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We introduce a novel description of the dynamics of the order book of financial markets as that of an
effective colloidal Brownian particle embedded in fluid particles. The analysis of comprehensive market
data enables us to identify all motions of the fluid particles. Correlations between the motions of the
Brownian particle and its surrounding fluid particles reflect specific layering interactions; in the inner layer
the correlation is strong and with short memory, while in the outer layer it is weaker and with long memory.
By interpreting and estimating the contribution from the outer layer as a drag resistance, we demonstrate the
validity of the fluctuation-dissipation relation in this nonmaterial Brownian motion process.
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The mathematical description of fluctuation phenomena
in statistical physics—of quantum fluctuation processes in
elementary particle and field physics on the one hand, and
of financial prices on the other—has a long tradition since
Bachelier’s seminal 1900 Ph.D. thesis [1], which is
anchored in the random walk model and the Wiener
process. In physics, this field of study started from
Einstein’s 1905 paper on Brownian motion; the concept
of the generalized Langevin equation and the fluctuation-
dissipation relations (FDRs) were well established in the
middle of the 20th century [2,3]. Recently, strong interest
has developed to clarify the conditions under which the
FDRs are violated, based on numerical simulations [4,5] as
well as experimental investigations using precise observa-
tions; the latter use advanced nanotechnology instruments
for various materials such as colloidal suspension [6,7],
polymers [8], liquid crystal [9], and glass systems [10].
The financial economic literature uses theWiener process

as the standard starting point for modeling and financial
engineering applications [11]. Extending the initial intuition
ofBachelier, the randomnatureoffinancialprice fluctuations
is presently mostly understood as resulting from the imbal-
ance of buy and sell orders at each time step [12]. In order to
explain non-Gaussian properties of market price fluctua-
tions, extensions in the formofLangevin-typeequationswith
an inertia term have been proposed [13–20].

Essentially all previous models based on the random
walk picture or its continuous version (the Wiener process)
involve just the price dynamics. Other approaches simulate
financial markets by computational economic models with
different classes of agent strategies, or by using the
statistics of buy and sell orders from the viewpoint of
statistical physics [21–28].
Here, we introduce a qualitatively novel type of model for

financial price fluctuations. Rather than focusing on the
dynamics of a single price for a given market that requires
complicatedmodifications to the basic randomwalkmodel in
order to account for the numerous stylized facts, we propose
thepicture that the observed financialmotion is analogous to a
genuine colloidal Brownian particle embedded in a fluid of
smaller particles, which themselves reflect the structure of the
underlying order book (defined as the time-stamped list of
requests for buy and sell orderswith prices and volumes). The
“Financial Brownian Particle in order-bookmolecularmatter-
antimatter fluid” (FBP, in short) picture provides a novel
quantification of the correlations between different layers in
the order book that can be interpreted as the analogy of the
correlation between a Brownian particle itself with the
surrounding fluid molecules. We present empirical estima-
tions of the correlation functions that confirm the proposed
mapping as well as provide nontrivial insights on the corre-
lations with deeper fluid molecular layers within the
order book.
We analyze the order-book data of the Electronic

Broking Services for currency pairs provided by market
managing company ICAP. This foreign exchange market is
continuously open 24 hours per day, except over weekends,
and its transaction volume per day, at about four trillion
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U.S. dollars, makes it the largest among all financial
markets, with also much larger liquidity than stock markets.
We present our results for the U.S. dollar–Japanese yen
market, which is characterized by a large transaction
volume. The traders in this market are international
financial companies that are connected to ICAP’s market
server by a special computer network. Any orders, either
buy or sell, are quantized by a unit of one million U.S.
dollars with the price given with a granularity of 0.001 yen
(called a pip) recorded with a time stamp of one millisec-
ond. A pair of buy and sell orders meeting at the same
price immediately triggers a transaction and determines the
latest official market price. These orders disappear from the
order book just like a pair annihilation of matter-antimatter.
The price and time quantizations enable us to describe the
market by particles in discrete space and time, where a
particle represents either a buy or sell order of one million
U.S. dollars. In the following discussion, we assign a
superscript − (þ) for buy (sell) orders.
At a given time, a state of this market is characterized by

its order book schematically represented in Fig. 1(a), which
contains the set of yet unrealized buy (sell) orders in the
lower (higher) side of the discrete price axis. The highest
buy (lowest sell) order price, denoted as x−ðtÞ ðxþðtÞÞ is
called the best bid (ask), and the gap between the best bid
and best ask is called the spread. For each buy (sell) order in
the order book, we introduce an important measure of depth
γ− (γþ), which is defined by the distance of this buy (sell)
order from x−ðtÞ ðxþðtÞÞ in pip units.
The order book is evolved by the spontaneous injection

of three types of orders: limit orders, market orders, and

cancellation. A limit buy (sell) order is introduced by a
trader by specifying the buying (selling) price. If the buying
(selling) price is lower than the best ask (higher than the
best bid) in the order book, the order is accumulated at the
specified price in the order book as a new buy (sell) order. If
the buying (selling) price is equal to or higher than the best
ask (lower than the best bid), this order makes a deal with a
sell order at the best ask (bid) in the order book, and that
pair of orders annihilates. A market buy (sell) order directly
hits against a sell (buy) order at the best ask (bid), causing a
deal. A cancellation simply deletes an order, and it can be
done only by the trader who created the order. This highly
irreversible particle dynamics evokes chemical catalysis,
and leads to a rich phenomenology [29–35].
The FBPmodel that we propose is illustrated in Fig. 1(b).

An imaginary colloidal Brownian particle, called a colloid,
has its center positioned at the midprice, xðtÞ ¼ fx−ðtÞþ
xþðtÞg=2, with the core diameter given by the spread
xþðtÞ − x−ðtÞ. The accumulated orders are regarded as
embedding fluid particles with a diameter equal to 1 pip.
Wevisualize the core of the colloid by theyellowdisk and the
interaction range by the yellow-green ring area that overlaps
with the particles near the spread (the green and orange
disks). We call this interaction range the inner layer and the
domain outside of this interaction range the outer layer. The
values of threshold depths for defining the inner layer, γ−c and
γþc , will be estimated below from the data.With the injection
of new orders, the surrounding particles change their
configuration and the colloid moves as a result, as shown
in Fig. 1(c) for a specific example. The colored arrows
indicate typical particle density changes in the layers, which
we are going to analyze in detail.
Observing the evolution of the configuration of particles

from time t to tþ Δt, we measure the change in the number
of − (þ) particles as a function of the depth γ− (γþ), where
the depth is measured from x−ðtÞ ðxþðtÞÞ, at each time.
When x−ðtÞ ðxþðtÞÞ stays at the same location, the change
in particle number at a given depth is simply given by
counting the change in the number of − (þ) particles.
When x−ðtÞ ðxþðtÞÞmoves, the density profile as a function
of depth shifts accordingly and the changes of particle
numbers at different depth are simply due to the translation.
Note that the depth γ− (γþ) can take a negative value, for
example, in the case when a limit order falls in the spread.
Figure 2(a) shows the correlations between the change in

the number of − (þ) particles at each depth γ, ΔNγ , versus
the velocity of the colloid, vðtÞ ¼ ½xðtþ ΔtÞ − xðtÞ�=Δt,
where the time is in units of tick time, incremented by one
unit when a deal occurs. In this figure, the value of the
observation window is Δt ¼ 100. On average, this time
interval corresponds to 160 sec (1 tick≃ 1.6 sec). The
velocity correlation with the change in the number of −
particles is negative for γ− ≤ γ−c , as shown by the orange
line, and the correlation is positive for γ−c < γ−, shown
by the red line, where the estimated value of the boundary

FIG. 1. Schematic representation of the FBP model. (a) An
order-book configuration of buy orders (blue in outer layer and
green in inner layer) and sell orders (red in outer layer and orange
in inner layer) on the price axis. (b) Corresponding configuration
of outer-layer particles (blue and red disks), inner-layer particles
(green and orange disks), the colloidal Brownian particle’s
interaction range (yellow-green torus), and the core (yellow).
(c) After Δt, the configuration of surrounding particles changes.

PRL 112, 098703 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

7 MARCH 2014

098703-2



is γ−c ¼ 18. The same relations with the opposite sign hold
for þ particles, as shown by the green and blue lines,
implying that the dynamics is close to symmetric.
Intuitively, when the price goes up, more new buy than
sell orders are injected in the inner range and sell orders
near the market price tend to be canceled and replaced
by higher sell prices, based on the anticipation of larger
future returns by traders assuming trend persistence. The
opposite direction is explained in the same way.
Let us define the total change of particle numbers in the

inner layer at time t, fiðtÞ ¼ c−i ðtÞ − cþi ðtÞ − a−i ðtÞ þ
aþi ðtÞ where c−i ðtÞ and a−i ðtÞ denote the numbers of −
particles that are created and annihilated, respectively, in
the inner layer at time t, and cþi ðtÞ and aþi ðtÞ are the same
quantities for þ particles. Note that − and þ particles are
counted with the opposite sign as they are conjugate
“matter” and “antimatter.” In Fig. 2 (b1), the scatter plot
of the velocity of the colloid, vðtÞ, observed in the same
time window, Δt ¼ 100, as a function of the sum FiðtÞ ¼PΔt

s¼0 fiðtþ sÞ from t to tþ Δt demonstrates a strong
linear correlation. Figure 2(c) shows the correlation coef-
ficient between vðtÞ and FiðtÞ for different values of Δt.
The correlation increases for larger Δt, reaching the value
0.7 around Δt ¼ 100. These empirical results suggest the
following basic relation:

vðtÞ ¼ LðΔtÞð1=ΔtÞ
XΔt

s¼0

fiðtþ sÞ þ ηðtÞ. (1)

The factor LðΔtÞ represents the mean step length of the
colloid motion as a response to the motion of the

surrounding fluid particles. It ranges from LðΔtÞ ≈ 0.44
pips forΔt ¼ 100 to LðΔtÞ ≈ 0.32 pips forΔt ¼ 4. The last
term, ηðtÞ, is the error term. Similar correlations between
the velocity and market orders have been previously
documented [29]. However, we find here significantly
higher values due to the more appropriate separation of
the negative and positive sides of the layered structure of
the order book. We also observed, similarly, the changes in
outer-layer particle numbers for buy orders and sell orders
separately, and confirmed the correlations with the velocity
as shown in Fig. 2(b2). Figure 2(d) shows the time-shifted
correlations between the velocity and these changes in
particle numbers, which confirms that the inner-layer
particles correlate strongly with the velocity but with a
short memory, while the correlation of the outer-layer
particles is weaker but decays slowly with a power tail.
Next, we present a more detailed description of the fluid

particles. Figure 3(a) shows a schematic diagram of the
space-time configuration. We categorize the particles that
annihilate in the inner layer into two classes, aii and aoi. An
aii particle is created in the inner layer, stays in the inner
layer, and annihilates in the inner layer, while an aoi
particle is born either in the inner layer or outer layer, visits
the outer layer at least once, and then annihilates in the
inner layer. By surveying the whole life of the particle, we
find that 73.5% of particles are created in the inner layer
(denoted as ci), and 72.3% of particles are annihilated in the
inner layer (denoted as ai). The share of aii particles is
61.5% and that of aoi is 10.8%.

(a)

(c) (d)

(b1) (b2)

FIG. 2. Statistical properties supporting the physical Brownian analogy in Fig. 1. (a) Correlation function between velocity, vðtÞ, and
the change in particle number at depth γ for buy orders (green and blue triangles) and sell orders (orange and red circles) where γc ¼ 18.
(b1) Scatter plot of vðtÞ as a function of FiðtÞ for Δt ¼ 102. (b2) Scatter plot of vðtÞ as a function of the change in the particle number in
the outer layer for buy orders [F−

o ðtÞ] and for sell orders [Fþ
o ðtÞ] with Δt ¼ 102 (blue line and red line, respectively). Dots and bars

represent the mean values and the standard deviations. (c) Correlation coefficients between vðtÞ and FiðtÞ (pink dots), and between vðtÞ
and the “order flow” (black dots), defined by the number of buy orders minus that of sell orders. (d) Time-shifted correlation functions
between vðtÞ and fFiðtþ ΔtÞ; Fþ

o ðtþ ΔtÞ; F−
o ðtþ ΔtÞg (pink line, blue line, and red line, respectively). The inserted figure shows a

log-log plot of these correlation functions as a function of Δt and the dotted line shows a power law, 1=Δt.
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Statistics of aii and aoi are compared in Fig. 4. The time-
shifted correlations with vðtÞ are plotted in Fig. 4(a) for
giiðtÞ ¼ −a−iiðtÞ þ aþii ðtÞ by blue line and for goiðtÞ ¼−a−oiðtÞ þ aþoiðtÞ by red line. We find that aii and aoi are
oppositely correlated with the velocity. Figure 4(b) shows

the cumulative distributions of the lifetimes of these
particles in log-log scale. The distribution of the lifetimes
of aii particles decays exponentially with a mean lifetime of
approximately 2.6 ticks, while that of aoi follows a
power law with an exponent close to −0.5, which corre-
sponds to the distribution of recurrence time intervals for
one-dimensional random walks.
These results justify a more sophisticated FBP picture in

which the aii particles contribute to the driving force,
directly pushing or pulling the colloid at the time of
annihilation; the aoi particles work as a drag that impede
the colloidal motion since they always collide with the
front of the colloidal motion. Based on this picture, the
velocity equation, Eq. (1), is decomposed as vðtÞ¼
vIðtÞþvFðtÞþηðtÞ, where vIðtÞ ¼ LðΔtÞPΔt

s¼0f−a−oiðtþ
sÞ þ aþoiðtþ sÞg=Δt and vFðtÞ ¼ LðΔtÞPΔt

s¼0fc−i ðtþ sÞ−
cþi ðtþ sÞ − a−iiðtþ sÞ þ aþii ðtþ sÞg=Δt.
As the term vFðtÞ is nothing but the direct driving force

term that reflects the immediate orders of traders, we focus
on the term vIðtÞ, which is caused by the long-term
response of the fluid particles. The power spectra of
vðtÞΔt, vIðtÞΔt, and their ratio are plotted in Fig. 4(c).
The power spectrum of vðtÞ is nearly white with slightly
more energy in the high frequency band, implying that
there are zigzag fluctuations at very short times. On the
other hand, the spectrum of vIðtÞΔt clearly decays at high
frequency. The ratio of power spectra, jvIðωÞj2=jvðωÞj2,
has a Lorentzian form, implying that the response function
is approximated by an exponential function vIðtÞ ¼R
t−∞ ϕðt − sÞvðsÞds, ϕðtÞ ¼ ϕ0e−δt with the following

estimated parameter values: ϕ0 ¼ 0.08 and δ ¼ 0.27.
Introducing these relations into vðtÞ¼vIðtÞþvFðtÞþηðtÞ
and taking its time derivative, we obtain the following
standard form of a Langevin equation in the continuous
time representation, which demonstrates the validity of the
FDR:

ðd=dtÞvðtÞ ¼ −μvðtÞ þ GðtÞ; μ ¼ ðδ=ϕ0Þ − 1. (2)

The external force term GðtÞ includes vF, η, and their
derivatives, which are not simple white noise, and the drag
coefficient is estimated as μ ¼ 2.2. The validity of this
continuum formulation can be checked by estimating the
Knudsen number [36–38] of the financial markets, defined
as the ratio of the mean free path of collisions of the colloid
and the aoi particles over the diameter of the colloid. We
find that the averaged value of the Knudsen number is
approximately 0.02, the smallness of which guarantees the
validity of the continuum representation of market price
given by Eq. (2).
So far, we have analyzed the whole data set to observe

the averaged behaviors, neglecting the well-known fact that
markets are not stationary and are characterized by regime
shifts: Calm periods are punctuated by turbulent periods of
high transient volatility, including speculative bubbles and

FIG. 3. Schematic diagram of the space-time configuration of
particles. (a) Creation and annihilation of fluid particles are
shown together with the trajectory of the colloid motion (black
line) and the inner layer (the region between black dotted lines).
The black disks represent aoi particles. (b) Share percentages of
the different particle types.

(a) (b)

(d)

(e)

(c)

FIG. 4. Statistical properties of aoi particles (see text for
definition): (a) Correlation functions of fvðtÞ; goiðtþ ΔtÞg
(upper red) and fvðtÞ; giiðtþ ΔtÞg (lower blue). (b) Cumulative
lifetime distribution of aii (left blue) and aoi (right red), with the
power law τ−0.5 shown as a guideline (red dotted line). (c) Power
spectra of vðtÞΔt (top green), vIðtÞΔt (middle red), and ratio of
jv2I ðωÞj=jv2ðωÞj (bottom gray), with the blue dotted guideline
a=ðbþ ω2Þ with ða; bÞ ¼ ð0.00725; 0.0764Þ. The power spectra
are averaged over 200 samples of time series, of size 28 ticks. The
right vertical axis is for vðtÞΔt and vIðtÞΔt, and the left vertical
axis is for the ratio. (d) Time series of xðtÞ (U.S. dollars—
Japanese yen exchange rates for the week of March 14, 2011).
(e) Time series of the ratio aoi=ai, measured for the time interval
½t − 1000; t�, and the averaged value for the whole period (the
blue dotted line).
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crashes. It is thus more appropriate to revisit our above
estimations of observables in shorter time scales and
analyze their possible time variation. A detailed analysis
will be described in a separate paper. Here, we show the
temporal change of the ratio of aoi=ai in Fig. 4(e) with the
corresponding market price in Fig. 4(d). In addition to
being easy to observe, the ratio aoi=ai constitutes the key
parameter related to the strength of the drag force exerted
by the fluid particles. One can see that aoi=ai fluctuates
significantly, confirming that market conditions are not
stationary.
In summary, we have established a fundamental analogy

between the motion of a colloidal particle embedded in a
fluid and the price dynamics of a financial market in the
order book. By observing the detailed behaviors of the
colloid and surrounding particles in the order book, we
found that the drag resistance is caused by particles moving
from the outer layer to the inner layer. The proposed
quantitative correspondence provides a novel perspective
for the analysis of financial markets. In addition, it should
provide a stimulus for physicists frommany different fields,
since the question of the origin of drag resistance is a
fundamental question in physics that still remains to be
fully clarified. We also showed the need to enhance the
analysis by accounting for the nonstationary properties of
markets. Moreover, there are some market conditions
where we find that the Knudsen number becomes close
to 1, requiring the extension of the continuous description
(2) into a discrete representation. Our approach demon-
strates the importance of physical intuition associated with
financial insights in analyzing the big data of financial
markets.
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