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ABSTRACT

Motivation: Association pattern discovery (APD) methods have

been successfully applied to gene expression data. They find groups

of co-regulated genes in which the genes are either up- or down-

regulated throughout the identified conditions. These methods,

however, fail to identify similarly expressed genes whose expres-

sions change between up- and down-regulation from one condition

to another. In order to discover these hidden patterns, we propose

the concept of mining co-regulated gene profiles. Co-regulated

gene profiles contain two gene sets such that genes within the same

set behave identically (up or down) while genes from different sets

display contrary behavior. To reduce and group the large number

of similar resulting patterns, we propose a new similarity measure

that can be applied together with hierarchical clustering methods.

Results: We tested our proposed method on two well-known

yeast microarray data sets. Our implementation mined the data

effectively and discovered patterns of co-regulated genes that

are hidden to traditional APD methods. The high content of

biologically relevant information in these patterns is demonstrated

by the significant enrichment of co-regulated genes with similar

functions. Our experimental results show that the Mining Attribute

Profile (MAP) method is an efficient tool for the analysis of gene

expression data and competitive with bi-clustering techniques.

Contact: ulrich.wagner@fgcz.ethz.ch

Supplementary information: Supplementary data and an execut-

able demo program of the MAP implementation are freely available

at http://www.fgcz.ch/publications/map

1 INTRODUCTION

The application of mRNA gene expression microarrays has

proven to be an invaluable tool for the elucidation of

mechanisms of diverse biological processes at the molecular

level. In a microarray experiment, several thousands of genes

are investigated in parallel. Mainly due to the high costs of the

microarrays, gene expression studies are normally carried out

with a rather limited set of conditions and repetitions, featuring

an experimental design that focuses on a few very specific
research questions. With time, however, collecting microarray

data sets brings in a new dimension into gene expression data

analysis: the investigation of a large set of genes in a large set of
experimental conditions. Analyzing such data is not trivial and

requires sophisticated data mining solutions.
During the last decade, both supervised and unsupervised

data mining methods have been applied to gene expression

data. Supervised techniques, such as support vector machines
(Brown, 2000) and artificial neural networks (Vohradsky,

2001), aim at building a robust classifier on predefined

sample groups to assign any new sample to the proper group.
This kind of analysis can be applied successfully to clinical

diagnostics. Unsupervised methods concentrate on understand-
ing the similarity of gene expression profiles among all samples

by grouping similarly expressed genes together with the idea

that genes with similar expression profiles might share common
regulatory mechanisms and functions. There are two main

types of unsupervised data analysis, namely dimensionality

reduction, e.g. principal component analysis (Raychaudhuri,
2000) and singular value decomposition (Alter et al., 2000)

and clustering such as k-means (Tavazoie et al., 1999), hierar-

chical clustering (Eisen et al., 1998) and self-organizing maps
(Tamayo et al., 1999). For good overviews of the above

techniques, we refer to, e.g. Leung and Cavalieri, 2003 and
Quackenbush, 2001.

More recently, bi-clustering (Ben-Dor et al., 2003; Cheng and
Church, 2000; Ihmels et al., 2002; Prelic et al., 2005; Xu et al.,

2006) and association pattern discovery (APD) methods

(Carmona-Saez et al., 2006; Creighton and Hanash, 2003;
Georgii et al., 2005) have been adapted to find patterns of

co-regulated genes. In contrast to the described unsupervised

and supervised techniques, these methods are able to discover
co-regulated genes not only over the full set but also within and

among subsets of conditions (samples). Moreover, each gene

and each condition can occur in more than one cluster/pattern.
While the idea of bi-clustering comes from the area of

traditional clustering, namely to apply a similarity measure to
calculate the correlation between cluster members, APD

methods are inherited from the area of frequent itemset and

association rule mining.
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Although the main focus of this article is to show the

improvement that our method represents in relation to

traditional APD methods, we also discuss the relationship

between our method and bi-clustering techniques since they

produce similar results.
APD methods can describe associations of differentially

expressed genes. Relationships discovered by these means are

represented in the form of expression patterns and association

rules. Since association rules are generated from expression

patterns as a post-processing step, most of the algorithmic

research is concentrated on mining expression patterns. Such

patterns are composed of groups of genes that are always up-

regulated or always down-regulated throughout the identified

conditions. A sample expression pattern is shown in Figure 1,

where genes A, B, C and D are always up-regulated, E, F, G and

H are always down-regulated for eight biological conditions.

In biological terms, restricting the search for relationships, in

which the individual genes are always up- or down-regulated

throughout the conditions does not make sense. In a network

or a pathway of genes, an inhibition of expression of gene A by

the expression of gene E, could mean an up-regulation of gene

E when gene A is down-regulated (Fig. 2). Such important

causal relationships of gene regulation events will not be taken

into account by traditional APD methods that have so far been

applied to gene expression data analysis.
In this article, we tackle the above limitation by introducing

the concept of mining co-regulated gene profiles. Co-regulated

gene profiles contain two sets such that genes within the same

set behave identically (up or down) while genes from different

sets display contrary behavior (for precise definitions, see

Methods Section). Such behaviors are calculated directly from

the original gene expression data without the need of data

transformation, as proposed in Ji and Tan (2004). Moreover,

our method is able to discover inverse co-regulations not only

between a single gene and a set of genes but between any sets of

genes, as shown in Figure 2. The proposed algorithm is based

on our previously developed MAP (Mining Attribute Profile)

method that has been shown to be able to discover hidden

relationships between the whole attributes based on their

‘changing tendency’ in a condition-based manner

(Gyenesei et al., 2006). Therefore, applying the MAP method

to gene expression data allows for the identification of genes

whose expression follows the same pattern in response to

different biological conditions.
One important factor in microarray data is inherent noise.

This limits the usefulness of APD methods as it leads to the

generation of many redundant and similar patterns. While

redundant patterns can be discarded by mining only the closed

patterns (Pasquier, 1999), the number of similar patterns is only

insufficiently reduced. To address this problem, we propose

a new similarity measure that can be applied together

with hierarchical clustering and leads to grouped similar

patterns. Experimental results show that previously hidden

co-regulated genes with high correlation can be discovered

by the proposed methods.
The remainder of the article is organized as follows: first we

briefly review the concept of traditional association pattern

discovery before outlining its limitations. Then the definition

of co-regulated gene profiles is introduced and the main steps of

the proposed algorithm are summarized. This is followed by the

discussion of how similar patterns are grouped together.

Section 2 concludes with a description of the methods used to

measure the biological relevance of the discovered profiles.

The experimental validation of the MAP algorithm is reported

in Section 3 based on the application of the method to two

yeast expression data. Finally, discussion and further outlooks

are presented in Section 4.

2 METHODS

2.1 Association pattern discovery

The problem of APD originates from market basket analysis, which

aims at finding interesting relationships hidden in large data sets.

Such relationships can be represented in the form of frequent itemsets
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Fig. 2. A synthetic gene-expression data set. Traditional APD methods

are unable to identify the co-regulation neither between the eight genes

nor between the four ones, A, B, C, D or E, F, G, H for all biological

conditions. However, the absolute correlation between the expression

ratios of the eight genes is very close to 1. A relationship between the

eight genes can be summarized as {gene A, gene B, gene C, gene D (�)

gene E, gene F, gene G, gene H}, which is the only maximal (and closed)

co-regulated gene profile of the synthetic data. For details, see

Supplementary Material.
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Fig. 1. A sample expression pattern that can be discovered by APD

methods. All of the genes in the pattern are either up- or down-

regulated throughout the identified conditions. Co-regulated genes

varying between up- and down-regulations are not taken into

consideration. For details, see Supplementary Material.
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and association rules. APD is a two-step process: first the frequent

itemsets are discovered from which, as a second step, the association

rules are generated. For the precise formulation of the problem, see

Agrawal and Srikant (1994).

Since its introduction, APD has been successfully applied not only to

market basket analysis but also to many other industrial and scientific

research problems, and recently to gene expression data. In this context,

an itemset represents a group of genes with their expressions being

increased, decreased or not changed under a specific set of conditions.

Such itemsets can be termed expression patterns. As an example, an

expression pattern in gene expression data {gene A", gene B", gene C#}

indicates that gene A and B are up-regulated and gene C is down-

regulated in a sufficient number of conditions. Similarly, a strong

association rule {gene C#}¼4{gene A", gene B"} indicates that if gene

C is down-regulated, then both genes A and B are up-regulated for a

given confidence threshold.

2.2 Limitations of traditional APD methods applied

to gene expression data

The limitations of existing APD methods can be derived from the origin

of the research problem. Basket analysis aims at understanding the

behavior of customers based on their shopping baskets, in which an

item is purchased or not. Consequently, traditional APD algorithms

were developed for databases containing only binary attributes.

When these algorithms are applied to gene expression data containing

continuous expression values, an additional preprocessing step is

employed to transform the continuous attribute domains into

categorical ones (discretization) and the obtained categorical domains

into binary attributes (binarization). The problem with such preproces-

sing is that the discovered expression patterns no longer reflect the

associations between the (whole) set of genes but the relations between

their binned independent expression values (such as, up-regulated and

down-regulated). Therefore, APD algorithms can discover only those

expression patterns in which all genes are either up- or down-regulated

throughout the identified conditions (Fig. 1). They are even unable to

discover the co-regulation between genes having identical expression

values if they are changing between up- and down-regulation from one

condition to another (Fig. 2). This limitation could be overcome by

identifying the co-regulated genes based on their expression behaviors

instead of their strict up- and down-regulation.

In the next sections, we introduce the concept of mining co-regulated

gene profiles in which gene profiles are defined and mined based only

on their changing behaviors. This approach allows for the identification

of genes whose expression profiles follow the same patterns in response

to different biological conditions. Applying this concept, previously

unknown co-regulated genes can be discovered that remain hidden to

traditional approaches.

2.3 Co-regulated gene profiles

Let E¼ [eg,c]n�m be the normalized gene expression matrix over a set of

n genes and m microarray experiments (biological conditions). A matrix

element ei,u denotes the log-fold expression change of gene gi2G,

G¼ {g1,g2, . . . , gn}, at biological condition cu2C, C¼ {c1,c2, . . . , cm}.

Let � be a user-defined log-fold change threshold. A gene gi is said to be

up-regulated at experimental condition cu if its log-fold expression

change ei,u is not less than the defined threshold �. Similarly, gi is down-

regulated at condition cu if ei,u is not higher than ��.

Let gi and gj be two genes. We say that gi and gj have identical

behavior at experimental condition cu if their log-fold expressions are

either higher than or equal to fold-change threshold � or less than or

equal to ��:

8gi,gj 2 G,8cu 2 C : ðei,u � �& ej,u � �Þ or ðei,u � ��& ej,u � ��Þ:

In other words, two genes behave identically for a certain condition if

they have the same (up or down) regulation.

Similarly, the contrary behavior between genes gi and gj at

experimental condition cu is defined as follows:

8gi,gj 2 G,8cu 2 C : ðei,u � �& ej,u � ��Þ or ðei,u � ��& ej,u � �Þ:

Therefore, two genes behave contrary for a certain biological condition

if they have different regulation.

Let U�C be a set of experimental conditions and I, J�G be two

contrary behaved sets of genes over condition set U, where genes in

both sets behave identically. The formula {I (�) J} is called a co-

regulated gene profile of genes I[ J for condition set U.

Consider again the synthetic data given in Figure 2 to demonstrate

the above definitions. There are two sets of genes, namely {gene A, gene

B, gene C, gene D} and {gene E, gene F, gene G, gene H}, that contain

genes with identical behavior; i.e. whenever the expression level of one

of the genes is affected in a specific way (up- or down-regulated), the

expression level of the other three genes are affected in the same way in

all conditions. Moreover, the behavior of the two sets of genes is

inverted. Therefore, the co-regulated gene profile between the eight

genes can be formulated as {gene A, gene B, gene C, gene D (�) gene E,

gene F, gene G, gene H}.

Similarly to APD methods, the research task of co-regulated gene

profile discovery is to find all profiles that exist in at least as many

number of experimental conditions as a user-defined minimum support

threshold �. Profiles that satisfy the support requirement are called

frequent co-regulated gene profiles.

2.4 Algorithm of mining co-regulated gene profiles

We have developed an efficient algorithm to discover co-regulated gene

profiles in large gene expression data. The algorithm can be

characterized as a depth-first search, divide-and-conquer algorithm.

We have chosen this type of searching strategy in order to reduce the

number of database scans and avoid the costly set-containment-test

operation that can be the case when applying a breadth-first search

strategy. The mining part is carried out in two steps in which the first

step constructs a compact data structure called Gene Profile tree

(or GP-tree), and the second step extracts the frequent co-regulated

gene profiles directly from the GP-tree structure.

Due to space constraints, we are not able to present the precise

algorithm and have to refer to Gyenesei et al. (2006) for more details.

For an illustrative example, see Supplementary Material. Here, we just

summarize the main ideas of the two steps as follows:

(1) Constructing a GP-tree. A GP-tree is constructed by reading

the expression data condition by condition and mapping each

condition onto a path in the GP-tree. A path compression

occurs when two or more conditions have the same gene profile

starting from the first gene in the tree. More overlapped

paths result in a more compressed data set and a smaller tree.

As a consequence, the mining algorithm needs less time to

extract the frequent co-regulated profiles from the GP-tree

structure.

(2) Mining co-regulated gene profiles using the GP-tree. The devel-

oped mining algorithm generates co-regulated gene profiles

from the constructed GP-tree by exploring the tree in a

top–down and recursive manner. It splits the problem into

sub-problems by decomposing the GP-tree into disjoint sub-

GP-trees, and then calls the recursion again with the sub-trees.

If the constructed sub-GP-tree has only a single branch, then

all co-regulated gene profiles are enumerated directly from the

single branch.

Mining co-regulated gene profiles
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2.5 Grouping gene profiles by similarity

Unfortunately, noise is inherent to microarray data and can signifi-

cantly increase the number of discovered patterns. Most of the

redundant patterns can be discarded by applying the idea of mining

closed and maximal patterns (Goethals and Zaki, 2003), but still, also

because of the number of significant patterns, too many patterns are

reported for the users. Therefore, grouping similar patterns is an

important step in our concept, as it allows biologists to get a general

picture about the discovered patterns and to study the most interesting

ones in more detail.

The similarity between co-regulated gene profiles can be measured as

follows. Let Pi ¼ fPL
i � PR

i g and Pj ¼ fPL
j � PR

j g be two gene profiles

where PL
i ,P

R
i ,P

L
j and PR

j are sets of genes. The similarity between Pi and

Pj is defined by

sðPi,PjÞ ¼ maxfPi �Pj,Pi rPjg=jP
L
i [ PR

i [ PL
j [ PR

j j,

where Pi i Pj denotes the number of those genes, which are in both PL
i

and PL
j or in both PR

i and PR
j :

Pi �Pj ¼ jPL
i \ PL

j j þ jPR
i \ PR

j j,

and Pi r Pj denotes the number of genes which are in both PR
i and PL

j

or in both PL
i and PR

j as formulated by

Pi rPj ¼ jPL
i \ PR

j j þ jPR
i \ PL

j j:

To illustrate the calculation of the similarity measure, let P1¼ {1,3,5 (�)

2,4}, P2¼ {4 (�) 1,5} and P3¼ {1,5 (�) 2,4} be gene profiles. Then,

s(P1, P2)¼max{0,2þ 1}/5¼ 0.6, s(P1, P3)¼max{2þ 2,0}/5¼ 0.8 and

s(P2, P3)¼max{0,1þ 2}/4¼ 0.75.

Having defined the similarity measure between profiles, we applied

the idea of agglomerative hierarchical clustering to group them.

Therefore, the algorithm starts with the single profiles as individual

groups and, at each step, it merges the most similar pair of profile

groups. The algorithm stops when only one group is left containing all

of the gene profiles.

Of course, one of the key points in the clustering algorithm is the

calculation of similarity between two groups if they contain more than

one profiles. Our algorithm can handle the most commonly used

techniques which are single-, complete- and average-linkage, i.e. taking

the maximum, minimum or average similarity of all pair-wise

similarities between two profile groups. In addition, our similarity

measure is able to capture the similarities not only between profiles but

between genes, simply replacing profiles by genes in the above formula.

This allows biologists to represent the clustering results by well

known visualization tools, such as MapleTree developed by Eisen’s

Lab (http://rana.stanford.edu), as shown in Figure 3.

2.6 Measuring the biological relevance of the

discovered profiles

Finding groups of genes that are coordinately correlated throughout

a set of experiments leads to the assumption that these genes are

involved in common functions and/or roles. Thus, integrating a

priori knowledge on functions of single genes into the analysis of

these groups of genes will allow hypothesizing on a common function.

Significantly over-represented functional categories such as the

Gene Ontology (GO) groups (Ashburner et al., 2000) or KEGG

pathways (Kanehisa et al., 2006) can therefore be determined in the

gene patterns discovered using our proposed algorithm. The over-

representation analysis was carried out using hypergeometric

distributions as implemented in the ermineJ software (Lee et al.,

2005). The resulting P-values were adjusted using Bonferroni’s multiple

testing correction method. Overrepresentation analysis of KEGG

pathway membership was carried out using a Fisher’s exact test

implementation in the statistical package R.

2.7 Relation to bi-clustering methods

Due to the resemblance of results, the MAP method competes with

existing biclustering methods. We performed a short comparison by

using the freely available Biclustering Analysis Toolbox (BiCAT)

(Barkow et al., 2006) with the same data sets. BicAT implements a

number of common biclustering methods including: (i) Cheng and

Church’s algorithm (CC), which is based on a mean squared residue

score (Cheng and Church, 2000); (ii) the Iterative Signature Algorithm

(ISA) that searches for submatrices representing fix points

(Ihmels et al., 2002); (iii) the Order-preserving Submatrix Algorithm

(OPSM), which tries to identify large submatrices for which the induced

linear order of the columns is identical for all rows (Ben-Dor et al.,

2003); (iv) Bimax, an exact biclustering algorithm based on a divide-

and-conquer strategy that is capable of finding all maximal

bicliques in a corresponding graph-based matrix representation

(Prelic et al., 2005).

3 EXPERIMENTAL RESULTS

To demonstrate the usability and efficiency of the concept of

mining co-regulated gene profiles, we applied it to two publicly

available gene expression data sets from Saccharomyces

cerevisiae. The first data set (referred hereafter as Yeast80)
comes from Stanford University and contains information

about the expression of 6221 genes in 80 different conditions

including diauxic shift, mitotic cell division cycle and sporula-

tion (for details, refer to Eisen et al., 1998). The second data set

(referred hereafter as Compendium) includes expression levels
of 6316 genes in 300 diverse yeast mutants or in wild type yeast

with different chemical treatments (Hughes et al., 2000).

For both data sets, we chose a cutoff of 2-fold increase or

decrease to define differential expression. The properties of the

two data sets are summarized in Table 1.

3.1 Mining Co-regulated gene profiles

3.1.1 MAP compared to traditional APD methods In order

to discover the co-regulated gene profiles, we applied our MAP
algorithm to the yeast data sets with minimum support

thresholds of 10 for both numbers of genes and conditions.

Using these settings, our target was to discover closed gene

expression profiles in which at least 10 genes behave (respond)

Fig. 3. Visualizing the sample profile data. The data has been clustered

by profile- and gene similarities as defined in the text. The two colors

(black and grey) do not represent expression ratios but behaviors

between genes in a profile. For example, in the first profile, there are

two sets of genes with identical behaviors, namely {1,5,3} (colored by

black) and {4,2} (colored by grey), and they behave contrary to

each other.

A.Gyenesei et al.
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similarly for at least 10 biological conditions. As shown, our

MAP implementation is able to discover the closed patterns

automatically, preventing the accumulation of many redundant

patterns. In the case of the number of closed patterns being very

large, maximal patterns can be gained from the closed ones as a

post-processing step. For reasons of clarity of the presented

example analysis, we concentrated only on the closed patterns.

The implementation furthermore supports parameters to be

freely changed by the users based on individual and experi-

mental requirements. For access to the Windows executable

demo program, please refer to the project web site

(see Supplementary Material).
Table 2 summarizes the mining results for both data sets.

The number of hidden profiles is counted simply by checking

whether they exclusively satisfy the co-regulated gene

profile properties. If a profile contains at least 10 genes

and 10 conditions such that each of those genes is

either up-regulated or down-regulated throughout at least

10 biological conditions, then it can be discovered by

traditional APD methods and is therefore not a hidden profile.

To verify the number of non-hidden profiles, we applied in

parallel one of the most popular frequent closed pattern mining

methods, ChARM (Zaki and Hsiao, 1999), which produced the

same number of non-hidden patterns. Note that any kind of

such algorithms would produce the same result.
To check how the genes are correlated in the discovered

hidden profiles, we calculated the absolute Pearson correlation

between their real expression ratios. As Table 2 shows, the

average correlation of the hidden profiles is 0.93 for the

Yeast80 and 0.94 for the Compendium data. These are

surprisingly high values considering that 2-fold cutoff were
applied before the mining process to define differential

expressions (up- and down-regulation). The graphical view of
the expression behavior of the longest profile for data set
Yeast80 can be seen in Figure 6 and it is denoted by letter

D. It contains 55 genes with an average correlation of 0.93.
The capability of the implemented program to illustrate the
behavior of all of the discovered profiles can be found in the

Supplementary Material.

3.1.2 MAP compared to bi-clustering methods In order to
compare the profiles obtained by MAP and bi-clusters
discovered by bi-clustering techniques, we carried out a detailed

analysis using the Yeast80 data set. Bimax, OPSM, ISA and CC
were selected as reference bi-clustering methods for the
comparison. Table 3 summarizes the mining results for the

Yeast80 data set. Detailed information on the settings of
the methods as well as the composition of the resulting
clusters can be found in the Supplementary Material.

As Table 3 shows, OPSM, CC and ISA had much longer
running times and detected much less clusters than MAP and
Bimax with default settings. Moreover, clusters discovered by

the three slowest methods display a much higher variability in
terms of numbers of genes and conditions. Neither OPSM nor
ISA was able to identify clusters that contain inversely

correlated genes. Bimax could detect such clusters and they
were very similar to the hidden profiles discovered by MAP.

The only difference between Bimax and MAP was that clusters
obtained by Bimax contained also genes with random up- and
down-regulation. Such a cluster is displayed in Figure 4 where

the false positive members of the cluster are indicated by an
arrow.
Finally, we tested the four bi-clustering methods and our

MAP algorithm using the two simple data sets that are shown
in Figures 1 and 2 (for the exact data, see Supplementary
Material). The first data was recognized correctly by all

methods as one cluster, whereas only Bimax and MAP were
able to recognize the second data as a single cluster or profile,
respectively.

3.2 Biological relevance of the MAP results

The resulting patterns from our data processing were analyzed

in respect to the enrichment of functional GO categories using
the overrepresentation analysis functionality of the ermineJ
software (Lee et al., 2005). For each category, the calculated

P-value was corrected by the Bonferroni method as presented

Table 2. Number of co-regulated gene profiles discovered by the MAP

methods

Yeast80 Compendium

Number of profiles 340 73831

Number of hidden profiles 124 7496

Number of genes in the

longest profile

55 43

Average Pearson’s correlation 0.64 0.81

Average Pearson’s correlation

of the hidden profiles

0.93 0.94

Running time (s) 3 6

The thresholds for the minimum numbers of conditions and genes in a profile

were set to 10. Traditional APD methods can discover as many patterns as the

difference between all of the profiles and the hidden ones.

Table 3. Comparison of the results obtained by different mining

algorithms on the Yeast80 data set

MAP Bimax OPSM ISA CC

Running time (s) 3 40 875 413 4106

Number of clusters 340 1127 18 36 50

Maximum number of genes 55 62 5296 418 6221

Minimum number of genes 10 10 4 14 4

Maximum number of conditions 11 11 23 28 7

Minimum number of conditions 10 10 2 9 4

Table 1. Properties of yeast data sets used for pattern mining

Yeast80 Compendium

Number of conditions 80 300

Number of genes 6121 6316

Log base of expression ratios 2 10

Log-fold expression threshold �1 �0.3

Mining co-regulated gene profiles
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in Prelic et al. (2005). In Figure 5, the proportions of gene

patterns are displayed that showed a significant enrichment of

any GO category. Only those groups were taken into account

that had less than 100 members. It can be seen that all of the

discovered patterns show significant functional enrichment

at the 5% level. When lowering the significance level to 0.01%,

still 90% of the detected patterns show significant enrichment.

We compared these findings to the results of the enrichment

analysis of gene groups detected with the four bi-clustering

methods. Figure 5 shows that our method found more gene

groups with higher significance, whereas Bimax identified more

bi-clusters with significant enrichment when lowering the

stringency. The details of the GO analysis for each pattern

identified by any of the five algorithms can be found in the

Supplementary Material.
A similar analysis of the Yeast80 data set was carried out

for the enrichment of KEGG pathways in the obtained patterns

of genes. The KEGG pathways are more precise in terms of

biological content than GO categories as they accurately

describe the roles of genes. As a drawback, the KEGG pathway

information is far from being complete, although the KEGG

database contains one of the largest publicly available pathway

data set for yeast. Fifty percent of the MAP patterns show

enrichment of KEGG pathways at the 5% significance level,

15% at the 0.01% significance level and still more than 10% at

the 0.001% significance level.
Inspecting these results more closely, we found two profiles

that deserve further explanation. One of them is the longest

pattern that we found with the MAP algorithm using the

settings as described before. This pattern contains 55 genes,

of which 21 are small ribosomal and 26 large ribosomal genes.

For illustration, we have mapped the identified genes onto the

KEGG pathway representation (see Supplementary Material).

Another very interesting profile contains five central enzymes

of the glycolysis pathway. The mapping onto the respective

KEGG pathway can also be found in the Supplementary

Material.

3.3 Biological relevance of hidden patterns

To reduce the noise effect of gene expression data and to group

those patterns together that share similar co-regulations,

we applied the average-linkage hierarchical clustering techni-

que. The similarities between gene profiles have been calculated

by the newly proposed similarity measure (see Methods

section). We would like to emphasize that, to our best

knowledge, no similar methods have been proposed for the

traditional APD problem in the literature. During the

implementation of the clustering method, our main goal was

to provide visualization designed to be familiar to biologists.

To accommodate this feature, the program is able to generate

the required input files for the well-known visualization tool,

MapleTree, which is freely downloadable from Stanford

University (http://rana.stanford.edu).

Figure 6 illustrates the clustering results (left part) as well as

selected hidden gene profile groups and their biological

relevance (right part) for the Yeast80 data. Note that both

profiles (rows) and genes (columns) have been clustered.

Hidden profiles that cannot be discovered by traditional

methods appear in green color.
We investigated more closely a number of pattern clusters

that were not discovered by traditional APD methods. These

clusters are marked with letters A, B, C and D. Next to the

right upper side of the clustering picture, the gene expression

Fig. 4. The largest MAP profile and Bimax bicluster found in the

Yeast80 data set. The arrow indicates the presence of additional genes

in the Bimax cluster that represent false positives.

Fig. 5. Proportion of bi-clusters that show significant enrichment by

any GO category (S.cerevisiae) for the MAP and four bi-clustering

algorithms. The different bars within a group represent the results

obtained for five different significance levels a. P-values were

adjusted with a Bonferroni correction. GO groups of a size larger

than 100 were omitted.
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profiles of these four pattern groups are shown and

the table underneath the profiles summarizes the three most

significant GO categories for each profile. The patterns

belonging to group A contain many genes that are involved

in the aligning of homologous chromosomes (synapsis) and

other events during meiosis. It can be hypothesized that other

genes in this pattern cluster fulfill similar functions in the

process of meiosis. As another interesting finding, group B and

even more group C strongly suggest that these patterns contain

genes that are involved in the formation of the cell wall as these

patterns show highly significant enrichment of the respective

GO categories. Furthermore, pattern D, which is strongly

enriched in ribosomal proteins has already been explained in

more details in section 3.2 of the results part. These groups of

genes and therefore their hypothetical function would not have

been found by traditional APD methods.

4 DISCUSSION

APD based methods are well established and popular

techniques for the mining of transaction databases that are

built up in market basket research. For the investigation of

databases in the field of functional genomics, however, interest

in applying APD methods is just beginning to emerge.

Although important steps have been made to develop solutions

Group Function GO # Overlap Corr. P-value

meiosis I GO:0007127 12 8.44E-18
Synapsis GO:0007129 7 6.84E-16A 
meiotic recombination GO:0007131 7 1.69E-08
Response to stimulus GO:0050896 3 0.04572
biofilm formation GO:0042710 1 0.04942B 
cell wall GO:0005618 3 0.03758
spore wall assembly GO:0042244 6 1.60E-06
sporulation (sensu Fungi) GO:0030437 7 2.89E-05C 

cell wall (sensu Fungi) GO:0009277 6 3.55E-04
large ribosomal subunit GO:0015934 25 6.22E-33
small ribosomal subunit GO:0015935 21 4.70E-29

Largest
profile

(D) eukaryotic 43S preinitia-
tion complex GO:0016282 21 1.56E-27

Group A. (#genes=32, corr = 0.90) Group B. (#genes=18, corr = 0.91)

Group C. (#genes=33, corr = 0.90) Profile D. (#genes=55, corr = 0.93)

C B 

A 

D 

Fig. 6. Grouping of the discovered profiles (rows) and their genes (columns) by the introduced similarity measure. Hidden profiles that cannot

be discovered by traditional methods appear in green color. The graphical views of the expression behaviors of the three selected hidden

groups (A, B and C) and the longest profile (D) can be seen at the right upper side of the figure. The table summarizes the three most significant

GO categories for all selected patterns.
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to the area of microarray data analysis, there is still room for

improvement for the proposed applications.
We here presented an adaptation of the APD method that

allows the mining of large microarray data sets in an efficient

way. We demonstrated that the resulting patterns contain

useful information for the biologists. As shown in the Yeast80

data set, all of the patterns show significant enrichment in genes

that can be functionally classified into the same GO category

even when using a very conservative correction for the false

positive rate. We further investigated selected patterns by using

a priori information from data that are less comprehensive but

of higher quality, such as the KEGG pathways. This yields a

nearly exact reconstruction of gene groups that are functionally

related to each other, e.g. for the glycolysis pathway or for the

ribosomal protein groups.

To get a better overview of the resulting patterns from MAP

data mining, we used a straightforward way of representing

them by applying hierarchical clustering methods and using an

appropriate visualization tool. Furthermore, we proposed a

new similarity measure that allows for grouping of the patterns

and the respective genes within those resulting patterns.
The clustering results show that there is a considerable

number of (partially) overlapping gene patterns. This can be

overcome to some extent by making use of maximal instead of

closed patterns, which reduces the number of patterns in the

case of the Compendium data by a factor of ten (data not

shown). Further improvements are presently matter of our

research.

Finding patterns that overlap at least partly reflects the

fuzziness of the microarray data itself. Gene expression has

been shown to be intrinsically noisy as the biochemical

reactions of gene expression are of stochastic or inherently

random nature (Raser and O’shea, 2005). In addition to the

biological source of variation, there is also a technical one, as

microarray analysis involves many technical steps, each of

which contributes to the variation (Coombes et al., 2002;

Zakharin et al., 2005). However, it has been shown that, in a

robust microarray platform, the biological variation is bigger

than the technical variation.
The MAP algorithm represents a clear advancement in the

applicability of APD methods to microarray data, as it

produces a more comprehensive set of patterns. With the

given settings for the minimum numbers of genes and

conditions per pattern, the MAP algorithm detects patterns

that are not detected by the traditional APD methods. Some of

those patterns were enriched in genes of unique biological

functionality. Therefore, such sets of genes could not be found

in any pattern that was detectable by traditional methods.

Moreover, a pattern obtained with the traditional APD method

showing overrepresentation of the same functional categories as

a pattern obtained using MAP might have been composed by a

lower number of conditions.

Taken together, important pieces of information that would

have been lost when mining microarray data with traditional

APD methods can be revealed using the MAP algorithm.
Although the main focus of this article is to show the

improvement that MAP represents in relation to traditional

APD methods, we briefly discuss the relationship between

MAP and bi-clustering techniques, as their results are of
similar nature.

Bi-clustering techniques overcome a flaw in traditional
clustering methods for gene expression data by allowing that

each gene and each condition can occur in more than one

cluster (Madeira and Oliveira, 2004). In addition to this, a bi-
cluster can consist of a subset of genes and a subset of

conditions. Profiles discovered by our MAP method also have

these properties. Like bi-clustering, MAP (and APD methods

in general) are very useful exploratory methods since they
allow for the detection of unexpected results. At the same time,

this represents a weakness as neither bi-clustering nor APD

methods are statistical methods in a strict sense. Typically, no
model assumptions are made, the significance of the results

cannot be calculated (unless using resampling techniques) and

no false positive rates can be determined. Furthermore, both

methods show an enormous redundancy because of the partial
overlapping of genes and conditions.

For the Yeast80 data set, we showed in the discovered
patterns that MAP outmatches all tested bi-clustering techni-

ques in terms of speed and biological significance (CC, ISA and

OPSM), which can be interpreted as a metric of accuracy.

Only Bimax was able to find bi-clusters that correspond to
the hidden profiles detected by MAP. In general, clusters

discovered by Bimax were very similar to profiles identified by

MAP. However, Bimax includes obvious false positive genes
into clusters, which can result in mild or disastrous errors.

To sum it up, this first non-exhaustive comparison between
MAP as an improved APD method and bi-clustering methods

indicates that MAP represents a competitive method. We are

presently working on a more comprehensive and systematic

comparison, including more data sets and different parameter
settings for the above and additional methods.
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