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Abstract

This semester thesis shows how carrying a payload affects the dynamics of the quadrocopter and
trajectory feasibility. Moreover it shows that compensation for the payload’s inertial parameters
can improve the tracking performance. First, recursive least square estimation algorithm with
fading memory is presented to estimate the payload’s inertial parameters, and modification in the
on board controller is introduced to compensate for the payload. The results are implemented
and tested in the Flying Machine Arena in ETH Zurich. Finally we show how the feasible set of
time-optimal trajectories can be influenced by the presence of a grasped object.
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Introduction

Recently aerial construction has been one of the research areas carried out in the Flying Machine
Arena at ETH Zurich [1, 14]. Autonomous flying robots (quadrocopters) are used to assemble
small building elements autonomously. This is a challenging task that requires multidisciplinary
effort.

Aerial construction offers great advantages over conventional construction approach: aerial robots
have fewer workspace constraints allowing the architecture to be more creative in the design, it
does not require scaffolding or special purpose tower cranes. However, this novel construction tech-
nique has some limitations such as the limited payload that aerial robot can carry and the limited
battery life. The first limitation is partially solved using cooperative techniques as in [11, 12]. The
second limitation is solved using charging stations, allowing the robots to recharge their batteries
whenever needed.

An important aspect in the aerial construction is the ability of the vehicle to transport objects
with a good reference tracking. In this work we investigate an adaptive strategy to improve the
tracking performance in the presence of unknown payload. Assembling a structure shouldn’t be
only precise, but it should be also as quick as possible. So, time-optimal trajectory generation is
considered [7] and we investigated how the feasible set of time-optimal trajectories can be influ-
enced under the presence of a payload.

In Chapter 1 we use rigid body equations to derive the quadrocopter model with payload. In
Chapter 2 recursive least square estimation with fading memory algorithm is presented to estimate
the payload inertial parameters and experimentally validated. In Chapter 3 we derive the control
law from the rigid body equations and we show how adapting the controller can improve the ref-
erence tracking of the vehicle. Finally in Chapter 4 we show the influence of the payload on the
trajectories feasible set.
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Nomenclature

Symbols

RVO Rotation matrix from reference O to reference V
xv, yv, zv Axes rigidly attached to the vehicle
U1 Total thrust [N]
U2 Moment around xv axis [Nm]
U3 Moment around yv axis [Nm]
U4 Moment around zv axis [Nm]
mT Total mass (vehicle + payload) [kg]
mv Mass of the vehicle [kg]
mL Mass of the payload [kg]
g Gravity acceleration, 9.81 [m/s2]
ω Rotational rate in the vehicle frame [rad/s]
roff Vector indicating the center of mass offset w.r.t. the geometric center of mass [m]
xoff Center of mass offset on the xv axis [m]
yoff Center of mass offset on the yv axis [m]
J Tensor of inertia [kg m2]
Fi Thrust of the i− th propeller [N]
p, q, r Rotational rates around xv, yv and zv axes [rad/s]
Kk Kalman gain matrix
λ Forgetting factor
Pk Estimation covariance matrix
Rk Measurement noise covariance matrix
fx, fy Mass normalized disturbance on x and y axes [m/s2]
x̂off Estimation of center of mass offset along x axis [m]
ŷoff Estimation of center of mass offset along y axis [m]
m̂T Estimation of total mass [kg]
p̌, q̌, ř Desired rotational rates in the vehicle frame [rad/sec]
F̌i Desired i− th motor thrust [N]
τpq Time constant for p, q [s]
τr Time constant for r [s]
τ̌ Mass normalized desired thrust [m/s2]
Fmin Minimum motor thrust [N]
Fmax Maximum motor thrust [N]
ωmax Maximum rotational rate [rad/s]
accmax Maximum acceleration [m/s2]
ux Maximum allowable jerk along x axis [m/s3]
uy Maximum allowable jerk along y axis [m/s3]
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Acronyms and Abbreviations

GCoM Geometric center of mass.
CoM Center of mass.
RLS Recursive least square.
MSE Mean squared error.



Chapter 1

Quadrocopter Model With

Payload

In this chapter, we derive an analytical model of the quadrocopter with an attached payload using
rigid body dynamics. This model is crucial to understand the effects of an additional payload on
the quadrocopter dynamics. Moreover we will use it to estimate the inertial parameters in Chapter
2 and to derive a controller that can compensate for the additional payload in Chapter 3.

First, we make the following assumptions about the quadrocopter and the attached payload to
simplify the model derivation:

� The inertia matrix is time-invariant.

� The quadrocopter is symmetric with respect to x and y axes.

� The payload does not significantly affect the inertia of the quadrocopter. This assumption is
valid when the dimension of the payload is not so large and the payload’s mass distribution
is uniform.

Two frames are defined to derive the model, an inertial frame attached to the groundO and another
non inertial frame attached to the vehicle V in the geometric center of mass (GCoM) . The matrix
RVO that represent the rotation matrix from the frame V to the frame O is given by

RVO =





cψcθ −sψcφ + cψsθsφ sψsφ + cψsθcφ
sψcθ cψcφ + sψsθsφ −cψsφ + sψsθcφ
−sθ cθsθ cθcφ



 (1.1)

where φ, θ, ψ are the roll, pitch and yaw angles respectively, c and s denote cosine and sine.
We also define the vector roff to indicate the center of mass (CoM) with respect to the GCoM as
shown in Figure 1.1.

Moreover we assume that the payload is rigidly attached to the quadrocopter, and generally it will
introduce an offset in the center of mass (CoM). The CoM offset is measured with respect to the
GCoM in the vehicle frame.

1.1 Translational Dynamics

To derive the translational dynamics we have to identify the external forces acting on the quadro-
copter, these forces are given by:
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2 1.1. Translational Dynamics
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Figure 1.1: GCoM and CoM of quadrocopter with payload

� The gravity force, defined in the inertial frame by the vector
(
0 0 −mT g

)T
.

� The total thrust generated by the propellers, defined in the vehicle frame by the vector
(
0 0 U1

)T
where U1 =

∑4
i=1 Fi , Fi is the i− th motor thrust.

Using Newton’s equations of motion with respect to the GCoM it is possible to derive the GCoM
acceleration as follows





ẍ
ÿ
z̈



 = RVO





0
0

U1/mT



−





0
0
g



− ω̇ × roff − ω × (ω × roff ) (1.2)

Note that the terms ω̇ × roff and ω × (ω × roff ) are the centripetal acceleration and coriolis
acceleration respectively. These terms are generally small in comparison with other terms, so we
assume that they will be rejected by the controller and in the following analysis we will neglect
them.
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1.2 Rotational Dynamics

The rotational dynamics are derived from Euler equation

dL

dt
+ ω × L =M, (1.3)

where L is the angular momentum with respect to the inertial frame, andM is the vector of torques
acting on the vehicle. The angular momentum is given by L = Jω. where J is the inertia tensor
with respect to the vehicle principle axes
The torques acting on the vehicle M are given by

M =





U2

U3

U4



− roff ×





0
0
U1



 , (1.4)

where U1 =
∑4
i=1 Fi , Fi is the i − th motor thrust, U2 = L (F2 − F4), U3 = L (F3 − F1), U4 =

k̄ (F1 − F2 + F3 − F4) are the moments around xV , yV and zV respectively, k̄ is an appropriate
constant.
Substituting in Equation (1.3) we have

Jω̇= J





ṗ
q̇
ṙ



 =





U2

U3

U4



 − ω × Jω − roff ×





0
0
U1



 . (1.5)

The total thrust U1 is applied in the center of mass, hence it introduces torque given by the last
term in Equation (1.5).
Equations (1.2) and (1.5) represent a full model of the quadrocopter with a payload.
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Chapter 2

Inertial Parameter Estimation

The most probable value of the unknown quantities will be that in which the sum of
the squares of the differences between the actually observed and the computed values
multiplied by numbers that measure the degree of precision is minimum.

(Carl Friedrich Gauss)

In this chapter, the algorithm used in the inertial parameters estimation is presented. By inertial
parameters we mean the total mass and the center of mass offset. A recursive least square (RLS)
algorithm with fading memory is presented and the experimental results of the estimation in hover
condition as well as in forward flying condition are shown.
In Section 2.1 we introduce the recursive least square estimation algorithm, and we will show how
to apply it to estimate the vehicle’s total mass in Section 2.2. In Section 2.3 we will show how to
estimate the CoM offset. Finally, Section 2.4 presents the experimental results of the algorithm.

2.1 Least Squares Estimation

We start by introducing the batch least squares problem, then we will introduce the recursive least
squares with fading memory.

2.1.1 Batch Least Squares

Formally, suppose that θ is a vector of unknown n parameters and Z is a vector of k noisy
measurements. Now we consider a simple case where every measurement zi is a linear combination
of the parameters θi, with some additional measurement noise vi. Thus we can write the following
linear system :

Z = Hθ + V (2.1)

where V is the measurement noise vector, and H is a k × n matrix.
The goal of least squares estimation is to find the best estimate of θ, θ̂ that minimizes the following
cost function

J
(

θ̂
)

=
(

Z −Hθ̂
)T

S
(

Z −Hθ̂
)

(2.2)

where S is a semidefinite positive weighting matrix. Clearly, J
(

θ̂
)

is a convex function, and has

a global minimum given by

θ̂ =
(
HTSH

)−1
HTSZ (2.3)

Equation (2.3) is good when all the measurements are available ahead of time, however when the
measurements are obtained sequentially, the dimension of the matrix H becomes very large over
time, and the computational effort will be prohibitive. To overcome this problem, we use the
recursive least squares algorithm presented in the Subsection 2.1.2;
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6 2.1. Least Squares Estimation

2.1.2 Recursive Least Squares With Fading Memory

Let’s suppose that we receive a new measurement every time step, and we want to choose the
weighting matrix S such that older data is gradually discarded in favor of more recent information.
We choose S as follows

S =








λ(k−1)

λ(k−2)

. . .

1








(2.4)

where λ is called the forgetting factor, and λ ∈ (0, 1].
In order to update recursively our estimation every time a new measurement is available, we use
a linear recursive estimator given by

zk = Hkθ + vk

θ̂k = θ̂k−1 + Kk
︸︷︷︸

Kalman gain

(

zk −Hkθ̂k−1

)

︸ ︷︷ ︸

correction term

(2.5)

the matrix Kk is called Kalman gain or gain matrix, and
(

zk −Hkθ̂k

)

is called the correction

term because it compares the difference between the new measurement and the prediction using
the last estimate.Before we present the expression of the optimal gain matrix, we have to do some
assumptions regarding the measurement noise vk. We assume that vk is zero mean noise with co-
variance Rk . Moreover, we assume that vk is independent at each time step, i.e. the noise is white.

The expression of the optimal gain matrix Kk, and the estimation covariance Pk is given by

Kk = λ−1Pk−1H
T
k

(
Rk + λ−1HT

k Pk−1Hk

)
−1

Pk =
(
λP−1

k−1 +HT
k R

−1
k Hk

)
−1

(2.6)

the complete derivation of (2.6) can be found in [6].

Summary of the algorithm

� Initialize the estimator by setting θ̂0 to our initial guess of the parameters, and by setting
P0 to the covariance of the initial guess. If we know perfectly the parameters before any
measurements, we set P0 = 0, if no any prior knowledge is available, we set P0 = ∞I .

� for k = 1, 2, . . .

– obtain a new measurement zk.

– compute the optimal filter gain

Kk = λ−1Pk−1H
T
k

(
Rk + λ−1HT

k Pk−1Hk

)
−1

– update the estimation

θ̂k = θ̂k−1 +Kk

(

zk −Hkθ̂k−1

)

– update the estimation covariance

Pk =
(
λP−1

k−1 +HT
k R

−1
k Hk

)
−1
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2.2 Total Mass Estimation

In this section we show how to apply the recursive least squares algorithm to estimate the vehicle’s
total mass.

2.2.1 Vehicle Calibration

To have a good estimation of the total mass, it is necessary to have information about the total
thrust produced by the four propellers. To take into account possible degradation and non ideality
of the propellers, we use the on-board calibrator to find the propeller factors defined as the ratio
between the true thrust and the commanded thrust. More details about the calibration can be
found in [9].

It is necessary to calibrate the vehicle without payload and with on-board mass parameter as close
as possible to the true mass value. An offset in the on board mass parameter during calibration
will lead to an offset in the estimated total mass when flying with additional payload.

2.2.2 Mass Estimation

From (1.2), neglecting the centrifugal and Coriolis terms, we can write the vehicle acceleration as
follows





xacc
yacc

zacc + g





︸ ︷︷ ︸

zk

=





U1 (sψsφ + cψsθcφ)
U1 (−cψsφ + sψsθcφ)

U1cθcφ





︸ ︷︷ ︸

Hk

1/mT
︸ ︷︷ ︸

θ

(2.7)

In Wquation (2.7) we omitted the obvious dependency on time k, from now on we will omit the

dependency on time. The measurement vector zk =
(
xacc yacc zacc + g

)T
can be obtained

from the VICON through numerical derivation or from the on-board accelerometers. Note that the
on-board accelerometers provide measurements in the vehicle frame, so it is necessary to transform
it to the inertial frame as follows

zOk = RVOz
V
k (2.8)

The collective thrust U1 is calculated as a function of the motors command as follows

Fi = α2

(
MtrCmdi

200

)2

+ α1

(
MtrCmdi

200

)

+ α0

U1 =

4∑

i=1

Fi

(2.9)

whereMtrCmdi is the i-th motor command, Fi is the i-th motor thrust and α2, α1, α0 are constants.

The vehicle attitude used to calculate Hk is obtained from a previously existing estimator.
Equation (2.7) doesn’t assume any external disturbance and it shows good performance in hovering,
but it has poor performance in forward flying. In [10], an augmented model with additional
disturbances is presented as follows





xacc
yacc

zacc + g





︸ ︷︷ ︸

zk

=





U1 (sψsφ + cψsθcφ) 1 0
U1 (−cψsφ + sψsθcφ) 0 1

U1cθcφ 0 0





︸ ︷︷ ︸

Hk





1/mT

fx
fy





︸ ︷︷ ︸

θ

(2.10)

where fx and fy are the mass normalized disturbance forces on x and y axis respectively.
We update our estimator every time a new feedback packet is available from the vehicle, more
details about the feedback and the communication standard used in the Flying Machine Arena can
be found in [9].
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Summary

� Initialize the estimator by setting the initial guess about the total mass and the normalized
external disturbances on x and y axes. Moreover, we set the initial covariance P0. In our
case, we choose to fix the measurement noise covariance R and we choose an appropriate
forgetting factor λ.

� For every feedback packet available, do the following:

– obtain a new measurement
(
xacc yacc zacc + g

)T
. If the measurement are obtained

from the on-board accelerometers, we must transform it according to equation (2.8).

– calculate U1 according to Equation (2.9).

– calculate Hk as shown in Equation (2.10).

– compute the optimal filter gain

Kk = λ−1Pk−1H
T
k

(
Rk + λ−1HT

k Pk−1Hk

)
−1

– update the previous estimation

θ̂k = θ̂k−1 +Kk

(

zk −Hkθ̂k−1

)

– update the estimation covariance

Pk =
(
λP−1

k−1 +HT
k R

−1
k Hk

)
−1

– set Pk−1 = Pk and θ̂k−1 = θ̂k

2.3 Center of Mass Offset Estimation

Beside the total mass, we want to estimate the center of mass (CoM) offset. When the quadrocopter
grasps an object, due to non-ideality in the grasping and non uniformity in the mass distribution of
the payload, we may have an offset in the center of mass. By estimating that offset, and providing
this information to the controller, we can achieve better tracking performance as will be shown in
Chapter 3.
Under hovering condition, we can rewrite Equation (1.5) as





U2

U3

U4



 =





yoffU1

−xoffU1

0



 (2.11)

considering Ui as constant over time, we can write the center of mass offset x̂off and ŷoff as follows

x̂off = −

∑N

τ=1 U3(τ)
∑N

τ=1 U1(τ)

ŷoff =

∑N

τ=1U2(τ)
∑N

τ=1U1(τ)

(2.12)

where N is the averaging interval.
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EXP1 EXP2 EXP3

Theoretical CoM offset (0, 0.66) (0, 1.41) (0, 2.13)

Estimated CoM offset (−0.1, 0.54) (0.06, 1.36) (−0.1, 2.17)

Table 2.1: CoM offset experiments summary - all measurements are in cm

2.4 Experimental Results

The estimation algorithm has been implemented in C++ and tested in the Flying Machine Arena
in ETH Zurich. Here we show the relevant experiments results.

2.4.1 Mass Estimation

Figure 2.1(a) shows how the forgetting factor may influence the estimation error, high forgetting
factor will lead to small oscillation around the real mass, but it may take longer time to con-
verge. On the other hand, small forgetting factor will not filter out the measurement noise, so it
is necessary to tune this parameter based on the specific estimation problem we are dealing with,
for instance, time varying mass estimation problem will require small forgetting factor to track
correctly the real mass, while in forward flying as in Figure 2.1(b) it is necessary to have a high
forgetting factor to reject the disturbance effects on the estimation. Figure 2.1(c) shows the per-
centual error for 5 different payloads, we repeated each experiment 10 times to verify repeatability
of the method. Figure 2.1(d) shows the convergence rate of the algorithm for 2 different payloads,
we can see that as the averaging time increases, the error converges to zero. A reasonable averaging
time is 2.5 ∼ 3 seconds. Note that the convergence rate depends on the forgetting factor and the
initialization of the estimator.

2.4.2 Center of Mass Offset Estimation

Here we present the experimental results of the CoM estimation. Attaching a payload on one side
of the vehicle, as shown in Figure 2.2 , we calculate the theoretical CoM offset as follow:

xoff =
mL

mT

dx

yoff =
mL

mT

dy
(2.13)

where mL is the mass of the payload, mT is the total mass, dx and dy are the distance between
the GCoM and the CoM of the payload on the x axis and y axis respectively.

In Table 2.1 we show the theoretical CoM offset calculated by Equation (2.13) and the estimated
CoM offset for 3 experiments. In Figure 2.3 we show the percentual error in the CoM offset
estimation.
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Chapter 3

Controller Extension

In this chapter we will present a controller structure that can compensate for the additional payload.
The performance of the new controller structure is compared with the existing controller [9] using
a random trajectory generated that uses the algorithm presented in [5].

3.1 Controller Structure

By elaborating and inverting Equation (1.5) we obtain the following controller structure





L
(
F̌2 − F̌4

)

L
(
F̌3 − F̌1

)

k̄
(
F̌1 − F̌2 + F̌3 − F̌4

)



 = J






1
τpq

(p̌− p)
1
τpq

(q̌ − q)
1
τr

(ř − r)




 + ω × Jω +





m̂T τ̌ ŷoff
−m̂T τ̌ x̂off

0



 (3.1)

F̌1 + F̌2 + F̌3 + F̌4 = m̂T τ̌ (3.2)

where p̌, q̌ and ř are the desired rotational rate around xV , yV and zV respectively, τ̌ is the desired
mass normalized thrust, F̌1 . . . F̌4 are the desired motor thrust, τpq, τr are the closed loop time
constant. m̂T , x̂off and ŷoff are the estimated inertial parameters using the algorithm presented
in Chapter 2.
It is straight forward to solve Equations (3.1) and (3.2) for the desired motors thrust F̌1 . . . F̌4.

3.2 Experimental Results

In this section we will show a comparison between the performance of the old controller presented
in [9] and the extended controller expressed by Equations (3.1) and (3.2). Figure 3.1 shows the
tracking error of both controllers on x, y and z axes for 2 different payloads. Table 3.1 shows the
estimated center of mass and the tracking RMS error of both controllers. In these experiments,
the trajectory is generated using collision-free trajectory generator presented in [5].

13
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EXP1 EXP2

Payload mass 82 g 135 g

Estimated CoM offset (−0.1, 1.8) (0.06, 2.55)

Tracking RMS error with standard controller 19.6 cm 31.8 cm

Tracking RMS error with extended controller 14.2 cm 20.1 cm

Table 3.1: Controllers comparison
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Chapter 4

Feasibility of Trajectories with

Payload

In this chapter we show how a payload attached to the quadrocopter may affect the feasibility of
a given trajectory. We try to answer the following question: Given a trajectory characterized by
X(t) ∈ R

3 and yaw profile ψ(t), a payload rigidly attached to the quadrocopter characterized by
mass and center of mass offset, is the trajectory feasible?

4.1 Trajectory feasibility

In this section, we extend the work presented in [3], our goal is to test trajectory feasibility with
respect to vehicle physical constraints. First, we will show how to construct rotational rate and
rotational matrix from the trajectory. Then we construct the single motor thrust. Finally we
present the vehicle physical constraints.

4.1.1 Derivation of rotational rates from trajectory

Construction of rotational rates

Let’s define the thrust vector as

f = RVO





0
0

U1/mT



 =





ẍ
ÿ
z̈



+





0
0
g



 (4.1)

and the normalized thrust vector as

f̄ =
f

||f ||
=

f

U1/mT

= RVO





0
0
1



 (4.2)

differentiating (4.2) with respect to time and pre-multiplying by ROV we obtain

ROV Ṙ
V
O





0
0
1



 = ROV
˙̄f (4.3)

moreover we have that (see [13])

ROV Ṙ
V
O =





0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0



 (4.4)
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From Equations (4.3) and (4.4) we obtain





ωy
−ωx
0



 =
(
RVO

)T ˙̄f (4.5)

˙̄f can be obtained by differentiating Equation (4.2) giving the following expression

˙̄f =

...
X

||f ||
−
fT

...
Xf

||f ||3
(4.6)

where X =
(
x y z

)T

To construct ωz we can write the rotational rates in the inertial frame as follows





ωx
ωy
ωz



 =





1 0 −sθ
0 cφ cθsφ
0 −sφ cθcφ









φ̇

θ̇

ψ̇



 (4.7)

from Equation (4.7) we can write ωz as

ωz = −θ̇ sinφ+ ψ̇ cos θ cosφ (4.8)

and θ̇ as

θ̇ =
ωy − ψ̇ cos θ sinφ

cosφ
(4.9)

substituting Equation (4.9) into (4.8) we get

ωz =
cos θψ̇ − sinφωy

cosφ
(4.10)

Construction of rotational matrix

The rotational matrix RVO is given by

RVO =





cψcθ −sψcφ + cψsθsφ sψsφ + cψsθcφ
sψcθ cψcφ + sψsθsφ −cψsφ + sψsθcφ
−sθ cθsθ cθcφ



 (4.11)

from (4.2) we observe that the normalized thrust vector is equal to the last column of the matrix
RVO , hence

f̄ =





fx
fy
fz



 =





sψsφ + cψsθcφ
−cψsφ + sψsθcφ

cθcφ



 (4.12)

from Equation (4.12) we can find θ as

θ = atan2 (fx cosψ + fy sinψ, fz) (4.13)

knowing θ and ψ we can construct the first column of RVO , and from orthogonality of RVO we can
construct the second column doing the cross product of the third column by the first column.
From Equations (4.5) and (4.10) we can derive the rotational rates given a trajectory X(t) and
yaw profile ψ(t).
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Derivation of single motor thrust

To find the single motor thrust, we have to solve the following equations for F1, . . . , F4





−yoffF1 + (L− yoff)F2 − yoffF3 − (L+ yoff )F4

(xoff − L)F1 + xoffF2 + (L+ xoff )F3 + xoffF4

k̄ (F1 − F2 + F3 − F4)



 = Jω̇ + ω × Jω (4.14)

F1 + F2 + F3 + F4 = mT ||f || (4.15)

Equation (4.14) is obtained by elaborating the rotational dynamics presented in Equation (1.5),
while Equation (4.15) is obtained from the fact that U1/mT = ||f ||.
Note that ω̇ is obtained by numerical derivation.

4.1.2 Vehicle Constraints

The physical constraints on the vehicle can be summarized as:

� Constraint on single motor force
Fmin ≤ Fi ≤ Fmax
with Fmin > 0 because the propeller cannot be switched off during flight.

� Constraint on the maximum rotational rate
||ω||∞ ≤ ωmax

Given a trajectory and a payload, if any of the physical constraint shown above is violated, the
trajectory is not feasible. When the trajectory is not feasible, we have to generate another one
with smaller maximum allowable jerk. In the next section we will consider time optimal trajectory,
and we will show how the presence of a payload may affect the feasible set of trajectories.

4.2 Feasible set under the presence of payload

In this section, we consider time optimal trajectory (bang-bang) presented in details in [8], the
trajectory can be characterized by the magnitude of the maximum allowable jerk |u|, the magnitude
of the maximum acceleration |amax| and the switching times. See Figure 4.1 for an example of
time optimal trajectory. The closed form solution for the switching time can be found on [2].

Let’s consider the time optimal trajectory between two points, for simplicity, we fix the z axis and
we assume that the magnitude of the maximum allowable jerk and the magnitude of the minimum
allowable jerk are equal. We check the feasibility for a discrete grid of trajectories covering the set
{
(ux, uy) ∈ R

2| − 40 ≤ ux ≤ 40,−40 ≤ uy ≤ 40
}
to generate the feasible set. Note that the sign of

u fixes in which direction we are going to move, for instance, if ux > 0 we will have x(tf ) > x(t0),
on the other hand, if ux < 0 we will have x(tf ) < x(t0) .
In the following analysis we consider the constraints shown in table 4.1. In particular, we fix ωz = 0
to minimize power consumption.

Results

Here we present the analysis results. In figure 4.2 we show the influence of different payloads
attached to the vehicle, without any center of mass offset. The additional payload will reduce the
feasible set as expected intuitively.

In Figure 4.3 we show the influence of the center of mass offset on the feasible set. The payload
mass is fixed (mL = 100 g) while the center of mass is changed. We can see that the center of
mass offset shrinks even more the feasible set, and it is not perfectly symmetric anymore. We can
observe that moving in the direction where there is no center of mass offset is easier (higher jerk
is allowable).
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Figure 4.3: Feasible set for different center of mass offset

Constraint Value

ωmax 15rad/s

ωz 0

accmax 12m/s2

Fmax 3.9N

Fmin 0.15N

Table 4.1: Constraints



Conclusion

In this semester thesis, we showed how a payload attached to the quadrocopter may influence the
tracking performance and the feasibility of trajectories. Moreover this estimator can be used for
other purposes such as

� checking if we successfully picked or dropped a payload.

� update on-board parameters online for time varying payload, for instance in rope construction
tasks. See [4].

The feasibility analysis gives an indication on the selection of maximum allowable jerk, and shows
how the feasible set is deformed under the presence of additional payload.

Future work

The estimation can be improved in forward flying if we include an accurate noise model based on
flight dynamics.
It might be interesting if we move the whole estimator on-board, and autonomously estimate
inertial parameters and update them online.
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Appendix A

Code

The code is implemented in a class called InertialParamEstimator, here we explain the main functions
and we present an example showing how to use this class.

A.1 InertialParamEstimator Class

Public functions

InertialParamEstimator()

The constructor does not take any argument.

void Initialize(VehicleID ID, FMA::SettingsManager Settings)

This function initialize the quadrocopter ID, temporary variables, counters, and accumulators.
Moreover it reads the necessary parameters from InertialParamEstimator.xml, the parameters will
be explained in Section A.2

void UpdateCopilotStatus(const FMA::CP2::Copilot2StatusSet& statusSet)

This function is used in the copilot status callback to update the copilot status.

void Calibrate(float height)

This function will send calibration command to the copilot to a specified height. The calibration
should be done without any payload to find the propellers factor.

void UpdateEstimation(const X3DFeedbackSet& fbs, shared ptr<Estimator> est)

This function is the core of the estimation algorithm, it has to be called every time a new feedback
packet is available. Moreover it takes a pointer to the vehicle estimator.

void StartEstimation(double EstimationInterval)

This function will run the estimator for EstimationInterval seconds.

double getEstimatedMass()

double getEstimatedMassAverage()

double GetCovariance()

23
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The function getEstimatedMass will return the current mass estimation, while getEstimatedMassAv-
erage will return the average of the estimated mass over the estimation period (EstimationInterval
seconds). The function GetCovariance() will return the current estimation covariance.

BNUV <double,2> getCoMOffset()

BNUV <double,2> getCoMOffsetAverage()

double GetCoMOffset(int i)

The function getCoMOffset will return the current estimation of the center of mass offset, while
getCoMOffsetAverage will return the average over the estimation interval. The function GetCo-
MOffset(i) will return xoff if i = 1 and yoff if i = 2.

void ResetEstimation()

This function will rest the estimator.

void StopEstimation()

This function will stop the estimator without resetting it.

void SendEstimatedMassToVehicle()

This function will send the estimated inertial parameters to the on-board controller.

bool FinishedEstimation()

This function will return True if the estimation is finished, otherwise it returns False.
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A.2 Parameters

InertialParamEstimator.xml

Table A.1: Algorithm parameters in InertialParamEstimator.xml

Parameter Value Unit Description

Theta0
(
0.5 0.1 0.1

) (
Kg N N

)
The initial guess of total mass
mT (0), x and y disturbances
Fx(0) and Fy(0).

P0





10 0 0
0 100 0
0 0 100



 [-] The initial covariance matrix.

ForgettingFactor 0.985 [-] The forgetting factor of the esti-
mation algorithm.

R





50 0 0
0 50 0
0 0 50



 [-] The measurement noise covari-
ance.

Delayms 150 [ms] Delay used in the code to in-
crease reliability.

Filter tau 0.02 [sec] Time constant used in the nu-
merical derivation to derive ac-
celeration from ViCon.

minAccDt 0.005 [sec] Minimum time step in numerical
derivation, used to avoid numer-
ical problems (avoid dividing by
zero).

A.3 Example

In this section we show through an example how to use the InertialParamEstimator class.

...

InertialParamEstimator PayloadEst; //Create InertialParamEstimator object

PayloadEst.Initialize(ID QUAD1,settings); //Initialization

...

//Define callbacks (copilot and feedback)

void ParamEstUpdateCopilotStatus(const FMA::CP2::Copilot2StatusSet& statusSet){
// This function is called every time a copilot status set is available

PayloadEst.UpdateCopilotStatus(statusSet);

}

void ParamEstUpdateEstimation(const X3DFeedbackSet& fbs){
// This function is called every time a feedback packet is available

PayloadEst.UpdateEstimation(fbs,VehicleEstimator);

}

...

//Here we add the callback

statusclient.AddCallback(ParamEstUpdateCopilotStatus); //Copilot status update

fbClient.AddCallback(ParamEstUpdateEstimation); //Feedback
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...

//We use NoPayloadCalibration to switch between calibration and estimation

switch(NoPayloadCalibration){
case 1:

//Calibrate

printf("Start Calibration\n");
PayloadEst.Calibrate(2.5);

break;

//The vehicle will take off and calibrate the propellers factor at 2.5 m

case 0:

//Estimation

printf("Estimation\n");
ReqSet.timestamp = cmdTimer−>ElapsedTicks();
ReqSet.requests[ID QUAD1] = FMA::CP2::Copilot2EntityRequest::Takeoff(2.5);

crServer−>Send(ReqSet); //Send take off request to 2.5 m

printf("Sent Takeoff Request\n");

//Wait 6 seconds − can be improved by monitoring the copilot status and waiting till the take off process

Sleep((DWORD)6000.0);

PayloadEst.StartEstimation(10); //Start estimation for 10 seconds

//If the estimation is not finished, monitor the mass, CoM offset and covariance

double m, P;

BNUV <double,2> CoMOffset;

while(!PayloadEst.FinishedEstimation()){
m = PayloadEst.getEstimatedMass();

P = PayloadEst.GetCovariance();

CoMOffset = LSE.getCoMOffset();

...

//Monitor m,P, CoMOffset, for instance through debug server.

...

Sleep((DWORD)1.0); //Used to slow down the loop

}

//Finished estimation

printf("Finished Estimation\n");

/*Some checks can be done by the user to guarantee that the estimation didn't fail.

(for instante check that the mass, CoMOffset and covariance are within certain range) */

...

//If the estimation is ok, we can send it to the on−board controller

PayloadEst.SendEstimatedMassToVehicle(); //Will send mass and CoMOffset.

...

//Send landing request, or do something else!

}
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