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ABSTRACT

Redirected Walking (RDW) is a technique that allows exploring im-
mersive virtual environments by real walking in a small physical
room. RDW employs so-called redirection techniques (RETs) to
manipulate the user’s real world trajectory in such a way that he re-
mains within the boundaries of the physical room. Different RETs
were suggested and evaluated in the past. In addition, steering al-
gorithms were proposed that apply a limited set of RETs to redirect
a user away from the physical room’s boundaries.

Within this paper, a generalized approach to planning and ap-
plying RETs is presented. It is capable of dynamically selecting
suitable RETs and also controlling parameters like their strengths.
The problem of steering a user in a small physical room using RETs
is formulated as an optimal control problem. This allows applying
an efficient probabilistic planning algorithm to maximize the free
walking experience. The proposed algorithm uses a map of the vir-
tual environment to continuously determine the optimal RET that
has to be applied next.

The suggested algorithm is evaluated within a user study and
compared to a state-of-the-art steering algorithm. Results show that
for the given virtual environment, it is able to reduce the number
of collisions with the room boundaries by 41% and furthermore
reduces the amount of applied redirections significantly.

Keywords: Virtual reality, locomotion, redirection techniques, op-
timal control, model predictive control, redirected walking.

Index Terms: H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems—Artificial, augmented, and vir-
tual realities; I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Virtual reality

1 INTRODUCTION

Immersive Virtual Environments (IVEs) intend to address human
perception entities like video, audio, and haptics. While early Vir-
tual Environments (VEs) allowed for a navigation using mouse,
keyboard, or joystick, later research changed the haptic interaction
metaphor from a “fly-through” to a “walk-through”. Starting with
stepping-in-place installations that only partly generated the sensa-
tion of real walking, virtual treadmills and magic carpets were used
later, which mechanically pulled the user back to the center of the
walking platform. While all devices allowed experiencing a VE that
is much larger than the physical installation, the haptic sensation of
walking in VEs still was not perfectly addressed.

Thus, recent research uses Redirected Walking (RDW) [15] to
“compress” a large VE into a physical room that could be signif-
icantly smaller, while allowing for the sensation of real walking.
Since the user typically wears a head-mounted display (HMD), he
cannot see the real environment anymore and thus sophisticated
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redirection techniques (RETs) [20] have been developed to redirect
the user away from the physical room’s boundaries.

Many of the existing algorithms for RDW were tailored to a lim-
ited subset of available RETs, and focused on keeping away the
user as much as possible from the physical boundaries. However,
this might introduce user disturbances and a noticeable reduction of
immersion, which could have been avoided if a probabilistic plan-
ning strategy would have been applied that takes into account the
VE’s geometry and the possible walking trajectories of the user.

Following the idea of probabilistic planning of redirection [25],
the paper introduces a planning framework that is based on a rig-
orous definition of redirection as an optimization problem. This
allows applying optimization techniques from control theory. The
proposed system allows minimizing the user’s disturbance and is
capable of applying different RETs alternately or simultaneously.
The paper thus introduces a new paradigm which moves away
from planning or applying redirection on geometrical aspects only,
but focuses also on the current action, e.g. the user disturbance
caused by an applied RET. The model predictive control (MPC)
approach therefore builds the basis for applying perceivable redi-
rections. While the proposed approach requires a map of the trajec-
tories in the VE, this does not reduce the general applicability of the
proposed methods on goal oriented applications, as human walking
trajectories were shown to be highly stereotyped [7].

After presenting related work in this field, the paper presents the
optimal control approach for planning and applying RETs, followed
by an evaluation and a discussion of the achieved results.

2 RELATED WORK

Initially, Razzaque et al. [15] proposed RDW. Here, a user’s head
is tracked within the boundaries of a tracked space and the VE is
presented on a HMD while the real head motions are transferred to
motions in the VE. Hence, a user can walk freely within a VE as
long as it fits the real tracked space. However, redirected walking
adds imperceivable rotations to the VE to guide a user on curved
paths or scales rotations. This way, the user can be kept within the
boundaries of the tracked space even if the VE is larger.

This original approach was further researched and extended with
other techniques. Williams et al. [23] proposed to scale trans-
lational movements. Interrante et al. [10] further improved this
method by robustly determining the user’s direction of movement.

Further, Williams at al. [24] suggested so-called reset tech-
niques, which reorient a user in the tracked space when other tech-
niques fail. A reset technique stops a user’s walking in a VE and
reorients or repositions him. Peck et al. [14] compared different
reset techniques and proposed so-called distractors. They are im-
proved reset techniques that distract a user while the VE rotates.

Steinicke et al. [16] generalized different RETs and defined so-
called gains (rotation, curvature, and translation) that describe their
strengths. Furthermore, they evaluated detection thresholds for dif-
ferent RETs [17, 18]. Neth et al. studied the velocity dependency
of so-called curvature gains, i.e. how much imperceptible rotation
can be added for redirection for a user depending on his walking ve-
locity [11]. Recent research for redirected walking focuses on how
and when to apply a RET. Therefore, Suma et al. [20] presented a
taxonomy for RETs.



So-called steering or redirection algorithms were developed to
decide which RET is to be used to keep a user within the real en-
vironment’s boundaries. The steer-to-center (S2C) algorithm con-
tinuously rotates the user with redirections towards the real envi-
ronment’s center [13]. S2C was also used by Hodgson et al. [9]
who evaluated the potential of redirected walking for spatial infer-
ence. Further, they compared different generalized approaches for
redirected walking and proposed improvements to the S2C algo-
rithm [8]. Engel et al. [3] proposed a psychophysically calibrated
controller that employs a cost function based on the noticeability
of redirection. Nitzsche et al. [12] and Su et al. [19] suggested
an approach that dynamically minimizes the introduced curvature,
but does not make imperceptibility a primary goal. A new way for
planning RETs was proposed by Zmuda et al. [25]. Their algo-
rithm (FORCE) employs probabilistic planning and uses a terminal
state evaluation function to determine feasible RETs that have to
be used. Suma et al. [21, 22] proposed completely different types
of RETs that make use of human change blindness or special self-
overlapping VEs.

3 OPTIMAL CONTROL FOR PLANNING REDIRECTION
TECHNIQUES

Optimal control deals with problems where several decisions have
to be made in stages that influence a system. The goal is to min-
imize a cost function that captures the system’s undesirable out-
comes [1]. The applied decisions are referred to as actions.

Redirecting a user inside a physical room can be regarded as
such a problem. Obviously, we want to avoid that the user collides
with a physical obstacle. Hence, different RETs can be applied to
change a user’s geometrical configuration in the real room, e.g. his
orientation, in relation to the VE. However, some RETs might be
less desirable than others. E.g. a subtle RET is typically preferred
over an overt reorientation reset. Every RET, i.e. action, changes
the user’s configuration, but it will also affect all future decisions
that have to be made. Thus, some actions might be desirable at
present but could cause undesirable outcomes in the future. Finally,
the outcome of an action is not fully predictable as we do not know
for sure where the user will go.

In principle, an optimal control algorithm describes the user’s
geometrical configuration and his walking state like his velocity
with a state variable and models the user’s potential behavior as
a function that updates the state variable. E.g. such a function
could describe a trajectory in a VE. Hence, this function predicts
the user’s future states. Furthermore, it takes a RET as input and
predicts how the future state will look like if a RET is applied while
the user walks along the trajectory. Given this model, a simplified
optimal control algorithm recursively applies different RETs, e.g.
in a depth-first-search manner, to find the best one. Hereby, a cost
function allows evaluating the state together with the applied action.
Therefore, the algorithm looks into the future considering different
RETs that could be applied in series and chooses the best RET with
regard to its future consequences.

Below we present the basic stochastic system model suited to the
redirection problem. The formulation of the basic model is adapted
from [1]. The model is limited to discrete time systems. A sub-
scripted capital R means that a parameter describes a state in the
real room, like in θR and a subscripted V denotes that a parameter
refers to the VE respectively. The planar coordinate system that is
used for transformations or rotations is as follows: x-axis forward,
y-axis left, and rotations from the positive x-axis (0 radians) to the
positive y-axis are positive. Angles are in radians.

3.1 Basic Model
The discrete time dynamic system is described as follows

xk+1 = fk(xk,uk,wk) k = 0,1, . . . ,N−1 (1)

• k denotes the discrete time or stages running from 0 to N−1.
The duration of a stage is typically constant. N is the time
horizon considered for the system evolution or planning.

• xk ∈ R7 = [xR,yR,ΘR,xV ,yV ,ΘV ,vR]
T is the user’s current

state vector. The state captures the user’s configuration, i.e.
his position (x,y), orientation Θ in the real and virtual envi-
ronment, and his tangential velocity vR. The state space could
be further extended to contain other characteristics like the
user’s angular velocity ωR or a direction prediction.

• uk ∈U(xk)⊂Ck is the current applied action. The set of avail-
able actions U(xk) is a subset of the complete set of actions
Ck and can depend on the current state. An action is a RET or
a combination of RETs, see Section 3.2

• wk ∼ P(·|xk,uk) denotes the noise that captures the uncer-
tainty of the system.

• fk is the state update function that captures the evolution of
the system, see Section 3.3.

In the given system, fk only depends on the previous state, cur-
rent action, and current noise, but not on any older state or action.
All relevant information for the decision making must therefore be
summarized in the current state xk. The function fk models the
user’s behavior or the state update given his current velocity, posi-
tion and orientation from one time step to the next. We focus on
the case where the uncertainty wk models the probabilities of the
limited, discrete set of possible future trajectories. In other words,
fk and wk capture the map or the walking trajectories of the VE.

The total cost describing the undesirability of the redirected
walking system accumulates over time

G = gN(xN)+
N−1

∑
k=0

gk(xk,uk,wk) (2)

Where gk(xk,uk,wk) is the cost at each stage k and gN(xN) repre-
sents the terminal cost at the end of the planning horizon.

Due to the stochastic nature of the state evolution, the goal is to
choose those actions that minimize the expected cost E [G]. I.e.
the cost incurred on different branches of the future trajectories
are weighted with their probability. This results in an optimization
problem that can be solved recursively using the dynamic program-
ming algorithm:

JN(xN) = gN(xN) initialization
Jk(xk) = min

u∈Uk
E
wk
[gk(xk,uk,wk)+ Jk+1(xk+1)] (3)

The resulting J0(x0) is the optimal cost and the minimization in (3)
gives the set of optimal control laws µk(xk) for each stage k, see
[1]. The control laws provide the optimal action uk for each state
at the corresponding stage. However, to calculate the full set of
control laws, the optimization would have to be performed over all
possible states xk ∈ R7 and for all k. Jk(x0) represents the cost-to-
go at each stage k.

3.2 Actions from RETs

The complete set of actions Ck can be composed of different RETs
with specific configurations or combinations thereof. E.g. a single
action could be a strong clockwise rotation gain combined with a
weak upscaling translation gain.

Below we summarize how RETs can be treated as actions and
how the state update function looks like for these actions. We focus
on rotational RETs as they are well researched and can be applied
generically. For other RETs, we present a short sketch of the basic
idea.



3.2.1 Rotational RET

Rotational RETs add some - typically subtle - rotation to a user’s
movement. Rotation gains up- or downscale a user’s rotation and
curvature gains add some rotation while a user is walking along a
virtual straight line. A rotational RET function consisting of ro-
tation and curvature gains is given by applying the max function
[8, 15]

∆φ̂(x) = max
{

vRρc∆t curvature
ωRρq∆t rotation (4)

Therefore, (4) describes the rotational redirection ∆φ̂ as an additive
angle per time step that modifies to the user’s real orientation ΘR.
ρc is the curvature gain as defined in [18]. The sign of ρc determines
the direction of the redirection. ρq is the rotation gain which is
different for rotations with or against the head movement. Due to
the additive formulation of the rotational redirection function, ρq
is given as (1− gainR) for gainR as defined in [18]. A specific
rotational RET action is now defined by a specific ρc and ρq.

3.2.2 Other RETs

• Translation gains scale a user’s translational movement with
the factor ρt . As for the rotational RET, a translational RET
function can be formulated as a positional offset per time step.
An action is thus a translational RET with a specific ρt .

• Reset techniques that reorient a user or reposition him are ba-
sically actions. An example is given in Section 4.3.

• Teleportation techniques [2] or similar metaphors can be
transformed to actions like resets. The fact that actions can
depend on the state makes it possible to associate these tech-
niques with specific locations in the VE.

• Architectural illusions are more challenging to model as they
modify the underlying system (state update function and prob-
abilities). I.e. they are not actions. If only a few discrete
changes are made to a VE’s geometry as in [21], it is possi-
ble to use the online planning algorithm introduced below (the
best cost-to-go is evaluated for all geometries and the cheapest
geometry is selected). However, some techniques, e.g. [22]
can also be used in parallel to the proposed approach.

3.3 State Update with RETs

The state update function models the effects of a redirection tech-
nique on a trajectory. To simplify the calculations below, we as-
sume that the trajectory is given as a single curve γV : [0,S]→ R2.
The curve is arc-length parametrized with a parameter s ∈ [0,S],
where S ∈ R is the total length of the curve. Furthermore, we as-
sume that a function s(t) : R→ R and its inverse exist and are dif-
ferentiable. It associates the current arc position s given the current
time t ∈ [0,T ]. E.g. in the simplest case s(t) = vRt where vR is the
constant walking velocity (this is also used in our study setup).

This means, the state update function (1) for a single future tra-
jectory transforms the virtual trajectory γV (s) to a real trajectory
γR(s) if a rotational or translational RET is applied. These trans-
formations should be done analytically to reduce the computational
costs for planning.

3.3.1 Rotational RET

A rotational RET applies a curvature transformation to a trajectory
curve. Arc-length parametrized curves can be defined by integrat-
ing over its unit tangent vector. Hence, given the user’s real orien-
tation ΘR(s), the tangent vector is given using the sine and cosine.
The transformed real curve then becomes

γR(s) =
∫ s

0

[
cos(ΘR(σ))
sin(ΘR(σ))

]
dσ +pR0 (5)

Where pR0 represents the initial real position of the user. To calcu-
late the user’s real orientation, we integrate over the curve’s cur-
vature. It is given by the sum of the curve’s virtual curvature
κV =

dΘV (σ)
dσ

and the rotational RET function,

ΘR(s) =
∫ s

0

dΘV (σ)

dσ
+

dφ

dσ
dσ +ΘR0 (6)

ΘR0 is the user’s initial orientation. However, in order to analyti-
cally transform a given curve using a rotational RET, a continuous
formulation is required, i.e. we need dφ

ds . From (4) we can derive
dφ̂

dt and by applying the chain rule using t(s) we get

dφ

ds
= max


ρc curvature

dΘR(s)
ds

ρq = κR(s) ρq rotation
(7)

Transformation of a Regular Arc Segment Within the study
presented below, trajectories are modeled using regular arc seg-
ments and straight line segments. Hence, we show the transfor-
mation of such a segment. We assume that the curvature is high so
that in (7) the rotational gain redirection has to be applied. For a
regular arc we have κV = 1/rV where rV is the arc’s radius. Thus,
from inserting (7) into (6) we get

ΘR(s) =
∫ s

0

1
rV

+ρq
dΘR(σ)

dσ
dσ +ΘR0 (8)

This is an ordinary differential equation which can be solved for
dΘR
dσ

by differentiating by dσ . The resulting integral then becomes

ΘR(s) =
∫ s

0

1
rV

+
ρq

rV (1−ρq)
dσ +ΘR0

= sκR +ΘR0

with κR =

(
1

rV (1−ρq)

)
(9)

Applying the same transformation using curvature gain redirec-
tion in (7) gives a different κR =

(
1
rV

+ρc

)
. The resulting trans-

formed curve remains a regular arc and is given by

γR(s) =
∫ s

0

[
cos(σκR +ΘR0)
sin(σκR +ΘR0)

]
dσ +pR0

=
1

κR

[
sin(ΘR0 +κRs)− sin((ΘR0)
cos(ΘR0)− cos(ΘR0 +κRs)

]
+pR0 (10)

Once the suitable κR is calculated, (10) provides the user’s path
in the real room for a given s. (10) also correctly describes trans-
formed straight line segments. In fact, this is just a limit case for
rV → ∞. As expected for straight lines, only a curvature gain redi-
rection will change the curve.

3.3.2 Other RETs
• The state update for a translational RET simply changes the

virtual speed of a user walking along the real curve γR(s) and
thus scales the curve. However, it is not clear how to apply a
translational RET in parallel to a rotational RET as by scaling
the trajectory, a translational RET also changes the curvature
of the trajectory. Hence, predicting a user’s behavior becomes
difficult and it is also unclear how a user compensates the scal-
ing, see also [11].

• Reset techniques simply update the user’s real position or
orientation while keeping the virtual position and orientation
constant.

• Similarly, teleportation techniques perform a single discrete
update of the virtal position/orienation and the real posi-
tion/orientation.



3.4 Cost
The choice of the cost function gk(xk,uk,wk) is the primary mea-
sure to adjust how the controller decides. For instance, real room
positions close to the real room boundaries could be assigned high
costs. Furthermore, to avoid real positions outside the room bound-
aries, such illegal states are assigned infinite costs. I.e. the phys-
ical room’s geometry is modeled with a cost function that takes
the user’s real position and performs a collision check. This way
arbitrary real room geometries are supported as long as efficient
collision checks can be performed.

However, subtle RETs are more preferable than resets. So ac-
tion costs can be assigned that give the reset actions a higher cost.
Hence, the resulting controller will try to avoid expensive states by
applying RETs and will favor cheaper RETs if possible. Assign-
ing costs to actions is crucial if perceivable RETs are employed. If
the problem has a terminal state, e.g. at the end of a VE path, the
terminal cost gN(xN) describes its undesirability.

In general, finding a suitable cost function for controlling RETs
is out of the scope of this paper. Engel et al. [3] showed how
such a cost function based on the noticeability might look like. In
the study presented below, a cost function for rotational RETs and
simple resets is proposed and evaluated.

3.5 Optimization
3.5.1 Offline Planning
In (3) we have shown the dynamic programming algorithm for the
redirection problem. However, it requires to perform the optimiza-
tion over all possible states xk ∈R7. This is typically hard to model
and solve analytically. The state update function is nonlinear or
discrete for some RETs and the geometry cannot be modeled eas-
ily as a continuous function. Therefore, the state space has to be
discretized.

In addition, the time horizon is often not finite. I.e. the user
keeps walking around in the VE and we neither know when he stops
walking nor what his terminal state will be. Therefore, it makes
sense to exclude the terminal state and formulate the problem as
infinite horizon optimal control problem. Excluding the terminal
state requires adding a discount factor which is discussed in the next
section. Further, if the system (1) is time invariant and the costs are
bounded from above, the system satisfies the Bellman equation [1].
This allows applying efficient methods like policy iteration or value
iteration to solve for the optimal control law.

Nevertheless, finding the control law for all possible discrete
states is infeasible in practice as the state space can become huge.
In addition, some RETs like the curvature gain change the user’s
state only by a small amount which requires a fine discretization.

3.5.2 Online Planning
Instead of precalculating the control law, we propose an online
planning algorithm. Our algorithm 1, MPCRed, is based on model
predictive control concepts. I.e. it takes the user’s current state and
recursively applies all actions to all possible future trajectory seg-
ments. This way it finds the best action that has to be applied now.
The planning horizon is fixed and defines the algorithm’s recursion
depth. MPCRed does not require any state discretization but only
considers a limited time horizon for finding the best action. It runs
continuously to adapt to unpredicted changes. The cost update in
line 14 contains a discount factor α ∈ (0,1] that allows reducing the
effect of future costs on the current action. E.g. the stage costs at
the end of the planning horizon N are weighted with αN−1. This
increases the stability of the controller. α therefore adjusts if and
how much the controller tries to shift expensive costs into the fu-
ture. Similarly in line 14, the cost is weighted with the probability
of the trajectory segment to consider only its relative importance.

Computationally, MPCRed is similar to a depth first search algo-
rithm. This means that the computational cost grows exponentially

Algorithm 1 MPCRed online planning algorithm
1: function PLAN(Xcurrent ,depthrecursion)
2: bestcost← ∞ . initialize best cost to infinity
3: for all u ∈ Actions do . loop through by increasing cost(u)
4: c← 0 . c is the current cost counter
5: if cost(u)< bestcost then
6: for all seg ∈ GETSEGMENTS(Xcurrent) do
7: [Xnext ,stagecost]← APPLY(u,Xcurrent ,seg)
8: c← c+ probability(seg)∗ stagecost
9: if c≥ bestcost then

10: break
11: end if
12: if depthrecursion > 0 then

. continue recursively on Xnext
13: [nextaction,nextcost]←

PLAN(Xnext ,depthrecursion−1)
14: c← c+α ∗ probability(seg)∗nextcost
15: end if
16: end for
17: if c < bestcost then
18: bestcost← c
19: bestaction← u
20: end if
21: end if
22: end for
23: return [bestaction,bestcost]
24: end function

with the horizon. In the worst case, it is in O((|C|D)N) where |C|
is the number of actions, D is the number of possible future di-
rections per planning stage, and N is the planning horizon or the
recursion depth. This limits the feasible maximum planning hori-
zon. To reduce the computation costs, MPCRed employs efficient
cost bounds to remove branches for irrelevant actions, see lines 5
and 9. Furthermore, it applies the actions sorted by their costs.

3.6 Implementation
The suggested approach based on model predictive control decou-
ples the optimization process from the actual application of the ac-
tion on tracking data. When tracking data is received by the soft-
ware, it just has to look up the most recent action and apply it. This
is similar as for other steering algorithms (compare [13, 9, 8]) and
adds virtually no latency to the system. The planning can run as an
independent thread at a far lower frequency, e.g at 0.4 Hz as used
during the evaluation. It is usually specified by the stage duration
τ . In a typical redirected walking setup, a τ of 1 to 4 sec is suit-
able. This provides enough time for a RET to take effect. The total
duration for the planning horizon is then given by τ×N.

3.7 Relation to Existing Algorithms
The S2C algorithm can be regarded as a simplified case of
MPCRed. Its basic working principle according to [13, 9, 8] is
as follows. S2C continuously applies rotational RETs to orient
a user towards the center of the real room. I.e. at every frame
(τS2C=1/framerate) the user’s future direction is predicted using his
past virtual positions (e.g. over a 1 second backlog). The virtual
direction is then transformed to the walking direction in the real
room. Finally, for every frame, a rotational RET is applied in the
direction that decreases the absolute angular deviation between the
user’s walking direction and the vector pointing from his position
to the room’s center. Hence, in terms of MPCRed, S2C is a greedy
approach with a planning horizon of N=1 and employs two rota-
tional RETs (left and right rotation) in the direction that minimizes
the stage cost. The stage cost is given by the absolute deviation
angle of the user’s real orientation to the room’s center. The future



(a) (b)

Figure 1: (a) The wearable VR system. (b) The participant’s view on
the virtual environment used for the evaluation.

trajectory is simply assumed to be the current walking direction.
Typically, S2C refrains from redirection only if the user is oriented
approximately towards the room’s center or is very close to it.

FORCE [25] is a special case of MPCRed where only terminal
costs are evaluated and the horizon is given by the predefined paths
which have terminal positions. Additionally, FORCE uses infinite
stage costs to avoid collisions and has a discount factor α = 1.

4 EVALUATION

A user study was conducted to evaluate MPCRed. For comparison,
another generalized redirected walking algorithm was required. For
this purpose, the S2C algorithm was chosen. S2C was shown to out-
perform other generalized steer-to-target algorithms in many con-
ditions or at least has a similar performance [8]. Hence, a compar-
ative study was designed using a within-subjects design including
two conditions. FORCE [25] would also be a candidate for com-
parison. However, it is not clear how to choose the proper terminal
state costs and integrate a reset technique.

4.1 Equipment
Hardware An Intersense IS-1200 tracking system [6] was in-

stalled in a 12.6 m × 6.2 m room (tracks 1 point with 6 degrees
of freedom at 180Hz). The tracking device was attached to an
Oculus Rift1 HMD (640x800 resolution per eye, 110 degrees di-
agonal field of view). Participants wore the HMD and a backpack
with a laptop computer for processing the tracking data and render-
ing the virtual scene. The laptop was equipped with an Intel Core
i7-2630QM CPU running at 2.0GHz, 8GB RAM and an NVIDIA
Quadro 1000M graphics card. Figure 1(a) shows the wearable sys-
tem in the tracking space. Since safety margins of 0.6 m were added
to all sides of the room, the available space for the study was re-
duced to 11.4 m × 5 m.

Software For rendering the virtual environment, the Unity3D2

game engine was used. The steering algorithms, the optimization
and the logging features for the study were developed as a multi-
threaded C++ library. The library was directly accessed in Unity3D
using its native plugin feature to have minimal overhead.

4.2 Experimental Setup
4.2.1 Virtual Environment

The MPCRed algorithm requires a map of the trajectories in a VE.
However, generating such trajectories from a given geometry or
points of interest is out of the scope of this paper and is still an
open research question. E.g. [4, 5] present dynamic walking mod-
els which can generate natural human walking trajectories numer-
ically. Hence, we designed a VE that constrained the walk paths

1www.oculusvr.com
2www.unity3d.com
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Figure 2: Layout of the study VE and a recorded virtual trajec-
tory. The green point marks the start/terminal position. Participants
walked clockwise. The red dashed rectangle shows the size of the
real room (start configuration). R1 to R5 label the resets.

so that the trajectories could be predefined. The layout of the con-
structed VE is shown in Figure 2. The layout of the VE is motivated
by the paths found in a local furniture store. However, it was scaled
down so that the path used for the study had an approximate length
of 100 m. The VE had a corridor width of 1.6 m and contained 5
crossings. The rendered view of the VE is shown in Figure 1(b).

In order to have all participants walking the same path for the
evaluation, direction signs were added at each crossing, see Figure
1(b). The circular path for the study and the start/terminal position
is also shown in Figure 2 (participants had to turn left at the first
crossing).

4.2.2 Trajectory Prediction
The trajectories of the study VE were predefined using a bidirec-
tional graph that also allowed cycles. The graph’s edges were mod-
eled as trajectory primitives. Such primitives were either straight
line segments for the corridors or regular arcs for the turns. The
arcs modeling the turns had a radius of 0.8 m and a turn angle of
-90◦, -180◦, 90◦, or 180◦. Clearly, this is only an approximation for
the true walking trajectories. However, this simplified model has
shown to be sufficient for the optimization. The vertices therefore
either modeled crossings and/or switches between different trajec-
tory primitives.

For predicting the future trajectories, a participant’s virtual po-
sition was mapped to the closest trajectory primitives in the graph.
Then, the user’s smoothed virtual orientation was used to determine
the correct trajectory primitive, i.e. matching the direction. A sim-
ilar approach was used by Peck et al. [13]. The smoothed virtual
orientation was determined by exponentially smoothing the virtual
head positions over an approximate window of 1 second (smoothing
factor 0.009 at 180Hz). If the participant was not walking (⇔ speed
≤ 0.2 m/sec) the exponentially smoothed facing direction was used
as orientation (smoothing factor 0.004 at 180Hz).

MPCRed needs to know the future set of trajectory primitives
for planning. Thus, the trajectory graph had to be resampled for a
given stage length to provide a list of primitives for a total length
equal to the required stage length and an associated probability.

At crossings, all directions were given equal probability and a
forward walking assumption was applied. I.e. when a participant
arrives at a ’T’-shaped crossing from below, the predictor only con-
siders left or right as future directions and both have the probability
0.5. It should be noted that although the path was fully defined for
the participants, the planning algorithm considered all future direc-
tions at crossings during the study.



4.2.3 Reset Technique

For both study conditions explained below, a reset technique was
required. A reset stops a participant and reorients or repositions
him in the real room if a collision with the room’s boundaries is un-
avoidable. We decided to use a pure reorientation reset technique
as proposed in [24]. When a reset had to be done, a large green ar-
row appeared on top of the VE that instructed the participant to stop
walking and turn on the spot in the direction the arrow was pointing.
Participants had to do a full 360◦ turn in the VE. However, depend-
ing on the study condition, they turned between 390◦ to 540◦ in the
real room. When the reset was done, the arrow changed to a tick
mark and then disappeared to notify the participants that they may
continue walking. With this reset technique, the applied rotation
gains comply with the detection thresholds determined in [18].

4.3 Conditions

As we wanted to evaluate and compare the performance of
MPCRed, we conducted a study with two conditions. In the
MPCRed condition, the MPCRed algorithm was used to steer a par-
ticipant while he walked along the predefined path in the study VE.
In the other condition, the S2C algorithm was used. Both conditions
were based on the same VE and path.

Both algorithms utilized the same rotational RET and reset tech-
nique. For the rotational RET, the curvature gain ρc was 1/7.5 [8].
The rotation gain ρq was (1-0.67) for rotations with and (1-1.24)
for rotations against the head movement [18].

4.3.1 S2C Condition

The S2C algorithm was realized as proposed by [8]. The damping
distance to the room’s center position was 1.25 m and the damping
angle range was 35◦. I.e. the rotational redirection was reduced
or turned off when a user was standing close to the room center or
walking approximately towards it. We performed no damping of
the applied rotation and no temporary steering targets were gener-
ated for a user walking away from the room center. Instead, the
trajectory graph was used to retrieve a robust direction prediction.
Reorientation resets were activated whenever a user reached the
boundary of the real room and turned the user towards the center
of the real room, see also [13].

4.3.2 MPCRed Condition

We defined 14 different actions for the MPCRed algorithm. A
“zero” action represented the action where no redirection was ap-
plied at all. Two actions were defined using the rotational RET. One
that turned a participant clockwise and one that turned him counter-
clockwise. The other 11 actions defined different rotation angles of
the reorientation reset. The reset actions turned a participant ±30,
±60, ±90, ±120, ±150, or 180 degrees.

Previous tests have shown that the suitable time horizon which
results in low average computation times is 8. We defined the cost
of the rotational RET action as 1. Hence the cost of the resets must
be defined relative to this cost. Our goal was to force the algorithm
to avoid or postpone a reset action whenever possible. Hence, we
defined the reset cost as 500. Basically, this is just a large number
for which the discounted cost at the end of the horizon (α8−1×500)
is still larger than any rotational RET action. In other words, the
algorithm should always use a rotational RET to avoid resets.

0.8 was found to be a suitable discount factor α . The stage dura-
tion was 2.5 sec and the participant’s exponentially smoothed walk-
ing velocity was used to determine the stage length (smoothing fac-
tor 0.001 at 180Hz). The stage costs were only given by the action
costs except if the applied action caused a collision. In that case,
the stage costs were infinite.

4.4 Participants
A total of 26 participants (19 male, 7 female) recruited among the
department took part in the user study. Their age was between 22
and 37 years (median=28.5 years, σ=4.1). All participants had nor-
mal or corrected-to-normal vision. Participants with corrected-to-
normal vision wore contact lenses and not glasses as a requirement.
This avoided problems with adjusting the Oculus Rift HMD.

4.5 Procedure and Task
In order to eliminate training effects, the order of the two conditions
was rotated and counterbalanced. An initial training session also
had the purpose to further reduce order effects.

First, the participants were introduced to the wearable VR sys-
tem and received instructions how the wear and adjust the HMD
and backpack. Then, all participants were allowed to test the system
in the training VE for 5 minutes. During the training, participants
received further instructions regarding the direction signs and the
reset techniques. After the training, they had to walk to the marked
start position in the tracking space. They were told that their task
is to walk naturally through the study VE, follow the corridors and
the direction signs at the crossings. The walk was finished when
they arrived again at the (virtual) start position marked with a green
pillar. This procedure was repeated for the second condition.

The simulator sickness was measured using Kennedy’s Simu-
lator Sickness Questionnaire (SSQ). All participants answered the
SSQ three times: before the training, after the first condition, and
after the second condition at the end of the study.

4.6 Measures
By design, generalized redirected walking algorithms try to prevent
the user from leaving the boundary of the tracking space. Hence the
most relevant performance measure is the number of wall contacts,
i.e. the number of reorientation resets. Further, the resets cause
breaks in presence and are clearly noticed by the user whereas the
rotational RET should remain unnoticed by study design. Finally,
the number of resets is also a technical measure because it allows
comparing the costs between MPCRed (resets are the most signifi-
cant costs) and S2C even though S2C has no notion of cost.

Similarly, the injected rotation for redirection is minimized. S2C
only applies a redirection if the user is facing away from the cen-
ter of the tracking space and MPCRed tries to minimize the cost
of the applied redirection. Therefore, the mean rate of redirection
is also considered for the comparison. It is defined as the mean of
the unsigned injected redirection rotation per second for a single
walk through the study environment excluding the resets and there-
fore measures the effect of the rotational RETs. It is technically
independent of the number of resets.

Further general measures are the total time required for a walk,
the mean walk speed, the walked distance, and the mean time be-
tween the resets. For the MPCRed condition, we also analyzed the
times required for the computation of the optimal action.

5 RESULTS

Out of 26 participants, 24 successfully completed the evaluation
study (6 women and 18 men). One participant did not follow the
defined path correctly and another had problems with wearing the
backpack which caused an unnatural walking behavior. The follow-
ing results are based only on the data from these 24 participants. For
both genders, the order of the conditions were counterbalanced.

On average for all participants and both conditions, the distance
for a single walk through the study VE had a length of 108.6 m with
a standard deviation σ=6.0. The mean walk speed was 0.64 m/sec,
σ=0.08 and the mean duration was 208 sec, σ=41.

For comparing both conditions, 2-tailed t-tests were performed.
We report the means, the standard deviations, and the correspond-
ing t and p values.
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Figure 3: Real room trajectory of the virtual trajectory shown in Figure
2, MPCRed condition. The trajectory is split in 2 parts at the third
reset ((a) first part, (b) second part). The trajectory is colored to
distinguish overlapping segments. R1 to R5 label the resets.
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Figure 4: System evolution of the MPCRed algorithm for the trajec-
tory shown in Figure 3.

One participant answered the SSQ incorrectly and was excluded
from the evaluation of the SSQ. The mean pre-SSQ score for the
remaining 23 participants was 4.0 with σ=3.8. The post-SSQ score
after the MPCRed condition averaged to 7.3, σ=5.6 and for the
S2C condition to 7.35, σ=5.8. There was no significant difference
between the two conditions (t(22)=0.082, p=0.935). The significant
differences between the pre-SSQ and post-SSQ for both conditions
were similar (pre-SSQ to S2C condition (t(22)=3.27, p<0.01), pre-
SSQ to MPCRed condition (t(22)=3.39, p<0.01)).

5.1 MPCRed
A representative trajectory recorded during the study in the
MPCRed condition is shown in Figure 2. The corresponding tra-
jectory in the real room is given in Figure 3. In both, the virtual and
the real trajectory, the resets are labeled and visible as point-like
marks on the trajectory. The corresponding participant had to do 5
resets to complete the walk. The real trajectory in Figure 3 is split
into two parts at the third reset.

The evolution of the MPCRed algorithm over time for the trajec-
tory in Figure 3 is shown in Figure 4. It shows the currently esti-
mated best cost-to-go, the computation time per epoch (=2.5 sec),
and when the participant had to do a reset.

Computation Time The mean computation time for all calcu-
lated redirection actions during the study was 82.5 millisec, with
σ=145.1. Typically the computation time was below 200 millisec.
However, for 6 single actions the computation time was above 1
sec and the maximum overall encountered computation time was

1826 millisec. In the study VE, the computational cost was in
O((14×D)8) given the 14 actions, a time horizon of 8 and a tra-
jectory branching factor D that varied from 1 to 3. On average
however, D was between 1 and 2.

5.2 Comparison
Number of Resets The mean number of resets in the

MPCRed condition was 6.63, σ=1.44 per walk through the study
VE. During the S2C condition, participants had to do 11.25 resets
on average, σ=2.11. The MPCRed algorithm significantly reduced
the number of required resets (41% reduction) compared to the S2C
algorithm (t(23)=8.15, p<0.001).

Mean Rate of Redirection The mean rate of rotational redi-
rection in the MPCRed condition was 0.088 rad/sec, σ=0.024 and
during the S2C condition 0.120 rad/sec, σ=0.021. The MPCRed
algorithm significantly reduced the mean rate of redirection (27%
reduction) compared to the S2C algorithm (t(23)=5.50, p<0.001).

Other Measures The fact that the number of resets is reduced
significantly in the MPCRed condition clearly affects the task com-
pletion time and the mean walk speed. The same holds true for the
mean time between two resets. Hence, we omit the further compar-
ison of these measures.

6 DISCUSSION

Summarizing from the results, MPCRed provides a significant im-
provement over the S2C algorithm. Further, it proves that an MPC
based RET controller is realizable in practice if the trajectories of
the VE can be determined. On the other hand, MPCRed has a sig-
nificant advantage over S2C as it knows the future trajectories. Un-
der this perspective, S2C actually performs well as it requires only
about twice as many resets as MPCRed. The main reason is that
the redirection is always active (if the user is not facing towards the
room center). I.e. almost any head rotation will cause a redirec-
tion. In contrast, MPCRed often applies no redirection (zero RET)
if redirection is not considered useful. Therefore, unpredicted head
movements will have no effect. In fact, the known trajectories just
provide a conservative estimate for the user movements and typi-
cally a “looking around” behavior is not modeled.

The computation time during the whole study was low given that
the worst case costs for the planning are in O((14×3)8) considering
the crossings. This proves that the cost bounds effectively reduce
the computation time to a feasible range. This however comes at
the expense that we do not know a priori how long the computation
will take, which explains the high variation of the computation time
in Figure 4. E.g. at reset 4, the computation time is high because
the user is close to a real room corner where several cheaper ac-
tions cause a collision and the bounds do not cut off branches as
effectively. Further, the varying number of trajectory branches D at
crossings also influences the computation time. It should be noted
that the number of actions |C| and the branches D can strongly limit
the feasible time horizon N for solving the optimization problem.
The size of the real room has a similar influence. If the user does
not reach the real room boundaries in most cases within the time
horizon, MPCRed will apply no RET or cheap RETs only and the
computation time will be low. On the other hand for a very small
room, more collisions must be considered. During the study, it is
likely that a slightly wider room would have improved the results
of MPCRed. This is because MPCRed often aligned straight tra-
jectory segments along the real room’s diagonal as the room was
slightly too narrow which still caused a reset at the other end.

In Figure 4 some problems of MPCRed can be seen. Usually
before a reset occurs, the best cost-to-go gradually increases as ex-
pected. However, in some cases (e.g. see time index 60 sec) the
algorithm suddenly decides that a reset is required. This happens
when the algorithm previously determined that a reset is not needed



but the prediction was incorrect. A potential solution is to use dif-
ferent stage costs for the geometry. So far, a discontinuous function
was used, i.e. 0 costs for positions inside the real room and infinite
costs outside the real room. Hence, the planner plans very close to
the boundary. Instead, a continuous function could be employed to
penalize the border area, see e.g. [11].

The main error sources of MPCRed are the differences between
the real and the predefined trajectories and the computation time.
When MPCRed optimizes for the next action, it uses the current
state. However, at the time the action is determined and applied,
the user has already moved on. In other words, there is a trade-off
between planning horizon, computation time, and stage duration.

7 CONCLUSIONS AND FUTURE WORK

Within this paper, we presented a generalized approach for design-
ing redirection planning algorithms by showing how to treat the
RDW problem as an optimal control problem. Based on the pro-
posed control model, we designed and evaluated an efficient online
planning algorithm that can determine suitable RETs with their pa-
rameters that have to be applied. As the proposed approach needs to
know the user’s future behavior for planning ahead, it is most suit-
able for goal oriented tasks and/or geometrically constrained envi-
ronments.

Therefore, future work should focus on human path prediction
methods which use the user’s current walking behavior to determine
the future trajectories with their likeliness. Additionally, heuristics
could be employed to effectively reduce the amount of considered
future trajectories. Further, cost functions are needed for differ-
ent RETs including e.g. stronger or perceivable rotational RETs.
The proposed model could be used to fuse offline planning with
online planning to effectively increase the horizon while keeping
the computational costs low. The offline planner could instead plan
on a coarsely discretized state mesh with a reduced set of RETs.
The resulting costs-to-go for each discretized state could also serve
as a robust state evaluation function, e.g. for [25]. Finally, the
proposed approach can be adapted to plan redirection for dynamic
passive haptics, where a user can sense a virtual object by being
guided/redirected to a real world proxy object.
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