the decision noise is a subject-
specific, static feature which is independent of any higher level
beliefs and which is estimated as a free parameter. The response
model is then p(y = 1) = softmax(x1, β).

• Model 2: β(k) = 1/σ
(k)
2 , where σ

(k)
2 is the trial-wise uncertainty

(about winning probability) on the second level of the percep-
tual model. The response model is then p(y = 1) = softmax(x1,
1/σ2).

• Model 3: β(k) = 1/exp
(
μ

(k)
3

)
, where μ3 is the log-volatility.

The response model is then p(y = 1) = softmax(x1,
1/exp(μ3)).

• Model 4: p(y = 1) = softmax(4σ1, β), where σ 1is the trial-wise
uncertainty about winning probability on the first level of the
perceptual model, and β is a free parameter as in Model 1.
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FIGURE 4 | Overview of the 5 core models tested. Model 1–4 are
different types of the HGF that differ in the response model used, whereas
Model 5 is a classical Rescorla-Wagner Model with a standard softmax
response function.

Using a fixed value for β as in Model 1 is the standard formulation
by which computational models employ the softmax function.
By contrast, in Models 2 and 3, β turns into a dynamic quan-
tity, which depends on trial-wise estimates of uncertainty (about
the estimating winning probability, Model 2, and log-volatility,
Model 3). This model space is motivated by the following ratio-
nale: both σ2 and exp(μ3) encode for aspects of uncertainty in
the perceptual model, and higher uncertainty about one’s esti-
mates should lead to less reliance on one’s beliefs when choosing a
decision; i.e., more exploratory behavior. This would be expressed
by a more gentle slope of the softmax curve and a lower β-
value. Conversely, low uncertainty about one’s estimates should
map onto a steeper, more deterministic softmax curve which cor-
responds to a higher β-value. For this reason, σ2 and exp(μ3)
both enter the decision model as inverses. Finally, Model 4 was
inspired by a response model in Vossel et al. (2014) but for-
mulated slightly differently. Here, we imagine an agent who is
more sensation-seeking, erratic and risk-taking the higher his
trial-wise uncertainty about winning probability. This uncer-
tainty corresponds to the variance of a Bernoulli distribution
at the first level of the perceptual model and takes a maximum
value of 0.25 for x̂1 = 0.5. Using a scaling factor of 4 ensures
that this argument enters the softmax appropriately, such that
the maximum leads to the greatest probability of eliciting a
response.

All HGF analyses were done in the context of the HGF Toolbox
Version 2.1 which is freely available as part of the open source
software package TAPAS (http://www.translationalneuromode-
ling.org/tapas/).

Reinforcement learning model
While hierarchical Bayesian learning is an appealing model to
describe belief updating during gambling, we need to evaluate
its suitability in comparison to simpler (non-hierarchical) models
(Model 5, Figure 4). In particular, this includes RL models which
have found application in some analyses of gambling tasks (e.g.,
Oya et al., 2005; Kafidindi and Bowman, 2007). Having said this,
we are not aware of any RL analyses of trial-wise data from casino
slot machine gambling. Here, we focus on one of the most generic
and widely used RL models, the Rescorla–Wagner (RW) learning
model (Rescorla and Wagner, 1972).

The RW model is a trial-wise learning model, originally devel-
oped for estimating associative learning mechanisms in condi-
tioning. It is also frequently used in a reduced form, for example,
for estimating on-line the probability of a trial-wise outcome;
this is the form we use here. Updates are governed by prediction
errors, scaled by a fixed learning rate:

V (k) = V (k − 1) + α
(
λ(k) − V (k − 1)

)
(7)

where V is the estimate of probability (of a specific outcome
in trial k), α is known as the learning rate, and λ is actual
outcome.

Here, we use the RW model as a perceptual model and com-
bine it with a standard softmax function with a free parameter β

encoding decision noise (see Model 1 above).

MODEL SELECTION
In this paper, we adopt a two-stage model selection procedure
that evaluates different models with regard to two things: how
well a model explains a given set of perceptual and response data
features (step 1—BMS), and for which of these different data fea-
tures the parameters of an optimal model best predict an external
measure of impulsivity (step 2—construct validity).

Model selection stage 1—Bayesian model comparison
As described above, first, we consider five different “core models”
(Figure 4), each of which combines a particular perceptual
and a particular response model. These five core models are
inverted using 12 different sets of data features, which result
from combining three alternative perceptual variables with four
alternative response variables (Table 4 and Figure 5). The best
of the five core models for a given dataset is selected via
Bayesian model comparison. This rests on the log evidence, a
principled index of a model’s trade-off between fit and com-
plexity (MacKay, 2003). Critically, BMS implementations exist
which can deal with heterogeneity across subjects and enable
proper random effects group-level inference (Stephan et al.,
2009).

The approach we employ in the present analyses is that of
approximating the log evidence by negative free energy. The free
energy is an upper bound approximation to the agent’s sur-
prise about seeing the data and, in contrast to the log-evidence
which is analytically intractable for all but the simplest mod-
els, can be computed as part of model inversion by means of
variational Bayesian (VB) optimization (see Mathys et al., 2011,
for the procedure used by the HGF). For further details on
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FIGURE 5 | Model selection stage 1. For each pairing of a perceptual
variable with a response variable, Bayesian model comparison was
performed, yielding an optimal model (penumbra) for this combination of
perceptual/response data features. This optimal model then entered stage 2
(construct validation). Model selection stage 2. To determine the best model
with respect to an external measure of impulsivity, we regressed individual

BIS-11 scores on model parameter estimates from the 12 models (one for
each pair of perceptual variable and response variable) provided by model
selection stage 1. The winning model is picked using a BIC comparison
across regression models, to account for differing model complexities.
BIS-11, Barratt Impulsiveness Scale; WLN, Net Win/Loss; BI, bet increase;
DU, double-up.

model comparison using free energy, please see Penny (2012) and
Stephan et al. (2009).

Model selection stage 2—construct validation against external
criteria
Having selected an optimal model for each of the 12 sets of data
features, we can evaluate the models’ construct validity, i.e., how
well they predict an external measure of impulsivity. For this
purpose, we use the independent questionnaire scores of impul-
sivity (BIS-11) and perform multiple regression analyses on the
model parameter estimates. In this case of competing predic-
tions based on multiple regression models, potential differences
in model complexity (due to differences in the number of genera-
tive model parameters and thus number of resulting regressors)
can be corrected using the BIC. The significance of the ensu-
ing best prediction is adjusted for multiple tests using Bonferroni
correction.

RESULTS
IMPULSIVITY EXPRESSED IN SLOT MACHINE GAMBLING BEHAVIOR
We used a multiple regression analysis to predict impulsivity from
the behavioral read-outs of the slot machine game (BI%, DU%,
MS%, CS%). Together, these behavioral measures explained 32%
of the variance in the individuals’ BIS-11 scores [F(3, 46) = 4.72,
p < 0.001]. Individually, only BI percentage was significant (see
Table 3); this also survived Bonferroni correction.

Table 3 | Multiple regression analysis for BIS-11 total scores and

behavior.

Independent R2 F BIC B b T p-value

Variables (p-value)

BI% 67.34 0.40 2.78* 0.008

DU% 6.12 0.19 1.42 0.163

MS% 6.52 0.05 0.34 0.736

CS% 19.33 0.20 1.32 0.194

Total 0.32 4.84 (0.0027) −29.52

Regression of BIS-11 scores on 4 major behavioral readouts. BI%, bet increase

percentage; DU%, double-up percentage; MS%, machine switch percentage;

CS%, casino switch percentage; BIC, Bayesian Information Criterion; B, unstan-

dardized regression coefficient; b, standardized regression coefficient; Bonferroni-

corrected significance level: α = 0.0125; T, T-Test; F, F-Test; *p < 0.0125.

COMPUTATIONAL MODELING
Model selection stage 1—Bayesian model comparison
In order to determine which of the five core models (Figure 4)
best explained each of the 12 different data feature sets,
resulting from combining three perceptual variables (WLG—
treating real wins and fake wins as wins; WLN—treating only
real wins as wins; OL—treating real wins, fake wins, and
near-misses as wins; see Table 2) with four response variables
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({BI}, {BI, DU}, {BI, DU, CS}, {BI, DU, CS, MS}), we used
BMS. This enabled us to identify, for each of the perceptual-
response feature sets, the model with the highest posterior
probability (Figure 6). These selected 12 models then entered
a second stage of model comparison, where we examined
the construct validity of these models by testing how well
their parameter estimates predicted the independent BIS-11
scores.

Model selection stage 2—external validation
To determine which of these 12 selected computational models
best predicts impulsivity, we used multiple regression to
test how well their parameter estimates predicted the BIS-
11 scores (Figure 5, Table 4). As the computational models
vary in the number of free parameters (e.g., some do not
include a free parameter for decision temperature β) and
thus the regression models differ in the number of regres-
sors, we use the BIC to compare the regression models.
We find that the core model 2 (an HGF with second-level
uncertainty governing decision noise in the response model;
Figure 4) with perceptual variable WLN and response variable
{BI, DU, CS, MS} best explains the BIS-11 scores (highlighted
in dark gray in Table 4). Two other variants of core model
2 had a similar but slightly smaller BIC value (light gray in
Table 4).

Together the model parameters of the winning model
explained 28% of the variance in the individuals BIS-11

scores [F(1, 46) = 8.66, p = 0.0007, R2 = 0.28]. Note that this
model-based prediction of BIS-11 scores is significant, even after
Bonferroni correction.

HGF parameter estimates
In a next step, we used the parameter estimates of the win-
ning model (core model 2, perceptual variable: WLN, response
Variable: {BI, DU, MS, CS}) and examined their relation to the
subscales of the BIS-11, the SPSRQ, and the behavioral read-
outs of the game using linear regression (see Table 5, for details).
Across subjects, the average posterior means of the parameters
(±SD) were: ω: −4.08 ± 1.36; ϑ : 0.05 ± 0.01. Together the
model parameter estimates explained 29% of the variance in Non-
planning subscale scores [F(1, 46) = 8.61, p < 0.006] and 15% of
the variance in Motor Impulsiveness subscale scores [F(1, 46) =
3.86, p < 0.029]; the latter, however, did not survive Bonferroni
correction. Post-hoc t-tests showed that both ω [t(47) = 2.98,
p < 0.004] and ϑ [t(47) = 2.10, p < 0.04] contribute to predict-
ing Non-planning impulsiveness. The model parameter estimates
also predict sensitivity to reward, as measured by the SPSRQ
subscale [F(1, 46) = 3.72, p < 0.032]; however, again this did not
survive Bonferroni correction. We did not find a relation between
the model parameters and Sensitivity to Punishment (SP)
(Table 5).

Finally, the model parameters (ω and ϑ) predicted all main
behavioral readouts from our paradigm (BI, MS, CS, and DU per-
centage), which survived Bonferroni correction for CS, MS, and

FIGURE 6 | Summary of model comparison results across all 12 classes

of 5 models each (i.e., 5 optimal core models for each perceptual

variable/response variable pairing). The posterior expectation of model
probability, obtained from a random effects Bayesian model selection
procedure, is plotted on the y-axis. The perceptual variables span the x-axis;
the response variables span the y-axis. WLG, Win/Loss Gross; WLN,
Win/Loss Net; OL, Overlearn; BI, bet increase; DU, double-up; CS, casino

switch; MS, machine switch; M1, M4 are the HGF core models listed in the
Response Model section. RW, Rescorla–Wagner Model. The models tested
in Table 4 are indicated with an asterisk. From the analysis presented, core
model 2 (an HGF with second-level uncertainty instructing the decision noise
in the response model) trained on perceptual variable WLN and response
variable {BI, DU, CS, MS} best explains the BIS-11 scores and is the winning
generative model of impulsivity.
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Table 4 | Second-stage model comparison.

Perceptual Response Bayesian model B (b) Regression statistics

variable variable selection:

Winning core

model

ω ϑ β F (p-value) BIC

WLG {BI} M1 −0.63 (−0.08) −17.05 (−2.11) −0.04 (−0.28) 2.10 (0.115) −33.59

WLN {BI} M2 1.96 (0.24) 177.22 (21.95) – 6.77* (0.003) −28.23

OL {BI} M3 −1.37 (−0.17) 243.11 (30.12) – 1.75 (0.186) −33.39

WLG {BI, DU} M1 −0.83 (−0.10) 805.71 (99.81) −0.12 (−0.34) 5.85* (0.002) −28.42

WLN {BI, DU} M2 4.50 (0.56) 211.64 (26.22) – 7.92* (0.001) −27.30

OL {BI, DU} M3 −0.93 (−0.11) 956.78 (118.53) – 0.52 (0.598) −35.00

WLG {BI, DU, CS} M1 −0.96 (−0.12) 48.01 (5.95) −0.18 (−0.39) 3.92 (0.015) −30.81

WLN {BI, DU, CS} M2 3.39 (0.42) 168.13 (20.83) – 7.95* (0.001) −27.27

OL {BI, DU, CS} M3 0.27 (0.03) 404.38 (50.10) – 1.50 (0.234) −33.70

WLG {BI, DU, CS, MS} M1 −0.44 (−0.05) −28.86 (−3.57) −0.16 (−0.41) 3.12 (0.036) −31.96

WLN {BI, DU, CS, MS} M2 2.42 (0.30) 243.64 (30.18) – 8.67* (0.001) −26.72

OL {BI, DU, CS, MS} M3 −1.35 (−0.17) 1687.64 (209.07) – 3.03 (0.059) −31.88

Multiple regression of BIS-11 scores on model parameters ω and ϑ (and β, when existing). The top three models (in terms of BIC) are highlighted in gray; the

best model (highest BIC) in dark gray. B, unstandardized regression coefficient; b, standardized regression coefficient; BIC, Bayesian Information Criterion; WLG,

Win/Loss Gross; WLN, Win/Loss Net; OL, Overlearn; BI, Bet increase; DU, double-up; CS, casino switch; MS, machine switch; M1-3, Model 1-3; ω, the variance of

the second level inference; ϑ , variance of the third level inference; β, decision temperature; *Indicates significant F-test statistics (p < 0.05), Bonferroni-corrected at

α = 0.004.

Table 5 | Behavioral and BIS-11 Regressions on model parameters.

Dependent variables B (b) R2 F p-value

ω ϑ

BIS-11

BIS-11 Total 2.42 (0.30) 243.64 (30.18) 0.28 8.67* <0.001

BIS-11: Attentional 0.36 (0.14) 57.25 (21.79) 0.08 2.03 0.143

BIS-11 Motor 0.93 (0.25) 55.65 (14.67) 0.15 3.86 0.029

BIS-11: Non-planning 1.12 (0.29) 130.75 (33.51) 0.29 8.91* <0.001

SPSRQ

SR 0.48 (0.12) 140.93 (36.34) 0.14 3.72 0.032

SP −0.14 (−0.03) 95.83 (17.62) 0.02 0.44 0.645

BEHAVIORAL READOUT

BI% 0.02 (0.48) −0.54 (−0.09) 0.21 5.95 0.005

DU% 0.09 (0.47) 2.63 (0.08) 0.25 7.37* 0.002

MS% 0.03 (0.64) −0.50 (−0.06) 0.40 14.44* <0.001

CS% 0.04 (0.74) 0.06 (0.06) 0.57 29.42* <0.001

ω and ϑ - model parameters of winning model (Model 2, Perceptual variable: WLN, Response Variable: {BI, DU, MS, CS}) regressed on total BIS-11, SPSRQ

and behavioral readout. B, unstandardized regression coefficient; b, standardized regression coefficient; BIS-11, Barratt Impulsiveness Scale; SPSRQ, Sensitivity to

Punishment Sensitivity to Reward Questionnaire; BI%, bet increase %; DU%, double-up %; MS%, machine Switch %; CS%, casino switch %. *Indicates significant

F-test statistics (p < 0.05). Bonferroni-corrected significance level: α = 0.005.

DU (Table 5). Post hoc t-tests showed that there is a significant lin-
ear relationship between for CS and ω [t(47) = 7.22, p < 0.001],
but not ϑ [t(47) = 0.58, p < 0.56].

DISCUSSION
This study aimed to evaluate the utility of computational mod-
eling in characterizing slot-machine gambling behavior under
realistic conditions and establish construct validity in relation

to standard questionnaire measures of impulsivity. To this end,
we created a naturalistic slot-machine paradigm to accrue real-
istic behavioral readouts from a group of healthy subjects and
used a hierarchical Bayesian model of individual learning and
decision-making to model the paradigm outputs.

The task builds upon previous research using slot machine
tasks to explore gambling (e.g., Shao et al., 2013), but adds various
degrees of freedom and realism, such as increasing the amount
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of the bet placed, machine switching, casino visits, and the DU
option. Overall, we find that impulsivity as measured by the
BIS-11 score was significantly related to an exploration of these
game features. Impulsive subjects showed a stronger tendency to
increase their bet size, switch between machine and casino visits
and engage in a double-up option; an example of such a player is
shown in Figure 2. The predictive importance of BIs for impulsiv-
ity (Table 3) is in line with studies on on-line gambling showing
that gamblers with the highest levels of gambling severity exhibit
the largest variance in their bet behavior (Adami et al., 2013).
While the other gambling options were not correlated with BIS-11
scores when considering the “raw” behavioral data, our modeling
results suggest that they jointly predict BIS-11 scores better than
BIs alone (Table 4).

The mechanistic model aims at formalizing how humans solve
the task at hand on a computational level. It relates poten-
tial beliefs and their evolution over time to behavioral choices.
Variability across individuals within this process is captured by
subject specific parameter estimates that can then be related to
traits of the individual like impulsivity. To unearth this hidden
information, the models have to consider (i) what information of
the game players are using in order to infer their chances of win-
ning on a trial by trial basis (perceptual variables), (ii) how they
update their beliefs over time and express these beliefs through
actions (core models, each representing a particular combination
of perceptual and response models), and (iii) which aspect of the
observed responses should be used for estimating model parame-
ters (response variables). As described above, we use a two-step
procedure that combines initial BMS (of the core model best
explaining a given data set of perceptual and response variables)
with subsequent construct validation through multiple regression
(of parameter estimates from this selected core model on BIS-11
scores).

Concerning the first step of our procedure (BMS), Figure 6
shows that the choice of the perceptual variable has a much
stronger impact on the posterior probabilities of the models than
the choice of the response variable. The reason for this is sim-
ply that the perceptual variables differ much more from another
than the response variables. With regard to the latter, the four
response variables are nested in each other and are dominated
by the frequent occurrences of BIs. By comparison, CS, and MS
are less frequent and their addition to BI does not change the
resulting response variable dramatically. In contrary the percep-
tual variable changes substantially depending on whether “fake
wins” (which constitute 50% of all wins) are considered as wins
or losses.

Following this procedure, the model with the highest con-
struct validity is one which assumes that players (i) learn the Net
Win/Loss probability of the game, that is, they consider only true
monetary wins, (ii) update their beliefs based on their respec-
tive uncertainty on a trial by trial basis, and (iii) perform any
action in the game (BI, MS, etc.) based on the belief about win-
ning and loosing, and its respective uncertainty. It is notable that
not all of our optimal core models significantly predict individual
BIS-11 scores (Table 4); that is, the selection of the most infor-
mative trial-wise perceptual and response variables is crucial for
predicting impulsivity by computational models.

The parameter estimates from the optimal model (ω and
ϑ) significantly explain individuals’ total BIS-11 score (Table 5).
However, it should not be overlooked that these are in-sample
predictions and the effect size estimates (i.e., R2) presented here
are thus likely to be optimistic. We will address this issue in
future studies with larger samples which enable out-of-sample
predictions. Furthermore, when interpreting the present results,
one should keep in mind that these analyses were performed
in healthy volunteers who show only moderate variability with
respect to BIS-11 scores (see Table 1). While this limited vari-
ance in a healthy population poses an even harder problem for
statistical predictions than dealing with a highly variable popu-
lation, there is no guarantee that the mechanisms highlighted by
our model-based analyses will extrapolate to pathological gam-
blers. Instead, it is possible that qualitatively different mechanisms
operate during pathological as compared to recreational gam-
bling. This would be signaled by a different outcome of our model
comparisons and will be examined in future studies with patients.
Notwithstanding these caveats, the present study is important
because it suggests a novel two-step modeling procedure for slot
machine gambling data, and it provides concrete suggestions of
which data features in slot machine gambling may be most useful
for future studies.

Several of the competing models also successfully predict the
BIS-11. The three leading models (highlighted in gray in Table 4),
however, all share the same core model structure, in which noisy
decision making is a function of perceptual uncertainty (Model
2) as well as the same perceptual input (Net Win/Loss). The
models differ solely in the response variables they predict. One
potential cause for that could be that some of the behavioral read-
outs (like CS) were relatively sparse and contributed less to the
individuals’ variance in gambling behavior. Finally, a variant of
model 1 (which contains an additional free parameter compared
to model 2) also significantly predicts BIS-11, but with a worse
BIC score. Interestingly, this is the only predictive model which
rests on WLG (learning from fake and true wins) as perceptual
variable and a constant decision noise that is independent of the
current uncertainty. Thus, this model variant might capture a
general bias toward reward-related processing and behavior.

We found that subjects based their decisions on the Net
Win/Loss probability, considering only real wins as wins and
treating fake wins and near-misses as losses. This is not in line
with an earlier study (Jensen et al., 2013) which found that sub-
jects’ estimate of winning probability increased in games with a
higher number of fake wins. However, this previous study com-
pared two slot-machines which not only differed in the number of
fake wins, but also in the number of wheels (3 vs. 6), altering both
game difficulty as well as the visual appearance of wins and fake
wins. In our slot machine paradigm, wins and fake wins were of
constant appearance; in addition subjects were informed about
win magnitude after each trial, thus facilitating the distinction
between real and fake wins.

Altogether, our modeling results emphasize that uncer-
tainty plays two important roles in gambling. First, the model
parameters which jointly predict BIS-11 scores (ω and ϑ) both
encode aspects of uncertainty. ω represents a fixed, subject-
specific tendency to change beliefs about winning probability (i.e.,
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variance at the second level of the HGF), while ϑ determines
the fluctuations of log-volatility (at the third level of the HGF)
and thus the dynamic component of volatility on belief updating
about winning probability. Second, the optimal response model
captures a direct influence of this belief uncertainty on the indi-
vidual’s decision process in that decision noise is modulated by
trial-wise uncertainty about winning probability. That is, the
more uncertain a subject is whether he will win on the next trial
the less his actions will be informed by his a priori beliefs, leading
to seemingly more random behavior.

Encoding of uncertainty has previously been linked to an indi-
vidual’s impulsivity (Averbeck et al., 2013). While our study finds
that both parameters described above jointly predict the BIS-
11 score (Table 5), the different aspects of uncertainty, captured
by ω and ϑ , however, have been shown to influence different
parts of the brain (Iglesias et al., 2013) and may thus have dif-
ferential effects on the expression of impulsivity. Indeed, our
behavioral modeling analyses find a closer relation between indi-
viduals’ impulsivity and the ω parameter of the model. That is,
for our particular paradigm and healthy volunteers, uncertainty
about winning probability appears to be more strongly related to
impulsivity than the prior belief about volatility. Intriguingly this
link is particularly strong for the Non-planning subscale of the
BIS-11 (Table 5), suggesting that uncertainty about favorable out-
comes might be a key factor in producing the lack of forethought
measured by the BIS-11 (Barratt, 1985).

We used the BIS and the SPSRQ as established measures of the
impulsive traits to establish construct validity of our approach
(Patton et al., 1995; Torrubia et al., 2001). Having said this, the
accuracy of these questionnaire-based assessments suffers from
a number of limitations. PG has a high co-morbidity with mood
disorders and depression, both of which tend to overshadow gam-
bling habits and their subsequent symptoms, and may thereby
cause distorted self-reports (Allcock and Grace, 1988; Black and
Moyer, 1998). Further bias stems from patients lacking the req-
uisite capacity for self-reflection (Wilson and Dunn, 2004). It
has thus been suggested that interactive, computer-based neu-
ropsychological tests provide more reliable measures of impul-
sivity (Kertzman et al., 2006; Chamberlain and Sahakian, 2007).
Combining such tasks with a computational model of impulsiv-
ity in a naturalistic gambling setting may allow us to go even
further.

Four advantages of a computational approach to such prob-
lems are particularly worth mentioning. First, computational
models (i) can provide interpretations of trait like impulsivity
by replacing the more descriptive nature of questionnaires with
more mechanistic descriptions of how players update their beliefs
during gambling and transform these into choices. In our case
this is done by establishing a link between the individuals’ uncer-
tainty about winning and loosing and the resulting increase in
more erratic and riskier responses. Furthermore, computational
models can (ii) assess the degree of impulsiveness during actual
gambling and without any need of potentially distorted self-
reports, and (iii) they allow us to generate not only response
traces observed in our subjects, but possible candidate response
traces that reflect extreme cases of impulsive behavior. Such traces
could help to identify patterns in gambling data that earmark

potential problem gamblers. This approach is therefore particu-
larly interesting for prevention with respect to online gambling.
After having established a clear link between impulsivity and
problem gambling, models of naturalistic play could assess the
individual’s impulsiveness “on the fly” and identify potential at
risk players without the need of a self-report outside the actual
gambling situation. Finally, (iv) the trial-wise traces of beliefs and
uncertainties, inferred by a model, can serve to inform analyses
of neurophysiological or fMRI data (for examples using the HGF,
see Iglesias et al., 2013; Vossel et al., 2014), opening new avenues
for neuroimaging research on gambling.

SUMMARY AND OUTLOOK
The hierarchical Bayesian modeling approach presented here is
capable of revealing cognitive mechanisms in gambling that are
linked to traditionally defined impulsive traits of the individ-
ual. In particular, the gambling behavior of subjects, who are
more impulsive, is best described by models that encode for
greater uncertainty at various levels in their hierarchy, and show
uncertainty-dependent coupling between beliefs about winning
and subsequent decisions.

Our analyses provide a proof of concept that individual hetero-
geneity in gambling behavior can be quantified by computational
models, enabling a mechanistic interpretation of individual gam-
bling. Future research will have to assess the generalizability
and practical utility of this approach in predicting disordered
gambling behavior in various gambling settings such as online
gambling.
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