
Diss. ETH No. 21881

Optimality-Based Trajectory Generation
and Periodic Learning Control

for Quadrocopters

A dissertation submitted to
ETH ZURICH

for the degree of
Doctor of Sciences

presented by

MARKUS HEHN

Diplom-Ingenieur, Technische Universität Darmstadt

born 14th March 1985
citizen of Germany

accepted on the recommendation of

Prof. Dr. Raffaello D’Andrea, examiner
Prof. Dr. Vijay Kumar, co-examiner
Prof. Dr. Roy Smith, co-examiner

2014

Optimality-Based Trajectory Generation
and Periodic Learning Control

for Quadrocopters

Markus Hehn

Institute for Dynamic Systems and Control
ETH Zurich
Zurich, 2014

Institute for Dynamic Systems and Control
ETH Zurich
Switzerland

c© 2014 Markus Hehn. All rights reserved.

Abstract

This thesis considers the design of algorithms for the autonomous flight of quadrocopters

and related multi-rotor vehicles. These flying vehicles have proven popular as small-scale

aerial robotics platforms because they combine mechanical simplicity and robustness, the

ability to hover, and exceptional agility.

The algorithms proposed herein perform two tasks: 1) they generate high-performance

flight trajectories that satisfy the dynamic and input constraints of quadrotor vehicles;

and 2) they track a given, periodic trajectory with high accuracy by using past data.

The first part of this thesis presents several algorithms centered around the problem

of generating flight trajectories for quadrocopters. The first algorithm presented here is

a benchmarking tool (Paper I). Its aim is to quantitatively answer questions surrounding

achievable performance, influence of design parameters, and performance assessment of

control strategies in the design process of quadrotor systems. The algorithm allows the

computation of quadrotor maneuvers that satisfy Pontryagin’s minimum principle with

respect to time-optimality. Such maneuvers provide a useful lower bound on the dura-

tion of maneuvers, which can be used to assess performance of controllers and vehicle

design parameters. Computations are based on a two-dimensional first-principles quadro-

tor model. The minimum principle is applied to this model to find that time-optimal

trajectories are bang-bang in the thrust command, and bang-singular in the rotational

rate command. The algorithm allows the computation of time-optimal maneuvers for

arbitrary initial and final states by solving the boundary value problem induced by the

minimum principle.

While the benchmarking algorithm provides valuable insight in the design stage, its

computational complexity and use of a two-dimensional model disqualifies it from plan-

ning flight trajectories dynamically. Dynamic trajectory planning is required for tasks

subject to dynamic changes of the objective, where significant disturbances in the flight

path may occur, or where knowledge of the environment becomes available only mid-flight.

In such circumstances, it is necessary to quickly and robustly plan a new trajectory when-

ever new information becomes available. The second algorithm in this thesis is designed

to satisfy such real-time requirements (Paper II). Its aim is to combine computational

efficiency and the ability to plan fast motions from a large range of initial conditions to

a target point that will be reached at rest. The approach consists of planning separate

trajectories in each of the three translational degrees of freedom, and to ensure feasibility

5

Abstract

by deriving decoupled constraints for each degree of freedom through approximations

that preserve feasibility. This algorithm can compute a feasible trajectory within tens of

microseconds on a laptop computer, and remaining computation time can be used to iter-

atively improve the trajectory. By replanning the trajectory at a high rate, the trajectory

generator can be used as an implicit feedback law similar to model predictive control. The

approach of decoupling the trajectory generation problem through feasibility-preserving

approximations of the vehicle motion constraints is applicable to a broader class of trajec-

tory generation problems, as is demonstrated by an extension to interception maneuvers

(Paper III).

The second part of this thesis presents algorithms that use past data (measurements

of past executions of the same motion) to improve tracking performance during the ex-

ecution of periodic maneuvers under feedback control. The complex high-speed flight

dynamics of quadrocopters are typically simplified when designing feedback controllers,

and are subject to large parameter uncertainties. This can lead to significant tracking er-

rors during high-performance flight, and repeated execution typically leads to a majority

of the tracking errors being repeated. This part of the thesis introduces iterative learning

schemes that non-causally compensate repeatable trajectory tracking errors during the

repeated execution of periodic flight maneuvers (Papers IV & V). The schemes augment

conventional feedback controllers by providing additional feedforward correction inputs

based on data gathered during past executions. The learning is carried out in the fre-

quency domain, and is based on a Fourier series decomposition of the input and output

signals. The algorithm is extended by a time scaling method that allows the transfer of

learnt maneuvers to different execution speeds through a prediction of the disturbance

change. This allows the initial learning to occur at reduced speeds, and thereby extends

the applicability of the algorithm to high-performance maneuvers.

All algorithms presented in this thesis have been verified experimentally on small-scale

quadrocopters in the Flying Machine Arena test bed. These tests confirm the validity of

modeling assumptions and show the real-world performance of the methods presented.

The second part of this thesis features complimentary experiments designed to demon-

strate the applicability of the learning algorithms developed earlier to more complex

tasks: in this case, a quadrocopter balancing an inverted pendulum (Paper VI).

These algorithms have also been featured in more than 150 live demonstrations at

ETH Zurich and various international events, highlighting their robustness and reliability

in real-world settings.

6

Kurzfassung

Diese Dissertation präsentiert Algorithmen für den autonomen Flug von Quadrokoptern

und ähnlichen Vielrotorfluggeräten. Auf Grund ihres simplen und robusten mechanischen

Aufbaus, ihrer Schwebefähigkeit und ihrer ausserordentlichen Agilität haben sich derar-

tige Fluggeräte zu beliebten Plattformen in der Flugrobotik entwickelt, und sind insbe-

sondere im Bereich relativ niedriger Nutzlasten stark vertreten.

Die in dieser Arbeit präsentierten Algorithmen erfüllen zwei Aufgaben: 1) Die Be-

rechnung von Flugtrajektorien unter Berücksichtigung der Dynamik und Aktuatorlimi-

tationen von Quadrokoptern, sowie 2) das akkurate Folgen einer gegebenen periodischen

Trajektorie durch Verwendung von Daten vorheriger Ausführungen.

Im ersten Teil der Dissertation werden mehrere Algorithmen zur Berechnung von

Flugtrajektorien für Quadrokopter beschrieben. Ein erster Algorithmus dieser Kategorie

dient zum Leistungsvergleich von Flugsystemen (Paper I). Ziel ist es hier, quantitative

Antworten auf Fragen zur Leistungsfähigkeit von Flugsystemen und zum Einfluss von

Systemparametern und -architektur auf die erzielbare Leistung zu berechnen. Der Al-

gorithmus erlaubt die Berechnung von Flugmanövern, die die Optimalitätsbedingungen

des Pontrjaginschen Maximumprinzips für die Minimierung der Manöverdauer erfüllen.

Die so errechnete Manöverdauer stellt die Untergrenze für die Dauer des Manövers dar,

und kann als Referenzwert für die Leistungsfähigkeit des Systems verwendet werden.

Zur Berechnung der Manöver wird ein zweidimensionales Quadrokoptermodell verwen-

det. Anhand des Pontrjaginschen Maximumprinzips wird hergeleitet, dass die optimalen

Steuersignale für den Gesamtschub immer maximal oder minimal sind, während jene für

die Drehrate maximal, minimal oder durch eine Singularitätsbedingung gegeben sind.

Der Algorithmus erlaubt die Berechnung von zeitoptimalen Flugmanövern für beliebi-

ge Anfangs- und Endzustände, indem das sich durch das Maximumprinzip ergebende

Randwertproblem gelöst wird.

Der obige Algorithmus liefert wertvolle Informationen zur Auslegung von Flugsyste-

men, ist jedoch aufgrund seines hohen Rechenaufwandes und seiner Beschränkung auf

ein zweidimensionales Modell für die dynamische Planung von Flugbahnen ungeeignet.

Solch eine dynamiche Planung ist nötig, wenn während der Ausführung eines Manövers

Änderungen des Zielpunktes oder signifikante Störungen auftreten, oder neue Informa-

tionen zu Hindernissen in der Umgebung verfügbar werden. In solchen Szenarien ist es

nötig, schnell und zuverlässig neue Flugbahnen zu planen sobald neue Informationen

7

Kurzfassung

zur Verfügung stehen. Der zweite in dieser Arbeit vorgestellte Algorithmus (Paper II)

wurde in Hinsicht auf solche Echtzeitbedüfnisse entwickelt. Das Ziel ist in diesem Kon-

text, bei geringem Rechenaufwand schnelle Flugtrajektorien aus einem grossen Bereich

von Anfangszuständen zu einem Zielpunkt, der im Stillstand erreicht wird, zu planen.

Der hierfür verwendete Ansatz besteht aus einer Entkopplung der drei translatorischen

Freiheitsgrade, wobei mittels Begrenzungen der Zustände und Stellgrössen der einzelnen

Freiheitsgrade die dynamischen Eigenschaften des Quadrokopters berücksichtigt werden.

So kann eine gültige Flugtrajektorie auf einem Laptop innerhalb von wenigen Mikro-

sekunden berechnet werden, und zusätzlich verfügbare Rechenzeit kann zur iterativen

Verbesserung der Trajektorie verwendet werden. Das wiederholte Planen der Trajekto-

rie mit hoher Frequenz erlaubt die Nutzung der Trajektoriengenerierung als impliziten

Regelungsalgorithmus, und funktioniert in diesem Fall ähnlich wie eine modellprädiktive

Regelung. Die Anwendbarkeit des Entkopplungsansatzes auf andere Trajektoriengenerie-

rungsaufgaben wird in einer Erweiterung des Algorithmus anhand von Abfangtrajektorien

demonstriert (Paper III).

Der zweite Teil dieser Dissertation präsentiert Forschungsergebnisse zu Algorithmen,

die Daten aus vorherigen Experimenten verwenden um Fehler beim Folgen einer periodi-

schen Referenztrajektorie zu reduzieren. Zur Auslegung von Flugreglern werden typischer-

weise vereinfachte Modelle der komplexen Flugdynamik von Quadrokoptern verwendet,

die häufig mit signifikanten Parameterunsicherheiten behaftet sind. Hierdurch können

sich grosse Folgefehler beim Flug von Hochleistungstrajektorien ergeben, die über meh-

rere Experimente hinweg zu grossem Teile wiederholbar sind. In diesem Teil der Arbeit

werden Algorithmen präsentiert, die in diesem Falle die nicht-kausale Korrektur solcher

wiederholbarer Folgefehler erlauben (Paper IV & V). Hierzu werden konventionelle Regler

durch eine zusätzliche Vorsteuerung ergänzt, die Messdaten vorheriger Experimente ver-

wendet. Das Lernen des Vorsteuerungssignals erfolgt im Frequenzbereich und basiert auf

einer Fourierzerlegung der Eingangs- und Ausgangssignale des Systems. Zusätzlich wurde

eine Zeitskalierungsmethode entwickelt, mit der der Lernprozess während des langsamen

Ausführens des Manövers beginnen kann, und das gelernte Korrektursignal dann auf

höhere Manövergeschwindigkeiten übertragen werden kann.

Alle in dieser Dissertation vorgestellten Algorithmen wurden mit Quadrokoptern in

der Flying Machine Arena experimentell validiert. Diese Tests demonstrieren ihre Leis-

tungsfähigkeit und bestätigen die in der Entwicklung der Algorithmen verwendeten An-

nahmen. Die Lernalgorithmen des zweiten Teils wurden weiterhin anhand von einem Ex-

periment validiert, bei dem ein Quadrokopter ein inverses Pendel stabilisiert (Paper VI).

Diese Experimente dienen dazu, die Anwendbarkeit der Methoden auf komplexere Flug-

anwendungen zu bestätigen.

Zusätzlich wurden die Algorithmen auch im Rahmen von Vorführungen sowohl an

der ETH Zürich als auch an internationalen Veranstaltungen präsentiert. Über 150 Live-

Demonstrationen bestätigen die Robustheit und Zuverlässigkeit der dargestellten Algo-

rithmen.

8

Acknowledgments

Many people have contributed directly and indirectly to the research presented in this

thesis, and this thesis would not have been possible without them. I would like to

use this opportunity to thank some of them, knowing full well that this list cannot be

comprehensive.

My sincerest gratitude goes to my doctoral advisor Professor Raffaello D’Andrea. He

put his trust in me by accepting me as a doctoral candidate as well as giving me the

freedom to work on the topics I considered interesting. I have benefited immensely from

our numerous discussions and his guidance, insight, and inspiration. For this, I wish to

say a heartfelt thank you to him. Raff has created a truly exceptional environment at

the Institute for Dynamic Systems and Control (IDSC), working in which felt more like

fun than work and where there always were more ideas than time.

I also sincerely thank Professor Vijay Kumar and Professor Roy Smith for agreeing to

be members of my doctoral committee and their willingness to spend considerable time

reviewing this thesis. I greatly appreciated their insightful questions and comments.

My time at the IDSC was spent in the company of many friendly, helpful, and ex-

tremely intelligent colleagues. Our countless discussions were always interesting, and

often helped a great deal in progressing our individual or joint research projects. I have

learnt a lot from these colleagues, and now consider many of them to be good friends.

My closest collaborators throughout the doctorate were the other doctoral candidates

involved in the Flying Machine Arena project: Sergei Lupashin, Angela Schöllig, Mark

Müller, Robin Ritz, Federico Augugliaro, and Dario Brescianini. To work in a group of

highly motivated, skillful, and talented people has been a great pleasure and a hugely

educational and rewarding experience. I feel that our work often showed that the whole

really can be greater than the sum of its parts.

While we did not work on the same project, my office mate Philipp Reist and I shared

teaching assistant duties and, by merit of starting at IDSC on the same day, progress

and struggles of our doctorates. I truly appreciated working with him as well as our

discussions and out-of-work projects. I also thoroughly enjoyed sharing teaching tasks

with Sebastian Trimpe, who in his methodic, thought-through and structured approach

to problems was a role model to me throughout this doctorate.

The IDSC supports its doctoral candidates with its excellent support staff. I would like

to thank Katharina Munz for her organizational work, Markus Waibel for his management

9

Acknowledgments

of numerous demos and his help in disseminating our research results, Hallie Siegel for

proof-reading and improving our publications, Carolina Flores for her design and media

work, and Igor Thommen, Marc-André Corzillius, and Hans Ulrich Honegger for their

technical support in the Flying Machine Arena.

I am greatly indebted to the great students that I had the pleasure to work with in

the past four years. Many of them contributed significantly to the results of this thesis,

and I am happy to see that many now pursue a doctorate themselves. I would like to

particularly thank Luzius Brodbeck, Robin Ritz, and Dario Brescianini for their excellent

work that directly improved and extended this research.

A great number of people have supported and guided me throughout the years, and

the influence of many has shaped my life. Of all of them, the most important ones were

certainly my parents Silvia and Wolfgang, who always supported and encouraged me.

Finally, I owe a huge thank you to Anna Hänsli, who has accompanied me during the

past five years. She has always stood by my side unconditionally, and gave me whatever

support I needed.

Zürich, Spring 2014 Markus Hehn

Financial Support

The author gratefully acknowledges partial funding of this research by the Swiss Na-

tional Science Foundation (SNSF) under the grant “High-Performance Maneuvers and

Trajectory Generation for Quadrotor Flying Vehicles” and the equipment grant “Optical

Motion Capture System for Robot Experiments in Real World Environments”.

10

Contents

Preface . 15

1. Introduction . 17

1.1 Part A: Trajectory Generation . 19

1.2 Part B: Iterative Learning of Periodic Motions 20

2. Contributions . 23

2.1 Part A. Trajectory Generation . 23

2.2 Part B. Iterative Learning of Periodic Motions 27

2.3 List of Publications . 30

2.4 List of Supervised Student Projects 32

2.5 Outreach . 33

3. Future Directions . 35

3.1 Part A. Trajectory Generation . 35

3.2 Part B. Iterative Learning of Periodic Motions 37

References . 38

A. TRAJECTORY GENERATION . 41

Paper I. Performance Benchmarking of Quadrotor Systems Using Time-

Optimal Control . 43

1. Introduction . 44

2. Modeling of Vehicle Dynamics . 45

3. Minimum Principle for Time-Optimal Maneuvers 48

4. Algorithm for Calculation of Time-Optimal Maneuvers 53

5. Numerical Results . 56

6. Benchmarking of Quadrotor Designs and Controllers 61

7. Experimental Results . 65

8. Conclusion and Future Work . 68

A. Algorithm for Calculation of Time-Optimal Maneuvers 69

References . 79

11

Contents

Paper II. Real-Time Trajectory Generation for Quadrocopters 83

1. Introduction . 84

2. Dynamic Model . 86

3. Problem Statement . 89

4. Feasibility Conditions and Decoupling 89

5. Decoupled Trajectory Planning . 96

6. Choice of Design Parameters . 100

7. Use as a Feedback Law . 103

8. Performance Evaluation . 104

9. Experimental Validation . 108

10. Conclusion . 111

A. Feasibility of Time-Varying Acceleration Constraints 113

References . 115

Paper III. Real-Time Trajectory Generation for Interception Maneu-

vers with Quadrocopters . 119

1. Introduction . 120

2. Vehicle Dynamics . 121

3. Trajectory Generation Algorithm . 122

4. The Interception Maneuver . 124

5. Computation and Verification of Interception Maneuvers 128

6. Experimental Results . 129

7. Conclusion & Outlook . 131

References . 132

B. ITERATIVE LEARNING OF PERIODIC MOTIONS 135

Paper IV. A Frequency Domain Iterative Learning Algorithm for High-

Performance, Periodic Quadrocopter Maneuvers 137

1. Introduction . 138

2. Quadrocopter Dynamics and Closed-Loop Control 141

3. Learning Algorithm . 145

4. Experiments . 154

5. Advantages and Limitations . 162

6. Conclusion . 165

References . 165

12

Paper V. An Iterative Learning Scheme for High Performance, Periodic

Quadrocopter Trajectories . 171

1. Introduction . 172

2. The Flying Inverted Pendulum Experiment 174

3. Learning Algorithm . 177

4. Experimental results . 181

5. Conclusion and Outlook . 183

References . 184

Paper VI. A Flying Inverted Pendulum . 187

1. Introduction . 188

2. Dynamics . 188

3. Nominal trajectories . 192

4. Dynamics about nominal trajectories 195

5. Controller Design . 197

6. Experimental results . 197

7. Conclusion and Outlook . 203

References . 204

Curriculum Vitae . 207

13

Preface

This thesis documents the research carried out by the author during his doctoral stud-

ies under the supervision of Professor Raffaello D’Andrea at the Institute for Dynamic

Systems and Control (IDSC) at ETH Zurich between September 2009 and April 2014.

The thesis is presented in the form of a cumulative dissertation: its main content

consists of six self-contained research articles (of which three are journal articles and

three are conference contributions) that have been published or submitted for publication

during the doctoral studies. The research is structured into two classes of problems: The

generation of flight trajectories for quadrocopters (Part A), and the precise tracking of

periodic trajectories through learning methods (Part B). The articles are put into context

by three introductory chapters, which are structured as follows:

Chapter 1 sketches out the motivation for this work. It also describes the problems

considered in this thesis, related work, and the approaches used. Chapter 2 describes the

key contributions of the research papers included in this thesis and how the individual

papers relate to each other. This chapter also includes references to related papers,

created in the context of the author’s doctoral studies, that are not included in this

thesis. Chapter 3 then provides a discussion of potential extensions and new directions

of this research.

15

Preface

16

1

Introduction

This thesis presents algorithms for the autonomous high-performance flight of quadro-

copters. The algorithms provide means to plan flight paths and to accurately track

periodic motions, with a particular focus on the combination of computational efficiency

and high flight performance.

Quadrocopters are robotic platforms that are frequently used in applications where

the ability to move freely in three-dimensional space and to overcome obstacles on the

ground are crucial [32]. Their high mechanical robustness (due to few moving parts) [27],

their safety (due to comparatively small rotor sizes) [15], and their ability to engage in

high-performance maneuvers and carry large payloads (due to their typically high thrust-

to-weight ratio) [18] are significant advantages over other small robotic platforms.

To further increase payload capabilities without increasing the rotor size, and to

increase robustness to actuator failures, other multi-rotor configurations are also being

designed and used [18]. Popular designs include hexacopters (with six propellers) and

octocopters (eight propellers). While this thesis is focused on quadrocopter applications,

the algorithms also apply directly to configurations with more rotors mounted in parallel,

in particular typical hexacopters and octocopters [1].

This thesis considers the trajectory generation and control of quadrocopters during

high-performance flight. In this context, high performance is used to highlight that the

algorithms are designed to allow full use of a vehicle’s capabilities. While this is desirable

for many applications (for example, it may allow faster execution of a given task or higher

accuracy), the ability to exploit the dynamic potential of the vehicle can also be seen as

a safety feature: even if the planned motion does not require the use of a vehicle’s full

dynamic capabilities, their efficient use may be crucial in recovering from unexpected

disturbances or avoiding collisions when obstacles are detected mid-flight.

From a controls perspective, high-performance quadrocopter flight is a challenging

proposition for several reasons:

− The inherently unstable and nonlinear dynamics typically limit the use of

linear control laws to flight near hover or near a trajectory planned ahead of time

(see e.g. [17], and references therein).

− Quadrocopters exhibit fast dynamics, in particular in the rotational degrees of

freedom due to their typically low rotational inertia combined with the off-center

17

Chapter 1. Introduction

mounting of the propellers. Flying fast maneuvers and effectively suppressing dis-

turbances thus requires fast control loops and therefore limits the amount of com-

putation that can be carried out.

− Significant model uncertainties arise when the maneuvering speed increases, for

example due to the varying drag and lift behaviour of the propellers under unsteady

inflow conditions [6], the aerodynamic effects of a vehicle moving through the tur-

bulent wake of its propellers [2], and external influences such as wind or ground and

wall effects when operating in proximity to the environment [28]. These uncertain-

ties diminish the effectiveness of model-based control strategies.

The research presented in this thesis addresses two problems related to the control

of quadrocopters. The key objective of the research presented in part A of this thesis is

the generation of dynamic trajectories for quadrotor vehicles. Part B then focuses on the

design of algorithms that can be used to track a predefined, periodic trajectory with high

accuracy by using data from past executions.

A central part of this research project is the experimental validation of the developed

algorithms in order to demonstrate their effectiveness under real-world conditions and

provide insight into their characteristics. Each of the algorithms presented in this thesis

was applied to small quadrocopters (see Figure 1.1), and experimental results are pre-

sented for each of the research contributions. The experiments were carried out in the

Flying Machine Arena [20], a platform for aerial robotics research that was co-developed

by the author throughout the course of his doctoral studies.

The following sections specify the objectives and context of each of the two parts of the

research in more detail, and discuss the different approaches presented in the individual

contributions.
P

h
o
to

b
y

R
a
y
m

o
n

d
O

u
n

g

Figure 1.1 Quadrocopters used for the experimental validation of algorithms. These vehicles
measure approximately 35 cm from propeller center to propeller center, and weigh about 500 g.

18

1.1 Part A: Trajectory Generation

1.1 Part A: Trajectory Generation

Trajectory generation algorithms form a core component in unmanned aerial vehicle flight

systems. They are closely interlinked with the control of the vehicle, and provide crucial

information (such as arrival time at a specified point or flight paths) to high-level planning

systems, e.g. mission planners or collision avoidance systems. Their impact on overall

system performance and efficiency is significant, as they typically determine the speed

of task execution. This is made even more important by severe limitations in achievable

flight time of state-of-the-art quadrocopters.

The problem can be stated as follows: Given the current state x0, plan a trajectory

to a target state xT . The trajectory must be feasible with respect to the dynamics of the

quadrocopter. A multitude of trajectory design criteria may be desirable, e.g. reaching

the target state at a specified time, minimizing energy consumption, avoiding a certain

state space region, or arriving at the target state as quickly as possible. In its general

form, the trajectory generation problem is the search for the control input trajectory

that minimizes the performance metric, subject to constraints of the system dynamics

and possibly other design constraints, and terminates at the specified terminal state.

Related Work

The problem of quadrocopter trajectory generation has received significant attention in

recent years, and a number of algorithms have been presented. Broadly speaking, a

possible categorization of the algorithms is as follows:

A first group of algorithms can be considered as primarily geometric. The trajectory

generation process consists of first generating a path in space from a class of path prim-

itives, and thereafter parameterizing the generated path in time such that the dynamic

constraints of the quadrocopter are enforced. Examples of such algorithms have been

presented using path primitives such as lines [16], polynomials [9], or splines [5].

A second group of algorithms is based on the design of trajectories that minimize a

derivative of the position trajectory (or combinations thereof). Because these derivatives

can be related to the control input constraints of the quadrocopter through its differential

flatness property, the feasibility of the trajectory depends on these derivatives. Examples

of such methods include minimum snap trajectory generation [21] and the minimization

of a weighted sum of derivatives [30]. More real-time-focused implementations are based

on model predictive control methods with learnt linear dynamics [4] or linear dynamics

based on a decoupling of the system [24].

Research Directions

The specific trajectory design criterion that this thesis focuses on are minimum-time

trajectories, meaning that the design objective is to minimize the maneuver’s duration

until the target state is reached. For high-performance flight, minimum-time maneuvers

are of particular interest because they determine a fundamental performance limit of

the system considered. They can provide definitive answers to questions such as “If a

19

Chapter 1. Introduction

maneuver must start at the state x0 and end at the state xT , what is the minimum time

required to execute it?” and “Is it possible to reach state xT from the initial state x0

within some given duration?” [14].

The first direction of research presented herein is the design of algorithms that com-

pute time-optimal flight maneuvers for quadrocopters. The computed trajectories can

be used not only to execute maneuvers, but also as a benchmarking tool that provides

valuable insight into the capabilities of the quadrotor system. Time-optimal maneuvers

can highlight the influence on performance of such varied design parameters as the vehicle

weight, the measurement range of the internal sensors, or the feedback control law. The

application of state-of-the-art optimal control techniques (e.g. [3, 11]) to compute these

time-optimal maneuvers is made difficult by the nonlinearity and high order of the quadro-

tor dynamics. A key challenge when designing algorithms that are capable of computing

these maneuvers is thus to find suitable combinations of problem class restrictions (to

reduce complexity) and numerical methods (to improve computational tractability). For

these results to maintain their value as a benchmarking tool, it is particularly important

that the generated trajectories are indeed time-optimal.

The second focus of this research is the design of algorithms that can generate tra-

jectories quickly enough to be deployed in real-time scenarios. This allows a system

to cope with changing requirements, which in the case of quadrotor vehicles may be

caused by rapidly changing destinations, suddenly appearing obstacles, or the recovery

from arbitrarily perturbed states (caused, for example, by large wind gusts). Running

the trajectory generation algorithm at every controller update allows its use as an im-

plicit feedback law: closed-loop control is achieved by re-generating a trajectory at each

controller update, and applying the first control inputs of it in the manner of model

predictive control [10]. The combination of long, variable planning horizons, nonlinear

dynamics, and short available calculation times makes this a challenging optimization

problem. Compared to the benchmarking problem, the focus here is shifted away from

finding truly time-optimal maneuvers, towards finding maneuvers of relatively short du-

ration under stringent real-time requirements. In this context, it is acceptable for the

generated trajectories to not satisfy any optimality conditions; for the use in real-time sce-

narios, the absolute performance of planned trajectories is secondary to guaranteeing the

finding of a feasible trajectory of reasonable performance within the given computation

time constraints.

1.2 Part B: Iterative Learning of Periodic Motions

The second part of this thesis considers problems where the flight trajectory is defined

ahead of flight, and the objective is to track this trajectory as accurately as possible.

Accurate trajectory following is particularly relevant for operations where the tracking

performance of the system determines the quality of the task. Examples include carrying

a hanging payload with one or multiple quadrocopters, inspecting an object (like a bridge)

20

1.2 Part B: Iterative Learning of Periodic Motions

along a pre-computed path, painting surfaces that are difficult to access, or filming a scene

with a camera mounted on the vehicle.

The tracking problem complements the research projects presented in Part A: whereas

real-time trajectory generation algorithms are useful for dynamically changing tasks or

environments, we now consider problems where the trajectory is fully defined ahead of

flight. The large model uncertainties, in particular at high maneuvering speeds, make the

accurate tracking of high-performance trajectories challenging because they effectively act

as disturbances to the closed-loop trajectory tracking system.

In the research presented herein, we consider the specific case where the same trajec-

tory can be flown repeatedly. This offers an opportunity to improve tracking performance

because many of the disturbances that degrade tracking performance will be similar each

time the vehicle performs the motion. It is thus possible to non-causally correct for these

repeatable disturbances: by using data from previous executions to characterize them,

model-based correction inputs can be computed before executing the motion again. Ide-

ally, these correction inputs are able to fully compensate for the repeatable disturbances,

such that the feedback controller is required only to compensate for non-repeatable dis-

turbances.

Related Work

While the application of learning algorithms (and specifically non-causal strategies) to

stationary systems is well-established, its use for flying vehicles is less mature and has

only been actively researched in recent years. Several high-performance maneuvers for

multi-rotor vehicles have been demonstrated with the use of learning algorithms. Broadly

speaking, these learning approaches can be categorized in two groups:

The first group is characterized by its ability to learn motions that are parameterized.

The motion is thus described by a (finite) set of design parameters chosen by the user.

After the execution of the motion, these parameters are adapted to compensate for ob-

served disturbances. The direction and magnitude of the correction may be model-based,

or based on the user’s intuition. A discussion on the importance of choosing ‘good’ design

parameters may be found in [19], where a learning algorithm for this kind of parameter-

ized motion is demonstrated for multiple flips and fast translations with quadrocopters. A

further demonstration of this class of learning algorithms is provided in [22]. The ability

to shape the tracking performance strongly depends on the number of parameters that

are optimized; in the above examples, the objective is to minimize the error at specific

time instants (‘key frames’), and a relatively small number of parameters is sufficient to

do so. This makes the methods computationally lightweight.

The second group of learning approaches considers more generic motions that need

not be specified by parameters. The system dynamics are considered in discrete time,

and the correction consists of correction values (typically control inputs or set points)

for each discrete time step. After executing the motion, the correction values are nu-

merically optimized in order to minimize a performance metric related to the tracking

error. In this optimization, a model of the system dynamics provides the mapping from

21

Chapter 1. Introduction

Feedback

Vehicle

Closed-Loop Dynamics

Position

+ +

+ −

Reference

Iterative Learning

Figure 1.2 Architecture of a learning algorithm augmenting feedback control. The reference
to the feedback controller is augmented by adding the learning control input to it. The feedback
control runs in real-time, while the iterative learning applies feedback based on past executions.
In this configuration, the iterative learning component can non-causally compensate repeatable
disturbances, while the feedback control compensates non-repeatable disturbances.

corrections to the tracking error. This approach is commonly known as a form of iterative

learning control [7], and its application to high performance quadrocopter flight has been

demonstrated by several researchers [23, 25,29,31].

The delimitation between the two groups is not strict. Indeed, the second group of

learning approaches could be seen as using a very large number of values to parameterize

the correction.

Research Directions

The research in this thesis is centered on the development of algorithms for the learning

of non-causal correction inputs for maneuvers that are periodic. It explores how the

limitation to periodic maneuvers can be exploited in a learning control context, and how

computationally inexpensive algorithms can be designed for this class of problems. To

combine the strengths of feedback control and learning control, the learning control is

used to augment the feedback controller as seen in Figure 1.2.

A particular focus of the algorithms in this thesis is the application of learning control

to high-performance maneuvers. In this context, traditional learning control strategies

may encounter a problem: in order to learn from past executions, the system must be

able to execute the maneuver before learning control is applied. Due to the unstable

dynamics of quadrocopters, and to physical constraints such as limited operating spaces,

high-performance maneuvers may not be executable without the appropriate correction

inputs from the learning control algorithm. This initialization problem requires a novel

approach that provides a sufficiently good initial guess of the correction inputs.

22

2

Contributions

This chapter briefly summarizes the key contributions of the papers included in this

thesis and explains the relationship between the individual results. Many of the results

were obtained in close collaboration with other researchers at the Institute for Dynamic

Systems and Control, as indicated below.

2.1 Part A. Trajectory Generation

Paper I

[P1] Markus Hehn, Robin Ritz, and Raffaello D’Andrea. Performance Benchmark-

ing of Quadrotor Systems Using Time-Optimal Control. Autonomous Robots,

Volume 33, Issue 1-2, pp 69-88, 2012.

Context In this paper, we consider the problem of generating time-optimal trajecto-

ries, i.e. maneuvers that minimize the time required for the transition from an initial

to a final state. As discussed in Chapter 1, such maneuvers are of particular interest

because they can be used as a benchmarking tool to analyze the performance and guide

the development of quadrotor systems by answering performance-related questions such

as “How do the physical parameters of the vehicle influence its performance?”, “How

much of the theoretical performance potential does a certain control strategy utilize?”,

and “Are there specific maneuvers for which a given controller performs particularly well

or poorly?”. The paper considers the optimal control problem for a two-dimensional

normalized quadrotor model with two control inputs that are subject to saturation (the

collective thrust and the rotational body rate). The omission of the third dimension

makes the problem tractable by reducing its dimensionality, while still covering a class

of maneuvers that is large enough to provide performance insight. In contrast to the

other trajectory generation research presented in this thesis, computational efficiency is

not of particular importance in this context because real-time trajectory generation is

not necessary in a benchmarking context.

23

Chapter 2. Contributions

Contribution The paper presents the structure of time-optimal maneuvers that arises

from the necessary optimality conditions given by Pontryagin’s minimum principle [3]. It

shows that time-optimal maneuvers are bang-singular: the thrust control is always maxi-

mal or minimal, and the rotational rate control input is maximal, minimal, or defined by

a singular arc constraint. Based on this structure, the paper introduces an algorithm for

computing the time-optimal maneuver for arbitrary initial and final states. To show that

the approach yields results that are meaningful for real-life quadrocopters, the computed

maneuvers are validated experimentally. The method’s use as a benchmarking tool is

demonstrated through the analysis of the performance implications of using a cascaded

linear controller, and the influence of the maximum thrust the vehicle can produce.

Related Publications

[R5] Robin Ritz, Markus Hehn, Sergei Lupashin, and Raffaello D’Andrea. Quadro-

copter Performance Benchmarking Using Optimal Control. Proceedings of the

2011 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), 2011.

This paper presents an abridged version of the optimality conditions and trajec-

tory generation algorithm, including preliminary results.

Paper II

[P2] Markus Hehn and Raffaello D’Andrea. Real-Time Trajectory Generation for

Quadrocopters. IEEE Transactions on Robotics (under review).

Context This paper considers the problem of generating high-performance flight tra-

jectories for quadrocopters under hard real-time constraints. As discussed in Chapter 1,

such computational constraints typically arise when quadrocopters are flown in dynam-

ically changing environments. The objective of the trajectory generation considered in

this paper is to plan trajectories from a large range of initial conditions reaching a target

point at rest, and for these trajectories to reach this target point as quickly as possible.

As opposed to [P1], the full three-dimensional planning problem is considered, and the

design objective is to use the trajectory generator as a feedback control law by executing

it repeatedly in the fashion of model predictive control.

Contribution The contribution of this paper is the introduction and analysis of a

trajectory generation algorithm that combines the ability to plan high-performance tra-

jectories with computational efficiency. The approach is to plan separate trajectories

in each of the three degrees of freedom. This is made possible by deriving decoupled

feasibility constraints for each degree of freedom through approximations that preserve

feasibility. The presented algorithm can compute a feasible trajectory within tens of

24

2.1 Part A. Trajectory Generation

microseconds on a laptop computer, and remaining computing time can be used to iter-

atively improve the trajectory. The paper includes the full description of the trajectory

generation algorithm, an analysis of its computational and flight performance, and an

experimental validation.

Related Publications

[R2] Angela Schoellig, Markus Hehn, Sergei Lupashin, and Raffaello D’Andrea. Feasi-

bility of Motion Primitives for Choreographed Quadrocopter Flight. Proceedings

of the 2011 American Control Conference (ACC), 2011.

This paper presents the derivation of fundamental feasibility conditions for trans-

lational trajectories from the dynamics and input constraints of quadrocopters.

[R3] Markus Hehn and Raffaello D’Andrea. Quadrocopter Trajectory Generation and

Control. Proceedings of the 2011 IFAC World Congress, 2011.

This paper presents the decoupling methodology used in this trajectory genera-

tion approach, and presents preliminary results on the use of the basic decoupled

trajectory generation mechanism.

[R7] Dario Brescianini, Markus Hehn, and Raffaello D’Andrea. Quadrocopter Pole

Acrobatics. Proceedings of the 2013 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), 2013.

This paper presents a system that allows quadrocopters to balance an inverted

pendulum, throw it into the air, and catch and balance it again on a second

vehicle. The catching maneuver is planned in real time using the presented

decoupling approach, and part of the motion is planned using the the decoupled

trajectory generator.

[R11] Federico Augugliaro, Sergei Lupashin, Michael Hamer, Cason Male, Markus

Hehn, Mark W. Mueller, Jan Willmann, Fabio Gramazio, Matthias Kohler, and

Raffaello D’Andrea. The Flight Assembled Architecture Installation: Coopera-

tive construction with flying machines. IEEE Control Systems Magazine (under

review).

This paper presents the design and realization of a system that autonomously

assembled a six-meter-tall tower consisting of 1500 foam modules with quadro-

copters over six days in front of a live audience. The trajectory generation

algorithm used in this system is an adapted version of the one presented in [P2].

25

Chapter 2. Contributions

Paper III

[P3] Markus Hehn and Raffaello D’Andrea. Real-Time Trajectory Generation for In-

terception Maneuvers with Quadrocopters. Proceedings of the 2012 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), 2012.

Context This paper represents a continuation of the work in [P2]. While the results

in [P2] focus on trajectory generation problems where the objective is to reach a target

point at rest as quickly as possible, this work considers the problem of intercepting a

position, i.e. planning a trajectory such that the vehicle is at a given position at a

specified time. In addition to the interception constraint, the planned trajectories are

designed to come to rest as quickly as possible after interception.

Contribution The main contribution of this paper is the adaptation of the trajectory

generation algorithm presented in [P2] to the interception problem. Using the same de-

coupling approach, Pontryagin’s minimum principle is used to show that the structure

of an interception maneuver with minimal time to rest after the interception is identical

to the structure of a maneuver that guides the vehicle to a target point. Thus, the tra-

jectory generation algorithm from [P2] can be adapted to interception problems without

increasing its computational complexity. The algorithm is validated experimentally by

intercepting a ball thrown in the air.

Related Publications

[R6] Robin Ritz, Mark W. Mueller, Markus Hehn, and Raffaello D’Andrea. Coop-

erative Quadrocopter Ball Throwing and Catching. Proceedings of the 2012

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

2012.

This paper presents the system design of an experiment in which multiple

quadrocopters are attached to an elastic net, cooperatively launch a ball into

the air by stretching the net, and catch it again. The real-time trajectory gen-

eration problem of intercepting the flying ball with the net is solved by applying

a one-dimensional interception algorithm that is based on the same decoupling

approach and shares the same maneuver structure.

26

2.2 Part B. Iterative Learning of Periodic Motions

[R9] Mark W. Mueller, Markus Hehn, and Raffaello D’Andrea. A Computationally

Efficient Algorithm for State-to-State Quadrocopter Trajectory Generation and

Feasibility Verification. Proceedings of the 2013 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS), 2013.

This paper considers the related problem of state interceptions, i.e. planning tra-

jectories to a (partially or fully constrained) arbitrary target state at a specified

target time. The method presented in this paper is based on a similar decoupling

approach, but then implements an entirely different approach to solving the de-

coupled planning problem (in this paper, trajectories are designed to minimize

jerk instead of time). This results in an algorithm of much lower computational

complexity, but which can only verify feasibility a posteriori.

2.2 Part B. Iterative Learning of Periodic Motions

Paper IV

[P4] Markus Hehn and Raffaello D’Andrea. A Frequency Domain Iterative Learning

Algorithm for High-Performance, Periodic Quadrocopter Maneuvers. Mecha-

tronics (under review).

Context This paper presents a frequency-domain-based learning approach for periodic

maneuvers that uses a serial architecture [7] (as shown in Figure 1.2). The objective of

the iterative learning scheme is to minimize the position error of the quadrocopter by

changing the set point of the position control loop. The approach exploits the ability

to shape the closed-loop system dynamics by designing the feedback law appropriately;

this in turn simplifies the design of the iterative learning algorithm. In particular, the

closed-loop dynamics of a quadrocopter under feedback control can be approximated with

sufficient accuracy by a linear time-invariant model. Furthermore, this paper addresses

the problem of generating initial corrections for high-performance maneuvers in order to

initialize the learning process and allow further improvements.

Contribution The contribution of this paper is the presentation and analysis of an

iterative learning algorithm for quadrocopters that is formulated in the frequency do-

main and is applicable to periodic maneuvers. The algorithm combines fast convergence

with low computational complexity. The statistical properties of repeatable and non-

repeatable disturbances are used to derive the optimal correction inputs for each step of

the learning process. For maneuvers that cannot be learnt directly, a time scaling ap-

proach is introduced. In this approach, the maneuver is initially learnt at reduced speed,

27

Chapter 2. Contributions

and the learnt corrections from the reduced speed are used to initialize the learning at

higher speeds. Experimental results show that the approach can reduce tracking errors

nearly to the repeatability limit of the system and that it can be applied to more complex

systems (as demonstrated by the flying inverted pendulum experiment in particular).

Related Publications

[R8] Markus Hehn and Raffaello D’Andrea. A Frequency Domain Iterative Feed-

Forward Learning Scheme for High-Performance Periodic Quadrocopter Maneu-

vers. Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), 2013.

This paper presents an abridged version of the learning scheme including pre-

liminary results. As opposed to [P4], the convergence properties are derived in

a deterministic context.

[R10] Sergei Lupashin, Markus Hehn, Mark W. Mueller, Angela P. Schoellig, Michael

Sherback, and Raffaello D’Andrea. A Platform for Aerial Robotics Research and

Demonstration: The Flying Machine Arena. Mechatronics, Volume 24, Issue 1,

pp 41-54, 2014.

This paper includes a more detailed presentation and analysis of the trajectory

tracking controller that is used in the learning process, as well as describing the

overall hardware and software infrastructure that is used for the experiments in

the Flying Machine Arena.

Paper V

[P5] Markus Hehn and Raffaello D’Andrea. An Iterative Learning Scheme for High

Performance, Periodic Quadrocopter Trajectories. Proceedings of the 2013 Eu-

ropean Control Conference (ECC), 2013.

Context This paper considers a similar problem setup to [P4]. The architecture of

the learning system differs in that the learnt corrections are added directly to the control

inputs instead of changing the reference signal to the feedback controller. A similar fre-

quency domain learning approach is used, but the problem is formulated in a deterministic

setting.

Contribution This paper extends [P4] to focus on the convergence of learning systems

where the dimension of the tracking error and the correction input differ. The algorithm

is designed to minimize an error output that consists of linear combinations of the system

states, and error convergence conditions are derived. For systems where the correction

input is larger or smaller than the number of error outputs, it is shown that the correction

28

2.2 Part B. Iterative Learning of Periodic Motions

signal energy is minimized or that partial convergence is achieved, respectively. An

experimental validation based on the flying inverted pendulum experiment confirms the

effectiveness of the algorithm.

Paper VI

[P6] Markus Hehn and Raffaello D’Andrea. A Flying Inverted Pendulum. Proceed-

ings of the 2011 IEEE International Conference on Robotics and Automation

(ICRA), 2011.

Context The flying inverted pendulum is an experimental test bed that consists of a

quadrocopter balancing an inverted pendulum. The feedback controller used to stabilize

the inverted pendulum on the quadrocopter is an example of more complex, task-specific

quadrotor control laws. This makes it an interesting experiment to verify the applicability

of learning algorithms to more complex tasks. The experiment highlights the limitations

of model-based control that can be overcome by learning control: the system is subject

to large, repeatable disturbances caused by unmodeled dynamics (such as aerodynamic

effects and the pendulum attachment point not coinciding with the quadrocopter’s center

of mass) and parameter uncertainties (such as the length of the pendulum). Both [P4]

and [P5] present experimental results demonstrating the ability of the learning algorithms

to significantly improve tracking performance of the flying inverted pendulum.

Contribution This paper details the system design of the flying inverted pendulum

experiment. It contains the derivation of the combined dynamics of quadrocopter and

pendulum, the derivation of equilibrium conditions and linearized dynamics for stationary

and circular flight, and the design of LQR controllers. The system design is verified

experimentally.

Related Publications

[R7] Dario Brescianini, Markus Hehn, and Raffaello D’Andrea. Quadrocopter Pole

Acrobatics. Proceedings of the 2013 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), 2013.

This paper extends the flying inverted pendulum experiment to a system that

allows quadrocopters to balance an inverted pendulum, throw it into the air,

and catch and balance it again on a second vehicle.

29

Chapter 2. Contributions

2.3 List of Publications

This section lists all peer-reviewed journal articles and conference contributions that

were published or submitted by the author during his doctoral studies. The publica-

tions [P1]-[P6] are featured in this thesis. The related publications [R1]-[R11] present

preliminary, related, or additional research results from the author’s doctoral studies.

Where applicable, their respective connection to the publications [P1]-[P6] is highlighted

in the descriptions of the contributions of individual papers (Sections 2.1 and 2.2).

The journal manuscripts [P2], [P4], and [R11] are currently under review. Preliminary

results of [P2] and [P4] have been published in [R3] and [R8], respectively.

Publications included in this thesis

(listed in the order in which they appear in this thesis)

[P1] Markus Hehn, Robin Ritz, and Raffaello D’Andrea. Performance Benchmark-

ing of Quadrotor Systems Using Time-Optimal Control. Autonomous Robots,

Volume 33, Issue 1-2, pp 69-88, 2012.

[P2] Markus Hehn and Raffaello D’Andrea. Real-Time Trajectory Generation for

Quadrocopters. IEEE Transactions on Robotics (under review).

[P3] Markus Hehn and Raffaello D’Andrea. Real-Time Trajectory Generation for In-

terception Maneuvers with Quadrocopters. Proceedings of the 2012 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), 2012.

[P4] Markus Hehn and Raffaello D’Andrea. A Frequency Domain Iterative Learning

Algorithm for High-Performance, Periodic Quadrocopter Maneuvers. Mecha-

tronics (under review).

[P5] Markus Hehn and Raffaello D’Andrea. An Iterative Learning Scheme for High

Performance, Periodic Quadrocopter Trajectories. Proceedings of the 2013 Eu-

ropean Control Conference (ECC), 2013.

[P6] Markus Hehn and Raffaello D’Andrea. A Flying Inverted Pendulum. Proceed-

ings of the 2011 IEEE International Conference on Robotics and Automation

(ICRA), 2011.

Related publications

(listed in chronological order)

[R1] Sergei Lupashin, Angela P. Schoellig, Markus Hehn, and Raffaello D’Andrea.

The Flying Machine Arena as of 2010. Proceedings of the 2011 IEEE Inter-

national Conference on Robotics and Automation (ICRA) - Video Submission,

2011.

30

2.3 List of Publications

[R2] Angela Schoellig, Markus Hehn, Sergei Lupashin, and Raffaello D’Andrea. Feasi-

bility of Motion Primitives for Choreographed Quadrocopter Flight. Proceedings

of the 2011 American Control Conference (ACC), 2011.

[R3] Markus Hehn and Raffaello D’Andrea. Quadrocopter Trajectory Generation and

Control. Proceedings of the 2011 IFAC World Congress, 2011.

[R4] Stefania Tonetti, Markus Hehn, Sergei Lupashin, and Raffaello D’Andrea. Dis-

tributed Control of Antenna Array with Formation of UAVs. Proceedings of the

2011 IFAC World Congress, 2011.

[R5] Robin Ritz, Markus Hehn, Sergei Lupashin, and Raffaello D’Andrea. Quadro-

copter Performance Benchmarking Using Optimal Control. Proceedings of the

2011 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), 2011.

[R6] Robin Ritz, Mark W. Mueller, Markus Hehn, and Raffaello D’Andrea. Coop-

erative Quadrocopter Ball Throwing and Catching. Proceedings of the 2012

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

2012.

[R7] Dario Brescianini, Markus Hehn, and Raffaello D’Andrea. Quadrocopter Pole

Acrobatics. Proceedings of the 2013 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), 2013.

[R8] Markus Hehn and Raffaello D’Andrea. A Frequency Domain Iterative Feed-

Forward Learning Scheme for High-Performance Periodic Quadrocopter Maneu-

vers. Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), 2013.

[R9] Mark W. Mueller, Markus Hehn, and Raffaello D’Andrea. A Computationally

Efficient Algorithm for State-to-State Quadrocopter Trajectory Generation and

Feasibility Verification. Proceedings of the 2013 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS), 2013.

[R10] Sergei Lupashin, Markus Hehn, Mark W. Mueller, Angela P. Schoellig, Michael

Sherback, and Raffaello D’Andrea. A Platform for Aerial Robotics Research and

Demonstration: The Flying Machine Arena. Mechatronics, Volume 24, Issue 1,

pp 41-54, 2014.

[R11] Federico Augugliaro, Sergei Lupashin, Michael Hamer, Cason Male, Markus

Hehn, Mark W. Mueller, Jan Willmann, Fabio Gramazio, Matthias Kohler, and

Raffaello D’Andrea. The Flight Assembled Architecture Installation: Coopera-

tive construction with flying machines. IEEE Control Systems Magazine (under

review).

31

Chapter 2. Contributions

2.4 List of Supervised Student Projects

The following is a list of student projects that the author supervised at ETH Zurich as

part of his doctoral studies.

Master’s thesis

The master’s thesis is a six-month, full-time project.

[M1] Luzius Brodbeck, Quadrotor Collision Avoidance, Fall 2010.

[M2] Matthias Fässler, Modeling, Control and Trajectory Tracking with a CoaX he-

licopter, Spring 2011

(co-supervision of external master’s thesis carried out with Prof. Vijay Kumar

at the University of Pennsylvania)

[M3] Robin Ritz, Cooperative Quadrocopter Ball Manipulation, Fall 2011.

(co-supervised with Mark Müller)

[M4] Dario Brescianini, Quadrocopter Pole Acrobatics, Spring 2012.

Semester project

The semester project is a semester-long, part-time project.

[S1] Mark Müller, Automatic Tuning of PID Controllers for Flight Control, Fall 2009.

(co-supervised with Guillaume Ducard)

[S2] Robin Ritz, Time-Optimal Quadrotor Control, Spring 2010.

[S3] Michael Blösch, Quadrotor Ball Launching, Spring 2010.

[S4] Dario Brescianini, Nonlinear Quadrocopter Attitude Control, Fall 2011.

[S5] Sara Spedicato, Quadrotor Attitude Control, Spring 2012.

[S6] Simon Berger, UAV Compliance Monitoring, Fall 2012.

(co-supervised with Mark Müller)

Bachelor’s thesis

The bachelor’s thesis is a three-month, full-time project.

[B1] Matthias Hofer, Computation of Optimal Quadrotor Maneuvers, Fall 2012.

(co-supervised with Robin Ritz)

32

2.5 Outreach

2.5 Outreach

Throughout the duration of the author’s doctoral studies, the results of the research were

presented both to visitors at ETH Zurich and at various events. Some of the research

resulted in stand-alone demonstrations, while other algorithms were used as components

in more complex systems.

Lab Demonstrations

The algorithms developed during the author’s doctoral studies have been demonstrated to

more than 3000 visitors from academia, industry, governments, schools, and the general

public at over 150 separate demonstrations of the Flying Machine Arena at ETH Zurich.

Exhibitions

The technology developed in the Flying Machine Arena was also exhibited at several

events held outside ETH Zurich (as an example, see Figure 2.1). Further details about

the requirements and execution of external exhibitions may be found in [20]. All of the

following exhibitions included algorithms that are part of the research presented herein:

Flight Assembled Architecture, Orléans, France, December 2011.

Hannover Messe, Hannover, Germany, April 2012.

Google I/O After Hours, San Francisco, USA, June 2012.

Zurich Minds, Zürich, Switzerland, December 2012.

TED Global, Edinburgh, United Kingdom, June 2013.

Figure 2.1 Exhibition of the Flying Machine Arena at Hannover Messe 2012, the largest
industrial fair in the world. The demonstrations presented to the audience included algorithms
presented in this thesis as well as in the related publications listed in Section 2.3.

33

Chapter 2. Contributions

Selected Media Coverage

NZZ Format, “Die Intelligenz der Roboter”, SF1 (Swiss national television), April 2010.

IEEE Automaton Blog, “Pendulum-Balancing Quadrotor Learns Some New Tricks”,

May 2011.

Daily Planet, “Robots build without human interference”, Discovery Channel, Jan-

uary 2012.

engine, “Those Magnificent Flying Machines”, March 2012.

c’t Magazin, “Flugzirkus: Spielerische Forschung mit Quadrokoptern”, July 2012.

Frankfurter Allgemeine Zeitung, “Perfekte Teamarbeit in der Luft”, October 2012.

Huffington Post UK, “Quadrocopter Pole Acrobatics: Robots Play Catch With Javelins”,

February 2013.

Blick am Abend, “Roboter beim Stoeckli-Werfen”, February 2013.

The Art of Movement, “Flying robots perform amazing acrobatics”, CNN, Novem-

ber 2013.

Stephen Hawking’s Brave New World, “Hyper Connections”, Discovery Channel,

to air.

34

3

Future Directions

This chapter discusses the current state of the research projects and potential future

research directions.

3.1 Part A. Trajectory Generation

The first part of the trajectory generation research focused on the development of a

benchmarking tool to determine the performance potential of quadrotor systems. The

existing tool can be used to compute two-dimensional maneuvers between arbitrary states.

It does, however, require computation times on the order of hours for a single maneuver,

and the user must provide a reasonable initial guess for the method to converge.

Efficient computation of time-optimal trajectories: To perform statistical per-

formance evaluations for a full range of motions, the ability to more quickly compute

time-optimal trajectories is desirable. While real-time capabilities are not required, com-

puting thousands of trajectories within useful time limits without user interaction would

be a significant improvement. Preliminary results of the application of pseudospectral op-

timal control methods [8] show large improvement potential, however further research is

required to ensure that the method always finds results that satisfy the known optimality

conditions.

Benchmarking of general three-dimensional trajectories: Extending the time-

optimal trajectory generator to accommodate a full three-dimensional quadrocopter model

would enable the performance analysis of arbitrary maneuvers. Due to the computational

complexity of the current method, this extension would likely require the use of other,

more efficient ways to solve the problem.

35

Chapter 3. Future Directions

The second part of this research focused on the design of efficient real-time trajec-

tory generation methods. The presented algorithms have been implemented and used

extensively in the Flying Machine Arena project, both in individual experiments and as

building blocks in larger systems. They form a solid and proven base for further research

and development.

Higher performance of computed maneuvers: The comparison to time-optimal

maneuvers shows that the trajectories generated by these methods perform well, but

improvement potential remains. Further research could be aimed at further closing the

gap to truly time-optimal maneuvers. A potential way to achieve this would be to plan

trajectories that may violate the decoupled feasibility constraints, and then verify the

feasiblity of the planned trajectory after planning.

Increasing computational efficiency: The presented algorithms include the it-

erative computation of design parameters in order to maximize performance. While

straightforward optimization methods were implemented in the current version, more so-

phisticated methods (see e.g. [12]) could further reduce the computational complexity of

the trajectory generator.

Other classes of trajectory generation problems: The current algorithms are

designed to solve trajectory generation problems where either a target point is to be

reached at rest as quickly as possible, or a given point is to be intercepted at a given

time. It would be interesting to extend the approach presented herein to other classes

of trajectories, for example reaching a given point at a given speed, or visiting a set of

points.

Augmenting trajectory-generation-based control with learning control: The

trajectory generation methods presented in this thesis are based on first-principles models

of quadrocopters, and ignore well-known aerodynamic effects acting on quadrocopters

(such as rotor damping [26] and drag-like effects [2]). An interesting approach to account

for such effects would be to apply learning methods in addition to the real-time trajectory

generation. This could compensate for such unmodeled effects based on past executions

of similar trajectories without significantly increasing the computational complexity of

the trajectory generation algorithm.

36

3.2 Part B. Iterative Learning of Periodic Motions

3.2 Part B. Iterative Learning of Periodic Motions

The frequency-domain iterative learning methods presented in Papers IV and V form

a solid basis for further research. The algorithms are computationally lightweight and

allow the non-causal compensation of repeatable tracking errors. In our experiments,

the tracking performance after successful learning was close to the limit of repeatability;

however, there are still a number of potential improvements:

Choice of correction signal Fourier order: The order of the Fourier series used to

represent the tracking error and controller set point corrections is currently chosen by the

user. An interesting extension would be to automatically analyze the reference trajectory

in order to determine (in combination with the known closed-loop system dynamics) the

required order of the Fourier series.

Transfer to similar maneuvers: The focus of the learning algorithms in this re-

search was to improve the performance of one maneuver based on previous executions

of the same maneuver. A change of the maneuver would then require re-starting the

learning process entirely. One would however expect that similar maneuvers require sim-

ilar corrections, and that the data of past executions of one maneuver could serve as a

starting point to learn a similar maneuver. For more traditional time-domain iterative

learning control methods, recent results of such knowledge transfer algorithms applied to

quadrocopters have been promising [13].

Transfer to higher execution speeds: The current method of initializing the learn-

ing at higher speeds from correction data of lower speeds is based on a first-order extrap-

olation of the past corrections and the known closed-loop system transfer function. It

would be interesting to explore other mechanisms to predict the corrections at higher

speeds from low-speed measurement data, perhaps by including a disturbance model to

predict speed-dependent disturbance properties.

37

References

[1] Markus W. Achtelik, Simon Lynen, Margarita Chli, and Roland Siegwart. Inversion
Based Direct Position Control and Trajectory Following for Micro Aerial Vehicles.
In International Conference on Intelligent Robots and Systems, 2013.

[2] Moses Bangura and Robert Mahony. Nonlinear Dynamic Modeling for High Perfor-
mance Control of a Quadrotor. In Australasian Conference on Robotics and Automa-
tion, 2012.

[3] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control, Vol. I. Athena
Scientific, third edition, 2005.

[4] Patrick Bouffard, Anil Aswani, and Claire J Tomlin. Learning-Based Model
Predictive Control on a Quadrotor: Onboard Implementation and Experimental
Results. In International Conference on Robotics and Automation, 2012.

[5] Y. Bouktir, M. Haddad, and T. Chettibi. Trajectory Planning for a Quadrotor
Helicopter. In Mediterranean Conference on Control and Automation, 2008.

[6] Pierre-jean Bristeau, Philippe Martin, Erwan Salaün, and Nicolas Petit. The Role
of Propeller Aerodynamics in the Model of a Quadrotor UAV. In European Control
Conference, 2009.

[7] Douglas A Bristow, Marina Tharayil, and Andrew G Alleyne. A Survey of Iterative
Learning Control. Control Systems Magazine, 26(3):96–114, 2006.

[8] Bruce A. Conway. A Survey of Methods Available for the Numerical Optimization
of Continuous Dynamic Systems. Journal of Optimization Theory and Applications,
152(2):271–306, 2011.

[9] Ian D. Cowling, Oleg A. Yakimenko, and James F. Whidborne. A Prototype of
an Autonomous Controller for a Quadrotor UAV. In European Control Conference,
2007.

[10] Carlos E. Garćıa, David M. Prett, and Manfred Morari. Model Predictive Control:
Theory and Practice - A Survey. Automatica, 25(3):335–348, 1989.

[11] Hans Peter Geering. Optimal Control with Engineering Applications. Springer, 2007.

[12] Philip E. Gill, Walter Murray, and Margaret H. Wright. Practical Optimization.
Academic Press, October 2003.

38

[13] Michael Hamer, Markus Waibel, and Raffaello D’Andrea. Knowledge Transfer
for High-Performance Quadrocopter Maneuvers. In International Conference on
Intelligent Robots and Systems, 2013.

[14] Henry Hermes and Joseph P Lasalle. Functional Analysis and Time Optimal Control.
Mathematics in Science and Engineering, 56, 1969.

[15] Gabriel M Hoffmann, Hao Huang, Steven L Waslander, and Claire J Tomlin.
Quadrotor Helicopter Flight Dynamics and Control: Theory and Experiment. In
AIAA Guidance, Navigation and Control Conference, 2007.

[16] Gabriel M. Hoffmann, Steven L. Waslander, and Claire J. Tomlin. Quadrotor
Helicopter Trajectory Tracking Control. In Conference on Decision and Control,
2008.

[17] Jonathan P. How, Brett Bethke, Adrian Frank, Daniel Dale, and John Vian.
Real-Time Indoor Autonomous Vehicle Test Environment. IEEE Control Systems
Magazine, 28(2):51–64, 2008.

[18] Qimi Jiang, Daniel Mellinger, Christine Kappeyne, and Vijay Kumar. Analysis
and Synthesis of Multi-Rotor Aerial Vehicles. In International Design Engineering
Technical Conference, 2011.

[19] Sergei Lupashin and Raffaello D’Andrea. Adaptive Fast Open-Loop Maneuvers for
Quadrocopters. Autonomous Robots, 33(1-2):89–102, 2012.

[20] Sergei Lupashin, Markus Hehn, Mark W. Mueller, Angela P. Schoellig, Michael
Sherback, and Raffaello D’Andrea. A Platform for Aerial Robotics Research and
Demonstration: The Flying Machine Arena. Mechatronics, 24(1):41–54, 2014.

[21] Daniel Mellinger and Vijay Kumar. Minimum Snap Trajectory Generation and
Control for Quadrotors. In International Conference on Robotics and Automation,
2011.

[22] Daniel Mellinger, Nathan Michael, and Vijay Kumar. Trajectory Generation
and Control for Precise Aggressive Maneuvers with Quadrotors. In International
Symposium on Experimental Robotics, 2010.

[23] Fabian L. Mueller, Angela P. Schoellig, and Raffaello D’Andrea. Iterative Learn-
ing of Feed-Forward Corrections for High-Performance Tracking. In International
Conference on Intelligent Robots and Systems, 2012.

[24] Mark W. Mueller and Raffaello D’Andrea. A Model Predictive Controller for
Quadrocopter State Interception. In European Control Conference, 2013.

[25] Pong-in Pipatpaibul and P R Ouyang. Application of Online Iterative Learning
Tracking Control for Quadrotor UAVs. ISRN Robotics, 2013:Article ID 476153, 2013.

[26] Paul Pounds, Robert Mahony, and Peter Corke. Modelling and Control of a Quad-
Rotor Robot. In Australasian Conference on Robotics and Automation, 2006.

[27] Paul Pounds, Robert Mahony, and Peter Corke. Modelling and control of a large
quadrotor robot. Control Engineering Practice, 18(7):691–699, July 2010.

39

References

[28] Caitlin Powers, Daniel Mellinger, Aleksandr Kushleyev, and Bruce Kothmann. In-
fluence of Aerodynamics and Proximity Effects in Quadrotor Flight. In International
Symposium on Experimental Robotics, 2012.

[29] Oliver Purwin and Raffaello D’Andrea. Performing and Extending Aggressive
Maneuvers Using Iterative Learning Control. Robotics and Autonomous Systems,
59(1):1–11, 2011.

[30] Charles Richter, Adam Bry, and Nicholas Roy. Polynomial Trajectory Planning for
Quadrotor Flight. In International Conference on Robotics and Automation, 2013.

[31] Angela P Schoellig, Fabian L Mueller, and Raffaello D’Andrea. Optimization-
Based Iterative Learning for Precise Quadrocopter Trajectory Tracking. Autonomous
Robots, 33(1-2):103–127, 2012.

[32] Roland Siegwart, Illah R. Nourbakhsh, and Davide Scaramuzza. Autonomous Mobile
Robots. The MIT Press, second edition, 2011.

40

Part A

TRAJECTORY GENERATION

Paper I

Performance Benchmarking of Quadrotor

Systems Using Time-Optimal Control

Markus Hehn, Robin Ritz, and Raffaello D’Andrea

Abstract

Frequently hailed for their dynamical capabilities, quadrotor vehicles are often
employed as experimental platforms. However, questions surrounding achievable
performance, influence of design parameters, and performance assessment of control
strategies have remained largely unanswered. This paper presents an algorithm that
allows the computation of quadrotor maneuvers that satisfy Pontryagin’s minimum
principle with respect to time-optimality. Such maneuvers provide a useful lower
bound on the duration of maneuvers, which can be used to assess performance
of controllers and vehicle design parameters. Computations are based on a two-
dimensional first-principles quadrotor model. The minimum principle is applied
to this model to find that time-optimal trajectories are bang-bang in the thrust
command, and bang-singular in the rotational rate control. This paper presents a
procedure allowing the computation of time-optimal maneuvers for arbitrary initial
and final states by solving the boundary value problem induced by the minimum
principle. The usage of the computed maneuvers as a benchmark is demonstrated
by evaluating quadrotor design parameters, and a linear feedback control law as an
example of a control strategy. Computed maneuvers are verified experimentally by
applying them to quadrocopters in the ETH Zurich Flying Machine Arena testbed.

Published in Autonomous Robots Volume 33, Issue 1-2. The publication includes two

electronic attachments available at www.hehn.be and www.springerlink.com.

DOI: 10.1007/s10514-012-9282-3

c©2012 Springer Science+Business Media, LLC. The final publication is available at springerlink.com.

43

Paper I. Performance Benchmarking Using Time-Optimal Control

1. Introduction

Quadrotor vehicles are an increasingly popular aerial vehicle platform. Advantages com-

pared to other micro unmanned aerial vehicle (UAV) platforms are the ability to hover,

robustness and straightforwardness of design due to mechanical simplicity [20], and safety

benefits due to smaller rotor sizes compared to most other hover-capable UAVs [10].

Most early research on quadrocopter control focused on near-hover operation. This

operation was commonly achieved using linear controllers, which were tuned through

various strategies (see, for example, [3], and references therein). Trajectories are typi-

cally generated by connecting waypoints by lines or circles, and choosing flight velocity

sufficiently low to satisfy near-hover assumptions (e.g. [12]).

With the above advantages making quadrocopters attractive platforms for numerous

research fields, another key strength of these vehicles is increasingly being exploited: They

offer exceptional agility in the rotational degrees of freedom due to the off-center mounting

of the propellers, which allows the generation of large torques. Most platforms also

provide high thrust-to-weight ratios, allowing fast translational dynamics. This has lead

to numerous more complex control strategies that leverage these capabilities by explicitly

considering the feasibility of trajectories. Examples include fast translations [9, 18, 21],

flips [17], and dancing motions [23]. Several authors have also introduced algorithms that

generate trajectories from a class of motion primitives (lines, polynomials, or splines)

and respect the dynamic constraints of quadrocopters [4,5,11]. These algorithms enforce

dynamic feasibility by designing trajectories in a two-step process, first determining the

shape of the trajectory and subsequently determining an appropriate speed profile such

that feasibility constraints are not violated.

While this work has lead to impressive results, it has not answered one key question:

Given the specifications of a quadrotor vehicle, how fast can a certain maneuver be

completed? More formally, this can be stated as: What is the time-optimal trajectory for

given initial and final states? The ability to compute accurate answers to this question

offers insight that may be helpful for many performance-related topics: How much of

the theoretical speed potential does a certain control strategy utilize? Are there specific

maneuvers for which there exists a large improvement potential for a given controller?

How do the physical parameters of the vehicle, such as mass or maximum thrust, influence

performance?

The computation of time-optimal trajectories provides a useful tool to answer these

questions: The duration of such trajectories provides an absolute lower bound, which

may be used for comparisons. Several approaches have been proposed to compute time-

optimal trajectories: [14] proposed a direct method using control inputs discretized in

time, and solved the resulting optimization problem using genetic algorithms and non-

linear programming. [4] presented a different direct method, exploiting the differential

flatness of the system dynamics and parameterizing the output trajectory by a set of

control points, which are then connected by B-spline functions. While both methods

have been successfully demonstrated, the optimality of solutions remained unanswered.

44

2. Modeling of Vehicle Dynamics

In this paper, we present an algorithm that allows the computation of state and

input trajectories between two states. Pontryagin’s minimum principle is employed to

determine the structure of time-optimal trajectories, and computed trajectories can be

verified to satisfy the minimum principle conditions. While these conditions are necessary

- but not sufficient - for optimality, they do provide a strong argument for the found

trajectories.

The computation of maneuvers that satisfy the minimum principle using the algorithm

presented herein requires considerable computational effort. This makes it an unattrac-

tive proposition in real-time scenarios. However, the off-line computation of a selection

of maneuvers, chosen to be representative for the motion of the vehicle in a specific ap-

plication, provides a lower bound on the maneuver duration, to which real-time capable

controllers may be compared as a means of benchmarking their performance. If certain

motions are expected to be carried out repeatedly, this method may be used to design

nominal trajectories, for which stabilizing controllers could then be designed.

We base our calculations on a two-dimensional first-principles model of the quadrotor

vehicle. Because the algorithm presented herein is meant as a benchmarking tool rather

than a control algorithm, the choice of a two-dimensional model provides a reasonable

trade-off: The omission of the third dimension makes the problem tractable by reducing

its dimensionality. At the same time, two-dimensional problems cover a large class of ma-

neuvers that are interesting to benchmark. Through rotations of the coordinate system,

all maneuvers that start and end at rest may be treated as two-dimensional problems,

as well as maneuvers where initial and final velocities and rotations are aligned with the

rotated coordinate system. This provides a large number of control scenarios that may

be benchmarked, such that the benchmarking results can be considered representative of

the performance.

The quadrotor model is presented in Section 2. The structure of time-optimal trajec-

tories is determined in Section 3, and the algorithm used to solve the induced boundary

value problem is presented in Section 4. Numerous sample maneuvers have been com-

puted with this algorithm, a selection of which are shown in Section 5. The applica-

tion of time-optimal maneuvers as a benchmarking tool is demonstrated by computing

the influence of model parameters and evaluating the performance of a linear controller

(Section 6). The computed trajectories are validated in actual flight tests, with the

experimental results (Section 7) demonstrating their validity.

2. Modeling of Vehicle Dynamics

This section introduces the two-dimensional first-principles model, on which we base our

calculations. Furthermore, a non-dimensionalizing coordinate transformation is employed

to reduce the number of model parameters to two.

45

Paper I. Performance Benchmarking Using Time-Optimal Control

2.1 First-Principles Model

The two-dimensional model has three degrees of freedom: the horizontal position x, the

vertical position z, and the pitch angle θ, as shown in Figure 1.

The quadrocopter is controlled by two inputs: the total thrust force FT and the pitch

rate ω, shown in Figure 1. The control inputs are subject to saturation. In particular, the

pitch rate is limited to a maximum allowable magnitude ω, and the thrust is constrained

to be between FT and FT:

|ω| ≤ ω, (1)

FT ≤ FT ≤ FT (2)

The pitch rate is limited by the range of the gyroscopic on-board sensors, and the maxi-

mum collective thrust is determined by the maximum thrust each propeller can produce.

Because commonly available motor drivers do not allow changes of the direction of rota-

tion mid-flight, and because the propellers are of fixed-pitch type, it is assumed that the

collective thrust is always positive: FT > 0.

The equations of motion are

ẍ =
FT

m
sin θ, (3)

z̈ =
FT

m
cos θ − g, (4)

θ̇ = ω, (5)

where g denotes the gravitational acceleration and m is the mass of the quadrocopter.

We assume that the angular velocity θ̇ can be set directly without dynamics and

delay. This is motivated by the very high angular accelerations that quadrotors can

reach (typically on the order of several hundred rad s−2), while the angular velocity is

usually limited by the gyroscopic sensors used for feedback control on the vehicle [17].

This means that aggressive maneuvering is often more severely limited by the achievable

rotational rate than the available angular acceleration. The simplification of the model to

a constrained rotational rate makes the derivations and numerical computations in this

paper tractable.

It should be noted that the first-principles model presented above not only assumes

there is direct control of the rotational rate, but also neglects numerous dynamic effects,

such as propeller speed change dynamics [17], blade flapping [20], changes in the angle of

attack of the propellers [13], and drag forces. Considering that we seek to compute very

fast maneuvers, it is to be expected that such effects are significant. However, the purpose

of the method presented herein is to allow the benchmarking of quadrotor performance.

Because such benchmarks typically serve comparative purposes, modeling inaccuracies

play a less significant role than in other applications: As long as the model captures

46

2. Modeling of Vehicle Dynamics

ω

θ
z

x

FT

Figure 1. Coordinate system and control inputs of the quadrotor model.

the dominant dynamics, one can expect relative comparisons based on the model to

provide meaningful answers. Differences of results based on different models, for example

between simulative and experimental results, highlight that the model does not capture

all effects; however, when comparing results obtained using the same dynamics, one can

expect the neglected effects to, for the most part, cancel out. We therefore believe the

trade-off between modeling complexity (and therefore tractability of the optimal control

problem) and accuracy to be reasonable. This is further supported by the comparison

of numerical and experimental results, which show a reasonable qualitative match with

some quantitative discrepancies between simulations and reality (see Section 7).

2.2 Non-Dimensional Model

In order to allow simple comparisons between different configurations, it is beneficial to

describe the quadrotor model with as few parameters as possible. We therefore introduce

a non-dimensionalizing transformation:

t̂ := ωt, (6)

x̂ :=
ω2x

g
, (7)

ẑ :=
ω2z

g
. (8)

In the transformed coordinates and time, the gravitational acceleration is unity. Defining

the state vector

x := (x̂, ˙̂x, ẑ, ˙̂z, θ), (9)

47

Paper I. Performance Benchmarking Using Time-Optimal Control

and the transformed control input vector

u = (uR, uT) :=

(
ω

ω
,
FT

mg

)
, (10)

the quadrotor dynamics may be written as

ẋ =



˙̂x

¨̂x

˙̂z

¨̂z

θ̇

 = f(x,u) =



˙̂x

uT sin θ

˙̂z

uT cos θ − 1

uR

 . (11)

It is important to note that in the above equations, the derivative ẋ is taken with respect

to the transformed time t̂.

The transformed control inputs are bounded by the minimum and maximum thrust

in units of gravitational acceleration, and unit allowable rotational rate:

uT =
FT

mg
≤ uT ≤ uT =

FT

mg
,

|uR| ≤ 1.

(12)

The dimensionless model contains two model parameters: The lower and upper limit

of the collective thrust input (uT and uT).

For the remainder of the paper, the hat notation will be omitted. It is understood that

calculations are carried out using the dimensionless coordinates, but could equivalently

be done in the original system.

3. Minimum Principle for Time-Optimal Maneuvers

This section demonstrates how Pontryagin’s minimum principle for time-optimality is

applied to the vehicle dynamics. It is shown that the thrust input is bang-bang and that

the rotational control is bang-singular, meaning that the control input is always at full

positive or negative saturation, except during singular arcs. The system is augmented by

the switching function of the rotational rate input, leading to a boundary value problem

containing five unknowns. The existence of optimal trajectories is shown.

The time-optimal quadrocopter trajectory between the initial state x0 and the final

state xT is characterized by its state trajectory x∗(t), t ∈ [0, T], or equivalently by the

corresponding control inputs u∗(t), t ∈ [0, T]. It is the solution to the optimization

48

3. Minimum Principle for Time-Optimal Maneuvers

problem
minimize

u∈U
T

subject to ẋ = f(x,u),

x(0) = x0,

x(T) = xT ,

(13)

where U denotes the set of all attainable control vectors, as defined by Equation (12).

Minima to this problem may be found using Pontryagin’s minimum principle, which

provides necessary conditions for optimality [2, 7]. With a cost function equal to 1, i.e.,

g(x,u) = 1, the Hamiltonian for the problem yields

H(x,u,p) = g(x,u) + pTf(x,u)

= 1 + p1ẋ+ p2uT sin θ

+p3ż + p4(uT cos θ − 1) + p5uR,

(14)

where pi denotes the elements of the costate vector p. Note that, because the terminal

time of the maneuver is free, the Hamiltonian is always zero along an optimal trajec-

tory [2]:

H(x∗,u∗,p) ≡ 0. (15)

Applying the adjoint equation to the Hamiltonian

ṗ = −∇xH(x∗,u∗,p), (16)

the first four costates may be expressed explicitly as

ṗ1 = 0, ⇒ p1 = c1,

ṗ2 = −p1, ⇒ p2 = c2 − c1t,

ṗ3 = 0, ⇒ p3 = c3,

ṗ4 = −p3, ⇒ p4 = c4 − c3t,

(17)

where the constants c = (c1, c2, c3, c4) remain to be determined.

The last element of the costate vector, p5, is given by the adjoint equation (16) to be

ṗ5 = −p2u
∗
T cos θ∗ + p4u

∗
T sin θ∗. (18)

The above equation depends on the control input uT , the trajectory of which is not known

a priori. It is therefore not easily possible to express p5 explicitly.

49

Paper I. Performance Benchmarking Using Time-Optimal Control

3.1 Optimal Control Inputs

The minimum principle states that the optimal control input trajectory minimizes the

Hamiltonian (14) over all possible values of u. Since the two control inputs do not appear

in the same summand in the Hamiltonian, it can be minimized separately for uR and uT :

Optimal Control Input u∗R For the rotational control input uR, minimizing (14)

results in

u∗R = argmin
uR∈[−1,+1]

{p5uR}. (19)

If p5 changes sign, then u∗R switches from −1 to +1 or vice versa. We define

ΦR := p5 (20)

as the switching function of u∗R. If ΦR is zero for a nontrivial interval of time, then

the minimum condition (19) is insufficient to determine u∗R. In these intervals, which

are called singular arcs, u∗R is determined using the condition that ΦR remains zero: It

follows that Φ̇R vanishes, which results in the condition

Φ̇R = −p2u
∗
T cos θ∗ + p4u

∗
T sin θ∗ = 0. (21)

Solving for θ∗ using u∗T > 0 (as discussed in Section 2.1) and the costate equations (17)

yields

θ∗ = arctan

(
p2

p4

)
= arctan

(
c2 − c1t

c4 − c3t

)
. (22)

Differentiating (22) with respect to time gives the trajectory of the control input u∗R = θ̇∗

in a singular arc:

u∗R,sing =
c2c3 − c1c4

(c2
1 + c2

3)t2 − 2(c1c2 + c3c4)t+ c2
2 + c2

4

(23)

The rotational control input u∗R of a time-optimal maneuver of the quadrocopter can

be written as:

u∗R =


+1 if ΦR < 0

u∗R,sing if ΦR = 0

−1 if ΦR > 0

. (24)

This type of optimal control trajectory is referred to as bang-bang singular control or

bang-singular control [2, 15].

Optimal Control Input u∗T To compute the optimal control trajectory for the thrust

50

3. Minimum Principle for Time-Optimal Maneuvers

input u∗T , the sum of all terms of the Hamiltonian containing uT must be minimized:

u∗T = argmin
uT∈[uT ,uT]

{p2uT sin θ∗ + p4uT cos θ∗}. (25)

Again, we define a switching function

ΦT := p2 sin θ∗ + p4 cos θ∗. (26)

For a singular arc to exist, ΦT must be zero for a nontrivial interval of time. Setting ΦT

to zero and solving for θ∗ yields

θ∗ = arctan

(
−p4

p2

)
= arctan

(
c3t− c4

c2 − c1t

)
. (27)

The pitch angle θ∗ is determined by the rotational control input u∗R. If u∗R is in a regular

interval, then the pitch angle is an affine function of time, and Equation (27) can not be

satisfied over a nontrivial time interval. It can therefore be concluded that u∗T cannot be

in a singular arc when u∗R is regular. If u∗R is singular, θ∗ is given by (22). It follows that,

for a singular arc of u∗T to exist, the pitch angle trajectory defined by (22) and by (27)

must be identical:

arctan

(
c2 − c1t

c4 − c3t

)
= arctan

(
c3t− c4

c2 − c1t

)
. (28)

Taking the tangent of both sides and multiplying the constraint out yields

(c2
1 + c2

3)t2 − 2(c1c2 + c3c4)t+ c2
2 + c2

4 = 0. (29)

Neglecting the trivial case c = (0, 0, 0, 0), condition (29) cannot hold for a nontrivial

interval of time. The thrust control input u∗T therefore does not contain singular arcs and

can be written as

u∗T =

{
uT if ΦT ≤ 0

uT if ΦT > 0
. (30)

3.2 Augmented System

Because only the derivative of the switching function ΦR is given, we augment the system

equations (11) with an additional state, representing the switching function ΦR. We define

51

Paper I. Performance Benchmarking Using Time-Optimal Control

xa = (x∗,ΦR), resulting in the augmented system dynamics

ẋa = fa(t,xa) =



ẋ∗

u∗T sin θ∗

ż∗

u∗T cos θ∗ − 1

u∗R

(c1t− c2)u∗T cos θ∗ + (c4 − c3t)u
∗
T sin θ∗


, (31)

where the control inputs u∗R and u∗T are given by the control laws (24) and (30). A quad-

rotor maneuver from x0 to xT that satisfies the minimum principle solves the boundary

value problem (BVP)

ẋa = fa(t,xa),

x∗(0) = x0,

x∗(T) = xT .

(32)

The BVP (32) contains six unknowns: The final time T , the four unknown constants c,

and the initial value of the switching function ΦR(t = 0). However, the initial value of

the switching function may not be chosen freely, but must satisfy Equation (15)1.

3.3 Existence of Optimal Trajectories

While Pontryagin’s minimum principle provides necessary conditions for optimality, it is

useful to verify the existence of optimal trajectories. We apply Roxin’s theorem [22] in

order to show this.

We note that all assumptions on the system dynamics of Roxin’s theorem hold, guar-

anteeing the existence and uniqueness of a solution to the system dynamics and the

convexity of the system differential equation (11) with respect to the control inputs u

(because the control inputs appear linearly, this is straightforward to see). All that

remains is to show the reachability of the target state from the initial state.

We show that there is always a trajectory between two arbitrary states. We note

that it is sufficient to find a trajectory from an arbitrary state to the origin. A possible

maneuver between two states is then the motion from the initial state to the origin, and

the reverse of the motion from the final state to the origin. A strategy to drive the system

to the origin can easily be found, for example by successively applying the following steps:

1. Apply u = (uR, uT) or u = (uR, uT) until the pitch angle θ is zero. Thrust com-

mands now influence only the vertical dynamics.

1It can be seen from Equation (15) that, depending on the initial state x0 and the constants c, either
ΦR(t = 0) = 0 is the only allowable initial value of the switching function (u∗R(t = 0) is then in a singular
arc), or there are two allowable values that only differ in sign (u∗R(t = 0) is then in a regular arc, and its
sign is dictated by the sign of ΦR(t = 0)).

52

4. Algorithm for Calculation of Time-Optimal Maneuvers

2. Use the commands u = (0, uT) and u = (0, uT) to drive the states z and ż to zero

using a bang-bang strategy.

3. Apply rotational rate commands to drive the horizontal degree of freedom to zero,

while adjusting the thrust such that the vertical degree of freedom remains at rest.

The corresponding control inputs will be u = (uR, g/ cos θ), u = (uR, g/ cos θ),

and u = (0, g/ cos θ). The allowable pitch angle during this step is limited by the

available thrust, as g/ cos θ ≤ uT must hold.

As shown in [22], the existence of the minimum follows from the existence of an

arbitrary trajectory to the target state.

4. Algorithm for Calculation of Time-Optimal Maneuvers

This section introduces a numerical algorithm that solves the boundary value problem

for the augmented system (BVP (32)) between arbitrary initial and final states. The

resulting maneuvers satisfy the minimum principle with respect to time-optimality. An

implementation of the algorithm in Matlab for free use is available on the first author’s

website, and is submitted along with this article. This section aims to provide the reader

with a high-level overview of the algorithm used. A more detailed discussion of the

individual steps may be found in Appendix A.

Finding a solution to the boundary value problem (32) is generally difficult: The

state at the end of the maneuver is a non-convex function of the six unknowns, with

many local minima and strongly varying sensitivities. With common boundary value

problem solvers providing only local convergence under these conditions, it is necessary

to provide a good initial guess for the unknowns or the solution trajectory xa. However,

with no straightforward physical interpretation of the constant vector c and the switching

function ΦR, it is difficult to provide such an initial guess. The application of BVP solvers

showed that convergence to the correct solution could only be achieved from initial guesses

very close to the correct values, making it almost impossible to initialize the algorithm

correctly. The problem is further aggravated by the fact that the numerical integration

is highly sensitive to numerical errors when entering or leaving singular arcs, as will be

discussed in Section 4.4.

The algorithm presented herein relaxes these problems by using more robust optimiza-

tion methods to produce a good initial guess for the BVP solver. For this, we exploit the

known bang-singular structure of maneuvers and parametrize a maneuver by the times

at which the control inputs switch, and by the terminal time. This approach, commonly

referred to as switching time optimization (STO, [24]), provides a significant advantage

of requiring no initial guess of xa or c. Instead of requiring an initial guess of xa or c, it

requires a guess of the switching times, which are easier to obtain, and which can lead to

convergence from a much larger range of initial guesses.

53

Paper I. Performance Benchmarking Using Time-Optimal Control

The finding of a solution to the STO problem does not necessarily imply a solution to

the conditions derived from the minimum principle. Therefore, the STO is used only as

a first step of the algorithm. In a second step, the result of it is used to extract an initial

guess of c, which typically lies close enough to the correct values to allow a BVP solver

to solve the boundary value problem as a third step, and therefore compute a maneuver

that satisfies the minimum principle.

If it is assumed that the maneuver has no singular arcs, then the algorithm is less

complex and more intuitive. Therefore, an algorithm assuming maneuvers with pure

bang-bang behavior is introduced first, and then the modifications necessary for the

computation of maneuvers with singular arcs are presented.

4.1 Switching Time Optimization

Under the assumption that the optimal solution is a pure bang-bang maneuver, the

entire maneuver can be characterized by the initial values of the two control inputs, the

times at which they switch, and the total duration of the maneuver. The switching

time optimization algorithm optimizes over the switching times and maneuver duration,

using the weighted sum of square state errors at the end of the maneuver as an objective

function.

4.2 Parameter Extraction

The result of the switching time optimization is a bang-bang maneuver between the initial

and the final state. It is necessary to verify that this maneuver does indeed satisfy the

conditions of the minimum principle, as they were derived in Section 3. To do this, the

constants c = (c1, c2, c3, c4) are computed based on the result of the STO, and then used

as a starting point for a BVP solver.

To compute the constants, a set of equations is obtained from the known switching

times: If the maneuver is to satisfy the minimum principle, the switching functions ΦR

and ΦT must be zero when a switching time in the control inputs uT and uR occurs,

respectively.

The thrust switching function ΦT is known explicitly (Equation (26)), and it is

straightforward to generate constraints from it. The trajectory of ΦR, on the other hand,

is not known explicitly (as shown in Section 3, only the derivative Φ̇R of the switching

function is known a priori). However, once the state trajectories are known from the

STO, the condition H ≡ 0 (which must hold if the maneuver is time-optimal) can be

used to compute ΦR.

Additional constraints are obtained from the fact that the switching function trajec-

tory ΦR must be a solution to the differential equation (18), which can be evaluated by

numerically integrating the differential equation over time intervals, for example between

two switching times.

As shown in Appendix A, all of the resulting constraints are linear in the constants c.

The resulting overconstrained system of equations can then be solved for the least-squares

solution. If this solution does not satisfy all constraints to an acceptable accuracy, the

54

4. Algorithm for Calculation of Time-Optimal Maneuvers

found maneuver does not satisfy the minimum principle. Reasons for this may be an

inappropriate choice of the number of switches in the control inputs, failure of the STO

to converge to the correct maneuver, or the existence of singular arcs in the optimal

maneuver.

4.3 BVP Solver

The constants extracted from the solution of the STO and the corresponding maneuver

duration are used as initial guesses in a final step. Using the weighted sum of square

final state errors as an objective function, the constants and the maneuver duration are

optimized. In this step, the control inputs are determined from the control laws defined

by the minimum principle (Equations (24) and (30)), which ensures that the maneuver

indeed satisfies the minimum principle. Because the initial guess is typically very close

to the optimal values, the BVP solver converges quickly in most cases.

4.4 Modified Algorithm for Bang-Singular Maneuvers

For maneuvers containing singular arcs, the switching time optimization is modified. In

addition to the times at which the control inputs switch, the durations for which the

rotational control input remains in a singular arc after each switching time are also

introduced as optimization variables. It is no longer possible to optimize the switching

times without knowledge of the constants c, as they define the control input trajectory

in singular arcs. The STO algorithm therefore optimizes over the switching times, the

singular arc durations, and the values of the constants c. While this overconstrains the

optimization problem (the constants c as well as the switching times and singular arc

durations define the times at which control inputs switch), the optimization was seen to

be significantly more robust when using this parametrization.

Assuming that the thrust input uT does not switch at the edges of the singular in-

tervals2, Φ̇R is continuous over the border of the singular arcs, as can be seen from (21).

Consequently, the switching function ΦR enters and leaves a singular arc tangentially.

This makes the maneuver highly sensitive to numerical integration errors, and makes it

difficult to determine the singular arc entry and exit points from the numerically inte-

grated switching function. The switching times and singular arc durations are therefore

retained as optimization variables in the BVP solver step. This makes it necessary to

verify the match between the switching function and these optimization variables after

convergence of the BVP solver.

2We conjecture that the assumption that uT does not switch at the edges of the singular arcs is valid
for almost all initial and final conditions, with an appropriately defined measure. For all maneuvers
considered here, results have shown that this condition has been fulfilled.

55

Paper I. Performance Benchmarking Using Time-Optimal Control

5. Numerical Results

In this section, we present a selection of quadrotor maneuvers that were computed using

the algorithm introduced in Section 4. While the algorithm allows the computation of

motions between arbitrary states, the results presented herein focus on position changes

where the quadrocopter is at rest at the beginning and at the end of the maneuver.

The quadrotor parameters for which the maneuvers have been computed are based on

the ETH Zurich Flying Machine Arena vehicles, as described in [17]. Table 1 shows the

used numerical model parameters in the dimensional form (FT/m, FT/m, ω). The non-

dimensional parameters (uT , uT) can easily be calculated from these using the control

input transformation (12). While computations were carried out in the dimensionless

coordinate system, the maneuvers presented herein have been transformed back to the

state variables representing physical dimensions, allowing a more intuitive interpretation.

5.1 Vertical Displacements

First, the special case of maneuvers with a purely vertical displacement is considered. At

the beginning of the maneuver, the quadrotor is at rest and at a pitch angle of zero, and

without loss of generality, the initial position of the quadrotor can be set to the origin:

x0 = (x(0), ẋ(0), z(0), ż(0), θ(0)) = (0, 0, 0, 0, 0). (33)

At the end of the vertical displacement maneuver, the quadrotor is at rest again, with no

overall horizontal displacement, and a final pitch angle that is a multiple of 2π:

xT = (x(T), ẋ(T), z(T), ż(T), θ(T)) = (0, 0, zT , 0, N2π). (34)

To determine time-optimal maneuvers, it is necessary to compare maneuvers for different

values of full rotations N , as the equivalence of corresponding terminal states is not

included in the maneuver description. The terminal times of these different maneuvers

are then compared to determine the fastest one.

We limit the results shown herein to maneuvers with a positive zT value. Maneuvers

have been computed for vertical displacements zT of 0.1 m to 10 m, with a step size

of 0.1 m. In Figure 2, the maneuver duration T is plotted as a function of the vertical

Parameter Value Description

FT/m 1 m s−2 Minimum mass-normalized thrust

FT/m 20 m s−2 Maximum mass-normalized thrust

ω 10 rad s−1 Maximum rotational rate

Table 1. Numerical parameters of the quadrotor model.

56

5. Numerical Results

Figure 2. Maneuver duration T as function of the final vertical displacement zT for rest-to-
rest maneuvers with no horizontal displacement. Additionally, the switching times of uR are
drawn in the plot on the top, and the switching times of uT in the plot on the bottom. The
vertical solid line denotes where the structure of the minimum principle solution changes: on the
left the solution without a flip, which is faster for small zT , and on the right the solution where
the quadrocopter performs a flip, which is faster for large zT . The line with the arrows denotes
the example maneuver of Figure 4.

displacement zT . Furthermore, it shows the switching times for each maneuver. For a

particular displacement zT , the maneuver starts at the bottom of the graph (t = 0 s) and,

as time passes, moves up in the positive direction of the t-axis. Every time a switching

line is crossed, the corresponding control input switches to the value specified in the

diagram. The maneuver is finished when the T -curve is reached.

If the desired vertical displacement is small, i.e. for

zT ≤ 2.4 m, the quadrocopter is within a singular arc during the entire maneuver. The

pitch angle remains at exactly θ = 0. The thrust is at its maximum at the beginning

and switches to its minimum at a time such that the quadrocopter comes to rest due to

gravity at the desired height zT . For zT ≥ 2.5 m, it is beneficial to perform a flip and to

make use of the thrust for braking while the pitch is around θ ≈ ±π. For zT ≥ 6.3 m, a

singular arc (which keeps the pitch near θ ≈ ±π for a particular time) appears, as can

be seen in Figure 2. Thus, the flip is stopped for an interval of deceleration. A selection

of maneuvers is depicted in Figure 3, showing the different maneuver shapes for varying

57

Paper I. Performance Benchmarking Using Time-Optimal Control

Figure 3. Illustration of maneuvers for a purely vertical displacement of 1 m, 3 m, and 5 m.
The maneuvers satisfy the minimum principle and for each maneuver, a quadrotor is plotted
every 0.04 s or every 0.01 s in the zoom box, respectively.

displacements.

The arrow line in the plots of Figure 2 denotes an example maneuver with a vertical

displacement of zT = 5 m. The state, input and switching function trajectories of this

maneuver are shown in Figure 4. The switches in the control input trajectories in Figure 4

can be depicted by following the arrow line from t = 0 s towards t = T in Figure 2.

5.2 Horizontal Displacements

We now consider maneuvers that lead to a purely horizontal displacement. For this case,

the initial and final state are

x0 = (0, 0, 0, 0, 0), xT = (xT , 0, 0, 0, 0). (35)

Considerations of symmetry lead to the conclusion that, for purely horizontal dis-

placements, the switching times are symmetric about the half-time of the maneuver. This

58

5. Numerical Results

Figure 4. Input and state trajectories of a vertical displacement maneuver with zT = 5 m. In
the plot of the control inputs, the switching functions are also drawn, but note that they are
scaled to fit into the plot. The switches of the control input trajectories can be obtained by
following the arrow line from t = 0 s towards t = T in Figure 2.

consideration is not proven here, but has shown to always be correct for the computed

horizontal maneuvers, with the resulting symmetric maneuvers satisfying the minimum

principle. Using this assumption during the STO, the number of optimization variables

can be reduced and the computation of horizontal displacements becomes particularly

simple.

Maneuvers have been computed for a displacement xT ranging from 0.1 m to 15 m,

with a step size of 0.1 m. Figure 5 shows the maneuver duration T and the switching

times as a function of xT .

For xT ≤ 1.5 m, the maneuver is bang-bang with no singular arcs. At the beginning

the quadrotor turns at maximum rate, and around the maximum pitch angle the thrust

is switched to its maximum for acceleration. Then it turns in the negative direction to

decelerate around the minimum peak of θ, before it goes back to θ = 0. At xT = 1.6 m,

two singular arcs appear. Roughly speaking, the pitch angle is kept at θ ≈ ±π/2 for

acceleration and deceleration, respectively. Because a trade-off between fast acceleration

in x and maintaining altitude in z is necessary, the pitch angle is not exactly θ = ±π/2
within the singular arcs, and is not constant. For xT ≥ 7.9 m, the two singular arcs merge:

The quadrotor turns smoothly to a negative θ for deceleration, instead of a sharp turn in

59

Paper I. Performance Benchmarking Using Time-Optimal Control

Figure 5. Maneuver duration T as function of the final displacement xT for purely horizontal
rest-to-rest maneuvers. Additionally, the switching times of uR are drawn in the plot on the top,
and the switching times of uT in the plot on the bottom.

Figure 6. Illustration of maneuvers for a purely horizontal displacement between 3 m and
15 m. The maneuvers satisfy the minimum principle and for each maneuver, a quadrotor is
plotted every 0.02 s.

the middle of the maneuver. For maneuvers with xT ≥ 2.4 m, the thrust control input is

always at its maximum value. Figure 6 shows an illustration of some selected maneuvers.

5.3 General Displacements

For general two-dimensional displacements, the initial and final states are

x0 = (0, 0, 0, 0, 0), xT = (xT , 0, zT , 0, 0). (36)

60

6. Benchmarking of Quadrotor Designs and Controllers

Figure 7. Input and state trajectories of an example maneuver with xT = 5 m and zT = 5 m.
The scaled switching functions are also drawn in the plot of the control inputs.

Since the final state of a general displacement contains two variables (xT and zT), the

maneuver duration T cannot be easily plotted in a two-dimensional figure. As an exam-

ple, a maneuver with a displacement of 5 m in horizontal and vertical direction, i.e. a

maneuver with xT = 5 m and zT = 5 m, is illustrated here. Figure 7 shows the resulting

input, state, and switching function trajectories of this example maneuver. Note that the

control inputs and the switching functions indeed fulfill the control laws (24) and (30).

This implies that the minimum principle for time-optimality is satisfied.

6. Benchmarking of Quadrotor Designs and Controllers

This section demonstrates the usage of computed time-optimal maneuvers as a bench-

marking tool for quadrotor designs and controllers.

6.1 Variation of the Quadrotor Design Parameters

The computation of time-optimal maneuvers allows the analysis of the impact of varying

quadrotor parameters. These maneuvers allow the separation of effects of the physical

parameters of the vehicle, from those of the control strategy by providing the achievable

performance for a control law that fully utilizes the capabilities of the vehicle.

61

Paper I. Performance Benchmarking Using Time-Optimal Control

Figure 8. Maneuver duration T as function of the mass-normalized thrust FT/m for a hori-
zontal maneuver with a displacement of xT = 5 m. The switching times of uR are drawn in the
plot on the top, and the switching times of uT in the plot on the bottom.

For a varying maximum pitch rate ω, the adjusted quadrotor performance can be

obtained very easily: As the computations are done in the dimensionless coordinate

system where the maximum pitch rate is normalized to unity, a changing ω impacts only

the back-transformation to the dimensional coordinates. Consequently, no recomputation

of maneuvers is necessary and the structure of the switching times, as plotted in Figure 2

and Figure 5, does not change.

For varying thrust limits FT and FT (or equivalently uT and uT), the impact of the

changing parameters is not straight-forward. Since uT and uT are used during the com-

putation of the maneuvers, a complete recalculation is required and the structure of the

switching time evolution in Figure 2 and Figure 5 may change. As an example, maneu-

vers for a horizontal displacement of xT = 5 m have been computed with a maximum

mass-normalized thrust FT/m between 10 m s−2 and 30 m s−2 at a step size of 0.5 m s−2,

while the minimum thrust FT/m was kept constant at 1 m s−2. The resulting maneuver

duration T and the switching times are shown in Figure 8.

The gravitational acceleration g poses a lower limit: If the mass-normalized thrust FT/m

approaches g, the maneuver duration approaches infinity because the quadrotor needs

all the available thrust force to maintain hover, and no horizontal displacement can be

62

6. Benchmarking of Quadrotor Designs and Controllers

achieved without height loss. As FT/m increases, the slope of the T -curve decreases,

which means that the performance gain per additional thrust becomes smaller. It follows

that for large thrust-to-weight ratios, an increase of the available thrust force does not

lead to significantly better performance with respect to the maneuver duration, with re-

spect to horizontal displacements. To achieve faster displacements, the maximum pitch

rate ω would have to be increased as well.

6.2 Benchmarking of a Linear Controller

To demonstrate the use of time-optimal maneuvers as a controller benchmark, the per-

formance of a linear controller, as commonly found in quadrotor literature, is evaluated.

The time-optimal maneuvers provide a lower bound on the achievable maneuver duration,

against which the maneuver duration using the linear controller is compared.

The linear controller consists of cascaded position and attitude control loops, as often

used in quadrotor control (see, for example, [12,19], and references therein).

The two-dimensional model presented in Section 2 can be linearized around the hover

point FT = mg, θ = 0, yielding the linearized dynamics

ẍ = gθ (37)

z̈ =
FT

m
− g (38)

θ̇ = ω. (39)

The pitch angle is straightforward to control using a proportional controller:

ω =
1

τθ
(θd − θ), (40)

where θd is the desired pitch angle that is computed by the position control loop, and τθ
is the time constant of the attitude control loop.

The two translational degrees of freedom decouple entirely in the linearization, allow-

ing straightforward controller designs for each of them:

FT = m

(
−2

ζz
τz
ż − 1

τ 2
z

(z − zd)
)
, (41)

θd =
1

g

(
−2

ζx
τx
ẋ− 1

τ 2
x

(x− xd)
)
. (42)

In the above equations, τx and τz are the respective closed loop time constants, and ζx
and ζz are the respective damping ratios.

The saturations of the control inputs ω and FT are applied with the same values as

for the computation of time-optimal maneuvers. Additionally, the desired pitch angle θd
is limited to |θd| ≤ π/2.

63

Paper I. Performance Benchmarking Using Time-Optimal Control

It is important to note that this controller is not designed for optimal performance,

and performance cannot be expected to match the many more sophisticated controllers

that have been presented (see, for example, [4, 5, 11, 17, 18, 21]). It is, however, a useful

demonstration of the benchmarking of common ‘everyday’ controllers, and their perfor-

mance.

The parameters of the controller are shown in Table 2, and are based on the parameters

of controllers used in the Flying Machine Arena test bed. These parameters are based

on manual tuning for all-round usability in the testbed, rather than optimizing simulated

performance.

We compare the performance of the linear controller to the achievable performance

when using the model dynamics (3)-(5) and performing translations that start and end

at rest. To evaluate the performance of the linear controller, the target translation is

provided as a setpoint xd and zd, and the closed-loop dynamics are simulated until the

state settles. The duration of the maneuver is taken to be the time until the position

error remains within 1% of the translation distance.

Figure 9 shows the duration of purely horizontal maneuvers as a function of the

translation distance. The results show that this linear controller achieves maneuver times

that, depending on the translation distance, are between approximately 175% and 880%

of the minimal achievable time. As one expects, the maneuver duration is approximately

constant for small translations, but varies significantly for large translations where model

nonlinearities become more dominant. The non-monotonicity of the maneuver duration

is caused by position oscillations that either lie within the 1% band defining the end of

the maneuver, or slightly exceed it.

Figure 10 demonstrates the same comparison between the linear controller and time-

optimal maneuvers, this time demonstrating the performance for purely vertical maneu-

vers. When using the linear controller, the pitch angle θ always remains at 0. The

system dynamics are therefore fully linear, except for control input saturations. This

is represented in the three distinct regions in the plot: Initially, the maneuver duration

is constant. In a second region, the upper thrust constraint is reached, increasing the

maneuver duration. In the third section, both upper and lower constraints are active

during the maneuver, and the maneuver duration rises faster. The maneuver duration

using the linear controller is between 155% and 1100% of the minimal time.

Parameter Value Description

τθ 0.18 s Attitude control time constant

τx 0.35 s Horizontal translation control time constant

ζx 0.95 Horizontal translation control damping ratio

τz 0.25 s Vertical translation control time constant

ζz 0.8 Vertical translation control damping ratio

Table 2. Parameters of the linear controller

64

7. Experimental Results

Horizontal distance (m)

M
an

eu
ve

r
d
u
ra

ti
on

(s
)

0 2 4 6 8 10
0

1

2

3 Time-optimal

Linear

Figure 9. Comparison of maneuver times for purely horizontal maneuvers. The maneuver
using the linear controller is considered finished when the position error remains within 1% of
the desired translation.

Vertical distance (m)

M
an

eu
ve

r
d
u
ra

ti
on

(s
)

0 2 4 6 8 10
0

1

2

3 Time-optimal

Linear

Figure 10. Comparison of maneuver times for purely vertical maneuvers. The maneuver
using the linear controller is considered finished when the position error remains within 1% of
the desired translation.

The above results show that the linear controller with saturations leaves considerable

room for improvement. The the highest performance gains are achievable for very small

translations, which take approximately constant time with the linear controller.

7. Experimental Results

Selected numerical results were experimentally validated by applying them on quadrotor

vehicles in the ETH Zurich Flying Machine Arena. The vehicles are based on Ascend-

ing Technologies ‘Humminbird’ quadrocopters [8], but have been modified with custom

65

Paper I. Performance Benchmarking Using Time-Optimal Control

electronics providing additional communications interfaces, sensors with higher dynamic

range, and access to low-level control functions [17].

Trajectories were recorded using an infrared motion tracking system. Using retro-

reflective markers mounted to the vehicle, position and attitude were measured at a

rate of 200 Hz. The vehicle velocity was obtained through differentiation of non-causally

filtered position measurements.

The control input trajectories are transfered to the quadrotor vehicle ahead of the start

of the experiment. A hover controller is employed to stabilize the vehicle at the initial

state. The maneuver is triggered and the vehicle executes the control input trajectories,

using only feedback from the on board gyroscopes to control its rotational rates. The

trajectory is sampled and executed by the on-board microcontroller at 800 Hz.

Considering that the numerical results were obtained using a first-principles model

that, as discussed in Section 2.1, neglects a number of known effects, executing the nu-

merically computed input trajectories directly is not sufficient to achieve a maneuver that

is comparable to the simulation results. In order to adapt the input trajectories to mod-

eling inaccuracies, a model-based policy gradient learning algorithm was applied. This

algorithm was presented in [17] and [16], and minimizes the final state error over multiple

iterations of the maneuver. The results shown here were obtained after convergence of

the learning algorithm.

A video of the experiments presented herein is available on the first author’s website,

and as an electronic appendix to this article.

Figure 11 shows the state trajectories of two maneuvers after convergence of the policy

gradient learning algorithm. The upper graph shows the state trajectories of a purely

vertical translation of 5 m, the numerical results of which were shown in Figure 4. The

lower graph shows a translation of 5 m in both coordinates, for which the numerical results

were shown in Section 5.3 (Fig. 7).

For both experiments, the total duration of the maneuver was longer than the calcu-

lated duration (approximately 17% for the vertical translation, and approximately 20%

for the translation in both coordinates). Multiple reasons for this can be seen in the state

trajectories:

The pitch angle trajectories θ show inaccuracies, which can be explained by unmodeled

rotational accelerations and propeller dynamics. This is particularly obvious around the

switching times of the rotational rate input (e.g. around t = 0.9 s in the upper graph,

and around t = 1.4 s in the lower graph. This highlights the limitations of the dynamical

model introduced in Section 2: The shape of the trajectory is similar, but with significant

differences when significant changes in the pitch angle occur.

The velocity trajectories show a loss of acceleration at high speeds. This is very

clearly visible in the purely vertical displacement (upper plot), where the rate of increase

of vertical velocity ż reduces as the velocity increases (t =0.2 s to 0.9 s). Well-known aero-

dynamic effects on propellers [13] provide a plausible explanation for this behavior: For a

given propeller shaft power, the thrust produced by the propeller decreases significantly

as the flight speed increases.

66

7. Experimental Results

Figure 11. Measured state trajectories for two example maneuvers: Final state xT = 0 and
zT = 5 m (top), xT = 5 m and zT = 5 m (bottom). The numerical results for these maneuvers
are shown in Figures 4 and 7, respectively. It can be seen that the measured trajectories are
similar to the numerical ones, with unmodeled dynamics apparent at high speeds and around
switching times.

Inspecting the velocity trajectories more closely, it also becomes apparent that sudden

changes of acceleration, such as at the beginning of both maneuvers, are not achieved in

the experiment. This behavior can be explained by examining the underlying propeller

dynamics: For a sudden thrust change, the propeller speed must be increased or decreased

instantaneously. The true propeller speed change dynamics are dictated by the available

current and by the motor controllers.

The differences between the trajectories are further highlighted in Figure 12, where

experimental and simulative results are superimposed. While the direct comparison high-

lights the longer duration of the maneuver, it is also clearly visible that the general shape

of the simulation results is matched well by the experiments. With the ability to trans-

fer maneuvers from simulation to the experimental platform, it is possible to perform

comparative studies not only in simulation, but also in reality. For accurate benchmarks,

care should be taken to compare results from similar sources (for example, obtained using

the same simulation, as shown in Section 6). If, when assessing performance, numerical

results for time-optimal maneuvers are to be compared to experimental results, it may

be important to account for differences between experimental and simulative results.

67

Paper I. Performance Benchmarking Using Time-Optimal Control

Figure 12. Overlay of trajectories from simulation and experiment: Final state xT = 5 m and
zT = 5 m. The direct comparison highlights the longer duration of the experimental trajectory,
with peak velocities about 16% and 40% lower in x and z, respectively.

8. Conclusion and Future Work

In this paper, a benchmarking methodology for quadrocopters was presented. Using a

two-dimensional first-principles model, the algorithm presented herein computes maneu-

vers that satisfy Pontryagin’s minimum principle with respect to time-optimality. Using

a non-dimensionalized model, the quadrotor vehicle is characterized by two parameters.

Resulting maneuvers for selected initial and final states were illustrated, highlighting

the structure of time-optimal maneuvers. The use of this method to quantify perfor-

mance gains through changes of physical quadrotor parameters was demonstrated, and

the benchmarking of a control algorithm was demonstrated by benchmarking a linear

controller as it might be used for relatively simple control tasks.

We expect that this method will enable performance benchmarking of quadrotor con-

trollers and quadrotor design decisions. Furthermore, the insights gained into the struc-

ture of time-optimal quadrotor maneuvers may be useful in the development of more

advanced control strategies.

To confirm the validity of computed maneuvers, and to demonstrate the transfer-

ability to real quadrocopters, the maneuvers were successfully demonstrated in the ETH

Zurich Flying Machine Arena testbed. A possible extension would be the experimental

benchmarking of control strategies. While the optimality conditions apply only to the

first-principles model, the experimental results may still serve as a useful reference point

that experimental results of other controllers can be compared to.

In tasks that require specific point-to-point motions, the trajectories computed with

this algorithm could be applied, as demonstrated by the experimental results. While the

computation of time-optimal trajectories is not fast enough to be performed on-line, a

precomputed set of trajectories could be stored and applied for specific motions.

An interesting extension of this work would be the computation of time-optimal

maneuvers in three dimensions. While the coordinate system can be appropriately

68

A. Algorithm for Calculation of Time-Optimal Maneuvers

transformed to compute all maneuvers starting and ending at standstill using the two-

dimensional model, additional insight may be gained through the ability to compute

arbitrary maneuvers.

A further possible extension of the work herein could be the development of algo-

rithms that permit significantly faster computation of time-optimal maneuvers, allowing

such maneuvers to be computed at timescales that make them useful in on-line planning

scenarios.

A. Algorithm for Calculation of Time-Optimal Maneuvers

This appendix discusses the numerical algorithm presented in Section 4 in more detail,

with a focus on how the individual steps were implemented. This implementation (in

Matlab) of the algorithm is available for free use on the first author’s website, and is

submitted along with this article.

This appendix follows the outline of Section 4, first introducing maneuvers containing

no singular arcs in Sections A.1 - A.3, and then showing modifications for bang-singular

maneuvers in Section A.4.

Figure 13 shows a flowchart diagram of the algorithm for bang-bang maneuvers, and

in the following, the three steps are introduced in detail.

A.1 Switching Time Optimization

Due to the assumption that the optimal solution is a bang-bang maneuver, the control

trajectory u can be efficiently parameterized by the initial control vector u(t = 0) and

the switching times of the two control inputs, denoted by the sets

{TuR} = T iuR for i = 1, 2, . . . , NR,

{TuT } = T juT for j = 1, 2, . . . , NT .
(43)

NR and NT are the number of switches of the rotational control input and the thrust

input, respectively. The principle of STO is to choose NR and NT , and to then improve

an initial choice of the switching times {TuR}ini and {TuT }ini, until a control trajectory

is found that guides the quadrotor from x0 to xT with an acceptable accuracy. The final

state error is measured using the scalar final state residual function

Pres({TuR}, {TuT }, T) = (x(T)− xT)TW (x(T)− xT), (44)

where the matrix W = diag(w1, w2, w3, w4, w5) contains the weights of the different state

errors. The final state x(T) resulting from the chosen switching times can be obtained by

numerically integrating the system dynamics f(x,u) over the interval [0, T], where u is

defined by the initial control inputs u(t = 0) and the switching times {TuR} and {TuT }.

69

Paper I. Performance Benchmarking Using Time-Optimal Control

Figure 13. Flowchart diagram of the algorithm that computes bang-bang maneuvers satisfying
the minimum principle. The three steps are presented in detail in Sections A.1-A.3. In this graph,
≈ is used to denote that the equation must be solved to acceptable accuracy.

The maneuver duration T is not known a priori and we seek the minimum T for which

Pres = 0 can be obtained. The problem can be written as

find {TuR}, {TuT }, T
subject to Pres({TuR}, {TuT }, T) = 0,

T ≤ {T}ach,

(45)

70

A. Algorithm for Calculation of Time-Optimal Maneuvers

where {T}ach is the set of all T for which Pres = 0 is achievable, implying that the

maneuver to be found is the one with the shortest possible duration.

The solution of (45) is computed by a two-step algorithm: For an initially small, fixed

maneuver duration T , the state residual Pres is minimized by varying the switching times

{TuR} and {TuT } using a simplex search method (this choice was based on the observation

that derivative-free optimization algorithms have shown to perform significantly better

in this optimization). After the minimization, T is increased using the secant method

Ti+1 = Ti +
Ti − Ti−1

(Pres,i−1/Pres,i)− 1
, (46)

or by a constant value if convergence of the secant method is not assumed, see [6]. These

two steps are repeated until Pres = 0 is achieved. Since the initial value of T is chosen

to be too small to complete the maneuver, and since T is successively increased, the

algorithm delivers a value close to the smallest T for which Pres = 0 is achievable.

The choice of the number of switches is based on the user’s intuition and experience

from the computation of other maneuvers. If the number is chosen too high, the algorithm

can converge to the correct result by producing dispensable switching times, as discussed

below. The initial guess for the duration of the maneuver T must be chosen to be too

short to compute the maneuver, and can be obtained from a guess based on the vehicle’s

translational acceleration capabilities, or on similar maneuvers.

A.2 Parameter Extraction

After having found a bang-bang trajectory that brings the quadrotor from the initial

state x0 to the desired final state xT , it is necessary to verify that it is a solution to

BVP (32). Therefore, the constant vector c = (c1, c2, c3, c4) must be determined, based

on the trajectories resulting from the STO.

Dispensable Switching Times If the number of switches NR and NT was chosen

too high, then the STO may converge to a solution containing dispensable switching

times, which in fact do not represent switches. Therefore, before the constant vector c

is computed, all switches at t = 0 and t = T are removed, and the initial control vector

u(0) is adjusted accordingly. Furthermore, two switches of the same control input, which

occur at the same time, are dispensable as well and must, consequently, also be removed.

Conditions on the Trajectory of ΦR The switching function ΦR must be zero

whenever the control input uR switches. From the STO, the set of switching times {TuR}
is given, and for each element of this set, ΦR must vanish. This leads to the conditions

ΦR(T iuR) = 0 for i = 1, 2, . . . , NR. (47)

As shown in Section 3, only the derivative Φ̇R of the switching function is known a priori.

71

Paper I. Performance Benchmarking Using Time-Optimal Control

However, once the state trajectories are known from the STO, the condition H ≡ 0 (which

must hold if the maneuver is time-optimal) can be used to compute ΦR. Recalling the

Hamiltonian (14) and using the definition ΦR = p5 yields

ΦR =
1 + p1ẋ+ p2uT sin θ + p3ż + p4(uT cos θ − 1)

−uR
. (48)

As shown in (17), the first four costates pi are all linear in c. The above equation can

therefore be written as a linear function of c:

ΦR =
1

uR
(−1 + c1(−ẋ+ tuT sin θ) + c2(−uT sin θ)

+ c3(−ż + t(uT cos θ − 1)) + c4(−uT cos θ + 1)) .

(49)

Given the linear form of ΦR, Equation (47) states NR linear conditions on the constant

vector c.

The derivative Φ̇R is given by Equation (31). For a trajectory that satisfies the

minimum principle, the integral of Φ̇R must coincide with the trajectory of ΦR given

by (49). Hence, for an arbitrary interval [t1, t2] ∈ [0, T],

ΦR(t2)− ΦR(t1) =
∫ t2
t1

Φ̇Rdt

=
∫ t2
t1

(−p2uT cos θ + p4uT sin θ)dt
(50)

must hold, where the left side of the equation is computed using H ≡ 0, i.e. by (49). The

costates p2 and p4 are linear functions of c, and the above equation can be written as

ΦR(t2)− ΦR(t1) = c1

∫ t2

t1

tuT cos θdt− c2

∫ t2

t1

uT cos θdt

−c3

∫ t2

t1

tuT sin θdt+ c4

∫ t2

t1

uT sin θdt.

(51)

To set up conditions on c based on (51), the maneuver interval [0, T] is divided into

NR + 1 subintervals that are separated by the switching times {TuR}, i.e.

[0, T] =
⋃{

[0, T 1
uR

], [T 1
uR
, T 2

uR
], . . . , [TNR

uR
, T]
}
. (52)

This choice is beneficial with respect to the computational effort, because the switching

function ΦR must vanish at the switching times; the left side of (51) can be set to zero for

all intervals, except for the first and the last one. The NR + 1 intervals describe NR + 1

additional linear conditions on the constant vector c.

72

A. Algorithm for Calculation of Time-Optimal Maneuvers

Conditions on the Trajectory of ΦT Since the thrust switching function ΦT is

known explicitly, the conditions resulting from {TuT } are straightforward. From the fact

that ΦT must vanish at each switch of uT , the condition

ΦT (T iuT) = 0 for i = 1, 2, . . . , NT (53)

must be satisfied, where the set {TuT } is given by the STO. The thrust switching function

(26) is a linear function of the costates p2 and p4, and again linear in c:

ΦT = −c1t sin θ + c2 sin θ − c3t cos θ + c4 cos θ. (54)

This linear form of the thrust switching function ΦT allows one to define NT addi-

tional linear conditions on the elements of the constant vector c, based on the conditions

from (53).

Condition Matrix Equation For the minimum principle to be satisfied, a constant

vector c that fulfills all the linear conditions to an acceptable accuracy must exist. The

conditions on c derived above are therefore combined into a matrix equation, which we

denote as

Ac = r. (55)

The matrix A is of size (Nc×4) and the vector r has the length Nc, where Nc is the total

number of linear conditions:

Nc = 2NR +NT + 1 (56)

For all maneuvers considered here, the system of equations (55) is overdetermined, per-

mitting no exact solution. Therefore, the least squares solution of (55) is computed ([1]),

which is given by

c∗ = (ATA)−1AT r. (57)

To verify that a solution to the overdetermined system of equations exists, c∗ is substi-

tuted back into (55). If the error vector exceeds the expected numerical discrepancies3,

then the solution is considered to be invalid. In the context of the optimal control prob-

lem, this implies that there exists no constant vector c for which the minimum principle is

fulfilled, and consequently the trajectories x and u resulting from the STO do not satisfy

the minimum principle. A possible reason is that the chosen number of switches NR and

NT and the initial values {TuR}ini and {TuT }ini did not cause the STO to converge to the

desired maneuver. This may be corrected by varying these parameters. Another reason

for the lack of a solution could be that the time-optimal maneuver for the given boundary

conditions contains singular arcs, a case that will be discussed in Section 4.4.

3Numerical discrepancies are to be expected from both the accuracy to which the STO optimization
was solved, and numerical integration errors. The tolerance to which the system of equations must be
satisfied is defined by the user based on values seen in other maneuvers.

73

Paper I. Performance Benchmarking Using Time-Optimal Control

If the condition matrix equation is satisfied to an acceptable accuracy, then a valid

parameter vector c has been found and the parameter extraction step is complete.

A.3 BVP Solver

To verify that BVP (32) is fulfilled and to minimize numerical errors, a last step is

performed where the BVP is solved numerically: The state residual Pres is minimized by

varying the constant vector c and the maneuver duration T . The problem can be written

as
minimize Pres(c, T)

subject to ẋa = fa(t,xa),

xa(0) = (x0,ΦR(0)).

(58)

The constants c resulting from the parameter extraction and the maneuver duration T

obtained by the STO are used as initial values. The optimization over the constants

c and the terminal time T is carried out using a simplex algorithm. As these initial

values are close to the exact solution, the BVP solver converges quickly, provided that

the solution resulting from the STO is indeed a solution to the minimum principle. The

initial value of the switching function ΦR(0) can be obtained by the condition H ≡ 0, i.e.

by Equation (49), evaluated at t = 0. If Pres is sufficiently small after the minimization,

the maneuver satisfies the boundary conditions of the final state being reached, and the

algorithm has terminated successfully.

A.4 Modified Algorithm for Bang-Singular Maneuvers

The algorithm described above is able to solve BVP (32), provided that the resulting

maneuver does not contain singular arcs. In the general case, however, the time-optimal

maneuver is bang-singular, and the algorithm needs to be modified to take possible sin-

gular arcs into account.

Within a singular arc, the trajectory of uR is given by Equation (23) and depends on

the constants c. Due to this dependency, computing the constants c after the STO is

no longer sufficient, since they determine the singular input and have an impact on the

maneuver trajectory. The parameter extraction is therefore embedded into the STO, and

the resulting algorithm consists of two successive steps:

1. Applying STO, a maneuver that brings the quadrotor to the desired final state is

found, and in parallel, a constant vector c that fulfills the condition matrix equation

resulting from the parameter extraction is computed.

2. Having a reasonable initial guess of the switching times, of the maneuver duration T ,

and of the constant vector c, a BVP solver that computes a solution to BVP (32)

is applied.

Figure 14 shows a flowchart diagram of the algorithm to find bang-singular solutions.

74

A. Algorithm for Calculation of Time-Optimal Maneuvers

Figure 14. Flowchart diagram of the algorithm to compute bang-singular maneuvers that
satisfy the minimum principle. The symbol ≈ is used to denote that the equation must be solved
to acceptable accuracy.

Switching Time Optimization with Embedded Parameter Extraction For

bang-singular maneuvers, uR may stay within a singular arc for a particular duration

each time it switches. We introduce a new set of parameters that describes the durations

of the singular arcs, and denote the duration within the singular arc at the switching

time T iuR as Di
s,uR

. At the time T iuR the control input uR enters the singular arc, and at

time T iuR +Di
s,uR

the singular arc is left and uR switches to −1 or +1 4. A bang-singular

maneuver is characterized by the sets

{TuR} = T iuR for i = 1, 2, . . . , NR,

{Ds,uR} = Di
s,uR

for i = 1, 2, . . . , NR,

{TuT } = T juT for j = 1, 2, . . . , NT .

(59)

Within a singular arc, uR is given by Equation (23) and its trajectory depends on the

4 It is necessary to additionally specify whether uR switches to −1 or +1 at the end of the singular
arc. We employ the convention that uR switches to the opposing value of the one before the singular arc.
A singular arc where uR returns to the same value after the singular arc can be modeled by an additional
switch at the end of the singular arc, with the corresponding duration of the additional singular arc being
zero.

75

Paper I. Performance Benchmarking Using Time-Optimal Control

constants c. The final state residual Pres is therefore not only a function of the maneuver

duration T and of the sets of the switching times, but also of the constant vector c.

Accordingly, the state residual may be written as

Pres({TuR}, {TuT }, {Ds,uR}, c, T)

= (x(T)− xT)TW (x(T)− xT).
(60)

The new parameter set {Ds,uR} and the constant vector c are additional optimization

variables during the STO.

If the solution is to satisfy the minimum principle, the optimization variables over-

constrain the problem: For the solution to satisfy the optimality conditions, the control

inputs must be the optimal control inputs, as specified by Equations (24) and (30).

These optimal inputs could be found using c to compute the switching functions. This

is avoided, however, because the separate optimization of the switching times and c has

shown to be more robust.

Because only constants c that satisfy the condition matrix equation Ac = r from the

parameter extraction are a valid choice, we define the condition residual to be

Cres({TuR}, {TuT }, {Ds,uR}, c, T) = (Ac− r)TWc(Ac− r), (61)

where Wc is a diagonal matrix containing the weights of the different linear conditions.

It is important to note that the matrix A and the vector r are functions of the switching

times {TuR} and {TuT }, of the singular arc durations {Ds,uR}, of the maneuver duration

T , and of the constants c. For a maneuver that satisfies the minimum principle, the

condition residual Cres must vanish. Consequently, the STO problem for bang-singular

maneuvers can be written as

find {TuR}, {TuT }, {Ds,uR}, c, T
subject to Pres({TuR}, {TuT }, {Ds,uR}, c, T) = 0,

Cres({TuR}, {TuT }, {Ds,uR}, c, T) = 0,

T ≤ {T}ach,

(62)

where {T}ach denotes the set of all T for which Pres = 0 and Cres = 0 is achievable.

For bang-singular maneuvers, the sum of the state and the condition residual Pres + Cres
is minimized during the STO. For the computation of Cres, the matrix A and the vector

r are required: The parameter extraction is no longer an isolated step, but needs to be

performed for each evaluation of Cres within the STO minimization. The parameter ex-

traction is not used to compute the constants c (which are optimization variables), but

to compute A and r.

76

A. Algorithm for Calculation of Time-Optimal Maneuvers

Additional Linear Conditions for Bang-Singular Maneuvers For the param-

eter extraction of bang-singular maneuvers, which is needed to obtain A and r, there

exist additional linear conditions that take the requirements on the switching functions

within singular arcs into account.

Additional Conditions on the Trajectory of ΦR: Considering bang-singular maneuvers,

the rotational switching function ΦR must not only have a zero-crossing at each T iuR , but

it must also stay at zero for the duration of the corresponding singular arc Di
s,uR

. An

additional set of constraints is introduced, requiring that ΦR is zero at the beginning and

at the end of the singular arcs:

ΦR(T iuR) = 0 for i = 1, 2, . . . , NR,

ΦR(T iuR +Di
s,uR

) = 0 for i = 1, 2, . . . , NR.
(63)

Because these conditions do not imply that ΦR is zero during the entire singular arc, it

is necessary to verify the trajectory of ΦR after the computation. If a switch T iuR has no

singular arc, i.e. if Di
s,uR

= 0, then the corresponding two conditions in (63) are identical.

From this it follows that one additional condition results for each singular arc. We denote

the number of singular arcs as Ns, hence (63) describes NR +Ns conditions. This means

that Ns additional conditions have been identified, compared to the bang-bang case. As

derived in Section A.2, these conditions are linear with respect to c.

As the derivative of the rotational switching function Φ̇R is known explicitly, we

demand that the integration value of Φ̇R between two switches of uR is zero for bang-

bang maneuvers. For bang-singular maneuvers, we pose similar conditions, but extra

time intervals over the singular arcs are created. An integration value of zero does not

imply that ΦR stays at zero during the whole singular arc, but constant drifts of ΦR are

penalized. Hence, the intervals over which Φ̇R is integrated are

[0, T] =
⋃{

[0, T 1
uR

], [T 1
uR
, T 1

s,uR
], [T 1

s,uR
, T 2

uR
], . . .

. . . , [TNR−1
s,uR

, TNR
uR

], [TNR
uR
, TNR

s,uR
], [TNR

s,uR
, T]
}
,

(64)

where T is,uR = T iuR + Di
s,uR

is used for a more compact notation. Analogously to the

bang-bang case, a linear condition for each of these intervals can be constructed using

Equation (51). If a switch has no singular arc, then Di
s,uR

= 0 and the corresponding

interval vanishes. Hence, for bang-singular maneuvers, NR +Ns + 1 linear conditions

on the constant vector c result. Compared to a bang-bang maneuver, Ns additional

conditions are introduced.

Assuming that the thrust input uT does not switch at the edges of the singular in-

tervals, Φ̇R is continuous over the border of the singular arcs, as can be seen from (21).

Consequently, the switching function ΦR enters and leaves a singular arc tangentially.

We therefore impose the conditions that the derivative Φ̇R is zero at the edges of every

77

Paper I. Performance Benchmarking Using Time-Optimal Control

singular arc. For each singular arc, i.e. for each Di
s,uR

> 0, two additional conditions

result:
Φ̇R(T iuR) = 0 for i = 1, 2, . . . , Ns,

Φ̇R(T iuR +Di
s,uR

) = 0 for i = 1, 2, . . . , Ns.
(65)

The derivative of the rotational switching function is given by

Φ̇R = (c1t− c2)uT cos θ + (c4 − c3t)uT sin θ, (66)

which has been derived in Section 3. This is a linear function of the constants c, and

yields 2Ns additional conditions.

General Condition Matrix Equation: In total, 4Ns additional conditions have been

identified. It follows that in the case of a bang-singular maneuver, the condition matrix

equation

Ac = r (67)

has Nc rows, with a total number of conditions of

Nc = 2NR +NT + 4Ns + 1. (68)

The condition matrix equation is overdetermined as soon as the maneuver has at least

one singular arc.

BVP Solver for Bang-Singular Maneuvers Similar to the algorithm for bang-

bang maneuvers, the final step is the reduction of errors through the application of a

BVP solver. If the maneuver contains singular arcs, ΦR stays at zero for a nontrivial

interval of time. Since the system is integrated numerically, ΦR is near zero during the

singular arcs, but does not vanish completely due to numerical inaccuracies. As ΦR enters

and leaves the singular arcs tangentially, defining a threshold value below which ΦR is

considered to be zero is not a straightforward task. For this reason, the rotational control

trajectory uR is not determined using the optimal control law (i.e. based on its switching

function ΦR), but is based on the sets {TuR} and {Ds,uR}. Consequently, {TuR} and

{Ds,uR} are optimizing variables during the BVP minimization, because they impact the

control trajectory u. Further, since the switching times of uR are not determined based

on the constants c, the optimal control laws are not implicitly satisfied. One must thus

ensure that the condition matrix equation is fulfilled, which is the case if Cres vanishes.

Thus, as during the switching time optimization, the sum of the state residual Pres and

the condition residual Cres is minimized. The BVP solver problem for bang-singular

maneuvers becomes
minimize Pres + Cres

subject to ẋ = f(x,u),

x(0) = x0,

(69)

78

References

where the control trajectory uR is computed according to the switching times and singular

arc durations, and uT according to the optimal control law (30). Note that the arguments

({TuR}, {Ds,uR}, c, T) of Pres and Cres have been omitted for reasons of clarity.

In the BVP Solver step, the NT linear conditions resulting from the thrust input are

trivially satisfied, because uT is computed based on its switching function ΦT . Hence,

when the matrix condition equation is computed for the evaluation of Cres during the

BVP minimization, it has only

Nc,uR = 2NR + 4Ns + 1 (70)

rows, since the conditions resulting from uT can be neglected.

For bang-singular maneuvers, the BVP solver is similar to the STO. The only differ-

ences are that the thrust input uT is determined based on its control law (30), and that

the maneuver duration T is an optimization variable, too, and not kept constant during

the minimization of Pres + Cres.

Because uR is not determined by its control law, and since a vanishing condition

residual Cres does not guarantee that the control law holds, it is necessary to verify that

the control law (24) is satisfied by inspecting the switching function ΦR.

If the residuals Pres and Cres are sufficiently small after the minimization, and if the

control law for the rotational input uR is fulfilled, then the maneuver is a solution to

BVP (32), and therefore satisfies the minimum principle with respect to time-optimality.

References

[1] Dennis S. Bernstein. Matrix Mathematics. Princeton University Press, 2005.

[2] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control, Vol. I. Athena
Scientific, third edition, 2005.

[3] S. Bouabdallah, A. Noth, and R. Siegwart. PID vs LQ Control Techniques Applied
to an Indoor Micro Quadrotor. In International Conference on Intelligent Robots
and Systems, 2004.

[4] Y. Bouktir, M. Haddad, and T. Chettibi. Trajectory Planning for a Quadrotor
Helicopter. In Mediterranean Conference on Control and Automation, 2008.

[5] Ian D. Cowling, Oleg A. Yakimenko, and James F. Whidborne. A Prototype of
an Autonomous Controller for a Quadrotor UAV. In European Control Conference,
2007.

[6] Germund Dahlquist and Ake Björck. Numerical Methods. Dover Publications, 2003.

[7] Hans Peter Geering. Optimal Control with Engineering Applications. Springer, 2007.

79

Paper I. Performance Benchmarking Using Time-Optimal Control

[8] Daniel Gurdan, Jan Stumpf, Michael Achtelik, Klaus-Michael Doth, Gerd Hirzinger,
and Daniela Rus. Energy-Efficient Autonomous Four-Rotor Flying Robot Controlled
at 1 kHz. In International Conference on Robotics and Automation, 2007.

[9] Markus Hehn and Raffaello D’Andrea. Quadrocopter Trajectory Generation and
Control. In IFAC World Congress, 2011.

[10] Gabriel M Hoffmann, Hao Huang, Steven L Waslander, and Claire J Tomlin.
Quadrotor Helicopter Flight Dynamics and Control: Theory and Experiment. In
AIAA Guidance, Navigation and Control Conference, 2007.

[11] Gabriel M. Hoffmann, Steven L. Waslander, and Claire J. Tomlin. Quadrotor
Helicopter Trajectory Tracking Control. In Conference on Decision and Control,
2008.

[12] Jonathan P. How, Brett Bethke, Adrian Frank, Daniel Dale, and John Vian.
Real-Time Indoor Autonomous Vehicle Test Environment. IEEE Control Systems
Magazine, 28(2):51–64, 2008.

[13] Haomiao Huang, Gabriel M. Hoffmann, Steven L. Waslander, and Claire J. Tomlin.
Aerodynamics and Control of Autonomous Quadrotor Helicopters in Aggressive
Maneuvering. In International Conference on Robotics and Automation, 2009.

[14] Li-Chun Lai, Chi-Ching Yang, and Chia-Ju Wu. Time-Optimal Control of a Hovering
Quad-Rotor Helicopter. Journal of Intelligent and Robotic Systems, 45(2):115–135,
June 2006.

[15] Urszula Ledzewicz, Helmut Maure, and Heinz Schattler. Bang-Bang and Singular
Controls in a Mathematical Model for Combined Anti-Angiogenic and Chemotherapy
Treatments. In Conference on Decision and Control, December 2009.

[16] Sergei Lupashin and Raffaello D’Andrea. Adaptive Open-Loop Aerobatic Maneuvers
for Quadrocopters. In IFAC World Congress, 2011.

[17] Sergei Lupashin, Angela Schöllig, Michael Sherback, and Raffaello D’Andrea. A
Simple Learning Strategy for High-Speed Quadrocopter Multi-Flips. In International
Conference on Robotics and Automation, 2010.

[18] Daniel Mellinger, Nathan Michael, and Vijay Kumar. Trajectory Generation
and Control for Precise Aggressive Maneuvers with Quadrotors. In International
Symposium on Experimental Robotics, 2010.

[19] Nathan Michael, Daniel Mellinger, Quentin Lindsey, and Vijay Kumar. The GRASP
Multiple Micro UAV Testbed. IEEE Robotics and Automation Magazine, 17(3):56–
65, 2010.

[20] Paul Pounds, Robert Mahony, and Peter Corke. Modelling and Control of a Quad-
Rotor Robot. In Australasian Conference on Robotics and Automation, 2006.

[21] Oliver Purwin and Raffaello D’Andrea. Performing and Extending Aggressive
Maneuvers Using Iterative Learning Control. Robotics and Autonomous Systems,
59(1):1–11, 2011.

80

References

[22] Emilio Roxin. The Existence of Optimal Controls. The Michigan Mathematical
Journal, 9(2):109–119, 1962.

[23] Angela Schoellig, Markus Hehn, Sergei Lupashin, and Raffaello D’Andrea. Feasiblity
of Motion Primitives for Choreographed Quadrocopter Flight. In American Control
Conference, 2011.

[24] M Zandvliet, O Bosgra, J Jansen, P Vandenhof, and J Kraaijevanger. Bang-Bang
Control and Singular Arcs in Reservoir Flooding. Journal of Petroleum Science and
Engineering, 58(1-2):186–200, August 2007.

81

Paper II

Real-Time Trajectory Generation for

Quadrocopters

Markus Hehn and Raffaello D’Andrea

Abstract

This paper presents a trajectory generation algorithm that efficiently computes
high-performance flight trajectories capable of moving a quadrocopter from a large
class of initial states to a given target point that will be reached at rest. The ap-
proach consists of planning separate trajectories in each of the three translational
degrees of freedom, and ensuring feasibility by deriving decoupled constraints for
each degree of freedom through approximations that preserve feasibility. The pre-
sented algorithm can compute a feasible trajectory within tens of microseconds on
a laptop computer; remaining computation time can be used to iteratively improve
the trajectory. By replanning the trajectory at a high rate, the trajectory generator
can be used as an implicit feedback law similar to model predictive control. The so-
lutions generated by the algorithm are analyzed by comparing them to time-optimal
motions, and experimental results validate the approach.

Under review for publication in IEEE Transactions on Robotics.

83

Paper II. Real-Time Trajectory Generation for Quadrocopters

1. Introduction

Quadrocopters are popular aerial robotic platforms for applications where the ability to

hover and move freely in three-dimensional space is important [39]. Trajectory generation

remains a problem, however, as flight paths that are feasible under the complex dynamic

and input constraints of the vehicles must be computed.

1.1 Goal & Motivation

In well-known, controlled, static environments, quadrocopters can be flown using pre-

planned flight paths and feedback control to track these flight paths (see, for exam-

ple, [20] and references therein). Many of the potential applications for aerial robots

(such as inspection tasks, disaster coordination, and journalism), however, do not offer

such environments: the task may change dynamically (e.g., a target point might be con-

tinuously updated based on incoming information); there may be significant disturbances

in the actual flight path (e.g., a large wind gust might push the vehicle too far off course

for the feedback control to recover efficiently); and knowledge of the environment may

be inaccurate (e.g., the existence, position, size, and shape of obstacles may only be-

come available mid-flight). When dynamic changes such as these are encountered, the

original pre-planned flight path may become suboptimal or even infeasible and therefore

impossible to execute.

If a system is to operate in dynamic environments or execute dynamically changing

tasks, it must be able to quickly update the planned flight trajectory according to new

information as it becomes available, and it must be able to do this while the vehicle is

in motion. Such trajectory generation methods are often referred to as ‘real-time’ [31],

‘online’ [26], or ‘reactive’ [25] for their ability to accommodate changing constraints by re-

planning almost instantaneously. Executing the initial control inputs of the continuously

updated trajectory also forms an implicit feedback law that can be used to control the

vehicle in a fashion similar to model predictive control [10]. The use of a trajectory

generation algorithm in real-time settings results in several additional requirements when

compared to the generation of pre-planned flight trajectories:

1) Large range of initial conditions: Pre-planning allows boundary conditions to be

carefully designed, e.g. by limiting the planning to trajectories that start and end with

the vehicle at rest. If trajectories are re-planned dynamically, it is necessary to account for

the non-rest initial state of the vehicle even if a disturbance has caused it to significantly

deviate from its planned flight path.

2) Computational complexity: Updating the planned trajectory at a high frequency

and with little delay helps to improve reaction time, and it follows that the computation

time of the trajectory generation algorithm should be as short as possible. With typical

quadrotor position control loops running at rates on the order of 50 Hz to 100 Hz [28,30],

computation times of a few milliseconds are desirable. In many scenarios, the use of

higher-level path planning algorithms involve evaluating large numbers of potential tra-

jectories (for example in rapidly-exploring random tree or probabilistic road map algo-

84

1. Introduction

rithms, see e.g. [24]), also making short computation times desirable.

1.2 Related Work

The problem of quadrocopter trajectory generation has received significant attention in

recent years, and a number of algorithms have been presented. Broadly speaking, a

possible categorization of the algorithms is as follows:

A first group of algorithms can be considered as primarily geometric. The trajectory

generation process consists of first generating a path in space from a class of path prim-

itives, and thereafter parameterizing the generated path in time such that the dynamic

constraints of the quadrocopter are enforced. Examples of such algorithms have been

presented using path primitives such as lines [19], polynomials [8], or splines [5].

A second group of algorithms is based on the design of trajectories that minimize a

derivative of the position trajectory (or combinations thereof). Because these derivatives

can be related to the control input constraints of the quadrocopter through its differential

flatness property, the feasibility of the trajectory depends on these derivatives. Examples

of such methods include minimum snap trajectory generation [29] and the minimization

of a weighted sum of derivatives [38]. More real-time-focused implementations are based

on model predictive control methods with learnt linear dynamics [4] or linear dynamics

based on a decoupling of the system [32]. An algorithm that provides particularly low

computational complexity has been presented for the case where it is sufficient to consider

constraints and verify the feasibility of the trajectory a posteriori [33].

A third group consists of algorithms that numerically solve an optimal control problem

that directly considers the nonlinear dynamics of the quadrocopter. Optimal solutions

are then found through the application of well-established optimal control methods such

as Pontryagin’s minimum principle [17] or numerical optimal control [40].

1.3 Contributions

This paper presents and analyzes a trajectory generation algorithm that allows the fast

computation of high-performance flight trajectories to move the quadrocopter from a

large class of initial states to a given target location at rest. The specific performance

criterion considered herein is the duration of the flight maneuver until the vehicle reaches

the target.

The algorithm is designed to be computationally efficient in order to provide a prov-

ably feasible trajectory quickly enough for its use in real-time settings. The design is

further targeted at flight in relatively small spaces, where peak velocities remain suffi-

ciently small that aerodynamic effects (such as drag) do not become dominant. It is

also assumed that an underlying body rate control loop is available to accurately track

commanded rotational rates and therefore allow the rotational rates to be modeled as

control inputs.

In order to efficiently generate trajectories under these assumptions, a decoupling ap-

proach is used to reformulate the quadrocopter trajectory problem in the computation

of time-optimal trajectories for acceleration- and jerk-limited triple integrators. The fact

85

Paper II. Real-Time Trajectory Generation for Quadrocopters

that time-optimal trajectories for input-affine systems are bang-singular is well known

from optimal control theory [18], [6]. In the context of trajectory generation for robotic

applications, the bang-singular structure is attractive because these trajectories often

provide a relatively simple parameterization and the possibility of computing the corre-

sponding parameters efficiently. Similar approaches of bang-singular trajectory genera-

tion have been demonstrated for robotic arms with many joints [26] and for generic tra-

jectories where the derivatives of the position are constrained [12]. A similar decoupling

approach with time-optimal bang-singular trajectories has been used for omnidirectional

ground robots in the RoboCup competition [36].

Furthermore, the algorithm provides means to trade off computational complexity

and the performance of generated trajectories: after a first trajectory has been com-

puted, remaining computation time can be used to iteratively increase the performance

(i.e., reduce the duration) of the trajectory. The computational effort of this iterative

optimization can be determined a priori, but it is also possible to adapt to changing

availability of computational resources: the iteration process can be aborted at any time,

and the best trajectory generated up until that time can be used as a solution while still

maintaining feasibility.

Preliminary results of the decoupling approach were presented in a previous conference

paper [16]. This paper extends these results by: 1) introducing an iterative method for

optimally choosing the decoupling parameters, 2) a rigorous way to account for a large

class of initial conditions without violating the dynamic constraints of the vehicle, and

3) an evaluation of the computational requirements and performance of the algorithm.

1.4 Outline

The remainder of this paper is organized as follows: Section 2 introduces the model of

the quadrocopter dynamics that is used throughout the paper. The trajectory generation

problem is then formally presented in Section 3. Section 4 derives the feasibility conditions

from the dynamic model and the decoupling used to simplify the trajectory generation

problem while guaranteeing feasibility. Section 5 introduces the basic proposed trajectory

generation algorithm that satisfies the trajectory generation problem. Section 6 presents

the iterative optimization of the decoupling parameters to improve performance when

more computation time is available. The use of the trajectory generation algorithm as

an implicit feedback law is discussed in Section 7. Section 8 presents results on the

computational performance of the method and characterizes the properties of planned

trajectories in comparison to time-optimal trajectories. An experimental validation of

the method is presented in Section 9, and conclusions as well as an outlook are given in

Section 10.

2. Dynamic Model

The quadrocopter is described by six degrees of freedom: the translational position

86

2. Dynamic Model

x

y

z

ωz

O

ωx

V
ωy

a

Figure 1. The inertial coordinate system O, the body-fixed coordinate system V, and the
control inputs of the quadrocopter. The rotational rates ωx, ωy, and ωz are tracked by an on-
board controller, using gyroscope feedback. The collective mass-normalized thrust a acts along
the third body axis of the vehicle.

(x, y, z) is measured in the inertial coordinate system O as shown in Figure 1. The

vehicle attitude V is defined by the rotation matrix O
VR. The rotation matrix is defined

such that, when multiplying it with a vector v in the vehicle coordinate system V, the

same vector, described in the inertial coordinate system O, is obtained:

Ov = O

VR
Vv. (1)

2.1 Control Inputs

The control inputs of the quadrocopter are the rotational rates about the vehicle body

axes, ωx, ωy, and ωz, and the mass-normalized collective thrust, a, as shown in Figure 1.

It is assumed that high-bandwidth controllers on the vehicle track the rotational rates

(this is usually achieved using feedback from gyroscopes). Typical quadrocopters have

very low rotational inertia, and can produce high torques due to the outward mounting

of the propellers [23]. This results in very high achievable rotational accelerations ω̇x
and ω̇y; the rotational rate control loops can therefore achieve very fast response times

to changes in the commanded rotational rates5. In the following, it is therefore assumed

that the vehicle body rates are directly controllable. Rotational accelerations ω̇z are

created by causing a drag difference between propellers rotating in opposite directions,

and achievable values are typically significantly lower. However, it will be shown that ωz
does not greatly influence the translational dynamics of the vehicle in this trajectory

generation problem.

The four control inputs (ωx, ωy, ωz, a) are subject to saturation. The magnitude of

the vehicle body rates are limited (such limitations can be caused, for example, by the

range of the gyroscopes used for feedback, or performance limitations of the body rate

5Experiments by the authors with vehicles of approximately 0.5 kg have shown rotational accelerations
on the order of 200 rad s−2 and body rate tracking time constants on the order of 20 ms.

87

Paper II. Real-Time Trajectory Generation for Quadrocopters

tracking controllers):

|ωx| ≤ ωxy,max (2)

|ωy| ≤ ωxy,max (3)

|ωz| ≤ ωz,max . (4)

The collective thrust is limited by a minimum and a maximum thrust

amin ≤ a ≤ amax (5)

where amin > 0. This limitation is motivated by the fact that typical quadrocopters have

fixed-pitch propellers, the direction of rotation of which cannot be reversed during flight.

2.2 Equations of Motion

The translational acceleration of the vehicle is dictated by the attitude of the vehicle and

the total thrust produced by the four propellers a. The translational acceleration in the

inertial frame is  ẍÿ
z̈

 = O

VR

 0

0

a

+

 0

0

−g

 . (6)

The change of vehicle attitude is related to the rotational control inputs through the

kinematic relationship [22]

O

VṘ = O

VR

 0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0

 . (7)

Note that the above equations of motion neglect well-known aerodynamic effects that

act on quadrocopters, such as rotor damping [34] and drag-like effects [1]. While such

effects can be significant at high flight speeds, the algorithm presented herein is mainly

intended for navigating relatively small spaces where flight speeds are limited. Omitting

these effects eliminates the need to quantify them over a large range of flight regimes

and also greatly simplifies the problem. This motivates their omission in this paper.

These simplifying assumptions can be considered similar to model reduction approaches

for model predictive control (see e.g. [14]) in that the model accuracy is traded off for

computational performance.

88

3. Problem Statement

3. Problem Statement

The trajectory generation problem considered herein can be described as follows: Let

the quadrocopter have a given initial state (consisting of initial vehicle position x0, y0, z0,

velocity ẋ0, ẏ0, ż0, and attitude O
VR0). Generate a trajectory that satisfies the initial state

constraints and drives the vehicle to a target point (taken to be, without loss of generality,

the origin), with the vehicle reaching the target point at rest. The generated trajectory

must be feasible with respect to the quadrotor dynamics (6)-(7) and the control input

constraints (2)-(5). It should also reach the target point as quickly as possible, and its

generation should be computationally inexpensive.

4. Feasibility Conditions and Decoupling

This section describes how the trajectory generation problem statement from the previous

section is converted into three separate, more tractable trajectory generation problems.

The derivation of the control inputs for an arbitrary vehicle trajectory (x(t), y(t), z(t))

is presented first (Section 4.1). Using this derivation, the general conditions under which

trajectories are feasible are then obtained (Section 4.2). From these general trajectory

constraints, a set of decoupled trajectory constraints are then generated through approx-

imations that preserve feasibility. These decoupled constraints differ from the general

trajectory constraints in that the motion constraints of one degree of freedom (e.g., x(t))

do not depend on the other two degrees of freedom (e.g., y(t) and z(t)).

4.1 Control Inputs for a Given Trajectory

Let (x(t), y(t), z(t)) denote a candidate vehicle trajectory. For notational convenience,

the time dependency will hereafter be omitted unless specific times are considered. Taking

the second derivative of the trajectory and combining it with the translational equation of

motion (6), the vector f is defined to represent the total mass-normalized forces required

by the quadrocopter to follow the trajectory:

f :=

 ẍÿ
z̈

+

 0

0

g

 = O

VR

 0

0

a

 . (8)

Using the two-norm (denoted by ‖·‖), the thrust a required to follow the trajectory

can be calculated by using the property that a pure rotation matrix does not change the

89

Paper II. Real-Time Trajectory Generation for Quadrocopters

two-norm of a vector [2]:

‖f‖ =

∥∥∥∥∥∥∥O

VR

 0

0

a


∥∥∥∥∥∥∥ = a . (9)

The direction of thrust is the unit vector in the direction of f

f̄ :=
f

‖f‖
(10)

and can be seen to define the third column of the rotation matrix by substituting f̄ back

into Equation (8):

O

VR

 0

0

1

 = f̄ . (11)

Taking the derivative of the above equation and combining it with Equation (7) gives

two of the vehicle body rates as functions of the current attitude and ˙̄f : ωy

−ωx
0

 = V

OR
˙̄f . (12)

Equation (9) and the first two rows of Equation (12) provide three equations for four

unknown control inputs. To fully constrain the control input trajectories for the given

position trajectory, a fourth constraint must be additionally specified, which can be taken

to be a user-defined constraint on ωz (ωz = 0, for example).

4.2 Coupled Feasibility Conditions

Feasibility constraints for trajectories can now be calculated from the initial state and

control input constraints:

Collective Thrust The collective thrust calculated from Equation (9) must lie be-

tween the minimum and maximum thrust defined by Equation (5), i.e.

‖f‖ =
√
ẍ2 + ÿ2 + (z̈ + g)2 ≥ amin (13)

‖f‖ ≤ amax . (14)

Rotational Rates The actual body rate control inputs ωx and ωy can only be com-

90

4. Feasibility Conditions and Decoupling

puted if a constraint on ωz is specified in addition to the trajectory. However, they can

be bounded using the unit norm property of the rotation matrix [2] with Equation (12):

ωx,y ≤
∥∥∥ ˙̄f
∥∥∥ (15)

from which it follows that a trajectory is guaranteed to be feasible if∥∥∥ ˙̄f
∥∥∥ ≤ ωxy,max . (16)

Note that the above constraint is independent of the specification of ωz, and therefore

holds for a translational trajectory irrespective of the rotational motion defined through

ωz.

Initial State The trajectory must satisfy the constraints arising from the initial state

of the vehicle. Specifically, the position and velocity must coincide with the initial values

x(t = 0) = x0, y(t = 0) = y0, z(t = 0) = z0 (17)

ẋ(t = 0) = ẋ0, ẏ(t = 0) = ẏ0, ż(t = 0) = ż0 (18)

and the acceleration at the start of the trajectory must be such that Equation (11) is

satisfied with the given attitude, that is

O

VR0

 0

0

1

 = f̄(t = 0) . (19)

4.3 Decoupling of the Feasibility Conditions

To simplify the three-dimensional planning problem, it is desirable to perform the plan-

ning separately for each of the coordinates x, y, and z. This requires the definition of

independent motion constraints for each degree of freedom. In terms of trajectory feasi-

bility, the three axes are coupled in the acceleration constraints (13)-(14), in the mixed

acceleration and jerk constraint (16), and in the initial attitude constraint (19). By con-

servatively approximating these constraints, it is possible to reformulate the trajectory

generation problem such that the three degrees of freedom are entirely decoupled, im-

plying that the overall trajectory will be guaranteed to be feasible if the three degrees of

freedom satisfy their respective independent constraints.

Minimum Thrust Constraint In order to satisfy the minimum thrust constraint (13),

91

Paper II. Real-Time Trajectory Generation for Quadrocopters

the vertical acceleration is constrained to be

z̈ ≥ z̈min (20)

where the minimum permissible vertical acceleration z̈min must satisfy

z̈min ≥ amin − g . (21)

It is then straightforward to verify that Equation (13) holds independently of the trajec-

tories in x and y because the thrust is no smaller than amin. While, at this point, it may

seem beneficial to choose the smallest possible value of z̈min, the tradeoffs involved in the

choice of this parameter will become obvious in the following section.

Rotational Rate Constraint The rotational rate control inputs nonlinearly couple

the jerk and acceleration of the three degrees of freedom according to Equation (12), and

their limitation (2)-(3) therefore couples the permissible values of the trajectory jerks and

accelerations.

The trajectory jerk ḟ is related to the actual control inputs through (12) by explicitly

calculating ˙̄f :  ωy

−ωx
0

 = V

OR

(
ḟ

‖f‖
− ffT ḟ

‖f‖3

)
. (22)

Using the triangle inequality and the Cauchy-Schwarz inequality [2], the above expression

is at most

ωx,y ≤

∥∥∥∥∥ ḟ

‖f‖
− ffT ḟ

‖f‖3

∥∥∥∥∥ (23)

ωx,y ≤

∥∥∥ḟ∥∥∥
‖f‖

+

∥∥∥ffT ḟ∥∥∥
‖f‖3 (24)

ωx,y ≤

∥∥∥ḟ∥∥∥
‖f‖

+

∥∥∥f∥∥∥2 ∥∥∥ḟ∥∥∥
‖f‖3 (25)

ωx,y ≤ 2

∥∥∥ḟ∥∥∥
‖f‖

. (26)

Because the minimum vertical acceleration constraint (20) provides a lower bound for

92

4. Feasibility Conditions and Decoupling

‖f‖, feasibility with respect to the body rate input constraints (2)-(3) is guaranteed if

∥∥∥ḟ∥∥∥ ≤ (z̈min + g)

2
ωxy,max (27)

holds. For the decoupled system, this can be ensured by limiting the permissible per-axis

jerk of a planned trajectory by

|...x | ≤ ...
xmax, |

...
y | ≤ ...

y max, |
...
z | ≤ ...

z max (28)

and choosing the limiting values such that Equation (27) is satisfied:

...
x 2

max +
...
y 2

max +
...
z 2

max ≤
(z̈min + g)2

4
ω2
xy,max . (29)

It can now be seen that the lower bound of the vertical acceleration (z̈min) can be used

as a design parameter in order to trade off higher allowable jerk magnitudes against

achievable negative accelerations in the vertical (Equations (20) and (29)).

For the purpose of this paper, the jerk limit is chosen to be identical for the three

degrees of freedom, i.e.

...
wmax :=

...
xmax =

...
y max =

...
z max =

(z̈min + g)√
12

ωxy,max . (30)

Maximum Thrust Constraint The maximum allowable thrust (14) imposes a con-

straint on the two-norm of the accelerations in the three degrees of freedom. This con-

straint is satisfied if

|ẍ| ≤ ẍmax, |ÿ| ≤ ÿmax, z̈ ≤ z̈max (31)

where z̈ is already lower-bounded by Equation (20). The acceleration bounds of the three

degrees of freedom are parameterized as functions of the maximum thrust constraint (5)

using the maximum acceleration tradeoff parameters αx, αz ∈ (0 1):

αz :=
z̈max

(amax − g)
(32)

αx :=
ẍmax√

a2
max − (z̈max + g)2

. (33)

The two parameters specify the maximum accelerations ẍmax and z̈max. The per-

missible acceleration ÿmax is then chosen to be as large as possible while fulfilling con-

93

Paper II. Real-Time Trajectory Generation for Quadrocopters

straint (14):

ÿmax =

√
a2

max − ẍ2
max − (z̈max + g)2 . (34)

If the constraints (31) defined through Equations (32)-(34) with αx, αz ∈ (0 1) are

satisfied, then the maximum thrust constraint (14) is satisfied by design.

Initial Acceleration To decouple the initial acceleration constraint (19), it is replaced

by individual initial acceleration constraints for the three degrees of freedom. The initial

accelerations ẍ0, ÿ0, z̈0 are defined through the initial attitude O
VR0 using Equation (6):

 ẍ0

ÿ0

z̈0

 := O

VR0

 0

0

a0

+

 0

0

−g

 (35)

with the initial thrust control input a0 remaining a free degree of freedom. For appli-

cations where the trajectory generation algorithm is applied recursively (e.g. when it

is used as a feedback law), the last value of the thrust a is typically available and can

readily be used to compute the initial acceleration; in other usage scenarios, the initial

value a0 may be considered a design variable.

It is assumed that the initial state z̈0 defined by Equation (35) satisfies the minimum

acceleration constraint (20), i.e. the initial acceleration must satisfy z̈0 ≥ z̈min for the

chosen value a0. This condition limits the range of permissible initial attitudes as can be

seen in Equation (35).

Because the allowable acceleration magnitudes (ẍmax, ÿmax, z̈max) can be traded off

freely through Equations (32) and (33), the initial accelerations (ẍ0, ÿ0, z̈0) may not satisfy

the constraints (31). For nonzero initial accelerations, the acceleration constraints (31)

are therefore replaced by the time-varying constraints

|ẍ| ≤ ẍ(t), |ÿ| ≤ ÿ(t), z̈ ≤ z̈(t). (36)

These time-varying constraints are constructed as follows, here explained for the example

of the first degree of freedom: The maximum allowable acceleration magnitude ẍ(t) starts

at the magnitude of the initial acceleration (e.g. |ẍ0|). It then has constant slope (e.g.

cx) until it reaches the design value (e.g. ẍmax):

ẍ(t) =

{
|ẍ0|+ cxt for 0 ≤ t < (ẍmax − |ẍ0|)/cx

ẍmax for t ≥ (ẍmax − |ẍ0|)/cx .
(37)

It now remains to choose the slopes cx, cy, cz such that the maximum thrust constraint (14)

94

4. Feasibility Conditions and Decoupling

remains satisfied for all times given the initial acceleration (ẍ0, ÿ0, z̈0). This is done

by differentiating between degrees of freedom where the constraints are increasing (i.e.,

cx > 0) and those where they are decreasing (cx < 0).

For degrees of freedom where the initial acceleration exceeds the allowable acceleration

(e.g. |ẍ0| > ẍmax), the slope is chosen to be the maximum jerk cx = −...
wmax as given in

Equation (30). This corresponds to the fastest possible transition into the designed

maximum magnitude that is permissible under the jerk constraint (28).

Degrees of freedom where the initial acceleration is smaller than the allowable accel-

eration (e.g. |ẍ0| < ẍmax) cannot increase their acceleration at the maximum permissible

jerk value without violating the maximum thrust constraint (14). Intuitively speaking,

they must ‘wait’ for other degrees of freedom to reduce their respective acceleration before

using the full acceleration. Given that the constraints are always reduced in magnitude

at the maximum rate, the longest duration for any degree of freedom to reduce to zero

acceleration is

∆T0 := max

(
|ẍ0|

...
wmax

,
|ÿ0|

...
wmax

,
|z̈0|

...
wmax

)
. (38)

The slope for acceleration bounds exceeding the initial acceleration magnitude are then

chosen to reach their allowable acceleration after ∆T0, given here for the example of the

x degree of freedom:

cx =
ẍmax − |ẍ0|

∆T0

. (39)

The proof that this choice of slopes cx, cy, cz satisfies the maximum thrust con-

straint (14) is omitted here but may be found in Appendix A.

Overview This completes the decoupling of the system. In conclusion, if the following

conditions are satisfied:

1. the initial attitude is converted to an initial acceleration according to Equation (35)

and satisfies the minimum vertical acceleration constraint (20);

2. the jerk in each axis is constrained in magnitude according to Equation (28); and

3. the acceleration of the individual degrees of freedom is constrained by Equations (20)

and (36);

then the three-dimensional overall trajectory will be feasible with respect to the system

dynamics (6)-(7), the input constraints (2)-(5), and the initial conditions. It is then pos-

sible to design the trajectory of the three translational degrees of freedom independently.

The parameters used in the decoupling of the three degrees of freedom are the maxi-

mum acceleration tradeoff parameters αx and αz, the minimum vertical acceleration z̈min,

and the initial thrust a0.

95

Paper II. Real-Time Trajectory Generation for Quadrocopters

5. Decoupled Trajectory Planning

The basic trajectory generation algorithm will be introduced in this chapter. The de-

coupled feasibility constraints (Section 4.3) allow the planning to be carried out inde-

pendently for each degree of freedom while guaranteeing feasibility. This makes the

trajectory generation problem significantly more tractable and allows it to be solved in a

computationally efficient way.

5.1 Time-Optimal Trajectories of the Decoupled System

Each degree of freedom is represented by a triple integrator under acceleration and jerk

constraints (the only difference is that the acceleration constraints for x and y are symmet-

ric, while they may be asymmetric for z). As the planning is identical for all coordinates,

it is presented here for a general degree of freedom w. In order to achieve fast motion,

we plan time-optimal trajectories for each axis.

Problem Statement Let s = (s1, s2, s3) = (w, ẇ, ẅ) be the state. The time-optimal

planning problem can then be stated as: find the planning input u =
...
w minimizing the

final time tf,w:

u∗ = arg min
u
tf,w (40)

subject to the system dynamics

ṡ1 = s2 (41)

ṡ2 = s3 (42)

ṡ3 = u, (43)

the initial and final conditions

s1(t = 0) = w0 (44)

s2(t = 0) = ẇ0 (45)

s3(t = 0) = ẅ0 (46)

s(t = tf,w) = 0 (47)

and the state and input constraints

ẅ ≤ s3 ≤ ẅ (48)

|u| ≤ ...
wmax . (49)

96

5. Decoupled Trajectory Planning

In this formulation, the initial vehicle attitude (35) is enforced by the initial con-

dition (46), the jerk constraint (28) by the input constraint (49), and the acceleration

constraints (20) and (36) by the state constraint (48). Because the translational dynam-

ics (6) contain no velocity-dependent aerodynamic effects, no velocity constraints are

considered.

Necessary Optimality Conditions Using Pontryagin’s minimum principle (see, for

example, [3]), necessary conditions for optimal input trajectories will now be derived. The

methodology used to handle the state constraint (48) is the direct adjoining approach [15],

in which the augmented Hamiltonian function is defined by

H(s, u, λ, η) = λ1s2 + λ2s3 + λ3u

+ η1 (s3 − ẅ) + η2

(
ẅ − s3

) (50)

where λ are the adjoint variables and η are state constraint multipliers that fulfill

η ≥ 0 (51)

η1 = 0 if s3 > ẅ (52)

η2 = 0 if s3 < ẅ . (53)

The adjoint variables must fulfill

λ̇ = −∇sH(s, u, λ, η) (54)

which results in

λ̇1 = 0 (55)

λ̇2 = λ1 (56)

λ̇3 = λ2 + η1 − η2 . (57)

The optimal control u∗ is the control input that minimizes the Hamiltonian function:

u∗ = arg minH(s, u, λ, η) (58)

= arg minλ3u . (59)

For this problem structure, it can be shown that the adjoint variables λ are continu-

ous [15]. Furthermore, λ3 = 0 must hold when a state constraint is active. The optimal

control input u∗ consists of interior arcs and boundary arcs. An interior arc is charac-

terized by η1 = η2 = 0 (i.e., the state constraint (48) is not active), λ3 6= 0 and therefore

97

Paper II. Real-Time Trajectory Generation for Quadrocopters

0

−...
wmax

0

...
wmax

ẅmin

ẅ0

0

ẅmax

Time t

0 t1 t2 t3 t4 tf

0

w0

Figure 2. Example of a solution to the one-dimensional planning problem introduced in Sec-
tion 5.1. From top to bottom, the plots show the trajectories of: 1) the third adjoint variable
λ3; 2) the optimal control input u∗ (solid) along with the maximum allowable input magnitude
...
wmax (dashed); 3) the acceleration trajectory ẅ∗ (solid) along with the upper and lower accel-
eration bounds ẅ, ẅ (dashed); and 4) the position trajectory w∗. Note that this sketch shows
asymmetrical acceleration bounds ẅ, ẅ, as used for the vertical degree of freedom.

u∗ = ±...
wmax. On boundary arcs, the state constraint is active (i.e., s3 = ẅ or s3 = ẅ)

and it follows that λ3 = 0 and u∗ is chosen such that the state constraint remains active.

Structure of Time-Optimal Trajectories Using the properties of interior arcs and

boundary arcs, it is straightforward to characterize the solution of the costate dynam-

ics (57) further: During an interior arc, λ3 is a second order polynomial since
...
λ 3 = λ̇1 = 0.

Since λ3 is continuous, a boundary arc can only begin at a point where λ3 = 0 holds, and

the solution of λ3 is then given by the constraint that λ3 = 0 must hold for the duration

of the boundary arc.

It can be verified from the above constraints that the trajectory consists of at most

five sections:

• [0 t1] is an interior arc, with u∗ = ±...
wmax.

• [t1 t2] is a boundary arc, with u∗ such that ẅ = ẅ or ẅ = ẅ.

• [t2 t3] is an interior arc, with u∗ = ∓...
wmax.

• [t3 t4] is a boundary arc, with u∗ such that ẅ = ẅ or ẅ = ẅ.

• [t4 tf] is an interior arc, with u∗ = ±...
wmax.

98

5. Decoupled Trajectory Planning

Furthermore, each boundary arc induces one additional constraint, in that one or the

other of the following conditions must hold:

• If the duration of the boundary arc is nonzero (t2−t1 > 0 or t4−t3 > 0, respectively),

then s3 must coincide with the upper or lower acceleration constraint at the start

point of the boundary arc (t1 or t3).

• If the above condition does not hold, the corresponding boundary arc must vanish

(t2 = t1 or t4 = t3, respectively).

In the following, the solution to the optimal control problem (40)-(49) will be denoted

by w∗(t). An example of the solution of the optimal control problem is illustrated in

Figure 2. This example depicts the case where all five sections are of non-zero duration.

5.2 Computation of Solutions

The control trajectory u∗(t) (and therefore w∗(t)) is fully specified by the five times t1,

t2, t3, t4, and tf and the initial control input. The trajectory is constrained by the

three terminal state conditions (47) and the two boundary arc constraints. Analytically

integrating the equations of motion (41)–(43) is straightforward and results in three

equations of first, second, and third order in the switch times t1 . . . tf , respectively. The

two boundary arc constraints yield two additional first order equations in the switch

times.

The solution is computed by applying a bisection algorithm [7] to the final time tf .

For a given value of tf , it is straightforward to compute the remaining times t1 . . . t4 and

thereby the resulting final position w(tf), which is a strict monotonic function of tf for a

given initial control input [6].

5.3 Overview

The basic trajectory generation algorithm has herewith been described. The total three-

dimensional maneuver is given by

x(t) =

{
x∗(t) for 0 ≤ t ≤ tf,x

0 for t > tf,x
(60)

y(t) =

{
y∗(t) for 0 ≤ t ≤ tf,y

0 for t > tf,y
(61)

z(t) =

{
z∗(t) for 0 ≤ t ≤ tf,z

0 for t > tf,z .
(62)

The maneuver satisfies the initial conditions, the quadrocopter dynamics, and the input

99

Paper II. Real-Time Trajectory Generation for Quadrocopters

constraints. It ends at rest at the origin at time

tf := max(tf,x, tf,y, tf,z) . (63)

It is therefore a valid solution to the trajectory generation problem stated in Section 3.

6. Choice of Design Parameters

The algorithm presented in the previous chapter computes a feasible trajectory that

satisfies the trajectory planning problem. However, the decoupling approach involved the

choice of the design parameters αx, αz, z̈min, a0 in order to allow the separate planning in

each degree of freedom. This chapter presents and discusses the properties and influence

of the individual parameters, and proposes possible iterative improvement schemes that

permit the computation of better trajectories6 through their variation.

For any choice of the decoupling parameters satisfying the conditions outlined in

Section 4.3, the solution of the decoupled trajectory planning (60)-(62) is a feasible solu-

tion to the trajectory generation problem. It is therefore possible to apply the iterative

improvement schemes to only a subset of parameters, or to not apply them at all.

A consequence of this property is that, as long as the basic trajectory generation

algorithm from the previous chapter has been executed at least once, a feasible solution

is available at any time, and further executions then improve on previous ones. This

implies that computational constraints can always be abided by aborting computation

when the permissible computation duration is reached. If the computation time is not

sufficient for the iteration schemes to converge to a user-defined level of accuracy, then

the available solution differs from the converged solution in that the maneuver duration

may be longer, but is still guaranteed to be feasible with respect to the dynamics and

constraints of the problem.

6.1 Acceleration Tradeoff Parameters

The acceleration tradeoff parameters αx and αz control how much of the vehicle thrust

capability is allocated to each of the three degrees of freedom according to the respective

acceleration bounds (48).

To plan a three-dimensional trajectory, the time-optimal trajectory for each of the

three decoupled systems is computed. The execution times of the three degrees of free-

dom will generally depend on the choice of the respective acceleration bounds (48); the

maneuver durations tf,x, tf,y, tf,z are likely to differ from each other. To improve overall

performance, the allowable per-axis acceleration may be varied such that, if one degree

6Because the objective of the trajectory generation is the minimization of the maneuver duration,
trajectories are considered better if they are of shorter duration. The descriptions “shorter” and “better”
are therefore used interchangeably.

100

6. Choice of Design Parameters

of freedom has a longer execution time than the others, it is allocated more acceleration

in order to reduce the execution time.

An important property of the decoupling parameters αx and αz is that the dura-

tion of the time-optimal maneuver of each single degree of freedom depends on them

monotonically. This can be shown as follows:

The acceleration boundaries (ẍmax, ÿmax, z̈max) are strictly monotonic with respect to

the control effort tradeoff parameters (32)-(33). By construction, the time-varying accel-

eration constraints (37) monotonically depend on the respective acceleration boundary

ẅmax. That is, if ẅmax,1 ≥ ẅmax,2 then

ẅ1(t) ≥ ẅ2(t) for all t ≥ 0 . (64)

Because the computed trajectories are optimal with respect to the maneuver duration,

an increase of the constraints cannot increase the terminal time of the maneuver [3] and

the maneuver duration is therefore monotonic with respect to the decoupling parameters

αx and αz.

From this property, it follows that a maneuver synchronizing the maneuver durations

of the three degrees of freedom minimizes tf . This can be shown as follows: Assume

that the three maneuver durations are synchronized. Because the maneuver durations

of the three degrees of freedom are monotonic with respect to the control effort tradeoff

parameters, no change of the parameters can reduce all three maneuver durations (and

thereby the total maneuver duration tf as given by Equation (63)).

The monotonicity of the maneuver durations with respect to the optimization param-

eters allows the use of a large number of optimization algorithms to find their optimal

value. A straightforward implementation consists of two loops: an inner loop that syn-

chronizes the two horizontal degrees of freedom (i.e., tf,x and tf,y) by varying αx, and an

outer loop that synchronizes the vertical motion (i.e., tf,z) to the two horizontal motions

by varying αz. Each of these loops can be implemented in a simple manner by a bisection

algorithm, which assures linear convergence. Specifically, this implies that the complexity

of the two nested bisections finding the optimal values of αx and αz to within a tolerance

εxz is [7]

O
((

log2 (εxz)
)2
)
. (65)

In addition, the computation of the inner loop can be aborted early if it is found that

the maneuver duration of both horizontal degrees of freedom is either shorter or longer

than the duration of the vertical degree of freedom. Due to the maneuver duration

monotonicity with respect to αx, it is not possible to increase or decrease the maneuver

duration of both horizontal degrees of freedom, and synchronization with the vertical

degree of freedom is therefore not possible. By using this property, it is not necessary to

perform the bisection of αx to full accuracy for each bisection step in αz.

101

Paper II. Real-Time Trajectory Generation for Quadrocopters

Minimum acceleration z̈min (m s−2)

D
u
ra

ti
on

t f
(s

)

-8 -5 -2

2

4

6

Figure 3. Influence of the design parameter z̈min on the maneuver duration tf with optimized
tradeoff parameters αx, αz for three different maneuvers (solid, dashed, and dotted). The op-
timization presented in Section 6.2 finds the minimum of this function through an exhaustive
search.

The two nested bisection algorithms provide a straightforward way to compute the

optimal values of the two control tradeoff parameters αx and αz. Furthermore, the

maneuver duration monotonicity and linear convergence of the bisection method allow

the a priori determination of hard constraints on the number of required executions.

However, more sophisticated and multivariate optimization methods (see e.g. [11]) could

provide higher computational efficiency in the finding of the optimal values.

6.2 Minimum Vertical Acceleration

The minimum vertical acceleration z̈min directly affects the acceleration constraint (48)

for the decoupled motion planning problem of the vertical degree of freedom. Through

Equation (30), it also influences the allowable control input (49) for all three degrees of

freedom. Figure 3 shows the maneuver duration (after optimization of αx and αz to a

tolerance of εxz = 10−3 as described in the previous section) over varying values of z̈min

for three different maneuvers. It can be seen that the function may have multiple local

minima. This complicates the application of standard optimization methods.

In order to find the global minimum maneuver time during the on-line optimization

of the minimum vertical acceleration, it is necessary to use an optimization algorithm

that is not sensitive to local minima. A straightforward way to achieve this is to grid

the search space at a user-defined grid size, and evaluate the maneuver duration at each

point. While such a naive approach would be computationally prohibitive for multivariate

optimizations, it can be performed to a satisfactory tolerance in the case of only one

optimization variable.

Like in the optimization of the acceleration tradeoff parameters, the use of more

sophisticated optimization algorithms could further reduce the computational complexity.

While it may be difficult to guarantee the convergence to the global optimum in all

cases, it may be acceptable to provide only local convergence since feasibility remains

102

7. Use as a Feedback Law

guaranteed.

6.3 Overview

This chapter presented schemes for finding the optimal values of the design parameters

αx, αz, z̈min such that the maneuver duration is minimized. The application of these

schemes is optional since the feasibility of the trajectory generation algorithm does not

depend on them. Depending on the computational constraints and performance require-

ments, one may choose to optimize all design parameters, or to fix some or all of them

ahead of time.

The schemes presented herein are focused on simplicity and assured convergence, and

optimize each of the design parameters individually in nested loops. Through the use

of more advanced optimization algorithms, and by directly considering the multivariate

optimization problem, the computation time may be reduced further.

The decoupling process also involved the choice of the initial thrust a0 in Equa-

tion (35). While this can be considered a design parameter and therefore optimized, it

is assumed herein that it is chosen based on the thrust applied previously. This results

in continuous accelerations and therefore continuous thrust commands (as computed by

Equation (9)), a favourable property with respect to the underlying thrust dynamics.

7. Use as a Feedback Law

By solving the trajectory generation problem repeatedly at a high frequency, it is possible

to use the trajectory generation algorithm as an implicit feedback law. The control law

then consists of updating the initial conditions according to an updated state estimate

(typically obtained using new measurements), re-planning the trajectory to the target

point, and applying the control inputs of the first control interval (that is, for the duration

until the trajectory is re-planned). This method is very similar to model predictive control

(see, for example, [10] for an overview) in that an updated optimal trajectory is generated

at each time step.

To apply the feedback law, it is necessary to compute the control inputs from the

planned trajectory. Whereas the control inputs are usually assumed piecewise constant

in model predictive control, the trajectory planned here typically results in continuously

varying control inputs (the trajectory jerk is piecewise constant, but the control inputs

vary over time). For any given time, the thrust input a can be computed according to

Equation (9), and the body rates ωx, ωy can be computed by numerically integrating the

rotation matrix derivative (7) with the intermediate control inputs computed through

Equation (12). In addition, the specification of the body rate ωz is required, which is not

defined by the planned translational trajectory (see Section 4.2). Because the trajectory

is feasible for arbitrary choices of ωz and the control inputs can be computed under

consideration of any given trajectory of ωz, this additional degree of freedom can be

103

Paper II. Real-Time Trajectory Generation for Quadrocopters

chosen independently. Examples of possible choices are to simply set ωz = 0 in order to

reduce control effort, or to choose ωz such that the vehicle heading remains constant or

follows a specified trajectory.

8. Performance Evaluation

The overall trajectory generation algorithm, consisting of the basic decoupled trajec-

tory generator (Section 5) and the iterative improvement schemes (Section 6), has now

been described. Generated trajectories satisfy the feasibility constraints imposed by the

dynamics of the quadrocopter by construction. This section will characterize the perfor-

mance of the presented algorithm with respect to the design objectives of achieving high

flight performance (short maneuver durations) and low computational complexity (short

computation times).

8.1 Comparison to Time-Optimal Trajectories

To determine the performance of maneuvers computed by the presented method and to

characterize the influence of the decoupling assumptions (presented in Section 4.3), the

generated trajectories are compared to time-optimal trajectories.

A method using Pontryagin’s minimum principle to derive optimality conditions when

computing time-optimal trajectories for quadrocopters was presented previously in [17].

The method uses a two-dimensional version of the quadrocopter model (2)-(7) to make

the problem computationally tractable. While computation times on the order of several

hours and required user interaction make the method difficult to use in practical appli-

cations, the explicit consideration of the minimum principle optimality conditions makes

the resulting trajectories strong candidates for truly time-optimal trajectories. They

thus provide useful benchmarks for comparing against other methods (such as the one

presented in this paper) in order to analyze relative performance.

Time-optimal reference trajectories were computed for hover-to-hover translations

with the input saturations chosen to be amax = 20 m s−2, amin = 1 m s−2, and

ωxy,max = 10 rad s−1. The same saturations were used for the real-time trajectory genera-

tion algorithm. Both iterative performance improvement schemes presented in Section 6

were applied, with the tolerance of the acceleration tradeoff parameter optimization be-

ing εxz = 10−3 and a minimum vertical acceleration grid size of 0.25 m s−2. While the

time-optimal reference trajectories were computed using a two-dimensional model, no

such simplifications were assumed in the trajectory generation algorithm. The initial

acceleration (see Equation (35)) was set to a0 = g.

Consider, as a first example, a purely horizontal translation of 10 m. The planned

trajectories of both the time-optimal trajectory generator and the real-time trajectory

generation algorithm are shown in Figure 4, and the control inputs along the trajectory

can be seen in Figure 5. The duration of the time-optimal maneuver is 1.56 s, whereas the

104

8. Performance Evaluation

Horizontal position (m)V
er

ti
ca

l
p

os
it

io
n

(m
)

0 2 4 6 8 10

-0.2

0

0.2

Figure 4. Comparison of a horizontal translation maneuver of 10 m generated using the al-
gorithm presented herein (solid line, gray snapshots; total maneuver duration 2.01 s) and a
time-optimal translation [17] (dashed line, black snapshots; total duration 1.56 s). Snapshots
are shown at an interval of 0.1 s. The decoupling presented in Section 4.3 results in the vehicle
remaining at a constant altitude throughout the maneuver. Note that the vertical axis is not to
scale.

Time t (s)

In
p

u
ts
ω
x

(r
ad

s−
1
),
a

(m
s−

1
)

0 0.5 1 1.5 2

-10

0

10

20

Figure 5. Control inputs corresponding to the comparison of the purely horizontal maneuver
shown in Figure 4. The solid lines represent the thrust input a, and the dotted lines the rotational
rate input ωx. Black lines correspond to the time-optimal translation [17], and gray lines are the
inputs of the trajectory generated by the algorithm presented herein. Note that the decoupling
yields non-maximal thrust inputs when the vehicle rotates (beginning, center, and end of the
maneuver), and the conservatism introduced in the decoupled jerk feasibility constraints leads
to a less efficient use of the rotational rate control input.

trajectory generated with the algorithm presented herein takes 2.01 s, which amounts to

an increase of 29 %. Considering the shape of the generated trajectories, two significant

factors contributing to the increased duration can be identified:

1) The decoupling assumption, along with identical initial and final altitudes and the

maneuver starting at rest, leads to the generated trajectory being entirely at constant

altitude. In comparison, the time-optimal maneuver exploits any available thrust during

attitude changes to accelerate upwards, thereby allowing the vehicle to tilt further and

increase its horizontal acceleration. This effect is further enabled because the time-

105

Paper II. Real-Time Trajectory Generation for Quadrocopters

Horizontal position (m)

V
er

ti
ca

l
p

o
si

ti
on

(m
)

0 2 4 6 8

0

2

4

6

8

Figure 6. Comparison of a diagonal translation maneuver of 8 m in the horizontal and 8 m in
the vertical. The solid line and gray snapshots show the trajectory generated using the algorithm
presented herein (total maneuver duration 2.78 s). The dashed line and black snapshots represent
a time-optimal translation [17] (total duration 1.76 s). Snapshots are shown at an interval of 0.1 s.
Note that the time-optimal maneuver involves the vehicle rotating to a pitch angle of approx. 140◦

in the final deceleration phase, whereas the minimum vertical acceleration constraint of the
trajectory generation algorithm presented herein limits the pitch angle to approximately 50◦.

optimal maneuver is planned using the true control inputs (a, ωx), enabling instantaneous

changes in thrust. The decoupling presented herein results in the trajectory being planned

in jerk, meaning that the thrust (as computed by Equation (9)) is always continuous

throughout the maneuver. Although this lack of discontinuities in the thrust control

input results in lower performance, it may be desirable due to the underlying actuator

dynamics of the quadrocopter.

2) A further noticeable effect is highlighted in the control inputs corresponding to the

two maneuvers (Figure 5): while the time-optimal maneuver uses the maximum rotational

rate input for significant durations at the beginning and end of the maneuver, the motion

generated using the algorithm presented herein results in lower rotational rate control

inputs. This is mostly caused by the conservative approximations used to decouple the

rotational rate feasibility conditions (30).

As a second example, consider a translation of 8 m in the horizontal and 8 m in the

vertical. The time-optimal trajectory and the generated trajectory are shown in Figure 6.

106

8. Performance Evaluation

In this case, the duration of the generated trajectory is 58 % longer than the time-optimal

trajectory (2.78 s vs. 1.76 s). Two contributing factors can be identified:

1) The arguments about the use of jerk as a control input also apply in this case,

leading for example to a slower initial acceleration than the time-optimal motion provides.

2) A significant difference can be seen towards the end of the motion: during the final

deceleration phase, the generated trajectory results in the vehicle pitching to an angle

of approximately 50◦, applying the optimized minimal vertical acceleration z̈min and the

minimal horizontal acceleration −ẍmax. The time-optimal trajectory results in the vehicle

being pitched to an upside-down attitude at an angle of approximately 140◦, applying

full thrust and thereby achieving significantly lower vertical accelerations. This differ-

ence is caused by the decoupling of the three degrees of freedom, wherein the minimum

vertical acceleration constraint (20) was introduced. The value of the constraint was

then optimized to trade off the permissible jerk against allowable vertical deceleration

(Section 6.2).

8.2 Computational Performance

In the following, computation times will be given for a laptop computer with an Intel Core

i7-2620M processor running at 2.7 GHz. While a laptop computer would typically be used

as an off-board computation platform, there are multi-rotor computation platforms that

provide comparable computation capabilities (e.g., the Ascending Technologies Master-

mind onboard PC). As will be obvious from the following results, it is also straightforward

to deploy the algorithm on platforms with less available computation power.

Minimal Computational Requirements The minimal implementation of the tra-

jectory generation algorithm consists of the solution of the decoupled planning problem

(presented in Section 5) for each of the three degrees of freedom. The decoupling pa-

rameters αx, αz, z̈min are chosen a priori. This minimal implementation results in low

computational requirements, at the price of reduced flight performance.

The computation time was evaluated through the computation of several million tra-

jectories from randomized initial conditions. The average computation time of a three-

dimensional flight trajectory was 24.6 µs. This short computation time is particularly

suited for implementations on low-power platforms: based on typical feedback rates on

the order of 50 Hz to 100 Hz [28, 30], a current-generation microcontroller (as used in

open-source flight control units [28] and costing less than 5US$) would suffice to use the

trajectory generation algorithm as an implicit feedback law7.

Iterative Improvement Performance After the execution of the minimal imple-

mentation of the algorithm, remaining computation time can be used to iteratively im-

7Consider, as an example, the STM32F3 microcontroller by STMicroelectronics, which is based on
the ARM Cortex M4F architecture. At 72 MHz, it achieves a CoreMark [9] score of approximately
245 compared to the laptop computer’s CoreMark score of 13986. Using the CoreMark scores as a
rough performance measure, re-planning trajectories at 100 Hz using the minimal implementation would
therefore require about 15% of the available computation time on the microcontroller.

107

Paper II. Real-Time Trajectory Generation for Quadrocopters

prove the trajectory performance as presented in Section 6. For example, it can be shown

that the optimization of the acceleration tradeoff parameters αx and αz to a tolerance

of 1 % requires at most 171 calls of the one-dimensional decoupled trajectory generator,

therefore requiring approximately 1.4 ms of computation time. For a tolerance of 10 % in

the tradeoff parameters, a maximum of 78 calls suffice (resulting in approximately 0.6 ms

computation time). This optimization can then be repeated for varying values of the

minimum vertical acceleration z̈min, where the number of evaluated points may be chosen

based on computational constraints.

9. Experimental Validation

To verify the trajectory generation algorithm experimentally, it was implemented in the

Flying Machine Arena, an indoor aerial vehicle development platform at ETH Zurich [27].

The vehicles used for the experiments are custom-built quadrocopters that are based

on Ascending Technologies ‘Hummingbird’ vehicles [13]. The electronics mounted on

board each vehicle provide inertial measurements and implement body rate feedback

loops. The control inputs (ωx, ωy, ωz, a as defined in Section 2.1) are communicated

to the vehicle from a desktop computer through a low-latency wireless communication

channel at a rate of 50 Hz. A commercial motion capture system provides position and

attitude information, which is filtered by a Luenberger observer.

For the experiments presented herein, the trajectory generation algorithm is run re-

cursively and used as a feedback law as presented in Section 7. Every 20 ms, the updated

vehicle state (computed by the Luenberger observer) is used used as an initial condition

to solve for the trajectory to the target point. The control inputs are then computed and

sent to the vehicle.

9.1 Constant Altitude Experiment

As a first test case, trajectories are planned with non-changing altitude target points,

shown in Figure 7. The experiment starts with the vehicle at approximately

(x = −2.6 m, y = 1.5 m), with the target point being (x = 3 m, y = −4 m), and the ve-

hicle moving away from the target point at a speed of approximately 3 m s−1. When the

vehicle is within 1 m of the target point, the target point is switched to (x = 3 m, y = 2 m).

During the experiment, the vehicle reached a maximum speed of 7 m s−1.

While the first target point does not induce an overshoot of the planned trajectory in

the positive x-direction, the switch in target point induces an overshoot of up to 40 cm.

This overshoot is caused because the acceleration tradeoff parameter αx (see Section 6.1)

is adjusted by the optimization when the trajectory to the new target point is planned,

and changes from a value of αx = 0.69 to αx = 0.07 when the target point switches. The

trajectory generation’s planning objective is to minimize the maneuver duration; almost

all available acceleration is allocated to the second degree of freedom after the target

point changes because the largest motion is required in that direction.

108

9. Experimental Validation

Position x (m)

P
os

it
io

n
y

(m
)

-2 0 2 4

-4

-2

0

2

Figure 7. Selection of replanned trajectories during experiment at constant altitude. The
trajectory is re-planned every 20 ms, and used as an implicit feedback law by applying the initial
control inputs. The figure shows the flight path (solid red) and a small selection of planned
trajectories (dotted blue, starting at green circles and ending at red crosses). The vehicle starts
at the top-left green circle, moving towards the top left, and the target point is set to the bottom
right. As the vehicle approaches the bottom right target point, the target is switched to the top
right. Because the trajectory is re-planned at every time step, the new target point is accounted
for almost instantaneously.

Note that the implicit control law does not track a previously planned trajectory,

but a new trajectory to the target point is computed at every controller update. This

replanning behaviour can be observed particularly well when significant deviations from a

previously planned trajectory occur, for example during the initial deceleration phase and

when the vehicle changes direction after the target point is changed. While the initially

planned trajectory contains a significant amount of overshoot, the actual overshoot during

execution of the maneuver is smaller. Potential explanations for this behaviour are the

unmodeled effects of drag (which can cause more deceleration) [1] and translational lift

(which can cause increased propeller efficiency) [21]; both of these are known to have

significant influence at the maneuvering speeds encountered in this experiment. Because

the higher-than-planned deceleration allows for a more direct flight path, the trajectories

planned later on contain almost no overshoot.

9.2 Three-Dimensional Motion

In a second experiment, the set points are varied in all three dimensions. As can be

seen in Figure 8, the vehicle starts at approximately (x = −2 m, y = 1 m, z = 6 m), with

the target point being (x = 3 m, y = −2.5 m, z = 1.5 m). Like in the previous experiment,

109

Paper II. Real-Time Trajectory Generation for Quadrocopters

Posit
ion x

(m
)

Position y (m)

P
os

it
io

n
z

(m
)

-2
0

2
-2

0
2

2

4

6

Figure 8. Three-dimensional motion experiment. The vehicle starts at the top-right (green
circle) with the target point being at the bottom left (left red cross). As the vehicle approaches
the target point, the target is switched to the center-right target point (right red cross). The
solid red line shows the flown trajectory, and the dotted blue lines (starting at the green circles)
show some of the planned trajectories.

the target point is changed when the vehicle is within 1 m of the target point, and the

new target point is then (x = 0 m, y = 2.5 m, z = 4 m). The vehicle starts at a speed of

3.6 m s−1, and reaches a peak speed of 7.2 m s−1.

Figure 9 shows the flight trajectory over time along with the same planned trajectories

that are seen in Figure 8. Note that, particularly during high-speed flight phases, the

vehicle lags behind the planned trajectories. This behaviour is again consistent with

aerodynamic effects [35], and is excarberated (in comparison to the constant altitude

experiment) by the vertical speed of the vehicle ranging from −3.8 m s−1 to 2.8 m s−1.

The propeller inflow velocity thus changes considerably.

9.3 Other Uses

This trajectory generation algorithm has also been used extensively as a building block

in higher-level tasks. An example of this is its use in the Flight Assembled Architecture

project [41], in which a fleet of four quadrocopters assembled a 6 m tall tower out of

1500 foam bricks (see Figure 10) in front of a live audience. To achieve this task, the

minimal implementation of the trajectory generation algorithm (that is, using fixed de-

coupling parameters αx, αz, z̈min) was used to plan the motions of quadrocopters between

battery charging stations, the pick-up points of the foam bricks, and their respective

placement point. The ability to plan trajectories from non-rest conditions was used in

conjunction with way points in order to guide vehicles around obstacles without stopping.

Furthermore, the planned trajectories were used as an input to a space reservation system

110

10. Conclusion

P
o
si

ti
on

x
(m

)

-2

0

2

P
os

it
io

n
y

(m
)

-2

0

2

P
os

it
io

n
z

(m
)

Time t (s)

0 1 2 3 4 5

2

4

6

Figure 9. Flown (solid red) and a selection of planned (dashed blue, starting at green cir-
cles) trajectories over time for the experiment shown in Figure 8. The set point switches from
(x = 3 m, y = −2.5 m, z = 1.5 m) to (x = 0 m, y = 2.5 m, z = 4 m) at t = 1.94 s.

(inspired by [37]) in order to ensure that no collisions occur. Over the duration of the

project, tens of thousands of trajectories were generated.

10. Conclusion

This paper presented and analyzed a method for generating quadrocopter flight trajec-

tories. The method efficiently computes trajectories that both allow for fast motion and

are guaranteed to be feasible.

The decoupling of the trajectory generation problem under conservative approxima-

tion of the feasibility constraints allows the problem to be simplified considerably, and the

computation of time-optimal trajectories for the decoupled system reduces to determining

the switching times of the bang-singular solution trajectory. A particular strength of the

method is that it very quickly allows the computation of a provably feasible trajectory

(that is, within few tens of microseconds on a laptop computer), but can also iteratively

provide higher-quality solutions if more computation time is available. The iterative im-

provement allows optimal design parameters to be determined and can be carried out

until convergence criteria are met, or aborted at any time if no more computation time

is available.

Analysis of the computed trajectories showed structural differences when compared

to time-optimal trajectories. These differences are mostly caused by the decoupling ap-

111

Paper II. Real-Time Trajectory Generation for Quadrocopters

Figure 10. Tower made of foam bricks, assembled by quadrocopters during the Flight Assem-
bled Architecture project [41]. Two of the quadrocopters can be seen above the tower to the
left and right; a third is seen resting on a charging station on the wall to the left. The flight
paths used by the quadrocopters for this project were generated using the trajectory generation
algorithm presented in this paper.

proach. The trajectory generation algorithm presented herein trades off the full use of

the dynamic capabilities of quadrocopters for the ability to compute tens of thousands of

trajectories every second. This makes it particularly suitable to applications that require

the planning of large numbers of trajectory candidates (such as, for example, sampling-

based path planners) or fast re-planning due to rapidly changing or a priori unknown

environments or task objectives.

The approach was experimentally verified for quadrocopters maneuvering at moder-

ately high speeds (up to 7 m s−1), and was shown to cope well with disturbances due to

unmodeled dynamic effects and changing target points. Its robustness and applicability

as a building block in more complex systems has been demonstrated by its use in the

112

A. Feasibility of Time-Varying Acceleration Constraints

assembly of a large structure by quadrocopters, in the process of which tens of thousands

of trajectories were generated.

While this paper has demonstrated the validity of the decoupling approach and the

possibility to design algorithms of sufficiently low computational efficiency, a number of

potential improvements remain to be investigated.

First, the algorithm presented herein is aimed at applications where relatively small

spaces are to be navigated. This allows the quadrotor dynamics to be simplified by ne-

glecting aerodynamic effects, and leads to the planned trajectories not being subject to

velocity constraints. To broaden the scope of the algorithm, an interesting extension

would be to include velocity constraints, which could be used to guarantee that aero-

dynamic effects remain sufficiently small. Such constraints may also be imposed by the

sensing modalities used for the state estimation of the quadrocopter.

Second, in the design of the decoupled feasibility constraints, the per-axis jerk con-

straint (Equation (30)) was chosen to be symmetric for all three axes. The tradeoff of

the three jerk values could also be considered to be design parameters, and could be

optimized for each maneuver.

Finally, the iterative improvement schemes used to adapt the decoupling parameters

to the specific problem data could be improved, thereby increasing performance. The

optimal choice of the decoupling parameters forms an optimization problem that con-

tains strong structure, and should therefore lend itself to the application of many more

advanced optimization methods. When the trajectory generator is called repeatedly (for

example because it is used as a feedback law), the use of the previous solution to initial-

ize the optimization algorithm could further reduce computational cost. An alternative

approach would be the application of machine learning algorithms to predict the optimal

choice of the decoupling parameters from the initial conditions. This would allow the

move of the computational burden to before the real-time use of the algorithm without

compromising performance.

A. Feasibility of Time-Varying Acceleration Constraints

This appendix contains the proof that the time-varying acceleration constraints (36) (used

to account for non-zero initial accelerations) satisfy the maximum thrust constraint (14).

For the purpose of simplicity, the proof will first be presented for a related set of time-

varying constraints (referred to as constant time bound change). The findings of this

related acceleration change will then be applied to the actual time-varying acceleration

constraints (36).

Constant time bound change

Consider the set of time-varying acceleration constraints ẍct, ÿct, z̈ct, defined according to

Equation (37), where the slope values cx, cy, cz are chosen such that all degrees of freedom

113

Paper II. Real-Time Trajectory Generation for Quadrocopters

reach their respective bounds (ẍmax, ÿmax, z̈max) in constant time ∆T0, i.e.

|ẍ0|+ cx∆T0 = ẍmax (66)

|ÿ0|+ cy∆T0 = ÿmax (67)

|z̈0|+ cz∆T0 = z̈max (68)

with ∆T0 defined in Equation (38). Then the maximum acceleration bound (14) remains

satisfied for all t ∈ (0 ∆T):

ẍ
2

ct + ÿ
2

ct +
(
z̈ct + g

)2
=(

|ẍ0|+
cx

∆T
t
)2

+
(
|ÿ0|+

cy
∆T

t
)2

+
(
|z̈0|+ g +

cz
∆T

t
)2

≤ amax .

(69)

Proof: Without loss of generality, let the normalized time be t̃ such that ∆T̃ = 1.

Rewriting (69) in terms of (ẍmax, ÿmax, z̈max) using Equations (66)-(68) results in the

condition (
ẍmax + cx

(
t̃− 1

))2
+
(
ÿmax + cy

(
t̃− 1

))2
+(

z̈max + g + cz
(
t̃− 1

))2 ≤ amax

(70)

which can be rewritten using Equation (34) to be

2 (ẍmaxcx + ÿmaxcy + (z̈max + g) cz) ≥(
1− t̃

) (
c2
x + c2

y + c2
z

)
.

(71)

Because 0 ≤
(
1− t̃

)
≤ 1 a sufficient condition for the inequality to hold is

(
c2
x + c2

y + c2
z

)
≤ 2 (ẍmaxcx + ÿmaxcy + (z̈max + g) cz) . (72)

The initial acceleration (35) can be rewritten using Equations (66)-(68) to yield

(ẍmax − cx)2 + (ÿmax − cy)2 + (z̈max + g− cz)2 = a0 (73)

with a0 ≤ amax by design. Expanding the above yields the required inequality (72).

Time-varying acceleration constraints

The time-varying acceleration constraints ẍ, ÿ, z̈ presented in Section 4.3 differ from the

constant time bound change ẍct, ÿct, z̈ct in the choice of cx, cy, cz in the case that the initial

114

References

acceleration exceeds the allowed acceleration magnitude (e.g. |ẍ0| > ẍmax). In this case,

the actual time-varying bounds decrease at the minimum jerk −...
wmax until the allowable

acceleration (e.g. ẍmax) is reached. To show that the inequality (69) remains satisfied, it

suffices to note that, through the construction of cx, cy, cz in Equations (66)-(68),

cx ≥ −
...
wmax, cy ≥ −

...
wmax, cz ≥ −

...
wmax (74)

holds, and therefore

ẍct ≥ ẍ, ÿct ≥ ÿ, z̈ct ≥ z̈ (75)

holds for all times t. The time-varying acceleration constraints must therefore be feasible

with respect to the maximum acceleration bound (14) since the constant time bound

change is feasible.

References

[1] Moses Bangura and Robert Mahony. Nonlinear Dynamic Modeling for High Perfor-
mance Control of a Quadrotor. In Australasian Conference on Robotics and Automa-
tion, 2012.

[2] Dennis S. Bernstein. Matrix Mathematics. Princeton University Press, 2005.

[3] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control, Vol. I. Athena
Scientific, third edition, 2005.

[4] Patrick Bouffard, Anil Aswani, and Claire J Tomlin. Learning-Based Model
Predictive Control on a Quadrotor: Onboard Implementation and Experimental
Results. In International Conference on Robotics and Automation, 2012.

[5] Y. Bouktir, M. Haddad, and T. Chettibi. Trajectory Planning for a Quadrotor
Helicopter. In Mediterranean Conference on Control and Automation, 2008.

[6] Arthur Earl Bryson and Yu-Chi Ho. Applied Optimal Control. Taylor & Francis,
1975.

[7] Richard L Burden and J Douglas Faires. Numerical Analysis. Brooks/Cole, ninth
edition, 2011.

[8] Ian D. Cowling, Oleg A. Yakimenko, and James F. Whidborne. A Prototype of
an Autonomous Controller for a Quadrotor UAV. In European Control Conference,
2007.

[9] Shay Gal-on and Markus Levy. Exploring CoreMark - A Benchmark Maximizing
Simplicity and Efficacy. The Embedded Microprocessor Benchmark Consortium
(EEMBC), 2012.

115

Paper II. Real-Time Trajectory Generation for Quadrocopters

[10] Carlos E. Garćıa, David M. Prett, and Manfred Morari. Model Predictive Control:
Theory and Practice - A Survey. Automatica, 25(3):335–348, 1989.

[11] Philip E. Gill, Walter Murray, and Margaret H. Wright. Practical Optimization.
Academic Press, October 2003.

[12] Corrado Guarino, Lo Bianco, and Fabio Ghilardelli. Third Order System for the
Generation of Minimum-Time Trajectories with Asymmetric Bounds on Velocity
, Acceleration , and Jerk. In International Conference on Intelligent Robots and
Systems: Workshop on Robot Motion Planning: Online, Reactive, and in Real-time,
2012.

[13] Daniel Gurdan, Jan Stumpf, Michael Achtelik, Klaus-Michael Doth, Gerd Hirzinger,
and Daniela Rus. Energy-Efficient Autonomous Four-Rotor Flying Robot Controlled
at 1 kHz. In International Conference on Robotics and Automation, 2007.

[14] Juergen Hahn and Thomas F. Edgar. An Improved Method for Nonlinear Model
Reduction Using Balancing of Empirical Gramians. Computers & Chemical Engi-
neering, 26(10):1379–1397, 2002.

[15] Richard F. Hartl, Suresh P. Sethi, and Raymond G. Vickson. A Survey of the
Maximum Principles for Optimal Control Problems with State Constraints. SIAM
Review, 37(2):181–218, 1995.

[16] Markus Hehn and Raffaello D’Andrea. Quadrocopter Trajectory Generation and
Control. In IFAC World Congress, 2011.

[17] Markus Hehn, Robin Ritz, and Raffaello D’Andrea. Performance Benchmarking of
Quadrotor Systems Using Time-Optimal Control. Autonomous Robots, 33(1-2):69–
88, 2012.

[18] H. Hermes and G. Haynes. On The Nonlinear Control Problem With Control
Appearling Linearly. Journal of the Society for Industrial and Applied Mathematics
Series A Control, 1(2):85–108, 1963.

[19] Gabriel M. Hoffmann, Steven L. Waslander, and Claire J. Tomlin. Quadrotor
Helicopter Trajectory Tracking Control. In Conference on Decision and Control,
2008.

[20] Jonathan P. How, Brett Bethke, Adrian Frank, Daniel Dale, and John Vian.
Real-Time Indoor Autonomous Vehicle Test Environment. IEEE Control Systems
Magazine, 28(2):51–64, 2008.

[21] Haomiao Huang, Gabriel M. Hoffmann, Steven L. Waslander, and Claire J. Tomlin.
Aerodynamics and Control of Autonomous Quadrotor Helicopters in Aggressive
Maneuvering. In International Conference on Robotics and Automation, 2009.

[22] Peter C. Hughes. Spacecraft Attitude Dynamics. John Wiley & Sons, 1986.

[23] Qimi Jiang, Daniel Mellinger, Christine Kappeyne, and Vijay Kumar. Analysis
and Synthesis of Multi-Rotor Aerial Vehicles. In International Design Engineering
Technical Conference, 2011.

116

References

[24] Sertac Karaman and Emilio Frazzoli. Sampling-Based Algorithms for Optimal
Motion Planning. International Journal of Robotics Research, 30(7):846–894, 2011.

[25] Alonzo Kelly and Bryan Nagy. Reactive Nonholonomic Trajectory Generation via
Parametric Optimal Control. The International Journal of Robotics Research, 22(7-
8):583–601, 2003.

[26] Torsten Kroger and Friedrich M. Wahl. Online Trajectory Generation: Basic
Concepts for Instantaneous Reactions to Unforeseen Events. IEEE Transactions on
Robotics, 26(1):94–111, 2010.

[27] Sergei Lupashin, Markus Hehn, Mark W. Mueller, Angela P. Schoellig, Michael
Sherback, and Raffaello D’Andrea. A Platform for Aerial Robotics Research and
Demonstration: The Flying Machine Arena. Mechatronics, 24(1):41–54, 2014.

[28] Lorenz Meier, Petri Tanskanen, Lionel Heng, Gim Hee Lee, Friedrich Frandorfer, and
Marc Pollefeys. PIXHAWK: A Micro Aerial Vehicle Design for Autonomous Flight
Using Onboard Computer Vision. Autonomous Robots, 33(1-2):21–39, 2012.

[29] Daniel Mellinger and Vijay Kumar. Minimum Snap Trajectory Generation and
Control for Quadrotors. In International Conference on Robotics and Automation,
2011.

[30] Nathan Michael, Daniel Mellinger, Quentin Lindsey, and Vijay Kumar. The GRASP
Multiple Micro UAV Testbed. IEEE Robotics and Automation Magazine, 17(3):56–
65, 2010.

[31] Mark B. Milam, Kudah Mushambi, and Richard M. Murray. A New Computational
Approach to Real-Time Trajectory Generation for Constrained Mechanical Systems.
In Conference on Decision and Control, 2000.

[32] Mark W. Mueller and Raffaello D’Andrea. A Model Predictive Controller for
Quadrocopter State Interception. In European Control Conference, 2013.

[33] Mark W. Mueller, Markus Hehn, and Raffaello D’Andrea. A Computationally
Efficient Algorithm for State-to-State Quadrocopter Trajectory Generation and
Feasibility Verification. In International Conference on Intelligent Robots and
Systems, 2013.

[34] Paul Pounds, Robert Mahony, and Peter Corke. Modelling and Control of a Quad-
Rotor Robot. In Australasian Conference on Robotics and Automation, 2006.

[35] Caitlin Powers, Daniel Mellinger, Aleksandr Kushleyev, and Bruce Kothmann. In-
fluence of Aerodynamics and Proximity Effects in Quadrotor Flight. In International
Symposium on Experimental Robotics, 2012.

[36] Oliver Purwin and Raffaello D’Andrea. Trajectory Generation and Control for Four
Wheeled Omnidirectional Vehicles. Robotics and Autonomous Systems, 54:13–22,
2006.

[37] Oliver Purwin, Raffaello D’Andrea, and Jin-Woo Lee. Theory and Implementation of
Path Planning by Negotiation for Decentralized Agents. Robotics and Autonomous
Systems, 56(5):422–436, 2008.

117

Paper II. Real-Time Trajectory Generation for Quadrocopters

[38] Charles Richter, Adam Bry, and Nicholas Roy. Polynomial Trajectory Planning for
Quadrotor Flight. In International Conference on Robotics and Automation, 2013.

[39] Roland Siegwart, Illah R. Nourbakhsh, and Davide Scaramuzza. Autonomous Mobile
Robots. The MIT Press, second edition, 2011.

[40] Wannes Van Loock, Goele Pipeleers, and Jan Swevers. Time-Optimal Quadrotor
Flight. In European Control Conference, 2013.

[41] J Willmann, F Augugliaro, T Cadalbert, Raffaello D’Andrea, Fabio Gramazio, and
Matthias Kohler. Aerial Robotic Construction Towards a New Field of Architectural
Research. International Journal of Architectural Computing, 10:439–460, 2012.

118

Paper III

Real-Time Trajectory Generation for

Interception Maneuvers with Quadrocopters

Markus Hehn and Raffaello D’Andrea

Abstract

This paper presents an algorithm that permits the calculation of interception
maneuvers for quadrocopters. The translational degrees of freedom of the quadro-
copter are decoupled. Pontryagin’s minimum principle is used to show that the
interception maneuver that minimizes the time to rest after the interception is
identical to the time-optimal maneuver that drives the vehicle to the position at
which it comes to rest after the interception. This fact is leveraged to apply previ-
ously developed, computationally efficient methods for the computation of intercep-
tion maneuvers. The resulting trajectory generation algorithm is computationally
lightweight, permitting its use as an implicit feedback law by replanning the tra-
jectory at each controller update. The validity and performance of the approach
is demonstrated experimentally by intercepting balls mid-flight. The real-time tra-
jectory generation permits to take into account changes in the predicted ball flight
path at each controller update.

Published in Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), 2012. The publication includes a multimedia attachment

available at www.hehn.be and ieeexplore.ieee.org.

DOI: 10.1109/IROS.2012.6386093

c©2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

119

Paper III. Real-Time Trajectory Generation for Interception Maneuvers

1. Introduction

Quadrocopters have been widely adopted as experimental platforms for research in flying

robotics (see, for example, the testbeds [15, 20]). Reasons for the popularity of these

vehicles include the ability to hover, mechanical simplicity and robustness, and their

exceptional maneuverability due to typically high thrust-to-weight ratios combined with

the off-center mounting of the propellers.

From a controls perspective, a recent focus has been the planning and following of

trajectories that exploit the dynamical capabilities of these vehicles. Results include

algorithms that plan trajectories from classes of motion primitives, such as lines [14] or

polynomials [4, 7], while others solve an optimal control problem for approximate or full

vehicle dynamics (e.g. for minimum snap [19] or minimum time [12]).

In this paper, we consider the problem of using a quadrocopter for the purpose of

interception. The general interception problem has been studied in an optimal control

context for several decades (see, for example, [5] and references therein). Variations of

the problem have also been studied in robotics (e.g. for robotic arms [1] and ground

robots [22]) For quadrotor applications, interception problems have been treated in a

number of scenarios, including ball juggling, where the interception was more strongly

constrained to occur at a specified velocity and attitude [21]. In [3], a ball flight path was

intercepted on a given plane by setting the controller reference position to the interception

point.

The method we present herein permits the computation of interception maneuvers for

quadrocopters in real time. These maneuvers are optimal in that they minimize the time

to rest after the interception event, when decoupled dynamics are assumed. This paper

shows that the resulting maneuver structure is identical to the time-optimal maneuver

that brings the vehicle to the position at which it comes to rest after the interception.

This allows us to apply the efficient trajectory planning algorithm that was introduced

in [11]. Because the entire trajectory (consisting of the interception and to-rest motion

thereafter) is planned, it is easy to verify additional constraints such as, for example,

maximum allowable positions.

The trajectory generation algorithm is computationally light weight, permitting us

to recompute trajectories in real time at update rates on the order of tens to hundreds

of replannings per second. This also permits us to use the trajectory generation as an

implicit feedback law by applying the control inputs of the first section of the planned tra-

jectory (similar to model predictive control [8]) at each controller update. Furthermore,

trajectories can be planned from arbitrary initial states, and the generated trajectory

is guaranteed to be feasible with respect to the dynamic and input constraints of the

vehicle.

The remainder of this paper is structured as follows: In Section 2, we introduce the

dynamic model of the quadrocopter used in the trajectory generation. In Section 3,

we provide a brief overview of the previously presented trajectory generation algorithm

for time-optimal maneuvers to a specified position. Section 4 presents the interception

120

2. Vehicle Dynamics

ωx

ωy ωz

a

Figure 1. The four control inputs of the quadrotor vehicle. The rotational rates ωx, ωy,
and ωz are assumed to follow commands without dynamics or delay. This is motivated by a
high-bandwidth on-board controller.

problem and includes the derivation of optimality conditions for interception trajectories.

In Section 5, we discuss the implementation of an algorithm computing such interception

maneuvers. Section 6 describes the experimental setup we use to intercept balls mid-

flight and presents experimental results, while Section 7 draws conclusions, highlighting

directions for future research.

2. Vehicle Dynamics

The quadrocopter is described by six degrees of freedom: Its translational position

(x, y, z) in the inertial frame O and its attitude V, defined by the rotation matrix O
VR.

The four control inputs of the vehicle are the desired rotational rates about the vehicle

body axes (ωx, ωy, and ωz), and the mass-normalized collective thrust, a, as shown in

Figure 1.

It is assumed that the three rotational rates ωx, ωy, ωz can be changed arbitrarily

fast. This is motivated by the large rotational accelerations quadrocopters can achieve

due to their ability to produce high torques and their low rotational inertia [17], which

allow the rotational rate commands to be tracked with very high bandwidth on board

the vehicle.

Analogously to the vehicle body rates, we assume that the thrust can be changed

instantaneously. Experimental results have shown that the true thrust dynamics, caused

by the dynamics of the motors changing speed, are about as fast as the rotational rate

dynamics.

It is further assumed that all control inputs are subject to saturation. The magnitude

of the vehicle body rates are limited (such limitations can be caused, for example, by

the range of the gyroscopes, or limitations of the body rate tracking controllers). The

collective thrust is limited by a minimum and a maximum thrust

121

Paper III. Real-Time Trajectory Generation for Interception Maneuvers

amin ≤ a ≤ amax , (1)

where amin > 0. This positive lower bound is motivated by the fact that typical quad-

rotor vehicles have propellers of fixed-pitch type, and are not able to stop or reverse the

propellers’ direction of rotation in flight.

2.1 Equations of Motion

The translational acceleration of the vehicle is dictated by its attitude and the collective

thrust control input. In the inertial frame, the translational acceleration is ẍÿ
z̈

 = O

VR

 0

0

a

+

 0

0

−g

 , (2)

where g denotes the gravitational acceleration.

The change of vehicle attitude is related to the rotational control inputs through [16]

O

VṘ = O

VR

 0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0

 . (3)

3. Trajectory Generation Algorithm

In this section, we provide an overview of the method used to generate trajectories from

arbitrary initial conditions to a target point. This approach was introduced in [11], and

is described here briefly because it will later be used.

The trajectory generation problem is simplified by approximating the quadrotor dy-

namics with three triple integrators:
...
x
...
y
...
z

 =

 vxvy
vz

 , (4)

and planning the trajectory in the jerks (vx(t), vy(t), vz(t)). The control inputs along a

trajectory (x(t), y(t), z(t)) are

f(t) :=

 ẍ(t)

ÿ(t)

z̈(t)

+

 0

0

g

 , (5)

122

3. Trajectory Generation Algorithm

f̄(t) :=
f(t)

‖f(t)‖
, (6)

a(t) = ‖f(t)‖ , (7) ωy(t)

−ωx(t)
0

 = V

OR(t) ˙̄f(t) . (8)

For a trajectory to be feasible, the resulting control inputs a, ωx, and ωy must lie within

their allowable sets. In order to satisfy the thrust constraint (1), constant acceleration

bounds for each degree of freedom are introduced. Furthermore, it was shown that it is

difficult to choose allowable jerk values such that the rotational rate control inputs (8) do

not exceed the vehicle body rate limitations. It is however straightforward to compute

the rotational rates along a planned trajectory. If these exceed limitations, it was shown

that a feasible trajectory can always be found by reducing the allowable jerk values.

A trajectory to the target position can be computed for each degree of freedom of the

approximate dynamics (4), with given acceleration and jerk constraints. Time-optimal

trajectories from arbitrary initial conditions to a target position (to be reached at rest)

were presented. Using Pontryagin’s minimum principle, it follows that the switching

function is of parabolic shape with additional intervals at the zero crossings in which it

remains zero. The optimal control input v∗ is bang-singular, consisting of at most five

distinct regions:

• [0 t1): v∗ = ±vmax,

• [t1 t2): v∗ = 0,

• [t2 t3): v∗ = ∓vmax,

• [t3 t4): v∗ = 0,

• [t4 tf]: v
∗ = ±vmax,

where vmax denotes the maximum allowable jerk. In this solution, the intervals [t1 t2) and

[t3 t4) represent singular arcs, in which the control input is determined by the acceleration

remaining constant on its boundary. The initial control input and the five times t1 . . . tf
fully define the maneuver.

The performance of this trajectory generation algorithm has been demonstrated in a

number of experiments [11]. It was shown that it can be used as an implicit feedback law

by re-planning a trajectory for each controller update. The computational load caused by

this is minor, with computation taking no longer than 0.2 ms on a conventional desktop

computer.

We will now adapt the trajectory generation algorithm, not to reach a target position

as quickly as possible, but to cross a specified position at a specified time.

123

Paper III. Real-Time Trajectory Generation for Interception Maneuvers

4. The Interception Maneuver

While the time-optimal to-rest maneuvers presented above are very useful in many appli-

cations, situations may arise in which a specified position must be reached more quickly

than it is possible to reach at rest. Using the same coordinate decoupling (4) as before, we

will now derive trajectories for a given interception point (x̂, ŷ, ẑ), which must be reached

at a specified interception time t̂.

Because the interception constraint is not sufficient to uniquely define the trajectory,

we further require the planned trajectories to bring the vehicle to rest as quickly as

possible after the interception. This choice provides two advantages:

• The problem statement now includes not only the motion to intercept the position

at the right time, but also the motion to bring the vehicle back to rest after the

interception. This is desirable because it permits easy verification of constraints such

as a maximum desirable displacement.

• The choice of the time to rest as a cost function forces aggressive deceleration after the

time of interception, avoiding excessive overshoot.

We will now formally state the trajectory generation problem described above, allow-

ing the optimality conditions to be applied in order to find solutions to it.

4.1 Problem statement

We describe the problem for a single degree of freedom, assuming that we decouple the

dynamics according to equation (4). We denote the degree of freedom q, and state the

optimal control problem as follows: Let s = (s1, s2, s3) = (q, q̇, q̈) be the state. The

objective is to minimize tf subject to the system dynamics

ṡ1 = s2 , (9)

ṡ2 = s3 , (10)

ṡ3 = v , (11)

and the initial, interception, and final state constraints

s(t = 0) = s0 , (12)

s1(t = t̂) = q̂ , (13)

s2(t = tf) = s3(t = tf) = 0 , (14)

where t̂ is the interception time and q̂ is the interception position. Furthermore, the input

and state constraints

|v| ≤ vmax , (15)

124

4. The Interception Maneuver

q̈min ≤ s3 ≤ q̈max (16)

must be satisfied.

We begin by noting that the algorithm presented in Section 3 already solves the above

problem if it is possible to reach q̂ such that tf is smaller than t̂: Because the computed

trajectory reaches q̂ at rest, the interception constraint (13) will be satisfied by this time-

optimal motion followed by the vehicle remaining at rest until the interception time (i.e.

v∗ = 0 for tf < t ≤ t̂). From here on, we will assume that t̂ is smaller than tf , and will

now derive the optimality conditions and resulting structure of optimal maneuvers.

4.2 Necessary Optimality Conditions

Analogous to the derivations for the original trajectory generation algorithm, we apply the

minimum principle (see, for example, [2]) to derive necessary conditions for optimal input

trajectories. The state constraints (16) are handled using a direct adjoining approach [10],

in which the Hamiltonian function is augmented by the state constraints. With the cost

given to be the final time, the Hamiltonian is then

H(s, v, λ, η) = 1 + λ1s2 + λ2s3 + λ3v

+ η1 (−q̈min + s3) + η2 (q̈max − s3) ,
(17)

where λ are the adjoint variables and η are state constraint multipliers that fulfill the

constraints

η ≥ 0 , (18)

η1 = 0 if s3 > q̈min , (19)

η2 = 0 if s3 < q̈max . (20)

The adjoint variables evolve over time according to

λ̇ = −∇sH(s, v, λ, η), (21)

from which it follows that

λ̇1 = 0 , (22)

λ̇2 = λ1 , (23)

λ̇3 = λ2 + η1 − η2 . (24)

The optimal control v∗ is the control input that minimizes the Hamiltonian function:

v∗ = arg minH(s, v, λ, η) = arg minλ3v . (25)

125

Paper III. Real-Time Trajectory Generation for Interception Maneuvers

0 t1 t2 t̂ t3 t4 tf

0

Figure 2. Sketch of the adjoint variable trajectory λ3 for an example maneuver. At the
interception time t̂, the shape switches from parabolic to constant slope as λ1 jumps to zero. The
intervals [t1 t2) and [t3 t4) represent singular arcs, in which one of the acceleration constraints (16)
is active.

At the interception time t̂, the discontinuity in the first adjoint variable [5] is

λ1(t̂−) = λ1(t̂+) + ν , (26)

where t̂− and t̂+ signify just before and just after t̂, respectively, and ν is a constant

Lagrange multiplier. The other two adjoint variables λ2, λ3 remain continuous over the

interception time. Because the final state s1(tf) is free, the costate constraint at the final

time is [2]

λ1(tf) = 0 . (27)

It was shown in [18] that, for problems of this form, the adjoint variables λ are

continuous when the acceleration constraint (16) becomes active or stops being active.

Furthermore, λ3 = 0 must hold over the duration in which a state constraint is active.

The costate dynamics (22)-(24) form a double integrator with respect to λ3. With λ1

being zero from t̂+ onwards, and with the intersection time condition (26), it follows that

the trajectory of λ3 has the following shape, which is sketched in Figure 2:

• In the time interval
[
0 t̂−

]
, λ3 has a parabolic shape because λ̈3 = λ1 is constant when

no constraints are active.

• In the time interval
[
t̂+ tf

]
, λ̈3 = λ1 = 0, implying that λ3 has constant slope when no

constraints are active.

• Whenever λ3 has a zero crossing, an acceleration constraint may become active, im-

plying that λ3 remains zero while the constraint is active.

4.3 Equivalence to time-optimal motions

It follows from the above constraints that the maneuver minimizing the to-rest duration

with the interception constraint must have the same structure as the time-optimal tra-

jectories presented in the previous section: Both consist of, at most, three regular arcs

(where λ3 6= 0) and two singular arcs (where λ3 = 0). Both trajectories are fully specified

126

4. The Interception Maneuver

by the five times t1, t2, t3, t4, and tf and the initial control input. For the interception

trajectory, an additional constraint arises because the switching function λ3 is linear after

the interception time: The remaining trajectory can only contain two regular arcs and

one singular arc.

Now, assume that we have computed an interception maneuver that satisfies the

above optimality conditions, implying that it minimizes the to-rest duration after the

interception. The maneuver terminates at some position qf (by definition of the maneuver

this position is reached at rest). Then this maneuver is identical to the time-optimal

maneuver from the same initial conditions to the position qf as described in Section 3:

Because both the time-optimal maneuver to qf and the interception maneuver are fully

defined by the switching times and the initial control input, and all boundary constraints

are satisfied for both maneuvers, this must be the case.

Conversely, assume that we have computed a time-optimal maneuver to the position

qf . Then for all intermediate positions occurring after the time t2, this is the interception

maneuver that is optimal with respect to the above optimality conditions (we must limit

the intermediate positions to ones occurring after t2 due to the constant slope of λ3

permitting only one zero crossing after t̂).

The above equivalence of interception maneuvers and time-optimal maneuvers allows

us to leverage the trajectory generation algorithm that we have developed for time-

optimal maneuvers, as will be seen in Section 5.

4.4 Existence of solutions

While the optimality conditions describe the structure of interception maneuvers that

minimize the to-rest time after interception, it remains to verify that a maneuver satisfy-

ing the interception constraint (13) exists. Clearly, this will not always be the case: For

small values of t̂, the available control effort will not suffice to drive the system to q̂ in

time if q̂ differs significantly from the motion dictated by the initial conditions. This is a

fundamental difference to the motion to a given end point discussed in Section 3, where

all target points could be reached.

The existence of solutions can be formalized as the position q̂ (with arbitrary velocity

and acceleration) lying in the reachable set at time t̂ for the given initial conditions. Using

the fact that the reachable set is convex [6], it can be shown that the positions reachable

at time t̂ are bounded by the two trajectories for which t2 = t̂ (these are trajectories that

apply the maximum or minimum possible control effort for the entire duration up to t̂).

The upper bound is reached by applying v∗ = vmax in the interval [0 t1), and the lower

bound is reached by applying v∗ = −vmax.

Note that if no solution to the interception problem is found with this strategy, then

there exists no other control input that can reach the interception point at time t̂ [13].

This implies that, if we assume the decoupled dynamics (4), the strategy presented above

provides an interception trajectory whenever the interception constraint (13) can be sat-

isfied by the system dynamics.

127

Paper III. Real-Time Trajectory Generation for Interception Maneuvers

5. Computation and Verification of Interception Maneuvers

In this section, we discuss how the properties of optimal interception trajectories can be

used to efficiently compute interception maneuvers.

5.1 Computation of maneuvers

The identical structure of the interception maneuver and the time-optimal maneuver

(recapitulated in Section 3) permits us to compute maneuvers satisfying the interception

constraint in a fashion that is very similar to the one employed for time-optimal maneuvers

(see [11]): There is generally no closed-form solution for the five times t1 . . . tf from the

constraint equations (12)-(14) and the singular arc constraints (19)-(20). It is however

straightforward to find solutions using a one-dimensional bisection algorithm. While the

computation of a time-optimal maneuver is carried out by iterating over the position at

the end of the maneuver until the final position constraint is satisfied, we now iterate

over the position at the interception time t̂ in order to satisfy the interception constraint.

5.2 Extremal points of the trajectory
In many interception scenarios, it is important to not only satisfy the interception con-

straint, but to also come to rest within certain space constraints. We have not included

such position constraints in the derivations in Section 4 (the trajectory is already fully

defined by the chosen constraints and optimality conditions, and additional constraints

would complicate the trajectory structure significantly).

However, verifying such constraints once the trajectory has been planned is straight-

forward: The solution computed by the interception strategy presented herein results in

a position trajectory that is piecewise polynomial of at most order three. This makes it

simple to compute extremal points by finding points where the velocity vanishes. Such

extremal points can then be compared to space restrictions.

5.3 Control effort distribution between the degrees of freedom

All previous derivations were based on a single degree of freedom. In order to intercept

a position in 3D, all three degrees of freedom must be able to reach their respective

target position by the interception time. To control each degree of freedom’s ability

to reach the target point in time, the acceleration constraints (16) can be varied. The

three acceleration constraints are linked through condition (1). We parameterize the

acceleration constraints as follows:

z̈max = czamax − g , (28)

z̈min = amin − g , (29)

ẍmax = −ẍmin = cx

√
a2

max − (z̈max + g)2 , (30)

ÿmax = −ÿmin =
√

1− c2
x

√
a2

max − (z̈max + g)2 , (31)

128

6. Experimental Results

where cx and cz are parameters. It is straightforward to verify that for all values of

cx ∈ [0 1], cz ∈ [g/amax 1], the acceleration constraint (1) is satisfied.

It then remains to find parameters cx and cz such that each degree of freedom is able

to reach the interception point. We propose a two-step strategy:

1. Starting from cz = 1, find the lowest value cz for which the vertical degree of freedom

is able to both satisfy the interception constraint and not violate space restrictions,

and then

2. vary cx until both horizontal degrees of freedom reach the interception point and remain

within space constraints.

The above method finds a three-dimensional interception trajectory that satisfies the

interception constraint and possible space restrictions. It may however be beneficial to

additionally specify a performance measure for the choice of cx and cz. We intend to

investigate this in further research.

The above steps complete the description of an algorithm permitting the computation

of a three-dimensional interception maneuver that is feasible with respect to the dynamics

and constraints of the quadrocopter.

6. Experimental Results

The interception strategy presented herein has been tested in the Flying Machine Arena,

an aerial vehicle development platform at ETH Zurich [17]. To demonstrate its perfor-

mance, we apply it to the problem of “hitting” a ball mid-flight with a quadrotor vehicle.

6.1 Experimental setup

We use modified Ascending Technologies ‘Hummingbird’ quadrocopters [9]. The vehicles

are equipped with custom electronics, allowing greater control of the vehicle’s response

to control inputs, sensors providing a higher dynamic range, and extended interfaces [17].

The trajectory generation algorithm is run on an off-board desktop computer at a

rate of 70 Hz. For each computed trajectory, a command consisting of the three vehicle

body rates and the collective thrust is sent to the vehicle through a low-latency 2.4 GHz

radio link. The full state information (required for the initial conditions of the trajectory

generation) is obtained from a state observer. The state observer receives precise vehicle

position and attitude measurements from an infrared motion capture system at a rate

of 200 Hz.

The ball that the vehicle is to hit is also tracked by the motion capture system, and its

state is estimated using a Kalman filter combined with a drag coefficient estimator [21].

129

Paper III. Real-Time Trajectory Generation for Interception Maneuvers

6.2 Determination of ball interception time

The interception algorithm presented above requires the interception time and position

as inputs. To intercept the flight path of the ball, the interception time remains to be

chosen. It is fixed as follows:

We consider the ball to be flying as soon as it crosses a threshold height. At this point,

its flight path is predicted forward based on a first-principles model of its dynamics. The

prediction is evaluated in discrete time steps from the current time up to the time at

which the ball will fall below a certain height. The interception feasibility is verified

for each of the discrete prediction points, with the additional constraint that the entire

maneuver must remain within a specified volume. If the ball is interceptable, a range

of possible interception times is found, the mean of which is chosen as the interception

time to which the planning will occur from this point on. Figure 3 shows a ball being

found, and a number of planned candidate interception trajectories. The interception

time chosen by the algorithm lies in the middle of the candidate trajectories.

Note that further investigation is required to find the best way to choose the inter-

ception time. The method presented here was seen to work well in experiments, but its

properties have not been analyzed thoroughly. We intend to investigate this in future

work.

Position x (m)

P
osition

y
(m

)

P
os

it
io

n
z

(m
)

0
0.2-3.5

-3

0

5

Figure 3. A set of candidate trajectories planned when a ball is first detected. The red cross
denotes the initial position of the vehicle. The blue dots are the ball positions predicted at
various instances in time. The dotted black lines show the planned flight path for each of the
predicted ball positions. The chosen interception time lies in the middle of these points.

130

7. Conclusion & Outlook

Position x (m)

P
osition

y
(m

)

P
os

it
io

n
z

(m
)

-1
0

1
2

-2.8

-2.6

-2.4

-2.2

2

3

Figure 4. Trajectories planned as the ball state and drag estimates converge. A selection of
the planned trajectories is shown here (dotted black lines). The predicted interception location
(blue points) changes by about 0.55 m. The updated interception location is accounted for at
every re-planning of the trajectory. The solid red line shows the trajectory that was actually
flown. The vehicle intercepted the ball at the end of the red line.

6.3 Flight results

Flight tests were carried out with the ball being thrown in varying directions. It was

found that the vehicle was able to intercept ping-pong sized balls reliably when a feasible

interception trajectory was found. A video showing a number of experiments may be

found on the first authors web site.

Figure 4 shows an interception maneuver that highlights the advantage of the real-

time capability of the trajectory generation algorithm: At the beginning of the maneuver,

the ball state and drag estimates are subject to significant variation. Because the inter-

ception trajectory is replanned at every controller update, the moving interception point

is naturally considered for each controller update. In this specific example, the intercep-

tion point changes by about 55 cm over the course of 0.6 s before converging, and the

vehicle successfully intercepted the ball.

7. Conclusion & Outlook

This paper introduced an interception trajectory generation algorithm for quadrotor vehi-

cles. It was shown that the problem can be reformulated such that its structure is identical

to the trajectory generation for time-optimal trajectories. For this class of trajectory gen-

131

Paper III. Real-Time Trajectory Generation for Interception Maneuvers

eration problems, an efficient computational method has been developed previously and

could be readily adapted. The successful implementation of this interception strategy

has been verified experimentally by intercepting balls mid-flight.

In the trajectory design approach presented herein, a number of design parameters

remained to be chosen, for example the control effort tradeoff between the three decoupled

degrees of freedom. We are planning to investigate ways to systematically choose these

such that the best possible performance is achieved.

Furthermore, we intend to investigate strategies for determining the optimal inter-

ception time for objects flying along trajectories, where optimality could be defined by

criteria such as minimal vehicle velocity at interception time, the shortest time to inter-

ception, or other objectives.

An interesting extension of this work would be to include multiple interception con-

straints. Because the current interception method is computationally very lightweight,

we believe that it should be possible to plan such multiple interception trajectories while

maintaining real-time capabilities.

References

[1] Berthold Bäuml, Thomas Wimböck, and Gerd Hirzinger. Kinematically Optimal
Catching a Flying Ball with a Hand-Arm-System. In International Conference on
Intelligent Robots and Systems, 2010.

[2] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control, Vol. I. Athena
Scientific, third edition, 2005.

[3] Patrick Bouffard, Anil Aswani, and Claire J Tomlin. Learning-Based Model
Predictive Control on a Quadrotor: Onboard Implementation and Experimental
Results. In International Conference on Robotics and Automation, 2012.

[4] Y. Bouktir, M. Haddad, and T. Chettibi. Trajectory Planning for a Quadrotor
Helicopter. In Mediterranean Conference on Control and Automation, 2008.

[5] Arthur Earl Bryson and Yu-Chi Ho. Applied Optimal Control. Taylor & Francis,
1975.

[6] S Chang. Minimal Time Control With Multiple Saturation Limits. IEEE Transac-
tions on Automatic Control, 8(1):35–42, January 1963.

[7] Ian D. Cowling, Oleg A. Yakimenko, and James F. Whidborne. A Prototype of
an Autonomous Controller for a Quadrotor UAV. In European Control Conference,
2007.

[8] Carlos E. Garćıa, David M. Prett, and Manfred Morari. Model Predictive Control:
Theory and Practice - A Survey. Automatica, 25(3):335–348, 1989.

[9] Daniel Gurdan, Jan Stumpf, Michael Achtelik, Klaus-Michael Doth, Gerd Hirzinger,
and Daniela Rus. Energy-Efficient Autonomous Four-Rotor Flying Robot Controlled
at 1 kHz. In International Conference on Robotics and Automation, 2007.

132

References

[10] Richard F. Hartl, Suresh P. Sethi, and Raymond G. Vickson. A Survey of the
Maximum Principles for Optimal Control Problems with State Constraints. SIAM
Review, 37(2):181–218, 1995.

[11] Markus Hehn and Raffaello D’Andrea. Quadrocopter Trajectory Generation and
Control. In IFAC World Congress, 2011.

[12] Markus Hehn, Robin Ritz, and Raffaello D’Andrea. Performance Benchmarking of
Quadrotor Systems Using Time-Optimal Control. Autonomous Robots, 33(1-2):69–
88, 2012.

[13] Henry Hermes and Joseph P Lasalle. Functional Analysis and Time Optimal Control.
Mathematics in Science and Engineering, 56, 1969.

[14] Gabriel M. Hoffmann, Steven L. Waslander, and Claire J. Tomlin. Quadrotor
Helicopter Trajectory Tracking Control. In Conference on Decision and Control,
2008.

[15] Jonathan P. How, Brett Bethke, Adrian Frank, Daniel Dale, and John Vian.
Real-Time Indoor Autonomous Vehicle Test Environment. IEEE Control Systems
Magazine, 28(2):51–64, 2008.

[16] Peter C. Hughes. Spacecraft Attitude Dynamics. John Wiley & Sons, 1986.

[17] Sergei Lupashin, Angela Schöllig, Michael Sherback, and Raffaello D’Andrea. A
Simple Learning Strategy for High-Speed Quadrocopter Multi-Flips. In International
Conference on Robotics and Automation, 2010.

[18] H. Maurer. On Optimal Control Problems with Bounded State Variables and Control
Appearing Linearly. SIAM Journal Control and Optimization, 15(3):345–362, 1977.

[19] D. Mellinger, N. Michael, and V. Kumar. Trajectory Generation and Control
for Precise Aggressive Maneuvers with Quadrotors. The International Journal of
Robotics Research, 31(5):664–674, 2012.

[20] Nathan Michael, Daniel Mellinger, Quentin Lindsey, and Vijay Kumar. The GRASP
Multiple Micro UAV Testbed. IEEE Robotics and Automation Magazine, 17(3):56–
65, 2010.

[21] Mark Muller, Sergei Lupashin, and Raffaello D’Andrea. Quadrocopter Ball Juggling.
In International Conference on Intelligent Robots and Systems, 2011.

[22] Frieder Stolzenburg, Oliver Obst, and Jan Murray. Qualitative Velocity and Ball
Interception. Lecture Notes in Computer Science - KI2002: Advances in Artificial
Intelligence, 2479:95–99, 2002.

133

Part B

ITERATIVE LEARNING OF

PERIODIC MOTIONS

Paper IV

A Frequency Domain Iterative Learning

Algorithm for High-Performance, Periodic

Quadrocopter Maneuvers

Markus Hehn and Raffaello D’Andrea

Abstract

Quadrocopters offer an attractive platform for aerial robotic applications due
to, amongst others, their hovering capability and large dynamic potential. Their
high-speed flight dynamics are complex, however, and the modeling thereof has
proven difficult. Feedback control algorithms typically rely on simplified models,
with feedback corrections compensating for unmodeled effects. This can lead to
significant tracking errors during high-performance flight, and repeated execution
typically leads to a large part of the tracking errors being repeated. This paper
introduces an iterative learning scheme that non-causally compensates repeatable
trajectory tracking errors during the repeated execution of periodic flight maneu-
vers. An underlying feedback control loop is leveraged by using its set point as
a learning input, increasing repeatability and simplifying the dynamics considered
in the learning algorithm. The learning is carried out in the frequency domain,
and is based on a Fourier series decomposition of the input and output signals.
The resulting algorithm requires little computational power and memory, and its
convergence properties under process and measurement noise are shown. Further-
more, a time scaling method allows the transfer of learnt maneuvers to different
execution speeds through a prediction of the disturbance change. This allows the
initial learning to occur at reduced speeds, and thereby extends the applicability
of the algorithm for high-performance maneuvers. The presented methods are val-
idated in experiments, with a quadrocopter flying a figure-eight maneuver at high
speed. The experimental results highlight the effectiveness of the approach, with
the tracking errors after learning being similar in magnitude to the repeatability
of the system. The applicability to more complex tasks is demonstrated experi-
mentally by learning a maneuver wherein an inverted pendulum is balanced on the
quadrocopter, while a trajectory is tracked.

Under Review for publication in Mechatronics.

137

Paper IV. Frequency Domain Learning for Periodic Maneuvers

1. Introduction

Aerial robots serve as platforms for robotic applications that provide numerous benefits,

including the ability to move freely in three-dimensional space, and the significantly

increased ability to overcome obstacles due to not being limited to motion on the ground.

For relatively small platforms that require hovering capabilities, multi-rotor vehicles such

as quadrocopters are often the vehicle of choice [53]. Compared to other such platforms,

quadrocopters profit from high mechanical robustness due to a minimal number of moving

parts [45], safety due to comparatively small rotor size, and high thrust-to-weight ratios

allowing high-performance maneuvers as well as the transport of large payloads.

While the use of quadrocopters as robotic platforms was largely confined to research

institutions in the past, a growing number of industrial applications are now in the process

of being developed and deployed. Examples include aerial imaging for photogrammetry,

motion picture production, and journalism [19], environmental monitoring and inspection

tasks of hard-to-reach objects such as pipelines, dams, and power lines [54], the creation

of ad-hoc antenna networks or arrays [56], as well as disaster coordination [1].

The capability of quadrocopters to perform highly dynamic, complex, and precise

motions has been demonstrated repeatedly in recent years (see, for example, [34, 37, 39,

48]). In order to execute such high-performance motions, the commonly used approach

consists of using a first-principles model of the quadrotor dynamics to design the nominal

maneuver, and a model-based feedback control law to ensure tracking of the nominal

trajectory.

Such traditional feedback controllers however have important limitations in high-

performance quadrotor applications. While the first-principles models used to design

the controllers capture the near-hover behaviour of quadrocopters well, secondary effects

become increasingly important when maneuvering speed increases. Examples of such

effects are the complex drag and lift behaviour of rotary wings under unsteady inflow

conditions [11], the aerodynamic effects of a vehicle moving through the turbulent wake

of its propellers [6], and external influences such as wind or ground and wall effects when

operating in proximity to the environment [46]. Such effects are not typically accounted

for in the maneuver and controller synthesis stage in order to make the design process

tractable. The execution then heavily relies on the feedback controller to compensate for

potentially significant effects not captured by the nominal dynamics.

In order to improve the tracking performance of quadrocopters under feedback control,

a number of researchers have proposed learning schemes. Examples of such schemes in-

clude those based on reinforcement learning techniques [8,60] and neural networks [16,17],

which are designed to automatically find well-performing control policies, and adaptive

control methods [4,40,42] that adapt parameters that are based on modeled disturbances

such as payloads, center of mass shifts and external disturbances.

When the motion that we are concerned with is to be executed repeatedly, a further

opportunity to improve tracking performance may arise: Many of the disturbances that

degrade tracking performance will be similar each time the vehicle performs the motion.

138

1. Introduction

These disturbances can then be compensated for non-causally using data from past ex-

ecutions. Control strategies that exploit available data from past executions in order to

improve tracking performance were first proposed in the late 1970s and early 1980s [5,27]

for applications in motion control and power supply control. Since then, active research in

this field, covering numerous applications and problem formulations (see e.g. [12, 15, 59],

and references therein), has shown it to be a powerful approach for high-performance

reference tracking. In extensions to these learning methods, several authors have shown

the application of learning control methods to systems with underlying feedback control

loops (e.g. [9, 14]). In such scenarios, the powerful capability of learning control to non-

causally compensate repeatable disturbances is combined with real-time feedback control

to correct for non-repetitive noise.

While the application of learning algorithms, and specifically non-causal strategies,

to stationary systems is well-established, its use for flying vehicles is less mature and

has been actively researched during recent years. Several high-performance maneuvers

for multi-rotor vehicles have been demonstrated with the use of learning algorithms.

Broadly speaking, the learning approaches used can be categorized in two groups:

The first group is characterized by its ability to learn motions that are parameterized.

The motion is thus described by a (finite) set of design parameters, chosen by the user.

After the execution of the motion, these parameters are adapted to compensate for dis-

turbances. The direction and magnitude of the correction may be model-based, or based

on the user’s intuition. A discussion on the importance of choosing ‘good’ design pa-

rameters may be found in [31], where a learning algorithm for this kind of parameterized

motions is demonstrated for multiple flips and fast translations with quadrocopters. A

further demonstration of this class of learning algorithms is provided in [36]. The ability

to shape the tracking performance strongly depends on the number of parameters that

are optimized; in the above examples, the objective is to minimize the error at specific

time instants (‘key frames’), and a relatively small number of parameters is sufficient to

do so. This makes the methods computationally lightweight.

The second group of learning approaches considers more generic motions that need

not be specified by parameters. The system dynamics are considered in discrete time,

and the correction consists of correction values (typically control inputs or set points)

for each discrete time step. After execution of the motion, a numerical optimization over

the correction values is performed in order to minimize a metric related to the tracking

error. In this optimization, a model of the system dynamics provides the mapping from

corrections to the tracking error. This approach is commonly known as a form of iterative

learning control [12], and its application to high performance quadrocopter flight has been

demonstrated [38,43,47,51].

The delimitation between the two groups is not strict. Indeed, the second group of

learning approaches could be seen as using a very large number of values to parameterize

the correction.

The algorithm presented in this paper can be characterized to be a form of repetitive

control [59] in that it is a technique for non-causally compensating repeated tracking

139

Paper IV. Frequency Domain Learning for Periodic Maneuvers

errors in the execution of periodic motions. Algorithms of this form have previously shown

good performance when applied to related problems where aerodynamic disturbances are

considered, in particular the rejection of periodic wind disturbances on wind turbines [7,

24].

Similar to the second group of learning algorithms, we do not assume a parameterized

motion. However, we reduce the dimensionality of the corrections that we intend to learn

by assuming that they are periodic. This allows us to parameterize the corrections as

the coefficients of a truncated Fourier series. The order of the Fourier series provides a

means to trade off computational complexity and the ability to compensate for temporally

local or high-frequency disturbances. Furthermore, the approach can be considered to be

conceptually similar to the one presented by [31], which presents an adaptation strategy

to correct for state errors at discrete points in time of parameterized motion primitives.

However, we consider periodic errors (instead of errors at specific points in time), and do

not require parameterization of the maneuver.

The contribution of this paper to the field of quadrocopter control lies in the appli-

cation of methods from the fields of repetitive control and iterative learning control to

quadrocopters. A general framework for arbitrary periodic motions is presented. We

demonstrate how a feedback controller can be leveraged to shape the closed-loop dynam-

ics of the quadrotor system, and show that a linear time-invariant approximation of the

closed-loop dynamics suffices to guide the learning process. Using statistical properties

of the disturbance, measurement noise, and the influence of nonlinearities, we derive the

optimal inter-execution learning update step size. The validity of the approach and its

performance is investigated through experiments in the ETH Flying Machine Arena, both

with a quadrocopter under normal position control and with a task-specific controller

stabilizing a more complex system consisting of a quadrocopter balancing an inverted

pendulum.

Furthermore, this paper introduces a novel method that extends the applicability of

the repetitive control approach when the reference trajectory is too fast to be learnt

directly, for example because the initial execution fails entirely. The core idea here lies in

providing an improved initial guess of the disturbances degrading tracking performance.

This typically enables learning of the trajectory because the errors are sufficiently small

for the first-principles model to provide reliable information on how to compensate. To

find the improved initial guess, we introduce a time scaling method that allows initial

learning to occur at reduced maneuvering speeds and the transfer of learnt corrections

from the reduced-speed execution to full speed. This method may also be applied to other

complex dynamic systems where it is necessary to limit initial tracking errors in order

to avoid the system failing. The time-scaling method provides an interesting alternative

to methods that rely on aborting trials when the errors grow too large [51] in that the

tracking error is always learnt over the entirety of the maneuver, and over more general

methods to extend the motion [47] due to its computational simplicity.

Preliminary results of this method were presented at international conferences [22,23],

and this paper extends these results through the computation of the optimal learning rate

140

2. Quadrocopter Dynamics and Closed-Loop Control

p1

p2

p3

V

O

Figure 1. The inertial coordinate system O and the vehicle coordinate system V , used to
describe the dynamics of the quadrocopter.

for given statistical properties of the process, a novel way to predict disturbances when

transferring knowledge between different execution speeds, as well as providing an in-

depth experimental analysis of the method.

The remainder of this paper is structured as follows: We introduce the model of the

quadrocopter and the used feedback law in Section 2. The learning algorithm is then

presented and analyzed in Section 3. Section 4 presents experimental results highlighting

the performance of the algorithm. Section 5 discusses advantages and restrictions of the

learning algorithm, and Section 6 provides a conclusion.

2. Quadrocopter Dynamics and Closed-Loop Control

This section first introduces the first-principles model of a quadrocopter, along with

a discussion of the accuracy of the model. Furthermore, we introduce the input-output

linearizing feedback controller used to control the vehicle. The combination of vehicle and

feedback controller form the closed-loop dynamics that the iterative learning algorithm is

then applied to. For ease of notation, vectors are expressed as n-tuples (x1, x2, ...) where

convenient, with dimension and stacking clear from context.

2.1 Quadrocopter Dynamics

The quadrocopter is modeled as a rigid body with six degrees of freedom: its position

(p1, p2, p3) in the inertial coordinate system O; and its attitude, represented by the rota-

tion matrix O
VR between the inertial coordinate system O and the body-fixed coordinate

system V , as shown in Figure 1.

The quadrotor vehicle incorporates four actuators, consisting of motors with fixed-

pitch propellers. Each motor produces a thrust force and a drag torque, and the resulting

141

Paper IV. Frequency Domain Learning for Periodic Maneuvers

rotational dynamics in the body-fixed coordinate frame V are [49]

Iω̇ =

 L(F2 − F4)

L(F3 − F1)

ζ(F1 − F2 + F3 − F4)

− ω × Iω (1)

where ω = (ωx, ωy, ωz) is the rotational rate of the vehicle, I is its rotational inertia, L

the arm length of the vehicle, ζ the drag-to-thrust ratio of the propeller, and F1 to F4 are

the individual thrust forces of each propeller. The total mass-normalized thrust produced

by the four propellers is

a =
1

m
(F1 + F2 + F3 + F4) (2)

where m denotes the mass of the vehicle. The rotational kinematics are given by the

first-order differential equation of the rotation matrix [26]

O
V Ṙ = O

VR

 0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0

 . (3)

The translational dynamics of the vehicle, expressed in the inertial coordinate system

O, are  p̈1

p̈2

p̈3

 = O
VR

 0

0

a

+

 0

0

−g

 (4)

where g denotes gravitational acceleration.

This first-principles model of the quadrocopter rotational and translational dynamics

is commonly used to design and analyze algorithms such as feedback control laws and path

planners (see, for example, [33] and references therein), and captures near-hover dynamics

well. When higher maneuvering speeds are reached, however, a multitude of additional

– mainly aerodynamic – effects become more significant. A number of these effects have

been identified and incorporated into more refined models; for example, they include

induced translational and rotational rotor drag [11], blade flapping [44], and dominant

propellers tip vortices during vertical descent flight [6]. Furthermore, the model neglects

potential interactions of the vehicle with the environment. For example, it is well known

that flight dynamics are influenced significantly by ground and wall effects [46], fast

maneuvers can cause the vehicle to fly through its own wake, and external disturbances

such as wind effects [2] can cause large disturbances.

142

2. Quadrocopter Dynamics and Closed-Loop Control

While the modeling of such effects has provided valuable insight, their incorpora-

tion into control strategies has generally been slow due to the highly complex nonlinear

models making controller design significantly more difficult, and the added difficulty of

identifying the parameters of such models. Instead, most control laws treat such effects

as disturbances, relying on feedback control to account for them implicitly. In this pa-

per, we will follow a similar approach in that we do not model the effects, but we will

compensate for them non-causally during the repeated execution of periodic motions.

2.2 Feedback Control

Within this paper, we assume that an existing feedback control law is used to stabilize the

quadrocopter and track set points. The feedback control law was described and analyzed

in more detail in [50], and is taken as a given in this paper. It consists of cascaded

feedback linearizing control loops for position, attitude, and rotational rates as follows:

Position Control For all three degrees of freedom, a feedback control law determines

the desired acceleration ¨̂pi from the position and velocity errors such that the loop is

shaped to the dynamics of a second-order system with time constant τi and damping

ratio ζi:

ˆ̈pi =
1

τ 2
i

(p̂i − pi)− 2
ζi
τi
ṗi for i = {1, 2, 3} (5)

where p̂i is the commanded position.

With Rxy denoting the x-th element of the y-th column of OVR, the thrust is computed

to enforce the desired vertical acceleration according to (4):

a =
1

R33

(
ˆ̈p3 + g

)
. (6)

Reduced Attitude Control The desired rotation matrix entries R̂13 and R̂23 for the

given desired accelerations are computed from (4), (5) and (6) to be

R̂13 =
ˆ̈p1

a
and R̂23 =

ˆ̈p2

a
. (7)

The attitude control loop is shaped such that the rotation matrix entries R13 and

R23 react in the manner of a first-order system with time constant τrp by computing the

desired derivative of the rotation matrix elements:

ˆ̇Ri3 =
1

τrp

(
R̂i3 −Ri3

)
for i = {1, 2} . (8)

Inverting the rotational kinematics (3), this is converted to the commanded rotational

143

Paper IV. Frequency Domain Learning for Periodic Maneuvers

rates about the first two body axes of the vehicle:

[
ω̂x

ω̂y

]
=

1

R33

[
R21 −R11

R22 −R12

][ˆ̇R13

ˆ̇R23

]
. (9)

The commanded rotational rate about the third body axis, ω̂z, can be determined

separately as it does not influence the translational dynamics of the vehicle. We employ

a proportional controller on the Euler angle describing the vehicle heading.

Body Rate Control Using the desired body rates ω̂x, ω̂y, ω̂z as commands, the body

rate controller is designed to follow the commands in the fashion of three decoupled

first-order systems. In order to achieve this, the rotational dynamics (1) are inverted:

 L(F2 − F4)

L(F3 − F1)

ζ(F1 − F2 + F3 − F4)

 = I

 (ω̂x − ωx)/τpq
(ω̂y − ωy/τpq
(ω̂z − ωz)/τr

+ ω × Iω (10)

with the time constants τpq for the first two axes, and τr for the third axis. The above

equation, in combination with the total thrust constraint resulting from combining equa-

tions (2) and (6), define the four individual propeller forces F1 to F4, and thereby complete

the feedback control design.

Trajectory Feed-Forward The presented controller can readily be augmented to

apply feed-forward velocities, accelerations, rotation rates, and rotational accelerations

for known input trajectories by extending Equations (5), (8), (9), and (10) with the

corresponding feed-forward terms derived from the derivatives of the nominal position

trajectory p̂(t). A discussion of the effects and performance benefits thereof can be found

in [38], where it is shown that feed-forward commands can improve tracking performance,

though large systematic errors remain. This can be explained by the fact that these feed-

forward terms are model-based, and the unmodeled effects discussed in Section 2.1 cause

significant model mismatch that is not accounted for.

While many applications profit from additional feed-forward terms, we found them

unnecessary in conjunction with the learning method presented herein. This is because

they do not improve the repeatability of the flight performance, and the learning algorithm

compensates for systematic tracking errors almost entirely. Indeed, the learning algorithm

can be considered to be providing the necessary feed-forward signal to make the system

track the reference trajectory accurately, and thereby also captures conventional feed-

forward terms.

2.3 Approximate Closed-Loop System Dynamics

The learning algorithm that will be introduced in Section 3 relies on an approximation

of the system dynamics in the form of a linear time-invariant (LTI) system.

144

3. Learning Algorithm

The feedback control design is based on cascaded control loops that are designed using

a loop shaping approach. We assume time scale separation between the control loops (i.e.,

τrp � τ12 and τpq � τrp) and approximate the closed-loop dynamics to depend only on the

position control loops. The nominal dynamics of the closed-loop system from a position

set point p̂ to the vehicle position p can then be approximated by three decoupled LTI

second-order systems:

p̈i ≈
1

τ 2
i

(p̂i − pi)− 2
ζi
τi
ṗi for i = {1, 2, 3} (11)

with time constant τi and damping ratio ζi. We will use these nominal closed-loop

dynamics in the iteration-domain learning algorithm.

More accurate characterizations of the closed-loop dynamics could be used in the

learning algorithm, e.g. by including the underlying control loops such as the attitude

control (7)-(9). However, our experiments showed that the low-order model was sufficient

to guide the iterative learning process as long as very high frequencies are not considered.

3. Learning Algorithm

This section introduces the learning algorithm that is applied to the quadrocopter system

in order to compensate for systematic disturbances that deteriorate flight performance

during the execution of periodic motions. The fundamental idea is to use data from

past executions in order to characterize the tracking errors, and to then compensate

for them in a non-causal manner during following executions. For this compensation,

we leverage the prior knowledge of the dominant dynamics of the quadrocopter under

feedback control, and combine this knowledge with measurement data from experiments

in order to determine appropriate compensations to apply during the next execution.

Compared to the use of pure feedback control, this scheme can improve the tracking

performance because repeated disturbances are compensated for non-causally, whereas

pure feedback control is limited to causal corrections.

The basic system structure used in the learning algorithm is depicted in Figure 2. The

closed-loop dynamics of the quadrocopter under feedback control remain unmodified by

the learning algorithm. We use the approach of adapting the set point of the controller,

also called a serial architecture [12] or indirect learning-type control [58, 59]. The con-

troller set point is augmented by adding a correction input u(t) to it. We assume that we

can derive a linear time-invariant (LTI) approximative model of the closed-loop dynamics

between the position tracking error and the correction input (as done in Section 2.3 for

the presented feedback control law). In comparison to modifying the control inputs of

the quadrocopter directly, the serial architecture offers the advantage that the dynamics

from a change in the set point to a change in the tracking error output are those of the

closed loop system, which are designed to be approximately LTI. Due to the periodic

145

Paper IV. Frequency Domain Learning for Periodic Maneuvers

Feedback

Vehicle

Closed-Loop Dynamics

p̂(t)

p(t)

+ +

+ −

u(t)

p∗(t)

y(t)

Iterative Learning

Figure 2. The learning architecture. The iteration-domain feedback law uses the tracking
error as input, and its output is a set point shift to the real-time feedback law.

nature of the motions addressed in this paper, we use Fourier series [25] to characterize

correction input and tracking error output signals of the system.

The learning algorithm builds upon this LTI model when interpreting the measure-

ment data of an execution in order to determine the appropriate correction input signal

for the next execution, as detailed in Section 3.2. Using the statistical properties of the

relevant disturbance signals, it is possible to derive the optimal correction input signal in

a least-squares sense (Section 3.3). Safer learning of high-performance maneuvers can be

achieved by reducing the execution speed during the initial learning phase, and using the

disturbance characteristics identified at lower speeds to provide an improved disturbance

prediction at high speeds (Section 3.4).

3.1 System Model

This section introduces the quantities used by the learning algorithm. Because the ma-

neuvers considered herein are of periodic nature, time signals are parameterized as Fourier

series with fundamental frequency Ω0 = 2π/T , with T being the period of the maneuver.

Furthermore, the notation (·)i is used to denote quantities of iteration i of the learn-

ing algorithm. Unless stated otherwise, we assume that time signals are periodic with

period T .

The error output measurement y(t) is the signal capturing the tracking errors which

should be eliminated by the learning algorithm. The dimension of y(t) is not defined

by the problem, and may be chosen by the user as the set of error outputs that should

be minimized. For the specific implementation considered in this paper, it consists of

the three-dimensional deviation of the vehicle position from its reference trajectory p∗(t),

as seen in Figure 2. We assume that the measured output of an experiment can be

146

3. Learning Algorithm

decomposed as follows, where the components will be explained in the following:

yi(t) = di(t) + hi(t) + ni(t) . (12)

The first component di(t) represents the systematic tracking error that should be com-

pensated. It is not known a priori, but we will later assume that a statistical description

of d0(t) is available for the derivation of the optimal learning step size in Section 3.3.

Specifically, we will then assume that its mean is zero, and that it is stationary with a

known autocorrelation function. The evolution of the tracking error over several iterations

is modeled as

di+1(t) = di(t) + γi(t) (13)

where γi(t) models slight changes to the disturbance from iteration to iteration as a trial-

uncorrelated sequence of zero-mean stationary noise, where we will again assume a known

autocorrelation function in Section 3.3.

The second component, hi(t), is the response of the closed-loop dynamic system to

the correction input ui(t), characterized in the frequency domain by

H i(ω) = G(ω)U i(ω) (14)

with G(ω) being the transfer function [13] of the LTI approximation of the closed-loop

system, and H i(ω) and U i(ω) being the frequency domain representations of hi(t) and

ui(t), respectively. The final component of the tracking error measurement, ni(t),

represents trial-uncorrelated, non-periodic noise. It is assumed to vary for each execution

of the maneuver, and captures effects such as non-repeatable disturbances to the vehicle

(for example wind gusts), but also measurement noise. The non-repeatable disturbances

are assumed to be zero mean; a non-zero mean would represent a repeatable disturbance

and would therefore be accounted for by di(t). Furthermore, we assume stationarity, and

for the derivation of the optimal learning step size a known autocorrelation function.

The goal of the learning algorithm is to choose the correction input ui(t) such that

the output yi(t) is minimized. The desired output is assumed to be periodic with period

T , and the algorithm will use measurements of previous executions yi−1(t), yi−2(t), . . . in

order to determine ui(t). Intuitively, this task implies finding the correction input ui(t)

such that hi(t) + di(t), is minimized, meaning that the unwanted repeated disturbance is

canceled out in the output (12) as well as possible.

Note that the dimensions of u(t) and y(t) are not necessarily given by the system

model, but can be chosen by the user to indicate which signals are relevant to the track-

ing task at hand, and which quantities can be modified. We will, however, assume that

the dimension of u(t) is no less than that of y(t), implying that we have at least as many

compensation inputs available as we have error quantities. If this is not the case, full

147

Paper IV. Frequency Domain Learning for Periodic Maneuvers

tracking can typically not be achieved, although it can be shown that the tracking error

can still be reduced [23]. In the specific implementation of the algorithm considered in

this paper, u(t) is a three-dimensional additive correction to the position control refer-

ence point and y(t) is the three-dimensional deviation of the vehicle from the reference

trajectory, as seen in Figure 2.

3.2 Learning Update Law

Due to the periodic nature of the maneuvers considered herein, we will leverage Fourier

series decompositions of correction input and error output signals. We parameterize the

correction input by a truncated Fourier series of order N and fundamental frequency Ω0:

ui(t) = ri0 +
N∑
k=1

rik cos (kΩ0t) +
N∑
k=1

sik sin (kΩ0t) (15)

where Ω0 = 2π/T is the fundamental frequency of the series. The frequency domain

representation of u(t) is then

U i(0) = ri0 (16)

U i(kΩ0) = rik − jsik for k = 1, 2, . . . , N . (17)

The system response hi(t) to this Fourier series ui(t) is also a Fourier series of order

N [25], which is defined in the frequency domain through the relationship

H(kΩ0) = G(kΩ0)U(kΩ0) for k = 0, 1, . . . , N . (18)

We will now invert this relationship in order to use it as a learning feedback law

that compensates a given disturbance. Assuming that G (kΩ0) is full rank, let G+ (kΩ0)

denote the Moore-Penrose pseudoinverse [10] of G (kΩ0) (in the special case that G is

square, G+ (kΩ0) = G−1 (kΩ0) holds).

Assume that we have executed the trajectory for iteration i, and measured the tracking

error yi(t). Let Y i (kΩ0) denote the Fourier series that coincides with yi(t) for t ∈ [0 T].

The iteration feedback law is then given by the correction Fourier series

U i+1(kΩ0) = U i(kΩ0)− µikG+ (kΩ0)Y i (kΩ0) (19)

for k = 0 . . . N , with the step size µik controlling the adaptation rate. The time signal

ui+1(t) is then constructed from U i+1(kΩ0) and applied to the system in the next iteration.

148

3. Learning Algorithm

3.3 Learning Step Size

The remaining degree of freedom in the learning update law (19) is the step size µik.

Depending on the application scenario and, more specifically, the availability of the sta-

tistical properties of the disturbance signals d0(t), ni(t) and γi(t), the step size µik may

be considered to be a tuning parameter that is directly set by the user, or its optimal

value may be computed from the available statistical properties.

Noise Influence on Fourier Coefficients In practice, the Fourier series coefficients

of yi(t) are estimated from a set of discrete-time observations of the continous-time signal,

which are used to compute a discrete Fourier Transform [41]. The influence of noise such

as ni(t) on the coefficients of a discrete Fourier Transform has been studied in the past [52]:

It was shown that, for a sufficiently large number of samples of yi(t), the noise on the

Fourier coefficients will be additive, approximately Gaussian regardless of the distribution

of the noise, and zero mean. A more rigorous description of the statistical properties of

the coefficients can be found in [52], and the variance of the individual coefficients can be

computed from the correlation function of ni(t). The specific equations are not repeated

here, but it is sufficient for our purposes to state that the variance of the coefficients is

known, and that they are approximately uncorrelated for a sufficiently large number of

discrete-time observations.

Using N i(kΩ0) to denote the additive zero-mean coefficient noise caused by ni(t), the

tracking error Fourier series coefficients at iteration i+ 1 can be written as

Y i+1(kΩ0) = Di+1(kΩ0) +H i+1(kΩ0) +N i+1(kΩ0) . (20)

Dropping the argument kΩ0 for notational convenience (all quantities in the following

are parameterized by kΩ0), we expand the above using Equations (13), (18), and (19):

Y i+1 = Di+1 +GU i+1 +N i+1 (21)

= Di + Γi +G
(
U i − µikG+Y i

)
+N i+1 (22)

where Γi, analogously to N i+1, is zero-mean coefficient noise caused by the disturbance

change γi(t) as defined in Equation (13).

Stability We first consider µik a tuning parameter, and derive stability conditions for

constant values µik = µ̄k. We rewrite Equation (22) using Equations (18), (20) and the

fact that G+ is the right inverse of G:

Y i+1 = Di + Γi +GU i − µ̄kY i +N i+1 (23)

= Γi + (1− µ̄k)Y i −N i +N i+1 . (24)

149

Paper IV. Frequency Domain Learning for Periodic Maneuvers

The expected value of the Fourier coefficients is then

E
[
Y i+1

]
= (1− µ̄k) E

[
Y i
]

(25)

since the noise terms are zero mean as discussed in Section 3.3. Note that

E
[
Y 0
]

= 0 (26)

since it is assumed that D0 is zero mean and the expected value of the Fourier coeffi-

cients Y i is therefore zero for all i. If the algorithm is incorrectly initialized or D0 is

not zero mean, the tracking error still converges to zero in expectation for step sizes

0 < γ̄k ≤ 1. Furthermore, the variance of the Fourier coefficients can be computed by

rewriting Equation (23) using (18) and (20):

Y i+1 =
(
1− µik

) (
Di +H i

)
+ Γi − µikN i +N i+1 . (27)

Taking the variance and using the fact that (Di +H i), Γi, N i and N i+1 are independent,

it follows that

Var
[
Y i+1

]
= (1− µ̄k)2 Var

[
Di +H i

]
+ Var

[
Γi
]

+ µ̄2
kVar

[
N i
]

+ Var
[
N i+1

] (28)

= (1− µ̄k)2 (Var
[
Di +H i

]
+ Var

[
N i
])

+ Var
[
Γi
]

+ (2µ̄k − 1) Var
[
N i
]

+ Var
[
N i+1

] (29)

= (1− µ̄k)2 Var
[
Y i
]

+ Var
[
Γi
]

+ (2µ̄k − 1) Var
[
N i
]

+ Var
[
N i+1

] (30)

from which it follows that the variance does not diverge for step sizes 0 < µ̄k ≤ 1,

assuming bounded variance of N and Γ.

Because the Fourier series coefficients are approximately Gaussian, their mean and

variance fully describe their approximate distribution. Assuming that the approximation

as a Gaussian distribution is sufficiently accurate, the learning update law results in the

Fourier series coefficients of the tracking error being zero mean with bounded variance

for constant step sizes 0 < µ̄k ≤ 1.

It is important to note that this result only holds for the Fourier series coefficients

k = 0, 1, . . . , N of Y (kΩ0). No adaptation occurs for higher-frequency components, and

the coefficient dynamics for k > N are therefore simply those of Equation (22) without

the input:

Y i+1 = Di + Γi +N i+1 . (31)

150

3. Learning Algorithm

Minimum Mean Square Error Step Size We now consider time-varying step sizes

µik, and derive the step size sequence that minimizes the trace of the tracking output

variance, also called the minimum mean square estimate [3]. Computing the trace of

the variance analogously to Equation (30) from Equation (27), and setting the derivative

with respect to µik to zero, it follows that the optimal step size
∗
µk

i is

∗
µk

i =
Tr[Var[Y i(kΩ0)]]− Tr[Var[N i(kΩ0)]]

Tr[Var[Y i(kΩ0)]]
(32)

where Tr[·] denotes the trace operator, and the argument (kΩ0) is stated explicitly in order

to highlight that the optimal step size may differ for each multiple of the fundamental

frequency. The output variance Var[Y i] can be computed recursively from Equation (27),

starting with the statistical properties of d0(t) and n0(t) to determine Var[Y 0]. Note that

the step size sequence
∗
µk

i only depends on the statistical properties of the random signals

d0(t), γi(t) and ni(t) and not on their actual realizations, and can therefore be entirely

precomputed before starting experiments if desired.

3.4 Time Scaling for High Performance Maneuvers

When initializing the learning of a maneuver, an initial guess of the compensation input

u0(t) is used to execute the first iteration. When no other information is available, a

typical ‘naive’ choice would be to simply choose u0(t) = 0. However, for high perfor-

mance motions that approach the feasibility limits of the system (e.g., due to actuator

saturation), the naive initial guess may be so poor that it becomes impossible to apply

the learning algorithm successfully. This may be caused, for example, by the tracking

errors growing large enough to cause the vehicle to collide with its environment, inval-

idating the error measurement. Furthermore, tracking errors may be so large that the

approximate dynamics (18) used to compute the correction input no longer accurately

predict the behaviour of the closed-loop control system, leading to instabilities in the

learning algorithm.

To allow the algorithm to be applied to such maneuvers, we extend it by introducing a

speed scaling factor λ, giving control over the execution speed of the maneuver. The core

idea is that most motions become ‘easier’ to execute when the motion duration is increased

(some examples of this were given in [49]), where easier loosely refers to the amplitude

of the required control inputs. The speed scaling factor allows the motion to be initially

executed and improved at relatively low speeds, where there is no danger of collisions and

the learning algorithm works reliably, and to then use the learnt compensation inputs to

generate an improved initial guess of the compensation input u(t) for higher execution

speeds. Since the initial tracking errors should be lower due to the better initial guess,

it is more likely for the learning algorithm to successfully compensate for errors as the

initial execution is more likely to be successful, and the approximate dynamics (18) are

then only used to compensate for relatively small errors.

151

Paper IV. Frequency Domain Learning for Periodic Maneuvers

We define the scaled maneuver duration

T` =
T

λ`
(33)

and assume that we have successfully learnt the motion for the execution speed λ1, i.e.

the tracking error output y1(t) associated with the execution speed λ1 is sufficiently small

for all t1 ∈ [0 T1]. The objective is then to use the learnt compensation input at speed λ1,

which we denote u1(t), to initialize the compensation input for the (typically higher)

execution speed λ2, which we analogously denote u2(t).

Ideally, the values for u2(t) should result in a tracking error at the new execution

speed y2(t) that is as small as y1(t). This would require knowing how the disturbance d(t)

changes with the time scaling, such that u(t) can be chosen accordingly as seen in Equa-

tion (12). However, due to d(t) capturing unmodeled disturbances, a model of its depen-

dence on execution speed is not readily available.

An obvious choice for the transfer between two maneuver speeds is to keep the learnt

input corrections coefficients and simply re-map them to the corresponding frequencies

(i.e., U2 (kλ2Ω0) = U1 (kλ1Ω0)). However, the varying sensitivity of the closed-loop trans-

fer function at the two different frequencies, as well as the changing disturbances, could

potentially lead to large errors.

In order to account for this, we use a linear extrapolation method (see e.g. [18]) to

predict the correct value of the compensation term H(λkΩ0) in Equation (20) from past

time scaling changes. The first-order prediction of H(λ3kΩ0) for the execution speed λ3

from the past execution speeds λ1 and λ2 is then

H(λ3kΩ0) = H(λ2kΩ0)+
λ3−λ2

λ2−λ1

(H(λ2kΩ0)−H(λ1kΩ0)) (34)

which we can expand using Equation (14) to find the initial guess for the correction

Fourier series coefficients:

U(λ3kΩ0) =G+(λ3kΩ0)

(
G(λ2kΩ0)U(λ2kΩ0)

(
1+
λ3−λ2

λ2−λ1

)
−G(λ1kΩ0)U(λ1kΩ0)

λ3−λ2

λ2−λ1

)
.

(35)

The prediction requires the storage of the learnt correction series coefficients of the

past two execution speeds (U(λ1kΩ0) and U(λ2kΩ0)), as well as the respective execution

speeds (λ1 and λ2). For the first prediction, only one past set of learnt series coefficients is

available, and we therefore resort to a zeroth-order prediction by eliminating the second

summand in Equation (34).

152

3. Learning Algorithm

3.5 Design Parameters

The learning algorithm presented in this section comprises a number of parameters that

are user-defined, and can be modified to influence the learning performance:

1. The order of the compensation Fourier series N fundamentally determines the fre-

quencies of the error output y(t) that are compensated for since the compensation

input u(t) is characterized by a truncated Fourier series of order N , and no adapta-

tion occurs at higher frequencies. While an upper bound for N is in principle only

given by the discrete-time measurements used to estimate the coefficients of y(t),

the high-frequency components of the tracking error are often inherently small and

can therefore be neglected by choosing a lower order. If the approximate model (18)

only captures the underlying closed-loop dynamics well for low frequencies, it may

also be beneficial to avoid learning at higher frequencies by limiting the series order.

2. The iteration- and order-dependent learning step size µik can be treated as a tuning

parameter chosen by the user, or its optimal value may be derived from the sta-

tistical properties of n(t), d0(t), and γ(t). While the explicit statistical properties

of these signals may be difficult to identify for an experimental platform, they can

also be considered design parameters. In this context, the properties of γ(t) capture

the likely change of the disturbance from iteration to iteration due to unmodeled

dynamics (for example, nonlinearities of the underlying model), and can therefore

be used to encode model uncertainty. A typical choice would be to assume the

disturbance changes to be large initially to account for significant changes in the

correction input that could highlight nonlinear behaviour, and smaller changes as

the algorithm converges. The properties of the non-repetitive noise term n(t) en-

code measurement noise and the level of repeatability of the experiment, and large

values thereof enforce smaller step sizes (as seen in Equation (32)), reducing the

level of ‘trust’ in the measurements. The statistical properties of d0(t) capture the

confidence in the initial guess of what the systematic disturbances are, and thereby

influences the step size during the initial phase of the learning. Assuming little prior

knowledge implies the coefficients of D0(kΩ0) having very large variance, which in

turn implies that the first step size
∗
µ0 will approach 1 according to Equation (32).

3. Finally, when time scaling is applied, the time scale sequence λ0, λ1, . . . remains to

be chosen. This is typically done based on past experiments, where the performance

with no initial compensation input determines λ0, and the following time scales are

determined based on the performance of the predictor (34). Note that, if the optimal

step sequence size
∗
µk

i is used, γ(t) should be chosen to have significant influence

after a change in execution speed in order to account for modeling mismatches

caused by the change of execution speed.

153

Paper IV. Frequency Domain Learning for Periodic Maneuvers

4. Experiments

Experiments demonstrating the use of the learning algorithm presented herein for quadro-

copter flight are presented in this section. After introducing the experimental setup, we

present two different flight tasks to which the algorithm was applied, discuss its perfor-

mance, and demonstrate the influence of a selection of the tuning parameters introduced

in Section 3.5.

4.1 Experimental Setup

The flight experiments were carried out in the Flying Machine Arena, an aerial vehi-

cle research platform at ETH Zurich [32]. The vehicles used for the experiments are

custom-built quadrocopters that are based on Ascending Technologies ‘Hummingbird’

vehicles [20]. The custom electronics [31] mounted on-board each vehicle provide inertial

measurements and implement the body rate control law (10) based on the filtered mea-

surements. The desired rotational rates ω̂x, ω̂y, ω̂z and the collective thrust command a

(as defined in Equation (2)) are communicated to the vehicle from a desktop computer

through a low-latency wireless communication channel at a rate of 50 Hz.

A commercial motion capture system [57] provides position and attitude information,

which is filtered by a Luenberger observer. The filtered full state information is used

on the desktop computer to implement the feedback controller (5)-(9), and the filtered

position information is used in the learning algorithm.

The feedback control system used in these experiments introduces additional, al-

beit small, disturbances to the system in addition to the dynamic effects described in

Section 2.1: Due to the wireless radio link between the quadrocopter and the desktop

computer as well as the image processing required by the motion capture system, variable

delays are introduced into the feedback loop. Furthermore, approximately 1 % to 5 % of

the feedback control commands are lost in transmission over the wireless channel.

4.2 Learning Implementation

The learning algorithm was implemented on the desktop computer that also executes the

feedback control law, and uses the position data provided by the Luenberger observer to

compute the Fourier coefficients of the tracking error. In all experiments, the tracking

error output y(t) was the three-dimensional deviation of the position from the reference

trajectory and the control input u(t) was a set point correction to the feedback controller,

as seen in Figure 2. Each iteration of the learning algorithm execution then consisted of

the following steps:

1. Measure the tracking error for at least one period T . Note that, by measuring

for more than one iteration, the variance of N(kΩ0) can be reduced [52], therefore

allowing the use of larger step sizes µik.

2. Apply the learning update law (19), using appropriate step sizes chosen as discussed

in Section 3.5.

154

4. Experiments

3. Wait for the system to converge under the new control inputs. Note that the

instantaneous change of the correction input in Step 2 represents a non-periodic

excitation of the system, making this step necessary.

4.3 Figure-Eight Maneuver

The first motion we consider is a periodic figure-eight maneuver flown at high speed in

the horizontal plane around two obstacle points, as shown in Figure 3. This motion is

used to demonstrate the basic working of the learning algorithm, as well as the influence

of a number of learning parameters.

To execute the maneuver in closed loop, the feedback linearizing control law presented

in Section 2.2 is used, and the transfer function G(ω) required for the iteration-domain

feedback law (19) was derived from the approximate dynamics (11). The three degrees

of freedom are decoupled in the approximate dynamics, and the transfer function matrix

G(ω) therefore only has non-zero entries on its diagonal.

Maneuver Design The nominal maneuver is designed based on the quadrocopter

dynamics (1)-(4). Assume, without loss of generality, that the first obstacle point lies at

the origin of the inertial coordinate system O, and the second obstacle point is located at

a distance L in the p1-direction. The maneuver is composed of two half-circles about the

obstacle points, and two splines connecting the half-circles. The maneuver is executed as

fast as possible, with the speed being limited by the limitation of the collective thrust

amin ≤ a ≤ amax (36)

and the limitation of the allowable body rate commands

|ωi| ≤ ωmax for i = {x, y, z} . (37)

The first constraint, limiting the collective thrust, is given by the minimum and maximum

rotational speed of the propellers. The second constraint, limiting the rotational rate

of the quadrocopter, is given by the limited range of the gyroscopic inertial sensors.

Because the quadrocopter has low rotational inertia and high achievable torques due to

the outwards mounting of the propellers, the body rate control loop (10) has very high

bandwidth. We therefore do not explicitly limit rotational accelerations, and assume that

the rate constraint (37), with ωmax suitably chosen, along with (36) suffices to ensure

feasibility.

Based on the constraints (36) and (37), we will now design the two components of

the figure-eight maneuver, i.e. the half-circles about the obstacle points and the splines

connecting them:

Semi Circles: A circular trajectory, covering an angle of 180◦, surrounds each obstacle

point at a user-defined radius Rs. The thrust a and rotational rates ωx, ωy along this

155

Paper IV. Frequency Domain Learning for Periodic Maneuvers

Position p1 (m)

P
os

it
io

n
p

2
(m

)

0 1 2 3 4

-1

0

1

Figure 3. The reference trajectory of the figure-eight maneuver, highlighting the composition
from two half-circles (dashed red) and two connecting splines (solid blue). The period of the
maneuver is T = 3.3 s, and the maximum speed reached is 6 m s−1.

circular trajectory are then computed [49], and the time required for each semi circle

is chosen to be the fastest time for which the control input constraints (36)-(37) are

satisfied.

Connecting Splines: The two semi circle trajectories are connected through polyno-

mial trajectories. The trajectory is continuous in position, velocity, attitude, and rota-

tional rate of the quadrocopter if the polynomial trajectories match the position, velocity,

acceleration, and jerk of the circular trajectories at either end [35]. In order to satisfy

the four boundary constraints on both ends of the spline, we construct a seventh-order

polynomial. The remaining degree of freedom in the spline design is the duration of

maneuver. In order to achieve high speed, we iterate over the duration until the fastest

maneuver that satisfies the control input bounds (36)-(37) is found, using the algorithm

from [49] to compute the inputs and verify feasibility.

The figure-eight maneuver is then fully defined through the concatenation of the first

semi circle, the first spline, the second semi circle, and the second spline. Due to the

continuity and feasibility conditions imposed on each component of the trajectory, the

resulting trajectory is feasible with respect to the constraints (36)-(37), and it is periodic.

An example of the figure-eight motion can be seen in Figure 3. In this specific example,

the parameters were chosen to be L = 4 m, Rs = 0.75 m, amax = 1.8g = 17.65 m s−2, and

ωmax = 500 ◦ s−1. The resulting maneuver duration is T = 3.3 s, with an average speed

of 4 m s−1 and a maximum speed of 6 m s−1. The duration of each half circle is 0.71 s, and

the duration of each connecting spline is 0.93 s. This example was used as the reference

trajectory to be learnt in the following results.

Learning at Fixed Maneuver Speed As a first test case, we show the learning

performance when the maneuver is executed at the fixed speed of λ = 0.7, i.e. 70 % of

the maneuver speed the motion was nominally designed for. The order of the correction

input series was chosen to be N = 10, which showed to be a good compromise between

156

4. Experiments

Position p1 (m)

Position p2 (m)

-1 0 1 2 3 4 5

-1

0

1

Figure 4. Top-down view of the flown trajectory before (thick solid red) and after (thin solid
blue) learning. The dotted black line denotes the nominal trajectory, and the dashed blue line
shows the set point p̂(t) provided to the feedback control law (as seen in Figure 2) after the
learning is applied.

the ability to compensate for temporally localized tracking errors and robustness to high-

frequency uncertainty. We chose the learning step size series to be

µik = min

(
1,

3

i+ 1

)
for all k (38)

which provides fast initial convergence with the first three steps being of size 1, and good

robustness to non-repetitive noise since the steps reduce in size as the iteration number

increases.

At this speed, the maneuver could be safely executed with no initial correction input

(i.e. u0(t) = 0), and the learning algorithm converged. Figure 4 shows the trajectories of

the vehicle and the set points in the horizontal plane, both at the start of the learning

process and after convergence. It can be seen that the deviations from the nominal trajec-

tory after the learning process are minimal, and that the learning algorithm significantly

improved the tracking performance.

Figure 5 shows the evolution of the error coefficients over 22 iterations of the learning

algorithm. It can be seen that the error coefficient magnitude quickly reduced from

values in excess of 100 cm to values below 2 cm. The peak tracking error was reduced from

approximately 200 cm to 5 cm. A significant outlier can be seen at the 18th iteration, likely

caused by a non-repeatable disturbance to the vehicle such as a wireless communication

failure. Because the step size µ18
k = 3/19 is relatively small, the large tracking error in

this iteration was not strongly propagated to following iterations.

It should be noted that the feedback control law used in these experiments was not

tuned to provide the best possible tracking performance without the adaptation; as dis-

cussed in Section 2.2, a straightforward improvement would be the inclusion of feedfor-

ward terms in the control law. What can, however, be seen from these results is that such

157

Paper IV. Frequency Domain Learning for Periodic Maneuvers

E
rr

or
co

effi
ci

en
t

n
or

m
‖Y

(k
Ω

0
)‖

Iteration number i
0 5 10 15 20

10−2

100

Figure 5. Evolution of the Fourier series coefficients during learning at a fixed maneuver speed
of λ = 0.7. The lines at iteration zero are from top to bottom: k = {1, 2, 4, 5, 0, 6, 3, 7, 10, 8, 9}.
Note the significant outlier for iteration i = 18, the influence of which on subsequent iterations
was relatively small because µ18

k = 3/19 for all k is relatively small.

improvements to the feedback control law do not appear necessary because the adaptation

law can largely eliminate repeatable tracking errors.

Influence of Fourier Series Order In a further experiment, we demonstrate the

effect of varying the order of the compensation input Fourier series N , as given in Equa-

tion (15). The learning experiment was repeated at a constant speed of λ = 0.8, and the

learning process was executed with Fourier series of the orders N = {0, 1, 2, 5, 8, 9, 10} .
The resulting progression of the root mean square (RMS) position tracking error (com-

puted over one motion period) over 25 iterations is shown in Figure 6. Note that the

Fourier series of order N = 0 provided no significant improvement as it consists only of

a constant set point shift. Increases in the Fourier series order consistently improved the

learning performance initially. The orders N = 5 and N = 8 provided nearly identical

performance, showing that the predominant tracking error components were sufficiently

covered. The error then increased for N = 9, and the vehicle collided with the floor

after five iterations for N = 10. This was caused by the insufficient accuracy of the

approximate system dynamics (11) in the high-frequency range, and a possible remedy

would be to reduce the step size for higher frequencies. Note that the order N = 10 could

successfully be used for the experiments in Section 4.3 because the speed scaling factor λ

was chosen lower, thereby mapping each component of the series to a lower frequency.

Figure 6 also shows the repeatability limit of our experimental system during the tests

presented herein. In order to determine this limit, the maneuver was executed multiple

times with an identical correction input, and the RMS deviation from the average flight

trajectory was computed for each execution. With identical execution parameters as

used for the other data in Figure 6, the average RMS repeatability error over fifteen

executions was 13.6 mm, with a standard deviation of 2.2 mm. This can be taken to be

a measure of the level of non-repeatable noise, as captured by n(t), in the system. For

158

4. Experiments

R
M

S
T

ra
ck

in
g

E
rr

or
(m

)

Iteration number i

0 5 10 15 20 25
10−2

10−1

100

N = 0

N = 1

N = 2

N = 5

N = 8

N = 9

N = 10

Figure 6. Learning performance (as measured by the RMS position tracking error) for the
high-performance figure-eight maneuver executed at a speed of λ = 0.8, with varying order
N of the correction Fourier series. The dashed black horizontal line represents the estimated
repeatability limit of 1.4 cm. Note that the relatively large uncertainty at higher frequencies
causes the learning performance to decrease for N = 9, and the vehicle collided with the floor
during the sixth iteration for N = 10.

the flight trajectory learnt using a Fourier correction series of order N = 8, the average

RMS tracking error over the last five iterations (i.e., i = 21, 22, 23, 24, 25) was 24.2 mm

(with a standard deviation of 4.5 mm), indicating that the compensations by the learning

algorithm corrected for almost all systematic errors. In other words, if an input signal

u(t) exists that would entirely eliminate all systematic tracking errors given the true

dynamics of the quadrocopter, then it would allow the tracking error to be reduced by a

further approximately 11 mm compared to the learning algorithm presented here.

Transfer to Increasing Speeds When initializing the learning algorithm with no

correction signal for the full maneuver speed (λ = 1), the maneuver could not be learnt

successfully. This is likely due to the maneuver being designed to use the full dynamic

envelope of the quadrocopter, and the LTI system approximation not being sufficiently

accurate when considering large initial deviations. Figure 7 demonstrates the use of the

time scaling method (introduced in Section 3.4) to learn the maneuver at full speed. We

159

Paper IV. Frequency Domain Learning for Periodic Maneuvers

R
M

S
T

ra
ck

in
g

E
rr

or
(m

)

Iteration number i

λ = 0.8 0.85 0.9 0.95 1.0 1.05 1.1

0 5 10 15 20 25 30

10−1

100

Figure 7. Logarithmic plot of the root mean square position tracking error during execution
of the figure-eight maneuver with time scaling. The maneuver execution speed (shown at the top
of the graph) is increased every five iterations. Note that λ = 1.0 denotes the nominal maneuver
speed, and values λ > 1.0 are not nominally feasible.

initialized the speed factor to λ0 = 0.8, and then applied the update law

λ`+1 = λ` + 0.05 (39)

after every five learning iterations of the maneuver. We used the same learning step

size sequence (38) as before, but at iterations where time scaling occurs, we reset the

iteration counter to i = 0 in order to compensate for the significant model uncertainty

after a change of the time scale. The order of the correction Fourier series was chosen to

be N = 5.

In Figure 7, the results of the experiment show that the RMS tracking error was

initially reduced from 1.7 m to 0.18 m over the first four iterations, which were executed

at λ = 0.8. The RMS error increased by values of 0.005 m to 0.09 m during the first four

speed changes. Beginning with the 25th iteration, the execution speed was λ > 1, i.e.

the maneuver is faster than was computed to be feasible according to Section 4.3. It can

be seen that the tracking error increased as one would expect, and the learning algorithm

ultimately failed to reduce the error at an execution speed of λ = 1.1 due to significant

input saturations. These experimental results correspond well to the predicted feasibility.

4.4 Flying Inverted Pendulum

To further test the performance of the learning algorithm, we will now augment the

quadrotor system to perform a more complex task. We attach an inverted pendulum to

the quadrocopter, and design a new controller that takes the stabilization of the pendulum

dynamics into account. The dynamic system controlled in this case thus consists of two

coupled unstable systems (that is, the quadrocopter and the inverted pendulum), and can

be considered to be an example of a controller design for quadrocopters executing more

complex tasks (other examples of such tasks include slung load transportation [55] and

cooperative control of multiple vehicles [29]). The flying inverted pendulum experiment

160

4. Experiments

was first presented in [21], and preliminary learning results have been presented in [23].

We begin by presenting the equations of motion of the pendulum on top of the quadro-

copter and the controller design used to stabilize the overall system consisting of quadro-

copter and pendulum. Following this, the learning is demonstrated for a sinusoidal tra-

jectory.

System Design The inverted pendulum is modeled as a point mass with two degrees of

freedom, chosen to be the horizontal position of the pendulum center of mass relative to its

base in O (r in the direction of p1, s in the direction of p2). Using Lagrangian mechanics,

the nonlinear equations of motion of the pendulum can be derived [21]. Assuming that the

pendulum is attached to the center of mass of the quadrocopter (i.e. rotational motion of

the vehicle does not affect the pendulum), the overall system dynamics linearized about

the hover point are

r̈ = r
g

Lp
−R13g (40)

s̈ = s
g

Lp
−R23g (41)

p̈1 = R13g (42)

p̈2 = R23g (43)

Ṙ13 = ωy (44)

Ṙ23 = −ωx (45)

p̈3 = a− g (46)

where Lp is the length of the pendulum from its base to its center of mass and we

omitted the rotational dynamics (1) under the assumption that they remain controlled

as before using the feedback law (10) and that they are significantly faster than the

remaining dynamics.

The two horizontal degrees of freedom represent fifth-order systems, with the vehicle

forming a triple integrator from the body rate to its position. The vertical motion is

represented by a double integrator from thrust to position.

The feedback controller for the dynamics (40)-(46) is designed using an infinite-horizon

linear quadratic regulator (LQR; see e.g. [30]) design. The design penalizes only the

vehicle position p1, p2, p3 and the control effort ωx, ωy, a, and there is no penalty on the

pendulum state. The ratio of the penalties on position and control effort controls the

speed at which the position set point is tracked. Values for this ratio are tuned manually

until the system shows fast performance without saturating the control inputs. Note that,

for this specific controller, no effort of feedback linearization (as presented in Section 2.2

for the vehicle only) is made.

The approximate system dynamics (14) are derived by computing the closed-loop

161

Paper IV. Frequency Domain Learning for Periodic Maneuvers

R
M

S
T

ra
ck

in
g

E
rr

o
r

(m
)

Iteration number i
0 2 4 6 8 10 12 14 16

10−1

100

Figure 8. Logarithmic plot of the root mean square position tracking error during the inverted
pendulum tracking task, as seen in Figure 10. The learning step size for this experiment was
chosen to be constant with µ̄k = 0.6 for all k.

transfer function of the linear dynamics under LQR feedback control.

We define the nominal trajectory to be two sinusoids in the two horizontal degrees of

freedom:

p∗1(t) = A1 sin(2πt/T) (47)

p∗2(t) = A2 sin(4πt/T) . (48)

For the experiments presented herein, the parameters were chosen to be T = 5 s,

A1 = 1.5 m, and A2 = 1 m. The resulting average vehicle speed is 2.1 m s−1, with a

maximum of 3.1 m s−1, and was chosen slower than in the previous experiments in order

to account for the added complexity of balancing the inverted pendulum.

For this experiment, the learning step size was chosen to be constant and identical for

all frequencies, i.e. µik = 0.6 for all i and all k. The order of the correction input Fourier

series was chosen to be N = 4.

Results The vehicle position RMS tracking error during the learning process is shown

in Figure 8. It can be seen that the initial execution caused very high tracking errors (RMS

error of 1.95 m), and that the tracking error was continuously reduced, with tracking errors

below 0.1 m achieved for all iterations i > 11. Figure 9 shows the flight path before and

after application of the learning algorithm, and a series of snapshots of the experiment

can be seen in Figure 10 with the reference trajectory superimposed on the pictures.

5. Advantages and Limitations

The experimental results in the previous section demonstrated the ability of the learning

algorithm to significantly improve the tracking performance for periodic maneuvers. A

162

5. Advantages and Limitations

Position p1 (m)

P
os

it
io

n
p

2
(m

)

-1.5 -1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

Figure 9. Top view of the flown trajectories during the inverted pendulum learning experi-
ment. The dotted black lines shows the reference trajectory p∗(t) as described in Section 4.4.
The thick red line shows the flown trajectory before learning, and the thin blue line shows the
trajectory after applying the learning algorithm.

key enabler for this is that the learning is performed on the closed-loop system of the

quadrocopter under feedback control, which makes repeated maneuver executions highly

repeatable, and therefore well-suited for the non-causal correction of tracking errors.

The parametrization of the correction input u(t) as a truncated Fourier series allows

the use of the order of the series to define a trade-off between 1) the ability to compen-

sate for highly localized tracking errors, and 2) computational complexity and memory

requirements. Relatively low Fourier series orders often suffice to significantly improve

the tracking performance, as seen in our experiments. The limitation to relatively low

Fourier series orders also provides a convenient way to suppress high-frequency jitter in

the learnt compensation, an effect that can be frequently observed in iterative learning

control approaches [51]. Furthermore, inaccuracies of the dynamic model at high frequen-

cies can be circumvented by limiting the learning to lower frequencies, or can be modeled

through the characteristics of the noise models used to capture changing dynamics and

non-repeatable effects. Through the appropriate choice of these noise characteristics,

the learning algorithm can be tuned to quickly compensate for disturbances at frequen-

cies where an accurate model of the system is available, and to perform more cautious

adaptation at frequencies where significant model uncertainty is present.

It can also be seen from our experiments that highly simplified models of the closed-

loop dynamics, though only capturing a relatively rough approximation of the true be-

haviour, suffices to guide the learning process both for the stand-alone quadrocopter as

well as when more complex tasks are performed. Similar results have been demonstrated

for other learning algorithms, e.g. reinforcement learning [28]. The simplified model,

163

Paper IV. Frequency Domain Learning for Periodic Maneuvers

Figure 10. Snapshots of the inverted pendulum trajectory tracking experiment. The red line
denotes the nominal trajectory p∗(t), and the point on it represents the instantaneous nominal
position at the time of the snapshot. Performance before learning (i = 0) is seen on the left,
and performance after ten learning iterations (i = 10) is seen on the right. The snapshots are
taken every 1 s, and are ordered from top to bottom. Notice that, before learning, the vehicle
lags behind the nominal trajectory significantly.

and therewith the uncomplicated derivation of such a model, make the application of the

algorithm to changing conditions (such as specific tasks, differing controllers, or different

vehicles) a straightforward undertaking.

The algorithm presented particularly lends itself to applications where computational

power and memory are limited. During the execution of the maneuver, the algorithm only

requires the estimation of the coefficients of the tracking error Fourier series up to order

N , and the control input update can be reduced to a matrix multiplication according

to Equation (19) by pre-computing the step size sequence µik and the inverse transfer

function G+ (kΩ0) for the considered frequencies k = 0, 1, . . . , N .

Due to the simplified dynamic model, the serial architecture, and the frequency do-

main approach in the learning algorithm, it is not trivial to incorporate additional con-

straints. Examples of potentially useful constraints are the explicit consideration of input

164

6. Conclusion

saturations, or the penalization of control effort. Their inclusion can improve the learning

performance because they help capture the underlying dynamics more accurately, or can

help to shape the outcome of the learning process.

Furthermore, maneuvers exhibiting very large initial tracking errors highlight the

limitations of using a simplified model in the learning process. The system dynamics may

not be captured with sufficient accuracy for large errors, causing the learning algorithm

to fail. The time-scaling method presented herein can offer a viable solution to this

problem when it is possible to initially reduce the execution speed of the maneuver: The

frequency domain approach to iterative learning provides a convenient way to transfer

learnt correction inputs between different execution speeds of the same maneuver. This

allows initial learning to occur at reduced speeds, thus providing a safe way to learn

high-speed maneuvers where a poor initial guess of the correction input can lead to a

crash or to non-convergence.

6. Conclusion

This paper presents the use of a frequency-domain iterative learning scheme for periodic

quadrocopter flight. The iteration-domain feedback law leverages an underlying feedback

control law that stabilizes the vehicle and makes its motion highly repeatable. The nom-

inally linear time-invariant closed-loop dynamics of the quadrocopter feedback system

are used to determine correction values from observed errors in a straightforward man-

ner. By parameterizing the non-causal tracking error compensation as Fourier series, the

algorithm is computationally lightweight and easy to adapt. Uncertainties, such as mea-

surement noise, inaccuracies of the approximate transfer function, or model uncertainty

can be accounted for in the learning step size, and the optimal step size for each frequency

component can be computed from the statistical properties thereof. The approach also

allows the learning of high-performance maneuvers by executing them at a reduced speed

initially and then transferring learnt corrections to higher speeds, where a disturbance

prediction scheme is used to initialize the learning at higher speeds.

The approach was experimentally verified for a quadrocopter executing a high-perfor-

mance motion, and for it executing the complex task of balancing an inverted pendulum

while tracking a trajectory. The experimental results also highlighted the advantages

of learning at reduced speeds, with a the high-performance motion only being learnt

successfully at full speed when using learnt parameters from lower speeds to initialize the

learning process.

References

[1] Airrobot GmbH & Co KG. AirRobot Product Information (Available online at
www.airrobot-us.com/images/Airrobot info.pdf), 2007.

165

Paper IV. Frequency Domain Learning for Periodic Maneuvers

[2] K Alexis, G Nikolakopoulos, and A Tzes. Constrained Optimal Attitude Control of
a Quadrotor Helicopter subject to Wind-Gusts: Experimental Studies. In American
Control Conference, 2010.

[3] Brian D O Anderson and John B Moore. Optimal Filtering. Dover Publications,
2005.

[4] Gianluca Antonelli, Filippo Arrichiello, Stefano Chiaverini, and Paolo Robuffo
Giordano. Adaptive Trajectory Tracking for Quadrotor MAVs in Presence of
Parameter Uncertainties and External Disturbances. In International Conference
on Advanced Intelligent Mechatronics, 2013.

[5] S Arimoto, S Kawamura, and F Miyazaki. Bettering Operation of Dynamic Systems
by Learning: A New Control Theory for Servomechanism or Mechatronic Systems.
In Conference on Decision and Control, 1984.

[6] Moses Bangura and Robert Mahony. Nonlinear Dynamic Modeling for High Perfor-
mance Control of a Quadrotor. In Australasian Conference on Robotics and Automa-
tion, 2012.

[7] T.K. Barlas and G.a.M. van Kuik. Review of state of the art in smart rotor control
research for wind turbines. Progress in Aerospace Sciences, 46(1):1–27, January 2010.

[8] Sergio Ronaldo Barros dos Santos, Sidney N Givigi, and Cairo Lucio Nascimento.
Autonomous Construction of Structures in a Dynamic Environment using Reinforce-
ment Learning. In Systems Conference, 2013.

[9] Kira Barton, Sandipan Mishra, and Enric Xargay. Robust Iterative Learning
Control: L1 Adaptive Feedback Control in an ILC Framework. In American Control
Conference, 2011.

[10] Dennis S. Bernstein. Matrix Mathematics. Princeton University Press, 2005.

[11] Pierre-jean Bristeau, Philippe Martin, Erwan Salaün, and Nicolas Petit. The Role
of Propeller Aerodynamics in the Model of a Quadrotor UAV. In European Control
Conference, 2009.

[12] Douglas A Bristow, Marina Tharayil, and Andrew G Alleyne. A Survey of Iterative
Learning Control. Control Systems Magazine, 26(3):96–114, 2006.

[13] Chi-Tsong Chen. Linear System Theory and Design. Oxford University Press, 3rd
edition, 1998.

[14] Insik Chin, S. Joe Qin, Kwang S. Lee, and Moonki Cho. A Two-Stage Iterative
Learning Control Technique Combined with Real-Time Feedback for Independent
Disturbance Rejection. Automatica, 40(11):1913–1922, 2004.

[15] Li Cuiyan, Zhang Dongchun, and Zhuang Xianyi. A Survey of Repetitive Control.
In International Conference on Intelligent Robots and Systems, 2004.

[16] Travis Dierks and Sarangapani Jagannathan. Output Feedback Control of a Quadro-
tor UAV Using Neural Networks. IEEE Transactions on Neural Networks, 21(1):50–
66, 2010.

166

References

[17] J Dunfied, M Tarbouchi, and G Labonte. Neural Network Based Control of a Four
Rotor Helicopter. In International Conference on Industrial Technology, 2004.

[18] Walter Gautschi. Numerical Analysis. Birkhäuser Boston, 2012.

[19] Alexandra Suzanne Gibb. Droning the Story. Master thesis, Simon Fraser University,
2011.

[20] Daniel Gurdan, Jan Stumpf, Michael Achtelik, Klaus-Michael Doth, Gerd Hirzinger,
and Daniela Rus. Energy-Efficient Autonomous Four-Rotor Flying Robot Controlled
at 1 kHz. In International Conference on Robotics and Automation, 2007.

[21] Markus Hehn and Raffaello D’Andrea. A Flying Inverted Pendulum. In International
Conference on Robotics and Automation, 2011.

[22] Markus Hehn and Raffaello D’Andrea. A Frequency Domain Iterative Feed-Forward
Learning Scheme for High Performance Periodic Quadrocopter Maneuvers. In
International Conference on Intelligent Robots and Systems, 2013.

[23] Markus Hehn and Raffaello D’Andrea. An Iterative Learning Scheme for High
Performance, Periodic Quadrocopter Trajectories. In European Control Conference,
2013.

[24] Ivo Houtzager, Jan-Willem van Wingerden, and Michel Verhaegen. Rejection of
Periodic Wind Disturbances on a Smart Rotor Test Section Using Lifted Repetitive
Control. IEEE Transactions on Control Systems Technology, 21(2):347–359, 2013.

[25] Hwei P. Hsu. Schaum’s Outline of Signals and Systems. McGraw-Hill, 1995.

[26] Peter C. Hughes. Spacecraft Attitude Dynamics. John Wiley & Sons, 1986.

[27] T Inoue, S Iwai, and M Nakano. High Accuracy Control of a Proton Synchrotron
Magnet Power Supply. In IFAC World Congress, 1981.

[28] J Zico Kolter and Andrew Y Ng. Policy Search via the Signed Derivative. In Robotics:
Science and Systems, 2009.

[29] Alex Kushleyev, Daniel Mellinger, and Vijay Kumar. Towards A Swarm of Agile
Micro Quadrotors. In Robotics: Science and Systems, 2012.

[30] Huibert Kwakernaak and Raphael Sivan. Linear Optimal Control Systems. John
Wiley & Sons, 1972.

[31] Sergei Lupashin and Raffaello D’Andrea. Adaptive Fast Open-Loop Maneuvers for
Quadrocopters. Autonomous Robots, 33(1-2):89–102, 2012.

[32] Sergei Lupashin, Angela P. Schoellig, Markus Hehn, and Raffaello D’Andrea. The
Flying Machine Arena as of 2010. In International Conference on Robotics and
Automation, 2011.

[33] Robert Mahony, Vijay Kumar, and Peter Corke. Multirotor Aerial Vehicles:
Modeling, Estimation, and Control of Quadrotor. IEEE Robotics Automation
Magazine, 19(3):20–32, 2012.

167

Paper IV. Frequency Domain Learning for Periodic Maneuvers

[34] D. Mellinger, N. Michael, and V. Kumar. Trajectory Generation and Control
for Precise Aggressive Maneuvers with Quadrotors. The International Journal of
Robotics Research, 31(5):664–674, 2012.

[35] Daniel Mellinger and Vijay Kumar. Minimum Snap Trajectory Generation and
Control for Quadrotors. In International Conference on Robotics and Automation,
2011.

[36] Daniel Mellinger, Nathan Michael, and Vijay Kumar. Trajectory Generation
and Control for Precise Aggressive Maneuvers with Quadrotors. In International
Symposium on Experimental Robotics, 2010.

[37] Nathan Michael, Daniel Mellinger, Quentin Lindsey, and Vijay Kumar. The GRASP
Multiple Micro UAV Testbed. IEEE Robotics and Automation Magazine, 17(3):56–
65, 2010.

[38] Fabian L. Mueller, Angela P. Schoellig, and Raffaello D’Andrea. Iterative Learn-
ing of Feed-Forward Corrections for High-Performance Tracking. In International
Conference on Intelligent Robots and Systems, 2012.

[39] Mark Muller, Sergei Lupashin, and Raffaello D’Andrea. Quadrocopter Ball Juggling.
In International Conference on Intelligent Robots and Systems, 2011.

[40] C. Nicol, C.J.B. Macnab, and A. Ramirez-Serrano. Robust Adaptive Control of a
Quadrotor Helicopter. Mechatronics, 21(6):927–938, 2011.

[41] Alan V Oppenheim and Ronald W Schafer. Discrete-Time Signal Processing. Pearson
Prentice Hall, third edition, 2010.

[42] Ivana Palunko and Rafael Fierro. Adaptive Control of a Quadrotor with Dynamic
Changes in the Center of Gravity. In IFAC World Congress, 2011.

[43] Pong-in Pipatpaibul and P R Ouyang. Application of Online Iterative Learning
Tracking Control for Quadrotor UAVs. ISRN Robotics, 2013:Article ID 476153, 2013.

[44] Paul Pounds, Robert Mahony, and Peter Corke. Modelling and Control of a Quad-
Rotor Robot. In Australasian Conference on Robotics and Automation, 2006.

[45] Paul Pounds, Robert Mahony, and Peter Corke. Modelling and control of a large
quadrotor robot. Control Engineering Practice, 18(7):691–699, July 2010.

[46] Caitlin Powers, Daniel Mellinger, Aleksandr Kushleyev, and Bruce Kothmann. In-
fluence of Aerodynamics and Proximity Effects in Quadrotor Flight. In International
Symposium on Experimental Robotics, 2012.

[47] Oliver Purwin and Raffaello D’Andrea. Performing and Extending Aggressive
Maneuvers Using Iterative Learning Control. Robotics and Autonomous Systems,
59(1):1–11, 2011.

[48] Robin Ritz, Mark W. Müller, Markus Hehn, and Raffaello D’Andrea. Cooperative
Quadrocopter Ball Throwing and Catching. In International Conference on Intelli-
gent Robots and Systems, 2012.

168

References

[49] Angela Schoellig, Markus Hehn, Sergei Lupashin, and Raffaello D’Andrea. Feasiblity
of Motion Primitives for Choreographed Quadrocopter Flight. In American Control
Conference, 2011.

[50] Angela Schoellig, Clemens Wiltsche, and Raffaello D’Andrea. Feed-Forward Param-
eter Identification for Precise Periodic Quadrocopter Motions. In American Control
Conference, 2012.

[51] Angela P Schoellig, Fabian L Mueller, and Raffaello D’Andrea. Optimization-
Based Iterative Learning for Precise Quadrocopter Trajectory Tracking. Autonomous
Robots, 33(1-2):103–127, 2012.

[52] J Schoukens and J Renneboog. Modeling the Noise Influence on the Fourier Coef-
ficients After a Discrete Fourier Transform. IEEE Transactions on Instrumentation
and Measurement, IM-35(3):278–286, 1986.

[53] Roland Siegwart, Illah R. Nourbakhsh, and Davide Scaramuzza. Autonomous Mobile
Robots. The MIT Press, second edition, 2011.

[54] A K Sinha, S Atyeo, A Schauenburg, A Rathore, B Quinn, and T Christoffersen.
Investigation of the Application of UAV Technology in Power Line Inspection. In
International UAV Systems Conference, 2006.

[55] Koushil Sreenath, Nathan Michael, and Vijay Kumar. Trajectory Generation and
Control of a Quadrotor with a Cable-Suspended Load A Differentially-Flat Hybrid
System. In International Conference on Robotics and Automation, 2013.

[56] Stefania Tonetti, Markus Hehn, Sergei Lupashin, and Raffaello D’Andrea. Dis-
tributed Control of Antenna Array with Formation of UAVs. In IFAC World
Congress, 2011.

[57] Tara Volgoi, Hayley Roberts, Lindsay Gerber, and Nathan Aswege. Tracking The
Future. In The Standard, pages 6–7. Vicon Motion Systems Ltd, first edition, 2011.

[58] Youqing Wang and Francis J. Doyle. Stability Analysis for Set-Point-Related Indirect
Iterative Learning Control. In Conference on Decision and Control, 2009.

[59] Youqing Wang, Furong Gao, and Francis J. Doyle. Survey on Iterative Learning
Control, Repetitive Control, and Run-to-Run Control. Journal of Process Control,
19(10):1589–1600, 2009.

[60] Steven L. Waslander, Gabriel M. Hoffmann, Jung Soon Jang, and Claire J.
Tomlin. Multi-Agent Quadrotor Testbed Control Design: Integral Sliding Mode
vs. Reinforcement Learning. In International Conference on Intelligent Robots and
Systems, 2005.

169

Paper V

An Iterative Learning Scheme for High

Performance, Periodic Quadrocopter

Trajectories

Markus Hehn and Raffaello D’Andrea

Abstract

Quadrocopters allow the execution of high-performance maneuvers under feed-
back control. However, repeated execution typically leads to a large part of the
tracking errors being repeated. This paper evaluates an iterative learning scheme
for an experiment where a quadrocopter flies in a circle while balancing an in-
verted pendulum. The scheme permits the non-causal compensation of periodic
errors when executing the circular motion repeatedly, and is based on a Fourier
series decomposition of the repeated tracking error and compensation input. The
convergence of the learning scheme is shown for the linearized system dynamics.
Experiments validate the approach and demonstrate its ability to significantly im-
prove tracking performance.

Published in Proceedings of the 2013 European Control Conference (ECC), 2013.

c©2013 EUCA. Personal use of this material is permitted. However, permission to reprint/republish
this material for advertising or promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must
be obtained from the European Control Association (EUCA).

171

Paper V. Iterative Learning Scheme for Periodic Trajectories

1. Introduction

The capability of quadrocopters to perform highly dynamic, complex, and precise motions

has been demonstrated repeatedly in recent years (see, for example, [12,14,15,18]). Such

motions are commonly executed by using a first-principles model of the vehicle dynamics

to determine nominal control inputs, and a feedback control law to ensure tracking of the

nominal trajectory.

In order to account for model mismatches, a number of learning schemes have been

developed. Examples include those based on sliding mode control and reinforcement

learning techniques [20], neural networks [5], and adaptive control [16].

When performing the same motion repeatedly, a further opportunity to improve track-

ing performance may arise because many of the disturbances that degrade tracking per-

formance will be similar each time the vehicle performs the motion. It is thus possible

to non-causally correct for these repeatable disturbances: By using data from previous

executions to characterize them, model-based correction inputs can be computed before

executing the motion again. Ideally, these correction inputs are able to fully compen-

sate for the repeatable disturbances, such that the feedback controller is only required to

compensate for non-repeatable disturbances.

Such iteration-based learning approaches have been successfully demonstrated for

multi-rotor vehicles performing high-performance maneuvers. Broadly speaking, the

learning approaches may be separated into two groups:

The first group is characterized by its ability to learn motions that are parameterized.

The motion is thus described by a (finite) set of design parameters, chosen by the user.

After the execution of the motion, these parameters are adapted to compensate for dis-

turbances. The direction and magnitude of the correction may be model-based, or based

on the user’s intuition. A discussion on the importance of choosing ‘good’ design pa-

rameters may be found in [10], where a learning algorithm for this kind of parameterized

motions is demonstrated for multiple flips and fast translations with quadrocopters. A

further demonstration of this class of learning algorithms is provided in [13]. The ability

to shape the tracking performance strongly depends on the number of parameters that

are optimized; in the above examples, the objective is to minimize the error at specific

time instants (‘key frames’), and a relatively small number of parameters is sufficient to

do so. This makes the methods computationally lightweight.

The second group of learning approaches considers more generic motions that need

not be specified by parameters. The system dynamics are considered in discrete time,

and the correction consists of correction values (typically control inputs or set points)

for each discrete time step. After execution of the motion, a numerical optimization over

the correction values is performed in order to minimize a metric related to the tracking

error. In this optimization, a model of the system dynamics provides the mapping from

corrections to the tracking error. This approach is commonly known as a form of iterative

learning control [3], and its application to high performance quadrocopter flight has been

demonstrated [17,19].

172

1. Introduction

The delimitation between the two groups is not strict. Indeed, the second group of

learning approaches could be seen as using a very large number of values to parameterize

the correction.

This paper evaluates a technique for non-causally compensating repeated, periodic

tracking errors. Specifically, we consider a motion where the linearized dynamics around

the nominal motion are time-invariant under an appropriate coordinate transformation.

Similar to the second group of learning algorithms, we do not assume a parameterized

motion. However, we reduce the dimensionality of the corrections that we intend to learn

by assuming that they are periodic. This allows us to parameterize the corrections as the

coefficients of a truncated Fourier series. The order of the Fourier series provides a means

to trade off computational complexity and the ability to compensate for temporally local

or high-frequency disturbances.

The specific motion considered in this paper consists of a quadrocopter balancing an

inverted pendulum and tracking a circular trajectory [7]. This problem is an interesting

platform for learning algorithms for multiple reasons: Due to the highly dynamic nature

of the motion and the agility required to balance the pendulum, the full range of the

vehicle dynamics is used. Due to relatively high flight speeds and fast vehicle attitude

changes, unmodeled aerodynamic effects (see e.g. [9]) significantly influence the dynamics

of the vehicle. Furthermore, the control system employs a time-varying coordinate system

transformation, the errors in which potentially introduce further periodic errors in the

feedback control loop.

The remainder of this paper is structured as follows: We explain our motivation for

developing the learning algorithm in Chapter 2 by introducing the flying inverted pen-

dulum experiment and recapitulating experimental results that highlight its performance

without learning. We then describe the iterative learning strategy in Chapter 3, and show

convergence of repeatable errors. Chapter 4 shows experimental results from the appli-

cation of the algorithm to the experiment. Finally, we summarize and discuss potential

research directions in Chapter 5.

x

y

z

V

O

Figure 1. The inertial coordinate system O and the vehicle coordinate system V, used to
describe the dynamics of the system.

173

Paper V. Iterative Learning Scheme for Periodic Trajectories

2. The Flying Inverted Pendulum Experiment

This chapter introduces the flying inverted pendulum [7], an experiment that demon-

strates the performance and agility of quadrocopters. This experiment is the motivation

behind the algorithm presented in Chapter 3, and is the basis for the experimental results

in Chapter 4. The objective of this experiment is to balance an inverted pendulum on a

quadrocopter while the vehicle flies horizontal circles. The derivations from [7] are repro-

duced here in abbreviated form for the purpose of completeness; the reader is referred to

the previously published paper for a more thorough discussion.

2.1 Dynamics

The quadrocopter is modeled as a rigid body with six degrees of freedom: Its position

(x, y, z) in the inertial coordinate system O, and its attitude, represented by the rotation

between the inertial coordinate system O and the body-fixed coordinate system V, as

shown in Figure 1. The rotation is parameterized by three Euler angles, representing

rotations about the z-axis (α), the y-axis (β) and the x-axis(γ), executed in this order:

O
VR(α, β, γ) = Rz(α)Ry(β)Rx(γ) . (1)

The control inputs are the rotational rates of the vehicle about the three body axes

(ωx, ωy, ωz) and the collective, mass-normalized thrust applied by the vehicle along its

body z-axis, (a; in units of acceleration). It follows that the differential equations gov-

erning the vehicle motion are

 ẍÿ
z̈

 = O
VR(α, β, γ)

 0

0

a

+

 0

0

−g

 (2)

 γ̇β̇
α̇

 =

 cos β cos γ − sin γ 0

cos β sin γ cos γ 0

− sin β 0 1


−1 ωxωy

ωz

 (3)

where g denotes gravitational acceleration.

The inverted pendulum is modeled as a point mass with two degrees of freedom,

chosen to be the horizontal position of the pendulum center of mass relative to its base

in O (r along the x-axis, s along the y-axis). Using Lagrangian mechanics, the nonlinear

equations of motion of the pendulum can be derived. In the interest of compactness, we

state only that the pendulum acceleration depends on its position and velocity, and the

174

2. The Flying Inverted Pendulum Experiment

vehicle acceleration: [
r̈

s̈

]
= h (r, s, ṙ, ṡ, ẍ, ÿ, z̈) . (4)

2.2 Coordinate Transformation for Circular Trajectories

The objective of the experiment is to fly circular trajectories while balancing the pen-

dulum. We introduced a transformation into rotating coordinate systems for the vehicle

position (C) and attitude (W) in [7]. It is then possible to transform the equations of

motion such that, for circular flight, the nominal states and the linearized dynamics about

them can be described in a time-invariant manner:xy
z

 =:

 cos Ωt − sin Ωt 0

sin Ωt cos Ωt 0

0 0 1


 uv
w

 (5)

O
VR(α, β, γ)

 0

0

1

 =: O
WR(Ωt, µ, ν)

 0

0

1

 (6)

[
r

s

]
=:

[
cos Ωt − sin Ωt

sin Ωt cos Ωt

] [
p

q

]
. (7)

A horizontal circle of radius R, flown at a constant rate Ω and at constant height,

is described by u = R, v = 0, and ẇ = 0. The quadrocopter and pendulum equations

of motion (2)-(4) can be rewritten in the rotating coordinate system using the above

transformations. It was shown that a nominal circular trajectory for pendulum and

quadrocopter is then given by the constant nominal state

µ̄ = arctan(−Ω2R

g
) (8)

ν̄ = 0 (9)

ā =

√
g2 + (Ω2R)2 (10)

q̄ = 0 (11)

Ω2(R + p̄) +
gp̄√
L2 − p̄2

= 0 (12)

where L represents the length of the pendulum from its base to its center of mass. The

vehicle yaw angle, α, is not defined by the motion, and may be chosen separately. In our

experiments, we chose a constant yaw angle α = 0.

175

Paper V. Iterative Learning Scheme for Periodic Trajectories

2.3 Feedback Control Design

About this constant nominal state, the dynamics of the quadrocopter-pendulum system in

the rotating C-W coordinate system were approximated by a first-order Taylor expansion.

We denote the system state under the coordinate transformation (5)-(7) by

x := (u, v, w, u̇, v̇, ẇ, α, µ, ν, p, q, ṗ, q̇) (13)

and use the transformed control input v := (a, µ̇, ν̇, α̇). The true rotational rate control

inputs (ωx, ωy, ωz) can be recovered for known values of v and x through Equations (6)

and (3). The linear dynamics resulting from a Taylor expansion about the nominal

trajectory are then time-invariant:

˙̃x =
∂f (x̄, v̄)

∂x
x̃ +

∂f (x̄, v̄)

∂v
ṽ (14)

where a tilde denotes small deviations from the nominal trajectory, and f (x̄, v̄) denotes

the system dynamics consisting of Equations (2)-(4) under the coordinate transforma-

tion (5)-(7). An infinite-horizon linear quadratic regulator [2] was designed to stabilize

the system around the nominal trajectory. We denote the resulting time-invariant state

feedback law by ṽ = Kx̃.

2.4 Flight Performance

Results from the previous experiment [7] demonstrate the ability of the presented control

system design to reliably stabilize the vehicle-pendulum system during circular flight.

However, significant trajectory tracking errors occur, as can be seen for an exemplary

experiment in Figure 2. Note that the errors contain two clearly distinguishable compo-

nents: A mean error, and an error that oscillates at the rate at which the circle is flown

(Ω). A possible explanation for these oscillating errors is the rotating coordinate sys-

tem transformation (5)-(7), which would map a constant error in the inertial coordinate

system to such an oscillating error in the rotating coordinate system.

Figure 2 also shows that the tracking error largely repeats for every round of the

circle that is flown: The experiment may be considered to be a periodic motion with

relatively large repeatable disturbances deteriorating the tracking performance of the

feedback control law. As discussed in Chapter 1, the repeatability of the disturbances

offers the opportunity to non-causally compensate for them. We develop a learning

algorithm for this purpose in the following chapter, and will revisit the above experiment

to present experimental results thereafter.

176

3. Learning Algorithm

Time t (s)

Error (m)

0 5 10 15

-0.4

-0.2

0

0.2

ũ

ṽ

p̃

q̃

Figure 2. Errors in the rotating coordinate system (from [7]): Pendulum position error (p̃, q̃)
and quadrocopter position error (ũ, ṽ). At t = 2 s, the controller is switched from a constant
nominal position to a circular trajectory with R = 0.1 m. Large repeating errors can be seen.

3. Learning Algorithm

The approach presented in this paper is conceptually similar to [10], which presents an

adaptation strategy to correct for state errors at discrete points in time of parameterized

motion primitives. However, we consider periodic errors (instead of errors at specific

points in time), and do not require parameterization of the maneuver. We propose a

correction strategy, and show that, under the assumption of linear time-invariant system

dynamics, this strategy indeed fully corrects for such recurring errors.

3.1 Core Concept

The core idea of the adaptation law presented herein is to measure the tracking error over

the period of the maneuver, and approximate it as a truncated Fourier series. In order

to compensate for recurring errors, a correction input – also consisting of a truncated

Fourier series – is applied to the system. For a known tracking error, the coefficients of

the correction input Fourier series are computed by inverting the linear time-invariant

dynamics of the system about the nominal trajectory. In order to increase the robustness

against non-repeatable disturbances, the adaptation law uses a step size, permitting a

trade-off between speed of convergence and noise rejection.

3.2 Adaptation Control Input

In addition to the state feedback control input, we apply an adaptation control input v̂

to the system. Using A and B to denote the derivatives with respect to the state and

177

Paper V. Iterative Learning Scheme for Periodic Trajectories

input, respectively, we can then rewrite Equation (14) as

˙̃x = Ax̃ +B (Kx̃ + v̂) (15)

= (A+BK)︸ ︷︷ ︸
=:Ā

x̃ +Bv̂ (16)

where Ā represents the closed-loop linearized dynamics of the system.

3.3 Propagation of Fourier Series Inputs Through the System

Now we will use the adaptation control input v̂ to non-causally compensate for repeated

disturbances. We parameterize this compensation by a Fourier series of order N and

fundamental frequency ω:

v̂ = r0 +
N∑
k=1

rk cos (kωt) +
N∑
k=1

sk sin (kωt) . (17)

It is straightforward to show that, to first order, the perturbation state x̃ in reaction

to this adaptation control input will also be a Fourier series of order N [4]:

x̃ = a0 +
N∑
k=1

ak cos (kωt) +
N∑
k=1

bk sin (kωt) (18)

and that the coefficients relate to the coefficients of the input by

0 = Āa0 +Br0 (19)

−kωak = Ābk +Bsk (20)

kωbk = Āak +Brk (21)

for k = 1 . . . N .

3.4 Iteration-Domain Feedback Law

Consider a tracking error output that is a linear combination of the states:

ỹ = Cx̃ . (22)

Our objective is to eliminate the effects of errors described by the Fourier series (18)

on the output. Due to the truncation of the Fourier series, higher-frequency components

are not considered, and the order of the series would have to be increased in order to

compensate for them.

178

3. Learning Algorithm

The dimension of ỹ is not defined by the problem, and may be chosen by the user as

the set of error outputs that should be minimized. If the dimension of ỹ is larger than

the dimension of the adaptation control input v̂, a full correction of all errors cannot be

expected.

The above equations (19)-(21) can be written in matrix form, and multiplied by C in

order to describe the output tracking errors (22):

[
B 0

0 B

] [
sk

rk

]
=

[−kω −Ā
−Ā kω

] [
ak

bk

]
(23)[

C 0

0 C

] [−kω −Ā
−Ā kω

]−1 [B 0

0 B

]
︸ ︷︷ ︸

=:J

[
sk

rk

]
=

[
C 0

0 C

] [
ak

bk

]
︸ ︷︷ ︸

=:ek

. (24)

The matrix J represents the linear mapping of input coefficients sk, rk to tracking

error output coefficients ek, and is the equivalent to the nominal maneuver Jacobian for

parameterized motions described in [10].

Let J+ denote the Moore-Penrose pseudoinverse [1] of J (in the special case that J

is square, J+ = J−1 holds). Note that the existence of the inverse is not given for all

systems. For the purpose of this paper however, we assume its existence and intend

to investigate this question further in the future. Assume that we have executed the

trajectory for iteration i − 1, and measured the tracking error ỹi−1. Let ei−1
k be the

Fourier coefficients of the tracking error output of iteration i− 1. The iteration-domain

feedback law is

[
sk

rk

]i
=

[
sk

rk

]i−1

− γJ+ei−1
k (25)

where γ is the step size parameter. The step size parameter can be used to trade off

convergence of errors and noise rejection. This may be necessary because ei−1
k usually

contains components caused by non-repetitive process noise and measurement errors, and

is therefore only an estimate of the true repeatable tracking error.

3.5 Convergence

Using the above feedback law, the tracking error Fourier coefficients ek evolve as follows:

eik = ei−1
k + J

([
sk

rk

]i
−
[
sk

rk

]i−1
)

(26)

= ei−1
k − γJJ+ei−1

k . (27)

If J+ is the right inverse of J (the interpretation of this is that there are not more

179

Paper V. Iterative Learning Scheme for Periodic Trajectories

tracking error outputs than adaptation control inputs), it follows that the tracking error

converges to zero for 0 < γ ≤ 1:

eik = (1− γ) ei−1
k . (28)

Note that if the tracking error dimension is lower than the input dimension, the cor-

rection term J+ek is the least-squares solution to an underconstrained set of equations [1],

implying that the Euclidian norm of the Fourier coefficients is minimized. By Parseval’s

theorem [8], this is equivalent to minimizing the energy of the correction input signal v̂.

Now consider the case where J+ is not the right inverse, implying that there are more

tracking error outputs than inputs. In this case, the error dynamics are

eik =
(
I − γJJ+

)
ei−1
k (29)

=
(
I − γJ

(
JTJ

)−1
JT
)
ei−1
k (30)

where I denotes the identity matrix and (·)T denotes the transpose of a matrix. Assuming

that J is full rank, we apply a singular value decomposition [1]:

J = U

[
Σ

0

]
V T (31)

eik =

(
I − γU

[
I 0

0 0

]
UT

)
︸ ︷︷ ︸

=:M

ei−1
k . (32)

Using a similarity transformation [1], we show that the error does not diverge by

computing the eigenvalues of M :

eig (M) = eig
(
UTMU

)
(33)

= eig

(
I − γ

[
I 0

0 0

])
(34)

= {1− γ, . . . , 1− γ, 1, . . . , 1} . (35)

This implies that, under the appropriate coordinate transformation, the tracking error

coefficients either reduce to zero over time, or remain constant. Note that because this

case implies fewer control inputs than tracking errors, it is to be expected that not all

components of the tracking error Fourier series can be driven to zero.

180

4. Experimental results

4. Experimental results

This chapter presents the application of the learning algorithm to the flying inverted

pendulum experiment introduced in Chapter 2. We start by presenting the experimental

setup, then discuss the implementation of the learning algorithm, and finally show results

obtained.

4.1 Experimental Setup

Experiments were carried out in the Flying Machine Arena, an aerial vehicle development

platform at ETH Zurich [11]. The quadrocopters used in the experiments are modified

Ascending Technologies ‘Hummingbird’ vehicles [6] equipped with custom electronics to

allow greater control over the low-level control algorithms. A small cup-shaped pendulum

mounting point is attached to the top of the vehicle, and the pendulum’s center of mass is

59 cm away from its base. A photograph of the experimental setup is shown in Figure 3.

An infrared motion tracking system measures the position and attitude of the vehicle, as

well as the position of the pendulum. A Luenberger observer is used to filter the sensory

data and provide full state information to the controller. The observer also compensates

for systematic latencies occurring in the control loop by using the control inputs to project

the system state into the future.

4.2 Implementation of the Learning Algorithm

The learning algorithm was implemented such that adaptation of the control inputs occurs

without interrupting the circling motion of the vehicle. Each iteration of the learning

algorithm consists of three steps:

1. Measure the tracking error ỹ for multiple circles. While measuring the error over

one circle would suffice, averaging it over several circles improves the rejection of

non-repetitive disturbances. In our experiments, the tracking error was measured

and averaged over three circles.

2. Compute the updated input correction Fourier series v̂ according to Equation (25).

3. Wait for several circles to allow the system to converge under the new input cor-

rection. Our experiments showed that this step is important in order to correctly

measure the systematic tracking error in the next iteration. For the experiments

presented in this paper, we chose to wait for two circles before starting the error

measurement for the next iteration.

We chose the tracking error output to be the vehicle position error in the rotating coordi-

nate system: ỹ = (ũ, ṽ, w̃). This implies that the objective is for the vehicle to correctly

track the horizontal circle in size, phase, and height. The nominal trajectory was set to a

circle radius R of 0.3 m. Errors in the pendulum position p̃, q̃ are not penalized in these

experiments.

181

Paper V. Iterative Learning Scheme for Periodic Trajectories

Figure 3. Photograph of experiments: The vehicle flying a circle while balancing the inverted
pendulum.

The update rate γ was chosen to be 0.3, a value that showed a good trade-off between

noise rejection and speed of convergence in our experiments. The order of the error and

input Fourier series, N , was varied during experiments. It was found that orders higher

than N = 1 had little impact on the tracking performance during our experiments.

Iteration Number i

E
rr

o
r

C
o
effi

ci
en

t
N

o
rm

0 2 4 6 8 10
0

0.2

0.4

Figure 4. Evolution of the tracking error output Fourier coefficients during learning. The
lines shown represent the Euclidian norm of the Fourier coefficients: ||Ca0|| (solid blue), ||Ca1||
(dashed green) and ||Cb1|| (dotted red). Higher order terms are significantly smaller, and have
been omitted in this figure.

182

5. Conclusion and Outlook

4.3 Results

The circular motion of the pendulum was started with all correction coefficients set to

zero, i.e. v̂ = 0. Figure 4 shows the Euclidian norm of the error Fourier series coefficients

over ten iterations. It can be seen that initial tracking performance is relatively poor with

peak tracking errors of 64 cm. The errors are then quickly reduced over the first three

iterations, after which non-repeatable disturbances cause them to vary from iteration

to iteration while small improvements are made. After ten iterations of the learning

algorithm, the peak tracking error is reduced to 11 cm, and subsequent iterations do not

improve tracking performance significantly.

Figure 5 shows the flight path of the vehicle in the horizontal plane before learning

and after the tenth learning iteration. Note that the initial flight path shows large errors,

with the flown circle being much too large, shifted from the desired centre point, and

warped. After ten learning iterations, the tracking performance has improved consid-

erably, although remaining, largely unrepeatable, disturbances still prevent the vehicle

from following the trajectory perfectly.

5. Conclusion and Outlook

This paper evaluated an iterative adaptation scheme that improves tracking performance

when periodic disturbances cause poor tracking under feedback control. We have derived

convergence properties for the presented method, and have shown that our approach

greatly improves performance in an experiment where a quadrocopter balances an in-

verted pendulum while flying circles.

The method was presented with a focus on the specific problem of trajectories for

quadrocopters, and a number of assumptions were made in order to simplify derivations.

As is, the method is limited to dynamic systems where the linearization around the

nominal trajectory is – under an appropriate coordinate transformation – time-invariant.

We intend to investigate transferability to more general system descriptions, and hope to

perform more experiments to verify its applicability to other problems.

One open question is the choice of the order of the Fourier series used to represent

tracking errors and correction inputs. While we chose the order manually for our exper-

iments, more systematic approaches could be considered.

Furthermore, it would be worthwhile to investigate whether learnt correction values

could be transferred to similar maneuvers, as proposed for Iterative Learning Control

in [17]. This would be particularly applicable to our experiment because attempts to fly

large circles with the inverted pendulum currently lead to crashes before learning permits

correct tracking of the trajectory.

183

Paper V. Iterative Learning Scheme for Periodic Trajectories

Vehicle Position x (m)

V
eh

ic
le

P
os

it
io

n
y

(m
)

-0.5 0 0.5

-0.6

-0.4

-0.2

0

0.2

0.4

Figure 5. Horizontal flight trajectory of the quadrocopter over two rounds of the circular
trajectory. The dashed blue line shows the flight path before learning, the solid red line shows
flight after ten iterations of learning. The nominal trajectory is shown in dotted black. Errors
in height are not shown; they were reduced from a maximum error of 0.42 m to a maximum
of 0.01 m.

References

[1] Dennis S. Bernstein. Matrix Mathematics. Princeton University Press, 2005.

[2] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control, Vol. I. Athena
Scientific, third edition, 2005.

[3] Douglas A Bristow, Marina Tharayil, and Andrew G Alleyne. A Survey of Iterative
Learning Control. Control Systems Magazine, 26(3):96–114, 2006.

[4] Chi-Tsong Chen. Linear System Theory and Design. Oxford University Press, 3rd
edition, 1998.

[5] Travis Dierks and Sarangapani Jagannathan. Output Feedback Control of a Quadro-
tor UAV Using Neural Networks. IEEE Transactions on Neural Networks, 21(1):50–
66, 2010.

[6] Daniel Gurdan, Jan Stumpf, Michael Achtelik, Klaus-Michael Doth, Gerd Hirzinger,
and Daniela Rus. Energy-Efficient Autonomous Four-Rotor Flying Robot Controlled
at 1 kHz. In International Conference on Robotics and Automation, 2007.

[7] Markus Hehn and Raffaello D’Andrea. A Flying Inverted Pendulum. In International
Conference on Robotics and Automation, 2011.

[8] Hwei P. Hsu. Schaum’s Outline of Signals and Systems. McGraw-Hill, 1995.

[9] Haomiao Huang, Gabriel M. Hoffmann, Steven L. Waslander, and Claire J. Tomlin.
Aerodynamics and Control of Autonomous Quadrotor Helicopters in Aggressive
Maneuvering. In International Conference on Robotics and Automation, 2009.

184

References

[10] Sergei Lupashin and Raffaello D’Andrea. Adaptive Fast Open-Loop Maneuvers for
Quadrocopters. Autonomous Robots, 33(1-2):89–102, 2012.

[11] Sergei Lupashin, Angela P. Schoellig, Markus Hehn, and Raffaello D’Andrea. The
Flying Machine Arena as of 2010. In International Conference on Robotics and
Automation, 2011.

[12] D. Mellinger, N. Michael, and V. Kumar. Trajectory Generation and Control
for Precise Aggressive Maneuvers with Quadrotors. The International Journal of
Robotics Research, 31(5):664–674, 2012.

[13] Daniel Mellinger, Nathan Michael, and Vijay Kumar. Trajectory Generation
and Control for Precise Aggressive Maneuvers with Quadrotors. In International
Symposium on Experimental Robotics, 2010.

[14] Nathan Michael, Daniel Mellinger, Quentin Lindsey, and Vijay Kumar. The GRASP
Multiple Micro UAV Testbed. IEEE Robotics and Automation Magazine, 17(3):56–
65, 2010.

[15] Mark Muller, Sergei Lupashin, and Raffaello D’Andrea. Quadrocopter Ball Juggling.
In International Conference on Intelligent Robots and Systems, 2011.

[16] Ivana Palunko and Rafael Fierro. Adaptive Control of a Quadrotor with Dynamic
Changes in the Center of Gravity. In IFAC World Congress, 2011.

[17] Oliver Purwin and Raffaello D’Andrea. Performing and Extending Aggressive
Maneuvers Using Iterative Learning Control. Robotics and Autonomous Systems,
59(1):1–11, 2011.

[18] Robin Ritz, Mark W. Müller, Markus Hehn, and Raffaello D’Andrea. Cooperative
Quadrocopter Ball Throwing and Catching. In International Conference on Intelli-
gent Robots and Systems, 2012.

[19] Angela P Schoellig, Fabian L Mueller, and Raffaello D’Andrea. Optimization-
Based Iterative Learning for Precise Quadrocopter Trajectory Tracking. Autonomous
Robots, 33(1-2):103–127, 2012.

[20] Steven L. Waslander, Gabriel M. Hoffmann, Jung Soon Jang, and Claire J.
Tomlin. Multi-Agent Quadrotor Testbed Control Design: Integral Sliding Mode
vs. Reinforcement Learning. In International Conference on Intelligent Robots and
Systems, 2005.

185

Paper VI

A Flying Inverted Pendulum

Markus Hehn and Raffaello D’Andrea

Abstract

We extend the classic control problem of the inverted pendulum by placing the
pendulum on top of a quadrotor aerial vehicle. Both static and dynamic equilibria
of the system are investigated to find nominal states of the system at standstill and
on circular trajectories. Control laws are designed around these nominal trajec-
tories. A yaw-independent description of quadrotor dynamics is introduced, using
a ‘Virtual Body Frame’. This allows for the time-invariant description of curved
trajectories. The balancing performance of the controller is demonstrated in the
ETH Zurich Flying Machine Arena testbed. Development potential for the future is
highlighted, with a focus on applying learning methodology to increase performance
by eliminating systematic errors that were seen in experiments.

Published in Proceedings of the 2011 IEEE International Conference on Robotics and

Automation (ICRA), 2011. The publication includes a multimedia attachment available

at www.hehn.be and ieeexplore.ieee.org.

DOI: 10.1109/ICRA.2011.5980244

c©2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

187

Paper VI. A Flying Inverted Pendulum

1. Introduction

The inverted pendulum is a classic control problem, offering one of the most intuitive,

easily describable and realizable nonlinear unstable systems. It has been investigated for

several decades (see, for example, [11], and references therein). It is frequently used as a

demonstrator to showcase theoretical advances, e.g. in reinforcement learning [6], neural

networks [14], and fuzzy control [13].

In this paper, we develop a control strategy that enables an inverted pendulum to

balance on top of a quadrotor. Besides being a highly visual demonstration of the dynamic

capabilities of modern quadrotors, the solution to such a complex control problem offers

insight into quadrotor control strategies, and could be adapted to other tasks.

Quadrotors offer exceptional agility. Thanks to the off-center mounting of the pro-

pellers, extraordinarily fast rotational dynamics can be achieved. This is combined with

typically high thrust-to-weight ratios, resulting in large achievable translational acceler-

ations when not carrying a payload.

While most early work on quadrotors focused on near-hover operation (e.g. [5], and

references therein), a growing community is working on using the full dynamical potential

of these vehicles. Flips have been executed by several groups, some focusing on speed and

autonomous learning [7] and some on safety guarantees [3]. Other complex maneuvers,

including flight through windows and perching have been demonstrated [8].

In Section 2, we introduce the dynamic models used in the controller design. Section 3

presents static and dynamic nominal trajectories for the quadrotor to follow. The dynam-

ics are then linearized around these trajectories in Section 4, and linear state feedback

controllers are designed in Section 5. The experimental setup and results are shown in

Section 6 and conclusions are drawn in Section 7, where an outlook is also presented.

2. Dynamics

We derive the equations of motion of the quadrotor and the inverted pendulum for the

trajectory-independent general case.

Given that the mass of the pendulum is small compared to the mass of the quadrotor,

it is reasonable to assume that the pendulum’s reactive forces on the quadrotor are

negligible. The dynamics of the quadrotor, then, do not depend on the pendulum, whereas

the dynamics of the pendulum are influenced by the motion of the quadrotor. This

assumption is justified by the experimental setup, with the weight of the pendulum being

less than 5% of that of the quadrotor vehicle.

2.1 Quadrotor

The quadrotor is described by six degrees of freedom: The translational position (x, y,

z) is measured in the inertial coordinate system O as shown in Figure 1. The vehicle

188

2. Dynamics

x

y

z

V

O

Figure 1. The inertial coordinate system O and the vehicle coordinate system V.

attitude V is defined by three Euler angles. From the inertial coordinate system, we

first rotate around the z-axis by the yaw angle α. The coordinate system is then rotated

around the new y-axis by the pitch angle β, and finally rotated about the new x-axis by

the roll angle γ:

O
VR(α, β, γ) = Rz (α)Ry (β)Rx (γ) , (1)

where

Rx (γ) =

 1 0 0

0 cos γ − sin γ

0 sin γ cos γ

 , (2)

Ry (β) =

 cos β 0 sin β

0 1 0

− sin β 0 cos β

 , (3)

Rz (α) =

 cosα − sinα 0

sinα cosα 0

0 0 1

 . (4)

The translational acceleration of the vehicle is dictated by the attitude of the vehicle

and the total thrust produced by the four propellers. With a representing the mass-

normalized collective thrust, the translational acceleration in the inertial frame is ẍÿ
z̈

 = O
VR(α, β, γ)

 0

0

a

+

 0

0

−g

 . (5)

189

Paper VI. A Flying Inverted Pendulum

The vehicle attitude is not directly controllable, but it is subject to dynamics. The

control inputs are the desired rotational rates about the vehicle body axes, (ωx, ωy, ωz),

and the mass-normalized collective thrust, a, as shown in Figure 2. High-bandwidth

controllers on the vehicle track the desired rates using feedback from gyroscopes. The

quadrotor has very low rotational inertia, and can produce high torques due to the out-

ward mounting of the propellers, resulting in very high achievable rotational accelerations

on the order of 200 rad s−2. The vehicle has a fast response time to changes in the desired

rotational rate (experimental results have shown time constants on the order of 20 ms).

We will therefore assume that we can directly control the vehicle body rates and ignore

rotational acceleration dynamics. As with the vehicle body rates, we assume that the

thrust can be changed instantaneously. Experimental results have shown that the true

thrust dynamics are about as fast as the rotational dynamics, with propeller spin-up

being noticeably faster than spin-down.

The rates of the Euler angles are converted to the vehicle body coordinate system V

through their respective transformations:ωxωy
ωz

 =

 γ̇0
0

+R−1
x (γ)

 0

β̇

0

+R−1
x (γ)R−1

y (β)

 0

0

α̇

 . (6)

The above can be written more compactly by combining the Euler rates into a single

vector, calculating the relevant rows of the rotation matrices, and solving for the Euler

angle rates:  γ̇β̇
α̇

 =

 cos β cos γ − sin γ 0

cos β sin γ cos γ 0

− sin β 0 1


−1 ωxωy

ωz

 . (7)

2.2 Inverted Pendulum

The pendulum has two degrees of freedom, which we describe by the translational position

of the pendulum center of mass relative to its base in O (r along the x-axis, s along the

y-axis). For notational simplicity, we describe the relative position of the pendulum along

the z-axis as

ζ :=
√
L2 − r2 − s2 , (8)

where L to denotes the length from the base of the pendulum to its center of mass. We

model the pendulum as an inertialess point mass that is rigidly attached to the mass

center of the quadrotor, such that rotations of the vehicle do not cause a motion of the

pendulum base. In the experimental setup, the point that the pendulum is attached to is

mounted off-center by about 10% of the length of the pendulum. While this assumption

causes modeling errors, it simplifies the dynamics to such a great extent that the problem

190

2. Dynamics

ωx

ωy ωz

a

Figure 2. The control inputs of the quadrotor: The rotational rates ωx, ωy, and ωz are tracked
by an on-board controller, using gyroscope feedback.

becomes much more tractable. The Lagrangian [9] of the pendulum can be written as

L =
1

2

(
(ẋ+ ṙ)2 + (ẏ + ṡ)2 + (ż − rṙ + sṡ

ζ
)2

)
− g (z + ζ) ,

(9)

where we assume unit pendulum mass without loss of generality. The first term

represents the kinetic energy of the pendulum, and the second the potential energy. The

full, nonlinear dynamic equations can be derived from L using conventional Lagrangian

mechanics:

d

dt

(
∂L

∂ṙ

)
− ∂L

∂r
= 0 (10)

d

dt

(
∂L

∂ṡ

)
− ∂L

∂s
= 0 , (11)

resulting in a system of equations of the form

[
r̈

s̈

]
= f (r, s, ṙ, ṡ, ẍ, ÿ, z̈) , (12)

where f are the nonlinear equations (13) and (14).

2.3 Combined dynamics

The full dynamics of the combined system are described entirely by Equations (5), (7),

and (12). The three body rate control inputs (ωx, ωy, ωz) control the attitude V of the

191

Paper VI. A Flying Inverted Pendulum

r̈ =
1

(L2 − s2)ζ2

(
− r4ẍ−

(
L2 − s2

)2
ẍ

− 2r2
(
sṙṡ+

(
−L2 + s2

)
ẍ
)

+ r3
(
ṡ2 + ss̈− ζ (g + z̈)

)
(13)

+ r
(
−L2ss̈+ s3s̈+ s2

(
ṙ2 − ζ (g + z̈)

)
+ L2

(
−ṙ2 − ṡ2 + ζ (g + z̈)

)))
s̈ =

1

(L2 − r2)ζ2

(
− s4ÿ −

(
L2 − r2

)2
ÿ

− 2s2
(
rṙṡ+

(
−L2 + r2

)
ÿ
)

+ s3
(
ṙ2 + rr̈ − ζ (g + z̈)

)
(14)

+ s
(
−L2rr̈ + r3r̈ + r2

(
ṡ2 − ζ (g + z̈)

)
+ L2

(
−ṙ2 − ṡ2 + ζ (g + z̈)

)))

vehicle in a nonlinear fashion. This attitude, combined with the thrust a, controls the

translational acceleration of the vehicle. While the acceleration drives the translational

motion of the vehicle linearly, it also drives the motion of the pendulum through nonlinear

equations. The combined system consists of thirteen states (three rotational and six

translational states of the quadrotor, and four states of the pendulum), and four control

inputs (three body rates, and the thrust).

3. Nominal trajectories

In this section, we find static and dynamic equilibria of the system that satisfy Equations

(5), (7), and (12). These are used as nominal trajectories to be followed by the quadrotor.

Corresponding nominal control inputs are also described. We denote nominal values by

a zero index (x0, r0, etc.).

3.1 Constant position

In a first case, we require x0, y0, and z0 to be constant. Substituting these constraints

into (5), it can be seen that β0 = 0 and γ0 = 0 solve the equations with a0 = g, while α0

can be chosen freely. We arbitrarily choose to set α0 = 0.

Using the given angles (α0, β0, γ0), equation (7) can be solved with the body rate

control inputs being ωx0 = ωy0 = ωz0 = 0.

Inserting the nominal states (x0, y0, z0) into the pendulum equations of motion (12),

they simplify to

r̈ = r
gζ3 − L2 (ṙ2 + ṡ2) + (sṙ − rṡ)2

L2ζ2
, (15)

s̈ = s
gζ3 − L2 (ṙ2 + ṡ2) + (sṙ − rṡ)2

L2ζ2
. (16)

192

3. Nominal trajectories

These equations are solved by the static equilibrium

r = r0 = 0 (17)

s = s0 = 0, (18)

meaning that, as expected, the inverted pendulum is exactly over the quadrotor.

3.2 Circular trajectory

As a second nominal trajectory, the quadrotor is required to fly a circle of a given radius R

at a constant rotational rate Ω, at a constant altitude z0.

We seek to transform the equations of motion into different coordinate systems, such

that the nominal states and the linearized dynamics about them can be described in a

time-invariant manner.

To describe the vehicle position, the following coordinate system C is introduced,

with (u, v, w) describing the position in C:

xy
z

 =: Rz (Ωt)

 uv
w

 =

 cos Ωt − sin Ωt 0

sin Ωt cos Ωt 0

0 0 1


 uv
w

 . (19)

To describe the vehicle attitude, a second set of Euler angles is introduced, describing

the ‘virtual body frame’ W and named η, µ, and ν:

O
WR(η, µ, ν) = Rz (η)Ry (µ)Rx (ν) , (20)

subject to the constraint that

O
VR(α, β, γ)

 0

0

1

 = O
WR(η, µ, ν)

 0

0

1

 . (21)

The above equation defines values for three elements of the rotation matrices. As every

column of a rotation matrix has unit norm [12], however, this equation only defines two

of the angles (η, µ, ν).

Comparing the constraint (21) with the translational equation of motion of the vehi-

cle (5), it is straightforward to see that the virtual body frame W represents an attitude

that is constrained such that it effects the same translational motion of the quadrotor as

the vehicle attitude V. The remaining degree of freedom represents the fact that rota-

tions about the axis along which ωz acts have no affect on the quadrotors translational

motion.

Applying (19), its derivatives, (21), and setting the free parameter η = Ωt, the quad-

193

Paper VI. A Flying Inverted Pendulum

rotor equation of motion (5) simplifies to

 üv̈
ẅ

 =

 a sinµ cos ν + Ω2u+ 2Ωv̇

−a sin ν − 2Ωu̇+ Ω2v

a cosµ cos ν − g

 . (22)

The circular trajectory is described by u0 = R, v0 = 0, and ẇ0 = 0. Using these

values, the nominal Euler angles µ0 and ν0, and the nominal thrust a0 can be calculated:

µ0 = arctan(−Ω2R

g
) , (23)

ν0 = 0 , (24)

a0 =

√
g2 + (Ω2R)2 . (25)

Knowing the nominal values for (η0, µ0, ν0), we solve for (α0, β0, γ0) using Equation (21).

Analogous to the constant position case, we set α0 = 0, simplifying (21) to

 sin β0 cos γ0

− sin γ0

cos β0 cos γ0

 =

 cos Ωt sinµ0 cos ν0 + sin Ωt sin ν0

sin Ωt sinµ0 cos ν0 − cos Ωt sin ν0

cosµ0 cos ν0

 , (26)

which can be solved for β0 and γ0. This completes the description of the nominal states

required for the translational motion (5): In the coordinate systems C and W, the

nominal position and attitude are constant. Using Equations (19) and (26), the time-

varying nominal states in O and V may be found.

To calculate the rotational rate control inputs in Equation (7), we take the first

derivative of Equation (26). It can be shown that

β̇0 =
RΩ3 cos−1γ0(tan β0 tan γ0 cos(Ωt) + cos−1β0 sin(Ωt))√

g2 + (Ω2R)2
(27)

γ̇0 =
RΩ3 cos−1γ0 cos(Ωt)√

g2 + (Ω2R)2
. (28)

Combining these equations with the results from Equations (26) and (7), the nominal

states can be solved for the nominal control inputs (ωx0, ωy0, ωz0). The full derivation is

made available online at www.idsc.ethz.ch/people/staff/hehn-m .

194

4. Dynamics about nominal trajectories

Identically to the vehicle, the pendulum relative coordinates r and s are rotated by Ωt:

[
r

s

]
=:

[
cos Ωt − sin Ωt

sin Ωt cos Ωt

] [
p

q

]
. (29)

Applying this rotation to the Lagrangian derivations of the motion of the pendulum

(10), (11) and setting the base motion (ẍ, ÿ, z̈) to the circular trajectory, the pendulum

dynamics can be shown to be

p

(
pp̈+ ṗ2 + qq̈ + q̇2

ζ2
+
q2q̇2 + p2ṗ2 + 2pqṗq̇

ζ4
− g

ζ
− Ω2

)
+ p̈− 2Ωq̇ −RΩ2 = 0

(30)

q

(
qq̈ + q̇2 + pp̈+ ṗ2

ζ2
+
p2ṗ2 + 2pqṗq̇ + q2q̇2

ζ4
− g

ζ
− Ω2

)
+ q̈ + 2Ωṗ = 0

(31)

We seek a solution where ṗ0 = q̇0 = p̈0 = q̈0 = 0, leading to the following constraints

for equilibrium points:

Ω2(q0) +
gq0
ζ0

= 0 , (32)

Ω2(R + p0) +
gp0

ζ0
= 0 . (33)

The only solution to the first equation is q0 = 0. The second equation defines a nonlin-

ear relationship between Ω, R, and p0, with a solution p0 always existing in the range

−R ≤ p0 ≤ 0. This result is intuitive: The center of mass of the pendulum must lie to-

wards the center of the circle, such that the centripetal force acting on it is compensated

for by gravity. If the center of mass were to lie further than R inwards, the centripetal

force would change sign, making the pendulum fall.

4. Dynamics about nominal trajectories

Linear approximate dynamics are derived through a first-order Taylor expansion of the

equations of motion (5), (7), and (12) about the nominal trajectories found in Section

3. We denote small deviations by a tilde (x̃, r̃, etc.). We present only the resulting

linearized dynamics. The corresponding derivations are not shown in this paper due to

space constraints, but are made available online.

4.1 Constant position

Assuming a constant nominal position and zero yaw angle, the three translational degrees

195

Paper VI. A Flying Inverted Pendulum

of freedom of the quadrotor-pendulum system decouple entirely along the three axes of

the O coordinate system, resulting in the following equations:

¨̃r = r̃
g

L
− β̃g (34)

¨̃s = s̃
g

L
+ γ̃g (35)

¨̃x = β̃g (36)

¨̃y = −γ̃g (37)

˙̃β = ω̃y (38)

˙̃γ = ω̃x (39)

¨̃z = ã (40)

The two horizontal degrees of freedom represent fifth-order systems, with the vehicle

forming a triple integrator from the body rate to its position. The vertical motion is

represented by a double integrator from thrust to position.

4.2 Circular trajectory

To derive linear dynamics about the circular trajectory, the Euler angle rates ˙̃µ and ˙̃ν

are treated as control inputs. Solving the time-derivative of equation (21) (analogously

to solutions (27) and (28) for the nominal case) allows the calculation of (˙̃β, ˙̃γ). These

can then be converted to the true inputs (ω̃x, ω̃y, ω̃z) using Equation (7).

In contrast to a constant nominal position, the dynamics on a circular trajectory do

not decouple. The linearized equations of motion can be shown to be

¨̃p =
ζ2
0

L2

[
p̃(Ω2 +

gL2

ζ3
0

) + 2 ˙̃qΩ+

µ̃(−p0

ζ0
a0 sinµ0 − a0 cosµ0) + ã(

p0

ζ0
cosµ0 − sinµ0)

] (41)

¨̃q = q̃(Ω2 +
g

ζ0
)− 2 ˙̃pΩ + ν̃a0 (42)

¨̃u = ã sinµ0 + µ̃a0 cosµ0 + 2 ˙̃vΩ + ũΩ2 (43)

¨̃v = −ν̃a0 − 2 ˙̃uΩ + ṽΩ2 (44)

¨̃w = ã cosµ0 − µ̃a0 sinµ0 (45)

We observe that the linearized dynamics are indeed time-invariant in the coordinate

systems C and W.

The above equations reduce to Equations (34) – (40) if setting R = 0 and Ω = 0.

If R = 0, Ω is a free parameter (see Equation (33)), allowing the description of the

dynamics (34) – (40) in a rotating coordinate system.

196

5. Controller Design

5. Controller Design

We design linear full state feedback controllers to stabilize the system about its nominal

trajectories. We use an infinite-horizon linear-quadratic regulator (LQR) design [1] and

determine suitable weighting matrices.

5.1 Constant position

Because the system is decoupled in its nominal state, the control design process can be

separated. The two horizontal degrees of freedom are single-input, five-state systems. The

vertical degree of freedom is a single-input, two-state system. Although simpler design

methods exist for such systems, LQR is used to make the results easily transferable to the

design for a circular trajectory. We design a lateral controller that is identically applied

to the x̃-r̃-system and the ỹ-s̃-system (except for different signs mirroring the signs in

the equations of motion (34)–(37)). A controller for the vertical direction is designed

separately.

For the lateral controllers, we penalize only the vehicle position (x̃ or ỹ) and the control

effort (ω̃y or ω̃x). There is no penalty on the pendulum state. One tuning parameter

remains: The ratio of the penalties on position and control effort controls the speed at

which the position set point is tracked. Values for this ratio are tuned manually until

the system shows fast performance, without saturating the control inputs. This tuning

is initially carried out in simulation, and then refined on the experimental setup.

The vertical controller is tuned much in the same manner as the lateral controller.

Here again, we tune only the ratio between penalties on position errors and control effort

until satisfying performance is achieved.

5.2 Circular trajectory

On the circular trajectory, the system represents a thirteen-state system with three control

inputs that cannot readily be decoupled. To more easily tune the weighting matrices, we

use the same approach as in the constant position case and penalize only the position

errors (ũ, ṽ, and w̃) and control effort (˙̃µ, ˙̃ν, and ã). The relative size of weights on control

inputs and states is carried over from the standstill design. Because the controller for the

vertical axis was tuned separately in the standstill case, the relative size of the penalties

on the horizontal positions (ũ, ṽ) and the vertical position (w̃) is adapted. Again, this is

first carried out in simulation and then improved upon using the experimental testbed.

6. Experimental results

The algorithms presented herein were implemented in the Flying Machine Arena, an aerial

vehicle development platform at ETH Zurich [7]. We present results demonstrating the

performance of the controllers designed in the previous Section.

197

Paper VI. A Flying Inverted Pendulum

6.1 Experimental setup

We use modified Ascending Technologies ‘Hummingbird’ quadrotors [4]. The vehicles are

equipped with custom electronics, allowing greater control of the vehicle’s response to

control inputs, a higher dynamic range, and extended interfaces [7]. A small cup-shaped

pendulum mounting point is attached to the top of the vehicle, approximately 5 cm above

the geometrical center of the vehicle. The pendulum can rotate freely about the mounting

point up to an angle of approximately 50 degrees. At larger angles, the mounting point

offers no support and the pendulum falls off the vehicle.

Commands are sent through a proprietary low-latency 2.4 GHz radio link at a fre-

quency of 50 Hz. Command loss is in the range of 0.1%. An infrared motion tracking

system provides precise vehicle position and attitude measurements at 200 Hz, using

Figure 3. The quadrotor balancing the pendulum, at standstill. The mass center is about
half-length of the pendulum.

198

6. Experimental results

Time t (s)

Error (m)

0 5 10 15

-0.2

0

0.2

x̃

ỹ

r̃

s̃

Figure 4. State errors during balancing: Pendulum position error (r̃, s̃) and quadrotor position
error (x̃, ỹ). The pendulum is manually placed on the vehicle at approximately t = 4.25 s, and
the balancing controller is switched on at approximately t = 4.75 s.

retro-reflective markers mounted to the vehicle. The total closed-loop latency is approx-

imately 30 ms.

The inverted pendulum consists of a carbon fiber tube, measuring 1.15 m in length.

The top end of the pendulum carries a retro-reflective marker, allowing the position of

this point to be determined through the motion tracking system in the same manner as

vehicles are located. The center of mass of the pendulum is 0.565 m away from its base.

Figure 3 shows the quadrotor and the pendulum.

Conventional desktop computers are used to run all control algorithms, with one com-

puter acting as an interface to the testbed. Data is exchanged over Ethernet connections.

A Luenberger observer is used to filter the sensory data and provide full state information

to the controller. The observer also compensates for systematic latencies occurring in the

control loop, using the known control inputs to project the system state into the future.

6.2 Constant position

Experiments are initialized by manually placing the pendulum on the mounting point.

The vehicle holds a constant position using a separate controller, waiting for the pendu-

lum. The balancing controller is switched on if r̃ and s̃ are sufficiently small for 0.5 sec-

onds.

Figure 4 shows the pendulum position errors (r̃, s̃) and the horizontal quadrotor posi-

tion errors (x̃, ỹ). The pendulum is placed on the vehicle at approximately t = 4.25 s, and

the control is switched from position holding to balancing at approximately t = 4.75 s.

The pendulum position errors are relatively large in the beginning, but quickly converge

to values close to zero. The vehicle settles at a stationary offset on the order of 5 cm

from the desired position. Note that the balancing controller does not provide feedback

199

Paper VI. A Flying Inverted Pendulum

on integrated errors. The main suspected reason for these steady-state errors are mis-

calibrations in the system: Errors in the vehicle attitude measurement lead to the linear

controller trading off the attitude error and the position error, and biased measurements

of the on-board gyroscopes result in a biased response to control inputs.

Though originally designed for a constant position, this controller has been success-

fully tested for set point tracking at moderate speeds. A video of this is available online

at www.idsc.ethz.ch/people/staff/hehn-m .

6.3 Circular trajectory

We arbitrarily choose to set p0 = −R
2

, bringing the center of mass of the pendulum half-

way between the vehicle and the circle center, nominally. Assuming a given R, this fixes Ω

through the equilibrium constraint (33). Figure 5 shows the system performance when

circling. The pendulum is first balanced at a constant position. At t = 2 s, a switch to a

circular nominal trajectory and a corresponding controller occurs, with R = 0.1 m. The

controller is seen to stabilize the pendulum, with the pendulum relative position errors

in the rotating coordinate system (p, q) converging to non-zero values. The vehicle errors

show two distinct components: Like the pendulum errors, there is a non-zero mean error.

Additionally, the error oscillates at the rotational rate Ω, representing a near-constant

position error in an inertial coordinate system. Figure 6 shows a comparison of the actual

and nominal trajectories of the vehicle and pendulum in the inertial coordinate system O.

It confirms that the oscillating errors in the rotating coordinate system are constant

position errors in the inertial coordinate system, with a magnitude of approximately 0.1m.

The mean errors in C are represented by the circle radius being significantly larger than

the nominal value R.

Time t (s)

Error (m)

0 5 10 15

-0.4

-0.2

0

0.2

ũ

ṽ

p̃

q̃

Figure 5. Errors in the rotating coordinate system: Pendulum position error (p̃, q̃) and quad-
rotor position error (ũ, ṽ). The pendulum is balanced by the quadrotor during the entire duration
shown on this plot. At t = 2 s, the controller is switched from a constant nominal position to a
circular trajectory with R = 0.1 m.

200

6. Experimental results

A video showing the experiments of both cases presented herein is available online at

www.idsc.ethz.ch/people/staff/hehn-m .

6.4 Comparison with simulation results

The controllers have also been tested in simulation. The Flying Machine Arena software

environment allows the testing of controllers by simply re-routing the controller’s out-

puts to a simulation. The simulation reproduces the behavior of the entire system. It

includes the full dynamics of the quadrotor, including the on-board control loops, rota-

tional accelerations, and propeller dynamics. It also reproduces system latencies and the

noise characteristics of sensors. As the simulation output mimics the motion system’s

output as closely as possible, the same state observer is employed in reality and in simula-

tion. This simulation environment has been extended to include the inverted pendulum.

The pendulum is modeled with its full nonlinear dynamics (12), neglecting the off-center

mounting on the vehicle for reasons of tractability, as discussed in Section 2.2. Figures 7

and 8 show the exact same circular trajectory experiment that was carried out on the

testbed (Section 6.3). For this simulation, systematic errors in the gyroscopic sensors

and the motion tracking system were disabled. In the initial standstill phase (the first

two seconds in Figure 7), all errors are close to zero. During circling, the errors converge

to nearly stationary values that are significantly smaller than in the real testbed. The

close match of the vehicle’s nominal trajectory and the pendulum’s simulated trajectory

in Figure 8 appears to be coincidental.

x Position (m)

y
P

os
it

io
n

(m
)

-0.4 -0.2 0 0.2 0.4

-0.2

0

0.2

0.4
(x,y)

(r,s)

(x0,y0)

(r0,s0)

Figure 6. The trajectory of the quadrotor and pendulum in O, compared to the nominal
trajectory.

201

Paper VI. A Flying Inverted Pendulum

Time t (s)

Error (m)

0 5 10 15

-0.4

-0.2

0

0.2

ũ

ṽ

p̃

q̃

Figure 7. Simulation results: Errors in the rotating coordinate system: Pendulum position
error (p̃, q̃) and quadrotor position error (ũ, ṽ). At t = 2 s, the controller is switched from a
constant nominal position to a circular trajectory with R =0.1m.

x Position (m)

y
P

os
it

io
n

(m
)

-0.4 -0.2 0 0.2 0.4
-0.4

-0.2

0

0.2

0.4 (x,y)

(r,s)

(x0,y0)

(r0,s0)

Figure 8. Simulation results: The trajectory of the quadrotor and pendulum in O, compared
to the nominal trajectory.

This result highlights the influence of biased sensory information, leading to position

errors in the inertial coordinate system O. These are observed as oscillating errors in C.

The mean errors on the trajectory also show different characteristics in simulation

and reality. This is particularly noticeable in the pendulum position error p̃ and q̃. The

simulation contains a detailed dynamic model of the quadrotor that has been validated

202

7. Conclusion and Outlook

in several experiments. It is therefore probable that the differences are due mainly to the

simulated pendulum dynamics. The non-modeled off-center mounting of the pendulum

could explain this discrepancy.

Circle radii R of up to 0.5 m have been successfully tested in simulation and real-

ity. The vehicle and pendulum positioning errors increase with the circle size, but the

controllers are still capable of keeping the pendulum in balance.

7. Conclusion and Outlook

We have developed linear controllers for stabilizing a pendulum on a quadrotor, which can

be used for both static and dynamic equilibria of the pendulum. The virtual body frame

is a useful tool to describe motions in a convenient coordinate system (e.g. allowing the

use of symmetries), without enforcing this rotation for the vehicle. Using its properties

and a rotating coordinate system, the system description is time-invariant on circular

trajectories.

This allows the straightforward application of well-established state feedback design

principles. Controllers for standstill and circular motion have been validated experimen-

tally and are shown to stabilize the pendulum. This key milestone allows us to shift our

focus towards improving system performance.

Experimental results revealed systematic errors when applying the control laws. There

appear to be different sources of these errors:

• Miscalibrations of sensors cause biases in the experimental setup. These errors are

observed in the attitude information from the motion capture system, and in the

vehicle on-board control loops using gyroscope feedback.

• The simplifying assumption that the pendulum is mounted at the center of mass of

the vehicle is violated in the experimental setup. Rotations of the vehicle therefore

cause a motion of the pendulum base point.

• The equations of motion used to derive nominal trajectories and linear models

neglect many real-world effects, such as drag and underlying dynamics of the control

inputs.

• The control laws are designed assuming continuous-time control, while the vehicle

is controlled at only 50Hz.

We have identified two approaches for extending the controller design presented in this

paper. The first, and most straightforward approach, is to include states that represent

the integrated errors, and to weigh them appropriately in the controller design. This

would permit compensation for some of the systematic errors. For instance, one would

expect this to drive the vehicle position errors in the standstill case to zero.

203

Paper VI. A Flying Inverted Pendulum

Alternatively, a machine learning approach could be applied. The measurement data

indicates that systematic errors greatly dominate stochastic errors. During the circular

trajectory in particular, there are systematic, repeated errors that could well be learned

and compensated for in a feed-forward fashion. The system could therefore ‘learn’ better

nominal trajectories, resulting in a correction of the nominal control inputs. This could,

for instance, be accomplished with iterative learning control [10], [2]. The present problem

is especially well suited to this type of approach due to its repetitive nature. We are

planning to use this experimental setup as a testbed and benchmark for learning methods.

The concept of the virtual body frame is applicable to a wide range of quadrotor

control problems that goes beyond balancing a pendulum. It allows the time-invariant

description of general circular trajectories if the circle size and rate are constant. We are

investigating extensions of this concept to allow its application to more general problems.

References

[1] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control, Volume 2. Athena
Scientific, 2007.

[2] Insik Chin, S. Joe Qin, Kwang S. Lee, and Moonki Cho. A Two-Stage Iterative
Learning Control Technique Combined with Real-Time Feedback for Independent
Disturbance Rejection. Automatica, 40(11):1913–1922, 2004.

[3] JH Gillula, Haomiao Huang, MP Vitus, and CJ Tomlin. Design of Guaranteed Safe
Maneuvers Using Reachable Sets: Autonomous Quadrotor Aerobatics in Theory and
Practice. International Conference on Robotics and Automation, 2010.

[4] Daniel Gurdan, Jan Stumpf, Michael Achtelik, Klaus-Michael Doth, Gerd Hirzinger,
and Daniela Rus. Energy-Efficient Autonomous Four-Rotor Flying Robot Controlled
at 1 kHz. In International Conference on Robotics and Automation, 2007.

[5] Jonathan P. How, Brett Bethke, Adrian Frank, Daniel Dale, and John Vian.
Real-Time Indoor Autonomous Vehicle Test Environment. IEEE Control Systems
Magazine, 28(2):51–64, 2008.

[6] Michail G. Lagoudakis and Ronald Parr. Least-Squares Policy Iteration. Journal of
Machine Learning Research, 4(6):1107–1149, January 2003.

[7] Sergei Lupashin, Angela Schöllig, Michael Sherback, and Raffaello D’Andrea. A
Simple Learning Strategy for High-Speed Quadrocopter Multi-Flips. In International
Conference on Robotics and Automation, 2010.

[8] Nathan Michael, Daniel Mellinger, Quentin Lindsey, and Vijay Kumar. The GRASP
Multiple Micro UAV Testbed. IEEE Robotics and Automation Magazine, 17(3):56–
65, 2010.

[9] Francis C Moon. Applied Dynamics: With Applications to Multibody and Mecha-
tronic Systems. Wiley, 1998.

204

References

[10] Angela Schöllig and Raffaello D’Andrea. Optimization-Based Iterative Learning
Control for Trajectory Tracking. In European Control Conference, 2009.

[11] Jinglai Shen, Amit K. Sanyal, Nalin A. Chaturvedi, Dennis Bernstein, and Harris
McClamroch. Dynamics and Control of a 3D Pendulum. In Conference on Decision
and Control, 2004.

[12] Gilbert Strang. Linear Algebra and its Applications. Thomson Brooks/Cole, 2006.

[13] H.O. Wang, K. Tanaka, and M.F. Griffin. An Approach to Fuzzy Control of Nonlinear
Systems: Stability and Design Issues. IEEE Transactions on Fuzzy Systems, 4(1):14–
23, 1996.

[14] Victor Williams and Kiyotoshi Matsuoka. Learning to Balance the Inverted Pendu-
lum Using Neural Networks. In International Joint Conference on Neural Networks,
1991.

205

Paper VI. A Flying Inverted Pendulum

206

Curriculum Vitae

Markus Hehn

born 14th March 1985

2009 – 2014 ETH Zurich, Switzerland

Doctoral studies at the Institute for Dynamic Systems and Control

(advisor: Prof. Raffaello D’Andrea).

2003 – 2009 TU Darmstadt, Germany

Undergraduate and graduate studies in mechanical engineering

(focus: mechatronics); graduated with Diplom-Ingenieur.

2009 ETH Zurich, Switzerland

Master thesis at the Institute for Dynamic Systems and Control

(advisor: Prof. Lino Guzzella).

2007 – 2008 Robert Bosch GmbH, Germany

Project student in the hybrid electric vehicle system engineering group.

2006 Mercedes-Benz High Performance Engines Ltd, United Kingdom

Internship in the Formula 1 engine performance development group.

2003 BMW AG, Germany

Internship in the apprentice workshop.

1992 – 2003 European School Brussels I, Belgium

School education; graduated with European Baccalaureate.

207

Curriculum Vitae

Peer-Reviewed Publications

Journals

• Michael Benz, Markus Hehn, Christopher H. Onder, and Lino Guzzella. Model-Based

Actuator Trajectories Optimization for a Diesel Engine Using a Direct Method. Journal

of Engineering for Gas Turbines and Power, Volume 133, Issue 3, 2011.

• Markus Hehn, Robin Ritz, and Raffaello D’Andrea. Performance Benchmarking of Quad-

rotor Systems Using Time-Optimal Control. Autonomous Robots, Volume 33, Issue 1-2,

pp 69-88, 2012.

• Sergei Lupashin, Markus Hehn, Mark W. Mueller, Angela P. Schoellig, Michael Sherback,

and Raffaello D’Andrea. A Platform for Aerial Robotics Research and Demonstration:

The Flying Machine Arena. Mechatronics, Volume 24, Issue 1, pp 41-54, 2014.

Refereed Conference Proceedings

• Markus Hehn and Raffaello D’Andrea. A Flying Inverted Pendulum. Proceedings of the

2011 IEEE International Conference on Robotics and Automation (ICRA), 2011.

• Sergei Lupashin, Angela P. Schoellig, Markus Hehn, and Raffaello D’Andrea. The Flying

Machine Arena as of 2010. Proceedings of the 2011 IEEE International Conference on

Robotics and Automation (ICRA) - Video Submission, 2011.

• Angela Schoellig, Markus Hehn, Sergei Lupashin, and Raffaello D’Andrea. Feasibility

of Motion Primitives for Choreographed Quadrocopter Flight. Proceedings of the 2011

American Control Conference (ACC), 2011.

• Markus Hehn and Raffaello D’Andrea. Quadrocopter Trajectory Generation and Control.

Proceedings of the 2011 IFAC World Congress, 2011.

• Stefania Tonetti, Markus Hehn, Sergei Lupashin, and Raffaello D’Andrea. Distributed

Control of Antenna Array with Formation of UAVs. Proceedings of the 2011 IFAC World

Congress, 2011.

• Robin Ritz, Markus Hehn, Sergei Lupashin, and Raffaello D’Andrea. Quadrocopter Per-

formance Benchmarking Using Optimal Control. Proceedings of the 2011 IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems (IROS), 2011.

• Markus Hehn and Raffaello D’Andrea. Real-Time Trajectory Generation for Interception

Maneuvers with Quadrocopters. Proceedings of the 2012 IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS), 2012.

• Robin Ritz, Mark W. Mueller, Markus Hehn, and Raffaello D’Andrea. Cooperative

Quadrocopter Ball Throwing and Catching. Proceedings of the 2012 IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems (IROS), 2012.

• Markus Hehn and Raffaello D’Andrea. An Iterative Learning Scheme for High Performance,

Periodic Quadrocopter Trajectories. Proceedings of the 2013 European Control Conference

(ECC), 2013.

208

• Dario Brescianini, Markus Hehn, and Raffaello D’Andrea. Quadrocopter Pole Acrobatics.

Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), 2013.

• Markus Hehn and Raffaello D’Andrea. A Frequency Domain Iterative Feed-Forward Learn-

ing Scheme for High-Performance Periodic Quadrocopter Maneuvers. Proceedings of the

2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2013.

• Mark W. Mueller, Markus Hehn, and Raffaello D’Andrea. A Computationally Efficient

Algorithm for State-to-State Quadrocopter Trajectory Generation and Feasibility Verifica-

tion. Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), 2013.

209

	Abstract
	Kurzfassung
	Acknowledgments
	Table Of Contents
	Preface
	Introduction
	Contributions
	Future Directions
	References
	A. Trajectory Generation
	Paper I. Performance Benchmarking of Quadrotor Systems Using Time-Optimal Control
	Paper II. Real-Time Trajectory Generation for Quadrocopters
	Paper III. Real-Time Trajectory Generation for Interception Maneuvers with Quadrocopters
	B. Iterative Learning of Periodic Motions
	Paper IV. A Frequency Domain Iterative Learning Algorithm for High-Performance, Periodic Quadrocopter Maneuvers
	Paper V. An Iterative Learning Scheme for High Performance, Periodic Quadrocopter Trajectories
	Paper VI. A Flying Inverted Pendulum
	Curriculum Vitae

