
Diss. ETH No. 21970

Strengthening the Security of
Key Exchange Protocols

A thesis submitted to attain the degree of
Doctor of Sciences of ETH Zurich

(Dr. sc. ETH Zurich)

presented by
Michèle Feltz

MSc in Mathematics, University of Fribourg
born on August 4, 1986
citizen of Luxembourg

accepted on the recommendation of
Prof. Dr. David Basin, examiner

Prof. Dr. Cas Cremers, co-examiner
Prof. Dr. Marc Fischlin, co-examiner

2014

Abstract

Authenticated key exchange (AKE) protocols are central building blocks of security
protocols such as TLS, IPsec, and SSH, that are used in modern distributed appli-
cations. The security of these protocols can however be affected by threats such as
attacks on users’ long-term secret keys, attacks based on malicious key registration,
and attacks on the random number generator used by the protocol. The goal of
this thesis is to model advanced security threats against authenticated key exchange
protocols and to develop methods that strengthen the security of these protocols and
make them secure against the considered threats.

In the first part of this thesis we extend existing security models to capture relevant
attacks that lie outside the scope of these models. We advance the state-of-the-art
by integrating perfect forward secrecy into a model that captures key compromise
impersonation attacks and the leakage of session-specific randomness. We provide
a generic security-strengthening transformation to achieve perfect forward secrecy,
and show that two-message AKE protocols can achieve security in our model by
applying our transformation to protocols that are secure in weaker models. Most
security models for authenticated key exchange do not explicitly model the associated
certification system, which includes the certification authority and its behaviour. We
launch the first systematic analysis of AKE incorporating certification systems. To
this end, we develop a framework that allows for explicit modelling of the public
key certification process; this framework enables us to capture attacks based on
dynamic adversarial registration of arbitrary public keys. We are the first to provide
a generic approach to achieve strong security guarantees against adversaries who can
register arbitrary public keys with a certification authority that does not perform any
verification on combinations of identities and public keys.

In the second part of this thesis we explore the limits of AKE security with regard
to different protocol classes. We derive a hierarchy of strong security models from
impossibility results on the security of each protocol class. Our impossibility results
show the impossibility of achieving certain security guarantees in specific protocol
classes. In particular, we analyze the security of protocols in the presence of adversaries
who can perform attacks based on choosing the randomness used in protocol sessions.
We construct novel variants of the NAXOS protocol, which achieve security against
such attacks.

i

Résumé

Les protocoles d’échange de clé sont des éléments centraux de protocoles de sécurité tels
que TLS, IPsec, et SSH, qui sont utilisés dans de nombreuses applications distribuées
de commerce électronique. La sécurité de ces protocoles peut cependant être affectée
par des menaces comme, par exemple, des attaques sur les clés secrètes à long terme,
des attaques basées sur l’exploitation de certificats frauduleux émis par des autorités
de certification, et des attaques sur le générateur de nombres aléatoires utilisé par le
protocole. L’objectif de cette thèse consiste à modéliser des menaces avancées contre
les protocoles d’échange de clé et de développer des méthodes qui renforcent la sécurité
de ces protocoles et les immunisent contre les attaques considérées.
Dans la première partie de cette thèse, nous étendons des modèles de sécurité

existants à des attaques qui ne peuvent actuellement pas être prises en compte par
ces modèles. Nous intégrons la notion de “perfect forward secrecy” dans un modèle
qui prend en compte des attaques sur la clé secrète à long terme de l’auteur de la
session sous attaque et la fuite de valeurs aléatoires spécifiques à des sessions. Nous
proposons une transformation générique qui permet d’assurer la propriété de “perfect
forward secrecy”, et montrons que les protocoles d’échange de clé à deux messages
peuvent garantir la sécurité dans notre modèle en appliquant notre transformation à
des protocoles qui sont sûrs dans des modèles plus faibles. La plupart des modèles
de sécurité ne modélisent pas explicitement le système de certification associé, qui
comprend l’autorité de certification et son comportement. Nous procédons à une
analyse systématique de l’échange de clé tenant compte du système de certification.
Pour cela, nous développons un système de référence qui prend en compte la mod-
élisation explicite du processus de certification; ce système nous permet de saisir
des attaques basées sur l’enregistrement dynamique de clés publiques arbitraires. À
notre connaissance, nous sommes les premiers à proposer une approche générique
afin d’atteindre des garanties de sécurité élevées face à des adversaires qui peuvent
obtenir des certificats pour des clés publiques arbitraires de la part d’une autorité de
certification qui n’effectue aucune vérification de combinaisons d’identités et de clés
publiques.
Dans la seconde partie de cette thèse, nous explorons les limites de la sécurité de

l’échange de clé par rapport à différentes catégories de protocoles. Nous dérivons une
hiérarchie de modèles de sécurité de résultats d’impossibilité sur la sécurité de chaque
catégorie. Nos résultats d’impossibilité montrent l’impossibilité d’atteindre certaines
garanties de sécurité dans des catégories de protocoles spécifiques. En particulier,
nous analysons la sécurité de protocoles en présence d’adversaires qui effectuent des
attaques basées sur le choix de valeurs aléatoires utilisées dans des sessions. Nous
construisons de nouvelles variantes du protocole NAXOS qui assurent la sécurité
contre de telles attaques.

iii

Zusammenfassung

Schlüsselaustauschprotokolle sind zentrale Komponenten von Sicherheitsprotokollen
wie TLS, IPsec, und SSH, die in modernen verteilten Applikationen benutzt werden.
Die Sicherheit dieser Protokolle kann jedoch durch diverse Gefahren beeinträchtigt
werden, wie Angriffe auf die langfristigen geheimen Schlüssel von Teilnehmern, Angriffe,
die auf der Ausstellung von Zertifikaten für beliebige Schlüssel des Angreifers basieren,
und Angriffe auf den Zufallsgenerator der vom Protokoll benutzt wird. Ziel dieser
Dissertation ist es, Gefahren für Schlüsselaustauschprotokolle zu modellieren und
Methoden zu entwickeln, welche die Sicherheit dieser Protokolle verstärkt.

In dem ersten Teil dieser Dissertation erweitern wir existierende Sicherheitsmodelle
um Angriffe zu modellieren, welche ausser Reichweite dieser Modelle liegen. Wir inte-
grieren “perfect forward secrecy” in ein Modell, welches Angriffe auf die langfristigen
geheimen Schlüssel von gewissen Teilnehmern vor dem Ende einer Sitzung sowie den
Verlust von sitzungsspezifischen Zufallswerten modelliert. Wir schlagen eine generische
sicherheitstärkende Transformation vor, die uns erlaubt, “perfect forward secrecy” zu
garantieren. Wir zeigen, dass Schlüsselaustauschprotokolle mit nur zwei Nachrichten
schon Sicherheit in unserem Modell erreichen können, indem wir unsere Transformation
auf schwächere Protokolle anwenden. Die meisten Sicherheitsmodelle modellieren nicht
das dazugehörige Zertifizierungssystem, welches die Zertifizierungsinstanz und deren
Verhalten einschliesst. Wir starten die erste systematische Untersuchung von Schlüsse-
laustauschprotokollen unter Berücksichtigung von Zertifizierungssystemen. Zu diesem
Zweck entwickeln wir ein System das explizites Modellieren des Zertifizierungsprozesses
von öffentlichen Schlüsseln berücksichtigt. Dieses System erlaubt es uns Angriffe zu
modellieren, die auf der dynamischen Registrierung von beliebigen öffentlichen Schlüs-
seln basieren. Unter der Annahme, dass die Zertifizierungsinstanz die Informationen,
die in den Anfragen enthalten sind, wie Identität oder öffentlichen Schlüssel, nicht
überprüft, führen wir eine generische Methode ein um starke Garantien zu erzielen
gegen Angreifer, die Zertifikate über beliebige öffentliche Schlüssel verwenden, welche
von dieser Zertifizierungsinstanz ausgestellt wurden.

In dem zweiten Teil dieser Dissertation erforschen wir die Grenzen des sicheren
Schlüsselaustausches bezüglich verschiedener Protokollklassen. Aus unseren Un-
möglichkeitsresultaten leiten wir eine Hierarchie von starken Sicherheitsmodellen
ab. Im Speziellen untersuchen wir die Sicherheit von Protokollen gegen Angreifer die
sitzungsspezifische Zufallswerte manipulieren können. Wir präsentieren neue Varianten
des NAXOS Protokolls und beweisen deren Sicherheit gegen solche Angriffe.

v

Acknowledgements

I would like to express my gratitude to my advisor David Basin for giving me the
opportunity of pursuing research in the Institute of Information Security and for
his support over the last years. I owe many thanks to my advisor Cas Cremers for
his time, patience, and for the many helpful and productive discussions we had at
ETH Zurich and at the University of Oxford. It was a great pleasure for me to work
with Colin Boyd, Cas Cremers, Kenneth Paterson, Bertram Poettering, and Douglas
Stebila on authenticated key exchange security incorporating certification systems.
Thanks for the very efficient collaboration and for your support. Also, I would like to
thank Marc Fischlin for his willingness to serve as a co-examiner.
During my PhD, I have had many constructive discussions with other researchers,

including Bruno Blanchet, Marko Horvat, Jean Lancrenon, Arno Mittelbach, and
Peter Ryan. I would like to thank Jannik Dreier, Matúš Harvan, Srdjan Marinovic,
Simon Meier, Binh Thanh Nguyen, Saša Radomirović, Ralf Sasse, Benedikt Schmidt,
Christoph Sprenger, Björn Tackmann, and Eugen Zălinescu for valuable feedback on
my work, and my office mates Joel Reardon, Mario Frank, and Petar Tsankov for an
excellent working atmosphere.
I am grateful to the organizers of the Summer School Marktoberdorf and the

workshop on Formal and Computational Cryptographic Proofs for giving me the
opportunity to participate in such inspiring and enriching events.
I would like to thank my friends Annick, Bob, Claude, Corinne, Danièle, Eric,

France, Jeff, Jos, Manon, Marianne, Max, Mireille, and especially Matúš for the many
enjoyable moments we spent together at lunch breaks, dinners, and cinema evenings.
Most importantly, I would like to thank my parents, Christiane and Fernand, and

my brother Jean-Marc for their support during my studies in Zurich and for many
encouraging words.

vii

Contents

Abstract i

1. Introduction 1
1.1. Motivation . 1
1.2. Related work . 4
1.3. Results . 11
1.4. Contributions . 12
1.5. Outline and publications . 13

2. Background 15
2.1. Groups . 15
2.2. Computational hardness assumptions 16
2.3. Digital signature schemes . 18
2.4. The random oracle model . 18

I. Stronger Security in Extended Models 21

3. Perfect Forward Secrecy under Actor Compromise and Randomness Reveal 23
3.1. Defining new eCK-like security models 23

3.1.1. Framework for security models 23
3.1.2. eCKw: strengthening weak-PFS 26
3.1.3. eCK-PFS: integrating perfect forward secrecy into eCKw. 28
3.1.4. Relations between the security models 29

3.2. A security-strengthening transformation from eCKw to eCK-PFS . . . 30
3.2.1. Protocol class DH-2 . 30
3.2.2. Protocol transformation SIG 32
3.2.3. Security analysis of SIG . 33
3.2.4. Comparison of SIG to MAC . 40

3.3. Application of SIG to concrete protocols 40
3.3.1. NAXOS revisited . 41
3.3.2. Proving π1 secure in eCK-PFS via π1-core 48

3.4. Summary . 53

4. Authenticated Key Exchange Security Incorporating Certification Systems 55
4.1. ASICS model family . 56

4.1.1. Security model . 57
4.1.2. Security experiment . 62

ix

Contents

4.2. Capturing attacks . 64
4.2.1. Existing attacks from the literature 64
4.2.2. New attack against KEA+ based on impersonation attack during

key registration . 65
4.3. Achieving ASICS security . 66

4.3.1. Security against adversarial registration of valid keys 66
4.3.2. Security against adversarial registration of invalid keys 71

4.4. Applications . 73
4.4.1. CMQV’ . 73
4.4.2. Discussion . 75

4.5. Lessons learned and recommendations 76
4.6. Summary . 76

II. Stronger Security via Impossibility Results 79

5. On the Limits of AKE Security with an Application to Bad Randomness 81
5.1. AKE framework . 81

5.1.1. Security model . 81
5.1.2. Security experiment . 85

5.2. Protocol Classes . 87
5.2.1. Classes AKE, INDP, and INDP-DH 87
5.2.2. Stateless and stateful protocols 89

5.3. Impossibility results and strong models for stateless protocols 89
5.4. Models capturing chosen-randomness attacks 95

5.4.1. Deriving models with chosen-randomness 95
5.4.2. Insecurity of stateless protocols against chosen-randomness attacks 96
5.4.3. Repeated randomness failures 97

5.5. Impossibility results and strong models for stateful protocols 98
5.6. Construction of strongly secure stateful protocols 102

5.6.1. Protocol CNX . 102
5.6.2. Protocol NXPR . 104

5.7. Relations between the security models 105
5.7.1. Protocol-security hierarchy . 109

5.8. Summary . 110

6. Related Work 111
6.1. Security protocol analysis . 111
6.2. Stateless and stateful protocols . 113

7. Conclusions 115
7.1. Summary . 115
7.2. Future work . 116
7.3. Final remarks . 118

x

Contents

A. Analysis of CMQV’ 121

B. Proofs of Chapter 5 127
B.1. Proof of Proposition 13 . 127
B.2. Proof of Proposition 15 . 135

Bibliography 145

Index 155

xi

1. Introduction

1.1. Motivation
Recent years have seen the proliferation of various electronic services such as online
banking, online shopping or social networking. These electronic services rely on
security protocols, which are supposed to establish a secure connection between the
customer and the website offering the service. In particular, the communicating
parties desire confidentiality of sensitive information transmitted over the Internet,
and guarantees on the identity of their communication partner.

Authenticated key exchange (AKE) protocols are central building blocks of security
protocols such as TLS and IPsec that are used to secure electronic communication.
They establish a shared symmetric session key between two parties. Subsequent
communication between the parties is then protected with this session key. Some
examples of standardized AKE protocols are MQV [70], SIGMA [63], and the ISO
variant of signed Diffie-Hellman [47,63].

The security of AKE protocols relies on certain keys being kept secret by the
parties, on the quality of the random number generator, and on the security of the
cryptographic primitives (e. g., digital signatures or hash functions) that are used.
Various forms of compromise may however impact AKE security and hence endanger
secure communication over the Internet: Companies, as well as individuals, may fall
victim to corruption of secret keys, and random number generators may be flawed
or deliberately weakened to produce weak, predictable values. It is thus important
to design AKE protocols in such a way that they offer protection even against given
damaging security threats.
Over the past twenty years, the design of AKE protocols was mainly driven by

newly discovered attacks on existing protocols [11, 22, 64, 69], against which the
protocols were intended to offer protection, and by the need for stronger security
guarantees [63, 68, 70]. These approaches to design protocols often failed to yield
protocols with the intended security properties due to the lack of formalization of the
desired security goals and the absence or incompleteness of security proofs [64, 75, 81].
A more recent and systematic approach for constructing protocols consists in providing
generic security-strengthening transformations (often called compilers) [32,34,61,66],
which are applied over a class of protocols to obtain refinements that are secure against
stronger adversaries. To achieve stronger security guarantees, transformations usually
rely on cryptographic primitives such as encryption, digital signatures, or message
authentication codes. Several new protocols may thus be incrementally constructed
from a library of security-strengthening transformations and secure base protocols.
The security of prominent protocols is proven in formal security models [17, 18,

34, 56, 64, 68] under certain cryptographic assumptions. These models specify the
adversary’s capabilities and the security requirements of a protocol. Security proofs

1

1 Introduction

rely on reduction proofs. It is shown that if there is an efficient adversary breaking
the security of the protocol, then there is an efficient adversary solving the underlying
computational problem that is assumed to be hard (e. g., the Gap Diffie-Hellman
assumption).
Despite intensive study over the past two decades, existing security models [17,

18, 34, 56, 64, 68] do not allow reasoning about certain practically relevant attacks.
Furthermore, even though protocols resilient against some of these attacks exist,
there are no security-strengthening transformations to facilitate their incremental
construction.
In the first part of this thesis we model stronger security guarantees for AKE

protocols than found in the state-of-the-art by incorporating the security features of
perfect forward secrecy and security against malicious key registration into current
security models. Our aim is to provide security-strengthening transformations to
incrementally construct AKE protocols that achieve the respective stronger security
guarantees. That is, starting from a protocol that is secure in a given base model,
an enhanced protocol can be constructed by applying a security-strengthening trans-
formation on the original protocol. We now motivate the two previously mentioned
security properties in more detail.

Perfect forward secrecy guarantees secrecy of session keys even if the adversary later
compromises all long-term secret keys. That is, a protocol satisfying perfect forward
secrecy guarantees secrecy of the session key even if an adversary, who is active in
the corresponding target session, i. e., the session under attack, later gains access to
the long-term secret keys of the involved users. For example, if the user running the
target session encrypts some confidential message such as his banking details using the
established session key, then the adversary is not able to decrypt the user’s message
and, consequently, learn confidential information.
Most protocols that provide PFS (e. g., SIG-DH [34], or SIGMA [63]) are three-

message protocols and are insecure when the adversary compromises session-specific
random values. There exist however some two-message protocols that provide PFS,
but all of these protocols are vulnerable to the compromise of either long-term [31] or
session-specific [50] secrets. Although it was stated, but not proven, that PFS can
be achieved in two messages via explicit message authentication (see, e. g., [28,50]),
nevertheless, this property is considered unachievable in two-message protocols in the
presence of adversaries who can compromise certain user’s long-term secret keys at
any point in time or session-specific random values [31, 65, 68]. This motivates our
first research question.

Research Question 1: Can two-message protocols achieve PFS even under compro-
mise of session-specific values and user’s long-term secret keys?

Security against malicious key registration. AKE protocols rely on a public key
infrastructure (PKI) to support the authenticity of user’s public keys. That is,
from a user’s point of view, participation in an AKE protocol encompasses three
consecutive phases: First, users set up their individual key pairs; i. e., each user
invokes a randomized algorithm that outputs a fresh secret/public key pair. Second,
users contact a certification authority (CA) to get their public key certified: each user

2

1.1 Motivation

provides the CA with its identifier and its public key, and obtains a certificate that
binds the identifier to the key. After completing these setup steps, in the third phase,
users can engage in interactive sessions with other users to establish shared session
keys.
In formal security proofs [43,105] and in various standards [7, 103] it is mandated

that the CA performs proper checks on combinations of identities and public keys
(e. g., that public keys belong to an approved key space or that the user self-signs
the data that is to be certified). CAs in the real world have different verification
procedures for checking claimed identities1 and arithmetic properties of the public
key to be registered. They may often only perform very few checks due to efficiency
and economic reasons. Malicious parties might in some cases get arbitrary public
keys certified against identifiers of their choice. The most egregious examples involve
CAs who, either willingly, under coercion, or as a result of security compromises, have
issued rogue certificates for keys and identifiers. For example, in June and July 2011,
Dutch CA DigiNotar was hacked [46], with the intruder taking control of all 8 of the
CA’s signing servers; at least 531 rogue certificates were then issued.
These are real concerns that lead to attacks on AKE protocols, which cannot be

captured in formal security models that omit CA and PKI aspects. For example, if
the CA does not check the uniqueness of the public keys, then there is an unknown
key share (UKS) attack on the KEA protocol [69, p. 380]. The attack exploits the
adversary’s ability to re-register some user’s public key as his own public key. It works
as follows. Suppose that some user B̂ registered the public key pkB̂ with the CA.
The adversary L̂ then re-registers the public key pkB̂ as his own public key. Since
the CA does not check whether the public key has already been registered before,
the adversary is issued a certificate that binds his identity L̂ to the public key pkB̂.
User Â initiates a session of the protocol with user B̂. The adversary then activates
a session of B̂ with peer L̂ by forwarding Â’s message to B̂. He then forwards B̂’s
message to Â. Both users Â and B̂ end up sharing the same session key, but they
have a different view on whom they share the session key with; Â correctly believes
that she shares the session key with B̂, while B̂ mistakenly believes that he shares
the session key with L̂.
The previous discussion leads us to our second research question.

Research Question 2: How can we strengthen protocols to achieve security when
adversaries can register arbitrary bitstrings and the CA does not perform any checks?

Prominent security models [34,64,68,108] have been developed to capture additional
security properties via extension of previous models. Many recent protocols [64,
68, 105] and transformations [34, 66, 108] were proven secure with respect to these
stronger models. However, few results establish the exact limits of AKE security and,
consequently, the strongest security guarantees achievable by AKE protocols. Current

1For example, issuance of Extended Validation (EV) certificates requires stronger identity-checking
requirements than non-EV certificates, see https://www.cabforum.org/certificates.html for
more details. The verification procedure of a CA issuing EV certificates includes, among others,
the verification of the applicant’s identity and the verification of his signature on the EV certificate
request.

3

https://www.cabforum.org/certificates.html

1 Introduction

impossibility results are formulated as restrictions on the adversary’s behavior with
regard to the target session, and suggest that it is impossible to construct a protocol
secure with respect to a less restricted adversary [65,68, 108]. We argue that rigorous
impossibility results for AKE protocol design are still missing in the context of ever
stronger AKE security guarantees.
In the second part of this thesis we therefore derive strong security guarantees for

certain classes of AKE protocols from rigorous impossibility results on the respective
class. More precisely, we first specify attacks that are applicable against any protocol
in a given class, and then define a security model in which the adversary is prevented
from performing these attacks. In particular, we consider the class of protocols that
do not modify memory shared among sessions, i. e., they only modify session-specific
memory. This class includes all modern protocols [64,68,105] analyzed in advanced
security models [64, 68]. It is shown that extending the protocol class enables the
design of protocols that are secure against stronger adversaries who control the
randomness used in protocol sessions. In particular, the construction of protocols
withstanding such adversaries would enable us to weaken the security assumptions on
the random number generator (RNG) used to produce session-specific randomness.
This is particularly timely given the recently discovered security vulnerabilities that
involve either flawed [1,76,86,109] or weakened [88,95,100,110] RNGs. In 2008, Bello
discovered a randomness vulnerability in Debian’s OpenSSL package; keys generated
by the RNG of this package were predictable [1]. As a consequence, protocol sessions
of the DHE variant of SSL, e. g., might have been compromised as attackers were
able to predict the randomness used to establish the shared session key and hence
to decrypt further communication between client and server [1, 109]. Furthermore,
it seems that the security of certain cryptographic systems such as RNGs has been
deliberately weakened to, e. g., eavesdrop on private communication [95]. To sum up,
the second part of this thesis deals with the following two research questions.

Research Question 3: What are the exact limits of AKE security with respect to
adversaries with certain capabilities?

Research Question 4: How to achieve security against adversaries who have the
capability of controlling session-specific randomness?

1.2. Related work

In the section we discuss the state-of-the-art relative to the research questions raised
in Section 1.1.

On perfect forward secrecy

The eCK model

The extended Canetti-Krawczyk (eCK) security model by LaMacchia et al. [68] is a
game-based AKE security model in which the adversary is modelled as a probabilistic
polynomial-time (PPT) Turing machine and controls all communication between
the users. Security is defined in terms of a game played by the adversary against

4

1.2 Related work

a challenger implementing the users. The adversary interacts with the challenger
through a set of queries. These queries specify the capabilities of the adversary.

The eCK model captures several relevant attacks such as key compromise imperson-
ation (KCI) attacks [58], where the adversary compromises the long-term secret key
of a user and then tries to impersonate other users to this user, and leakage of various
combinations of long-term secret keys and session-specific random values [68]. In
addition, security in the eCK model implies weak perfect forward secrecy [64], a weaker
guarantee than perfect forward secrecy. Weak perfect forward secrecy guarantees
secrecy of session keys when long-term secret keys are later compromised, but only
for sessions in which the adversary did not actively interfere.

In comparison to earlier game-based security models [17, 34, 64], the eCK model (a)
considers stronger adversaries in terms of their capabilities, and (b) captures several
attacks in a single security model. As we illustrate in the next section, the eCK model
was believed to be the strongest possible security model [36, 68, 72] for analyzing
two-message protocols.

Negative results

Research question 1 has not been answered affirmatively in the literature. The majority
of related works claim that perfect forward secrecy cannot be achieved in two-message
protocols [30,38,65,67,68].
In [65, p. 15], Krawczyk described an attack that shows that the MQV protocol

does not achieve perfect forward secrecy. This attack led him to the conclusion that
“..., no 2-message protocol, and in particular HMQV, can provide full perfect forward
secrecy.” [65, p. 56]. To prove a slightly weaker notion of forward secrecy for the
HMQV protocol, Krawczyk introduced the notion of weak perfect forward secrecy
(weak-PFS) [65]. Weak perfect forward secrecy guarantees secrecy of session keys even
when long-term secret keys are later compromised, but only for sessions in which the
adversary did not actively interfere.
Based on Krawczyk’s statements on PFS, the designers of the eCK model claimed

that this property cannot be achieved by two-message AKE protocols: “As noted by
Krawczyk [64], the PFS requirement is not relevant for 2-round AKE protocols since
no 2-round protocol can achieve PFS” [68, p. 5]. Thus, Krawczyk’s comments seem to
have led to the (incorrect) belief that the best that can be achieved for two-message
protocols is weak perfect forward secrecy (see, e. g., [68, pages 2 and 5], [38, p. 213]).
As a result, even though the eCK security model [68] guarantees only weak perfect
forward secrecy, it was described in the literature as the strongest possible security
model for two-message protocols [36,68,72].

In [67], LaMacchia et al. define a variant of the eCK model for protocols with more
than two messages that additionally guarantees perfect forward secrecy. However, this
eCK variant cannot be met by any protocol from the class DH-2 of two-message DH-
type protocols that we consider in Chapter 3, because it uses the concept of matching
session instead of origin-session. Boyd and González Nieto’s replay attack [31, p.
458] serves as a generic counterexample: it shows that no two-message protocol in
DH-2 that does not provide message replay detection can achieve security in this eCK
variant, assuming that the notion of matching sessions is defined as in Definition 42.

5

1 Introduction

There exist however some two-message protocols that provide PFS, but are vulner-
able to the compromise of either the long-term secret keys of the actor of the target
session [31] or session-specific random values [50]. We now discuss some of these
protocols in more detail.

The two-message modified-Okamoto-Tanaka (mOT) protocol by Gennaro et al. [50]
provides perfect forward secrecy in the identity-based setting. Additionally, they
sketch variants of the protocol for the PKI-based setting. As noted by the authors [50],
the mOT protocol and its variants are not resilient against the compromise of session-
specific random values, and they are therefore insecure in eCK-like models.

Jeong, Katz and Lee [56] introduce the one-round protocols TS2 and TS3 and show
that these protocols achieve forward secrecy. The underlying security model with
respect to which both protocols are proven secure is based on the Bellare-Rogaway
model in [17] and captures forward secrecy by allowing the adversary to corrupt
both actor and peer of the target session in case the adversary is passive during the
execution of the target session (which corresponds to weak-PFS). Whereas protocol
TS2 only achieves weak-PFS, it seems that protocol TS3 achieves PFS [10], although
this is not stated or proven in [56]. However, protocol TS3 provides neither PFS under
actor compromise nor security against the compromise of session-specific random
values.

In parallel and independent work to ours, Boyd and González Nieto [31] suggest
a transformation C based on adding MACs on the message exchange of an AKE
protocol that satisfies weak perfect forward secrecy, to achieve perfect forward secrecy.
However, the MAC transformation does not guarantee perfect forward secrecy under
actor compromise and leakage of session-specific randomness, as shown in Section 3.2.4.
It is important to note that our security model eCK-PFS, which we present in Chapter 3,
prevents the attack scenario described in [31, p. 458] since we restrict the adversary from
revealing the randomness of the origin-session for the test session (see Definition 16).

Generic transformations to achieve PFS

Some generic protocol transformations that aim towards achieving security in a
stronger model capturing perfect forward secrecy have been proposed [31,32,34,61].
Canetti and Krawczyk [34] specify transformations from the authenticated-links

model (AM) to the unauthenticated-links adversarial model (UM). In the AM, the
adversary is not allowed to actively interfere within the communication. In the UM,
the adversary has basic attacker capabilities as well as the capability of corrupting
agents, revealing session-keys and session-state. A protocol secure in the AM can be
transformed into a protocol secure in the stronger model UM using an authenticator.
Applying the signature-based authenticator from [13] to each of the flows of a two-
message Diffie-Hellman protocol results in a three-message protocol that is secure in
the UM [34, pp. 466-467]. Thus, in contrast to our SIG transformation from Chapter 3,
the application of this signature-based authenticator increases the number of rounds
of the protocol due to the use of the Diffie-Hellman exponentials as the challenges
required by the authenticator.
In the context of authenticated group key exchange, Katz and Yung [61] propose

a generic transformation which transforms any group KE protocol secure against a

6

1.2 Related work

passive adversary to an authenticated group KE protocol secure against an active
adversary who fully controls the network. The transformed protocol has an additional
protocol round and requires signatures on some broadcasted messages. Their security
model captures perfect forward secrecy, but it does not capture KCI attacks.
Bresson et al. [32] propose a similar signature-based transformation than Katz

and Yung [61]. Their transformation yields a protocol achieving authenticated key
exchange security as well as mutual authentication when applied to any group key
exchange protocol secure against a passive adversary. The passive adversary in [32] is
slightly stronger than the one in [61] since in addition to eavesdropping on regular
protocol executions, he may delay or delete messages, or change their delivery order.
The security model eCKpassive that we introduce in Section 3.2 considers an even
stronger passive adversary that can also replay messages to sessions and is only
restricted from injecting or modifying the messages received by the target session.
Even though the previous approaches allow to achieve security in a stronger secu-

rity model capturing PFS, none of these stronger models captures key compromise
impersonation attacks as well as leakage of session-specific randomness, and conse-
quently perfect forward secrecy under these attack scenarios. In addition, all of the
aforementioned transformations increase the round complexity of the protocol, where
a protocol round consists of all the messages that can be transmitted simultaneously
between two entities. In contrast, our SIG transformation transforms any one-round
protocol secure in an eCK-like model into a one-round protocol that provides perfect
forward secrecy under actor compromise and randomness reveal.

AKE security and certification systems
The original computational model for key exchange of Bellare and Rogaway [17] has
a long-lived key generator, which is used to initialise all users’ keys at the start of
the game. This is a standard part of most computational models today. However, in
common with several later models [34,56,66], the adversary cannot influence long-term
keys: only honestly generated (and registered) keys are considered. Starting with the
1995 model of Bellare and Rogaway [18] it was recognized that the adversary may
be able to choose long-term keys for certain users, whether public keys or symmetric
keys. It is possible to identify four different methods that have been used to model
such an adversary capability.

1. The adversary may register arbitrary valid public keys from the key space during
the setup phase of the security experiment [68, p. 8].

2. The adversary can replace long-term keys by providing them as an input to a
corrupt query. This was the method used originally by Bellare and Rogaway [18]
and was subsequently used in the public key setting by others [21,83].

3. The adversary is allowed to generate arbitrary keys for corrupted users at any
time during the protocol run [64].

4. An additional query is added specifically to set up a user with a new key chosen
by the adversary [35,51,105]. This query is typically called establishparty and
takes as input the user name and its long-term public key.

All of these methods, except the first one, allow the models to capture Kaliski’s UKS
attack against the MQV protocol [59], which requires the adversary to register a new

7

1 Introduction

public key after certain protocol messages have been obtained. Kaliski’s attack works
as follows. The adversary L̂ intercepts the message sent by some user Â who intends
to execute a protocol session with user B̂. He then registers a specific valid key, which
depends on the intercepted message, as his own public key with the CA. Now, the
adversary activates a session of B̂ with peer L̂ by sending a previously constructed
message, which depends on Â’s message and on Â’s long-term public key, to B̂, and
then forwards B̂’s message to Â. Both users Â and B̂ end up sharing the same session
key, but they have a different view on whom the share the session key with. Clearly,
the previous attack cannot be captured in a model that only allows the adversary to
register keys with the CA in the setup phase of the security experiment, i. e., before
executions of the protocol between users.

However, none of the previously mentioned methods has the generality of our ASICS
framework in Chapter 4 and, in particular, all of them omit the following realistic
features:

• registration of multiple public keys per user;
• flexible checking by certification authorities via a verification procedure;
• adversarial choice of public keys per session.

Special mention should also be made of the model of Shoup [99]. Unlike most popular
AKE models today, it uses a simulatability definition of security comparing ideal and
real world views. Security is defined to mean that for any real world adversary there
is an ideal world adversary (benign by definition) such that the transcripts of the
two are computationally indistinguishable. Real-world adversaries have the ability to
assign users to public key certificates. Shoup’s model has not been widely used and
the examples in [99] are not fully worked through. Furthermore, the model cannot
represent an adversary who obtains only ephemeral secret keys without knowing
the long-term key of the same user and therefore cannot capture security properties
common in more modern models.
Critically, all of the approaches mentioned above have only been used to establish

results for a handful of specific protocols. The uncovering of new attacks on some of
these protocols exploiting malicious key registration led to the recommendation of
countermeasures to these attacks such as verifying that long-term public keys belong
to a given key space [81]. However, the correctness of these recommendations has not
been proven for a class of protocols. We establish in Chapter 4 generic results that
facilitate the design and verification of AKE protocols under malicious key registration,
and that can be applied over a class of protocols.

Impossibility results and randomness failures in the context of AKE

Impossibility results. Current impossibility results on the security of AKE protocols
resulted in restrictions on the adversary’s behaviour with respect to the target session,
i. e., the session under attack. However, some of these results are either flawed [68]
or only hold under unstated assumptions on the protocol class [108]. For example,
Krawczyk’s [64] perfect forward secrecy attack, has led to the statements that (a) no
two-message protocol can provide PFS [65, p. 56], and (b) the eCK model capturing
only weak perfect forward secrecy is the strongest possible model for analyzing two-

8

1.2 Related work

message AKE protocols [68,72]. We show in Chapter 3 that two-message protocols
can achieve PFS even in the presence of eCK-like adversaries.
Yang et al. state that no protocol can be secure against reset-and-replay attacks

on the target session [108, p. 120]. In a reset-and-replay attack the adversary first
sets the randomness of a session to the same randomness as used in a previous session
of the same user and then replays messages to the session so that both sessions
compute the same session key [108]. Based on their impossibility result, they design
a security model in which reset attacks are disallowed on the target session. As we
see in Chapter 5, their result only holds for a particular class of protocols, namely
the class of stateless protocols, which do not modify memory that is shared among
sessions. Since we consider a wider range of protocols, we arrive at the conclusion
that there are protocols that are secure against reset-and-replay attacks on the target
session. In particular, we construct variants of the NAXOS protocol [68] that are
secure against such attacks.
Boyd and González Nieto [31] show that one-round AKE protocols that do not

provide message replay detection cannot achieve PFS if the adversary can also reveal
session-specific randomness of the target session’s peer. Their argument is based on a
variant of Krawczyk’s PFS attack [64], which involves a replay attack together with
leakage of session-specific randomness of the session the replayed message originates
from. As stated by the authors, protocols that provide replay detection via timestamps
or counters are not vulnerable to this attack. However, as we show in Chapter 5,
there are one-round protocols that do not provide replay detection and are only
vulnerable to Boyd and González Nieto’s attack [31] if the target session is activated
with a message replayed from the first session of its peer. In case the target session
is activated with a message replayed from the n’th session of its peer, where n > 1,
the adversary would need to additionally reveal the randomness of all the previous
sessions of the peer to be able to compute the same session key as the target session.
The protocol NXPR presented in Chapter 5 achieves security even under compromise
of the randomness of the session from which the message received by the target session
originated and the peer’s long-term secret key as long as the randomness of at least
one of the previous sessions of the peer has not been compromised. Similarly, the
NXPR protocol is secure under compromise of the target session’s randomness and
the long-term secret key of the actor of the target session as long as the randomness
of at least one of the previous sessions of that user has not been compromised.

Randomness failures. The first models addressing the leakage of session-specific
information include the eCK model [68] and the CK model [34]. The eCK model
considers an information-leaking RNG that leaks values after they have been generated,
which is modelled via the query ephemeralkey. Intermediate protocol computations
are assumed to be outside of the adversary’s control. In contrast, the CK model
considers long-term keys stored in secure memory (e. g., in a hardware security module
(HSM)), whereas protocol computations are (partly) done in less-protected memory.
The adversary has read-only access to the less-protected memory through a query
session-state. However, in the vast majority of proofs in the CK model, the less-
protected memory has been defined to contain exactly the randomness, thereby
effectively modeling an information-leaking RNG. Unlike our work, the models CK

9

1 Introduction

and eCK consider neither chosen randomness nor repeated randomness. We design in
Chapter 5 eCK-like models that additionally incorporate the adversarial ability of
choosing session-specific randomness; security in these models implies security against
attacks exploiting repeated randomness.

Ristenpart and Yilek [92] show that virtual machine (VM) snapshots might lead to
VM reset attacks as these snapshots can be used to reset a system to a prior state. In
the context of key exchange, VM resets lead to the use of the same randomness in more
than one session. As a countermeasure to randomness failures, Ristenpart and Yilek
propose a framework for hedging cryptographic operations based on preprocessing
potentially bad RNG-supplied randomness together with additional inputs with HMAC
to provide pseudorandomness for the cryptographic operation [92]; their framework
uses hedging techniques for public-key encryption of Bellare et al. [12]. Hedging a
cryptographic operation means designing it in such a way that, given good randomness,
the operation provably achieves strong security goals, and, given bad randomness,
the operation achieves weaker, but still meaningful, security goals [12]. In particular,
Ristenpart and Yilek discuss hedging for key exchange and apply their approach to
the signed Diffie-Hellman protocol. The main difference between the resulting hedged
protocol and the CNX protocol, which we present in Chapter 5, is that the CNX
protocol relies on a global counter, which is shared across different sessions of a user;
this global counter is included, together with the user’s long-term secret key and
session-specific randomness, as input to the hash function H1.

Yang et al. [108] analyze AKE security with respect to adversaries who can manipu-
late the randomness that is used in protocol sessions. They define two security models:
Reset-1 and Reset-2. In the Reset-1 model the adversary controls the randomness of
each session, with the restrictions that he is not allowed to (a) issue the query corrupt
to either the actor or the peer of the target session and (b) reset the randomness of
the target session or its partner session to the same randomness as used in another
session of the corresponding user. Thus, the Reset-1 model captures neither weak
perfect forward secrecy nor reset-and-replay attacks on the target session or its partner
session. In contrast, the models that we develop in Chapter 5 capture reset attacks
on the target session, reset attacks on its partner session, and weak perfect forward
secrecy. The Reset-2 model captures repeated secret randomness in multiple sessions
due to reset attacks, but no chosen-randomness attacks. Whereas the Reset-2 model
captures weak perfect forward secrecy, it does not allow the adversary to perform reset
attacks against either the target session or its partner session. In Chapter 5 we design
a similar model to the Reset-2 model, which we call XAKE. In the XAKE model, the
adversary is allowed to perform reset attacks even against the target session and its
partner session. We show that security in a model that captures chosen-randomness
attacks implies security in the XAKE model. Yang et al. [108] provide a transformation
that turns a protocol secure in the Reset-2 model into a protocol that is secure in both
models, by replacing the randomness x used in the original protocol by FK(x), where
F is a pseudorandom function family, and K is an additional long-term secret key.

10

1.3 Results

1.3. Results

In this section we describe our approach to answering the questions raised in Section 1.1.

Perfect forward secrecy under actor compromise and randomness reveal

We provide an affirmative answer to Research Question 1. Namely, we show that it
is possible to achieve perfect forward secrecy in two-message protocols even in the
presence of very strong active adversaries who can reveal random values of sessions
and compromise long-term secret keys of users.
We start by generalizing the eCK security model [68]. The resulting model, which

we call eCKw, specifies a slightly stronger variant of weak perfect forward secrecy than
the eCK model (the w in eCKw refers to the weak PFS element). We then integrate
perfect forward secrecy into the eCKw model, which gives rise to the eCK-PFS model.
The eCK-PFS model is stronger than eCKw, and also provides more guarantees than
independently considering eCK/eCKw security and PFS. In particular, security in
eCK-PFS implies perfect forward secrecy in the presence of an active attacker who
can even learn the actor’s long-term secret key before the start of the attacked session,
or who can learn session-specific randomness.

We propose a generic security-strengthening transformation to achieve PFS in two-
message protocols. Given a two-message Diffie-Hellman (DH) type protocol that is
secure in eCKw or in a weaker model, which we call eCKpassive, our transformation yields
a two-message protocol that is secure in the eCK-PFS model. As our transformation
is not based on a challenge-response mechanism and does not introduce additional
protocol rounds, the result of applying our transformation to a one-round protocol,
in which all outgoing messages can be computed before any message is received, is a
one-round protocol.
We apply our transformation to two concrete protocols. First, we show that

NAXOS [68], the first key exchange protocol proven secure in the eCK model, is secure
in eCKw and use our transformation to construct a protocol that is secure in eCK-PFS.
Second, we show how a particular protocol that is insecure in eCKw can be turned
into a protocol that is secure in eCK-PFS by proving it secure in the weaker eCKpassive

model. Both examples illustrate how our transformation enables the modular design
of key exchange protocols.

ASICS: AKE security incorporating certification systems

To answer Research Question 2, we first present a framework for reasoning about the
security of AKE protocols with respect to various CA key registration procedures. Our
framework, which we call ASICS, allows us to capture, i. e., to model, several attacks
based on adversarial key registration, including UKS attacks, small-subgroup attacks,
attacks that occur when the CA does not check if public keys are registered twice,
and attacks that occur when multiple public keys can be registered per identifier. In
particular, we capture a previously unreported attack against the KEA+ protocol
based on an impersonation attack during key registration in an appropriate ASICS
model.

11

1 Introduction

We then provide a generic approach to achieve strong security guarantees against
adversaries who can register arbitrary public keys for certain types of protocols. In
particular, we show how to transform Diffie–Hellman type AKE protocols that are
secure in a model where only honest key registration is allowed into protocols that are
secure even when adversaries can register arbitrary valid or invalid public keys, and
the CA does not perform any checks on combinations of identities and public keys. In
such cases, security is still guaranteed for all sessions (that were considered fresh in
the base model) except those in which the peer’s public key is valid but registered by
the adversary.
Finally, we demonstrate how our methodology can be used to establish strong

security guarantees, even when the adversary can register arbitrary public keys, for
concrete protocols such as CMQV [105], NAXOS [68], and UP [106], using a variant of
CMQV as a running example.

On the limits of AKE security with an application to bad randomness

We address Research Question 3 by fixing a set of adversarial capabilities, and by
distinguishing between various classes of AKE protocols. We establish impossibility
results on the security of each of these protocol classes. That is, given an arbitrary
protocol from a specific class, our results indicate attacks that are applicable to this
protocol. We derive strong security models from our impossibility results and indicate
protocols that are secure in these models. Each security model is associated to a
protocol class, and reflects strong guarantees that can be achieved by protocols in the
corresponding class.
Using the framework built up to formulate impossibility results, we analyze the

security of AKE protocols in the presence of adversaries who can choose the randomness
used in protocol sessions. While stateless protocols, which leave a user’s memory
invariant under protocol execution, fail to provide security against attacks based on
chosen randomness, we construct stateful variants of the NAXOS protocol that achieve
security against such attacks. Our security-strengthening methods, which transform a
stateless protocol into a stateful protocol that is secure even when adversaries can
control session-specific randomness, provide answers to Research Question 4.

1.4. Contributions

We summarize the four main contributions of our work as follows.
1. Unlike earlier works, we integrate perfect forward secrecy into a security model

that captures key compromise impersonation attacks and leakage of session-
specific values. We show that it is possible for two-message protocols to achieve
security in the resulting strong model, which we call eCK-PFS, by first providing
a security-strengthening transformation to achieve PFS, and then applying
our transformation to concrete protocols. Our transformation introduces no
new message dependencies and does not increase the round complexity of the
protocol it is applied on. Our generic approach allows us to construct new efficient
protocols secure in the new model eCK-PFS. Our results refute the claims made

12

1.5 Outline and publications

in the literature that (a) no two-message protocol can provide PFS [65, p. 56],
and (b) the eCK model capturing only weak perfect forward secrecy is the
strongest possible model for analyzing two-message protocols [68,72].

2. We launch the first systematic analysis of AKE security incorporating certification
systems (ASICS). We develop a framework for reasoning about the security of
protocols taking into account the certification authority and its behavior. Our
framework enables us to capture several attacks from the literature as well as
a newly discovered attack on the KEA+ protocol. We are the first to propose
transformations that strengthen protocols to achieve security when adversaries
can register arbitrary bitstrings as keys and the certification authority does not
perform proper checks. Our results not only provide formal foundations for the
importance of public-key validation but also lead us to recommendations for the
design of protocols that are secure in our framework.

3. We perform the first systematic analysis of the limits of game-based AKE
security. We identify several relevant protocol classes for which we provide
formal impossibility results. Our impossibility results (a) clarify which security
guarantees cannot be achieved by any protocol in the respective class, and
(b) allow us to systematically develop strong security models for each class.
Our exploration of the limits of game-based AKE security leads to a protocol
hierarchy, which classifies certain protocols from each class according to their
relative strength in our derived security models. Our hierarchy highlights the
security guarantees that can be achieved by each protocol class, and provides a
novel way of selecting an optimal trade-off between the type of protocol and the
security it offers.

4. We consider the security of protocols in the presence of adversaries who can
perform chosen-randomness attacks even against the target session, going far
beyond attacks covered in previous security models. We demonstrate that
security in our models capturing chosen randomness implies security under
repeated randomness. We are the first to show that stateful protocols, which
modify memory that is shared among sessions, can achieve security against
attacks based on chosen randomness. Our novel stateful protocols allow us to
weaken the assumptions made on the security of the RNG used to generate
session-specific randomness.

1.5. Outline and publications

The remainder of this thesis is structured as follows. In Chapter 2 we provide
background information on cryptographic primitives and computational hardness
assumptions, which are used to prove the security of our protocols and transformations.
In Part 1, entitled Stronger Security in Extended Models, we provide stronger

guarantees in extended security models. Part 1 consists of Chapter 3 and Chapter 4.
In Chapter 3 we show how to generically achieve perfect forward secrecy under actor
compromise and randomness reveal in two-message AKE protocols. In Chapter 4
we describe a framework, which we call ASICS, for the analysis of AKE protocols
specifically designed to incorporate certification systems. We provide generic results

13

1 Introduction

to achieve strong ASICS security even if the certification authority does not perform
any checks and apply our approach to a variant of the CMQV protocol.

In Part 2, entitled Stronger Security via Impossibility Results, we explore the limits
of game-based AKE security models. Part 2 consists of Chapter 5. In this chapter we
derive strong security models from impossibility results on specific protocol classes.
In addition, we show that security against bad session-specific randomness can be
achieved when considering protocols from a broader protocol class.
In Chapter 6 we present additional related work that is relevant for the thesis.

Finally, in Chapter 7, we present conclusions and future work.

Publications
The work on perfect forward secrecy under actor compromise and randomness reveal
in Chapter 3 is joint work with Cas Cremers and has been published in:

• C. Cremers and M. Feltz. One-round Strongly Secure Key Exchange with Perfect
Forward Secrecy and Deniability. Cryptology ePrint Archive, Report 2011/300,
2011, http://eprint.iacr.org/.

• C. Cremers and M. Feltz. Beyond eCK: Perfect Forward Secrecy under Actor
Compromise and Ephemeral-Key Reveal. In Proceedings of the 17th European
Conference on Research in Computer Security, ESORICS 2012, pages 734-751.
Springer-Verlag, 2012. Full version available at http://eprint.iacr.org/
2012/416.

• C. Cremers and M. Feltz. Beyond eCK: Perfect Forward Secrecy under Actor
Compromise and Ephemeral-Key Reveal. In Designs, Codes and Cryptography,
2013.

The work on AKE security incorporating certification systems (ASICS) in Chapter 4
is joint work with Colin Boyd, Cas Cremers, Kenneth G. Paterson, Bertram Poettering,
and Douglas Stebila, and has been published in:

• C. Boyd, C. Cremers, M. Feltz, K. G. Paterson, B. Poettering and D. Stebila.
ASICS: Authenticated Key Exchange Security Incorporating Certification Sys-
tems. In Proceedings of the 18th European Conference on Research in Computer
Security, ESORICS 2013, pages 381-399. Springer-Verlag, 2013. Full Version
available at http://eprint.iacr.org/2013/398.

The work on the limits of AKE security with an application to bad randomness in
Chapter 5 is joint work with Cas Cremers.

14

http://eprint.iacr.org/
http://eprint.iacr.org/2012/416
http://eprint.iacr.org/2012/416
http://eprint.iacr.org/2013/398

2. Background

In this chapter we recall some definitions and cryptographic assumptions that we need
in order to prove the security of our protocols and transformations. We denote by
x ∈R S the element x being chosen uniformly at random from the set S. We denote
by ‖a‖ the bit length of the positive integer a (i. e., ‖a‖ = dlog2(a+ 1)e, where d.e is
the ceiling function). We say that a function f is negligible in the parameter k if, for
all integers c > 0, there exists a real number kc > 0 such that, for all k > kc, it holds
that f(k) < k−c (see, e. g., [60]).

2.1. Groups
In this section we provide some background material on groups, which can be found
in any standard abstract algebra book, such as Artin’s Algebra [5].

Definition 1 (Group). A group is a set G together with a law of composition
· : G×G→ G such that

• the law of composition is associative, i. e., x · (y ·z) = (x ·y) ·z, for all x, y, z ∈ G,
• there exists an element e ∈ G, called the identity element, such that e · x = x · e,

for all x ∈ G, and
• every element in G is invertible, i. e., for every x ∈ G, there exists y ∈ G such

that x · y = y · x = e.

For ease of notation, we write xy instead of x · y. The identity element will be
denoted by 1 if the law of composition is multiplication, and 0 if it is addition. The
order of a group G is the number of elements in G. The order may be finite or infinite.
Here are some examples of groups.

Example 1. The set Z of integers with addition + as the law of composition is a group.
The identity element is 0 and the inverse of x ∈ Z is −x ∈ Z.
Example 2. The set Z∗N = {1 ≤ a ≤ N − 1 | gcd(a,N) = 1} with multiplication
modulo N is a group with identity element 1. Recall that gcd(a,N) = 1 if and only if
a is invertible modulo N .

Definition 2 (Subgroup). A subset H of a group G is said to be a subgroup of G if
the following properties hold:

• Closure: If x, y ∈ H, then xy ∈ H,
• Inverse: If x ∈ H, then x−1 ∈ H, and
• Identity: 1 ∈ H.

Definition 3 (Order of a group element). Let G be a finite group. Let x ∈ G. The
order of the element x is the smallest positive integer i such that xi = 1.

15

2 Background

Let G be a finite group of order n. Let x be an arbitrary element of G of order
i ≤ n. The element x generates the set 〈x〉 := {1, x, ..., xi−1}. It is not difficult to
verify that 〈x〉 is a subgroup of G. We call 〈x〉 the cyclic subgroup generated by x. If
there is an element g ∈ G that generates the entire group G, then the group is called
cyclic and g is called a generator of G.

Proposition 1. If G is a group of prime order, then G is cyclic. Furthermore, all
elements of G \ {1} are generators of G.

In Chapter 4 we consider verification procedures on public keys and identifiers
that a certification authority (CA) deploys. Given an arbitrary group of prime order,
we establish generic results that facilitate the design of authenticated key exchange
protocols under malicious key registration. In the examples below we indicate, for two
specific types of groups that are used in cryptographic applications, some arithmetic
checks on a candidate public key that a CA might perform (see also [9]).
Example 3. Let G = 〈g〉 denote the subgroup of prime order q of Z∗p, where p is a large
prime, q divides p− 1 with multiplicity 1. Let y be a candidate public key. Public
key validation may verify that yq = 1 (mod p).
Example 4. Let p be a large prime. Let a, b ∈ Zp be constants with 4a3 + 27b2 6=
0 (mod p). Let G be an additive prime-order group E(Zp) of points over the elliptic
curve E given by the equation

y2 = x3 + ax+ b (mod p) . (2.1)

The group G consists of all the points (x, y) ∈ Zp × Zp, which satisfy Equation (2.1),
together with the point at infinity. Let Q = (xQ, yQ) be a candidate public key. Public
key validation may verify that xQ ∈ Zp, yQ ∈ Zp, and y2

Q = x3
Q + axQ + b (mod p).

2.2. Computational hardness assumptions

The Discrete Logarithm problem was first described in the seminal paper of Diffie
and Hellman [45]. In a finite cyclic group G of order p with generator g the problem
is defined as follows. Given g, gu ∈ G, where u ∈ Zp, compute u = DLogg(gu).

Definition 4 (Discrete Logarithm Assumption). Let k be a security parameter. Let
G be a finite cyclic group of order p (with ‖p‖ = k) and let g be a generator of G.
The Discrete Logarithm assumption in G states that, given gu, for u ∈R Zp, it is
computationally infeasible to compute u. More precisely, we say that the Discrete
Logarithm assumption holds in G, if for all probabilistic polynomial-time algorithms
A, there exists a negligible function negl such that

P (A(G, p, g, gu) = DLogg(gu) | u ∈R Zp) ≤ negl(k) .

Define CDH(gu, gv) = guv. The Computational Diffie-Hellman problem [45] in a
cyclic group G of order p with generator g is defined as follows. Given g, gu, gv ∈ G,
where u, v ∈ Zp, compute CDH(gu, gv).

16

2.2 Computational hardness assumptions

Definition 5 (Computational Diffie-Hellman Assumption). Let k be a security param-
eter. Let G be a finite cyclic group of order p (with ‖p‖ = k) and let g be a generator
of G. The Computational Diffie-Hellman (CDH) assumption in G states that, given
gu and gv, for u, v ∈R Zp, it is computationally infeasible to compute CDH(gu, gv).
More precisely, we say that the CDH assumption holds in G, if for all probabilistic
polynomial-time algorithms A, there exists a negligible function negl such that

P (A(G, p, g, gu, gv) = CDH(gu, gv) | u, v ∈R Zp) ≤ negl(k) .

Let p be a large prime. Groups in which the Discrete Logarithm problem and the
CDH problem are believed to be hard and that are used in cryptographic applications
include the multiplicative group Z∗p with p−1 not containing any small prime factors [25]
and large prime-order subgroups of the group E(Zp) of points over an elliptic curve [29,
101].

The Decisional Diffie-Hellman (DDH) problem [45] in a finite cyclic group G of order
p with generator g is defined as follows. Given g, gu, gv, gw ∈ G, where u, v, w ∈ Zp,
decide whether or not gw = CDH(gu, gv).
Whereas the CDH problem is believed to be hard in the group Z∗p, where p is a

large prime, the DDH problem is not hard in this group (see, e. g., [25]). A variant of
the CDH problem is the Gap Diffie-Hellman problem [87], which requires solving the
CDH problem given access to an oracle that solves the DDH problem.
Definition 6 (Gap Diffie-Hellman Assumption). Let k be a security parameter. Let
G be a finite cyclic group of order p (with ‖p‖ = k) and let g be a generator of G.
The Gap Diffie-Hellman assumption in G states that, given gu and gv, for u, v chosen
uniformly at random from Zp, it is computationally infeasible to compute guv with
the help of a DDH oracle ODDH, which, for any three elements gu, gv, gw ∈ G, replies
whether or not gw = CDH(gu, gv). More precisely, we say that the Gap Diffie-Hellman
assumption holds in G, if for all probabilistic polynomial-time algorithms A, there
exists a negligible function negl such that

P (A(G, p, g, gu, gv,ODDH) = CDH(gu, gv) | u, v ∈R Zp) ≤ negl(k) .

As shown in [26,57], groups over certain supersingular elliptic curves are groups in
which the CDH problem is believed to be hard, but the DDH problem is easy; the
Weil pairing [85] can be used to construct a DDH oracle (see, e. g., [26]).

A variant of the Discrete Logarithm problem is the Gap Discrete Logarithm prob-
lem [77,87], which requires solving the Discrete Logarithm problem given access to an
oracle that solves the DDH problem.
Definition 7 (Gap Discrete Logarithm Assumption). Let k be a security parameter.
Let G be a finite cyclic group of order p (with ‖p‖ = k) and let g be a generator of
G. The Gap Discrete Logarithm assumption in G states that, given gu, for u chosen
uniformly at random from Zp, it is computationally infeasible to compute u with the
help of a DDH oracle ODDH, which, for any three elements gu, gv, gw ∈ G, replies
whether or not gw = CDH(gu, gv). More precisely, we say that the Gap Discrete
Logarithm assumption holds relative to G, if for all probabilistic polynomial-time
algorithms A, there exists a negligible function negl such that

P (A(G, p, g, gu,ODDH) = DLogg(gu) | u ∈R Zp) ≤ negl(k) .

17

2 Background

2.3. Digital signature schemes
Digital signatures schemes [54] are usually employed in protocol design to ensure
message origin authentication, i. e., that a recipient is able to verify that each message
he receives originated from a certain entity.

Definition 8 (Signature Scheme [60]). A signature scheme Σ is a tuple of three
polynomial-time algorithms (Gen,Sign,Vrfy) satisfying the following:

1. The probabilistic key-generation algorithm Gen takes as input a security param-
eter k and outputs a secret/public key pair (sk, pk).

2. The (possibly probabilistic) signing algorithm Sign takes as input a secret key sk
and a message m ∈ {0, 1}∗. It outputs a signature σ.

3. The deterministic verification algorithm Vrfy takes as input a public key pk, a
message m, and a signature σ. It outputs 1 if σ is a valid signature on message
m with respect to public key pk, and 0 otherwise.

It is required that for every k, every (sk, pk) output by Gen(1k), and every m ∈ {0, 1}∗,
it holds that

Vrfypk(m,Signsk(m)) = 1 .

Most signature schemes are designed to achieve existential unforgeability under
an adaptive chosen-message attack (EU-CMA) [54]. Informally, a signature scheme
is EU-CMA if an adversary who obtains valid signatures on messages of his choice
should not be able to produce a signature on a new message. To prove the security of
our signature transformation from Chapter 3, we need a stronger assumption than
EU-CMA, namely strong existential unforgeability under an adaptive chosen-message
attack (SUF-CMA) [3, 27]. An adversary should not only be unable of forging a
signature for a new message, but also unable of producing a new signature on a
previously signed message.

Definition 9 (SUF-CMA [27]). Let OSign be a signature oracle that returns a signature
for any message of the adversary’s choice. Let AdvSig

A (k) denote the probability of
successfully forging a valid signature σ on a message m, where (m,σ) is not among
the pairs (mi, σi) (i = 1, ..., q) generated during the query phase to the oracle OSign. A
signature scheme Σ = (Gen,Sign,Vrfy) is said to be strongly existentially unforgeable
under an adaptive chosen-message attack if for all probabilistic polynomial-time
adversaries A, there exists a negligible function negl such that AdvSig

A (k) ≤ negl(k) .

Examples of strongly existentially unforgeable signature schemes under an adaptive
chosen-message attack are Boneh et al.’s scheme based on the CDH problem [27],
Gennaro et al.’s scheme based on a variant of the RSA assumption [27, 49], and
Boneh et al.’s GDH scheme based on the Gap Diffie-Hellman problem [26,27].

2.4. The random oracle model
The random oracle model [16] assumes the existence of a public function H that
behaves as a random function. The function H can be evaluated on some input
x ∈ {0, 1}∗ only by querying an oracle on x; the oracle returns H(x) ∈ {0, 1}∗ given

18

2.4 The random oracle model

query x. The oracle is public in the sense that users as well as the adversary can
submit a query x and receive H(x) from the oracle [16,60]. These queries are however
private so that if a user queries the oracle on some input x, then nobody else, and in
particular not the adversary, learns x [60].
The oracle can be seen as implementing a random function H as follows. Suppose

H : {0, 1}n → {0, 1}m. When queried with x ∈ {0, 1}n, the oracle first checks whether
x has been queried before. If the oracle has not received query x before, then it
chooses y ∈R {0, 1}m, returns y, and stores the entry (x, y) in a table T (initially
empty). Else, the oracle retrieves the entry (x, y) from table T and returns y [60].
Secure protocols can be designed using the following methodology [16,60]:
1. First, the protocol is proven secure in the random oracle model.
2. Second, the random oracle is instantiated with a particular cryptographic hash

function. Thus, instead of querying the oracle, each user evaluates the hash
function on his own.

If the hash function used in the second step is “good” at emulating a random oracle,
then the protocol should be secure in the real world as well. It is however unclear
how to define the concept of a hash function being “good” at emulating a random
oracle, and whether such functions can be constructed [60]. Even though there has
been some debate about the random oracle model [52], it remains to be a very useful
tool in provable security [62], which allows researchers to make formal statements
about the security of their protocols.

19

Part I.

Stronger Security in Extended
Models

21

3. Perfect Forward Secrecy under Actor
Compromise and Randomness Reveal

In this chapter we show that it is possible to achieve perfect forward secrecy in
two-message or one-round authenticated key exchange (AKE) protocols even in the
presence of very strong active adversaries who can reveal random values of sessions
and compromise long-term secret keys of users. In Section 3.1 we formalize PFS and
weak-PFS, and introduce our security notions eCKw and eCK-PFS. The eCKw model
is a slightly stronger variant of the eCK security model. The eCK-PFS model captures
perfect forward secrecy in the presence of eCKw adversaries. In Section 3.2 we provide
a security-strengthening transformation that turns any two-message Diffie-Hellman
type protocol secure in either eCKw or eCKpassive, a weaker model than eCKw, into a
two-message protocol secure in eCK-PFS. We demonstrate how our transformation
can be applied to concrete protocols in Section 3.3. In particular, our methodology
allows us to develop new AKE protocols that achieve perfect forward secrecy under
actor compromise and randomness reveal.

3.1. Defining new eCK-like security models

We propose two new eCK-like security models for the analysis of AKE protocols.
The first model, called eCKw, captures a slightly stronger form of weak-PFS than the
original eCK model. The second model, called eCK-PFS, integrates perfect forward
secrecy directly into eCKw. We first describe a framework for defining security
models in Section 3.1.1. Using this framework, we define our new security notions in
Sections 3.1.2 and 3.1.3. We then formally compare them in Section 3.1.4.

3.1.1. Framework for security models

Terminology. An AKE protocol π consists of a set of domain parameters, a key
generation algorithm KeyGen, and the protocol description that describes how key
exchange protocol messages are generated and responded to as well as how the session
key is derived. We say that an AKE protocol is a two-message protocol if the sum of
the number of messages sent and received by a user during an execution of the protocol
is exactly two. A more formal definition of AKE protocols is given in Chapter 5.
Let P =

{
P̂1, P̂2, ..., P̂N

}
be a finite set of N honest users represented by binary

strings. Each honest user can execute multiple instances of an AKE protocol, called
sessions, concurrently. We denote session i of honest user P̂ as the tuple (P̂ , i) ∈
P × N. We associate to each session s ∈ P × N a quintuple of variables Ts =
(sactor , speer , srole, ssent , srecv) ∈ P ×{0, 1}∗×{I,R}×{0, 1}∗×{0, 1}∗. The variables

23

3 Perfect Forward Secrecy under Actor Compromise and Randomness Reveal

sactor , speer denote the identities of the actor and peer of session s, srole denotes the
role that the session is executing (either initiator or responder), and ssent , srecv denote
the concatenation of timely ordered messages as sent/received by sactor during session
s. The values of the variables speer and srole are set upon activation of session s
and the values of the variables ssent and srecv are updated during protocol execution.
A session can only be activated once. We say that a session is completed if it has
accepted a key K as the session key.
Adversarial capabilities. As is standard for Bellare-Rogaway style security notions
for AKE [17], we model the adversary as a probabilistic polynomial-time (PPT)
Turing machine that controls all communications between users. Similar to the eCK
model [68], we consider the following adversarial capabilities, so-called queries:

1. send(s, v). This query models the adversary sending message v to session s
of honest user sactor . The adversary is given the response generated by the
session according to the protocol. The variables ssent and srecv are updated
accordingly (by concatenation). Abusing notation, we allow the adversary to
activate an initiator session with peer Q̂, via a send(s, Q̂) query and a responder
session by sending a message m to session s on behalf of Q̂, via a send(s, Q̂,m)
query. In these cases, speer is set to Q̂ and srole is set to I and R, respectively.
The adversary is given the session’s response according to the protocol and the
variables ssent , srecv are initialized accordingly.

2. corrupt(P̂). If P̂ ∈ P, then the query returns the long-term secret keys of user
P̂ . Otherwise the query returns ⊥.

3. randomness(s). This query returns the randomness used in session s.
4. session-key(s). This query returns the session key for a completed session s.
5. test-session(s). To respond to this query, a bit b is chosen uniformly at random.

If b = 1, then the session key established in session s is returned. Otherwise,
a random key is returned according to the probability distribution of keys
generated by the protocol. This query can only be issued to a completed session.

Notions of Freshness. An adversary that can perform the above queries can simply
reveal the session key of all sessions, breaking any protocol. The intuition underlying
Bellare-Rogaway style AKE models is to put minimal restrictions on the adversary
with respect to performing these queries, such that there still exist protocols that are
secure in the presence of such an adversary. The restrictions on the queries made
by the adversary are formalized via freshness predicates, which take a session of the
protocol and a sequence of queries (including arguments and results). Examples of
such predicates will be given in the following two sections.
Security Model. A game-based security model M is given by a set of queries
{send} ⊆ Q ⊆ {send, corrupt, randomness, session-key} and a freshness predicate F .
Security experiment W in model M = (Q,F). Security of a key-exchange protocol
π is defined via a security experiment W (or attack game) played by an adversary E,
modeled as a PPT algorithm, against a challenger.

Before the experiment starts properly, there is a setup phase, in which the challenger
runs a key-generation algorithm specified by the protocol that takes as input a security
parameter 1k and outputs valid long-term secret/public key pair(s), for each user

24

3.1 Defining new eCK-like security models

P̂ ∈ P . The adversary is then given all public data, including the public keys of all the
honest users in P. Then, the adversary can choose to register arbitrary valid public
keys (even public keys of honest users) on behalf of a set of adversary-controlled users
L̂ /∈ P.
After the above setup phase, the security experiment W can be described in four

successive stages, as follows:
1. The adversary E can perform any sequence of queries from Q.
2. At some point in the experiment, E issues a test-session query to a completed

session that satisfies F at the time the query is issued.
3. The adversary may continue with queries from Q, under the condition that the

test session must continue to satisfy F .
4. Finally, E outputs a bit b′ as his guess for b.

The adversary E wins the security experiment W if he correctly guesses the bit
b chosen by the challenger during the test-session query (i. e., if b = b′ where b′
denotes E’s guess). Success of E in the experiment is expressed in terms of E’s
advantage in distinguishing whether he received the real or a random session key
in response to the test-session query. The advantage of adversary E in the above
security experiment against an AKE protocol π for security parameter k is defined as
AdvπE(k) = |2P (b = b′)− 1|.
The notion of matching sessions specifies when two sessions are supposed to be

intended communication partners. Here we formalize the matching sessions definition
from the eCK model [68] which is based on matching conversations.

Definition 10 (matching sessions). Two completed sessions s and s′ are said to be
matching if

sactor = s′peer ∧ speer = s′actor ∧ ssent = s′recv ∧ srecv = s′sent ∧ srole 6= s′role.

As in the eCK model, we require that matching sessions perform different roles.
The consequences of such a choice are explored in detail in [41]. Two issues are
important here. First, there is a strong connection between the information used in
a matching definition and the information used to compute the session key. Second,
some protocols like the two-message versions of MQV and HMQV allow sessions to
compute the same key even if they perform the same role, whereas other protocols
such as NAXOS and π1-core from Section 3.3 require the sessions that compute the
same key to perform different roles. In this paper we follow the eCK setup, which
applies directly to protocols of the second type. Protocols of the first type can be
dealt with by dropping the requirement of different roles from the matching definition.

Definition 11 (security). An AKE protocol π is said to be secure in model M if, for
all PPT adversaries E, it holds that

• if two honest users successfully complete matching sessions, then they compute
the same session key, and

• E has no more than a negligible advantage in winning security experiment W in
model M , that is, there exists a negligible function negl in the security parameter
k such that AdvπE(k) ≤ negl(k).

25

3 Perfect Forward Secrecy under Actor Compromise and Randomness Reveal

3.1.2. eCKw: strengthening weak-PFS
The eCK model captures weak perfect forward secrecy but not perfect forward secrecy,
based on Krawczyk’s PFS attack on MQV [64,65]. We first formally define perfect
forward secrecy, and then briefly recall the attack.

It is hard to find a formal definition of perfect forward secrecy, as it is common to
argue informally about PFS. For example, the following informal definition is given
in [84, p. 496]:

“A protocol is said to have perfect forward secrecy if compromise of long-
term keys does not compromise past session keys.”

However, such a definition does not suffice when we want to formally prove that
our models imply PFS or similar properties. To address this, we provide a formal
definition of PFS in the form of a Bellare-Rogaway-style security definition. This
allows us to make precise formal statements about the properties that our models
achieve and the relations between them.

Definition 12 (PFS). The PFS model is defined by (Q,F), where Q = {send, corrupt}
and F is defined as follows. A session s is said to satisfy F if, before the completion of
session s, no keys have been registered on behalf of adversary-controlled users and no
corrupt query has been issued. We say that a protocol satisfies perfect forward secrecy
(PFS) if it is secure in the PFS model.

We now return to Krawczyk’s PFS attack. Consider a two-message protocol in
which the agents exchange ephemeral Diffie-Hellman exponentials, i. e., gx and gy,
where x and y are chosen uniformly at random from Zp (for some large prime p).
Then, Krawczyk’s attack proceeds as follows. The adversary, impersonating user
Â, generates a value x (∈ Zp) and sends gx to a responder session of user B̂. B̂
responds by sending gy and computes the session key. The adversary chooses B̂’s
session as the test session, i. e., the session under attack, and reveals Â’s long-term
secret key after B̂’s session ends. Now the adversary can simply follow all protocol
steps that an honest user Â would have performed using x and Â’s long-term secret
key. In particular, the adversary can compute the same session key as the test session,
violating perfect forward secrecy.

In Chapter 5 we generalize Krawczyk’s PFS attack on MQV to all one-round Diffie-
Hellman type protocols; this class includes, e. g., the HMQV protocol [64], where the
exchanged Diffie-Hellman exponentials do not involve the sender’s long-term secret
key, and the NAXOS protocol [68], where the exponent z ∈ Zp in the Diffie-Hellman
exponential is a hash of the concatenation of the sender’s long-term secret key and a
random value.
To still prove some form of forward secrecy for two-message Diffie-Hellman type

protocols such as HMQV, Krawczyk introduced the notion of weak-PFS. In weak-PFS,
the adversary is not allowed to actively interfere with the messages exchanged by
the test session. This prevents the attack because the adversary is no longer allowed
to insert his own DH exponential. Similarly, in the eCK model, this restriction
on interfering with the test session is modeled by checking if a matching session
exists [68, p. 5]. If this is the case, then the adversary must have been passive

26

3.1 Defining new eCK-like security models

and he is allowed to reveal the long-term secret keys of the actor and the intended
communication partner of a session. If there is no matching session, the adversary is
not allowed to reveal the long-term secret key of the intended communication partner.
We observe that Krawczyk’s attack only depends on the adversary injecting or

modifying the message received by the test session; he does not need to actively
interfere with the message sent by the test session. However, eCK models passivity
of the adversary in the test session by checking whether a matching session for the
test session exists, which also prevents the adversary from modifying (or deleting) the
message sent by the test session. In this sense, the restriction on the adversary in eCK
is sufficient but not necessary for the prevention of Krawczyk’s attack. We therefore
relax the notion of matching sessions and introduce the concept of origin-session.
Definition 13 (origin-session). We say that a (possibly incomplete) session s′ is an
origin-session for a completed session s when s′sent = srecv.

Note that if two completed sessions s, s′ are matching, then s and s′ are origin-
sessions for each other. However, if session s is an origin-session for some session s′,
then it might not necessarily be a matching session for s′ (e. g. in case the roles of the
sessions are identical). Thus, a session being a matching session for some session is a
stronger requirement than a session being an origin-session for some session.

Using this notion, we give the first formal definition of weak Perfect Forward Secrecy.
In order to exclude Krawczyk’s generic PFS attack, we disallow the adversary from
injecting his own messages into the test session. However, whereas Krawczyk enforced
this by requiring a matching session to exist, we merely require the messages received
by the test session to have been sent by a so-called origin-session. In other words, if
an origin-session s′ for some session s exists, then the messages received by session s
have not been modified or injected by the adversary.
Definition 14 (wPFS). The wPFS model is defined by (Q,F), where Q = {send,
corrupt} and F is defined as follows. A session s is said to satisfy F if all of the
following conditions hold:

1. there exists an origin-session for session s, and
2. before the completion of session s, no keys have been registered on behalf of

adversary-controlled users and no corrupt query has been issued.
We say that a protocol satisfies weak perfect forward secrecy (weak-PFS) if it is secure
in the wPFS model.

Summarizing, we capture weak-PFS by the compromise of long-term secret keys of
users after the end of the test session under the condition that an origin-session for
the test session exists. Thus, we model passivity of the adversary in the test session
by the existence of an origin-session for the test session (and not by the existence of a
matching session for the test session, as in [64,68]).
Compared to the original eCK model, our definition of weak-PFS enables us to

capture an additional capability of the adversary: revealing the long-term secret key
of the intended communication partner (i. e. the peer) of the test session s in case an
origin-session s′ for s exists, even when no matching session exists for s. Thus, in
contrast to the eCK model, the adversary may reveal the long-term key of the peer of
the test session s in case an origin-session s′ for session s exists and

27

3 Perfect Forward Secrecy under Actor Compromise and Randomness Reveal

• actively interfere with the message sent by the test session (e. g. by modifying it
or injecting his own message), or

• replay a message from another session to the test session (as in [31]), or
• leave session s′ incomplete (in case s′ is an initiator session).

We call our strengthened variant of the eCK model the eCKw model.

Definition 15 (eCKw). The eCKw model is defined by (Q,F), where Q = {send,
corrupt, randomness, session-key} and F is defined as follows. A session s is said to
satisfy F if all of the following conditions hold:

1. sactor and speer are honest users, i. e. (sactor , speer) ∈ P × P,
2. no session-key(s) query has been issued,
3. for all sessions s∗ such that s∗ matches s, no session-key(s∗) query has been

issued,
4. not both queries corrupt(sactor) and randomness(s) have been issued,
5. for all sessions s′ such that s′ is an origin-session for session s, not both queries

corrupt(speer) and randomness(s′) have been issued, and
6. if there exists no origin-session for session s, then no corrupt(speer) query has

been issued.

In Section 3.3.1 we will show that the NAXOS protocol is secure in the eCKw model.

3.1.3. eCK-PFS: integrating perfect forward secrecy into eCKw.

We next extend the eCKw model by integrating perfect forward secrecy, which yields the
stronger eCK-PFS model. Perfect forward secrecy is reflected in eCK-PFS by allowing
the adversary to reveal the long-term secret keys of all the protocol participants after
the end of the test session, as in the PFS model. These keys can be revealed irrespective
of the existence of an origin-session (or a matching session). The PFS attack scenario
is neither captured in eCKw (nor in eCK) if the origin-session (matching session)
does not exist for the test session. In contrast to the way in which the CK-NSR
model from [31] incorporates PFS, eCK-PFS additionally captures leakage of various
combinations of long-term secret keys and randomness as well as perfect forward
secrecy under actor compromise.

Definition 16 (eCK-PFS). The eCK-PFS model is defined by (Q,F), where Q =
{send, corrupt, randomness, session-key} and F is defined as follows. A session s is
said to satisfy F if all of the following conditions hold:

1. sactor and speer are honest users, i. e. (sactor , speer) ∈ P × P,
2. no session-key(s) query has been issued,
3. for all sessions s∗ such that s∗ matches s, no session-key(s∗) has been issued,
4. not both queries corrupt(sactor) and randomness(s) have been issued,
5. for all sessions s′ such that s′ is an origin-session for session s, not both queries

corrupt(speer) and randomness(s′) have been issued, and
6. if there exists no origin-session for session s, then no corrupt(speer) query has

been issued before the completion of session s.

28

3.1 Defining new eCK-like security models

3.1.4. Relations between the security models

We formalize the relative strengths of security between game-based security models
investigated by Choo et al. [37] as follows. Let secure(M,π) be a predicate that is
true if and only if the protocol π is secure in security model M .

Definition 17. Let Π be a class of AKE protocols. Let M and M ′ be two security
models. We say that model M ′ is at least as strong as model M with respect to Π,
denoted by M ≤Π

Sec M
′, if

∀ π ∈ Π. secure(M ′, π)→ secure(M,π) . (3.1)

We say that model M ′ is stronger than model M with respect to protocol class Π,
denoted by M <Π

Sec M
′, if M ≤Π

Sec M
′ and not M ′ ≤Π

Sec M .

The previous definition implies that protocols proven secure in model M ′ will be
secure in model M , where M ≤Π

Sec M
′. To show that model M ′ is not at least as

strong as model M , it suffices to find a protocol π ∈ Π such that π is secure in model
M ′ and insecure in model M , as in [37,41].
Informally, the eCK-PFS model is at least as strong as the eCKw model because

the eCK-PFS model allows the adversary to corrupt all users after the test session is
completed (regardless of whether an origin-session exists for the test session), capturing
perfect forward secrecy. In contrast, in case the adversary is active in the message
received by the test session, he is not allowed to reveal the long-term secret key of the
peer of the test session in the eCKw model.

Proposition 2. Let Π be the class of two-message protocols. The eCK-PFS model is
stronger than the eCKw model with respect to Π.

The first part of the proof of Proposition 2, namely that eCK-PFS is at least as
strong as eCKw, proceeds in a similar way as the reduction proofs in [37].

Proof. We first show that the eCK-PFS model is at least as strong as the eCKw model
with respect to Π. The first condition of Definition 11 is satisfied since matching is
defined in the same way for both models eCKw and eCK-PFS. Let π ∈ Π. To show that
the second condition of Definition 11 holds, we construct an adversary E′ attacking
protocol π in model eCK-PFS using an adversary E attacking π in eCKw. Adversary E′
proceeds as follows. Whenever E issues a query send, corrupt, randomness, session-key
or test-session, adversary E′ issues the same query and forwards the answer received
to E. At the end of E’s execution, i. e. after it has output its guess bit b, E′ outputs
b as well. Note that if the freshness condition of eCKw holds for the test session, then
by definition the freshness condition of eCK-PFS also holds. In particular, if there is
no origin-session, then the sixth condition of the freshness condition of eCKw requires
that there is no corrupt of the peer, which implies the sixth condition of the freshness
condition of eCK-PFS. Hence, it holds that AdvπE(k) ≤ AdvπE′(k), where k denotes
the security parameter. Since by assumption protocol π is secure in eCK-PFS, there is
a negligible function g such that AdvπE′(k) ≤ g(k). It follows that protocol π is secure
in eCKw.

29

3 Perfect Forward Secrecy under Actor Compromise and Randomness Reveal

The model eCK-PFS is stronger than eCKw since, e. g., the NAXOS protocol is
secure in eCKw, as we show in Section 3.3, but insecure in eCK-PFS due to the PFS
attack described in Section 3.1.2.

The following proposition states that PFS is a stronger property than weak-PFS.

Proposition 3. Let Π be the class of two-message protocols. The PFS model is
stronger than the wPFS model with respect to Π.

Proof. The proof that the PFS model is at least as strong as the wPFS model is similar
to the corresponding proof of Proposition 2. Note that the test session satisfying the
freshness predicate of wPFS implies that it satisfies the freshness predicate of PFS
since we have a further freshness requirement in the wPFS model. The PFS model is
stronger than the wPFS model since, e. g., the NAXOS protocol achieves weak-PFS
as can be easily deduced from the proof of Proposition 8, but does not satisfy PFS
due to the generic PFS attack described in Section 3.1.2.

The relations between these four models and the eCKpassive model that we define in
Section 3.2.3 are depicted in Figure 3.1. The notation X

<Π
Sec−→ Y denotes that model

Y is stronger than model X with respect to Π. The section in which the implication
is proven is indicated in parentheses next to the arrow.

eCKpassive eCKw eCK-PFS

wPFS PFS

<Π
Sec

(Sec. 3.2.3)

<Π
Sec

(Sec. 3.1.4)

<Π
Sec (Sec. 3.2.3) <Π

Sec(Sec. 3.2.3)

<Π
Sec

(Sec. 3.1.4)

Figure 3.1.: Relations between the security models for the class of two-message
protocols.

3.2. A security-strengthening transformation from eCKw to
eCK-PFS

3.2.1. Protocol class DH-2

We define a class of two-message Diffie-Hellman type AKE protocols (similar to the
class of protocols in [31]). Then, we present a security-strengthening transformation
that can be applied to any such protocol. Finally we show that this transformation
turns any protocol secure in eCKw into a protocol secure in eCK-PFS.

Definition 18 (DH-type AKE protocol). Let k be a security parameter. Let Ω be
static publicly known information such as users’ identifiers (binary strings in P), their

30

3.2 A security-strengthening transformation from eCKw to eCK-PFS

long-term public keys or publicly known functions and parameters. Let S be a set
of constants from which random values are chosen. The elements in brackets in the
exchanged messages represent optional information. A DH-type AKE protocol is an
AKE protocol of the following form, specified by functions fI , fR, FI , FR:

• Domain parameters (G, g, p), where G = 〈g〉 is a group of prime order p generated
by g with ‖p‖ = k.

• KeyGen() : Choose a ∈R [0, p− 1]. Set A ← ga. Return secret key sk = a and
public key pk = A.

• Protocol description, illustrated in Figure 3.2:
1. Upon activation of a new initiator session s with a send(s = (Â, i), B̂)

query, Â chooses randomness rÂ ∈R S, computes x = fI(rÂ, a,Ω) and
the outgoing ephemeral public key X = gx, and returns X as an outgoing
message.

2. Upon activation of responder session s′ via the query send(s′ = (B̂, j), Â,X),
B̂ checks that X ∈ G, chooses randomness rB̂ ∈R S, computes y =
fR(rB̂, b,Ω) and the outgoing ephemeral public key Y = gy, and returns
[X,]Y as an outgoing message. User B̂ computes a session key KB̂ =
FR(y, b,X,Ω), and completes the session by accepting KB̂ as the session
key.

3. Upon receiving message Y in session s with the query send(s, Y), user
Â checks that Y ∈ G, computes a session key KÂ = FI(x, a, Y,Ω), and
completes the session by accepting KÂ as the session key.

The above description also applies to protocols with additional checks, which
we omit for clarity. We assume that whenever a check in a session fails, all
session-specific data is erased from memory and the session is aborted, i. e., it
terminates without establishing a session key.

Initiator I Responder R

Â: (a,A) B̂: (b, B)
x← fI(rÂ, a,Ω)
X ← gx

X−−−−−→
y ← fR(rB̂, b,Ω)
Y ← gy

[X,]Y←−−−−−−− KB̂ ← FR(y, b,X,Ω)
KÂ ← FI(x, a, Y,Ω)

Figure 3.2.: Messages for generic DH-type AKE protocol

Definition 19 (Protocol class DH-2). We define DH-2 as the class of all DH-type
AKE protocols that meet the following validity requirement:

• In the presence of an eavesdropping adversary, two honest users Â and B̂ can
complete matching sessions (in the sense of Definition 10), in which case they
hold the same session key.

31

3 Perfect Forward Secrecy under Actor Compromise and Randomness Reveal

Note that, e. g., the protocols NAXOS [68], NAXOS+ [72], NETS [71] and CMQV [104]
belong to the class DH-2.
Remark 1. The protocol class DH-2 contains the subclass of one-round DH-type
protocols in which messages are generated independently from each other.

3.2.2. Protocol transformation SIG
Here we show how to transform any protocol π ∈ DH-2 into a two-message protocol
SIG(π), shown in Figure 3.3, by applying the signature transformation SIG . User
Â has two independent valid long-term secret/public key pairs, one pair (a,A) from
protocol π and one pair (skÂ, pkÂ) for use in a digital signature scheme Σ with security
parameter k. Similarly, user B̂’s long-term secret/public key pairs are (b, B) and
(skB̂, pkB̂). The transformed protocol SIG(π) in Figure 3.3 proceeds as protocol π
except that each user needs to additionally sign a message using its secret signature
key and check that the received signature on a message is valid with respect to
the long-term public key of its peer. The fields between square brackets within the
signature are optional. Note that if the objective is to obtain a one-round protocol,
then X should not be included in the second message.

Initiator I Responder R

Â: (a,A), (skÂ, pkÂ) B̂: (b, B), (skB̂, pkB̂)
x← fI(rÂ, a,Ω)
X ← gx

σÂ ← SignskÂ
(X

[
, B̂
]
)

X,σÂ−−−−−−−→
y ← fR(rB̂, b,Ω)
Y ← gy

σB̂ ← SignskB̂
(Y
[
, X, Â

]
)

Y,σB̂←−−−−−−− KB̂ ← FR(y, b,X,Ω)
KÂ ← FI(x, a, Y,Ω)

Figure 3.3.: A transformed generic protocol SIG(π)

Informally, a security-strengthening protocol transformation is a mapping between
protocols such that the transformed protocol satisfies stronger security properties. We
formally define a security-strengthening protocol transformation as follows.
Definition 20 (Security-strengthening protocol transformation). Let Π1 and Π2 be
two classes of AKE protocols. We say that a function f : Π1 → Π2 is a security-
strengthening protocol transformation from the model M to the model M ′ if

1. M ≤Π2
Sec M

′, and
2. ∀π ∈ Π1. secure(M,π)→ secure(M ′, f(π)).
The previous definition implies that if an AKE protocol π ∈ Π1 is secure in model

M , M ≤Π2
Sec M

′, and f is a security-strengthening transformation from M to M ′, then
protocol f(π) ∈ Π2 is secure in model M ′. Note that, by Definition 17, it follows that
protocol f(π) is secure in model M .

32

3.2 A security-strengthening transformation from eCKw to eCK-PFS

3.2.3. Security analysis of SIG

Our original intent was to show that SIG is security-strengthening from eCKw to
eCK-PFS, but we will in fact show a more general result: we show that SIG is a
security-strengthening protocol transformation from a weaker version of the eCKw
model, which we call eCKpassive, to eCK-PFS.

Weakening eCKw to eCKpassive. Informally, the eCKpassive model weakens eCKw by
capturing only passive attacks on the test session. The adversary can delay, forward,
or replay messages to the test session. However, he is not allowed to inject a message
to the test session or to modify the message that the test session receives. As in
the eCKw model, the adversary is allowed to reveal the randomness that is used in
sessions and long-term secret keys of users, thus it also captures, e. g., weak perfect
forward secrecy. Formally, the eCKpassive model only differs from eCKw in its definition
of freshness. In eCKpassive, there must exist an origin-session for the test session.

Definition 21 (eCKpassive). The eCKpassive model is defined by (Q,F), where Q =
{send, corrupt, randomness, session-key} and F is defined as follows. A session s is
said to satisfy F if all of the following conditions hold:

1. sactor and speer are honest users, i. e. (sactor , speer) ∈ P × P,
2. there exists an origin-session s′ for session s,
3. no session-key(s) query has been issued,
4. for all sessions s∗ such that s∗ matches s, no session-key(s∗) query has been

issued,
5. not both queries corrupt(sactor) and randomness(s) have been issued, and
6. for all sessions s′ such that s′ is an origin-session for session s, not both queries

corrupt(speer) and randomness(s′) have been issued.

Proposition 4. Let Π be the class of two-message protocols.
• The eCKpassive model is stronger than the wPFS model with respect to Π.
• The eCK-PFS model is stronger than the PFS model with respect to Π.

Proof. The proof that the eCKpassive model is at least as strong as the wPFS model
is similar to the corresponding proof of Proposition 2. Note that the test session
satisfying the freshness predicate of model wPFS implies that it is also satisfies the
freshness predicate of model eCKpassive since in the wPFS model the adversary is not
given access to the queries randomness and session-key. Also, in the wPFS model
the adversary is not allowed to either register keys on behalf of adversary-controlled
users or to issue a corrupt query before the completion of the test session. A similar
argument applies to show that the eCK-PFS model is at least as strong as the PFS
model.

The eCKpassive model is stronger than the wPFS model. It can be easily shown that
protocol TS2 achieves weak-PFS by adapting the proof of [56, Theorem 2]. However,
protocol TS2 is insecure against an adversary who can reveal the long-term secret key
of the actor of the test session and the randomness of the origin-session for the test
session. Hence, TS2 is insecure in eCKpassive. The eCK-PFS model is stronger than
the PFS model. By Theorem 1, it holds that SIG(TS2) is secure in the PFS model.

33

3 Perfect Forward Secrecy under Actor Compromise and Randomness Reveal

However, SIG(TS2) is insecure in eCK-PFS for a similar reason as TS2 is insecure in
eCKpassive.

Propositions 5 and 6 will be used in the proofs of Theorem 1 and Corollary 1.

Proposition 5. Let Π be the class of two-message protocols. The eCKw model is
stronger than the eCKpassive model with respect to Π.

Proof. The proof that the eCKw model is at least as strong as the eCKpassive model is
similar to the corresponding proof of Proposition 2. Note that if the test session satisfies
the freshness predicate of eCKpassive, then it also satisfies the freshness predicate of
eCKw. This follows from the fact that compared to the eCKw model, we have a further
freshness condition on the test session in eCKpassive, namely that an origin-session
exists for the test session.
The model eCKw is stronger than the eCKpassive model since, e. g., the protocol

π1-core is secure in eCKpassive, as we show in Section 3.3, but insecure in eCKw as
observed in [65].

Proposition 6. Let Π be the class of two-message protocols. The eCK-PFS model is
stronger than the eCKpassive model with respect to Π.

Proof. Since eCKpassive <Π
Sec eCKw and eCKw <Π

Sec eCK-PFS, it follows that
eCKpassive <Π

Sec eCK-PFS by transitivity of Implication (3.1). The eCK-PFS model is
stronger than eCKpassive since, e. g., the protocol π1-core is secure in eCKpassive but
insecure in eCK-PFS.

How to provably achieve eCK-PFS security. We show in Theorem 1 below
that the SIG transformation is a security-strengthening protocol transformation
from eCKpassive to eCK-PFS provided that the digital signature scheme is strongly
existentially unforgeable under an adaptive chosen-message attack (SUF-CMA) as well
as deterministic. An example of such a scheme is the GDH signature scheme from [26].
We require a deterministic signature scheme so that we do not have to consider
additional randomness from the signature generation procedure when reasoning about
randomness queries. For certain randomized signature schemes, an efficient adversary
can compute the secret (signature) key given the corresponding public key, a signature
on any message using the secret key, and the randomness involved in the signature
generation learned through a randomness query (as noted in [68]). The following
lemma is used in the proof of Theorem 1.

Lemma 1 (Difference Lemma [98]). Let A,B, F be events defined on some probability
space. Suppose that event A ∧ F c occurs if and only if event B ∧ F c occurs (where F c
denotes the complement of event F). Then

|P (A)− P (B)| ≤ P (F).

Theorem 1. Let Π denote the class of two-message protocols. Under the assumption
that the signature scheme is deterministic and SUF-CMA, the transformation SIG :
DH-2 → Π is a security-strengthening protocol transformation from eCKpassive to
eCK-PFS according to Definition 20.

34

3.2 A security-strengthening transformation from eCKw to eCK-PFS

Proof. The first condition of Definition 20 is satisfied by Proposition 6. We next verify
whether the second condition of Definition 20 holds. Let π ∈ DH-2 be secure in model
eCKpassive. It is straightforward to verify the first condition of Definition 11, i. e., that
matching sessions of protocol SIG(π) compute the same key (since matching sessions
of protocol π compute the same key). We show next that the second condition of
Definition 11 holds, i. e., an adversary against SIG(π) in eCK-PFS has no more than a
negligible advantage in distinguishing the session key from a random key. We present
a security proof structured as a sequence of games, a proof technique introduced
in [98]. Let Si denote the event that the adversary correctly guesses the bit chosen by
the challenger to answer the test-session query in Game i and let αi = |2P (Si)− 1|
denote the advantage of the adversary in Game i. Let N, qs be upper bounds on the
number of users and activated sessions, respectively.

Game 0. This game reflects the security experiment W in model eCK-PFS, as defined
in Section 3.1.1, played by a PPT adversary E against the protocol SIG(π).

Game 1. [Transition based on a small failure event] Let CollSIG(π) be the small failure
event that a collision for protocol SIG(π) occurs (e. g., in session-specific randomness).
As soon as event CollSIG(π) occurs, the attack game stops.

Analysis of game 1. Game 0 is identical to Game 1 up to the point in the experiment
where event CollSIG(π) occurs for the first time. The Difference Lemma yields that
|P (S0)− P (S1)| ≤ P (CollSIG(π)). Hence,

α0 = |2P (S0)− 1| = 2|P (S0)− P (S1) + P (S1)− 1/2|
≤ 2(|P (S0)− P (S1)|+ |P (S1)− 1/2|)
≤ 2P (CollSIG(π)) + α1.

Game 2. [Transition based on a large failure event (see [30, 44])] Before the adversary
E starts the attack game, the challenger chooses a random value m ∈R {1, 2, ..., qs}.
The m-th session activated by E, denoted by s∗, is the session on which the challenger
wants the adversary to be tested. Let T be the event that the test session is not
session s∗. If event T occurs, then the attack game halts and the adversary outputs a
random bit.

Analysis of game 2. Event T is non-negligible, the environment can efficiently detect
it and T is independent of the output in Game 1 (i. e. P (S1|T) = P (S1)). If T does
not occur, then the attacker E will output the same bit in Game 2 as it did in Game
1 (so that P (S2|T c) = P (S1|T c) = P (S1)). If event T occurs in Game 2, then the
attack game halts and the adversary E outputs a random bit (so that P (S2|T) = 1/2).
We have,

P (S2) = P (S2|T)P (T) + P (S2|T c)P (T c) = 1
2P (T) + P (S1)P (T c)

= P (T c)(P (S1)− 1
2) + 1

2 .

Hence we get, α2 = |2P (S2)− 1| = P (T c)|2P (S1)− 1| = 1
qs
α1.

35

3 Perfect Forward Secrecy under Actor Compromise and Randomness Reveal

Suppose w. l. o. g. that s∗role = I and that protocol π does not include optional
public information in the sent messages. Let F be a forgery event with respect to the
long-term public key pkP̂ of user P̂ , that is, adversary E issues a send(s∗, V, σ) query
to session s∗ being incomplete such that

• σ is a valid signature on message m = (V [,W, s∗actor]) with respect to the public
key of P̂ , where W is the Diffie-Hellman exponential contained in message s∗sent ,
and

• (V, σ) has never been output by user P̂ in response to a send query.

Game 3. [Transition based on a small failure event] This game is the same as the
previous one except that when a forgery event F with respect to the long-term public
key of some user P̂ ∈ P occurs, the experiment halts and E outputs a random bit.

Analysis of game 3. The analysis of Game 3 proceeds in several steps. Consider first
the following three cases.

1. If E issues a corrupt(P̂) query before the completion of session s∗ and no origin-
session exists for s∗, then session s∗ does not satisfy the freshness predicate of
the eCK-PFS model. This would have caused Game 2 to abort since session s∗
would not be the test session. Recall that the test-session query can only be
issued to a session that satisfies the freshness predicate of eCK-PFS at the time
the query is issued. Hence this case can be excluded.

2. If P̂ were adversary-controlled (i. e. P̂ /∈ P), then session s∗ would not satisfy
the freshness predicate of eCK-PFS and Game 2 would have aborted. Hence this
case can be excluded as well.

3. If E does not issue a corrupt(P̂) query before the completion of session s∗, then
he can only impersonate user P̂ to session s∗ by forging a signature on a message
with respect to the long-term public key of P̂ .

Claim 1. We have |P (S2)− P (S3)| ≤ P (F).

Proof. If event F does not occur, then Game 2 and 3 proceed identically (i. e. S2∧F c ⇔
S3 ∧ F c). The Difference Lemma yields that |P (S2)− P (S3)| ≤ P (F).

Claim 2. If the deterministic signature scheme is SUF-CMA, then P (F) is negligible.
More precisely, P (F) ≤ NAdvSignM (k), where AdvSignM (k) denotes the probability of a
successful forgery.

Proof. Consider the following algorithm M using adversary E as a subroutine. M is
given a public signature key pk and access to the corresponding signature oracle OSign .
It selects at random one of the N users and sets its public key to pk. We denote this
user by P̂ and its signature key pair by (skP̂ , pkP̂). Further, the algorithm M chooses
signature key pairs (ski, pki) for all honest users P̂i ∈ P with P̂i 6= P̂ and stores the
associated secret keys. It also chooses key pairs (ci, Ci) for all honest users P̂i ∈ P as
needed for protocol π and stores the associated secret keys. Algorithm M proceeds as
follows.

1. Run E on input 1k and the public keys for all of the N users.
2. If E issues a send(z, Q̂) query to activate session z with peer Q̂ ∈ P , then answer

it as follows.

36

3.2 A security-strengthening transformation from eCKw to eCK-PFS

• If zactor 6= P̂ , then choose x ∈R Zp to get X = gx, compute the signature σ
on message m = (X[, Q̂]) on behalf of zactor and return the message (X,σ)
to E.

• If zactor = P̂ , then choose x ∈R Zp to get X = gx and query the signature
oracle on message m = (X[, Q̂]) which returns the signature σ on message
m. Store the pair (m,σ) in a table L, initially empty, and return the
message (X,σ) to E.

3. If E issues a send(z, Q̂,m) query to activate session z, then answer it as follows.
First check whether message m is of the form (X,σ) for some X ∈ G and σ a
valid signature on message (X[, zactor]) with respect to the public key of Q̂. If
the checks succeed, then:

• If zactor 6= P̂ , then choose y ∈R Zp to get Y = gy, compute the signature
σ on message m = (Y [, X, Q̂]) on behalf of zactor and return the message
(Y, σ) to E.

• If zactor = P̂ , then choose y ∈R Zp to get Y = gy and query the signature
oracle on messagem = (Y [, X, Q̂]) which returns the signature σ on message
m. Store the pair (m,σ) in table L (initially empty) and return the message
(Y, σ) to E.

If one of the checks does not succeed, then abort session z.
4. If E issues a send(z,m) query to session z in role I, then check whether message
m is of the form (Y, σ) for some Y ∈ G and σ a valid signature on message
(Y [, X, zactor]) with respect to the public key of zpeer (where X ∈ G is contained
in message zsent). If the check fails, then abort session z.

5. If E makes a send(s∗, V, σ) query, where σ is a valid signature with respect to
the public key pkP̂ of user P̂ on message m = (V [,W, s∗actor]) (where W ∈ G is
contained in s∗sent), before the completion of the test session s∗ and (m,σ) /∈ L,
then stop E and output (m,σ) as a forgery.

6. The queries session-key and randomness are answered in the appropriate way
since M has chosen the randomness for all the sessions and the long-term secret
keys for use in protocol π for all the users.

7. The queries corrupt(Q̂i), where Q̂i ∈ P \ {P̂}, are answered in the appropriate
way since M knows the secret key pairs of the honest users in the set P \ {P̂}.
In case Q̂i /∈ P, M returns ⊥. In case Q̂i = P̂ , M aborts with failure.

8. If E issues the query test-session(s∗), then abort with failure.
Under event F , algorithmM is successful as described in Step 5 and the abortions as in
Step 7 and 8 do not occur. The probability that E succeeds in forging a signature with
respect to the public key of P̂ is bounded above by the probability that M outputs a
forgery multiplied by the number of honest users, that is, P (F) ≤ NAdvSignM (k).

Claim 3. Let AdvSIG(π),Game 3,O
E (k) := |2P (S3|O)−1|, where O denotes the event that

there is an origin-session for the test session. It holds that AdvSIG(π),Game 3
E (k)

= max(0, AdvSIG(π),Game 3,O
E (k)).

Proof. Note that |2P (S3|F)− 1| = |21
2 − 1| = 0 (since, when event F occurs in Game

3, E outputs a random bit) and that if event F does not occur, then there exists an

37

3 Perfect Forward Secrecy under Actor Compromise and Randomness Reveal

origin-session for the test session.

We next establish an upper bound for AdvSIG(π),Game 3,O
E (k) in terms of the security

of protocol π.
Claim 4. Assume that in Game 3 there exists a unique1 origin-session s for the
test session s∗ with sactor = s∗peer . If there is an efficient adversary E in eCK-PFS
succeeding in Game 3 against protocol SIG(π) with non-negligible advantage, then
we can construct an efficient adversary E′ in eCKpassive succeeding in Game 3 against
protocol π with non-negligible advantage using adversary E as a subroutine. Moreover,
it holds that AdvSIG(π),Game 3,O

E (k) ≤ Advπ,Game 3
E′ (k).

Proof. Fix an efficient adversary E in eCK-PFS succeeding in Game 3 against protocol
SIG(π) with non-negligible advantage. Let us construct an adversary E′ in eCKpassive

succeeding in Game 3 against protocol π with non-negligible advantage using adversary
E as a subroutine.
Algorithm E′ chooses secret/public signature key pairs for all the users and stores the
associated secret signature keys. It is given all public knowledge, such as identities
and long-term public (non-signature) keys for all the users. Algorithm E′ proceeds as
follows.

1. Run E against SIG(π) on input 1k and the public key pairs for all of the N
users.

2. When E issues a corrupt(P̂) query to some user P̂ , E′ issues that query to user
P̂ and returns the answer to that query together with the secret signature key
of P̂ (that E′ has chosen) to E.

3. When E issues a randomness or a session-key query to some session z, E′ issues
that query to session z and returns the answer to E.

4. send queries are answered in the following way.
• If E issues a send(z, Q̂) query to activate session z with peer Q̂, then E′

issues the same query to session z. The response is a message W (∈ G).
Since E′ knows the secret signature key of zactor , it can sign the message
m = (W [, Q̂]) on its behalf and then return the message (W,σ) to E, where
σ denotes the signature on m with respect to the public key of zactor .

• If E issues a send(z, Q̂,m) query to activate session z, where message m is
of the form (W,σ), then E′ first checks whetherW ∈ G and second whether
σ is a valid signature on message (W [, zactor]) with respect to the public key
of Q̂. If the checks succeed, then E′ issues the query send(z,W) to session
z. The response is a message V ∈ G. Since E′ knows the secret signature
key of zactor , it can sign the message m = (V [,W, Q̂]) on its behalf and
then return the message (V, σ) to E, where σ denotes the signature on m
with respect to the public key of zactor .

• If E issues a send(z,m) query, where message m is of the form (V, σ), then
E′ first checks whether V ∈ G and second whether σ is a valid signature
on message (V [,W, zactor]) with respect to the public key of zpeer , where W

1No collision in the randomness occurs for SIG(π) (where π ∈ DH-2) since otherwise Game 1 would
have caused the game to abort.

38

3.2 A security-strengthening transformation from eCKw to eCK-PFS

is the Diffie-Hellman exponential contained in zsent . If the checks succeed,
then E′ issues the query send(z, V) to session z.

If one of the checks fails, then session z is aborted (i. e. E′ aborts session z).
5. In case E issues the test-session query to session s∗, E′ issues the test-session

query to session s∗ and returns the answer to E.
6. At the end of E’s execution (after it has output its guess b′), output b′ as well.

Since by assumption there exists a unique origin-session for the test session, the
test session satisfying the freshness predicate of eCK-PFS also satisfies the freshness
predicate of eCKpassive. Thus, it holds that

Adv
SIG(π),Game 3,O
E (k) ≤ Advπ,Game 3

E′ (k).

Finally,

Adv
SIG(π)
E (k) ≤ 2P (CollSIG(π)) + 2qsNAdvSignM (k) + qsAdv

SIG(π),Game 3,O
E (k)

≤ 2P (CollSIG(π)) + 2qsNAdvSignM (k) + qsAdv
π,Game 3
E′ (k)

Since by assumption protocol π is secure in eCKpassive, there is a negligible function g
such that Advπ,Game 3

E′ (k) ≤ g(k), which completes the proof.

We obtain the following corollary as a consequence of Theorem 1.

Corollary 1. Let Π denote the class of two-message protocols. Under the assumption
that the signature scheme is deterministic and SUF-CMA, the transformation SIG :
DH-2→ Π is a security-strengthening protocol transformation from eCKw to eCK-PFS
according to Definition 20.

Proof. The first condition of Definition 20 is satisfied by Proposition 2. We next
verify the second requirement. Let π ∈ DH-2 secure in eCKw. Since by Proposition 5
we have eCKpassive ≤Π

Sec eCKw, it follows that protocol π is secure in eCKpassive. By
Theorem 1, SIG is a security strengthening protocol transformation from eCKpassive to
eCK-PFS. Therefore, the transformed protocol SIG(π) is secure in eCK-PFS.

Remark 2. Let eCK-NEKpassive and eCK-NEK-PFS be the security models obtained
from eCKpassive and eCK-PFS (respectively) by removing the randomness query from
the adversary’s capabilities and related restrictions in the freshness definitions. Then
it can be shown in a similar way as above that for any protocol π ∈ DH-2 secure
in eCK-NEKpassive, the transformed protocol SIG(π) is secure in eCK-NEK-PFS using
either a deterministic or a randomized SUF-CMA signature scheme. The same
statement holds when replacing eCK-NEKpassive by wPFS and eCK-NEK-PFS by PFS.
Remark 3. Blake-Wilson and Menezes [22, p. 160] introduced the duplicate-signature
key selection (DSKS) attack on signature schemes: after observing a user’s signature
σ on a message m, the adversary E is able to compute a signature key pair (skE , pkE)
(or sometimes just a verification key pkE) such that σ is also E’s signature on the
message m. Now, the adversary in our setting can only register public keys at the

39

3 Perfect Forward Secrecy under Actor Compromise and Randomness Reveal

onset of the experiment W described in Section 3.1, i. e. before interacting with the
users through queries. Thus, DSKS attacks, which exploit the adversary’s ability
to register a public key after observing signed messages, are not captured in our
models. Note however that UKS attacks based on public-key re-registration (such as
the ones on STS-MAC and STS-ENC [22, p. 159] as well as on KEA [69, p. 380]) are
captured in our models eCKpassive, eCKw, and eCK-PFS. Such UKS attacks can e. g.
be prevented by making the session key derivation depend on the identifiers of actor
and peer of the session.

3.2.4. Comparison of SIG to MAC

The C transformation by Boyd and González Nieto [31] transforms any two-message
protocol that satisfies weak perfect forward secrecy into a two-message protocol that
achieves perfect forward secrecy. In the transformed protocol, the exchanged messages
are authenticated via message authentication codes (MACs) using a static Diffie-
Hellman key. However, an adversary capable of actor compromise can compute the
static Diffie-Hellman key used in the test session. Hence, in this setting, the MAC
does not provide any message origin authentication. More precisely, an attacker can
impersonate the peer of the test session by first revealing the long-term secret keys of
the actor (which allows him to create valid MACs on messages of his choice), and,
after the completion of the test session, revealing the long-term secret keys of the peer.
Thus, the attacker can effectively perform a variant of Krawczyk’s PFS attack. We
next detail a concrete instance of this attack, showing that C(NAXOS) [31] is insecure
in eCK-PFS. We denote by S = ga

′b′ the shared static DH key between the users Â
and B̂.

1. The adversary E first reveals the long-term secret keys of user Â by issuing the
query corrupt(Â).

2. He then activates an initiator session s via the query send(s = (Â, i), B̂) and
receives as a response the message m = X,MACS(Â, B̂,X), where X = gH1(rÂ,a)

with rÂ chosen uniformly at random from {0, 1}k in session s.
3. E chooses z ∈R Zp, computes an ephemeral public key Z = gz, and sends

message m̃ = Z,MACS(B̂, Â, Z) to session s.
4. Upon receiving message m̃ in session s, Â computes the session key KÂ =
H2(Za, BH1(rÂ,a), ZH1(rÂ,a), Â, B̂) and accepts KÂ as the session key.

5. Now, E chooses the completed session s as the test session, and reveals the
long-term secret keys of user B̂ via the query corrupt(B̂). This enables him to
compute the session key of the test session as KE = H2(Az, Xb, Xz, Â, B̂).

Hence, in contrast to the SIG transformation, the transformation C|DH-2 : DH-2→
Π is not a security-strengthening protocol transformation from eCKw to eCK-PFS
according to Definition 20, where Π denotes the class of two-message protocols.

3.3. Application of SIG to concrete protocols

In Section 3.3.1 we demonstrate that the NAXOS protocol is secure in eCKw and
construct a protocol secure in eCK-PFS using our SIG transformation. In Section 3.3.2

40

3.3 Application of SIG to concrete protocols

we show how to prove the security of the protocol π1 in eCK-PFS by proving the much
weaker protocol π1-core secure in eCKpassive and applying the SIG transformation to
π1-core.

3.3.1. NAXOS revisited
The NAXOS protocol [68], shown in Figure 3.4, provides an example of a protocol
belonging to the class DH-2, where H1 : {0, 1}∗ → Zp and H2 : {0, 1}∗ → {0, 1}k

denote two hash functions and rÂ, rB̂ ∈R {0, 1}
k. In analogy to Figure 3.2, note

that fI(rÂ, a,Ω) = H1(rÂ, a), fR(rB̂, b,Ω) = H1(rB̂, b), FI(fI(rÂ, a,Ω), a, Y,Ω) =
H2(Y a, BH1(rÂ,a), Y H1(rÂ,a), Â, B̂), and FR(fR(rB̂, b,Ω), b,X,Ω) = H2(AH1(rB̂ ,b),

Xb, XH1(rB̂ ,b), Â, B̂).

Initiator I Responder R

Â: (a,A) B̂: (b, B)
x← H1(rÂ, a)
X ← gx

X−−−−−→
y ← H1(rB̂, b)
Y ← gy

Y←−−−−− KB̂ ← H2(Ay, Xb, Xy, Â, B̂)
KÂ ← H2(Y a, Bx, Y x, Â, B̂)

Figure 3.4.: NAXOS protocol [68]

The following proposition states that the NAXOS protocol is secure in eCKw.

Proposition 7. Under the Gap Diffie-Hellman assumption in the cyclic group G of
prime order p, NAXOS is secure in the eCKw model, when H1 and H2 are modeled
as independent random oracles.

In contrast to the proof of NAXOS in the eCK model [68], the proof of Proposition 7
distinguishes between the cases whether or not an origin-session (instead of a matching
session) exists for the test session.

Proof. Here we show that NAXOS is secure in eCKw. We use the structure of the
security proof of the CMQV protocol in [104] as it is more detailed than the proof of
NAXOS in [68].
Let the test session s∗ be given by Ts∗ = (Â, B̂, I, X, Y). We first consider event

Kc where the adversary M wins the security experiment against NAXOS (with
non-negligible advantage) and does not query H2 with (σ1, σ2, σ3, Â, B̂), where σ1 =
CDH(Y,A), σ2 = CDH(B,X) and σ3 = CDH(X,Y).
Event Kc

If event Kc occurs, then the adversaryM must have issued a session-key query to some
session s such that Ks = Ks∗ (where Ks and Ks∗ denote the session keys computed
in sessions s and s∗, respectively) and s does not match s∗. We consider the following
four events:

41

3 Perfect Forward Secrecy under Actor Compromise and Randomness Reveal

1. A1 : there exist two sessions s1, s2 such that rs1 = rs2 (where rs1 and rs2 denote
the randomness used in sessions s1 and s2, respectively).

2. A2 : there exists a session s such that H1(rs, sksactor) = H1(rs∗ , sks∗actor
) and

rs 6= rs∗ .
3. A3 : there exists a session s′ such that H2(inputs′) = H2(inputs∗) with inputs′ 6=

inputs∗ .
4. A4 : there exists an adversarial query inputM to the oracle H2 such that
H2(inputM) = H2(inputs∗) with inputM 6= inputs∗ .

Analysis of event Kc

We denote by qs an upper bound on the number of activated sessions by the adversary
and by qro2 an upper bound on the number of queries to the random oracle H2. We
have that

P (Kc) ≤ P (A1 ∨A2 ∨A3 ∨A4) ≤ P (A1) + P (A2) + P (A3) + P (A4)

≤ q2
s

2
1
2k + qs

p
+ qs + qro2

2k ,

which is a negligible function of the security parameter k.
In the subsequent events (and their analyses) we assume that no collisions in the

queries to the oracle H1 occur and that none of the events A1, ..., A4 occurs. Similar
to [68,104], we next consider the following three events:

1. DL ∧K,
2. TO ∧DLc ∧K, and
3. (TO)c ∧DLc ∧K, where

TO denotes the event that there exists an origin-session for the test session, DL
denotes the event where there exists a user Ĉ ∈ P such that the adversary M , during
its execution, queries H1 with (∗, c) before issuing a corrupt(Ĉ) query and K denotes
the event that M wins the security experiment against NAXOS by querying H2 with
(σ1, σ2, σ3, Â, B̂), where σ1 = CDH(Y,A), σ2 = CDH(B,X) and σ3 = CDH(X,Y).

Note that we analyze the security of the NAXOS protocol in case the messages only
contain the Diffie-Hellman exponentials.
Event DL ∧K
This event is independent of the event that there exists an origin-session for the test
session.

Let the input to the GDL challenge be C. Suppose that event DL ∧K occurs with
non-negligible probability. In this case, the simulator S chooses one user Ĉ ∈ P at
random and sets its long-term public key to C. S chooses long-term secret/public
key pairs for the remaining honest users and stores the associated long-term secret
keys. Additionally S chooses a random value m ∈R {1, 2, ..., qs}. We denote the m’th
activated session by adversary M by s∗. Suppose further that s∗actor = Â, s∗peer = B̂
and s∗role = I, w. l. o. g.. The simulation of M ′s environment proceeds as follows:

1. send queries are answered in the usual way. In case a session s is activated
via a send query, S stores an entry of the form (s, rs, sksactor , κ) ∈ (P × N) ×
{0, 1}k × (Zp ∪ {∗})× Zp in a table Q, initially empty, (unless ephemeral public
key validation on the received element fails in which case the session is aborted).

42

3.3 Application of SIG to concrete protocols

When computing the (outgoing) Diffie-Hellman exponential of session s, S does
the following:

• S chooses rs ∈R {0, 1}k (i. e. the randomness of session s),
• S chooses κ ∈R Zp,
• if sactor 6= Ĉ, then S stores the entry (s, rs, sksactor , κ) in Q, else S stores

the entry (s, rs, ∗, κ) in Q,2 and
• S returns the Diffie-Hellman exponential gκ to M .

2. S stores entries of the form
(
Q̂i, Q̂j , r, U, V, λ

)
∈ P × {0, 1}∗ × {I,R} × G ×

G × {0, 1}k in a table T , initially empty. Upon completion of session s with
Ts =

(
Q̂i, Q̂j , I, U, V

)
, S does the following:

• If there exists an entry
(
Q̂j , Q̂i,R, V, U, λ

)
in table T , then S stores(

Q̂i, Q̂j , I, U, V, λ
)
in table T .

• Else if there exists an entry
(
σ1, σ2, σ3, Q̂i, Q̂j , λ

)
in table L, for some

λ ∈ {0, 1}k, such that DDH(V,U, σ3) = 1, DDH(U,Qj , σ2) = 1 and
– V

skQ̂i = σ1 (in case Q̂i 6= Ĉ) or DDH(V,Qi, σ1) = 1 (in case Q̂i = Ĉ),
then S stores

(
Q̂i, Q̂j , I, U, V, λ

)
in table T .

• Else, S chooses µ ∈R {0, 1}k and stores the entry
(
Q̂i, Q̂j , I, U, V, µ

)
in T .

The session key of a completed session s with Ts =
(
Q̂j , Q̂i,R, V, U

)
is deter-

mined and stored similarly.
3. randomness(s): S answers this query in the appropriate way.
4. session-key(s): S answers this query by look-up in table T .
5. test-session(s): If s 6= s∗, then S aborts; otherwise S answers the query in the

appropriate way.
6. corrupt(P̂): S answers this query in the appropriate way, except if P̂ = Ĉ in

which case S aborts with failure.
7. S stores entries of the form (r, h, κ) ∈ {0, 1}k × Zp × Zp in a table J , initially

empty. When M makes a query of the form (r, h) to the random oracle for H1,
answer it as follows:

• If C = gh, then S aborts M and is successful by outputting DLogg(C) = h.
• Else if (r, h, κ) ∈ J for some κ ∈ Zp, then S returns κ to M .
• Else if there exists an entry (s, rs, sksactor , κ) in Q, for some s ∈ P ×N, rs ∈
{0, 1}k , sksactor ∈ Zp and κ ∈ Zp, such that rs = r and sksactor = h, then S
returns κ to M and stores the entry (r, h, κ) in table J .

• Else, S chooses κ ∈R Zp, returns it to M and stores the entry (r, h, κ) in J .
8. S stores entries of the form

(
σ1, σ2, σ3, Q̂i, Q̂j , λ

)
∈ G × G × G × {0, 1}∗ ×

{0, 1}∗ × {0, 1}k in a table L, initially empty. When M makes a query of the
form

(
σ1, σ2, σ3, Q̂i, Q̂j

)
to the random oracle for H2, answer it as follows:

• If
(
σ1, σ2, σ3, Q̂i, Q̂j , λ

)
∈ L for some λ ∈ {0, 1}k, then S returns λ to M .

2We do not need to keep consistency with H1 queries via lookup in table J since the probability
that the adversary guesses the random data of a session is negligible.

43

3 Perfect Forward Secrecy under Actor Compromise and Randomness Reveal

• Else if there exist entries
(
Q̂i, Q̂j , I, U, V, λ

)
or
(
Q̂j , Q̂i,R, V, U, λ

)
in table

T , for some λ ∈ {0, 1}k and U, V ∈ G, such that DDH(V,U, σ3) = 1,
DDH(V,Qi, σ1) = 1 and DDH(U,Qj , σ2) = 1, then S returns λ to M and
stores the entry

(
σ1, σ2, σ3, Q̂i, Q̂j , λ

)
in table L.

• Else, S chooses µ ∈R {0, 1}k, returns it to M and stores the entry(
σ1, σ2, σ3, Q̂i, Q̂j , µ

)
in L.

9. M outputs a guess: S aborts with failure.

Analysis of event DL ∧K
S’s simulation of M ’s environment is perfect except with negligible probability. The
probability that M selects s∗ as the test session is at least 1

qs
. Assuming that this is

indeed the case, S does not abort in Step 5. With probability at least 1
N , S assigns

the public key C to a user Ĉ for whom M queries H1 with (∗, h) such that C = gh

before issuing a corrupt(Ĉ) query. In this case, S is successful as described in Step 7
and does not abort in Steps 6 and 9. Hence, if event DL∧K occurs, then the success
probability of S is given by P (S) ≥ 1

Nqs
P (DL ∧K).

Event TO ∧DLc ∧K
Let s∗ and s′ denote the test session and the origin-session for the test session,
respectively. We split event Ev := TO ∧DLc ∧K into the following events B1, ..., B3
so that Ev = B1 ∨B2 ∨B3:

1. B1 : Ev occurs and s∗peer = s′actor .
2. B2 : Ev occurs and s∗peer 6= s′actor and M does not issue a randomness(s′) query

to the origin-session s′ of s∗, but may issue a corrupt(s∗peer) query.
3. B3 : Ev occurs and s∗peer 6= s′actor and M does not issue a corrupt(s∗peer) query,

but may issue a randomness(s′) query to the origin-session s′ of s∗.

Event B1
Let the input to the GDH challenge be (X0, Y0). Suppose that event B1 occurs with
non-negligible probability. In this case S chooses long-term secret/public key pairs
for all the honest users and stores the associated long-term secret keys. Additionally
S chooses two random values m,n ∈R {1, 2, ..., qs}. The m’th activated session by
adversary M will be called s∗ and the n’th activated session will be called s′. The
randomness of session s∗ is denoted by x̃0 and the randomness of session s′ is denoted
by ỹ0. Suppose further that s∗actor = Â, s∗peer = B̂ and s∗role = I, w. l. o. g.. The
simulation of M ′s environment proceeds as follows:

1. send(s∗, B̂): S sets the ephemeral public key X to X0 and answers the query
with message X0.

2. send(s∗, Y0): S proceeds with Step 7.
3. send(s′, P̂): S sets the ephemeral public key Y to Y0 and answers the query

with message Y0.
4. send(s′, P̂ , Z): S checks whether Z ∈ G, sets the ephemeral public key Y to Y0,

answers the query with message Y0 and proceeds with Step 7. If the check fails,
session s′ is aborted.

5. send(s′, Z): S proceeds with Step 7.

44

3.3 Application of SIG to concrete protocols

6. Other send queries are answered in the usual way.3
7. S stores entries of the form

(
Q̂i, Q̂j , r, U, V, λ

)
∈ P × {0, 1}∗ × {I,R} × G ×

G × {0, 1}k in a table T , initially empty. Upon completion of session s with
Ts =

(
Q̂i, Q̂j , I, U, V

)
, S does the following:

• If there exists an entry
(
Q̂j , Q̂i,R, V, U, λ

)
in table T , then S stores(

Q̂i, Q̂j , I, U, V, λ
)
in table T .

• Else if there exists an entry
(
σ1, σ2, σ3, Q̂i, Q̂j , λ

)
in table L, for some λ ∈

{0, 1}k, such that V skQ̂i = σ1, DDH(U,Qj , σ2) = 1 and DDH(V,U, σ3) = 1,
then S stores

(
Q̂i, Q̂j , I, U, V, λ

)
in table T .

• Else, S chooses µ ∈R {0, 1}k, and stores the entry
(
Q̂i, Q̂j , I, U, V, µ

)
in T .

The session key of a completed session s with Ts =
(
Q̂j , Q̂i,R, V, U

)
is deter-

mined and stored similarly.
8. randomness(s): S answers this query in the appropriate way.
9. session-key(s): S answers this query by look-up in table T .

10. test-session(s): If s 6= s∗ or if s′ is not the origin-session for session s∗, then S
aborts; otherwise S answers the query in the appropriate way.

11. H1(rĈ , c): S simulates a random oracle in the usual way except if Ĉ = Â (i.e.
c = a) and rĈ = x̃0 or if Ĉ = B̂ (i.e. c = b) and rĈ = ỹ0, in which case S aborts
with failure.

12. corrupt(P̂): S answers this query in the appropriate way.
13. S stores entries of the form

(
σ1, σ2, σ3, Q̂i, Q̂j , λ

)
∈ G × G × G × {0, 1}∗ ×

{0, 1}∗ × {0, 1}k in a table L, initially empty. When M makes a query of the
form

(
σ1, σ2, σ3, Q̂i, Q̂j

)
to the random oracle for H2, answer it as follows:

• If
{
Q̂i, Q̂j

}
=
{
Â, B̂

}
, σ1 = Y a

0 , σ2 = Xb
0 and DDH(X0, Y0, σ3) = 1, then

S aborts M and is successful by outputting CDH(X0, Y0) = σ3.
• Else if

(
σ1, σ2, σ3, Q̂i, Q̂j , λ

)
∈ L for some λ ∈ {0, 1}k, then S returns λ to

M .
• Else if there exist entries

(
Q̂i, Q̂j , I, U, V, λ

)
or
(
Q̂j , Q̂i,R, V, U, λ

)
, for

some λ ∈ {0, 1}k and U, V ∈ G, such that DDH(V,Qi, σ1) = 1,
DDH(U,Qj , σ2) = 1 and DDH(V,U, σ3) = 1 in table T , then S returns λ
to M and stores the entry

(
σ1, σ2, σ3, Q̂i, Q̂j , λ

)
in table L.

• Else, S chooses µ ∈R {0, 1}k, returns it to M and stores the entry(
σ1, σ2, σ3, Q̂i, Q̂j , µ

)
in L.

14. M outputs a guess: S aborts with failure.

Analysis of event B1
S’s simulation of M ’s environment is perfect except with negligible probability. The
probability that M selects s∗ as the test session and s′ as the origin-session for the

3Note that, if the group membership test fails, then the session is aborted.

45

3 Perfect Forward Secrecy under Actor Compromise and Randomness Reveal

test session is at least 1
q2

s
. Assuming that this is indeed the case, S does not abort

in Step 10. Recall that Ts∗ = (Â, B̂, I, X0, Y0). Since x̃0 is used only in the test
session, M can only obtain it via a randomness(s∗) query before making an H1 query
that includes x̃0. Similarly, M can only obtain ỹ0 via a randomness(s′) query on the
origin-session s′ before making an H1 query that includes ỹ0. Under event DLc, the
adversary first issues a corrupt(P̂) query to user P̂ before making an H1 query that
involves the long-term secret key of user P̂ . Freshness of the test session guarantees
that the adversary can reveal at most one value in each of the pairs (x̃0, a) and (ỹ0, b);
hence S does not abort in Step 11. Under event K, except with negligible probability
of guessing CDH(X0, Y0), S is successful as described in the first case of Step 13 and
does not abort as in Step 14. Hence, if event B1 occurs, then the success probability
of S is given by P (S) ≥ 1

q2
s
P (B1).

Event B2
Let the input to the GDH challenge be (X0, Y0). Suppose that event B2 occurs with
non-negligible probability. The simulation of S proceeds in a similar way as for event
B1. Steps 8 and 11 need to be replaced by the following:

• randomness(s): S answers this query in the appropriate way, except if s = s′ in
which case S aborts with failure.

• H1(rĈ , c): S simulates a random oracle in the usual way except if Ĉ = Â (i.e.
c = a) and rĈ = x̃0, in which case S aborts with failure.

Analysis of event B2
S’s simulation of M ’s environment is perfect except with negligible probability. The
probability that M selects s∗ as the test session and s′ as the origin-session for the
test session is 1

q2
s
. Recall that Ts∗ = (Â, B̂, I, X0, Y0). Since x̃0 is used only in the test

session, M can only obtain it via a randomness(s∗) query before making an H1 query
that includes x̃0. Under event DLc, the adversary first issues a corrupt(P̂) query to
user P̂ before making an H1 query that involves the long-term secret key of user P̂ .
Freshness of the test session guarantees that the adversary can reveal at most one value
of the pair (x̃0, a). Under event B2 the simulation does not fail as in Step 8. Under
event K, except with negligible probability of guessing CDH(X0, Y0), S is successful
as described in the first case of Step 13 and does not abort as in Step 14. Hence, if
event B2 occurs, then the success probability of S is given by P (S) ≥ 1

q2
s
P (B2).

Event B3
Let the input to the GDH challenge be (X0, B). Suppose that event B3 occurs with
non-negligible probability. In this case, S chooses one user B̂ ∈ P at random and sets
its long-term public key to B. S chooses long-term secret/public key pairs for the
remaining users in P and stores the associated long-term secret keys. Additionally
S chooses two random values m,n ∈R {1, 2, ..., qs}. We denote the m’th activated
session by adversary M by s∗ and the n’th activated session by s′. The randomness of
session s∗ is denoted by x̃0. Suppose further that s∗actor = Â, s∗peer = B̂ and s∗role = I,
w. l. o. g.. The simulation of M ′s environment proceeds as follows:

1. send(s∗, B̂): S sets the ephemeral public key X to X0 and answers the query
with message X0.

46

3.3 Application of SIG to concrete protocols

2. send(s∗, Z): S proceeds with Step 4.
3. Other send queries are answered as for event DL ∧K.
4. S stores entries of the form

(
Q̂i, Q̂j , r, U, V, λ

)
∈ P × {0, 1}∗ × {I,R} × G ×

G × {0, 1}k in a table T , initially empty. Upon completion of session s with
Ts =

(
Q̂i, Q̂j , I, U, V

)
, S proceeds as for event DL ∧K (see above).

5. randomness(s): S answers this query in the appropriate way.
6. session-key(s): S answers this query by look-up in table T .
7. test-session(s): If s 6= s∗ or if s′ is not the origin-session for session s∗, then S

aborts; otherwise S answers the query in the appropriate way.
8. H1(rĈ , c): S simulates a random oracle in the usual way except if Ĉ = Â (i.e.
c = a) and rĈ = x̃0, in which case S aborts with failure.

9. corrupt(P̂): S answers this query in the appropriate way, except if P̂ = B̂ in
which case S aborts with failure.

10. S stores entries of the form
(
σ1, σ2, σ3, Q̂i, Q̂j , λ

)
∈ G×G×G×P×P×{0, 1}k in

a table L, initially empty. WhenM makes a query of the form
(
σ1, σ2, σ3, Q̂i, Q̂j

)
to the random oracle for H2, answer it as follows:

• If
{
Q̂i, Q̂j

}
=
{
Â, B̂

}
, σ1 = A

H1(rs′ ,sks′actor
), DDH(X0, B, σ2) = 1, and

σ3 = X
H1(rs′ ,sks′actor

)
0 , then S aborts M and is successful by outputting

CDH(X0, B) = σ2.
• Else if

(
σ1, σ2, σ3, Q̂i, Q̂j , λ

)
∈ L for some λ ∈ {0, 1}k, then S returns λ to

M .
• Else if there exist entries

(
Q̂i, Q̂j , I, U, V, λ

)
or
(
Q̂j , Q̂i,R, V, U, λ

)
in table

T , for some λ ∈ {0, 1}k and U, V ∈ G, such that DDH(V,U, σ3) = 1,
DDH(V,Qi, σ1) = 1 and DDH(U,Qj , σ2) = 1, then S returns λ to M and
stores the entry

(
σ1, σ2, σ3, Q̂i, Q̂j , λ

)
in table L.

• Else, S chooses µ ∈R {0, 1}k, returns it to M and stores the entry(
σ1, σ2, σ3, Q̂i, Q̂j , µ

)
in L.

11. M outputs a guess: S aborts with failure.

Analysis of event B3
S’s simulation of M ’s environment is perfect except with negligible probability. The
probability that M selects s∗ as the test session and s′ as its origin-session is at least
1
q2

s
. Assuming that this is indeed the case, S does not abort in Step 7. With probability

1
N , S assigns the public key B to the peer of the test session B̂. Under event B3, M
does not issue a corrupt(B̂) query, and so S does not abort in Step 9. Similarly, S
does not abort in Step 11 and is successful as described in Step 10. Hence, if event
B3 occurs, then the success probability of S is given by P (S) ≥ 1

Nq2
s
P (B3).

Event (TO)c ∧DLc ∧K
If there is no origin-session for the test session, then there is also no matching session
for the test session. Hence ((TO)c∧DLc∧K) ⊆ ((TM)c∧DLc∧K) (where TM denotes
the event that there exists a matching session for the test session) which implies that

47

3 Perfect Forward Secrecy under Actor Compromise and Randomness Reveal

event (TO)c ∧DLc ∧K is covered in the analysis of event (TM)c ∧DLc ∧K for which
we refer the reader to [67,68]. Note that, similar to the simulation related to Event
B3,

• S checks whether there is a query (σ1, σ2, σ3, Q̂i, Q̂j) by M to H2 such that{
Q̂i, Q̂j

}
=
{
Â, B̂

}
, DDH(A, Y, σ1) = 1,DDH(X0, B, σ2) = 1, and

DDH(X0, Y, σ3) = 1 (assuming that the test session s∗ is given by Ts∗ =
(Â, B̂, I, X0, Y) to solve the GDH instance (X0, B), and

• S keeps consistency between session-key and H2 queries as well as between send
and H1 queries.

Combining Proposition 7 with Theorem 1, we obtain the following result.

Corollary 2. Under the Gap Diffie-Hellman assumption in the cyclic group G of
prime order p, using a deterministic SUF-CMA signature scheme, the SIG(NAXOS)
protocol shown in Figure 3.5 is secure in the eCK-PFS model, when H1, H2 are modeled
as independent random oracles.

Initiator I Responder R

Â: (a,A), (skÂ, pkÂ) B̂: (b, B), (skB̂, pkB̂)
x← H1(rÂ, a)
X ← gx

σÂ ← SignskÂ
(X

[
, B̂
]
)

X,σÂ−−−−−−−→
y ← H1(rB̂, b)
Y ← gy

σB̂ ← SignskB̂
(Y
[
, X, Â

]
)

Y,σB̂←−−−−−−− KB̂ ← H2(Ay, Xb, Xy, Â, B̂)
KÂ ← H2(Y a, Bx, Y x, Â, B̂)

Figure 3.5.: SIG(NAXOS) protocol

3.3.2. Proving π1 secure in eCK-PFS via π1-core

Figure 3.6 shows the protocol π1-core ∈ DH-2, where H : {0, 1}∗ → {0, 1}k denotes a
hash function and x, y ∈R Zp. As observed in [65], the π1-core protocol is insecure
with respect to an active adversary. The adversary can impersonate B̂ to Â by simply
sending the message B−1Z (where Z = gi for some i ∈ Zp) to Â. Â computes the
secret value that is used to derive the session key as (BB−1Z)x+a = Zx+a. The latter
value can be easily computed by the adversary. This attack shows that π1-core is
insecure in eCKw.
However, even though π1-core is insecure in eCKw, it can be proven secure in the

weaker eCKpassive model, as the following proposition shows.

48

3.3 Application of SIG to concrete protocols

Initiator I Responder R

Â: (a,A) B̂: (b, B)
x← rÂ
X ← gx

X−−−−−→
y ← rB̂
Y ← gy

Y←−−−−− KB̂ ← H(Â, B̂, (XA)y+b, X)
KÂ ← H(Â, B̂, (Y B)x+a, X)

Figure 3.6.: Protocol π1-core

Proposition 8. Under the Gap Diffie-Hellman assumption in the cyclic group G
of prime order p, the protocol π1-core is secure in the eCKpassive model, when H is
modeled as a random oracle.

Proof. Let the test session s∗ be given by Ts∗ = (Â, B̂, I, X, Y). We first con-
sider event Kc where the adversary M wins the security experiment against π1-core
(with non-negligible advantage) and does not query H with (Â, B̂, σ,X), where
σ = CDH(Y B,XA).

Event Kc

If event Kc occurs, then the adversaryM must have issued a session-key query to some
session s such that Ks = Ks∗ (where Ks and Ks∗ denote the session keys computed
in sessions s and s∗, respectively) and s does not match s∗. We consider the following
three events:

1. A1 : there exist two sessions s1, s2 such that rs1 = rs2 (where rs1 and rs2 denote
the randomness used in sessions s1 and s2, respectively). Note that A1 includes
the event where there exists a session s with Ts = Ts∗ as well as the event where
two sessions use the same randomness (possibly leading to randomness queries).

2. A2 : there exists a session s such that H(inputs) = H(inputs∗) with inputs 6=
inputs∗ .

3. A3 : there exists an adversarial query inputM to the oracle H such that
H(inputM) = H(inputs∗) with inputM 6= inputs∗ .

Analysis of event Kc

We denote by qs an upper bound on the number of activated sessions by the adversary
and by qro an upper bound on the number of queries to the random oracle H. We
have that

P (Kc) ≤ P (A1 ∨A2 ∨A3) ≤ P (A1) + P (A2) + P (A3)

≤ q2
s

2p + qs + qro
2k ,

which is a negligible function of the security parameter k.
In the subsequent events (and their analyses) we assume that none of the events

49

3 Perfect Forward Secrecy under Actor Compromise and Randomness Reveal

A1, ..., A3 occurs. We consider the following event:

TO ∧K, where

TO denotes the event that there exists an origin-session for the test session, and K
denotes the event that M wins the security experiment against π1-core by querying H
with (Â, B̂, σ,X), where σ = CDH(Y B,XA). Recall that in case there is no origin-
session for the test session, the test session does not satisfy the freshness predicate of
eCKpassive.
Event TO ∧K
Let s∗ and s′ denote the test session and the origin-session for the test session,
respectively. We split event Ev := TO ∧K into the following events B1, ..., B4 so that
Ev = B1 ∨B2 ∨B3 ∨B4:

1. B1 : Ev occurs and the adversary does issue neither randomness(s′) nor
randomness(s∗), but may issue the queries corrupt(s∗actor) and corrupt(s∗peer).

2. B2 : Ev occurs and the adversary does issue neither randomness(s∗) nor
corrupt(s∗peer), but may issue the queries corrupt(s∗actor) and randomness(s′).

3. B3 : Ev occurs and the adversary does issue neither randomness(s′) nor
corrupt(s∗actor), but may issue the queries corrupt(s∗peer) and randomness(s∗).

4. B4 : Ev occurs and the adversary does issue neither corrupt(s∗actor) nor
corrupt(s∗peer), but may issue the queries randomness(s′) and randomness(s∗).

Event B1
We denote by X,Y the ephemeral public keys sent, received during the test session
s∗. Revealing the long-term secret keys of both s∗actor and s∗peer , the adversary E
could distinguish the session key of the test session from a random key by computing
CDH(X,Y) = gxy (where X = gx and Y = gy) since

gxy = (Y B)x+aY −aX−bB−a.

We solve the Gap Diffie-Hellman problem with probability 1
(qs)2P (Q) where P (Q)

must be negligible since the Gap Diffie-Hellman problem is hard in G.
Consider the following algorithm C which uses adversary E as a subroutine. Al-

gorithm C is given a pair (X,Y) of elements from G as an instance of the Gap
Diffie-Hellman problem. The algorithm randomly selects a session number n from
{1, ..., qs} which reflects the guess that the n-th activated session, say session s′, is the
origin-session for session s∗. C chooses long-term public keys for all users and stores
the associated secret keys. Algorithm C proceeds as follows.

1. Run E on input 1k and the public keys for all of the N users.
2. send(s∗, B̂): C sets the ephemeral public key to X and answers the query with

the message X.
3. send(s′, P̂) or send(s′, P̂ , Z): C sets the ephemeral public key to Y and answers

the query with the message Y .
4. Other send queries are answered in the usual way (note that, if the group check

fails, the session is aborted).
5. randomness(s): C answers in the appropriate way, except if s = s′ or s = s∗ in

which cases C aborts with failure.

50

3.3 Application of SIG to concrete protocols

6. corrupt(P̂): C answers in the appropriate way.
7. test-session(s): If s 6= s∗ or if s′ is not the origin-session for session s∗, then C

aborts; otherwise C answers the query in the appropriate way.
8. Store entries of the form

(
Q̂i, Q̂j , Z, U, λ

)
∈ {0, 1}∗ × {0, 1}∗ ×G×G× {0, 1}k

in a table L, initially empty. When E makes a query of the form
(
Q̂i, Q̂j , Z, U

)
to the random oracle for H, answer it as follows:

• If
{
Q̂i, Q̂j

}
=
{
Â, B̂

}
, U = X and DDH(XA,Y B,Z) = 1, then C aborts

E and is successful by outputting CDH(X,Y) = ZY −aX−bB−a.
• Else if

(
Q̂i, Q̂j , Z, U, λ

)
∈ L for some λ ∈ {0, 1}k, then C returns λ to E.

• Else if there exist entries
(
Q̂i, Q̂j , I, U, V, λ

)
or
(
Q̂j , Q̂i,R, V, U, λ

)
, for

some λ ∈ {0, 1}k and V ∈ G, such that DDH(V Pj , UPi, Z) = 1 in table T ,
then C returns λ to E and stores the entry

(
Q̂i, Q̂j , Z, U, λ

)
in table L.

• Else, C chooses µ ∈R {0, 1}k, returns it to E and stores the entry(
Q̂i, Q̂j , Z, U, µ

)
in L.

9. Store entries of the form
(
Q̂i, Q̂j , r, U, V, λ

)
∈ P × {0, 1}∗ × {I,R} × G ×

G × {0, 1}k in a table T , initially empty. Upon completion of session s with
Ts =

(
Q̂i, Q̂j , I, U, V

)
, C proceeds as follows:

• If there exists an entry
(
Q̂j , Q̂i,R, V, U, λ

)
in table T , then C stores(

Q̂i, Q̂j , I, U, V, λ
)
in table T .

• Else if there exists an entry
(
Q̂i, Q̂j , Z, U, λ

)
in table L, for some λ ∈ {0, 1}k,

such that DDH(UPi, V Pj , Z) = 1, then C stores
(
Q̂i, Q̂j , I, U, V, λ

)
in table

T .
• Else, C chooses µ ∈R {0, 1}k and stores the entry

(
Q̂i, Q̂j , I, U, V, µ

)
in T .

The session key of a completed session s with Ts =
(
Q̂j , Q̂i,R, V, U

)
is deter-

mined and stored similarly.
10. session-key(s): C answers this query by look-up in table T .
11. E outputs a guess: C aborts with failure.

Analysis of event B1
The probability that E selects s∗ as the test session and s′ as the origin-session for
the test session is at least 1

(qs)2 . Assume that this is indeed the case. Then C does not
abort as in Step 7. Under event B1 the simulation does not fail as in Step 5. Under
event Q, C is successful as described in the first case of Step 8 and does not abort as
in Step 11. C correctly computes the Gap Diffie-Hellman instance with probability at
least 1

(qs)2P (Q) which implies that P (Q) ≤ (qs)2AdvGap Diffie-Hellman
C (k).

Event B2
We denote by X = gx, Y = gy the ephemeral public keys sent, received during the test
session s∗. Revealing the long-term secret key of the actor Â of the test session and the
ephemeral key of the origin-session s′ for session s∗, the adversary E could distinguish
the session key of the test session from a random key by computing DHg(X,B) = gxb

51

3 Perfect Forward Secrecy under Actor Compromise and Randomness Reveal

where B = gb denotes the public key of s∗peer = B̂, since

gxb = (Y B)x+aX−yY −aB−a.

We solve the Gap Diffie-Hellman problem with probability 1
qsN

P (Q) where P (Q)
must be negligible since Gap Diffie-Hellman problem is hard in G.
Consider the following algorithm C ′ which uses adversary E as a subroutine.

Algorithm C ′ is given a pair (X,B) of elements from G as an instance of the Gap
Diffie-Hellman problem. C ′ selects one user B̂ (uniformly at random from the set
P) and sets its long-term public key to B. C ′ chooses long-term public keys for the
remaining users and stores the associated secret keys. Let us denote the ephemeral
public key sent by the origin-session (and received by the test session) by Y . Algorithm
C ′ proceeds as follows.

1. Run E on input 1k and the public keys for all of the N users.
2. send(s∗, P̂): If P̂ 6= B̂, then C ′ aborts; otherwise C ′ sets the ephemeral public

key to X and answers the query with the message X.
3. Other send queries are answered in the usual way, e. g. if E issues a send(s, P̂ , V)

query to session s, then check whether V ∈ G. If yes, choose w ∈R Zp, compute
W = gw (∈ G) and return W to E. If no, then abort session s.

4. randomness(s): C ′ answers in the appropriate way, except if s = s∗ in which
case C ′ aborts with failure.

5. corrupt(P̂): C ′ answers in the appropriate way, except if P̂ = B̂ in which case
C ′ aborts with failure.

6. test-session(s): If s 6= s∗, then C ′ aborts; otherwise C ′ answers the query
appropriately.

7. Store entries of the form
(
Q̂i, Q̂j , Z, U, λ

)
∈ {0, 1}∗ × {0, 1}∗ ×G×G× {0, 1}k

in a table L, initially empty. When E makes a query of the form
(
Q̂i, Q̂j , Z, U

)
to the random oracle for H, answer it as follows:

• If
{
Q̂i, Q̂j

}
=
{
Â, B̂

}
, U = X and DDH(XA,Y B,Z) = 1, then C ′ aborts

E and is successful by outputting CDH(X,B) = ZY −aX−yB−a (this
computation requires the knowledge of a, therefore we must require that
Â 6= B̂).

• Else, proceed as in Step 8 of the simulation related to event B1.
8. Store entries of the form

(
Q̂i, Q̂j , r, U, V, λ

)
∈ P × {0, 1}∗ × {I,R} ×G×G×

{0, 1}k in a table T , initially empty, as in the previous simulation related to
event B1.

9. session-key(s): C ′ answers this query by look-up in table T .
10. E outputs a guess: C ′ aborts with failure.

Analysis of event B2
The probability that E selects s∗ as the test session and B̂ as the peer for the test
session is at least 1

qsN
. Assume that this is indeed the case. Then C ′ does not abort

as in Step 2 or Step 6. Under event B2 the simulation does not fail as in steps 4, 5.
Under event Q, C ′ is successful as described in the first case of Step 7 and does not

52

3.4 Summary

abort as in Step 10. C ′ correctly computes the Gap Diffie-Hellman instance with
probability at least 1

qsN
P (Q) which implies that P (Q) ≤ qsNAdvGap Diffie-Hellman

C′ (k).
The analyses of events B3 and B4 are similar to the previous analyses.

Applying the SIG transformation to the π1-core protocol yields the π1 protocol,
depicted in Figure 3.7.

Initiator I Responder R

Â: (a,A), (skÂ, pkÂ) B̂: (b, B), (skB̂, pkB̂)
x← rÂ
X ← gx

σÂ ← SignskÂ
(X

[
, B̂
]
)

X,σÂ−−−−−−−→
y ← rB̂
Y ← gy

σB̂ ← SignskB̂
(Y
[
, X, Â

]
)

Y,σB̂←−−−−−−− KB̂ ← H(Â, B̂, (XA)y+b, X)
KÂ ← H(Â, B̂, (Y B)x+a, X)

Figure 3.7.: π1 protocol

Combining Proposition 8 with Theorem 1, we immediately obtain the following
result.

Corollary 3. Under the Gap Diffie-Hellman assumption in the cyclic group G of
prime order p, using a deterministic SUF-CMA signature scheme, the protocol π1 is
secure in the eCK-PFS model, when H is modeled as a random oracle.

3.4. Summary

In this chapter we provided a generic approach to achieve perfect forward secrecy in
two-message or one-round protocols even in the presence of eCK-like adversaries.
We defined new security models for analyzing the security of AKE protocols.

The eCKw model slightly strengthens eCK by including a more precise modeling of
weak-PFS. The stronger eCK-PFS notion guarantees PFS, even in the presence of
eCK-like adversaries. Separately proving eCKw (or eCK) security and PFS does not
imply security in eCK-PFS. For example, eCK-PFS additionally considers PFS under
actor compromise. In the process of formalizing these models, we also provided formal
definitions of PFS and, for the first time, weak-PFS. We formally related our models
and their intended properties.
Existing two-message protocols such as CMQV, HMQV, or C(NAXOS) fail to

achieve security in eCK-PFS. We specified a security-strengthening transformation,
called SIG, that transforms any two-message DH-type protocol secure in eCKw or
eCKpassive, a weaker model than eCKw, into a two-message protocol secure in eCK-PFS.
Thus, the SIG transformation can be applied to protocols such as NAXOS, that are

53

3 Perfect Forward Secrecy under Actor Compromise and Randomness Reveal

secure in eCKw. Additionally, it can be applied to protocols that fail to achieve security
in eCKw, but that can instead be proven secure in the weaker eCKpassive model. As
a concrete example we have proven that the π1-core protocol is secure in eCKpassive.
Applying the SIG transformation to π1-core, we obtained the protocol π1 that is
secure in eCK-PFS. These examples illustrate the use of SIG in the modular design of
AKE protocols.

54

4. Authenticated Key Exchange Security
Incorporating Certification Systems

Most security models for authenticated key exchange (AKE) do not explicitly model
the associated certification system, which includes the certification authority (CA)
and its behaviour. However, there are several well-known and realistic attacks on
AKE protocols which exploit various forms of malicious key registration and which
therefore lie outside the scope of these models:

• Kaliski’s unknown key share (UKS) attack [59] on early versions of MQV exploits
the ability of the adversary to dynamically register a public key (which is valid
and for which the adversary does know the secret key).

• The UKS attack on KEA described by Lauter and Mityagin [69, p. 380] exploits
the adversary’s ability to re-register some party’s static public key as his own
public key.

• Blake-Wilson and Menezes [22] introduced the duplicate-signature key selection
(DSKS) attack on signature schemes: after observing a user’s signature σ on a
message m, the adversary E is able to compute a signature key pair (skE , vkE)
(or sometimes just a verification key vkE) such that σ is also E’s signature on
the message m. Now, for example, if the Station-to-Station (STS) protocol is
implemented using a signature scheme that is vulnerable to DSKS attacks, and
the adversary can register arbitrary public keys with the CA, then the protocol
is vulnerable to an online UKS attack [22].

• In Lim and Lee small subgroup attacks [73], the adversary extracts partial (or
even complete) information about a party’s long-term secret key. Some of these
attacks require registering invalid public keys with the CA before engaging in
protocol runs with honest participants. Of particular note are the Lim–Lee-style
attacks of Menezes and Ustaoglu [81] on the HMQV protocol [64].

In this chapter we initiate the first systematic analysis of AKE security incorporating
certification systems (ASICS). In Section 4.1 we define a family of security models
that, in addition to allowing different sets of standard AKE adversary queries, also
permit the adversary to register arbitrary bitstrings as keys. In Section 4.2 we show
how several attacks based on adversarial key registration can be captured in ASICS
security models. In Section 4.3 we establish generic results that enable the design and
verification of protocols that achieve security even if some keys have been produced
maliciously. In Section 4.4 we apply our powerful generic approach to a variant of
the CMQV protocol in an eCK-like ASICS model. In Section 4.5 we reveal insights
gained from our results with regard to the design of protocols satisfying security in
our ASICS models.

55

4 Authenticated Key Exchange Security Incorporating Certification Systems

4.1. ASICS model family

In this section we define a parameterized AKE security model that allows for explicit
modelling of the certification of public keys. Prominent AKE security frameworks
can be instantiated in this family of models, as well as extensions that allow dynamic
adversarial registration of arbitrary bitstrings as public keys.
Generally speaking, from a user’s point of view, participation in key exchange

encompasses three consecutive phases: First, users set up their individual key pairs;
more precisely, each user invokes a randomized algorithm KeyGen that outputs a fresh
secret-key/public-key pair (sk, pk). Second, users contact a certification authority
(CA) to get their keys certified: each user provides the CA with its identifier P̂ and
its public key pk, and obtains a certificate C that binds the identifier to the key.
After completing these setup steps, in the third phase, users can engage in interactive
sessions with other users to establish shared keys. To do so, they usually require
knowledge of their own key pair (sk, pk), their identifier P̂ , and the corresponding
certificate C. In addition to that, protocols may require a priori knowledge of (a
subset of) the peer’s public key pk′, peer’s identifier Q̂, and peer’s certificate C ′. As
we will see, our execution model is general enough to cover all these settings. To
ease notation, we assume that public key pk and identifier P̂ can be readily derived
from any certificate C; we use notation C.pk = pk and C.id = P̂ correspondingly.
This assumption holds for all practical PKIs we are aware of, and in particular for
X.509 certificates (as used in SSL/TLS); the latter carry public key and identifier
in a canonically formatted data structure. In potential other cases, where keys
and identifiers cannot be extracted from certificates but instead are auxiliary input
to the verification routine, certificates can still be expected to be valid for only a
single key/identifier pair, i.e., the mapping from C to compatible pk and P̂ is again
unambiguous. Proposed notations C.pk and C.id are hence meaningful also in such
cases.
Here, we focus on the interaction between users and the CA that occurs in the

certification process. We enable the modeling of different degrees of rigour in the
checks of consistency and ownership of public keys pk presented to the CA. On the
one hand, CAs could be pedantic with such verifications (e.g., require a proof of
knowledge1 of the secret key corresponding to pk); on the other hand, CAs could also
just accept any given bitstring pk as valid and issue a certificate on it. The ability to
precisely assess the security of key establishment in the face of different CA behaviours
is a key contribution of our new model family.

Definition 22. An ASICS protocol Π consists of a set of domain parameters, a key
generation algorithm KeyGen, a public key verification procedure VP, and the protocol
description π that describes how key exchange protocol messages are generated and
responded to as well as how the session key is derived.

1Although interactive or non-interactive zero-knowledge proof systems seem to yield ideal solutions
in this context, standards like X.509, OpenPGP, and PKCS#10 content themselves with the
purely heuristic (and inferior) approach of demanding a so-called proof-of-possession (PoP), mostly
implemented via self-signed certificates or self-signed certificate requests (cf. [2, 93]). The security
of such constructions seems to be difficult to formally assess [91].

56

4.1 ASICS model family

We denote by VP the specific verification procedure on public keys and identifiers that
a considered CA deploys. As different checks on pk and P̂ might require different levels
of interaction between the registering user and the CA, we model it as a procedure,
as opposed to a function. VP takes as input a public key and an identifier. To enable
the specification of realistic VP behaviour, we additionally allow the definition of VP
to access elements of the game state, as we will see in Example 5. We require that
VP is efficient and has binary output. Furthermore, we require that the CA issues the
requested certificate only if VP outputs value 1; all certification requests where VP
outputs value 0 are rejected. Note that, for simplicity, we only consider non-interactive
verification procedures (i.e., two-message registration protocols) between the user and
the CA. A more general treatment covering interactive verification procedures as well
would introduce additional complexities to our framework.

Specific key exchange protocols might be insecure for one (liberal) instantiation
of VP, and be secure for another (stricter) one. Note that CAs that do not perform
any check on pk and P̂ are modelled by a verification procedure VP that always
outputs 1. A verification procedure that performs few checks may output 1 for at least
all pk ∈ PK, where PK denotes the set of possible public keys output by KeyGen.
Precisely, if the inputs of algorithm KeyGen are security parameter 1k and randomness
r ∈R {0, 1}k, then we define

PK =
{

pk | there exists r ∈ {0, 1}k such that KeyGen(1k; r) = (· , pk)
}
.

A verification procedure with high assurance may require a zero-knowledge argument
that the requester knows the secret key corresponding to the public key, and even that
the key was generated verifiably at random. Note that we allow VP to keep an internal
state between invocations; our model hence covers possible implementations of CAs
that reject certification requests with public keys that have already been registered
(e.g., for a different identifier).

4.1.1. Security model

At a high level, our model stipulates users that generate one or more keys, obtain
certificates for these keys from a CA, and use keys and certificates to run (potentially
concurrent) sessions of the key agreement protocol. Similar to other security models [17,
34], the adversary controls all communication in these sessions, corrupts users at will
to obtain their secret keys, and arbitrarily reveals established session keys. Innovative
is the adversary’s additional ability to steer the registration process with the CA: it
can obtain from the CA valid certificates for public keys and identifiers of its choosing
(as long as VP evaluates to 1), and provides users with such certificates.

To keep our model simple and comprehensible, we abstract away any forgeability
issues of certificates and assume the following ideal functionality: no certificate will
be considered valid unless it has been issued by the CA. We model this by letting
the challenger keep a list C of all CA-issued certificates and by equipping users with
a certificate verification oracle OCV that checks membership in that list; concretely,
we assume that OCV (C) = 1⇔ C ∈ C. Of course, in concrete implementations, this
oracle is replaced by an explicit local verification routine; for instance, if certification

57

4 Authenticated Key Exchange Security Incorporating Certification Systems

acert certificate of the actor (the user running this session)
pcert certificate of this session’s peer
role taken role; either I (initiator) or R (responder)
sent concatenation of all messages sent in this session
rcvd concatenation of all messages received in this session
status session status; either active, accepted, or rejected
key key in {0, 1}k established in this session
rand randomness used in this session
data any additional protocol-specific data

Table 4.1.: Elements of session state

QN = {kgen, hregister, create, send} (Normal protocol behaviour)
QS = {corrupt, randomness, session-key} (corruption of Secrets)
QR = {pkregister, npkregister} (adversarial key Registration)

Table 4.2.: Overview of query sets. Additionally, there is a test-session query.

is implemented via a signature scheme, this will include its verification procedure
(besides further checking of validity, chain-validity, revocation state, etc.).

Sessions and session state.

Users, once they have created their keys and obtained corresponding certificates, can
execute protocol sessions. Within a user, each such session is uniquely identified by a
pair s = (C, i), where C denotes the certificate used by the user (by himself) in that
session, and i is a counter. The user maintains session-specific variables as indicated
in Table 4.1. Some session variables are fixed upon session creation, whereas others
can be assigned or updated during protocol execution. Some, such as pcert, status,
and key, are considered to be outputs of the key establishment and might be used in
higher-level protocols or applications. A session s has accepted if sstatus = accepted.

Adversarial queries.

The adversary interacts with users by issuing queries. The adversary can direct users
to establish long-term key pairs and certificates (kgen, hregister), to initiate protocol
sessions (create), and to respond to protocol messages (send). The adversary may
be able to learn long-term keys (corrupt), session-specific randomness (randomness),
or session keys (session-key) from users. The adversary can also maliciously obtain
certificates from the CA (pkregister, npkregister).
The queries in set QN = {kgen, hregister, create, send}, defined as follows, model

normal operation of the protocol; they are required in any security model. Initially,
the auxiliary variables HK, C, Ch, Cpk, and Cnpk are set to ∅.

• kgen () By running algorithm KeyGen, a fresh key pair (sk, pk) is generated.
Public key pk is returned to the adversary; secret key sk is stored for processing

58

4.1 ASICS model family

potential later queries corresponding to pk. The public key is added to the set
of honestly generated keys: HK ← HK ∪ {pk}.

• hregister(pk, P̂) The query requires that pk ∈ HK and that VP outputs 1 on
input pk2 and P̂ ; otherwise, it returns ⊥. The public key pk is registered at the
CA for the identifier P̂ . The resulting certificate C is added to the global set of
certificates and to the set of honestly generated certificates: C ← C ∪ {C} and
Ch ← Ch ∪ {C}. The query returns C.

• create (s = (C, i) , r, [C ′]) The query requires that C ∈ Ch, that a session with
counter i for certificate C does not already exist, and that r ∈ {I,R}; otherwise,
it returns ⊥. A new session s is created for the user with public key C.pk and
identifier C.id. Session variables are initialized as

(sacert, spcert, srole, ssent, srcvd, sstatus, skey)← (C,⊥, r, ε, ε, active,⊥) .

If the optional certificate C ′ is provided, we set spcert ← C ′. In addition, a string
in {0, 1}k is sampled uniformly at random and assigned to srand; we assume that
all randomness required during the execution of session s is deterministically
derived from srand. The user also runs the initialization procedure for the
key exchange protocol, which may further initialize its own (internal) state
variable sdata and optionally generate a message M . If M was generated, set
ssent ←M , and return M . Otherwise, return ⊥.

• send (s,M) The query requires that session s exists and that sstatus = active;
otherwise, it returns ⊥. The user continues the protocol execution for this
session with incoming message M , which may optionally generate a response
message M ′. Next, srcvd is set to (srcvd ‖ M) and, if M ′ is output, then ssent
is set to (ssent ‖M ′). The protocol execution may (re-)assign values to sstatus
and skey, and to the session’s internal state variable sdata. Also, if the value
spcert was not provided to the create query, then the protocol execution may
assign a value to spcert. (For example, in TLS the client does not learn the
server’s certificate until it receives the ServerCertificate message.) If M ′ was
generated, return M ′; otherwise return ⊥.

Remark 4 (Multiple CAs). Our model stipulates a PKI with a single CA. This could
be considered a limitation for the analysis of many practically relevant scenarios. For
example, the PKI currently in place to secure web traffic in the Internet consists of a
large number of independently acting CAs. However, our single-CA setting can readily
emulate a multi-CA setting: If VP1, . . . ,VPn denote the verification procedures of n
independent CAs, then composed verification procedure VP1...n that outputs 1 if there
exists at least one i, 1 ≤ i ≤ n, such that VPi outputs 1, effectively folds the n CAs
into a single one, adequately modeling the aforementioned multi-CA setting.
Remark 5 (One key for many identifiers). A frequently observed setting in the web
PKI is that users hold one public key that they bind to a set of identifiers (with the
corresponding number of certificates). This happens, for instance, if globally acting
companies register domain names in several different countries, but process HTTPS
requests on a single centralized facility. Observe that our model covers such cases of

2Reasonable implementations of VP output 1 on all keys pk ∈ HK, because HK ⊆ PK.

59

4 Authenticated Key Exchange Security Incorporating Certification Systems

multiple registration of a key: hregister may be queried many times for the same pk.
Moreover, through being identified by pairs (C, i) (as opposed to (pk, i)), sessions
associated with one pk are aware of the identifier C.id in use.
The queries in set QS = {corrupt, randomness, session-key} model the corruption of a
user’s secrets. Similar queries are found in other standard AKE models [17,34].

• corrupt (pk) The query requires pk ∈ HK; otherwise, it returns ⊥. This query
returns the secret key sk corresponding to public key pk.

• randomness (s) The query requires that session s exists; otherwise, it returns ⊥.
The query returns the randomness srand.

• session-key (s) The query requires that session s exists and that sstatus =
accepted; otherwise, it returns ⊥. The query returns the session key skey.

Remark 6 (Semantics of randomness query). The randomness query gives the adversary
access to the randomness srand that is used in a particular session. Formally, one
may think of the session as an instance of a probabilistic Turing machine: the query
gives the adversary the values that are read from the random tape. Practically, this
models a randomness generator whose values are revealed after they are produced, for
example, by a side-channel attack. This is similar to the ephemeral key reveal query
from [68].
The hregister query introduced above only allows registration of keys pk ∈ HK, i.e.,
keys held by honest users. In contrast, the adversary can obtain certificates on
arbitrary (valid) public keys using the following pkregister query. Going even further,
the npkregister query allows registration of objects that are not even public keys
(always assuming that VP outputs 1 on the candidate object). These queries will allow
modelling Kaliski’s attack on MQV [59] and small subgroup attacks [73], amongst
others. We emphasize that the queries in set QR = {pkregister, npkregister} have no
counterparts in standard definitions of key exchange security.

• pkregister(pk, P̂) The query requires that pk ∈ PK and that VP outputs 1 on
input pk and P̂ ; otherwise, it returns ⊥. The public key pk is registered at
the CA for identifier P̂ . The resulting certificate C is added to the global set
of certificates and to the set of certificates generated through pkregister query:
C ← C ∪ {C} and Cpk ← Cpk ∪ {C}. The query returns C.

• npkregister(pk, P̂) The query requires that pk 6∈ PK and that VP outputs 1 on
input pk and P̂ ; otherwise, it returns ⊥. The public key pk is registered at the
CA for the identifier P̂ . The resulting certificate C is added to the global set
of certificates and to the set of certificates generated through npkregister query:
C ← C ∪ {C} and Cnpk ← Cnpk ∪ {C}. The query returns C.

Remark 7 (Efficiency of pkregister and npkregister processing). Observe that pkregister
and npkregister queries require a membership test for set PK. In some settings, such
tests might correspond to computationally hard problems like quadratic residuosity
or DDH3. Although we stress that the named queries and the ensuing security
experiments are well-defined nevertheless, we discuss two possible problems that might

3For instance, consider an RSA modulus N and the (cyclic) group QRN of quadratic residues
modulo N . As the CDH problem in QRN is provably as hard as factoring N [78, 97], it is
conceivable to instantiate a DL-based key agreement protocol (like UM, HMQV, etc.) with that

60

4.1 ASICS model family

arise when analyzing key exchange protocols where PK-membership is difficult to
assess: (1) If the queries, by whatever means, correctly decide membership in PK,
then the adversary implicitly gets access to a decision oracle for that set; this has
to be taken into account in corresponding security reductions, e.g., when selecting
appropriate hardness assumptions. (2) If an analyzed ASICS protocol Π is used as a
component in a higher-level construction Π′, then any security argument that reduces
the security of Π′ to the security of Π will inevitably have to specify how pkregister
and npkregister oracles are to be simulated. As mentioned before, in some settings
this seems to be infeasible.
Example 5. Here we formalize some verification procedures that reflect practically
relevant checks. Note that the algorithms can access the current state of game state
variables, such as C, Ch, Cpk, Cnpk. We use q to denote the query that invoked VP.
(a) Identity validation.

VP(pk, P̂) =

1 if (q = hregister ∧ ¬∃C ∈ Cpk ∪ Cnpk : C.id = P̂) ,
1 if (q ∈ QR ∧ ¬∃C ∈ Ch : C.id = P̂) , and
0 otherwise.

The verification procedure prevents the adversary from registering a key for identifier
P̂ via a query in QR if there already exists a certificate returned as response to a query
hregister with identifier P̂ . Similarly, VP prevents the adversary from registering a
key for identifier P̂ via the query hregister if there already exists a certificate returned
as response to a query in QR with identifier P̂ . This splits the identifiers into two
disjoint sets and reflects strong identity validation where impersonation of honest
users is impossible.
(b) Uniqueness of the public key.

VP(pk, P̂) =
{

1 if ¬∃C ∈ C : C.pk = pk , and
0 otherwise.

The verification procedure takes as input pk, P̂ and the global set of certificates C. If
there is no certificate in C which contains public key pk for which a certificate is being
requested, then it returns 1. Otherwise it returns 0. It is unclear how uniqueness of
the public key can be enforced if there are multiple independent CAs that do not
communicate.
(c) No two public keys for one identifier.

VP(pk, P̂) =
{

1 if ¬∃C ∈ C : C.id = P̂ , and
0 otherwise.

The verification procedure takes as input pk, P̂ and the global set of certificates C. If
there is no certificate in C which contains identifier P̂ , then it returns 1. Otherwise it
returns 0.

group. This would result in PK = QRN , and pkregister and npkregister queries would have to
perform membership tests for this set. However, the latter is assumed to be a hard problem, by
the quadratic residuosity assumption [53].

61

4 Authenticated Key Exchange Security Incorporating Certification Systems

(d) No checks at all.

VP(pk, P̂) = 1 (for all pk and all P̂).

Remark 8 (On certificate signing requests (CSRs)). Some CAs may require users to
self-sign the data that is to be certified and to submit the resulting certificate signing
request. To model CSRs and related checks, one needs to introduce an additional
parameter φ in the definitions of the queries hregister, pkregister, and npkregister. Then
the verification procedure of a CA checking CSRs takes as input pk, P̂ and a signature
φ. If φ is a valid signature on message m = P̂ ‖ pk, then it returns 1. Otherwise it
returns 0.

4.1.2. Security experiment

Using the above queries, we define a parameterized family of AKE security models.
As is common in BR-style AKE models, we must restrict query usage so that the
adversary cannot trivially win the security experiment. The conditions under which
queries are disallowed are expressed by a freshness condition, which typically uses a
matching condition to formalize intended partner sessions.

Definition 23 (Matching, freshness, ASICS model). Let Π be an ASICS protocol.
A matching condition M for Π is a binary relation on the set of sessions of Π. Let
Q be a set of queries such that QN ⊆ Q ⊆ QN ∪QS ∪QR. A freshness condition F
for (Π, Q) is a predicate (usually depending on a matching condition M) that takes a
session of Π and a sequence of queries (including arguments and results) of a security
experiment over queries in Q. We call X = (M,Q,F) an ASICS model for Π.

Definition 24 gives two possible matching conditions. We will later give examples
of freshness conditions, in Example 6 on page 64 and in Section 4.4.1.
The intricacies of matching definitions in AKE protocols are explored in detail

by Cremers [41]. Two issues are important here. First, there is a strong connection
between the information used in a matching definition and the information used to
compute the session key. Second, some protocols like the two-message versions of
MQV and HMQV allow sessions to compute the same key even if they perform the
same role, whereas other protocols such as NAXOS require the sessions that compute
the same key to perform different roles. In the remainder of the paper we will use one
of the definitions below, depending on the type of protocol.

Definition 24 (M1-matching, M2-matching). Let s and s′ denote two sessions of an
ASICS protocol. We say that session s′ M1-matches (or is M1-matching) session s if
sstatus = s′status = accepted and

(sacert.pk, sacert.id, spcert.pk, spcert.id, ssent, srcvd)
= (s′pcert.pk, s′pcert.id, s′acert.pk, s′acert.id, s′rcvd, s

′
sent)

Similarly, we say that session s′ M2-matches (or is M2-matching) session s if s′
M1-matches session s and srole 6= s′role.

62

4.1 ASICS model family

Thus, we will use M1 for protocols such as the two-message versions of MQV and
HMQV, and we will use M2 for protocols such as NAXOS [41].
Remark 9 (Comparison to matching definition if only one key per identifier is allowed).
Note that when users are allowed to have multiple public keys, matching sessions (that
is, intended communication partners) of some AKE protocols will not always compute
the same session key if the definition of “matching” does not require agreement on
the public keys used in the respective sessions.
The goal of the adversary is to distinguish the session key of a fresh session from a
completely random string. This is modelled through an additional query:

• test-session (s) This query requires that session s exists and that sstatus =
accepted; otherwise, it returns ⊥. A bit b is chosen at random. If b = 1, then
skey is returned. If b = 0, a random element of {0, 1}k is returned.

Definition 25 (ASICSX experiment). Let Π be an ASICS protocol and X = (M,Q,F)
be an ASICS model. We define experiment ASICSX , between an adversary E and a
challenger who implements all users and the CA, as follows:

1. The experiment is initialized with domain parameters for security parameter k.
2. The adversary E can perform any sequence of queries from Q.
3. At some point in the experiment, E issues a test-session query for a session s

that has accepted and satisfies F at the time the query is issued.
4. The adversary may continue with queries from Q, under the condition that the

test session must continue to satisfy F .
5. Finally, E outputs a bit b′ as E’s guess for b.

Definition 26 (ASICSX advantage). The adversary E wins the security experiment if
it correctly outputs the bit b chosen in the test-session query. The ASICSX -advantage
of E is defined as AdvASICSX

Π,E (k) = |2 Pr(b = b′)− 1|.

Definition 27 (ASICS security). Let Π be an ASICS protocol and X = (M,Q,F) be
an ASICS model. Π is said to be secure in ASICS model X if, for all PPT adversaries
E, it holds that

1. if two users successfully accept in M -matching sessions, then they both compute
the same session key, and

2. E has no more than a negligible advantage in winning the ASICSX experiment;
that is, there exists a negligible function negl in the security parameter k such
that AdvASICSX

Π,E (k) ≤ negl(k).

Remark 10 (Comparison to other models, including BR, CK and eCK). By choosing
the appropriate query subset, freshness, and matching definitions, our parameterised
model can be instantiated to produce many existing AKE models. The vast majority
of existing models assume honestly-generated key pairs that are securely distributed
to users. They therefore do not have queries to model pkregister and npkregister. Our
model family includes the models eCK [68] and eCKw from Chapter 3, which capture
the leakage of session specific ephemeral data, as well as the eCK-PFS model from
Chapter 3 incorporating perfect forward secrecy. The Bellare-Rogaway model [17]
can be captured in our approach by including timestamps as part of the messages, to

63

4 Authenticated Key Exchange Security Incorporating Certification Systems

accurately model the matching definition from [17]. Unlike the CK model [34], we do
not assume unique session identifiers to be available to the protocol up-front. We do
not consider this a drawback as real-world protocols may not have such identifiers
either. Instead, our family includes the basic CKHMQV model [64] in which the HMQV
protocol was analysed. For the CK and CKHMQV models we have chosen to interpret
the session-state as the generated randomness, in the same fashion as the models have
been used by their authors [34,64].
Remark 11 (Freshness will depend on the set of allowed queries and on the matching
definition). Note that the exact definition of freshness F used in a security model
X will likely depend heavily on the set of queries Q available to the adversary in
that model, as well as the specific matching definition. For example, when Q includes
pkregister and/or npkregister queries, then we will require an additional restriction on
the registration status of the specific public key of the peer used in the test session.
Example 6. Let us consider the following ASICS model as a concrete example. Let
X = (M1, Q, F) be the ASICS model given by Q = QN ∪ {session-key} ∪ QR and F
defined as follows. Given a sequence of queries and a session s, F holds if:

• no session-key(s) query has been issued, and
• for all sessions s′ such that s′ M1-matches s, no query session-key(s′) has been

issued, and
• no query pkregister(spcert.pk, spcert.id) has been issued.

The model X is an extension of a BR-like model with a CA that allows registration
of arbitrary keys. If a protocol is secure in X, then it is secure even if the adversary
can register arbitrary bitstrings as public keys, as long as the specific peer key used in
the test session is not an adversary-generated valid public key.

4.2. Capturing attacks
We illustrate how several attacks exploiting the adversary’s ability to register valid
or invalid public keys can be captured in ASICS models. We revisit in Section 4.4.2
some of the attacks described in this section to illustrate that the modular approach
that we develop in Section 4.3 cannot be applied to the corresponding protocols.

4.2.1. Existing attacks from the literature

Kaliski’s online UKS attack against MQV [59]. Kaliski’s attack against MQV can be
captured in an ASICS model where the adversary can register a specific valid public
key with his own identifier via a pkregister query. As the adversary knows the secret
key corresponding to the registered public key, the attack cannot be prevented by VP
requiring a proof-of-possession of the secret key.

UKS attack against KEA based on public-key re-registration [69, p. 380]. Suppose that
public key pk has been honestly registered at the CA for some user with identifier P̂
via the query hregister(pk, P̂). In this UKS attack on the KEA protocol, the adversary
re-registers the public key pk under his own identifier L̂ 6= P̂ by issuing the query
pkregister(pk, L̂). The attack is prevented if VP checks for uniqueness of the public

64

4.2 Capturing attacks

key and outputs 0 when the public key was certified before (as observed in [69, p.
381]). Note that the UKS attack can also be prevented by making the session key
derivation depend on users’ identifiers.

Online UKS attack on STS-MAC based on duplicate-signature key selection (DSKS) [22].
Suppose that the signature scheme employed in the STS-MAC protocol is vulnerable
to DSKS attacks. Note that resistance to DSKS attacks is not covered by standard se-
curity notions for signatures such as EUF-CMA or SUF-CMA security, which concern
only single keys. The UKS attack on STS-MAC [22, p. 160] exploits the ability of the
adversary to register a valid public key pk under his own identifier during the run of
the protocol. More precisely, the adversary first intercepts a user’s message containing
a signature σ on message m. He then issues a query pkregister(pk, L̂) such that σ is
also a valid signature on m under pk. The query associates pk with the adversary’s
identifier L̂. Since the adversary knows the secret key corresponding to pk, he obtains
a certificate from the CA even if VP requires a proof-of-possession. Countermeasures
to such UKS attacks via modification of the protocol are available [22].

Lim–Lee style attack against HMQV with special domain parameters, without validation
of ephemeral public keys [81]. Suppose that the underlying group G is a subgroup of
the group of units U(R) of a ring R containing an element T 6= 0 such that T 2 = 0.
Then, the HMQV protocol is vulnerable to the attack described in [81, p. 137] with
respect to an ASICS model in which the adversary is only given access to standard
protocol execution queries in the set QN . However, as mentioned in [81, p. 134], this
attack on HMQV can only be launched in certain exotic groups that have never been
considered for practical use. The attack can be eliminated by restricting the group
used for analyzing HMQV in some way or by adding group membership tests on
ephemeral public keys to the protocol.

Lim–Lee style attack against HMQV with DSA domain parameters, without validation
of ephemeral public keys [80]. LetG = 〈g〉 denote a q-order subgroup of Z∗p, where q and
p are prime and (p−1)/q is smooth (i. e., it contains no large prime factor). The attack
on two-pass HMQV [80, p. 5] can be captured in an ASICS model where the adversary
is given access to the queries in the set Q = QN ∪(QS \{corrupt})∪(QR \{pkregister}).
In particular, the adversary can register invalid public keys via the npkregister query.
This attack can be prevented by countermeasures such as requiring VP to include a
group membership test on the public key submitted for certification, or by including
group membership tests on both ephemeral and long-term public keys during protocol
execution. Small-subgroup attacks may also exist in other settings, for instance in
groups over elliptic curves.

4.2.2. New attack against KEA+ based on impersonation attack during
key registration

Lauter and Mityagin [69] produced the KEA+ protocol from the KEA protocol and
Protocol 4 in [19] by incorporating the identifiers of the user and its peer in the session
key computation to prevent UKS attacks; however, a similar but previously unreported
UKS attack still works on the KEA+ protocol. This UKS attack involves a type of
impersonation attack [102, p. 3]: it requires the adversary to successfully impersonate

65

4 Authenticated Key Exchange Security Incorporating Certification Systems

a user to the CA who then issues a certificate containing the user’s identifier, but the
adversary’s valid public key. We stress that the attack does not arise when only one
public key per identifier can be registered.
Our UKS attack against KEA+ is captured in the ASICS model Z = (M2, Q, F)

given by Q = QN ∪ {session-key} ∪ {pkregister} and F defined as follows. We say that
a session s satisfies F if it holds that

• no session-key(s) query has been issued, and
• for all sessions s′ such that s′ M2-matches s, no query session-key(s′) has been

issued, and
• no query pkregister(spcert.pk, spcert.id) has been issued.

We next show that KEA+ is insecure in ASICS model Z. The adversary creates
an initiator session via the query create(s = (C, i), I, C ′), where the public keys
C.pk = A = ga and C ′.pk = B = gb were honestly registered via the query hregister.
Let C.id = Â. Now the adversary registers a second public key A′ = Ar, for some r
in Zp, with identifier Â, by issuing the query pkregister(A′, Â) returning certificate
C ′′. He then creates a responder session via the query create(s′ = (C ′, j),R, C ′′)
and activates session s′ by sending the message X = gx sent by session s to session
s′. The adversary intercepts the message Y = gy sent by session s′, modifies it by
setting Y ′ = Y r, and then sends message Y ′ to session s. Session s accepts the
key skey = H(Y ′a, Bx, Â, B̂) as the session key, while session s′ accepts as its key
s′key = H(A′y, Xb, Â, B̂). The completed session s is chosen as the test session. Now a
session-key query to session s′ reveals the session key of the test session. The sessions
s and s′ are not M2-matching (since srcvd 6= s′sent), but compute the same session key.
This leads to our UKS attack. Adding either the long-term public keys of both actor
and peer or the exchanged messages (in addition to the identifiers) in the session
key computation would prevent the attack, since then the session keys computed in
both sessions would be different with overwhelming probability (assuming that H is
modelled as a random oracle). Note that if KCI attacks are permitted in the model,
the UKS attack cannot be prevented by VP requiring a proof-of-possession of the
secret key corresponding to the public key A′.

4.3. Achieving ASICS security

We provide a modular approach to obtain provable ASICS security for certain types
of protocols. We first show in Section 4.3.1 how a result from Kudla and Paterson [66,
Theorem 2] can be adapted to incorporate adversarial registration of valid public keys.
Then, in Section 4.3.2, we indicate how to transform protocols to achieve security in
the presence of adversaries that can register arbitrary invalid public keys.

4.3.1. Security against adversarial registration of valid keys

To simplify the proof process of protocols which are not built using the approach
of [13, 34], Kudla and Paterson [66] present a modular technique that relies on
gap assumptions. In particular, Kudla and Paterson [66] show that, under certain
conditions, security of a protocol in a model that permits the adversary to reveal

66

4.3 Achieving ASICS security

session keys is implied by the security of a variant of the protocol in a reduced model
that does not incorporate session key reveal queries. Their result holds in a setting
where public keys are honestly generated and registered. We show in this section
how their result can be extended on a particular class of protocols to incorporate
adversarial registration of valid public keys.
We start by defining an adapted version of strong partnering [66].

Definition 28 (Strong partnering). Let Π be an ASICS protocol, and let X =
(M,Q,F) be an ASICS model. We say that Π has strong partnering in the ASICSX
experiment if no PPT adversary, when attacking Π in the ASICSX experiment, can
establish two sessions s and s′ of protocol Π holding the same session key without
being M -matching, with more than negligible probability in the security parameter k.

Given an ASICS model X = (M,Q,F), we denote by cNR-X (using terminology
from [66], where cNR stands for “computational No-Reveals”, referring to the absence
of session-key reveals) the reduced computational ASICSX experiment which is similar
to the ASICSX experiment except that the adversary (a) is not allowed to issue
session-key and test-session queries, (b) must pick a session that has accepted and
satisfies F at the end of its execution, and (c) output the session key for this session.
See Kudla and Paterson [66] for a more detailed description of reduced games.

Definition 29 (cNR-X security). Let Π be an ASICS protocol and X = (M,Q,F)
be an ASICS model. Π is said to be cNR-X-secure if, for all PPT adversaries E, it
holds that

1. if two users successfully accept in M -matching sessions, then they both compute
the same session key, and

2. E has no more than a negligible advantage in winning the cNR-X experiment;
that is, there exists a negligible function negl in the security parameter k such
that AdvcNR-X

Π,E (k) ≤ negl(k), where AdvcNR-X
Π,E (k) is defined as the probability

that E outputs (s, skey) for a session s that has accepted and satisfies F .

Theorem 2 deals with the security of DH-type ASICS protocols, which are a
generalization of DH-type AKE protocols from Chapter 3 to include certificates and to
explicitly identify session strings. This class of protocols includes the most prominent
modern two-message AKE protocols.

Definition 30 (DH-type ASICS protocol). A DH-type ASICS protocol is an ASICS
protocol of the following form, specified by functions fI , fR, FI , FR, H:

• Domain parameters (G, g, q), where G = 〈g〉 is a group of prime order q generated
by g.

• KeyGen(): Choose a ∈R [0, q − 1]. Set A ← ga. Return secret key sk = a and
public key pk = A.

• VP(x, P̂) = 1 for all x and all P̂ (i.e., the CAs do not perform any checks).
• When the initiator is activated to create a new session s with a create(s =

(C, i), r = I, C ′) query, where the secret key corresponding to C.pk is a, the
initiator computes an outgoing ephemeral public key X ← gfI(srand,a,C,C

′) and
returns X as an outgoing message.

67

4 Authenticated Key Exchange Security Incorporating Certification Systems

• The responder is activated to create a new session s′ with a create(s = (C ′, j), r =
R, C) query, where the secret key corresponding to C ′.pk is b.

• When the responder is activated in a session s′ with a send(s′,M = X) query,
the responder computes an outgoing ephemeral public key Y ← gfR(s′rand,b,C

′,C)

and returns Y as an outgoing message. The responder computes a session string
(an intermediate value to which we give a special name)
ss′ ← FR(fR(s′rand, b, C

′, C), b,X,C ′, C), a session key s′key ← H(ss′), and
accepts: s′status ← accepted.

• When the initiator is activated in a session s with a send(s,M = Y) query, the
initiator computes a session string ss ← FI (fI(srand, a, C,C

′), a, Y, C,C ′), a
session key skey ← H(ss), and accepts: sstatus ← accepted.

Initiator I Responder R

sacert = C, spcert = C ′ s′acert = C ′, s′pcert = C

sk = a, C.pk = ga, sk = b, C ′.pk = gb,
C ′.pk = B C.pk = A

x← fI(srand, a, C,C
′)

X ← gx
X

−−−−−−−→ y ← fR(s′rand, b, C
′, C)

Y
←−−−−−−− Y ← gy

ss← FI (x, a, Y, C,C ′) ss′ ← FR (y, b,X,C ′, C)
if ss = ⊥ then if ss′ = ⊥ then
sstatus ← rejected s′status ← rejected

else else
skey ← H(ss) s′key ← H(ss′)
sstatus ← accepted s′status ← accepted

Figure 4.1.: Messages for generic DH-type ASICS protocol

Theorem 2 below states that for any DH-type protocol Π, under certain conditions,
it holds that security of the related protocol π in a reduced model (in which public
keys can only be honestly registered) implies security of Π in the stronger non-reduced
model that additionally captures adversarial registration of valid public keys. In the
cNR-X experiment of Theorem 2 the queries session-key and pkregister are not allowed,
whereas in ASICSY both queries are allowed.
Theorem 2. Let X = (M,Q,F) be an ASICS model with QN ⊆ Q ⊆ QN ∪ QS.
Let Y = (M,Q′, F ′) be the ASICS model where Q′ = Q ∪ {pkregister} and F ′

is defined as follows. A session s is said to satisfy F ′ if it satisfies F and no
pkregister(spcert.pk, spcert.id) query has been issued. Let Π be a DH-type ASICS proto-
col. Suppose that

• Π has strong partnering in the ASICSY experiment,
• cNR-X security of the related protocol π (defined in the same way as Π except

that the session key generated in π is the session string of Π (i.e., sπkey = ssΠ))
is probabilistic polynomial-time reducible to the hardness of the computational
problem of some relation φ,

68

4.3 Achieving ASICS security

• the session string decisional problem in the ASICSY experiment for Π is polynomial-
time reducible to the decisional problem of φ, and

• there is a polynomial-time algorithm that decides whether an arbitrary bitstring
is an element of G,

then the security of Π in ASICS model Y is probabilistic polynomial-time reducible to
the hardness of the gap problem of φ, if H is modelled as a random oracle.

Proof. The proof structure is similar to the proof of Theorem 2 in [66]. We denote by
Λ the session key space associated to protocol Π. Since the cNR-X security of protocol
π is probabilistic polynomial-time reducible to the hardness of the computational
problem of some relation φ, there exists an algorithm A that on input of a problem
instance of the computational problem of φ and interacting with an adversary E which
has non-negligible probability η of winning the cNR-X game for π in time τ is able
to solve the computational problem of φ with non-negligible probability h(η) and in
time v(τ), for some polynomial functions h and v.
By assumption, the session string decisional problem in the ASICSY experiment

for Π is polynomial-time reducible to the decisional problem of φ. Hence there is an
algorithm W which solves the session string decisional problem for Π in polynomial-
time τ ′′ given access to a decisional oracle for φ.
Let D be an adversary winning the ASICSY experiment against protocol Π with

non-negligible probability η′ in time τ ′. Let K denote the event that D does not query
H with the session string ss∗ of the test session s∗. Since Π has strong partnering in
the ASICSY experiment, it holds that, with overwhelming probability, if two sessions
compute the same session key, then they must be M -matching. Thus, if event K
occurs, then D can only win the experiment with negligible probability u(k) + 1/|Λ|,
where u(k) denotes the probability that D issues a session-key query to a session s
that is not M -matching s∗ and skey = s∗key.

We next define an algorithm B which solves the gap problem of φ with non-negligible
probability h′(η′) and in time v′(τ ′), for some polynomial functions h′ and v′, using
adversary D as a subroutine. B will also run algorithm A on the problem instance of
the computational problem of φ, and an algorithm that decides, in polynomial-time
τ ′′′, whether an arbitrary bitstring pk submitted for certification is an element of G.
We now define B’s responses to D’s queries for the pre-specified peer setting; the
post-specified peer case proceeds similarly. Algorithm B maintains sets of certificates
Ch and Cpk as well as lists H-List and G-List, all of which are initially empty.

1. q ∈ Q ∩ {kgen, randomness, corrupt}: B forwards the query to A and passes A’s
response back to D.

2. hregister(pk, P̂): B forwards the query to A and passes A’s response back to D.
In case A returns a certificate C, B adds C to the set Ch, i.e., Ch ← Ch ∪ {C}.

3. pkregister(pk, P̂): B checks whether pk ∈ G and VP outputs 1 on input pk and
P̂ . If all the checks succeed, then B adds a certificate C to the set Cpk, i.e.,
Cpk ← Cpk ∪ {C}, and returns C. Else, B returns ⊥.

4. create (s = (C, i) , r, C ′): B checks whether C ∈ Ch, a session s with counter i
has not yet been created, r ∈ {I,R}, and C ′ ∈ Ch∪Cpk. If one of the checks fails,
then B returns ⊥. Else if C ′ ∈ Cpk, then B answers D’s query by simulating
the protocol execution itself. Else, B forwards the query to A and passes A’s

69

4 Authenticated Key Exchange Security Incorporating Certification Systems

response (if any) to D.
5. send (s,M): If session s does not exist or if sstatus 6= active, then B returns ⊥.

Else if spcert ∈ Cpk, then B responds to the query by simulating the protocol
execution itself. Else B forwards the query to A and passes A’s response (if any)
to D.

6. H query: To answer D’s queries to the random oracle for H, B stores entries of
the form (xi, λi) with λi ∈ Λ in the H-List. When D makes a query x to the
random oracle for H, B determines the return value for D as follows:

• If there exists an entry (xi, λi) in the H-List with xi = x, then return λi.
• Else if there exists an entry (sacert.id, sacert.pk, spcert.id, spcert.pk, srole, ssent,
srcvd, λi) in the G-List, for some session s that has accepted and λi ∈ Λ,
such that x is the session string of session s (i.e., x = ss) using algorithm
W , then store the entry (x, λi) in the H-List and return λi.

• Else, B chooses λ ∈R Λ, stores the entry (x, λ) in the H-List and return λ.
7. session-key(s) : To answer D’s session-key queries, B stores entries of the form

(sacert.id, sacert.pk, spcert.id, spcert.pk, srole, ssent, srcvd, λi) with λi ∈ Λ in the
G-List. When D makes a session-key(s) query to an initiator session s that has
accepted, B determines the return value for D as follows:

• If there exists an entry (sacert.id, sacert.pk, spcert.id, spcert.pk, I, ssent, srcvd,
λi) in the G-List, for some λi ∈ Λ, then return λi.

• Else if there exists an entry (spcert.id, spcert.pk, sacert.id, sacert.pk,R, srcvd,
ssent, λi) in the G-List, then B stores the entry (sacert.id, sacert.pk, spcert.id,
spcert.pk, I, ssent, srcvd, λi) in the G-List and returns λi.

• Else if there exists an entry of the form (xi, λi) in the H-List, where xi = ss
using algorithm W , then B stores the entry (sacert.id, sacert.pk, spcert.id,
spcert.pk, I, ssent, srcvd, λi) in the G-List and returns λi.

• Else, B chooses λ ∈R Λ, stores the entry (sacert.id, sacert.pk, spcert.id,
spcert.pk, I, ssent, srcvd, λ) in the G-List, and returns λ.

A session-key query to a responder session that has accepted is answered similarly.
8. test-session(s∗): B selects µ ∈R Λ and returns µ to D.
9. D outputs a guess: B aborts with failure.
B can detect the complementary event Kc by checking which of the entries (xi, λi)

in the H-List has xi = ss∗ using algorithm W . B then passes xi to A. Since
the test session s∗ must be fresh, no pkregister(s∗pcert.pk, s∗pcert.id) occurred in the
ASICSY experiment and hence the certificate s∗pcert has been output through an
hregister(s∗pcert.pk, s∗pcert.id) query. A solves the computational problem of φ with
non-negligible probability h(η), where η = η′(1 − u(k) − 1/|Λ|). B is successful by
outputting A’s solution to the instance of the computational problem of φ and solves
the gap problem of φ with non-negligible probability h(η) and in time v(τ), where
τ = τ ′+τ ′′nH(nsession-key +1)+τ ′′′npkregister with nH , nsession-key and npkregister denoting
the number of H, session-key and pkregister queries issued by D, respectively.

Remark 12. We cannot show that Theorem 2 holds for more complex protocols Π such
as UM or HMQV-C in arbitrary ASICS base models as the simulation of non-test
sessions s of Π with spcert being the result of a pkregister query cannot be performed

70

4.3 Achieving ASICS security

in the appropriate way without the knowledge of long-term secret keys and without
violating the freshness condition.

4.3.2. Security against adversarial registration of invalid keys
The following theorem, which is applicable to a wider range of protocols than Theorem 2
(e.g., to three-message protocols such as UM [83] or HMQV-C [65]), allows us to
achieve security against adversaries that can obtain certificates from the CA for invalid
public keys by transforming the protocol to include a group membership test on the
peer’s public key. In contrast to Theorem 2, no additional requirement is imposed on
the freshness condition of model Y .

Theorem 3. Let X = (M,Q,F) be an ASICS model with QN ⊆ Q ⊆ QN ∪ QS ∪
(QR \ {npkregister}).

Let π be the class of all ASICS protocols where the domain parameters (G, g, q),
the key generation algorithm KeyGen and the verification procedure VP are as in
Definition 30.

Let f : π → π be the protocol transformation that to any protocol Π ∈ π assigns the
protocol f(Π) derived from Π by adding the following protocol step for each role of the
protocol. Upon creation with (or, via send, receipt of) the certificate C ′ to be used for
the peer of session s, the user running session s checks whether the public key C ′.pk
belongs to the group G before continuing the execution of the protocol. In case the
check fails, the protocol execution is aborted and sstatus is set to rejected.
Suppose that there is a polynomial-time algorithm that decides whether an arbitrary

bitstring is an element of G. Then f is a security-strengthening protocol transformation
from ASICS model X to ASICS model Y = (M,Q ∪ {npkregister}, F) according to
Definition 20.

Proof. The first part of the proof, namely that ASICS model Y is at least as strong
as ASICS model X, is straightforward and proceeds in the same way as the reduction
proofs in Section 3.1.4.
We show next that the second condition of Definition 20 is satisfied. Let Π be an

ASICS protocol secure in model X. It is straightforward to verify the first condition
of Definition 27, that is, that M -matching sessions of protocol f(Π) compute the
same session key. This follows from the fact that M -matching sessions of protocol
Π compute the same key as protocol Π is secure in ASICS model X. We next verify
that the second condition of Definition 27 holds.
Claim. If there is a PPT adversary E succeeding in the ASICSY experiment against
protocol f(Π) with non-negligible advantage in time τ ′, then we can construct a
PPT adversary E′ succeeding in the ASICSX experiment against protocol Π with
non-negligible advantage in time v(τ) (for some polynomial function v) using adversary
E as a subroutine. Let L be an algorithm that decides, in polynomial-time τ ′′, whether
an arbitrary bitstring pk submitted for certification is an element of G.
Proof. Fix a PPT adversary E succeeding in the ASICSY experiment against protocol
f(Π) with non-negligible advantage. We define an algorithm E′ which succeeds in
the ASICSX experiment against protocol Π with non-negligible advantage using E
as a subroutine. Algorithm E′ maintains sets of certificates Ch, Cpk and Cnpk, all of

71

4 Authenticated Key Exchange Security Incorporating Certification Systems

which are initially empty, and answers E’s queries in the pre-specified peer setting as
follows.

1. q ∈ Q ∩ {kgen, randomness, corrupt, session-key}: E′ issues the same query and
returns the answer to E.

2. hregister(pk, P̂): When E issues an hregister(pk, P̂) query, E′ issues the same
query and returns the answer to E. In case a certificate C is returned, E′ adds
C to the set Ch, i.e., Ch ← Ch ∪ {C}.

3. pkregister(pk, P̂): When E issues a pkregister(pk, P̂) query, E′ issues the same
query and returns the answer to E. In case a certificate C is returned, E′ adds
C to the set Cpk, i.e., Cpk ← Cpk ∪ {C}.

4. npkregister(pk, P̂): E′ checks whether pk /∈ G (using algorithm L) and VP
outputs 1 on input pk and P̂ . If the checks succeed (i.e., pk /∈ G and VP(pk, P̂) =
1), then E′ returns a certificate C to E and adds C to the set Cnpk, i.e.,
Cnpk ← Cnpk ∪ {C}. Otherwise, E′ returns ⊥.

5. create (s = (C, i) , r, C ′): E′ checks whether C ∈ Ch, a session s with counter i
has not yet been created, r ∈ {I,R}, and C ′ ∈ Ch ∪ Cpk ∪ Cnpk. If one of the
checks fails, then E′ returns ⊥. Else if C ′ ∈ Ch ∪ Cpk, then E′ issues the same
query and returns the answer (if any) to E. Else, E′ rejects the session creation
and sets sstatus to rejected.

6. send (s,M): If session s does not exist or if sstatus 6= active, then E′ returns ⊥.
Else E′ issues the same query and returns the response (if any) to E.

7. test-session(s): When E issues a test-session(s) query to a session s that has
accepted, E′ issues the same test-session query and returns the answer to E.

8. At the end of E’s execution, that is, after it has output its guess b′, E′ outputs
b′ as well.

It follows that AdvASICSY

f(Π),E (k) ≤ AdvASICSX
Π,E′ (k), and adversary E′ runs in time v(τ)

with τ = τ ′ + τ ′′nnpkregister, for some polynomial function v, where nnpkregister denotes
the number of npkregister queries made by E. Since Π is secure in ASICS model X,
AdvASICSY

f(Π),E (k) is bounded above by a negligible function in the security parameter
k.

Definition 31. Let π be a class of AKE protocols. We say that two security models
X and Y are equally strong with respect to π, denoted by X =π

Sec Y , if X ≤πSec Y
and Y ≤πSec X, where the relation ≤πSec is as in Definition 17.

Remark 13. Let π be the class of ASICS protocols where the domain parameters
(G, g, q), the key generation algorithm KeyGen are as in Definition 30 and the verifi-
cation procedure VP(x, P̂) outputs 1 if x ∈ G and 0 otherwise. Let X = (M,Q,F)
with QN ⊆ Q ⊆ QN ∪ QS ∪ (QR \ {npkregister}) and Y = (M,Q ∪ {npkregister}, F).
It is easy to verify that the ASICS models X and Y are equally strong with respect
to π according to Definition 31. Whenever the adversary issues a query npkregister
in an ASICSY experiment, the symbol ⊥ is returned. Thus, transforming an ASICS
protocol from protocol class π as described in Theorem 3 does not yield a protocol
that is secure in a stronger ASICS model. In contrast, the model Y is stronger than
model X with respect to the protocol class considered in Theorem 3.
Combining both Theorem 2 and Theorem 3, we obtain the following result.

72

4.4 Applications

Corollary 4. Let Π be a DH-type ASICS protocol. Let X = (M,Q,F) and Y =
(M,Q′, F ′) be defined as in Theorem 2, and let the conditions of Theorem 2 hold
with respect to protocol Π. Let f(Π) denote the protocol derived from Π as specified
in Theorem 3. Then the transformed protocol f(Π) is secure in ASICS model Z =
(M,Q′′, F ′), where Q′′ = Q′ ∪ {npkregister}, if H is modelled as a random oracle.

Applying Corollary 4 to a concrete DH-type ASICS protocol that satisfies all the
preconditions, we obtain a protocol that is secure in an ASICS model in which (a)
sessions (including the test session) may use a certificate for the peer that resulted
from an npkregister query, and (b) the certificate of the test session’s peer was not the
result of a pkregister query.

4.4. Applications

To illustrate the power of our generic approach, we examine in Section 4.4.1 how to
apply our technique to Ustaoglu’s CMQV protocol [105]. CMQV is a modern DH-type
protocol that is comparable in efficiency to HMQV, but enjoys a simpler security
proof in the eCK model.
Our results allow us to analyze a slightly modified version of the CMQV protocol,

which we call CMQV’, in a model that does not include session-key, pkregister, and
npkregister queries, which simplifies the overall proof. We verify that CMQV’ meets
the preconditions of Corollary 4, and conclude that a variant of CMQV’ with group
membership test on the peer’s public key is ASICS-secure in an eCK-like model.
Similarly, our generic approach can be applied to other DH-type candidates such as
NAXOS [68] and UP [106]. We discuss in Section 4.4.2 where the preconditions of
Corollary 4 are violated for protocols from Section 4.2 such as MQV or HMQV.

4.4.1. CMQV’

CMQV [105] was originally proven secure in the eCK model, where there is only one
public key per identifier. In the ASICS setting, there is no such unique mapping
between user identifiers and public keys. Hence, to be able to prove CMQV secure
in the ASICS model, we include the public keys of the users in the session string to
ensure that users have the same view of these public keys when deriving the session
key. We call the resulting protocol CMQV’.

CMQV’ as a DH-type ASICS protocol. Two-pass CMQV’ can be stated as a DH-type
ASICS protocol, by instantiating Definition 30 with the following functions. Let
H1 : {0, 1}k × Z∗q → Z∗q , H2 : {0, 1}∗ → Zq, and H : {0, 1}∗ → {0, 1}k be hash
functions. We define fI , fR, FI , FR as:

73

4 Authenticated Key Exchange Security Incorporating Certification Systems

fI(r, a, C,C ′) = H1(r, a)

FI(x, a, Y, C,C ′) ={
⊥ , if Y 6∈ G \ {1}
((Y Be)x+da ‖ gx ‖ Y ‖ C.id ‖ A ‖ C ′.id ‖ B) , if Y ∈ G \ {1}

fR(r, b, C ′, C) = H1(r, b)

FR(y, b,X,C ′, C) ={
⊥ , if X 6∈ G \ {1}
((XAd)y+eb ‖ X ‖ gy ‖ C.id ‖ A ‖ C ′.id ‖ B) , if X ∈ G \ {1},

where d = H2(X ‖ C.id ‖ C ′.id), e = H2(Y ‖ C.id ‖ C ′.id), A = C.pk, B = C ′.pk; ‖
denotes tagged concatenation to avoid ambiguity with variable-length strings.
We now show, using Corollary 4, that the resulting DH-type CMQV’ protocol is a

secure ASICS protocol in an ASICS model with leakage queries corresponding to the
eCK model.
ASICS model for eCK-like leakage. Define the ASICS model eCK = (M2, Q, F) for
eCK-like leakage [68] as follows. Let Q = QN ∪ QS . Let F be the condition that
a session s satisfies F if, for all sessions s′ such that s′ M2-matches s, none of the
following conditions hold:

• a session-key(s) query has been issued;
• if s′ exists:

– a session-key(s′) query has been issued;
– both corrupt(sacert.pk) and randomness(s) queries have been issued;
– both corrupt(s′acert.pk) and randomness(s′) queries have been issued;

• if s′ does not exist:
– both corrupt(sacert.pk) and randomness(s) queries have been issued;
– a corrupt(spcert.pk) query has been issued.

Theorem 4. Let f(CMQV′) be the DH-type ASICS protocol derived from the CMQV′
protocol defined above, as specified in Theorem 3. If H1,H2 and H are modelled as
random oracles, G is a group where the gap Diffie–Hellman assumption holds and
membership in G is decidable in polynomial time, then f(CMQV′) is secure in ASICS
model Z = (M2,QN ∪QS∪QR, F ′), where a session s is said to satisfy F ′ if it satisfies
the freshness condition F from the eCK model and no pkregister(spcert.pk, spcert.id)
query has been issued.

Sketch. We can readily show that CMQV’ satisfies the preconditions of Corollary 4
under the above formulation of the eCK model as an ASICS model:

1. Strong partnering. It is straightforward to see that CMQV’ has strong part-
nering in the ASICSeCK′ game (where eCK′ is derived from eCK as described in
Theorem 2): since the session key in CMQV’ is computed via a random oracle,
the probability that two sessions derive the same session key without using the
same session string input to the random oracle is negligible.

74

4.4 Applications

2. cNR-eCK-security of the session string variant of CMQV’. This can be shown
by an adaptation of Ustaoglu’s original proof of CMQV’. In large part, the main
proof can be followed. However, a few simplifications can be made because the
simulation need not answer session-key queries (so preventing key replication
attacks and simulating sessions where the public key is a challenge value are
easier).

3. Hardness of the session string decision problem. It can be easily seen that
this is polynomial-time reducible to the decisional problem for Diffie–Hellman
triples (U, V,W) by noting that the first component of the CMQV’ session string
σ is equal to g(y+eb)(x+da) = gxygadygbexgabde; the DDH values (U, V) can be
injected into either (X,Y), (A, Y), (B,X), or (A,B), with W inserted into the
corresponding part of σ, yielding a polynomial-time reduction.

Detailed proofs of each of the above claims can be found in Appendix A.

4.4.2. Discussion

In Section 4.4.1 we provided evidence that our modular approach can indeed be
successfully applied to reason about the security of prominent key exchange protocols.
Here we inspect which preconditions of Corollary 4 are violated for some commonly
analyzed protocols.
Let X1 = (M1, Q, F) be the ASICS model given by Q = QN ∪ {session-key} and

F defined as follows. We say that a session s satisfies F if it holds that neither a
session-key(s) query nor a session-key(s′) query for any session s′ that is M1-matching s
have been issued. Let Y1 = (M1, Q′, F ′) be derived from X1 as specified in Theorem 2.
The UKS attacks described in Section 4.2 against the DH-type protocols MQV and
KEA caused two sessions that were not M1-matching to compute the same session key.
Thus, the first precondition of Corollary 4 is violated for these protocols as they do
not have strong partnering in the ASICSY1 experiment. The two-pass HMQV protocol
without ephemeral public key validation is insecure in ASICS model X1 when special
domain parameters are used (see Section 4.2) due to the lack of ephemeral public key
validation. Hence, it is easy to see that the related protocol, that we call HMQV’,
is not cNR-X1-secure, which violates the second precondition of Corollary 4. Even
though it is unclear whether there is an attack against two-pass HMQV with DSA
domain parameters without ephemeral public key validation, the third precondition of
Corollary 4 is violated for this version of the HMQV protocol. The lack of ephemeral
public key validation hinders us from using a DDH oracle to solve the session string
decisional problem for the protocol since there is no guarantee that all inputs to the
DDH oracle belong to the group G. The latter observations on HQMV lead us to the
conclusion that validation of ephemeral public keys is necessary to be able to apply
Corollary 4 to the HMQV protocol, even when the adversary is not given access to
the randomness query.
Let X2 = (M2, Q, F) be the ASICS model given by Q = QN ∪ {session-key} and

F defined as follows. We say that a session s satisfies F if it holds that neither a
session-key(s) query nor a session-key(s′) query for any session s′ that is M2-matching s
have been issued. Let Y2 = (M2, Q′, F ′) be derived from X2 as specified in Theorem 2.
Note that model Y2 corresponds to the model X defined in Section 4.2 capturing the

75

4 Authenticated Key Exchange Security Incorporating Certification Systems

UKS attack against KEA+. The latter UKS attack described against the DH-type
protocol KEA+ caused two sessions that were not M2-matching to compute the same
session key. Thus, the first precondition of Corollary 4 is violated for KEA+ as this
protocol does not have strong partnering in the ASICSY2 experiment.

4.5. Lessons learned and recommendations

As we started our systematic investigation we assumed that certification authorities
would need to perform some minimal checks on public keys to obtain secure KE
protocols. Perhaps surprisingly, nearly all of the effort can be shifted to the protocols;
and modern protocols often perform sufficient checks. In particular, our results
provide formal foundations for some of the protocol-specific observations of Menezes
and Ustaoglu [81]: checking that short-term as well as long-term public keys are in
the key space (i.e., in group G for DH-type protocols) is not superfluous.

Based on these observations, and givenM public keys, N users may need to perform
on the order of M ×N such checks in total, even when caching the results. Reasoning
purely about the overall amount of computation time used, one could consider moving
the burden to the CAs. If the CAs only create certificates after a successful check,
the CAs would only perform on the order of M checks in total. Depending on the
deployment scenario, this might be a preferable alternative.

Similarly, CAs do not necessarily need to check uniqueness of public keys. As long
as the key derivation involves the identifiers in an appropriate way, UKS attacks such
as the one on KEA can be prevented.
In general, our results further justify using as much information as possible in the

key derivation function (KDF). This helps with establishing formal security proofs
and it is also a prudent engineering principle. In particular, we recommend that in
settings where users may have multiple long-term public keys, the input to the KDF
should not only include the identifiers and the message transcript, but also the specific
public keys used in the session.
We hope our work can serve as a foundation for the development of a range of

protocols specifically designed to incorporate certification systems, offering different
tradeoffs between efficiency and trust assumptions of the involved parties.

4.6. Summary

In this chapter we developed the framework ASICS for analyzing AKE protocols while
taking into account the certification authority and its behavior. In particular, we
discovered a new attack against the KEA+ protocol based on an impersonation attack
during key registration, and captured this attack in the appropriate ASICS model.

We provided generic results that show how protocols can be strengthened to achieve
security when adversaries can register arbitrary bitstrings as keys, and the CA does not
perform any checks. Our results provide evidence (a) that users can defend themselves
against CAs that do not perform proper checks, and (b) for the importance of public
key validation.

76

4.6 Summary

Finally, we applied our methodology to a variant of the CMQV protocol to obtain a
protocol secure in the natural strengthening of the eCK model to the ASICS setting.

77

Part II.

Stronger Security via Impossibility
Results

79

5. On the Limits of AKE Security with an
Application to Bad Randomness

State-of-the-art authenticated key exchange protocols are proven secure in game-based
security models. These models have considerably evolved in strength from the original
Bellare-Rogaway model. However, so far only informal impossibility results, which
suggest that no protocol can be secure against stronger adversaries, have been sketched.
At the same time, there are many different security models being used, all of which
aim to model the strongest possible adversary. In the first part of this thesis we
provided stronger security guarantees than found in the state-of-the-art via extensions
of current models. In this chapter we perform the first systematic analysis of the
limits of game-based AKE security models.
We proceed as follows. In Section 5.1 we present a framework to reason about the

security of AKE protocols in the presence of adversaries with diverse capabilities. In
particular, this framework allows to express security models that permit the adversary
to choose session-specific randomness. In Section 5.2 we define a series of relevant
protocol classes. In Section 5.3 we derive strong security models from impossibility
results on the security provided by each protocol class in the case where the adversary
cannot choose the randomness used in protocol sessions. We then extend these models
to additionally capture chosen-randomness attacks, in Section 5.4. In Section 5.5 we
adapt our impossibility results to more complex protocol classes and derive strong
models from these impossibility results. While a large class of protocols fails to achieve
security in models that capture chosen-randomness attacks even on the target session
and its partner session, we construct, in Section 5.6, variants of the NAXOS protocol
that provide security against such attacks. In Section 5.7 we formally compare our
security models and provide a protocol hierarchy for AKE security of the constructed
protocols with respect to our derived security models.

5.1. AKE framework
In this section we define a framework to reason about the security of AKE protocols
belonging to different classes against adversaries with diverse capabilities. This
framework allows to express existing AKE security models such as the eCK model [68]
and the models eCKw and eCK-PFS from Chapter 3 as well as extensions of these
models that permit the adversary to choose the randomness used in protocol sessions.

5.1.1. Security model

Sessions and session-specific memory. Let P be a finite set of N binary strings
representing user identifiers. Each user can execute multiple instances of an AKE

81

5 On the Limits of AKE Security with an Application to Bad Randomness

actor the session’s actor (the user running the session)
peer the session’s peer (the intended communication partner)
role taken role; either I (initiator) or R (responder)
sent, recv concatenation of all messages sent, respectively received, in the session
status session status; either active, accepted, or rejected
key key established in the session
rand randomness used in the session
data any additional session-specific or protocol-specific data
step protocol step to be executed (in the session)

Table 5.1.: Elements of session state

protocol, called sessions, concurrently. We can uniquely identify specific sessions of
a user by referring to the order in which they are created. Thus, the i-th session
of user P̂ is denoted by the tuple (P̂ , i) ∈ P × N. These tuples are not used by the
protocol, but allow the adversary to identify the sessions he created. We model each
user by a probabilistic Turing machine. For each user P̂ , the state of its Turing
machine consists of the memory contents of the user, where we differentiate between
session-specific memory and user memory, which is shared among different sessions.
We take an abstract view on the session-specific memory and assume that it can be
separated into distinct named fields, referred to as variables and listed in Table 5.1.
Some of these variables are set upon session creation, whereas others are set or
updated during execution of the protocol. The next step to be executed by the
protocol is stored in the variable step. Alternatively, this value could be stored in the
variable data. We choose to store it in a separate variable for clarity. We say that
a session s has accepted (or is completed) if the value of its status variable taking
values in the set {active, accepted, rejected} is accepted. We denote by sts the
session-specific memory related to session s. The session-specific memory contains the
session-specific variables of Table 5.1. Initially we assume that each session-specific
variable is undefined, denoted by ⊥.

User memory. The user memory of some user stores the user’s long-term public/secret
key pair, the public key of all other users Q̂ ∈ P as well as additional variables
that might be required by the protocol. The information stored in the user memory
is accessed and possibly updated by sessions of the user according to the protocol
specification. In contrast to session-specific information, data stored in the user
memory of some user P̂ is shared among different sessions of the user P̂ . We denote
by stP̂ the user memory of user P̂ ∈ P.

Game state and game behaviour (see also [33]). The adversary, modeled as a prob-
abilistic polynomial-time algorithm, interacts with the users in the set P within a
game through queries in a set Q. The state of the game (or game state) contains
session-specific state information sts for all sessions s, user-specific information stP̂
for each user P̂ ∈ P as well as other information related to the game such as some
bit that the adversary attempts to guess. The game behaviour, which we denote
by Φ, describes how the game processes the queries in Q. More precisely, the game
behaviour Φ is an algorithm taking as input the current state of the game GST , a

82

5.1 AKE framework

query q ∈ Q, a protocol π, and a security parameter 1k, and returning a new state
GST ′ as well as a response resp ∈ {0, 1}∗ ∪ {⊥, ?} to the adversary’s query q.

Definition 32 (h-message protocol). Let 1k be the security parameter. An h-message
protocol π, where h is the sum of the number of messages sent and received during a
protocol session, consists of

• a set of domain parameters,
• a probabilistic polynomial-time key generation algorithm KeyGen, which takes as

input the security parameter and outputs a public/secret key pair, and
• a deterministic polynomial-time algorithm Ψ executed by a user in a session.

This algorithm takes as input the security parameter 1k, the session-specific
memory sts of a session s, the user memory stP̂ of the actor P̂ of session s,
and a message m ∈ {0, 1}∗, and outputs a triple of elements (m′, st ′s, st ′P̂), where
m′ ∈ {0, 1}∗ ∪ {?} is a message, st ′s is an updated internal session state, and
st ′
P̂
is an updated state of the user memory of user P̂ .

If h is even, then the number of messages m′ 6= ? output by Ψ during a protocol session
is h

2 for both roles initiator and responder. If h is odd, then the number of messages
m′ 6= ? output by Ψ during a protocol session is h+1

2 for the initiator role and h−1
2 for

the responder role.

The output of the key exchange algorithm Ψ (see Definition 32) may include the value
? to indicate that the session does not generate an outgoing message.
Remark 14 (Multiple key pairs). If a protocol uses n > 1 key pairs, then the key
generation algorithm KeyGen represents the joint key generation algorithm KeyGen =
(KeyGen1, ...,KeyGenn). The secret key skP̂ of the user with identifier P̂ corresponds
to the concatenation of n secret keys skP̂ =

(
sk(1)
P̂
, ..., sk(n)

P̂

)
. Similarly, the public key

pkP̂ of the user with identifier P̂ corresponds to the concatenation of n public keys
pkP̂ =

(
pk(1)

P̂
, ..., pk(n)

P̂

)
.

Setup of the game. A setup algorithm SetupG is used to generate a set of a fixed
number N of user identifiers, to set all session-specific variables to ⊥, and to initialize
the user memory of each user. The algorithm SetupG takes as input the protocol
π and the security parameter 1k, and outputs an initial game state GSTinit. More
precisely, the setup algorithm proceeds as follows:

1. generate a set P = {P̂1, ..., P̂N} of N distinct binary strings (representing user
identifiers),

2. for all users P̂ ∈ P : generate a long-term public/secret key pair (pkP̂ , skP̂) using
algorithm KeyGen,

3. for all users P̂ ∈ P: store the key pair (pkP̂ , skP̂) together with the set
{(P̂ , pkP̂) | P̂ ∈ P \ {P̂}} in the user memory stP̂ , and

4. initialize all other user-specific variables if such variables are used by the protocol.

Queries. The specification of some of the queries that we define below is similar to
queries defined in the ASICS framework of Chapter 4. The public-info query, which
was informally introduced in [33, p. 4], allows the adversary to obtain information

83

5 On the Limits of AKE Security with an Application to Bad Randomness

that was generated during the setup phase of the game such as the users’ identifiers
and their public keys.

• public-info(). The query returns a set L of information which contains the set
{(P̂ , pkP̂) | P̂ ∈ P} as well as the initial values of all other variables stored in
the user memory of each user, except for the users’ long-term secret key, if such
variables are used by the protocol.

The queries in the set QR = {create, send} model regular execution of the protocol.
• create(P̂ , r[, Q̂]). The query models the creation of a new session s for the user

with identifier P̂ . It requires that P̂ ∈ P, Q̂ ∈ P , and that r ∈ {I,R}; otherwise,
it returns ⊥. Session variables are initialized as

(sactor , srole, ssent , srecv , sstatus, skey, sstep)← (P̂ , r, ε, ε, active,⊥, 1) .

A bit string in {0, 1}k is sampled uniformly at random and assigned to srand ;
we assume that all randomness required during the execution of session s is
deterministically derived from srand . If the optional peer identifier Q̂ is provided,
the variable speer is set to Q̂.
The key exchange algorithm Ψ is executed on input (1k, sts, stP̂ , ε). The algo-
rithm returns a triple of elements (m′, st ′s, st ′P̂). We set sts ← st ′s and stP̂ ← st ′

P̂
.

The query returns m′.
• send(P̂ , i,m). The query models sending message m to the i’th session of user P̂ ,

which we denote by s. It requires that sstatus = active; otherwise it returns ⊥.
The algorithm Ψ is run on input (1k, sts, stP̂ ,m), and outputs a triple of elements
(m′, st ′s, st ′P̂). We set sts ← st ′s and stP̂ ← st ′

P̂
. The query returns m′.

The queries in the set QC = {session-key, corrupt, randomness, cr-create} that we define
next model the corruption of a user’s secrets. The randomness query models the
adversary’s capability of learning the randomness srand of a particular session s.
In contrast, the cr-create query models the adversary’s capability of choosing the
randomness used within a session. Note that we do not explicitly model repeated
randomness, i. e. secret uniform bits that have been used in previous key exchange
sessions. However, we show in Section 5.4.3 that security in the model that we present
in Section 5.4.1 implies security in a similar model capturing repeated randomness.
The significance of session-key queries is threefold. First, key exchange protocols are
required to provide security against known-key attacks [84], which can be ensured
through key independence among different sessions. Known-key attacks are captured
in security models via session-key queries on non-matching sessions. Second, in an
unknown-key share (UKS) attack, the adversary establishes two sessions which compute
the same session key even if both sessions have different intended communication
partners. The relevance of UKS attacks is discussed, e. g., in [22]. A formal definition
of a UKS attack and how it is reflected in a security model via session-key queries is
given in [42]. Third, session-key queries capture replay attacks combined with chosen-
randomness attacks. In these replay attacks, the adversary causes two non-matching
sessions to compute the same session key by setting the randomness of the second
session to the same randomness as used in the first session and replaying the messages
received by the first session to the second session [108].

84

5.1 AKE framework

In the definition of the queries session-key and randomness we denote the i’th session
of user P̂ by s.

• session-key(P̂ , i). The query requires that sstatus = accepted; otherwise, it
returns ⊥. The query returns the session key skey of session s.

• corrupt(P̂). If P̂ /∈ P, then S returns ⊥. Otherwise the query returns the
long-term secret key skP̂ of user P̂ .

• randomness(P̂ , i). If sstatus 6= ⊥, then the randomness srand used in session s is
returned. Otherwise, the query returns ⊥.

• cr-create(P̂ , r, rnd[, Q̂]). The query models the creation of a new session s, using
randomness rnd chosen by the adversary, for the user P̂ . The query requires
that P̂ ∈ P, Q̂ ∈ P, rnd ∈ {0, 1}k, and that r ∈ {I,R}; otherwise, it returns ⊥.
Session variables are initialized as

(sactor , srole, ssent , srecv , sstatus, skey, srand , sstep)← (P̂ , r, ε, ε, active,⊥, rnd, 1) .

If the optional peer identifier Q̂ is provided, the variable speer is set to Q̂.
The key exchange algorithm Ψ is executed on input (1k, sts, stP̂ , ε). The algo-
rithm returns a triple (m′, st ′s, st ′P̂). We set sts ← st ′s and stP̂ ← st ′

P̂
. The query

returns m′.
The set QnoCR = QR∪ (QC \ {cr-create}) contains all execution and corruption queries,
except the query cr-create.
The notion of matching sessions specifies when two sessions are supposed to be

intended communication partners. It is formalized below via matching conversations
as in Chapter 3.

Definition 33 (Matching sessions). Let π be an h-message protocol. We say that
two sessions s and s′ of π are matching if sstatus = s′status = accepted and sactor =
s′peer ∧ speer = s′actor ∧ ssent = s′recv ∧ srecv = s′sent ∧ srole 6= s′role.

We next define a parameterized family of AKE security models. The parameters
for each model consist of a subset Q of the above adversary queries and a freshness
predicate F , which restricts the adversary from performing certain combinations of
queries.

Definition 34 (AKE security model). Let π be an h-message protocol. Let Q be a set
of adversary queries such that QR ⊆ Q ⊆ QR∪QC. Let F be a freshness predicate, that
is, a predicate that takes a session of protocol π and a sequence of queries (including
arguments and results) in Q. We call (Q,F) an AKE security model.

Remark 15. In this work we fix a particular definition for matching sessions (namely,
Definition 33) and construct strong security models with respect to this definition.
It is straightforward to adapt these models to other definitions of matching sessions
that are suitable for analyzing protocols such as (H)MQV that allow two sessions
performing the same role to compute the same session key.

5.1.2. Security experiment
We associate to each AKE security model X = (Q,F) a security experiment W (X),
defined below, played by an adversary E against a challenger. To win the experiment,

85

5 On the Limits of AKE Security with an Application to Bad Randomness

the adversary aims to distinguish a real session key from a random key, modelled
through the following query.

• test-session(s). This query requires that sstatus = accepted; otherwise, it re-
turns ⊥. A bit b is chosen at random. If b = 0, then skey is returned. If b = 1,
then a random key is returned according to the probability distribution of keys
generated by the protocol.

Definition 35 (Security experiment W (X)). Let π be an h-message protocol. Let
X = (Q,F) be an AKE security model. We define experiment W (X), between an
adversary E and a challenger who implements all the users, as follows:

1. The game is initialized with domain parameters for security parameter 1k and
the setup algorithm SetupG is executed.

2. The adversary E first issues the query public-info, and then performs any se-
quence of queries from the set Q.

3. At some point in the experiment, E issues a test-session query to a session s
that has accepted and satisfies F at the time the query is issued.

4. The adversary may continue with queries from Q, under the condition that the
test session must continue to satisfy F .

5. Finally, E outputs a bit b′ as his guess for b.

The adversary E wins the security experiment W (X) if he correctly guesses the bit
b chosen by the challenger during the test-session query (i. e., if b = b′, where b′ is
E’s guess). Success of E in the experiment is expressed in terms of E’s advantage in
distinguishing whether he received the real or a random session key in response to the
test-session query. The advantage of adversary E in the above security experiment
against a key exchange protocol π for security parameter k is defined as Advπ,EW (X)(k) =
|2P (b = b′)− 1|.

Definition 36 (AKE security). A key exchange protocol π is said to be secure in
AKE security model (Q,F) if, for all PPT adversaries E, it holds that

• if two users successfully complete matching sessions, then they compute the same
session key,

• the probability of event Multiple-MatchW (X)
π,E (k) is negligible, where

Multiple-MatchW (X)
π,E (k) denotes the event that there exists a session that has

accepted with at least two matching sessions, and
• E has no more than a negligible advantage in winning the W (X) security exper-

iment, that is, there exists a negligible function negl in the security parameter k
such that Advπ,EW (X)(k) ≤ negl(k).

Informally, the second requirement in Definition 36 (see also [17]) states that, for a
given session of protocol π that has accepted, it holds that its matching session, if it
exists, is unique.
Remark 16. In comparison to the BR93 security definition [17, Definition 5.1] based
on the notion of matching conversations [17, Definition 4.1],

• Definition 33 does not take into account the timing of sent and received messages
and

86

5.2 Protocol Classes

• we do not require in Definition 36 that the probability of event No-MatchingE(k)
is negligible, where No-MatchingE(k) denotes the event that there exists a session
that has accepted with no matching session.

Let π be a stateless two-message AKE protocol (see Definition 40). Adapting [17,
Definition 4.1] for two-message protocols by not requiring that the last message sent
by a responder session must be received by the initiator session that sent the message
received by the responder session, leads us to the conclusion that protocol π is an
insecure AKE protocol according to [17, Definition 5.1] since the first requirement
of [17, Definition 4.2] is violated; there is an adversary who establishes two sessions
that have matching conversations and leaves the initiator session incomplete so that
not both sessions accept. Adapting [17, Definition 4.1] for two-message protocols
by adding the requirement that two sessions must be completed in order to have
matching conversations, leads us to the conclusion that protocol π is an insecure AKE
protocol according to [17, Definition 5.1] since the second requirement of [17, Definition
4.2] is violated for π. There is an adversary E such that the probability of event
No-MatchingE(k) is non-negligible; E first establishes an initiator session s and a
responder session s′ that have matching conversations, and then replays the first
message from the initiator session s to activate another responder session s′′. Clearly,
session s′′ and session s do not have matching conversations since τ3 > τ2, where
the initiator session received the message from the first responder session at time τ2
and the second responder session received the replayed message from the initiator
session at time τ3. Hence session s′′ has accepted with no matching session. So the
BR93 security definition combined with either of the two previous variants of the
notion of matching conversations is too strong for analyzing stateless two-message
AKE protocols as no such protocol can satisfy the BR93 security definition.

5.2. Protocol Classes

In this section we define a series of relevant protocol classes. The largest protocol
class includes, e. g., one-round protocols and Diffie-Hellman type protocols. As we
see in Section 5.3 and Section 5.5, the distinction between these classes allows the
systematic development of strong security models for analyzing protocols belonging
to the respective classes.

5.2.1. Classes AKE, INDP, and INDP-DH

We start by defining a global class of AKE protocols. Such protocols are required to
be executable, i. e., if the messages of two users Â and B̂ are faithfully relayed to each
other, then both users end up with a shared session key (see also [15,17,18]). A second
requirement ensures that protocol messages depend on session-specific randomness.
Both properties are used for proving impossibility results in Section 5.3.

Definition 37 (Protocol class AKE). We define AKE as the class of all h-message
protocols that meet the following requirements: In the presence of an eavesdropping
adversary,

87

5 On the Limits of AKE Security with an Application to Bad Randomness

• two users Â and B̂ can complete matching sessions, in which case they hold the
same session key, and

• the probability that two sessions of the same user output in all protocol steps
identical messages is negligible in the security parameter.1

Protocol 2C [20]

HMQV [64]
NAXOS [68]

π1 (Section 3.3.2)
YAK [55]

HMQV-C [65]

AKE

INDP

INDP-DH

SL

Figure 5.1.: Venn Diagram of the protocol classes and example protocols

We next consider a subclass of two-message AKE protocols, namely the class INDP of
one-round AKE protocols, where the outgoing message can be computed before any
(valid) message is received. Formally, we define the class of one-round protocols as
follows.

Definition 38 (Protocol class INDP). The protocol class INDP consists of all two-
message protocols in AKE for which the outgoing message of any session s with status
sstatus 6= rejected does not depend on the incoming message.

We define the class INDP-DH of one-round Diffie-Hellman type protocols as a subclass
of INDP as follows.

Definition 39 (Protocol class INDP-DH). Let G = 〈g〉 be a cyclic group of prime order
p generated by g. Let KeyGen be the key generation algorithm defined as KeyGen():
Choose a ∈R [0, p− 1]; Set A← ga; Return secret key sk = a and public key pk = A.

The protocol class INDP-DH consists of all protocols in the class INDP with domain
parameters (G, g, p), key generation algorithm KeyGen, and where the outgoing message
of any initiator session s in status sstatus 6= rejected is of the form (δ, gfI(1k,sts,stÂ))
and the outgoing message of any responder session s′ in status s′status 6= rejected is
of the form (δ′, gfR(1k,sts′ ,stB̂)), where Â is the actor of session s, B̂ is the actor of
session s′, fI , fR : {0, 1}∗ → Zp are two polynomial-time computable functions, and
δ, δ′ is optional publicly available information such as the identifiers of actor and peer
of the session.

1Note that the class AKE does not include static Diffie-Hellman protocols such as Protocol 2 in [23].

88

5.3 Impossibility results and strong models for stateless protocols

5.2.2. Stateless and stateful protocols
We distinguish between stateless and stateful protocols. Stateless protocols leave the
state of a user’s memory (i.e., the memory that is shared among sessions) invariant
under execution of the protocol. In contrast, the state of a user’s memory is modified
when executing a protocol that is not stateless. Examples of stateless and stateful
protocols are given in Figure 5.1 and in Section 5.6.
We define the class of stateless AKE protocols as a subclass of the class AKE as

follows.

Definition 40 (Stateless protocol). Let A,B, and C be sets. Let proj3 : A×B×C → C
be the map given by proj3(a, b, c) = c for all (a, b, c) ∈ A× B × C. Let π be a protocol
in the class AKE. We say that π is a stateless protocol if

proj3
(
Ψ(1k, sts, stP̂ ,m)

)
= stP̂ ,

for all (k, sts, stP̂ ,m) ∈ N× {sts | s ∈ P × N} × {stP̂ | P̂ ∈ P} × {0, 1}∗. We denote
by SL the subclass of AKE containing all stateless protocols.

Definition 41 (Stateful protocol). Let π be a protocol in the class AKE. We say that
π is a stateful protocol if π is not stateless.

Remark 17. Stateless protocols cannot provide message replay detection to reject
messages that have been received in earlier sessions of the same user as this would
require storing all previously received messages in a table in the user memory and,
upon receipt of a valid message in a session, accessing the table in the user memory
and checking whether the message corresponds to a message in the table.

Most recently proposed strong AKE protocols fall into the narrow class INDP-DH∩SL.
As we illustrate next, protocols from the wider classes can achieve stronger security.

5.3. Impossibility results and strong models for stateless
protocols

In this section we provide impossibility results for protocols in the classes AKE ∩ SL,
INDP∩ SL and INDP-DH∩ SL with respect to an adversary who is given access to the
queries in the set QnoCR = QR ∪ (QC \ {cr-create}). We then derive strong security
models for reasoning about the security of protocols in the respective classes from
these impossibility results. Each of our models can be satisfied by existing stateless
protocols. In Section 5.4 we show that no stateless protocol can achieve security in
stronger models, in which the adversary can additionally perform chosen-randomness
attacks via the cr-create query.
We start by defining the notion of partially matching sessions in a similar way as

matching conversations in [17, Definition 4.1].

Definition 42 (Partially matching sessions). Let π be an h-message protocol, where
h ≥ 2. Let s denote a session of π with sstatus = accepted. We say that session s is
partially matching session s′ in status s′status 6= ⊥ if the following conditions hold:

89

5 On the Limits of AKE Security with an Application to Bad Randomness

• srole 6= s′role ∧ sactor = s′peer ∧ speer = s′actor and either
• srole = I ∧ ssend [1..m] = s′recv [1..m] ∧ srecv [1..m] = s′send [1..m] with m = h

2 if h
is even and m = h−1

2 if h is odd, or
• srole = R∧ ssend [1..(m− 1)] = s′recv [1..(m− 1)]∧ srecv [1..m] = s′send [1..m] with
m = h

2 if h is even and m = h+1
2 if h is odd,

where ssend [1..l] denotes the concatenation of the first l messages sent by session s
and srecv [1..l] denotes the concatenation of the first l messages received by session s.

Remark 18. In contrast to the notion of matching sessions (see Definition 33), which
is only defined for completed sessions, the notion of partially matching sessions does
not require the last message sent by one session to be received by the partner session.
This allows us to capture combinations of randomness and corrupt attacks on such
sessions as well.

To relate a received message that was not constructed by the adversary to the session
it originates from, we use the concept of origin-session, which was first introduced in
Section 3.1.2. The existence of an origin-session for a given session implies integrity of
the received messages.

Definition 43 (origin-session). We say that a session s′ with s′status 6= ⊥ is an
origin-session for a session s with sstatus = accepted if s′send = srecv.

Theorem 5 (Impossibility result for AKE ∩ SL). Let π be an arbitrary protocol in
the class AKE ∩ SL. Let X = (QnoCR, F) be the AKE security model with F being
true for all sessions s and all sequences of queries. Let s∗ denote the test session
and let s′ denote a session such that s∗ is partially matching session s′. There
exist adversaries who win the security experiment W (X) against protocol π with
non-negligible probability by issuing either

1. a query session-key(s∗), or
2. a query session-key(s̃), where s̃ and s∗ are matching sessions, or
3. a query corrupt(s∗actor) and a query randomness(s∗), or
4. a query corrupt(s∗peer) as well as a query randomness(s′), or
5. a query corrupt(s∗peer) before creation of session s∗ via a create query or as long

as s∗status = active and s∗recv = ε, and impersonating the peer to session s∗.

Proof. Let π ∈ AKE ∩ SL. There exist PPT adversaries who win the security game
W (X) against protocol π with non-negligible probability, as follows.
Scenario 1: Adversary E1 establishes two sessions s and s′ that are matching (via a

sequence of create and send queries) and chooses session s as the test session.
Issuing a session-key(s) query reveals the session key of session s.

Scenario 2: Since π ∈ AKE, adversary E2 can establish via a sequence of create and
send queries two sessions s and s′ that are matching according to Definition 33.
He then issues the test-session query to one of the two sessions, say to session s,
and issues a session-key query to session s′. E2 thereby learns the session key of
session s.

Scenario 3: Adversary E3 establishes two sessions s and s′ that are matching and
chooses session s as the test session. Issuing the queries corrupt(sactor) and

90

5.3 Impossibility results and strong models for stateless protocols

randomness(s) reveals the long-term secret key of sactor = P̂ and the randomness
srand of session s, respectively. Together with the set L returned as response
to the query public-info and the last message received during session s, which
we denote by m′, the adversary can compute the session key of session s by
executing the algorithm Ψ on input (1k, sts, stP̂ ,m′). Note that the user state
remains unchanged during protocol execution as π ∈ SL.

Scenario 4: Assume that π ∈ AKE ∩ SL is an h-message protocol with h even. The
proof works similarly for the case where h is odd.
Case 1: test session in initiator role. First E4 establishes via a sequence of create
and send queries an initiator session s and a responder session s′ such that s and
s′ are matching sessions (this is possible since π ∈ AKE). Clearly, session s is
also partially matching session s′. He then chooses session s as the test session.
Issuing the queries corrupt(speer) and randomness(s′) reveals the long-term secret
key of speer = P̂ and the randomness s′rand of session s′, respectively. Since
π ∈ SL and the initial values of additional variables in the user memory are
returned as response to the query public-info, the user state stP̂ is known to the
adversary. Hence, the adversary can emulate the session key computation of a
matching session and compute the session key of session s by executing Ψ on
input (1k, sts′ , stP̂ ,m), where m denotes the last incoming message to session s′.
Case 2: test session in responder role. First E4 establishes via a sequence of
create and send queries an incomplete initiator session s and a responder session
s′ such that s′ is partially matching session s (this is possible since π ∈ AKE).
He then chooses session s′ as the test session. Issuing the queries corrupt(s′peer)
and randomness(s) reveals the long-term secret key of s′peer and the randomness
of session s, respectively. Similar to the previous case, the adversary is able to
compute the session key of session s′.

Scenario 5: Adversary E5 issues a corrupt query to some user, say user Q̂. He
then creates a responder session s by issuing the query create(P̂ ,R, Q̂). The
adversary now impersonates user Q̂ to sactor as follows. E5 chooses randomness
r ∈R {0, 1}k and runs the protocol with P̂ on behalf of Q̂ by executing the
algorithm Ψ. The algorithm Ψ executed by the adversary takes as input, among
others, the user state of user Q̂ containing its long-term secret key skQ̂ and the
set L returned as response to the public-info query. Once session s has accepted,
he chooses the latter as the test session. The adversary can compute the session
key of session s, for which no origin-session exists, by emulating a matching
session. Note that a similar attack also works against (a) an initiator session,
(b) an initiator session s such that sstatus = active and srecv = ε, and (c) a
responder session s such that sstatus = active and srecv = ε.

Theorem 5 gives rise to the security model ΩAKE∩SL defined as follows. The
associated freshness notion restricts the adversary from performing the generic attacks
specified in Theorem 5.

Definition 44 (ΩAKE∩SL). The ΩAKE∩SL model is defined by (Q,F), where Q = QnoCR
and a session is said to satisfy F if all of the following conditions hold:

91

5 On the Limits of AKE Security with an Application to Bad Randomness

1. no session-key(s) query has been issued,
2. for all sessions s∗ such that s∗ matches s, no session-key(s∗) query has been

issued,
3. not both queries corrupt(sactor) and randomness(s) have been issued,
4. for all sessions s′ such that s is partially matching session s′, not both queries

corrupt(speer) and randomness(s′) have been issued, and
5. if there exists no origin-session for session s, then no corrupt(speer) query

has been issued before creation of session s via a create query or as long as
sstatus = active and srecv = ε.

To see that there exist protocols in the class AKE ∩ SL that are secure in the model
ΩAKE∩SL, consider the protocol SIG∗(NAXOS) obtained by applying the signature
transformation SIG with optional fields from Chapter 3 to the NAXOS protocol.
Clearly, protocol SIG∗(NAXOS) does not belong to the class INDP ∩ SL since the
outgoing message of a responder session depends on the Diffie-Hellman exponential
contained in the incoming message. Adapting the proof of Theorem 1, it can be shown
that protocol SIG∗(NAXOS) is secure in model ΩAKE∩SL.
Even though security in model ΩAKE∩SL can be achieved by protocols in the class

AKE ∩ SL, we next show that no protocol in the class INDP can provide these strong
security guarantees.

Proposition 9 (Impossibility result for INDP). No protocol in the class INDP can
satisfy security in the model ΩAKE∩SL.

Proof. Let π be an arbitrary protocol in INDP. There exists an adversary E who wins
the W (ΩAKE∩SL) experiment against the challenger with non-negligible probability
as follows. The adversary E first reveals the long-term secret key of some user Â by
issuing the query corrupt(Â). Since E knows the values of all the variables stored in the
user memory of user Â (through the queries public-info and corrupt(Â)), E can run the
first protocol execution step on behalf of Â by executing the deterministic algorithm
Ψ on input (1k, sts, stÂ, ε), where the values of the state sts of the emulated session s
are as follows, sactor = Â, speer = B̂, srole = I, ssent = ε, srecv = ε, sstatus = active,
skey = ⊥, srand = z (with z ∈R {0, 1}k), sdata = ⊥, and sstep = 1. The algorithm Ψ
outputs a message m, an updated session state, and an updated state of the user
memory. The adversary then creates an initiator session s1 of user Â with peer B̂ via
the query create(Â, I, B̂). The latter query returns a message m1. He then creates a
responder session s2 of user B̂ via the query create(B̂,R, Â), and sends the message
m, previously obtained by executing Ψ, to session s2 via the query send(B̂, 1,m). As
a response, the adversary receives the message m2, which he sends to session s1 via a
send query. Upon receiving message m2 in session s1, Â executes Ψ(1k, sts1 , stÂ,m2)
and thereby completes the session. E now chooses the completed session s1 as the test
session, and reveals the long-term secret key of the peer of the test session, namely
user B̂, as well as the randomness of session s2. This enables him to compute the
session key of the test session by executing Ψ on input (1k, st s̃, stB̂,m1), where m1 is
the outgoing message of session s1 and the values of the session state st s̃ are as follows,
sactor = B̂, speer = Â, srole = R, ssent = ε, srecv = ε, sstatus = active, skey = ⊥, srand
is the randomness of session s2, sstep = 2, and sdata is obtained by executing the

92

5.3 Impossibility results and strong models for stateless protocols

first protocol step. E thereby emulates a matching session of user B̂. The previous
attack shows that protocol π is insecure in the ΩAKE∩SL model. Note that the test
session is fresh in ΩAKE∩SL since there is no freshness condition on a session that is an
origin-session for the test session but no partially matching session for the test session
in the definition of FΩAKE∩SL . Also, there is no matching session for the test session s1
since the message m sent by the adversary to session s2 is different, with overwhelming
probability, from the message m1 output by session s1, by Definition 37.

The notion of c-origin-session is a stronger notion than origin-session as the former
additionally requires distinct roles and agreement on the communicating users.

Definition 45 (c-origin-session). We say that a session s′ with s′status 6= ⊥ is a
c-origin-session for a session s with sstatus = accepted if sactor = s′peer ∧ speer =
s′actor ∧ srecv = s′sent ∧ srole 6= s′role.

Note that for protocols in the class INDP the last condition of Definition 44 can be
simplified. This follows from the fact that a created initiator session s of any protocol
in the class INDP completes upon receipt of a valid message m and the variable
srecv = ε is then updated with message m, i. e. srecv ← (srecv ,m). Consequently, the
point in time of receipt of the first message m in an initiator session s coincides
with the completion of session s. The same reasoning is applicable to responder
sessions. It follows from (a) the previous observation, (b) the model ΩAKE∩SL, and (c)
Proposition 9 that a strong model for analyzing protocols in the class INDP ∩ SL is
model ΩINDP∩SL defined as follows.

Definition 46 (ΩINDP∩SL). The ΩINDP∩SL model is defined by (Q,F), where Q =
QnoCR, and a session s is said to satisfy F if all of the following conditions hold:

1. no session-key(s) query has been issued,
2. for all sessions s∗ such that s∗ matches s, no session-key(s∗) query has been

issued,
3. not both queries corrupt(sactor) and randomness(s) have been issued,
4. for all sessions s′ such that s′ is a c-origin-session for session s, not both queries

corrupt(speer) and randomness(s′) have been issued, and
5. if there exists no origin-session for session s, then no corrupt(speer) query has

been issued before the completion of session s.

Remark 19. Compared to the notion of freshness in model ΩAKE∩SL, freshness of a
session s in ΩINDP∩SL requires that the adversary does not issue a corrupt query to
the peer of session s as well as a randomness query to a c-origin-session for session s.
This restriction prevents the attack described in the proof of Proposition 9.

It is not difficult to verify that protocol SIGt(NAXOS) obtained by applying a tagged
version of the signature transformation SIG from Chapter 3 to the NAXOS protocol
is secure in model ΩINDP∩SL. The outgoing message of a SIGt(NAXOS) initiator
session of user Â is of the form (X,SignÂ(0, X, B̂)) while the outgoing message of a
SIGt(NAXOS) responder session of user B̂ is of the form (Y,SignB̂(1, Y, Â)).
We next show that any protocol in the class INDP-DH is insecure in ΩINDP∩SL.

93

5 On the Limits of AKE Security with an Application to Bad Randomness

Proposition 10 (Impossibility result for INDP-DH). No one-round Diffie-Hellman
type protocol in the class INDP-DH can satisfy security in the model ΩINDP∩SL.

Proof. Let π be an arbitrary protocol in INDP-DH. There exists an adversary E
who wins the W (ΩINDP∩SL) experiment against the challenger with non-negligible
probability as follows. The adversary E first creates an initiator session s at Â
with peer B̂ via the query create(Â, I, B̂) and receives as a response the message
m = (δ,X), where X is the Diffie-Hellman exponential generated in session s and δ
denotes optional public information. E chooses a value z ∈R Zq, computes Z = gz,
and sends message m̃ = (δ′, Z) to session s. Upon receiving message m̃ in session
s, Â executes Ψ(1k, sts, stÂ, m̃). E then chooses the completed session s as the test
session and reveals the long-term secret key of user B̂ via the query corrupt(B̂). This
enables him to compute the session key of the test session by executing Ψ on input
(1k, st s̃, stB̂,m), where st s̃ is the state of the emulated matching session s̃. Note that
the query public-info returned the initial values of additional variables stored in the
user memory. This attack shows that π is insecure in ΩINDP∩SL. It is a generalized
version of the attack described by Krawczyk in [64, p. 15].

Remark 20. Any protocol π ∈ INDP-DH ∩ SL that does not contain sufficient public
information in the outgoing message is insecure in the model derived from model
ΩINDP∩SL and Proposition 10. This follows from the fact that a redirect event of
a message from a session of a different user than the test session’s peer can cause
the existence of an origin-session that is not a c-origin-session for the test session.
However, we do not distinguish between the relative strength of AKE protocols based
on public information within the outgoing messages; adding such information does
not provide additional security guarantees as it can be altered by the adversary.

From the previous remark and Proposition 10 we derive the following security
model.

Definition 47 (ΩINDP-DH∩SL). The ΩINDP-DH∩SL model is defined by (Q,F), where
Q = QnoCR and a session s is said to satisfy F if all of the following conditions hold:

1. no session-key(s) query has been issued, and
2. for all sessions s∗ such that s∗ matches s, no session-key(s∗) query has been

issued, and
3. not both queries corrupt(sactor) and randomness(s) have been issued, and
4. for all sessions s′ such that s′ is an origin-session for session s, not both queries

corrupt(speer) and randomness(s′) have been issued, and
5. if there exists no origin-session for session s, then no corrupt(speer) query has

been issued.

The model ΩINDP-DH∩SL is very similar to the eCKw model defined in Section 3.1.2.
The NAXOS protocol [68] provides an example of a protocol in the class INDP-DH∩SL
that is secure in the eCKw model (see Section 3.3.1).

94

5.4 Models capturing chosen-randomness attacks

5.4. Models capturing chosen-randomness attacks
5.4.1. Deriving models with chosen-randomness
As an immediate consequence of Theorem 5, we obtain Theorem 6, which generalizes
our impossibility results on protocol class AKE∩SL to adversaries who are in addition
given access to the query cr-create.

Theorem 6 (Impossibility result for AKE ∩ SL under chosen-randomness). Let π be
an arbitrary protocol in the class AKE ∩ SL. Let X = (QnoCR ∪ {cr-create}, F) be the
AKE security model with F being true for all sessions s and all sequences of queries.
Let s∗ denote the test session and let s′ denote a session such that s∗ is partially
matching session s′. There exist adversaries who win the security experiment W (X)
against protocol π with non-negligible probability by issuing

1. a query session-key(s∗), or
2. a query session-key(s̃), where s̃ and s∗ are matching sessions, or
3. a query corrupt(s∗actor) and a (randomness or cr-create) query to session s∗, or
4. a query corrupt(s∗peer) as well as a (randomness or cr-create) query to session s′,

or
5. a query corrupt(s∗peer) before creation of session s∗ via a (create or cr-create)

query or as long as s∗status = active and s∗recv = ε, and impersonating the peer
to the test session s∗.

The previous theorem gives rise to the security model Ω−AKE defined as follows.

Definition 48 (Ω−AKE). The Ω−AKE model is defined by (Q,F), where Q = QnoCR ∪
{cr-create}, and a session s is said to satisfy F if all of the following conditions hold:

1. no session-key(s) query has been issued,
2. for all sessions s∗ such that s∗ matches s, no session-key(s∗) query has been

issued,
3. not both queries corrupt(sactor) and (randomness(s) or cr-create(.) creating ses-

sion s) have been issued,
4. for all sessions s′ such that s is partially matching session s′, not both queries

corrupt(speer) and (randomness(s′) or cr-create(.) creating session s′) have been
issued, and

5. if there exists no origin-session for session s, then no corrupt(speer) query has
been issued before creation of session s via a (create or cr-create) query or as
long as sstatus = active and srecv = ε.

The models Ω−INDP and Ω−INDP-DH, defined below, are obtained from the models
ΩINDP∩SL and ΩINDP-DH∩SL, respectively, in a similar way as model Ω−AKE is obtained
from model ΩAKE∩SL.

Definition 49 (Ω−INDP). The Ω−INDP model is defined by (Q,F), where Q = QnoCR ∪
{cr-create}, and a session s is said to satisfy F if all of the following conditions hold:

1. no session-key(s) query has been issued,
2. for all sessions s∗ such that s∗ matches s, no session-key(s∗) query has been

issued,

95

5 On the Limits of AKE Security with an Application to Bad Randomness

3. not both queries corrupt(sactor) and (randomness(s) or cr-create(.) creating ses-
sion s) have been issued,

4. for all sessions s′ such that s′ is a c-origin-session for session s, not both queries
corrupt(speer) and (randomness(s′) or cr-create(.) creating session s′) have been
issued, and

5. if there exists no origin-session for session s, then no corrupt(speer) query has
been issued before the completion of session s.

Definition 50 (Ω−INDP-DH). The Ω−INDP-DH model is defined by (Q,F), where Q =
QnoCR∪{cr-create} and a session s is said to satisfy F if all of the following conditions
hold:

1. no session-key(s) query has been issued, and
2. for all sessions s∗ such that s∗ matches s, no session-key(s∗) query has been

issued, and
3. not both queries corrupt(sactor) and (randomness(s) or cr-create(.) creating ses-

sion s) have been issued, and
4. for all sessions s′ such that s′ is an origin-session for session s, not both queries

corrupt(speer) and (randomness(s′) or cr-create(.) creating session s′) have been
issued, and

5. if there exists no origin-session for session s, then no corrupt(speer) query has
been issued.

We show in Section 5.4.3 that security in our extended models, which additionally
capture attacks based on chosen randomness, implies security against attacks exploiting
repeated randomness failures.

5.4.2. Insecurity of stateless protocols against chosen-randomness
attacks

Even though the following proposition states that no stateless protocol is secure in
model Ω−INDP-DH, we show in Section 3.3 that stateful protocols can in fact achieve
these stronger security guarantees.

Proposition 11 (Impossibility result for AKE ∩ SL under chosen-randomness). No
protocol in the class AKE ∩ SL can satisfy security in the model Ω−INDP-DH.

Proof. Let π be an arbitrary protocol in AKE ∩ SL. There exists an adversary E
that wins the Ω−INDP-DH game against the challenger with non-negligible probability
as follows. The adversary E first completes a regular execution between two users Â
and B̂, i.e. Â and B̂ complete matching sessions s and s′, respectively. He then issues
a randomness query against the responder session s′ of user B̂. E creates another
responder session s′′ of user B̂ via the query cr-create(B̂,R, str, Â), where str denotes
the randomness that he revealed from session s′, and replays the messages from session
s to session s′′. As the randomness used in session s′′ is identical to the randomness
used in session s′ and π ∈ SL, the messages that E receives from session s′′ are the
same as the messages sent by session s′. Now, E chooses the completed session s′ as
the test session, and reveals the session key computed in session s′′ via a session-key(s′′)

96

5.4 Models capturing chosen-randomness attacks

query. As the session keys computed in sessions s′ and s′′ are the same and both
sessions are non-matching, the adversary learns the session key of the test session.
Hence, the protocol π is insecure in the Ω−INDP-DH model. A similar attack that involves
cr-create queries on both sessions s′ and s′′ is sketched in [108, p. 119].

Corollary 5. No protocol in the class AKE ∩ SL can satisfy security in either model
Ω−INDP or model Ω−AKE.
Proof. By Proposition 11, we know that no protocol in the class AKE ∩ SL can
satisfy security in the model Ω−INDP-DH. The corollary now follows from the fact
that the models Ω−INDP and Ω−AKE are both at least as strong as model Ω−INDP-DH (by
Proposition 17).

5.4.3. Repeated randomness failures
In this section we show that security in the Ω−AKE model implies security against
repeated randomness. To this end, we compare the relative strength of security
between the model Ω−AKE and a very similar model to Ω−AKE, where the adversary
is not given access to the query cr-create, but to the query reset-create. The latter
query allows the adversary to create a session that uses the same randomness as used
in a previous session of the same user. Practically, this models a flawed RNG that
produces the same value more than once.

The query reset-create creates a new session with the same randomness as used in a
previous session of the same user.

• reset-create(P̂ , r, i[, Q̂]). The query models the creation of a new session s, using
the same randomness as in session s′ = (P̂ , i), for the user P̂ . The query requires
that P̂ ∈ P, Q̂ ∈ P, r ∈ {I,R}, and that s′status 6= ⊥; otherwise, it returns ⊥.
Session variables are initialized as

(sactor , srole, ssent , srecv , sstatus, skey, srand , sstep)← (P̂ , r, ε, ε, active,⊥, s′rand , 1) .

If the optional peer identifier Q̂ is provided, the variable speer is set to Q̂.
The key exchange algorithm Ψ is executed on input (1k, sts, stP̂ , ε). The algo-
rithm returns a triple (m′, st ′s, st ′P̂). We set sts ← st ′s and stP̂ ← st ′

P̂
. The query

returns m′.
Consider the security model XAKE = (QnoCR ∪ {reset-create}, F), where a session
s = (P̂ , i) is said to satisfy F if all of the following conditions hold:

1. no session-key(s) query has been issued,
2. for all sessions s∗ such that s∗ matches s, no session-key(s∗) query has been

issued,
3. not both queries corrupt(P̂) and (randomness(s) or reset-create(.) creating session
s) have been issued,

4. for all sessions s′ such that s is partially matching session s′, not both queries
corrupt(speer) and (randomness(s′) or reset-create(.) creating session s′) have
been issued, and

5. if there exists no origin-session for session s, then no corrupt(speer) query has
been issued before creation of session s or as long as sstatus = active and
srecv = ε.

97

5 On the Limits of AKE Security with an Application to Bad Randomness

Proposition 12. Let Π = AKE. The model Ω−AKE is at least as strong as the model
XAKE with respect to Π according to Definition 17.

Proof. The first condition of Definition 36 is satisfied since matching is defined in the
same way for both models Ω−AKE and XAKE. Let π ∈ Π. To show that the second and
third condition of Definition 36 hold, we construct an adversary E′ attacking protocol
π in model Ω−AKE using an adversary E attacking π in model XAKE. Adversary E′
proceeds as follows. Whenever E issues a query create, corrupt, randomness, session-key
or test-session, adversary E′ issues the same query and forwards the answer received to
E. Whenever E issues a query reset-create(P̂ , r, i[, Q̂]) to create a new session of user
P̂ , adversary E′ first checks whether the status of session s = (P̂ , i) is different from ⊥.
If this is the case, then E′ issues the following sequence of queries: 1. randomness(P̂ , i),
and 2. cr-create(P̂ , r, srand [, Q̂]). At the end of E’s execution, i. e. after it has output
its guess bit b, E′ outputs b as well. Note that if F holds for the test session, then
the freshness condition of model Ω−AKE is also satisfied. In particular, if there exists
a partially matching session for the test session and the actors of both sessions are
the same, then there is no corrupt query on that user in case a query reset-create was
issued to create either of the two sessions. If there exists a partially matching session
for the test session and the actors of both sessions are different, then a reset-create
query on the test session only involves a query cr-create and a query randomness
on another session of the test session’s actor; issuing a corrupt query on the test
session’s peer does not render the test session un-fresh in model Ω−AKE as long as
there is no query randomness on the partially matching session. Hence, it holds that
Advπ,EW (XAKE)(k) ≤ Advπ,E

′

W (Ω−AKE)(k), where k denotes the security parameter. Since by
assumption protocol π is secure in Ω−AKE, there is a negligible function g such that
Advπ,E

′

W (Ω−AKE)(k) ≤ g(k). It follows that protocol π is secure in XAKE.

We obtain the following corollary as an immediate consequence of Proposition 12.

Corollary 6. Let Π = AKE. The model Ω−AKE is at least as strong as the model
YAKE = (QR ∪ {corrupt, session-key, reset-create}, F ′) with respect to Π according to
Definition 17, where F ′ is obtained from predicate F above by removing the randomness
query from the conditions.

Proof. Since XAKE ≤Π
Sec Ω−AKE (by Proposition 12) and YAKE ≤Π

Sec XAKE (by a similar
reduction proof as in the proof of Proposition 12), it follows that YAKE ≤Π

Sec Ω−AKE by
transitivity of Implication (3.1).

5.5. Impossibility results and strong models for stateful
protocols

We next present a generalized impossibility result and its derived model for the
broad class AKE taking into account the adversary’s ability to choose session-specific
randomness. Recall that the completion of a session occurs at the time at which the
status of the session is set to accepted.

98

5.5 Impossibility results and strong models for stateful protocols

Corollary 7 (Impossibility result for AKE). Let π be an arbitrary protocol in the
class AKE. Let X = (QnoCR ∪ {cr-create}, F) be the AKE security model with F
being true for all sessions s and all sequences of queries. Let s∗ denote the test
session and let s′ denote a session such that s∗ is partially matching session s′. There
exist adversaries who win the security experiment W (X) against protocol π with
non-negligible probability by issuing either

1. a query session-key(s∗), or
2. a query session-key(s̃), where s̃ and s∗ are matching sessions, or
3. a query corrupt(s∗actor) as well as (randomness or cr-create) queries on all sessions

s with sactor = s∗actor , where the query create or cr-create creating session s
occurred before completion of session s∗, or

4. a query corrupt(s∗peer) as well as (randomness or cr-create) queries on all sessions
s with sactor = s′actor , where the query create or cr-create creating session s
occurred before completion of session s′, or

5. a query corrupt(s∗peer) before creation of session s∗ via a query (create or cr-create)
or as long as s∗status = active and s∗recv = ε, and impersonating the peer to the
test session s∗.

Proof. Corollary 7 follows from Theorem 5 and the following observation. Given the
initial value of all the variables stored in the user memory of user P̂ returned as
response to the query public-info, the randomness used in all sessions of user P̂ that
are created before completion of the test session, and the long-term secret key of
P̂ , the adversary can emulate the protocol execution steps on behalf of user P̂ by
executing Ψ sequentially to recompute the session-specific and user-specific data from
the first session of user P̂ to the relevant session of user P̂ .

Remark 21 (On Corollary 7). Consider a protocol π ∈ AKE storing previously seen
messages to prevent replay attacks. Then, in case a session s receives a message m
sent by some session s′, the user memory of user sactor gets updated after receiving
this message. Thus, if another session s′′ of user sactor , created before s was created, is
activated via a query send with the same message m later on, then session s′′ is aborted
as it detected a previously received message (even if the session was created before
session s). Similar situations might occur if updates of the user state occurring in
later steps of the protocol execution involve the randomness of the session. Therefore,
some of the attacks in Corollary 7 require the randomness of all sessions created prior
to completion of the target session or its partially matching session.
Corollary 7 gives rise to the model ΩAKE defined as follows.

Definition 51 (ΩAKE). The model ΩAKE is defined by (Q,F), where Q = QnoCR ∪
{cr-create} and a session s is said to satisfy F if all of the following conditions hold:

1. no session-key(s) has been issued,
2. for all sessions s∗ such that s∗ matches s, no session-key(s∗) query has been

issued,
3. not all queries corrupt(sactor) as well as (randomness or cr-create) queries on

all sessions s̃ with s̃actor = sactor , where the query create or cr-create creating
session s̃ occurred before completion of session s, have been issued,

99

5 On the Limits of AKE Security with an Application to Bad Randomness

4. for all sessions s′ such that s is partially matching session s′, not all queries
corrupt(speer) as well as (randomness or cr-create) on all sessions s̃ with s̃actor =
s′actor , where the query create or cr-create creating session s̃ occurred before
completion of session s′, have been issued, and

5. if there exists no origin-session for session s, then no corrupt(speer) query has
been issued before creation of session s via a query (create or cr-create) or as
long as sstatus = active and srecv = ε.

In this work we restrict ourselves to the subclass ISM (Initial State Modification) of
the class AKE and provide strong models for analyzing protocols in this subclass. The
class ISM contains all AKE protocols that may only access and update user memory
upon creation of sessions. It contains, e. g., the CNX protocol as well as the NXPR
protocol, which we present in Section 5.6.2 We leave the analysis of protocols that
update user memory at later steps in the protocol execution as future work.
From the definition of the class ISM and from Corollary 7, we derive the following

model.

Definition 52 (ΩAKE∩ISM). The model ΩAKE∩ISM is defined by (Q,F), where Q =
QnoCR∪{cr-create} and a session s is said to satisfy F if all of the following conditions
hold:

1. no session-key(s) has been issued,
2. for all sessions s∗ such that s∗ matches s, no session-key(s∗) query has been

issued,
3. not all queries corrupt(sactor) as well as (randomness or cr-create) on all sessions

s̃ with s̃actor = sactor , where the query create or cr-create creating session s̃
occurred before or at creation of session s, have been issued,

4. for all sessions s′ such that s is partially matching session s′, not all queries
corrupt(speer) as well as (randomness or cr-create) on all sessions s̃ with s̃actor =
s′actor , where the query create or cr-create creating session s̃ occurred before or
at creation of session s′, have been issued, and

5. if there exists no origin-session for session s, then no corrupt(speer) query has
been issued before creation of session s via a query (create or cr-create) or as
long as sstatus = active and srecv = ε.

Whereas in the models that we defined in Section 5.3 and Section 5.4, the adversary
is not allowed to compromise both the randomness of the target session and the
long-term secret key of the actor of the target session, the adversary is allowed to
compromise the latter values in the ΩAKE∩ISM model and its descendants as long as the
randomness of at least one of the previous sessions of the actor of the target session
has not been compromised.
Definition 52 and Proposition 9 give rise to the model ΩINDP∩ISM defined below.

The third condition in Definition 53 prevents the adversary from both corrupting the
actor of the target session and revealing the randomness of all sessions of this user

2Note that this subclass does not contain protocols providing message replay detection as such
protocols need to access and update the list of received messages stored in the user memory upon
receipt of a message. However the subclass contains protocols such as NAXOS and CMQV, which
do not modify the user memory.

100

5.5 Impossibility results and strong models for stateful protocols

that were created prior to creation of the target session as well as the randomness of
the target session itself. As the user memory is accessed and updated upon creation
of sessions only, the responses for the previous queries would allow the adversary to
emulate the protocol execution steps for the target session. The fourth condition
specifies a similar requirement for sessions that are c-origin-sessions for the target
session.

Definition 53 (ΩINDP∩ISM). The model ΩINDP∩ISM is defined by (Q,F), where Q =
QnoCR∪{cr-create} and a session s is said to satisfy F if all of the following conditions
hold:

1. no session-key(s) has been issued,
2. for all sessions s∗ such that s∗ matches s, no session-key(s∗) query has been

issued,
3. not all queries corrupt(sactor) as well as (randomness or cr-create) on all sessions

s̃ with s̃actor = sactor , where the query create or cr-create creating session s̃
occurred before or at creation of session s, have been issued,

4. for all sessions s′ such that s′ is a c-origin-session for session s, not all queries
corrupt(speer) as well as (randomness or cr-create) on all sessions s̃ with s̃actor =
s′actor , where the query create or cr-create creating session s̃ occurred before or
at creation of session s′, have been issued, and

5. if there exists no origin-session for session s, then no corrupt(speer) query has
been issued before the completion of session s.

Definition 52 and Propositions 9 and 10 give rise to the model ΩINDP-DH∩ISM defined
as follows.

Definition 54 (ΩINDP-DH∩ISM). The model ΩINDP-DH∩ISM is defined by (Q,F), where
Q = QnoCR ∪ {cr-create} and a session s is said to satisfy F if all of the following
conditions hold:

1. no session-key(s) has been issued,
2. for all sessions s∗ such that s∗ matches s, no session-key(s∗) query has been

issued,
3. not all queries corrupt(sactor) as well as (randomness or cr-create) on all sessions

s̃ with s̃actor = sactor , where the query create or cr-create creating session s̃
occurred before or at creation of session s, have been issued,

4. for all sessions s′ such that s′ is an origin-session for session s, not all queries
corrupt(speer) as well as (randomness or cr-create) on all sessions s̃ with s̃actor =
s′actor , where the query create or cr-create creating session s̃ occurred before or
at creation of session s′, have been issued, and

5. if there exists no origin-session for session s, then no corrupt(speer) query has
been issued.

We formally study the relations between the different security models that we
established in this chapter in Section 5.7.
Remark 22 (comparison with [31]). Boyd and González Nieto [31] show that one-round
AKE protocols that do not provide message replay detection cannot achieve PFS if
the adversary can reveal session-specific randomness of the target session’s peer. The

101

5 On the Limits of AKE Security with an Application to Bad Randomness

attack on which their argument is based is disallowed in model ΩINDP∩ISM, but only if
the replayed message originates from the first created session of the target session’s
peer. In case the target session receives a message replayed from the n’th session of
its peer, where n > 1, then the adversary is allowed to compromise the randomness of
the n’th session of the peer as well as the long-term secret key of the peer after the
end of the target session as long as he does not reveal the randomness of the previous
n− 1 sessions of the peer. Our results thus reflect the impossibility result of Boyd and
González Nieto on the class of protocols ISM only if the replayed message originates
from the first session of the target session’s peer. In particular, the attack in the proof
of Theorem 5 from which we derived the fourth condition in Definition 44 can be seen
as a generalized version of Boyd and González Nieto’s attack.

5.6. Construction of strongly secure stateful protocols

In the previous sections we derived strong models capturing chosen-randomness
attacks from impossibility results on given protocol classes. We have seen that
stateless protocols fail to achieve security in these models. In this section we provide
stateful variants of the NAXOS protocol [68], which are secure against attacks based
on chosen randomness.

5.6.1. Protocol CNX

The CNX protocol (“Counter-NaXos”), shown in Figure 5.2, is a variant of the NAXOS
protocol [68] and provides an example of a protocol from the class INDP-DH \ SL,
where H1 : {0, 1}∗ → Zp and H2 : {0, 1}∗ → {0, 1}k denote two hash functions. In
contrast to the NAXOS protocol, protocol CNX additionally includes a global counter
value, which is shared across the sessions of a user, as input to the hash function H1.
We assume that each user maintains a counter l, taking values in N, initialized with
0 and incremented by one upon creation of a new session. This counter variable is
stored in the user memory. We write stP̂ .l to access the counter variable l of user P̂ .
The CNX protocol proceeds as follows.

1. Upon creation of a new initiator session s = (Â, i) with a create(Â, I, B̂) query,
user Â increments the counter variable stÂ.l ← stÂ.l + 1, sets sdata ← stÂ.l,
computes an outgoing public key X ← gH1(srand ,a,sdata), and returns X as an
outgoing message.

2. Upon creation of a new responder session s′ = (B̂, j) with a create(B̂,R, Â) query,
user B̂ increments the counter variable stB̂.l← stB̂.l + 1 and sets s′data ← stB̂.l.

3. When the responder receives message X via a send(B̂, j,X) query, he computes
an outgoing public key Y ← gH1(s′rand ,b,s

′
data) and returns Y as an outgoing mes-

sage. He computes a session key s′key ← H2(AH1(s′rand ,b,s
′
data), Xb, XH1(s′rand ,b,s

′
data),

Â, B̂) and accepts s′status ← accepted.
4. When the initiator receives message Y via a send(Â, i, Y) query, he computes

a session key skey ← H2(Y a, BH1(srand ,a,sdata), Y H1(srand ,a,sdata), Â, B̂) and accepts
sstatus ← accepted.

102

5.6 Construction of strongly secure stateful protocols

Initiator I Responder R

stÂ: a, {(P̂ , pkP̂) | P̂ ∈ P}, l stB̂: b, {(P̂ , pkP̂) | P̂ ∈ P}, l
stÂ.l← stÂ.l + 1 stB̂.l← stB̂.l + 1
sdata ← stÂ.l s′data ← stB̂.l
X ← gH1(srand ,a,sdata) X−−−−−→

Y ← gH1(s′rand ,b,s
′
data)

σ1 ← AH1(s′rand ,b,s
′
data)

σ2 ← Xb

σ3 ← XH1(s′rand ,b,s
′
data)

s′key ← H2(σ1, σ2, σ3, Â, B̂)
σ1 ← Y a Y←−−−−− s′status ← accepted
σ2 ← BH1(srand ,a,sdata)

σ3 ← Y H1(srand ,a,sdata)

skey ← H2(σ1, σ2, σ3, Â, B̂)
sstatus ← accepted

Figure 5.2.: CNX protocol

Remark 23. In the specification of the CNX protocol given in Figure 5.2, the variable
sdata stores the current value of the counter. The H1 values, which depend on the
value of the counter, are recomputed in the session key computation. In particular,
it is essential for initiator sessions to store the counter value in the variable sdata
to prevent the use of a different counter value in the session key computation due
to other activations of sessions of the same user in between creation of the session
and completion of the session. As an alternative specification of the CNX protocol,
one could consider storing the exponent H1(srand , a, stÂ.l) in the variable sdata. Then
users would not need to recompute the H1 value in the session key computation.

The following proposition states that the CNX protocol is secure in model Ω−INDP-DH.

Proposition 13. Under the Gap Diffie-Hellman assumption in the cyclic group G
of prime order p, the CNX protocol is secure in model Ω−INDP-DH, when H1, H2 are
modeled as independent random oracles.

We refer the reader to Appendix B.1 for the proof of Proposition 13.
By a straightforward adaptation of the proof of Theorem 1 via integration of

the cr-create query into the security models, we can show that protocol SIGt(CNX)
obtained by applying the tagged version of the signature transformation SIG suggested
in Section 5.3 to the CNX protocol is secure in model Ω−INDP. Similarly, we can show
that protocol SIG∗(CNX), obtained by applying the signature transformation SIG
with optional fields to the CNX protocol, is secure in model Ω−AKE.
Remark 24 (sequence numbers). In contrast to the use of sequence numbers to uniquely
identify messages, the recipient of a message during execution of the CNX protocol
does not need to store and maintain state information of each possible verifier to
detect previously used sequence numbers (see also [84, p. 399]). However, as stated

103

5 On the Limits of AKE Security with an Application to Bad Randomness

in [31], protocols using sequence numbers to order messages are secure against Boyd
and González Nieto’s replay attack [31, p. 458]. Moreover such protocols are secure
against reset-and-replay attacks. Thus, designers of protocols face a trade-off between
efficiency and security against various types of replay attacks.
Remark 25 (comparison with [108]). Yang et al. [108] argue that whenever the random-
ness of one session is identical to the randomness of another session of the same user,
the adversary can learn the session key of either of the two sessions by performing a
replay attack combined with a session-key query (as both sessions compute the same
session key, but are non-matching). While Proposition 11 confirms that this statement
holds for all protocols in the class AKE∩SL, we have shown that there exists a protocol
in AKE, namely CNX, that achieves security even under such reset-and-replay attacks
against the target session.

5.6.2. Protocol NXPR
Even though the CNX protocol is secure in model Ω−INDP-DH, it fails to achieve security
in the stronger model ΩINDP-DH∩ISM, as the following proposition shows.

Proposition 14. The CNX protocol is insecure in model ΩINDP-DH∩ISM.

Proof. The following attack shows that the CNX protocol is insecure in ΩINDP-DH∩ISM.
The adversary creates an initiator session s of user Â via the query create(Â, I, B̂)
and an initiator session of user B̂ by issuing the query create(B̂, I, Ĉ). He then
creates a responder session s′ via the query create(B̂,R, Â) and activates session
s′ by sending the message X = gx sent by session s to session s′. The adversary
then sends message Y sent by session s′ to session s. Session s accepts the key
skey = H2(Y a, BH1(srand ,a,sdata), Y H1(srand ,a,sdata), Â, B̂) as the session key, while session
s′ accepts as its key s′key = H2(AH1(s′rand ,b,s

′
data), Xb, XH1(s′rand ,b,s

′
data), Â, B̂). The com-

pleted session s is chosen as the test session. Now a randomness query to session s′
revealing the randomness of session s′ followed by a corrupt(B̂) query revealing the
long-term secret key of user B̂, allows the adversary to compute the session key of the
test session s (as he knows the counter value used in session s′). Note that the test
session is fresh in ΩINDP-DH∩ISM since the adversary did not issue the query randomness
or cr-create to the first created session of user B̂.

The NXPR protocol (“NaXos with Previous Randomness”), shown in Figure 5.3, is
a variant of the NAXOS protocol [68] and provides an example of a protocol from
the class INDP-DH ∩ ISM, where H1 : {0, 1}∗ → Zp and H2 : {0, 1}∗ → {0, 1}k denote
two hash functions. In contrast to the NAXOS protocol, protocol NXPR additionally
includes the randomness of all sessions that have been previously created as input
to the hash function H1. We assume that each user maintains a variable l ∈ {0, 1}∗
initialized with the empty string ε. We write stP̂ .l to access the variable l stored in
the user memory of user P̂ .

Proposition 15. Under the Gap Diffie-Hellman assumption in the cyclic group G of
prime order p, the NXPR protocol is secure in the ΩINDP-DH∩ISM model, when H1, H2
are modeled as independent random oracles.

104

5.7 Relations between the security models

Initiator I Responder R

stÂ: a, {(P̂ , pkP̂) | P̂ ∈ P}, l stB̂: b, {(P̂ , pkP̂) | P̂ ∈ P}, l
srand ← {0, 1}k s′rand ← {0, 1}k
sdata ← stÂ.l s′data ← stB̂.l
stÂ.l← (srand , sdata) stB̂.l← (s′rand , s

′
data)

X ← gH1(srand ,sdata ,a)

X−−−−−→
Y ← gH1(s′rand ,s

′
data ,b)

σ1 ← AH1(s′rand ,s
′
data ,b)

σ2 ← Xb

σ3 ← XH1(s′rand ,s
′
data ,b)

s′key ← H2(σ1, σ2, σ3, Â, B̂)
s′status ← accepted

Y←−−−−−

σ1 ← Y a

σ2 ← BH1(srand ,sdata ,a)

σ3 ← Y H1(srand ,sdata ,a)

skey ← H2(σ1, σ2, σ3, Â, B̂)
sstatus ← accepted

Figure 5.3.: NXPR Protocol

We refer the reader to Appendix B.2 for the proof of Proposition 15.
By a straightforward adaptation of the proof of Theorem 1 via integration of

the cr-create query into the security models, we can show that protocol SIGt(NXPR)
obtained by applying the tagged version of the signature transformation SIG suggested
in Section 5.3 to the NXPR protocol is secure in model ΩINDP∩ISM. Similarly, we can
show that protocol SIG∗(NXPR), obtained by applying the signature transformation
SIG with optional fields to the NXPR protocol, is secure in model ΩAKE∩ISM.
Remark 26 (user state comparison of NXPR to CNX). In contrast to the CNX protocol,
the NXPR protocol requires each user to store the concatenation of the randomness
generated in all his sessions in the user memory. Thus, before the n’th session, where
n > 1, of user P̂ is created, the user memory stP̂ contains its long-term secret key, the
long-term public key of all users Q̂ ∈ P, and the concatenation of n− 1 bit strings of
length k corresponding to the randomness generated in all previous sessions of user P̂ .

5.7. Relations between the security models
In this section we illustrate the relations between the different security models of
this chapter. Recall that the relation of relative strength of security between security
models has been formally defined in Section 3.1.4.

105

5 On the Limits of AKE Security with an Application to Bad Randomness

Proposition 16. Let Π be protocol class AKE.
• The model ΩINDP∩SL is stronger than the model ΩINDP-DH∩SL with respect to Π

according to Definition 17.
• The model ΩAKE∩SL is stronger than the model ΩINDP∩SL with respect to Π

according to Definition 17.
Proof. We first show that ΩINDP-DH∩SL ≤AKE

Sec ΩINDP∩SL. The proof that ΩINDP∩SL ≤AKE
Sec

ΩAKE∩SL proceeds in a very similar way. The first condition of Definition 36 is satisfied
as matching is defined in the same way for both models ΩINDP-DH∩SL and ΩINDP∩SL. To
see that the second condition of Definition 36 holds, it suffices to show that if there ex-
ists an adversary E such that the probability of event Multiple-MatchW (ΩINDP-DH∩SL)

π,E (k)
is non-negligible, then there exists an adversary E′ such that the probability of
event Multiple-MatchW (ΩINDP∩SL)

π,E (k) is non-negligible. This is straightforward. Let
π ∈ Π. To show that the third condition of Definition 36 holds, we construct an
adversary E′ attacking protocol π in model ΩINDP∩SL using an adversary E attacking
π in ΩINDP-DH∩SL. Adversary E′ proceeds as follows. Whenever E issues a query
q ∈ QnoCR∪{test-session}, adversary E′ issues the same query and forwards the answer
received to E. At the end of E’s execution, i. e., after it has output its guess bit b,
E′ outputs b as well. Note that if the freshness condition of ΩINDP-DH∩SL holds for
the test session, then by definition the freshness condition of ΩINDP∩SL also holds.
First, if there is no origin-session, then the fifth condition of the freshness condition
of model ΩINDP-DH∩SL requires that there is no corrupt query has been issued on the
peer of the test session, which implies the fifth condition of the freshness condition
of model ΩINDP∩SL. Second, if there is an origin-session s for the test session, then
it is required in model ΩINDP-DH∩SL that not both queries corrupt on the peer of the
test session and randomness on session s have been issued. Now, if session s is a
c-origin-session for the test session, then the fourth condition of the freshness definition
of model ΩINDP∩SL is satisfied. However, if session s is not a c-origin-session for the
test session, then freshness in the model ΩINDP∩SL is guaranteed as well. Even though
both of the critical queries are allowed in the model ΩINDP∩SL, they do not occur
since otherwise freshness in the model ΩINDP-DH∩SL would be violated. Hence, it holds
that Advπ,EW (X)(k) ≤ Advπ,E

′

W (X)(k), where k denotes the security parameter. Since by
assumption protocol π is secure in model ΩINDP∩SL, there is a negligible function g such
that Advπ,E

′

W (X)(k) ≤ g(k). It follows that protocol π is secure in model ΩINDP-DH∩SL.
The NAXOS protocol provides an example of a protocol that is secure in the model

ΩINDP-DH∩SL, but insecure in ΩINDP∩SL. The protocol SIGt(NAXOS) introduced in
Section 5.3 provides an example of a protocol that is secure in ΩINDP∩SL, but insecure
in ΩAKE∩SL as the following replay attack shows.

1. First the adversary establishes via a sequence of create and send queries an
initiator session s of user Â and a responder session s′ of user B̂ such that s and
s′ are matching sessions.

2. The adversary creates another initiator session s′′ of user Â with peer B̂, and
replays the message sent by session s′ to session s′′. Clearly, session s′ is a
c-origin-session for session s′′, but s′′ is not partially matching session s′.

3. He then chooses session s′′ as the test session and issues the queries corrupt(B̂)
and randomness(s′).

106

5.7 Relations between the security models

4. Since the adversary knows the user state of user B̂ and the randomness of
session s′, he can emulate the session key computation of a matching session and
compute the session key of session s′′ by executing Ψ on input (1k, sts′p , stB̂, s

′′
sent),

where sts′p denotes the session-specific memory of session s′ after its creation,
but before its completion.

Proposition 17. Let Π be protocol class AKE.
• The model Ω−INDP is stronger than the model Ω−INDP-DH with respect to Π according

to Definition 17.
• The model Ω−AKE is stronger than the model Ω−INDP with respect to Π according

to Definition 17.

Proof. The proofs that model Ω−INDP is at least as strong as the model Ω−INDP-DH and
that model Ω−AKE is at least as strong as the model Ω−INDP are similar to the proof of
Proposition 16.
The CNX protocol provides an example of a protocol that is secure in model

Ω−INDP-DH, but insecure in model Ω−INDP due to a PFS attack. The protocol SIGt(CNX)
introduced in Section 5.6 provides an example of a protocol that is secure in model
Ω−INDP, but insecure in model Ω−AKE due to the same replay attack as the one on the
protocol SIGt(NAXOS) described in the proof of Proposition 16.

Proposition 18. Let Π be protocol class AKE.
• The model Ω−INDP-DH is stronger than the model ΩINDP-DH∩SL with respect to Π

according to Definition 17.
• The model Ω−INDP is stronger than the model ΩINDP∩SL with respect to Π according

to Definition 17.
• The model Ω−AKE is stronger than the model ΩAKE∩SL with respect to Π according

to Definition 17.

Proof. The proof that model Ω−INDP-DH is at least as strong as the model ΩINDP-DH∩SL
proceeds in a similar way as the proof of Proposition 16. The same holds for the other
pairs of models.

The protocols SIG∗(NAXOS), SIGt(NAXOS), and NAXOS provide examples of pro-
tocols that are secure in the models ΩAKE∩SL, ΩINDP∩SL, and ΩINDP-DH∩SL, respectively.
As all of these protocols are stateless, they fail to provide security in our models that
give the adversary access to the query cr-create, by Proposition 11.

Proposition 19. Let Π be protocol class AKE.
• The model ΩINDP∩ISM is stronger than the model ΩINDP-DH∩ISM with respect to

Π according to Definition 17.
• The model ΩAKE∩ISM is stronger than the model ΩINDP∩ISM with respect to Π

according to Definition 17.

Proof. The proof is similar to the proof of Proposition 16.
To prove that model ΩINDP∩ISM is stronger than model ΩINDP-DH∩ISM, we need

to show, among others, that the third condition of Definition 36 holds. Thus, we

107

5 On the Limits of AKE Security with an Application to Bad Randomness

construct an adversary E′ attacking protocol π in model ΩINDP∩ISM using an adversary
E attacking π in model ΩINDP-DH∩ISM, where π ∈ AKE. Whenever E issues a query
q ∈ QnoCR ∪ {cr-create, test-session}, adversary E′ issues the same query and forwards
the answer received to E. Note that if the freshness condition of ΩINDP-DH∩ISM holds
for the test session, then by definition the freshness condition of ΩINDP∩ISM also holds.
First, if there is no origin-session, then the fifth condition of the freshness condition
of model ΩINDP-DH∩ISM requires that there is no corrupt query has been issued on the
peer of the test session, which implies Condition 5 of the freshness condition of model
ΩINDP∩ISM. The case where there is an origin-session for the test session is treated is the
same way as in the proof of Proposition 16. The proof that ΩINDP∩ISM ≤AKE

Sec ΩAKE∩ISM
proceeds in a very similar way.
The NXPR protocol presented in Section 5.6.2 provides an example of a protocol

that is secure in the model ΩINDP-DH∩ISM, but insecure in ΩINDP∩ISM due to a PFS
attack. The protocol SIGt(NXPR) introduced in Section 5.6.2 provides an example
of a protocol that is secure in model ΩINDP∩ISM, but insecure in model ΩAKE∩ISM due
to the same replay attack as the one on the protocol SIGt(NAXOS) described in the
proof of Proposition 16.

Proposition 20. Let Π be protocol class AKE.
• The model ΩINDP-DH∩ISM is stronger than the model Ω−INDP-DH with respect to Π

according to Definition 17.
• The model ΩINDP∩ISM is stronger than the model Ω−INDP with respect to Π according

to Definition 17.
• The model ΩAKE∩ISM is stronger than the model Ω−AKE with respect to Π according

to Definition 17.

Proof. The proof that model ΩINDP-DH∩ISM is at least as strong as the model Ω−INDP-DH
proceeds in a similar way as the proof of Proposition 16. Among others, we need
to show that the third condition of Definition 36 holds. Thus, we construct an
adversary E′ attacking protocol π in model ΩINDP-DH∩ISM using an adversary E
attacking π in model Ω−INDP-DH, where π ∈ AKE. Whenever E issues a query q ∈
QnoCR ∪ {cr-create, test-session}, adversary E′ issues the same query and forwards the
answer received to E. Note that if the freshness condition of Ω−INDP-DH is satisfied
for the test session s, then the freshness condition of ΩINDP-DH∩ISM is also satisfied.
The third condition of freshness in model Ω−INDP-DH requires that not both queries
corrupt(sactor) and (randomness(s) or cr-create(s)) have been issued, which implies
Conditions 3 of freshness in model ΩINDP-DH∩ISM. The same argument applies to the
fourth condition of the freshness definition.
The proofs that model ΩINDP∩ISM is at least as strong as model Ω−INDP and that

model ΩAKE∩ISM is at least as strong as model Ω−AKE are similar to the proof of the
previous statement.
The CNX protocol provides an example of a protocol that is secure in model

Ω−INDP-DH, but insecure in model ΩINDP-DH∩ISM (see Proposition 14). The protocols
SIGt(CNX) and SIG∗(CNX) from Section 5.6.1 are secure in the models Ω−INDP and
Ω−AKE, respectively, but insecure in the corresponding lifted models ΩINDP∩ISM and

108

5.7 Relations between the security models

ΩAKE∩ISM due to a similar attack as in the proof of Proposition 14.

5.7.1. Protocol-security hierarchy

In Figure 5.4 we show the protocol-security hierarchy [10] for AKE security of the
protocols developed in this chapter with respect to security models of this chapter.
Each node in Figure 5.4 lists a protocol and the security model in which the protocol
is secure. Arrows indicate stronger protocols, i. e., the protocol at the end of an arrow
is not only secure in the same models as the protocol at the start of that arrow, but
also in a stronger model, listed below the protocol name. Further, if there is an arrow
between two nodes, then the protocol at the start of the arrow is insecure in the model
indicated in the node at the end of the arrow. Thus, the protocol at the top of the
hierarchy is the only one that is secure in all models in the figure. We discuss below
the protocols of the hierarchy in Figure 5.4.

NAXOS
ΩINDP-DH∩SL

SIGt(NAXOS)
ΩINDP∩SL

SIG∗(NAXOS)
ΩAKE∩SL

CNX
Ω−INDP-DH

SIGt(CNX)
Ω−INDP

SIG∗(CNX)
Ω−AKE

NXPR
ΩINDP-DH∩ISM

SIGt(NXPR)
ΩINDP∩ISM

SIG∗(NXPR)
ΩAKE∩ISM

SL
Protocols in this class
yield identical keys for
different sessions if the
RNG is compromised
or fails.

INDP
Protocols in this class
can provide PFS, but
cannot provide recent

aliveness for either user.

INDP-DH
Protocols in this class

can at best provide
weak-PFS and cannot
provide any message
origin authentication.

Figure 5.4.: Annotated protocol-security hierarchy

The rounded rectangles in Figure 5.4 identify protocol classes. For each class, we
identify the security guarantees that cannot be achieved by any of its members. For
example, because NAXOS is a member of INDP-DH ∩ SL, it cannot provide PFS
nor message origin authentication. Additionally, NAXOS is insecure if the RNG is
compromised or fails (see Proposition 11). The protocols in the figure that belong
to the class AKE \ SL are secure even against attacks based on bad randomness such
as reset-and-replay attacks. In contrast to the protocols CNX, SIGt(CNX), and
SIG∗(CNX), the protocols NXPR, SIGt(NXPR), and SIG∗(NXPR), achieve security
even under compromise of the randomness of the target session and the long-term
secret key of the actor of that session as long as the randomness of at least one of the

109

5 On the Limits of AKE Security with an Application to Bad Randomness

previous sessions of the same user has not been compromised.
The protocols in the class INDP can provide PFS, but cannot provide recent aliveness.

Recent aliveness means that, after completion of a session with a certain peer, the
user executing the session has a guarantee that its peer has been alive during the
execution of the protocol [63]. For example, the protocol SIGt(NAXOS) provides
PFS as it is secure in the model ΩINDP∩SL, but it does not provide recent aliveness,
because the messages of initiator and responder can be generated independently of
each other. In contrast, the protocols SIG∗(NAXOS), SIG∗(CNX), and SIG∗(NXPR)
provide recent aliveness to the initiator in the models ΩAKE∩SL, Ω−AKE, and ΩAKE∩ISM,
respectively. The responder not only signs his own Diffie-Hellman exponential but
also the exponential that he received from the initiator. Thus, the latter protocols
also achieve security against replay attacks to the initiator. Recent aliveness for both
initiator and responder can be achieved in three-message protocols, e. g., by adding a
third message that contains a signature on the Diffie-Hellman exponential that the
initiator received from his peer.

5.8. Summary
In this chapter we clarified the limits of AKE security by giving formal impossibility
results on the security of protocols that belong to different classes and deriving security
models for the respective protocol classes from these impossibility results. If a protocol
designer aims to develop a protocol in a certain class, our results demonstrate which
strong guarantees can be achieved by such protocols. Conversely, if a certain security
guarantee is required, our results indicate in which protocol classes it can be achieved.
For example, PFS under weak security assumptions on the RNG can be achieved in
the protocol class AKE \ (SL ∪ INDP-DH).

We provided new variants of the NAXOS protocol, which are secure against attacks
based on chosen randomness; in these protocol variants, the state of a user’s memory
is modified during execution of the protocol. The CNX protocol is secure in the model
Ω−INDP-DH. The NXPR protocol is secure in the stronger model ΩINDP-DH∩ISM. Our
results show that it is possible to construct secure AKE protocols under significantly
weaker assumptions on the RNG than previously thought possible.

110

6. Related Work

In this chapter we discuss further related work relevant for this thesis. In Section 6.1
we give an overview of various other formal security models to evaluate the security of
AKE protocols. Then, in Section 6.2, we present additional related work for Chapter 5.

6.1. Security protocol analysis

In this section we first survey various computational security models. We then discuss
how adversary capabilities and security properties captured in the computational
setting have been dealt with in the symbolic setting.

Computational AKE security models

Bellare and Rogaway [17] introduced the first game-based security model whereby an
adversary is modeled as a probabilistic polynomial-time Turing machine that controls
all communication and interacts with users through queries. Their definition of
security requires that (a) two users who complete matching sessions (i. e., the intended
communication partners) compute the same session key and that (b) the adversary
cannot learn the session key with more than negligible probability. Later variants of
the original Bellare-Rogaway model were proposed by Bellare and Rogaway [18], and
Bellare et al. [15]. The three models mainly differ in the definition of partnership of
protocol sessions. Further, the model by Bellare and Rogaway [18] provides a security
definition for secrecy of session keys, whereas the other two models provide a definition
for entity authentication as well.
Building on prior work, Canetti and Krawczyk [34] developed a more complex

security model, called unauthenticated-links adversarial model (UM), which gives
the adversary additional powers such as access to a session-state query revealing the
internal state of a session. The corruption query in the UM model not only reveals
a user’s long-term secret keys, but also the internal state and the session key of all
activated sessions of the user. To model perfect forward secrecy, the UM model
includes the query session expiration whose effect it is to delete the session key of a
specific session.
To analyze the security of the HMQV protocol, Krawczyk [65] defined distinct

security models providing different security guarantees. Based on a variant of the UM
model [34] that does not incorporate the query session expiration, Krawczyk defined
three related models that capture key compromise impersonation attacks, weak perfect
forward secrecy, and leakage of session-specific random values, respectively. It is an
open problem whether the HMQV protocol can be proven secure in a single model
that integrates all of the guarantees provided by these individual models.

111

6 Related Work

LaMacchia et al. [68] adapted the Canetti-Krawczyk model [34] to capture key
compromise impersonation (KCI) attacks and the leakage of various combinations of
long-term secret keys and session-specific random values in a single security model.
Their model is known as the eCK security model. We refer the reader to Section 1.2
for further details on the eCK model.

In Chapter 3 we defined the eCKw model using the concept of origin-session, which
relaxes the notion of matching session. The eCKw model captures a slightly stronger
form of weak perfect forward secrecy than the eCK model. We then integrated
perfect forward secrecy into the eCKw model, which gave rise to the stronger model
eCK-PFS. In particular, security in the eCK-PFS model implies perfect forward
secrecy under actor compromise and randomness reveal. In Chapter 5 we derived
even stronger models than eCK-PFS, in terms of authentication guarantees provided,
from impossibility results on the security of protocols belonging to the classes INDP
and AKE. We then extended our models to capture chosen-randomness attacks, in
addition to randomness reveal; security in the resulting models implies security under
repeated randomness.

The relations between some of the previous security models have been investigated,
e. g., by Choo et al. [37], Cremers [41], and Menezes and Ustaoglu [82]. They showed
that several security models are in fact formally incomparable due to sometimes subtle
differences between them, not only in the capabilities of the adversary, but also in the
restrictions posed on the target session, and the notions for relating sessions of the
protocol. As these differences have a considerable impact on the guarantees provided
by the models, we incrementally specified security models to objectively measure the
security guarantees provided by our protocols and transformations.

Symbolic AKE security models

In the symbolic setting, the capabilities of an adversary attacking the protocol are
limited since cryptographic primitives are modelled as black boxes; e. g., a ciphertext
does not reveal any information about the plaintext unless the attacker knows the
corresponding secret decryption key. Security guarantees are obtained by showing the
absence of attacks for every possible execution scenario of the protocol.

Basin and Cremers [11] translated existing computational AKE security models into
a symbolic framework. This framework separates the adversary’s capabilities modelled
by adversary rules, and the security property such as secrecy of the session key. For
example, the rule reflecting perfect forward secrecy allows the corruption of all user’s
long-term secret keys after the target session ends. They extended the symbolic
protocol analysis tool Scyther [39] with their adversary models, which resulted in the
first tool that allows the automatic verification of protocols supporting, e. g., perfect
forward secrecy, key compromise impersonation, and compromise of session-specific
information [11]. Several new attacks on protocols were found and attacks reported in
the cryptographic literature were rediscovered automatically [11]. There exist however
attacks such as small-subgroup attacks or attacks based on adversarial key registration
that cannot be captured in their symbolic framework. In Chapter 4, we analyze the
security of AKE protocols in the computational setting in the presence of adversaries
who can register arbitrary public keys with a certification authority.

112

6.2 Stateless and stateful protocols

In [10], Basin and Cremers introduced the concept of protocol-security hierarchy.
Such a hierarchy classifies protocols according to their relative strength against
adversaries with different capabilities. The protocol-security hierarchies generated
with an extension of the tool developed in [11] revealed several interesting insights
on the design of protocols and the security guarantees they provide. For instance,
as observed in [10, p. 14], it seems that protocol TS3 satisfies a stronger forward
secrecy property than protocol TS2, although this is not stated or proven in [56]. The
security-strengthening transformations on protocols that we developed in this thesis
naturally lead to protocol-security hierarchies in the computational setting (see, e. g.,
Chapter 5).

Schmidt et al. [94] developed the Tamarin prover for automated protocol verification,
which has been used to automatically verify several AKE protocols in models that
integrate various security properties in a flexible way. In contrast to the Scyther tool,
Tamarin supports Diffie-Hellman exponentiation and has a more expressive property
specification language. Users can specify their own security models without modifying
the source code of Tamarin. However, as multiplication in the DH group as well as
addition in the DH exponents are not modelled, some modern AKE protocols such as
HMQV, CMQV, or π1 from Chapter 3 cannot be analyzed using their approach. In
contrast, we showed in Chapter 3 that the π1 protocol achieves perfect forward secrecy
under actor compromise and randomness reveal and demonstrated in Chapter 4 that
a variant of the CMQV protocol is secure even in the presence of an adversary who
can register arbitrary public keys.

Even though individual security protocols can be verified in the symbolic setting, it
is unclear whether symbolic proofs of generic transformations that can be applied to
a class of protocols can be established.

6.2. Stateless and stateful protocols

Most AKE protocols (e. g., HMQV [64], NAXOS [68], CMQV [104]) are stateless,
i.e., they only modify session-specific memory, whereas the memory that is shared
among sessions is invariant under protocol execution. Furthermore, the security of
stateful AKE protocols, which update the memory that is shared among sessions
during execution of the protocol, has not been considered in the context of randomness
failures.

A few stateful protocols have been suggested. For example, Blake-Wilson et al. [20]
propose to modify their Protocol 2 by concatenating the secret value that is used as
the secret material to derive the session key with the value of a counter. We denote
this new protocol by Protocol 2C. Instead of running the protocol each time a session
key is required, a new session key is obtained by simply incrementing the counter and
computing a new hash value [20]. The idea of using a counter variable is presented
in the context of special applications for which it might not be desirable to run the
protocol whenever a new session key has to be established. However, no security proof
of Protocol 2C has been given. In Section 5.6.1 we proved the security of the CNX
protocol, a stateful variant of the NAXOS protocol. The CNX protocol includes a
global counter value, which is shared across the sessions of a user, as input to the

113

6 Related Work

hash function H1 used in the computation of the outgoing messages.
Stateful protocols preventing replay and interleaving attacks include protocols using

timestamps such as Protocol-P1A [74], and key establishment protocols specified in
the standard ISO/IEC 11770-2 [48]. These protocols can be considered stateful as
each user needs to maintain a local clock in his memory. In contrast to protocols
relying on a challenge-response mechanism via fresh random values, which only modify
session-specific memory, protocols using timestamps are usually more efficient in terms
of the round complexity of the protocol. However, the difficulty in modelling protocols
with timestamps consists in keeping the local clocks of users synchronized as well as
protected from adversarial modification. Barbosa and Farshim [6] extend the Bellare-
Rogaway model and the UM model to analyze protocols using timestamps. In their
extension, each user keeps a local clock variable initialized at zero and accessible to all
sessions of the user. The adversary can increment the local clock via a special query.
To capture synchronization of clocks, they introduce the notion of δ-synchonisation,
which is satisfied if the adversary does not cause the local clocks of two distinct users
to differ by more than δ. In [96], Schwenk defines a security model in which each user
has a local time counter in his memory; this counter can be accessed and increased by
all protocol sessions. When sending a message within a session, the user first requests
a new timestamp from a special user T keeping a global time counter and compares
it to its local counter before continuing the protocol execution. When receiving a
message, the user compares the timestamp within the message to its local counter;
in case the timestamp is greater than the local counter value, the latter is updated
by setting it to the timestamp, otherwise the session is aborted [96]. In contrast to
the work of Barbosa and Farshim [6], the adversary is not given access to a special
query for incrementing local clocks. The models that we developed in this thesis do
not take into consideration the notion of time as we do not analyze the security of
protocols using timestamps.

The notions of stateless and stateful protocols have been introduced in different other
contexts than AKE. In [107], van Deurson et al. provide a formal model for reasoning
about stateful radio frequency identification (RFID) protocols in the symbolic setting.
Whereas stateless protocols are modelled as protocols that do not share state between
protocol executions, stateful protocols may use information from earlier protocol runs
and update this information during execution of the protocol. Arapinis et al. [4]
propose the process calculus StatVerif that allows the modelling of global state to
analyze protocols updating the global state. Global state is not local to a session but
is shared among different sessions of the protocol. Meier et al. [79] analyze protocols
with mutable global state such as the security device and the contract signing protocol
from [4] using the Tamarin tool [94]. The Tamarin analysis of these protocols subsumes
and extends the analysis results from Arapinis et al. [4]. To the best of our knowledge,
we are the first to analyze the security of stateful authenticated key exchange protocols
that do not rely on timestamps. In particular, we show that stateful authenticated
key exchange protocols can achieve security in the presence of adversaries who are
able to perform chosen-randomness attacks even against the target session.

114

7. Conclusions

7.1. Summary
In this thesis we developed strong AKE security models which capture relevant attacks
that lie outside the scope of current models. Additionally, we provided security-
strengthening methods to achieve security in the respective models.
We analyzed for the first time the security of two-message AKE protocols in a

model that captures PFS as well as key compromise impersonation attacks and
the leakage of session-specific randomness. We have shown that it is possible for
two-message protocols to achieve security in our eCK-PFS model by first providing
a generic security-strengthening protocol transformation to achieve PFS, and then
applying our transformation to concrete protocols that are secure in weaker models
than eCK-PFS. Our transformation introduces no new message dependencies and
does not increase the round complexity of the protocol it is applied on. Our generic
approach gave rise to a new protocol that is secure in the eCK-PFS model.
Unlike current security models which do not explicitly model the certification

authority (CA) and its behavior, we developed a framework that allows for explicit
modelling of the certification process of public keys. Our framework, called the ASICS
(AKE Security Incorporating Certification Systems) framework, can be instantiated
to produce extensions of current security models that capture dynamic adversarial
registration of arbitrary bitstrings as public keys. We provided a generic approach
to achieve strong security guarantees against adversaries who can register arbitrary
public keys with a CA that does not perform any checks. In particular, we show how
to transform Diffie-Hellman type AKE protocols that are secure in a model where only
honest key registration is allowed into protocols that are secure even when adversaries
can register arbitrary valid or invalid public keys. Our results not only present a
formal foundation for the importance of public key validation, but they also provide
evidence that users can defend themselves against CAs that do not perform proper
checks.

While the first part of this thesis provides stronger security guarantees than found
in the state-of-the-art via extensions of current models, the second part of this thesis
explores the limits of AKE security. We derived strong AKE security models from
impossibility results on the security of protocols belonging to distinct protocol classes.
Our results reveal that different security guarantees can be obtained from protocols
belonging to different classes. In particular, we considered AKE security in the
presence of active adversaries who can perform chosen-randomness attacks, whereby
they control the randomness used in protocol sessions. While stateless protocols fail to
achieve security against chosen-randomness attacks, we constructed stateful variants of
the NAXOS protocol, which provide security against attacks based on this worst case
randomness failure. Our new stateful protocols allow us to weaken the assumptions

115

7 Conclusions

made on the security of the RNG used to generate session-specific randomness.

7.2. Future work

In this section we describe different topics of interest for future work.

Deniability. In Chapter 3 we have provided a signature-based transformation to
achieve PFS in two-message protocols. Applying this transformation on a concrete
protocol results in a protocol for which full deniability is lost. Full deniability [90]
allows a party to deny having been involved in a given run of the protocol. As a
consequence, a recipient cannot convince a judge that the messages it received during
a given execution were sent by the accused sender. At first glance it seems that the use
of signatures has significant consequences on the level of deniability of the protocols
resulting from our transformation [42]. However, various weaker forms of deniability
are achievable depending on the information that is signed. For example, if a party Â
only signs its Diffie-Hellman exponential X, then the recipient can convince the judge
that party Â signed message X at some point in time, but there is no evidence of Â’s
intended peer or of the point in time at which the message was signed [42].
Several research issues arise in this context. First, we could formalize various

degrees of deniability for AKE protocols in order to develop a hierarchy of deniability
properties. This would enable us to classify protocols according to their deniability
feature. Second, we could develop a library of deniability-enhancing transformations
on AKE protocols, and investigate the potential trade-offs between confidentiality,
authentication, and deniability for AKE protocols. Third, we could investigate
alternative methods to achieve eCK-PFS security while guaranteeing better deniability
features. For example, it seems that replacing the signature of the responder by a
MAC using a key that is derived from the responder’s secret provides higher deniability
for the responder; it is more difficult to relate this MAC to a specific party unless both
long-term and session-specific secrets are disclosed. In addition, the resulting protocol
provides unilateral key confirmation from the responder to the initiator. That is, if
the MAC is valid, then the initiator is assured that its peer has derived the same
secret value, and that its peer has been alive during the protocol execution [8].

CA compromise. The ASICS framework that we developed in Chapter 4 does not
allow the adversary to corrupt the CA (i. e., to learn its secret key) or to issue
fraudulent certificates. Turner et al. [102] identity four different attack scenarios on
CA operations. While their first attack scenario, namely impersonation during the
key registration phase, is captured in our framework, the other three attack scenarios
resulting in the issuance of fraudulent certificates cannot be captured yet. It would
therefore be worthwhile to incorporate the adversarial ability of corrupting the CA
and issuing rogue certificates into our framework. Further, we would like to analyze
the security of AKE protocols under these circumstances, and to provide appropriate
countermeasures to repair vulnerable protocols. In particular, we could prove our
conjecture that AKE protocols satisfy CA forward secrecy. This property has been
introduced by Boldyreva et al. [24] in the context of certification and PKI for public

116

7.2 Future work

key encryption and signatures schemes. In the context of AKE, CA forward secrecy
guarantees secrecy of session keys even if the adversary later compromises the CA’s
secret key.

Generalizing the key registration phase. In Chapter 4 we only considered non-
interactive verification procedures (i. e., two-message registration protocols) between
the user and the CA. As future work we envision to generalize our ASICS framework to
allow for interactive verification procedures, reflecting n-message registration protocols
(with n > 2), between the user and the CA. This generalized framework would allow
us to consider, e. g., challenge-response registration protocols, where the user signs
messages received from the CA. However, in this more complex setting, we suspect
that interleavings between the registration protocol and adversarial queries that model
the corruption of a user’s secrets give rise to new attacks that affect the security of
the registration protocol and, consequently, the security of the AKE protocol. Before
dealing with these complex scenarios, we could choose to model the registration
protocol as atomic in the sense that this protocol is not interleaved with corruption
queries.

Session state reveal. The randomness query in our security models only reveals the
randomness used in a particular session, but not the results of intermediate computa-
tions done by a user as part of a session. It may however be possible that the adversary
not only obtains the randomness, but also other inputs (excluding the user’s long-term
secret key) as well as results of intermediate protocol computations [30]. In practice,
such a scenario occurs when the long-term secret key of the user resides in secure
memory (e. g., in a HSM), whereas protocol computations are done in unprotected
memory. It would therefore be interesting to define models that incorporate a session
state reveal query, similar to the query session-state in the CK model, which returns
the internal state information associated with a session. The resulting models would
allow us to capture the attacks on the NAXOS protocol pointed out by Cremers [40]
as well as the authentication flaw in the SIGMA protocol exposed by Mao and Pater-
son [75]. In addition, we could develop countermeasures to these vulnerabilities and
design new protocols that are secure in models that integrate attacks based on session
state reveal.

Reset attacks. In Chapter 5 we defined security models that capture attacks based
on chosen-randomness. In particular, security in these models implies security against
repeated randomness failures as well as security against reset-and-replay attacks in
which the adversary first sets the randomness of a session to the same randomness
as used in a previous session of the same user and then replays messages to the
session so that both sessions compute the same session key without being intended
communication partners. We constructed stateful protocols that achieve security
against chosen-randomness attacks. Thus, our protocols are secure even if a flawed
RNG that produces the same value more than once is used to generate session-specific
randomness. However, e. g., our CNX protocol is insecure in the presence of adversaries
who can reset the value of the global counter stored in the user memory. It would

117

7 Conclusions

therefore be worthwhile to define models that incorporate a reset query that not only
resets the randomness of a session to the same randomness as used in a previous
session, but also resets the state of the user memory to a prior state, and to investigate
countermeasures to these reset attacks.

7.3. Final remarks
To conclude this thesis, we present our vision on AKE protocol design and discuss the
impact of our results.

A major part of this thesis was devoted to the development of new security models
that capture relevant attacks that fall outside the scope of current models and to the
investigation of countermeasures to these attacks. Instead of developing an ultimate
security model and trying to construct protocols secure in this model, we analyzed the
different types of attack in separate frameworks. We consider our approach a major step
towards our long-term vision on AKE protocol design: Given a set of desired security
properties, a secure base protocol, and a library of security-strengthening methods,
protocol designers should be able to construct protocols by applying these methods
on the base protocol until the desired security guarantees are achieved. However,
we do not expect it to be possible to build protocols that are secure in an arbitrary
security model starting from a secure base protocol via generic security-strengthening
transformations only.
Our work has an impact on the design of AKE protocols as well as on the un-

derstanding of the security mechanisms that are employed in these protocols. First,
our generic security-strengthening transformations are useful to protocol designers
to build their protocols in an incremental way, which simplifies the proof process of
the protocols. Second, our impossibility results show the impossibility of achieving
certain security guarantees in given protocol classes. If specific security guarantees are
required, then these results reveal the protocol class to be considered. Conversely, if a
protocol designer aims to construct a protocol in a given class, then the associated
model that we derived from our impossibility results reflects the security guarantees
that can be achieved by such a protocol. Third, the security-strengthening methods
that we used to counter attacks based on chosen randomness allow for the development
of a range of new stateful protocols that are secure even under bad session-specific
randomness.

As authenticated key exchange protocols are central building blocks of many impor-
tant Internet applications, we hope that the research community as well as industry
will use and build on our work to develop stronger protocols and applications.

118

Appendix

119

A. Analysis of CMQV’

Let eCK′ = (M2, Q′, F ′) be the ASICS model where Q′ = Q ∪ {pkregister} and F ′

is defined as F with the additional requirement that no pkregister(spcert.pk, spcert.id)
query has been issued.

Lemma 2. Let eCK and eCK′ be as above. CMQV’ has strong partnering in the
ASICSeCK′ experiment under the assumption that H is a random oracle.

Proof. Suppose otherwise. Namely, suppose there exists two sessions s and s′ of CMQV’
that hold the same session key but are not M2-matching. Since the session key in
CMQV’ is derived by applying a random oracle, except with negligible probability,
the input to the random oracle in both sessions must be the same. Since they are not
M2 matching, either sacert.id 6= s′pcert.id, or sacert.pk 6= s′pcert.pk, or spcert.id 6= s′acert.id,
or spcert.pk 6= s′acert.pk, or ssent 6= s′rcvd, or srcvd 6= s′sent, or srole = s′role.

First suppose srole 6= s′role. Then either the public keys, identifiers, or transcripts of
the two sessions do not correspond. But these are all inputs to the random oracle, so
except with negligible probability the outputs of the random oracle will be different,
contradicting that the two sessions hold the same session key.
Now suppose srole = s′role. Except with negligible probability, two distinct honest

sessions will have srand 6= s′rand, and hence ssent 6= s′sent. But since both s and s′ think
of themselves as the initiator, they will each put their own sent ephemeral public key
in the second component of the call to H, and these values are different, so except with
negligible probability the outputs of the random oracle will be different, contradicting
that the two sessions hold the same key.

Let (G, g, q) be as in Definition 30. Let φ ⊆ (G × G) × G be the Diffie–Hellman
relation on G = 〈g〉. In particular, (ga, gb) is related under φ to gc if and only if ab ≡ c
mod q.

Lemma 3. The cNR-eCK security of the variant of CMQV’ in which the session
string is output as the session key is polynomial-time reducible to the computational
problem of the Diffie–Hellman relation φ, under the assumption that H1 and H2 are
random oracles.

The basic idea of the proof is as follows.
• If the adversary happens to figure out a long-term secret key without issuing a

corrupt query (event E), it must ask that value to a random oracle H1, and we
can immediately use that value to solve the CDH problem by having embedded
one of the CDH challenge values in that public key.

• If the adversary is passive in the test session (event E ∧M) we can embed the
CDH challenge values U, V as the ephemeral public keys X and Y of the test
session. The adversary’s view can be simulated perfectly unless the adversary

121

A Analysis of CMQV’

asks either (x̃, a) or (ỹ, b) as a query for H1. But the freshness condition prevents
the adversary from finding both elements of either pair. Therefore the adversary
cannot do better than guess the session string unless it can compute σ. Here
the CDH of U and V can be extracted from σ.

• If the adversary is active in the test session (event E ∧M) we can embed the
CDH challenge values in the long-term key of the partner of the test session
and the ephemeral public key of the session. As before the simulation is perfect
unless the adversary asks (x̃, a) as a query for H1. Note that, since the adversary
is active, the adversary cannot change or corrupt the secret long-term key of
the peer. This time the value of σ is similar to a signature forgery and we can
apply the Forking Lemma [14,89] to extract the CDH of U and V .

Proof. Recall that cNR-eCK security means security in an ASICS model that omits
the session-key query, so the allowed queries are QN ∪ {corrupt, randomness}. The
freshness condition remains unchanged.
Recall further that the goal of the adversary is to recover the session string; let S

be the event that an algorithmM computes the session string. The security proof
largely follows the original proof of Ustaoglu that CMQV is eCK-secure, but can be
simplified somewhat as the queries in the cNR-eCK game are restricted compared to
full eCK security.
Consider the following two complementary events:
• E. There exists a certificate C ′ (created using hregister) such thatM, during its

execution, queries H1(∗, b) (where C ′.pk = gb) before issuing any corrupt(C ′.pk)
query (if it issues one at all).

• E. During its execution, for every certificate C ′ (created using hregister) for
whichM queries H1(∗, b) (where C ′.pk = gb), it issued a corrupt(C ′.pk) query
before the H1(∗, b) query.

Since the events are complementary, ifM succeeds in computing the session string, it
succeeded either when E occurred or when E occurred.
We will see how, when each event occurs, the required polynomial-time reduction

exists.

E. Suppose event E occurs andM succeeds in computing the session string.
Here, the simulator S guesses one public key pk∗ at random and assigns pk∗ ← V ,

where (U, V) is the Diffie–Hellman challenge. All other public keys are generated
according to the protocol specification.
For all sessions and queries where the session actor is not using pk∗, S follows the

protocol specification exactly.
For sessions where the session actor is using pk∗, S responds to queries as follows:
• hregister(pk∗, P̂): S outputs a certificate as normal.
• corrupt(pk∗): S aborts.
• randomness(s = (C, i)) where C.pk = pk∗: Return srand.

For sessions where the session actor is using pk∗ and is the initiator, S responds to
queries as follows:

• create(s = (C, i), I, C ′) where C.pk = pk∗: S selects x ∈R Zq, computes X ← gx,
and responds with X. Note that srand is not used in the calculation.

122

• send(s = (C, i),M) where sacert.pk = pk∗ and srole = I: S does not need to
simulate anything here, since there is not outgoing message required, and since
the only variable updated is the session string ss but no session-key reveal query
is allowed.

For sessions where the session actor is using pk∗ and is the responder, S responds to
queries as follows:

• create(s = (C, i),R, C ′) where C.pk = pk∗: no response required.
• send(s = (C, i),M) where sacert.pk = pk∗ and srole = R: S selects y ∈R Zq,

computes Y ← gy, and responds with Y . Note that srand is not used in the
calculation.

S responds to H2 queries as normal. S responds to H1(∗, b) queries as normal for all
b such that gb 6= pk∗. WhenM queries H1(∗, b) where gb = pk∗ = V , S outputs the
solution to the Diffie–Hellman challenge (U, V) as U b.
Note that S’s simulation is perfect up until an abort event from the corrupt query

occurs. Given that event E occurs, there exists some public key pk = gb for which
the query H1(∗, b) occurs before any corrupt(pk) query occurs. With probability at
least 1/nkgen, where nkgen is the number of kgen queries made byM, this condition
holds for pk∗. When S guesses correctly, M will indeed query H1(∗, b) before any
corrupt(pk∗) query, and thus S will solve the computational Diffie–Hellman problem.
Thus, when event E occurs, there exists a polynomial-time reduction from a

cNR-eCK adversary for the session string variant of CMQV’ to the computational
Diffie–Hellman problem under the assumption that H1 is a random oracle, with a
tightness factor of nkgen.

E. We divide this event into two complementary cases:
• M . The session s for which the adversary output the session string has an

M2-matching session s′.
• M . The session s for which the adversary output the session string does not

have an M2-matching session.
When E occurs, either M or M must also occur.

E ∧M . Suppose event E occurs and there is an M2-matching session s′ for the target
session s.

Here, the simulator guesses two sessions s and s′; assume without loss of generality
that srole = I and s′role = R. S responds to all kgen, hregister, corrupt, and randomness
queries as specified by the protocol. For all sessions other than s and s′, S responds
to create and send as specified by the protocol. For s and s′, S responds to create and
send as follows:

• create(s = (C, i), I, C ′): Return X ← U , where (U, V) is the Diffie–Hellman
challenge. Note that srand is not used.

• create(s′ = (C ′, i),R, C): No response required.
• send(s′,M): Return Y ← V , where (U, V) is the Diffie–Hellman challenge. Note

that s′rand is not used.
S responds to H2 queries as normal. S responds to H1 queries as normal except for
the queries (x̃, a) or (ỹ, b), where a and b are the secret keys corresponding to the
public keys in sessions s and s′; when this occurs, the simulation aborts.

123

A Analysis of CMQV’

Note that S’s simulation is perfect unless a H1(x̃, a) or H1(ỹ, b) query occurs.
Because of event E,M issues a corrupt(ga) query before any H1(x̃, a) query, and a
corrupt(gb) query before any H1(ỹ, b) query. Since x̃ and ỹ are used in only one session
and H1 is a random function, no information can be learned about x̃ and ỹ without
randomness(s) or randomness(s′) queries. By the freshness condition, it cannot be
that both randomness(s) and corrupt(ga) occurred, or that both randomness(s′) and
corrupt(gb) occurred. Thus, if S correctly guess s and s′, the simulation is perfect and
does not abort. This happens with probability at least 2/n2

create.
Assuming the simulation is perfect and does not abort, and thatM outputs the

session string, S can use this to solve the Diffie–Hellman problem. In particular, let σ be
the shared secret in the session string output byM. Then S outputs σg−abedU−beV −ad
as the solution to the computational Diffie–Hellman challenge (U, V).
Thus, when event E ∧M occurs, there exists a polynomial-time reduction from

a cNR-eCK adversary for the session string variant of CMQV’ to the computational
Diffie–Hellman problem under the assumption that H1 is a random oracle, with a
tightness factor of n2

create.

E ∧M . Suppose event E occurs but there is no M2-matching session for the target
session s.
Here, the simulator guesses integers j ∈R {1, . . . , nkgen}, and a session s∗. Assume

without loss of generality that s∗role = I.
For the jth query to kgen, S assigns pk∗ ← V from the Diffie–Hellman challenge

(U, V) to be the public key; for all other kgen queries it responds as specified by the
protocol.

All hregister queries are responded to as normal. All corrupt queries are responded
to as normal, except for corrupt(pk∗), in which case S aborts.

Suppose thatM selects s∗ as the target session and furthermore that s∗pcert.pk = V .
For all sessions and queries where the session actor or peer is not using pk∗, S

follows the protocol specification exactly.
For sessions where the session actor is using pk∗, S responds as in event E.
For sessions where the session peer is using pk∗, S responds as specified by the

protocol, except for the target session s∗. In s∗, S responds as follows:

• create(s∗, I, C ′): S returns X ← U , where (U, V) is the Diffie–Hellman challenge.
Note that s∗rand is not used.

• send(s∗,M): No response required.
• randomness(s∗): Return s∗rand.
• session-key(s∗): S aborts. Assuming that S correctly guesses s∗ as the target

session, this abort will never occur.

S responds to H2 queries as normal. S responds to H1(x̃, b) queries as normal
except for the following case:

• If x̃ = s∗rand and ga = s∗acert.pk: S aborts.
Note that S’s simulation is perfect up until an abort event from the corrupt or the
H2 query occurs. Given that s∗ is fresh and no matching session exists, no corrupt(pk∗)
query is allowed and hence S does not abort for that reason. Given that event E
occurs, if M queries H1(s∗rand, a) such that ga = s∗acert.pk, M must have issued a

124

corrupt(ga) query first. But it is also the case that s∗ is fresh, so M cannot have
also issued a randomness(s∗) query, and thus cannot know s∗rand unless it guessed it
correctly, which can be done only with negligible probability.
Assume the simulation is perfect and does not abort, and that M outputs the

session string containing the correct shared secret σ = guygadyguvegadev. S can then
compute η = σY −adV −ade = guy+uve. But the peer’s ephemeral secret key y was
chosen by the adversary, so without y S cannot directly compute guv from η.
Using the Forking Lemma, S runs M on the same input and the same random

coins but with modified answers to H2 queries. Note that M must have queried
H2(Y, s∗acert.id, s∗pcert.id) to obtain e, because otherwiseM would be unable to compute
σ except with negligible probability. For the second run of M, S responds to
H2(Y, s∗acert.id, s∗pcert.id) with e′ 6= e selected uniformly at random.
IfM succeeds in the second run, it outputs σ = guygad

′yguve
′
gad
′e′v. S can then

compute η′ = σ′Y −ad
′
V −ad

′e′ = guyguve
′ . S can furthermore compute

(η/η′)1/(e−e′) = (guyguveg−uyg−uve′)1/(e−e′) = guv(e−e′)/(e−e′) = guv

which is the solution to the computational Diffie–Hellman challenge (U, V).
Thus, when event E ∧M occurs, there exists a polynomial-time reduction from

a cNR-eCK adversary for the session string variant of CMQV’ to the computational
Diffie–Hellman problem under the assumption that H1 and H2 are random oracles,
with a tightness factor of ncreatenkgennH2c, where c is a constant from the Forking
Lemma.

Remark 27. Because in the above lemma we do not have to prove full session key
indistinguishability security of CMQV’, instead proving the hardness of session string
computation of a variant of CMQV’, we can make a few simplifications from Ustaoglu’s
original proof:

• We do not have to worry about key replication attacks (when the adversary
causes two non-matching sessions to have the same session key (that is, session
string), and then reveals the session key at one of the sessions) because there is
no session-key query.

• In event E, we do not have to worry about setting the session string correctly
for any session involving the user whose public key has been injected with the
CDH challenge, because there is no session-key query. Thus we do not need a
DDH oracle here.

• In event E ∧M , we do not have to use the DDH oracle to test which of the
many H random oracle queries is the solution we need: we simply output the
CDH value derived directly from the output ofM.

Lemma 4. The session string decision problem for CMQV’ is polynomial-time re-
ducible to the decisional problem of the Diffie–Hellman relation φ.

Proof. Let D be a polynomial-time algorithm that can distinguish real CMQV’ session
strings (g(y+eb)(x+da) ‖ X ‖ Y ‖ id ‖ A ‖ id′ ‖ B) from random session strings
(gr ‖ gx ‖ gy ‖ id ‖ ga ‖ id′ ‖ gb), for randomly chosen a, b, x, y, r ∈R Zq, id and id′ are
arbitrary binary strings, d = H2(gx ‖ id ‖ id′), and e = H2(gy ‖ id ‖ id′).

125

A Analysis of CMQV’

We claim that there exists an algorithm E that can distinguish real Diffie–Hellman
triples (gu, gv, guv) from random triples (gu, gv, gw) for randomly chosen u, v, w ∈R Zq.

First, note that g(y+eb)(x+da) = gxy+ady+bex+abde. Using D construct ED as follows.
Let (U, V,W) be a Diffie–Hellman challenge. Pick arbitrary id, id′. Do one of the
following, each with equal probability:

1. Set A← U and B ← V . Choose x, y ∈R Zq.
Run D on the session string (gxyAdyBexW de ‖ gx ‖ gy ‖ id ‖ A ‖ id′ ‖ B).

2. Set A← U and Y ← V . Choose x, b ∈R Zq.
Run D on the session string (Y xW dgbexAbde ‖ gx ‖ Y ‖ id ‖ A ‖ id′ ‖ gb).

3. Set X ← U and B ← V . Choose a, y ∈R Zq.
Run D on the session string (XygadyW eBade ‖ X ‖ gy ‖ id ‖ ga ‖ id′ ‖ B).

4. Set X ← U and Y ← V . Choose a, b ∈R Zq.
Run D on the session string (WY adXbegabde ‖ X ‖ Y ‖ id ‖ ga ‖ id′ ‖ gb).

E outputs the result of D.
Note that in each of the above cases, if (U, V,W) is a real Diffie–Hellman triple,

then D is run on a real CMQV’ session string, whereas if (U, V,W) is a random triple,
then D is run on a random session string. Thus, if D is a distinguisher for CMQV’
session strings, then E is a distinguisher for the Diffie–Hellman relation.

126

B. Proofs of Chapter 5

B.1. Proof of Proposition 13

Proof. It is straightforward to verify the first condition of Definition 36. We next
verify that the second condition of Definition 36 holds. Let E denote a PPT
adversary against protocol π := CNX. We show that the probability of event
Multiple-MatchW (Ω−INDP-DH)

π,E (k) is bounded above by a negligible function in the se-

curity parameter k, where Multiple-MatchW (Ω−INDP-DH)
π,E (k) denotes the event that, in the

security experiment, there exist a session s with sstatus = accepted and at least two
distinct sessions s′ and s′′ that are matching session s. Note that, if both sessions s′
and s′′ are matching session s, then it must hold that s′′actor = s′actor and s′′role = s′role).
In addition, the counter value in two different sessions of the same user are distinct.
For some fixed session s that has accepted, let Ev denote the event that there exist
two distinct sessions s′ and s′′ such that s and s′ are matching as well as s and s′′.
We have:

P (Ev) ≤ P (⋃ s′,s′′

s′ 6=s′′
{H1(s′′rand , skP̂ , i) = H1(s′rand , skP̂ , j)})

≤
∑

s′,s′′

s′ 6=s′′
P ({H1(s′′rand , skP̂ , i) = H1(s′rand , skP̂ , j)})

≤ q2
s

1
p ,

where P̂ = s′′actor = s′actor , i 6= j and qs denotes the number of created ses-
sions (either via the create or the cr-create query) by the adversary. Therefore,
P (Multiple-MatchW (ΩINDP-DH)

π,E (k)) ≤ q3
s

1
p .

The third condition of Definition 36 is implied by an adaptation of the security
proof of NAXOS in the eCKw model from Section 3.3.1. Let s∗ denote the test session.
Consider first the event Kc where the adversary M wins the security experiment
against π with non-negligible advantage and does not query H2 with (σ1, σ2, σ3, Â, B̂),
where σ1 = CDH(Y,A), σ2 = CDH(B,X) and σ3 = CDH(X,Y).

Event Kc

If event Kc occurs, then the adversaryM must have issued a session-key query to some
session s such that Ks = Ks∗ (where Ks and Ks∗ denote the session keys computed
in sessions s and s∗, respectively) and s does not match s∗. We consider the following
four events:

1. A1 : there exist two distinct sessions s′, s′′ created via a create query such that
s′rand = s′′rand .

2. A2 : there exists a session s 6= s∗ such that H1(srand , sksactor , i) =
H1(s∗rand , sks∗actor

, j).

127

B Proofs of Chapter 5

3. A3 : there exists a session s′ 6= s∗ such that H2(inputs′) = H2(inputs∗) with
inputs′ 6= inputs∗ .

4. A4 : there exists an adversarial query inputM to the oracle H2 such that
H2(inputM) = H2(inputs∗) with inputM 6= inputs∗ .

In contrast to the NAXOS protocol with respect to model ΩINDP-DH, the adversary
cannot force two sessions of protocol π of the same user with the same role to compute
the same session key via a chosen-randomness replay attack, as the H1 values in both
sessions will be different with overwhelming probability due to different counter values.
The latter event is included in event A2.

Analysis of event Kc

We denote by qs the number of created sessions (either via the create or the cr-create
query) by the adversary and by qro2 the number of queries to the random oracle H2.
We have that

P (Kc) ≤ P (A1 ∨A2 ∨A3 ∨A4) ≤ P (A1) + P (A2) + P (A3) + P (A4)

≤ q2
s

2
1
2k + qs

p
+ qs + qro2

2k ,

which is a negligible function of the security parameter k.
In the subsequent events (and their analyses) we assume that no collisions in the

queries to the oracle H1 occur and that none of the events A1, ..., A4 occurs. As in
the proof of Proposition 7, we next consider the following three events:

1. DL ∧K,
2. TO ∧DLc ∧K, and
3. (TO)c ∧DLc ∧K, where

TO denotes the event that there exists an origin-session for the test session, DL denotes
the event where there exists a user Ĉ ∈ P such that the adversary M , during its
execution, queries H1 with (∗, c, ∗) before issuing a corrupt(Ĉ) query and K denotes
the event that M wins the security experiment against NAXOS by querying H2 with
(σ1, σ2, σ3, Â, B̂), where σ1 = CDH(Y,A), σ2 = CDH(B,X) and σ3 = CDH(X,Y).

Event DL ∧K
Let the input to the GDL challenge be C. Suppose that event DL ∧K occurs with
non-negligible probability. In this case, the simulator S chooses one user Ĉ ∈ P at
random and sets its long-term public key to C. S chooses long-term secret/public
key pairs for the remaining honest parties and stores the associated long-term secret
keys. Additionally S chooses a random value m ∈R {1, 2, ..., qs}. We denote the m’th
activated session by adversary M by s∗. Suppose further that s∗actor = Â, s∗peer = B̂
and s∗role = I, w.l.o.g. We now define S’s responses toM ’s queries for the pre-specified
peer setting; the post-specified peer case proceeds similarly. Algorithm S maintains
tables Q, J, T and L, all of which are initially empty. S also maintains a variable ω
initialized with 1 and a table CV maintaining for each user the current counter value.
Initially, table CV contains an entry (P̂ , 0) for each user P̂ ∈ P.

1. create
(
P̂ , r, Q̂

)
to create session s: S checks whether P̂ ∈ P, Q̂ ∈ P, and

r ∈ {I,R}. If one of the checks fails, then S returns ⊥. Else, S initializes the

128

B.1 Proof of Proposition 13

session variables according to the protocol specification, and stores an entry
of the form (s, srand , sksactor , ls, κ) ∈ (P × N)× {0, 1}k × (Zp ∪ {∗})× N× Zp in
table Q as follows:

• S retrieves the counter value c for the user with identifier P̂ from table
CV , increments c by 1, and updates the counter value for P̂ stored in table
CV with c+ 1,

• S chooses srand ∈R {0, 1}k (i. e. the randomness of session s),
• S chooses κ ∈R Zp,
• if sactor 6= Ĉ, then S stores the entry (s, srand , sksactor , c+ 1, κ) in Q, else S

stores the entry (s, srand , ∗, c+ 1, κ) in Q,1 and
• if r = I, then S returns the Diffie-Hellman exponential gκ to M , else S

returns ?.
2. cr-create

(
P̂ , r, str, Q̂

)
to create session s: S checks whether P̂ ∈ P, Q̂ ∈ P , and

r ∈ {I,R}. If one of the checks fails, then S returns ⊥. Else, S initializes the
session variables according to the protocol specification, and stores an entry
of the form (s, srand , sksactor , ls, κ) ∈ (P × N)× {0, 1}k × (Zp ∪ {∗})× N× Zp in
table Q as follows:

• S retrieves the counter value c for the user with identifier P̂ from table
CV , increments c by 1, and updates the counter value for P̂ stored in table
CV with c+ 1,

• if there is an entry (ri, hi, li, κi) in table J such that ri = str, hi = skP̂ , and
li = c+ 1, then S sets ω ← κi, else S chooses κ ∈R Zp, and sets ω ← κ.2

• if sactor 6= Ĉ, then S stores the entry (s, srand , sksactor , c+ 1, x5) in Q, else
S stores the entry (s, srand , ∗, c+ 1, x5) in Q, where x5 denotes the value
of variable ω,

• if r = I, then S returns the Diffie-Hellman exponential gκ to M , else S
returns ?.

3. S stores entries of the form (r, h, l, κ) ∈ {0, 1}k ×Zp ×N×Zp in table J . When
M makes a query of the form (r, h, l) to the random oracle for H1, answer it as
follows:

• If C = gh, then S aborts M and is successful by outputting DLogg(C) = h.
• Else if (r, h, l, κ) ∈ J for some κ ∈ Zp, then S returns κ to M .
• Else if there exists an entry (s, srand , sksactor , ls, κ) in Q, for some s ∈
P ×N, srand ∈ {0, 1}k , sksactor ∈ Zp, ls ∈ N and κ ∈ Zp, such that srand = r,
sksactor = h and ls = l, then S returns κ toM and stores the entry (r, h, l, κ)
in table J .

• Else, S chooses κ ∈R Zp, returns it to M and stores the entry (r, h, l, κ) in

1We do not need to keep consistency with H1 queries via lookup in table J since the probability
that the adversary guesses the randomness of a session created via a query create is negligible.

2Here we need to keep consistency with H1 queries via lookup in table J to be able to consistently
answer all possible combinations of queries. Consider, e. g., the following scenario. The adversary
first issues a query (x, skP̂ , i) to H1 and then issues the query cr-create(P̂ , r, x, Q̂), which increments
the current counter value i − 1 by 1 so that the counter value used in session s = (P̂ , i) is i.
So, in contrast to the NAXOS proof with respect to model eCKw, we need to additionally keep
consistency between cr-create queries and queries to the random oracle for H1.

129

B Proofs of Chapter 5

table J .
4. send(P̂ , i, V) to send message V to session s = (P̂ , i): If sstatus 6= active, then
S returns ⊥. Else if srole = I, then S does the following. If V /∈ G, then the
status of session s is set to rejected. Else, the status of session s is set to
accepted, the variable recv is updated to srecv ← (srecv , V) and

• If there exists an entry (speer , sactor ,R, srecv , ssent , λ) in table T , then S
stores the entry (sactor , speer , I, ssent , srecv , λ) in table T .

• Else if there exists an entry (σ1, σ2, σ3, sactor , speer , λ) in table L, for some
λ ∈ {0, 1}k, such that DDH(srecv , ssent , σ3) = 1, DDH(ssent , pkspeer , σ2) = 1
and DDH(srecv , pksactor , σ1) = 1, then S stores (sactor , speer , I, ssent , srecv , λ)
in table T .

• Else, S chooses µ ∈R {0, 1}k and stores the entry (sactor , speer , I, ssent , srecv ,
µ) in T .

Else if srole = R, then S does the following. If V /∈ G, then the status of session
s is set to rejected. Else, S sets the status of session s to accepted, and the
variable recv to (srecv , V). S returns gκ to M , where κ denotes the last element
of the entry (s, r, sksactor , l, κ) in table Q, and proceeds in a similar way as in the
previous case.

5. When M makes a query of the form
(
σ1, σ2, σ3, Q̂i, Q̂j

)
to the random oracle

for H2, answer it as follows:
• If

(
σ1, σ2, σ3, Q̂i, Q̂j , λ

)
∈ L for some λ ∈ {0, 1}k, then S returns λ to M .

• Else if there exist entries
(
Q̂i, Q̂j , I, U, V, λ

)
or
(
Q̂j , Q̂i,R, V, U, λ

)
in table

T , for some λ ∈ {0, 1}k and U, V ∈ G, such that DDH(V,U, σ3) = 1,
DDH(V, pkQ̂i

, σ1) = 1 and DDH(U, pkQ̂j
, σ2) = 1, then S returns λ to M

and stores the entry
(
σ1, σ2, σ3, Q̂i, Q̂j , λ

)
in table L.

• Else, S chooses µ ∈R {0, 1}k, returns it to M and stores the entry(
σ1, σ2, σ3, Q̂i, Q̂j , µ

)
in L.

6. randomness(s): If sstatus = ⊥, then S returns ⊥. Otherwise, S returns srand (via
lookup in table Q).

7. session-key(s): If sstatus 6= accepted, then S returns ⊥. Otherwise, S answers
this query by lookup in table T .

8. test-session(s): If s 6= s∗, then S aborts; otherwise S answers the query in the
appropriate way.

9. corrupt(P̂): If P̂ /∈ P, then S returns ⊥. Else if P̂ = Ĉ, then S aborts. Else S
returns skP̂ .

10. M outputs a guess: S aborts.

Analysis of event DL ∧K
Similar to the analysis of the related event DL ∧K in the proof of Proposition 7.

Event TO ∧DLc ∧K
Let s∗ and s′ denote the test session and the origin-session for the test session,
respectively. We split event Evt := TO ∧DLc ∧K into the following events B1, ..., B3
so that Evt = B1 ∨B2 ∨B3:

130

B.1 Proof of Proposition 13

1. B1 : Evt occurs and s∗peer = s′actor .
2. B2 : Evt occurs and s∗peer 6= s′actor and M does issue neither a randomness(s′)

query nor a cr-create(s′,×) query to the origin-session s′ of s∗, but may issue a
corrupt(s∗peer) query.

3. B3 : Evt occurs and s∗peer 6= s′actor and M does not issue a corrupt(s∗peer) query,
but may issue either a randomness(s′) query or a cr-create(s′,×) query to the
origin-session s′ of s∗.

Event B1
Let the input to the GDH challenge be (X0, Y0). Suppose that event B1 occurs with
non-negligible probability. In this case S chooses long-term secret/public key pairs for
all the honest parties and stores the associated long-term secret keys. Additionally
S chooses two random values m,n ∈R {1, 2, ..., qs}. The m’th activated session by
adversary M will be called s∗ and the n’th activated session will be called s′. Suppose
further that s∗actor = Â, s∗peer = B̂ and s∗role = I, w.l.o.g.. The simulation of M ′s
environment proceeds as follows:

1. create(Â, I, B̂) or cr-create(Â, I, str, B̂) to create session s∗: If create is issued,
then S chooses s∗rand ∈R {0, 1}k. Else, S sets s∗rand ← str. Then, S (a) returns
the message X0, where (X0, Y0) is the GDH challenge, (b) increments by 1 the
counter value c for the user with identifier Â (stored in table CV), and (c) stores
the updated counter value c+ 1 for Â in table CV .3

2. create(B̂, r, Q̂) or cr-create(B̂, r, str, Q̂) to create session s′: If create is issued,
then S chooses s′rand ∈R {0, 1}k. Else, S sets s′rand ← str. S then increments
by 1 the counter value c for the user with identifier B̂ (stored in table CV),
and stores the updated counter value c + 1 for B̂ in table CV .If r = I, then
S returns message Y0 to M , where (X0, Y0) is the GDH challenge. Else, ? is
returned.

3. send(B̂, i, Z) with (B̂, i) = s′: If s′status 6= active, then S returns ⊥. Else if
s′role = R and Z ∈ G, then S returns message Y0 to M , where (X0, Y0) is the
GDH challenge, sets the status of session s′ to accepted, and proceeds as in
the previous simulation for completing the session. Else, S proceeds as in the
previous simulation.

4. send(Â, i, Y0) with (Â, i) = s∗: S proceeds as in the previous simulation for
completing the session.

5. Other create, cr-create and send queries are answered as in the previous simula-
tion.

6. randomness(s): If sstatus = ⊥, then S returns ⊥. Else, S returns srand .
7. session-key(s): If sstatus 6= accepted, then S returns ⊥. Otherwise, S answers

this query by lookup in table T .
8. test-session(s): If s 6= s∗ or if s′ is not the origin-session for session s∗, then S

aborts; otherwise S answers the query in the appropriate way.
9. H1(r, h, ∗): If h = a and r = s∗rand or if h = b and r = s′rand , then S aborts.

Otherwise S simulates a random oracle as in the previous simulation.
10. corrupt(P̂): If P̂ /∈ P, then S returns ⊥. Else, S returns skP̂ .

3Note that s∗rand is not used in the calculation.

131

B Proofs of Chapter 5

11. When M makes a query of the form
(
σ1, σ2, σ3, Q̂i, Q̂j

)
to the random oracle

for H2, answer it as follows:
• If

{
Q̂i, Q̂j

}
=
{
Â, B̂

}
, σ1 = Y a

0 , σ2 = Xb
0 and DDH(X0, Y0, σ3) = 1, then

S aborts M and is successful by outputting CDH(X0, Y0) = σ3.
• Else if

(
σ1, σ2, σ3, Q̂i, Q̂j , λ

)
∈ L for some λ ∈ {0, 1}k, then S returns λ to

M .
• Else if there exist entries

(
Q̂i, Q̂j , I, U, V, λ

)
or
(
Q̂j , Q̂i,R, V, U, λ

)
in table

T , for some λ ∈ {0, 1}k and U, V ∈ G, such that DDH(V,U, σ3) = 1,
DDH(V, pkQ̂i

, σ1) = 1 and DDH(U, pkQ̂j
, σ2) = 1, then S returns λ to M

and stores the entry
(
σ1, σ2, σ3, Q̂i, Q̂j , λ

)
in table L.

• Else, S chooses µ ∈R {0, 1}k, returns it to M and stores the entry(
σ1, σ2, σ3, Q̂i, Q̂j , µ

)
in L.

12. M outputs a guess: S aborts.

Analysis of event B1
Similar to the analysis of the related event B1 in the proof of Proposition 7.

Event B2
Let the input to the GDH challenge be (X0, Y0). Suppose that event B2 occurs with
non-negligible probability. The simulation of S proceeds in the same way as for event
B1 with the following changes:

• create(B̂, r, Q̂) or cr-create(B̂, r, str, Q̂) to create session s′: If cr-create is issued,
then S aborts. Else, S proceeds as described before.

• randomness(s): If sstatus = ⊥, then S returns ⊥. Else if s = s′, then S aborts.
Else, S returns srand .

• H1(r, h, ∗): If h = a and r = s∗rand , then S aborts. Otherwise S simulates a
random oracle as in the previous simulation.

Analysis of event B2
Similar to the analysis of the related event B2 in the proof of Proposition 7.

Event B3
Let the input to the GDH challenge be (X0, B). Suppose that event B3 occurs with
non-negligible probability. In this case, S chooses one user B̂ ∈ P at random from
the set P and sets its long-term public key to B. S chooses long-term secret/public
key pairs for the remaining parties in P and stores the associated long-term secret
keys. Additionally S chooses two random values m,n ∈R {1, 2, ..., qs}. We denote
the m’th activated session by adversary M by s∗ and the n’th activated session by
s′. Suppose further that s∗actor = Â, s∗peer = B̂ and s∗role = I, w.l.o.g.. Algorithm S
maintains tables Q, J, T and L, all of which are initially empty. S also maintains a
variable ω initialized with 1 and a table CV maintaining for each user the current
counter value. Initially, table CV contains an entry (P̂ , 0) for each user P̂ ∈ P. The
simulation of M ′s environment proceeds as follows:

1. create(Â, I, B̂) or cr-create(Â, I, str, B̂) to create session s∗: If create is issued,
then S chooses s∗rand ∈R {0, 1}k. Else, S sets s∗rand ← str. Then, S (a) returns

132

B.1 Proof of Proposition 13

the message X0, (b) increments by 1 the counter value c for the user with
identifier Â (stored in table CV), and (c) stores the updated counter value c+ 1
for Â in table CV .

2. create
(
P̂ , r, Q̂

)
to create session s: S checks whether P̂ ∈ P, Q̂ ∈ P, and

r ∈ {I,R}. If one of the checks fails, then S returns ⊥. Else, S initializes the
session variables according to the protocol specification, and stores an entry
of the form (s, srand , sksactor , ls, κ) ∈ (P × N)× {0, 1}k × (Zp ∪ {∗})× N× Zp in
table Q as follows:

• S retrieves the counter value c for the user with identifier P̂ from table
CV , increments c by 1, and updates the counter value for P̂ stored in table
CV with c+ 1,

• S chooses srand ∈R {0, 1}k (i. e. the randomness of session s),
• S chooses κ ∈R Zp,
• if sactor 6= B̂, then S stores the entry (s, srand , sksactor , c+ 1, κ) in Q, else
S stores the entry (s, srand , ∗, c+ 1, κ) in Q, and

• if r = I, then S returns the Diffie-Hellman exponential gκ to M , else S
returns ?.

3. cr-create
(
P̂ , r, str, Q̂

)
to create session s: S checks whether P̂ ∈ P, Q̂ ∈ P , and

r ∈ {I,R}. If one of the checks fails, then S returns ⊥. Else, S initializes the
session variables according to the protocol specification, and stores an entry
of the form (s, srand , sksactor , ls, κ) ∈ (P × N)× {0, 1}k × (Zp ∪ {∗})× N× Zp in
table Q as follows:

• S retrieves the counter value c for the user with identifier P̂ from table
CV , increments c by 1, and updates the counter value for P̂ stored in table
CV with c+ 1,

• if there is an entry (ri, hi, li, κi) in table J such that ri = str, hi = skP̂ ,
and li = c+ 1, then S sets ω ← κi, else S chooses κ ∈R Zp, and sets ω ← κ.

• if sactor 6= B̂, then S stores the entry (s, srand , sksactor , c+ 1, x5) in Q, else
S stores the entry (s, srand , ∗, c+ 1, x5) in Q, where x5 denotes the value
of variable ω,

• if r = I, then S returns the Diffie-Hellman exponential gκ to M , else S
returns ?.

4. S stores entries of the form (r, h, l, κ) ∈ {0, 1}k ×Zp ×N×Zp in table J . When
M makes a query of the form (r, h, l) to the random oracle for H1, answer it as
follows:

• If r = s∗rand and h = a, then S aborts,
• Else if (r, h, l, κ) ∈ J for some κ ∈ Zp, then S returns κ to M .
• Else if there exists an entry (s, srand , sksactor , ls, κ) in Q, for some s ∈
P ×N, srand ∈ {0, 1}k , sksactor ∈ Zp, ls ∈ N and κ ∈ Zp, such that srand = r,
sksactor = h and ls = l, then S returns κ toM and stores the entry (r, h, l, κ)
in table J .

• Else, S chooses κ ∈R Zp, returns it to M and stores the entry (r, h, l, κ) in
table J .

5. send(P̂ , i, V) to send message V to session s = (P̂ , i): If sstatus 6= active, then

133

B Proofs of Chapter 5

S returns ⊥. Else if srole = I, then S does the following. If V /∈ G, then the
status of session s is set to rejected. Else, the status of session s is set to
accepted, the variable recv is updated to srecv ← (srecv , V) and

• If there exists an entry (speer , sactor ,R, srecv , ssent , λ) in table T , then S
stores the entry (sactor , speer , I, ssent , srecv , λ) in table T .

• Else if there exists an entry (σ1, σ2, σ3, sactor , speer , λ) in table L, for some
λ ∈ {0, 1}k, such that DDH(srecv , ssent , σ3) = 1, DDH(ssent , pkspeer , σ2) = 1
and DDH(srecv , pksactor , σ1) = 1, then S stores (sactor , speer , I, ssent , srecv , λ)
in table T .

• Else, S chooses µ ∈R {0, 1}k and stores the entry (sactor , speer , I, ssent , srecv ,
µ) in T .

Else if srole = R, then S does the following. If V /∈ G, then the status of session
s is set to rejected. Else, S sets the status of session s to accepted, and the
variable recv to (srecv , V). S returns gκ to M , where κ denotes the last element
of the entry (s, r, sksactor , l, κ) in table Q, and proceeds in a similar way as in the
previous case.

6. When M makes a query of the form
(
σ1, σ2, σ3, Q̂i, Q̂j

)
to the random oracle

for H2, answer it as follows:
• If s′status 6= ⊥,

{
Q̂i, Q̂j

}
=
{
Â, B̂

}
, σ1 = Aκ, DDH(X0, B, σ2) = 1, and

σ3 = Xκ
0 , where κ denotes the last element of the entry (s′, s′rand , sks′actor

, l, κ)
in tableQ4, then S abortsM and is successful by outputting CDH(X0, B) =
σ2.

• Else if
(
σ1, σ2, σ3, Q̂i, Q̂j , λ

)
∈ L for some λ ∈ {0, 1}k, then S returns λ to

M .
• Else if there exist entries

(
Q̂i, Q̂j , I, U, V, λ

)
or
(
Q̂j , Q̂i,R, V, U, λ

)
in table

T , for some λ ∈ {0, 1}k and U, V ∈ G, such that DDH(V,U, σ3) = 1,
DDH(V, pkQ̂i

, σ1) = 1 and DDH(U, pkQ̂j
, σ2) = 1, then S returns λ to M

and stores the entry
(
σ1, σ2, σ3, Q̂i, Q̂j , λ

)
in table L.

• Else, S chooses µ ∈R {0, 1}k, returns it to M and stores the entry(
σ1, σ2, σ3, Q̂i, Q̂j , µ

)
in L.

7. randomness(s): If sstatus = ⊥, then S returns ⊥. Else, S returns srand .
8. session-key(s): If sstatus 6= accepted, then S returns ⊥. Otherwise, S answers

this query by lookup in table T .
9. test-session(s): If s 6= s∗ or if s′ is not the origin-session for session s∗, then S

aborts; otherwise S answers the query in the appropriate way.
10. corrupt(P̂): If P̂ /∈ P, then S returns ⊥. Else if P̂ = B̂, then S aborts. Else, S

returns skP̂ .
11. M outputs a guess: S aborts.

Analysis of event B3
Similar to the analysis of the related event B3 in the proof of Proposition 7.
Event (TO)c ∧DLc ∧K

4This entry exists in table Q since the status of the session is different to ⊥.

134

B.2 Proof of Proposition 15

The simulation and analysis are very similar to the simulation and analysis related to
event B3.

B.2. Proof of Proposition 15

Proof. It is straightforward to verify the first condition of Definition 36. We next
verify that the second condition of Definition 36 holds. Let E denote a PPT
adversary against protocol π := NXPR. We show that the probability of event
Multiple-MatchW (ΩINDP-DH∩ISM)

π,E (k) is bounded above by a negligible function in the
security parameter k, where Multiple-MatchW (ΩINDP-DH∩ISM)

π,E (k) denotes the event that,
in the security experiment, there exist a session s with sstatus = accepted and at
least two distinct sessions s′ and s′′ that are matching session s. Note that, if both
sessions s′ and s′′ are matching session s, then it must hold that s′′actor = s′actor and
s′′role = s′role. In addition, it is easy to see that the value of the variable data in two
different sessions of the same user are distinct (since of different length). For some
fixed session s that has accepted, let Ev denote the event that there exist two distinct
sessions s′ and s′′ such that s and s′ are matching as well as s and s′′. We have:

P (Ev) ≤ P (⋃ s′,s′′

s′ 6=s′′
{H1(s′′rand , s

′′
data, skP̂) = H1(s′rand , s

′
data, skP̂)})

≤
∑

s′,s′′

s′ 6=s′′
P ({H1(s′′rand , s

′′
data, skP̂) = H1(s′rand , s

′
data, skP̂)})

≤ q2
s
p ,

where P̂ = s′′actor = s′actor and qs denotes the number of created sessions (either via
the create or the cr-create query) by the adversary.
In the above computation, we distinguished between the following two events:
1. D1 := {s′′rand 6= s′rand ∧ s′′data 6= s′data}; the probability that the two hash values

are identical given D1 is the probability of a collision in the hash function, and
2. D2 := {s′′rand = s′rand ∧ s′′data 6= s′data}; the probability that the two hash values

are identical given D2 is the probability of a collision in the hash function.
The events D3 := {s′′rand = s′rand ∧ s′′data = s′data} and D4 := {s′′rand 6= s′rand ∧ s′′data =
s′data} both occur with probability zero.

Even though the value of the variable rand can be the same for two different session
of the same user due to the queries cr-create and randomness, the value of the variable
data of two different sessions s′ and s′′ of the same user is always different since the
bit strings s′data and s′′data differ in length. Given a created session s, the length of the
bit string sdata depends on the number of sessions of user sactor that have already
been created either via create or cr-create.
Finally, P (Multiple-MatchW (ΩINDP-DH∩ISM)

π,E (k)) ≤ q3
s

1
p .

The third condition of Definition 36 is implied by an adaptation of the security
proof of protocol CNX in the Ω−INDP-DH model (see Appendix B.1). Let s∗ denote the
test session. Consider first the event Kc where the adversary M wins the security
experiment against π with non-negligible advantage and does not query H2 with
(σ1, σ2, σ3, Â, B̂), where σ1 = CDH(Y,A), σ2 = CDH(B,X) and σ3 = CDH(X,Y).

135

B Proofs of Chapter 5

Event Kc

If event Kc occurs, then the adversaryM must have issued a session-key query to some
session s such that Ks = Ks∗ (where Ks and Ks∗ denote the session keys computed
in sessions s and s∗, respectively) and s does not match s∗. We consider the following
four events:

1. A1 : there exist two distinct sessions s′, s′′ created via a create query such that
s′rand = s′′rand .5

2. A2 : there exists a session s 6= s∗ such that H1(srand , sdata) = H1(s∗rand , s
∗
data).

3. A3 : there exists a session s′ 6= s∗ such that H2(inputs′) = H2(inputs∗) with
inputs′ 6= inputs∗ .

4. A4 : there exists an adversarial query inputM to the oracle H2 such that
H2(inputM) = H2(inputs∗) with inputM 6= inputs∗ .

Analysis of event Kc

We denote by qs the number of created sessions (either via the query create or the
query cr-create) by the adversary and by qro2 the number of queries to the random
oracle H2. We have that

P (Kc) ≤ P (A1 ∨A2 ∨A3 ∨A4) ≤ P (A1) + P (A2) + P (A3) + P (A4)

≤ q2
s

2
1
2k + qs

p
+ qs + qro2

2k ,

which is a negligible function of the security parameter k.
In contrast to the NAXOS protocol analyzed with respect to model ΩINDP-DH, the

adversary cannot force two sessions of protocol π of the same user with the same role
to compute the same session key via a chosen-randomness replay attack since the H1
values in both sessions will be different with overwhelming probability. The latter
event is included in event A2.
In the subsequent events (and their analyses) we assume that no collisions in the

queries to the oracle H1 occur and that none of the events A1, ..., A4 occurs. As in
the proof of Proposition 7, we next consider the following three events:

1. DL ∧K,
2. TO ∧DLc ∧K, and
3. (TO)c ∧DLc ∧K, where

TO denotes the event that there exists an origin-session for the test session, DL
denotes the event where there exists a user Ĉ ∈ P such that the adversary M , during
its execution, queries H1 with (∗, c) before issuing a corrupt(Ĉ) query and K denotes
the event that M wins the security experiment against NXPR by querying H2 with
(σ1, σ2, σ3, Â, B̂), where σ1 = CDH(Y,A), σ2 = CDH(B,X) and σ3 = CDH(X,Y).
Event DL ∧K
Let the input to the GDL challenge be C. Suppose that event DL ∧K occurs with
non-negligible probability. In this case, the simulator S chooses one user Ĉ ∈ P at
random and sets its long-term public key to C. S chooses long-term secret/public

5Under event A1 the query randomness (e. g., for two sessions of different users) together with other
queries might enable the adversary to learn all the information necessary to compute the session
key of the target session without violating the freshness condition.

136

B.2 Proof of Proposition 15

key pairs for the remaining honest parties and stores the associated long-term secret
keys. Additionally S chooses a random value m ∈R {1, 2, ..., qs}. We denote the m’th
activated session by adversary M by s∗. Suppose further that s∗actor = Â, s∗peer = B̂
and s∗role = I, w.l.o.g. We now define S’s responses toM ’s queries for the pre-specified
peer setting; the post-specified peer case proceeds similarly. Algorithm S maintains
tables Q, J, T and L, all of which are initially empty. S also maintains a variable ω
initialized with 1.

1. create
(
P̂ , r, Q̂

)
to create session s: S checks whether P̂ ∈ P, Q̂ ∈ P, and

r ∈ {I,R}. If one of the checks fails, then S returns ⊥. Else, S initializes the
session variables according to the protocol specification, and stores an entry of
the form (s, srand , ls, sksactor , κ) ∈ (P × N)× {0, 1}k × {0, 1}∗ × (Zp ∪ {∗})× Zp
in table Q as follows:

• S chooses srand ∈R {0, 1}k (i. e. the randomness of session s),
• S chooses κ ∈R Zp,
• if there is no entry (s, srand , ls, sksactor , κ) in table Q such that sactor = P̂ ,

then S sets the value of ls to srand , else S sets the value of ls to (srand , ls′),
where s′ is the previous session with s′actor = sactor for which an entry in
table Q has been made.6

• if sactor 6= Ĉ, then S stores the entry (s, srand , sdata, sksactor , κ) in Q, else S
stores the entry (s, srand , sdata, ∗, κ) in Q, and

• if r = I, then S returns the Diffie-Hellman exponential gκ to M , else S
returns ?.

2. cr-create
(
P̂ , r, str, Q̂

)
to create session s: S checks whether P̂ ∈ P , Q̂ ∈ P , and

r ∈ {I,R}. If one of the checks fails, then S returns ⊥. Else, S initializes the
session variables according to the protocol specification, and stores an entry of
the form (s, srand , ls, sksactor , κ) ∈ (P × N)× {0, 1}k × {0, 1}∗ × (Zp ∪ {∗})× Zp
in table Q as follows:

• if there is an entry (ri, hi, κi) in table J such that ri = (str, ls′), and
hi = skP̂ , where s′ is the previous session with s′actor = sactor for which
an entry in table Q has been made, then S sets ω ← κi, else S chooses
κ ∈R Zp and sets ω ← κ.

• if sactor 6= Ĉ, then S stores the entry (s, srand , ri, sksactor , ω) in Q, else S
stores the entry (s, srand , ls, ∗, ω) in Q with ls = (str, ls′),

• if r = I, then S returns the Diffie-Hellman exponential gκ to M , else S
returns ?.

3. S stores entries of the form (r, h, κ) ∈ {0, 1}∗ × Zp × Zp in table J . When M
makes a query of the form (r, h) to the random oracle for H1, answer it as
follows:

• If C = gh, then S aborts M and is successful by outputting DLogg(C) = h.
• Else if (r, h, κ) ∈ J for some κ ∈ Zp, then S returns κ to M .
• Else if there exists an entry (s, srand , ls, sksactor , κ) in table Q with ls = r

and sksactor = h, then S returns κ to M and stores the entry (r, h, κ) in

6The value of ls′ is the concatenation of the randomness of the current and the previous sessions of
the same user.

137

B Proofs of Chapter 5

table J .
• Else, S chooses κ ∈R Zp, returns it to M and stores the entry (r, h, κ) in

table J .
4. send(P̂ , i, V) to send message V to session s = (P̂ , i): If sstatus 6= active, then
S returns ⊥. Else if srole = I, then S does the following. If V /∈ G, then the
status of session s is set to rejected. Else, the status of session s is set to
accepted, and

• If there exists an entry (speer , sactor ,R, srecv , ssent , λ) in table T , then S
stores (sactor , speer , I, ssent , srecv , λ) in table T .

• Else if there exists an entry (σ1, σ2, σ3, sactor , speer , λ) in table L, for some
λ ∈ {0, 1}k, such that DDH(srecv , ssent , σ3) = 1, DDH(ssent , pkspeer , σ2) = 1
and DDH(srecv , pksactor , σ1) = 1, then S stores (sactor , speer , I, ssent , srecv , λ)
in table T .

• Else, S chooses µ ∈R {0, 1}k and stores the entry (sactor , speer , I, ssent , srecv ,
µ) in T .

Else if srole = R, then S does the following. If V /∈ G, then the status of session
s is set to rejected. Else, S sets the status of session s to accepted, returns
gκ to M , where κ denotes the last element of the entry (s, srand , ls, sksactor , κ) in
table Q, and proceeds in a similar way as in the previous case.

5. When M makes a query of the form
(
σ1, σ2, σ3, Q̂i, Q̂j

)
to the random oracle

for H2, answer it as follows:
• If

(
σ1, σ2, σ3, Q̂i, Q̂j , λ

)
∈ L for some λ ∈ {0, 1}k, then S returns λ to M .

• Else if there exist entries
(
Q̂i, Q̂j , I, U, V, λ

)
or
(
Q̂j , Q̂i,R, V, U, λ

)
in table

T , for some λ ∈ {0, 1}k and U, V ∈ G, such that DDH(V,U, σ3) = 1,
DDH(V, pkQ̂i

, σ1) = 1 and DDH(U, pkQ̂j
, σ2) = 1, then S returns λ to M

and stores the entry
(
σ1, σ2, σ3, Q̂i, Q̂j , λ

)
in table L.

• Else, S chooses µ ∈R {0, 1}k, returns it to M and stores the entry(
σ1, σ2, σ3, Q̂i, Q̂j , µ

)
in L.

6. randomness(s): If sstatus = ⊥, then S returns ⊥. Otherwise, S returns srand .
7. session-key(s): If sstatus 6= accepted, then S returns ⊥. Otherwise, S answers

this query by lookup in table T .
8. test-session(s): If s 6= s∗, then S aborts; otherwise S answers the query in the

appropriate way.
9. corrupt(P̂): If P̂ /∈ P, then S returns ⊥. Else if P̂ = Ĉ, then S aborts. Else, S

returns skP̂ .
10. M outputs a guess: S aborts.

Analysis of event DL ∧K
Similar to the analysis of the related event DL ∧K in the proof of Proposition 7.

Event TO ∧DLc ∧K
Let s∗ and s′ denote the test session and the origin-session for the test session,
respectively. We split event Evt := TO ∧DLc ∧K into the following events B1, ..., B3
so that Evt = B1 ∨B2 ∨B3:

138

B.2 Proof of Proposition 15

1. B1 : Evt occurs and s∗peer = s′actor .
2. B2 : Evt occurs and s∗peer 6= s′actor andM does not issue the queries randomness or

cr-create to all sessions of s′actor that were created prior to creation of the origin-
session s′ of s∗, including the origin-session itself, but may issue a corrupt(s∗peer)
query.

3. B3 : Evt occurs and s∗peer 6= s′actor and M does not issue a corrupt(s∗peer) query,
but may issue the queries randomness or cr-create to all session created prior to
creation of the origin-session, including the origin-session s′ itself.

Event B1
Let the input to the GDH challenge be (X0, Y0). Suppose that event B1 occurs with
non-negligible probability. In this case S chooses long-term secret/public key pairs for
all the honest parties and stores the associated long-term secret keys. Additionally
S chooses two random values m,n ∈R {1, 2, ..., qs}. The m’th activated session by
adversary M will be called s∗ and the n’th activated session will be called s′. Suppose
further that s∗actor = Â, s∗peer = B̂ and s∗role = I, w.l.o.g.. We now define S’s responses
to M ’s queries. S maintains tables Q, J, T and L, all of which are initially empty, as
well as a variable ω initialized with 1.

1. create(Â, I, B̂) or cr-create(Â, I, str, B̂) to create session s∗: If create is issued,
S chooses s∗rand ∈R {0, 1}k. Else, S sets s∗rand ← str. S (a) returns the
message X0, where (X0, Y0) is the GDH challenge, and (b) stores the entry
(s∗, s∗rand , ls∗ , skÂ, ∗) in table Q, where ls∗ = (s∗rand , ls) if there exists a previously
created session s of user sactor = Â with an entry in table Q, and ls∗ = s∗rand if
there no such session exists.

2. create(B̂, r, Q̂) or cr-create(B̂, r, str, Q̂) with r ∈ {I,R} to create session s′: If
create is issued, S chooses s′rand ∈R {0, 1}k. Else, S sets s′rand ← str. S stores
the entry (s′, s′rand , ls′ , skB̂, ∗) in table Q, where ls′ = (s′rand , ls) if there exists a
previously created session s of user sactor = Â with an entry in table Q, and
ls′ = s′rand if there no such session exists. If r = I, then S returns message Y0
to M , where (X0, Y0) is the GDH challenge. Else, ? is returned.

3. send(B̂, i, Z) with (B̂, i) = s′: If s′status 6= active, then S returns ⊥. Else if
s′role = R and Z ∈ G, then S returns message Y0 to M , where (X0, Y0) is the
GDH challenge, sets the status of session s′ to accepted, and proceeds as in
the previous simulation for completing the session. Else, S proceeds as in the
previous simulation.

4. send(Â, i, Y0) with (Â, i) = s∗: S proceeds as in the previous simulation for
completing the session.

5. Other create, cr-create and send queries are answered as in the simulation relative
to event DL ∧K.

6. When M makes a query of the form
(
σ1, σ2, σ3, Q̂i, Q̂j

)
to the random oracle

for H2, answer it as follows:
• If

{
Q̂i, Q̂j

}
=
{
Â, B̂

}
, σ1 = Y a

0 , σ2 = Xb
0 and DDH(X0, Y0, σ3) = 1, then

S aborts M and is successful by outputting CDH(X0, Y0) = σ3.
• Else if

(
σ1, σ2, σ3, Q̂i, Q̂j , λ

)
∈ L for some λ ∈ {0, 1}k, then S returns λ to

M .

139

B Proofs of Chapter 5

• Else if there exist entries
(
Q̂i, Q̂j , I, U, V, λ

)
or
(
Q̂j , Q̂i,R, V, U, λ

)
in table

T , for some λ ∈ {0, 1}k and U, V ∈ G, such that DDH(V,U, σ3) = 1,
DDH(V, pkQ̂i

, σ1) = 1 and DDH(U, pkQ̂j
, σ2) = 1, then S returns λ to M

and stores the entry
(
σ1, σ2, σ3, Q̂i, Q̂j , λ

)
in table L.

• Else, S chooses µ ∈R {0, 1}k, returns it to M and stores the entry(
σ1, σ2, σ3, Q̂i, Q̂j , µ

)
in L.

7. randomness(s): If sstatus = ⊥, then S returns ⊥. Otherwise, S returns srand .
8. session-key(s): If sstatus 6= accepted, then S returns ⊥. Otherwise, S answers

this query by lookup in table T .
9. test-session(s): If s 6= s∗ or if s′ is not the origin-session for session s∗, then S

aborts; otherwise S answers the query in the appropriate way.
10. H1(r, h): If r = ls∗ and h = skÂ or if r = ls′ and h = skB̂, then S aborts.

Otherwise S simulates a random oracle as in the simulation relative to event
DL ∧K.

11. corrupt(P̂): If P̂ /∈ P, then S returns ⊥. Else, S returns skP̂ .
12. M outputs a guess: S aborts.

Analysis of event B1
S’s simulation of M ’s environment is perfect except with negligible probability. The
probability that M selects s∗ as the test-session and s′ as the origin-session for the
test-session is 1

(qs)2 . Assuming that this is indeed the case, S does not abort in Step
9. Under event DLc, the adversary first issues a corrupt(P̂) query to party P̂ before
making an H1 query that involves the long-term secret key of party P̂ . Freshness of
the test session guarantees that the adversary can reveal/determine either ls∗ or skÂ,
but not both. Similar for ls′ and skB̂. Hence S does not abort in Step 10. Under
event K, except with negligible probability of guessing CDH(X0, Y0), S is successful
as described in the first case of Step 6 and does not abort as in Step 12. Hence, if
event B1 occurs, then the success probability of S is given by P (S) ≥ 1

(qs)2P (B1).

Event B2
Let the input to the GDH challenge be (X0, Y0). Suppose that event B2 occurs with
non-negligible probability. The simulation of S proceeds in the same way as for event
B1 with the following changes. S additionally keeps a history H of M ’s queries.

• randomness(s): If sstatus = ⊥, then S returns ⊥. Else if s = s′ and there were
queries (randomness or cr-create) to all previous sessions of the same user s′actor ,
then S aborts. Else, S returns srand .

• H1(r, h): If r = ls∗ and h = skÂ, then S aborts. Otherwise S simulates a random
oracle as in the previous simulation.

Analysis of event B2
Similar to the analyses of the related event B2 in the proof of Proposition 7 and event
B1.
Event B3
Let the input to the GDH challenge be (X0, B). Suppose that event B3 occurs with
non-negligible probability. In this case, S chooses one user B̂ ∈ P at random from

140

B.2 Proof of Proposition 15

the set P and sets its long-term public key to B. S chooses long-term secret/public
key pairs for the remaining parties in P and stores the associated long-term secret
keys. Additionally S chooses two random values m,n ∈R {1, 2, ..., qs}. We denote
the m’th activated session by adversary M by s∗ and the n’th activated session by
s′. Suppose further that s∗actor = Â, s∗peer = B̂ and s∗role = I, w.l.o.g.. Algorithm S
maintains tables Q, J, T and L, all of which are initially empty. S also maintains a
variable ω initialized with 1.

1. create(Â, I, B̂) or cr-create(Â, I, str, B̂) to create session s∗: If create is issued, S
chooses s∗rand ∈R {0, 1}k. Else, S sets s∗rand ← str. S (a) returns the message X0,
where (X0, B) is the GDH challenge, and (b) stores the entry (s∗, s∗rand , ls∗ , skÂ, ∗)
in table Q, where ls∗ = (s∗rand , ls) if there exists a previously created session s of
user sactor = Â with an entry in table Q, and ls∗ = s∗rand if there no such session
exists.

2. create
(
P̂ , r, Q̂

)
to create session s: S checks whether P̂ ∈ P, Q̂ ∈ P, and

r ∈ {I,R}. If one of the checks fails, then S returns ⊥. Else, S initializes the
session variables according to the protocol specification, and stores an entry of
the form (s, srand , ls, sksactor , κ) ∈ (P × N)× {0, 1}k × {0, 1}∗ × (Zp ∪ {∗})× Zp
in table Q as follows:

• S chooses srand ∈R {0, 1}k (i. e. the randomness of session s),
• S chooses κ ∈R Zp,
• if there is no entry (s, srand , ls, sksactor , κ) in table Q such that sactor = P̂ ,

then S sets the value of ls to srand , else S sets the value of ls to (srand , ls′),
where s′ is the previous session with s′actor = sactor for which an entry in
table Q has been made.

• if sactor 6= B̂, then S stores the entry (s, srand , sdata, sksactor , κ) in Q, else S
stores the entry (s, srand , sdata, ∗, κ) in Q, and

• if r = I, then S returns the Diffie-Hellman exponential gκ to M , else S
returns ?.

3. cr-create
(
P̂ , r, str, Q̂

)
to create session s: S checks whether P̂ ∈ P , Q̂ ∈ P , and

r ∈ {I,R}. If one of the checks fails, then S returns ⊥. Else, S initializes the
session variables according to the protocol specification, and stores an entry of
the form (s, srand , ls, sksactor , κ) ∈ (P × N)× {0, 1}k × {0, 1}∗ × (Zp ∪ {∗})× Zp
in table Q as follows:

• if there is an entry (ri, hi, κi) in table J such that ri = (str, ls′), and
hi = skP̂ , where s′ is the previous session with s′actor = sactor for which
an entry in table Q has been made, then S sets ω ← κi, else S chooses
κ ∈R Zp and sets ω ← κ.

• if sactor 6= B̂, then S stores the entry (s, srand , ri, sksactor , ω) in Q, else S
stores the entry (s, srand , ls, ∗, ω) in Q with ls = (str, ls′),

• if r = I, then S returns the Diffie-Hellman exponential gκ to M , else S
returns ?.

4. S stores entries of the form (r, h, κ) ∈ {0, 1}∗ × Zp × Zp in table J . When M
makes a query of the form (r, h) to the random oracle for H1, answer it as
follows:

141

B Proofs of Chapter 5

• If r = ls∗ and h = skÂ, then S aborts.
• Else if (r, h, κ) ∈ J for some κ ∈ Zp, then S returns κ to M .
• Else if there exists an entry (s, srand , ls, sksactor , κ) in table Q with ls = r

and sksactor = h, then S returns κ to M and stores the entry (r, h, κ) in
table J .

• Else, S chooses κ ∈R Zp, returns it to M and stores the entry (r, h, κ) in
table J .

5. send(P̂ , i, V) to send message V to session s = (P̂ , i): If sstatus 6= active, then
S returns ⊥. Else if srole = I, then S does the following. If V /∈ G, then the
status of session s is set to rejected. Else, the status of session s is set to
accepted, and

• If there exists an entry (speer , sactor ,R, srecv , ssent , λ) in table T , then S
stores (sactor , speer , I, ssent , srecv , λ) in table T .

• Else if there exists an entry (σ1, σ2, σ3, sactor , speer , λ) in table L, for some
λ ∈ {0, 1}k, such that DDH(srecv , ssent , σ3) = 1, DDH(ssent , pkspeer , σ2) = 1
and DDH(srecv , pksactor , σ1) = 1, then S stores (sactor , speer , I, ssent , srecv , λ)
in table T .

• Else, S chooses µ ∈R {0, 1}k and stores the entry (sactor , speer , I, ssent , srecv ,
µ) in T .

Else if srole = R, then S does the following. If V /∈ G, then the status of session
s is set to rejected. Else, S sets the status of session s to accepted, returns
gκ to M , where κ denotes the last element of the entry (s, srand , ls, sksactor , κ) in
table Q, and proceeds in a similar way as in the previous case.

6. When M makes a query of the form
(
σ1, σ2, σ3, Q̂i, Q̂j

)
to the random oracle

for H2, answer it as follows:
• If

{
Q̂i, Q̂j

}
=
{
Â, B̂

}
, σ1 = Aκ, DDH(X0, B, σ2) = 1, and σ3 = Xκ

0 , where
κ denotes the last element of the entry (s′, s′rand , ls′ , sks′actor

, κ) in table Q,
then S aborts M and is successful by outputting CDH(X0, B) = σ2.

• Else if
(
σ1, σ2, σ3, Q̂i, Q̂j , λ

)
∈ L for some λ ∈ {0, 1}k, then S returns λ to

M .
• If

(
σ1, σ2, σ3, Q̂i, Q̂j , λ

)
∈ L for some λ ∈ {0, 1}k, then S returns λ to M .

• Else if there exist entries
(
Q̂i, Q̂j , I, U, V, λ

)
or
(
Q̂j , Q̂i,R, V, U, λ

)
in table

T , for some λ ∈ {0, 1}k and U, V ∈ G, such that DDH(V,U, σ3) = 1,
DDH(V, pkQ̂i

, σ1) = 1 and DDH(U, pkQ̂j
, σ2) = 1, then S returns λ to M

and stores the entry
(
σ1, σ2, σ3, Q̂i, Q̂j , λ

)
in table L.

• Else, S chooses µ ∈R {0, 1}k, returns it to M and stores the entry(
σ1, σ2, σ3, Q̂i, Q̂j , µ

)
in L.

7. randomness(s): If sstatus = ⊥, then S returns ⊥. Otherwise, S returns srand .
8. session-key(s): If sstatus 6= accepted, then S returns ⊥. Otherwise, S answers

this query by lookup in table T .
9. test-session(s): If s 6= s∗ or if s′ is not the origin-session for session s∗, then S

aborts; otherwise S answers the query in the appropriate way.

142

B.2 Proof of Proposition 15

10. corrupt(P̂): If P̂ /∈ P, then S returns ⊥. Else if P̂ = B̂, then S aborts. Else, S
returns skP̂ .

11. M outputs a guess: S aborts.

Analysis of event B3
Similar to the analysis of the related event B3 in the proof of Proposition 7.

Event (TO)c ∧DLc ∧K
The simulation and analysis are very similar to the simulation and analysis related to
event B3.

143

Bibliography
[1] P. Abeni, L. Bello, and M. Bertacchini. Exploiting DSA-1571: How to break

PFS in SSL with EDH. http://www.lucianobello.com.ar/exploiting_
DSA-1571/index.html (Accessed 05/11/2013).

[2] C. Adams, S. Farrell, T. Kause, and T. Mononen. Internet X.509 Public Key
Infrastructure Certificate Management Protocol (CMP). RFC 4210 (Proposed
Standard), September 2005. Updated by RFC 6712.

[3] J.H. An, Y. Dodis, and T. Rabin. On the security of joint signature and
encryption. In L.R. Knudsen, editor, Advances in Cryptology – EUROCRYPT
2002, volume 2332 of Lecture Notes in Computer Science, pages 83–107. Springer
Berlin Heidelberg, 2002.

[4] M. Arapinis, E. Ritter, and M. D. Ryan. Statverif: Verification of Stateful
Processes. In Proceedings of the 2011 IEEE 24th Computer Security Foundations
Symposium, CSF ’11. IEEE Computer Society, Washington, DC, USA, 2011.

[5] M. Artin. Algebra. Prentice–Hall, second edition, 2010.

[6] M. Barbosa and P. Farshim. Security analysis of standard authentication and
key agreement protocols utilising timestamps. In B. Preneel, editor, Progress
in Cryptology AFRICACRYPT 2009, volume 5580 of LNCS, pages 235–253.
Springer Berlin Heidelberg, 2009.

[7] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid. Recommen-
dation for key management — Part 1: General. NIST Special Publica-
tion, March 2007. http://csrc.nist.gov/publications/nistpubs/800-57/
sp800-57-Part1-revised2_Mar08-2007.pdf.

[8] E. Barker, D. Johnson, and M. Smid. Recommendation for pair–wise key estab-
lishment schemes using discrete logarithm cryptography (revised). NIST Special
Publication 800-56A, March 2007. http://csrc.nist.gov/publications/
nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf.

[9] E. Barker, D. Johnson, and M. Smid. Recommendation for pair-wise key
establishment schemes using discrete logarithm cryptography. NIST Special
Publication, March 2007. http://csrc.nist.gov/publications/nistpubs/
800-56A/SP800-56A_Revision1_Mar08-2007.pdf.

[10] D. Basin and C. Cremers. Degrees of security: Protocol guarantees in the face
of compromising adversaries. In Computer Science Logic, 24th International
Workshop, CSL 2010, 19th Annual Conference of the EACSL, volume 6247 of
LNCS, pages 1–18. Springer, 2010.

145

http://www.lucianobello.com.ar/exploiting_DSA-1571/index.html
http://www.lucianobello.com.ar/exploiting_DSA-1571/index.html
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf

Bibliography

[11] D. Basin and C. Cremers. Modeling and analyzing security in the presence of
compromising adversaries. In Computer Security – ESORICS 2010, volume
6345 of LNCS, pages 340–356. Springer, 2010.

[12] M. Bellare, Z. Brakerski, M. Naor, T. Ristenpart, G. Segev, H. Shacham,
and S. Yilek. Hedged Public-Key Encryption: How to protect against bad
randomness. In M. Matsui, editor, Advances in Cryptology – ASIACRYPT 2009,
volume 5912 of Lecture Notes in Computer Science, pages 232–249. Springer
Berlin Heidelberg, 2009.

[13] M. Bellare, R. Canetti, and H. Krawczyk. A modular approach to the design
and analysis of authentication and key exchange protocols (extended abstract).
In Proceedings of the thirtieth annual ACM symposium on Theory of computing,
STOC ’98, pages 419–428, New York, NY, USA, 1998. ACM.

[14] M. Bellare and G. Neven. Multi-signatures in the plain public-key model and a
general forking lemma. In A. Juels, R. N. Wright, and S. Vimercati, editors,
Proceedings of the 13th ACM Conference on Computer and Communications
Security, CCS ’06, pages 390–399. ACM, 2006.

[15] M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange
secure against dictionary attacks. In 19th International Conference on Theory
and Application of Cryptographic Techniques, EUROCRYPT’00, pages 139–155.
Springer, 2000.

[16] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In Proceedings of the 1st ACM Conference on
Computer and Communications Security, CCS ’93, pages 62–73, New York, NY,
USA, 1993. ACM.

[17] M. Bellare and P. Rogaway. Entity authentication and key distribution. In
13th annual International Cryptology Conference on Advances in Cryptology,
CRYPTO ’93, pages 232–249. Springer New York, NY, USA, 1994.

[18] M. Bellare and P. Rogaway. Provably secure session key distribution: the three
party case. In 27th annual ACM symposium on Theory of computing, STOC
’95, pages 57–66. ACM New York, NY, USA, 1995.

[19] S. Blake-Wilson, D. Johnson, and A. Menezes. Key agreement protocols and
their security analysis. In M. Darnell, editor, IMA Int. Conf., volume 1355 of
Lecture Notes in Computer Science, pages 30–45. Springer, 1997.

[20] S. Blake-Wilson, D. Johnson, and A. Menezes. Key agreement protocols and
their security analysis. In Michael Darnell, editor, Crytography and Coding,
volume 1355 of Lecture Notes in Computer Science, pages 30–45. Springer Berlin
Heidelberg, 1997.

[21] S. Blake-Wilson and A. Menezes. Entity authentication and authenticated
key transport protocols employing asymmetric techniques. In B. Christianson,

146

Bibliography

B. Crispo, M. Lomas, and M. Roe, editors, Security Protocols, volume 1361 of
Lecture Notes in Computer Science, pages 137–158. Springer Berlin Heidelberg,
1998.

[22] S. Blake-Wilson and A. Menezes. Unknown key-share attacks on the Station-to-
Station (STS) protocol. In Imai H. and Zheng Y., editors, PKC ’99 Proceedings
of the Second International Workshop on Practice and Theory in Public Key
Cryptography, volume 1560 of LNCS, pages 154–170. Springer, 1999.

[23] Simon Blake-Wilson and Alfred Menezes. Authenticated Diffie-Hellman key
agreement protocols. In Stafford E. Tavares and Henk Meijer, editors, Selected
Areas in Cryptography, volume 1556 of LNCS, pages 339–361. Springer, 1998.

[24] A. Boldyreva, M. Fischlin, A. Palacio, and B. Warinschi. A closer look at
pki: Security and efficiency. In Tatsuaki Okamoto and Xiaoyun Wang, editors,
Public Key Cryptography–PKC 2007, volume 4450 of Lecture Notes in Computer
Science, pages 458–475. Springer Berlin Heidelberg, 2007.

[25] D. Boneh. The decision diffie-hellman problem. In J.P. Buhler, editor, Algorith-
mic Number Theory, volume 1423 of Lecture Notes in Computer Science, pages
48–63. Springer Berlin Heidelberg, 1998.

[26] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil Pairing. In
Proceedings of the 7th International Conference on the Theory and Application
of Cryptology and Information Security: Advances in Cryptology, ASIACRYPT
’01, pages 514–532, London, UK, 2001. Springer–Verlag.

[27] D. Boneh, E. Shen, and B. Waters. Strongly unforgeable signatures based on
computational Diffie-Hellman. In M. Yung, Y. Dodis, A. Kiayias, and T. Malkin,
editors, PKC’06, volume 3958 of LNCS, pages 229–240. Springer, 2006.

[28] N. Borisov, I. Goldberg, and E. Brewer. Off-the-record communication, or, why
not to use PGP. In Proceedings of the 2004 ACM workshop on Privacy in the
electronic society, pages 77–84. ACM Press, 2004.

[29] J.W. Bos, J.A. Halderman, N. Heninger, J. Moore, M. Naehrig, and E. Wustrow.
Elliptic curve cryptography in practice. Cryptology ePrint Archive, Report
2013/734, 2013. http://eprint.iacr.org/.

[30] C. Boyd, Y. Cliff, J.M. González Nieto, and K.G. Paterson. One-round key
exchange in the standard model. Int. J. Applied Cryptography, 1:181–199, 2009.
Inderscience Publishers.

[31] C. Boyd and J. González Nieto. On Forward Secrecy in One-Round Key
Exchange. In 13th IMA International Conference, IMACC 2011, volume 7089
of LNCS, pages 451–468. Springer, 2011.

[32] E. Bresson, M. Manulis, and J. Schwenk. On security models and compilers for
group key exchange protocols. Cryptology ePrint Archive, Report 2006/385,
2006. http://eprint.iacr.org/.

147

http://eprint.iacr.org/
http://eprint.iacr.org/

Bibliography

[33] C. Brzuska, M. Fischlin, B. Warinschi, and S.C. Williams. Composability
of bellare-rogaway key exchange protocols. In Proceedings of the 18th ACM
conference on Computer and communications security, CCS ’11, pages 51–62,
New York, NY, USA, 2011. ACM.

[34] R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their
use for building secure channels. In B. Pfitzmann, editor, EUROCRYPT’01,
volume 2045 of LNCS, pages 453–474. Springer London, UK, 2001. full version
on eprint.

[35] S. Chatterjee, A. Menezes, and B. Ustaoglu. Combined security analysis of the
one- and three-pass unified model key agreement protocols. In G. Gong and
K.C. Gupta, editors, Progress in Cryptology - INDOCRYPT 2010, volume 6498
of Lecture Notes in Computer Science, pages 49–68. Springer Berlin Heidelberg,
2010.

[36] Q. Cheng, C. Ma, and X. Hu. A new strongly secure authenticated key exchange
protocol. In J. H. Park, H-H. Chen, M. Atiquzzaman, C. Lee, T-H. Kim, and
S-S. Yeo, editors, ISA ’09, volume 5576 of LNCS, pages 135–144. Springer, 2009.

[37] K-K. R. Choo, C. Boyd, and Y. Hitchcock. Examining indistinguishability-
based proof models for key establishment protocols. In Proceedings of the
11th international conference on Theory and Application of Cryptology and
Information Security, ASIACRYPT’05, pages 585–604, Berlin, Heidelberg, 2005.
Springer-Verlag.

[38] S. S. M. Chow and K-K. R. Choo. Strongly-secure identity-based key agreement
and anonymous extension. In J. A. Garay, A. K. Lenstra, M. Mambo, and
R. Peralta, editors, Information Security, ISC’07, volume 4779 of LNCS, pages
203–220. Springer, 2007.

[39] C. Cremers. The Scyther Tool: Verification, falsification, and analysis of security
protocols. In Proc. CAV, volume 5123 of LNCS, pages 414–418. Springer, 2008.

[40] C. Cremers. Session-StateReveal is stronger than eCK’s EphemeralKeyReveal:
Using automatic analysis to attack the NAXOS protocol. International Journal
of Applied Cryptography (IJACT), 2:83–99, 2010. Inderscience Publishers.

[41] C. Cremers. Examining indistinguishability-based security models for key
exchange protocols: the case of CK, CK-HMQV, and eCK. In Proceedings of the
6th ACM Symposium on Information, Computer and Communications Security,
ASIACCS ’11, pages 80–91, New York, NY, USA, 2011. ACM.

[42] C. Cremers and M. Feltz. One-round strongly secure key exchange with perfect
forward secrecy and deniability. Cryptology ePrint Archive, Report 2011/300,
2011. http://eprint.iacr.org/.

[43] O. Dagdelen and M. Fischlin. Security analysis of the extended access control
protocol for machine readable travel documents. In Proceedings of the 13th

148

http://eprint.iacr.org/

Bibliography

international conference on Information security, ISC’10, pages 54–68, Berlin,
Heidelberg, 2011. Springer-Verlag.

[44] A.W. Dent. A note on game-hopping proofs. Cryptology ePrint Archive, Report
2006/260, 2006. http://eprint.iacr.org/2006/260.

[45] W. Diffie and M.E. Hellman. New Directions in Cryptography. IEEE Transac-
tions on Information Theory, 22(6):644–654, 1976. IEEE Press.

[46] FOX IT. Black Tulip: Report of the investigation into the DigiNo-
tar Certificate Authority breach, 2012. http://www.rijksoverheid.
nl/bestanden/documenten-en-publicaties/rapporten/2012/08/13/
black-tulip-update/black-tulip-update.pdf (Accessed 12/03/2013).

[47] International Organization for Standardization, Genève, Switzerland. ISO/IEC
IS 9798–3, Information technology–Security techniques–Entity authentication
mechanisms–part 3: Entity authentication using asymmetric techniques, 1993.

[48] International Organization for Standardization, Genève, Switzerland. ISO/IEC
11770–2, Information technology–Security techniques–Key management–part 2:
Mechanisms using symmetric techniques, 1996.

[49] R. Gennaro, S. Halevi, and T. Rabin. Secure hash-and-sign signatures without
the random oracle. In J. Stern, editor, Advances in Cryptology – EUROCRYPT
1999, volume 1592 of Lecture Notes in Computer Science, pages 123–139. Springer
Berlin Heidelberg, 1999.

[50] R. Gennaro, H. Krawczyk, and T. Rabin. Okamoto-Tanaka revisited: fully
authenticated Diffie-Hellman with minimal overhead. In J. Zhou and M. Yung,
editors, ACNS’10, pages 309–328. Springer, 2010.

[51] I. Goldberg, D. Stebila, and B. Ustaoglu. Anonymity and one-way authentication
in key exchange protocols. Designs, Codes and Cryptography, 67(2):245–269,
2013. Springer US.

[52] O. Goldreich. On Post-Modern Cryptography. Cryptology ePrint Archive,
Report 2006/461, 2006. http://eprint.iacr.org/.

[53] S. Goldwasser and S. Micali. Probabilistic encyption. Journal of Computer and
System Sciences, 28(2):270–299, 1984. Academic Press.

[54] S. Goldwasser, S. Micali, and R.L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM J. Comput., 17(2):281–308,
April 1988. Society for Industrial and Applied Mathematics.

[55] F. Hao. On robust key agreement based on public key authentication. In
Financial Cryptography, volume 6052 of LNCS, pages 383–390. Springer, 2010.

[56] I.R. Jeong, J. Katz, and D.H. Lee. One-round Protocols for Two-Party Au-
thenticated Key Exchange, 2008. http://www.cs.umd.edu/~jkatz/papers/
1round_AKE.pdf.

149

http://eprint.iacr.org/2006/260
http://www.rijksoverheid.nl/bestanden/documenten-en-publicaties/rapporten/2012/08/13/black-tulip-update/black-tulip-update.pdf
http://www.rijksoverheid.nl/bestanden/documenten-en-publicaties/rapporten/2012/08/13/black-tulip-update/black-tulip-update.pdf
http://www.rijksoverheid.nl/bestanden/documenten-en-publicaties/rapporten/2012/08/13/black-tulip-update/black-tulip-update.pdf
http://eprint.iacr.org/
http://www.cs.umd.edu/~jkatz/papers/1round_AKE.pdf
http://www.cs.umd.edu/~jkatz/papers/1round_AKE.pdf

Bibliography

[57] A. Joux and K. Nguyen. Separating Decision Diffie-Hellman from Computational
Diffie-Hellman in cryptographic groups. Journal of Cryptology, 16(4):239–247,
2003. Springer-Verlag.

[58] M. Just and S. Vaudenay. Authenticated multi-party key agreement. In Kwangjo
Kim and Tsutomu Matsumoto, editors, Advances in Cryptology–ASIACRYPT
’96, volume 1163 of Lecture Notes in Computer Science, pages 36–49. Springer
Berlin Heidelberg, 1996.

[59] B.S.JR. Kaliski. An unknown key-share attack on the MQV key agreement
protocol. In ACM Transactions on Information and System Security (TISSEC),
volume 4, pages 275–288. ACM New York, NY, USA, August 2001.

[60] J. Katz and Y. Lindell. Introduction to Modern Cryptography. Chapman
Hall/CRC, 2008.

[61] J. Katz and M. Yung. Scalable protocols for authenticated group key exchange.
In D. Boneh, editor, Advances in Cryptology – CRYPTO 2003, volume 2729,
pages 110–125. Springer, 2003.

[62] N. Koblitz and A.J. Menezes. Another look at “Provable Security”. Journal of
Cryptology, 20(1):3–37, 2007. Springer-Verlag.

[63] H. Krawczyk. SIGMA: The ‘SIGn–and–MAc’ Approach to authenticated diffie-
hellman and its use in the IKE protocols. In D. Boneh, editor, Advances in
Cryptology – CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science,
pages 400–425. Springer Berlin Heidelberg, 2003.

[64] H. Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol. In
V. Shoup, editor, Advances in Cryptology - CRYPTO 2005, volume 3621 of
LNCS, pages 546–566. Springer, 2005.

[65] H. Krawczyk. HMQV: A High-Performance Secure Diffie-Hellman Protocol.
Cryptology ePrint Archive, Report 2005/176, 2005. http://eprint.iacr.org/.

[66] C. Kudla and K. G. Paterson. Modular security proofs for key agreement
protocols. In Advances in Cryptology - ASIACRYPT 2005, volume 3788 of
LNCS, pages 549–565. Springer Berlin Heidelberg, 2005.

[67] B.A. LaMacchia, K. Lauter, and A. Mityagin. Stronger security of authenticated
key exchange. Cryptology ePrint Archive, Report 2006/073, 2006. http:
//eprint.iacr.org/.

[68] B.A. LaMacchia, K. Lauter, and A. Mityagin. Stronger security of authenticated
key exchange. In W. Susilo, J. K. Liu, and Y. Mu, editors, ProvSec’07, volume
4784 of LNCS, pages 1–16. Springer, 2007.

[69] K. Lauter and A. Mityagin. Security analysis of KEA authenticated key exchange
protocol. In Public Key Cryptography – PKC 2006, 9th International Conference
on Theory and Practice in Public-Key Cryptography, volume 3958/2006 of LNCS,
pages 378–394. Springer, 2006.

150

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

Bibliography

[70] L. Law, A. Menezes, M. Qu, J. Solinas, and S. Vanstone. An efficient protocol for
authenticated key agreement. Designs, Codes and Cryptography, 28(2):119–134,
2003. Kluwer Academic Publishers.

[71] J. Lee and C.S. Park. An efficient authenticated key exchange protocol with
a tight security reduction. Cryptology ePrint Archive, Report 2008/345, 2008.
http://eprint.iacr.org/.

[72] J. Lee and J.H. Park. Authenticated key exchange secure under the computa-
tional Diffie-Hellman assumption. Cryptology ePrint Archive, Report 2008/344,
2008. http://eprint.iacr.org/.

[73] C. Lim and P. Lee. A key recovery attack on discrete log-based schemes using a
prime order subgroup. In Jr. Kaliski, BurtonS., editor, Advances in Cryptology–
CRYPTO ’97, volume 1294 of Lecture Notes in Computer Science, pages 249–263.
Springer Berlin Heidelberg, 1997.

[74] C. H. Lim and P. J. Lee. Authenticated session keys and their server-aided
computation. Technical report, Pohang University of Science and Technology,
Korea, 2006.

[75] W. Mao and K. G. Paterson. On the plausible deniability feature of internet
protocols. Preprint, www.isg.rhul.ac.uk/~kp/IKE.ps (Accessed 17/02/2014),
2002.

[76] R. Marvin. Google admits an Android crypto PRNG flaw led to Bitcoin heist
(August 2013). http://sdt.bz/64008 (Accessed 01/10/2013).

[77] U. Maurer. Abstract models of computation in cryptography. In N. Smart, editor,
Cryptography and Coding 2005, volume 3796 of LNCS, pages 1–12. Springer,
December 2005.

[78] K. S. McCurley. A key distribution system equivalent to factoring. Journal of
Cryptology, 1(2):95–105, 1988. Springer-Verlag.

[79] S. Meier, B. Schmidt, C. Cremers, and D. Basin. The TAMARIN Prover for
the Symbolic Analysis of Security Protocols. In N. Sharygina and H. Veith,
editors, Computer Aided Verification, volume 8044 of Lecture Notes in Computer
Science, pages 696–701. Springer Berlin Heidelberg, 2013.

[80] A. Menezes. Another look at HMQV. Cryptology ePrint Archive, Report
2005/205, 2005. http://eprint.iacr.org/.

[81] A. Menezes and B. Ustaoglu. On the Importance of Public-Key Validation in
the MQV and HMQV Key Agreement Protocols. In R. Barua and T. Lange,
editors, INDOCRYPT 2006, volume 4329 of LNCS, pages 133–147. Springer,
2006.

[82] A. Menezes and B. Ustaoglu. Comparing the pre- and post-specified peer
models for key agreement. In Proceedings of the 13th Australasian conference

151

http://eprint.iacr.org/
http://eprint.iacr.org/
www.isg.rhul.ac.uk/~kp/IKE.ps
http://sdt.bz/64008
http://eprint.iacr.org/

Bibliography

on Information Security and Privacy, ACISP ’08, pages 53–68. Springer-Verlag
Berlin, Heidelberg, 2008.

[83] A. Menezes and B. Ustaoglu. Security arguments for the UM key agreement
protocol in the NIST SP 800-56A standard. In M. Abe and V. Gligor, editors,
ASIACCS, pages 261–270. ACM, 2008.

[84] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptogra-
phy. CRC Press, Boca Raton, FL, USA, 1996.

[85] A. Menezes, S. Vanstone, and T. Okamoto. Reducing elliptic curve logarithms
to logarithms in a finite field. In Proceedings of the Twenty-third Annual ACM
Symposium on Theory of Computing, STOC ’91, pages 80–89, New York, NY,
USA, 1991. ACM.

[86] M. Mueller. Debian OpenSSL predictable PRNG Bruteforce SSH exploit, 2008.
http://www.exploit-db.com/exploits/5622/ (Accessed 23/05/2013).

[87] T. Okamoto and D. Pointcheval. The gap-problems: a new class of problems for
the security of cryptographic schemes. In K. Kim, editor, PKC’2001, volume
1992 of LNCS, pages 104–118. Springer, 2001.

[88] N. Perlroth, J. Larson, and S. Scott. NSA able to foil basic safeguards of
privacy on web (September 2013). http://www.nytimes.com/2013/09/06/
us/nsa-foils-much-internet-encryption.html?pagewanted=1&_r=0 (Ac-
cessed 01/10/2013).

[89] D. Pointcheval and J. Stern. Security arguments for digital signatures and blind
signatures. Journal of Cryptology, 13(3):361–396, 2000. Springer-Verlag.

[90] M. Di Raimondo, R. Gennaro, and H. Krawczyk. Deniable authentication
and key exchange. Cryptology ePrint Archive, Report 2006/280, 2006. http:
//eprint.iacr.org/.

[91] T. Ristenpart and S. Yilek. The power of proofs-of-possession: Securing multi-
party signatures against rogue-key attacks. In Proceedings of the 26th Annual
International Conference on Advances in Cryptology, EUROCRYPT ’07, pages
228–245, Berlin, Heidelberg, 2007. Springer-Verlag.

[92] T. Ristenpart and S. Yilek. When good randomness goes bad: Virtual machine
reset vulnerabilities and hedging deployed cryptography. In Proceedings of the
Network and Distributed System Security Symposium, NDSS’10. The Internet
Society, 2010.

[93] J. Schaad. Internet X.509 Public Key Infrastructure Certificate Request Message
Format (CRMF). RFC 4211 (Proposed Standard), September 2005.

[94] B. Schmidt, S. Meier, C. Cremers, and D. Basin. Automated analysis of Diffie-
Hellman Protocols and Advanced Security Properties. In Proceedings of the 25th
IEEE Computer Security Foundations Symposium (CSF), pages 78–94. IEEE
Computer Society, 2012.

152

http://www.exploit-db.com/exploits/5622/
http://www.nytimes.com/2013/09/06/us/nsa-foils-much-internet-encryption.html?pagewanted=1&_r=0
http://www.nytimes.com/2013/09/06/us/nsa-foils-much-internet-encryption.html?pagewanted=1&_r=0
http://eprint.iacr.org/
http://eprint.iacr.org/

Bibliography

[95] B. Schneier. NSA surveillance: A guide to staying secure (Septem-
ber 2013). http://www.theguardian.com/world/2013/sep/05/
nsa-how-to-remain-secure-surveillance (Accessed 27/09/2013).

[96] J. Schwenk. Modelling time, or a step towards reduction-based security proofs
for OTP and Kerberos. Cryptology ePrint Archive, Report 2013/604, 2013.
http://eprint.iacr.org/.

[97] Z. Shmuely. Composite Diffie-Hellman public-key generating systems are hard to
break. Technical Report No. 356, Computer Science Department, Technion-Israel
Institute of Technology, 1985.

[98] V. Shoup. Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332, 2006. http://eprint.iacr.org/.

[99] V. Shoup. On formal methods for secure key exchange (version 4), November
1999. revision of IBM Research Report RZ 3120 (April 1999) http://www.
shoup.net/papers/skey.pdf.

[100] D. Shumow and N. Ferguson. On the Possibility of a Back Door in the NIST
SP800-90 Dual Ec Prng. http://rump2007.cr.yp.to/15-shumow.pdf (Ac-
cessed 15/10/2013).

[101] N.P. Smart. The discrete logarithm problem on elliptic curves of trace one.
Journal of Cryptology, 12(3):193–196, 1999. Springer-Verlag.

[102] P. Turner, W. Polk, and E. Barker. ITL Bulletin for July 2012: Preparing for
and responding to certification authority compromise and fraudulent certificate
issuance, 2012. http://csrc.nist.gov/publications/nistbul/july-2012_
itl-bulletin.pdf (Accessed 12/03/2013).

[103] S. Turner. The application/pkcs10 Media Type. RFC 5967 (Informational),
August 2010.

[104] B. Ustaoglu. Obtaining a secure and efficient key agreement protocol from
(H)MQV and NAXOS. Cryptology ePrint Archive, Report 2007/123, 2007.
Version June 22, 2009.

[105] B. Ustaoglu. Obtaining a secure and efficient key agreement protocol from
(H)MQV and NAXOS. Designs, Codes and Cryptography, 46(3):329–342, 2008.
Kluwer Academic Publishers.

[106] B. Ustaoglu. Comparing SessionStateReveal and EphemeralKeyReveal for Diffie-
Hellman Protocols. In J. Pieprzyk and F. Zhang, editors, ProvSec, volume 5848
of Lecture Notes in Computer Science, pages 183–197. Springer, 2009.

[107] T. van Deursen, S. Mauw, S. Radomirovic, and P. Vullers. Secure Ownership
and Ownership Transfer in RFID systems. In Computer Security – ESORICS
2009, volume 5789 of LNCS, pages 637–654. Springer Berlin Heidelberg, 2009.

153

http://www.theguardian.com/world/2013/sep/05/nsa-how-to-remain-secure-surveillance
http://www.theguardian.com/world/2013/sep/05/nsa-how-to-remain-secure-surveillance
http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.shoup.net/papers/skey.pdf
http://www.shoup.net/papers/skey.pdf
http://rump2007.cr.yp.to/15-shumow.pdf
http://csrc.nist.gov/publications/nistbul/july-2012_itl-bulletin.pdf
http://csrc.nist.gov/publications/nistbul/july-2012_itl-bulletin.pdf

Bibliography

[108] G. Yang, S. Duan, D.S. Wong, C.H. Tan, and H. Wang. Authenticated key
exchange under bad randomness. In Proceedings of the 15th international
conference on Financial Cryptography and Data Security, FC’11, pages 113–126,
Berlin, Heidelberg, 2012. Springer-Verlag.

[109] S. Yilek, E. Rescorla, H. Shacham, B. Enright, and S. Savage. When private keys
are public: results from the 2008 Debian OpenSSL vulnerability. In Proceedings
of the 9th ACM SIGCOMM conference on Internet measurement conference,
IMC ’09, pages 15–27. ACM New York, NY, USA, 2009.

[110] K. Zetter. How a Crypto ’Backdoor’ Pitted the Tech World Against
the NSA (September 2013). http://www.wired.com/threatlevel/2013/09/
nsa-backdoor/all/ (Accessed 01/10/2013).

154

http://www.wired.com/threatlevel/2013/09/nsa-backdoor/all/
http://www.wired.com/threatlevel/2013/09/nsa-backdoor/all/

Index

PFS model, 26
wPFS model, 27
eCKw model, 28
eCKpassive model, 33
Ω−AKE model, 95
Ω−INDP-DH model, 96
Ω−INDP model, 95
eCK-PFS model, 28
ΩAKE∩SL model, 91
ΩINDP-DH∩SL model, 94
ΩINDP∩SL model, 93
π1 protocol, 53
π1-core protocol, 48
ΩAKE∩ISM model, 100
ΩAKE model, 99
ΩINDP-DH∩ISM model, 101
ΩINDP∩ISM model, 101
h-message protocol, 83

AKE security, 25, 86
ASICS model, 62
ASICS protocol, 56
ASICS security, 63

certificate, 56
certification authority, 56
chosen randomness, 84
CMNAX protocol, 104
CMQV protocol, 73
CMQV’ protocol, 73
CNX protocol, 102

DH-type AKE protocol, 31
DH-type ASICS protocol, 67

equally strong models, 72

f(CMQV’) protocol, 74

game state, 82

hregister query, 59

matching sessions, 25, 85

NAXOS protocol, 41
npkregister query, 60

origin-session, 27, 90

partially matching, 89
perfect forward secrecy, 26
pkregister query, 60
protocol class AKE, 87
protocol class ISM, 100
protocol class INDP, 88
protocol class INDP-DH, 88

relative strength of security between
models, 29

repeated randomness, 97
reset-and-replay attack, 104

security-strengthening protocol trans-
formation, 32

session-specific memory, 82
SIG(NAXOS) protocol, 48
stateful protocol, 89
stateless protocol, 89
strong partnering, 67

transformation f , 71
transformation SIG, 32

UKS attack against KEA+, 65
user memory, 82

verification procedure, 57

weak perfect forward secrecy, 27

155

	Abstract
	Introduction
	Motivation
	Related work
	Results
	Contributions
	Outline and publications

	Background
	Groups
	Computational hardness assumptions
	Digital signature schemes
	The random oracle model

	Stronger Security in Extended Models
	Perfect Forward Secrecy under Actor Compromise and Randomness Reveal
	Defining new eCK-like security models
	Framework for security models
	eCKw: strengthening weak-PFS
	eCK-PFS: integrating perfect forward secrecy into eCKw.
	Relations between the security models

	A security-strengthening transformation from eCKw to eCK-PFS
	Protocol class DH-2
	Protocol transformation SIG
	Security analysis of SIG
	Comparison of SIG to MAC

	Application of SIG to concrete protocols
	NAXOS revisited
	Proving 1 secure in eCK-PFS via 1-core

	Summary

	Authenticated Key Exchange Security Incorporating Certification Systems
	ASICS model family
	Security model
	Security experiment

	Capturing attacks
	Existing attacks from the literature
	New attack against KEA+ based on impersonation attack during key registration

	Achieving ASICS security
	Security against adversarial registration of valid keys
	Security against adversarial registration of invalid keys

	Applications
	CMQV'
	Discussion

	Lessons learned and recommendations
	Summary

	Stronger Security via Impossibility Results
	On the Limits of AKE Security with an Application to Bad Randomness
	AKE framework
	Security model
	Security experiment

	Protocol Classes
	Classes AKE, INDP, and INDP-DH
	Stateless and stateful protocols

	Impossibility results and strong models for stateless protocols
	Models capturing chosen-randomness attacks
	Deriving models with chosen-randomness
	Insecurity of stateless protocols against chosen-randomness attacks
	Repeated randomness failures

	Impossibility results and strong models for stateful protocols
	Construction of strongly secure stateful protocols
	Protocol CNX
	Protocol NXPR

	Relations between the security models
	Protocol-security hierarchy

	Summary

	Related Work
	Security protocol analysis
	Stateless and stateful protocols

	Conclusions
	Summary
	Future work
	Final remarks

	Analysis of CMQV'
	Proofs of Chapter 5
	Proof of Proposition 13
	Proof of Proposition 15

	Bibliography
	Index

