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ABSTRACT

This thesis reports on the realization of an artificial graphene system using an ul-
tracold Fermi gas of 40Katoms loaded into an optical lattice. In contrast to the situ-
ation in a real solid, where the properties are defined by the rigid crystal structure,
in our system both the lattice geometry as well as the inter-particle interactions
can be tuned over a wide range. For the honeycomb geometry, the two lowest
electronic bands are connected at two single points, with a linear dispersion re-
lation in their vicinity. These conical band crossings, called Dirac points, are the
origin of phenomena as diverse as the backscattering-free conduction or the quasi-
relativistic behavior of the particles. We detect and characterize the Dirac points
by dynamically probing themusingmomentum-resolvedBloch-Zener transitions
between the two bands. By introducing an energy offset between the two sublat-
tices, the transition frommassless tomassive Dirac fermions is studied.When im-
balancing the tunnel couplings, equivalent to applying linear strain, we observe
a movement of the Dirac points. Beyond a critical imbalance, the two points are
found to merge and to annihilate, indicating a topological transition of the Fermi
surface. The transfer efficiency is modeled analytically using the Landau-Zener
formula and numerically by a time evolution of the trapped many-body system.
The results of both calculations agree well with the measurements.
Using an effective spin-/ system, realized by two Zeeman substates of 40K, the

effect of interaction is studied. By tuning from weak to strong repulsion using
a Feshbach resonance, we observe the transition from a semimetallic to a Mott-
insulating state, both in independent two-dimensional artificial graphene layers as
well as in coupled systems. It is signaled by a strong reduction of the double occu-
pancy of the system, in good agreementwith predictions from a high-temperature
series expansion assuming experimentally realistic entropies. Furthermore, we in-
vestigate the gapped excitation spectrum in the Mott-insulating state by ampli-
tude modulation of the lattice.
Approaching the regime of quantum magnetism, we have developed methods

for obtaining and detecting short-range magnetic correlations in dimerized and
anisotropic lattice structures.The dependence of the correlations on lattice geom-
etry and entropy is investigated experimentally.The results are in good agreement
with predictions from a high-temperature series expansion and a dynamical clus-
ter approximation. Moreover, a method for detecting density correlations based
on the fluctuations in the measured momentum distributions is successfully im-
plemented and tested for various lattice geometries. In the future, this method
should allow for the detection of long-range spin and density correlations in the
lattice.
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ZUSAMMENFASSUNG

Die vorliegendeArbeit berichtet über die Realisierung eines künstlichenGraphen-
Systems mittels ultrakalter Quantengase. Dazu werden fermionische 40K-Atome
in ein optisches Gitter mit hexagonaler Geometrie geladen. Im Gegensatz zur Si-
tuation in echten Festkörper-Systemen, deren Eigenschaften durch die starre Git-
terstruktur definiert sind, können in unserer Implementation sowohl die Geo-
metrie des Gitters als auch die Wechselwirkung über einen grossen Bereich vari-
iert werden. In der hexagonalen Gittergeometrie sind die untersten beiden Ener-
giebänder an zwei einzelnen Punkten verbunden. Diese konischen Kreuzungs-
punkte werden aufgrund der linearen Dispersionsrelation in ihrer Umgebung
Dirac-Punkte genannt. Sie sind der Ursprung von Phänomenen wie der rück-
streungsfreie Transport oder das quasi-relativistische Verhalten der Teilchen in
ihrer Nähe. Wir detektieren und charakterisieren die beiden Dirac-Punkte mit
Hilfe von dynamisch induzierten, impulsaufgelösten Bloch-Zener-Übergängen
zwischen den beiden Energiebändern. Die Erzeugung eines Energie-Offsets zwi-
schen den zwei Untergittern der hexagonalen Struktur ermöglicht die Beobach-
tung desÜbergangs zwischenmasselosen undmassebehaftetenDirac-Fermionen.
Für ungleiche Tunnel-Kopplungen, was einer linearen Deformation der Geome-
trie entspricht, beobachtenwir eine Verschiebung derDirac-Punkte.Wird ein kri-
tisches Ungleichgewicht zwischen den Tunnel-Kopplungen erreicht, verschmel-
zen die beiden Dirac-Punkte und eine Band-Lücke öffnet sich. Dies entspricht ei-
nem topologischen Übergang der Fermi-Fläche. Die Transfer-Effizienz wird ana-
lytisch mittels der Landau-Zener-Formel und numerisch mit einer Zeitevoluti-
on des Vielkörpersystems in der Falle modelliert. Die Resultate beider Methoden
stimmen gut mit den Messungen überein.
Mit einem effektiven Spin-/ System, realisiert durch zwei Zeeman-Zustände

von 40K, wird der Effekt derWechselwirkung untersucht.Wird diesemittels einer
Feshbach-Resonanz erhöht, beobachten wir einen Übergang von einem halbme-
tallischen zu einem Mott-isolierenden Zustand, sowohl im Falle von unabhängi-
gen künstlichen Graphen-Schichten als auch für gekoppelte Systeme. Der Über-
gang manifestiert sich durch eine starke Unterdrückung der Doppelbesetzung
im Gitter, in guter Übereinstimmung mit den Resultaten einer Hochtemperatur-
Entwicklung des grosskanonischen Potentials unter Annahme von experimen-
tell realistischen Entropien. Zudem untersuchen wir mittels Gitteramplituden-
Modulation das Anregungsspektrum des Systems, welches im Mott-isolierenden
Zustand eine Energielücke aufweist.
Um in das Regime des Quanten-Magnetismus vorzudringen, haben wir Me-

thoden zur Erzeugung und Detektion von kurzreichweitigen magnetischen Kor-
relationen in dimerisierten und anisotropischen Gitterstrukturen entwickelt. Die
Abhängigkeit der Korrelationen von der Gittergeometrie und der Entropie wird
experimentell untersucht. Die Resultate stimmen gut mit den theoretischen Vor-
hersagen einer Hochtemperatur-Entwicklung sowie einer dynamischen Cluster-
Approximation überein. Zudem implementieren wir eineMethode zur Detektion
vonDichte-Korrelationen im optischenGitter. Diese basiert auf einer Analyse der
Fluktuationen in den gemessenen Impulsverteilungen. Tests derMethode für ver-
schiedene Gittergeometrien zeigen, dass damit zukünftig langreichweitige Spin-
oder Dichte-Korrelationen in unserem System nachgewiesen werden können.
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1INTRODUCTION

Thedevelopment of newmaterials is one of themajor drivers of today’s technolog-
ical progress. For example, the discovery of semiconductors and the development
of techniques to dope them has lead to the invention of the transistor by John
Bardeen, Walter Brattain, and William Shockley in 1947, which has become the
foundation of information technology. Superconductors, discovered by Kamer-
lingh Onnes in 1911, have allowed for the construction of more powerful electro-
magnets, which are essential for medical imaging applications or mass spectrom-
eters. In the future, superconducting materials might play an important role for
energy transport and storage. Compared to these two examples, graphene, a two- Graphene, a single

atomic layer of
hexagonally
arranged carbon
atoms

dimensional (2D) material consisting of single atomic layers of graphite, is amuch
younger material, studied for the first time in 2004 by Konstantin Novoselov and
Andre Geim [Novoselov et al., 2004], who were already in 2010 awarded with the
Nobel price for their ground breaking work on this first truly 2D physical system.
Despite being only in its infancy, graphene has already proved its potential for fu-
ture technological applications, be it for ultrafast transistors, new types of sensors
or for composite materials [Novoselov et al., 2012].
The origin of many of its fascinating properties is found in its unusual band

structure, with its valence and conduction bands connected by two conical inter-
sections, where the dispersion relation becomes linear. In Fig. 1.1 a typical band
structure of our specific implementation of a graphene system is shown.The band
crossings gives rise to a largely suppressed back-scattering of the charge carriers,
making graphene a particularly good conductor. It also leads to the unconven-
tional quantum Hall effect [Novoselov et al., 2005], where the Hall plateaux are
shifted with respect to the conventional quantum Hall effect. In graphene, this ef-
fect can even be observed at room temperature, allowing for practical applications
such as ultra-precise metrology [Novoselov et al., 2007].
On a more fundamental level, the linear dispersion relation in the vicinity of Conical band

crossings: the Dirac
points

the two band crossings has attracted interest in its own right. In these regions, the
electrons and holes behave likemasslessWeyl-Dirac fermions similar to neutrinos
or free electrons moving at nearly the speed of light. For this reason the two band
crossings are called Dirac points, and the band structure of graphene can serve
as a testbed for relativistic physics. This has for example allowed for the study of
Klein tunneling [Katsnelson et al., 2006], a reflection-free transmission through
a potential barrier, which is a hallmark phenomenon of relativistic physics.

Figure 1.1: Typical band structure. A three-
dimensional view of the energy spectrum
shows the linear intersection of the bands
at the two Dirac points. The band struc-
ture of our specific implementation is
shown in the first Brillouin zone (B.Z.)

for typical experimental parameters. Up
to a rescaling of one axis and the con-
vention for choosing the B.Z. bound-

aries, it corresponds to that of graphene.

E
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Despite the tremendous progress in the exploration of this new material, many
questions are yet to be answered, especially concerning the role of interactions.
They give rise to effects which do not appear on a single-particle level but only in
the collective behavior of an ensemble of particles. It is precisely these many-body
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12 Introduction

effects that lead on one hand to fascinating new phenomena but on the other hand
complicate the investigation of their underlying mechanisms. This is because for
describing an interacting quantummechanical system not only the separate states
of its constituents have to be taken into account, but also their correlations.These
are intrinsically hard to measure in experiments, and many of the experimental
techniques required to do so are yet to be developed. Apart from the most sim-
ple cases, the emerging correlations also render an exact analytical treatment or
computer simulation of such systems impossible for realistic sizes, owing to the
exponentially increasing number of quantum mechanical states.
Therefore, within the scientific methodology, the step of finding models which

include all the necessary features to describe the experimentally observed phe-
nomena, but are still simple enough to allow for new predictions, has become ever
more important. In the last decade a new approach, termed quantum simulationQuantum simulation
by Richard Feynman [1982, 1986], has emerged to complement the traditional
analytic and computational methods used for testing and studying these models.
The principal idea of this new approach is to implement a certain model Hamil-
tonian using a different physical system that is more accessible for experimental
investigation than the original system. By now a variety of physical realizations
of quantum simulators exist [Georgescu et al., 2014], ranging from dilute atomic
gases at temperatures close to absolute zero (the system used in this thesis), to
trapped ions, superconducting chips, patterned surfaces, quantum dots or single
spins in bulk solids, to photonic systems in the optical or microwave range.
Specifically addressing the physics of graphene, several implementations of ar-

tificial graphene systems have been realized recently [Polini et al., 2013]. FirstArtificial graphene
systems emulations of the band structure were performed by confining light in photonic

crystals [Peleg et al., 2007] and using hexagonal assemblies of microwave res-
onators [Kuhl et al., 2010]. A system of strongly localized electrons on a hexag-
onal lattice has been realized by nano-patterning of a two-dimensional electron
gas (2DEG) [Singha et al., 2011]. Also on a 2DEG, the effect of doping and strain
was simulated by assembling single molecules on the surface using a scanning
tunneling microscope [Gomes et al., 2012].
In this thesis, an implementation of an artificial graphene system using a gas

of ultracold fermionic 40K atoms trapped in a novel type of a highly tunable
optical lattice is presented. Triggered by the first experimental observation of
Bose-Einstein condensation in a dilute gas of bosonic 87Rb and 23Na atoms in
1995 [Anderson et al., 1995; Davis et al., 1995], followed by the production of a
quantum degenerate gas of fermionic 40K four years later [DeMarco et al., 1999],
ultracold quantum gases have since then evolved into a versatile tool for study-
ing a large variety of phenomena. Topics as diverse as superfluidity, the effects
of strong inter-particle or matter-light interactions, and static or dynamic prop-
erties of phase transitions in different dimensions have been addressed so far1.
Furthermore, quantum gases have also found practical applications, for example
in ultra-precise clocks [Derevianko et al., 2011]. The tremendous success of the
field can largely be attributed to the unique flexibility in preparing, controlling
and probing these systems by means of laser beams, magnetic fields and radio
frequency (rf) radiation [Ketterle et al., 1999, 2008].
The atom-light interaction [Cohen-Tannoudji et al., 2008] has led to yet an-

other application: by trapping the atoms in the standing wave potential of counter-Mimicking solids
using cold atoms

loaded into optical
lattices

propagating laser beams, crystal structures alike those of solid materials can be
constructed. In such a system, the role of the electrons in solids is taken by the
quantum degenerate fermionic atoms, and the periodic potential is realized by
means of the laser beamsmimicking theCoulomb interactionwith the nuclei.The
Coulomb repulsion of the charged electrons is on the other hand replaced by the

1 Jaksch et al., 2005; Lewenstein et al., 2007; Bloch et al., 2008; Giorgini et al., 2008; Ritsch et al., 2013.
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van der Waals interaction between the neutral atoms, which reduces to a contact
interaction for low enough temperatures [Castin, 2006]. By means of Feshbach
resonances [Chin et al., 2010], which are most commonly accessed by an exter-
nally applied magnetic field, the effective scattering potential can be adjusted all
the way from repulsive to non-interacting or even attractive. Based on this anal-
ogy, which is the focus of Chapter 2 of this thesis, Jaksch et al. [1998] proposed
the implementation of Hubbard models [1963] using cold atoms. The Hubbard
model describes the hopping of particles between neighboring sites in a lattice
as well as local interactions between the particles. It is thus one of the simplest
models for a solid that includes the interplay between kinetic and interaction en-
ergy. Jaksch et al. found that, despite the fact that the typical temperatures in cold
atoms system (100 nK) are up to amillion times colder than in real solids and that
the lattice spacings (typically 0.5 µm) are about a factor of thousand larger, the re-
alized parameter regimes of the model systems match in fact those of real solids.
The experimental realization of his theoretical proposal for bosonic [Greiner et
al., 2002] and fermionic atoms [Jördens et al., 2008; Schneider et al., 2008] set the
stage for studying more complex solids using cold atoms [Lewenstein et al., 2007,
2012].
Key to the realization of the artificial graphene system using cold atoms is the The optical lattice

optical lattice with tunable geometry. The lattice is constructed from two perpen-
dicular and mutually interfering retro-reflected laser beams. Additionally, a third
retro-reflected beam co-propagates with one of the former beams, see Fig. 1.2a.
However, owing to a small detuning in frequency, this beam only interferes with
itself, but not with the others2. By adjusting the intensities of the laser beams, the
resulting optical potential can be set to various geometries, ranging from hon-
eycomb, triangular, dimerized, one-dimensional (1D) chain, to checkerboard or
square geometry, as shown in Fig. 1.2b. A fourth independent standing wave, per-
pendicular to the shown lattice plane, allows for the creation of several indepen-
dent or coupled layers of any of these geometries.The details on the experimental
implementation of the optical lattice as well as the preparation and probing of the
cold samples are the topic of Chapter 3.
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Figure 1.2:Theoptical lattice of tunable geometry. a.Theoptical lattice is constructed from
two retro-reflected and mutually interfering laser beams X and Y (solid red) and a third
beam X̄ (dashed dark red), co-propagating with X, which does not interfere with the other
beams. A forth beam along 𝑧 (not shown) is used to create layered systems. b. Different
lattice potentials can be realized depending on the intensities of the lattice beams. The
diagram shows the accessible geometries as a function of the lattice depths 𝑉X̄ and 𝑉X.
The transition between triangular (T.) and dimer (D.) lattices is indicated by a dotted line.
When crossing the dashed line into the honeycomb (H.c.) regime, Dirac points appear in
the band structure. The limit 𝑉X̄ ≫ 𝑉X,Y corresponds to weakly coupled one-dimensional
chains (1D c.).

2 In fact it does interfere with the other beams but the atomic motion cannot follow the potential result-
ing from the interference term, which oscillates at a frequency of several MHz.
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As compared to the situation in free space, the motion of the particles is pro-
foundly altered by the presence of a periodic potential. The quadratic dispersion
relation of the free particles transforms into a band structure containing allowedInvestigating the

band structure and forbidden energy regions. The peculiarities of the band structure in the hon-
eycomb lattice implemented in our system are discussed in Chapter 4. This is fol-
lowed by the presentation of the experimental evidence and the characterization
of the Dirac points, in Chapter 5. Using non-interacting particles, we probe the
band structure by momentum-resolved interband transitions induced by Bloch
oscillations, similar to a method used for the characterization of the linear cross-
ings of excited bands in a 1D system [Salger et al., 2007]. This experimental tech-
nique allows for a precise determination of the position of the Dirac points within
the band structure as well as for a characterization of the band structure in their
vicinity.
Exploiting the tunability of the lattice, we have studied the effect of breaking

the energy degeneracy of the two interleaved triangular lattices forming the hon-
eycomb structure. Lifting this degeneracy corresponds to breaking the inversion
symmetry of the lattice. The resulting transition from massless to massive Dirac
fermions is characterized by a gap opening in the band structure. Moreover, we
observe a movement of the Dirac points as the ratio of the tunneling amplitudes
along the two spatial directions is varied. This corresponds to the effect observed
when applying linear strain to real graphene. As the imbalance reaches a certain
critical value, the twoDirac points are found tomerge, a situationwhich is beyond
the accessible regime for graphene. At this point, the two points annihilate and a
gap opens, signaling the transition from a semimetallic to an insulating state of
the material. We map out this transition for a range of lattice geometries and find
excellent agreement with theoretical predictions.The corresponding experiments
are discussed in Chapter 6.
In the second part of this thesis, the emerging phenomena in the presence ofThe role of

interactions repulsive inter-particle interactions are studied. In Chapter 7, the mapping of our
system to the Fermi-Hubbard model is discussed, including methods for a theo-
retical treatment of this model. Since the Fermi level in real graphene lies exactly
at the two Dirac points, it is a semimetal. This is a class of materials for which
the top of the valence band is connected to the conduction band, but with a van-
ishing density of states at the Fermi energy. While insulating behavior can occur
as a consequence of a filled band, it can also be induced by strong repulsive in-
teractions, an effect first described by Mott [1949]. While in real graphene the
kinetic and interaction energy are of similar magnitude, the tunability of the in-
teractions in our system via a Feshbach resonance also allows for the exploration
of the strongly interacting regime. In Chapter 8, we study the transition from a
semimetallic to a Mott-insulating state using an interaction dependent rf spectro-TheMott insulator

transition scopy method [Jördens et al., 2008] to measure the fraction of atoms on doubly
occupied lattice sites. A strong suppression of the double occupancy is found, sig-
naling the transition to the Mott-insulating state, similar as in previous studies
of simple cubic lattices [Jördens et al., 2008; Jördens et al., 2010]. The measured
double occupancies are found to be in agreement with numerical predictions ob-
tained from a high-temperature series expansion (HTSE) up to second order. By
amplitude modulation of the lattice beam intensity excitations in the form of ad-
ditional double occupancies can be created. This allows for an observation of the
gapped excitation spectrum in the Mott-insulating state and for a verification of
the methods employed to establish the mapping to the Hubbard model.
Despite the ultra-low temperatures now routinely achieved in cold atom exper-

iments, the temperature normalized to the relevant energy scales of these systems
is in fact usually higher than that of real solids.The systems are therefore compara-
bly far from their true ground state, where previously unstudied phases of matter
are expected. For example, in honeycomb lattices, the existence of a spin liquid, an
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exotic quantum phase in which the spins remain in a disordered state even at zero
temperature, has been debated [Meng et al., 2010; Sorella et al., 2012; Assaad et
al., 2013]. To access this regime, the temperature limitations imposed by the cur- Obtaining

short-range magnetic
ordering by means of
local entropy
redistribution

rently used cooling and trapping schemes need to be overcome. To this end, we
have developed amethod for a local redistribution of entropy in the lattice, which
we use to obtain short-range magnetic order in dimerized and anisotropic square
lattice geometries. Moreover, a specifically tailored detection procedure based on
coherent oscillations between the singlet and a triplet state of pairs of the effective
spin-/ particles has been developed. These methods as well the characterization
of the emerging correlations as a function of lattice geometry and entropy are the
topic of Chapter 9.
Many of the low-temperature states are in fact characterized by long-range or-

dering of their spins, as is the case for large repulsive interactions in the honey-
comb lattice. In Chapter 10 the implementation and verification of a measure-
ment technique which can be used to extract information about the correlations
in the momentum distribution of an atomic cloud is discussed [Altman et al.,
2004]. The method relies on the analysis of the density fluctuations of the atom Noise correlation

measurementscloud after a short time of free expansion, as obtained by recording the amount
of absorbed light when illuminating the cloud with a resonant laser beam. Ow-
ing to Pauli’s principle, every available quantum state can only be occupied by
one particle, leading to characteristic dips in the autocorrelation function of the
momentum distribution for distances corresponding to multiples of the lattice
momentum. As illustrated by the measurements presented in this chapter, the
method also allows for the detection of ordering patterns in the lattice, making it
a viable tool for the characterization of long-range ordered magnetic states.
The results presented in this thesis set the grounds for further studies of artifi- Outlook

cial graphene systems using cold atoms. Our experimental setup can be readily en-
hanced to allow for sophisticated lattice amplitude or phase modulation schemes,
which can be employed to mimic (staggered) magnetic fields [Dalibard et al.,
2011]. Under these conditions, a topological insulator is predicted to emerge, a
state of matter in which the bulk of the material is insulating but the edges show
backscattering-free conduction. In the presence of interactions, the ionic Hub-
bard model [Egami et al., 1993] or magnetic ordering in the honeycomb lattice
could be studied in the future.
The work during the course of this thesis was carried out in collaboration with

Daniel Greif, Leticia Tarruell, Gregor Jotzu,MichaelMesser, Robert Jördens, Niels
Strohmaier and Tilman Esslinger.





2HOW ULTRACOLD ATOMS MIMIC
ELECTRONS IN SOLIDS

In this chapter I will briefly discuss the key ingredients required to mimic a solid
state system: a particle that behaves similar to an electron, means of providing a
periodic potential structure for that particle, inter-particle interactions andprobes
for the system.

CHAPTER CONTENTS

2.1 The particle 18
2.1.1 Spin and quantum statistics 19
2.1.2 Quantum degeneracy 21

2.2 Crystal structures 22
2.2.1 Light forces 23
2.2.2 Optical lattices 24

2.3 Interactions 25
2.3.1 Interatomic scattering potential 25
2.3.2 Feshbach resonances 27

2.4 Probes and manipulation 30

The concept of emulating the properties of a certain physical system with a Concept of quantum
simulationdifferent, more accessible one was already discussed by Richard Feynman in his

keynote lecture “Simulating Physics with Computers” held at the Massachusetts
Institute of Technology (MIT) in Cambridge more than 30 years ago [Feynman,
1982, 1986].
The need for such a quantum simulator can be derived from the fact that already

for one of the most simple quantum mechanical system imaginable, the spin-/
system, the dimension of the Hilbert space and with that the number of matrix
elements of the description of such a state grows as 2𝑁 when considering an en-
semble of 𝑁 such spins. The number of required coefficients easily exceeds the
amount of memory available to even the most advanced supercomputers already
for 𝑁 < 100. The same holds obviously for the computing power required to ma-
nipulate such a state. For realistic system sizes, the number of states even exceeds
the number of atoms in the universe. To put it in Feynman’s words:

“Nature isn’t classical, dammit, and if you want to make a simulation
of Nature, you’d better make it quantum mechanical, and by golly it’s a
wonderful problem, because it doesn’t look so easy.”

— Richard Feynman

But only recently have implementations of the at the time of Feynman’s lecture
unimaginable quantum simulators reached a state where problems beyond the
capabilities of current experimental, theoretical and numerical simulations can
be attacked. Experiments are now even reaching out to explore regimes in solid
state systems which are not, or not yet, accessible to research in currently existing
materials, with the aim of testing newmaterials before they can even be produced.
Implementations of quantum simulators have been brought forward using vari- Implementations of

quantum simulatorsous types of physical systems [Georgescu et al., 2014].Themost advanced systems

17



18 How ultracold atoms mimic electrons in solids

are nowadays based on atomic or molecular dilute gases at almost zero tempera-
ture [Bloch et al., 2012] as will be presented in this thesis, on arrays of trapped
ions [Blatt et al., 2012], on photonic systems [Aspuru-Guzik et al., 2012], on su-
perconducting circuits etched into chips [Houck et al., 2012] as well as implemen-
tations using the nuclear and electronic spins in bulk solids or in quantum dots
and similar microstructures, making for example use of nuclear magnetic reso-
nance (NMR) techniques.
Solid state physics is without question one of the most fruitful fields to addressAddressing solid state

physics questions
using quantum

simulation

using quantum simulation. With today’s advancement of technology, many prob-
lems addressed by solid state research are of direct importance for everyday life, be
it on a personal scale (e. g. faster and more compact portable electronic devices)
or with a more global relevance (e. g. in the area of energy transport and stor-
age). The ultra-fast timescales, the predominantly global probes as well as sample
preparation processes prone to introducing unwanted contaminations challenge
researchers in the field. Offering complementary approaches, quantum simula-
tors of solids may help answering some of the open questions.
Key to a wide range of phenomena in solids is undoubtedly the interaction of

the electrons subject to the band structure given by the potential of the periodi-
cally arranged nuclei. The ingredients for a most basic emulation of a condensedIngredients for a

simulation of a solid matter system can therefore be summarized as:

• A particle that is an effective spin-/ system and therefore obeys fermionic
spin statistics. Temperatures need to be such that the particle system is at
a similar level of quantum degeneracy as the electron system to be studied,
i. e. in most cases well below the Fermi temperature 𝑇F.

• The particles need to be exposed to a periodic potential.
• Inter-particle interactions are required to emulate effects beyond single-
particle physics.

• Probes are needed to characterize the system in a meaningful way.
• The system needs to be validated in order to assess the applicability of the
obtained results to the original system.

In our implementation, the role of the electrons is taken by atoms as a whole,
and the periodic potential is created by forces exerted onto the atoms by light.
Inter-particle interactions are realized by the van der Waals force between the
atoms. Table 2.1 on the next page gives a comparison between a typical solid state
system and a corresponding cold atom based emulation. The following sections
will address the ingredients in more detail.

2.1 THE PARTICLE

As outlined above, the cold-atom based approach to emulating solid state physicsNeutral atoms as
particles that mimic

the behavior of
electrons

is based on atoms mimicking the behavior of electrons. This may seem as an odd
approach first, but as will be shown in the following sections, the properties of
electrons seemingly missing in atoms (that is probably most notably a natural
spin / and Coulomb interactions) can be emulated by other physical effects.
The choice of element is actually mostly based on technical grounds (most no-

tably the ability to laser cool the element, see Section 3.1.1 on page 37). A popular
choice are alkali elements due to their simple electronic structure: they have one
valence electron very much similar to hydrogen. For many effects, the electrons
in the lower lying shells can be treated together with the atomic core as one en-
tity. They therefore tend to have closed electronic transitions which can be easilyElements used to

produce dilute
quantum degenerate

Fermi gases

addressed using laser light. Quantumdegenerate Fermi gases have so far been pro-
duced using the two possible candidates of the alkali metals, 40K [DeMarco et al.,
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Table 2.1: Comparison between a solid state system and a cold atom based emulation. Some
of the key properties of electrons in a solid are compared with are compared to those of
an ultracold quantum gas loaded into an optical lattice, with the element 40K used as an
example.

ELECTRONS IN SOLIDS COLD ATOMS ( 40K)

spin statistics fermionic fermionic
mass . × − kg . × − kg

interactions Coulomb van der Waals
lattice Coulomb potential of the

nuclei
optical dipole potential

lattice spacing ≈ Å =  × − m ≈  × − m
density  to  cm−  to  cm−

energies ≈  eV ≈  × − eV
timescales ≈  fs ≈ ms

𝑇 ≈ K ≈  nK
𝑇F ≈  ×  K ≈ nK − µK

𝑇/𝑇F < % %

1999] and 6Li [Truscott et al., 2001; Schreck et al., 2001], the earth-alkali metal
87Sr [DeSalvo et al., 2010; Tey et al., 2010], using 3He∗ [McNamara et al., 2006],
and with 173Yb [Fukuhara et al., 2007] as well as the strongly dipolar 161Dy [Lu et
al., 2012] and 167Er [Aikawa et al., 2014] from the lanthanide series.

2.1.1 SPIN AND QUANTUM STATISTICS

To quantum mechanically treat an alkali atom the same method as for the hydro-
gen atom can be applied [Haken et al., 2003] by adapting the nuclear charge in
the problem. The Hamiltonian for the electron-nucleus system is given by: Hamiltonian of the

electron-nucleus
system�̂� = �̂�kin + �̂�Coulomb + �̂�FS + �̂�HFS

= − ℏ
2𝑚

Δ + 𝑍𝑒
4𝜋𝜀𝑟

+ ∝ �̂� ⋅ ̂𝑆 + ∝ ̂𝐼 ⋅ ̂𝐽
(2.1)

with 𝑚 being the electron mass, 𝑍 the number of protons in the nucleus, 𝑟 the
distance of the electron from the nucleus and 𝑒 the elementary charge. �̂�, ̂𝑆, ̂𝐼 and ̂𝐽
are the total orbital angular momentum, the electron spin angular momentum,
the nuclear spin angular momentum and the total electronic angular momentum
̂𝐽 = �̂� + ̂𝑆 respectively.
�̂�kin and �̂�Coulomb account for the kinetic energy of the electron and the

Coulomb interaction between the nucleus and the valence electron, respectively.
�̂�FS is the fine structure term describing the spin-orbit coupling. Effects of the
spin and electric quadrupole moment of the nucleus are included in the hyper-
fine structure term �̂�HFS.
Most crucial to the relevant physics in cold gases is the total spin 𝐼 + 𝑆 of the Spin /

system as it determines the quantum statistics of the atom. If 𝐼 + 𝑆 assumes a
half-integer value as is the case for 6Li and 40K of the alkalis, the atom behaves
as a fermion and thus observes Fermi-Dirac statistics, while it will show bosonic
behavior otherwise. To emulate electrons, a fermionic particle is obviously the
way to go. To choice of the exact element then again is largely based on technically
relevant parameters such as the mass determining the required laser powers for
trapping, or the accessibility of inter-particle scattering resonances for control of
the interactions.
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When solving for the eigenenergies of the Hamiltonian given in Eq. (2.1) on
page 19, a clever choice of the quantum numbers has to be made. Because neither
�̂� nor ̂𝑆 commutate with the Hamiltonian and are therefore not good quantum
numbers, one introduces the total electron angular momentum ̂𝐽 = 𝐿 + 𝑆. As a
result of the spin-orbit coupling the energy levels are split up in what is called the
fine structure. The eigenvalues of the new operator can be calculated usingFine structure

�̂� ⋅ ̂𝑆 = 1
2
𝐽 − 𝐿 − 𝑆 (2.2)

to be

𝐸FS ∝
1
2
 𝑗(𝑗 + 1) − 𝑙(𝑙 + 1) − 𝑠(𝑠 + 1) . (2.3)

Here 𝑙 and 𝑠 are the orbital angular momentum and spin quantum numbers. As
one can easily see, only energy levels with 𝑙 ≠ 0 are split up.
Taking also the so called hyperfine splitting into account, that is the couplingHyperfine structure

of the total angular momentum of the electrons ̂𝐽 to the nuclear spin ̂𝐼 , the new
eigenvalues can be calculated in a similarway by introducing the new total angular
momentum �̂� = ̂𝐽 + ̂𝐼 :

𝐸HFS ∝  𝑓( 𝑓 + 1) − 𝑗( 𝑗 + 1) − 𝑖(𝑖 + 1) . (2.4)

Now levels with 𝑙 = 0 are also split up and one gets for example for the ground
state of 40K two levels with

𝐹 = |𝐼 − 𝐽|, ..., |𝐼 + 𝐽| = /, / . (2.5)

When now applying an external magnetic field 𝐁, the new termZeeman effect

�̂�𝐵 = −�̂� ⋅ 𝐁 (2.6)

breaks the spherical symmetry of the Hamiltonian. Here, �̂� is themagnetic dipole
operator. For weak magnetic fields the new term can be treated as a perturbation
and 𝐹 is still a good quantum number. In this so-called Zeeman regime the en-
ergy shifts caused by the magnetic field are linear, see Fig. 2.1. In the intermediate
regime an additional quadratic Zeeman shift appears, while for high fields (the
Paschen-Back regime) the dipole term governs the energy eigenstructure. The
new eigenstates in the external magnetic field are denoted with the additional
quantum number𝑚𝐹 = −|𝐹|, ..., |𝐹|.
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Figure 2.1: Hyperfine structure of the ground
state of 40K.The energy of the magnetic sub-
levels of the ground state 𝑆/ fine structure
manifold of 40K are plotted as a function of
the magnetic field. The crossover from the
Zeeman to the Paschen-Back regime is visible.
The eigenenergies were calculated by exact
diagonalization of the Hamiltonian.

While the excited states of the atom are mostly relevant in the preparation pro-
cess, be it for laser or evaporative cooling, states close to the absolute ground state
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are usually desired for the actual experiments in order to minimize unwanted re-
laxation processes. In our experiment we typically use an ensemble containing an
incoherent 50:50 mixture of atoms in two low-lying Zeeman 𝑚𝐹 states to mimic
the spin-/ system of electrons in real solids, where 𝑠𝑧 = −|𝑆|, +|𝑆| = −1/2, +1/2. Spin mixture
In contrast to a condensed matter system, we can also realize a completely spin-
polarized system by preparing all atoms in the same 𝑚𝐹 state. In this case inter-
particle interactions are fully suppressed because the fermionic atoms will not
interact due to the Pauli exclusion principle. This situation may be desirable to
study effects originating from the non-interacting band structure separately from
other influences.

2.1.2 QUANTUM DEGENERACY

The electron gas in real solids is already at room temperature highly quantum
degenerate as its Fermi temperature𝑇F is typically on the order of 1 × 10 K. Some
quantitative arguments about the requirements for quantum degeneracy in our
system can be given based on its density and the achievable temperatures.
The densities in our systems are on the order of 𝑛 ≈ 1 × 10 cm− as com- A metastable system:

density and collisionspared to solid state systems with densities larger than 1 × 10 cm−. While these
densities coincidentally result in an average occupation of one atom per site for
an optical lattice created by readily available solid state lasers, they are also in
the ideal range for an optimal lifetime of the ultracold quantum gas, which is by
nature actually in a metastable state. If the densities were just one to two orders
of magnitude larger, three-body collisions resulting in deeply bound molecules
would start to dominate over elastic collisions which are essential for the rether-
malization during the preparation of the samples. For lower densities on the other
hand (𝑛 < 1 × 10 cm−) the energy scales would become extremely small and Energy scales
the experimental timescales thus so long that theywould exceed the lifetime of the
gas, which is ultimately limited by background collisions in the vacuum chamber.
A natural energy scale for the system is given by the Fermi energy Fermi energy

𝐸F =
ℏ𝑘F
2𝑚 (2.7)

where Fermi wave vector

𝑘F = (6𝜋𝑛)/ (2.8)

is the Fermiwave vector. In our system, 𝑘F ≈ 100 nm−, resulting in𝐸F/ℎ ≈ 7 kHz,
which corresponds to 3 × 10− eV or 300 nK. Here, ℎ denotes Planck’s constant.
From the temperature 𝑇 of the gas the typical momentum of an atom can be

estimated to be

𝑝 ≈ √𝑚𝑘B𝑇 , (2.9)

where 𝑘B is the Boltzmann constant. Using the de Broglie relation the extent of
the wave function of such an atom can be expressed as

𝜆 = ℎ/𝑝 . (2.10)

Correctly taking into account themean energy per particle, the thermal de Broglie
wavelength is obtained, Thermal de Broglie

wavelength

𝜆𝑇 =
√

2𝜋ℏ
𝑚𝑘B𝑇

. (2.11)



22 How ultracold atoms mimic electrons in solids

In a simplified picture the wave functions of the independent atoms start to
overlap when this wavelength becomes comparable or smaller than the inter-
particle spacing 𝜆𝑇 ≲ 𝑛/ (or alternatively 𝑘B𝑇 ≲ 𝐸F). At this point, the underly-Condition for

quantum degeneracy ing quantum statistics governing the occupation of the available quantum states
starts to play a role. For fermions, the occupation probability of a state with energy
𝐸 is then given by the Fermi distributionFermi distribution

𝑓 (𝐸) = 1
exp (𝐸 − 𝜇)/𝑘B𝑇 + 1

, (2.12)

where 𝜇 is the chemical potential. As Fig. 2.2 shows, states with energies well be-
low the chemical potential are then occupied with almost unity probability, while
the probability crosses smoothly to zero around the chemical potential, with the
width of the transition defined by the temperature.
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) Figure 2.2: Fermi distribution.The occu-
pation probability of a state with energy 𝐸
crosses smoothly from  to  in the vicinity
of the the chemical potential 𝜇. The width
of the crossover region is defined by the
temperature.

Given the criterion and densities from above, one calculates that the temper-
atures to achieve quantum degeneracy need to be well below one microkelvin.
These ultra-low temperatures required to bring a dilute atomic gas to quantum
degeneracy cannot be achieved in the dilution refrigerators currently used at the
forefront of research in solid state physics, where temperatures of a fewmillikelvin
can be obtained. Only with the arrival of cooling techniques such as laser- and
evaporative cooling, quantum degeneracy of dilute atomic gases was achieved forLaser- and

evaporative cooling
as requirements to

produce dilute
quantum degenerate

gases

the first time in 1995 for 87Rb and 23Na [Anderson et al., 1995; Davis et al., 1995].
Paradoxically, in relative units of the respective degeneracy temperatures 𝑘B𝑇/𝐸F,
solids cooled in dilution refrigerators are still much “colder” at 𝑘B𝑇/𝐸F ≲ 10−,
while in cold gases presently 10− can be reached.

2.2 CRYSTAL STRUCTURES

Since atoms are neutral particles, crystal structures cannot be realized in the theExerting forces onto
atoms same way as they are in real solids, i. e. via the Coulomb interaction. The remain-

ing options would be the realization of either periodic magnetic fields or, alternat-
ing current (AC) electric fields that can exert forces via a permanent or induced
electric polarization of the atom. Forming these fields via periodic patterning of
some surface structure, however, apart from a few very special cases, mostly falls
out of question. This is because the interactions of ultracold atoms with surfaces
are hard to control with the required accuracy, leading to instabilities of the sys-
tem that results in excess heating or collapse with atoms crashing into the surface.
A viable option however is the use of the atom-light interaction.
While the dissipative light force, i. e. the force exerted onto an atom as a re-

sult of photon scattering, is nowadays an essential tool for cooling and trapping
atoms at very low temperatures [Hänsch et al., 1975; Dalibard et al., 1989; Adams
et al., 1997] and is also employed for sample preparation in the setup used in this
thesis, it is unsuitable for creating static potentials as momentum is permanently
exchanged between the atoms and the light field. In contrast, the conservative
light force allows for using optical projection technologies to impart potentials
of almost arbitrary shape onto the atoms to trap and manipulate them [Grimm
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et al., 2000], even from the outside of the containing vacuum system. In today’s
cold atom experiments state-of-the-art projection techniques using high numer-
ical aperture (NA) microscopes, phase masks or spatial light modulators (SLMs)
such as digital mirror devices (DMDs)1 are employed.
When letting several laser beams interfere, the resulting periodic fringe pattern

can be used to confine the ultracold atoms to a periodic arrangement resembling
that of real solids.This concept of an “optical lattice” was first proposed in the field
of laser spectroscopy [Letokhov, 1968; Letokhov et al., 1977; Letokhov et al., 1978].
First experiments in the context of cold atoms focused on the investigation of the
band structure [Verkerk et al., 1992; Jessen et al., 1992; Grynberg et al., 1993] and
on a direct verification of the periodic arrangement of the atoms via optical Bragg
diffraction [Birkl et al., 1995; Weidemüller et al., 1995].

2.2.1 LIGHT FORCES

The conservative light force, also called dipole force, is easiest understood in a
model considering a two-level atom in a coherent light field [Dalibard et al., 1985]. A two-level atom in a

coherent light fieldThe state of the system can be written as either |𝑔, 𝑁⟩ (if the atom is in the ground
state) or |𝑒, 𝑁⟩ (atom in the excited state) with𝑁 being the photon number in the
light field. The two states |𝑔, 𝑁⟩ and |𝑒, 𝑁 − 1⟩ are coupled to each other via stim-
ulated absorption and emission of a photon induced by the electric dipole-field
interaction �̂�𝑑 = − ̂𝑑�̂�) with ̂𝑑 and �̂� being the dipole and electric field operator,
respectively. The eigenenergies of the coupled system are then

𝐸± = ±ℏ√Ω
 + 𝛿𝐿 (2.13)

with the Rabi frequency Ω = 
ℏ ⟨𝑒, 𝑁 | �̂�𝑑 |𝑔, 𝑁 − 1⟩ and the detuning between

the laser and atomic transition frequency 𝛿𝐿 = 𝜔𝐿−𝜔. In the case of a far-detuned
laser 𝛿𝐿 ≫ Ω spontaneous emission from the excited state can neglected and the
laser intensity-dependent energy shift of the ground state can be formulated as a
conservative potential: Conservative light

potential

𝑉𝑑 ≈
ℏΩ


2𝛿𝐿

= 3𝜋𝑐Γ
2𝜔𝛿𝐿

𝐼. (2.14)

Here, Γ = 𝜔
𝐿/3𝜋𝜀ℏ𝑐 |⟨𝑒| ̂𝑑 |𝑔⟩| is the decay rate of the excited state, 𝑐 is the speed

of light and 𝐼 = 2𝜀𝑐 |𝐸|
 is the (position dependent) light intensity, and 𝜀 is the

dielectric constant. The dipole force 𝐹𝑑 = d𝑉𝑑/d𝐫, where 𝐫 is the spatial position,
therefore has the same sign as 𝛿𝐿 and acts as an attractive force for red detuning
and repulsively for blue detuning. The energies of the dressed atomic states for
a red detuned laser beam with an gaussian spatial intensity profile are shown in
Fig. 2.3.

Figure 2.3: Energies of the ground and excited
state of an atom in a laser beam with a gaussian
intensity profile.The laser is far red-detuned by
𝛿𝐿 < , giving rise to a potential that lowers
the energy of the ground state |𝑔, 𝑁⟩ at the in-
tensity maximum of a red-detuned laser beam,
while it increases the energy of the excited state
|𝑒, 𝑁 − ⟩. In contrast, for a blue-detuned beam

the potential acts repulsively for the ground state. 𝑥

𝐸

1 This is an SLM technique based on tilting micro-mirrors invented by Texas Instruments in 1987 and
nowadays widely used in video projectors.
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2.2.2 OPTICAL LATTICES

A 1D optical lattice can be created by two counter-propagating laser beams as
outlined above. The interference between the two beams with equal linear polar-
ization and wavelength 𝜆 leads to a standing wave and produces a potential with
a periodicity of 𝑑 = 𝜆/2 along the beam axis. In a red-detuned lattice the atoms
are attracted to the intensity maxima of the interference pattern. The potential
depth 𝑉 is controlled by the light intensity and is usually expressed in units of
the atom’s recoil energy, 𝐸R = ℏ𝑘L/2𝑚. Here, 𝑘L = 2𝜋/𝜆 is the wave vector of the
lattice laser and𝑚 the atomic mass. The resulting optical potential in the focus of
the beam is an array of potential wells, see Fig. 2.4 (left),

𝑉(𝑟, 𝑥) = 𝑉 cos(𝑘L𝑥) 𝑒−𝑟
/𝑤𝑟 . (2.15)

The radial envelope is given by the cylindrical symmetric gaussian beam profile
with a waist (1/𝑒 radius) of 𝑤𝑟. Since the waists are usually much larger than
the wavelength, the Rayleigh range is also much larger than the size of the atomic
cloud.Therefore intensity profile variations along the propagation direction of the
beams can be neglected.

Figure 2.4: Illustration of the potentials formed by one, two and three pairs of counter-
propagating laser beams.A single pair of red-detuned interfering beams gives rise to a stack
of round and almost flat systems. If two pairs are used, an array of tubes is created, which
allow only for movement of the atoms in one dimension. The created systems can be con-
sidered 2D or 1D if the chemical potential and the kinetic energy of the particles is smaller
than the spacing of the first and second harmonic oscillator level along the transverse di-
rection. In the case of three pairs of crossing laser beams, a three-dimensional (3D) crystal
structure is created. Adapted from [Stöferle, 2005].

When an additional independent orthogonal standing wave is superimposed,
𝑉(𝑥, 𝑦, 𝑧) = 𝑉(𝑟, 𝑥)+𝑉(𝑟, 𝑦), the resulting intensity pattern becomes a planar array
of cigar-shaped tubes with simple square periodicity. Adding another orthogonalCreating lattice

structures by
overlapping

perpendicular laser
beams

standing wave 𝑉(𝑥, 𝑦, 𝑧) = 𝑉(𝑟, 𝑥) + 𝑉(𝑟, 𝑦) + 𝑉(𝑟, 𝑧), the resulting potential re-
sembles a simple cubic crystal structure, see Fig. 2.4 (right). By modifying the
respective intensities of the standing waves, the dimensionality of the system can
be changed on-the-fly and thus, for example, quenches in the dimensionality can
be realized.
Besides the periodic potential the standing waves of an optical lattice also pro-External

confinement duce an overall external potential, which is due to the radial intensity profile of the
beams.The inhomogeneity of the potential breaks the translational lattice symme-
try and therefore alters the situation with respect to a solid state system, where the
energy on every lattice site is equal and only falls off abruptly at the edge of the
sample (it is box-like, see Fig. 2.5 on the next page). However, if the length scale
of the additional confinement is much larger than the lattice spacing, the system
can still be considered to be locally homogeneous. This approximation is usually
called the local density approximation (LDA) in the cold atom community, see
Section 7.3.2 on page 145.
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Figure 2.5: External trapping potential. Schematic drawing of the confin-
ing potential in real solids and for typical cold atom systems. In solids
the confining potential is nearly constant over the whole extent of the
bulk material, with a sharp boundary at its edge that keeps the elec-

trons confined within the material. Therefore, the energy on every lattice
site is essentially the same for the whole system. In implementations of
solids using ultracold atoms, the laser beams needed to form the peri-
odic potential and/or hold the atoms against gravity typically give rise

to a gaussian envelope of the confining potential. The energy at the bot-
tom of the lattice wells therefore smoothly changes within the system.

The systems are typically also much smaller than their real equivalents.

𝑥
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cold atoms

2.3 INTERACTIONS

Inter-particle interactions are the “spice in the life” of any quantum mechanical Interactions between
neutral particles: van
der Waals potential

system. While the physics resulting from placing non-interacting particles into a
periodic potential discussed so far can be fully treated on a single particle level,
complex quantummany-body behavior only emerges as interactions are included,
leading to a mixing of the single-particle states.
As atoms are neutral particles, they are – in contrast to real electrons – not

subject to the Coulomb interaction between each other. In atomic gases interac-
tions are usually only mediated via the short-ranged two-atom molecular poten-
tial, which has an effective range of only a few Å. While one might think that this
discrepancy between the two systems might fundamentally break their analogy,
this is not actually the case since the Coulomb interactions among mobile elec-
trons are usually screened at long distances and are therefore effectively also only
short-range.

2.3.1 INTERATOMIC SCATTERING POTENTIAL

Because of the low densities, the interactions in cold atomic gases can usually
be treated as a pure two-atom quantum mechanical scattering problem [Sakurai,
1994; Schwabl, 2002].
The scattering potential𝑉(𝐫) is the result of a strong repulsion at short distances

due to the overlap of the electron wave functions, and the attractive van derWaals
force. Here, 𝐫 is the relative spatial coordinate of the two atoms. The range of the
potential is 𝑟. The Schrödinger equation for the problem is then

−
ℏ
2𝑚𝛁 + 𝑉(𝐫) 𝜓𝐤(𝐫) = 𝐸𝜓𝐤(𝐫) . (2.16)

Thewave vector of the incoming wave is 𝐤with an associated energy 𝐸 = ℏ𝑘/2𝑚.
For large distances |𝐫| ≫ 𝑟 the wave function can be written as a sum of an Treatment as a pure

two-atom quantum
mechanical
scattering problem

incoming plane wave and a scattered spherical wave

𝜓𝐤(𝐫) = 𝑒𝑖𝐤𝐫 + 𝑒𝑖𝑘𝑟
𝑟 𝑓 (𝐤, 𝐤′) . (2.17)

The wave vector of the outgoing wave is given by 𝐤′ = 𝑘𝐫/𝑟. The scattering cross
section 𝜎 describes the effective spatial extent of the potential seen by the scat-
tering partner. It can be calculated by integrating over the whole sphere:

𝜎 = dΩ | 𝑓 (𝐤, 𝐤′)| . (2.18)

For a weak interaction potential 𝑉(𝐫) the scattering amplitude 𝑓 (𝐤, 𝐤′) can be cal-
culated in the Born approximation, with the result

𝑓 (𝐤, 𝐤′) = − 𝑚
2𝜋ℏ

𝑉(𝐤 − 𝐤′) , (2.19)
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where the Fourier transform of the interaction potential is denoted by 𝑉(𝐤 − 𝐤′).
To obtain a closed expression for the scattering amplitude, we assume a spheri-

cally symmetric interaction potential𝑉(𝑟).Thewave function can then be writtenRadial Schrödinger
equation in spherical coordinates 𝜓𝐤(𝐫). It consists of partial waves 𝑌𝑙,𝑚(𝜃, 𝜑) constructed

from Legendre polynomials 𝑃𝑙(cos 𝜃) of order 𝑙 ∈ {0, 1, ...} and a radial wave func-
tion 𝑅𝑙(𝑟). The Schrödinger equation for the radial part for a given 𝑙 then reads

−
ℏ
2𝑚 

𝜕
𝜕𝑟 +

2
𝑟
𝜕
𝜕𝑟 + 𝑉eff(𝑟) 𝑅𝑙(𝑟) = 𝐸𝑅𝑙(𝑟) . (2.20)

For this, the potential 𝑉(𝑟) is replaced by an effective potential

𝑉eff(𝑟) = 𝑉(𝑟) + ℏ𝑙(𝑙 + 1)
2𝑚𝑟 (2.21)

that includes a centrifugal barrier for angular momenta 𝑙 > 0, see Fig. 2.6. This
barrier cannot be overcome in the limit of low scattering energies i. e. 𝑘 → 0
(corresponding to low temperatures).
Inspecting the spatial wave function in the above form one notices that it is

symmetric for even values of 𝑙 and antisymmetric for odd 𝑙. The fermionic quan-
tum statistics thus forbids collisions of two fermions with the same spin in the
𝑠-wave channel as the combined spatial and spin wave function needs to be anti-
symmetric. Contributions from the allowed 𝑝-wave channel are on the other hand
negligibly small at low 𝑘. Therefore a spin-polarized Fermi gas can be consideredSpin-polarized Fermi

gases are essentially
non-interacting.

to be essentially non-interacting.

𝑟

𝑉eff(𝑟)

𝑙 = 1

𝑙 = 0

Figure 2.6: Centrifugal barrier in the inter-
atomic scattering potential.The potential
barriers for the scattering of two different
partial waves are drawn. In the limit of low
energies 𝑘 →  the centrifugal barrier sup-
presses scattering in the 𝑝-wave (𝑙 = , blue
dotted line) and higher partial waves. Only
𝑠-wave scattering (𝑙 = , red solid line) is
allowed in this case.

The only remaining partial wave is then the radially symmetric 𝑠-wave (𝑙 = 0)
term. In this case the asymptotic solution of Eq. (2.20) is 𝑅(𝑟) = (𝑟 − 𝑎)/𝑟 leading
to

𝜓𝐤→(𝐫) ∝
𝑟 − 𝑎
𝑟 . (2.22)

The entire scattering problem can thus be described by a single parameter, the
𝑠-wave scattering length 𝑎, which corresponds to the intercept of the asymptoticThe 𝑠-wave scattering

length 𝑎 (i. e. 𝑟 ≫ 𝑟) scattering wave function. The sign of 𝑎 distinguishes two cases, see
Fig. 2.7 on the next page. If the attractive potential does not support a bound
state, the change to the wave function is small and 𝑎 < 0. In fact, 𝑎 diverges when
a new bound state is just supported by𝑉(𝑟). A potential supporting a bound state
(𝑎 > 0) results in an outgoing wave function 𝑟𝑅(𝑟) that bends downwards and is
associated with a positive scattering length. In the former case, the interaction is
said to be attractive, whereas in the latter case it is repulsive.
Expanding for low energies, the scattering length can be related to the scattering

amplitude by

𝑓(𝑘) = − 1
1/𝑎 + 𝑖𝑘 − 𝑘𝑟𝑒/2

, (2.23)
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Figure 2.7: Positive and negative scattering lengths in an attractive potential. For 𝑠-wave
scattering, the scattering length 𝑎 is defined as the intercept of the asymptotic slope of
the radial scattering wave function 𝑟𝑅(𝑟) with the 𝑟 axis. As the depth of the attractive
potential is increased, the scattering length 𝑎 tends to −∞. It diverges exactly when a new
bound state is supported by the potential, and becomes positive as the energy of the bound
state is lowered further. Adapted from [Jördens, 2010].

where the effective range 𝑟𝑒 of the interaction potential was introduced [Gao, 1998;
Diener et al., 2004]. The scattering cross section is obtained from the optical the-
orem: Optical theorem

𝜎 ≐
4𝜋
𝑘 ℑ𝔪 𝑓(𝑘) =

4𝜋𝑎
1 + 𝑎𝑘 . (2.24)

At the low densities of cold atom systems, the interaction potential between two
atoms is given by the van der Waals potential Van der Waals

potential

𝑉(𝑟) = −𝐶𝑟 . (2.25)

The effective range can be calculated from the van der Waals parameter 𝐶 as
𝑟𝑒 = 𝛽 = 𝐶𝑚/ℏ

/
. As this effective range is much smaller than the typical

inter-particle spacing 𝛽 ≪ 1/𝑘F, the scattering formalism introduced above is in-
deed applicable and the outgoing wave function can be replaced by its asymptotic
behavior. This assumption holds for all but the most extreme cases, where the
scattering lengths are very large or the atoms are confined in deep optical lattices.
As the inter-atomic potential is in many cases too complicated for analytical

calculations, it is usually replaced by a zero-range potential [Castin, 2006] (i. e. a
potential which satisfies 𝑘𝑟𝑒 ≪ |1/𝑎 + 𝑖𝑘|):

𝑉pseudo(𝑟) = 𝑔𝛿(𝑟) 𝜕𝜕𝑟𝑟 , (2.26)

with the interaction parameter 𝑔 proportional to the scattering length

𝑔 = 4𝜋ℏ
𝑚 𝑎 . (2.27)

In contrast to the real potential, this pseudo-potential can be treated in the Born
approximation and allows for a mean-field description of the interacting many-
body system as long as 𝑘F|𝑎| ≪ 1.

2.3.2 FESHBACH RESONANCES

Feshbach resonances have been originally studied as a phenomenon in nuclear
physics [Feshbach, 1958] but have since emerged to one of the key tools in cold
atom physics. They allow for tuning the effective interactions over wide ranges,
often all the way from strongly attractive through non-interacting to strongly re-
pulsive [Tiesinga et al., 1993;Moerdijk et al., 1995; Giorgini et al., 2008;Ospelkaus
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et al., 2010]. While Feshbach resonances are most commonly accessed via mag-
netic fields [Inouye et al., 1998; Chin et al., 2010], optical [Fedichev et al., 1996;
Theis et al., 2004; Jones et al., 2006] as well as rf [Tscherbul et al., 2010] accessing
techniques have been explored as well. Their dynamical tunability has allowed
to explore the crossover between very different types of quantum many-body
states, e. g. from a Bose-Einstein condensate (BEC) state in a Fermi gas, where theBEC-BCS crossover
atoms are bound together to form repulsively interacting bosonic molecules, to
a Bardeen-Cooper-Schrieffer (BCS) state where the fermions form Cooper pairs,
which are attractively bound over long distances [Bartenstein et al., 2004; Bourdel
et al., 2004; Zwierlein et al., 2005].

𝑟

𝑉(𝑟)

incident energy

bound states

ℏ𝛿

tuningclosed channel (𝑚′
𝐹1

, 𝑚′
𝐹2

)

open channel (𝑚𝐹1 , 𝑚𝐹2 )

Figure 2.8: Feshbach resonance. Two atoms in
Zeeman states𝑚𝐹 and𝑚𝐹 collide in the so called
open channel. The coupling to other states𝑚′

𝐹 and
𝑚′

𝐹 (closed channel) during the scattering process
can lead to an effective change in scattering length.
If the detuning ℏ𝛿 between two bound states in
the open and closed channel becomes exactly zero,
the scattering between the two states is resonantly
enhanced (𝑎 → ±∞). Adapted from [Jördens,
2010].

In the treatment so far, the internal degrees of freedom of the scattering atoms,Coupling between
open and closed

channels
i. e. the spin, have so far been neglected. Since the electron wave functions of the
two atoms 1 and 2 with quantum numbers |𝐹, 𝑚𝐹⟩ and |𝐹, 𝑚𝐹⟩ overlap during
the scattering process, their electronic spins couple via the spin-spin interaction
𝑆 ⋅ 𝑆. This in turn couples channels with different total angular momentum 𝐹′ =
𝐹′ + 𝐹′ of the unperturbed two-body Hamiltonian used in Eq. (2.20) on page 26.
The total magnetic quantum number𝑚𝐹 = 𝑚𝐹 +𝑚𝐹 however is conserved. The
incoming atoms in states |𝐹, 𝑚𝐹⟩ and |𝐹, 𝑚𝐹⟩ are called to be colliding in the
open channel, see Fig. 2.8. The spin-spin coupling leads to an admixture of other
states with |𝐹′, 𝑚′

𝐹⟩ and |𝐹′, 𝑚′
𝐹⟩ that conserve 𝑚𝐹 (i. e. 𝑚′

𝐹 = 𝑚𝐹). These are
called the closed channels. Since their magnetic moments 𝜇open − 𝜇closed = Δ𝜇
are different as compared to the open channel states, a varying external magnetic
field can be used to change the energy difference between the channels by means
of the Zeeman effect.
The highest vibrationally excited bound state of the open channel determines

the background scattering length 𝑎bg, i. e. the scattering length away from any
Feshbach resonance. As themagnetic field is tuned to 𝐵res, such that a bound state
in the closed channel matches the energy of the two incoming atoms in the open
channel (that is the energy at the continuum threshold), the coupling to the closed
channel becomes relevant and leads to an resonantly enhanced scattering process.
The detuning from the resonance is given by ℏ𝛿 = Δ𝜇(𝐵 − 𝐵res). The scattering
length close to a Feshbach resonance is then given by [Moerdijk et al., 1995]Scattering length

close to a Feshbach
resonance

𝑎(𝐵) = 𝑎bg 1 −
Δ𝐵

𝐵 − 𝐵
 , (2.28)

where 𝐵 is the resonance position (which does not exactly coincide with 𝐵res
due to an avoided crossing of the weakest bound state in the open channel [Szy-
mańska et al., 2005]) and Δ𝐵 = 2ℏ/(𝑚𝑟𝑒𝑎bgΔ𝜇) is its width [Castin, 2006]. At
the resonance position the scattering length diverges and the only remaining
length scale is the inter-particle spacing ∼ 1/𝑘F. In this limit, called the unitarity
regime [Giorgini et al., 2008], the thermodynamics of the system becomes univer-
sal and is analogous to the description of neutron stars or quark-gluon plasmas.
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In the experiments presented in this thesis, two Feshbach resonances be-
tween the states |𝐹 = /, 𝑚𝐹 = − /⟩ and |𝐹 = /, 𝑚𝐹 = − /⟩ (denoted by 𝑚𝐹 =
( − /, − /)) and between |𝐹 = /, 𝑚𝐹 = − /⟩ and |𝐹 = /, 𝑚𝐹 = − /⟩ (denoted by
𝑚𝐹 = ( − /, − /)) are employed for controlling the scattering length.Their param-
eters are listed in Table 2.2 and the scattering length is plotted as a function of the
magnetic field in Fig. 2.9.

Table 2.2: Parameters of the Feshbach resonances
used in this thesis. Position and width of the two

Feshbach resonances for the used Zeeman states in
the 𝐹 = / hyperfine manifold of 40K are listed. The
background scattering length is 𝑎bg = 𝑎 [Re-
gal et al., 2004a], where 𝑎 denotes the Bohr ra-
dius. Data either taken from the cited sources

or measured in the experiment [Jördens, 2010].

CONFIGURATION POSITION 𝐵0 WIDTH Δ𝐵

𝑚𝐹 = ( − /, − /) .()G 1 .()G 3
𝑚𝐹 = ( − /, − /) .()G 2 .()G 3

1 From [Regal et al., 2004b]. While writing this thesis, we be-
came aware of additional evidence [Zhang, 2013] that sug-
gests using .()G [Gaebler et al., 2010] as the accepted
position, also slightly changing the widthmeasured in the ex-
periment to .()G.

2 From [Regal et al., 2003].
3 Measured in the experiment [Jördens, 2010].

Figure 2.9: The scattering length
in the vicinity of the two rele-

vant Feshbach resonances.The
scattering length was calcu-
lated according to Eq. (2.28)
using the parameters given

in Table 2.2. For most experi-
ments, either a ( − /, − /) or
( − /, − /) spin mixture with
a magnetic field located in
between the two Feshbach

resonance positions is used.
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INTERACTIONS IN OPTICAL LATTICES

Under the assumption that the harmonic oscillator length on a lattice site 𝑎ho =
√ℏ/𝑚𝜔site is larger than the effective range of the van der Waals potential 𝛽, in-
teractions of particles in an optical lattice can be treated in much the same way as
in free space.
One possible approach is to approximate the localized states on the lattice sites

by the harmonic oscillator levels of a single well. Under this assumption and us- Treating the lattice
sites as harmonic
oscillators

ing the regularized contact interactions pseudo-potential given in Eq. (2.26) on
page 27, the two-particle problem has been solved analytically [Busch et al., 1998].
The modified energies of the harmonic oscillator levels are shown in Fig. 2.10 on
the next page.
The lowest branch in the plot on the 𝑎 > 0 side, i. e. for repulsive interactions,

corresponds to the solution of the scattering problem in free space. Both in free
space and in a lattice the two atoms can be converted from free particles to a
Feshbach molecule when sweeping the scattering length close to 𝑎 = +0. The
binding energy of these molecules in the vicinity of the Feshbach resonance is
given by the Wigner formula [Sakurai, 1994]

𝐸bind = − ℏ
𝑚𝑎 . (2.29)

For 𝑎 < 0 bound states only appear in the presence of confinement, and – in
contrast to the free space situation, where deeply bound molecule can be created
by sweeping to 𝑎 = −∞ – their binding energy remains bounded.
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Figure 2.10: Two-particle states in a harmonic potential.The
energy of the two-particle system is drawn as a function of the
inter-particle scattering length (solid red line). The energies
of the non-interacting harmonic oscillator states are located
at ℏ𝜔(𝑛 + /) (𝑛 ∈ ℕ) and are drawn as dashed lines. On
resonance, the energies are ℏ𝜔(𝑛 + /) (dotted lines). Addi-
tionally, a confinement-independent true bound state exists
below the lowest harmonic oscillator level.

2.4 PROBES AND MANIPULATION

Despite of the aim of simulating solid state systems, the probes employed in
cold atoms experiments are quite dissimilar to those used in solid state research.
This is however, most often not a disadvantage, but rather an enrichment as the
probes available for cold atomic gases may be complementary to what is avail-
able in condensed matter physics. Using tools like fluorescence imaging or ab-
sorptive or dispersive imaging techniques, as well as Bragg diffraction [Birkl et
al., 1995; Weidemüller et al., 1995, 1998], in combination with techniques like
time-of-flight (TOF) (see below), rf pulses, laser beams for manipulation such as
stirring, heating or deformation, magnetic field gradients or spectroscopy tech-
niques (such as Bragg or modulation spectroscopy) the state of the system can be
characterized in different ways.
While recording the fluorescence of the atoms excited by a laser beam reso-Imaging techniques

nant with an electronic transition offers the advantage of a background-free sig-
nal, it is in practice hard to implement because the atoms are severely heated
up by the photon scattering and thus expelled from the trap before enough scat-
tered photons can be collected. Using appropriate freezing lattices and re-cooling
schemes, this method has however been used to detect atoms on single sites of
optical lattices [Bakr et al., 2010; Sherson et al., 2010]. In absorptive or disper-
sive imaging techniques the “shadow” of the atoms in a resonant laser beam is
recorded on a CCD camera or the phase shift induced by the atoms is measured
in an interferometer-like setup, with both methods offering the advantage of bet-
ter signal-to-noise ratio as compared to fluorescence imaging. All these imaging
methods are in some way used to obtain information about the density distribu-
tion (or higher order density correlations) of the atoms integrated along one spa-
tial axis2, either while they are still trapped or after time-of-flight (TOF). In thisTime-of-flight
technique the traps usually required to hold the atomic cloud in a fixed region in
space are switched off and the cloud is allowed to evolve freely during a certain
amount of time (usually a few milliseconds) under the influence of gravity (or
commonly also magnetic field gradients to separate or levitate the atomic cloud),
before it is imaged. In this way information about the momentum distribution
of the atoms in the trap can be gained as momentum is converted into position
information during TOF.
Used in the same way as in neutron scattering for solid state systems, BraggBragg scattering

scattering gives insight about the a periodic arrangement of the atoms in the sam-
ple.
All of the above techniques can be exponentiated by combing them with

preparatory steps, during which the state of the system is encoded in other de-
grees of freedom, which can then be measured using one of these techniques. For
example, single atoms can be selectivelymanipulated or removed from the system
using laser ormicrowave fields [Weitenberg et al., 2011] or electron beams [Würtz
et al., 2009]. Several applications of this general scheme will be discussed in this

2 This is commonly called column-integration.
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thesis. For details on howmeasurements are performed in our experimental setup,
see Section 3.4 on page 63.
In contrast to most solid state measurement techniques, all the mentioned de- Destructiveness of the

imaging techniquestection methods are in fact destructive to the system already on rather short time
scales – that is within the time required to obtain a satisfying signal-to-noise ra-
tio – as they provide the sample with somuch energy bymomentum impaired via
photon scattering that the atoms leave the trap or the imaging region.The destruc-
tiveness however varies considerably: while typical absorption imaging usually
destroys the sample already when obtaining one single image of the 2D density
distribution, other techniques such as the one used in Ref. [Freilich et al., 2010],
where only a fraction of the atoms in the cloud is destructively imaged and the
rest left intact, allow for taking many images of the same atomic cloud.
The destructiveness of the imaging techniques makes it intrinsically hard to Observing dynamics

observe time-dependent dynamics in these systems. However, the high degree of
control over the sample production process and the resulting reproducibility of
the experiments helps to overcome this issue: time-series measurements can be
constructed by the measurement of many samples at different times relative to
the start of the dynamic process (e. g. an excitation created by an instantaneously
applied force).





3THE EXPERIMENTAL SETUP

In this chapter I will discuss the apparatus which was used to perform the exper-
iments described in this thesis. After a brief historical review, I will first describe
the steps required to obtain an ultracold Fermi gas in the optical dipole trap, which
is the starting point for the actual experiments. Then the main experimental tool
of this thesis will be discussed, the tunable-geometry optical lattice.Then, the dif-
ferent lattice geometries which can be achieved using the optical lattice will be
studied. To close the chapter, the employed detection methods are presented.
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The construction of the setup began in 2001 and allowed for the preparation of Brief history of the
apparatusthe first Bose-Einstein condensate (BEC) of rubidium 87 in Switzerland towards

the end of 2002. Since then, the apparatus has been continuously modernized to
allow for various kinds of experiments such as the study of Bose gases in optical
lattices of different dimensionality1. Details on these experiments can be found in
the theses of Thilo Stöferle [2005] and Henning Moritz [2006].
After adapting the setup in order to also cool potassium 40 to quantum degen-

eracy in 2003/2004, the experiment was the first to study ultracold Fermi gases in
3D optical lattices [Köhl, Moritz, Stöferle, Günter, et al., 2005]. This allowed fur-
ther studies addressing the band structure and interactions [Köhl,Moritz, Stöferle,
Günter, et al., 2005; Günter et al., 2005] and Feshbach- [Stöferle et al., 2006;
Köhl et al., 2006] and confinement-induced molecules [Moritz et al., 2005], dy-
namics [Köhl, Moritz, Stöferle, Günter, et al., 2005; Strohmaier et al., 2007] and
mixtures of Bose and Fermi gases [Günter et al., 2006]. Details on these experi-
ments can be found in the theses of Henning Moritz [2006] and Kenneth Gün-
ter [2007]. Refinement of the experimental techniques, namely the precise mea-
surement of the atomic double occupancies in the optical lattice, and enhance-
ments to the experimental setup allowed for the first observation [Jördens et

1 Moritz et al., 2003; Stöferle et al., 2004; Köhl, Moritz, Stöferle, Schori, et al., 2005; Köhl et al., 2004;
Schori et al., 2004.
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al., 2008] and subsequent characterization of the metal to Mott insulator tran-
sition [Jördens et al., 2010] with ultracold fermions. In this context, both the
equilibrium [Greif et al., 2011] and non-equilibrium properties [Strohmaier et
al., 2010; Sensarma et al., 2010] of the Mott-insulating state were studied using
lattice modulation [Stöferle et al., 2004]. This work is detailed in the theses of
Niels Strohmaier [2010], Robert Jördens [2010] and Daniel Greif [2013]. A ma-
jor addition was the tunable-geometry optical lattice installed in 2011, allowing
for the exploration of more complex structures such as hexagonal lattices simi-
lar to those of graphene [Tarruell et al., 2012; Uehlinger, Greif, Jotzu, Tarruell,
Esslinger, et al., 2013; Uehlinger, Jotzu, et al., 2013]. For dimerized and aniso-
tropic lattices, quantummagnetism of ultracold fermions was studied for the first
time in 2012 [Greif et al., 2013]. Details on the tunable-geometry optical lattice
and the observation of short-range quantummagnetism can be found in the thesis
of Daniel Greif [2013].
The experiment in its current state fills a temperature-stabilized and vibration-Main parts of the

experimental setup isolated room of 40m. It consists of four main parts:

• An optical table where the laser light required for cooling, trapping, and
imaging is generated and prepared.

• A second optical table holding a stainless steel vacuum chamber where the
actual experiment is performed. It holds the required optics and magnetic
coils formanipulating the atoms and charge-coupled device (CCD) cameras
to acquire images of the atom cloud.

• Electronics for laser stabilization, generation of rf signals, and the control
of electric currents.

• Five personal computers connected in a client-server architecture to control
the experiment and acquire data.

3.1 PREPARATION OF THE ULTRACOLD FERMI GAS

Some of the properties relevant for the two alkali elements used in the preparation,The used alkali
elements the bosonic 87Rb and the fermionic 40K are listed in Table 3.2 and Table 3.1 on

the next page. Potassium builds together with lithium, sodium, rubidium, cesium
and francium the first group in the periodic table, which is called the group of
alkali metalsİt is a soft silvery-white metal that occurs naturally bound to other
elements in for example seawater and many minerals. It oxidizes rapidly in air
and is very reactive with water. Potassium is the seventh abundant element on the
earth’s crust.
A schematic drawing of the vacuum chamber in which the Fermi gas is pre-Vacuum chamber

pared is shown together with the timing of themain experimental steps in Fig. 3.2
on page 36. In contrast to many other research fields, the “samples” produced and
investigated in our experiment are one-time use only, i. e. the measurement pro-
cess destroys them. Luckily, the generation of a new sample takes only less than
one minute (for all-optical experiments this can even be less than 10 s). In order
to minimize thermal drifts, this process is continuously repeated during normal
operation, even when no measurements are to be taken.
Both the sample preparation process as well as the final samples are in fact

highly sensitive to external magnetic fields, electromagnetic radiation and even
other particles hitting the atoms in the sample. Therefore the apparatus is well
shielded against magnetic fields by Mu-metal2 and is held in an ultra-high vac-
uum chamber at pressures < 1 × 10−mbar. These extremely low pressures are
maintained by two ion pumps, which trap particles from the vacuum by ioniz-
ing and accelerating them towards one of the electrodes, where they get buried

2 This is the brand name for a nickel-iron alloy with an exceptionally high magnetic permeability.
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Table 3.1: Fermionic potassium 40K. This table lists some of the relevant properties of the
element.

natural abundance [Haynes, 2013] .() %
abundance in the enriched source material  %
radioactive lifetime [Haynes, 2013] . ×  y
atomic mass𝑚 [Haynes, 2013] . u
vapor pressure at  °C [Haynes, 2013] . × − mbar

nuclear spin 𝐼 [Haynes, 2013] 
nuclear 𝑔𝐼 factor [Arimondo et al., 1977] .() 1
𝑔𝐽 factor (𝑆/) [Arimondo et al., 1977] .()
wavelength of 𝐷 line [Tiecke, 2013] .() nm
wavelength of 𝐷 line [Tiecke, 2013] .() nm
natural line width  of 𝐷 transition [Tiecke,
2013]

𝜋 × .() MHz

ground state hyperfine splitting [Arimondo et
al., 1977]

𝜋 × . MHz

background scattering length 𝑎bg [Ticknor et
al., 2004]

 𝑎

40K– 87Rb interspecies background scattering
length (𝐵 = ) [Ferlaino et al., 2006a,b]

− ±  𝑎

1 Thenuclear gyromagnetic ratio is defined through the nuclearmagneticmoment𝝁 =
−𝑔𝐼𝜇𝐵𝐈, where 𝜇𝐵 is the Bohr magneton.

Table 3.2: Bosonic rubidium 87Rb. This table lists some of the relevant properties of the
element.

natural abundance [Haynes, 2013] .() %
radioactive lifetime [Haynes, 2013] . ×  y
atomic mass𝑚 [Haynes, 2013] . u
vapor pressure at  °C [Haynes, 2013] . × − mbar

nuclear spin 𝐼 [Haynes, 2013] /
nuclear 𝑔𝐼 factor [Arimondo et al., 1977] −.()
𝑔𝐽 factor (𝑆/) [Arimondo et al., 1977] .()
wavelength of 𝐷 line (vacuum) [Steck, 2013] .() nm
wavelength of 𝐷 line (vacuum) [Steck, 2013] .() nm
natural line width of 𝐷 transition  [Steck, 2013] 𝜋 × .() MHz
ground state hyperfine splitting [Arimondo et al., 1977] 𝜋 × . MHz

background scattering length 𝑎bg [Theis et al., 2004]  𝑎
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Figure 3.1: Computer-aided design (CAD) drawing of the apparatus. A cut through the
main parts of the vacuum chamber including magnetic coil supports and ion pumps is
shown.
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Figure 3.2: Preparation steps. During the experimen-
tal cycle lasting roughly  s, the atoms are captured
from the background pressure in the magneto-optical
trap (MOT) chamber established by the two atom reser-
voirs. After magnetic transport through the differential
pumping stage to the glass cell the atoms are cooled on
quantum degeneracy in a magnetic quadrupole-Ioffe-
configuration (QUIC) trap. Following the transfer to
a crossed-beam optical dipole trap the optical lattice
beams are ramped up in intensity and the actual exper-
iment is performed. Cloud sizes and profiles are after-
wards recorded using absorption imaging on CCD cam-
eras. The laboratory coordinate system used throughout
this thesis is also introduced. Gravity points along 𝑦.
Drawing adapted from [Stöferle, 2005].
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in the surface. A titanium sublimator can be used to coat the inner surface of the
vacuum chamber with the very reactive titanium which binds particles from the
remaining background gas by a chemical reaction.
The atoms to be prepared for the actual experiment are sourced from to ampuls Atom sources

brought into the vacuum chamber and then cracked to allow some of the atoms
to diffuse into theMOT chamber. To avoid unnecessary contamination of the vac-
uum system, the source material has been purified and for the case of potassium
also enriched and then distilled into the ampul. The bosonic 87Rb was obtained
as a > 98% pure metal from Sigma-Aldrich at a fill-in-weight of 2 g. The 40K has
been enriched to 14% and was obtained as a salt (KCl) from Trace Sciences Inter-
national, USA3. This compound has been then distilled into the ampul as a pure
metal by Precision Glassblowing, Centennial, CO at a quantity of 30mg.
Then, the atoms need to be prepared at the required temperature, density and

in the desired internal state to be able to load them into the optical lattice where
the actual experiment is performed. To this end, several different types of traps,
combined with various cooling techniques are used, with an overview shown in
Fig. 3.3.

B
x

x y

MOT QUIC FORT

Figure 3.3: Atom traps. The different types of traps used in the experiment are shown.
First, the atoms are cooled and trapped in a MOT, which is built from six crossed laser
beams and amagnetic quadrupole field. Next, the atoms a transported in a quadrupole trap
(not shown) to the glass cell, where they are evaporatively cooled in a quadrupole-Ioffe-
configuration (QUIC) trap. In a final step, they are transferred to a crossed-beam optical
dipole trap (far-off resonance trap (FORT)), where a second step of evaporative cooling is
performed. Adapted from [Günter, 2007].

3.1.1 LASER COOLING

The first preparation step is based on the principle of laser cooling proposed by First cooling step: the
magneto-optical trapHänsch et al.The atoms are caught and cooled in aMOT from the background gas

built up by diffusing 87Rb and 40K atoms, see Fig. 3.4 on the following page. The
background pressure of 87Rb is 3.1 × 10−mbar at room temperature, enough
for an efficient loading into theMOT. For 40K it is only 1.3 × 10−mbar and thus
needs to be enhanced to a similar pressure as for 87Rb by heating the area of the
vacuum chamber close to the ampul to 50 °C. By simultaneously applying a mag-
netic field in a quadrupole configuration generated by two switchable magnetic
coils and three pairs of perpendicular counter-propagating laser beams address-
ing the 𝐷 electronic transition lines, the atoms can be cooled and trapped in the
center of the coil and beam arrangement.The exact laser frequencies can be found
in the energy level scheme displayed in Fig. 3.5 on the next page.
In order to achieve a cooling effect, the cooler lasers are slightly red detuned (i. e. Addressed atomic

transitions: cooler
and repumper laser

their frequency is slightly lower) with respect to the transition to be addressed. Be-
cause the used transitions are not fully closed, an additional laser frequency (the
repumper) has to be employed to pump the atoms back into the relevant ground

3 Recently, 40K seems not to be available from this company in highly enriched quality anymore. How-
ever, we are aware of another company, American Elements, which is still offering 40K enriched to
≥ %.
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σ 
+ σ -

I

Figure 3.4: Magneto-optical trap. Six circu-
larly polarized laser beams with a frequency
which is red-detuned with respect to the
atomic transition cross at the center of a
magnetic quadrupole field. This gives rise to
a momentum- and position-dependent pho-
ton scattering rate, leading to both a cooling
and trapping effect.

state.The fact that an electronic transition in an atom or molecule can actually be
cycled through in a continuous fashion using only these two cooler and repumper
laser frequencies is actually not at all trivial. This is only the case for very few ele-
ments and transitions, for example for those of alkali atoms as used here. Both the
cooling and trapping effect in theMOT can be understood in the picture of dissipa-
tive light forces: by the combination of the laser detuning and the detuning result-
ing from a position dependent Zeeman splitting in the quadrupole field, photons
are only scattered from atoms propagating away from the trap center towards one
of the six beams, see Fig. 3.4. The directed transferred momentum acquired dur-
ing absorption of a photon is subsequently lost by the isotropic emission of the
photon. This repeated process leads to a net reduction of the momentum of the
atoms in the center of the trap combined with a net force directed towards the
center.
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Figure 3.5: Level schemes for 40K and 87Rb including both the D and D transitions.The
cooling and repumper transitions are addressed by slightly red-detuned laser frequencies.
The linewidths of the 𝐷 transitions used in the experiment are .MHz and .MHz
for 40K and 87Rb, respectively.The𝐷 transition is not directly involved in the laser cooling
process. Adapted from [Jördens, 2010]. Data from [Steck, 2013; Tiecke, 2013].

In the experiment, we first load about 20 × 10 potassium atoms into theMOT.
In a second step, 87Rb is loaded, with a final atom number of about 1 × 10. Both
species are captured and cooled in the same place, with the cooling laser beams for
both elements co-propagating along all six spatial directions. To avoid collisional
losses of potassium atoms induced by the rubidium, 87Rb is only collected during



3.1 Preparation of the ultracold Fermi gas 39

the last 3 s of the MOT stage lasting 12 s in total. The essential parameters of this
cooling step are listed in Table 3.3.

Table 3.3: Summary of the parameters for theMOT and the optical molasses cooling.Adapted
from [Günter, 2007].

PARAMETER 40K 87Rb

cooling power (fiber output) mW mW
repumping power (fiber output) mW mW
cooler detuning  −.  − 
repumper detuning  −.   
magnetic field gradients (−, −, ) G/cm (−, −, ) G/cm
loading duration  s  s
atom number ∼  × ∼ 

molasses detuning −  − 
molasses duration ms ms

At the end of this cooling step, temperatures on the order of a mK are reached.
To achieve a further reduction of temperature, the magnetic field is switched off
andmolasses cooling is performed during 6ms, with a final detuning of−10Γ and
−3Γ for 87Rb and 40K, respectively. We then optically pump the 87Rb into the Molasses cooling and

optical pumping|𝐹 = 2,𝑚𝐹 = +2⟩ state and 40K into |𝐹 = /, 𝑚𝐹 = + /⟩, respectively, by a short
sequence of laser pulses (total duration: 1.8ms) of the resonant cooling and re-
pumper light followed by a controlled switch-off of first the cooler and then the
repumper. The two Zeeman states are chosen because of their favorable inter-
species scattering properties required for efficient sympathetic cooling.

3.1.2 MAGNETIC TRAPPING AND TRANSPORT

The above-mentioned states of both elements have a positive magnetic moment
and are thus low-field seekers, i. e. their energy is minimized in magnetic field
minima.They can thus be trapped in amagnetic quadrupole field which we in the
following employ to transport the atoms through the differential pumping stage
into the glass cell.The transport is achieved by subsequently ramping the currents Magnetic transport

through a conveyor
belt arrangement of
coils

in the 11 coil pairs arranged along the transport path outside of the vacuum cham-
ber on and off. In this way, the magnetic field minimum is smoothly moved along
the transport path to the glass cell within 1.5 s, allowing the atoms to follow like
in a conveyor belt. About 20% of the atoms initially trapped in theMOT are finally
captured in a magnetic trap in the glass cell. This includes losses during the mo-
lasses cooling, optical pumping, the transport and loading into the final magnetic
trap. In the glass cell, the atoms are transferred into a QUIC trap [Esslinger et al.,
1998]. This type of magnetic trap avoids the problem of Majorana losses [Petrich
et al., 1995] due to the magnetic field minimum present in the trap center of pure
quadrupole traps. This is achieved by adding the additional Ioffe coil, which pro-
duces an overall offset field of in our case about 3G. In this trap, the atomic cloud
assumes the shape of a cigar, with the axis aligned with that of the Ioffe coil.

3.1.3 EVAPORATIVE COOLING

When arriving in the glass cell, the atoms are roughly at a temperature on the Magnetic cooling in
the QUIC trap within
the glass cell

order of some 10 µK, which is – even though these temperatures are already on
the order of those achieved in today’s best cryostats – still much higher than the
Fermi temperature of some 100 nK of this extremely dilute gas. Even lower tem-
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peratures can be achieved by a slow removal of the hottest atoms in the trap, while
allowing for a continuous rethermalization of the atoms by interactions, amethod
called forced evaporative cooling. In our setup, we use microwave radiation to ad-
dress the 5𝑆/ |𝐹 = 2,𝑚𝐹 = 2⟩ → |𝐹 = 1,𝑚𝐹 = 1⟩ transition of 87Rb in order
to transfer atoms from a magnetically trapped to an untrapped state. Due to the
Zeeman effect, the transition frequency has a spatial dependence, which allows
for addressing only the outside, i. e. the hottest atoms. During a total time of 23 s
atoms are continuously removed with a lowering frequency accounting for the de-
creasing size of the cloud. This process is performed slowly enough for allowing
rethermalization of the rubidium gas by collisions. The 𝑠-wave scattering length
of 87Rb resulting from the underlying van derWaals interactions is 100 𝑎, where
𝑎 denotes the Bohr radius.
The microwave frequencies are generated by mixing a commercial microwave

source operating at 6.630 000 000GHz⁴ with a signal generated from a computer-
controlled direct digital synthesizer (DDS) developed in our group [Jördens,
2006].

0 9 19 23
time (s)

40K

N≈4∙106

N≈1∙109

N≈2∙106

N=0

87Rb

2 mm

Figure 3.6: Evaporative cooling. Absorption images of 40K and 87Rb at different times
during the evaporation stage. The potassium atoms are only visible at a later stage of the
evaporation as their initial density is very low.The forced evaporation on 87Rb is performed
until all atoms are completely removed, leaving only the sympathetically cooled 40K at a
relative temperature down to 𝑇/𝑇F ≈ %. Images were taken on a temporarily installed
low-magnification imaging system along the 𝑥 axis using a Point Grey Flea2 CCD camera.
Adapted from [Greif, 2013].

Usually both the quadrupole pair as well as the additional Ioffe coil in theQUICCurrents in the QUIC
coils trap are driven by the same current. In our experiment, the atoms would in this

configuration partially get in contact with the inner glass cell wall at the beginning
of the evaporation process. Therefore we use during 7 s a modified configuration,
in which the current through the Ioffe coils is increased in order to push the trap
minimum away from the glass cell wall. In this configuration 20A of current are
run through the quadrupole coils and 30A are used for the Ioffe coil⁵. The evapo-
ration frequency is ramped from 6.8945GHz to 6.8695GHz.This step is followed
by 23 s evaporation in a normal QUIC configuration. During this time the cur-
rent is ramped from 30A to 25A using an exponential ramp to lessen three-body
losses, and the frequency is tuned from 6.8745GHz to 6.8415GHz, depending on
the atom number required in the final configuration.The power of themicrowave
radiation is decreased by 14 dB as well to counteract power broadening.
For 40K, the situation is different: Due to the fermionic spin of 40K, collisions

between particles are not allowed if a spin-polarized gas (i. e. only containing
4 The absolute frequency stability of all frequency generators used in the experiment is ensured by a
phase-locked loops (PLLs) referenced to a long-time stable MHz signal obtained from a global po-
sitioning system (GPS) receiver, which additionally ensures short-time stability via quartz oscillator
locked to the GPS time signal.

5 The offset field needs to be decreased in this configuration by an additional coil in order to stiffen the
trap.This however increases the sensitivity to spurious rf at low frequencies which can cause spin-flips
to untrapped states.
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only particles in one spin state) is used.Therefore one cannot cool spin-polarized
fermionic potassiumby evaporative cooling inmagnetic traps just by itself due the
lack of thermalization. We circumvent this problem by making use of the inter-
species collisions between the overlapped 40K and 87Rb clouds, allowing for a
continuous re-thermalization of the potassium atoms while microwave evapora-
tion is performed on rubidium.This technique is called sympathetic cooling.The
relevant inter-species background scattering length is 𝑎 = −185(7)𝑎. Images of
the atomic clouds at different times during the evaporation are shown in Fig. 3.6
on page 40. As the actual experiments are to be performedwith only 40K, the 87Rb
atoms are usually completely removed during the evaporation process.

3.1.4 OPTICAL TRAPPING

While magnetic traps are the ideal choice to create both very deep and large traps
for cold atoms, they do not allow for an arbitrary choice of a homogenous exter-
nal magnetic field, which is needed when a precise control of the inter-particle
interactions via Feshbach resonances (see Section 2.3.2 on page 27) is required.
Optical dipole traps – also called FORTs –, based on the AC-Stark effect, are a
much better choice in this case as they do not involve static magnetic fields. The
forces resulting from these traps are conservative, i. e. do not transfer any energy,
and are therefore ideally suited to hold or manipulate the ultracold samples cre-
ated in these types of experiments. A brief introduction to the origin of the light
forces is given in Section 2.2.1 on page 23. Details on their working principle and
applications can for example be found in [Grimm et al., 2000].

Figure 3.7: Trap potential of a single beam
dipole trap.The potential in the focus of a
laser beam with an elliptic gaussian inten-

sity profiles propagating along 𝑥 is drawn for
the three spatial directions. Along the prop-
agation direction 𝑥 the confinement is very

weak, leading to an elongated cloud. Along 𝑦,
gravity counteracts the confinement, requir-
ing a narrower beam along this direction.

−2 0 2
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𝐸

𝑥
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In Fig. 3.7 we schematically plot the potential from a single gaussian laser beam
along the three spatial axes. Gravity points along 𝑦. In such a potential the atomic
cloud would assume a very elongated shape along the axial direction of the laser
beam. To obtain a round cloud profile in the 𝑥 − 𝑧 plane, we use two horizontal
FORT beams crossing at 90°. To avoid interference between the two beams, their Crossed beam optical

dipole trapfrequencies are detuned with respect to each other by approximately 160MHz
by means of two acousto-optic modulators (AOMs). About 1% of the light is
picked up after the fiber output coupler on the experimental table via an anti-
reflection (AR) plate and sent to high-bandwidth photodiodes. This signal as well
as the analog setpoint voltage signal output by the computer control card are fed
to a proportional-integral-derivative (PID) controller. The processed error signal
is then fed back into the AOM for intensity stabilization. As the dipole trap also
has to hold the cloud against gravity, the confinement is increased along this axis
by an elliptic beam profile created by means of an anamorphic prism pair. The
parameters of the dipole trap configuration used in the experiment can be found Parameters of the

dipole trapin Table 3.4 on the following page. We use a titanium-sapphire (Ti:Sa) laser (Co-
herent MBR110 pumped by a Coherent Verdi V18) operating at a wavelength of
𝜆 = 826.05 nm, resulting in a red-detuning with respect to the atomic transition
frequency of 59 nm.The exact wavelength of the FORT laser is in principle not cru-
cial. Measurements at different wavelengths showed however a close-by loss fea-
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ture centered at 826.10 nm caused by a photo-association resonance [Strohmaier,
2010].

Table 3.4: Dipole trap parameters.The two beams propagate horizontally in the 𝑥 and 𝑧 di-
rection.The typical final parameters correspond to the usual recompression endpoint after
evaporation where laser powers of about mW per beam are used. Adapted from [Jör-
dens, 2010].

wavelength 𝜆𝐹 = . nm
horizontal waist 𝑤ℎ =  µm
vertical waist 𝑤𝑣 =  µm
typical gravitational sag 𝑦 ≈ − µm
typical final trap depth with gravity 𝑉𝐹 ≈ .𝐸R ≈ 𝑘B × . µK
typical final trap frequencies 𝜔𝐹(𝑥,𝑦,𝑧)/𝜋 = [.(), (), .()]Hz
typical mean trap frequency 𝜔𝐹/𝜋 = .Hz

TRAP FREQUENCIES

Together with the gravitational potential the two beams form the potential

𝑉𝐹(𝑥, 𝑦, 𝑧) = − 𝑉𝐹𝑥 exp −2
𝑧
𝑤
ℎ
− 2 𝑦



𝑤𝑣
 − 𝑉𝐹𝑧 exp −2

𝑥
𝑤
ℎ
− 2 𝑦



𝑤𝑣


+ 𝑚𝑔𝑦 ,
(3.1)

where 𝑤ℎ and 𝑤𝑣 are the horizontal and vertical 1/𝑒 waists, respectively. The po-
tential depth at the center of the two beams is 𝑉𝐹𝑥 and 𝑉𝐹𝑧.
The gravitational potential pulls the atoms downwards and leads to a sag in

their equilibrium position with respect to the symmetric position in the intensity
maximum. For deep traps, where the sag is small compared to the waist, the new
equilibrium position lies at 𝑦 ≈ −𝑚𝑔𝑤

𝑣/4(𝑉𝐹𝑥 +𝑉𝐹𝑧). Close to its minimum, the
potential shape can be well approximated by that of a purely harmonic potential
around (𝑥, 𝑦, 𝑧) = (0, 𝑦, 0):

𝑉𝐹(𝑥, 𝑦, 𝑧) ≈
1
2𝑚

𝜔𝐹𝑥𝑥 + 𝜔𝐹𝑧𝑧 + 𝜔𝐹𝑦(𝑦 − 𝑦) (3.2)

with the oscillator frequenciesHarmonic trapping
frequencies of the

FORT
𝜔𝐹𝑥 =

4𝑉𝐹𝑧 exp(−2𝑦/𝑤
𝑣)

𝑤
ℎ𝑚

,

𝜔𝐹𝑧 =
4𝑉𝐹𝑥 exp(−2𝑦/𝑤

𝑣)
𝑤
ℎ𝑚

, and

𝜔𝐹𝑦 =
4(𝑉𝐹𝑥 + 𝑉𝐹𝑧)(1 − 4𝑦/𝑤

𝑣) exp(−2𝑦/𝑤
𝑣)

𝑤𝑣𝑚
.

(3.3)

These harmonic oscillator frequencies, called the trap frequencies, can be ex-
perimentally measured. For this, dipole oscillations of the 40K atomic cloud with
interactions tuned close to zero are induced by magnetic field gradients (for the
𝑥 and 𝑧 direction) or a sudden change of the FORT intensity (for the 𝑦 direction).
The oscillation frequency is then measured by recording the center of mass of the
cloud after TOF.
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LOADING

In order to transfer the atoms from the magnetic trap to the optical dipole trap,
the intensity of the two FORT beams is first ramped up to a value between 120mW
and 200mW per beam within 100ms, followed by a ramp-down of the magnetic
field within another 100ms. We then make use of the large coil-pair mounted in
Helmholtz configuration along the 𝑥 axis to create a homogenous offset field of
about 10G at the position of the atoms. As this coil pair is later used to control the
Feshbach field, these coils are aptly called the “Feshbach coils” (see Fig. 3.29 on
page 62 for an overview of the relevant magnetic coils). An rf frequency sweep
using an rf antenna located within the Mu-metal shielding close to the glass
cell then induces subsequent Landau-Zener transfers taking the atoms from the
|𝐹 = /, 𝑚𝐹 = + /⟩ to |𝐹 = /, 𝑚𝐹 = − /⟩ (see Fig. 3.8, step 1 ), i. e. the absolute Preparation of the

atoms in the absolute
ground state

electronic ground state of the system. Following this procedure, themagnetic field
is increased to several 100G, where the degeneracy of the 𝑚𝐹 states is lifted due
to the increasing quadratic Zeeman shift. In this crossover regime between the
Zeeman and Paschen-Back effect different𝑚𝐹 → 𝑚𝐹 ± 1 transitions can be selec-
tively addressed for further preparation. Depending on the Feshbach resonance
ormagnetic fields to be accessed, either of the two evaporative cooling procedures
in the FORT outlined below is followed.

PREPARATION ON THE LOW-FIELD SIDE OF THE (–9/2,–7/2) FESHBACH
RESONANCE

For accessing magnetic fields at the low-field side of the ( − /, − /) Feshbach res-
onance, the magnetic offset field is ramped to 186G (see Fig. 3.8), where an in-
coherent, balanced (i. e. with a ratio 0.50(5)) mixture of the two Zeeman states
|𝐹 = /, 𝑚𝐹 = − /⟩ and |𝐹 = /, 𝑚𝐹 = − /⟩ is created by a sequence of fast Landau-
Zener transfers between the two states lasting for a total of 200ms (step 2 ).
The magnetic field is then ramped to a value of 197.5G resulting in a scatter-
ing length of 𝑎 = 460𝑎 3 . At this scattering length allowing for a continuous
re-thermalization, the 40K is then further evaporatively cooled by ramping the
intensity of the FORT beams down to 37mW–45mW within 2.5 s using an ex-
ponential ramp with a time constant 𝜏 = 450ms. Typically, the FORT is then re-
compressed to an intensity of 43mW–45mW to avoid further evaporation and to
have a well-defined starting point for the actual experiment. From here, scattering
lengths in the range of 200 to 650𝑎 can be set T .

Figure 3.8: Spin mixture prepara-
tion and cooling on the left of the
( − /, − /) Feshbach resonance.
Both the spin-mixture prepa-
ration 2 and the cooling 3

are performed on the repulsive
side of the Feshbach resonance.
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PREPARATION ON THE HIGH-FIELD SIDE OF THE (–9/2,–7/2) FESHBACH
RESONANCE

The preparation procedure on the “right” (i. e. high-field) side of the ( − /, − /)
resonance is mostly analogous to that on the “left” side. To create the
|𝐹 = /, 𝑚𝐹 = − /⟩— |𝐹 = /, 𝑚𝐹 = − /⟩ spin mixture, the offset field is ramped
to 232G 2 . The scattering length is then tuned to −1600(200)𝑎 by setting
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𝐵 = 202.8G for the evaporative cooling 3 . The evaporation ramp starts from
a FORT intensity of 120mW and has an exponential shape with a duration of
1.7 s and a time constant 𝜏 = 700ms. After the evaporation, the scattering
length is tuned close to its zero-crossing at 𝐵 = 216.6G. The FORT is then re-
compressed. At this point, we either drive a Landau-Zener transition using a
frequency sweep 4 to transform the |𝐹 = /, 𝑚𝐹 = − /⟩ — |𝐹 = /, 𝑚𝐹 = − /⟩
mixture into a |𝐹 = /, 𝑚𝐹 = − /⟩— |𝐹 = /, 𝑚𝐹 = − /⟩mixture in order to have
access to large positive scattering lengths in the range of 200 to 650𝑎 (blue T ) or
keep the |𝐹 = /, 𝑚𝐹 = − /⟩— |𝐹 = /, 𝑚𝐹 = − /⟩ spin mixture already used for
evaporation to access scattering lengths in the range of −650 to 110𝑎 (green T ).
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Figure 3.9: Spin mixture prepa-
ration and cooling on the right
of the ( − /, − /) Feshbach res-
onance.Here, the spin mix-
ture 2 is prepared on the right
of the Feshbach resonance and
the cooling is performed at
a large attractive scattering
length 3 . A Landau-Zener
transition 4 can be used to ob-
tain a ( − /, − /) spin mixture.

Thechoice of the evaporation side depends on the requirements of the actual ex-Choice of the
evaporation side periment to be performed.Theuse of a ( − /, − /)mixture is in principle preferred

in all cases, as losses due to spin-changing collisions and the attributed heating are
lower. However, large repulsive interactions with ( − /, − /)mixtures can only be
accessed when evaporating on the left side of the respective Feshbach resonance,
where in our experiment the evaporation does not work as efficiently as on the
high-field side and thus only temperatures on the order of 𝑇/𝑇F = 20% can be
reached. On the right side, we typically reach temperatures below 𝑇/𝑇F = 10%
for the ( − /, − /) mixture, which translate into temperatures on the order of
𝑇/𝑇F = 14% after transferring to ( − /, − /).

3.2 THE TUNABLE-GEOMETRY OPTICAL LATTICE

The tunable-geometry optical lattice scheme developed in our setup is the key
to the experiments presented in this thesis. The lattice was originally planned to
allow for a dynamic tuning between a lattice with simple cubic geometry and a
configuration where every two wells in the original lattice are merged to one for
the detection of spin order (cf. [Pedersen et al., 2011]). Only later we realized that
the setup would also allow for various other geometries like triangular, dimerized
and honeycomb lattices, as well as certain types of coupled chain arrangements.
One of the most simple ways of constructing an optical lattice in one dimen-

sion is letting a laser beam (which is far detuned from the electronic transition of
the atom) interfere with itself after retro-reflection on a mirror. This results in aInterference between

detuned optical
lattice beams

periodic potential of cos(𝑥) shape. The scheme can be easily extended to higher
dimensions by combing several perpendicular retro-reflected beams interfering
with themselves, but not with each other. Interference between the beams is sup-
pressed in such a scheme by either a perpendicular polarization direction and/or
frequency detunings of at least several MHz, leading to a quickly varying inter-
ference term. This term averages out in the effective potential seen by the atoms



3.2 The tunable-geometry optical lattice 45

since its frequency is much higher than the harmonic oscillator frequency of the
atoms in the lattice wells [Greiner, 2003].
More complex geometries can be obtained by not only letting two counter- Schemes for complex

lattice geometriespropagating beams interfere as when retro-reflecting the laser beams, but by al-
lowing beams of the same frequency to interfere at angles ≠ 180°, combined with
a clever choice of polarization [Petsas et al., 1994]. Pioneering experiments us-
ing such a scheme [Hemmerich and Hänsch, 1993; Grynberg et al., 1993; Hem-
merich, Zimmermann, et al., 1993] were limited by their susceptibility to fluc-
tuations of the relative phase between interfering beams. Using a combination of
electro-opticmodulators (EOMs) to phase-shift the light between themirrors used
for retro-reflecting and diverting the beam to the perpendicular lattice axis, a 2D
double well lattice relying on passive stability was realized [Sebby-Strabley et al.,
2006]. Later, triangular and hexagonal geometries were constructed using actively
phase stabilized laser beams at an angle of 120° [Becker et al., 2010; Soltan-Panahi
et al., 2011].
Using different laser frequencies, 1D lattices with a complex band structure

could be realized in a setup using AOMs to derive the required laser frequen-
cies [Ritt et al., 2006]. A 1D double-well lattice could also be realized using two
entirely different laser frequencies [Fölling et al., 2007]. Also employing two dif-
ferent laser frequencies and beams angled at 120°, lattices of kagome geometry
were recently implemented [Jo et al., 2012].

Figure 3.10: Schematic drawing of the opti-
cal lattice beam arrangement. Four retro-
reflected laser beams at a wavelength of
𝜆 =  nm are used. The polariza-

tion and exact frequency of the perpen-
dicular X and Y beams are chosen such
that they interfere with each other. The
X̄ beam is collinear with X, but only in-
terferes with itself, as is the case for the
forth beam Z̃. The corresponding elec-
tric fields, laser frequencies and light-

phase pickups are labeled for each beam.
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Our scheme is an extension of the classical lattice beam arrangement used for General idea of the
optical lattice of
tunable geometry

simple cubic 3D geometries illustrated in the very beginning of this section. It
is conceptually simple and also relatively straightforward to implement even in
existing setups because it requires only adding one additional laser beam super-
imposed with one of the three beams, see Fig. 3.10. The trick is now to let this
beam interfere with one of the beams perpendicular to it, by choice of the same
laser frequency and polarization.The resulting interference pattern has to be kept
locked to that of the original beam configuration by an active phase stabilization.

3.2.1 CONCEPT

The lattice is built from four linearly polarized laser beams X, X̄, Y and Z̃, which Arrangement of the
optical lattice beamsare red-detuned with respect to the atomic transition and operate at a wavelength

of 𝜆 ≈ 1064 nm, see Fig. 3.10. All of them are retro-reflected into themselves
and cross at the center position of the atomic cloud. X and Y both operate at the
same frequency 𝜈 and have the same polarization. This therefore leads to a stand-
ing wave pattern resulting from the interference between the two beams. X̄ and
Z̃ are detuned from this frequency by Δ𝑥 and Δ𝑧 respectively, both on the order
of 100MHz. The resulting cross-interference terms vary therefore with this fre-
quency difference. This fast oscillation of the potential depth, however, cannot
be followed by the atomic motion. These interference terms can therefore be ne-
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glected. Moreover, since the polarization of the Z̃ beam is orthogonal to that of
the X̄, X and Y beams, the 𝑧 direction actually decouples from the rest and can
thus be treated separately.
Following the derivations in [Mottl, 2009], neglecting the spatial intensity pro-Electric fields

file of the laser beams and the overall phase 𝑒𝑖𝜋𝜈𝑡, the electric fields of the beams
sum up to

𝐄 = 𝐄X̄ + 𝐄X + 𝐄Y + 𝐄Z̃ with

𝐄X̄ = 𝐸X̄ 𝐞𝑧 exp 𝑖(𝑘′L𝑥 + 𝜑X̄,) + exp 𝑖(−𝑘′L𝑥 + 𝜑X̄, + 𝜑X̄,) 𝑒𝑖𝜋𝑥𝑡

𝐄X = 𝐸X 𝐞𝑧 exp 𝑖(𝑘L𝑥 + 𝜑X,) + exp 𝑖(−𝑘L𝑥 + 𝜑X, + 𝜑X,)

𝐄Y = 𝐸Y 𝐞𝑧 exp 𝑖(𝑘L𝑦 + 𝜑Y,) + exp 𝑖(−𝑘L𝑦 + 𝜑Y, + 𝜑Y,)

𝐄Z̃ = 𝐸Z̃ 𝐞𝑦 exp 𝑖(𝑘″L𝑧 + 𝜑Z̃,) + exp 𝑖(−𝑘″L𝑦 + 𝜑Z̃, + 𝜑Z̃,) 𝑒𝑖𝜋𝑧𝑡 .

(3.4)

The detuning Δ𝑥 is set to a value close to 400MHz and can be used to adjust the
lattice geometry, see Section 3.2.5 on page 53. The detuning Δ𝑧 of the Z̃ lattice
beam is set to −70.1MHz. As the interference caused by the detuned beams does
not affect the atomic motion (see above), the atomic potential can be written in
the form

𝑉(𝑥, 𝑦, 𝑧) ∝ |𝐄X̄| + |𝐄X + 𝐄Y| + |𝐄Z̃| . (3.5)

When additionally setting 𝑘L ≡ 2𝜋/𝜆 = 𝑘′L ≡ 2𝜋/𝜆′ = 𝑘″L ≡ 2𝜋/𝜆″, where 𝜆, 𝜆′
and 𝜆″ are the wavelengths associated to the slightly different laser frequencies
involved, one finds

𝑉(𝑥, 𝑦, 𝑧) = − 𝑉X̄ cos(𝑘L𝑥 + 𝜃/2)
− 𝑉X cos(𝑘L𝑥) − 𝑉Y cos(𝑘L𝑦)
− 2√𝑉X𝑉Y cos(𝑘L𝑥) cos(𝑘L𝑦)𝛼 cos 𝜑
− 𝑉Z̃ cos(𝑘L𝑧) .

(3.6)

Here, 𝑉X̄,X,Y,Z̃ are the lattice depths of the independent beams. An additional pa-
rameter 𝛼 is introduced to account for a reduced contrast of the interference be-
tween X and Y, caused for example by not perfectly matched polarization direc-
tions. The phases in Eq. (3.4) are reduced to the two more intuitive phases for theRelevant phases
𝑥 − 𝑦 plane,

interference phase 𝜑 = 𝜑Y, − 𝜑X, +
𝜑Y, − 𝜑X,

2 (3.7)

symmetry phase 𝜃 = 𝜑X, − 𝜑X̄, . (3.8)

The control over the lattice depths 𝑉X̄,X,Y,Z̃ as well as the phases 𝜑 and 𝜃 allows
for creating a multitude of different lattice geometries as will be detailed in Sec-
tion 3.3.1 on page 54. The setup required for the generation of the beams and the
control of the phases is described in the following sections. The technical details
on the stabilization schemes employed for the optical lattice can be found in the
thesis of Daniel Greif [2013].

3.2.2 OPTICAL SETUP

An overview of the setup required to prepare the optical lattice beams is shown in
Fig. 3.11 on the next page,with the relevant frequency offset given inTable 3.5.The
laser light for all beams is derived from a neodymium-doped yttrium aluminum
garnet (Nd:YAG) laser (Coherent Mephisto MOPA 36WNE) with a maximum out-
put power of 40W.The specified line width is 1 kHzwhen integrating over 100ms
and the relative intensity noise is < −130 dB/Hz for frequencies above 10 kHz.
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Figure 3.11: Optical lattice beam preparation.The light from the Nd:YAG laser first passes
through an optical isolator to avoid back-reflections into the laser. It is then split into four
main paths, where AOMs regulate the light intensity for each of the lattice beams.The light
for the X̄ and X beam is recombined using a 50:50 plate and coupled into the same optical
fiber. A doubleAR plate is used to split off a small fraction of the light used for the reference
arm of the phase stabilization interferometer. Adapted from [Greif, 2013].

The light is then distributed to fourAOMs (models IntraActionATM2001A2 and
ATM1351A2, containing TeO crystals) which are used for frequency shifting and AOMs for intensity

regulationintensity stabilization of the lattice beams. The first order diffraction is then cou-
pled into polarization maintaining single mode fibers (Schäfter-Kirchhoff , 6.4 µm
mode-field diameter (MFD)). An additional AOM running at 138.4MHz is used Single mode fibers for

transport and
cleaning

in double-pass configuration to generate a reference beam which will be needed
for the stabilization of the interference phase 𝜑, see Section 3.2.3 on page 49. The
X and Y beams are combined by means of a 50:50 splitting plate and are then cou-
pled into the same optical fiber.The optical fibers are used to transport the light to
the experimental table and also to clean the mode of the beam in order to achieve
perfect gaussian intensity profiles at the output.

Table 3.5: Frequencies of the rf
sources used in the optical lattice
setup.The sign of the frequency

indicates the first positive or nega-
tive diffraction order of the AOM.

LABEL DESCRIPTION FREQ. (MHz)

𝜈,X carrier X .
𝜈,Y carrier Y .
𝜈,X̄ carrier X̄ −.
𝜈,Z̃ carrier Z̃ .
𝜈 reference beam .

Theoptical setup close to the glass cell holding the atomic cloud is shown for the Optical setup on the
optical table holding
the vacuum chamber

𝑥 and 𝑦 axes in Fig. 3.12 and for 𝑧 in Fig. 3.13 on page 49. Gravity points along 𝑦.
The schematics include all laser beams in the actual experiment as well as the
optical setup for the detection of the atoms. As the optical access to the glass cell is
essentially limited to the three spatial axes, multi-chromatic mirrors are required Combining the laser

beamsto combine the beams emanating from several fibers onto the same optical axis.
On each axis there is a lattice beam and a beam for imaging to be combined. On
the two horizontal axes, 𝑥 and 𝑧, additionally a FORT and deconfinement beam are
installed to provide and control the overall harmonic confinement for the atomic
cloud, see Section 3.3.3 on page 58. After polarization cleaning, about 1% of the
FORT, lattice and deconfinement beams is split off by means of AR plates or by
the residual transmission through a mirror and sent to a photodiode for intensity
stabilization. While the imaging beam is collimated at the position of the atoms,
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the other beams are focused by achromats with a focal length on the order of
𝑓 = 400mm.
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Figure 3.12: Optical lattice beam arrangement on the x and y axis. On every axis, the
beams (depending on the direction these are the FORT, optical lattice, deconfinement and
imaging beams) are after initial preparation combined using several dichromatic mirrors
before they propagate almost colinearly through the atom cloud located inside the glass
cell. Lenses, which act both as the objective lens for the imaging system and to re-collimate
the lattice beams, are installed at a distance of  cm after the position of the atoms. The
FORT and deconfinement beams are reflected off using multi-chromatic cleaning plates to
avoid any back-reflections.

After having passed through the glass cell, the beams are re-collimated by ei-
ther achromats or a Gradium⁶ lens of focal length 𝑓 = 100mm. Before the lattice
beams are retro-reflected by 0° multi-chromatic mirrors, the FORT and decon-
finement beams are reflected off by another multi-chromatic mirror to avoid the
creation of weak optical lattices by the residual reflection on the 0° mirror. After
retro-reflection, the lattice beams pass in the opposite direction through the setup
and are coupled back into the respective fibers. To compensate for intensity losses
due to reflection on optical elements for the incoming and retro-reflected lattice
beams, a 𝜆/4 plate is installed in front of the 0° mirror. Additional 𝑓 = 400MHz
achromatic lenses result, combined with the lenses just after the glass cell, into
telescopes with a magnification for the imaging system of about 4.
The parameters of the optical lattice are summarized in Table 3.6.

Table 3.6: Parameters of the optical lattice.

wavelength 𝜆 =  nm
beam waists 𝑤𝑥,𝑦,𝑧 = [, , ]µm
available power per axis W
maximum lattice depth per axis 𝑉 ≈  𝐸R

power per 𝐸R1 𝑃𝑥,𝑦,𝑧 = [., ., .]mW
1 Measured behind the 𝑓 = mm lens located after the glass cell.

6 This is the brand name of a singlet lens produced frommaterial with a gradual variation of the refrac-
tive index, produced by LightPath Technologies.
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Figure 3.13: Optical lattice beam arrange-
ment on the z axis. On this axis, the FORT,
optical lattice, deconfinement and imag-
ing beams are, after initial preparation,

combined using several dichromatic mir-
rors, before they propagate almost col-

inearly through the atom cloud, located
inside the glass cell. A lens, which acts
both as the objective lens for the imag-
ing system and to re-collimate the lat-

tice beam, is installed at the distance of
 cm after the position of the atoms. The

FORT and deconfinement beams are re-
flected off using multi-chromatic clean-
ing plates to avoid any back-reflections.
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3.2.3 INTERFERENCE PHASE STABILIZATION

The interference phase 𝜑 in Eq. (3.6) on page 46 is defined as the light phase dif-
ference picked up between the place where the source laser beam is split into
the X and Y beams on the laser table and the respective retro-reflecting mirror
on the experimental table. Fluctuations in this phase can arise from small vari-
ations in the optical path length within the optical fibers due to thermal effects
or vibrations, from path length variations in the free space part close to the glass
cell or from vibrations of the optical elements such as the retro-reflecting mirror.
These effects can lead to a change of 𝜑 by more than 2𝜋 on timescales typically
below 10 kHz. While passive stability improvements such as a guiding the optical
fibers using damping mounting material separately from vibration inducing de-
vices have helped to limit the fluctuations to the frequency range below 1 kHz, the
remaining variations still need to be eliminated by an active stabilization scheme.

AO
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ν +νrf

ν+2νrf

νref≈ν+2νrf

rf photodiode

plate optical fiber

intensity regulation

atomic cloud

νrf

rf source

FM in

discrete
lock-in amplifier

LO out
RF in

detected 
phase

φ φref

Figure 3.14: Principle of the interference phase stabilization scheme.The laser light of the
interfering laser beams is tagged with a sideband frequency using the intensity regulation
AOM.The retro-reflected light, which is subject to phase jitter, is, after passing back through
the optical fiber, overlapped with a reference beam on a photodiode.The phase of the pho-
todiode signal with respect to the original sideband signal is then detected using a lock-in
amplifier built from discrete parts. This phase difference signal is then fed into the fre-
quency modulation (FM) input of the AOM rf source in order to correct for the measured
phase deviation. Adapted from [Greif, 2013].

The basic principle of the lock is similar to that used for the phase stabiliza-
tion required for synchronizing distant clocks [Ma et al., 1994] and is displayed
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in Fig. 3.14 on page 49.The beam, whose phase is to be stabilized, passes through
theAOM, where its frequency is shifted to 𝜈+𝜈rf.The light is guided via the optical
fiber to the experiment table, where it is retro-reflected after passing through the
glass cell. It couples back into the fiber and is partially reflected onto a rf photodi-
ode by a beam splitting plate. A reference beam deduced from the same laser at
frequency 𝜈ref ≈ 𝜈+2𝜈rf enters the plate from the top and thus interferes with the
retro-reflected beam on the photodiode.The photodiode can therefore be used to
record the phase of the two beams with respect to each other. Variations in the
measured phase can then be compensated by slightly changing the frequency (or
alternatively directly the phase⁷) of the rf signal which is sent to the AOM, similar
to the method used to implement PLLs in electronics [Horowitz et al., 1989].
As the AOM is not only used for the loop feedback but also to change the in-

tensity of the lattice and thus the lattice depth, the power of one of the interfering
beams on the photodiode would vary accordingly. While the lock point is actu-
ally set to the zero-crossing of the interference fringe pattern and would thus not
change, the amplitude of the error signal still scales with the lattice depth leading
to an undesired change of the lock gain. Therefore, the phase detection is actu-
ally not done at direct current (DC), but at a frequency on the order of 1MHz,
modulated onto the lattice beam, similar to the scheme used by lock-in ampli-Use of a lock-in

amplifier scheme for
phase stabilization

fiers [Michels et al., 1941; Cosens, 1934]. This also allows for detecting the phase
of bothX andYon the same photodiode as slightly different frequencies are added
to the two beams. The added frequency component can also be seen as an addi-
tional beam co-propagatingwith themain beam in the fiber and on the atoms.The
frequency components of the main and this additional, so called phase tag beam,Phase tag beams
are actually at slightly different angles after the AOM. To still achieve reasonable
coupling efficiencies into the fibers, the frequency difference is limited to a few
MHz.The power in the phase tag beams is held usually at a constant level, but can
also be varied to dynamically change the lock characteristic by computer control.
Typical powers in the tag beams of about 5mW lead to a permanent residual lat-
tice of about 0.1 𝐸R, which is accounted for when determining the effective lattice
depths produced in the experiment.
By changing the phase of the reference oscillator that is used to mix down the

rf input with respect to that which is sent to the local oscillator (LO) port in the
lock-in amplifier⁸, the phase of the lattice beams can be dynamically tuned from
the computer.
As both the phase of X and Y are being stabilized to that of the same refer-Phase stabilization

with respect to an
independent strong

reference beam

ence beam, they are then also stable with respect to each other. Stabilizing the
beams with respect to a reference beam has the additional advantage of allow-
ing for an independently adjustable reference beam power: it can be increased
to about 100mW without affecting the atomic cloud in order to obtain a better
signal-to-noise ratio of the interference fringe pattern on the photodiode.
The effectiveness of the lock can be assessed by comparing the frequency spec-Stability of the phase

lock trum of the beat between the reference oscillator of the lock-in amplifier and
the rf signal input in the locked to the unlocked state, see Fig. 3.15 on the fac-
ing page.The large reduction of phase noise becomes immediately apparent from
these measurements.

MEASURING THE INTERFERENCE PHASE

In the experiment, the phase 𝜑 can bemeasured using Kapitza-Dirac scattering inKapitza-Dirac
scattering the Raman-Nath regime [Kapitza et al., 1933; Gould et al., 1986; Cahn et al., 1997;

7 Changing the frequency result in a lock that regulates only using the integral part of the error signal,
while regulating the phase results in a proportional regulation.

8 This lock-in amplifier is in our setup built from discrete band-pass (or low- or high-pass) filters and
mixers.
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Figure 3.15: Interference phase stability. The frequency spectrum of the detected phase
difference between the lattice and the reference beams (𝜈𝑟,X and 𝜈𝑟,Y, respectively) is shown
for the two axes with the phase stabilization deactivated (light blue) and activated (dark
blue). Data from [Greif, 2013].
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Figure 3.16: Raman-Nath diffraction. Experimental (top) and fitted (bottom) diffraction
patterns are shown for the case of maximally interfering beams X and Y (𝜑 = ) and at the
setting where they do not interfere (𝜑 = 𝜋/). The lock settings are usually first optimized
close to the𝜑 = 𝜋/ point such that the diagonal interference peaks vanish, since the optical
potential is most sensitive to changes of 𝜑 at this point (because of the zero-crossing in the
cosine term). We then switch to 𝜑 =  for the actual measurements.The fitting can be used
to extract 𝜑 or 𝛼 and is performed using a numerical time evolution of the single-particle
lattice Hamiltonian.
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Freimund et al., 2002]. A BEC is exposed during typically a few µs to the lattice
generated by X and Y with a depth of roughly 30 𝐸R. During this time, the atoms
are subject to the time evolution under the single-particle HamiltonianRaman-Nath

diffraction

�̂�lat = − ℏ
2𝑚𝛁 + 𝑉(𝑥, 𝑦) , (3.9)

where𝑉(𝑥, 𝑦) is the lattice potential. Under its influence higher latticemomentum
modes are being populated, which can be seen by performing TOF after switching
off the lattice beams, see Fig. 3.16 on page 51.
If 𝜑 is stabilized to 0 (Fig. 3.16a on page 51), additionalmomentumcomponents

located at multiples of (±ℏ𝑘L, ±ℏ𝑘L) appear as a result of the interference term
cos(𝑘L𝑥) cos(𝑘L𝑦), compared to the situation with 𝜑 ≈ 𝜋/2, where the two beams
do not interfere and thus only components at multiples of (±2ℏ𝑘L, ±2ℏ𝑘L) are
present.
The time evolution under the Hamiltonian can be numerically computed andInferring the phase

stability fitted to the experimentally recordedmomentum distributions in order to extract
the phase 𝜑. By repeating the experiment with the phase stabilized to the same
point, the lock stability can be inferred to be around 5°.
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Figure 3.17: Visibility calibration.
By fitting the Raman-Nath diffrac-
tion patterns obtained by setting
different interference phases
𝜑set and comparing these with
the phase obtained from the fit,
𝜑fit, the visibility of the interfer-
ence can be determined, since
 𝜑fit = 𝛼  𝜑set. The average
over two independent measure-
ments gave a visibility 𝛼 = .().

Once the point of minimal interference is found, this method can be addition-
ally used to calibrate the visibility of the interference 𝛼 between X and Y.We vary
the phase setpoint systematically and record the resulting momentum distribu-
tion pattern. By plotting the cosine of the set phase with respect to the reference
point versus that of the fitted phase, the visibility can be extracted as the slope, see
Fig. 3.17.This is because the numerical model assumes perfect visibility 𝛼num = 1
while the experiment has 𝛼 < 1 and 𝛼num cos 𝜑fit = cos 𝜑fit

!= 𝛼 cos 𝜑set). In our
experiment, we have found 𝛼 = 0.90(5).

3.2.4 INTENSITY STABILIZATION

The intensity stabilization of the optical lattice beams generally adheres to theIntensity
stabilization of a

single beam
propagating through

a fiber

following scheme: the actual intensity of the beam is measured by directing about
1% of the light outcoupled from the optical fiber to a photodiode. Both the output
voltage of the photodiode and the demanded power signal output by the control
computer are sent to a PID controller. The two signals are subtracted to create the
error signal which is then, after multiplication with a fixed gain and integration
or differentiation (not used in our setup), sent as the control output to the AOM
which sets the amplitude of the AOM rf drive signal accordingly.
For the X̄ and Z̃ beams this scheme can be implemented as is. For X and Y, aScheme to stabilize

two beams
propagating through

a single fiber

more involved approach is necessary, as the two beams are perfectly overlapped,
have the same polarization and are only separated by roughly 400MHz in fre-
quency. Here again, a lock-in technique is used to distinguish the two beams, see
Fig. 3.18 on the facing page. The AOM drive signal is mixed with the local oscil-
lator of the discretely set up lock-in amplifiers running at about 1MHz, but at
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slightly different frequencies for the two beams. This intensity tag signal is then
picked up in the usual location close to the glass cell and fed to the rf input of the
lock-in amplifier. The detected amplitude is then used as the signal input for the
PID controller. The rest of the regulation loop works as in the usual scheme.
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Figure 3.18: Lattice beam intensity stabilization on the 𝑥 axis. Similar as for the interfer-
ence phase stabilization, the rf signal fed to the intensity regulation AOM is tagged with
different sidebands for the X̄ and X beams. A photodiode records the intensity of the two
tags on the laser table, of which the separate amplitudes are determined using two lock-in
amplifiers built from discrete parts.The detected amplitude is then used as the signal input
of the PID laser intensity controllers. Adapted from [Greif, 2013].

The combination of the lock-in amplifier and the PID controller limits the regu-
lation bandwidth to about 1 kHz. Additionally, because the AOM diffraction effi-
ciency does not scale linearly with the input rf power, the regulated light intensity
will also not be linear in the set point voltage, particularly for high rf powers. Lin-
earity can however be restored by a non-linear calibration of the computer analog
output channel used to control the set point. The calibration of the lattice depth
itself, i. e. the relation between the set point entered on the computer and actual
depth of the lattice as felt by the atoms in energy units (𝐸R) is performed using
Raman-Nath diffraction (see Section 3.2.3 on page 49) of a BEC on 1D lattices, as
for example described in [Jördens, 2010].

3.2.5 SYMMETRY PHASE

The symmetry phase 𝜃 is the difference in phase picked up by the X and X̄ lattice
beams on the path starting from the atoms’ position to the retro-reflecting mirror
and back to the atoms.This phase difference originates from the frequency differ-
ence Δ𝑥 = 𝜈c,X̄ − 𝜈c,X between the two beams. It can be easily calculated from the
distance between the atoms and the mirror 𝐿 ≈ 20 cm,

𝜃 = 4𝜋𝐿
𝑐 Δ𝑥 , (3.10)

where 𝑐 is the speed of light in air.The detuningΔ𝑥 was chosen such that the phase
difference 𝜃 ≈ 𝜋, i. e. that the standing wave patterns of the independent X̄ and
X beams differ by about half a lattice period. By changing the carrier frequency
𝜈c,X̄ of X̄, this shift can be tuned without affecting the rest of the lattice poten- Tuning the symmetry

phasetial. Changing the rf drive frequency of the AOM controlling the X̄ light, however,
requires a realignment of the fiber input coupling as the angle of diffraction in
the AOM changes. Using the AOM in a double-pass configuration, in combina-
tion with an EOM to create the side band for intensity stabilization, could help to
amend this situation.
Contrary to the interference phase, 𝜃 does not need to be actively stabilized.

Fluctuations can only arise from thermal drifts in the mirror position or changes
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in the refractive index of air caused by room temperature or pressure drifts. All of
these effects, however, are found to cause relative changes of 𝜃 which are smaller
than 10−.The same holds for the spatial variation of the phase over the cloud size
due to the varying path length and the slightly different wave vectors.
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Figure 3.19: Symmetry phase calibration. The longitudinal offset of the X̄ and X stand-
ing waves can be obtained by recording the Raman-Nath diffraction pattern of the com-
bined potential. When the two patterns are exactly shifted by half a period and have the
same power, no diffraction should occur. This can be used to determine the frequency
difference of the two beams necessary to obtain 𝜃 = 𝜋. The fraction of atoms in the first
diffraction peaks scales quadratically with the frequency deviation from the 𝜃 = 𝜋 setting,
𝜂𝑝 ∝ (𝜈𝑐,X̄ − 𝜈c,X̄) + 𝑏. We find 𝜈c,X̄ = .()MHz as the setting corresponding to 𝜃 = 𝜋.
Schematics adapted from [Greif, 2013].

Figure 3.19a illustrates themethod used to find the carrier frequency 𝜈c,X̄ where
𝜃 = 𝜋. Raman-Nath diffraction (see Section 3.2.3 on page 49) using a BEC is per-
formed on the combination of the X̄ andX lattice, both at the same power and thus
with the same lattice depth𝑉X̄ = 𝑉X.The two beams are flashed onto the atoms for
typically 20 µs and the resulting momentum distribution is recorded afterwards.
When the two lattices are exactly out of phase by 𝜃 = 𝜋, they cancel each other
and no momentum is transferred into the ±2ℏ𝑘L modes. For 𝜃 ≠ 𝜋 a net lattice
results from the combination of the two beams and a fraction of atoms 𝜂𝑝 is trans-
ferred into higher momenta.This fraction is expected to scale quadratically in the
frequency offset 𝜈c,X̄−𝜈c,X̄, as reproduced nicely in the experiment, see Fig. 3.19b.
We find 𝜈c,X̄ = 195.0(2)MHz resulting in Δ𝑥 = 𝜈c,X̄ − 𝜈c,X = 384.8(2)MHz.

3.3 MANIPULATION

3.3.1 TUNING THE LATTICE POTENTIAL

As outlined in Section 3.2 on page 44, the lattice potential can be tuned by the fourDecomposing the
lattice potential into

a square and
checkerboard
contribution

lattice depths 𝑉X̄,X,Y,Z̃ and the two relevant phases 𝜑 and 𝜃, all of which can be
accessed in the experiment.The influence of the separate parameters on the lattice
potential is best understood when rewriting the potential (Eq. (3.6) on page 46)
in a different form (along the lines presented in [Greif, 2013]),

𝑉(𝑥, 𝑦) = −𝑉X cos(𝑘L𝑥 + 𝛽/2) − 𝑉Y cos(𝑘L𝑦)
square

−2√𝑉X𝑉Y cos(𝑘L𝑥) cos(𝑘L𝑦) cos 𝜑
checkerboard

(3.11)
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with

𝑉X = ±√𝑉
X̄ + 2𝑉X̄𝑉X cos 𝜃 + 𝑉

X , ± for 𝑉X̄ cos 𝜃 + 𝑉X ≷ 0 (3.12)

tan 𝛽 = sin 𝜃
cos 𝜃 + 𝑉X/𝑉X̄

. (3.13)

Figure 3.20: Checkerboard and
square contributions. For a more

intuitive understanding, the lattice
potential can be split into two con-
tributions, a square and checker-
board lattice. Parameters: 𝑉X̄,X,Y

= [., ., ]𝐸R, 𝜑 = , 𝜃 = 𝜋/.

+ =

square checkerboard sum

𝑦

𝑥

The potential can therefore be viewed as the sum of a potential of square geom-
etry, i. e. containing only terms that would result from lattice beams that do not
interfere with each other, and one of checkerboard geometry that results from
interference terms, has a larger spacing and is rotated by 45° with respect to the
square potential, see Fig. 3.20. For this, we introduced the new lattice depth 𝑉X
and the position phase 𝛽. The origin of the checkerboard term can be understood
from the trigonometric equality

−4 cos(𝑘L𝑥) cos(𝑘L𝑦) cos(𝜑) = cos 𝑘L(𝑥 − 𝑦) − 𝜑 + cos 𝑘L(𝑥 + 𝑦) − 𝜑

+ cos 𝑘L(𝑥 − 𝑦) + 𝜑 + cos 𝑘L(𝑥 + 𝑦) + 𝜑 .
(3.14)

The interference term can thus be seen as being created by two perpendicular
interfering laser beams propagating along the 𝑥+𝑦 and 𝑥−𝑦 direction, respectively.
By varying the lattice depths 𝑉X̄ and 𝑉X (or alternatively 𝑉Y) the contribution Diagram of lattice

geometriesof the square term with respect to that of the checkerboard term can changed, see
Fig. 3.21 on the following page. In the figure, we plot – for illustration purposes
– the lattice potential with a spatial dependence on 𝑉X̄ and 𝑉X, using 𝜑 = 0 and
𝜃 = 0. When starting from 𝑉X ≠ 0 and 𝑉X̄ = 0, the potential evolves from
pure checkerboard geometry (with a lattice spacing √2𝜆/2 = 752 nm) through
triangular, dimerized, honeycomb to 1D chains. Pictorially, this is because of the
increasing square contributionwhich starts to split every well of the checkerboard
lattice into two wells along the 𝑥 axis. When 𝑉X = 0, the lattice has a pure square
geometry with lattice spacing 𝜆/2 = 532 nm.
The transition line between the triangular and dimerized geometry is defined

by the appearance of two potentialminimawithin the unit cell. It can be calculated
by finding the lattice parameters at which the saddle point between the two sites
𝐴 and 𝐵 becomes a minimum,

𝜕𝑉(𝑥, 0)
𝜕𝑥 = 0 . (3.15)

Using this condition, the location of the transition line is found to be

𝑉X = 1
2𝛼

 cos(𝜑)𝑉Y − 𝑉X̄ cos 𝜃

−
√
𝛼 cos 𝜑𝑉Y 

1
4𝛼

 cos 𝜑𝑉Y − 𝑉X̄ cos 𝜃 . (3.16)

The separation line between a dimerized and the honeycomb structure is based Location of the
triangular – dimer
transition line
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Figure 3.21: Lattice geometries. Diagram of the lattice geometries in the 𝑥 − 𝑦 plane as a
function of the lattice depths𝑉X̄ and𝑉X. Depending on theses lattice depths, checkerboard
(𝑉X̄ = ), triangular, dimer, honeycomb, 1D chains or square geometries (𝑉X = ) can be
obtained. The dashed and solid line indicate the transition between triangular and dimer,
and between dimer and honeycomb geometry, respectively. For illustration purposes, a
contour plot of the lattice potential with the local lattice parameters set according to the
position in the diagram is overlapped. 𝑉Y =  𝐸R and 𝛼 = .
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Figure 3.22: Lattice potential for different 𝜃.The square part as well as the total potential
are shown for different symmetry phases 𝜃, using𝑉X̄,X,Y = [., ., ]𝐸R. Symmetry phases
𝜃 ≠ 𝜋 lead to an imbalance between the left and right sites of the dimers. To obtain the
total potential, the square part is summed with the checkerboard part of the potential with
the same parameters and 𝜑 = .
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on the existence of Dirac points in the band structure of the honeycomb lattice. It
can only be numerically extracted based on a diagonalization of the Hamiltonian.
Keeping the lattice depths constant but changing 𝜑 and thus 𝛽 leads to a shift of

the square lattice with respect to the checkerboard structure along the 𝑥 axis, see
Fig. 3.22 on page 56. For 𝜃 = 0 or 2𝜋, the total potential, as the sum of the varying
square part with the fixed checkerboard potential, is symmetric within the unit
cell. In between, however, the offset between the two parts induces an asymmetry
between the left and the right well of the dimers.
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Figure 3.23: Lattice potential for different 𝜑. The checkerboard part as well as the total
potential are shown for different interference phases 𝜑, for 𝑉X̄,X,Y = [., ., ]𝐸R. Scan-
ning 𝜑 from zero to 𝜋 switches the position of the dimerization to the next adjacent lattice
site. To obtain the total potential, the checkerboard part is summed with the square part
of the potential with the same parameters and 𝜃 = 𝜋.

Scanning 𝜑 from 0 to 𝜋, while keeping the other parameters constant, changes
the position at which the dimerization in the lattice takes place, see Fig. 3.23. At
𝜑 = 𝜋/2, the checkerboard term vanishes completely since cos(𝜋/2) = 0 and only
a square structure remains.
The band structure of the different lattice geometries will be discussed in Sec-

tion 4.1 on page 72.

TRAP FREQUENCIES

When determining the trap parameters of the harmonic confinement induced
by the gaussian envelope of the lattice beams, the interference between the laser
beams has to be taken into account. In the experiment, the trap frequencies in the
two transversal directions of every lattice beam are measured independently with
the same method as used for the FORT, see Section 3.1.4 on page 41. From this,
the trap frequency contribution slopes given in Table 3.7 can be calculated.

Table 3.7: Lattice beam trap frequency contributions. Every lattice beam contributes to the
total harmonic trap frequency along its two radial directions. These contributions are
summed up according to Eq. (3.17) on the next page, which in particular takes into ac-
count the interference of the X and Y beams. The contributions per recoil energy, which
are obtained from the frequency of radial dipole oscillations in the single beams, are listed
in this table.

BEAM AXIS SLOPE ⟂1 (1/s2𝐸R) SLOPE ⟂2 (1/s2𝐸R)

𝑥 𝑐𝑥𝑦 = 𝜋 × . 𝑐𝑥𝑧 = 𝜋 × .
𝑦 𝑐𝑦𝑥 = 𝜋 × . 𝑐𝑦𝑧 = 𝜋 × .
𝑧 𝑐𝑧𝑥 = 𝜋 × . 𝑐𝑧𝑦 = 𝜋 × .
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Using the lattice potential and including the spatial intensity profiles of the lat-
tice beams, the following expressions for the trap frequencies along the three spa-
tial axes are obtained by Taylor expansion in the potential minima [Greif, 2013]:

𝜔𝑥 = 1 + 𝛼
𝑉X

𝑉X̄ − 𝑉X
 𝑐𝑦𝑥𝑉Y + 𝑐𝑧𝑥𝑉Z̃

𝜔𝑦 = 1 − 𝛼
𝑉X𝑉X̄

(𝑉X̄ − 𝑉X)
 𝑐𝑥𝑦𝑉X̄ + 𝛼

𝑉Y
𝑉X̄ − 𝑉X

1 +
𝑉X

𝑉X̄ − 𝑉X
 𝑐𝑥𝑦𝑉X

+ 𝑐𝑧𝑦𝑉Z̃

𝜔𝑧 = 1 − 𝛼
𝑉X𝑉Y

(𝑉X̄ − 𝑉X)
 𝑐𝑥𝑧𝑉X̄ + 𝛼

𝑉Y
𝑉X̄ − 𝑉X

1 +
𝑉X

𝑉X̄ − 𝑉X
 𝑐𝑥𝑧𝑉X

+ 1 + 𝛼
𝑉X

𝑉X̄ − 𝑉X
 𝑐𝑦𝑧𝑉Y .

(3.17)

Here, 𝛼 is the visibility of the interference between X and Y.These expressions do
not include the changing zero-point energy of the ground state harmonic oscilla-
tor state from the spatially varying on-site oscillator frequency. This contribution
is, however, found to be at most a few percent as determined from an exact calcu-
lation of the trap frequencies.

3.3.2 LATTICE MODULATION

Apart from slow changes of the lattice geometry, a fastmodulation (on the order of
kHz) of the lattice beam intensity can also be a viable tool to learn more about the
state of the system prepared at a certain lattice geometry and interaction [Stöferle
et al., 2004], see Section 8.4 on page 155.
We can modulate the set point for the intensity stabilization of one or several

lattice beams using the computer controlled analog output channels. Modulation
frequencies up to roughly 10 kHz can be achieved, limited by the regulation elec-
tronics. For faster modulation frequencies, themodulation can also be performed
using separate frequency generators that feed directly onto the AOM rf drive sig-
nal.

3.3.3 CONTROLLING THE CONFINEMENT

In our setup, the harmonic confinement induced by the FORT and the optical
lattice can be counteracted by means of two blue-detuned deconfinement beams
installed on the 𝑥 and 𝑧 optical axes, see the schematics of the overall optical setup
in Section 3.2.2 on page 46.

OPTICAL SETUP OF THE DECONFINEMENT BEAMS

Light from a dedicated Coherent Verdi V18 with an output power of 18.5W at a
wavelength of 𝜆d = 532 nm is used to generate the two deconfinement beams.
Combined, these two beams allow for the control of the harmonic confinement
along all three spatial axes. As an alternative, we have tested a deconfinement
beam propagating along the 𝑦 axis, but were unable to achieve a sufficiently homo-
geneous intensity profile on the atomic cloud, owing to spurious reflections on the
glass cell. The 𝑥 and 𝑧 directions, however, where found to not show these prob-
lems. In general, optical elements fabricated from the most common materialsOptical elements
tend to be more absorptive at a wavelength of 532 nm than at 1064 nm. Especially
optical fibers or AOMs are therefore more prone to thermal lensing at high pow-
ers, requiring special precautions ormodels fabricated from custommaterials. For
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instance, we chose to install the Verdi laser on the optical table on which the vac-
uum chamber is installed, allowing for shorter fiber lengths or optionally even
free-space guiding of the laser beams to the location of the atom cloud. Moreover,
only lenses and mirrors made of fused silica are used in the setup.
The laser output is split into two beams by a combination of a half-wave plate Beam preparation

and a polarization-sensitive splitter. Instead of a normal polarizing beam splitting
cube, we use thin film polarizers on fused silica substrates, produced by Preci-
sion Photonics, Inc.. They are aligned at the Brewster angle for minimal spurious
reflections. The two beams are then independently intensity stabilized by fused
silica AOMs (ASM-802B47 by IntraAction) operating at a modulation frequency
of 80MHz. The error signal is generated by monitoring the output power after
the optical fiber. We then couple the beams into single-mode polarization main-
taining photonic crystal fibers (LMA-PM-10 by NKT Photonics, MFD of 8.4 µm)
terminated with high-power air gapped adjustable FC connectors (by OzOptics,
8° angle cleaved). At 3m, their length is kept minimal in order to avoid unnec-
essary losses while still providing the required mode-cleaning. Using these fibers,
we achieve a maximum power of 3W at the fiber output, with a coupling effi-
ciency of up to 70%. At higher input powers, excessive Brillouin scattering sets
in, which can cause damage to the input facet owing to the dissipated heat. We
have, however, later performed tests with a photonic crystal fiber with a larger
MFD (LMA-PM-15, MFD of 12.2 µm, angle cleaved at 5°, length 5m). Owing to
the largerMFD and the SMA-905 High Power connectors, we achieved stable out-
put powers of more than 7W for this fiber, with a coupling efficiency of 75%. For
short times (< 30 s), the fiber was able to maintain output powers of up to 13W
at comparable coupling efficiencies.
On the output coupling side of the fibers, spurious polarization components are

cleaned using thin-film polarizers. A small amount of the light is split off for the
intensity regulation. The waist of the beams is adjusted using a telescope before
they are focused down and combined with the optical lattice and FORT beams. To
allow for a fully anti-confining potential, the waist of the beams at the location
of the atomic cloud is set to 𝑤 = 180 µm, larger or comparable to that of the
FORT and the optical lattice. However, the tests presented in the following were
performedwith two different beamwaists.Were necessary, the stated powers have
been rescaled by a factor of 2 to the equivalent power for a beam waist of 𝑤 =
180 µm.

TRAP FREQUENCY REDUCTION

Figure 3.24: In-trap absorp-
tion images. Images of 87Rb
BEC taken along the 𝑦 axis
without (a) and with a de-
confinement beam along

the 𝑧 axis (b) are shown. The
power of the two FORT beams

is set to 𝑃FORT = mW.

𝑥

𝑧

a. 𝑃d = W.
𝑥

𝑧

b. 𝑃d = .W.

In order to observe the effect of the deconfinement beams, we prepare a 87Rb
BEC in the FORT and then increase the power in either of the two deconfinement
beams up to a value𝑃d within 200ms.Using a high-resolutionCCD camera (Point-
Grey Flea 2G 13S2M-C), we take absorption images of the atomic cloud in the trap
(in situ) along the 𝑦 axis. In Fig. 3.24, themeasured in situ cloud profiles are shown
for a situationwithout deconfinement beam (left) andwith a power of 1.8Win the
𝑧 beam (right). The resulting extension of the cloud profile along the 𝑥 direction
is clearly visible.
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In Fig. 3.25, we systematically investigate the aspect ratio and the atom numberChange of aspect
ratio of the atomic cloud for varying final 𝑧 deconfinement beam powers. Aspect ratios

of up to 3 can be achieved without significant atom loss.
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Figure 3.25: Aspect ratio
and atom number.The in
situ cloud profile in the 𝑥 −
𝑧 plane is investigated for
varying 𝑧 deconfinement
beam powers 𝑃d.

To characterize the harmonicity of the resulting potential, we induce dipole
oscillations of the BEC in the trap by abruptly switching on and off amagnetic field
gradient via a short current pulse in the Ioffe coil. The frequency of the resulting
dipole oscillations of the atomic cloud is measured by recording the 𝑥 position of
the cloud after TOF. As can be seen in Fig. 3.26, the trapping frequencies can be
reduced by almost a factor of 4, from 25.2(2) to 6.8(4)Hz for a FORT power of
43mW. Similar results are obtained for the 𝑥 deconfinement beam.
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Figure 3.26: Reduction of the harmonic confinement. The harmonic trapping frequen-
cies 𝜔 along 𝑥 are obtained from dipole oscillations of the atomic cloud.Themeasurement
is performed using the 𝑧 deconfinement beam with a FORT power 𝑃FORT = mW.

EVAPORATIVE COOLING

The deconfinement beams can be used to alter the harmonic confinement and
thus for example to reduce the site energy offset in the optical lattice, giving rise to
a more homogeneous system, which is closer to its solid state counterpart. Apart
from that, the deconfinement beams could also be useful for evaporative cooling
of the cloud. To test this, we stop the microwave evaporation in the QUIC trapHomogeneous system
at a point where the atomic cloud is still fully thermal. We then transfer into the
FORT (with a power 𝑃FORT = 55mW) and then smoothly increase the power of
the 𝑧 deconfinement beam using an exponential ramp (∝ 1 − exp(−𝑡/𝜏)) with a
duration of 2.5 s and 𝜏 = 1 s.The deconfinement beam therefore slowly lowers the
trap depth, allowing for evaporative cooling to take place. Finally, we switch off
the traps and perform TOF in order to determine the BEC condensate fraction. As
can be seen in Fig. 3.27 on the next page, we have been able to produce BECswith
condensate fractions of close to 50% using this cooling technique (even higher
fractions can be achieved by optimizing the ramp shape).
We have also investigated the feasibility of performing evaporative cooling af-Cooling in the lattice

ter loading into the lattice. For this, we also stop the microwave evaporation in
a thermal state and load into the FORT with 𝑃FORT = 55mW. We then load the
atoms into a lattice with 𝑉Y,Z̃ = 4.5𝐸R within 200ms.This results into an array of
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Figure 3.27: Evaporative cooling in the FORT. Start-
ing from a thermal cloud loaded into the FORT

with 𝑃FORT = mW, the power 𝑃d of the 𝑧 de-
confinement beam is slowly increased to evapo-
ratively cool the atoms in order to obtain a BEC. 1 2 3 4 5
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1D tubes. We now abruptly switch off the optical lattice and the trap in order to
allow for 25ms of TOF. A mostly gaussian shaped momentum distribution in the
𝑦 − 𝑧 plane is recorded, owing to the negligible phase coherence in the thermal
cloud.
Applying a similar exponential ramp of the 𝑧 deconfinement beam as used Cooling

perpendicular to the
periodic lattice
structure

above after loading into the lattice, we expect evaporative cooling to take place
along the axial direction of the 1D tubes. We ramp to a final power of 𝑃d = 3.3W
and then once again record the momentum distribution after a sudden release.
The momentum distribution is now characterized by a central peak with the
parabolic momentum distribution of a BEC and additional well-resolved momen-
tum components at (±2ℏ𝑘L, ±2ℏ𝑘L) as a result of the acquired phase coherence
beyond the transition to a BEC.
This scheme however ceases to work when trying to evaporate along the direc- Cooling along the

lattice directiontion of a lattice beam. For example, we loaded the atomic cloud into a 2D pancake-
like arrangement created using a lattice with 𝑉X̄ = 4.5𝐸R, 𝑉X,Y,Z̃ = 0𝐸R. When
performing the same ramp with the 𝑧 deconfinement beam described above, no
increase in the BEC fraction can be measured. Additionally, the atom number is
found to be constant, indicating that the atoms fail to escape from the lattice, most
likely due to the comparably slow tunneling times between the 2D layers, which
are on the order of a few 100Hz. This is confirmed when imaging the in situ trap
profiles, see Fig. 3.28. We find that density distribution becomes increasingly bi-
modal for larger𝑃d. However, no atoms escape at the edges. Overall, we tentatively
conclude that the deconfinement beams could indeed be used to perform evapo-
rative cooling in the lattice in order to counteract the heating occurring during
the loading process (see also Section 8.5 on page 156), provided that at least along
one spatial axis no lattice is present. A possible scheme to create a low-temperature
state in a 3D lattice could therefore consist of first loading into the lattice gener-
ated by two of the lattice beams, then performing evaporative cooling, and finally
ramping up the power of the third lattice beam.

Figure 3.28: Evaporative cooling in a lattice.The atoms
are prepared in a pancake-like lattice arrangement
with 𝑉X̄ = .𝐸R and 𝑃FORT = mW.When

slowly increasing the 𝑧 deconfinement beam power
to 𝑃d = .W, a bi-modal in situ density distribu-
tion (as obtained by absorption imaging), but no re-
duction in atom number is found, indicating that

evaporative cooling along a lattice axis does not work.

𝑥

𝑧

3.3.4 MAGNETIC FIELDS

An accurate control of the spatial magnetic field distribution within the atomic
cloud is essential for our experiments. To achieve this, a combination of both
special-purpose magnetic coils (the Feshbach and the gradient coil) as well as
coils which are also used for other purposes in the experiment (quadrupole, Ioffe
and transport coils) mounted close to the glass cell are used, see Fig. 3.29 on the
following page. The DC power supplies and MOSFET switches of these coils are
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wired such that the coils can be driven both independently and combined in anti-
or Helmholtz configuration and partly even in both current directions.
As their name indicates, the transport coils, quadrupole coils and the Ioffe coil

are used in the preparation of the atomic cloud for the magnetic transport and
the QUIC trap, respectively. For the actual experiment, they are then also used for
other tasks.Themain purposes of the coils relevant for the actual experiments are
listed below:

Feshbach coils Generation of a homogeneous offset field up to about 250G to ac-
cess Feshbach resonances. For technical reasons, the atoms are not fully cen-
tered with respect to the two coils along the 𝑥 axis. Therefore some residual
magnetic field gradients are present, which must be compensated by other
coils.

Gradient coil Gradient compensation (mainly) along the 𝑥 axis. Gradients for
Bloch oscillations in the optical lattice.

Lower quadrupole coil in normal current direction This coil is used for gradient com-
pensation (mainly) along the 𝑦 axis. It is also used to produce gradients for
levitation of 87Rb in |𝐹 = 2,𝑚𝐹 > 0⟩.

Upper quadrupole coil in reverse current direction Large gradients for Stern-Ger-
lach spin separation along the 𝑦 axis as for example used in double occu-
pancy measurements. Gradients for levitation of 40K in |𝐹 = /, 𝑚𝐹 < 0⟩
and for Bloch oscillations in the optical lattice. Could be potentially used
in combination with the lower quadrupole coil in normal direction to
generate an offset field along the 𝑦 axis.

Last transport coil pair Gradient compensation mainly along the 𝑧 axis.
Ioffe coil Large gradients for Stern-Gerlach spin separation along the 𝑥 axis.
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Figure 3.29: Drawing of the mag-
netic coil positions.The relevant
coils for producing homogeneous
magnetic fields as well as gradi-
ents at the position of the atomic
cloud are shown. The upper gradi-
ent and transport coils, which are
positioned symmetrically to their
lower counterparts with respect to
the glass cell center, are not visi-
ble in the drawing. Gravity points
along 𝑦.

For an accurate compensation of residual gradients within themagnetic field of
the Feshbach coils, we have recorded the in situ displacement of the atomic cloud
as a result of gradients induced by different currents in the gradient, lower quad-
rupole and the transport coil pair, in order to determine the covariance matrix of
the magnetic field gradient components with the coil currents. Using this matrix,
the optimal currents for a net zero field gradient can be found.
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3.4 DETECTION

From the detection techniques outlined in Section 2.4 on page 30 actually only
absorption imaging is used regularly in our experiment. We are able to image the Absorption imaging
atomic cloud independently along all three spatial axes. For this, imaging beams
with a 1/𝑒 diameter of about 1mm and powers of a few 10 µW are shone onto
the atoms, with the plane of the atoms being imaged onto CCD cameras using
Keplerian telescopes (i. e. consisting of two convex achromatic lenses) with mag-
nifications of roughly 4, see Table 3.8 on the following page. We use imaging light
pulses with a duration of 40 µs created by an AOM. With these parameters, every
atom scatters on the order of 100 photons during the imaging process.
We differentiate between low- and high-field absorption imaging.The term low- Low- and high-field

absorption imagingfield refers here to the regime where the degeneracy of the 𝑚𝐹 states is not lifted.
When addressing the electronic |𝐹 = /⟩ to |𝐹′ = /⟩ transition of the 𝐷 line on
resonance, all Zeeman states are imaged in a single shot. At low field the polar-
ization of the laser light as seen by the light can be assumed to be isotropic and
the scattering cross-section is then 𝜎isotropic = 1.123 × 10−m. In the high-field
regime, however, the𝑚𝐹 states can be independently imaged by using the respec-
tive laser detuning to drive the imaging transition. The polarization-dependent
cross-sections are 𝜎π = 1.871 × 10−m and 𝜎σ+ = 2.807 × 10−m, respec-
tively.
The imaging procedure then goes as follows:

1. Traps and magnetic fields are switched off if required.
2. The image acquisition of the CCD camera is triggered (imageℐatoms(𝐱)).
3. The imaging light is switched on for a duration of 40 µs and the light which

is not absorbed by the atoms is recorded on the CCD camera in the line of
sight of the beam.

4. Image acquisition is stopped and the image is read out.
5. The sequence is paused for a few milliseconds until the atoms have disap-

peared from the field of view. To speed up this process, they can be acceler-
ated with resonant light or magnetic fields.

6. An image of just the imaging beam is acquired on the camera in the
same conditions as above, but without atoms in the field of view (image
ℐbright(𝐱)).

7. For background correction, an image without imaging light is taken
(ℐdark(𝐱)).

The fractional transmission of the probe beam per pixel is then

𝒯 (𝐱) = ℐatoms(𝐱) − ℐdark(𝐱)
ℐbright(𝐱) − ℐdark(𝐱)

. (3.18)

In the approximation that the imaging transition is far from saturated and that no
re-scattering events take place, the column integrated density of the atomic cloud
can then calculated to be 𝑛(𝐱) = − ln𝒯 (𝐱)/𝜎. Column-integrated

optical densityThe quality of the obtained density distribution depends crucially on the fact
thatℐatoms(𝐱) andℐbright(𝐱) only differ in the former seeing the “shadow” cast by
the atoms and the latter not. Temporal intensity or frequency fluctuations in the
imaging beam, often in combinationwith interference effects within the optical el- Fluctuations and

interference effectsements in the imaging path, deteriorate the quality of the obtained data. As image
quality and repeatability is a crucial basis for any experiment, and especially for
low signal-to-noise applications such as noise correlations (see Chapter 10), ev-
ery possible measure has to be taken to reduce imaging artifacts. One important
source of interference effects is the CCD chip of the camera itself, which – when
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back-illuminated as is the case in our Andor cameras – acts as an etalon. This ef-
fect has been mitigated in the Andor iXon Ultra by an optimized AR coating and
a slightly roughened sensor back surface, see Fig. 3.30.

a. Andor iXon+ 887 b. Andor iXon Ultra

Figure 3.30: Etaloning on back-illuminated CCD cameras. Brush-stroke like etaloning
fringes are visible in a. On an optimized back-illuminated CCD chip (b) these features
are not visible. Interference features caused by other optical elements, however, are still
present.

Interference effects can also be further suppressed by taking the two images
ℐatoms(𝐱) andℐbright(𝐱) temporarily as close as possible together tominimize the
effects of slow drifts in frequency or intensity of the imaging laser. At a horizontal
shift speed of 1MHz readout of the 512 × 512 pixel resolution chip takes about
250ms, leading to a lower bound for the distance of the two images on full frame
cameras. Frame transfer cameras, however, offer a so called fast kinetics mode,
where one image can be buffered in a light-shielded part of the sensor while a
second image is taken, see Fig. 3.31. After taking the first image, it is quickly (i. e.
within vertical resolution × vertical shift time) shifted to the shielded area of the
sensor, before acquisition of the second image can start. The two images can af-
terwards be readout in a non time-critical part of the experimental sequence.The
timing of a fast kinetics imaging sequence is detailed in Fig. 3.32 on the next page.

Figure 3.31: Fast kinetics mode.The fast kinetics
mode of the Andor iXon cameras makes use of

the shielded frame transfer area on the CCD chip,
which has the same area as the actual imaging
area. This allows for taking two images within
as little as a few ms. After the first image has
been acquired 1 it is vertically shifted to the

shielded area 2 . Then the second image is taken 3
and readout at the bottom of the chip starts 4 .

1
image

3
 image

2
 shift

4 readout

shielded area

A very typical measurement using the TOFmethod is the determination of the Determination of the
atom number and
temperature

atom number and temperature of the degenerate Fermi gas by fitting the obtained
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Figure 3.32: Typical fast kinetics mode sequence timing.The goal of using the fast kinetics
mode of the camera is to be able to immediately shift the first image after having recorded
the atom imaging pulse.Therefore, the cameramust already be triggered before the desired
TOF time is reached. The camera then first cleans the sensor, which requires about ms.
Then the image is exposed during typically ms, with the actual imaging pulse being fired
just before exposure ends. The image is then shifted down within ms. This time can be
used to remove the atom from the field of view by for example applying a strong magnetic
field gradient using the gradient coil. Then the exposure of the second image starts, im-
mediately followed by the bright imaging pulse. After the exposure of the second image is
done, the readout of the whole sensor area starts at the bottom of the chip, sequentially
reading out both images.

momentum distribution after TOF with the theoretically expected momentum
distribution. This method of determining the temperature from the momentum
distribution assumes a non-interacting Fermi gas, which can only be achieved for
the ( − /, − /) spin mixture (by tuning the scattering length to zero). When scan-
ning the scattering length in the range from 0 to 130 𝑎 the fitted temperature was
found to increase by less than 0.03𝑇F [Strohmaier, 2010]. An alternative method
to determine the temperature is a measurement of the adiabatic molecule forma-
tion efficiency when sweeping across the Feshbach resonance [Hodby et al., 2005;
Strohmaier, 2010].
We typically use two different types of fits to the momentum distribution ofFitted density profiles

Fermi gases [DeMarco, 2001; Ketterle et al., 2008]:

𝑛mix(𝑝𝑥, 𝑝𝑦) = 𝑜 + 𝑚𝑥𝑝𝑥 + 𝑚𝑦𝑝𝑦

+

⎧⎪⎪⎨
⎪⎪⎩
𝑛 1 − 4𝑟/𝐿


if 1 − 4𝑟/𝐿 ≤ 𝐿

𝑛𝐿 exp  𝐿 − 2 exp −𝑟
/2 otherwise

(3.19)

𝑛Fermi(𝑝𝑥, 𝑝𝑦) = 𝑜 + 𝑚𝑥𝑝𝑥 + 𝑚𝑦𝑝𝑦

+ 𝑛
Li −𝜁 exp −𝑟/2

Li(−𝜁)
,

(3.20)

where

Li(𝑥) = −ℜ
𝑥




d𝑠 log(1 − 𝑠)/𝑠 (3.21)

is the dilogarithm. Note that in general the polylogarithm is related to the com-
plete Fermi-Dirac integral by F𝑠(𝑎) = − Li𝑠+(−𝑒𝑎). The momentum profile has
a central density 𝑛, radii 𝑅𝑥,𝑦, a fugacity 𝜁 = exp(𝛽𝜇) (where 𝛽 = (𝑘B𝑇)−, and
𝜇 is the chemical potential), atom number 𝑁 , overall offset 𝑜 and residual linear
slopes𝑚𝑥,𝑦. The radius of the cloud is defined as 𝑟 = √𝑝𝑥/𝑅𝑥 + 𝑝𝑦/𝑅𝑦.
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The mixture fit 𝑛mix(𝑝𝑥, 𝑝𝑦) patches a quartic (the 𝑇 = 0 result for the momen-
tum distribution) with a gaussian (the result in the classical limit) at a certain
cloud radius and therefore does not rely on Fermi-Dirac statistics. From the fit
parameters, the quantities of interest can then be deduced:

𝑇gauss =
𝑚
𝑘B

(𝜔𝑅)
1 + (𝑡𝜔) , (3.22)

𝐸F = 𝑘B𝑇F = ℏ�̄�𝑥,𝑦,𝑧 (6𝑁)
/ . (3.23)

Here, 𝜔𝑥,𝑦,𝑧 is the relevant spatial trap frequency, �̄� = (𝜔𝑥𝜔𝑦𝜔𝑧)/ the geometric
mean trap frequency,𝑚 is themass of 40K and 𝑡 is the TOF time.The atomnumber
𝑁 is obtained via integration over the density distribution assuming a gaussian
cloud shape. Combining these two: Obtaining the

degeneracy


𝑇
𝑇F


gauss

=
𝑇gauss

𝑇F
. (3.24)

Alternatively, for the fugacity fit, 𝑇/𝑇F can be directly determined from the fugac-
ity:


𝑇
𝑇F


fugacity

= −6 Li(−𝜁)
−/

. (3.25)

Here, Li(𝑥) is the trilogarithmic function. Figure 3.33 shows a typical TOF image
of a ( − /, − /) 40K spin mixture.

Figure 3.33: Imaged momentum
distribution of a degenerate Fermi
gas.The image shows the optical

density calculated from an absorp-
tion image of a ( − /, − /) spin
mixture after ms TOF. From
a Fermi fit to the density profile
we obtain 𝑁 =  ×  and
𝑇/𝑇F = .%.The plots are line
sums along the respective axis of
the measured density distribution
(red) and the fit function (blue).
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The chemical potential can be obtained by numerically solving Eq. (3.25) for
the fugacity 𝜁. The entropy of the gas can then be calculated from the expression
for the entropy per particle in an ideal trapped Fermi gas (𝜁 = exp(𝛽𝜇)): Entropy per particle

𝑠 = 𝑆
𝑁 = −𝛽𝜇 + 4

Li−𝑒𝛽𝜇
Li−𝑒𝛽𝜇

. (3.26)

Up to about 𝑇/𝑇F ≈ 0.1, 𝑠 is found to agree within a few percent with the linear
term in the Sommerfeld expansion of Eq. (3.26),

𝑠 = 𝜋 𝑇
𝑇F

. (3.27)

More advanced characterization techniques combine standard absorption
imaging techniques for example with lattice intensity ramps for a measurement
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of the quasimomentum distribution. By additionally employing rf pulses and
gradients, measurements of the double occupancy or of spin correlations in
the system can be performed. Details on these techniques can be found in the
chapters where the respective experiments are explained. See Section 5.2.4 on
page 106, Section 8.1.2 on page 149 or Section 9.3 on page 166, respectively.
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PROBING THE BAND STRUCTURE





4THE HONEYCOMB BAND STRUCTURE

In this chapter I will first discuss the methods employed in this thesis to obtain
exact band structures. In a second part, the tight-binding model describing our
honeycomb lattice is introduced. This is followed by a third part, where I discuss
the peculiarities of the honeycomb band structure, namely the Dirac points with
their associated linear dispersion relation, both from a relativistic physics view-
point as well as from the perspective on topology.
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4.3.1 The linear band crossings 88
4.3.2 Topology of the band structure 92

Thenotion of a band structure refers to the allowed solutions of the Schrödinger
equation for a single particle in a (quasi-) periodic potential,

𝐸𝜓 = �̂�𝜓, where (4.1)

�̂� = − ℏ
2𝑚𝛁 + 𝑉(𝐫) . (4.2)

Here, 𝑉(𝐫) is a potential which is periodic in space. Bloch’s theorem [1929] states Bloch’s theorem
that, given 𝑉 fulfills 𝑉(𝐫 + 𝐑) = 𝑉(𝐫) for the lattice vectors 𝐑 that are part of the
underlying Bravais lattice, the eigenstates 𝜓 of �̂� can be written as the product of
a plain wave and a function 𝑢𝜈,𝐤 that has the same periodicity,

𝜓𝜈,𝐤(𝐫) = 𝑒𝑖𝐤⋅𝐫𝑢𝜈,𝐤(𝐫) , (4.3)

with

𝑢𝜈,𝐤(𝐫 + 𝐑) = 𝑢𝜈,𝐤(𝐫) . (4.4)

In this thesis, also the following, equivalent notation for the eigenstates will be
used:

|𝜈, 𝐤⟩ = 𝑒𝑖𝐤⋅𝐫 |𝑢𝜈,𝐤⟩ . (4.5)

These functions are indexed by the number of the band 𝜈 and the Bloch wave
vector 𝐤 ∈ [−𝜋/𝑎, +𝜋/𝑎] (𝑎 is the lattice spacing) within the Brillouin zone (B.Z.). Bloch wave vector 𝐤
When substituting this ansatz back into the Schrödinger equation, the resulting
Bloch equation reads


ℏ
2𝑚

1
𝑖 𝛁 + 𝐤


+ 𝑉(𝐫) 𝑢𝜈,𝐤(𝐫) = 𝐸𝜈,𝐤𝑢𝜈,𝐤(𝐫) . (4.6)

71
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This equation is best solved in momentum space since both 𝑉 and 𝑢 assume sim-
ple forms in their momentum representation due to their periodicity.The Fourier
transform of these two functions reads

𝑉(𝐫) = 
𝐊
𝑉𝐊𝑒𝑖𝐊⋅𝐫 and 𝑢𝜈,𝐤(𝐫) = 

𝐊
𝑐𝐊𝜈,𝐤𝑒𝑖𝐊⋅𝐫 . (4.7)

The summation is taken over all reciprocal lattice vectors 𝐊. The Fourier coeffi-
cients 𝑉𝐊 are

𝑉𝐊 = 1
𝑣 
u.c.

d𝐫 𝑒−𝑖𝐊⋅𝐫𝑉(𝐫) , (4.8)

with the integration taken over the unit cell with volume 𝑣. The equation for theEquation for the
Fourier coefficients Fourier coefficients of 𝑢𝜈,𝐤(𝐫) becomes


ℏ
2𝑚(𝐊 + 𝐤) − 𝐸𝜈,𝐤 𝑐𝐊𝜈,𝐤 +

𝐊′
𝑉𝐊−𝐊′𝑐𝐊′𝜈,𝐤 = 0 . (4.9)

This form of Eq. (4.1) on page 71, where 𝐩/ℏ = 𝐊+𝐤, simplifies the task of finding
the eigenvalues from a continuous problem to solving a system of linear equations
coupling only momenta separated by reciprocal lattice vectors 𝐊.
The eigenvalue spectrum of the Bloch equation will then exhibit certain ranges

of forbidden energies.The free-space dispersion relation 𝐸 = 𝐩/(2𝑚) is therefore
split into several allowed energy bands separated by band gaps.

4.1 CALCULATING THE BAND STRUCTURE

To obtain the band structure of our lattice potential (see Section 3.2 on page 44)

𝑉(𝑥, 𝑦, 𝑧) = − 𝑉X̄ cos(𝑘L𝑥 + 𝜃/2)
− 𝑉X cos(𝑘L𝑥) − 𝑉Y cos(𝑘L𝑦)
− 2√𝑉X𝑉Y cos(𝑘L𝑥) cos(𝑘L𝑦)𝛼 cos 𝜑
− 𝑉Z̃ cos(𝑘L𝑧)

(4.10)

we first note that the potential along the 𝑧 direction separates from the rest.There-
fore this part of the eigenvalue problem can be solved independently. This will
be done in Section 4.1.2 on page 76. For the remaining part of the potential first
some considerations about the unit cell and the Brillouin zone (B.Z.) are helpful.
As can be seen in Fig. 4.1 on the next page, the potential minima in our lattice

do not form a Bravais lattice, i. e. one cannot find a primitive unit cell that only
contains one lattice site. Instead, the primitive unit cell contains two sites (as longPrimitive unit cell
as neither 𝑉X̄ = 0, 𝑉X = 0 nor 𝜑 = 𝜋/2), as for the regular hexagonal structure of
real graphene. The two-site unit cells form a Bravais lattice, i. e. two unit vectors
can be found such that the whole lattice is spanned by copies of the primitive unit
cell placed at the locations defined by all possible linear combinations of integer
multiples of the unit vectors. In the figure, one specific primitive cell, the Wigner-
Seitz cell, is drawn (solid lines). This primitive unit cell is uniquely defined as theWigner-Seitz cell
Voronoi cell of the primitive object of the lattice (in our case the dimer consist-
ing of the two closest lying lattice sites is chosen). It has a size of 𝜆/√2 and the
unit vectors of the Bravais lattice are perpendicular to each other but rotated by
45° with respect to the axes of the lattice beams. The primitive unit cell defined
by the Voronoi (or Wigner-Seitz) algorithm in the reciprocal lattice is called the
Brillouin zone (B.Z.). It contains all Bloch wave vectors 𝐤 as obtained from Bloch’sBrillouin zone
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Figure 4.1: Unit cell and Brillouin zone. A typical real-space potential with honeycomb
geometry is shown on the left, with the potential minima drawn in dark red.The lattice has
a square two-site unit cell with the two sites denoted by 𝐴 and 𝐵. The unit vectors of the
lattice are rotated by ° with respect to the lattice beam axes, leading to a B.Z. that is also
at ° with respect to that coordinate system. Its extent is smaller by a factor of √ with
respect to the B.Z. of the unit cell of the underlying square lattice (dashed lines).

theorem. The B.Z. is actually the Fourier transform of the Wigner-Seitz cell and
has therefore for our lattice a square shape and a size 2𝜋/(𝜆/√2) = 2√2𝑘L, with
2𝑘L = 4𝜋/𝜆 being the extent of the first B.Z. along 𝑥 and 𝑦. In the figure, addi-
tionally the Wigner-Seitz cell and the B.Z. of the underlying square structure are
shown as dashed lines.
The two-site unit cell gives rise to a so called miniband structure, as in solid

state systems subjected to a superlattice [Esaki et al., 1970]. The two lowest bands
are associated to the two sites in the unit cell and are energetically very close while
being well separated from the next higher bands, see Fig. 4.3 on page 75.
The superlattice structure can be attributed to the breaking of the exact sym-

metry between two neighboring wells, which then gives rise to the two distinct
sites 𝐴 and 𝐵 within an enlarged unit cell. Therefore, the appearance of two mini-
bands can be seen as the result of the back-folding of the original band structure
as the B.Z. is halved in size when considering a two-site unit cell, see Fig. 4.2.

Figure 4.2: Brillouin zone fold-
ing in 1D.When going from
a one-site to a two-site unit
cell, the size of the Brillouin
zone is halved and the first
band is folded back, giving

rise to two minibands. The lat-
tice spacing is denoted by 𝑎.
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4.1.1 EXACT DIAGONALIZATION IN THE HONEYCOMB PLANE

In order to calculate the band structure in the 𝑥 − 𝑦 plane, we proceed as fol-
lows: Starting from the potential 𝑉(𝑥, 𝑦), following the derivations in Ref. [Jör-
dens, 2010], we first rotate the coordinate system by 45° and enlarge it by √2 via
the transformation

𝑥′ = 𝑥 + 𝑦 and 𝑦′ = 𝑦 − 𝑥 , (4.11)

𝑘′L = 𝑘L/√2 . (4.12)
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By applying the trigonometric identities cos(𝑎/2) = (1 + cos 𝑎)/2 for all cos
terms and 2 cos(𝑎 + 𝑏) cos(𝑎 − 𝑏) = cos(2𝑎) + cos(2𝑏) for the interference term
and dropping constant energy offsets, we arrive at

𝑉(𝑥′, 𝑦′) = − 𝑉X̄
2 cos(𝑘′L𝑥′ − 𝑘′L𝑦′ + 𝜃)

− 𝑉X
2 cos(𝑘′L𝑥′ − 𝑘′L𝑦′) −

𝑉Y
2 cos(𝑘′L𝑥′ + 𝑘′L𝑦′)

− 𝛼 cos 𝜑√𝑉X𝑉Y cos(𝑘′L𝑥′) + cos(𝑘′L𝑦′) .

(4.13)

For the Fourier transformation of the potential with respect to 𝑥′ and 𝑦′ one finds

𝑉(𝑝′𝑥, 𝑝′𝑦) = −𝑉X
4 − 𝑉X̄

4 𝑒±𝑖𝜃 𝛿±𝑘′L,∓𝑘′L

− 𝑉Y
4 𝛿±𝑘′L,±𝑘′L

− √𝑉X𝑉Y
4 𝛼 cos 𝜑 (𝛿±𝑘′L, + 𝛿,±𝑘′L),

(4.14)

using the 2D Dirac delta function 𝛿𝑎,𝑏 = 𝛿(𝑝′𝑥 − 𝑎)𝛿(𝑝′𝑦 − 𝑏).
For an immediate simplification of the Schrödinger equation of the problemwe

now apply Bloch’s theorem, which allows to represent the momentum 𝐩′/ℏ = 𝐊′ +
𝐤′ as the combination of a reciprocal lattice vector 𝐊′ and a Bloch wave vector 𝐤′,
with

𝐊′ = 𝑘′L
⎛
⎜⎜⎜⎝
�̃�′
𝑥

�̃�′
𝑦

⎞
⎟⎟⎟⎠ , �̃�′

𝑥, �̃�′
𝑦 ∈ ℤ (4.15)

𝐤′ = 𝑘′L
⎛
⎜⎜⎜⎝
�̃�′𝑥
�̃�′𝑦

⎞
⎟⎟⎟⎠ , �̃�′𝑥, �̃�′𝑦 ∈ [−1, +1] . (4.16)

Inserting into Eq. (4.9) on page 72 and using 𝐸R = ℏ𝑘L/2𝑚, the eigenvalue equa-Final eigenvalue
problem in matrix

form tion for the plane wave coefficients 𝑐�̃�′𝑥,�̃�′𝑦 is (note 𝑘′L = 𝑘L/√2):


𝐸
𝐸R

 𝑐�̃�
′𝑥,�̃�′𝑦 = 𝑐�̃�′𝑥,�̃�′𝑦 2(�̃�′

𝑥 + �̃�′𝑥) + 2(�̃�′
𝑦 + �̃�′𝑦)

+ 𝑐�̃�′𝑥±,�̃�′𝑦∓ −
𝑉X
4𝐸R

− 𝑉X̄
4𝐸R

𝑒±𝑖𝜑

+ 𝑐�̃�′𝑥±,�̃�′𝑦± −
𝑉Y
4𝐸R



+ 𝑐�̃�′𝑥±,�̃�′𝑦 + 𝑐�̃�′𝑥,�̃�′𝑦± −√
𝑉X𝑉Y
2𝐸R

𝛼 cos 𝜑 .

(4.17)

This matrix equation can now be solved numerically for fixed (�̃�′𝑥, �̃�′𝑦) by diag-
onalization, limiting the number of higher momenta �̃�′

𝑥, �̃�′
𝑦 to typically ±5. By

performing this step repeatedly for different �̃�′𝑥, �̃�′𝑦, the full band structure can be
obtained. The result of such calculation is shown in Fig. 4.3 on the next page for
typical parameters used in the experiment.
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Figure 4.3: Band structures. 2D band structures are plotted for typical parameters in the
experiment versus the Bloch wave vectors 𝑘𝑥 and 𝑘𝑦. Contour plots of the lowest band are
shown below the band structure. Both band structures contain as their lowest energy states
twominibands connected by twoDirac points.The twominibands are well separated from
the other bands.
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c. 𝑉Z̃ = 𝐸R

Figure 4.4: Band structures of the Mathieu lattice. The energies associated with the al-
lowed solutions of the Mathieu equation are given for different lattice depths. A band gap
between the first and second band opens for any finite lattice depth. Here, 𝑘L = 𝜋/𝜆 is
the extent of the first B.Z. along 𝑧 and 𝜆 is the laser wavelength.
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4.1.2 THE LATTICE ALONG THE PERPENDICULAR DIRECTION

To obtain the band structure of the lattice potential along the 𝑧 direction, we start
by writing down the Schrödinger equation for a particle with mass 𝑚 in a 1D
homogeneous lattice with the depth 𝑉Z̃ ,

𝐸𝜓 = −
ℏ
2𝑚𝛁 + 𝑉𝜓 , where (4.18)

𝑉 = 𝑉Z̃ cos(𝑘L𝑧) . (4.19)

This differential equation can be brought into the form of the Mathieu equation
which is found in various problems in physics and mathematics [Letokhov et al.,
1978; Blanch, 1972]:

d𝜓
d�̃� + 𝑎 − 2𝑞 cos(2�̃�) 𝜓 = 0 , (4.20)

using the following substitutions:

�̃� = 𝑘L𝑧 (4.21)
𝑞 = 𝑉Z̃/4𝐸R (4.22)

𝑎 = 𝐸 − 1
2𝑉Z̃ /𝐸R (4.23)

𝐸R =
ℏ𝑘L
2𝑚 . (4.24)

The recoil energy 𝐸R is the characteristic energy scale of the problem. The solu-
tions of the Mathieu equation are shown for three typical lattice depths in Fig. 4.4
on page 75. In fact, in 1D the Mathieu equation has for any 𝑞 ≠ 0 only periodic
solutions for certain values of 𝑎, i. e. the band structure has energy gaps for any
𝑉Z̃ ≠ 0. The locations of the allowed bands versus lattice depth are shown as the
shaded areas in Fig. 4.5.
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Figure 4.5: Energy bands of the Mathieu lat-
tice.The 1D lattice potential of Eq. (4.19) has
real-valued solutions within the shaded ar-
eas. While in the 1D case a band gap exists for
every finite 𝑉Z̃, the situation is more compli-
cated if one considers the full 3D potential:
the total energy of a particle is then the sum
of the obtained solution along the separable
directions 𝐸tot = 𝐸𝑥,𝑦 + 𝐸𝑧. In a 3DMathieu lat-
tice for example, the first band gap opens for
𝑉Z̃ > .𝐸R. Adapted from [Jördens, 2010].

4.2 THE TIGHT-BINDING MODEL

While themethod described in Section 4.1.1 on page 73 successfully describes the
exact motion of a single particle in the homogeneous lattice potential, it is often
desirable to simplify the complex emerging dispersion relation. One such simpli-
fication is offered by the tight-binding approximation, a model used in solid state
physics when describing a crystal in which the wave functions of the electrons
are best treated as superpositions of the wave functions of the electrons tightly
bound to single atoms [Ashcroft et al., 1976], hence the name. This is in contrast
to other approaches such as e. g. the nearly free electron approximation, where the
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electrons are considered as being able to move almost freely through the crystal
structure. While the tight-binding model by itself is a single-particle model, it is
also the basis for solid state models that involve interactions, e. g. the Hubbard
Hamiltonian, which is discussed in Chapter 7. The derivations in this section fol-
low loosely those presented in [Ibañez-Azpiroz et al., 2013b], where more details
on the tight-binding model tailored to our lattice structure can be found.
We start with the Hamiltonian in second quantization,

ℋ̂ = d𝐫 ̂𝜓†(𝐫)�̂� ̂𝜓(𝐫) with (4.25)

�̂� = − ℏ
2𝑚𝛁 + 𝑉(𝐫) . (4.26)

As an ansatz, we construct the field operator as a linear combination of orthogonal Wannier functions
Wannier functions 𝑤𝜈,𝐣(𝐫) in the band 𝜈, which are closely localized around the
unit cell located at 𝐑𝐣 [Wannier, 1937; Marzari et al., 2012]:

̂𝜓(r) = 
𝜈,𝐣

�̂�𝜈,𝑤𝜈,(r) . (4.27)

Here, �̂�†𝜈,𝐣 (�̂�𝜈,𝐣) represent the creation (annihilation) operators of a single parti-
cle at the respective unit cell 𝐣. The maximally localized Wannier functions are Generalized

maximally localized
Wannier functions

then obtained by a Fourier transform of the Bloch functions 𝜓𝜇,𝐤(𝐫) under the
application of a unitary transformation 𝑈𝜈,𝜇(𝐤) ∈ 𝑈(𝑁) preserving their peri-
odicity1 [Marzari et al., 1997]. The number of involved bands to construct the
Wannier function is called 𝑁 . It is equal to the number of sites in the unit cell
if the Wannier functions are supposed to be independently localized at the well
minima within the unit cell. With this, the Wannier function becomes

𝑤𝜈,𝐣(𝐫) =
1

√𝑉𝐵

𝐵

d𝐤 𝑒−𝑖𝐤⋅𝐑𝐣
𝑁

𝜇=

𝑈𝜈,𝜇(𝐤)𝜓𝜇,𝐤(𝐫) . (4.28)

The volume of the first B.Z. is denoted by 𝑉𝐵. The transformations 𝑈𝜈,𝜇(𝐤) must
be chosen such that the spatial extent of the resulting Wannier functions is mini-
mized. Note that this is a more general definition than the one normally used for
systems with one-site unit cells, where 𝑁 = 1. Using 𝑁 = 1 to define the Wannier
functions would result in the Wannier functions being localized simultaneously
on both sites of the unit cell. Wannier functions localized independently on the
𝐴 or 𝐵 site are either directly obtained by setting 𝑁 = 2 or can be derived from
the 𝑁 = 1 states by symmetric and anti-symmetric combinations of the Wan-
nier functions of adjacent bands 2𝜈 and 2𝜈 + 1, thereby halving the number of
bands [Fölling, 2008]:

𝑤𝐴
𝜈,𝐣(𝐫) =

𝑤𝜈,𝐣(𝐫) − 𝑤𝜈+,𝐣(𝐫)

√2

𝑤𝐵
𝜈,𝐣(𝐫) =

𝑤𝜈,𝐣(𝐫) + 𝑤𝜈+,𝐣(𝐫)

√2
.

(4.29)

When inserting the ansatz given in Eq. (4.27) into the Hamiltonian (Eq. (4.25)) Tight-binding
expansion of the
Hamiltonian

one obtains

ℋ̂ = 
𝜈,𝜈′


𝐣,𝐣′

�̂�†𝜈,𝐣�̂�𝜈′,𝐣′⟨𝑤𝜈,𝐣|�̂�|𝑤𝜈′,𝐣′⟩ = 
𝜈,𝜈′


𝐣,𝐣′

�̂�†𝜈,𝐣�̂�𝜈′,𝐣′ 𝑡𝜈,𝜈′,𝐣,𝐣′ . (4.30)

1 In the single band case (𝑁 = ) 𝑈 takes the form 𝑈𝜈,𝜇(𝐤) = 𝑒𝑖𝜙𝜈(𝐤)𝛿𝜈,𝜇, i. e. it is a phase shift of the
Bloch functions.
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This is called the tight-binding expansion of the Hamiltonian. We note that the
matrix elements ⟨𝑤𝜈,𝐣|�̂�|𝑤𝜈′,𝐣′⟩ depend only on 𝐢 = 𝐣′ − 𝐣 owing to the periodicity
of the lattice. They correspond to tunneling amplitudes between different lattice
sites (with the exception 𝐢 = 𝟎, 𝜈 = 𝜈′, which corresponds to the on-site energy),

𝑡𝜈,𝜈′,𝐢 = ⟨𝑤𝜈,𝟎|�̂�|𝑤𝜈′,𝐢⟩ . (4.31)

Inserting the definition of theWannier states as the Fourier transformof the BlochTunneling matrix
elements as the

Fourier transform of
the band structure

states and using the orthogonality of the Bloch functions, we obtain:

𝑡𝜈,𝜈′,𝐢 =
1
𝑉𝐵


𝐵
d𝐤 𝑒−𝑖𝐤⋅𝐑𝐢

𝑁

𝜇=

𝑈∗
𝜈,𝜇(𝐤)𝑈𝜈′,𝜇(𝐤)𝐸𝜇,𝐤 , (4.32)

which simplifies in the case 𝑁 = 1 to

𝑡𝜈,𝜈′,𝐢 = 𝛿𝜈,𝜈′
1
𝑉𝐵


𝐵
d𝐤 𝑒−𝑖𝐤⋅𝐑𝐢𝐸𝜈,𝐤 , (4.33)

where it becomes clear that the tunneling matrix elements are in fact obtained by
a Fourier transform of the band structure.The reverse obviously also holds: given
the tunneling coefficients, the band structure of the tight-binding Hamiltonian
can be obtained by the inverse Fourier transform, e. g. for 𝑁 = 1,

𝐸𝜈,𝐤 = 
𝐑𝐢

d𝐑𝐢 𝑒𝑖𝐑𝐢𝐤𝑡𝜈,𝐢 . (4.34)

We note that the 𝐴 ↔ 𝐵 tunnelings only depend on the difference of the two
band energies, while the 𝐴 ↔ 𝐴 or 𝐵 ↔ 𝐵 tunnelings depend only on the sum.
For a lattice with a two-site unit cell, we can therefore define the tunneling matrix
elements on the basis of the maximally localizedWannier functions on the 𝐴 and
𝐵 sites (as given in Eq. (4.29) on page 77):

𝑡𝐴,𝐵𝜈,𝐢 = 1
2𝑉𝐵


𝐵
d𝐤 𝑒−𝑖𝐤⋅𝐑𝐢(𝐸𝜈,𝐤 − 𝐸𝜈+,𝐤) (4.35)

𝑡𝐴,𝐴𝜈,𝐢 = 1
2𝑉𝐵


𝐵
d𝐤 𝑒−𝑖𝐤⋅𝐑𝐢(𝐸𝜈,𝐤 + 𝐸𝜈+,𝐤) . (4.36)

As for the exact solution of the single particle problemby direct diagonalization,
the eigenvalues for the tight-bindingHamiltonian are easiest found inmomentum
space using the Fourier transformed Hamiltonian,

�̂� = 
𝜈,𝜈′


𝐵

d𝐤 ℎ𝜈,𝜈′(𝐤)�̂�†𝜈,𝐤�̂�𝜈′,𝐤 with the coefficients (4.37)

ℎ𝜈,𝜈′(𝐤) = 
𝐣
𝑒𝑖𝐤⋅𝐑𝐣⟨𝑤𝜈,𝟎|�̂�|𝑤𝜈′,𝐣⟩ , (4.38)

where the creation operator in momentum space is defined by

�̂�†𝜈,𝐤 =
1

√𝑉𝐵

𝐢

𝑒−𝑖𝐤⋅𝐑𝐢 �̂�†𝜈,𝐢 (4.39)

(analogous for the annihilation operator). For a practical solution of the problem,
the sum defining the expansion coefficients (Eq. (4.39)) must be truncated at a
certain |𝐢|. This is justified, since the overlap of two separate maximally localized
Wannier functions decays exponentially with their distance 𝐢.



4.2 The tight-binding model 79

4.2.1 THE TIGHT-BINDING MODEL FOR THE HONEYCOMB LATTICE

To obtain the tight-binding model in our honeycomb lattice, we will restrict our-
selves to the two lowest bands, with the associated Wannier functions localized
on the two sites of the unit cell denoted by 𝜅 ∈ {𝐴, 𝐵}. The Hamiltonian given in
Eq. (4.37) on page 78 can then be written in a spinor representation

ℎ(𝐤) =
⎛
⎜⎜⎜⎝
𝜀𝐴(𝐤) 𝑧(𝐤)
𝑧∗(𝐤) 𝜀𝐵(𝐤)

⎞
⎟⎟⎟⎠ with (4.40)

𝜀𝜅(𝐤) = +
𝑚,𝑛

𝑡𝜅,𝜅(𝑚,𝑛)𝑒−𝑖𝐤⋅𝐑(𝑚,𝑛) (4.41)

𝑧(𝐤) = −
𝑚,𝑛

𝑡𝐵,𝐴(𝑚,𝑛)𝑒−𝑖𝐤⋅𝐑(𝑚,𝑛) , (4.42)

where𝐑(𝑚,𝑛) = 𝑚𝐚𝟏+𝑛𝐚𝟐 (𝑚, 𝑛 ∈ ℤ) is a parametrized vector of the Bravais lattice,
see Fig. 4.6. The tunneling matrix elements are as defined above,

𝑡𝜅,𝜅(𝑚,𝑛) = +⟨𝑤𝜅
𝟎|�̂�|𝑤𝜅

𝐑(𝑚,𝑛)⟩

𝑡𝐵,𝐴(𝑚,𝑛) = −⟨𝑤𝐴
𝟎 |�̂�|𝑤𝐵

𝐑(𝑚,𝑛)⟩ .
(4.43)

Figure 4.6: Tight binding
model. Each unit cell (dashed

gray lines) contains two
sites (𝐴 and 𝐵). The nearest-

neighbor hopping terms from
the 𝐴 to the 𝐵 sublattice 𝑡,,,

are drawn in red. The hop-
ping processes on the same
sublattice 𝑡′,, are shown in
blue. Adapted from [Ibañez-

Azpiroz et al., 2013b].
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The eigenvalues of Eq. (4.40) give then rise to the two lowest energy bands: Eigenvalues

𝐸±(𝐤) = 𝜀+(𝐤) ± √𝜀−(𝐤) + |𝑧(𝐤)| , (4.44)

with 𝜀±(𝐤) = (𝜀𝐴(𝐤) ± 𝜀𝐵(𝐤))/2. We will now restrict ourselves to the on-site ener-
gies and tunneling between nearest-neighbor sites of either the same or the other
sublattice, 𝑚, 𝑛 = 0, ±1. For convenience, we define the following abbreviations,
see also Fig. 4.6: The 𝜅 ↔ 𝜅 tunneling terms (where 𝜅 ∈ {𝐴, 𝐵}) are called

𝑡′𝜅, ≐ 𝑡𝜅,𝜅(,) = 𝑡𝜅,𝜅(,) = 𝑡𝜅,𝜅(,−) = 𝑡𝜅,𝜅(−,)
𝑡′𝜅, ≐ 𝑡𝜅,𝜅(,−) = 𝑡𝜅,𝜅(−,)
𝑡′𝜅, ≐ 𝑡𝜅,𝜅(,) = 𝑡𝜅,𝜅(−,−) ,

(4.45)
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and the 𝐴 ↔ 𝐵 terms

𝑡 ≐ 𝑡𝐵,𝐴(,)
𝑡 ≐ 𝑡𝐵,𝐴(,) = 𝑡𝐵,𝐴(,)
𝑡 ≐ 𝑡𝐵,𝐴(−,−)
𝑡 ≐ 𝑡𝐵,𝐴(,−) = 𝑡𝐵,𝐴(−,) .

(4.46)

We first discuss the diagonal terms of Eq. (4.40) on page 79. We set the energyDiagonal terms
offset such that the energies are symmetric around zero,

𝜀𝐴(𝐤) = +Δ/2 + ̃𝜀𝐴(𝐤)
𝜀𝐵(𝐤) = −Δ/2 + ̃𝜀𝐵(𝐤) ,

(4.47)

where we have defined the 𝐴-𝐵 site offset energy as𝐴-𝐵 site energy
offset 

Δ = 𝑡𝐴,𝐴(,) − 𝑡
𝐵,𝐵
(,) . (4.48)

The correction terms ̃𝜀𝜅(𝐤) [Ibañez-Azpiroz et al., 2013b] are (note that the 𝜅-𝜅
nearest neighbor tunneling terms are usually small as compared to the 𝐴-𝐵 tun-
nelings; 𝑘L = 2𝜋/𝜆):

̃𝜀𝜅(𝐤) = 𝑡′𝜅, 𝑒
−𝑖 𝜋𝑘L 𝑘𝑦 + 𝑒+𝑖

𝜋
𝑘L
𝑘𝑦

+ 𝑡′𝜅, 𝑒
−𝑖 𝜋𝑘L (𝑘𝑥+𝑘𝑦) + 𝑒−𝑖

𝜋
𝑘L
(𝑘𝑥−𝑘𝑦) + 𝑒−𝑖

𝜋
𝑘L
(−𝑘𝑥+𝑘𝑦) + 𝑒−𝑖

𝜋
𝑘L
(−𝑘𝑥−𝑘𝑦)

+ 2𝑡′𝜅, 𝑒
−𝑖 𝜋𝑘L 𝑘𝑥 + 𝑒+𝑖

𝜋
𝑘L
𝑘𝑥

= 2𝑡′𝜅, cos 2
𝜋
𝑘L
𝑘𝑦 + 4𝑡′𝜅, cos 

𝜋
𝑘L
𝑘𝑦 cos 

𝜋
𝑘L
𝑘𝑥

+ 2𝑡′𝜅, cos 2
𝜋
𝑘L
𝑘𝑥 .

(4.49)

When 𝜃 = 𝜋, the 𝐴 and 𝐵 wells have the same on-site energy and therefore
Δ = 0. It follows 𝑡′𝐴,𝑖 = 𝑡′𝐵,𝑖 = 𝑡′𝑖 , so that ̃𝜀𝐴(𝐤) = ̃𝜀𝐵(𝐤) = ̃𝜀(𝐤). This simplifies the
expression for the eigenenergies given in Eq. (4.44) on page 79 to

𝐸±(𝐤) = ̃𝜀(𝐤) ± |𝑧(𝐤)| . (4.50)

The off-diagonal matrix elements 𝑧(𝐤) of Eq. (4.40) on page 79 are calculated toOff-diagonal terms
be

𝑧(𝐤) = − 𝑡 + 𝑡 𝑒
−𝑖 𝜋𝑘L (𝑘𝑥+𝑘𝑦) + 𝑒+𝑖

𝜋
𝑘L
(𝑘𝑥−𝑘𝑦) + 𝑡𝑒

−𝑖 𝜋𝑘L 𝑘𝑥

+𝑡 𝑒
−𝑖 𝜋𝑘L 𝑘𝑦 + 𝑒+𝑖

𝜋
𝑘L
𝑘𝑦

= − 𝑡 + 2𝑡 cos(
𝜋
𝑘L
𝑘𝑦)𝑒

−𝑖 𝜋𝑘L 𝑘𝑥 + 𝑡𝑒
−𝑖 𝜋𝑘L 𝑘𝑥

+2𝑡 cos 2
𝜋
𝑘L
𝑘𝑦 .

(4.51)

In the caseΔ = 0, it is evident from the form of Eq. (4.50) that the two emerging
minibands touch or cross at 𝑧(𝐤) = 0. These crossing points are called the Dirac
points due to the linearity of the band structure close to the points, as discussed in
Section 4.3 on page 86.Their position 𝐤D = (𝑘𝑥, 𝑘𝑦) is obtained by solving 𝑧(𝐤) = 0Position of the Dirac

points
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for 𝑘𝑥 and 𝑘𝑦. By independently solving for the imaginary and real part we find

𝑘𝑥 = 0 and (4.52)

𝑘𝑦 = ±𝑘L𝜋 cos−

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−𝑡 + √𝑡 + 4𝑡 2𝑡 − 𝑡 − 𝑡
4𝑡

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (4.53)

As the tunneling 𝑡 can usually be neglected when compared to 𝑡,, (this is for
example obvious from the potential shown in Fig. 4.1 on page 73), the expression
for 𝑘𝑦 can be simplified further to:

𝑘𝑦 ≃ ±𝑘L𝜋 cos−−
𝑡 + 𝑡
2𝑡

 . (4.54)

From this expression it is immediately clear that a real solution only exists if [Mon- Merging point
tambaux et al., 2009b]

𝑡 + 𝑡 ≤ 2𝑡 . (4.55)

For 𝑡 + 𝑡 > 2𝑡 the two minibands do not cross anymore and the Dirac points
vanish.

4.2.2 OBTAINING THE TUNNELING

In this section, we discuss two different methods to obtain the tunneling matrix
elements necessary for a description by a tight-binding model.

WANNIER FUNCTIONS

This subsection is based on parts of the preprint of the following publication:

T. Uehlinger, G. Jotzu, M. Messer, D. Greif, W. Hofstetter, U. Biss-
bort, and T. Esslinger, Artificial graphene with tunable interac-
tions, Phys. Rev. Lett. 111, 185307 (2013), DOI : . /
PhysRevLett. . , preprint available on ArXiv e-prints,
arXiv: . .

One approach for the calculation of themaximally localizedWannier functions
is to start at Eq. (4.28) on page 77 with the goal of finding unitary transforms
𝑈𝜈,𝜇(𝐤) by numerical optimization such that the spatial extent of that function be-
comesminimal.This is what is known as theMarzari-Vanderbilt scheme [Marzari Marzari-Vanderbilt

schemeet al., 1997; Souza et al., 2001], which is heavily used for electronic structure calcu-
lations for complex crystals in solid state physics. The algorithm has been imple-
mented into a open source numerical package, wannier [Mostofi et al., 2008],
which includes algorithms to efficiently cope with the problem at hand, by for
example making use of symmetries.
The Marzari-Vanderbilt approach has also been successfully applied to optical

lattice systems in order to derive ab initio Hubbard models for hexagonal lattice
geometries [Walters et al., 2013; Ibañez-Azpiroz et al., 2013a,b]. However, care
has to be taken to avoid local minima when directly optimizing the spread of the
Wannier functions, and lattice-specific modifications may be required [Walters et
al., 2013]. For complex lattice structures, this algorithm entails a minimization in
a 𝑑-dimensional parameter space with the spatial spread function featuring local
minima, where 𝑑 scales with the number of involved bands squared times the
desired resolution in quasimomentum space.
In this thesis, a novel numerical method based on the alternative definition

of Wannier states as eigenstates of band-projection operators [Kivelson, 1982] is

http://dx.doi.org/10.1103/PhysRevLett.111.185307
http://dx.doi.org/10.1103/PhysRevLett.111.185307
http://arxiv.org/abs/1308.4401


82 The honeycomb band structure

used. The alternative approach has ben worked out by Ulf Bissbort and has been
generously shared with us. The details on this approach can be found in his the-
sis [Bissbort, 2012]. Instead of the numerical optimization, the essential step of
the algorithm is the solution of an eigenvalue problem, i. e. a diagonalization ofWannier states as

eigenstates of
band-projection

operators

a 𝑑 × 𝑑 matrix. This intrinsically avoids the problem of local minima and is nu-
merically highly efficient, scaling better with respect to a direct optimization for
increasing 𝑑.
For clarity, the procedure is first worked out for a 1D lattice systemwith a single

potential minimum per lattice unit cell. We start by assuming that a set of Bloch
states is given, each in the form

|𝜈, 𝑘⟩ = 
𝑛
𝑐𝑛𝜈,𝑘 |𝑝/ℏ = 𝑘 + 2𝜋𝑛/𝑎⟩ , (4.56)

with the normalization condition ∑
𝑛 |𝑐

𝑛
𝜈,𝑘| = 1, |𝑝⟩ being a pure momentum

state and 𝑎 the lattice spacing.This corresponds to each real-space Bloch function
being normalized in the unit cell. In terms of the Bloch functions, the projection
operator onto a band 𝜈 can be written as

𝒫𝜈 = 
𝑘
|𝜈, 𝑘⟩ ⟨𝜈, 𝑘 | . (4.57)

Note that 𝒫𝜈 does not depend on the complex phase of the Bloch functionsPhase of the Bloch
functions (which is arbitrary, since it is not fixed by via their definition).

The central idea developed by Kivelson [1982] is to consider theWannier states
as eigenstates of the operator �̂�𝜈,

�̂�𝜈 = 𝒫𝜈 �̂�𝒫𝜈 . (4.58)

In many standard cases, this definition of the Wannier states coincides with theRelation to the
standard definition

using Fourier
transforms

usual definition via the Fourier transform of the Bloch states, with the additional
requirement of minimizing the spatial variance. This definition can however be
used for an efficient calculation of the Wannier states by a numerical diagonaliza-
tion of �̂�𝜈. Within each band 𝜈, the natural basis for the explicit representation
of �̂�𝜈 is the Bloch basis. In this basis its matrix elements 𝑋𝜈

𝑘,𝑘′ can be expressed as
the real-space integrals of terms involving the Bloch functions 𝜓𝜈,𝑘(𝑥) = ⟨𝑥 |𝜈, 𝑘⟩
over the entire spatial region of the lattice consisting of 𝐿 sites

𝑋𝜈
𝑘,𝑘′ =

(𝐿− 
 )𝑎


− 𝑎


𝜓∗𝜈,𝑘(𝑥) 𝜓𝜈,𝑘′(𝑥) 𝑥d𝑥 . (4.59)

This integration can be performed analytically and we obtain

𝑋𝜈
𝑘,𝑘′ = 𝛿𝑘,𝑘′

𝑎(𝐿 − 1)
2 + 𝑎 𝑒𝑖

𝑎
 (𝑘−𝑘

′)

×
∞


𝑛,𝑛′=−∞
1 − 𝛿𝑘,𝑘′ 𝛿𝑛,𝑛′

(−1)𝑛−𝑛′ 𝑐𝑛 ∗𝜈,𝑘𝑐𝑛
′
𝜈,𝑘′

2𝜋𝑖(𝑛 − 𝑛′) + 𝑖𝑎(𝑘 − 𝑘′) ,
(4.60)

reducing the calculation of each matrix element to a summation. Here, 𝛿 is the
Kronecker delta function. Diagonalizing the resulting matrix 𝑋 directly leads to
the Wannier states (up to a complex phase) without any ambiguity.
Both the eigenvalues (corresponding to the position of the respective Wannier

state) and the eigenstates at the edge of a finite system contain finite size effects.
However, these decay exponentially towards the center. In fact, it is sufficient to
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determine one Wannier function per sublattice (i. e. two Wannier states for our
bipartite honeycomb lattice) to obtain the entire basis set of orthogonal Wannier
states. All other Wannier states are related and can directly be obtained from sim-
ple phase rotations of the eigenvector elements, as follows from theWannier states
being related to the Bloch states by a discrete Fourier transformation. It is thus use-
ful to determine a Wannier state at the center of the lattice to minimize finite size
effects.
In the 2D case of our tunable-geometry optical lattice, the Bloch statewith Bloch Two-dimensional

honeycomb latticewave vector 𝐤 in band 𝜈 is of the form

|𝜈, 𝐤⟩ = 
𝑛,𝑛

𝑐𝑛,𝑛𝜈,𝐤 |𝐩/ℏ = 𝐤 + 𝑛𝐛 + 𝑛𝐛⟩ (4.61)

as obtained from the band structure calculations detailed in Section 4.1.1 on
page 73. For lattice geometries such as the honeycomb lattice with two or more
potential minima per lattice unit cell, one has to allow for maximally localized
Wannier states to be composed of Bloch states from multiple energy bands. We Localization on

single sites of complex
lattice geometries

therefore define the projection operator onto a suitable subset of bands𝒜 as

𝒫𝒜 = 
𝜈∈𝒜 , 𝐤

|𝜈, 𝐤⟩ ⟨𝜈, 𝐤 | (4.62)

and consider the Wannier states to be eigenstates of suitable position opera-
tors projected onto 𝒜 . Generally, in the higher-dimensional case, the Wannier
states aremaximally localized along the directions of the reciprocal lattice vectors,
which are

𝐛 = 𝑘L(𝐞𝑥 + 𝐞𝑦) 𝐛 = 𝑘L(𝐞𝑥 − 𝐞𝑦) (4.63)

for our honeycomb lattice. We therefore define the real-space coordinate opera-
tors along these directions,

�̂� = 𝐛 ⋅
⎛
⎜⎜⎜⎝
�̂�
�̂�

⎞
⎟⎟⎟⎠ = 𝑘L(�̂� + �̂�) �̂� = 𝐛 ⋅

⎛
⎜⎜⎜⎝
�̂�
�̂�

⎞
⎟⎟⎟⎠ = 𝑘L(�̂� − �̂�) , (4.64)

and the 2D Wannier states are simultaneous eigenstates of both band-projected
operators 𝑅 = 𝒫𝒜 �̂�𝒫𝒜 and 𝑅 = 𝒫𝒜 �̂�𝒫𝒜 . Note that, although [𝑅, 𝑅] ≠
0, the Wannier states in the bulk are asymptotic eigenstates of both 𝑅 and 𝑅
for large systems. We parametrize the Bloch wave vector by 𝐤 = 𝑚

𝐿 𝐛 +
𝑚
𝐿 𝐛

with integer 𝑚 and 𝑚 for a 2D lattice with 𝐿 lattice sites along each dimension
and define the collective index function 𝐼(𝜈,𝑚, 𝑚), which maps every Bloch
state onto a unique integer value. Additionally, we note that𝒫𝒜 |𝜈, 𝐤⟩ = |𝜈, 𝐤⟩ if
𝜈 ∈ 𝒜 . With this, the matrix elements of the band-projected position operators
determined from the real-space integration are

𝑅𝐼(𝜈,𝑚,𝑚),𝐼(𝜈′,𝑚′
,𝑚′

)
,
= ⟨𝜈, 𝐤| 𝑘L(�̂� ± �̂�) |𝜈′, 𝐤′⟩

= 𝑘L 
r.s.l.

d𝑟 
𝑛,𝑛
𝑛′,𝑛′

𝑐𝑛,𝑛𝜈,𝐤
∗ 𝑐𝑛

′
,𝑛′
𝜈′,𝐤′ 𝑒−𝑖(𝑛 𝐛+𝑛 𝐛+𝐤)⋅𝐫 𝑒𝑖(𝑛

′
 𝐛+𝑛′ 𝐛+𝐤′)⋅𝐫 (𝑥 ± 𝑦) ,

(4.65)

where the integration is to be performed over the entire real-space lattice (r.s.l.).
The explicit real-space integration can be performed analytically in full analogy to
the 1D case, leading to a similar expression involving only the summation over 𝑛
and 𝑛.
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Figure 4.7: Eigenvalues of 𝑅.The plot dis-
plays the spectrum of the operator 𝑅 for
a lattice consisting of 𝐿 =  units cells per
dimension, corresponding to 98 physical
sites. Each degenerate set of eigenvalues
corresponds to a subset of states maxi-
mally localized along the direction 𝐛, but
not necessarily localized along 𝐛, as indi-
cated by the respective shaded regions.

To determine the Wannier states as the simultaneous eigenstates, one can first
diagonalize 𝑅. The spectrum of 𝑅 is composed of degenerate plateaux of eigen-
values2, each corresponding to a subspace of states maximally localized along 𝐛,
but with arbitrary localization properties along 𝐛, see Fig. 4.7. To obtain the final
Wannier states, the operator 𝑅 is diagonalized within one such degenerate sub-
space. A typical Wannier state obtained in this manner for the honeycomb lattice
considered in this work is shown in Fig. 4.8.
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Figure 4.8: Calculated Wannier functions.The
plots show the 2Dmaximally localized Wannier
functions obtained from our numerical proce-
dure for both sublattices of a honeycomb lattice.
The parameters are those used in the experi-
ments presented in Chapter 8, 𝑉X̄,X,Y = [, .,
.]𝐸R and 𝜃 = 𝜋. TheWannier function length
scale is normalized to 𝜆.

A property which has been much discussed but not resolved is why the real-Realness of Wannier
functions space representation of the Wannier functions obtained from the Marzari-Van-

derbilt minimization approach is real (up to an arbitrary constant complex phase
factor) if the spatial variance is minimal. This property follows naturally within
our approach for lattice Hamiltonians, which are invariant under time reversal.
In this case, the real-space wave functions of all energy eigenstates can be chosen
purely real. This seems to contradict the complex form of the Bloch functions for
a systemwhich is infinitely large or has periodic boundary conditions, but is easily
resolved by noting that the Bloch states |𝜈, 𝐤⟩ and |𝜈, −𝐤⟩ are pairwise degenerate.
By performing a unitary transformation within each such two-dimensional sub-
space to an equivalent basis (|𝜈, 𝐤⟩+|𝜈, −𝐤⟩)/√2 and (|𝜈, 𝐤⟩−|𝜈, −𝐤⟩)/√2 for some

2 Up to deviations from finite size effects, which decay rapidly and are exponentially suppressed for
states in the bulk of the lattice.
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suitable choice of initial phases, states with purely real-space wave functions can
be formed. Clearly, the definition via eigenstates is basis-independent and can
equally well be performed in this alternative purely real basis without altering the
resulting Wannier states. However, it is directly evident that the matrix elements
of the operator �̂�𝒜 are purely real in this basis, since they can be expressed as in-
tegrals of a product of three real functions (two real energy eigenfunctions and
the position 𝑥). Hence, the representation of �̂�𝒜 in this basis is a real, symmetric
matrix. Since the eigenvector elements of a symmetric matrix can be chosen to
be purely real and the Wannier states can be written as superpositions of these
elements and the corresponding real basis functions, the Wannier functions are
purely real.
Despite its numerical efficiency, an accurate calculation of the Wannier func- Implementation into

the data analysis
framework

tions, which are the basis for many of the theoretical descriptions of our system
used in this thesis, requires several minutes on a desktop computer. To speed
up repeated data evaluations, the results of the calculations are stored in a cen-
tral MySQL database, set up specifically for that purpose. The code to obtain the
tight-binding parameters transparently either calculates the parameters or ob-
tains them from the database, with the option of interpolating from previously
calculated results. The obtained tight-binding parameters as a function of the lat-
tice depths 𝑉X̄ and 𝑉X in the relevant regimes used in this thesis are shown in
Section 7.1.1 on page 133.

BAND STRUCTURE FITS

Another approach to obtain the tight-binding parameters is to fit the expression Obtaining the
tunneling matrix
elements by fitting a
tight-binding model
to the calculated
band structure

for the band structure within the tight-binding model (Eq. (4.44) on page 79) to
the results obtained by exact diagonalization (see Section 4.1.1 on page 73) [Le-
brat, 2012]. By doing so, the large number of parameters (overall energy offset,
site energy offset and the tunnel couplings) can lead to instabilities of the fit. The
number of parameters can, however, be reduced by using the fact that 𝐸+−𝐸− only
depends on Δ and the 𝐴 ↔ 𝐵 tunneling terms while 𝐸+ +𝐸− depends only on the
overall energy offset and the 𝜅-𝜅 tunnelings [Lebrat, 2012]. Even though these tun-
nelings are usually small compared to the 𝐴-𝐵 tunneling terms, they need to be
included in order to account for the asymmetry of the two minibands. Addition-
ally, good initial fit parameters have to be chosen to ensure that the fit does not
get stuck in local minima.
Figure 4.9 shows a cut through a fitted band structure along 𝑘𝑥 = 0 for typical

parameters used in the experiment. Good agreement for the specific parameters is
obtained when including the 𝜅-𝜅 tunnel couplings. In general, reasonable agree-
ment is found for all regimes with honeycomb structure explored in this thesis,
with the largest deviations (about 20% in the tunneling amplitude) found close to
the point where a gap between the twominibands appears. In the limit of deep lat-
tices with a single-beam depth on the order of ≳ 10 𝐸R, the tight-binding model
is even able to perfectly reproduce the full band structure.

Figure 4.9: Fitting the tight binding
model to the exact band structure.The
black points are the result of the exact

band structure calculation for a lat-
tice with 𝑉X̄,X,Y = [., ., .]𝐸R.
The blue dashed line is a fit using
only nearest-neighbor tunnelings

between different sublattices, while
the red solid line also includes hop-
pings between the same sublattices.
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4.3 PROPERTIES OF THE HONEYCOMB BAND STRUCTURE
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Figure 4.10: Dirac points. Typical band structure obtained
by numerical diagonalization of the lattice potential with
parameters 𝑉X̄,X,Y = [., ., .]𝐸R. The band structure
contains two isotropic Dirac points located inside the first
B.Z. on the 𝑘𝑥 =  line. Cuts through the dispersion rela-
tion in the vicinity of one of the Dirac points are shown
behind the 3D plot, with the linear dispersion relation at
the points clearly visible. Equipotential energy lines of the
lower band are shown below the band structure.

Since the honeycomb lattice consists of two sublattices 𝐴 and 𝐵, the wave func-
tions are two-component spinors. Tunneling between the two states attributed to
the two sublattices leads to the formation of two energy bands, which are well sep-
arated from the higher bands and have a conical intersection at two quasimomen-
tum points in the B.Z. – the Dirac points, see Fig. 4.10. Such conical intersectionsDirac points /

accidental band
crossings / diabolical

points

where first described byHamilton when studying the refraction from optical crys-
tals [Hamilton, 1837]. Accidental crossings of energy levels where later theoreti-
cally studied by Berry and Wilkinson, who termed them diabolical points [Berry
et al., 1984], after their double-cone structure reminiscent of a diabolo.The Dirac
points are thus nothing else than diabolical points in quasimomentum space.
TheDirac points always occur in pairs due to time inversion symmetry, i. e. the

inversion symmetry of the quasimomentum space, from which follows that, if aDirac points always
occur in pairs. Dirac point is found at 𝐤D, there must be second point at −𝐤D. In a broader sense,

the occurrence of the Dirac points in pairs is a consequence of the fermion dou-
bling theorem [Nielsen et al., 1983], which states that given a certain set of sym-
metries the contact points between two bands in 2D lattice models must appear
in pairs with opposite chirality. These points are topological defects in the band
structure, with an associated geometric phase of ±𝜋, called Berry’s phase [Berry,
1984] (see Section 4.3.2 on page 92). This topological protection warrants their
stability with respect to lattice perturbations, so that over a large range of lattice
anisotropies only the position of the Dirac points varies inside the B.Z.. In con-
trast, breaking the inversion symmetry of the potential by introducing an energy
offsetΔ between sublattices opens an energy gap at the Dirac points, proportional
to the offset. In our implementation, the energy offset Δ between the𝐴 and 𝐵 sites
only depends on the phase 𝜃, which can be precisely controlled by adjusting the
frequency offset between the X̄ and X beam, see Section 3.2.5 on page 53.
As already discussed in Section 4.1 on page 72, the B.Z. has a square shape, see

Fig. 4.11a on the next page. The two Dirac points are located at non-symmetry
points within the first B.Z., as evident from the band structure calculations ob-
tained by numerical diagonalization of the Hamiltonian as well as the tight-
binding model, Section 4.1.1 on page 73 and Section 4.2 on page 76, respectively.
Their position is pinned to 𝑘𝑥 = 0, owing to the reflection symmetries of the sys-
tem [Salger et al., 2007]. It is interesting to note that whenever a band structureAny minimal energy

gap away from
symmetry points of
the B.Z. is a Dirac

point.

exhibits a minimal energy gap located away from any symmetry point of the B.Z.,
as is the case for our lattice structure, it follows mathematically that it must be a
Dirac point [Wunsch et al., 2008].
The situation is different to the case of real graphene, which has a B.Z. of hexag-

onal shape, see Fig. 4.11b on the facing page. There, the six vertices of the B.Z.
belong to two different symmetry points identified by Bragg reflections in quasi-
momentum space, the 𝐾 and 𝐾′ points. These two symmetry points each include
the vertices of one of the regular triangles that can be formed by the vertices of
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Figure 4.11: Location of the Dirac points. a. For our lattice geometry, the twoDirac points,
denoted by 𝐾 and 𝐾 ′, are located within the first B.Z., while in the case of real graphene
(b.) (which has a regular hexagonal structure), they are located at the corners of the B.Z..
The B.Z. vertices denoted by 𝐾 (and 𝐾 ′ respectively) are identified by Bragg reflections and
therefore belong to one and the sameDirac point. Deformed unit cells (dotted lines) can be
drawn in both reciprocal lattices such that they are equivalent to the B.Z. of the respective
other lattice geometry (up to a rescaling of one axis).

the hexagon. Even though the shape of the B.Z. of real graphene is different, its
band structure also contains two Dirac points owing to the two-site unit cell. For
unstrained graphene, i. e. a perfectly regular hexagonal lattice, they are located ex-
actly at the vertices of the B.Z., with one at the 𝐾 and the other at the 𝐾′ point, see
Fig. 4.12.
In terms of the underlying geometric structure, our lattice corresponds to lin-

early strained graphene, i. e. one of the real space axes and the corresponding
quasimomentum axis is stretched, leading to an irregular hexagon. This interpre-
tation is confirmed by comparing our tight-binding Hamiltonian Eq. (4.40) on
page 79 with that of graphene [Castro Neto et al., 2009]: when rescaling the 𝑥 axis
by �̃� = 𝑥√3 they are actually the same. In our system the effect of this deformation
can however be compensated by adjusting the height of the potential hills between
the sites, such that the tunneling matrix elements along the different spatial axis
are the same. Therefore our lattice potential can be used to realize effectively the
same physics as found in regular hexagonal lattice structures. The analogy of the
two structures can also be seen in the fact that for both geometries primitive unit
cells in quasimomentum space of either hexagonal or rhombic shape can be found.
For example for our lattice, a unit cell with hexagonal shape with the Dirac points
located at the vertices can be drawn, see Fig. 4.11a, dotted lines.

Figure 4.12: Band structure of
real graphene.The band struc-

ture contains two isotropic
Dirac points located at the
six corners of the hexago-

nal B.Z.. The six corners cor-
respond to two symmetry
points in quasimomentum

space. Equipotential lines of
the lower band are shown
below the band structure.
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4.3.1 THE LINEAR BAND CROSSINGS

In this section I will discuss two aspects of the conical band crossings at the Dirac
points: on one hand this is the analogy of the behavior of the particles in the vicin-
ity of the Dirac points with that of relativistic particles, which is due to the linear
dispersion relation. On the other hand, the density of states and the classifica-
tion of the band structure with respect to conducting or insulating behavior is
reviewed.
In order to analyze the linear band crossings and the analogy to relativistic

physics, we will first consider the tight-binding model of our band structure.Analogy to
relativistic physics For simplicity, we will neglect nearest-neighbor tunneling to the same sublattice,

𝑡′,, = 0 and assume for the diagonal 𝐴-𝐵 tunneling 𝑡 = 0. Both are fair ap-
proximations within most of our experimental regimes. As has been deduced in
Section 4.2 on page 76, the location of the Dirac points is then given byLocation of the Dirac

points
𝑘D𝑥 = 0 (4.66)

𝑘D𝑦 ≃ ±𝑘L𝜋 cos− −
𝑡 + 𝑡
2𝑡

 . (4.67)

We are interested in the approximate form of the Hamiltonian and its dispersion
relation close to theDirac point. To this end, we perform aTaylor series expansion
of the expression 𝑧(𝐤) (see Eq. (4.51) on page 80) aroundTaylor expansion of

the dispersion
relation in the

vicinity of a Dirac
points

�̃� = 𝐤 −
⎛
⎜⎜⎜⎝
𝑘D𝑥
𝑘D𝑦

⎞
⎟⎟⎟⎠ . (4.68)

We will choose the Dirac point with 𝑘𝑦 > 0, without loss of generality, as the two
points are symmetric. When expanding separately along the two directions up to
second order, one obtains the following expressions:

𝑧(�̃�𝑥, �̃�𝑦 = 0) ≃ −𝑖 𝜋𝑘L
(𝑡 − 𝑡)�̃�𝑥 −

1
2
𝜋

𝑘L
(𝑡 − 3𝑡)�̃�𝑥

𝑧(�̃�𝑥 = 0, �̃�𝑦) ≃ 2 𝜋𝑘L
𝑡
√
1 − 

𝑡 + 𝑡
2𝑡



�̃�𝑦 −

1
2
𝜋

𝑘L
(𝑡 + 𝑡)�̃�𝑦 .

(4.69)

Both expressions are actually dominated by linear terms, leading per Eq. (4.44) on
page 79 to a linear dispersion relation close to theDirac points (note that 𝜀′𝜈(𝐤) = 0
in our approximation). It is interesting to note that at themerging point of the two
Dirac points, i. e. where the two minibands split, the behavior is different. When
applying the merging condition 𝑡 + 𝑡 = 2𝑡, we obtain

𝑧m(�̃�𝑥, �̃�𝑦 = 0) ≃ −𝑖 𝜋𝑘L
(𝑡 − 𝑡)�̃�𝑥 −

1
2
𝜋

𝑘L
(𝑡 − 3𝑡)�̃�𝑥

𝑧m(�̃�𝑥 = 0, �̃�𝑦) ≃ −12
𝜋

𝑘L
(𝑡 + 𝑡)�̃�𝑦 ,

(4.70)

i. e. the dispersion relation has become quadratic along the 𝑦 direction while it
remains linear along 𝑥. One also notes that the merging occurs at the B.Z. ver-
tices, i. e. the Dirac points are moving outwards in the B.Z. when approaching the
merging transition.
From Eq. (4.69) the slopes of the dispersion relation close to the Dirac pointsSlopes of the

dispersion relation
close to the Dirac

points
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Figure 4.13: Linear dispersion rela-
tion in the vicinity of isotropic Dirac
points. Cuts through the exact dis-
persion relation in the vicinity of
a Dirac point (red solid and blue

dotted lines) are drawn for a band
structure containing isotropic Dirac
points (𝑉X̄,X,Y = [., ., .]𝐸R,
𝛼 = .). The slopes obtained from
the tight-binding model (Eq. (4.71))

using 𝑡,, = [, , ] Hz
are drawn as dotted lines.
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can be extracted,

𝑐𝑥 ≐
𝜕𝐸
𝜕ℏ�̃�𝑥

≃ 𝜋
ℏ𝑘L

(𝑡 − 𝑡)

𝑐𝑦 ≐
𝜕𝐸
𝜕ℏ�̃�𝑦

≃ 2 𝜋
ℏ𝑘L

𝑡
√
1 − 

𝑡 + 𝑡
2𝑡



.

(4.71)

Therefore, the low energy spectrum close to the Dirac points can be written as
follows:

𝐸(�̃�) = ℏ√𝑐𝑥�̃�𝑥 + 𝑐𝑦 �̃�𝑦 . (4.72)

By equating the two expressions of Eq. (4.71), the condition for isotropic Dirac Isotropic Dirac points
points is found to be

𝑡 + 𝑡 = 2𝑡 . (4.73)

In Fig. 4.13, cuts through the band structure calculated by exact diagonalization
along 𝑘𝑥 and 𝑘𝑦 are shown for a lattice with parameters chosen to give rise to
isotropic Dirac points. Note that the isotropy in our system is not perfect, even
under this condition, and the Dirac cones are therefore not exactly round, even
though the slopes along 𝑘𝑥 and 𝑘𝑦 are the same. This is a result of the underlying
square geometry. The slopes at the Dirac points are indeed found to be the same
along the two directions and also match with the slope calculated from the tight-
binding expressions. In the limit 𝑡 = 0, the isotropic Dirac points are located at
𝐤D = (0, ±/)𝑘L.

CONNECTION TO RELATIVISTIC PHYSICS

In the following, we will loosely follow the derivations in [Castro Neto et al., 2009;
Lee, Grémaud, et al., 2009; Lee, 2010]. Close to an isotropic Dirac point, the lin-
earized Hamiltonian discussed above can be written in the following form [Wal-
lace, 1947]:

ℎ(�̃�) =
⎛
⎜⎜⎜⎝
𝜀𝐴(�̃�) 𝑧(�̃�)
𝑧∗(�̃�) 𝜀𝐵(�̃�)

⎞
⎟⎟⎟⎠ ≃ 𝑚∗𝑐∗𝜎𝑧 + ℏ𝑐∗(�̃�𝑥𝜎𝑦 ± �̃�𝑦𝜎𝑥) , (4.74)

where

𝑐∗ =
𝜋
ℏ𝑘L

(𝑡 − 𝑡) (4.75)

𝑚∗ =
Δ
2
1
𝑐∗
, (4.76)
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and ± accounts for the two Dirac points, and 𝜎𝑥,𝑦,𝑧 are the Pauli matrices,

𝜎𝑥 =
⎛
⎜⎜⎜⎝
0 1
1 0

⎞
⎟⎟⎟⎠ , 𝜎𝑦 =

⎛
⎜⎜⎜⎝
0 −𝑖
𝑖 0

⎞
⎟⎟⎟⎠ , 𝜎𝑧 =

⎛
⎜⎜⎜⎝
1 0
0 −1

⎞
⎟⎟⎟⎠ . (4.77)

We now define the Dirac matrices for a (2+1)-dimensional Dirac algebra3 byDefinition of a Dirac
algebra 𝛾𝜇 = (𝛾, 𝛾, 𝛾) = (𝜎𝑧, −𝑖𝜎𝑥, −𝜎𝑦), which satisfies the commutation relations

𝛾𝜇, 𝛾𝜈 = 2𝑔𝜇𝜈 and 𝛾𝜇, 𝛾𝜈 = −2𝑖𝜖𝜇𝜈𝜆𝛾𝜆, where 𝑔𝜇𝜈 = (1, −1, −1) and 𝜖𝜇𝜈𝜆 is
the Levi-Civita symbol. We additionally set

𝜓 =
⎛
⎜⎜⎜⎝
𝜓𝐾
𝜓𝐾′

⎞
⎟⎟⎟⎠ , 𝜓𝐾 (𝐤) =

⎛
⎜⎜⎜⎜⎝
𝑐𝐴,�̃�𝐾
𝑐𝐵,�̃�𝐾

⎞
⎟⎟⎟⎟⎠ , 𝜓𝐾′(𝐤) = 𝜎𝑥

⎛
⎜⎜⎜⎜⎝
𝑐𝐴,�̃�𝐾′
𝑐𝐵,�̃�𝐾′

⎞
⎟⎟⎟⎟⎠ , (4.78)

where �̃�𝐾,𝐾′ refer to Bloch wave vectors close to one of the two Dirac points de-
noted by𝐾 ,𝐾′.When transforming back to real space using �̃� → −𝑖ℏ𝛁, we obtain

ℋ̂ = 𝑐∗d𝐫 ̂𝜓+(𝐫)
⎛
⎜⎜⎜⎝
−𝑖ℏ𝜸 ⋅ 𝛁 + 𝑚∗𝑐∗ 0

0 −𝑖ℏ𝜸 ⋅ 𝛁 − 𝑚∗𝑐∗

⎞
⎟⎟⎟⎠ ̂𝜓(𝐫) , (4.79)

where we have defined ̂𝜓+𝑖 = 𝜓†𝑖 𝛾.
This is the 2D Weyl-Dirac equation with a modified speed of light 𝑐∗ andModified speed of

light 𝑐∗ and mass𝑚∗ mass 𝑚∗. In real graphene, this modified speed of light is on the order of / of
the real speed of light [Li et al., 2007], while for typical parameters of our lattice
it is even on the order of only a few mm/s. This analogy is the reason for calling
the two linear crossing points in the band structure Dirac points. Note that by de-
forming the lattice geometry different effective “velocities of light” can be realized
and that at the merging point the particles behave as massless particles along one
spatial direction and as massive along the other. For the case where 𝑚∗ = 0, the
particles are calledmassless Dirac fermions and the band crossing amassless Dirac
point. If on the other hand𝑚∗ ≠ 0, they are namedmassive Dirac particles ormas-
sive Dirac points, since even though the band crossing itself is quadratic in this
case, the dispersion relation is still linear in the vicinity of the crossing.
The relativistic behavior of the particles close to theDirac points leads for exam-Klein tunneling

ple to the effect of Klein tunneling [1929], where the particle is found to be able to
overcome a potential barrier that is larger than the energy of the particle with high
transmission probability for certain angles of incidence [Castro Neto et al., 2009].
As the height of the potential barrier approaches infinity, the barrier becomes even
fully transparent, in contrast with the classical behavior, where the transmission
probability decays exponentially with the potential height. While Klein tunneling
has so far not been observed for free relativistic particles due to the extremely fast
timescales involved [Zhang et al., 2012], it has been tested in systems exhibiting a
Dirac-like dispersion relations, as for example in real graphene [Katsnelson et al.,
2006; Young et al., 2009] as well as in cold atom systems [Salger et al., 2011].
Another phenomenon is Zitterbewegung, a tremblingmotion of free relativisticZitterbewegung

particles [Schrödinger, 1930], which is the result of interference between positive
and negative energy states that result in a fluctuation of the position of the particle.
As for Klein tunneling, direct experimental observation for free particles is chal-
lenging. However, quantum simulations of the phenomenon where performed
with, among others, trapped ions [Gerritsma et al., 2010] and recently ultracold
bosonic atoms [LeBlanc et al., 2013; Qu et al., 2013].
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Figure 4.14:Density of states.Density of states of the two lowestminibands obtained from
a numerical band structure calculation of the optical lattice potential. The energy units are
chosen such that the bandwidth is one, i. e. 𝐸max − 𝐸min ≡ . The states are counted per
unit cell; therefore the integral of 𝜌(𝐸) will be equal to the number of particles per unit cell
when both bands are filled, i. e. . Parameters: a. 𝑉X̄,X,Y = [., ., .]𝐸R, b. 𝑉X̄,X,Y =
[., ., .]𝐸R, c. 𝑉X̄,X,Y = [., ., .]𝐸R, d. 𝑉X̄,X,Y = [., ., .]𝐸R, all
with 𝛼 = ..

SEMIMETALLIC BEHAVIOR

In a solid, the Fermi energy of a lattice system with a graphene-like geometry
would lie exactly between the two minibands, i. e. at the Dirac points. Therefore,
at zero temperature, the first band is completely filled and there are no free (con-
ducting) charge carriers. The Fermi surface then reduces to only the two Dirac
points. But at any non-zero temperature, free carriers can be created by gapless
excitations to the second miniband, which is continuously connected to the first
by the Dirac points. The system can therefore be considered as a zero-gap semi-
conductor, also called a semimetal [Wallace, 1947; Castro Neto et al., 2009]. Semimetal
As a result of the linear dispersion relation close to the Dirac points, the system

shows nodal low-energy excitations in the form of massless quasiparticles, the
Dirac fermions.These kinds of excitations are also expected to emerge in the low-
energy sector in the pseudogap phase of 𝑑-wave superconductors like for example
the high-𝑇𝑐 cuprates [Hussey, 2002], which makes the two systems analogous in
that respect.
The density of states is defined as Density of states

𝜌(𝐸) = 1
𝒱u.c.


𝐤
𝛿 (𝐸 − 𝐸(𝐤)) . (4.80)

Here 𝒱u.c. is the size of the unit cell and the sum is taken over all Bloch wave
vectors 𝐤. The result of an integration in energy,

𝑛 = 𝑁
𝒱u.c.

=
𝐸


𝐸

𝜌(𝐸)d𝐸 , (4.81)

3 Note that we consider spinless particles here.
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is then the number of particles per unit cell for filled energy bands between 𝐸
and 𝐸. For real graphene, the density of states can be calculated analytically
within the tight-binding regime [Castro Neto et al., 2009], whereas for our lat-
tice, we have to rely on the numerical band structure calculation from which 𝜌(𝐸)
can be obtained by computing a histogram of the energy distribution. The result
of such a calculation is shown in Fig. 4.14 on page 91. In the plot, the energy units
are chosen such that the combined bandwidth of the two lowest minibands is 1.
In general, one observes a vanishing density of states at the Dirac points (𝐸 = 0)Density of states at

the Dirac point and two or more logarithmic van Hove singularities located inside the minibands.
van Hove singularity Close to the Dirac points, by using the low-energy spectrum of Eq. (4.72) on

page 89, we find that the density of states is linear with the slope given by the
inverse of the effective velocity of the particles [Wunsch et al., 2008],

𝜌(𝐸) ∝ |𝐸|
𝑐𝑥𝑐𝑦

. (4.82)

At the merging point (𝑡 + 𝑡 = 2𝑡), the density of states assumes a square root
behavior close the Dirac point, see Fig. 4.14d on page 91. In the insulating regime,
i. e. after the Dirac points have merged and annihilated, the density of states is
approximately linear up to the band gap, where it goes to zero.

4.3.2 TOPOLOGY OF THE BAND STRUCTURE

In the previous section, we have discussed the shape of the band structure, i. e. the
eigenvalues of the Schrödinger equation in momentum space, and the resulting
phenomena. The touching of the two minibands at the Dirac points genuinely
alters the topology of the bands as compared to a trivial gapped band structure:
for example, a loop in momentum space enclosing one of the Dirac points cannot
be continuously deformed to not contain the point.This observation is reflected in
the fact that the eigenstates acquire a non-trivial phase (i. e. which is not amultiple
of 2𝜋) when they are adiabatically moved around such a topological defect. The
derivations in this section loosely follow those in [Fuchs et al., 2012].

GENERAL BLOCH STATES

Consider a closed loop in quasimomentum space 𝒞 ∶ 𝐤(0) → 𝐤(𝜏) = 𝐤(0): the
evolution of an eigenstate |𝑢𝜈,𝐤(𝑡)⟩ is then written as

|𝑢𝜈,𝐤(𝑡)⟩ = exp

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
𝑖
ℏ

𝑡




𝐸(𝐤(𝜏))d𝜏

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

trivial phase

exp 𝑖𝛾𝜈(𝒞 )

geometric phase

|𝑢𝜈,𝐤(0)⟩ . (4.83)

The state acquires two different phases, namely a trivial phase (also called band
phase in the context of solid state systems), caused by the temporal evolution of
the eigenenergy, and a geometric phase due to the adiabatic evolution of the state
itself.This second phase was first described by Berry [1984] in an abstract context
and by Zak [1989] for Bloch states.
Berry’s phase can be obtained from the Bloch states by a loop integral over theBerry’s phase

path 𝒞 ,

𝛾𝜈(𝒞 ) = 
𝒞
𝒜 𝜈(𝐤) ⋅ d𝐤 with (4.84)

𝒜 𝜈(𝐤) = ⟨𝑢𝜈,𝐤|𝛁𝐤𝑢𝜈,𝐤⟩ . (4.85)
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Here we have defined the vector potential, called Berry connection,𝒜 𝜈(𝐤), such Berry curvature
that the analogy to the Aharonov-Bohm phase, which is defined for real space
loops, becomes obvious. Following this analogy, the Berry curvature – which cor-
responds to a “magnetic field” in momentum space – can be defined as follows

𝛀𝜈(𝐤) = 𝛁𝐤 ×𝒜 𝜈 = Ω𝜈𝐞𝑧 , (4.86)

with

Ω𝜈(𝐤) = 𝜕𝑘𝑥𝒜𝑦 − 𝜕𝑘𝑦𝒜𝑥 = 𝑖 ⟨𝜕𝑘𝑥𝑢𝜈,𝐤|𝜕𝑘𝑦𝑢𝜈,𝐤⟩ − ⟨𝜕𝑘𝑦𝑢𝜈,𝐤|𝜕𝑘𝑥𝑢𝜈,𝐤⟩ . (4.87)

In terms of the Berry curvature, the Berry phase can be calculated as the integral
over the surface𝒮 enclosed by the loop 𝒞 ,

𝛾𝜈(𝒞 ) = 
𝒮

𝛀𝜈(𝐤) d𝐤 . (4.88)

The expression can be rewritten in a gauge-invariant form (i. e. independent of
the phase of the Bloch wave functions) [Xiao et al., 2010]:

𝛀𝜈(𝐤) = 𝑖 
𝜈′≠𝜈

⟨𝑢𝜈,𝐤|𝜕𝑘𝑥ℎ(𝐤)|𝑢𝜈′,𝐤⟩⟨𝑢𝜈′,𝐤|𝜕𝑘𝑦ℎ(𝐤)|𝑢𝜈,𝐤⟩

𝐸𝜈(𝐤) − 𝐸𝜈′(𝐤)
 + c.c. (4.89)

This also givesmore insight about the origin of the Berry curvature: it is due to the
restriction of momentum space to a single band and the resulting virtual transi-
tions to the other bands, with decreasing contributions for bands with a large en-
ergy separation. From this representation one also sees that the Berry curvature
becomes singular at closed Dirac points and therefore only has a finite spread for
a band structure containing massive Dirac points.
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Figure 4.15: Berry curvature. a. The Berry curvature obtained from the eigenenergies
and eigenvectors of the single-particle time-independent Schrödinger equation is shown
for the lowest band. b. The corresponding band structure, containing a band gap at the
Dirac points owing to an 𝐴-𝐵 site imbalance, is shown. Parameters: 𝑉X̄,X,Y = [., .,
.]𝐸R, 𝛼 = ., 𝜃 = .𝜋.

In Fig. 4.15 we plot the numerically calculated Berry curvature in the first band
for a band structure containing massive Dirac points. The calculation uses the
eigenvalues and eigenvectors obtained from the numerical diagonalization of the
Hamiltonian containing the exact optical potential. The Berry curvature is posi-
tive close to one of the Dirac points and negative in the vicinity of the other.
One can define the Chern number as the integral of the Berry curvature over Chern number
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the whole B.Z., divided by 2𝜋:

Γ𝜈 =
1
2𝜋 

𝐤∈B.Z.

𝛀𝜈(𝐤) d𝐤 . (4.90)

For the above example, the Chern number is zero since the Berry curvatures of
the two Dirac points exactly compensate each other.
While evidence for Berry’s phase has been seen in real graphene [Novoselov etExperimental

observation al., 2005; Zhang et al., 2005], it has so far not been directly observed in cold-atom
based implementations of hexagonal lattices, although several proposal to do so
exist [Xiao et al., 2010; Alba et al., 2011; Price et al., 2012; Goldman, Anisimovas,
et al., 2013; Abanin et al., 2013].The recent measurement of the related Zak phase
in the band structure of a 1D dimer lattice [Atala et al., 2013] however serves as
proof of concept for further experiments.

SPINOR REPRESENTATION OF THE TWO MINIBANDS

Within the tight binding model describing the two lowest bands discussed before,
the Hamiltonian in momentum space Eq. (4.40) on page 79 (in the case ̃𝜀𝐴(𝐤) =
̃𝜀𝐵(𝐤) = 0) can be rewritten as [Fuchs et al., 2010]

ℎ(𝐤) = |𝐸|
⎛
⎜⎜⎜⎝
cos 𝛽 sin 𝛽 𝑒−𝑖𝜃
sin 𝛽 𝑒𝑖𝜃 − cos 𝛽

⎞
⎟⎟⎟⎠ , (4.91)

with

cos 𝛽 = Δ/(2|𝐸|)
sin 𝛽 = |𝑧|/|𝐸| and

𝜃 = −Arg 𝑧 .
(4.92)

The eigenenergies of the Hamiltonian are ±|𝐸| and its eigenvalues can be written
in a spinor representation with the azimutal and polar angles of the eigenvectors
on the Bloch sphere 𝛽(𝐤) and 𝜃(𝐤), respectively.:

𝜓+(𝐤) =
⎛
⎜⎜⎜⎝
+𝑒−𝑖𝜃/ cos(𝛽/2)
+𝑒+𝑖𝜃/ sin(𝛽/2)

⎞
⎟⎟⎟⎠ and 𝜓−(𝐤) =

⎛
⎜⎜⎜⎝
−𝑒−𝑖𝜃/ sin(𝛽/2)
+𝑒+𝑖𝜃/ cos(𝛽/2)

⎞
⎟⎟⎟⎠ . (4.93)

The Berry curvature is then

𝛀 = 𝜈
2𝛁𝐤 cos 𝛽 × 𝛁𝐤𝜃 , (4.94)

with 𝜈 = ±1 indexing the two bands. If𝒞 is a cyclotron orbit, i. e. it travels through
the band structure at constant energy, a simple expression for the Berry phase can
be found:

𝛾(𝒞 ) = 𝜋𝑊𝒞 1 − cos 𝛽 = 𝜋𝑊𝒞 1 −
Δ
2|𝐸| , (4.95)

whereTopologically
invariant winding

number 𝑊𝒞 ≐ −𝜈
𝒞
𝐝𝜃/2𝜋 (4.96)

is the topologically invariant winding number. It counts the total “charge” of the
vortices of 𝜃 enclosed by the loop 𝒞 . Based on this definition, the Berry phase
will generally assume fractional values for gappedDirac points, while the winding
number remains an integer topological invariant.
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LOW ENERGY APPROXIMATION

In the linear low-energy expansion of the Hamiltonian around a momentum �̃�
close to the two Dirac points 𝐾 , 𝐾′, as in Eq. (4.74) on page 89, the eigenvalues
can, in analogy to Eq. (4.92) on page 94, be represented on the Bloch sphere using
the following identifications:

cos 𝛽 = Δ/(2|𝐸|)
sin 𝛽 = ℏ𝑐|�̃�|/|𝐸|

𝜃 = −Arg(�̃�𝑥 + 𝑖�̃�𝑦) .
(4.97)

The Berry phase for a circular cyclotron orbit 𝒞 with radius �̃� around one of
the Dirac points is:

𝛾(�̃�) = −𝜈𝜉𝜋 1 −
Δ
2|𝐸| . (4.98)

Here, 𝜉 = ±1 indexes the expansion around either of the two Dirac points 𝐾 , 𝐾′.
The winding number is

𝑊𝒞 = −𝜈𝜉 , (4.99)

and the Berry curvature becomes

Ω = 1
2𝜋�̃�

d𝛾
d�̃�

= −𝜈𝜉(𝑐ℏ) Δ
4|𝐸| . (4.100)

If the energy 𝐸 of the orbit travelled is large compared to the gap at the Dirac
points Δ – which is equivalent to a large radius |𝐤| – or if the gap is zero, the Berry
phase acquired by encircling one of the Dirac points is therefore ±𝜋, depending
on the direction and on which point is enclosed. This topological phase of 𝜋 is Topological Berry

phase of 𝜋the origin of the half-integer quantum Hall effect (also called the unconventional
or anomalous quantum Hall effect) of graphene and the phenomenon of weak
antilocalization [Castro Neto et al., 2009], see below. In the other limit, if the loop
has a small radius, the Berry phase is close to zero for a massive Dirac point. This
can also be seen in the Berry curvature: For massive Dirac points it is spread in
the vicinity of the points, while in the limit of a vanishing gap it goes to infinity
at the point and is zero elsewhere. We also note that the Berry phases of the two
Dirac points cancel each other due to time reversal symmetry.
Recalling the representation of the Hilbert space of a spin-/ system as a bi-

spinor, we can draw an analogy to our system discussed above: the involved wave
functions can actually be seen as sublattice pseudo-spins. And, as is evident from Sublattice

pseudo-spinsEq. (4.93) on page 94, the Berry phase of ±𝜋 is nothing else than the phase
exp(𝑖𝜋) = −1 acquired by the wave functions as a result of a rotation of 2𝜋 in
quasimomentum space (which is equivalent to a 2𝜋 change of 𝜃).

CONDUCTIVITY The fact that the wave functions of the particles in the lattice
are spinors and are therefore chiral leads to a strongly reduced backscattering
at impurities, as long as the size of the impurities is larger than the lattice con-
stant [Castro Neto et al., 2009]. This is due to the additional geometric phase that
is acquired on the incoming and outgoing scattering path, which leads to a de-
structive interference of the two paths and therefore suppresses backscattering.
The effect can also be understood in terms of Klein tunneling, which counteracts
Anderson localization and leads to weak antilocalization as long as the disorder
is smooth on the atomic length scale [Katsnelson et al., 2006]. This effect is sus-
pected to play a role for explaining the experimental observation that the conduc-
tivity of graphene never falls below one conductance quantum 𝑒/ℎ, even when
the carrier density goes to zero [Novoselov et al., 2005].
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STABILITY OF THE DIRAC POINTS

The Berry phase remains invariant under all perturbations that preserve space
and time inversion symmetry, guaranteeing the stability of the two Dirac
points [Mañes et al., 2007]. By breaking the translational symmetry of the lattice
structure (which is in solid state systems achieved by placing the material on aSpace and time

inversion symmetry
guarantee the

individual stability of
the Dirac points.

substrate resulting in a superlattice structure) or by deforming all the unit cells
uniformly (by e. g. straining the material) the distance of the two Dirac points
can, however, be reduced, leading to a hybridization of the two orbitals. This can
be done up to the point where they merge and annihilate each other, followed
by a gap opening. This is possible since space and time inversion symmetry only
ensure the individual stability of the Dirac points but do not prevent merging.
Inversion symmetry can be broken by the introduction of an 𝐴-𝐵 site energy

offset, as can be achieved by tuning the frequency difference between the X and X̄
laser beams in our experiment or by substrate interactions in real graphene [Zhou
et al., 2007; Hunt et al., 2013]. A site offset also exists naturally in ionic materials
with hexagonal lattice geometry, such as boron nitride [Taylor et al., 1952; Robert-
son, 1984;Watanabe et al., 2004]. A gap opening caused by a sublattice energy off-
set induces a transition from a semimetallic to an insulating state (which is called
a Semenoff insulator [1984]). See Section 6.1 on page 117 for an experimentalSemenoff insulator
investigation of this transition.
Time reversal symmetry can be broken by either applying a real or effective

magnetic field. Using real magnetic fields, a gap opening could so far not be di-
rectly observed, owing to the largemagnetic fields required. However, by applying
strain along several coupled directions, the Dirac points can be affected in a simi-
lar way as a uniform perpendicular magnetic field would do [Guinea et al., 2010].
The generated pseudo-magnetic field is only present in the reference frame of the
Dirac fermions, andnot in the laboratory frame, and therefore, – in the strict sense
– does not violate time-reversal symmetry of the crystal as a whole.The proposed
type of strain has amongst others been engineered inmolecular graphene (an arti-
ficial graphene system), allowing to enter the relativistic magnetic quantum limit,
which so far could not be accessed in natural graphene [Gomes et al., 2012]. Our
system cannot be strained geometrically, but effective (staggered) magnetic fields
can be created by modulating the tunnel couplings or the whole lattice position
in a circular fashion (see Chapter 11 on page 196).



5DETECTING DIRAC POINTS THROUGH
BLOCH-ZENER OSCILLATIONS

The quintessential features in the band structure a honeycomb lattice are the two
Dirac points with the associated linear dispersion relation in their vicinity. Detect-
ing the existence and probing the properties of these features has however turned
out to be challenging in our artificial graphene system. This is mainly since the
density of states vanishes at the Dirac points and therefore – in equilibrium – no
or very few atoms are affected by the band structure close to the Dirac points.
Instead, we chose to probe the Dirac points dynamically. We prepare a spin- Probing the Dirac

points dynamically
through Bloch-Zener
oscillations

polarized Fermi gas in the tunable-geometry optical lattice set to the honeycomb
geometry, with no lattice along the perpendicular (i. e. 𝑧) direction. We therefore
create a structure containing atoms confined to “tubes” arranged in a honeycomb
geometry. Since the particles are non-interacting and their motion will not be
altered along the 𝑧 direction, we can in the following restrict our discussion to
the 𝑥 − 𝑦 plane. We then drive Bloch oscillations [Zener, 1934; Bloch, 1929] ei-
ther along 𝑥 or 𝑦 and use the thereby induced Landau-Zener transitions to higher
bands [Zener, 1932; Holthaus, 2000] to detect the existence of a linear crossing
in the band structure. We furthermore use the characteristic sequence of Bloch
oscillations and Landau-Zener transitions, called Bloch-Zener oscillations [Breid
et al., 2006], to obtain information about the location of the Dirac points inside
the B.Z..
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In this chapter, I will first describe howwe prepare the spin-polarized gas in the
optical lattice. This is followed by a section discussing the theory and numerical
simulation of Bloch oscillations in 2D lattices under the influence of an external
confining potential. Details of the experimental sequence and of the detection
method are reviewed as well. In the next section, I present the experimental ev-
idence for Dirac points obtained from a single or a double transfer through the
band crossing.The chapter is closed by a discussion of how the transfer efficiency
through the Dirac points can be modeled by use of the Landau-Zener formula
describing a non-adiabatic transition between two states. In the next chapter, the
techniques developed in this chapter, combined with the tunability of the optical

97
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lattice, will be used to observe the transition to massive Dirac fermions as well as
the movement and merging of the Dirac points.
Bloch oscillations are a purely quantum mechanical phenomenon, occurringBloch oscillations

when a potential gradient is applied to particles in a periodic structure. They are
as such a direct consequence of the quantum theory of electrical conductivity for
solids developed by Bloch and Zener [Bloch, 1929; Zener, 1934]. The emerging
oscillatory motion of the particles both in real and momentum space is notori-Bloch oscillations in

real solids ously hard to detect in real solids, due to the fact that in most solids the mean free
path is much shorter than that required to perform even one full Bloch oscillation
cycle [Ashcroft et al., 1976]1.
They have, however, been observed in various systems, where either the Bloch

oscillation period has been altered by an increased lattice constant or which con-
tain less defects. Among these are semiconductor superlattices, where for example
the emitted high-frequency radiation due to the undulating motion of the elec-
trons could be observed as a signature of the Bloch oscillations [Feldmann et al.,
1992; Leo et al., 1992;Waschke et al., 1993].This was followed by a demonstration
of the effect using cold atoms in a 1D optical lattice [Ben Dahan et al., 1996] and
related experiments observing the Wannier-Stark ladder [Wilkinson et al., 1996].
Bloch oscillations have also been observed in other periodic systems, such as in
periodically arranged arrays of optical waveguides [Pertsch et al., 1999; Moran-
dotti et al., 1999] and using sound waves propagating in a superlattice of water
cavities [Sanchis-Alepuz et al., 2007].
Theoretical studies soon reached out to consider Bloch oscillations not only inBloch oscillations in

multiband systems a single band, but in multiband systems and particularly in systems containing
two minibands [Fukuyama et al., 1973]. In such systems one expects Bloch oscil-
lations in combination with periodic Landau-Zener transitions between the two
minibands occurring at the band gapminimum.This phenomenon, studied in de-
tail in Refs. [Breid et al., 2006, 2007], is called Bloch-Zener oscillation. Again, first
experimental observations were made in semiconductor superlattices [Shimada
et al., 2004], followed by studies using optical waveguide arrays [Dreisow et al.,
2009]. For cold atom systems, atoms under the influence of gravity were found
to periodically escape from the optical lattice by Landau-Zener tunneling [An-
derson et al., 1998]. Subsequent studies were conducted on actual Bloch-Zener
oscillations using a BEC loaded into a Fourier-synthesized optical lattice [Sal-
ger et al., 2007, 2009; Kling et al., 2010] and accelerated lattices [Zenesini et al.,
2009, 2010]. Bloch-Zener oscillations should also be detectable in graphene nano-
ribbons [Krueckl et al., 2012], with the work presented in the following being the
first experimental demonstration for a graphene-like system.
Ultracold atoms loaded into optical lattices, as compared to other periodic sys-Bloch oscillations in

cold atom systems tems, allow for a direct observation of the oscillatory motion, both in real and
momentum space, and also allow for a both time- and momentum-resolved in-
vestigation of the Landau-Zener transfers. For this reason they have found diverse
applications in the field. In addition to the experiments already mentioned, the
influence of interactions on the Landau-Zener rate [Morsch et al., 2001; Cristiani
et al., 2002] and on the dephasing of Bloch oscillations [Gustavsson et al., 2008]
was studied, with several measurements using fermions [Roati et al., 2004] and
bosons [Ferrari et al., 2006; Fattori et al., 2008] performed in view of future ap-
plications for ultra-precise measurements of gravity. Furthermore, Bloch oscilla-
tions using ultracold atoms have also been used to determine fundamental con-
stants [Battesti et al., 2004; Cladé et al., 2006]. For a review see [Morsch et al.,
2006]. In this thesis, we will use a combination of these techniques, detailed be-
low, to study the properties of the linear band crossings in the band structure of
our lattice.

1 For typical electric field strengths and relaxation times in a solid, the mean free path within the B.Z. is
on the order of − cm−, while a typical B.Z. has a size of  cm− [Ashcroft et al., 1976].
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5.1 2D BLOCH-ZENER OSCILLATIONS

5.1.1 THEORY

An intuitive picture of the origin of Bloch oscillations is obtained by considering
the semiclassical equation of motion of a particle in a 1D band structure under Semiclassical

equation of motionthe influence of an external force,

ℏd𝑘d𝑡 = 𝐹 (5.1)

d𝑥
d𝑡 =

1
ℏ
𝜕𝐸(𝑘)
𝜕𝑘 . (5.2)

Here, 𝑘 is the Bloch wave vector and 𝑥 the real space position of the particle and
𝐹 the external force. The solution for the quasimomentum trajectory is

𝑘(𝑡) = 𝑘(0) + 𝐹
ℏ 𝑡 , (5.3)

i. e. the particle linearly gains momentum. Since the Bloch wave vector 𝑘 is
bounded to the Brillouin zone size |𝑘| < 𝑘L, the quasimomentum effectively only
increases up to the Brillouin zone edge, where a Bragg reflection 𝑘 → −𝑘 occurs Linear increase of

quasimomentum up
to the B.Z. edge

and the process starts anew. The particle therefore performs a periodic motion
in momentum space. The period of this motion and the associated angular fre-
quency are

𝑇B =
2ℏ𝑘L
|𝐹| = ℎ

𝑑|𝐹| 𝜔B =
2𝜋
𝑇B

, (5.4)

where 𝑑 is the lattice spacing. Information about the corresponding real-space
motion can be gained by considering the group velocity and effective mass of the
particle, defined as

𝑣𝑔(𝑘) =
1
ℏ
𝜕𝐸(𝑘)
𝜕𝑘 𝑚∗(𝑘) = ℏ 

𝜕𝐸(𝑘)
𝜕𝑘 

−
. (5.5)

Owing to the continuity of the dispersion relation at the B.Z. edge and time-
reversal symmetry, the group velocity must change its sign at the B.Z. edge, which
also gives rise to an oscillatory motion in real space with a total extent 𝑠 given by Real space extent
the energy width𝑊 of the band and the force:

𝑠 = 𝑊
𝐹 . (5.6)

This holds exactly if the wave function of the particle is fully localized in quasi-
momentum space. For a finite spread, the extent of the oscillation reduces, see
the discussion below.The dynamics in a lattice under the influence of an external The dynamics in a

lattice under the
influence of an
external force is
counter-intuitive.

field is therefore rather counter-intuitive with respect to several aspects:

• In contrast to a free particle, the motion is not accelerated towards infinity,
but is bounded in all observables.

• In the extreme case of an infinite force (neglecting Landau-Zener transfers),
the particle even becomes fully localized, 𝑠 = 0, a phenomenon known as
Wannier-Stark localization.

• During certain parts of an oscillation period, the group velocity actually
decreases with increasing Bloch wave vector 𝑘, with the consequence, that
the particle is accelerated in the direction opposite to the force.
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• Following the above arguments, even for weak forces no net particle trans-
port can be obtained. In realmaterials, conduction is only observed because
the particles never perform full Bloch oscillations owing to their compara-
bly small mean free path, which is limited by scattering events. These scat-
tering events allow a particle to subsequently start new Bloch oscillations
at the position attained during the previous oscillation, but with a different
momentum as a result of the scattering event. However, this mechanism
can only take place if the band is partially filled and other quasimomenta to
scatter to are available. Filled bands are always stable and do not allow for
particle conduction, as a consequence of the semiclassical version of Liou-
ville’s theorem [Ashcroft et al., 1976].

Note that the band structure can be reconstructed from the spatial motion dur-
ing the Bloch oscillation. Integrating Eq. (5.2) on page 99, we obtain

𝑡




d𝑥
d𝑡 d𝑡 =

1
ℏ

𝑡




𝜕𝐸(𝑘)
𝜕𝑘 d𝑡 ⇒ (5.7)

𝑥(𝑡) − 𝑥(0) = 1
𝐹 [𝐸(𝑘(𝑡)) − 𝐸(𝑘(0))] , (5.8)

where we have substituted Eq. (5.3) on page 99 on the right side of the expres-
sion. Therefore a time-resolved measurement of the spatial position during a full
Bloch oscillation contains information about the full band structure of the re-
spective band. Alternatively, the band structure can also be reconstructed using
Stückelberg oscillations, which occur in the context of Landau-Zener oscillations,
see [Kling et al., 2010].

QUANTUM MECHANICAL TREATMENT

More insight can be gained by considering a 1D tight-binding model in the first
band:

ℋ̂ = −𝑊4

∞

𝑗=−∞

�̂�†𝑗 �̂�𝑗+ + �̂�†𝑗+�̂�𝑗  + 𝑑𝐹
∞

𝑗=−∞

𝑗�̂�†𝑗 �̂�𝑗 , (5.9)

with its diagonal representation inmomentum space (⟨𝑘′|ℋ̂ |𝑘⟩ = 𝑑𝛿(𝑘′−𝑘)ℎ(𝑘)),

ℎ(𝑘) = −𝑊2 cos(𝑘𝑑) + 𝑖𝐹 d
d𝑘 . (5.10)

Along the lines of the derivation given in [Hartmann et al., 2004], the solutions of
the time-independent Schrödinger equation ℎ(𝑘)𝜓(𝑘) = 𝐸𝜓(𝑘) are the Wannier-
Stark functions

𝜓𝑛(𝑘) = √
𝑑
2𝜋 exp −𝑖𝑛𝑘𝑑 + 𝑖𝜁 sin(𝑘𝑑) , (5.11)

where 𝜁 = 𝑊/(2𝑑𝐹) is the characteristic parameter of the Bloch oscillation and
𝑛 ∈ ℕ. The corresponding eigenenergies form the Wannier-Stark ladder:

𝐸𝑛 = 𝑛𝑑𝐹. (5.12)

The time evolution in quasimomentum space reads

𝑈𝑘′,𝑘(𝑡) = 
𝑛
𝜓∗𝑛(𝑘′)𝑒−𝑖𝐸𝑛𝑡/ℏ𝜓𝑛(𝑘)

= exp −𝑖𝜁(sin(𝑘′𝑑) − 𝑠𝑖𝑛(𝑘𝑑)) 𝛿(𝑘′ − 𝑘 + 𝐹𝑡ℏ) ,
(5.13)
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from which the periodicity 𝑘𝑑 mod 2𝜋 of the momentum space movement be-
comes obvious again. For a discussion of the real space behavior, it is helpful to
calculate theWannier-Stark states in theWannier basis using a Fourier transform:

𝜓𝑛(𝑗) = √
𝑑
2𝜋

𝑘L


−𝑘L

𝑒𝑖𝑗𝑘𝑑𝜓𝑛(𝑘)d𝑘 = 𝐽𝑗−𝑛(𝜁)

⇒ ̂𝜓𝑛 = 
𝑗
𝐽𝑗−𝑛(𝜁)�̂�𝑗 ,

(5.14)

where 𝐽𝑗−𝑛(𝜁) is the Bessel function of the first kind. The Bessel function is pre-
dominantly localized within |𝑗 − 𝑛| < 𝜁, once again allowing to deduce the extent
of the real space oscillation,

𝑠 = 2𝜁𝑑 = 𝑊/𝐹. (5.15)

The propagator in the Wannier basis becomes

𝑈𝑗′,𝑗(𝑡) = 
𝑛
𝜓∗𝑛(𝑗′)𝑒−𝑖𝐸𝑛𝑡/ℏ𝜓𝑛(𝑗)

= 𝐽𝑗′−𝑗 2𝜁 sin
𝜔B𝑡
2
 exp 𝑖(𝑗′ − 𝑗)(𝜋 − 𝜔B𝑡)/2 − 𝑖𝑗𝜔B𝑡 .

(5.16)

More insight into the wave packet dynamics can be gained by replacing the Time evolution of a
gaussian wave packetquantum mechanical position and momentum operators by real variables and

solving the classical equations of motion for the tight-binding Hamiltonian using
a gaussian distribution in phase space as the initial condition:

𝜌(𝑥, 𝑘, 𝑡 = 0) = 1
2𝜋Δ𝑥(0)Δ𝑘(0) exp −

(𝑥 − 𝑥(0))
2Δ𝑥(0) − (𝑘 − 𝑘(0))

2Δ𝑘(0)  . (5.17)

Here, 𝑥(0) and 𝑘(0) are the initial centers of the 𝑥 and 𝑘 distribution and Δ𝑥(0),
Δ𝑘(0) the respective initial spreads. The time evolution of the parameters of the
gaussian is calculated to be:

𝑘(𝑡) = 𝑘(0) +
𝐹
ℏ 𝑡

Δ𝑘(𝑡) = Δ𝑘(0)
(5.18)

and

𝑥(𝑡) = 𝑥(0) +
𝑊
𝐹 exp −Δ𝑘(0)𝑑/2 sin 𝜔B𝑡

2 sin 𝜔B𝑡2 − 𝑘(0)𝑑

Δ𝑥(𝑡) = Δ𝑥(0) + 𝑊

2𝐹
1 − exp −Δ𝑘(0)𝑑 sin 𝜔B𝑡2 .

(5.19)

From the real-space evolution two regimes can be identified: if

exp −Δ𝑘(0)𝑑 ≈ 1 , (5.20)

i. e. if the quasimomentum spread Δ𝑘(0) of the initial distribution is small with re- Criterion for Bloch
oscillations: the
particles need to be
considerably
delocalized over the
real space lattice.

spect to the size of the B.Z. – which, for a quantummechanical system, necessarily
corresponds to a spread over several lattice sites in real space –, the classical “wave
packet” performs a sinusoidal oscillation with angular frequency 𝜔B and constant
width Δ𝑥(𝑡). In the case of large quasimomentum spread, i. e. strong real-space
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localization, the real space position stays constant, but the width of the distribu-
tion oscillates sinusoidally instead. In this case the wave packet does not perform
a Bloch oscillation, but is subject to a breathing motion. Therefore, Bloch oscil-
lations are only observed when the particles are delocalized over the real space
lattice, a criterion which can also be proved rigorously within the full quantum
mechanical description.

BLOCH-ZENER OSCILLATIONS

Concerning the quantum mechanical treatment, a natural extension is the inclu-Inclusion of
Landau-Zener

transitions between
different bands

sion of higher bands, which is relevant for our lattice structure. Here, the prob-
lem of two closely-spaced minibands, with Landau-Zener transfers occurring be-
tween them in the vicinity of the B.Z. edges, has been studied intensively [Breid
et al., 2006]. For the two-band system, a second time scale is introduced by the
transmission probability to the second miniband. This timescale governs the os-
cillations between the populations of the lower and higher band, which occur in
addition to the normal Bloch oscillations.The emerging dynamics of these Bloch-
Zener oscillations are rather complex. For example, a full reconstruction of the
initial state only takes place if the two oscillation periods are commensurate.
In the limit of very strong forces in the presence of higher bands, the problem is

best treated in the formalism ofmetastable (also called resonance) Wannier-Stark
states, which include a decay to higher bands, from where the particles are lost
from the system, as observed by a pulsed output of a certain fraction of atoms at
the Bloch oscillation frequency.

2D SYSTEMS

A second extension of the formalism considers 2D systems. In such a system, both
for separable and non-separable lattice potentials, the real space position of the
particles traces complex Lissajous figures if the driving force is not aligned with
the lattice axes [Witthaut et al., 2004]. Additionally, for non-separable potentials,
Landau-Zener events leading to an escape to higher bands via tunneling along
diagonal directions as well as a large spread in real space are observed [Witthaut
et al., 2004].
In the 2D case the semiclassical equation ofmotion becomes [Price et al., 2012]:

ℏd𝐤d𝑡 = 𝐅 (5.21)

d𝐱
d𝑡 =

1
ℏ
𝜕𝐸(𝐤)
𝜕𝐤 − 

d𝐤
d𝑡 × 𝐞⟂Ω(𝐤) , (5.22)

where Ω(𝐤) is the Berry curvature as discussed in Section 4.3.2 on page 92 and
𝐞⟂ is the unit vector along the direction perpendicular to the plane of the lattice.

EXTERNAL CONFINEMENT

The presence of an external confinement in addition to the lattice potential leads
to a modification of the Bloch oscillations. In particular, a dephasing and subse-
quent rephasing has been predicted [Ponomarev et al., 2006] and observed in an
experiment using ultracold atoms [Gustavsson et al., 2008]. We will here discuss
the situation where the applied force does not remove the trap barrier, i. e. the
potential still has a (local) minimum at a finite position. In this regime, the sud-
den switch-on of an external force essentially corresponds to a sudden displace-
ment of the trap minimum by a certain distance 𝑙, a situation which is discussed
in [Ponomarev et al., 2006]. The evolution of the system is then given by that of
the particles in the absence of a force, but with an initial displacement from the
trap center of 𝑙.
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The 1D tight-binding Hamiltonian of this system takes the form

ℋ̂ = −𝑡
∞

𝑗=−∞

�̂�†𝑗 �̂�𝑗+ + �̂�†𝑗+�̂�𝑗  +
𝛾
2

∞

𝑗=−∞

𝑗�̂�†𝑗 �̂�𝑗 , (5.23)

where 𝛾 = 𝑚𝜔𝑑 is the characteristic trap energy and 𝜔 the angular trapping
frequency. In momentum space, this Hamiltonian actually assumes the form of
that of a quantum pendulum,

ℎ(𝑘) = 𝛾
2 𝐿

 − 2𝑡 cos 𝜃 , with 𝐿 = −𝑖 𝜕𝜕𝜃 , 𝜃 = 𝑘𝑑 . (5.24)

The eigenmodes of the pendulum can be categorized into those giving rise to libra- Quantum pendulum
modeltional (rotating slightly back and forth) or rotational motion (where full periods

of rotation are performed). The separatrix is located at a normalized shift

𝜒∗ = 2 
2𝑡
𝛾 

/
. (5.25)

If the normalized initial shift of the trap minimum 𝜒 = 𝑙/𝑑 is smaller than this
value, 𝜒 < 𝜒∗, the system shows librationalmotion, i. e. the particle performdipole
oscillations in the shifted trap. In the opposite case 𝜒 > 𝜒∗, the system performs a
rotational motion in the form of Bloch oscillations with an effective force Effective force in a

trap
𝐹′ = 𝛾𝜒

𝑑 . (5.26)

However, the external confinement actually leads to position-dependent force,
with the consequence that different parts of the spatial wave function of a parti-
cle actually perform Bloch oscillations with different frequencies. This leads to a
dephasing. Due to the discreteness of the energy spectrum, this is followed by a Dephasing in a trap
complete rephasing when the relative phases of the eigenstates of the initial distri-
bution are all multiples of 2𝜋.The dephasing and rephasing times (called 𝜏 and𝑇)
far in the Bloch oscillation (BO) or dipole oscillation (DO) regime are found to
be:

𝜏BO = ℏ
𝜎𝛾 𝜏DO = 8ℏ

𝜎𝛾 (5.27)

𝑇BO = 2𝜋ℏ
𝛾 𝑇DO = 16𝜋ℏ

𝛾 , (5.28)

where 𝜎 is the spatial extent of the initial wave function normalized to the lattice
spacing, 𝜎 = Δ𝑥/𝑑.
Finally, let us perform some estimates for the regime of the Bloch oscilla- Estimate for the

parameters of the
experiment

tions used in the measurements presented in the following sections. We assume
the following typical parameters: trap frequency 𝜔/2𝜋 = 30Hz, applied force
𝐹𝑑/ℎ = 89Hz, tunneling 𝑡/ℎ = 700Hz. This leads to a shift of the trap minimum
of approximately 90 sites, with the separatrix located at 75 sites. We are therefore
just in the regime where one would, according to the simple model, still expect
Bloch oscillations. Assuming that the spatial wave function is delocalized over
some tens of lattice sites, the dephasing time is found to be on the order of some
10ms, consistent with the experimental observation. The rephasing time is one
second, which is beyond the accessible regime in our experiments.

BLOCH OSCILLATIONS AND INTERACTIONS

Theeffect of inter-particle interactions onBloch oscillations has been studied both
for bosons [Kolovsky, 2007] as well as two-component fermions [Ponomarev,
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2008] within theHubbardmodel.Weak and strong interaction regimes have been
identified, in which, depending on themagnitude of the force either regular Bloch
oscillations, decaying or amplitude modulated oscillations were observed. In the
presence of an external confinement, moderate interactions were found to stabi-
lize the Bloch oscillations against dephasing [Ponomarev et al., 2006].

5.1.2 SIMULATION BY FULL DIAGONALIZATION

In collaboration with Lei Wang from ETH Zurich we have performed numeri-
cal simulations of the time evolution of the many-body trapped system based on
an exact diagonalization of the Hamiltonian. For the simulations, the optical lat-
tice potential is described by the following tight-binding Hamiltonian [Lim et al.,Tight-binding

Hamiltonian 2012],

�̂�lattice = − 𝑡 
⟨𝑖𝑗⟩∈𝐿𝑥

�̂�†𝑖 �̂�𝑗 − 𝑡 
⟨𝑖𝑗⟩∈𝐿𝑦

�̂�†𝑖 �̂�𝑗 − 𝑡 
⟨𝑖𝑗⟩∈𝐿𝑑𝑥

�̂�†𝑖 �̂�𝑗

+ Δ
2

𝑖∈𝐴

�̂�𝑖 −
Δ
2

𝑖∈𝐵

�̂�𝑖 ,
(5.29)

where the hopping amplitudes of the dimerized bond along the 𝑥, the 𝑦 bond,
as well as the diagonal bond along 𝑥 are 𝑡, 𝑡 and 𝑡, respectively, see Fig. 4.6
on page 79. The lattice consists of two sites per unit cell. Δ is the staggered
on-site energy on the 𝐴 and 𝐵 sublattices. The tight-binding parameters 𝑡, 𝑡,
𝑡 and Δ are extracted from the Wannier function calculation of the homoge-
neous optical potential. The real-space Hamiltonian (Eq. (5.29)) is Fourier trans-
formed to momentum space to get a two-by-two matrix �̂�𝐤. It is diagonalized by
�̂�†
𝐤 �̂�𝐤�̂�𝐤 = 𝐸𝐤. When Δ = 0 and 𝑡 + 𝑡 < 2𝑡, the tight-binding model features

Dirac points [Hasegawa et al., 2012].
In the experiment there is an additional harmonic trapping potentialHarmonic trapping

potential
�̂�trap = 

𝑖
(𝛾𝑥𝑥𝑖 + 𝛾𝑦𝑦𝑖 )�̂�𝑖 , (5.30)

where 𝑥𝑖, 𝑦𝑖 are the spatial coordinates of the 𝑖-th site. They are measured in units
of𝜆/2.𝛾𝑥(𝑦) = 

𝑚𝜔

𝑥(𝑦)(𝜆/2) are the strengths of the harmonic confinement along

the 𝑥 (𝑦) direction. To simulate the Bloch-Zener oscillation experiment, we first
solve the ground state |Ψ⟩ of 𝑁 = 256 spinless fermions of �̂�lattice + �̂�trap, then
apply a linear gradient field �̂�𝑥

field = 𝐹𝑥(𝜆/2)∑𝑖 𝑥𝑖�̂�𝑖 or �̂�
𝑦
field = 𝐹𝑦(𝜆/2)∑𝑖 𝑦𝑖�̂�𝑖 to

the system and evolve the wave function

|Ψ̂(𝑡)⟩ = 𝑒−𝑖(�̂�lattice+�̂�trap+�̂�field) 𝑡ℏ |Ψ⟩. (5.31)

The time evolution is performed with the Lanczos algorithm [Park et al., 1986]
with 200 Lanczos vectors.The number of lattice sites (2×200) is chosen such that
the cloud does not touch the boundary during the Bloch oscillation.The time step
is 0.05𝑇𝐵. At each time step, we measure the density matrix ̂𝜌𝑖𝑗 = ⟨Ψ̂(𝑡)|�̂�†𝑗 �̂�𝑖 |Ψ̂(𝑡)⟩
of the system.
To extract momentum distributions, we reshape ̂𝜌𝑖𝑗 into ̂𝜌𝑎𝑏𝐼𝐽 , where 𝐼, 𝐽 are in-

dices for the unit cell, and 𝑎, 𝑏 are sublattice indices. A Fourier transform with
respect to 𝐼, 𝐽 gives ̂𝜌𝑎𝑏𝐤 = ̂𝜌𝐤. Applying the unitary transformation �̂�†

𝐤 ̂𝜌𝐤�̂�𝐤, the
two diagonal elements become the band filling �̂�𝐤,lower and �̂�𝐤,upper.
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5.2 EXPERIMENTAL SEQUENCE

The Bloch oscillation experiments are performed with a low temperature spin-
polarized 40Kgas prepared in the |𝐹 = /, 𝑚𝐹 = − /⟩Zeeman sublevel loaded into
the lowest band of the tunable-geometry optical lattice set to the honeycomb ge-
ometry. A non-interacting spin-polarized gas is chosen in order to avoid damping
of the Bloch oscillations and washing out of the recorded momentum distribu-
tions. We typically perform one Bloch oscillation cycle along either the 𝑥 or 𝑦 di-
rection, followed by a band mapping procedure which allows for a measurement
of the quasimomentum distribution of the gas in the lattice by means of a TOF
experiment.

5.2.1 PREPARING A SPIN-POLARIZED FERMI GAS

To obtain the spin-polarized gas, we first adhere to the usual procedure to create a
( − /, − /) spinmixture on the low-field side of the respective Feshbach resonance
in the optical dipole trap, described in detail in Section 3.1.4 on page 43. During
evaporation, the FORT power is ramped from 200mW to 45mWwithin 2.5 s us-
ing an exponential ramp with a time constant of 450ms. Using this procedure, we
prepare a spin mixture of about 150 × 10 atoms at 20% of the Fermi temperature.
The FORT is then re-compressedwithin 200ms to a power of 100mW, followed

by a ramp of the magnetic bias field to about 10G within another 200ms. Using
the upper quadrupole coil in reverse current direction and the gradient coil, we
then apply a magnetic field gradient along the 𝑦 direction within 100ms in order
to compensate gravity for the 𝑚𝐹 = − / Zeeman state. The power of the optical
trap is then lowered thereafter to 6mWwithin 500ms, during which the not lev-
itated 𝑚𝐹 = − / spin component is accelerated out of the now very weak trap by
gravity. In this way, about 50 × 10 spin-polarized fermions are obtained.

5.2.2 LATTICE POTENTIAL

We then load the atoms into the optical lattice by simultaneously ramping up the
𝑉X̄, 𝑉X and 𝑉Y beams within 200ms to their final depths as given in the follow-
ing sections. Throughout, no lattice is present along the third spatial direction 𝑧,
which decouples from the other directions owing to the absence of interactions.
Since no forces will be applied along 𝑧, the momenta 𝑝𝑧 of the particles along that
direction will remain unaffected and can be neglected. The FORT is then com- Experiments are

performed in
hexagonally
arranged tubes

pletely switched off within 100ms, as the required confinement to counteract an
unlimited expansion of the cloud is now provided by the optical lattice beams.
The resulting potential for the atoms becomes

𝑉(𝑥, 𝑦) = − 𝑉X̄ cos(𝑘L𝑥 + 𝜃/2) − 𝑉X cos(𝑘L𝑥)
− 𝑉Y cos(𝑘L𝑦) − 2𝛼√𝑉X𝑉Y cos(𝑘L𝑥) cos(𝑘L𝑦) cos 𝜑 .

(5.32)

We stabilize the phase 𝜑 between the X and Y beams at the position of the atoms
to 0.00(3)𝜋. The symmetry phase 𝜃 is set to close to 𝜋. We infer the precise
value 𝜃/𝛿 = [𝜋/384.7(6)]MHz− (where 𝛿 is the detuning of the X̄ and X beams)
from the peak position in Fig. 6.1 on page 118. This is in good agreement with
the independent calibration obtained using Raman-Nath diffraction on a 87Rb
BEC, which yields 𝜃/𝛿 = [𝜋/388(4)]MHz− (see Section 3.2.5 on page 53). At
the edges of the cloud the phase differs by approximately ±10−𝜋. The visibil-
ity 𝛼 = 0.90(5) and the lattice depths 𝑉X̄,X,Y are calibrated by Raman-Nath
diffraction.Themethod has a systematic uncertainty of 10% for the lattice depths,
whereas the statistical uncertainties are given in the text. The trap frequencies are
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determined using approximate expressions of Eq. (3.17) on page 58. For example,
for the measurements in Fig. 5.8 on page 110, we find

𝜔𝑥,𝑦,𝑧/2𝜋 = [17.6(1), 31.8(5), 32.7(5)]Hz,

as calibrated from dipole oscillations of the cloud.

5.2.3 BLOCH OSCILLATIONS

We then abruptly switch the magnetic field gradients using the upper quadrupole
and the gradient coils such that the atoms feel a net force 𝐹 either directed along
the 𝑥 or the 𝑦 direction, while they continue to be levitated. This is equivalent
to applying an electric field in solid state systems, and therefore leads to Bloch
oscillations along the respective direction. After a certain time 𝑡, the magnetic
field gradients are abruptly switched back to their original configuration in which
the atoms are levitated.
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b. 𝑦 oscillations

Figure 5.1: Bloch oscillation gradient calibration. The center of mass of the momentum
space distribution of the clouds is shown after applying the Bloch oscillation gradient for a
varying amount of time.The blue circles and the red squares are the center ofmass position
along 𝑥 and 𝑦, respectively.We fit damped harmonic oscillator functions to the position and
obtain oscillation frequencies of ()Hz (𝑥 osc.) and ()Hz (𝑦 osc.). Lattice parameters:
𝑉X̄,X,Y = [.(), , .()]𝐸R.

We have calibrated the exact oscillation direction and frequency by recording
the center of mass of the atoms in absorption images displaying the quasimomen-
tum space distribution of the atoms during several oscillation periods in a square
lattice, see Fig. 5.1. The oscillations are found to be only slightly damped and canCalibration of the

oscillation direction
and frequency

be observed over several periods, with the largest contributions to the damping
coming from the variation of the net force due to the external confinement which
corresponds to a position dependent force towards the trap center.
We have determined the required currents to perform Bloch oscillations along

the 𝑥 and 𝑦 directions with different frequencies, see Fig. 5.2 on the next page, as
well as for diagonal oscillations along ±(𝑥 + 𝑦) and ±(𝑥 − 𝑦), see Table 5.1 on the
facing page.
For the experiments presented in the following, we chose gradients giving rise

to Bloch oscillations with a period of 𝑇B = 11.3(1)ms and 𝑇B = 10.5(1)ms along
the 𝑥 and 𝑦 directions, respectively, with a minimal force component along the
respective perpendicular directions. The magnitude of the main component of
these forces corresponds to about / of gravity.

5.2.4 MEASURING THE QUASIMOMENTUM DISTRIBUTION

We record the position of the atoms using absorption imaging onto a CCD cam-
era after slowly ramping down the optical lattice using an S-shaped ramp with
a duration of 500 µs. This is followed by a free expansion during 2ms (with the
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Figure 5.2: Bloch oscillation gradients.The experimentally optimized currents in the upper quadrupole, gradient
and Ioffe coils required to obtain a Bloch oscillation with a given frequency along 𝑥 or 𝑦 are plotted.

Table 5.1: Bloch oscillation gradients. The required currents in the upper quadrupole (in
reverse direction), gradient and Ioffe coil (see Fig. 3.29 on page 62) as well as the measured
Bloch oscillation frequencies are given for the gradients used to perform the Bloch oscilla-
tions presented in this chapter. Additionally, diagonal gradients were determined in order
to explore the full B.Z. in future experiments.Throughout, a current of .A is run through
the Feshbach coils to create a small bias field on the order of about  Gauss.

DIR. 𝜈B (Hz) 𝐼uqp (A) 𝐼grad. (A) 𝐼Ioffe (A)

levitation of𝑚𝐹 = − / ⋅ 0 2.2 5.92 0
𝑥 Bloch osc. 88(1) 1.975 2.4 0
𝑦 Bloch osc. 95(1) 1.89 5.33 0

91 2.45 9.6 0
233 1.55 1.05 0
239 2.915 11.5 0
233 2.25 1.85 0
235 2.08 9.45 0

levitating magnetic fields still on).Themagnetic fields are then abruptly switched Band mapping
procedureoff and we allow for 13ms of free expansion under the influence of gravity. Us-

ing this band mapping procedure, the quasimomentum distribution can be ob-
tained [Köhl, Moritz, Stöferle, Günter, et al., 2005; Esslinger, 2010]. To ensure a
faithful mapping of the lattice quasimomenta to the free space momentum ac-
quired in TOF, the lattice intensity ramp must be fast enough such the tunneling
during the ramp can be neglected but slow enough such that the atoms can follow
the change in on-site trap frequency. Within this regime, the atoms stay adiabati-
cally in their band while quasimomentum is approximately conserved.
Experimental images of the quasimomentum distribution obtained for differ-

ent lattice geometries and lattice fillings are shown in Fig. 5.3 on the next page.
Themomentum distributions appear as in the extended zone scheme, see Fig. 5.4
on the following page. From these images, the actual quasimomentum distribu-
tion in the higher bands can therefore be reconstructed by folding the higher B.Z.
back into the first one as indicated in the figure. When loading the atoms into the
lattice using a smooth ramp, the energy levels within the band structure are pop-
ulated according to the Fermi distribution, i. e. beginning from the lowest energy
states, which are in our case located at the center of the first B.Z.. When increasing
the atom number, higher B.Z. are gradually populated.
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a. Square lattice b. Checkerboard
lattice

c. Checkerboard
lattice, nd B.Z.
partially filled

Figure 5.3: Exemplary measured quasimomentum distributions. An exemplary selection
of detected quasimomentum distributions is shown for a square lattice (𝑉 =  𝐸R) and a
checkerboard lattice (𝑉X,Y = 𝐸R, 𝑉Z̃ = 𝐸R, 𝜑 = .𝜋), where either only the first B.Z. or
also the second B.Z. is partially filled. Different fillings of the B.Z. are achieved by varying
the number of atoms loaded into the lattice. The first (solid lines) and second B.Z. (dotted)
are drawn as a guide to the eye.

1st

2nd

Figure 5.4: Brillouin zone fold-
ing.The first seven B.Z.s of
our lattice are shown in the
extended zone scheme. As an
example, the folding of the sec-
ond B.Z. back onto the first is
indicated by the arrows and the
dotted lines.

For example by modulating the intensity or the phase of the lattice, atoms can
be excited to higher bands in order to obtain non-equilibrium situations where
the population is inverted and higher B.Z.s are preferentially populated. Alterna-
tively, population inversion can also be created by an abrupt change of the band
structure, which can be induced by quickly switching to a different lattice depth.
Two quasimomentumdistributions obtained using the latter technique are shown
in Fig. 5.5.

a. 𝑉X = . 𝐸R b. 𝑉X = . 𝐸R

Figure 5.5: Populating higher bands.The
plots show measured quasimomentum
distributions obtained by loading into
honeycomb lattices with 𝑉X̄,Y,Z̃ = [,
, ]𝐸R (variable 𝑉X) and abruptly
switching off X̄ in order to populate
higher bands. The first (solid lines) and
higher B.Z. (dotted and dashed) are
drawn as a guide to the eye.

5.3 DETECTING THE DIRAC POINTS

This and the following sections of this chapter are partly based on the preprints
of the following publications:

L. Tarruell, D. Greif, T. Uehlinger, G. Jotzu, and T. Esslinger, Creat-
ing, moving and merging Dirac points with a Fermi gas in a tunable
honeycomb lattice, Nature (London) 483, 302 (2012), DOI: . /
nature , preprint on ArXiv e-prints, arXiv: . ,

and

http://dx.doi.org/10.1038/nature10871
http://dx.doi.org/10.1038/nature10871
http://arxiv.org/abs/1111.5020


5.3 Detecting the Dirac points 109

T. Uehlinger, D. Greif, G. Jotzu, L. Tarruell, T. Esslinger, L. Wang,
and M. Troyer, Double transfer through Dirac points in a tunable
honeycomb optical lattice, Eur. Phys. J. Special Topics 217, 121
(2013), DOI: . /epjst/e - -y, preprint on ArXiv
e-prints, arXiv: . .

5.3.1 SINGLE TRANSFER

Figure 5.6: Band structure.The
plot shows the band structure
calculated by exact diagonal-
ization of the single-particle

Hamiltonian. Cuts in the vicin-
ity of the two Dirac points

are shown in the background.
A contour plot of the lowest
band is shown at the bottom.
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In order to characterize the Dirac points using Bloch oscillations, we prepare
the atoms as described above in the lowest energy band of a honeycomb lattice
with

𝑉X̄,X,Y = [4.0(2), 0.28(1), 1.8(1)]𝐸R.

The calculated band structure for this lattice is shown in Fig. 5.6 and the result-
ing tunneling matrix elements are 𝑡,,/ℎ = [809, 610, 196]Hz. We then induce a
Bloch oscillation along the 𝑥 direction.The atoms are hence accelerated such that
their Bloch wave vector 𝑘𝑥 increases linearly up to the edge of the Brillouin zone,
where a Bragg reflection occurs. The cloud eventually returns to the center of the
band, performing one full Bloch oscillation [Ben Dahan et al., 1996]. We then
measure the quasimomentum distribution of the atoms in the different bands as
described above.

Figure 5.7: Quasimomentum trajectories.The cloud
explores several trajectories in quasimomentum space

simultaneously. For trajectory 1 (blue solid circle)
the atoms remain in the first energy band. In con-

trast, trajectory 2 (green open circle) passes through
a Dirac point at 𝑡 = 𝑇B/. There, the energy split-
ting between the bands vanishes and the atoms are

transferred to the second band. In the quasimomen-
tum distribution at 𝑡 = 𝑇B, these atoms are miss-
ing in the first B.Z. and appear in the second one.

0→TB /2 TB /2→TB

1
Trajectory

2
Trajectory

Dirac points Bragg reflections

ky

kx

Owing to the finite momentum width of the cloud, trajectories with different Different
quasimomentum
trajectories are
probed
simultaneously by
the cloud.

Bloch wave vectors 𝑘𝑦 are simultaneously explored during the Bloch cycle, as illus-
trated in Fig. 5.7. Neglecting the harmonic trap, one can treat trajectories for dif-
ferent 𝑘𝑦 as independent. For a trajectory far from the Dirac points, the atoms re-
main in the lowest energy band (trajectory 1 ). In contrast, when passing through

http://dx.doi.org/10.1140/epjst/e2013-01761-y
http://arxiv.org/abs/1210.0904
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a Dirac point (trajectory 2 ), the atoms are transferred from the first to the second
band because of the vanishing energy splitting at the linear band crossing. When
measuring the quasimomentum distribution, these atoms are missing in the first
B.Z. and appear in the second band, as can be seen in Fig. 5.8.

t = 0 t = TB

ky

kx

Figure 5.8: Probing the Dirac points. Quasimomentum distribution of the atoms before
and after one Bloch oscillation of period 𝑇B. In the first B.Z., stripes appear at the quasimo-
menta where atoms have been transferred to the second band. These atoms then appear
at the corresponding four positions in the second B.Z., which are pair-wise identified by
Bragg reflections.

We identify the points of maximum transfer with the location of a minimalPoints of maximum
transfer are identified
with the Dirac points.

band gap. As can be seen from the experimental momentumdistributions (cf. also
the experimentswhere theDirac points aremoved, Section 6.2 on page 119), these
minimal band gaps are located within the B.Z. at non-symmetry points and there-
fore cannot be mere band touchings, but must be linear crossings, as for example
argued in [Wunsch et al., 2008].The energy resolution of the method is set by the
characteristic energy of the applied force [BenDahan et al., 1996] 𝐸B/ℎ = 𝐹𝜆/2ℎ =
88.6(7)Hz, which is small compared to the full bandwidth 𝑊/ℎ = 4.6 kHz and
the minimum band gap at the edges of the Brillouin zone 𝐸𝐺/ℎ = 475Hz.

−kL

0

kL
t =0 TB

−kL

0

kL

t =0.25 TB t =0.5 TB t =0.75 TB t =1 TB

Figure 5.9: Time-resolved Bloch oscillations along 𝑥. A comparison of the quasimomen-
tum distribution for Bloch oscillations resulting from a force pointing along 𝑥 in the experi-
ment (top) and in the numerical simulation of a 2D trapped system for𝑁 =  atoms (bot-
tom) is shown. Parameters:𝑉X̄,X,Y = [.(), .(), .()]𝐸R, 𝜃 = .()𝜋, correspond-
ing to 𝑡,,/ℎ = [, , ]Hz, 𝛾𝑥,𝑦/ℎ = [., .]Hz, /ℎ = Hz. 𝐹𝜆/ℎ = Hz.

By repeatedly creating new samples and imaging them after a certain oscillation
time,we obtain time resolved images during aBloch cycle, which can be compared
to the simulation of the trapped system, see Fig. 5.9. This allows for following the
path of the atoms in more detail (see also Fig. 5.7): The atoms initially centered
around 𝐤 = 0 in the lowest energy band move towards the right (corresponding
to higher 𝑘𝑥) as they are accelerated by the force. For simplicity, in the following
we will only discuss the trajectory of the upper part of the atomic cloud. As the
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cloud touches the edge of the 1st B.Z. at 𝑡 = 0.25𝑇B, the atoms are diagonally Bragg-
reflected from the right upper edge to the left lower edge (dotted arrow in Fig. 5.7).
This gives rise to the additionally populated momenta at the lower corner of the
1st B.Z.. The momenta appearing in the left corner get populated by consequent
Bragg reflections of this additional momentum population as it reaches the right
lower edge of the 1st B.Z..
At 𝑡 = 𝑇B/2, the lower momentum population starts to touch the Dirac point,

where, due to Landau-Zener tunneling, a certain fraction of atoms transfers to
the 2ⁿd band. In Fig. 5.7, the two upper red half-circles denoting the Dirac point
in the 2ⁿd B.Z. correspond to the lower Dirac point in the 1st B.Z. and vice versa.
Therefore, transferred atoms appear at the left outer edge of the 2ⁿd B.Z. and are
thereafter Bragg-reflected at the outer edge of the 1st B.Z. (dotted arrow) as they
move right in the 2ⁿd B.Z.. They appear as small stripes forking off from the lower
momentum component in the 1st B.Z. at 𝑡 = 0.75𝑇B. Due to the two consecutive
Bragg-reflections, this stripe in the 2ⁿd B.Z. appears at the 𝑘𝑦 position of the Dirac
point.
After one full Bloch cycle (𝑡 = 𝑇B), the main cloud has returned to the center The fraction and

position of the
transferred atoms
can be used to
characterize the
system.

of the 1st B.Z.. It exhibits two dips in the atomic distribution close to the upper
and lower edge, which correspond to the missing atoms now appearing as four
stripes in the 2ⁿd B.Z. (the two lower and the two upper can be identified by Bragg
reflections). Slight distortions and asymmetries as well as extensions into the 3rd
B.Z. can be attributed to limitations and imperfections of our band-mapping pro-
cedure, namely that the quasimomentum resolution is limited to the in situ size
of the atomic cloud and the fact that the method relies on finite band gaps.
Measuring the fraction of transferred atoms and the position of maximum

transfer along 𝑘𝑦 allows to characterize the system when tuning various parame-
ters of the lattice, such as the sublattice energy offset and the tunneling timescales
along different directions, cf. Chapter 6.
The fraction of atoms 𝜉 transferred to the 2ⁿd B.Z. depends on the number of Dependence of the

transferred fraction
on the total atom
number

atoms at quasimomenta that pass in the vicinity of the Dirac points during the
Bloch oscillation. It should therefore depend on the initial filling of the 1st B.Z.,
and thus on the atom number. We have investigated this dependence, with the
according results shown in Fig. 5.10.

Figure 5.10: Changing the atom num-
ber.When the initial atom number

loaded into the lattice is changed, the
population of higher quasimomenta

increases, which leads to a larger frac-
tion of atoms 𝜉. Lattice parameters:

𝑉X̄,X,Y = [.(), .(), .()]𝐸R.
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5.3.2 DOUBLE TRANSFER

Alternatively, the Dirac points can be probed by Bloch oscillations along the 𝑦 Bloch oscillations
along 𝑦direction2. For this measurement, we apply a force with a characteristic energy

𝐸B/ℎ = 𝐹𝜆/2ℎ = 95(1)Hz to the atoms along the 𝑦 direction using another mag-
netic field gradient. After 11.5ms (corresponding to roughly one Bloch oscillation
cycle) we again measure the quasimomentum distribution of the gas.
The result of a typical measurement is shown in Fig. 5.11 on the following page.

Again, for 𝑡 ≈ 𝑇B atoms appear in the 2ⁿd B.Z. and are missing at the correspond-

2 We also performed Bloch oscillations along other directions, but the results are hard to interpret due
to the inherent coupling of the two axes and of the real- and momentum-space movements owing to
the presence of the external confinement.
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Figure 5.11: Probing the Dirac points. Absorption images of the quasimomentum distri-
bution of the atomic cloud after preparation (𝑡 = ) and after performing one Bloch oscil-
lation cycle along the 𝑦 direction (𝑡 ≈ 𝑇). Color scale: black indicates a high density of
atoms, white indicates no atoms.

ing quasimomenta in the 1st B.Z.. A qualitative difference between the situation
for 𝑥 and 𝑦 oscillations however exists: in the latter case, since the Dirac points
are located at 𝑘𝑥 ≡ 0, they are always probed by the central trajectory, where
one would therefore expect the maximum transfer efficiency. This is confirmed
by comparison with the numerical simulation, see Fig. 5.12.
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Figure 5.12: Time-resolved Bloch oscillations along 𝑦.Comparison of the quasimomentum
distribution for Bloch oscillations resulting from a force pointing along 𝑦 in the experiment
(top) and in the numerical simulation of a 2D trapped system for𝑁 =  atoms (bottom).
Parameters: 𝑉X̄,X,Y = [.(), .(), .()]𝐸R, 𝜃 = .()𝜋, corresponding to 𝑡,,/ℎ =
[, , ]Hz, 𝛾𝑥,𝑦/ℎ = [., .]Hz, /ℎ = Hz. 𝐹𝜆/ℎ = Hz. 𝑇B = ms for
this measurement.

Another crucial difference is the fact that this central trajectory actually passesSequential transfer
through the two

Dirac points
through the two Dirac points sequentially. To understand the consequences of
this double passing of the Dirac points, we attribute a transfer probability 𝜉S to
a single band crossing along a 𝑘𝑥-trajectory, see Fig. 5.13 on the facing page. The
double transfer must in principle be treated as a coherent admixture of second
band states acquired in the vicinity of the first band crossing, followed by a phase
evolution, which is different for the first and second band due to the different
shape of the bands, and an alteration of the admixture at the second crossing.The
outcome then not only depends on the evolution of the states in the vicinity of the
points, but also on the phase acquired in between, which can lead to constructive
or destructive interference at the second Landau-Zener transition.
This system therefore effectively realizes a Stückelberg interferome-Stückelberg

interferometer ter [Shevchenko et al., 2010].The phenomenon of Stückelberg interferometry has
been realized in various two-level systems, for example in atomic physics [Stück-
elberg, 1932], recently in superconducting qubits [Oliver et al., 2005], as well as
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Figure 5.13: Double Landau-Zener
transfer. Cut through the band struc-

ture at 𝑘𝑥 ≠ . During one Bloch cycle,
the atoms pass through two band cross-

ings. Neglecting the phase evolution
(see Section 6.2.3 on page 122), each
band crossing has a transfer probabil-
ity 𝜉S. For 𝑘𝑥 = , the band crossings
would coincide with the two Dirac
points and 𝜉S = , but for 𝑘𝑥 ≠ ,
a gap is present in the respective cut

through the band structure, and 𝜉S < .

1
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in ultracold atom systems [Zenesini et al., 2010; Kling et al., 2010]. For reasons
which will be justified in Section 6.2.3 on page 122, we will however for the
moment neglect the phase evolution and resulting interference of the two bands
between the crossings.
The probability for ending up in the higher band after passing the second cross- Total transfer

probabilitying can then be obtained by simply multiplying the probabilities for transfer at
the two crossings and summing up the two possible paths:

𝜉D = 1 − 𝜉S 𝜉S + 𝜉S 1 − 𝜉S = 2𝜉S 1 − 𝜉S . (5.33)

The total transfer probability 𝜉D is plotted as a function of the single transfer prob-
ability 𝜉S in Fig. 5.14.The function has amaximumvalue of / for a Landau-Zener
transition probability of 𝜉S = /, which leads to interesting consequences when
𝜉S is varied, see below.

Figure 5.14: Total probability of transfer
for the sequential transition at two Dirac

points.The probability 𝜉D of ending up in
the second band after the sequential trans-
fer through two Dirac points is shown as a

function of the single transfer probability 𝜉S.
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5.4 MODELING THROUGH LANDAU-ZENER TRANSITIONS

5.4.1 GENERAL TREATMENT

In the following, we will develop a simple model which allows for calculating the Landau-Zener
formulatransfer probability 𝜉S in the vicinity of a single Dirac point.The basic assumption

of the model is that a transfer at a Dirac point can be treated as a non-adiabatic
Landau-Zener transfer with a finite velocity and a driving force 𝐹 given by the ap-
plied magnetic field gradient.The transfer probability is then given by the famous
Landau-Zener formula [Landau, 1932a,b; Zener, 1932]:

𝜉 = exp (−2𝜋𝛿) , 𝛿 = 𝜀
4ℏ|𝛽| (5.34)

where 𝛿 is the adiabaticity parameter of the transition, 𝜀 the (full) energy gap at
the position of the crossing and 𝛽 is the product of the asymptotic slope of the
energy difference of the two states Δ𝐸(𝜆) and the rate of change of the parameter
describing the transition 𝜆,

𝜀 = Δ𝐸(𝜆), 𝛽 = dΔ𝐸(𝜆)
d𝜆 |

𝜆

d𝜆
d𝑡 , (5.35)
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where 𝜆 is the position of the crossing.
In our specific case, the band gap at the position where the respective trajec-Expression for the

single transfer
probability

tory is closest to the Dirac point is taken as the spacing of the two energy levels.
The asymptotic slope of the dispersion relation is taken from the expansion coef-
ficients of the band structure in the vicinity of the Dirac point, 𝑐𝑥,𝑦, and the rate of
change of the driving parameter 𝜆 = 𝑘𝑥,𝑦 is given by the applied force multiplied
with the lattice spacing 𝑑:

𝜉S = exp
⎛
⎜⎜⎜⎜⎝−

𝜋(𝐸+(𝐤⟂) − 𝐸−(𝐤⟂))

4ℏ(ℏ𝑐∥𝑥,𝑦)(𝐹𝑥,𝑦/ℏ)

⎞
⎟⎟⎟⎟⎠ . (5.36)

The slopes 𝑐𝑥,𝑦 are obtained from the linear expansion of the energy spectrum
of the tight-binding model in the vicinity of the Dirac points, as detailed in Sec-
tion 4.3.1 on page 88:

𝑐𝑥 =
𝜋
ℏ𝑘L

(𝑡 − 𝑡)

𝑐𝑦 = 2 𝜋
ℏ𝑘L

𝑡
√
1 − 

𝑡 + 𝑡
2𝑡



.

(5.37)

They are assumed to be independent on whether the trajectory passes exactly
through the Dirac point or only at a certain distance to it. Additionally, we also
make use of the tight-binding expansion to calculate the gap, where we denote
𝑘⟂𝑥,𝑦 as the point of least distance to the Dirac point on the respective trajectory.
With 𝑧(𝐤) denoting the off-diagonal term of the tight-binding Hamiltonian and Δ
the gap at the Dirac points due to a 𝐴-𝐵 site offset, the expression becomes:

𝜉S = exp
⎛
⎜⎜⎜⎜⎝−𝜋 |𝑧(𝐤

⟂)| + Δ/4
ℏ𝑐∥𝑥,𝑦𝑘L𝐹𝑥,𝑦𝑑

⎞
⎟⎟⎟⎟⎠ . (5.38)

MOMENTUM-SPACE INTEGRATION OF TRANSFER FRACTIONS

In the following, we describe how the total transfer 𝜉 for the entire atomic cloud in
3D is calculated from the momentum-dependent transfer 𝜉D(𝑘𝑥,𝑦) following the
procedure presented in [Lim et al., 2012]. We assume a semi-classical expression
for the energy of the particles

𝜀(𝐤, 𝐫) = ℏ𝑘𝑥
2𝑚𝑥

+
ℏ𝑘𝑦
2𝑚𝑦

+ ℏ𝑘𝑧
2𝑚𝑧

+ 1
2
𝑚𝑥𝜔𝑥𝑥 + 𝑚𝑦𝜔𝑦𝑦 + 𝑚𝑧𝜔𝑧 𝑧 , (5.39)

where the effectivemasses𝑚𝑥,𝑦,𝑧 are obtained by expanding the dispersion relation
around the Bloch wave vector 𝐤 = 0 in the tight-binding regime and 𝜔𝑥,𝑦,𝑧 are
the trapping frequencies in the three different directions. At zero temperature the
expression for the integrated transfer fraction is then given by

𝜉 =
∫
𝜀(𝐤,𝐫)<𝜇

𝜉D(𝑘𝑥,𝑦)d𝐤d𝐫

∫
𝜀(𝐤,𝐫)<𝜇

d𝐤d𝐫
= 96
15𝜋𝑘F


𝑘F


𝜉D(𝑘𝑥,𝑦) 1 −

𝑘𝑥,𝑦
𝑘F


/

d𝑘𝑥,𝑦 . (5.40)

Here we used the fact that the transfer only depends on 𝑘𝑥,𝑦, and denote the Fermi
wave vector 𝑘F = √2𝑚𝑥,𝑦𝜇/ℏ and the chemical potential 𝜇. For the semi-classical
expression of the energy of the particles, the total atom number 𝑁 is related via
𝜇 = ℏ�̄�(6𝑁)/, where �̄� is the geometric mean of the trapping frequencies.
Using this momentum-space integration and the tight-binding parameters as

obtained from theWannier function calculation, the calculated transfer fractions
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for Bloch oscillations along 𝑥 are found to be in good agreement with the experi-
mental data, see Fig. 6.8 on page 125. For oscillations along 𝑦, the transfer fraction
agrees well if the two Dirac points are separated from each other.The theory over-
estimates the transfer efficiency close to the point where the Dirac points merge.

5.4.2 TRANSFER EFFICIENCIES FOR DIFFERENT TRAJECTORIES

For oscillations along 𝑦, upon closer evaluation of the measured quasimomen-
tum trajectories for different lattice parameters, we surprisingly observe a single
or a double slit of missing atoms in the lowest B.Z. after one full Bloch cycle, see
Fig. 5.15.The appearance of a double-peak feature in the transfer fraction 𝜉D(𝑘𝑥) is
a direct consequence of the double transition through the two band crossings.The
single transfer probability 𝜉S generally decreases for quasimomenta away from the
center due to the increased gap at the crossing.The transfer probability 𝜉S is close
to 1 at the two linear band crossings. Therefore, the maximum total transfer (i.e.
𝜉D = / ⇔ 𝜉S = /) is always reached at a finite value of 𝑘𝑥. For the lattice pa-
rameters used in the left panel of Fig. 5.15, the trajectories where 𝜉S = / are
located close to the central 𝑘𝑥 = 0 line, such that due to limited momentum res-
olution only a single central slit of missing atoms is visible. For the parameters
used in the right panel, however, two distinct transfer maxima appear, since here
the points of maximum transfer are located further away as a result of the altered
band structure.

Figure 5.15: Transfer for different quasimomentum
trajectories. Transfer for two sets of lattice parame-
ters. Left. Maximum transfer is observed for a cen-

tral trajectory. Right. Maximum transfer happens to
the left and right of the central trajectory. The plots
depict the line sums along 𝑘𝑦 of the measured opti-
cal densities as a function of 𝑘𝑥 (blue area) and the
expected line sums without transfer (purple area).

From this the transfer 𝜉D(𝑘𝑥) is calculated and com-
pared to the prediction of the analytical model
(red and black curve, for the model see below).
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For a quantitative treatment, we perform a line sum of the optical density (OD)
in the 1stB.Z. (blue area in the figure).The initial cloudprofile obtained fromafit to
the quasimomentum distribution after a Bloch cycle for a set of lattice parameters
not giving rise to Dirac points is shown in purple. From these two profiles, the
experimental transfer fraction 𝜉D(𝑘𝑥) (red curve below) can be obtained. As can
be seen in the figure, the transfer is peaked at 𝑘𝑥 = 0 for the left situation, whilst
we observe a double-peak (with a dip at 𝑘𝑥 = 0) for the situation on the right.

A UNIVERSAL HAMILTONIAN DESCRIBING THE TOPOLOGICAL TRANSITION

The transfer efficiencies per trajectory can be compared to theory. To evaluate
the transfer probability 𝜉S we use, instead of the general Landau-Zener model
outlined above, a simplified effective Hamiltonian well suited for describing the
dispersion relation close to the two Dirac points as well as the merging transition.
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This approach has been worked out in detail in Refs. [Montambaux et al., 2009a;
Lim et al., 2012]. The following Hamiltonian is used:

𝐻 =

⎛
⎜⎜⎜⎜⎜⎝

0 Δ∗ +
ℏ𝑘𝑦
𝑚∗

− 𝑖𝑐𝑥𝑘𝑥
Δ∗ +

ℏ𝑘𝑦
𝑚∗

+ 𝑖𝑐𝑥𝑘𝑥 0

⎞
⎟⎟⎟⎟⎟⎠ . (5.41)

Here, Δ∗ = −𝑐𝑦𝑚∗/ 2ℏ defines the merging gap, 𝑚∗ the effective mass along 𝑘𝑦
at the saddle point between the two Dirac points and 𝑐𝑥 and 𝑐𝑦 the slopes of the
dispersion relation along the different directions at the Dirac point. Their values
are directly obtained from the lattice parameters using approximate expressions
extracted from a fit to the exact band structure [Lim et al., 2012]. Denoting the
gap at the Dirac points with Δ, the transfer probability for oscillations along 𝑦 is
then

𝜉S = exp −𝜋
𝑐𝑥𝑘𝑥 + Δ/4

ℏ𝑐𝑦𝐹
 . (5.42)

This expression differs from Eq. (5.38) on page 114 by the use of the simpler lin-
ear dispersion model to calculate the gap at a finite distance of the trajectory with
respect to the Dirac point (𝑐𝑥𝑘𝑥 in this case). In Eq. (5.38), the full off-diagonal
element of the tight-binding Hamiltonian is used (|𝑧(𝐤⟂)|). The theoretical pre-
diction of this simple analytical model is shown as the black curve in the bottom
panel of Fig. 5.15 on page 115.Themain features of the experimental momentum-
resolved transfer fractions obtained from the atomic distribution in the lowest
band are captured by theory. Deviations are possibly due to the finite resolution of
the band-mapping technique as well as the uncertainties in the calibration of 𝑉X̄.
The simple picture of two independent Landau-Zener transitions is confirmed

when performing the numerical time evolution of a trapped 2D lattice system in a
tight binding limit, see Fig. 5.16.The transfer fraction at 𝑘𝑥 = 0 increaseswith timeNumerical

simulation of the
time evolution

on the left panel as the atoms pass the two Dirac points. On the right, however,
after having passed through the first crossing, the transferred fraction decreases
again. In contrast, the transferred fraction increases monotonously in both cases
for quasimomenta away from the center.
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Figure 5.16: Transfer for different quasi-
momentum trajectories in the numerical
simulation. Numerical simulation of a
trapped 2D system with 𝑁 =  atoms:
quasimomentum distribution during one
Bloch cycle for two exemplary situations.
The population of the 2ⁿd B.Z. is plotted
for two different 𝑘𝑥-trajectories (position
indicated by the colored arrows). Simu-
lation parameters for the left simulation:
𝑡,,/ℎ = [, , ]Hz, 𝛾𝑥,𝑦/ℎ =
[., .]Hz, /ℎ = Hz, 𝐹𝜆/ℎ =
Hz; right: 𝑡,,/ℎ = [, , ]Hz,
𝛾𝑥,𝑦/ℎ = [., .]Hz, /ℎ = Hz,
𝐹𝜆/ℎ = Hz.



6MANIPULATING THE DIRAC POINTS

In this chapter, using the methods developed in the previous chapter, the changes
occurring in the band structure when introducing an energy offset between the𝐴
and 𝐵 sublattices are studied. Moreover, the movement of the Dirac points when
deforming the lattice geometry is detected from the quasimomentum distribu-
tions, allowing for the study of the transition to a dimerized lattice geometry. Fi-
nally, the transition from a honeycomb lattice to a square lattice and the depen-
dence of the transfer efficiency on themagnitude of the Bloch oscillation gradient
is investigated.
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This chapter is partly based on the preprints of the following publications:

L. Tarruell, D. Greif, T. Uehlinger, G. Jotzu, and T. Esslinger, Creat-
ing, moving and merging Dirac points with a Fermi gas in a tunable
honeycomb lattice, Nature (London) 483, 302 (2012), DOI: . /
nature , preprint on ArXiv e-prints, arXiv: . ,

and

T. Uehlinger, D. Greif, G. Jotzu, L. Tarruell, T. Esslinger, L. Wang,
and M. Troyer, Double transfer through Dirac points in a tunable
honeycomb optical lattice, Eur. Phys. J. Special Topics 217, 121
(2013), DOI: . /epjst/e - -y, preprint on ArXiv
e-prints, arXiv: . .

6.1 FROM MASSLESS TO MASSIVE DIRAC POINTS

By changing the frequency detuning between the X̄ and X lattice beams, we can
change the phase 𝜃 in the resulting optical potential, leading to an energy off-
set between the sites on the 𝐴 and 𝐵 sublattices, as discussed in Section 3.3.1 on
page 54. Breaking the inversion symmetry of the lattice leads to a gap opening at
the Dirac points, which effectively corresponds to the transition from a system
containing massless to one containing massive Dirac fermions in the vicinity of
the (avoided) band crossing. In this section, the corresponding transition is stud-
ied both for single transfers through the Dirac points (oscillations along 𝑥) as well
as double transfers (oscillations along 𝑦).

117

http://dx.doi.org/10.1038/nature10871
http://dx.doi.org/10.1038/nature10871
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6.1.1 SINGLE TRANSFER
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Figure 6.1: Gap opening. The plot shows the dependence of the total fraction of atoms
transferred to the second band 𝜉 on the detuning of the lattice beams 𝛿, which controls the
sublattice energy offset.Themaximum indicates the point of inversion symmetry, where
 =  (⇔ 𝜃 = 𝜋 in Eq. (5.32) on page 105) and the gap at the Dirac point vanishes. Away
from the peak, the atoms behave as Dirac fermions with a tunable mass (see insets). Values
and error bars denote the mean and standard deviation of five consecutive measurements,
whereas the solid line is a gaussian fit to the data.

To investigate how breaking the inversion symmetry of the lattice affects theInversion symmetry
is broken by varying
the sublattice offset 

Dirac points, we vary the sublattice offset Δ as described above and measure the
total fraction of atoms transferred to the second band 𝜉. The results obtained for
a honeycomb lattice with

𝑉X̄,X,Y = [3.6(2), 0.28(1), 1.8(1)]𝐸R
are displayed in Fig. 6.1. The plot shows a sharp maximum in the transferred
fraction. We identify this situation as the point of inversion symmetry Δ = 0
(⇔ 𝜃 = 𝜋), in good agreement with the independent calibration using Raman-
Nath diffraction on a 87Rb BEC (see Section 3.2.5 on page 53). We use the point
of inversion symmetry as determined using this method as the calibration for fur-
ther measurements. At this point, the band gap at the Dirac points vanishes for
an infinite system in the absence of an external confinement. However, in our sys-
tem, trap and finite size effects lead to a small gap opening, even at the point of
perfect inversion symmetry. This gap opening is nonetheless found to be below
the experimental resolution.When breaking the inversion symmetry, a gap opens
up, and the population in the second band decreases symmetrically on both sides
of the peak, indicating the transition from massless to massive Dirac fermions.

6.1.2 DOUBLE TRANSFER

At first sight, for Bloch oscillations along the 𝑦 direction, one would expect a sim-Dip in the transfer
fraction for 𝑦
oscillations

ilar behavior of the transferred fraction of atoms as a function of the gap at the
Dirac point. However, the double transfer through the two Dirac points leads to
unexpected additional features, see Fig. 6.2 on the facing page. In the figure, the
transferred fraction of atoms 𝜉 as a function of the symmetry phase is plotted for
three different sets of lattice parameters. For parameters deep in the honeycomb
regime, we observe a pronounced dip in 𝜉 at the point where naively the maxi-
mum transfer would be expected.
This feature is a direct consequence of the dependence of the total transfer effi-

ciency 𝜉D for a transfer through both points on the transfer efficiency for a single
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Figure 6.2: Scanning the gap at the Dirac point.The total transfer fraction 𝜉 is measured
for three different lattice depths 𝑉X̄ versus the phase 𝜃, which directly controls the energy
offset between neighboring sites. The gap at the Dirac point is obtained from the band
structure calculation. Values and error bars denote the mean and standard deviation of
five consecutive measurements. The solid lines show the theoretical predictions from the
simple analytical model without fitting parameters including the integration over 𝑘𝑥.

point 𝜉S. Deep within the honeycomb regime, 𝜉S is well above / in the vicinity
of the Dirac points for 𝜃 = 𝜋, leading to a total transfer efficiency that is actually
lower than that obtained for 𝜃 ≈ 0.98𝜋. Already at this point, a non-negligible
gap is present at the Dirac points, lowering 𝜉S to ≈ /, such that the maximum
total transfer efficiency is reached.
The double-peak structure reduces for smaller values of 𝑉X̄. This is caused by

the decreased slope 𝑐𝑦 and increased slope 𝑐𝑥 of the dispersion relation close to
where the two Dirac points merge and annihilate, leading to an overall reduction
of 𝜉S and thus to a less pronounced double-peak feature. The main features of
the experimental results agree with the predictions of the simple analytical model
without fitting parameters, using an integration over the entire cloud. The point
of inversion symmetry has been calibrated using Bloch oscillations along 𝑥. The
slight shift of the symmetry axis for the data presented here is smaller than an
estimate for a possible systematic error1.
The comparison to theory allows for obtaining an upper estimate for a possible

small residual gap at the Dirac points. For the dataset where 𝑉X̄ = 3.6𝐸R, a gap of
140Hz would already lead to a vanishing of the double-peak structure. From this Estimate for a

residual gap at the
Dirac points

we conclude that the residual small gap at the Dirac points caused by the finite
size of the system and the trap is considerably smaller than 140Hz. This is about
a factor of 30 smaller than the bandwidth.

6.2 MOVING THE DIRAC POINTS

The relative strength of the tunnel couplings between the different sites of the lat-
tice fixes the position of the Dirac points inside the B.Z., as well as the slope of the
associated linear dispersion relation [Hasegawa et al., 2006; Zhu et al., 2007;Wun-
sch et al., 2008; Montambaux et al., 2009b; Lee, Grémaud, et al., 2009]. However,
the tunability of our optical lattice structure allows for an independent adjustment
of the tunneling parameters along the 𝑥 and 𝑦 directions simply by controlling the
intensity of the laser beams. Under the condition 𝑡 + 𝑡 = 2𝑡 for the tunnel cou-
plings, the slope of the Dirac cones is the same in all directions (see Section 4.3.1
on page 88), while being anisotropic otherwise. The distance of the Dirac points

1 The estimate is based on an comparison the independent calibration of the 𝜃 = 𝜋 point using Raman-
Nath diffraction on a 87Rb BEC [Tarruell et al., 2012].
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to the corners of the B.Z. along 𝑘𝑦 can be varied between 0 and 𝑘L/2, whilst 𝑘𝑥 = 0
due to reflection symmetry [Asano et al., 2011]. Here 2𝑘L = 4𝜋/𝜆 is the extent of
the first B.Z..

6.2.1 SINGLE TRANSFER

We exploit the momentum resolution of the interband transitions to directly ob-
serve the movement of the Dirac points. Starting from a honeycomb lattice with

𝑉X̄,X,Y = [5.4(3), 0.28(1), 1.8(1)]𝐸R,

we gradually increase the tunneling along the 𝑥 direction by decreasing the in-
tensity of the X̄ beam. As displayed in Fig. 6.3, the position of the Dirac points
continuously approaches the corners of the Brillouin zone, as expected from the
ab initio 2D band structure calculation (gray line).
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Figure 6.3: Movement of the Dirac points.The plot shows the distance of the Dirac points
to the corners of the B.Z., as measured through momentum-resolved interband transitions.
The tunneling along the 𝑥 direction increases when decreasing the lattice depth 𝑉X̄. The
distance is extracted from the second band quasimomentum distribution after one Bloch
cycle (see insets). The merging of the two Dirac points at the corners of the B.Z. is signaled
by a single line of missing atoms in the first band. Values and error bars are the mean and
standard deviation of three to nine measurements. The solid line is the prediction of a 2D
band structure calculation without any fitting parameters.

When changing the lattice depth 𝑉X̄, not only the position of the Dirac points
along 𝑘𝑦 changes. As can be seen when drawing the energy splitting between the
twominibands as obtained from the exact band structure calculation for different
lattice parameters in Fig. 6.4 on the next page, the Dirac cones assume an aniso-
tropic shape as they move towards the center of the B.Z.. The decreasing slope of
the dispersion relation along 𝑘𝑥 close to the Dirac points heavily influences the
transferred fraction of atoms as 𝑉X̄ is varied, a feature that will be studied in Sec-
tion 6.3 on page 123.

6.2.2 DOUBLE TRANSFER

Similar to the measurement presented in Fig. 5.15 on page 115, we investigate
the momentum-dependent transfer fraction for oscillations along 𝑦 as function
of the position of the Dirac points. Figure 6.5a on the facing page shows the re-
sults of such a scan versus 𝑉X̄ along with the theoretical expectation based on
the simple analytical model. For 𝑉X̄ < 3.4𝐸R there are no Dirac points in the
band structure and thus no significant transfer is observed (no missing atoms).
For 𝑉X̄ > 3.4𝐸R two Dirac points are present in the band structure, leading to the
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Figure 6.4: Position of the Dirac points. The contour plots display the energy splitting
between the two lowest bands. It shows the displacement of the Dirac cones inside the
Brillouin zone, as well as their deformation depending on the lattice depth 𝑉X̄.
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Figure 6.5: Transfer for different lattice parameters. a. The plots show the experimen-
tal (left) and theoretical (right) quasimomentum distribution 𝜉D(𝑘𝑥) in the 1st B.Z. after
one full Bloch cycle integrated along the 𝑘𝑦 direction for different values of 𝑉X̄. The exper-
imental data is the average of three consecutive measurements. The theoretical quasimo-
mentum distributions are calculated under the assumption of a fixed 𝑘𝑥 distribution for
the initial atomic cloud, which is obtained from a fit to the density profile at 𝑉X̄ = .𝐸R in
the left panel. At this point the band structure does not contain Dirac points. A dark color
indicates a high atomic density. b. The extracted position of maximum transfer along 𝑘𝑥
using the distribution in the 2ⁿd band is plotted. Values and error bars denote the mean
and standard deviation of three measurements. The solid line shows the theoretical expec-
tation of the maximum transfer position using the simple analytical model without free
parameters. The experimental data was taken with 𝜃 set to .()𝜋.

formation of a progressively more pronounced double-peak feature as 𝑉X̄ gets
larger. This double-peak feature is caused by the same effect as in the measure-
ments versus the site energy offset: it is a consequence of the overall increased
single transfer probability 𝜉S for larger 𝑉X̄ due to the deformation of the Dirac
cones, shifting the points of maximum transfer 𝜉D (where 𝜉S = /) further apart.
The position along 𝑘𝑥 in quasimomentum space for maximum transfer can in fact
be obtained by extracting the peak position of the atomic distribution in the 2ⁿd
B.Z. after taking a line sum along 𝑘𝑦. The results of this procedure are shown in
Fig. 6.5b, which are in good agreement with the calculated position obtained from
the simple analytical model.
The presence of a transition regime from a single- to a double-peak feature in

the momentum-resolved transfer 𝜉D(𝑘𝑥) depends on the gap at the Dirac points,
which is controlled by the energy offset between neighboring sites. For a vanishing
gap only double-peak features appear, as the single transfer in the center is always
close to 1. This is the case for the data presented in Fig. 6.5, as 𝜃 ≈ 𝜋 for this
dataset. In contrast, an overly large gap merely leads to single-peak profiles with a
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very low overall transfer fraction, as the transfer in the center is already far below
/. Only if the gap is set to an intermediate value, a transition from a single- to a
double-peak profile occurs for increasing𝑉X̄, which is the case for the parameters
of the measurements in Fig. 5.15 on page 115.

6.2.3 STÜCKELBERG INTERFERENCE

As already mentioned, a full description of the system studied here would neces-
sarily take coherence into account.The two sequential band crossings along one 𝑘𝑥
trajectory would therefore effectively realize a Stückelberg interferometer [Stück-
elberg, 1932; Shevchenko et al., 2010] with an associated dynamical phase 𝜑. ThisCorrection factor

accounting for
coherences

phase depends both on the energy difference between the upper and the lower
path (see Fig. 5.13 on page 113) and the time spent in between the two crossings,
and therefore on the lattice geometry and the applied force. In the simple analyt-
ical model used so far this phase has been neglected. In fact, it can be taken into
account by multiplying the transfer fraction with a correction factor:

𝜉′𝐷 = 2𝜉S(1 − 𝜉S) × 2 cos(𝜑𝑑 + 𝜑𝑆 + 𝜑𝑔) , (6.1)

where the dynamical phase 𝜑𝑑, transfer phase 𝜑𝑆 (Stokes phase) and the geometric
phase 𝜑𝑔 are defined as [Lim et al., 2012, 2014]:

𝜑𝑑 =
1
2

𝜏𝐾′


𝜏𝐾

d𝜏 (𝐸+(𝜏) − 𝐸−(𝜏)) = 2
𝑘D




d𝑘𝑦√
Δ∗ + 𝑘𝑦/(2𝑚∗)


+ 𝑐𝑥𝑘𝑥⁄𝐹 (6.2)

𝜑𝑆 = −𝜋4 + 𝛿(log 𝛿 − 1) + Arg Γ (1 − 𝑖𝛿) (6.3)

𝜑𝑔 =
1
2

𝜏𝐾′


𝜏𝐾

d𝜏 ⟨𝜓+|𝑖𝜕𝜏|𝜓+⟩ − ⟨𝜓−|𝑖𝜕𝜏|𝜓−⟩ . (6.4)

Here, Γ is the gamma function and 𝛿 = 𝑐𝑥𝑘𝑥/(2𝑐𝑦𝐹) the adiabaticity parameter of
the Landau-Zener transfer (see Section 5.4.1 on page 113). The Stokes or transfer
phase accounts for the phase skip at the transition and is similar to the phase
skip at an optical beam splitter. The dynamical phase on the other hand is due
to the temporal evolution of the eigenenergies of the two states in between the
two points. Finally, the geometric phase takes into account the adiabatic evolution
of the eigenstates between the two points and therefore includes the topological
structure of the band structure [Lim et al., 2014; Gasparinetti et al., 2011]. It is
equal to the difference in Berry phase pickup between the lower and the upper
band on the path between the two points (𝜏𝐾 and 𝜏𝐾′ are the times at which the
respective Dirac point is crossed). As the two Dirac points have opposite chirality
in our system, the two Berry phase pickups cancel and 𝜑𝑔 = 0.
Figure 6.6 on the facing page shows a comparison of the total 3D averaged trans-Coherences in the

experiment fer 𝜉 versus 𝑉X̄ for the simple incoherent model (blue line) and the extended
coherent model including this correction factor (purple dotted line). The experi-
mental data agrees very well with the incoherent model, whereas the oscillatory
behavior as predicted by the extended model cannot be observed.
For a correct treatment of the Stückelberg interference, the variation of the ef-

fective force𝐹 due to the harmonic confinement over the cloud size has to be taken
into account. Using an estimate for the cloud size of approximately 30 µm based
on the trapping frequencies, one calculates a variation of the effective force over
the cloud on the order of 60Hz. We include this effect by assuming a gaussian
distribution of forces over the entire sample, leading to different Stückelberg os-
cillation frequencies and thus to a reduced visibility of the oscillations. The result
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Figure 6.6: Visibility of the Stückelberg interference. The total transfer fraction 𝜉 versus
𝑉X̄ for 𝜃 = .()𝜋 is shown. Values and error bars denote the mean and standard
deviation of three consecutive measurements. The lines show the theoretical prediction
for the fully integrated transfer fraction using the simple incoherent analytical model (blue
solid line) and the extended model including the Stückelberg correction factor (purple
dotted line). The red dashed line includes a gaussian distribution of forces with a width of
Hz resulting from the harmonic trapping potential. The result from the numerical time
evolution of the trapped 2D system for 𝑁 =  atoms is shown as the black dash-dotted
line. Simulation parameters: 𝑡,, as obtained from a fit to the calculated band structure
for the given lattice parameters, 𝛾𝑥,𝑦 as deduced from the lattice parameters. /ℎ ≈ Hz,
𝐹𝜆/ℎ = Hz.

is shown in Fig. 6.6, where the force averaged curve (red dashed line) is in close
agreement with the experimental data. This picture is confirmed by the results of
the numerical simulation of the trapped lattice system (black dash-dotted line),
which already shows a comparable reduction in visibility of the oscillations for
a purely 2D system. While additional effects, such as the variation of the lattice
depths along the third spatial axis 𝑧, are smaller than the effect identified above,
they probably cause the remaining loss of visibility leading to no visible oscilla-
tions in the experimental data. Therefore it can be safely assumed that the simple
incoherent version of the analytical model is sufficient for comparison with the
experiment.

6.3 MERGING DIRAC POINTS

As𝑉X̄ is lowered, the twoDirac points move towards the corner of the B.Z.. When
reaching the corners, they merge, annihilating each other. There, the dispersion
relation becomes quadratic along the 𝑘𝑦 axis, while remaining linear along 𝑘𝑥. Be-
yond this critical point, a finite band gap appears for all quasimomenta of the
B.Z.. This situation signals the transition between band structures of two different
topologies, one containing two Dirac points and the other none. We here observe
this transition for the first time in a system with hexagonal lattice geometry. The
observation has subsequently been reproduced in a hexagonal array ofmicrowave
cavities [Bellec et al., 2013]. For purely 2D honeycomb lattices at half filling, it cor-
responds to a Lifshitz phase transition (i.e. a transition in the topological structure
of the Fermi surface) from a semimetallic to a band insulating phase [Zhu et al.,
2007; Wunsch et al., 2008], cf. Section 8.6.2 on page 160.
We experimentally map out the transition line by recording the fraction of Mapping out the

transition line to a
dimerized system

atoms transferred to the second band 𝜉 as a function of the lattice depths 𝑉X̄
and 𝑉X, while keeping 𝑉Y = 1.8(1) 𝐸R. The results are displayed in Fig. 6.7 on the
following page, left panel. There, the onset of population transfer to the second
band signals the appearance of Dirac points in the band structure of the lattice.
The transferred fraction 𝜉 decreases for large values of 𝑉X̄, as the Dirac points Finite extent of the

atomic cloudmove beyond the momentum width of the cloud.



124 Manipulating the Dirac points

0 1 2 3 4 5 6
V ̅X (ER)

0.0

0.2

0.4

0.6

0.8

1.0

V X
(E

R
)

0 1 2 3 4 5 6
V ̅X (ER)

0.0 0.1 0.2 0.3Transferred fraction ξ

0 kL 2kL
0

W

0

W

0

W

E

kx

4 5 6

4 5 6

0 kL 2kL
0

W

0

W

0

W

1 2 3

E

ky

1 2 3

Figure 6.7: Transition to the dimerized geometry. The plots show the fraction of atoms
transferred to the second band 𝜉 as a function of lattice depths 𝑉X̄ and 𝑉X, with 𝑉Y =
.() 𝐸R. We consider trajectories in quasimomentum space along the 𝑘𝑥 and 𝑘𝑦 directions
(left and right panel, resp.). Tomaximize the transfer for the 𝑘𝑦 trajectories, where the cloud
successively passes the two Dirac points, we set 𝜃 = .()𝜋 for both plots. In both cases,
the onset of population transfer to the second band signals the topological transitionwhere
the Dirac points appear. The dotted and the dashed lines are the theoretical predictions
for the transition line between the triangular and dimerized and between the dimerized
and the honeycomb geometry, respectively, calculated without any fitting parameters. The
insets show cuts of the band structure along the 𝑘𝑥 and 𝑘𝑦 axes (with 𝑘𝑦 = 𝑘𝑦 and 𝑘𝑥 = ,
respectively), illustrating the behavior of the Dirac points when increasing 𝑉X̄.

The Bloch oscillations along 𝑦 allow for the investigation of very anisotropic
Dirac cones, which become almost flat along the 𝑘𝑥 direction as we approach the
crossover to a 1D lattice structure (𝑉X̄ ≫ 𝑉X). As displayed in Fig. 6.7, right panel,
we again identify the transition through the onset of population transfer to the
second band. The results for the transition line obtained for both measurement
series are in excellent agreement with ab initio band structure calculations.
In Fig. 6.8 on the facing page, the calculated integrated transfer efficiency isNumerical

calculation of the
transfer efficiencies

for the different
lattice geometries

shown, as obtained from the general Landau-Zener model using the same lat-
tice parameters as in the experiment. The experimental results are qualitatively
reproduced, with an excellent agreement of the quantitative transfer efficiencies
for oscillations along 𝑦. Deviations for the oscillations along 𝑥 appear close to
the merging transition, possibly due to experimental imperfections that limit the
maximum achievable transfer efficiency at the Dirac points.

6.4 SCANNING THE INTERFERENCE PHASE

By scanning the interference phase 𝜑, the transition from a honeycomb latticeScanning 𝜑
corresponds to a
decrease in 𝑉X

structure to a square geometry can be observed, as a reduction of the interference
term in the potential essentially corresponds to a decrease in the lattice depth 𝑉X.
Additionally, such a scan can be used as a calibration for the interference phase
stabilization mechanism allowing to find the phase setting at which the interfer-
ence of X and Y ismaximized. Figure 6.9 on the next page shows the result of suchCalibration of the

point of maximum
interference

a measurement using Bloch oscillations both along 𝑥 and 𝑦. The lattice parame-
ters are set such that the geometry is close to the merging line of the two Dirac
points for 𝜑 = 0. For oscillations along 𝑥, the transferred fraction decreases as the
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Figure 6.8: Transition to the dimerized geometry: numerically calculated transfer efficien-
cies. The integrated transferred fraction for oscillations along 𝑥 (left panel) and 𝑦 (right
panel) is calculated using the general Landau-Zener model detailed in Section 8.6.2 on
page 160. For comparability, the color scale is set to the same range as in Fig. 6.7 on
page 124. For the Bloch oscillations along 𝑥 the numerically calculated maximum transfer
efficiencies close to the merging line however exceed this scale and reach values of more
than 80%.

interference term becomes smaller, owing to the fact that the Dirac points move
out of the highly populated quasimomenta in the middle of the cloud, and the ad-
ditionally decreasing slope 𝑐𝑥 of the dispersion relation close to the Dirac points.
For 𝑦 oscillations, the transferred fraction first increases as the slope 𝑐𝑦 gets larger,
until it reaches its maximum, which is located close to where 𝜑 ≈ 180° or equiva-
lently 𝑉X ≈ 0. The transfer efficiency should then drop to zero as the interference
is completely removed and the two minibands become one band in the larger
square B.Z.. Since the interference phase is most sensitive to imperfections in the
phase stabilization scheme at the point where 𝜑 = 180°, the interference is never
fully removed during the course of a Bloch oscillation, leading to a considerable
amount of atoms that are detected in the 2ⁿd B.Z..
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Figure 6.9: Scanning the interference phase. For a system with a geometry close to the
merging line (𝑉X̄,X,Y = [.(), .(), .()]𝐸R), the transferred fraction 𝜉 for Bloch os-
cillations along the 𝑥 and 𝑦 directions is recorded as a function of the interference phase 𝜑
as set by the interference stabilization electronics. An increase of 𝜑 with respect to the
point of maximum interference at 𝜑 =  corresponds effectively to a reduction of the lat-
tice depth𝑉X, which in turn leads to a reduction of the transfer efficiency for 𝑥 oscillations,
and an increase for 𝑦 oscillations. The method can be used to calibrate the point of maxi-
mum interference.
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6.5 VARYING THE FORCE

Finally, we study the dependence of the transfer efficiency on the applied force.
We perform a scan from a dimerized lattice to a honeycomb geometry, once us-
ing the normal Bloch oscillation gradient giving rise to oscillations of a period of
approximately 11ms and another larger gradient resulting in a period of 2ms,
see Fig. 6.10. Both for oscillations along 𝑥 and 𝑦, the transfer efficiency is en-
hanced when using the larger gradient, in agreement with the expectation from
the Landau-Zener formula. For 𝑦 oscillations, we compare the measured efficien-
cieswith the theoretical expectation from themomentum-integratedmodel based
on the universal Hamiltonian and find good agreement for the normal gradient
and qualitative agreement for the larger force. The deviations for large 𝑉X̄ are
most likely due to the blurred distribution of the transferred atoms reaching into
the 1st B.Z.. This is possibly due to the increased dephasing during the Bloch oscil-
lation. As already observed in Fig. 6.8 on page 125, the theory fails to reproduce
the exact total transfer efficiencies for oscillations along 𝑥 and therefore was not
applied here.
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Figure 6.10: Varying the force. The plots show the transfer efficiencies for a scan from
a dimerized to a honeycomb lattice using Bloch oscillation gradients of different magni-
tude. Along both oscillation directions, the transferred fraction increases for larger forces,
in agreement with the expectations from the Landau-Zener model. For the 𝑦 oscillations,
there is qualitative agreement with the theory taking into account the finite extent of
the atom cloud in momentum space. Lattice parameters for the scan and the calculation:
𝑉X,Y = [.(), .()]𝐸R.

6.6 CONCLUSION

In this work we have realized Dirac points with highly tunable properties using ul-
tracold fermionic atoms in a honeycomb optical lattice. Bloch-Zener oscillations
have proved to be a versatile tool in probing the linear dispersion relation close
to the Dirac points. Both the existence and the position of the Dirac points can
be deduced from the quasimomentum distribution of the atoms after one Bloch
oscillation. By deforming the honeycomb lattice such that the two Dirac points
approach each other and finally merge, we have observed the transition into a
gapped phase, a phenomenon that could so far not be observed in real graphene.
On a more quantitative level, the amount of atoms transferred to the higher band
was found to contain information about the slope of the band structure close to
the Dirac points and the residual gap. Results frommeasurements of this quantity
agree well with those obtained from ab initio band structure calculations, using
a theory without free parameters, based on a universal Hamiltonian describing
the band structure in the vicinity of the Dirac points [Montambaux et al., 2009a;
Lim et al., 2012], as well as with an ab initio numerical simulation of the time
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evolution of the trapped system. Subsequent transfer through both Dirac points
leads to the appearance of a distinct feature: double peaks in the probability of
finding atoms in the higher band after one Bloch oscillation, both as a function
of sublattice energy offset as well as of the Bloch wave vector 𝑘𝑥. The absence of
Stückelberg interference was successfully explained by large differences in the ac-
quired Stückelberg phases due to the inhomogeneity of the force applied to the
atoms – an effect of the harmonic trapping potential.
A new class of physical phenomena is now within the domain of quantum gas

experiments. Furthermore, the flexibility and novel observables of these systems
will provide new insights. For example, the unique coherence properties of quan-
tum gases offers the possibility of directly measuring the Berry phase [Atala et al.,
2013] or Berry curvature [Price et al., 2012] associated to theDirac points by inter-
ferometric methods or by measurements of the real-space trajectory. Topological
order could be obtained by introducing artificial gauge fields, either via Raman
transitions [Lin et al., 2009] or time-dependent lattice modulation [Kitagawa et
al., 2010]. Moreover, the exceptionally tunable lattice potential opens up a wealth
of new avenues for optical lattice experiments. For spin mixtures with repulsive
interactions, the dynamic transition between dimer and square lattices should
facilitate the adiabatic preparation of an antiferromagnetic state [Lubasch et al.,
2011] and enable the study of quantum criticality [Sachdev, 2008]. Additionally,
the triangular and honeycomb lattices provide the possibility to explore magnetic
frustration and spin liquid phases [Balents, 2010; Meng et al., 2010; Sorella et al.,
2012; Assaad et al., 2013].
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7IMPLEMENTING THE
FERMI-HUBBARD MODEL

In this chapter I will discuss the construction, the phase diagram and a possible ap-
proach for a theoretical treatment of the Hubbard model. Proposed by the British
physicist J. Hubbard [1963], the Hubbard Hamiltonian is one of the most simple
models for fermions1 in a lattice system that incorporates the interplay between
kinetic and interaction energy.
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In the simplest form that has been implemented using cold atoms, the Fermi-
Hubbard Hamiltonian has the following form: Fermi-Hubbard

Hamiltonian
�̂� = �̂�𝑡 + �̂�𝑈 + �̂�𝜀

= − 𝑡
⟨𝐢,𝐣⟩,𝜎

�̂�†𝐢,𝜎�̂�𝐣,𝜎

kinetic energy

+ 𝑈 
𝐢
�̂�𝐢,↑�̂�𝐢,↓


on-site interaction

+ 
𝐢,𝜎

𝜀𝐢�̂�𝐢,𝜎 ,


external confinement

(7.1)

where �̂�†𝐢,𝜎 and �̂�𝐢,𝜎 denote the creation and annihilation operators for two
(pseudo-) spin states 𝜎 ∈ {↑, ↓} at a lattice site 𝐢. In the summation, ⟨𝐢, 𝐣⟩ denotes
nearest neighbors on the lattice (including double-counting2) and �̂�𝐢,𝜎 = �̂�†𝐢,𝜎�̂�𝐢,𝜎
is the density operator on site 𝐢. The operators �̂�†𝐢,𝜎 and �̂�𝐢,𝜎 obey the fermionic
commutation rules, {�̂�†𝐢,𝜎, �̂�𝐣,𝜎′} = 𝛿𝐢𝐣𝛿𝜎𝜎′ and {�̂�†𝐢,𝜎, �̂�†𝐣,𝜎′} = {�̂�𝐢,𝜎, �̂�𝐣,𝜎′} = 0.
As illustrated in Fig. 7.1 on the following page, the model allows every lattice

site only to be occupied by none, one or two fermions of different spin. Two or
more of the same spins are not allowed to occupy the same site (in the lowest
band, to which the simplest Hubbardmodel is restricted to) due to Pauli blocking.
The spins can hop from one site to one of its nearest neighbors with an associated
matrix element 𝑡. The energy of two opposite spins residing on the same lattice
site is 𝑈 . The energy of the external confining potential is 𝜀𝐢. This varying site
energy is a unique feature of the Hubbard model implementations using optical

1 Note that since the original model was proposed for electrons, the termHubbard model usually relates
to the version of the model for fermionic particles, while the one for bosonic particles is called Bose-
Hubbard model.

2 I.e. it accounts for both the process 𝐢 → 𝐣 as well as 𝐢 ← 𝐣. If these processes are counted only as one,
another sum of the hermitian conjugates has to be added.
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lattices, and is due to the trapping potential required to hold the atoms in place,
see Fig. 2.5 on page 25.

Pauli blocking
Tunneling 𝑡 On-site interaction 𝑈

Confinement Δ𝜀

Figure 7.1: The Fermi-Hubbard model in an optical lattice. A spin-up and a spin-down
(pseudo-) spin (blue and green spheres) obeying fermionic commutation relations can hop
between neighboring sites with amatrix element 𝑡. Two opposite spins residing on the same
lattice site feel a repulsive or attractive interaction𝑈 . In optical lattice implementations the
on-site energy usually spatially varies by a certain energy 𝜀 owing to the trap required to
hold the particles. Adapted from [Jördens, 2010].

In most simple terms, the kinetic energy favors delocalization of the wave func-Competition between
kinetic and

interaction energy
tion of the particles over the lattice, which is counteracted by the on-site repul-
sion (for𝑈 > 0). Therefore, in the limit of no interactions or very large tunneling,
the particles will be delocalized over essentially the whole system (for an infinite
system and no external confinement). In the limit of no tunneling (the so-called
atomic limit) or very large on-site interactions, the particles are fully localized and
form an unusual insulator, which does not emerge because of a filled band but is
due to interactions. This insulating state was proposed by the British physicist
N.F. Mott [1949], hence the nameMott insulator. In his seminal paper, Mott suc-Mott insulator
cessfully explained the insulating behavior of certain transition metal oxides by
an electron model including Coulomb interactions.
For the case of large on-site interactions, the model simplifies to the quantum

Heisenberg model. While𝑈 was assumed to be positive in the original context ofQuantum
Heisenberg model electrons under the influence of Coulomb repulsion, using cold atoms also neg-

ative 𝑈 , i. e. attractive interactions, can be realized. The external confinement 𝜀𝐢
leads to a spatially varying chemical potential, which gives rise to a coexistence of
different phases in the same realization of the system at different locations in the
potential.
Note that for simplicity, we assumed here that the nearest neighbor tunneling

matrix elements 𝑡 are the same on all bonds and that the interaction energy is the
same on all sites. Additionally, we have assumed that at any point in time only the
first band is populated, that the interactions are on-site only and that tunneling
to other sites apart from nearest neighbors can be neglected. By including these
terms and/or allowing for two or more different tunnelings or interactions, more
sophisticatedHubbardmodels can be defined. For example, for square lattices theExtended Hubbard

models extension to unequal nearest neighbor tunnelings is called an anisotropic Hub-
bard model. Periodic alternation between two on-site interactions𝑈𝐴 and𝑈𝐵 – a
special case of unequal on-site interactions – on the other hand is treated within
ionic Hubbard models [Egami et al., 1993].
The implementation of Hubbard models using cold atoms was originally pro-Experimental

implementations
using cold atoms

posed by Jaksch et al. [1998]. First, number squeezed states in 1D systemswere ob-
served [Orzel et al., 2001], followed by the breakthrough observation of the super-
fluid to Mott insulator transition in a bosonic gas loaded into an optical lattice by
Greiner et al. [2002].The bosonicMott insulator transition was subsequently also
studied in depth for 1D and 2D systems [Stöferle et al., 2004; Spielman et al., 2007].
In 2010, two groups reported the in situ observation of the 2D bosonicMott insula-
tor shells with single-site resolution [Bakr et al., 2010; Sherson et al., 2010]. Using
fermionic atoms, Mott-insulating states of repulsively interacting atoms were re-
alized for the first time in 2008 in our and the group of I. Bloch [Jördens et al.,
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2008; Schneider et al., 2008]. Within the attractive Fermi-Hubbard model, so far
the thermodynamic properties were investigated experimentally [Hackermüller
et al., 2010].

7.1 CONSTRUCTION

In this section the derivation of the Fermi-Hubbard model from the original
Hamiltonian of the atoms in the optical lattice potential is discussed. This deriva-
tion is summarized in [Jaksch et al., 2005]. Moreover, a derivation of the Hubbard
model specific to honeycomb optical lattices can be found in [Walters et al., 2013;
Ibañez-Azpiroz et al., 2013a,b], with a focus on obtaining the tunneling matrix
elements.
We start with the Hamiltonian in second quantization,

�̂� =
𝜎
d𝐱 ̂𝜓†𝜎(𝐱)𝐻(𝐱) ̂𝜓𝜎(𝐱)

+ 1
2

𝜎,𝜎′

d𝐱 d𝐱′ ̂𝜓†𝜎′(𝐱′) ̂𝜓†𝜎(𝐱)𝐻int(𝐱 − 𝐱′) ̂𝜓𝜎(𝐱) ̂𝜓𝜎′(𝐱′) ,
(7.2)

with

𝐻(𝐱) = −
ℏ
2𝑚𝛁 + 𝑉lattice(𝐱) + 𝑉trap(𝐱) ,

𝐻int(𝐱 − 𝐱′) = 𝑉int(𝐱 − 𝐱′) .
(7.3)

In a next step, we will replace the field operators by their expansion in terms of
Wannier functions of the band 𝜈, see Eq. (4.27) on page 77. In order to obtain the Wannier functions
simplest form of the Hubbard model introduced above, this expansion is trun-
cated after the first band contribution:

̂𝜓𝜎(r) = 
𝜈

𝐣
�̂�𝜈,𝐣,𝜎𝑤𝜈,𝐣(𝐱)

single-band
approx.

−−−−−−−→ 
𝐣
�̂�,𝐣,𝜎𝑤,𝐣(𝐱) . (7.4)

This corresponds to the first major approximation which the single-band Hub- Truncation to a set of
bandsbard model given in Eq. (7.1) on page 131 introduces: any higher band physics

are completely neglected. The approximation obviously breaks down as soon as
higher bands are populated, be it because the Fermi energy lies in the higher
bands, due to thermal excitations of higher bands as a result of 𝑘B𝑇 being
larger than the band gap or if the interaction energy 𝑈 exceeds the band gap.
See [Georges, 2007] for a detailed discussion of the applicability of the Hubbard
model. The limitations can be overcome by applying multi-band Hubbard mod-
els [Diener et al., 2006].
The second approximation will be the truncation of the tight-binding expan-

sion of the non-interacting part of the Hamiltonian to merely include nearest-
neighbor tunneling. The third is the reduction of the interaction range to on-site
interactions only. These will be discussed in more detail in the following sections.

7.1.1 TUNNELING

The non-interacting part of the Hubbard Hamiltonian is in fact equivalent to the
tight-binding Hamiltonian which was derived in Section 4.2 on page 76, with an
added term accounting for the external confinement.
In this context is is helpful to remember that the tunneling matrix elements

can be obtained from a Fourier transform of the band energies, see Eq. (4.32) on
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page 78, and equivalently the band structure of the resulting tight-binding model
can be calculated from the tunnel matrix elements by the inverse Fourier trans-
form. To obtain the Hubbard Hamiltonian, the tight-binding expansion is trun-
cated already after the nearest-neighbor terms, leading in the case of a square or
simple cubic lattice to only one tunneling matrix element 𝑡 ≡ 𝑡,n.n. that is kept.
As discussed in Section 4.2, the lattice must be deep enough for the tight-

binding approximation to be valid. For a𝒟 dimensional lattice composed of over-
lapping 1D lattices with spacing 𝑑 along all spatial directions, the non-interacting
band structure of the Hubbard Hamiltonian is just a cosine along each direction:

𝐸𝑘 = −2𝑡𝒟 cos(𝑘𝑑) . (7.5)

The total bandwidth is then𝑊 = 2𝑧𝑡, with 𝑧 = 2𝒟 the number of nearest neigh-Bandwidth
bors. For such a lattice, a reasonable bound for the validity of the Hubbard model
is set at a single-beam lattice depth 𝑉 ≥ 5𝐸R, where the next nearest neighbor
tunneling is a factor of 10 smaller than the nearest neighbor tunneling. For large
lattice depths, the tunneling can be approximately calculated from the width of
the lowest band in the solutions of the 1D Mathieu equations [Zwerger, 2003]
(see also Section 4.1.2 on page 76),

𝑡 = 4
√𝜋

𝐸R 
𝑉
𝐸R


/
exp −2

√
𝑉
𝐸R

 , (7.6)

from which the exponential suppression of the tunneling with increasing lattice
depth becomes apparent.
The calculation of the tunneling matrix elements is more involved for theTunneling matrix

elements for the
tunable-geometry

optical lattice

tunable-geometry optical lattice, which is not separable in the 𝑥 − 𝑦 plane. As
discussed in Section 4.2 on page 76, the tight-binding parameters can either be
obtained from a numerical calculation of the Wannier functions or from band
structure fits. Results of the former method as a function of the lattice depths 𝑉X̄
and 𝑉X are shown in the following figures for typical regimes used in this thesis.
In Fig. 7.3 and Fig. 7.4 on the facing page, 𝑉Y is set to 1.8 𝐸R as is the case for the
results presented in Part I. The same plots but with 𝑉Y = 6.45 𝐸R are shown in
Fig. 7.5 and Fig. 7.6 on page 136, corresponding to the regime used in Chapter 8.
The notation used for the different tunneling links in these figures is illustrated in
Fig. 7.2.

x

y

A B

t1

t1't2

t3

Figure 7.2: Notation for the
tunneling links.The schematics
shows the relevant tunneling
links in the honeycomb lat-
tice structure as used in the
following figures.

7.1.2 INTERACTION

For the following construction of the interaction term, we use the assumption that
the effective range of the van der Waals interaction between the atoms is much
smaller than the inter-particle spacing, allowing us to treat the scattering prob-
lem in its asymptotic limit, see Section 2.3.1 on page 25. Additionally we replace
the real scattering potential by the pseudopotential introduced in Eq. (2.26) on
page 27,

𝑉int(𝐫) = 𝑉pseudo(𝑟) ≐ 𝑔𝛿(𝑟) 𝜕𝜕𝑟𝑟 , (7.7)
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Figure 7.3: Tunnelings for 𝑉Y = . 𝐸R. The tunneling matrix elements 𝑡,, and 𝑡′ (see
Fig. 7.2 on page 134) for the honeycomb and dimerized lattice geometries as obtained from
the Wannier function calculation (Section 4.2.2 on page 81) are shown as a function of
𝑉X̄ and 𝑉X. The transition line to the triangular geometry is plotted as a dashed line. For
illustration purposes, the lattice potential for the given lattice parameters is shown in the
background. The contour plots are clipped before they reach the transition line to remove
plotting artifacts. The visibility of the interference pattern is set to 𝛼 = ..

Figure 7.4: Ratio of tunnelings for
𝑉Y = . 𝐸R.The ratio 𝑡/𝑡 is shown

as a function of the lattice depths
𝑉X̄ and 𝑉X for the same parame-
ters as used in Fig. 7.3. The loca-
tions where the two Dirac points
merge (𝑡/𝑡 ≈ ) and where the

tunnelings are the same (𝑡/𝑡 = )
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with the interaction parameter 𝑔, which is proportional to the scattering length 𝑎,

𝑔 = 4𝜋ℏ
𝑚 𝑎 . (7.8)

Inserting the pseudopotential, the interacting part of the Hamiltonian given in
Eq. (7.2) on page 133 reads:

�̂�int =
𝑔
2

𝜎,𝜎′

 ̂𝜓†𝜎′(𝐱) ̂𝜓†𝜎(𝐱) ̂𝜓𝜎(𝐱) ̂𝜓𝜎′(𝐱) d𝐱

= 𝑔
2

𝜎,𝜎′


𝑞,𝑟,𝑠,𝑡
𝐢,𝐣,𝐤,𝐥

�̂�†𝑞,𝐢,𝜎′ �̂�†𝑟,𝐣,𝜎�̂�𝑠,𝐤,𝜎�̂�𝑡,𝐥,𝜎′ 𝑤∗
𝑞,𝐢(𝐱)𝑤∗

𝑟,𝐣(𝐱)𝑤𝑠,𝐤(𝐱)𝑤𝑡,𝐥(𝐱) d𝐱 ,
(7.9)

where the second line was obtained by inserting the multiband expansion of the
field operators inWannier functions, Eq. (7.4) on page 133, left side. Here, 𝑞, 𝑟, 𝑠, 𝑡
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Figure 7.5: Tunnelings for 𝑉Y = . 𝐸R.The tunneling matrix elements 𝑡,, and 𝑡′ (see
Fig. 7.2 on page 134) for the honeycomb and dimerized lattice geometries as obtained from
the Wannier function calculation (Section 4.2.2 on page 81) are shown as a function of
𝑉X̄ and 𝑉X. The transition line to the triangular geometry is plotted as a dashed line. For
illustration purposes, the lattice potential for the given lattice parameters is shown in the
background. The contour plots are clipped before they reach the transition line to remove
plotting artifacts. The visibility of the interference pattern is set to 𝛼 = ..
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Figure 7.6: Ratio of tunnelings for
𝑉Y = . 𝐸R.The ratio 𝑡/𝑡 is shown
as a function of the lattice depths
𝑉X̄ and 𝑉X for the same parameters
as used in Fig. 7.5. The locations
where the two Dirac points merge
(𝑡/𝑡 ≈ ) and where the tunnelings
are the same (𝑡/𝑡 = ) are drawn as
red dashed lines.

are the band indices and 𝐢, 𝐣, 𝐤, 𝐥 the site locations of the Wannier functions. Next,
we will neglect the overlap of the Wannier function of a site with those of neigh-
boring sites, limiting the interactions to on-site only,

�̂�int,on-site =
1
2

𝜎,𝜎′


𝑞,𝑟,𝑠,𝑡
𝐢

𝑈𝑞,𝑟,𝑠,𝑡�̂�†𝑞,𝐢,𝜎′ �̂�†𝑟,𝐢,𝜎�̂�𝑠,𝐢,𝜎�̂�𝑡,𝐢,𝜎′ (7.10)

𝑈𝑞,𝑟,𝑠,𝑡 = 𝑔𝑤∗
𝑞,𝟎(𝐱)𝑤∗

𝑟,𝟎(𝐱)𝑤𝑠,𝟎(𝐱)𝑤𝑡,𝟎(𝐱) d𝐱 . (7.11)

In the single-band approximation (𝑞 = 𝑟 = 𝑠 = 𝑡 ≡ 0) the expression finallySingle-band
approximation
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simplifies to

�̂�𝑈 =𝑈
𝐢
�̂�𝐢,↑�̂�𝐢,↓ (7.12)

𝑈 =𝑈,,, = 𝑔|𝑤,𝟎(𝐱)| d𝐱 . (7.13)

Again, for a simple cubic lattice, an approximate analytic expression in the limit
of large lattice depths can be found [Zwerger, 2003]:

𝑈 =
√

8
𝜋𝑘L𝑎𝐸R 

𝑉
𝐸R


/
. (7.14)

Once again, the situation is more involved for the case of our lattice in the 𝑥 − 𝑦
plane, where theWannier functions have a complicated anisotropic shape, see for
example Fig. 4.8 on page 84. To obtain𝑈 , theWannier functions therefore have to
be calculated numerically and the on-site energy determined via integration. In
Fig. 7.7 and Fig. 7.8 the obtained on-site interaction𝑈 and interaction parameter
𝑈/(𝑡 + 2𝑡 + 𝑡 + 2𝑡𝑧) as a function of the lattice depths 𝑉X̄ and 𝑉X are shown for
typical regimes used in this thesis.
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Figure 7.7: Interaction energy𝑈 calculated fromWannier functions.The values have been
obtained from the numerical Wannier function calculation discussed in Section 4.2.2 on
page 81. The scattering length is fixed at 𝑎 = 𝑎 and the lattice depth along the per-
pendicular direction is set to 𝑉Z̃ = 𝐸R. The visibility of the interference pattern is set to
𝛼 = ..

7.1.3 EXTERNAL CONFINEMENT

The slowly varying external confinement present in cold atom based implementa-
tions of Hubbard models is usually caused by the combination of the light inten-
sity gradients within the lattice laser beams and the FORT, or is due to a magnetic
trap or residual magnetic field gradients.
For the term accounting for the external confinement, we also insert the Wan-

nier function expansion of the field operators in the single-band approximation
and use their orthonormality,

�̂�trap = 
𝐢,𝜎

𝜀𝐢�̂�𝐢,𝜎 (7.15)

𝜀𝐢 = |𝑤,𝐢(𝐱)|𝑉trap(𝐱) d𝐱 . (7.16)
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Figure 7.8: Interaction parameter𝑈/(𝑡+𝑡+𝑡+𝑡𝑧) calculated fromWannier functions.
Thevalues have been obtained from the numericalWannier function calculation discussed
in Section 4.2.2 on page 81.The scattering length is fixed at 𝑎 = 𝑎 and the lattice depth
along the perpendicular direction is set to 𝑉Z̃ = 𝐸R. The visibility of the interference
pattern is set to 𝛼 = ..

Since the external confinement varies only slowly over the extent of the Wannier
functions, the potential at the site center can be used:

𝜀𝐢 = 𝑉trap(𝐑𝐢) . (7.17)

7.1.4 LIMITING CASES

For 𝑈 = 0, the Hubbard model corresponds to just a tight-binding model. In the
strongly interacting limit on the other hand, double occupancy is suppressed and
the on-site interaction energy gives rise to a superexchange coupling between the
spins, 𝐽ex = 4𝑡/𝑈 . This limiting case is described by the 𝑡 − 𝐽 model [Auerbach,
1994]:𝑡 − 𝐽 model

�̂�𝑡−𝐽 = −𝑡 
⟨𝐢,𝐣⟩,𝜎

(1 − �̂�𝐢,�̄�)�̂�†𝐢,𝜎�̂�𝐣,𝜎(1 − �̂�𝐣,�̄�) +
1
2𝐽ex


⟨𝐢,𝐣⟩

 ̂𝑆𝐢 ⋅ ̂𝑆𝐣 −
�̂�𝐢�̂�𝐣
4  , (7.18)

where �̂�𝐢 = �̂�𝐢,↑+�̂�𝐢,↓ and �̄� refers to the opposite spin of 𝜎, i. e. �̄� = −𝜎.The spin-/
operator on site 𝐢 is denoted by ̂𝑆𝐢. The (1 − �̂�𝐢,�̄�) terms ensure that a particle can
only hop to an empty site, i. e. that no double occupancies can be created.The �̂�𝐢�̂�𝐣


term can be neglected if the system is close to half-filling. Exactly at half-fillingQuantum

Heisenberg model (𝑛𝐢 = 1), hopping is completely forbidden and the 𝑡 − 𝐽 Hamiltonian reduces to
the quantum Heisenberg model,

�̂�QH = 1
2𝐽ex


⟨𝐢,𝐣⟩

 ̂𝑆𝐢 ⋅ ̂𝑆𝐣 −
�̂�𝐢�̂�𝐣
4  , (7.19)

which describes interacting quantum mechanical spins, localized on a lattice.

7.2 THE PHASE DIAGRAM

7.2.1 SQUARE LATTICE

First investigations on the presence of a Mott transition in the phase diagram
of the homogeneous half-filled 1D repulsive Hubbard model at 𝑇 = 0 were per-
formed by Lieb andWu in 1968 [Lieb et al., 1968].They concluded that the system
was conducting for𝑈 = 0, but insulating for any𝑈 ≠ 0.The regime for𝑈 > 0was
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found to be characterized both by a Mott-insulating behavior as well as antiferro-
magnetic spin ordering.TheMott-insulating behavior is due to the cost of energy
for building double occupancies in the system.The tendency towards ordering at Tendency towards

ordering as a
consequence of Fermi
surface nesting and
the van Hove
singularity

any finite interaction, which is also observed in square and cubic lattices, is a con-
sequence of the Fermi surface nesting and the van Hove singularity coinciding
at half-filling [Hirsch, 1985]. The occurrence of antiferromagnetism is best un-

Antiferromagnetic
ordering

derstood in the large 𝑈/𝑡 limit, where the Hubbard model at half-filling becomes
equivalent to the quantum Heisenberg model (see Section 7.1.4 on page 138),

�̂� = 1
2𝐽ex


⟨𝐢,𝐣⟩

̂𝑆𝐢 ⋅ ̂𝑆𝐣 . (7.20)

At repulsive interactions, the positive superexchange energy 𝐽ex favors the anti-
ferromagnetic ground state owing to the competition between kinetic and inter-
action energy. Note that the transitions from metallic to a Mott-insulating and a
spin-ordered (antiferromagnetic) state do not necessarily need to coincide. To dis- Distinguishing

Mott-insulating
behavior and
antiferromagnetic
ordering

tinguish the effects of insulating behavior and magnetic ordering, however, mag-
netic ordering at 𝑇 = 0 needs to be excluded, which is for example the case for
triangular geometries, where magnetic frustration occurs. Later, the 3DHubbard
model was studied at finite temperature, with an overview of the results shown
in Fig. 7.9. For repulsive interactions, the system is in a metallic state, while the
antiferromagnetic state occurring at larger interactions persists up to the Néel
temperature, with the maximum transition temperature found to be roughly at
𝑈/𝑡 ≈ 8 [Staudt et al., 2000]. Intuitively speaking, spin exchange effects play a
role as long as the temperature is lower than the superexchange energy 𝐽ex. Al-
ready above the Néel temperature, a smooth crossover from the metallic Fermi
liquid to a Mott-insulating state is found, driven by the increasing interactions.
The repulsive interactions disfavor double occupancies in the system, leading to
a Mott-insulating state.

𝑇/𝑡
n=1

Fermi liquid

Mott insulatorPreformed pairs

AF insulatorAF insulatorBEC
SF

BCS
repulsive

𝑈/𝑡

attractive

Figure 7.9: Schematic phase diagram of the Hubbard model at half-filling in a simple cubic
lattice. At low temperature, the Hubbard model contains a spin-ordered Mott-insulating
state. At higher temperatures, a smooth crossover from a normal metal to a Mott insulator
is found when increasing the interactions. On the attractive side, related by a particle-hole
transformation, superfluidity (SF) occurs at low temperature, containing a crossover from
a BCS to a BEC state.

TheHubbard model exhibits discrete symmetries under particle-hole transfor-
mations. At half-filling (i. e. at one particle per site), for example, these allow for
a mapping of the repulsive (𝑈 > 0) to the attractive (𝑈 < 0) Hubbard model: an-
tiferromagnetic order in the 𝑧 plane on the repulsive side becomes charge density
wave (CDW) order for attractive interactions, and antiferromagnetic order in the
𝑥 − 𝑦 plane results in pairing.This explains the obvious symmetry of the phase di-
agram. For attractive interactions, the system is in an 𝑠-wave superfluid (SF) state,
with a BCS to a BEC crossover occurring for increasing interactions. During this
transition the initially weakly bound and distant Cooper pairs become increas-
ingly tighter bound, leading eventually to the formation of bosonic molecules,
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built from two fermions.These can establish long-range phase coherence and thus
Bose condense. For ultracold fermions in optical lattices, quantum simulation of
the respective phases has been proposed to be easier to perform using attractive
interactions [Ho, Cazalilla, et al., 2009].
When shifting the Fermi level away from half-filling (i. e. when the system is

doped), a quasi-2D system is expected to cross into a 𝑑-wave symmetric superfluid
state [Lee et al., 2006], see Fig. 7.10. However, the location of the phase boundary
and possible intermediate phases remain unclear so far.
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𝑇/𝑡 Figure 7.10: Schematic phase diagram of the
doped repulsive quasi-2D Hubbard model on the
square lattice.When shifting the Fermi level away
from half-filling (𝑛 = ), a 𝑑-wave symmetric
superfluid state is expected close to the antiferro-
magnetic state at low temperatures. Long-range
order, absent in 1D and 2D systems at 𝑇 > ,
is stabilized by the presence of a small coupling
between the 2D layers.

7.2.2 HONEYCOMB LATTICE

In contrast to the Hubbard model on the square lattice, the 2D Hubbard model
on the honeycomb lattice was found to contain a quantum phase transition at
𝑇 = 0 from a semimetallic state at weak interactions to an antiferromagnetic
state at large interactions, with the quantum critical point located at 𝑈/𝑡 = 4.5 ±
0.5 [Sorella et al., 1992; Paiva et al., 2005], see Fig. 7.11 on the facing page.The crit-
ical 𝑈𝑐 for the transition is shifted away from zero owing to the vanishing density
of states at the Fermi level, counteracting the tendency for CDW or spin density
wave (SDW) order as a result of the partial nesting of the Fermi surface [Makogon
et al., 2011]. Meng et al. [2010] predicted the occurrence of a spin liquid phase lo-Putative spin liquid

phase cated between the semimetallic and antiferromagnetic (AF) phases, with the lower
and upper boundaries located at 𝑈/𝑡 = 3.5 and 𝑈/𝑡 = 4.3, respectively. In a spin
liquid [Balents, 2010], the disorder of the spin system present at non-zero tem-
perature is retained in the ground state at 𝑇 = 0. The lower boundary would then
correspond to the opening of a single particle gap and therefore the emergence of
Mott-insulating behavior, while the upper boundary would be located where the
staggered magnetization becomes non-zero, i. e. where antiferromagnetic order-
ing appears. However, the existence of a spin liquid is questioned by simulations
with larger cluster sizes and a more accurate way to detect (small) magnetic or-
der [Sorella et al., 2012; Assaad et al., 2013]. These later works allow for the con-
clusion that this specific type of spin liquid phase would most likely only occur in
the presence of magnetic frustration [Balents, 2010].
Away from half-filling, the system generally tends either towards a metallic or

antiferromagnetic state, depending on the interactions [Peres et al., 2004]. At the
filling corresponding to the van Hove singularity (see Section 4.3.1 on page 91),
perfect nesting of the Fermi surface is restored, leading to a strong tendency to-
wards ordering or pairing. At or close to the van Hove singularity, chiral or other
uncommon spin density waves, chiral superconductivity with 𝑑 + 𝑖𝑑 pairing, or
possibly a ferromagnetic state have been debated [Peres et al., 2004; Pathak et al.,
2010; Makogon et al., 2011;Wang, Xiang, et al., 2012; Nandkishore, Levitov, et al.,
2012; Nandkishore, Chern, et al., 2012; Kiesel et al., 2012].
For weak attractive interactions, the system is semimetallic at and possibly also

close to half-filling [Lee, Bouadim, et al., 2009].When increasing the interactions,
a phase transition into the putative pseudo-spin liquid occurs, with a degenerate
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superfluid and density-wave phase appearing for even larger interactions. Away
from half-filling, the system becomes superfluid, containing a crossover from a
BCS to a BEC state [Zhao et al., 2006].
Anisotropic tunneling or non-local interaction terms lead to an even richer

phase diagram, possibly containing other spin liquid phases [Wang et al., 2011]
or competition between SDW, ferromagnetic [Peres et al., 2005], and CDW [Her-
but, 2006] ordering, respectively, which might even lead to intrinsic pairing and
superconductivity [Honerkamp, 2008] emerging from a CDW.

0 𝑈/𝑡

repulsiveattractive

T=0

AFM
BEC

SF
BCS

SDW/CSC/FM?

SMPSL?SF+DW SM SL? AFM

Fermi liquid

Fermi liquid

FM?

0

1 − 𝑛

van Hove singularity

Figure 7.11: Schematic phase diagram of the 2D Hubbard model on the honeycomb lattice.
At half-filling (𝑛 = ), the system is semimetallic for weak interactions and becomes anti-
ferromagnetic or superfluid for larger repulsive or attractive interactions, respectively.The
phases between strong and weak interactions are separated by a debated spin liquid phase.
Away from half-filling, additional metallic and ferromagnetic phases are found. Abbrevia-
tions: SM: semimetal, SL: spin liquid, AFM: antiferromagnetic Mott insulator, SDW: spin
density wave, CSC: chiral superconductor, FM: ferromagnetism, PSL: pseudo-spin liquid,
SF: superfluid, DW: density wave.

For the case of real graphene, the long-range Coulomb interactions are mostly Extended Hubbard
modelsunscreened in the semimetallic phase at half-filling [Castro Neto et al., 2009], re-

quiring for amapping to an extendedHubbardmodel which includes interactions
with particles on neighboring sites,

�̂� = �̂�Hubbard +
1
2

𝑖≠𝑗
𝜎,𝜎′

𝑉𝑖,𝑗�̂�𝑖,𝜎�̂�𝑗,𝜎′ . (7.21)

The nearest-neighbor hopping term for graphene is 𝑡 = 2.8 eV, and the effective
Hubbard parameters for distances of up to 4 sites were found to be 𝑈/𝑡 = 3.63, Hubbard parameters

of real grapheneas confirmed by measurements on polyacethylene [Castro Neto et al., 2009], and
𝑉,[,,,]/𝑡 = [2.03, 1.45, 1.32, 1.14] [Schüler et al., 2013]. The nearest-neighbor
interactions were found to effectively decrease the on-site interactions.Therefore,
when mapping to a Hubbard model only including on-site interactions, a renor-
malized on-site interaction 𝑈∗/𝑡 = 1.6 should be used, reflecting the tendency of
the non-local interactions to stabilize the semimetallic phase [Schüler et al., 2013].

7.3 NUMERICAL TREATMENT

Since the fermionic Hubbard model cannot be solved analytically, numerical sim-
ulation or quantum simulations as discussed before in this thesis have to be used
to learn about its ground and excited state properties. By numerically diagonaliz-
ing the Hamiltonian or by quantumMonte Carlo (QMC) methods exact solutions
for the ground state can in principle be found. However, due to the exponentially
growing number of states in the Hilbert space, exact diagonalization is not fea-
sible for systems larger than a few times ten sites. At least some of the quantum
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Monte Carlo (QMC) models on the other hand suffer form the so-called fermion
sign problem and converge slowly at low temperatures [Duchon et al., 2013].
Approximate treatments are possible using dynamical mean field the-

ory (DMFT), which maps the problem to a single impurity problem, or 1D
density-matrix renormalization group (DMRG) methods and their extensions
to higher dimensions, projected entangled pair states (PEPS), which are both
variational approaches on matrix product states (MPS). Both methods can, in an
extension (tDMRG), also be used to simulate dynamics [White et al., 2004; Daley
et al., 2004]. In Chapter 9 on page 163 results for the spin correlator in an aniso-
tropic Hubbard model obtained from dynamical cluster approximation (DCA)
calculations are presented. This method is an extension of dynamical mean field
theory (DMFT) that can incorporate spatially nonlocal correlations.
In the regime where the temperature is larger than the associated energy 𝜂

of a certain part of the Hamiltonian, a so called high-temperature series expan-
sion (HTSE) of the grand canonical potential of the system [Oitmaa et al., 2006;
Haaf et al., 1992; Henderson et al., 1992] in the parameter 𝛽𝜂 can be performed.
Here, 𝛽 = 1/(𝑘B𝑇). The most commonly used expansion is the one in the tunnel-
ing 𝑡, i. e. 𝜂 = 𝑡. Such an expansion up to second order in the perturbation 𝛽𝑡 will
be used in Chapter 8 on page 147 to compare the measured double occupancy in
the system with theoretical predictions. A sketch of the method will be given in
the following section.

7.3.1 HIGH-TEMPERATURE SERIES EXPANSION

As discussed above, a requirement for performing a HTSE is that the temperature
of the system is larger than the associated energy of a certain part of the Hamilto-
nian. This part can therefore be treated as a perturbation �̂�,

�̂� = �̂� + �̂�. (7.22)

Therefore, in order to expand in powers of 𝛽𝑡, we will choose

�̂� = 𝑈
𝐢
�̂�𝐢,↑�̂�𝐢,↓ +

𝐢,𝜎
𝜀𝐢�̂�𝐢,𝜎 �̂� = −𝑡 

⟨𝐢𝐣⟩,𝜎
�̂�†𝐢,𝜎�̂�𝐣,𝜎 . (7.23)

We then switch to the interaction (Dirac) picture,

�̂� ′
(𝜏) = 𝑒𝜏�̂��̂�𝑒−𝜏�̂� = �̂� �̂� ′

(𝜏) = 𝑒𝜏�̂��̂�𝑒−𝜏�̂� , (7.24)

and use the fact that the grand partition function of the full Hamiltonian can beGrand partition
function expressed as a product of the partition function of the unperturbed Hamiltonian

and a series in 𝛽,

𝒵 =Tr 𝑒−𝛽�̂� 

=𝒵

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1 +

∞

𝑟=

(−1)𝑟
𝛽




d𝜏
𝜏




d𝜏 ...
𝜏𝑟−




d𝜏𝑟 ⟨�̂� ′
(𝜏)�̂� ′

(𝜏)...�̂� ′
(𝜏𝑟)⟩

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
,

(7.25)

where𝒵 is the partition function of the unperturbed Hamiltonian. For a system
of 𝑆 sites,𝒵 decomposes into a product of the unperturbed single-site partition
functions 𝑧,

𝒵 =Tr 𝑒−𝛽�̂� = 𝑧𝑆 . (7.26)
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The symbol ⟨...⟩ denotes the expectation value of the respective quantity in the
unperturbed Hamiltonian,

⟨...⟩ = Tr 𝑒−𝛽�̂� ... /𝒵 . (7.27)

The single-site partition function 𝑧 is the trace over a matrix containing the Grand canonical
potentialBoltzmann factors of the four states of the single-siteHubbardmodel, |0⟩ , |↑⟩ , |↓⟩,

and |↑↓⟩,

𝑧 = 1 + 2𝜁 + 𝜁𝑤, (7.28)

where we have defined the unitless interaction parameter 𝑤 = exp(−𝛽𝑈) and the
fugacity 𝜁 = exp(𝛽𝜇). Next, we calculate the grand canonical potential from the
partition function using −𝛽Ω = log𝒵 :

−𝛽Ω = 𝑆 log 𝑧+
∞

𝑟=

(−1)𝑟
𝛽




d𝜏
𝜏




d𝜏 ...
𝜏𝑟−




d𝜏𝑟 ⟨�̂� ′
(𝜏)�̂� ′

(𝜏)...�̂� ′
(𝜏𝑟)⟩ . (7.29)

The series terms can be expressed using graphs, were each application of �̂� ′
 Tunneling graphs

corresponds to the movement along a bond of the graph, i. e. in our specific ex-
pansion to a hopping from one to a next site (note that we now evaluate the grand
potential per site),

−𝛽Ω/𝑆 = log 𝑧 +
∞

𝑟=

(−1)𝑟 
𝑔(𝑚,𝑙≤𝑟)

𝑧−𝑚 𝑐𝑟,𝑔X𝑟,𝑔(𝜁, 𝛽, 𝑤)(𝛽𝑡)𝑙
graph contribution

, (7.30)

where𝑚 and 𝑙 are the number of sites and bonds in the graph 𝑔, respectively. The
graphs are weighted by the so-called weak lattice constant 𝑐𝑟,𝑔, which is for exam- Weak lattice contant
ple for the second order (𝑟 = 2) 𝑐,𝑔 = [1, 2, 3] for a linear chain, square lattice or
cubic lattice, respectively.This weak lattice constant originates from the reduction
of the evaluation of ⟨...⟩ over the entire lattice to just the graphs originating from
a single site (which is valid since we assume all sites to be equal at this point, i. e.
𝜀𝐢 ≡ 𝜀). For the second order graphs on bipartite lattices, 𝑐,𝑔 is half the coordina-
tion number 𝑧, since if for every site 𝑧 and not 𝑧/2 graphs would be counted, every
bond in the whole lattice would be counted twice. From this argument the exten- Extension to the

anisotropic Hubbard
model on bipartite
(e. g. square or cubic)
lattices

sion to an anisotropic Hubbard model with tunneling matrix elements 𝑡...𝑧 along
the nearest-neighbor links numbered 1, ..., 𝑧 becomes clear, e. g. for the second-
order term of bipartite lattices,

𝑐,𝑔𝑡 =
1
2

𝑙=...𝑧

𝑡𝑙 . (7.31)

Using this, also lattices of other than square or cubic geometry can be treated
within a HTSE that uses the graphs for bipartite lattices, as long as the order of
theHTSE is lower than that required to explore graphs which are either forbidden
or additionally present in the new geometry. Therefore, to treat a 2D honeycomb 2D honeycomb lattice
lattice (which is equivalent to a brick lattice) within a HTSE up to second order,
we set 𝑐,𝑔 = 2 and

𝑡,,, = [𝑡horizontal, 0, 𝑡vertical, 𝑡vertical] , (7.32)

where 𝑡 = 0 accounts for the missing horizontal link that differentiates the brick
lattice from a square lattice. In Fig. 7.12 on the following page the influence of the
tunneling corrections for 2D systems on the local density and the trap-averaged
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Figure 7.12: Tunneling corrections in 2D systems.Density profiles (for 𝑁 =  × ) and
trap-averaged double occupancies obtained from a HTSE of different 2D systems are com-
pared for weak and strong interactions. The data is calculated for 𝑡 =  (atomic limit), and,
using second order corrections, for a square lattice with 𝑡 = Hz and for a honeycomb
lattice with 𝑡horizontal = 𝑡vertical = Hz. The tunneling corrections play only a role in the
regime of low atom numbers and weak interactions, otherwise they are negligible. The en-
tropy and averaged trap frequency are set to experimentally realistic values of 𝑠 = .𝑘B
and �̄�/𝜋 = Hz.

double occupancy (see Section 7.3.2) is shown. Corrections to the atomic limit
(𝑡 = 0, i. e. HTSE in zeroth order) are relatively small and most pronounced in theSize of the second

order contributions regime of low atom numbers and weak interactions.
Note that strictly speaking Eq. (7.30) on page 143 is not an expansion in 𝛽𝑡,

since there is not only a term (𝛽𝑡)𝑙 but the expansion coefficients X𝑟,𝑔(𝜁, 𝛽, 𝑤) also
depend on 𝛽. Also note that in the case of bipartite lattices such as those of square
or simple cubic geometry, all odd contributions vanish since there are no cycles
with odd length in any graph. The first non-vanishing contribution will therefore
be proportional to (𝛽𝑡).
In general, the graph weight X𝑟,𝑔 is determined by taking the trace of a ma-

trix containing the expectation values ⟨...⟩ for all eigenstates of the unperturbed
Hamiltonian |Ψ𝑖⟩ in the reduced graph Hilbert space containing only 𝑠 sites:

X𝑟,𝑔 = 
|𝑖⟩

𝛽




d𝜏
𝜏




d𝜏 ...
𝜏𝑟−




d𝜏𝑟 ⟨Ψ𝑖|𝑒−𝛽�̂��̂� ′
(𝜏)�̂� ′

(𝜏)...�̂� ′
(𝜏𝑟)|Ψ𝑖⟩,𝑙 . (7.33)

Here, ⟨...⟩,𝑙 is now only evaluated on the 𝑙 tunneling links of the corresponding
graph. In second order on bipartite lattices, there is only one contributing graph,
namely that which corresponds to a tunneling process to a second site and back.
The calculated expectation values of the 4 × 4 = 16 possible states of the two-site
Hubbard model which contribute to the graph weight X, are shown in Table 7.1
on the facing page.
Summing up these contributions, the total graph weight is obtained,

X, = 2𝜁(1 + 𝜁𝑤) + 4𝜁
𝛽𝑈 (1 − 𝑤) , (7.34)

resulting in the following expression for the grand potential up to second order
for bipartite lattices:

−𝛽Ω/𝑆 = log 𝑧 + 𝑧𝑐,𝑔X,(𝛽𝑡) . (7.35)

For simple lattice structures, such as those described by HTSEs for a square orObservables
cubic lattice, quantities such as density, entropy and double occupancy (in this



7.3 Numerical treatment 145

Table 7.1: Graph weight contributions.The weight contributions of the 16 states of the two-
site Fermi-Hubbard model for the second order graph in the HTSE are listed. Every con-
tribution is the product of the number of associated states times the number of involved
tunneling processes times the Boltzmann factor.The total graph weight , is given by the
sum of these contributions.

|𝜓𝐴,𝐵⟩ = |𝑛𝐴↑𝑛𝐴↓, 𝑛𝐵↑𝑛𝐵↓⟩ 𝜓𝐴,𝐵| �̂� ′
(𝜏)�̂� ′

(𝜏) |𝜓𝐴,𝐵
|0, 0⟩ 1 × 0 × 𝜁𝑤

|↑↓, ↑↓⟩ 1 × 0 × 𝜁𝑤

|↑, ↑⟩ , |↓, ↓⟩ 2 × 0 × 𝜁𝑤

|↑, 0⟩ , |↓, 0⟩ , |0, ↑⟩ , |0, ↓⟩ 4 × 1 × 𝜁𝑤

|↑↓, ↑⟩ , |↑↓, ↓⟩ , |↑, ↑↓⟩ , |↓, ↑↓⟩ 4 × 1 × 𝜁𝑤

|↑, ↓⟩ , |↓, ↑⟩ 2 × 2 × 𝜁𝑤 exp(−𝑈(𝜏 − 𝜏))
|↑↓, 0⟩ , |0, ↑↓⟩ 2 × 2 × 𝜁𝑤 exp(𝑈(𝜏 − 𝜏))

case defined as the fraction of doubly occupied sites) can be obtained based on
the above expression via the usual rules,

𝑛 = −1𝑆
𝜕Ω
𝜕𝜇 𝑠 = −1𝑆

𝜕Ω
𝜕𝑇 𝑑 = 1

𝑆
𝜕Ω
𝜕𝑈 . (7.36)

In general, however, the evaluation of arbitrary observables is not straightforward
and requires special techniques [Greif, 2013].
The obtained expansion will be valid as long as 𝑡 ≪ 𝑘𝑇 ≪ 𝑈 [Oitmaa et al., Range of validity

2006]. Since a truncated series expansion is just a polynomial in the expansion pa-
rameter, it is obvious that aHTSE cannot describe any real phase transitions since No phase transitions
all thermodynamic quantities will always be continuous due to the fact that they
are derived from a continuous thermodynamic potential. Therefore, when for ex-
ample approaching the phase transition to an antiferromagnetic state in the re-
pulsive Fermi-Hubbard model starting from a large temperature, the series must
break down at a certain point before entering the phase. However, when compar-
ing the results obtained for a simple cubic lattice fromHTSEwith those frommore
advanced techniques such as QMC or DMFT, which reach beyond the phase tran-
sition, one finds that they agree down to about 𝑘B𝑇/𝑡 ≈ 2 for aHTSE of sufficiently
high order [Kozik et al., 2010] (which is 10 in the given reference).
Details on how observables, for example the nearest-neighbor density or spin

correlator, are obtained in bipartite or dimerized lattices can be found in the thesis
of Daniel Greif [2013].

7.3.2 LOCAL DENSITY APPROXIMATION

The results of the HTSE are valid for a homogeneous system in thermal equilib-
rium at a certain fixed temperature 𝑇 and a fixed chemical potential 𝜇. In reality,
however, optical lattice systems are not homogeneous since the energy of every
site varies slightlywith respect to the neighboring ones due to the external confine-
ment. To obtain thermodynamic quantities of this trapped system, the method
known as local density approximation (LDA)3 in the context of cold atom systems
comes into play. The basic assumption is that the external potential is only slowly
varying, or more precisely that the energy difference between two neighboring
sites Δ𝜀 does not exceed any other energy scale in the problem. The thermody-
namics at each site is then approximately obtained by calculating the quantities

3 Note that LDA has a slightly different meaning in the context of solid state theory.
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for the homogeneous system using a global temperature 𝑇 and a chemical poten-
tial which is shifted by the local trapping potential,Position dependent

chemical potential
𝜇𝐢 = 𝜇 − 𝜀𝐢 . (7.37)

The value of a global observable𝒪 trap of the trapped system can then be obtained
by summing over the contributions from every site,

𝒪 trap(𝜇, 𝑇) = 
𝑖
𝒪 hom
𝐢 (𝜇𝐢, 𝑇) . (7.38)

If 𝜀𝐢 is a continuous function of the space coordinate (i. e. 𝜀(𝐫)), this summationTrap integration
can be rewritten in terms of an integral. In our experiment the external confine-
ment is given by the gaussian intensity envelope of the lattice and the FORT beams,
which can close to itsminimumbe approximated by a harmonic function.The cur-
vatures of this external harmonic potential along the three spatial directions are
given by the harmonic trapping frequencies 𝜔𝑥,𝑦,𝑧. This trapping potential can be
made radially symmetric by replacing the separate trapping frequencies by their
geometric mean, �̄� = (𝜔𝑥𝜔𝑦𝜔𝑧)/, resulting in

𝜇(𝑟) = 𝜇 −
1
2𝑚�̄�

 
𝜆
2 


𝑟, (7.39)

where we have set – without loss of generality – 𝜇 as the chemical potential in
the trap center and 𝑟 is in units of the site distance. The integral to obtain a global
observable 𝒪 trap then becomes:

𝒪 trap(𝜇, 𝑇) =
∞




4𝜋𝑟𝒪 hom(𝜇(𝑟), 𝑇) d𝑟. (7.40)

In the experiment, typically only global extensive thermodynamic quantitiesApplication to the
experiment:

obtaining the
chemical potential

and the temperature

such as the total atom number 𝑁exp or the total entropy 𝑆exp of the gas can be
measured, for example by fitting the density profiles of the gas released from the
FORT in TOF. In order to obtain the essential intensive quantities such as temper-
ature and chemical potential, the following system of equations (𝒪 hom = 𝑛, 𝑠) has
to be solved numerically:

𝑁 trap(𝜇, 𝑇) = 𝑁exp

𝑆trap(𝜇, 𝑇) = 𝑆exp .
(7.41)

Using the obtained 𝜇 and 𝑇 , other observables can then be calculated via the
integration over the trap using Eq. (7.40).
The locally varying chemical potential leads to the unique feature that in coldCoexistence of phases

atom based implementations of solids several phases coexist at different trap radii
in the same realization. This feature is for example nicely illustrated by single-
site resolved in situ density profiles of bosonic atoms loaded into 2D optical lat-
tices [Bakr et al., 2010; Sherson et al., 2010]. In these experiments, the so-called
wedding cake structure of the bosonic Mott insulator as a function of distance
from the trap center, with small superfluid regions at the interface between the
plateaux of pinned density, is directly visible in the measured density profiles.



8THE MOTT INSULATOR TRANSITION

In this chapter we study the effects of interactions in the artificial graphene sys-
tem.We load an interacting balancedmixture of twomagnetic spin states into the
tunable-geometry optical lattice while inhibiting the motion of the atoms along
the third spatial direction by a deep perpendicular lattice. In this way, we realize
decoupled layers of artificial graphene sheets verymuch akin to real graphene, see
Fig. 8.1. The state of the system is characterized by a spectroscopic measurement
of the double occupancy.
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Our system, however, enables us to explore interaction regimes beyond those Exploring interaction
regimes beyond that
of real graphene

accessible in real graphene. By performing state dependent rf spectroscopy in or-
der to measure the double occupancy of the system, i. e. the fraction of atoms on
doubly occupied sites, we observe the crossover from the metallic regime to a 2D
Mott-insulating state at strong repulsive interactions.

Figure 8.1: Experimental setup used to create
the artificial graphene system. Independent 2D

layers of honeycomb geometry are realized
using the tunable-geometry optical lattice. A
sketch of the tunneling structure within the
layers is shown on the right. A repulsively

interacting two-component spin mixture of
fermionic 40K atoms (red and blue spheres) is
loaded into the lattice. Gravity points along 𝑦. y

x

z
X

X

Y
Z~

t

532 nm

The system can be described using the Fermi-Hubbard Hamiltonian, which Theoretical
description:
Fermi-Hubbard
Hamiltonian

allows for comparison of the data with theory predictions obtained from a high-
temperature series expansion (HTSE) of the grand partition function. Moreover,
we characterize the Mott-insulating state by measuring its excitation spectra. The
equilibration properties of the 2D systems are of utter importance when prepar-
ing such samples. In particular, we study the dynamics of the double occupancy
while loading the lattice to determine the equilibration times. Finally, we extend
our measurements to coupled layer systems whose static and dynamic properties

147
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are studied. Additionally, the behavior of the double occupancy when crossing
the transition to a dimerized lattice geometry is explored.

This chapter is partly based on the preprint of the following publication:

T. Uehlinger, G. Jotzu, M. Messer, D. Greif, W. Hofstetter, U. Biss-
bort, and T. Esslinger, Artificial graphene with tunable interac-
tions, Phys. Rev. Lett. 111, 185307 (2013), DOI : . /
PhysRevLett. . , preprint available on ArXiv e-prints,
arXiv: . .

8.1 EXPERIMENTAL TECHNIQUES

8.1.1 PREPARATION

To obtain a quantumdegenerate Fermi gaswe adhere to the procedure used in pre-
vious work [Jördens et al., 2008] described in detail in Section 3.1.4 on page 41.
A balanced (ratio 0.50(5)) spin mixture of 40K atoms in the 𝑚𝐹 = − / and − /
magnetic sublevels of the 𝐹 = / hyperfine manifold is evaporatively cooled in
the crossed beam optical dipole trap to 15(2)% of the Fermi temperature. We pre-
pare Fermi gases with total atom numbers between 𝑁 = 25 × 10 and 300 × 10,
with 10% systematic uncertainty [Jördens et al., 2010].We either set the scattering
length to 86(2)𝑎 using a Feshbach resonance or transfer to an 𝑚𝐹 = ( − /, − /)
mixture, wherewe access larger repulsive interactions in the range of 𝑎 = 242(1)𝑎
to 632(12)𝑎.
We then load the atoms into the tunable-geometry optical lattice [Tarruell et

al., 2012; Lim et al., 2012; Uehlinger, Greif, Jotzu, Tarruell, Esslinger, et al., 2013]
using all four beams X̄ , X , Y and Z̃, see Section 3.2 on page 44.This gives rise to
the potential

𝑉(𝑥, 𝑦, 𝑧) = − 𝑉X̄ cos(𝑘L𝑥 + 𝜃/2) − 𝑉X cos(𝑘L𝑥)
− 𝑉Y cos(𝑘L𝑦) − 𝑉Z̃ cos(𝑘L𝑧)
− 2𝛼√𝑉X𝑉Y cos(𝑘L𝑥) cos(𝑘L𝑦) cos 𝜑 ,

(8.1)

with 𝑘L = 2𝜋/𝜆, visibility 𝛼 = 0.90(5), 𝜑 = 0.00(3)𝜋, and 𝜃 set to 1.000(1)𝜋, i. e.
zero 𝐴-𝐵 site offset. The final lattice depths in units of the recoil energy 𝐸R areLattice depths used

for the experiments
𝑉X̄,X,Y,Z̃ = [14.0(4), 0.79(2), 6.45(20), 30(1)]𝐸R,

unless explicitly stated otherwise. All beams are ramped up simultaneously to
their final intensities within 200ms. The resulting potential contains several in-
dependent 2D honeycomb layers with an inter-layer tunneling rate below 2Hz.
For the combined external confining potential of the dipole trap and the lattice
laser beams we measure harmonic trapping frequencies of

𝜔𝑥,𝑦,𝑧/2𝜋 = [86(2), 122(1), 57(1)]Hz.

We have calculated the band structure for the given lattice parameters by nu-
merically diagonalizing the single-particle Hamiltonian containing the true opti-
cal potential (see Section 4.1.1 on page 73).The band structure is found to contain
two nearly isotropic Dirac points, located at 𝑘D𝑦 ≈ / 𝑘L, see Fig. 8.2 on the facing
page.
Using the maximally localized Wannier functions within the two minibands

(calculated as described in Section 4.2.2 on page 81) we obtain the following tight-
binding parameters in the 𝑥 − 𝑦 plane:Tight-binding

parameters

http://dx.doi.org/10.1103/PhysRevLett.111.185307
http://dx.doi.org/10.1103/PhysRevLett.111.185307
http://arxiv.org/abs/1308.4401
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Figure 8.2: Band structure.
The band structure contains
two nearly isotropic Dirac

points, with the other bands
well separated from the two
minibands. Cuts through the
band structure in the vicin-
ity of the Dirac points are
shown in the background.

A contour plot of the lower
band is shown at the bottom. +kL0
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𝑡 = 𝑡/ℎ = 172(20)Hz 𝑡 = 𝑡/ℎ = 172(20)Hz 𝑡/ℎ = 8(2)Hz (8.2)

𝑡′/ℎ < 2Hz 𝑡others < 𝑡′ . (8.3)

8.1.2 DOUBLE OCCUPANCY MEASUREMENT

We characterize the state of our system by measuring the fraction of atoms on
doubly occupied sites𝐷 [Jördens et al., 2008; Jördens et al., 2010]. To determine𝐷,
all tunnelings processes are suppressed by switching off 𝑉X in roughly 5 µs and
ramping up𝑉X̄ and𝑉Y linearly to a depth of 30 𝐸Rwithin 500 µs.We thenperform
interaction dependent rf spectroscopy to obtain 𝐷 [Jördens et al., 2008].
This detection technique can be used for both ( − /, − /) as well as ( − /, − /)

spin mixtures. In detail, we proceed for the ( − /, − /) spin mixture prepared on
the left side of the Feshbach resonance located at 224G as follows, see also Fig. 8.3:
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Figure 8.3: On-site energy in the optical lattice and rf spectroscopy. The energy of two
atoms of opposite spin in the lattice is drawn as a function ofmagnetic field for the two used
spin mixtures. The energy difference between the bound state on the low-field side of the
( − /, − /) resonance position (solid red) and the unbound state above originating from the
( − /, − /) resonance (dashed blue) allows selectively addressing double occupancies with
rf pulses (coiled) with a frequency which is shifted by ∼  kHz. Adapted from [Jördens,
2010].

1. The lattice is deformed to a simple square (when starting with a 2D sys- Freezing the atomic
motiontem) or cubic lattice to ensure a consistent and reproducible starting point

for the following detection steps. In order not to change the density dis-
tribution, the lattice ramp needs to be on a faster time scale than the corre-
sponding tunneling process. On the other hand the rate in the change of the
on-site harmonic oscillator frequency must be smaller compared to the fre-
quency itself to avoid higher band population.The deformation is achieved
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by switching off 𝑉X, which restores the (anisotropic) square geometry in
the 𝑥 − 𝑦 plane of the lattice by removing the dimerization. As the resulting
change in the on-site trap frequency during this ramp is relatively small, the
switch-off can be performed within only a few µs.

2. The lattice depths 𝑉X̄, 𝑉Y, and, if necessary, 𝑉Z̃ are ramped to a depth of
30 𝐸R within 500 µs to fully suppress any further tunneling. The ramp time
is defined by the same criteria as for the deformation to a square lattice.

3. The magnetic bias field is then ramped within 10ms from its initial setting
to 202.8G, which is just a bit above the Feshbach resonance position.

4. Thebias field is then further decreased to 201.3Gwithin 5ms, thereby cross-Association of
molecules ing the Feshbach resonance. This causes the association of weakly bound

molecules on sites that are occupied by two atoms in different spin states.
5. Thesemolecules can then be dissociated by addressing the rf transition fromrf transition

the𝑚𝐹 = − / to the𝑚𝐹 = − / Zeeman state using a 𝜋 pulse, without affect-
ing the atoms on singly occupied sites. The selectiveness of the transition
is due to the binding energy of the molecule, which increases the required
rf frequency with respect to an unbound atom. As a result, the 𝑚𝐹 = − /
spin state is populated with a fraction of atoms that is proportional to the
amount of doubly occupied lattice sites.

6. The bias field is swept back over the Feshbach resonance to 208G within
10ms in order to dissociate any (possibly remaining) molecules.

7. The intensity of the optical lattice beams is then ramped to 0 within 50ms
using an S-shaped ramp. This lowers the external confinement in order to
counteract excessive expansion of the cloud during the following TOF. We
have checked that the population of the spin states is not altered during this
step.

8. The FORT beams are abruptly switched off to start the TOF expansion.
9. After 1msofTOF, themagnetic bias fields is switched off and a current pulseStern-Gerlach

experiment of 𝐼 = 18Awith a duration of 3ms is run through the upper quadrupole coil.
This induces a strong magnetic field gradient along the 𝑦 direction leading
both to a spatial separation of the Zeeman spin populations similar as in a
Stern-Gerlach experiment as well as a total acceleration against gravity.

10. After a total TOF time of 8ms, absorption images of the three spin popula-
tions are taken, see Fig. 8.4a on the next page.

11. The density profiles of the spin populations are fitted by gaussians with posi-
tion, distance and width locked to each other. From the fits, the atom num-
ber per spin state is extracted.

12. The double occupancy 𝐷, defined as the fraction of atoms residing on dou-
ble occupied sites, is then calculated as

𝐷 = 2 𝑁 − /
𝑁 − / + 𝑁 − / + 𝑁 − /

. (8.4)

The method works in a similar way when starting with a ( − /, − /) spin mix-
ture. In this case the𝜋 pulse selectively associates molecules which after the pulse
consist of one atom with𝑚𝐹 = − / and one with𝑚𝐹 = − /. These molecules are
then dissociated by a following upward sweep over the Feshbach resonance and
then imaged in the same way.
In fact, with the rf pulse either the Zeeman state of atoms sitting on doubly

occupied states can be changed, as described above, or the transition of atoms on
singly occupied sites is addressed, at a frequency that is lower by the molecular
binding energy, see Fig. 8.4b on the facing page. Rabi oscillations between the
weakly repulsively interacting unbound state and the molecular state obtained
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Figure 8.4: Double occupancy measurement. a. A typical absorption image after perform-
ing Stern-Gerlach separation of the three spin states obtained from the ( − /, − /) spinmix-
ture by performing the state-dependent rf spectroscopy is shown. b. The rf spectrum in the
vicinity of the 𝑚𝐹 = − / ↔ − / transition shows two peaks, one corresponding to the
association of molecules on doubly occupied sites (molecular peak), the other to changing
the Zeeman state of an atom on a singly occupied site (atomic peak). Different 𝜋 pulse
times of  µs and  µs, respectively, where used, owing to the different Franck-Condon
overlaps.

when varying the pulse time are shown in Fig. 8.5. Several cycles of oscillations
are visible, demonstrating the coherence of the transition.

Figure 8.5: Rabi oscillations.The fraction of
atoms in the𝑚𝐹 = − / spin state is mea-
sured as a function of the rf pulse time for

a sample initially prepared in the ( − /, − /)
spin mixture at attractive interactions. Sev-

eral periods of Rabi oscillations with a damp-
ing mainly caused by magnetic field fluc-
tuations are visible. The lattice depth used
for freezing the atomic motion is  𝐸R.
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DETECTION EFFICIENCY OF THE ZEEMAN STATES

After the gradient pulse all currents in the magnetic field coils are set to zero in
order to perform absorption imaging at zero magnetic field. Owing to eddy cur-
rents and residual magnetization in the Mu-metal shielding, the magnetic fields
are however found to have not completely decayed at the time of absorption imag-
ing. As a result, the imaging transitions for the three Zeeman states are slightly
detuned from the zero-field energy as well as from each other, owing to the Zee-
man shift.This would lead to a wrong atom number determination and therefore
possibly an under- or overestimation of the double occupancy.
To correct for the detuning, we acquire separate resonance curves for the three Correcting for the

spin-dependent
detuning

spin states and fit them with lorentzian functions, see Fig. 8.6 on the following
page.We thendivide the atomnumbersmeasured in the actual experiments by the
relative height of the respective Lorentz function at the actual imaging detuning
𝛿, which we choose to lie at roughly the mean of the three peak positions.

CALIBRATING THE DOUBLE OCCUPANCY DETECTION EFFICIENCY

The double occupancy detection efficiency of the presented method is mainly de-
termined by the transfer efficiency of the rf 𝜋 pulse, which we find to be less than
unity. This is most probably caused by temporal and spatial fluctuations of the
magnetic bias field, which leads to shifts of the transition frequency. The tempo-
ral fluctuations are caused by noise in the current stabilization, while the spatial
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Figure 8.6: Detection efficiency of the Zeeman
states.The resonance curves of the three Zee-
man states obtained for correcting the mea-
sured atom numbers are shown. They are
rescaled to the same height and subsequently
fitted by lorentzians. The corrections, obtained
from the peak height at the detuning 𝛿 actually
used for the following measurements, are on
the order of not more than 10%.

fluctuations are due to the fact that the atoms are not positioned exactly in the
center of the Helmholtz coils used to create the bias field, see Fig. 3.29 on page 62.
We have determined the double occupancy detection efficiency using two in-Calibration using a

spin-polarized gas dependent methods: the single occupancy detection efficiency can be measured
using a spin-polarized cloud, where the rf pulse should theoretically transfer 100%
of the atoms. In an rf spectrum for a spinmixture as shown in Fig. 8.4b onpage 151,
the sum of the atomic peak height corrected by the single occupancy transfer ef-
ficiency plus the molecular peak height corrected by the double occupancy detec-
tion efficiency should be one. Knowing the single occupancy detection efficiency,
the double occupancy detection efficiency can therefore be extracted from the
spectrum.
Alternatively, after associating molecules using the magnetic field sweep overCalibration using

molecule formation the Feshbach resonance, TOF expansion followed by absorption imaging can be
performed directly by instantaneously switching off the lattice and the FORT as
well as all magnetic fields. The bound molecules are invisible in the absorption
image as their imaging transition is shifted, leading to an apparent reduction in
the detected atom number. The difference in measured atom number with and
without associating molecules is then given by the number of atoms on doubly
occupied sites. This alternative way of detecting double occupancies has a close
to unity detection efficiency and can – by comparison with the normal detection
method – be used to calibrate the efficiency of the latter.This alternative way of de-
tecting the occupancy might seem preferable at first sight as the general detection
method. However, it has the disadvantage that it requires two identical experi-
mental runs to obtain the double occupancy, making it prone to atom number
fluctuations.
Both methods lead to a double occupancy detection efficiency of 89(2)%. This

efficiency is taken into accountwhen analyzing the obtained data. Additionally, an
independently measured offset of Δ𝐷 = 2.2(3)%, caused by a residual population
of the third spin state after preparation of the spin mixture is subtracted from the
obtained double occupancies 𝐷.

8.2 OBSERVING THE METAL TO MOTT INSULATOR TRANSITION

In the experiment we tune interactions from weakly (𝑈/3𝑡 = 1.8(3)) to strongly
repulsive (𝑈/3𝑡 = 13(1)) and measure the double occupancy 𝐷 as a function of
the atom number 𝑁 in the lattice, see Fig. 8.7 on the next page. For weak inter-
actions, the system is in a metallic state which is compressible, as signaled by an
initial strong increase of𝐷 [Scarola et al., 2009]. Here, creatingmore double occu-
pancies requires less energy than placing additional atoms in the outside region
of the harmonic trap where the potential energy is large. For high atom numbers
𝐷 saturates as the system enters a band insulating state.
When increasing interactions, an incompressible Mott-insulating state forms

in the center of the trapped system. Therefore, 𝐷 is strongly suppressed and does
not increase as more atoms are added to the system. Only for the highest atom
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Figure 8.7: Observing the metal to Mott insu-
lator crossover in artificial graphene.Themea-
sured double occupancy 𝐷 versus atom num-
ber 𝑁 is shown for three different interaction
strengths 𝑈/𝑡. For strong interactions an in-

compressible Mott-insulating core forms, lead-
ing to a strong suppression of 𝐷. Error bars in
𝐷 and 𝑁 show the standard deviation of 5 mea-

surements. Data for additional interactions
can be found in Fig. 8.8 on the following page.

Negative values of 𝐷 are caused by the sub-
traction of an independently measured offset.
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numbers the chemical potential becomes comparable to the on-site interaction,
which allows for the creation of double occupancies [Jördens et al., 2008].

8.3 COMPARISON TO THEORY

A quantitative comparison of our results with a microscopic theory is made possi-
ble bymapping our system to the Fermi-HubbardHamiltonian as discussed in de-
tail inChapter 7 onpage 131.Thenearest-neighbor tunneling 𝑡 and the interaction
energy 𝑈 are determined from the Wannier function calculation (Section 4.2.2).
We validate the qualitative interpretation of the data shown above using a high-

temperature series expansion (HTSE) up to second order of the grand canonical
partition function [Oitmaa et al., 2006] (cf. Section 7.3.1 on page 142) to deter-
mine the expected 𝐷, see Fig. 8.8 on the following page, where also additional
data for intermediate interactions is shown.
For the calculation we use a nearest-neighbor tunneling of 𝑡/ℎ = 172(20)Hz Theory parameters

within the layers and the separately measured on-site interaction energies (see
Section 8.4 on page 155 for the measurement procedure)

𝑈/ℎ = [0.92(12), 2.96(3), 3.18(2), 3.95(2), 4.75(2), 6.52(3)] kHz

at the chosen scattering lengths

𝑎 = [86(1), 242(1), 270(1), 347(3), 429(4), 632(11)]𝑎.

The model assumes a connectivity of 𝑧 = 3 within the 2D planes and no inter-
layer tunneling, as well as a globally thermalized cloud. Both finite temperature
and the harmonic trap are taken into account. We obtain overall good agree-
ment with theory when allowing for the entropy per atom in the lattice 𝑠 = 𝑆/𝑁
as a fit parameter [Jördens et al., 2010]. For the six interactions, the fitted en-
tropies of 𝑠 = [2.1, 2.2, 2.7, 3.4, 2.7, 1.7]𝑘B are comparable to 𝑠in = 1.5(2) 𝑘B and
𝑠out = 2.5(1) 𝑘B measured in the dipole trap before loading and after reversing the
loading procedure.
We compute that about 50 layers contain Mott-insulating cores, each of which

consists of up to 2000 atoms. Deviations from theory are likely to arise because of
incomplete thermalization. The tunneling timescale is expected to be sufficiently
fast for equilibrationwithin layers (see Section 8.5 onpage 156). Yet, the slow inter-
layer tunneling when approaching the final configuration hinders the formation
of a globally thermalized state. A more detailed analysis would require a full non-
equilibrium model of coupled 2D layers.
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8.4 PROBING THE EXCITATION SPECTRUM

A characteristic feature of a Mott insulator is a gapped excitation spec-
trum [Brinkman et al., 1970], which we probe by recording 𝐷 in response to
modulating the lattice depth at different frequencies 𝜈 [Jördens et al., 2008].

Figure 8.9: Double occupancy buildup.The
measured double occupancy after a variable
duration of lattice intensity modulation of
the Y beam with an amplitude of ±% at
a frequency of 𝜈 = Hz is shown. The
atom number is set to 𝑁 = () × 
and the interaction to 𝑈/ℎ = . kHz. The
modulation is performed in a square lat-

tice with 𝑉X̄,Y,Z̃ = [.(), .(), .()]𝐸R,
resulting in a tunneling 𝑡/ℎ = Hz.
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After loading the gas into the lattice, we sinusoidally modulate 𝑉Y for 40ms by
±10%. As𝑉Y interferes with𝑉X, this leads to a modulation in the tunneling 𝑡 (𝑡)
of ∼ ±7% (∓17%) as well as an additional modulation of𝑈 by ±3% caused by the
changing width of the Wannier functions.
The typical dynamical response of the double occupancy to a modulation of Double occupancy

buildupvarying duration is shown for the case of a square lattice in Fig. 8.9 (similar re-
sults are obtained for the honeycomb lattice). For all further measurements, we
chose a modulation duration of 40ms, such that the response of the system is
within the linear regime of double occupancy creation [Greif et al., 2011] for the
whole parameter range. In the linear regime the creation rate is proportional to
the energy absorption rate [Tokuno et al., 2012]. For longermodulation durations,
𝐷 saturates at a certain value. This regime will not be considered in the present
work, as it contains little information about the initial state of the system.
In Fig. 8.10, we plot both the response and the measured base level without

modulation (arrows) for the same interactions as used in Fig. 8.8 on page 154, with
𝑁 = 80(2) × 10. For weak interactions there is almost no detectable response.
When entering the Mott-insulating regime we observe a gapped spectrum with a
pronounced peak at 𝜈 = 𝑈/ℎ, corresponding to the creation of localized double
occupancies.

Figure 8.10: Excitation spectra.The spec-
tra are obtained in the artificial graphene
system by measuring 𝐷 after sinusoidal

modulation of the lattice depth 𝑉Y at the
interaction strengths used in Fig. 8.8. The

solid lines are gaussian fits to the spec-
tra. Arrows indicate the reference values
without modulation. Error bars show the
standard deviation of 5 measurements.

U/3t

0.0 2.0 4.0 6.0 8.0
Modulation frequency ν (kHz)

0.0

0.1

0.2

D

=1.8 =5.7 =6.2 =7.7 =9 =13

In Fig. 8.11 on the following page, we compare the peak position at 𝜈 = 𝑈/ℎ ob- Comparison of the
excitation energies to
theory

tained from gaussian fits to modulation spectra (shown in Fig. 8.10) with the on-
site interaction energy calculated using maximally localized Wannier functions.
For weak interactions the ab initio calculation of theHubbard parameter𝑈 agrees
well with the measured value (see also Fig. 8.19 on page 161). Deviations are ob-
served for the strongest interactions. We attribute these to the deep optical lattice
in one direction leading to a size of theWannier function which becomes compa-
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rable to the scattering length and possibly to higher band effects. A more detailed
theory would however be necessary for a quantitative comparison in this regime.
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Figure 8.11: Theory comparison.
Comparison of the Hubbard pa-
rameters 𝑈 extracted from the
experiments (circles) with those
obtained from a calculation of
the Wannier functions in the hon-
eycomb lattice (solid line). The
statistical uncertainty in 𝑎 and the
fit error for the peak positions are
smaller than the displayed data
points.

8.5 THE LATTICE LOADING PROCESS

The equilibration within the 2D honeycomb layers requires a change of the quan-
tummany-body state during the lattice loading process.This is determined by the
time necessary for the global density redistribution and the formation of correla-
tions associated to the change in external potential. So far, equilibration dynamics
have been investigated experimentally for bosonic atoms in optical lattices [Ger-
icke et al., 2007; Hung et al., 2010; Bakr et al., 2010], whereas for strongly corre-
lated fermions the time evolution from the continuum to the Hubbard regime has
not been studied yet.
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Figure 8.12: The lattice loading process.The panels show𝐷 after loading ramps with vary-
ing duration 𝜏L for two interactions and two initial atom numbers. The solid line is the
expected 𝐷 from the HTSE taking atom loss and heating during lattice loading into ac-
count. The insets show the calculated equilibrium density profiles for the atomic cloud in
the optical dipole trap (dashed) and in the lattice (solid lines), illustrating the required
density redistribution during the loading. Here the initial atom number and entropies be-
fore loading into the lattice were used. Error bars in 𝐷 show the standard deviation of 3
measurements.

In Fig. 8.12 we study the lattice loading process by measuring the resulting 𝐷
after the loading ramp lasting between 𝜏L = 5ms and 𝜏L = 600ms. For the load-
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ing of the lattice from the dipole trap we use an S-shaped intensity ramp to the
final lattice depth 𝑉. The full time-dependent expression of the intensity ramp is Lattice loading

intensity ramp

𝑉(𝜏) = 3𝑉 
𝜏
𝜏L



− 2𝑉 

𝜏
𝜏L



. (8.5)

Both for intermediate (𝑎 = 242(1) 𝑎, blue triangles) and strong interactions
(𝑎 = 632(12) 𝑎, red circles) we observe a fast rise of 𝐷 up to 𝜏L = 200ms fol-
lowed by a slow decay. We additionally plot the expected 𝐷 as derived from the
HTSE (solid line) assuming global thermal equilibrium and taking into account
atom loss and the independently determined heating rate.This heating rate ismea-
sured by reversing the loading procedure and extracting the resulting entropy in
the dipole trap. For ramp durations larger than 200mswe find a roughly linear in-
crease in entropy with time.The theoretical predictions for the double occupancy
versus loading time are then obtained using the parameters from the double oc-
cupancy measurements shown in Fig. 8.8 on page 154 and Fig. 8.10 on page 155.
For 𝜏L ≳ 200ms the measured double occupancy agrees with the theoreti- Optimal lattice

loading durationcal model. When comparing this timescale with the nearest-neighbor tunneling
time of 6ms in the honeycomb layers, this suggests that 200ms is sufficient for
density redistribution within the 2D layers (for the case of coupled layers similar
timescales are observed, see Fig. 8.20 on page 162).
The calculated density profiles for different interactions and atom numbers (in-

sets Fig. 8.12 on page 156) indicate that the core density has to increase when
loading the atoms from the dipole trap into the lattice. For very short ramp times
this density redistribution cannot occur, leading to too low densities in the trap
center. This is confirmed by the observed low values of 𝐷 as compared to theory
for short 𝜏L.

8.6 COUPLED HONEYCOMB LAYERS

Figure 8.13: Coupled layers of artificial
graphene. Detail of the coupled layer

structure with 𝑡 = 𝑡⟂. The atoms pop-
ulate about  layers. In contrast to

e. g. multilayer graphene, the layers are
stacked exactly on top of each other.

t = t

t

t

The coupling between 2D layers is known to alter their physical properties as
compared tomono-layer systems. For the case of real graphene, this has been used
tomodify the dispersion relation around the Dirac points [Novoselov et al., 2006].
In our experiment, coupled honeycomb layers stacked as shown in Fig. 8.13 can
be produced, opening the possibility to simulate multilayer systems with tunable
interactions. The tunneling between sites of adjacent layers 𝑡⟂ can be controlled
via the lattice depth 𝑉Z̃.
In the followingwe set𝑉Z̃ = 7.0(2)𝐸R (corresponding to 𝑡 = 𝑡⟂) and investigate

the dependence of the double occupancy on atom number, see Fig. 8.14 on the
following page. The scattering length is set to the same values as in Fig. 8.12 on
page 156 and the trapping frequencies are 𝜔𝑥,𝑦,𝑧/2𝜋 = [55.7(7), 106(1), 57(1)]Hz.

8.6.1 OBSERVING THE METAL TO MOTT INSULATOR TRANSITION

For weak repulsive interactions (𝑈/5𝑡 = 2.5(3) with 𝑈/ℎ = 2.18(4) kHz) the
system is metallic, whereas for large interactions (𝑈/5𝑡 = 5.6(7) with 𝑈/ℎ =
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4.82(2) kHz) the system is in theMott-insulating regime, signaled by a strong sup-
pression of𝐷. We find excellent agreement with the theoretical predictions of the
HTSE using a connectivity of 𝑧 = 5, see Fig. 8.16 on the facing page, where also
additional datasets for intermediate interactions are shown.

0 100 200 300
N (103)

0.0

0.1

0.2

D
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U/5t =2.5
Figure 8.14: Coupled layers of ar-
tificial graphene.The double occu-
pancy 𝐷 versus atom number 𝑁 in
the metallic and Mott-insulating
regime for stacked layers of arti-
ficial graphene is shown. Error
bars in 𝐷 and 𝑁 show the standard
deviation of 5 measurements.

For these measurements, we choose the interactions

𝑈/5𝑡 = [2.5(3), 3.1(4), 4.0(5), 4.9(6), 5.6(7)] ,

with

𝑈/ℎ = [2.19(5), 2.68(3), 3.41(3), 4.18(2), 4.83(2)] kHz

at the same scattering lengths as for the 2Dmeasurements,

𝑎 = [242(1), 270(1), 347(3), 429(4), 632(11)]𝑎.

The fitted entropies per particle are 𝑠 = [1.8, 2.5, 2.4, 1.7, 1.8]𝑘B. As compared to
the 2Dmeasurements, we find only negligible deviations from the calculated dou-
ble occupancy for the whole range of interactions. We attribute this to the fast
tunneling time between layers leading to equilibration even between the honey-
comb planes.
Both the uncoupled- and coupled-layer systems show a crossover from theDifferences to the

case of independent
honeycomb layers

metallic to the Mott-insulating regime. However, quantitative differences are ob-
served in the double occupancy dependence for the case of coupled layers. These
differences originate from the altered lattice structure, which changes both the
lattice connectivity and on-site interaction 𝑈 .
The transition into an insulating regime can also be observed by keeping the

atom number fixed and scanning the interaction, see Fig. 8.15. We set the atom
number to𝑁 = 177(6) × 10 and scan the scattering length in the range 𝑎 = 220𝑎
to 𝑎 = 630𝑎. The observed decrease in double occupancy for larger interactions
agrees well with the prediction of the HTSE assuming a constant entropy of 𝑠 =
2.2𝑘B. Deviations from the theory could be explained by previous observations
that the heating during lattice loading is interaction-dependent [Jördens et al.,
2010].
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Figure 8.15: Double occupancy as a
function of interaction.TheMott in-
sulator transition is observed when
varying the interaction at a constant
atom number of 𝑁 = () × .
Good agreement with theory is ob-
tained for an experimentally realistic
entropy of 𝑠 = .𝑘B.
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8.6.2 ANISOTROPIC HONEYCOMB LATTICES

The tunability of the optical lattice allows for extending our studies of the static
properties of the artificial graphene system to linearly strained honeycomb geome-
tries and even beyond the transition where the two Dirac points merge.
In Fig. 8.17 we study the double occupancy as a function of 𝑉X̄ for weak

and strong interactions at different atom numbers. The other lattice parameters
are kept unchanged. In the non-interacting band structure the two Dirac points
merge at 𝑉X̄ ≈ 10𝐸R and the transition from the dimerized lattice structure to a
triangular geometry takes place at 𝑉X̄ ≈ 2.5𝐸R.
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Figure 8.17: Double occupancy for dimerized lattices. The measured double occupancy
for lattice geometries beyond the merging transition of the two Dirac points are shown for
weak and strong interactions for different atom numbers. The data is compared to a HTSE
for bipartite lattices, which shown up to the point where 𝑇/𝑡 = .. Lattice parameters:
𝑉X,Y,Z̃ = [.(), .(), .()]𝐸R.

Close to the merging point, the double occupancy still qualitatively agrees withTransition to a
dimerized system the values predicted by the HTSE for bipartite lattices (gray lines in the figure).

The disagreement however generally increases for decreasing 𝑉X̄, as is expected
since a decrease of 𝑉X̄ leads to an increase in the intra-dimer tunneling 𝑡, which
eventually becomes comparable or even larger than the temperature 𝑇 . Therefore
the HTSE predictions are only shown up to 𝑇/𝑡 = 1.5. Beyond this bound, con-
siderable disagreement was found in previous studies [Jördens et al., 2010]. Inter-
estingly, for weak interactions and large atom numbers, the agreement seems to
hold up to that point, followed by a considerable decrease in double occupancy
around 𝑉X̄ ≈ 7𝐸R. A similar behavior is observed for lower atom numbers.
For large interactions, a continuous decrease of𝐷 is observed as 𝑉X̄ is lowered,

with a noticeable re-increase close to the transition line to the triangular geometry.
However, for possible explanations of the observed behavior comparison to more
advanced theories, such as a HTSE for dimerized lattices [Greif, 2013], as well as
additional measurements would be necessary.
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8.6.3 PROBING THE EXCITATION SPECTRUM

Figure 8.18: Excitation spectra.The spectra
are obtained in coupled honeycomb layers
by measuring 𝐷 after sinusoidal modula-
tion of the lattice depth 𝑉Y at the interac-
tion strengths used in Fig. 8.16. The solid
lines are gaussian fits to the spectra. Ar-

rows indicate the reference value without
modulation. Error bars in 𝐷 and 𝑁 show

the standard deviation of 5 measurements.

U/5t

2.0 4.0 6.0 8.0
Modulation frequency ν (kHz)

0.0

0.1

0.2

D

=2.5 =3.1 =4.0 =4.9 =5.6

Using the same method as for the 2D data, we measure the lattice modula-
tion spectra and find a reduction by about 25% for the value of 𝑈 at the same
scattering length, see Fig. 8.18. For strong interactions a gapped excitation spec-
trum is found, as expected for the Mott-insulating state. The experimentally de-
termined𝑈 is shown in Fig. 8.19. In contrast to the 2Dmeasurements, it does not
deviate from the results obtained from lowest-bandWannier function overlap in-
tegrals even for the largest scattering lengths, owing to the smaller lattice depth
along the coupled layer direction. The scattering lengths are the same as for the
data in Fig. 8.16 on page 159.

Figure 8.19: Theory comparison.
The on-site interaction energy 𝑈
measured via lattice modulation
is compared to the theoretical ex-

pectation. We find good agreement
over the whole range of accessi-
ble scattering lengths. Error bars
in 𝐷 and 𝑁 show the standard
deviation of 5 measurements. 0 200 400 600
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8.6.4 THE LATTICE LOADING PROCESS

We have also studied the lattice loading process in coupled honeycomb layer sys-
tems, using the same method as for the independent layers. In Fig. 8.20 on the
following page, we plot the measured double occupancy 𝐷 versus the lattice load-
ing ramp duration 𝜏L. Similar to the case of independent layers, we also find a
quick rise for up to a ramp duration of 200ms, after which heating and atom loss
lead to a slow decay. From the data, we conclude that the system is thermalized for
lattice loading ramps with 𝜏L ≳ 200ms, as is the case for the independent layer
system.

8.7 CONCLUSION

In conclusion, we have investigated the properties of our artificial graphene sys-
tem as a function of interactions. The state of the system was probed by measure-
ments of the double occupancy and the excitation spectra obtained by latticemod-
ulation. The measured double occupancies are in good agreement with theory
predictions from a HTSE up to second order. The excitation spectra allow for an
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Figure 8.20: The lattice loading process for coupled honeycomb layers. The panels show
𝐷 after loading ramps with varying duration 𝜏L for two interactions and two initial atom
numbers. The insets show the calculated equilibrium density profiles for the atomic cloud
in the FORT (dashed) and in the lattice (solid lines), illustrating the required density redistri-
bution during the loading. Error bars in𝐷 show the standard deviation of 3measurements.

independent calibration of the on-site interaction energy, validating a novel nu-
merical method to obtain the Wannier functions for complex lattice geometries.
We furthermore studied the equilibration during the lattice loading procedure for
the 2D honeycomb layers. Extending our measurements to coupled honeycomb
layers, we found a shifted Mott insulator transition owing to the altered on-site
energies. At ≈ 200ms, the equilibration time, however, was found to be on the
same order as in the system with independent layers.
Our results allow for studying interaction effects on Dirac points using a pre-Outlook

viously developed technique [Lim et al., 2012; Uehlinger, Greif, Jotzu, Tarruell,
Esslinger, et al., 2013]. The realization of a 2D fermionic Mott insulator marks an
important step towards investigating the origin of high-temperature supercon-
ductivity [Hofstetter et al., 2002]. In combination with a recently implemented
entropy redistribution scheme [Greif et al., 2013], the low-temperature phase di-
agram of the Fermi-Hubbard model on a honeycomb lattice may be accessible.
There, a spin liquid phase at half-filling has been discussed [Meng et al., 2010;
Sorella et al., 2012; Assaad et al., 2013], whereas superconducting states have been
suggested for attractive and repulsive interactions beyond half-filling [Zhao et al.,
2006; Nandkishore, Levitov, et al., 2012]. In the future, the complex interplay of
interactions and topological lattices characterized by a non-zero Chern number
may be investigated [Rachel et al., 2010].



9SHORT-RANGE MAGNETIC ORDER IN
COMPLEX LATTICES

In this chapter, a preparation and detectionmethod for short-range magnetic cor-
relations in dimerized and anisotropic cubic lattices is presented. The magnitude
of the magnetic correlations is studied as a function of entropy and lattice geom-
etry. In the future, the developed preparation and detection methods could also
be applied to the honeycomb lattice geometry.

CHAPTER CONTENTS

9.1 Entropy redistribution scheme 164
9.2 Preparation 165
9.3 Detection of spin correlations 166
9.4 Dimerized lattice 168
9.4.1 Observation of magnetic correlations 168
9.4.2 Detailed experimental investigation 169
9.4.3 High-temperature series expansion 171

9.5 Anisotropic lattice 175
9.5.1 Experimental results 175
9.5.2 High-temperature series expansion 177
9.5.3 Dynamical cluster approximation 178

9.6 Conclusion 179

Quantummagnetism describes quantummany-body states of spins coupled by Quantum magnetism
exchange interactions and lies at the heart of many fundamental phenomena in
condensed matter physics [Auerbach, 1994; Sachdev, 2008]. While spin systems
often tend to show long-range order at low temperatures, the fascinating inter-
play of exchange interactions with geometry and quantum fluctuations can lead
to quantum states characterized by short-rangemagnetic order. Examples include
valence-bond crystals, spin liquids and possibly high-temperature superconduc-
tors [Sachdev, 2008; Anderson et al., 2004; Balents, 2010; Auerbach, 1994]. Quite
remarkably, the underlying many-body physics gives rise to computationally and
theoretically intractable regimes even in the phase diagrams of simple models,
such as the Fermi-Hubbard model. Moreover, the direct measurement of local
spin correlations in solids remains a major challenge.
For repulsively interacting fermions the metal to Mott insulator transition Previous experiments

could already be explored experimentally [Jördens et al., 2008; Schneider et al.,
2008]. Yet, progress towards entering the regime of quantum magnetism has
been hindered by the ultra-low temperatures, and entropies, required to observe
exchange-driven spin ordering in optical lattices. For bosonic quantum gases
promising developments have been reported: by mapping the spin to other de-
grees of freedom the temperature limitation could be circumvented, which al-
lowed for the exploration of 1D decoupled Ising spin chains and the simulation
of classical magnetism on a triangular lattice [Simon et al., 2011; Struck et al.,
2011]. Furthermore, exchange interactions were observed in artificially prepared
arrays of isolated double-wells or plaquettes [Trotzky et al., 2008; Nascimbène et
al., 2012].
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9.1 ENTROPY REDISTRIBUTION SCHEME

Energy
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Figure 9.1: Energy scales. Currently, tem-
peratures 𝑘B𝑇 below the interaction en-
ergy 𝑈 can be reached. For simple cubic
lattices, the exchange energy scale 𝐽 how-
ever remains inaccessible. In dimerized
or anisotropic lattices access to the spin
sector can be gained by increasing the ex-
change energy on a subset of links, leading
to an entropy redistribution. The increased
exchange energies are called 𝐽d for the
dimerized link or 𝐽s for the strong link
direction (in the anisotropic lattice), re-
spectively.

To overcome the prevalent temperature limitations and directly access ex-The temperature
challenge change-driven physics in thermalized systems, cooling schemes based on the

redistribution of entropy between different regions of the trap have been sug-
gested [Ho and Zhou, 2009; Bernier et al., 2009]. In this work, we instead propose
and implement a local entropy redistribution scheme within the lattice structure
to reach the regime of quantummagnetism. A sketch of the energy scales involved
in our system is shown in Fig. 9.1. In simple cubic systems, the energy associated
with the currently reachable temperature 𝑘B𝑇 is below the interaction energy 𝑈 ,
allowing for the observation of a Mott-insulating state in the system.The temper-
ature is however still above the exchange energy scale, which inhibits ordering of
the spin degree of freedom. As we are considering a thermodynamically closed
system, an increase of the exchange energy by interactions or lattice geometry
would also increase the temperature of the system accordingly owing to entropy
conservation, and therefore does not help to access low-temperature phases.
A possible route, however, is to prepare the atoms in either a dimerized or anLocal entropy

redistribution anisotropic simple cubic lattice, see Fig. 9.2 on the facing page. In both geometries,
a subset of links of the underlying simple cubic lattice is set to a larger exchange
energy as compared to the other links. As a result, the entropy is predominantly
stored in configurations involving the weak links. For fixed total entropy in the
trapped system, this allows us to reach temperatures between the two exchange
energy scales, see Fig. 9.1. In the dimerized lattice the resulting correlations on
the strong links correspond to an excess population of the low energy singlet as
compared to the triplet state – in close resemblance to an explicit valence-bond
crystal in the Heisenberg model [Diep et al., 2005]. In the anisotropic lattice the
low temperatures lead to antiferromagnetic spin correlations along one spatial

http://dx.doi.org/10.1126/science.1236362
http://arxiv.org/abs/1212.2634
http://dx.doi.org/10.1103/PhysRevLett.112.115301
http://arxiv.org/abs/1309.7362
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Figure 9.2: Magnetic spin correlations. Schematic view of the nearest-neighbor spin cor-
relations observed in the experiment. A two-component spin mixture of fermionic atoms
(red and blue) is prepared close to half-filling in a cubic lattice with two different tunnel
coupling configurations. On the left, a dimerized lattice with the strong dimer links 𝑡 and
weaker links 𝑡 is shown. Low temperatures lead to an excess number of singlets over triplets.
The anisotropic lattice contains a strong and weak tunneling link 𝑡 and 𝑡 along different
spatial axes. Antiferromagnetic spin correlations in the transverse direction are formed
along the strong link direction. In both figures exemplary thermal excitations in the form
of spin excitations or holes are shown.

axis, the transverse component of which is also detected via a singlet-triplet im-
balance. For both systems we study the dependence of the spin correlations as
a function of temperature and tunneling balance and find good agreement with
theory.

9.2 PREPARATION

The experiment is performed with a harmonically confined, balanced two-
component spin mixture of a quantum degenerate Fermi gas of 40K. After
sympathetic cooling with 87Rb, 2 × 10 40K atoms are transferred into the op-
tical dipole trap operating at a wavelength of 826 nm. A balanced incoherent
mixture of atoms in the Zeeman levels𝑚𝐹 = − / and − / of the 𝐹 = / hyperfine
manifold is then prepared and evaporatively cooled to temperatures below 10% of
the Fermi temperature [Jördens et al., 2008]. The two Zeeman levels are denoted
by ↑ and ↓. When taking data as a function of entropy, the gas is heated through
inelastic losses1 by setting the magnetic bias field to a value close to the Feshbach
resonance at 202.1G. We can measure the entropy per particle in the dipole trap
𝑠in using Fermi fits to the momentum distribution of the cloud after expansion.
The field is finally increased to 221.4G resulting in a repulsive scattering length
of 106(1) 𝑎.
The optical lattice is subsequently turned on in 200ms using an S-shaped laser-

intensity ramp. We load 50 × 10 to 100 × 10 atoms into the tunable-geometry
optical lattice.Themeasured visibility of the interference pattern 𝛼 is 0.90(5), and
is included when calculating the Hubbard parameters.The phase 𝜑 is stabilized to
0.00(3)𝜋, whilst 𝜃 is set to 1.000(1)𝜋, see Eq. (3.6) on page 46. We can introduce
a checkerboard dimerization in the 𝑥 − 𝑦 plane by strengthening every second
tunneling link along the 𝑥 axis, see Fig. 9.2, left panel. The checkerboard pattern
replicates along the 𝑧 axis. Our system is well described by a 3D single-band Hub-
bard model with a repulsive on-site interaction energy 𝑈 , unless explicitly stated. Description by a

Hubbard modelThe tunneling along theweak links in both the dimerized aswell as the anisotropic
cubic lattice geometry is set to 𝑡/ℎ = 67(3)Hz for all measurements. For theory

1 The gas is heated by the energy released as pairs of atoms form deeply boundmolecules in the vicinity
of the Feshbach resonance.
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comparison, an accurate determination of the harmonic confinement induced by
the lattice and dipole trap beams is essential. For

𝑉X̄,X,Y,Z̃ = [3.7(1), 0.13(1), 9.8(3), 11.0(3)]𝐸R,

as in Fig. 9.6a on page 169, the lattice contributes harmonic trapping frequencies
of

𝜔Lattice
𝑥,𝑦,𝑧 /2𝜋 = [62.7(9), 57(1), 54.3(3)]Hz.

Additionally, the optical dipole trap contributes with the trapping frequencies

𝜔Dipole
𝑥,𝑦,𝑧 /2𝜋 = [30.7(2), 105.9(3), 34.6(2)]Hz,

in all data sets shown, except for Fig. 9.5 and Fig. 9.12a, where

𝜔Dipole
𝑥,𝑦,𝑧 /2𝜋 = [28.1(2), 90.1(3), 31.6(2)]Hz.

9.3 DETECTION OF SPIN CORRELATIONS
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Figure 9.3: Summary of the technique used formeasuring the atomic singlet and triplet frac-
tions 𝑝 and 𝑝 .The different detection steps for the exemplary case of two singlet states in
a dimerized lattice are sketched. Depending on the oscillation time, the absorption images
on the right show either a large double occupancy in the lowest band corresponding to
singlets (top row), or an increased higher band fraction indicating triplet states (bottom
row). For the symbol legend, see Fig. 9.2.

As shown in Fig. 9.3, the fraction of atoms forming singlets and triplets on
neighboring lattice sites (𝑝 and 𝑝) is detected by transforming the lattice to a
checkerboard geometry (see Fig. 9.4 on the facing page), similar to a previously
developed technique [Trotzky et al., 2010].
In the first detection step, the atomic motion in the initial lattice is frozen by

rapid conversion to a simple cubic structure with negligible tunneling.

FREEZING LATTICE RAMPS

For measurements in the dimerized lattice, the lattice is ramped up in two steps.
All beam intensities are linearly increased over the course of 0.5ms up to the point
where𝑉Y = 30(1) 𝐸R,𝑉Z̃ = 40(1)𝐸R and all other intensities in the 𝑥−𝑦 plane are
ramped such that the potential is not deformed. In a second linear ramp lasting
10ms, the lattice is changed to a simple cubic geometry where 𝑉X̄,X,Y,Z̃ = [25(1),
0, 30(1), 40(1)]𝐸R.
This ramp can be considered sudden for the inter-dimer links but adiabatic

for the intra-dimer links. Our observable hence locally projects onto the two-site
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eigenstates of individual dimers, which includes an admixture of double occu-
pancies. We use an exact calculation of a two-site Hubbard model to estimate the
adiabaticity of the ramp. The unnormalized singlet ground state of this system is Singlet ground state
given by

4𝑡
−𝑈 + √16𝑡 + 𝑈

 |↑, ↓⟩ − |↓, ↑⟩  +  |↑↓, 0⟩ + |0, ↑↓⟩  . (9.1)

There is hence a significant contribution of double occupancy in the regimewhere Double occupancy
admixture𝑈 ∼ 𝑡, as applies for the most strongly dimerized lattices investigated in this

work, whilst the contribution vanishes for the deep simple cubic lattice used for
detection, where 𝑈/𝑡 ≈ 600. For the given ramp-times and including site-offsets
due to the harmonic trapping potential, the probability of populating excited
states on a dimer during such a ramp remains below 0.1% for all values of 𝑈 and
𝑡 explored in the dimerized systems.
In the anisotropic lattice, we directly ramp to 𝑉X̄,Y,Z̃ = [25(1), 30(1), 40(1)]𝐸R

in 0.5ms (𝑉X = 0 𝐸R throughout). In contrast to the dimer lattice ramp, this
process can be considered sudden for all links, as the duration of the ramp is al-
ways well below the tunneling time in the initial lattice. Our detection method
then corresponds to locally projecting the wave function of the system onto
 |↑, ↓⟩ − |↓, ↑⟩ /√2 on pairs of sites when measuring 𝑝, hence excluding any
contributions from double occupancies. The probability of this projection, as cal-
culated from the two-site Hubbard model, lies above 80% for all shown data and
is higher for deeper lattices. For both lattice geometries, the triplet state remains
unaffected by changes in 𝑈 and 𝑡.

DOUBLE OCCUPANCY REMOVAL

For both systems, once the ramp to the deep simple cubic lattice has been com-
pleted, double occupancies are removed via spin-changing collisions, which occur
after transferring the atoms from the𝑚𝐹 = − / to the𝑚𝐹 = − / state [Krauser et
al., 2012].We verify that this procedure removes all double occupancies but leaves
singly occupied sites unaffected by measuring the number of double occupancies
and the total number of atoms before and after applying the removal sequence.

SINGLET-TRIPLET OSCILLATIONS

We then apply a magnetic field gradient, which causes spin-dependent energy
offsets of Δ − /, − //ℎ = [1291(1), 1156(1)]Hz for atoms of opposite spin on ad-
jacent sites. This gives rise to coherent oscillations between the singlet |s⟩ =
 |↑, ↓⟩ − |↓, ↑⟩ /√2 and the triplet |t⟩ =  |↑, ↓⟩ + |↓, ↑⟩ /√2 state at a frequency
𝜈 = Δ/ℎ [Trotzky et al., 2010]. If the initial amount of singlets and triplets is equal,
no overall oscillation will be visible, as |s⟩ and |t⟩ oscillate in antiphase.

Figure 9.4: Merging configurations.
The two possible merging configu-
rations in a dimerized lattice. Sin-
glets and triplets are detected on a
set of adjacent sites arranged on a
checkerboard pattern in the plane.
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MERGING ADJACENT SITES

After a certain oscillation time, we remove the gradient and merge two adjacent
sites adiabatically into one by linearly reducing 𝑉X̄ to zero whilst increasing 𝑉X
to 25(1) 𝐸R. Owing to the symmetry of the two-particle wave function, the singlet
state on neighboring sites evolves to a doubly occupied site with both atoms in
the lowest band, while the triplet state transforms into a state with one atom in
the lowest and one atom in the first excited band.
The fraction of atoms forming double occupancies in the lowest band of theDouble occupancy

detection merged lattice,𝜂D, is detected by an rf transfer to the previously unpopulated𝑚𝐹 =
− / spin state [Jördens et al., 2008]. Here, we take into account an independently
calibrated detection efficiency of 89(2)%, see Section 8.1.2 on page 151. We verify
that merged sites containing two atoms of opposite spin but in different bands are
not detected as double occupancies by artificially creating a state containing large
amounts of triplets but no singlets and measuring 𝜂D.
The fraction of atoms in the higher band 𝜂HB is obtained from a band map-Higher-band fraction

ping technique [Esslinger, 2010]. For the final readout we take absorption images
after Stern-Gerlach separation of the spin states during ballistic expansion. For
an imbalance between the initial singlet and triplet populations, 𝜂D and 𝜂HB will
show oscillations with opposite amplitudes. As the double occupancy in the low-
est band contains only contributions from two particles with opposite spins, we
can infer the fraction of atoms forming singlets and triplets from the maxima and
minima of a sinusoidal fit to 𝜂D. The higher band fraction 𝜂HB has an additional
offset caused by dimers containing two atoms with the same spin or one atom
with an antisymmetric spatial wave function.
More details on the theoretical framework and the detection scheme can be

found in the thesis of Daniel Greif [2013].

9.4 DIMERIZED LATTICE

9.4.1 OBSERVATION OF MAGNETIC CORRELATIONS
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Figure 9.5: Singlet-triplet oscillations. Exemplary singlet-
triplet oscillation in a strongly dimerized lattice with
𝑈/𝑡 = .() and 𝑡/𝑡 = (). We observe an oscillation
in the double occupancy after merging, 𝜂D, and in the
higher band fraction, 𝜂HB, when merging along the strong
links (blue circles), whereas no oscillations are visible for
the weak links (ochre triangles). The phase of the oscil-
lation is shifted owing to the double occupancy removal
procedure. The red dashed lines denote the extracted sin-
glet and triplet fraction 𝑝 and 𝑝 . Error bars show the
standard deviation of at least five measurements.

When loading atoms into a strongly dimerized lattice and merging along the
strong links, we observe oscillations in 𝜂D and 𝜂HB, see Fig. 9.5. This reveals an
excess number of singlets, corresponding to magnetic order on neighboring sites.
We quantify this order by the normalized imbalanceNormalized

singlet-triplet
imbalance ℐ =

𝑝 − 𝑝
𝑝 + 𝑝

. (9.2)

The order in the strongly dimerized lattice originates from temperatures belowIntra-dimer
exchange energy the intra-dimer exchange energy

𝐽 = −𝑈2 + √16𝑡 + 𝑈⁄2 , (9.3)
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which denotes the singlet-triplet splitting on a single dimer. While such temper-
atures require very low entropies for isotropic lattices [Fuchs et al., 2011], in our
system the access to the regime of magnetic ordering is facilitated by the presence
of the weaker inter-dimer exchange energy 𝐽 ≪ 𝐽. This leads to an entropy re-
distribution from states on the strong to the weak links and gives access to the
temperature regime 𝐽 < 𝑘B𝑇 < 𝐽 for experimentally attainable entropies. As
expected for strong dimerization, we find no visible oscillations when merging
along the weak links, which indicates the absence of magnetic correlations on
these links, see Fig. 9.5 on page 168.The observed constant values of 𝜂D = 0.07(1)
and 𝜂HB = 0.63(3) are consistent with a state where nearly all singlets are located
on neighboring dimer links, with vanishing correlations between them.
We apply a sinusoidal fit to the double occupancy, where the frequency and Fitting the

singlet-triplet
oscillations

phase are fixed, and take into account the damping of the oscillations. The damp-
ing was determined using ameasurement of the singlet-triplet oscillations during
up to 400ms and is included by multiplying the amplitude by 1.16 [Greif, 2013].
A phase shift arises from a weak residual magnetic field gradient present during
the double occupancy removal procedure, whereas the contribution from switch-
ing the singlet-triplet oscillation gradient on and off is negligible.We confirm that
themaximumof the oscillation corresponds to its starting point (and hence to the
number of singlets) by merging the lattice immediately after it has been ramped
to a deep simple cubic structure.

9.4.2 DETAILED EXPERIMENTAL INVESTIGATION
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Figure 9.6: Entropy scan. a. Singlet-triplet imbalance on the strong dimer links vs. initial entropy before loading
into the lattice 𝑠in and vs. relative temperature 𝑘B𝑇/𝐽 in a dimerized lattice with𝑈/𝑡 = .() and 𝑡/𝑡 = ().The
imbalance and the absolute singlet fraction (inset) decrease with increasing entropy. Solid lines are the prediction
of a HTSE taking into account different amounts of added entropy 𝑠 during the lattice loading. b. The separate
singlet and triplet fractions, which are used to compute the imbalanceℐ , are shown. Vertical error bars denote the
fit error from singlet-triplet oscillations consisting of 63 measurements.The errors in 𝑠in are the standard deviation
of five measurements.

To analyze the effect of temperature on the magnetic correlations, we measure Effect of temperature
the dependence of the singlet-triplet imbalance on entropy, see Fig. 9.6a. The
imbalance ℐ and the absolute singlet fraction 𝑝 reduce for larger entropies, as
triplet states become thermally populated. The singlet fraction is additionally di-
minished by a shrinking half-filled region in the trapped system [Greif et al., 2011].
Separate curves for 𝑝 and 𝑝 are shown in Fig. 9.6b. We find good agreement
with a second order HTSE of coupled dimers when including an entropy increase



170 Short-range magnetic order in complex lattices

of Δ𝑠 = 0.4 𝑘B with respect to the initial entropy in the harmonic trap, 𝑠in. This
heating is associated to the lattice loading [Jördens et al., 2010] and is larger for
the lowest entropies, consistent with previous results [Greif et al., 2011]. From the
measured imbalances we infer temperatures below 0.4𝐽.
We additionallymeasured the fraction of atoms on doubly occupied sites𝐷dimer

in the lattice after freezing out the atomicmotion but before applying the cleaning
procedure and inducing singlet-triplet oscillations. Note that for the dimer lattice,
this fraction does not contain any contributions from the admixture of double oc-
cupancies present in the initial singlet state. For the entropy scan we find a nearly
constant value of 𝐷dimer = 0.026(5).
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Figure 9.7: Changing the dimerization. a. Imbalance versus dimerization 𝑡/𝑡 and 𝐽/𝐽 , showing an increase for
strongly dimerized simple cubic lattices. The solid line is the theory prediction for an entropy per particle of . 𝑘B
in the lattice, which includes the heating during loading. b. The separate singlet and triplet fractions are shown.
Vertical error bars denote the fit error from singlet-triplet oscillations consisting of 63 measurements. The errors
in 𝑡/𝑡 stem from lattice calibration uncertainties.

For reduced dimerizations the coupling between dimers leads to increasedDependence on the
dimerization inter-dimer correlations. The excitation energy of triplets is then lowered as they

delocalize over the lattice, thus changing the nature of the magnetic ordering. In
Fig. 9.7a we use the tunable lattice to investigate the dependence of the imbal-
anceℐ on the tunneling ratio 𝑡/𝑡. For this measurement, individual curves for
𝑝 and 𝑝 are shown in Fig. 9.7b. Additionally, we show the dependence of the
interaction energy on the dimerization in Fig. 9.8. For this set of measurements,
the double occupancy ranges between 0.066(4) and 0.29(2).
As the dimerization is progressively removed the imbalance ℐ decreases in

good agreement with theory and eventually falls below our experimental resolu-
tion. This decrease can be attributed to the inter-dimer exchange energy 𝐽 be-
coming smaller than the temperature 𝑇 . For vanishing temperatures the system
is expected to undergo a quantumphase transition from a gapped spin liquid state
to a long-range ordered antiferromagnet as 𝑡/𝑡 is reduced below a critical value,
where the spin gap becomes zero [Sachdev, 2008; Rüegg et al., 2004].
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Figure 9.8: Interactions.The
interaction energy ratio 𝑈/𝑡
as a function of 𝑡/𝑡, as calcu-
lated from the experimental
parameters, is shown for the
data points of Fig. 9.7.
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9.4.3 HIGH-TEMPERATURE SERIES EXPANSION

OVERVIEW

For sufficiently deep lattices the system is well described by a single band Fermi-
Hubbard model.The interaction energy𝑈 and nearest-neighbor tunneling 𝑡𝑖,𝑗 are
evaluated from Wannier function integrals [Lewenstein et al., 2007]. The theo-
retical expectations for the singlet-triplet imbalance in the dimerized lattice are
calculated from a perturbative coupling of isolated dimer links with tunneling 𝑡.
The resulting partition function expansion is then calculated up to second order
in 𝑡/𝑘B𝑇 . While the dimer link contains 16 states in total and the tunneling oper-
ator is non-diagonal between neighboring dimers, the evaluation of the relevant
matrix elements is directly analogous to the case of single sites [Henderson et al.,
1992]. See [Greif, 2013] for a discussion of the high-temperature series expan-
sion (HTSE) technique for the dimerized lattice.
The harmonic trap is included in a local density approximation, which leads

to a quadratically varying chemical potential. All thermodynamic quantities are
obtained after integration over the entire trap using independent calibrations of
the atom number, trap frequencies and lattice depths [Jördens et al., 2010]. In the
limit of very strong dimerization, theory predicts

𝑝/𝑝 ∝ exp −𝐽/𝑘B𝑇 , (9.4)

which can be used for lattice thermometry.

DETAILS

We start with the definition of the homogeneous single-band Hubbard Hamil-
tonian in a dimerized cubic lattice with strong and weak links between nearest
neighbors 𝑖, 𝑗 and 𝑖, 𝑗 , respectively, see Fig. 9.2 on page 165,

�̂�𝐷 = �̂� + �̂�

�̂� = − 𝑡d
𝜎,𝑖,𝑗

(�̂�†𝑖,𝜎�̂�𝑗,𝜎 + h.c.)

+ 𝑈 
𝑖
�̂�𝑖,↑�̂�𝑖,↓ − 𝜇

𝑖
(�̂�𝑖,↑ + �̂�𝑖,↓)

�̂� = − 𝑡 
𝜎,𝑖,𝑗

(�̂�†𝑖,𝜎�̂�𝑗,𝜎 + h.c.) .

(9.5)

We have split the Hamiltonian into the dimer part �̂� and the coupling between
dimers �̂�. The on-site interaction energy is given by 𝑈 , the tunneling matrix
elements between nearest neighbors by 𝑡 and 𝑡d and the chemical potential is
parametrized with 𝜇. The fermionic creation operator for an atom on the lattice
site 𝑖 is given by �̂�†𝑖,𝜎, where 𝜎 ∈ {↑, ↓} denotes the magnetic sublevel and h.c. is the
Hermitian conjugate.The particle number operator is �̂�𝑖 = �̂�𝑖,↑+�̂�𝑖,↓, �̂�𝑖,𝜎 = �̂�†𝑖,𝜎�̂�𝑖,𝜎.
Denoting the inverse temperature with 𝛽 = 1/𝑘B𝑇 , the thermal average of an ob-
servable 𝒪 then reads in the grand canonical potential Thermal average of

an observable

⟨𝒪 ⟩ =
Tr 𝒪 𝑒−𝛽�̂�𝐷
Tr 𝑒−𝛽�̂�𝐷

. (9.6)

We now treat the coupling Hamiltonian �̂� = 𝑡�̂� as a perturbation, which leads to
an expansion of the above expression in powers of the dimensionless parameter 𝛽𝑡
[Henderson et al., 1992]. The expansion is expected to be close to the exact result
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in the regime 𝑡 ≪ 𝑘B𝑇 ≪ 𝑡, 𝑈 . For the partition function up to second order
(denominator in Eq. (9.6) on page 171) we find

𝒵 = 𝒵 + (𝛽𝑡)
𝒵
𝛽 

𝛽




𝜏


d𝜏d𝜏⟨�̂� ′(𝜏)�̂� ′(𝜏)⟩ . (9.7)

The expression for the numerator is analogous. The partition function of the un-
perturbed Hamiltonian is denoted by𝒵, whereas ⟨...⟩ denotes the thermal av-
erage of the unperturbed Hamiltonian

⟨�̂� ′(𝜏)�̂� ′(𝜏)⟩ = Tr exp(−𝛽�̂�)�̂� ′(𝜏)�̂� ′(𝜏) ⁄𝒵

�̂� ′(𝜏) = 𝑒𝜏�̂� �̂�𝑒−𝜏�̂� .
(9.8)

OBSERVABLES

As the expansion is up to second order in the tunnel coupling, it is sufficient to
evaluate all expressions in a two-dimer basis. Denoting the single dimer Hamilto-
nian in the grand canonical potential with �̂�d

 , the unperturbed partition function
then reads

𝒵 d
 = Tr 𝑒−𝛽�̂�

 

. (9.9)

The evaluation of the second order terms is done in a double dimer basis |Ψ
𝑖 , Ψ

𝑗 ⟩,
where |Ψ

𝑖 ⟩ and |Ψ
𝑗 ⟩ each denote one of the 16 possible eigenvectors of the first

and second dimer link. This essentially leaves the evaluation of matrix elements
of the following kind:

⟨Ψ
𝑗 , Ψ

𝑖 |�̂� ′(𝜏)�̂� ′(𝜏)|Ψ
𝑖 , Ψ

𝑗 ⟩ and

⟨Ψ
𝑗 , Ψ

𝑖 |𝒪 �̂� ′(𝜏)�̂� ′(𝜏)|Ψ
𝑖 , Ψ

𝑗 ⟩ ,
(9.10)

which can be computed either analytically or numerically.
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Figure 9.9: Lattice filling. HTSE predictions up to second order for the homogeneous
dimerized cubic lattice. The dependence on filling of the dimer singlet probability and of
the entropy per site is shown. We set 𝑈/𝑡 =  and 𝑡/𝑡 =  or  and use different tempera-
tures 𝑘B𝑇/𝑡. The entropy at half filling for large dimerization is strongly reduced.
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For the singlet and triplet fraction the observable 𝒪 takes the form of a pro-
jector for the 16 possible states on a dimer. The entropy and particle number per
dimer are evaluated from the grand canonical potential Ωd = −𝑘B𝑇 log𝒵 d of
a single dimer. Figure 9.9 on page 172 shows the dimer singlet probability and Thermodynamic

quantities versus
filling

the entropy per site versus filling calculated in second order for different temper-
atures and dimerizations. A comparison between the predictions of lowest order
(atomic limit) and second order is shown in Fig. 9.10.
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Figure 9.10: Higher order contributions. Comparison of the HTSE predictions in lowest
and second order (dashed and solid line) for the dimer singlet probability and for the en-
tropy per site in a homogeneous dimerized cubic lattice. The filling is set to one particle
per site and the interaction to 𝑈/𝑡 = . The second order contributions are expected to be
larger for lower temperatures and lead to a reduction of the singlet probability.

SINGLET AND TRIPLET FRACTIONS

The fraction of atoms forming singlets and triplets 𝑝 and 𝑝 are obtained from
an integration over the left sites of each merged pair, which we define to be part
of the set𝒜 (see Fig. 9.4 on page 167),

𝑝 = 2
𝑖∈𝒜

⟨�̂�𝑖 ⟩⁄𝑁 �̂�𝑖 = |Ψ 
𝑖 ⟩ ⟨Ψ 

𝑖 |

𝑝 = 2
𝑖∈𝒜

⟨�̂�𝑖 ⟩⁄𝑁 �̂�𝑖 = |Ψ 
𝑖 ⟩ ⟨Ψ


𝑖 | .

(9.11)

Here �̂�𝑖 and �̂�

𝑖 are the projection operators on the singlet and triplet states |Ψ 

𝑖 ⟩
and |Ψ 

𝑖 ⟩ on neighboring sites 𝑖 and 𝑖 + 1, ⟨...⟩ denotes the thermal average and𝑁
the total atom number. For the measurements in the anisotropic simple cubic lat-
tice, the projection operators are related to the spin operators 𝐒𝑖 = /∑𝑠,𝑠′ �̂�

†
𝑖,𝑠𝝈�̂�𝑖,𝑠′ ,

where 𝝈 = (𝜎𝑥, 𝜎𝑦, 𝜎𝑧) are the Pauli matrices,

�̂�𝑖 =
�̂�𝑖�̂�𝑖+
4 − 𝐒𝑖𝐒𝑖+

�̂�𝑖 = 𝐒𝑖𝐒𝑖+ − 2𝑆𝑧𝑖 𝑆𝑧𝑖+ +
�̂�𝑖�̂�𝑖+
4 .

(9.12)

From this the equality of Eq. (9.15) on page 175 is immediately obtained. In the
dimerized lattice the projection operator on the triplet reads the same, whereas
for the singlet the two-site system needs to be diagonalized.

HARMONIC TRAP

The effect of the harmonic trap is included in a local density approximation with
a quadratically varying chemical potential

𝜇(𝑟) = 𝜇 −
1
2𝑚�̄�

 
𝜆
2 


𝑟, (9.13)
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where �̄� is the geometric mean of the trapping frequencies, 𝜇 the chemical po-
tential in the center of the trap, 𝜆 the wavelength of the optical lattice beam and
𝑟 the normalized distance of a given site to the trap center. Any trap averagedTrap averaged

observables observable 𝒪 trap is then obtained from an integration of the contributions per
site 𝒪 hom(𝜇),

𝒪 trap = 
∞


4𝜋𝑟𝒪 hom(𝜇(𝑟))d𝑟 . (9.14)

Owing to the harmonic trap, the energy offset between neighboring sites on the
dimer links changes over the cloud size.The relative correction of this effect to all
shown quantities was computed to be less than a few percent.
Figure 9.11 shows the in-trap distribution of the entropy per site and density for

a dimerized and simple cubic lattice.Owing to the entropy redistribution, the local
entropy per site 𝑠𝑖 in the half filled region (𝑛 = 1) reduces to values below 0.6𝑘B for
the dimerized lattice. In contrast, the entropy per site does not fall below log 2 in
the half-filled region in the simple cubic case, which is caused by the spin degree of
freedom of the two-component mixture. For a trap-averaged entropy of 𝑠 = 1.0𝑘B,
the local entropy at half-filling can even fall below 0.1𝑘B in the dimerized lattice.
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Figure 9.11: Density and entropy distribution. Comparison of the density and entropy
distribution in the harmonic trap for a simple cubic and dimerized lattice. Top row. Com-
parison for parameters realized in the experiment, where both systems have the same trap-
averaged entropy per particle of .𝑘B. This corresponds to the estimated lowest entropy in
the lattice from the highestmeasured value of the singlet-triplet imbalanceℐ , see Fig. 9.6a
on page 169. In both plots the total particle number is set to 𝑁 =  ×  (as in the
experiment) with a geometric mean trap frequency of �̄� = 𝜋 × Hz, which gives one
particle per site in the trap center.The density and entropy distribution are calculated from
the second order HTSE. The lattice parameters for the dimerized lattice correspond to the
datapoint with the largest dimerization of Fig. 9.7a on page 170: 𝑈/𝑡 = . and 𝑡/𝑡 = ,
where 𝑡/ℎ = Hz. For comparison, the interaction is set to𝑈/𝑡 = . in the simple cubic
lattice. Bottom row. Comparison of the local entropy reduction for a lower trap-averaged
entropy of .𝑘B and  ×  particles. The entropy at half-filling in the dimerized lattice
falls below .𝑘B.
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Figure 9.12: Nearest-neighbor antiferromagnetic order. a. Transverse spin correlator versus tunneling ratio 𝑡/𝑡
and lattice depth 𝑉X̄ in a 3D anisotropic simple cubic lattice with 𝑉Y,Z̃ = .()𝐸R. Positive values correspond to
antiferromagnetic ordering. The inset shows the normalized spin correlator𝒮 , denoting the fraction of antiferro-
magnetic ordering at the relevant density. Here 𝑈/𝑡 decreases from () to .(). Solid lines are the prediction
of a HTSE for an entropy per particle of . 𝑘B, as used in Fig. 9.7a on page 170, and are shown up to 𝑡/𝑘B𝑇 = /.
The dashed lines are results from the dynamical cluster approximation (DCA) calculation for different entropies.
b. The singlet and triplet fractions are shown separately. Error bars as in Fig. 9.7 on page 170.

9.5 ANISOTROPIC LATTICE

9.5.1 EXPERIMENTAL RESULTS

The key to the observation of quantum magnetism in our system is the presence
of two different exchange energy scales. Without dimerization, this situation also
occurs for anisotropic simple cubic lattices with tunneling 𝑡 along two axes and a
stronger tunneling 𝑡 along the third direction. In this case the symmetry between
neighboring links is restored and the detected singlet and triplet fractions are the
same for both merging configurations. We observe a clear population difference
(𝑝 − 𝑝)/2 after loading a gas with entropies 𝑠in below 1.0 𝑘B into an anisotropic
lattice, which increases to 4% for larger tunneling ratios 𝑡/𝑡, see Fig. 9.12a. Inde- Dependence on

anisotropypendent curves for 𝑝 and 𝑝 are shown in Fig. 9.12b. Additionally, we show the
dependence of the interaction energy on the anisotropy in Fig. 9.13 on the next
page. Measuring the double occupancy immediately after freezing out the atomic
motion 𝐷anisotropic now corresponds to a direct projection onto doubly occupied
sites. We find double occupancies between 0.14(2) and 0.19(2).
The population difference (𝑝 − 𝑝)/2 is equal to the transverse spin correlator Measuring the

transverse spin
correlator

between neighboring sites 𝑖 and 𝑖 + 1 along the strong tunneling direction,

−⟨𝑆𝑥𝑖 𝑆𝑥𝑖+⟩ − ⟨𝑆
𝑦
𝑖 𝑆

𝑦
𝑖+⟩ = (𝑝 − 𝑝)⁄2 . (9.15)

This quantity hence directly characterizes the fraction of atomswith antiferromag-
netic ordering on neighboring sites in the entire atomic cloud. Our observations
also extend to weak lattices, where correction terms to the single-band Hubbard
model become relevant [Werner et al., 2005]. In this regime a variety of magnetic
phases have been predicted [Mathy et al., 2009; Ma et al., 2012].
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Figure 9.13: Interactions.The
interaction energy ratio 𝑈/𝑡
as a function of 𝑡/𝑡, as calcu-
lated from the experimental
parameters, is shown for the
anisotropy scan of Fig. 9.12 on
page 175.

In the regime of small anisotropies, the results can again be compared to a sec-
ond order HTSE, with which we find good agreement. For larger anisotropies the
expansion breaks down, as the strong tunneling and the temperature become com-
parable. In this regime a dynamical cluster approximation (DCA) [Maier et al.,
2005] of the 3DHubbard model was used to calculate the transverse spin correla-
tor [Imriška et al., 2014a,b], resulting in a good agreement with the experiment
for entropies in the range of 𝑠 = 1.4𝑘B to 1.8𝑘B, see Section 9.5.3 on page 178. In
the large anisotropy regime we intuitively expect the temperature to lie between
the large and small exchange scales 𝐽 < 𝑘B𝑇 < 𝐽, which is confirmed by the DCA
results, see Fig. 9.14.
In this regime, the systembehaves as an array of 1D spin-ordered chainswithout

correlations between them [Giamarchi, 2004], where the majority of the entropy
is stored in configurations involving the weak links. Low-dimensional systems
have been predicted to show enhanced nearest-neighbor correlations [Gorelik et
al., 2012].
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Figure 9.14: Temperature. Ratio of
temperature 𝑇 to the strong tunnel-
ing 𝑡 versus anisotropy as extracted
from the DCA/LDA calculations. Atom
numbers and interaction strengths as
in Fig. 9.12 on page 175.

For temperatures much larger than the strong exchange energy the magneticDependence on
temperature correlations should disappear. In Fig. 9.15a on the facing page and – for a differ-

ent anisotropy – in Fig. 9.16 on the next page we study the dependence on the
initial entropy 𝑠in. Separate curves for 𝑝 and 𝑝 are shown in Fig. 9.15b on the
facing page. For this data𝐷anisotropic lies between 0.11(6) and 0.21(1). We find the
correlations to vanish for entropies above 2.5 𝑘B per particle.
The calculated transverse spin correlator obtained using the DCA calculation

agrees well with the higher-entropy points, when using the entropy measured be-
fore loading into the lattice 𝑠in as the lattice entropy. For the lower-entropy data
points a heating during the lattice loading of approximately 0.6𝑘B has to be taken
into account.This could be because lower-entropy states are subject to larger heat-
ing when loading into the lattice, as found in previous work [Greif et al., 2011].
From the calculated temperatures in the lattice we conclude that no correlations
are detectable anymore for temperatures 𝑘B𝑇 ≳ 2𝑡.
Owing to the presence of the harmonic trap, most spin correlated atoms are

located in the center, where the filling is close to one particle per site.The density-
normalized fraction of antiferromagnetic ordering is obtained when dividing by
the fraction of atoms with two particles of arbitrary spin on adjacent sites. Under
the assumption that all spin correlators ⟨𝑆𝑥,𝑦,𝑧𝑖 𝑆𝑥,𝑦,𝑧𝑖+ ⟩ are equal – which applies if
all symmetry breaking fields are much smaller than all other energy scales – the
normalized spin correlator𝒮 can be directly obtained from the measurement ofNormalized spin

correlator
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Figure 9.15: Scanning the entropy. a. Transverse spin correlator versus entropy before lattice loading (experiment)
or in the lattice (theory) at 𝑈/𝑡 = .() and 𝑡/𝑡 = .(). The solid line is the result of a DCA calculation.The top
axis shows the temperatures obtained from DCA. The shifted theory points show the effect of heating during lattice
loading. b. The separate singlet and triplet fractions are shown. Error bars as in Fig. 9.6 on page 169.

singlets and triplets (here 𝑛𝑖 is one for a single particle of any spin on site 𝑖 and
zero otherwise)

𝒮 = −4⟨𝑆𝑧𝑖 𝑆𝑧𝑖+⟩
⟨𝑛𝑖𝑛𝑖+⟩

=
𝑝 − 𝑝
𝑝 + 3𝑝

. (9.16)

The normalized antiferromagnetic correlations along the strong tunneling direc-
tion reach 25%, see inset Fig. 9.12a on page 175. This corresponds to approxi-
mately 5000 ordered atoms.

Figure 9.16: Scanning the entropy
at a different anisotropy. Trans-
verse spin correlator versus en-

tropy before lattice loading (exper-
iment) or in the lattice (theory) at
𝑈/𝑡 = .() and 𝑡/𝑡 = .().

The solid line is the result of a DCA
calculation. The top axis shows
the obtained temperatures. The
shifted theory points show the
effect of heating during lattice

loading. Error bars for the exper-
imental data points as in Fig. 9.6.
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9.5.2 HIGH-TEMPERATURE SERIES EXPANSION

OVERVIEW

For the anisotropic lattice we evaluate the correlators ⟨𝑆𝑧 𝑆𝑧+⟩ and𝒮 in a second
order series expansion of coupled single sites [Haaf et al., 1992]. The thermody-
namic observables are obtained in a similar way as previously described [Jördens
et al., 2010], using the average tunneling ̄𝑡 = √(𝑡 + 2𝑡)/3, as discussed in Sec-
tion 7.3.1 on page 142. Equation (9.15) on page 175 is computed by evaluating
the matrix elements of the spin operators.
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DETAILS

Similar to the case of the dimerized lattice, we split the Hamiltonian for the ho-
mogeneous anisotropic cubic lattice into two parts:

�̂�𝐴 = �̂� + �̂�

�̂� = 𝑈
𝑖
�̂�𝑖,↑�̂�𝑖,↓ − 𝜇

𝑖
(�̂�𝑖,↑ + �̂�𝑖,↓)

�̂� = −𝑡𝑠 
𝜎,𝑖,𝑗

(�̂�†𝑖,𝜎�̂�𝑗,𝜎 + h.c.) − 𝑡 
𝜎,𝑖,𝑗

(�̂�†𝑖,𝜎�̂�𝑗,𝜎 + h.c.) .
(9.17)

Notations are analogous to the section on the dimerized lattice.The strong tunnel-
ing between nearest neighbors along the 𝑥 direction is denoted with 𝑡s, whereas
the weaker tunneling along the other two axes is given by 𝑡. We treat the tunnel-
ing Hamiltonian �̂� as a perturbation to the unperturbed part �̂�, which leads to
an expansion of the partition function as in Eq. (9.7) on page 172 in powers of
𝛽𝑡s and 𝛽𝑡. Density and entropy per site are then obtained from derivatives of the
second order grand canonical potentialΩ,

𝛽Ω = − log𝒵 s
 −

2(𝛽𝑡) + 4(𝛽𝑡)
(𝒵 s

 )
𝜁 + 𝜁𝑤 + 2𝜁 1 − 𝑤

𝛽𝑈  . (9.18)

Here𝒵 s
 is the unperturbed single site partition function, 𝜁 = exp(𝛽𝜇) the fugac-

ity and 𝑤 = exp(−𝛽𝑈).
The evaluation of the two correlators ⟨𝑆𝑧𝑖 𝑆𝑧𝑖+⟩ and 𝒮 is slightly more compli-

cated, as it involves two neighboring sites. However, the coefficients for these cor-
relators have already been computed [Haaf et al., 1992], and thus

⟨𝑆𝑧𝑖 𝑆𝑧𝑖+⟩ = − 𝜁
(𝒵 s

 )

1
𝛽𝑈 + 𝑤 − 1

(𝛽𝑈)  (𝛽𝑡)
 (9.19)

𝒮 = 
1
𝛽𝑈 + 𝑤 − 1

(𝛽𝑈)  (𝛽𝑡)
. (9.20)

9.5.3 DYNAMICAL CLUSTER APPROXIMATION

To get further theoretical insight into our system in the regime of large aniso-
tropies, studies of the anisotropic 3D Hubbard model using DCA [Maier et al.,
2005] are conducted. A numerically exact continuous time auxiliary field quan-
tum Monte Carlo impurity solver is used for the numerical simulation [Gull et
al., 2008; Gull et al., 2011]. When extrapolating the obtained results in cluster
size, the DCA results are exact in the thermodynamic limit [Maier et al., 2002].
To compare the simulations performed for a homogeneous system to the trapped
experimental system, LDA is applied, which is still accurate in the experimentally
accessible temperature regime [Scarola et al., 2009; Zhou et al., 2011].
In addition to various thermodynamic quantities, the nearest-neighbor spinNearest-neighbor

spin correlator correlation function−2⟨𝑆𝑧𝑖 𝑆𝑧𝑖+⟩ is calculated.This correlator can be identifiedwith
the experimentally measured transverse spin correlator assuming SU(2) invari-
ance of the system,

−2⟨𝑆𝑧𝑖 𝑆𝑧𝑖+⟩ = −⟨𝑆𝑥𝑖 𝑆𝑥𝑖+⟩ − ⟨𝑆
𝑦
𝑖 𝑆

𝑦
𝑖+⟩ = 𝑝 − 𝑝 /2 . (9.21)

For typical experimental parameters 𝑡/𝑡 = 7.36 and 𝑈/𝑡 = 10.6 the correlator
is found to have a large increase close to a filling of one particle per site as 𝑘B𝑇
is becoming smaller than 𝑡. When scanning the anisotropy the spin correlations
along 𝑥, i. e. the axis of anisotropy, are found to be enhanced as the anisotropy is
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Figure 9.17: Spatial dependence of the thermodynamical quantities and the correlation
length. a. Calculated density 𝑛𝑖, entropy per particle 𝑠𝑖 and nearest-neighbor spin correla-
tor as a function of distance to the trap center. Parameters: 𝑈/𝑡 = ., 𝑁 =  ×  and
𝑠 = .𝑘B. Half-filling in the center is enforced by the chosen trap frequency. b. The ex-
trapolated spin correlator as a function of the correlation length along the 𝑥 axis is shown
for various temperatures.The sign of the correlator alternates with the distance, indicating
antiferromagnetic ordering. Parameters: 𝑡/𝑡 = ., 𝑈/𝑡 = ..

increased, with a maximum close to𝑈/𝑡 = 5.This enhancement is at the expense
of lowered correlations along the perpendicular axes.
The calculated spatial density, entropy, and nearest neighbor spin correlation Spatial profiles

distributions are shown in Fig. 9.17a for an anisotropic lattice with 𝑡/𝑡 = 7.36 and
a simple cubic geometry. In contrast to the situation of the dimerized lattice (see
Fig. 9.11 on page 174) containing an energy gap, the distributions are all qualita-
tively similar to the simple cubic case. The spin correlator is however found to be
increased by a factor of roughly 4 for the whole trap region.
When calculating the spin correlator −2⟨𝑆𝑧𝑖 𝑆𝑧𝑖+𝑑⟩ for distances larger than the Longer-range spin

correlationscase studied above for nearest neighbors (𝑑 = 1), the sign of the correlator is
found to alternate, which confirms the existence of antiferromagnetic spin cor-
relations in the system. The magnitude of the correlations, however, is found to
decay exponentially, and is already for next-nearest neighbors below the experi-
mental resolution.
Recently, also the 1D Hubbard model was studied using time-dependent

density-matrix renormalization group (tDMRG) and analytical arguments [Sci-
olla et al., 2013] with the aim of comparing to our experimental data. The en-
tropies and temperatures obtained from the experimentally measured correlator
agree well with the results obtained from the DCA calculation. Additionally, for
1 ≲ 𝑈/𝑡 ≲ 4 an unexpected doubly non-monotonic behavior in the double oc-
cupancy as a function of temperature was found.

9.6 CONCLUSION

In this work, we have demonstrated the observation of short-range quantummag-
netism of repulsively interacting ultracold fermions in cubic lattices and investi-
gated the dependence on temperature, lattice dimerization and anisotropy. Our
approach is based on a local entropy redistribution schemewithin the lattice struc-
ture and can be generalized to access the low temperature regime in different ge-
ometries, for example 2D systems.The tunable-geometry optical lattice allows the
extension of our studies to spin-ladder systems, dimerized 1D chains and zig-zag
chains, where the interplay between quantum fluctuations and magnetic order-
ing plays a particularly important role [Giamarchi, 2004; He et al., 2007]. At even
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lower temperatures, the existence of spin liquids in honeycomb or triangular lat-
tices could be investigated [Meng et al., 2010].



10TOWARDS LONG-RANGE MAGNETIC
ORDER: CORRELATION
MEASUREMENTS

Going beyond the observation of short-range magnetic order presented in Chap-
ter 9, I will here describe the implementation of a method to detect long-range
spin and density correlations based on the correlations of the noise in the atomic
momentum distribution in time-of-flight (TOF) absorption images [Altman et al.,
2004; Cherng et al., 2007; Bruun et al., 2009]. Additionally, first applications for Noise correlations
our tunable-geometry optical lattice are shown. The method, proposed for ultra-
cold atoms in optical lattices in Ref. [Altman et al., 2004]1, is based on the fact that
ultracold atoms must be treated as indistinguishable quantum mechanical parti-
cles, and therefore either obey bosonic or fermionic particle statistics. TOF imag-
ing can in that context be understood as a simultaneous projective measurement
with several detectors, as explained below. The results of detectors measuring the
same particle state will then, depending on the quantum statistics of the particle,
either show correlated or anti-correlated measurement results. The method can
therefore either be used to study emerging correlations or, assuming the correla-
tion signal at a certain detector arrangement as given, to learn about density corre-
lations of the particles beyond those given by just the underlying lattice structure.
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For optical lattice systems, pioneering experiments employing correlationmea- Correlation
measurements in
cold atom systems

surements have studied the emerging correlations in the noise of the momentum
distribution of a bosonic Mott insulator [Fölling et al., 2005] and the fermionic
antibunching of a spin-polarized gas of 40K released from a simple cubic lattice.
Noise correlations have subsequently been used to study the Mott insulator tran-
sition of bosons in a 2D lattice [Spielman et al., 2007] and to probe the order in a
quantum simulation of antiferromagnetic spin chains [Simon et al., 2011]. Simi-
lar experiments investigating correlations in homogeneous systems have studied
the atom laser counting statistics [Öttl et al., 2005], pair correlations of fermionic
atoms which are dissociated from Feshbach molecules [Greiner et al., 2005], cor-
relations within a bosonic cloud [Schellekens et al., 2005; Estève et al., 2006] and
the Berezinskii–Kosterlitz–Thouless (BKT) transition [Hadzibabic et al., 2006].
Moreover, the Hanbury Brown and Twiss (HBT) effect in different isotopes of

1 See also a related proposal for direct detection of the atoms via microchannel plate detec-
tors (MCPs) [Grondalski et al., 1999].
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helium [Jeltes et al., 2007], local antibunching in a trapped Fermi gas [Müller et
al., 2010; Sanner et al., 2010] and density correlations in in situ images [Hung et
al., 2011] were studied. A concise discussion of the method and the pioneering
experiments is found in Refs. [Bloch et al., 2008; Fölling, 2014], while technical
details are discussed in Refs. [Fölling, 2008; Rom, 2009].
In this chapter I will first briefly discuss the two theoretical pictures which

can be used to explain the observation of correlations in the momentum distri-
bution of atoms released from an optical lattice. Then I will describe in detail
our experimental procedure including the data analysis, which extends upon the
method used in previous experiments [Greiner et al., 2005; Fölling et al., 2005;
Rom et al., 2006; Spielman et al., 2007].This will be followed by the results of first
experiments confirming that different density ordering patterns in the tunable-
geometry optical lattice can be observed.

10.1 THEORY

10.1.1 HANBURY BROWN AND TWISS PICTURE

Consider several indistinguishable particles trapped in an optical lattice as
sketched in Fig. 10.1a.The atoms are released from the lattice and are detected by
independent detectors. Following the intuitive explanation of theHanbury Brown
andTwiss (HBT) effect given by Fano [1961], wewill in the following consider two
of the atoms that can be seen as sources 𝑆𝐴,𝐵, from which their wave function ex-
pands after release from the lattice.
Let us now assume that the two sources are completely incoherent. The waveMeasuring the signal

emanating from two
independent sources

simultaneously at
two detectors

functionΨ of the total system is then separable into wave functions for the sepa-
rate particles 𝜓 𝑖. The detection probability at one of the detectors, say 𝐷 can be
calculated from the single-particle wave functions as 𝑃 𝑖

 = |𝜓 𝑖(𝐱)|. Due to the
incoherence of the two particles, the probability of detecting any particle at 𝐷 is
then just the sum of the single-particle detection probabilities: 𝑃 = 𝑃𝐴 + 𝑃𝐵 =
|𝜓𝐴(𝐱)| + |𝜓𝐵(𝐱)|. Therefore, no coherences are seen in the detection process in
this case. Surprisingly this does, however, not imply that there are also no coher-
ences for the case where two detectors𝐷,, spaced by a distance 𝑑, simultaneously
detect particles.

𝐷1 𝐷2

𝑑

𝑆 𝐴 𝑆 𝐵

a. Schematics

−1 0 1
−1

−0.5

0

𝑑/𝑙

𝐶(
𝑑)

−
1

b. Correlation function for the
case of fermions

Figure 10.1:Hanbury Brown andTwiss (HBT) experiment for particles in a lattice. a.When
calculating the joint detection probability at two detectors 𝐷, when releasing two atoms
𝑆𝐴,𝐵 from the lattice, the interference of the two possible combinations of detection paths
has to be taken into account. This leads to an interference pattern of the detection proba-
bility as the detector distance 𝑑 is varied. b. Thedependence of the correlations𝐶(𝑑) on the
detector distance 𝑑 is shown for 2 (dashed red) and 10 (solid blue) fermions. The distance
of the interference maxima is called 𝑙. Adapted from [Rom, 2009].
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Consider the case where each detector detects one particle. This detection out-
come can either be the result of 𝐷 detecting 𝑆𝐴 and 𝐷 detecting 𝑆𝐵 (solid lines)
or𝐷 detecting 𝑆𝐵 and𝐷 detecting 𝑆𝐴 (dashed lines). To calculate the probability
of the detection outcome, the probabilities of all possible two-particle paths must
be summed: 𝑃 = 𝑃(solid + dashed) ≠ 𝑃𝐴𝐵(solid) + 𝑃𝐴𝐵(dashed) = 𝑃𝐴 𝑃𝐵 + 𝑃𝐴 𝑃𝐵 .
Therefore interferences between the two possible combinations of paths have to
be taken into account. These interferences of the detection paths lead to an os-
cillatory dependency of the joint detection probability on the detector distance.
This effect can occur both in classical and quantum mechanical systems: actually
Hanbury Brown and Twiss first discovered the effect when collecting light from
Sirius using photomultiplier tubes [Hanbury Brown et al., 1956]. The outcome Classical effect: light

from Siriusof their experiment can be explained by considering a classical electromagnetic
wave of which the intensity is measured by two detectors. Due to the spacing of
the detectors, the wave arrives with a certain phase difference, giving rise to corre-
lations between the measured intensities, which show an oscillatory behavior as
the distance is varied. The related Hong-Ou-Mandel effect showing the bosonic Purely quantum

mechanical
Hong-Ou-Mandel
effect

bunching of photons [Hong et al., 1987], however, can only be explained by quan-
tum mechanics. Here, the interference originates from the quantum statistics of
the particles (i. e. bosonic or fermionic character). Alternatively, this effect can be
seen as the result of the indistinguishability of the particles, requiring an (anti-)
symmetrization of themany-bodywave function. For fermionic particles, the two
possible combinations of detection paths will interfere destructively for certain
detector distances. The detection probabilities of the two detectors are then anti-
correlated, as shown in Fig. 10.1b on page 182 (dashed red curve), i. e. when 𝐷
has detected a particle, the probability that 𝐷 has also detected a particle at the
same time is decreased. For bosons the opposite is the case. The argument can be
extended tomore than two particles.The normalized density correlation function
𝐶(𝑑) for the case of a 1D lattice is found to be (for a derivation see Section 10.1.3
on the next page)

𝐶(𝑑) = 1 ± 1
𝑁

𝑁

𝑟=

𝑁

𝑠=

𝑒𝑖𝜋𝑟𝑑/𝑙𝑒−𝑖𝜋𝑠𝑑/𝑙

= 1 ± 
sin(𝑁𝜋𝑑/𝑙)
𝑁 sin(𝜋𝑑/𝑙) 


.

(10.1)

Here ± has to be chosen for bosons or fermions, respectively, and 𝑙 is the distance
of the interference maxima. The solid blue curve in the figure shows the correla-
tion function for 10 fermions.

10.1.2 BLOCH PICTURE

The HBT experiment can also be understood in a different physical picture. Con-
sider a 1D lattice containing atoms. When the atoms are released from the optical
lattice and evolve freely for a certain time 𝑡 in a TOF absorption imaging experi-
ment, their initial momenta 𝑝 in the lattice are converted to a real space position 𝑙.
The two are related by

𝑙 = 𝑝𝑡
𝑚 . (10.2)

According to the Bloch theorem the wave function of an atom (the Bloch state)
can be written as a superposition of several real momentum states

|𝜈, 𝑘⟩ = 
𝑛
𝑐𝑛𝜈,𝑘 |𝑝 = ℏ(𝑘 + 2𝜋𝑛/𝑎)⟩ . (10.3)
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The measurement of the atomic density after TOF by absorption imaging onto aAnticorrelations as a
result of Pauli’s

exclusion principle
CCD camera corresponds to a projection onto one of these real momentum ba-
sis states |𝑝 = ℏ(𝑘 + 2𝜋𝑛/𝑎)⟩ (note that relating to the Hanbury Brown and Twiss
picture discussed above, the pixels of the CCD camera can be seen as an array of
independent detectors simultaneously measuring the atomic density at different
locations). Because of Pauli’s exclusion principle no two fermions can occupy the
same quantum state (in that case the same Bloch state |𝜈, 𝑘⟩). From this it follows
that, if a particle is detected at a certain position, another particle cannot be de-
tected at positions with a distance 𝑛𝑙 (where 𝑛 ∈ ℤ), corresponding to momenta
spaced by 2𝑛ℏ𝑘L. This statement, illustrated in Fig. 10.2, holds as long as only one
band is filled. As a result, we expect anticorrelations in the detected atomic density
distribution for the corresponding distances.

1st B.Z.
𝐸

𝑝
−3ℏ𝑘L

𝐷1

−1ℏ𝑘L

𝐷2

3ℏ𝑘L

𝐷4

1ℏ𝑘L

𝐷3

𝑙 𝑙 𝑙

Figure 10.2: Momentum correlations in
the Bloch picture.The state of a particle
in one band of a lattice is a superposi-
tion of several real momentum states.
If a particle is detected in one of these
momentum states, it cannot be de-
tected in momentum states separated
by an integer multiple of twice the lat-
tice momentum ℏ𝑘L (equivalent toℤ𝑙
in real space). Adapted from [Rom,
2009].

The situation is complicated by the fact that the atomic clouds in optical latticesEffect of the
column-integration usually have a 3D structure, while the absorption imaging technique is only able

to resolve correlations in a 2D plane, as every pixel on the CCD camera records
a column-density of the expanded cloud. The correlations are found to persist in
the column-integrated density profiles, but are reduced. The detected number of
particles 𝑁𝜎 per “momentum bin” 𝜎 of the detector will then not be either one
or zero depending on which real momentum state has been projected onto, but
it will rather fluctuate on the order of √𝑁𝜎 around the mean value 𝑁𝜎 that one
would expect when not taking into account the quantum statistics of the parti-
cles [Altman et al., 2004]. Hence the name noise correlations. The finite cloud size
in the trap and the finite TOF duration as well as the optical properties of the imag-
ing system lead to an additional degradation of the signal. Moreover, interactions
present during TOF will alter the correlation properties of the particles.

10.1.3 CORRELATION FUNCTIONS

In this section, the correlation function 𝐶(𝐱, 𝐱) of the density distribution of
bosonic or fermionic particles released from an optical lattice is deduced.The fol-
lowing argument is based on the assumption that for a sufficiently long TOF du-
ration, the measured density operator �̂�(𝐱) after TOF indeed corresponds to the
momentum operator �̂�(𝐤) in the trap. The normalized density correlation func-
tion for the positions 𝐱 and 𝐱 is defined as

𝐶(𝐱, 𝐱) =
⟨�̂�(𝐱)�̂�(𝐱)⟩
⟨�̂�(𝐱)⟩ ⟨�̂�(𝐱)⟩

. (10.4)

Along the lines of the derivation in [Fölling, 2008], we reorder the field operators:

⟨�̂�(𝐱)�̂�(𝐱)⟩ = ⟨ ̂𝜓†(𝐱) ̂𝜓(𝐱) ̂𝜓†(𝐱) ̂𝜓(𝐱)⟩
= ± ⟨ ̂𝜓†(𝐱) ̂𝜓†(𝐱) ̂𝜓(𝐱) ̂𝜓(𝐱)⟩ + 𝛿(𝐱 − 𝐱) ⟨�̂�(𝐱)⟩
= ⟨�̂�(𝐱)⟩ ⟨�̂�(𝐱)⟩ 𝑔()(𝐱, 𝐱) + 𝛿(𝐱 − 𝐱) ⟨�̂�(𝐱)⟩ .

(10.5)
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Here, we have written the expectation value ⟨�̂�(𝐱)�̂�(𝐱)⟩ in a form containing the Pair distribution
functionpair distribution function

𝑔()(𝐱, 𝐱) =
⟨ ̂𝜓†(𝐱) ̂𝜓†(𝐱) ̂𝜓(𝐱) ̂𝜓(𝐱)⟩

⟨�̂�(𝐱)⟩ ⟨�̂�(𝐱)⟩
. (10.6)

By inserting the field operator in the far field [Fölling, 2008], i. e. where the
detector is located,

̂𝜓(𝐱, 𝑡) = 𝜅/�̃�(𝜅𝐱)𝑒

 𝑖𝜅𝐱

 
𝑗
𝑒−𝑖𝜅𝐱𝐗𝑗 �̂�𝑗 , (10.7)

where �̂�𝑗 is the destruction operator of a particle at position𝐗𝑗, �̃�(𝐤) is the Fourier
transform of the Wannier function and 𝜅 = 𝑚/(ℏ𝑡) (𝑡 is the TOF time), we obtain
for the correlation function

𝐶(𝐱, 𝐱) = 1 ± 1
𝑁 |

𝑗
𝑒𝑖𝜅𝐗𝑗⋅(𝐱−𝐱) ⟨�̂�𝑗⟩ |


+ 𝛿(𝐱 − 𝐱)
𝜅 |�̃�(𝜅𝐱)|

 𝑁
, (10.8)

where “+” accounts for the bosonic and “−” for the fermionic case. Here we have
assumed a deep lattice such that thewave function of thewhole system is a product
of the particle number (i. e. Fock) states on the single lattice sites. Additionally we
have neglected an offset term of order 1/𝑁 .The 𝛿 term is the autocorrelation term,
whichwill also be neglected in the quantitative analysis of the obtained data. From
the above equation the simplified expression for a 1D lattice given in Eq. (10.1) on
page 183 can be deduced.
For large atom numbers𝑁 (i. e. 𝑗 → ∞) the series becomes a Fourier transform

and can therefore be written as a sum of 𝛿 functions:

𝐶(𝐱, 𝐱) = 1 ± 1
𝑁

𝑗
𝛿 (𝐱 − 𝐱) − 𝐊𝑗/𝜅 /𝑙 +

𝛿 𝐱 − 𝐱
𝜅 |�̃�(𝜅𝐱)|

 𝑁
, (10.9)

where 𝐊𝑗 are the reciprocal lattice vectors. As is obvious from the above equation,
the correlation function only depends on 𝐝 = 𝐱−𝐱 and can therefore be written
in the following form: Form of the

correlation function
used as the starting
point for analyzing
the experimental
data

𝐶(𝐝) =
∫⟨�̂�(𝐱 − 𝐝/2)�̂�(𝐱 + 𝐝/2)⟩d𝐱
∫⟨�̂�(𝐱 − 𝐝/2)⟩ ⟨�̂�(𝐱 + 𝐝/2)⟩d𝐱

, (10.10)

which we will use for the analysis of the data. Column-integration and imperfec-
tions of the imaging system will lead to a broadening of the 𝛿 functions while
retaining the area under the peak. We approximate the broadened peaks by gaus-
sians with a width 𝜎:

𝐶(𝐝) = 1 ± 1
4𝜋𝑁 

𝑙
𝜎



𝑗
𝑒−(𝐝−𝐊𝑗𝜅)

/𝜎 + 𝛿(𝐝)
𝜅 |�̃�(𝜅𝐝)| 𝑁

. (10.11)

The height of the peaks should therefore approximately scale with 𝑡/𝑁 . Scaling of the peak
height

10.2 EXPERIMENTAL PROCEDURE

We have performed tests of the noise correlation algorithm for both 𝑚𝐹 =
( − /, − /) and ( − /, − /) spin mixtures as well as spin-polarized gases in the
𝑚𝐹 = − / Zeeman state of 40K. The spin mixtures are prepared in the usual
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way for our experiment, see Section 3.1.4 on page 41. The spin polarized gas is
obtained by not producing a spin mixture after performing the spin sweep from
𝑚𝐹 = / to 𝑚𝐹 = − /, and instead running the evaporation ramp of the FORT
with the spin-polarized gas.The obtained cloud will therefore not be thermalized,
leading to a possibly reduced correlation signal. We load about 200 × 10 atoms
within 200ms into the optical lattice structure to be investigated, ensuring ther-
malization of the spin mixtures by choosing a scattering length on the order of
|𝑎| ≳ 300𝑎.
After loading the gas and performing the experiment, the lattice is frozen to a

depth which is equivalent to approximately 30 𝐸R per lattice beam for the square
lattice (i. e. if 𝑉X ≠ 0, 𝑉X̄, 𝑉X and 𝑉Y are not set to a depth of 30 𝐸R but such that
the increased depth by the interference is equal to this value). This freezing rampFreezing the atomic

motion is performed within 1ms. 𝑉Z̃ is ramped to 10 𝐸R in this step, independent of the
other lattice depths.This avoids an extensively large expansion of the cloud along
the column-integration direction during TOF (the absorption images are taken of
the 𝑥 − 𝑦 plane).
The freezing ramp is necessary to fulfill the condition that the quantum me-

chanical states on the single lattice sites must be Fock states in order to interpret
the noise correlation signal as the density correlator of the system before releas-
ing from the lattice. Additionally, the freezing ramp avoids changes of the density
caused by the interaction ramp that follows in the next step. In a non-frozen lat-
tice, changing the interaction can lead to a change of the on-site density caused by
both an actual density redistribution or admixture of states with other densities
from neighboring sites.
The interactions are then tuned to non-interacting (for the 𝑚𝐹 = ( − /, − /)Interactions

spin mixture) or the background scattering length 𝑎bg ≈ 100𝑎 (for 𝑚𝐹 = ( − /,
− /)) within 50ms. Small interactions are chosen in order not to disturb the den-
sity correlations during the initial stage of the free expansion of the cloud. Note
that our tests with different scattering lengths showed that the correlation signal
also persists when large repulsive interactions are chosen. However, a definite con-
clusion on this issue cannot be drawn as we did not compare the obtained corre-
lation amplitudes with theoretical predictions.
Both the optical lattice and the FORT are then switched off simultaneously, fol-

lowed by the switch-off of the magnetic offset fields after 1ms TOF. After a total
TOF duration of 10ms normal absorption images are taken with either the An-
dor iXon+ or Andor iXon Ultra CCD camera2. The pixel size of both cameras is
(16 µm) and the magnification of the imaging system is approximately 4.
We have found that the visibility of the correlation signal strongly depends onAbsorption imaging:

imaging light
intensity

the intensity of the imaging beam. For our measurements, we increased its in-
tensity with respect to the usual setting to about 20% of the saturation intensity,
keeping the normal imaging pulse length of 40 µs. We assume that the increased
visibility is due to the more favorable ratio of the relative photon shot noise with
respect to the relative atomic shot noise. For the iXon+ CCD camera an indepen-
dent noise analysis was performed, from which we conclude that our imaging
system is photon shot noise limited.
As discussed in the next section, in order to achieve the signal to noise ratio

needed to observe any correlations, the correlation signal from several repetitions
of the experiment under equal conditions is averaged.We typically acquire 100 to
200 shots for this averaging procedure.

2 The Andor iXon Ultra was used in fast kinetics mode, while the iXon+ showed increased noise levels
in the autocorrelation images in this mode (probably due to well spilling during the fast vertical shifts,
see Section 3.4 on page 63), and was therefore used in the normal full frame mode.
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10.3 DATA ANALYSIS

The images obtained from the CCD camera are processed in the usual way for
absorption imaging in order to obtain optical density images (see Section 3.4 on
page 63). The optical densities are then converted into column densities. In or-
der to obtain the density-density correlation function (deduced in Eq. (10.10)
on page 185) we replace the density operator by the measured density profile
�̂�(𝐱) → 𝑛(𝐱) and the expectation values ⟨...⟩ by an average over many repeated ex-
periments under the same conditions. Additionally, the average in the numerator
is taken after the integration. The correlator therefore reads:

𝐶(𝐝) =
∫⟨𝑛(𝐱 − 𝐝/2)𝑛(𝐱 + 𝐝/2)⟩d𝐱
∫⟨𝑛(𝐱 − 𝐝/2)⟩ ⟨𝑛(𝐱 + 𝐝/2)⟩d𝐱

=
⟨∫𝑛(𝐱 − 𝐝/2)𝑛(𝐱 + 𝐝/2)d𝐱⟩
∫⟨𝑛(𝐱 − 𝐝/2)⟩ ⟨𝑛(𝐱 + 𝐝/2)⟩d𝐱

. (10.12)

Inspecting the numerator and denominator, they are actually both found to cor-
respond to the autocorrelation function of a certain variable. The autocorrelation
function 𝑅(𝐝) of a signal 𝑆(𝐱) is defined as Autocorrelation

function

𝑅(𝐝) = 𝑆(𝐱 − 𝐝/2)𝑆(𝐱 + 𝐝/2) d𝐱 . (10.13)

For an efficient calculation of the autocorrelation function, theWiener–Khinchin Wiener-Khinchin
theoremtheorem [Wiener, 1930] can be used. It relates the autocorrelation function to the

power spectral density via the Fourier transform. The autocorrelation function
can therefore be calculated using a forward and an inverse discrete Fourier trans-
form,

𝑅(𝐝) = 𝔉− [(𝔉𝑆(𝐱))∗𝔉𝑆(𝐱)] . (10.14)

Here, ...∗ denotes the complex conjugate.
In Eq. (10.12), the numerator corresponds to the mean of the autocorrelation Approximations for

the numerator and
denominator of the
correlator

functions of several measured density profiles, while the denominator contains
the autocorrelation function of the mean of the measured density profiles. Note
that the numerator can in principle also be obtained from the autocorrelation
function of only a single density distribution. However, in order to raise the sig-
nal above the noise level, several autocorrelation images are usually averaged. By
building the fraction of the two quantities, correlations which are present in both
the single density images as well as the mean density are theoretically removed.
This applies for example to the overall cloud profile: it contains positive correla-
tions between −𝐱 and 𝐱 over all length scales (when assuming the atomic cloud
to be centered at 𝐱 = 0). However, if small fluctuations in the cloud profile or the
atom number are present between the experimental runs, these would not be re-
moved by the normalization. In contrast to Refs. [Fölling, 2008; Rom, 2009], we
overcome this limitation of the method by assuming that the measured density
profiles 𝑛(𝐱) are the sum of a gaussian function with added noise, i. e. the density
fluctuations of interest,

𝑛(𝐱) = 𝑛𝑔(𝐱) + Δ𝑛(𝐱) = 𝑛 𝑒−(𝑥−𝑥)
/𝑤𝑥−(𝑦−𝑦)/𝑤𝑦 + Δ𝑛(𝐱) . (10.15)
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Here, 𝐱 = (𝑥, 𝑦). Then,

𝐶(𝐱, 𝐱) =
⟨𝑛(𝐱)𝑛(𝐱)⟩
⟨𝑛(𝐱)⟩ ⟨𝑛(𝐱)⟩

=
⟨𝑛𝑔(𝐱)𝑛𝑔(𝐱)⟩ + ⟨𝑛𝑔(𝐱)Δ𝑛(𝐱)⟩ + ⟨Δ𝑛(𝐱)𝑛𝑔(𝐱)⟩ + ⟨Δ𝑛(𝐱)Δ𝑛(𝐱)⟩

⟨𝑛𝑔(𝐱) + Δ𝑛(𝐱)⟩ ⟨𝑛𝑔(𝐱) + Δ𝑛(𝐱)⟩
.

(10.16)

Assuming that the mean density profile is well fitted by a gaussian and that all
experimental runs have approximately the same atom number, we can make the
following approximations: ⟨𝑛𝑔(𝐱)𝑛𝑔(𝐱)⟩ = ⟨𝑛𝑔(𝐱)⟩ ⟨𝑛𝑔(𝐱)⟩, ⟨𝑛𝑔(𝐱)Δ𝑛(𝐱)⟩ =
⟨Δ𝑛(𝐱)𝑛𝑔(𝐱)⟩ = 0 and ⟨𝑛𝑔(𝐱𝑖) + Δ𝑛(𝐱𝑖)⟩ = ⟨𝑛𝑔(𝐱𝑖)⟩. Using these, we arrive at

𝐶(𝐱, 𝐱) = 1 + ⟨Δ𝑛(𝐱)Δ𝑛(𝐱)⟩
⟨𝑛(𝐱)⟩ ⟨𝑛(𝐱)⟩

(10.17)

or, equivalently,

𝐶(𝐝) = 1 +
⟨∫Δ𝑛(𝐱 − 𝐝/2)Δ𝑛(𝐱 + 𝐝/2)d𝐱⟩
∫⟨𝑛(𝐱 − 𝐝/2)⟩ ⟨𝑛(𝐱 + 𝐝/2)⟩d𝐱

. (10.18)

This is the form which we will use for the data processing. In detail, the proce-
dure consists of the following steps:

1. Optionally, certain measured density profiles are rejected based on ob-
served excess noise in the CCD image of the probe beam (bright picture).
We typically reject between none and 30% of the images.

2. A gaussian with independent amplitude, position andwidth along 𝑥 and 𝑦 is
fitted to 𝑛(𝐱) and subsequently subtracted.The result is a noise distribution
with an essentially flat envelope.

3. The electronic readout process in the CCD camera introduces correlationsCamera readout
noise of the electron count between neighboring pixels along the horizontal shift

direction of the camera. We also measured some correlations along the ver-
tical shift direction, which are, however, weaker than the horizontal ones.
To eliminate these correlations, which appear as one pixel spaced stripes in
the autocorrelation images, Δ𝑛(𝐱) (in the form of a matrix as originally ob-
tained from the CCD camera pixels) is convoluted with a 3 × 3matrix𝐌 of
the following form:

𝐌 = 𝐦
∑

𝑖,𝑗𝑚𝑖,𝑗
with 𝐦 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0.5 0
1 𝜅 1
0 0.5 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, (10.19)

where 𝜅 is usually set to a value in the range 1.2 to 2.0, depending on the cam-
era model and the experimental situation. For processing speed considera-
tions, a fast Fourier transform (FFT) based convolution method is chosen
instead of a direct integration. The resulting image will be called Δ𝑛′(𝐱) in
the following.

4. To remove residual long-wavelength modulations disturbing the flatness of
Δ𝑛′(𝐱), a high-pass filter with an inverted gaussian weight is applied, see
Listing 10.1 on the next page for the corresponding implementation in the
programming language Python. The frequency weighting function is 1 −
exp(−𝑓 /𝑤), where 𝑤 ≈ 20(px)−, thereby excluding approximately the 20
lowest spatial frequencies from the spectrum. The result is called Δ𝑛″(𝐱).
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Listing 10.1: High-pass filter with a gaussian weight.

# s defines the spatial frequency up to which to cut out from the
freq. spectrum

2 def hp_gauss_filter(p, s):
w = fftshift(equal_gauss_window(p,s))

4

fp = fft (p)
6 fp *= ( -w)

return ifft (fp).real

Listing 10.2: Calculation of the autocorrelation function.

8 def acf(r):
k = fft (r)

10 p = np.abs(k)**
a = ifft (p)

12 return fftshift(a.real)

5. The autocorrelation function 𝑐(𝐝) of Δ𝑛″(𝐱) is now calculated. The imple-
mentation of this calculation in Python3 is shown in Listing 10.2.

6. The density profiles of all experimental runs are processed according to the
recipe above and the resulting 𝑐(𝐝) are averaged. This is the numerator of
the correlation function.

The denominator of 𝐶(𝐝) is obtained as follows:

1. All obtained 𝑛(𝐱) are averaged and fitted with a gaussian.
2. AllΔ𝑛″(𝐱) obtainedwhile processing the single density images are averaged

as well and added to the fitted gaussian obtained in the previous step.
3. The autocorrelation function of the above sum is calculated in the sameway

as described above, resulting in the denominator �̄�(𝐝).

The final correlation function 𝐶(𝐝) is then obtained as 𝐶(𝐝) = ⟨𝑐(𝐝)⟩ / �̄�(𝐝).
Additionally, if the lattice structure along 𝑥 and 𝑦 is the same, this symmetry can be
used to improve the signal by averaging𝐶(𝐝)with rotations and reflections of itself
making use of both point symmetry (which is already given in the original 𝐶(𝐝))
and reflection symmetry along 𝑥 and 𝑦. Additionally, the analysis code features
the option of automatically averaging several correlation functions𝐶𝑖(𝐝) that have
been obtained by processing the same set of data using varying filter parameters,
in order to remove filter artifacts.
The dips are then fitted with independent gaussians to obtain their volume,

which is a useful measure for theory comparisons, see Eq. (10.11) on page 185.

10.4 VALIDATION

We have measured the correlation functions of Fermi gases prepared in differ-
ent spin mixtures loaded into the tunable-geometry optical lattice set to square,
checkerboard and honeycomb geometries.

3 For optimal performance the FFTW library (“Fastest Fourier Transform in the West”) via the Python
interface anfft is used.



190 Towards long-range magnetic order: correlation measurements

10.4.1 SQUARE AND CHECKERBOARD LATTICES

We validate our preparation and detection method by loading a balanced (50:50)
𝑚𝐹 = ( − /, − /) spin mixture into a lattice of either square or checkerboard ge-
ometry in the 𝑥 − 𝑦 plane. For both configurations, an additional lattice along 𝑧
is used. For the square geometry, the lattice is ramped directly to a partly frozen
lattice with potential depths 𝑉X̄,X,Y,Z̃ = [20, 0, 20, 10]𝐸R at a scattering length of
−310𝑎 to allow for thermalization during the ramp.The scattering length is then
ramped to 0𝑎 within 50ms, followed by 10ms of TOF. The dataset consists of
110 experimental runs. The obtained correlation pattern is shown in Fig. 10.3a.
As expected, clear anticorrelation dips are visible at the spatial positions related
to the momenta 𝐩 = (±1|0, ±1|0)2ℏ𝑘L via TOF. Line sums in the vicinity of theSquare geometry
dips along 𝑝(𝑥,𝑦) and the two diagonals are shown in Fig. 10.3b.The dip depths are
on a similar order as those reported in [Rom et al., 2006] for a spin-polarized gas
of 40K.
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Figure 10.3: Measured correlation functions in the square and checkerboard lattice. In the
square lattice anticorrelation dips are visible at 𝐩 = (±|, ±|)ℏ𝑘L, reflecting the under-
lying lattice periodicity. In the checkerboard lattice, a similar pattern appears, but rotated
by ° and shrunk by a factor of√. The line sums shown on the right are taken over three
pixel rows. The bottom panel shows cuts along 𝑝𝑥 (red) and 𝑝𝑦 (blue) and the top panel
along the first (red) and second diagonal (blue).

In a second experiment we load a cloud prepared in the same way as above intoCheckerboard
geometry the checkerboard lattice with potential depths𝑉X̄,X,Y,Z̃ = [0, 15, 15, 20]𝐸R, using a

scattering length of 𝑎 = 770𝑎.The interactions are then tuned to zero, followed by
a ramp of the lattice intensities to a final depth of 𝑉X̄,X,Y,Z̃ = [0, 7, 7, 10]𝐸R within
10ms.The dataset again contains 110 separate runs. For the checkerboard lattice,
𝐶(𝐝) contains clearly visible dips at 𝐩 = (±/, ±/)2ℏ𝑘L, see Fig. 10.3c. This is a
result of the rotation of the unit vectors of the underlying lattice structure in the
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𝑥 − 𝑦 plane by 45° combined with an enlargement by a factor of √2 with respect
to those of the square lattice structure.

10.4.2 HONEYCOMB LATTICE

We test the feasibility of noise correlation measurements in more complex lattice
geometries in the strongly interacting regime by loading an𝑚𝐹 = ( − /, − /) spin
mixture into a honeycomb lattice.The lattice is set to the following depths:𝑉X̄,X,Y,Z̃
= [14, 0.79, 6.45, 7]𝐸R, at which the tunnel couplings in the honeycomb lattice are
the same along the horizontal and the vertical bonds. The scattering length is set
to 𝑎 = 530𝑎.
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Figure 10.4: Measured correlation functions for the honeycomb lattice. To increase the
visibility, the obtained correlation patterns have been rotated by ° and then averaged
with themselves.

In a first experiment, the beam intensities are ramped up to𝑉X̄,X,Y,Z̃ = [28, 1.43,
12.9, 10]𝐸R within 10ms after the lattice loading. Before releasing the atoms, the
scattering length is lowered to 280𝑎. The obtained correlation pattern is shown
in Fig. 10.4a. For increased visibility, in this set of measurements, the correlation
pattern has been averaged with rotations and reflections of itself. Contrary to the
naive expectation, the additional dips attributed to the checkerboard contribution
to the honeycomb lattice are not visible, although the Brillouin zone of the lattice
structure is actually rotated and resized due to the presence of the X lattice beam.
The dips are in fact expected to be present but with an amplitude that is well below
the noise level. Intuitively, the magnitude of the dips located at uneven multiples
of (±ℏ𝑘L, ±ℏ𝑘L) is related to the displacement of the lattice sites with respect to
the positions in the square lattice. For the present lattice geometry, this shift is
only about 5% of the site distance. The resulting dip amplitude can be estimated
by a simple numerical model: we assemble a 2D array with lattice sites located at Simple model to

calculate the dip
amplitude

the minima of the real potential. Instead of the real maximally localized Wannier
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functions we place small gaussian wave packets at the well positions and numeri-
cally calculate the Fourier transform of this arrangement, see Fig. 10.5. Therefore
this model neglects effects which are due to the structure of the Wannier func-
tions. According to the model, the dips located at (±ℏ𝑘L, ±ℏ𝑘L) are about a factor
of 6 smaller than those located along the 𝑝𝑥 or 𝑝𝑦 axes.
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Figure 10.5: Simple model to obtain the
dip amplitudes of the honeycomb lattice.
The absolute value of a Fourier trans-
form of an array of small gaussian wave
packets placed at the minimum posi-
tions of the honeycomb lattice potential
is shown. The number of sites is 50 per
axis and the width of the gaussians was
chosen to be / of the lattice spacing.

The noise correlation signal depends both on the relative position of the lattice
sites as well as their occupation. To separate the two effects, it can be useful to
deform the lattice to, for example, a simple cubic structure for detection after the
actual experiment. In Fig. 10.4c on page 191, we load the honeycomb lattice in the
same way as described above, but ramp 𝑉Y to 20 𝐸R and 𝑉X to zero within 1ms
after the freezing ramp. The local density distribution in the lattice follows this
change of lattice geometry as long as the ramp is slower than the on-site harmonic
oscillator frequencies, which are on the order of several 10 kHz for typical lattice
depths. The noise correlation measurement is then performed in the usual way,
with the inarguably expected result of a correlation pattern equivalent to that of
directly loaded square lattice, but with a larger correlation amplitude.

CONCLUSION We have successfully demonstrated the measurement of mo-
mentum correlations of different spin mixtures loaded into square, checkerboard
and honeycomb lattices via noise correlations. In agreement with theoretical ex-
pectations, the method gives access to the in-trap density distribution and allows
for tuning of the interactions and lattice geometry without corrupting the correla-
tion signal. Noise correlations could be a useful tool to detect CDWs and possibly
also SDWs⁴ in our tunable-geometry optical lattice, which can either be prepared
artificially or may emerge naturally due to interactions at low enough entropies.

4 See [Bruun et al., 2009] for a calculation of the noise correlation signal amplitude for an antiferromag-
netically ordered state.



11OUTLOOK

In the following I will present some ideas for future experiments, building upon
the work addressing either the non-interacting or the interacting properties of the
honeycomb lattice presented in this thesis. The main focus lies on the characteri-
zation of the topology of the honeycomb band structure and the implementation
of topological insulators. A few possible experiments in other lattice geometries
which are accessible using the lattice of tunable geometry are briefly discussed as
well.

PROPERTIES OF THE BAND STRUCTURE

While we have thoroughly investigated the two Dirac points with their associated
linear dispersion relation of our artificial graphene system, the emerging non-
trivial topology of the band structure was not directly addressed so far. Here, a
direct measurement of the Berry phase pickup when encircling one of the Dirac Measuring Berry’s

phase using a
combination of
Ramsey
interferometry and
Bloch oscillations

points or the observation of the effect of the associated Berry curvature would
be desirable. The main difficulty here is the separation of the dynamical phase
accumulated when moving through the band structure from the phase purely as-
sociated with the topology. Different proposals to resolve this problem have been
brought forward. For example, Abanin et al. [2013] proposed a direct measure-
ment of the Berry phase of one of the Dirac points using a combination of Ramsey
interferometry and Bloch oscillations.

Figure 11.1: Detecting the Berry phase. A combination of
Ramsey interferometry and Bloch oscillations of two Zee-

man states (green and blue arrows) allows for a band-effect
free detection of the Berry phase picked up when passing
in the vicinity of a Dirac point. Two possible Bloch oscil-
lation paths are shown (left and right panel). The chiral-

ity of the Dirac points is indicated by the circular arrows.

0→TB /2

γ1 γ2

Dirac points

ky

kx

Thestarting point of such an experiment is an ensemble of bosonic or fermionic
spin-polarized atoms in the lowest band, such that at least the vicinity of one of
the Dirac points is populated, see Fig. 11.1, left panel. A 𝜋

 rf pulse is then used
to create a coherent superposition of two Zeeman states with opposite magnetic
moments, shown in green and blue. Using a magnetic field gradient aligned with
the 𝑥 axis, Bloch oscillations along 𝑘𝑥 with opposite directions for the two Zee-
man states are driven. After a time 𝑡 = 𝑇B/2 the two states meet again and another
𝜋
 pulse is applied.The population in the two spin states is thenmeasured by sepa-
rating the two spin components using a magnetic field gradient. The relative pop-
ulation then varies as a function of the difference in phase pickup along the two
paths. As the band structure is symmetric with respect to 𝑘𝑦, the dynamical phase
pickups for the two spin states will exactly cancel, leaving the geometric phase –
called Zak phase in this context – as the only contribution. Comparing the phases
picked up by trajectories passing above (𝑘𝑦 > 𝑘D𝑦 ) and below (𝑘𝑦 < 𝑘D𝑦 ) the Dirac
point (shown in the figure), their difference is found to be equal to the Berry phase
pickup for a closed loop around the point, i. e. 𝜋. This is because the Berry phase
contributions along the two short paths 𝛾, (see figure) connecting the colored
trajectories cancel. This is due to the fact that these two paths are equal (they are
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identified by Bragg reflections), but traversed in opposite direction when encir-
cling the Dirac point. A similar scheme has so far allowed for the observation of
the Zak phase in 1D optical lattices [Atala et al., 2013].
In the right panel of the figure, an alternative pair of trajectories is shown. FromAlternative Bloch

oscillation trajectory
to measure Berry’s

phase

the initial position, the two spin states are first separated by a magnetic field gra-
dient along 𝑥, followed by a short period of Bloch oscillations along 𝑦, driven by
gravity. A magnetic field gradient in the opposite direction along 𝑥 is used to re-
join the two trajectories, which have by now fully encircled the lower Dirac point.
The Ramsey interference phase is then equal to the Berry phase of 𝜋. Special at-
tention has to be paid that the symmetry between the two paths is only broken
by the chirality of the Dirac points. For instance, spin-echo schemes might be
necessary to compensate for fluctuating magnetic fields. Alternatively, instead of
moving the atomic cloud, also the Dirac points could be moved around the atoms
by dynamically changing the lattice beam intensities.
For the case of broken inversion symmetry, i. e. if the energies of 𝐴 and 𝐵 sitesDetecting the Berry

curvature based on
the perpendicular

real space
displacement during

Bloch oscillations

are unequal, the Berry curvature associated with the Berry phase spreads over a
finite area in the vicinity of the massive Dirac points.This can be amore favorable
situation to perform Bloch oscillations in order to probe the topology of one of
the bands, since transfer to the second band is suppressed due to the band gap. Ac-
cording to the semiclassical equations of motion (see Section 5.1.1 on page 102),
the Berry curvature is found to give rise to a displacement in the real space po-
sition perpendicular to the Bloch oscillation direction as the atoms pass through
regions of non-zero Berry curvature [Price et al., 2012].This is equivalent to aHall
current. In the absence of an external confinement, this effect, however, cancels
for a full Bloch oscillation along 𝑦, since the Berry curvature for the two points is
exactly opposite, see Fig. 11.2, left panel. When stopping the oscillations already
at 𝑡 = 𝑇B/2, the effect of one of the points should be detectable, but is most likely
below the experimental resolution of an in situ positionmeasurement. For sequen-
tial diagonal oscillations through one of the points on the other hand (right panel),
the effect would amplify during the course of several Bloch oscillation periods.
However, the situation is complicated by the presence of the harmonic confine-
ment, which leads to a non-periodicmovement in real space even without a Berry
curvature. This makes an interpretation in terms of this simple picture difficult.

gapped Dirac points

y

x

ky

kx

Figure 11.2: Detecting the Berry cur-
vature.The semiclassical trajectory of
the cloud oscillating through gapped
(massive) Dirac points is affected by
the Berry curvature, leading to a per-
pendicular displacement in the real
space position (shown below the B.Z. in
the figure). For oscillations along 𝑦 (left
panel) the effect is canceled by the op-
posite chirality of the Dirac points for a
full Bloch oscillation period. For diago-
nal oscillations through one point, the
effect accumulates over several oscilla-
tion periods (right). The chirality of the
Dirac points is indicated by the circular
arrows.

Numerical time evolution of the trapped system has on the other hand shownSignature of the
Berry curvature in

the quasimomentum
distribution of a
trapped system

that the trap might also be advantageous for the detection of the Berry curvature
for oscillations through both Dirac points, see Fig. 11.3 on the next page. In the
figure, the numerically calculated quasimomentum evolution of a fermionic atom
cloud is shown over the course of two Bloch oscillation cycles for the case of mass-
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less (top) and massive (bottom) Dirac points. For the case of the gapped Dirac
points, the displacement in real space caused by the Berry curvature is converted
into an asymmetry of the momentum space distribution along 𝑘𝑥. Even though
the two Dirac points have opposite Berry curvature, their effect does not cancel
anymore, owing to the presence of the trap (and possibly the finite transfer to the
second band).

−kL
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t =0 TB t =0.33 TB t =0.67 TB t =1 TB t =1.3 TB t =1.7 TB t =2 TB

−kL
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𝑘𝑥

𝑘𝑦

Figure 11.3: Detecting the Berry curvature through Bloch oscillations in the presence of a
trap. Numerical simulation of Bloch oscillations of a trapped 2D system for 𝑁 =  atoms
using a force aligned with the positive 𝑘𝑦 direction.The quasimomentum distributions dur-
ing the course of two Bloch oscillation cycles are shown for the case of gapless (top) and
gapped (bottom) Dirac points. In the gapless case, the Berry curvature is fully localized
at the Dirac points, leading to no observable asymmetry during the Bloch oscillation. In
the gapped case, the Berry curvature has as finite extent, leading to a perpendicular move-
ment of the atoms traversing through the respective region in quasimomentum space. At
𝑡 = 𝑇B, a clear asymmetry along 𝑘𝑥 is visible. Simulation parameters: 𝑡,, = [𝑡, 𝑡, ],
𝛾𝑥,𝑦/𝑡 = [., .], /𝑡 =  (top), /𝑡 = −. (bottom). 𝐹𝜆/𝑡 = . Data courtesy Lei
Wang, ETH Zurich.

The origin of the asymmetry in the momentum distribution in the Berry cur-
vature is confirmed when inverting the chirality or the force in the numerical sim-
ulation, see Fig. 11.4 on the following page. In the top simulation, the direction
of the force causing the Bloch oscillations is inverted. In this case, the asymme-
try is the same since both the oscillation direction and the chirality of the Dirac
point first seen by the oscillating cloud are inverted. If the force is unchanged but
the chirality of the points is switched, the quasimomentum distribution becomes
displaced in the other direction. In fact, we have experimentally observed this dis-
placement when re-analyzing the momentum distributions recorded for the data
presented in Fig. 6.2 on page 119: the center of mass of the distribution (as deter-
mined by a gaussian fit) is either slightly shifted to larger or smaller 𝑘𝑥 depending
on whether Δ > 0 or < 0.
Another effect that could be investigated inmore depth using Bloch oscillations Stückelberg

interferometryalong 𝑦 is the presence of Stückelberg interference [Stückelberg, 1932; Shevchenko
et al., 2010] as the two Dirac points are subsequently passed. As discussed in Sec-
tion 6.2.3 on page 122, the absence of the characteristic Stückelberg oscillations
in the transfer efficiency as a function of the dynamic phase difference between
the paths in the 1st and 2ⁿd bandmight be caused by the effectively different Bloch
oscillation gradients in the trap. By making use of the deconfinement beams (see
Section 3.3.3 on page 58) the effect of the trap can be weakened or even partially
canceled, which could allow for the study of Stückelberg oscillations in our system.
This might also open new possibilities for the characterization of the topological
properties of the band structure, as explained below.
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Figure 11.4: Detecting the Berry curvature through Bloch oscillations: inverting the chi-
rality and force. Numerical simulation of Bloch oscillations of a trapped 2D system for
𝑁 =  atoms using a force aligned with the negative (top) or positive (bottom) 𝑘𝑦 direc-
tion. The quasimomentum distributions during the course of two Bloch oscillation cycles
are shown for the case of gapped Dirac points with normal (top) and inverted (bottom)
chirality. Simulation parameters: 𝑡,, = [𝑡, 𝑡, ], 𝛾𝑥,𝑦/𝑡 = [., .], /𝑡 = −. (top),
/𝑡 = . (bottom). 𝐹𝜆/𝑡 = − (top), 𝐹𝜆/𝑡 =  (bottom). Data courtesy Lei Wang, ETH
Zurich.

TOPOLOGICAL INSULATORS

Building upon the artificial graphene system studied in this thesis, simulations of
topological insulators might be possible. Topological insulators are a fascinating
new class of materials, characterized by an insulating bulk enclosed by topolog-
ically protected conducting edge channels, which allow for dissipationless cur-
rent flow and are resilient upon variations of the system parameters [Hasan et al.,Topological

insulators are
characterized by an

insulating bulk
enclosed by

conducting edge
channels.

2010].Thematerials discovered so far showing this behavior can be classified into
three categories:

• 2Dmaterials (likeMOSFETs, where the effect was discovered byKlitzing et al.
[1980]), show, when applying a strong perpendicular magnetic field a quan-
tized Hall conductance 𝜎𝑥𝑦 = ±𝑁𝑒/ℎ (where 𝑁 ∈ ℕ). This is called the
(integer1) quantum Hall effect (QHE). It can be explained by the existence(Integer) quantum

Hall effect of chiral edge states, of which the direction of current is defined by the mag-
netic field direction and is independent of the electron spin.The bulk of the
material is insulating due to the emerging band structure which contains
discrete Landau levels. Apart from the topological properties, the energy
level structure at very large magnetic field strengths (on the order of one
flux quantum per unit cell, corresponding to thousands of Tesla) exhibits
a fractal structure as a function of the magnetic field strength. This struc-
ture, named the Hofstadter butterfly, is caused by the splitting of the BlochHofstadter’s butterfly
and Landau bands into several sub-bands. Signatures of this phenomenon,
theoretically studied by Harper [1955] and Hofstadter [1976], have been
observed in artificial superlattices. As a first step towards an observation
in cold atoms systems, the respective Hamiltonians have recently been im-
plemented using bosonic atoms loaded into specifically-tailored optical lat-
tices [Aidelsburger et al., 2013; Miyake et al., 2013].

• In quantum spin Hall insulators (named after the quantum spin Hall ef-Quantum spin Hall
effect fect (QSHE)), first experimentally investigated in HgTe/CdTe quantum

wells [König et al., 2007], edge channels are present even in the absence
of an external magnetic field, owing to the large spin-orbit coupling of the
material. As an additional consequence of the spin-orbit coupling, the cur-
rent has an opposite direction for the two spin states.They are the first (and

1 Fractional topological insulators have also been proposed [Levin et al., 2009]. They are expected to
show similar features as the fractional quantum Hall effect (FQHE), which appears as a consequence
of inter-particle interactions. These will, however, not be discussed here.
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classical) type of topological insulators at zero magnetic field studied so far.
Later, also 3D topological insulators were investigated theoretically [Fu et
al., 2007] and experimentally [Hsieh et al., 2008]. In such systems, the edge
states have a 2D band structure containing an odd number of Dirac points.

• The third category is that of systems exhibiting the quantum anomalous Quantum anomalous
Hall effectHall effect (QAHE) (also called Chern insulators).They are essentially quan-

tum spin Hall insulators with one of the spin channels suppressed, for ex-
ample by magnetic ordering. Such systems therefore contain edge states
with current flowing in only one direction like in the quantum Hall ef-
fect, but without applying an external magnetic field (and therefore also
without Landau levels). This effect was only recently observed for the first
time in experiments, in ferromagnetic (Bi−Sb)Te [Chang et al., 2013].
The quantum anomalous Hall effect (QAHE) is not to be confused with
what is called the unconventional or anomalous quantum Hall effect in
graphene, which refers to its shifted Hall conductivity in a magnetic field
𝜎𝑥𝑦 = ±4(𝑁 + /)𝑒/ℎ [Novoselov et al., 2005], as compared to materials
showing the normal QHE, where 𝜎𝑥𝑦 = ±𝑁𝑒/ℎ.

In all these systems, the appearance of the edge channels either relates to the
broken time-reversal symmetry as a result of a magnetic field or to the spin-orbit
coupling which gives rise to the opposite chirality of the two spin states (without
breaking time-reversal symmetry). As the atoms used to mimic the electrons in
our simulations of solids are neutral and unbound particles, they are as such not
subject to a Lorentz force in a magnetic field and do not exhibit coupling of their
momentum to their (pseudo-)spin. However, these effects can be modeled for ex- Implementing gauge

fields for neutral
atoms

ample by using laser beams addressing Raman transitions or by time-dependent
variations of the lattice potential. In this way spin-orbit coupling [Wang, Yu, et al.,
2012; Cheuk et al., 2012] aswell as abelian or non-abelian gauge fields [Dalibard et
al., 2011] can be emulated. An overview of the schemes to create such gauge fields
by opticalmeans and of themeasurement techniques for the emerging topological
states can be found in [Goldman, Juzeliūnas, et al., 2013].

Figure 11.5: Haldane model. Introducing complex
next-nearest-neighbor tunnelings 𝑒𝑖𝜑𝑡′ in a honey-
comb lattice leads to an effective “magnetic” flux
through the plaquettes defined by the additional
tunneling links within the unit cell. The total flux
through the whole unit cell, however, sums up to

zero, realizing a staggered flux lattice. The direction
of the phase contributions is indicated by the arrows.
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In viewof realizing a topological insulator in our experiment, one possible route
is the implementation of the Haldane model [1988]. It comprises a (locally time- Haldane model
reversal breaking) Hamiltonian that captures the essential physics of a quantum
anomalous spin Hall insulator for spinless particles in a 2D lattice system with
honeycomb geometry. Haldane concluded that “[the] particular model presented
here is unlikely to be directly physically realizable, [...]”, because of the difficulty of
engineering the required staggered magnetic fluxes. Surprisingly, the model can
actually be realized in our experimental setup with only a few modifications. Be-
sides the normal honeycomb structure, the key ingredient to this Hamiltonian are
next-nearest-neighbor tunnel couplings 𝑡′ with a complex phase 𝑒𝑖𝜑, see Fig. 11.5.
As a particle moves around the plaquettes defined by the complex tunneling links,
it acquires a non-zero phase (modulo 2𝜋) reminiscent of the Peierls phase in
a magnetic field. As the nearest-neighbor tunneling links remain real, the total
phase pickup when encircling the whole hexagon, however, remains zero. This
tunneling arrangement thus realizes what is called a staggered flux lattice, i. e. the
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emulated “magnetic” flux is non-zero in certain regions of the unit cell, but zero
when considering the whole unit cell or even the whole lattice. The staggered flux
leads to a gap opening at the Dirac points and induces chiral edge currents.
Possibilities to create complex tunnel couplings in our experiment include [Le-

brat, 2013]:

• Amplitude modulation of the different lattice laser beam intensities, suchTechniques to obtain
complex tunneling
amplitudes in our

experiment

that the tunneling along the honeycomb bonds alternates periodically in
time in a circular manner [Kitagawa et al., 2010]. The circular modula-
tion requires both a modulation of the intensities of the forward and back-
reflected laser beams. While the AOMs used for intensity regulation can be
employed for the former, the latter can be achieved by placing amplitude-
modulation EOMs in front of the retro-reflection mirrors.

• A circular movement of the whole lattice potential by phase modulation of
the retro-reflected lattice beams, which can be either obtained using phase-
modulating EOMs or by mounting the retro-reflecting mirrors onto piezo
stages. A phase modulation along two axes with the same frequency but a
phase difference of 𝜋

 leads to a circular movement of the lattice structure.
• Instead of moving the lattice potential, a circular movement of the atoms
can be induced by a rotating magnetic field gradient or the combination of
an alternating magnetic field gradient with a phase modulation of a perpen-
dicular lattice beam.

The latter twomethods are reminiscent of the proposal byOka andAoki [2009]
for observing aHall current in graphenewhen illuminating thematerial with high-
intensity circularly polarized light. The time-dependent Hamiltonians created us-
ing the techniques outlined above can be mapped into time-independent Hamil-
tonians with complex next-nearest-neighbor tunnelings using Floquet theory [Le-
brat, 2013]. Additionally, when using a spin mixture instead of a spin-polarized
gas, the combination of modulated magnetic field gradients with phase modula-
tion of the lattice allows for the realization of a relatedmodel exhibiting theQSHE,
the Kane-Mele model [2005]. This model consists of two copies of the HaldaneKane-Mele model
model associated with the two spin states and therefore does not break time rever-
sal symmetry. Owing to the Zeeman effect, themodulatedmagnetic field gradient
exerts different forces onto the two Zeeman states, allowing for the realization of
a Hamiltonian with opposite chirality for the two states.
With respect to the original Hamiltonian, the next-nearest-neighbor tunneling

in the Haldane model leads to an additional diagonal mass term with equal sign
for the two spinor components. Therefore, in the bulk, gaps will open at the two
Dirac points. In contrast to a gap opening related to amass induced by a sublattice
energy offset (leading to a Semenoff insulator [1984]), the gapped Dirac points in
theHaldane insulator have the same chirality and therefore have both either a pos-
itive or negative Berry phase and curvature. Thus the system has also a non-zero
Chern number (±1), hence the name Chern insulator. If we now add masses with
opposite signs by inversion symmetry breaking, one of the Dirac points will be
re-closed while the other opens further. Exactly at the parameters where one of
the points closes, the system assumes a special semimetallic state which is topo-
logical, due to the non-zero Chern number – a situation yet to be observed in
real materials. Moreover, at this point the band structure has the same topology
as that of the edge channels in a 3D topological insulator.
The detection of the non-zero Chern number and/or Berry curvatures mightDetecting a non-zero

Chern number be possible with the methods described at the beginning of this chapter for the
system with zero Chern number. The signals are expected to be generally larger
since for example the effects of the Berry curvature do not compensate (but add
up) when passing the two Dirac points. A detection of the topological order us-
ing TOF [Alba et al., 2011;Wang et al., 2013] and by Stückelberg oscillations [Lim
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et al., 2014] (see Section 6.2.3 on page 122) has also been proposed. The latter
scheme has recently been experimentally realized with trapped ions [Zhang et
al., 2014]. For a direct detection of the chiral edge channels, methods to select
certain edge states and image them in a background-free manner using Bragg
spectroscopy or by dynamical reshaping of the trapping potential have been pro-
posed [Goldman et al., 2012; Goldman, Dalibard, et al., 2013].

INTERACTIONS IN ARTIFICIAL GRAPHENE

Turning to interacting systems, ionic Hubbard models [Egami et al., 1993] can be Ionic Hubbard model
realized on the honeycomb lattice by use of an 𝐴-𝐵 on-site energy imbalance Δ.
In this model, a transition from a Mott insulator to a band insulator with stag-
gered density is expected when increasing Δ, see Fig. 11.6. However, the nature
of the transition between the two states and of possible bond-ordered intermedi-
ate states is yet to be clarified [Batista et al., 2004; Hoang, 2010]. When doping
the ionic Hubbard model away from half-filling, superconducting states are ex-
pected [Watanabe et al., 2013].

Figure 11.6: The ionic Hubbard model in 1D.
When increasing the on-site energy imbal-

ance  between the 𝐴 and 𝐵 sites, a transition
from a Mott-insulating to a CDW ordered insu-
lating state occurs. In the regime where 𝑈 ≈ ,

a bond-ordered state has been predicted.
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In our system, the transition between the two states can be characterized by
an increasing double occupancy. Additionally, the excitation spectrum of the sys-
tem changes qualitatively as compared to the situation with Δ = 0. In preliminary
measurements, we have observed additional excitations at modulation frequen-
cies corresponding to the energies 𝑈 − Δ and 𝑈 + Δ, see Fig. 11.7.

Figure 11.7: Excitation spectra of an ionic
Hubbard model system. For an arrange-

ment of coupled ionic honeycomb planes
(with 𝐴-𝐵 site energy offset ) in-plane
lattice amplitude modulation (blue cir-

cles) shows excitations with energy 𝑈 − 
and 𝑈 + . The out-of-plane excitations
(purple squares) on the other hand have
an energy 𝑈 , since the 𝐴-𝐴 type stack-
ing couples sites with the same energy
along this direction. Hubbard parame-

ters: 𝑈/ℎ ≈ . kHz and /ℎ ≈  kHz.
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To advance further into the regime of quantummagnetism, the entropy redistri- Long-range quantum
magnetismbution scheme presented in Section 9.1 on page 164 could be extended to two di-

mensions. In combinationwith global entropy isolation or redistribution schemes
the observation of longer-range correlations might be achieved. Possible experi-
mental implementations include the creation of low entropy regions in the trap
center using a dimerized lattice, followed by an isolation or removal of the high-
entropy regions in the outer region of the trap using a Laguerre-gaussian laser
beam [Greif, 2013]. An alternative approach is the creation of a low-temperature
state by reducing the confinement using the installed deconfinement laser beams.
Here, an additional dimple beam could be used to maintain half-filling in the cen-
tral region of the trap [Greif, 2013]. Reaching lower temperatures might allow for
the observation of antiferromagnetic spin ordering, for example by using noise
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correlation measurements (see Chapter 10 on page 181), or shed light on the dis-
puted spin liquid phase [Meng et al., 2010; Sorella et al., 2012; Assaad et al., 2013]
in the honeycomb lattice. Alternatively, using the dynamic tunability of the opti-
cal lattice, an antiferromagnetically ordered state could be artificially prepared by
loading a band insulator into the checkerboard configuration and subsequently
dimerizing the lattice [Lubasch et al., 2011].

OTHER LATTICE GEOMETRIES

Addressing other lattice configurations which can be produced using the tunableTriangular, spin
ladder and zig-zag
chain geometries

optical lattice, the physics of triangular geometries could be studied. Magnetic
frustration occurring in the triangular lattice might favor a spin liquid state [Ba-
lents, 2010]. In systems of decoupled dimers in the 𝑥 − 𝑦 plane, spin ladders can
be created by allowing for a coupling along the 𝑧 direction. Alternatively, zig-zag
chains can be obtained by imbalancing the intensities of the retro-reflected with
respect to the incoming lattice beams, using a technique similar to that discussed
above. Despite the fact that both systems are nearly 1D, the spin configuration is
predicted to be still strongly influenced by the remaining coupling along the other
spatial dimensions [Greif, 2013].They thus provide a fruitful ground for the study
of exotic spin physics.
Adding a second interfering lattice laser beam on the 𝑦 axis would allow forAdding additional

lattice beams the detection of spin correlations along that direction. In combination with the
existing beams, the spin correlations in a 2D plane, which might emerge by us-
ing an extended entropy redistribution scheme, can be fully characterized. By an
additional overlapping optical lattice with half the wavelength of the one used
presently, kagome lattices can be realized, allowing for the study of the emerging
physics in flat bands [Green et al., 2010; Balents, 2010]. Lasers to create such a lat-
tice are already in use in our experiment. However, a custom phase stabilization
scheme for the two lattice lasers running at 𝜆 = 1064 nm and 𝜆′ = 𝜆/2 = 532 nm,
respectively, will be necessary to avoid drifts of the two lattice potentials with re-
spect to each other.
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