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Laser Range Imaging using Mobile Robots:
From Pose Estimation to 3d-Models

Björn Jensen, Jan Weingarten, Sascha Kolski, Roland Siegwart
{bjoern.jensen, jan.weingarten, sascha.kolski, roland.siegwart}@epfl.ch

EPFL-I2S-ASL, Autonomous Systems Lab, 1015 Lausanne, Switzerland

Abstract

This paper addresses the question of generating large-scale 3d models from a set of 2d
laser scans. We investigate two configurations: a rotating laser scanner and a setup of two
orthogonally mounted laser range finders. Both systems are used to combine data from
several viewpoints into a map using global registration. A feature-based and a raw-data
based method for pose estimation and global registration are presented. These approaches
are applied to data from indoor and outdoor scenes. For data acquisition the Biba-robot
and a Smart-car were used. With additional information from a panoramic camera a
textured 3d model of a part of EPFL campus was created. The precision of the resulting
3d model is evaluated by comparing it to an orthophoto of the environment.

1 Introduction

Laser sensors provide range images consisting of a set of point-measurements. Usually, such
a range image is acquired from one view-point by ”moving” the laser beam using rotating
mirrors/prisms. The orientation of the laser beam can be easily measured and converted into
coordinates of the image. Another possibility of acquiring range images is moving the en-
tire setup through an environment and measuring with a 2d laser orthogonally to the motion
trajectory.

With such a configuration the question of determining the displacement of the setup arises.
This is a typical application of mobile robotics, which addresses the following questions:

• Where am I ?
• Where am I going ?
• How do I go there ?

The answer to these three questions can be found in the spatial representation of the envi-
ronment and of the robot’s position therein. The first question is addressed in the robot’s
localization module, which determines the robot’s pose with respect to a map of the environ-
ment. The answer to the second question to where the goal is located, may be specified by a
user or derived from some high-level reasoning on a specific task. In the interactive case it is
necessary, that robot and user share a common map, so that the user can specify the location in
the map. The answer to the last question is given by the robot’s path planning and navigation.

In the following we focus on localization and map building. Most of the work in mobile
robotics regarding these topics is based on two-dimensional data, where the robot is assumed
to move on flat ground. With the increased interest in outdoor robotics and the emergence of
flying robots, attention shifted to three-dimensional data.
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Figure 1: General overview of the approaches for localization and mapping: a) shows a raw data
based approach and b) a feature-based approach to pose estimation and incremental mapping.

Research in mobile robotics is concerned with finding solutions to the problem of localization
and map building which enable the robot to autonomously localize itself and create a map. To
create globally consistent maps it is necessary for the robot to be continuously localized while
registering new data with the map it is building. This is known as SLAM (Simultaneous
Localization and Mapping). It is a boot-strapping process where a map is created without
a-priori information.

Another special requirement in mobile robotics is that the environment is in most cases
sensed on-the-fly, that is while the robot is continously moving. That is why sensors which give
a wide-angle (or even panoramic) representation at a high frequency even if the data is sparse
are favoured, over a high-resolution representation, which takes a longer acquisition time.

In this paper we present approaches for 3d-mapping using range data, which were experi-
mentally tested using two systems:

• Indoor robot: a mobile robot equipped with a number of sensors for navigation and a
rotating laser for 3d range image acquisition.

• Outdoor robot: a modified Smart-car with two orthogonally mounted (other angle pos-
sible) laser range finders for outdoor 3d-mapping.

1.1 Related Work

Generating 3d maps with mobile robots is a recent research topic which is actively investigated:
Hähnel et al. [4] build 3d models with a laser scanner mounted vertically on a mobile robot
equipped with a horizontal 2d localization system. Liu et al. [7] simplify these models by ex-
tracting planes using an expectation maximization algorithm and include intensity information.
Moravec et al. [8] work with evidence grids in 3d space based on stereo vision and Surmann
et al. [10] reconstruct abandoned mines by aligning point clouds using the three-dimensional
ICP (iterative closest point) algorithm. Other examples are mapping of urban areas [14] or
helicopter mapping [13]. Besides 2d laser scanners and stereo vision, cameras producing dense
three-dimensional data in real-time have recently become available ensuring further progress [6].
In this paper, two sensor setups have been used which will be presented in the next section.
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Figure 2: a) The BIBA-robot equipped with a rotating SICK laser scanner for 3D-range images.
b) The Smart-car equipped with additional sensors for improved pose estimation and range
image acquisition.

1.2 Overview

We present approaches to estimate poses of moving vehicles with respect to a self-generated
map. This requires localization and mapping. In a first step the vehicle pose with respect to
its last pose is computed. Here, a displacement is estimated fusing information from odomerty
and other sensors. This information is then fed to the map generation and pose correction,
where the scan data is registered with the map acquired so far and the vehicle pose is estimated
with respect to this map.

This process can be run on raw-data or using features. Features have usually the advantage
of reducing the computational requirements of localization and mapping. However, this limits
the system to surroundings where such features are available. Additionally, a feature extraction
step is required.

Here, two systems are used: an indoor robot moving in stop-and-go mode using a rotat-
ing laser range finder for range image acquisition and an outdoor system moving continously
acquiring data with an orthogonal setup of lasers. The outdoor system runs on the raw-data
approach shown in figure 1 a). The indoor system uses the feature-based approach shown in
figure 1 b).

In the following section the robotic systems and the sensors are presented. Kalman-filter
based sensor fusion combining odometry and inertia measurements to obtain pose estimations
is explained in section 3.2. This information is then fed to the incremental map generation
and pose estimation in section 4. This process may be raw-data or feature based, in section 5
the feature extraction from range image data is explained. Experiments and results for pose
estimation, mapping and feature extraction and shown in section 6.

2 Systems

Our approaches are tested on two systems shown in figure 2. The Biba-robot is used indoors
in stop-and-go mode with a rotating laser range finder for range image acquisition and the
Smart-car, which is equipped with additional sensors for improved pose estimation and range
image acquisition is used in continuous motion. In the following both platforms and the sensors
are presented in detail.



2.1 Robotic Platforms

2.1.1 BIBA-robot

The BIBA robot, shown in figure 2 a) is designed for indoor use. It is a non-holonomic differ-
ential drive robot and can move up to 1.0 m/s. It is running XOberon, a real-time operating
system handling data acquistion and actuator control.

It is equipped with two SICK LMS 200 laser range finders measuring a horizontal plane at
0.55 m above the ground. For the indoor experiments the lasers are run in a high-precision
mode (8.0 m, 0.5◦ resolution and an accuracy of 1 mm). Additionally a rotating laser range
finder is mounted providing the robot with 3d range image information. The horizontal laser
scanners provide the robot with a 360◦ view of its environment. Scans are available at 37 Hz
and are read over a 500 kBaud serial line, which allows autonomous navigation and obstacle
avoidance in real-time.

2.1.2 Smart-car

The Smart is a regular passenger car which was slightly modified for our experiments. Since
it is a modified car we are currently limited to the premises of EPFL campus for experiments.
Those modifications were: adding sensors and interfacing the CAN-bus system to access data
on the dynamic state of the vehicle, particularly the wheel speed and steering angle. Additional
data on the dynamic state of the vehicle is provided by an inertia measurement unit (IMU).
To measure the environment further sensors were added such as a setup of two orthogonally
mounted laser range sensors and a panoramic color camera.

At the core of the system is a standard laptop computer for data acquisition running the
Linux operating system. It is connected to the entire sensor setup and the CAN-bus. The
software platform is based on GenoM [3], a real-time framework for Linux. It allows data
acquisition with a rate of 100 Hz for the wheel encoders and IMU, 10 Hz for both laser scanners
and 30 fps for the panoramic camera.

2.2 Sensors

Regarding the sensors we distinguish proprioceptive and extereoceptive sensors. Proprioceptive
sensors measure data internal to the system, in our case these are: wheel encoders and inertia
measurements which are dedicated to one platform.

The extereoceptive sensors such as rotating laser range finder, panoramic camera, orthogonal
laser setup can be used interchangeably between the platforms.

2.2.1 Laser Range Finder

For sensing the environment SICK LMS 200 laser range finders are used on our robotic plat-
forms. This is configurable range finder based on time of flight measurements. The angular
resolution can be configured to 1 or 0.5 degree. The measuring range can be 8 to 80 meters
depending on the setup. This laser measures in a plane.

We use two sensor setups to obtain range images. In the first a laser is mounted on a
rotating plate. This is shown in figure 2 a) together with the Biba-robot. The second setup
consists of two lasers are mounted orthogonally as shown in figure 3.



Rotating Range Sensor As depicted in Figure 2 a), the rotation unit of 3d laser scanner the
developed at our lab uses a stepping motor connected via a v-ribbed belt transmission to the
rotation axis of the laser scanner. The resolution of the angular steps was set to 0.45◦, to be
close to the angular resolution of the 2D laser scanner (0.5◦). The angular scanning range was
set to 270◦, resulting in highly regular scans with a wide viewing angle. A simple calibration
method using the laser scanner to find the front edge of the sensor setup was used to initialize
the step counter correctly at each power-on. Throughout this work, the sensor produces 3D
scans composed of 601 2d scans from a rotation pitch angle of −45◦ up to +225◦ w.r.t. the
ground floor. It is expected that this large field of view is beneficial for the SLAM algorithm
as it may lead to more good pairings during data association in comparison to using a sensor
with a smaller field-of-view.

Orthogonal Laser Setup The orthogonal setup of the lasers is shown in figure 3. It measures
two half-planes one parallel to the floor and one pointing up vertically. Using the horizontal
scanner to estimate the vehicle’s displacement and the data from the vertical scanner to measure
the depth while moving through the environment. With the scans being available at up to 10 Hz
this setup allows the acquisition of 3d range data from a moving vehicle.

2.2.2 Panoramic Camera

The omni-directional vision system, shown in figure 3 consists of a firewire camera Sony DFW-
VL500 and a panoramic mirror type Kaidan 360 One VR with a field of view of 360◦×100◦.

The maximal resolution of the camera is 640×480pixels at a frame rate of 30 color frames
per second. The panoramic mirror is equiangular, thus every pixel spans an equal angle ir-
respective of its distance from the center of the image, which simplifies the unwrapping and
finding corresponding points in the horizontal scan.

To minimize the load on the data logger, we use the resolution of 320×240pixels at a frame
rate of 30 frames per second. The data is used to map intensity data onto the range scan of the
horizontal scanner. A simple way to map intensity data onto the range data generated by a 2D
laser scanner is to align the rotation axis of the mirror directing the laser with the optical axis
of the camera. By minimizing the offset between the laser scanner and the omni directional
mirror, it can be assumed that all 181 laser-scanned points at an angular range of 180◦ can be
mapped onto a semi-circle of the intensity image centered around the suspension of the mirror.
This setup is shown in figure 3.

2.2.3 Internal Sensors

Wheel Encoders: As many other passenger cars, the Smart is equipped with a variety of sensors
which are linked using the vehicle’s controller area network bus (CAN-bus). By interfacing this
bus it is possible to access the sensor data and measure the vehicle’s dynamic state precisely.

This data is used to obtain an initial pose estimate as explained in section 3.1. It requires
the motion state of the vehicle: velocity and direction.

The overall vehicle speed is derived from the four wheel encoders with a resolution of
0.5 turns/minute. The steering wheel angle is available with a resolution of 0.04◦ and determines
the vehicle’s direction.

IMU: The second source of information about the motion state of the Smart car is an IMU.
We have chosen a 6 degree of freedom platform which measures angular rates up to 100 ◦/sec
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Figure 3: a) Two laser scanners and one panoramic camera mounted onto the Smart car. The
data generated by the horizontal laser scanner is used to correct the pose of the Smart car
which is necessary to generate consistent maps. These corrected poses are subsequently used to
register the scans of the vertical laser scanner which are associated with intensity information
generated by the panoramic camera. b) Image as acquired from the camera with a semi-
circle indicating the pixels corresponding to the scanned region. c) Unwrapped image with the
corresponding region shown as a straight line, which is used to map intensity data onto the 181
range data points from the laser sensor.

at a resolution of 0.025 ◦. Lateral accelerations in all three dimensions can be measured up to
2 g with a resolution of 0.01 m/s2.

3 Pose Estimation

When acquiring data from a moving platform it is important to determine its position at all
times. To estimate the motion of our vehicle we have two sources of information. The car’s
built-in sensors deliver data of the actual steering wheel angle and the actual speed of our
vehicle. Additionally, the car’s angular and translational accelerations are measured using
an IMU.

Deriving the vehicle’s pose from wheel encoders is done by the odometry converting the
measured wheel speed into a vehicle displacement using the actual cinematic model of the
vehicle. Using Kalman-filter based sensor fusion the acceleration measured by the IMU is
integrated to improve the pose estimation.

3.1 Initial Pose Estimation

The initial pose estimation is given by the odometry of the robot. This is a pose estimation
using information of the wheel encoders and a model of the robot’s cinematic. We present
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Figure 4: a) General Ackermann steering principle and b) the bycicle odometry, as a simplifica-
tion, which is used to compute the position of the vehicle from the wheel encoder information.

a dedicated model for the Biba-robot and the Smart-Car. The Biba-robot uses a differential
drive cinematic. The Smart-car Ackermann-steering. Both are explained in the following.

3.1.1 Differential drive robot

The Biba-robot is a differential drive robot. The kinematic model and its inverse are given
in (1).

~v(~̇q) =
[

ṡ(q̇l , q̇r)
θ̇(q̇l , q̇r)

]
=

[
Rwheel

2 (q̇l + q̇r)
Rwheel
Dbase

(q̇r − q̇l )

]
~̇q(~v) =

[
q̇l (ṡ, θ̇)
q̇r(ṡ, θ̇)

]
=
[
(ṡ+ Dbase

2 θ̇)/Rwheel

(ṡ− Dbase
2 θ̇)/Rwheel

]
(1)

where Rwheel is the radius of the drive wheels, Dbase is the wheel base, (q̇l , q̇r) are the rotational
speeds of the left and right wheel and (ṡ, θ̇) are the translational and rotational speeds of the
robot.

3.1.2 Ackermann Steering

When calculating the vehicle position over the time based on the motion state (speed, yaw) of
the vehicle we have to take into account the special geometry of the vehicle. For the Smart-car
this is based on the Ackermann steering principle illustrated in figure 4 a).

The Ackermann steering principle ensures a smooth movement of the vehicle by aplying
different steering angles to the inner and outer wheel while turning. This is needed as the two
wheels move in a circle on two different radii arround the center of rotation, denoted as (ICR)
in the figure 4 a).

To take this into account the odometry is based on the trajectory of the vehicle as given by
a virtual wheel between the two steered wheels. The principle is depicted in figure 4 b).

Thus the yaw rate dΘ, the displacement dx, dy are given by (2) as a function of the forward
displacement dSand the orientation of the virtual wheel φS and the vehicle orientation Θ. The
distance of front and rear axes is denoted by L

dΘ =
dS
L

tan(φS) dx= dScos(φs)cos(Θ) dy= dScos(φs)sin(Θ) (2)



3.2 Improving Pose Estimation using an IMU

To combine the two sources we have decided to use two Kalman filters, weighting the two
sensors due to there specific strengths and weaknesses. In several tests we determined that the
speed data delivered by the vehicle is more accurate than the information on the steering angle.
Even more difficult in using the steerin gangle is that it shows random offsets after major turns.
These offsets usually remain constant up to the next turn. To estimate the vehicle velocity and
the yaw rate Kalman filters are used to fuse information from the wheel encoders and the IMU.

3.2.1 Vehicle Velocity

The prediction of the speed v̂k+1 for the next timestep k+1 is derived from the previous vk and
the acceleration aimu

k measured by the IMU. The timesteps are of constant duration ∆t. We
denote with Pv

k the previous covariance and with Qv the measurement noise of the IMU. This
gives the prediction of the vehicle speed and its uncertainty (3).

v̂k+1 = vk + ∆taimu
k

P̂v
k+1 = Pv

k +Qv (3)

With Rv as the observation noise of the speed delivered by the wheel encoders, the Kalman
gain results in (4).

Kv = P̂k+1(P̂k+1 +Rv)−1 (4)

New measurements from the wheel encoders are integrated in the update step. The new velocity
is computed according to (5).

vk+1 = v̂k+1 +Kv(vcan
k − ˆvk +1)

Pv
k+1 = (1−Kv)P̂v

k+1 (5)

3.2.2 Vehicle Orientation

For the yaw rate a similar aproach using an Extended Kalman filter (EKF) was chosen. An
additional difference to the previous part is that the yaw rate is not directly measured, but
only the steering wheel angle Φ. This function is linearized for the EKF. Thus the vehicle yaw
rate is given by (6), with c being a constant modeling the steering geometry of the vehicle.

Θ̇ = g(Φ,v) =
Φv
c

(6)

The prediction of the yaw rate for the next time step k+1 is given by (7).

ˆ̇Θk+1 = g(Φk,vk)

P̂Θ
k+1 =

dg
dΦ

σ2
Φk(

dg
dΦ

)T +
dg
dvk

Pv
k (

dg
dvk

)T (7)

The Kalman gain KΘ results to (8).

KΘ = P̂Θ
k+1(P̂Θ

k+1 +RΘ)−1 (8)

The updated yaw rate Θ̇ and its variance are then computed according to (9).

Θ̇k+1 = ˆ̇Θk+1 +KΘ(Θ̇imu
k − ˆ̇Θk+1)

PΘ
k+1 = (1−KΘ)P̂Θ

k+1 (9)



4 Generating Consistent Maps

The problem of mapping is that of acquiring a consistent spatial model of the robot’s envi-
ronment [12]. A key challenge arises from the nature of the measurement noise which are in
general statistically dependent. A small rotational error at the beginning of a robot path can
lead to a huge pose error at the end of the robot trajectory. Hence, a robotic system has to
compensate these errors. An example is given later in figure 7.

Another well-known issue is the data association problem, which is the problem of associat-
ing data taken at different points in time to the same physical object. Especially, when closing
a loop it is important to recognize already mapped areas in order to keep consistency.

We address the task of generating consistent maps with two dedicated approaches. A raw-
data based approach using scan alignment and global registration and a feature-based approach
using an EKF and the Symmetries and Perturbations Model (SPmap).

4.1 Raw-data based Map Generation and Pose Correction

The raw-data based map generation and pose correction uses scan alignment to pairwise esti-
mate the displacement between spatially close robot poses ~pi = (xi,yi ,Θi)T and ~p j = (x j ,y j ,Θ j)T .
Applying this procedure to all spatially close poses usually results in an overdetermined sys-
tem with M equations for N poses (M ≥ N). This is then solved for the robot poses using
least-squares estimation in the global registration step.

4.1.1 Correspondence between Poses

Starting with the initially estimated poses from the fused odometry, correspondences are es-
tablished from a reference pose ~pi to a corresponding pose ~p j if they are sufficiently close.
Sufficiently close means that the distance is below a threshold which grows with the distance
travelled by the robot to reflect the growing position uncertainty due to the accumulation of
errors such as wheel slippage.

Each correspondence is represented by a n−element vector ~ck = (0, . . . ,ci , . . . ,c j , . . . ,0)T ,
where ci = −1 and c j = 1. All these vectors are stacked in a matrix C = (~c1, . . . ,~ck, . . . , ~cm)T .
From the scan alignment explained below the number of connected points wk is obtained, which
is stored in a weight matrix W = diag(w1, . . . ,wk, . . . ,wm) as a measure of the strength of the
link.

4.1.2 Scan Alignment

Our scan alignment [5] is based on the iterative closest points algorithm (ICP) [1]. A comparison
of different variants can be found in [9]. Scan alignemnt iteratively links corresponding elements
and then seeks a transformation minimizing the remaining distance between the linked elements.
Special care has to be taken to suppress outliers, which are points which are present in one
scan, but not in the other, because they bias the alignment. The pose correction dx,dy,dΘ is
computed as a weighted mean over all connected points. The link between a scan point (xi ,yi)
and a scan point (x j ,y j) is expressed by a link variable l i = j. With this the pose correction
can be computed from the linked scan points and results in (10).

dx =
1
I ∑

i=I∗
(xi−xl i ) dy =

1
I ∑

i=I∗
(yi−yl i ) dΘ =

1
I ∑

i=I∗
(φi−φl i ) (10)
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Figure 5: Trajectory of the robot before and after registration. The start position is indicated
by arrows pointing up. The end position by arrows pointing down. Note the gap between start
and end position in a) which is removed through global scan alignment in b).

Linking and correcting are repeated until the correction is below a predefined threshold. The
result determines the displacement from the reference to the correspondence pose.

4.1.3 Global Registration

The result after scan alignment is usually graph with more connections than poses, which can
be expressed in the form of (11). Here, we simplify the task by negelecting the orientation Θ,
which is directly derived from the IMU. The difference in position of ~pi and ~p j is here expressed

by ~di j = ~p j −~pi = (dx,dy).

~dx = C~x ~dy = C~y (11)

Using a weighted least-squares estimation this results into a global registration of the poses
as given in (12).

~x = (CTWC)−1CTW~dx ~y = (CTWC)−1CTW~dy (12)

4.2 EKF-based SLAM

One possibility to tackle the above-mentioned problems is to use a feature-based representation
along with an Extended Kalman Filter (EKF) as probabilistic update algorithm. The Sym-
metries and Perturbations model (SPmodel) presented by Tardós et al. [11] provides means
to represent and process uncertain geometrical features. It is capable of handling geometrical
objects with different numbers of degrees of freedom (e.g. points, lines, planes) in a single
consistent framework, a stochastic map presented by Castellanos et al. [2] called the SPmap.
An EKF is used to predict the robot pose along with its error and in a second step correct
this pose and the map by fusing it with exteroceptive information obtained as probabilistically
extracted infinite planes. A crucial aspect of feature-based approaches is the feature extraction
itself described in the following.



(a) The example scene shows a corridor of
our lab with an open door on the left and
the glass door in front leading to the roof
terrace.

(b) The same scene visualized as a point
cloud measured by the rotating laser scan-
ner.

(c) In every cube of a side length of 0.25m
and the point data is approximated by a pla-
nar patch.

(d) Similar planar patches are fuses by
region-growing resulting in the final segmen-
tation.

Figure 6: This figure shows how planes are extracted from the scene. The real scene (a) is
scanned by the rotating laser scanner generating point cloud (b), which is decomposed into a
number of cubes and approximated by a planar patch for every cube (c). The final segmentation
(d) results from region growing.

5 Probabilistic Feature Extraction

The amount of data especially when working in 3D easily becomes huge. Already single 3D scans
can be composed of several hundred thousand points. To reduce the amount of data feature
extraction can be used, when features are present in the environment and models thereof can
be formulated.

5.1 Segmentation

The used segmentation method is based on the method presented in [15]. It decomposes the
space into regular cells which in this work are chosen to be cubes with a side length of 0.25m.
After every raw data point has been associated to its corresponding cell, a plane is fitted to
the data of the cell by using a Ransac algorithm for segmentation with subsequent least-square
fitting (see Figure 6 (c)). After extracting a plane for every cell, a recursive region growing
algorithm generates the final segmentation by fusing similar neighboring planes together. Figure
6 (d) shows that even in the presence of a lot of clutter (e.g. the structures at ceiling), planes
are extracted reliably.



5.2 Probabilistic Fitting

An infinite plane P can be described by two angles and an orthogonal distance to the origin of
the coordinate frame. See [16] for a list of models describing infinite planes. Here, a normal
vector n = (nx,ny,nz)T and a distance di is chosen as this notation is more convenient for
the fitting process. The plane normal n = (nx,ny,nz)T is found by calculating the eigenvector
corresponding to the smallest eigenvalue of the matrix

A =




∑N
i=1wix2

ti ∑N
i=1wixti yti ∑N

i=1wixti zti

∑N
i=1wixti yti ∑N

i=1wiy2
ti ∑N

i=1wiyti zti

∑N
i=1wixti zti ∑N

i=1wiyti zti ∑N
i=1wiz2

ti




where xi , yi and zi are the raw data points translated to the center of gravity and wi =
1/trace(Ci)

2 are weighting factors depending on the uncertainty Ci of the raw data. The uncer-
tainty of the fitted plane is calculated as described in [16].

Note that in the current implementation, the uncertainty information is merely used for the
plane fitting step only after the segmentation step. It is believed that due to the high precision
of the raw data, a probabilistic segmentation not necessarily leads to better results and for
extracting infinite planes the presented algorithm is appropriate.

6 Experiments

The raw-data and feature based approaches presented above were tested on the Biba-robot and
the Smart-car. Outdoor experiments use the raw-data approach. The indoor environment is
sufficiently structured for the feature-based approach.
The test-scenarios were as follows:

• Feature-based approach: with data acquired by the Biba-robot using the rotating laser.
The robot was moving in a stop-and-go mode through a part of our lab. The initial
pose estimation is derived from odometry which is then fed to the feature-based pose
correction and map generation step.

• Raw-data approach: using data acquired with the Smart-car and its orthogonal sensor
setup. The car was driven in a continuous motion through a part of EPFL campus. Initial
pose estimation of the vehicle is based on sensor fusion from wheel encoders and IMU.
This information was fed with the laser scans to pose correction and map generation for
global registration.

In the following results on the pose estimation using odometry, sensor fusion and alignment
are shown, before presenting 3d-maps of a part of EPFL campus.

6.1 Pose Estimation

The indoor example shown in 7 gives an example of the difference of pure odometry and a path
estimated by the pose correction and incremental mapping (SLAM). The mobile robot starts
at the bottom right and moves along a corridor to the left entering two rooms on its way. It
travels approximately 35 meters and stops 40 times to take 3d scans of its surrounding with the
rotating laser scanner. The light colored trajectory represents the estimated robot poses using
the wheel encoders only, the dark colored trajectory represents the corrected path including
information of the extracted planes. It can be seen that the robot pose can be effectively
corrected by using the exteroceptive information. Note that only the 2d components (x,y,φ)
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Figure 7: The mobile robot starts at the bottom right and moves along a corridor to the
left entering two rooms on its way. It travels approximately 35 meters and stops 40 times to
take 3d scans of its surrounding with the rotating laser scanner. The light colored trajectory
represents the estimated robot poses using the wheel encoders only, the dark colored trajectory
represents the corrected path including information of the extracted planes. It can be seen that
the robot pose can be effectively corrected by using the exteroceptive information. Note that
only the 2d components (x,y,φ) of the robot pose are shown along with an apriori map, the
other components (z,θ ,ψ) have been omitted for clarity.

of the robot pose are shown along with an a-priori map, the other components (z,θ ,ψ) have
been omitted for clarity.

In figure 8 a) pose estimation and pose correction for the Smart-car are compared. Results
are shown from a path through a part of EPFL campus of 1 km length. The car was driven at a
speed of approximately 10 km/h. Different from the indoor example the surface was not totally
flat (max. difference 0.5 m) and the map for pose correction was incrementally built from the
data of the laser scanners. The path starts near to our lab (close to the arrow pointing to the
left), moves in loops over the campus and ends close to the starting position (arrow pointing
to the right).

Figure 8 a) shows pose estimation using different sensor information. The path derived from
the wheel encoders shows a similar effect as in the indoor example (figure 7), already after two
turns it the pose error is huge. Results from the IMU prove reliable for the orientation, but
overestimate the travelled distance. Fusing both sensors according to section 3.2 yields better
results.

Finally, using pose correction on the horizontal scanner data the pose becomes sufficiently
correct to compare it to the orthophoto of EPFL campus. Scan data from the vertical scanner



a)

b) c)

Figure 8: a) Estimated trajectory after global registration. The result is projected onto an
orthophoto of EPFL campus together with data acquired from the vertical scanner which was
used for scan alignment. b) Point-data after global alignment. c) Colored surfaces using the
data from the panoramic camera.



(a) A point cloud based on registered
scans showing a part of a corridor.

(b) The same scene represented by the
SPmap using the appropriate supporting
points to visualize the learned planes as
2d alpha-shapes.

(c) Part of an office reconstructed by sev-
eral registered 3d scans showing high de-
tail.

(d) A non-flat area of the lab recon-
structed correctly.

Figure 9: This figure shows some 3d reconstruction results based on the indoor experiments.
Note that (a),(c) and (d) show the scan alignment capabilities of the algorithm and (b) is based
on the learned plane-based map.

is superimposed on the orthophoto and clearly shows details as buildings covering the road
(close to the start/goal position) and trees beside the road.

The biggest deviations occur close to the park area, where only few scan points are available
for correcting the pose. This consequently leads to minor errors in the map. Manual comparision
with the photo shows the pose error to be below 0.5 m. Note that small errors in the orientation
are amplified by the sensor range of 80.0 m.

The results were derived assuming motion on a flat surface. Modelling the vehicles motion
completely in 3d may further improve the precision. To further improve the precision one could
use additional sensor information, e.g. such as GPS, or use 3d range information which provides
more measurements.

6.2 Generating 3d-models

Figure 9 shows indoor range images acquired by the Biba-robot using the rotating laser scanner
are used to create globally consistent maps of the environment. The environment allows for
a stop-and-go operation of the robot. These results were obtained with the feature-based
approach, where features of each new range image are aligned with an incrementally built map
consisting of infinite planes.

Figure 8 b) shows a 3d view of the campus created from range data shown in figure 8 a)
the viewpoint is denoted by a dot. The range image acquired from the vehicle shown in 8 a)
is used together with additional information from the panoramic camera to create 3d-models.
An example of such a model showing a part of EPFL is depicted in 8 c).



7 Conclusion

In this paper we present methods to combine range information from different viewpoints into
a globally consistent map of the environment. This comprises odometry, pose estimation and
incremental map generation and pose correction. The result is a globally consistent map and
an estimation of the vehicle motion. We showed raw-data and feature-based examples of this
process creating 3d-maps of indoor and outdoor environments. Combining information from
the laser range finders with color information from a panoramic camera led to the creation of
virtual models of a part of EPFL campus with depth and color information.
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