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Abstract. Spatiotemporal observations in Earth System sci-
ences are often affected by numerous and/or systematically
distributed gaps. This data fragmentation is inherited from
instrument failures, sparse measurement protocols, or un-
favourable conditions (e.g. clouds or vegetation thickness in
case of remote-sensing data). Missing values are problem-
atic as they may cause analytic biases and often inhibit ad-
vanced statistical analyses. Hence, gapfilling is an undesired
but necessary task in Earth System sciences. State-of-the-art
gapfilling algorithms based on Singular Spectrum Analysis
(SSA) exploit the information contained in periodic tempo-
ral patterns to fill gaps in the observations. Here we propose
an extension of this method in order to additionally consider
the spatial processes and patterns underlying most geoscien-
tific datasets. The latter has been made possible by including
a recently developed 2-D-SSA approach. Using both artifi-
cial and real-world test data, we show that simultaneously
exploiting spatial and temporal patterns improves the gap-
filling substantially. We outperform conventional approaches
particularly for large and systematically recurring gaps. The
new method is reasonably fast and can be applied with a min-
imum of a priori assumptions regarding the structure of the
data and the distribution of gaps. The algorithm is available
as a ready-to-use open source software package.

1 Introduction

The global monitoring of the atmosphere, the land surface,
and oceans via in situ measurements and remote sensing has
opened unprecedented opportunities for studying various as-
pects of the functioning of the Earth System (Overpeck et al.,

2011; Reichstein et al., 2013). However, several analyses in
Earth System sciences depend on gap-free data: In the sim-
plest case, the estimation of unbiased annual sums and bud-
gets requires reliable gapfilling techniques if the fragmenta-
tion does not happen at random (Falge et al., 2001). Also
many advanced analyses, for instance exploratory statistical
or machine learning approaches (Mjolsness and DeCoste,
2001), as well as as spectral (time series) analysis (Ghil
et al., 2002), generally need gap-free and evenly sampled
data. Process-oriented modeling approaches depend on con-
tinuous observations as drivers for predicting system prop-
erties. Likewise, model benchmarking is limited by missing
data (Luo et al., 2012).

In reality this need for continuous data is often not ful-
filled. Instrumental failures or unfavourable measurement
conditions (e.g. cloud cover, aerosols, or complex surface
properties in the context of remote sensing) cause gaps
in both in-situ or remote-sensing data. Examples of such
datasets are most remotely sensed land surface properties in-
cluding Soil Moisture (SM;Liu et al., 2011), Leaf Area In-
dex (LAI), Normalised Difference Vegetation Index (NDVI;
Huete et al., 2002), or Land Surface Temperature (LST;Jus-
tice et al., 1998). Hence, filling missing data points by empir-
ical estimates is a generally undesired but often crucial step
to tap the full information in a data rich world.

Several methods have been proposed that exploit multi-
variate empirical relationships between the variable of in-
terest and other variables available at gap positions (Moffat
et al., 2007). A more import argument for not including an-
cillary observations is that the independence amongst data
sources should be maintained. Otherwise, any subsequent
multivariate analysis investigating relationships between the
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variable and the ancillary data will be spurious. The follow-
ing brief literature overview focuses explicitly on univariate
methods.

A widely used method for gapfilling is expectation max-
imisation (EM; cf.Dempster et al., 1977; Schneider, 2001,
for specific extensions to climate data) where the mean and
covariance of a dataset are iteratively estimated and used to
predict missing values. A classical parametric set of univari-
ate gapfilling methods is based on optimal interpolation (OI,
cf. Reynolds and Smith, 1994; Smith et al., 1996; Kaplan
et al., 1997) which uses interpolations form “optimal” peri-
ods to replace gaps. However, these methods require a priori
assumptions about the covariance structure of the data and
the structure of the gaps.Beckers and Rixen(2003) present
a method where missing values are estimated via Empirical
Orthogonal Functions (EOFs) and the initially filled dataset
is iteratively used to update the EOF estimation. Their ap-
proach can capture spatial patterns but largely ignores tem-
poral correlations. An alternative approach is to interpolate
missing data in all available dimensions. Examples are pre-
sented byGarcia(2010) andWang et al.(2012) .

Another alternative is offered by the 1-D temporal gapfill-
ing approaches relying on Singular Spectrum Analysis (SSA;
Broomhead and King, 1986; Vautard and Ghil, 1989), where
the first concept was presented bySchoellhamer(2001).
Golyandina and Osipov(2007) modify the classical SSA al-
gorithm and estimate the SSA components based on non-
missing data only. The values of the reconstructions are then
imputed to the missing values.Kondrashov and Ghil(2006)
generalise the EOF-based iterative procedure ofBeckers and
Rixen (2003) and propose a method that fills gaps using ei-
ther univariate or multi-channel SSA (M-SSA). For univari-
ate time series,Kondrashov and Ghil(2006) exploit the pe-
riodic and non-periodic temporal structures (for instance the
annual cycle and trend) of a given dataset to fill the gaps. In
this setting, spatial information can be partly used with the
help of M-SSA based on all grid locations. Note that there
are also other methods exploiting the periodic structure of the
signal, like the HANTS algorithm using Fourier decomposi-
tion (Roerink et al., 2000) and the approach ofHocke and
Kaempfer(2009) based on the Lomb Scargle periodogram,
which operate in the 1-D temporal domain.

All state-of-the-art SSA-based methods are strongly bi-
ased by periodic and/or long continuous gaps. This is partic-
ular problematic for remote-sensing products that are often
affected by seasonal occurrences of unfavorable conditions
(examples are winter snow cover or seasonal cloud distribu-
tions). For example,Musial et al.(2011) compared theKon-
drashov and Ghil(2006) method to splines and the approach
by Hocke and Kaempfer(2009) and found generally good
gap predictions with SSA – with the exception of artifacts
in the presence of periodic winter gaps. The cause for these
artifacts is the initial filling of gaps with a mean value as in-
put for the SSA runs (see Sect.2.3for details). Periodic gaps
then tend to produce spurious periodic patterns that persist

throughout the iteration process. Gaps longer than the period
of the oscillation used by SSA can similarly not be filled as
they directly influence and bias the shape of the reconstruc-
tions of these oscillations.

In this paper, we propose to extend the iterativeKon-
drashov and Ghil(2006) approach in order to explicitly cap-
ture and exploit the spatial information from geo-datasets.
The spatial patterns can be either used as unbiased first guess
(see Sect.2.3) for one-dimensional temporal SSA under dif-
ficult conditions (e.g. periodic or long gaps) or as full alterna-
tive for temporal SSA. The extraction of spatial patterns is fa-
cilitated by a recently developed 2-D-SSA variant (Golyand-
ina and Usevich, 2009). The 2-D-SSA method was developed
to decompose spatial data, e.g. orographic maps, into a set
of overlaid spatial patterns of different detail. Emphasising
the spatial auto-correlation structure is of paramount impor-
tance in remote sensing data, where regional anisotropic fea-
tures need to be maintained. The integration of the 2-D-SSA
method into the gapfilling scheme byKondrashov and Ghil
(2006) is also important to allow the processing of high res-
olution spatiotemporal data as they are currently made avail-
able to the scientific community.

2 Methods

2.1 Singular Spectrum Analysis (SSA)

In general terms, the SSA algorithm decomposes a signal into
a set of superimposed (i.e. additive) independent sub-signals.
In the context of Earth observation time series typical sub-
signals are diurnal and annual cycles. Also less regular pro-
cesses for instance ENSO patterns or long-term trends can
be extracted. Likewise, short-term stochastic variability may
play a role. Analogously, in the 2-D case, the overlaid pat-
terns represent spatial patterns at different scales (Golyand-
ina and Usevich, 2009). SSA has some advantages compared
to other more popular spectral methods (Ghil et al., 2002)
such as Fourier decomposition: in particular, SSA can ex-
tract phase-amplitude modulated oscillations from relatively
short and noisy signals (Golyandina and Zhigljavsky, 2013).

In the following, we will briefly discuss the different steps
of SSA and the relevant parametric choices. An in-depth
mathematical description is given in the appendix. The pro-
cess of SSA basically consists of four subsequent steps.
First, the time series or spatial field isembedded, i.e. a mov-
ing window is shifted along the time series (or spatial ma-
trix) and the vectors (or blocks) inside this window are ar-
ranged to form a trajectory matrix. Second, this matrix is sub-
ject to Singular Value Decomposition (SVD) which yields
a set ofeigentriples(i.e. individual SSA components, see
the AppendixA for details). These eigentriples represent
all individual and statistically independent (i.e. orthogonal)
sub-signals. Third, the eigentriples have to begroupedas
some sub-signals are represented by a set of complementary
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Table 1. Overview of the parametric choices used for the test runs
and their respective argument names in the GNU-R code.

parameter R argument name value

window length (1-D/2-D) M 45/20× 20
iterations (outer/inner) max.steps, amnt.iters 10/10
eigentriples extracted n. comp 20
amount of artificial gaps amnt.artgaps, gaps.cv 10 %

eigentriples. Examples are oscillatory patterns that are rep-
resented by two (for sinusoidal signals) or more eigentriples
(for non-sinusoidal patterns including harmonics). Fourth, in
a reconstructionstep each individual group of eigentriples is
transformed back into the temporal (or spatial) dimension of
the original series (or matrix).

2.2 Parametric choices

The analyst has to make two parametric choices for SSA
(Ghil et al., 2002): the window length(or embedding di-
mension) L (or Lx andLy in the 2-D case) and the group-
ing of the eigentriples. Due to the symmetry of the SVD,
L ≤ N/2 (with N = length of time series;Golyandina and
Zhigljavsky, 2013). IncreasingL generally improves the sep-
arability between different independent signals which is es-
pecially important for short time series as in our case. For
extracting oscillatory signals of periodP , L should be an
integer multiple ofP , i.e.L = n · P (Golyandina and Zhigl-
javsky, 2013). As the annual cycle of our remote-sensing test
datasets (c.f. Sect.2.4) with a sampling interval of 16 days
has a periodP ≈ 23 we setL = 45 for all 1-D SSA runs.
Comparable recommendations for 2-D SSA have not (yet)
been developed. Preliminary tests yielded better results for
small Lx and Ly , so we chose a value of 20× 20 for our
experiments. The user should bear in mind that this win-
dow size influences the shape of the SSA reconstructions
(Golyandina and Zhigljavsky, 2013). Additionally its opti-
mal size yielding the best gap filling results depends on the
size or amount and structure of the gaps present. An opti-
mum value can be obtained by cross validation with artifi-
cial gaps as done by (Kondrashov and Ghil, 2006). In our
test framework, however, this gap amount and structure was
varied systematically. To ensure comparability between the
different test cases, we used the fixed value of 20× 20 con-
sistently throughout our experiments.

The grouping is usually done manually via a visual inspec-
tion of the shape of the eigentriples and the spectrum of their
variance (i.e. the “Scree diagram”;Ghil et al., 2002; Golyan-
dina and Zhigljavsky, 2013). This is not possible with the
high amount of independent SSA runs in our case. Hence,
we use an automated method provided by theRssaGNU-R
package (Golyandina and Korobeynikov, 2013; Golyandina
and Zhigljavsky, 2013). Basically it identifies the groups via
a complete-linkage hierarchical clustering algorithm based

outer loop: h=1...m
-calc first h SSA comp.

-determine dim
best fit

-set gaps =  dim
best fit

-stop if prediction 
 decreases

middle loop: i=1...2
-compute SSA for i
dimensions

Inner loop: j = 1...n 
-repeat extraction n 
 times (or until conv.)

-set gaps = SSA result

-insert art gaps   
-set gaps = 0 (/mean)

-repeat without art gaps

spatio temp. scheme

outer loop: h=1...m
-calc first h SSA comp.

-stop if prediction 
 decreases

Inner loop: j = 1...n 
-repeat extraction n 
 times (or until conv.)

-set gaps = SSA result

-insert art gaps   
-set gaps = 0 (/mean)

-repeat without art gaps

Kondrashov, Ghil

Fig. 1. Comparison between the concepts of theKondrashov and
Ghil (2006) gap filling scheme and the proposed spatiotemporal
scheme.

on the so calledw-correlation matrix. Thisw-correlation ma-
trix contains the weighted correlations between the individ-
ual reconstructed SSA components.

Table 1 provides an overview of the parametric choices
and the corresponding parameters in the GNU-R function in
the packagespectral.methods.

2.3 Spatiotemporal scheme

With the proposed spatiotemporal gapfilling scheme we fol-
low the conceptual idea ofKondrashov and Ghil(2006, see
Fig. 1). Their algorithm identifies independent (temporal)
sub-components or regular patterns and uses them sequen-
tially to interpolate missing values. As a first step, all gaps are
filled with the mean of the series (as SSA itself can not handle
missing values). Subsequently, the spectral SSA component
with the highest variance is computed and its values are in-
serted to the gap positions. The process is iterated in aninner
loop to minimise the effect of the previously inserted mean
values. In the followingouter loopiteration steps, additional
spectral components of lower variance are computed and pro-
cessed in the same manner. Cross-validation can be used to
identify the optimal number of outer (and inner) loop steps.
This is done by the insertion of additional artificial gaps and
comparing predictions at these locations to the original data.

We generalise this idea of independently extracting spe-
cific spectral components by treating spatial components in
the same manner. At each outer loop stepn we compute
both, then 1-D SSA components and then 2-D SSA compo-
nents with the highest variance (referred to asmiddle loopin
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Fig. 2.Demonstration of the step-wise cross-validation scheme. The
algorithm compares the variance of the residua at the artificial gap
positions and chooses the dimension setting with the lowest residual
variance. Shown are, as examples,(a) scenario 12a and(b) scenario
9 with 55 % and, respectively, 20 % gaps.

Fig. 1). For both settings we compute the residual variance:

Varresid=
1

n

n∑
i=1

(Ri − R̄)2 (1)

with the residuumRi = Pi −Oi , Oi being the prediction (i.e.
gapfilled value), andPi being the observation (i.e. original
data) at additional artificial gap locations. The dimensional
setting with the lower Varresid is expected to yield the better
predictions, and its results are used as thefirst guess(i.e. in-
serted into the gap positions) in the next outer loop step (see
Fig.2). Here again, both SSA methods are used to extract the
firstn+1 components and so forth. TheKondrashov and Ghil
(2006) inner iteration loop is performed alike for each outer
loop step and dimension independently. After a maximum of
10 outer loop steps, Varresid is also used to determine that step
with the overall best prediction. This is not necessarily the
last step in cases of decreasing prediction capabilities (e.g.
due to overfitting). Finally, the process is repeated without
artificial gaps, and the outer loop path with the lowest Varresid
from the cross-validation is followed with all available data.

The principal setting of the algorithm allows for the use
of any possible number and combination of 1-D or 2-D cuts
through a 3-D datacube. This would, for example, also allow
for a two-dimensional time× latitude SSA computation. In
this paper, however, we only considered 1-D temporal and
2-D spatial (i.e. latitude× longitude) SSA. In cases where
the cross-validation chooses a dimension with which it is not
possible to fill all gaps (i.e. 2-D SSA is chosen, but whole
time slicesXt are missing), the algorithm fills these gaps
with the respective other, non-chosen, dimension. Additional
features include the possibility to run the cross-validation
only on parts of the data (in our test runs 20 %) to increase
speed, the padding of the input time series to reduce edge
effects, and the possibility to supply an ocean mask which
will not be filled. To reduce computational cost, the algo-
rithm uses an optimised SSA routine that only computes the
major SSA eigentriples by truncating the computationally

(a) egg boxes (b) random gaps (c) correl. gaps

(d) 12 temperature (e) 14 NDVI (f) 16 GPP

Fig. 3. Datasets and gap scenarios used for testing the gapfill-
ing method. Artificial data (egg boxes, panelsa–c) and real-world
datasets (d–e). Panel(b) and(c) show 50 % of gaps for random gaps
(b, scenario 1 and 2) and spatiotemporally correlated gaps (c, sce-
nario 3 and 4). Scenario 3 gap positions were also used for the real-
world test datasets. The ocean masks shown in(d)–(f) were also
used for each individual real-world dataset and the egg boxes sets
containing oceans (scenario 2a-c and 4a-c). Shadings of blue denote
the actual value with light blue for the minimum and dark blue for
the maximum of the respective variable range. See also Fig.4 for a
visualisation of the temporal structure of the data.

costly SVD step (Golyandina and Korobeynikov, 2013). For
all our test runs, 20 individual eigentriples were computed.
The whole algorithm has been programmed in GNU-R (R
Development Core Team, 2013) and is available accompany-
ing this paper as the packagespectral.methodson R-Forge
(https://r-forge.r-project.org/projects/jbtools/).

2.4 Test datasets

We used four different types of test datasets to evaluate
the gap filling performance of the spatiotemporal scheme
(cf. Fig. 3).

The first dataset was artificial and constructed by a super-
position of multiple sine waves (cf. Fig.3, top panels). The
period of this sine in they direction (i.e. latitude) of the dat-
acube was≈ 16, and 50 in thex direction (i.e. longitude).
This pattern was multiplied with a combination of harmonic
sines that mimic a yearly cycle along the third (i.e. time) di-
mension of the datacube (Fig.4, top panel). Due to their sim-
ilar structure along the spatial dimensions these datasets are
here referred to as “egg boxes”. To study the effects of not-
to-fill ocean gaps, real-world coastlines were imposed on the
egg boxes datasets (the real-world datasets already contain
differently shaped oceans).

The second suite of datasets consisted of a selection of dif-
ferent real-world datasets. We used cutouts of air temperature
(ERA 40 reanalysis,Weedon et al., 2011), remotely sensed
NDVI (Huete et al., 2002), and empirically upscaled gross

Nonlin. Processes Geophys., 21, 203–215, 2014 www.nonlin-processes-geophys.net/21/203/2014/

https://r-forge.r-project.org/projects/jbtools/


J. v. Buttlar et al.: Spatiotemporal gapfilling 207

Table 2.Overview of datasets and gap scenarios used for testing the
gapfilling method.

code data/gap type code data/gap type

eg
g

bo
xe

s 1/2 random gaps

re
al

-w
or

ld 12 temperature
3/4 correlated gaps 14 NDVI
5/6 missing series 16 GPP
7/8 missing t.steps

9/10 mix of 5–8
cu

to
ut a Asia

nr
. odd no ocean b Europe

even ocean c Sth.America

primary productivity (GPP;Beer et al., 2010). All datasets
had a 0.5◦ spatial resolution and cover different geographical
regions.

To assess the method’s prediction capabilities in differ-
ent climatic regimes, cutouts from the global data covering
Central Asia (mainly China and Northern India), Europe,
and South America were used. A global run of the algo-
rithm would not have been computationally feasible due to
the huge amount of datasets tested (cf. Sect.4.3for a discus-
sion). All test datasets had a size of 100× 100× 100 (longi-
tude× latitude× time) and contained about 4 yr of data with
a 16 day temporal resolution. See Fig.4 for a visualisation of
the temporal patterns in these datasets.

We inserted artificial gaps of different structure and
amount into these originally (nearly) gap-free datasets to
compare the prediction performance of the different meth-
ods (cf. Table2). We used five different gap scenarios: ran-
domly distributed gaps (scenario 1/2), gaps that are spatially
and temporally correlated or clustered (scenario 3/4), a sce-
nario with time series completely missing (scenario 5/6), a
scenario with time steps missing completely (scenario 7/8),
and a mix of these gap structures (scenario 9/10). Even sce-
nario numbers denote data with ocean, odd numbers ocean-
free scenarios. For each of these scenarios different datasets
were created with a gap ratio (i.e. the percentage of missing
values) varying between 5 % and up to 70 %. With 4 different
datasets per scenario (one without ocean and three with dif-
ferent land masks) and 5 gap scenarios we obtained 435 test
datasets in total. We used the full set of gap scenarios only
for the egg boxes data and restricted the real-world datasets
to spatially and temporally correlated gaps (i.e. identical gap
locations to the scenarios 3 and 4).

x.pointsx.pointsx.points

  [
re

l u
ni

ts
]

0.
2

0.
8

Asia a

x.pointsx.pointsx.points

Europe b

x.pointsx.pointsx.points

S.America c

x.pointsx.pointsx.points

ai
rt

em
p 

[°
K

]
24

0
30

0

x.pointsx.pointsx.points x.pointsx.pointsx.points

x.pointsx.pointsx.points

N
D

V
I [

%
]

20
60

x.pointsx.pointsx.points x.pointsx.points

x.pointsx.pointsx.points

G
P

P
 [g

 C
(m

2  d
)]

5
15

20 60
x.pointsx.pointsx.points

20 60
time index x.pointsx.points

20 60

Fig. 4.Visualisation of the temporal patterns in the test datasets. All
time series are plotted, and the colour code shows the densities of
points per pixel (yellow = 1, blue = 1500).

2.5 Performance measures

We quantified the prediction performance for each gapfill-
ing run via the modelling efficiency MEF (Janssen and
Heuberger, 1995):

MEF = 1−

∑n
i=1(P (i) − O(i))2∑n

i=1(O(i) − Ō)2
. (2)

Ō is the empirical mean over the original values of all gaps.
O(i) andP(i) are the original (i.e.observed) and filled (i.e.
predicted) values of gapi, respectively. A MEF value of 1
would be perfect agreement, and a value of zero would in-
dicate a prediction comparable to simply inserting the mean
of all (not-filled) values into gap positions. As 1-D temporal
SSA was not able to fill all gaps (see Sect.3.2 for details),
we calculated MEF values for different subsets of the data:

– MEF1-Dfill : for all data points that could be filled with
1-D SSA (allowing a direct comparison between 1-D
and 2-D spatiotemporal SSA)

– MEFtot: for all data points that could be filled with
the respective method (meaning all for spatiotemporal
SSA and a value identical to MEF1-Dfill for 1-D SSA)

– MEFMfill : for all gap positions with remaining gaps
filled with the mean of the gappy dataset. In case a to-
tally gap free dataset is required, using the mean is the
best available guess to fill the gaps not filled by tem-
poral SSA. This measure, hence, compares the predic-
tions in such a usage scenario.

www.nonlin-processes-geophys.net/21/203/2014/ Nonlin. Processes Geophys., 21, 203–215, 2014
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3 Results

The goal of our experiments with artificial (egg boxes)
and real-world test datasets was to compare the gapfilling
scheme using spatiotemporal SSA with state-of-the-art gap-
filling scheme using only temporal 1-D SSA. Additionally
we wanted to explicitly identify situations (i.e. gap scenar-
ios and gap ratios) under which one of the two methods out-
performs the other. Scenarios 5–10 were mainly developed
and filled to test the algorithm’s treatment of empty series
and time steps. They showed results comparable to those de-
scribed below and will not be discussed here in detail.

3.1 Choice of the temporal vs. the spatial scheme

In general, the 2-D spatial SSA filling scheme was chosen
due to the Varresid criterium (cf. Sect.2.3) as a first guess
in around 25 % of all cases (i.e. including all individual
outer loop steps) for each filling process (cf. Fig.5). This
percentage was remarkably higher for the first outer loop
step. It dropped sharply for the subsequent steps but rose
monotonously again up to 40 % at the last (i.e. 10th step)
(cf. Fig.5a). Overall, the usage of the spatial 2-D scheme in-
creased with increasing gap ratio. The type of gap scenario
(i.e. random vs. spatially and temporally correlated gaps) had
no strong influence on the choice of dimension for filling.

The choice of the SSA dimension used for filling, however,
changed drastically between the different data types and also
between the geographic locations of the cutouts (cf. Fig.5c).
For scenario 12a and b (air temperature; Asia and Europe),
nearly all steps were filled with spatial 2-D SSA. The same
was true, to a lesser extent (up to 50 %), for scenario 14c
(NDVI, South America). For most other real-world scenar-
ios, 1-D SSA provided better results and was chosen as the
filling method in the majority of cases. For filling the egg
boxes, 2-D spatial SSA was used in roughly 45 % of the cases
in the ocean-less scenarios 1 and 3 and for the China cutout
which contained very few ocean and a nearly continuous land
mass (ocean a). For all other egg boxes, 1-D SSA was used
in nearly all cases.

3.2 Prediction performance

Overall, the modelling efficiency for all filled data points
compared to the original data (MEFtot, cf. Sect.2.5) was
relatively high and well above 0.9 for most tests up to gap
ratios of 60 % (cf. Figs.6 and 7). MEFtot of the 1-D tem-
poral and the 2-D spatiotemporal scheme did not differ for
most test datasets for gap ratios below 40–50 % (for corre-
lated gaps and most real-world tests) or even 60 % (scenario
1/2: random gaps, egg-boxes). For most gap ratios higher
than this value, spatiotemporal SSA yielded better predic-
tions (i.e. higher MEFtot) than 1-D temporal SSA. Remark-
ably, MEFtot for spatiotemporal SSA was higher for all gap
ratios from 5 to 75 % for scenarios 12a, 12b, and 14c. On the

outer loop step

(a)

1 3 5 7 9 0.05 0.2 0.35 0.5 0.65
gap ratio

(b) 1D temporal
2D spatial

# a b c # a b c a b c a b c a b c

(c)

scen 1/2 scen 3/4 scen 12 scen 14 scen 16

Fig. 5. Dimensions chosen (i.e. temporal 1-D vs. spatial 2-D) for
all test datasets and all steps plotted for(a) the dimension choosing
outer loop steps,(b) the ratio of missing values, and(c) the different
gap and data type scenarios. # denotes the gap free egg-boxes of
scenarios 1 and 3.

contrary, temporal 1-D SSA yielded better results and higher
MEFtot for the high gap ratio regimes for scenarios 12c, 14b,
and 16 b and c.

Temporal 1-D SSA could not fill all gap values as it can
not be used to reliably extrapolate the signal into continuous
gaps at the beginning and end of a time series. The amount
of these margin gaps increased with increasing gap ratios and
was higher with correlated gaps (scenario 3). This resulted in
up to 60 % of the gaps not being filled by temporal 1-D SSA
for a gap ratio of 70 % (see Fig.8). Comparing MEFtot for
1-D and 2-D SSA, hence, yields a bias as it refers to dif-
ferent amounts of data points. The prediction performance
at data points both methods were able to fill (MEF1-Dfill , cf.
Sect.2.5) was similar for 1-D and 2-D SSA for gap ratios of
up to 50 % but higher for 2-D spatiotemporal SSA above this
value for nearly all scenarios. For MEFMfill (cf. Sect.2.5),
this aspect was even more pronounced.

Scenario 14c (NDVI; South America) showed an excep-
tionally different behaviour with a much lower MEFtot (≈
0.8) even for very low gap ratios for both methods. This
stayed relatively constant with an increasing amount of gaps
for the spatiotemporal scheme and droped down nearly lin-
early to 0.4 for 1-D temporal SSA.

3.3 Step-wise development

An in-depth investigation of the prediction capabilities
(quantified by Varresid, cf. Sect.2.3) of the different SSA
methods for each outer loop step revealed a different be-
haviour for each scenario and test dataset (cf. Fig.9). The
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Varresidof 1-D temporal SSA dropped quickly to a minimum
after only 3 steps and remained constant thereafter for all egg
boxes scenarios (only 1 and 2b are shown). For most real-
world datasets this optimum (i.e. minimum) was reached a
few steps later, and the prediction quality decreased with sub-
sequent outer loop steps in most cases. For identical scenar-

ios Varresid was generally higher with higher gap ratios but
showed the same general pattern as a function of gap ratio.

The residual variance for the 2-D spatial SSA calculations
decreased slower and more gradually down to its optimum
for ocean-free egg boxes datasets (scenario 1 is shown as an
example) and most real-world data. For most egg boxes data
containing ocean (e.g. 2b), Varresid increased with additional
outer loop steps. For some scenarios (12a, 12b, and 14c) spa-
tial SSA resulted in lower Varresid during the final steps than
1-D temporal SSA. For some scenarios (all ocean egg boxes,
14b, 16b, and 16c) 1-D temporal SSA yielded better predic-
tions for these steps. In many other cases (1, 2c, 3, 4c, 12c,
14c, and 16a), however, the results from both methods were
similar at the final outer loop steps.

4 Discussion

In general, the presented results show that the spatial 2-D
SSA can extract additional information and provides better
results than temporal 1-D SSA in the cases where the ana-
lyst is confronted with highly fragmented datasets. However,
there are several conceptual and methodological aspects that
could be further optimised and extended for better results or
performance.
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4.1 General performance and behavior

It is not surprising that the spatiotemporal scheme performs
at least equally well as state-of-the-art temporal SSA in most
cases. The algorithm is designed to use temporal 1-D SSA as
one of two dimensional choices and will use it for gapfilling
if spatial SSA performs worse. In the theoretical case where
1-D SSA is chosen in each outer loop step, the only differ-
ence between 1-D SSA and the spatiotemporal scheme is that
for the latter the same optimum outer loop step is chosen for
all time series whereas 1-D SSA allows for a different choice
for each individual series. However, this algorithmic differ-
ence is expected be of marginal importance as demonstrated
by the very small performance differences in such cases in
our experiments.

As temporal 1-D SSA was chosen in the majority of cases,
the interesting results are those cases where using the spa-
tiotemporal scheme actually yields better results than tempo-
ral SSA. In the general picture this was the case mostly for
gap scenarios with gap ratios above 50 %. In addition, the
spatiotemporal algorithm uses the inferior dimension combi-
nation to fill remaining gaps not filled by the superior dimen-
sion. In our experiments this meant that for all test datasets
filled with 1-D SSA, 2-D SSA was still used to fill gaps at
margin locations or totally empty time series, yielding com-
pletely filled datasets. These advantages build a strong ar-
gument to use both the spatial and the temporal information
available in geoscientific datasets for gapfilling, in particular
at large gap ratios.

The choice between 1-D and 2-D SSA differed strongly
between the type of data to be filled and also the geographi-
cal location of the cutouts. However, it is difficult to identify
a general pattern. The remarkably bad performance of 1-D
SSA (and hence the big difference to 2-D SSA) for scenario

14c can be explained by the NDVI characteristics of the trop-
ical rainforest. Due to the tropical climate most of the sig-
nals do not show a strong seasonal (i.e. temporal) signal that
can be used to fill the gaps (c.f. Fig.4). This leads to a low
signal/noise ratio (SNR) and a poor prediction capacity. Ap-
parently, the SNR in the spatial dimension is lower and the
spatial SSA is is still able to capture certain spatial patterns.

Compared to NDVI and GPP, whose spatial patterns reflect
the patchiness of the vegetation cover, the spatial gradients in
air temperature are much smoother. 2-D SSA is able to cap-
ture these smooth gradients and is chosen in most cases for
filling scenario 12a and b. Interestingly, this is the opposite
for the tropical cutout 12c. A reason for this may be the rela-
tively weak spatial differences over the rain forests compared
to the steep and locally confined gradients in the Andean
mountains (cf. Fig.3). Spatial SSA seems to have difficul-
ties capturing such small-scale patterns. For most vegetation
related real-world test cases (except 14c), the temporal pat-
terns seem to be more pronounced compared to the rather
noisy spatial patterns, so that 1-D SSA is mostly used to fill
the gaps.

The conceptual idea of the iteration scheme of the spa-
tiotemporal gapfilling algorithm is to separate temporal and
spatial patterns of different scales and to use these patterns
step wise for gap predictions. If such clearly separable pat-
terns exist in the data, they would be visible, for example, in
drops and steps (i.e. “elbows”) in the residual variance be-
tween different outer loop steps. Such an elbow is clearly
visible for the temporal domain, where the dominant annual
cycle (and not many more patterns) are captured by SSA. For
spatial 2-D SSA, however, the decrease of Varresid is much
slower and more gradual. This most probably is caused by the
specific structure of spatial patterns in the (bio)geoscientific
data which can not be separated into several distinct com-
ponents in such a straightforward manner. Additionally, for
any SSA reconstruction, several of the individual eigentriples
have to be grouped to yield one sub-signal. For the annual
cycle, for example, two eigentriples have to be summed.
For spatial SSA, without clear separations between these un-
grouped eigentriples (i.e. via marked differences in their vari-
ance), such a grouping scheme is much less developed and
more difficult. A strict implementation of the conceptual idea
would hence require a more in depth methodological and the-
oretical development of the grouping and separation of 2-D
SSA eigentriples with respect to the special structure of geo-
scientific data.

4.2 Advantages compared to M-SSA

The study byKondrashov and Ghil(2006) shows that multi-
channel SSA can likewise be used to ensure a lateral (i.e.
spatial) transfer of correlation structures. In particular, this
approach allows for a “flow of information” from other grid
cells to more fragmented time series. There are, however,
some conceptual concerns that need to be discussed. The
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M-SSA approach is likely to fail when individual time series
contain very little or no actual values. The extended approach
presented in our study, however, even allows filling time se-
ries that are fully missing. In addition, M-SSA only incorpo-
rates bivariate correlations between time series whereas our
approach can exploit true 2-D structures inherent in the data.

Both methods, however, have their strengths and weak-
nesses and their application depends strongly on the tempo-
ral and spatial patterns present in the data to be filled. While
M-SSA is faster, the spatiotemporal scheme will produce bet-
ter results for high gap ratios or situations where complete
time series are missing or time periodic gaps occur.

4.3 Limitations and open issues

Gapfilling in particular and other interpolation schemes in
general have the danger to feign the existence of knowledge
or information that can factually not be extracted from the
data. For example, many remote sensing datasets of vege-
tation indices, show continuous gaps for tropical evergreen
forest areas due to prevalent cloud cover (cf. e.g.Musial
et al., 2011). The spatial scheme interpolating into these ar-
eas can use no factual knowledge and, hence, “invents” data
here which would also influence gap predictions in adjacent
areas. The test data used here did not show such scenarios,
but care has to be taken when filling such datasets. One pos-
sible strategy would be to (pre-)fill such locations with edu-
cated guesses (i.e. close to zero values for vegetation green-
ness parameters like GPP or NDVI during winter) or data
from other sources.

One open issue to be solved in the future is the influ-
ence of ocean boundaries in these terrestrial datasets. Even
though the ambiguous results for scenario 14 and 16 show
that other factor also play a role, the frequent selections of
spatial SSA for egg boxes scenarios without or with very
small ocean coverage compared to the other cutouts show
that spatial SSA is strongly influenced by the existence of
oceans. As 2-D SSA also needs gap-free data, the ocean lo-
cations are simply treated as gaps, iteratively filled during
the inner loops, and only set to empty or missing-values at
the end of the process. As a consequence, they act as very
big, continuous spatial gaps. One solution would be to fill
only a set of (mainly) ocean-free cutouts of a global dataset.
Another approach for future developments could be to “pad”
the coastlines by simple repetitions of the last available ter-
restrial value.

One limitation and disadvantage compared to theKon-
drashov and Ghil(2006) method are the computational de-
mands of the spatiotemporal scheme. Due to the iterative na-
ture of theKondrashov and Ghil(2006) scheme itself, the
rather costly SSA procedure is repeated several times (at
maximum of 10 outer× 10 inner = 100 iterations in our case)
even in the 1-D temporal case. The application of the trun-
catedGolyandina and Korobeynikov(2013) SSA algorithm
alleviates though not removes this constraint.

In our tests, one 2-D SSA run of a 100× 100 grid and one
1-D run of a time series of length 100 consumed roughly
comparable amounts of CPU time. Hence, the speed limiting
step in each case is the full run of 100× 100 1-D temporal
SSA runs per step compared to only 100 runs of 2-D SSA. As
this is repeated during each outer loop step, our method con-
sumes at a maximum roughly 10 times the CPU time as the
traditional 1-D SSA. Due to these constraints and especially
due to the huge amount of repetitions in our experimental
setup, we constrained our method testing analysis to a rather
small (compared to current high resolution remote sensing
products) grid of 100× 100 pixels.

In the application case, however, we do not expect these
demands to play a crucial role. First, several options are im-
plemented in the algorithm to reduce the amount a itera-
tions necessary (e.g. the possibility to run the cross valida-
tion only with a subset of the data). Second, our algorithm
is highly parallelized to fully utilise the capacities of modern
multi-core or cluster machines. Run parallelized on 4 CPUs,
for example, our high gap test runs needed≈ 12 h to com-
plete. Filling larger datacubes for real world test cases would
scale roughly linearly with the amount of grid cells. Last and
most important, for gapfilling only one single run per dataset
is necessary so a computation time of, for example, a few
days would pose a rather negligible constraint. One upper
limit, however, is the memory needed to load the full dat-
acube, a problem especially pronounced with GNU-R. For
the present time, this constraint restricts the filling of, for ex-
ample, 0.5× 0.5 degree global datasets to high performance
computing environments with high memory capabilities.

4.4 Future directions

The conceptual framework presented here which uses only
SSA to separate temporal and spatial patterns of different
scales can be easily extended to other methods. One exam-
ple would be Empirical Mode Decomposition (EMD;Huang
et al., 1998) which can be applied both in a temporal 1-D and
a spatial 2-D setting (Nunes et al., 2003) or simply multidi-
mensional smoothing splines (Garcia, 2010). For EMD the
grouping of eigentriples which is necessary for SSA is rela-
tively straightforward. In addition it has been shown to yield
equally good results as SSA (Wu et al., 2010). This makes it a
promising candidate for future tests and extensions. It is also
possible to apply a mixture of different methods during the
same gapfilling run, for example, by using the results from
one method as first guesses for the other method.

For this paper, we tested only the most obvious combina-
tion of dimensional settings, i.e the choice between 1-D tem-
poral and 2-D spatial SSA. Theoretically, however, the three
dimensions of the datacube can be used in 6 different ways of
combining 1-D or 2-D cutouts (6 combinations = 3 different
single dimension settings + 3 different 2 dimension settings).
Using SSA to decompose a longitude× time 2-D matrix, for
example, might produce improved results as it partly over-
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comes several of the difficulties encountered in the current
setup. Such a matrix would include the clear periodic pat-
tern of the annual cycle as opposed to the rather patchy and
non-periodic spatial patterns. In addition, a cut along one lati-
tude band would group together a set of data from potentially
similar vegetation located in similar climatic zones. Such a
cutout would, hence, overcome the limitation of 1-D SSA
with completely (or nearly) missing time series and still ex-
ploit the strength of SSA to detect periodic patterns.

This algorithm was specifically developed to facilitate uni-
variate gapfilling especially for the case where no additional
data is available or when multivariate gapfilling would bias a
subsequent exploratory analysis. 2-D SSA, however, can also
be used in a multivariate framework (hence the alternative
name M-SSA) via decomposing sets of time series of differ-
ent variables. This may be particularly helpful for situations
with continuously missing data for large adjacent regions.

Finally, the use of spectral separation methods working in
three dimensions would greatly simplify and speed up the
iteration scheme. It would remove the necessity to run differ-
ent combinations of fewer dimensions after each outer loop
step and to pick the combination yielding the best results. It
would also allow for a more consistent use of the informa-
tion from other dimensions into the filling of one particular
dimension. In this algorithm such information is only trans-
ported via its use as a first guess, and its influence may be
reduced significantly during the many inner loop iterations.
Hence, the incorporation of a 3-D method in the algorithm
or a 3-D extension of an existing 1-D and 2-D method may
yield promising results and further improvements. In the SSA
case, however, such a method has not yet been developed.

5 Conclusions

We presented a gapfilling framework based on SSA to si-
multaneously extract spatial and temporal patterns in geosci-
entific datasets. The algorithm iteratively determines which
dimension yields the better results and uses its gapfilling re-
sults as a first guess for subsequent steps. The results show
that even though state-of-the-art 1-D SSA is used in the ma-
jority of cases, spatial SSA can improve the results especially
with high gap ratios. In addition it yields totally gap-free
data. Whether 1-D, M-SSA, or spatiotemporal SSA provide
better predictions depends on the amount and type of spa-
tial and temporal patterns in the data and on the amount and
structure of the gaps. The merit of the new method proposed
here is that it simultaneously applies the different method-
ological and dimensional settings. Our gapfilling framework
combines the advantages of temporal and spatial SSA. This
integration is highly flexible and frees the user from a priori
assumptions and the restriction of the analysis to one partic-
ular dimensional choice. In the future, our conceptual frame-
work can be extended to integrate other temporal and spatial
methods.

Appendix A

Detailed SSA description

The following description of 2-D SSA follows the work
and notation ofGolyandina and Usevich(2009). A good
overview and a discussion of the different ways to perform
SSA is given inGhil et al.(2002).

Suppose we want to decompose a 2-D array of data which
is a sum of unknown componentsF = F(1)

+ . . .+ F(m). The

task of 2-D-SSA is to produce a decompositionF = F̃
(1)

+

·· · + F̃(m), where the terms approximate the initial compo-
nents.

A1 Embedding

Let

F =


f (1,1) f (1,2) · · · f (1,Ny)

f (2,1) f (2,2) · · · f (2,Ny)
...

...
. . .

...

f (Nx,1) f (Nx,2) · · · f (Nx,Ny)

 . (A1)

The algorithm is based on the SVD of a Hankel-block-
Hankel (HbH) matrix constructed from the 2-D array. The
dimensions are defined by the window sizes(Lx,Ly),
which are restricted by 1< Lx ≤ Nx , 1< Lx ≤ Nx and 1<

LxLy ≤ NxNy . LetKx = Nx−Lx+1 andKx = Nx−Lx+1.

A1.1 Embedding

First, we arrange the input 2-D array into a Hankel-block-
Hankel matrix of sizeLxLy × KxKy :

W =



H1 H2 H3 · · · HKy

H2 H3 H4 · · · HKy

H3 H4
...

...
...

...
...

...
...

...

HLy HLy+1 · · · · · · HNy

 . (A2)

where

Hj =


f (1,j) f (2,j) · · · f (Kx,j)

f (2,j) f (3,j) · · · f (Kx + 1,j)
...

...
. . .

...

f (Lx,j) f (Lx,j) · · · f (Nx,j)

 . (A3)

Obviously, there is a one-to-one correspondence between 2-
D arrays of sizeNx × Ny and HbH matrices (Eq.A2).

A2 SVD

We apply SVD onto the HbH (Eq.A2):

W =

d∑
i=1

√
λiU iV

T
i . (A4)
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Hereλi (1 ≤ i ≤ d) are the non-zero eigenvalues of the ma-
trix WW T arranged in decreasing order.{U1, . . . ,Ud} is
a system of orthonormal eigenvectors ofWW T of length
LxLy ; {V 1, . . . ,V d} is an orthonormal system of vectors
in RKxKy . The factorsV i ’s can be expressed as follows:
V i = WT U i/

√
λi . The triple (

√
λi ,U i ,V i) is said to be the

ith eigentriple.

A3 Grouping

Depending on their structure, different sub-signals relate to
single (often the case for trend components), pairs (sinu-
soidal sub-signals) or even large groups of these eigentriples
(non-sinusoidal signals with several harmonics). To obtain
the original sub-signals corresponding to the eigentriples one
has to group (see also Sect.2.2) the latter accordingly and
project (see below) these groups independently. One chooses
m disjoint subsets of indicesIk (groups of eigentriples),

I1 ∪ I2 ∪ ·· · ∪ Im = {1, . . . ,d} . (A5)

Then, one obtains the decomposition of the HbH matrix

W =

m∑
k=1

WIk
, where WIk

=

∑
i∈Ik

√
λiU iV

T
i . (A6)

This step controls the resulting decomposition of the 2-D ar-
ray and thus is the critical step in the algorithm.

A4 Projection

In order to obtain a decomposition of the initial 2-D array,
projection is necessary. First, matricesWIk

are reduced to
Hankel-block-Hankel matrices̃WIk

. Then 2-D arrays̃F Ik
are

obtained fromW̃Ik
by the above-mentioned one-to-one cor-

respondence.
The matricesW̃Ik

are obtained by a two-stephankeliza-
tion. That means that first one averages over the secondary
diagonals within the blocks ofWIk

(within-blockhankeliza-
tion) and then the blocks of the whole resulting matrix are
averaged between themselves (between-blockhankelization).
The result of the algorithm is then

F =

m∑
k=1

F̃ Ik
. (A7)

A5 Special case – 1-D-SSA

It turns out that one can consider 1-D-SSA as a special case
of 2-D-SSA (Golyandina and Usevich, 2009). It occurs when
the input array has only one dimension (e.g. a time series). In
this case one only needs one parameterL, also calledwindow
length. The algorithm is exactly the same (see e.g.Ghil et al.
(2002) for a description).
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