
ETH Library

A Sampling-Based Partial Motion
Planning Framework for System-
Compliant Navigation along a
Reference Path

Conference Paper

Author(s):
Schwesinger, Ulrich; Rufli, Martin; Furgale, Paul; Siegwart, Roland

Publication date:
2013

Permanent link:
https://doi.org/10.3929/ethz-a-010022855

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
https://doi.org/10.1109/IVS.2013.6629500

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-010022855
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1109/IVS.2013.6629500
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

A Sampling-Based Partial Motion Planning Framework for
System-Compliant Navigation along a Reference Path

Ulrich Schwesinger1, Martin Rufli1, Paul Furgale1 and Roland Siegwart1

Abstract— In this paper a generic framework for sampling-
based partial motion planning along a reference path is pre-
sented. The sampling mechanism builds on the specification of
a vehicle model and a control law, both of which are freely
selectable. Via a closed-loop forward simulation, the vehicle
model is regulated onto a carefully chosen set of terminal
states aligned with the reference path, generating system-
compliant sample trajectories in accordance with the specified
system and environmental constraints. The consideration of
arbitrary state and input limits make this framework appeal ing
to nonholonomic systems. The rich trajectory set is evaluated in
an online sampling-based planning framework, targeting real-
time motion planning in dynamic environments.

In an example application, a Volkswagen Golf is mod-
eled via a kinodynamic single-track system that is further
constrained by steering angle/rate and velocity/acceleration
limits. Control is implemented via state-feedback onto piecewise
C
0-continuous reference paths. Experiments demonstrate the

planner’s applicability to online operation, its ability t o cope
with discontinuous reference paths as well as its capability to
navigate in a realistic traffic scenario.

I. I NTRODUCTION

While autonomous mobile robots have been developed
since the 1960s, research on autonomous cars only intensified
in the 1990s—particularly at Carnegie Mellon University
(Navlab project [1], 4500 km of autonomous driving) and
the University of Parma (ARGO Project [2], 2000 km of
autonomous driving). At that time, operation was restricted
to lane following and platooning, however. Later, the var-
ious DARPA challenges, culminating in the 2007 Urban
Challenge, bundled efforts that led to systems approaching
fully autonomous operation in urban-like scenarios, including
interaction with other traffic participants and adherence to
traffic regulations.

One of the central building blocks required for au-
tonomous operation—the navigation framework—remains
inherently difficult to approach in a unified algorithm. As a
consequence, hierarchical frameworks consisting of a global
planner (commonly, graph search) and a system-compliant
local planner have found general acceptance. To ensure
safety in dynamic environments, the local planner must en-
sure that returned paths are actually dynamically feasible—
that they are within the dynamic capabilities of the robotic
platform. Hence, the boundary between planning and tradi-
tional control becomes somewhat blurred. In this paper, we

*The research leading to these results has received fundingfrom the Eu-
ropean Union Seventh Framework Programme FP7/2007-2013, Challenge 2,
Cognitive Systems, Interaction, Robotics, under grant agreement No 269916,
V-Charge (http://www.v-charge.eu).

1Autonomous Systems Lab, ETH Zurich, Tannenstrasse 3, 8092 Zurich
Corresponding author:sculrich@mavt.ethz.ch

Fig. 1: Left: Trajectories with a fixed longitudinal speed
profile (green) generated with respect to aC0-discontinuous
reference path (red) and the minimum cost trajectory (yel-
low). Right: Trajectories generated for a reference path with
curvature close to the vehicle’s maximum steering angle.

exploit this connection to develop a partial motion planning
framework that utilizes the system model and controller to
ensure that the resulting plans are dynamically feasible by
construction.

A. Related Work

Related work onlocal motion planning & motion control
is commonly separated into approaches that compute solution
curves directly, and such that require a reference path (or
trajectory) for guidance. In the former case, classic collision
avoidance methods [3], [4] have gradually been replaced by
state lattice graphs [5], [6] and Rapidly-exploring Random
Tree (RRT) [7] methods. Nonetheless, these methods remain
restricted to approximately four dimensional state spaces
if online operation is desired—thereby limiting the fidelity
of the agent models they can faithfully reproduce. Conse-
quently, they typically find application in situations where
no external structure can be extracted for guidance, such as
off-road or on large-scale parking lots.

If a reference path (or trajectory) is available for guid-
ance, higher-dimensional state-space representations become
approachable. Road and lane information in particular en-
act narrow constraints on heading and curvature values. A
common approach is thus to align the endpoints of local
trajectory samples with the reference path [8]. This technique
simultaneously reduces the search complexity and overcomes
the danger of entering unsafe end states. Most of these
approaches are based on geometric primitives instead of
actual vehicle models, separating the computation of velocity
profiles from the geometric construction of the path [9], [10],
[11], [12]. This separation may result in conflicts with non-
holonomic platform constraints—especially at low speeds.
Consequently, trajectories need to be validated in a post-

processing step—which may in turn lead to the pruning of
a considerable amount of candidate motions [8]. In contrast,
the local on-road planner described in Urmson et al. [13]
generates motion samples by solving two-point boundary
value problems subject to the dynamics of a detailed vehicle
model directly [14]. Unfortunately, this method is prone to
convergence issues related to the non-invertibility of non-
holonomic vehicle models.

We thus observe that existing approaches face difficulties
in capturing system constraints characteristic for autonomous
cars (including steering angle, steering rate, and accelera-
tion limits, as well as reaction delays) explicitly. Further-
more, non-holonomic constraints cannot be integrated—nor
inverted—in closed form.

B. Contributions

Our approach presented in this paper fully addresses these
important real-world platform and environmental constraints
without having to revert to model inversion techniques. It
proposes agenericsampling-based framework requiring only
(i) a reference path verifying piece-wiseC≥0 continuity, (ii)
a system description suitable for numerical forward propa-
gation, and (iii) obstacle information expressed in vehicle
frame. Its output consists of a system-compliant command
sequence, which may be employed for feed-forward control
of the platform directly.

The remainder of this paper is organized as follows: in
Section II we introduce the overall structure of the proposed
motion planning framework. Section III then describes a
sample implementation for a Volkswagen Golf. Section IV
reports on experiments conducted in simulation as well as
during physical runs on a full-scale test vehicle. Finally,
Section V concludes this paper and sketches further work.

II. FRAMEWORK

This section introduces the main contribution of this paper,
consisting of a novel framework for partial motion planning
along reference paths. The proposed planning framework
consists of a graph search routine, a system model and
a control law. Graph search operates on a tree that is
constructed online. Nodes,n, represent particular vehicle
state / time pairs,(x, t), while edges,e, are constructed by
system-compliant trajectory segments. An outline of a single
planning cycle is portrayed in Algorithm 1.
The search routine operates online at a fixed rate in ac-
cordance with environmental requirements. During initial-
ization, any remaining nodes inN are removed. Then, the
most recent system state,x0, obtained from the localization
module is inserted at the root of the tree at timet0. To
account for the planning time,Tcycle, during which the
planner is busy, the root vertex is expanded according to
the initial segment of the solution found during the previous
search iteration (if available). Actual search thus beginsfrom
(x1, t0 + Tcycle) using a user-supplied graph search method
which needs to providepush and pop operations to insert
and retrieve items from the search queue,Q, respectively.

Algorithm 1 Planning cycle

1: N ← ∅, E ← ∅
2: n← (x0, t0), N ← N ∪ {n}
3: (n∗, e∗)←simulate

(

n, f, g, Tcycle, u0

)

4: N ← N ∪ {n∗}, E ← E ∪ {e∗}
5: Q.push(n∗)
6: for l = 1→ desired tree depthdo
7: for all nodes at tree levell do
8: n← Q.pop()
9: for j = 1→ |M | do

10: (dref, vref)←drawSample(M)
11: (n∗, e∗)←expand(n, f, g, dref, vref, Tsim)
12: N ← N ∪ {n∗}, E ← E ∪ {e∗}
13: Q.push(n∗)
14: end for
15: end for
16: end for
17: computeCosts(E,N)
18: n̂← minimum cost node at last tree level
19: ê← edge in tree level 1 leading tôn
20: return ê

Within a loop, pop operations are then triggered one
at a time leading to node expansion. Successor edges are
constructed by (numerical) forward propagation of a general
user supplied vehicle model,f, with

x (t+∆t) = f ([x (t) , ẋ (t) , . . .] , u (t) , t,∆t) . (1)

Uniquely, this allows to incorporate arbitrary system
descriptions—even non-linear and non-invertible ones that
are hard to work with in competing approaches. In or-
der to contain the size of the state space when using
high-dimensional system representations, however, a control-
based approach building on terminal manifolds is enforced.
The notion of the terminal manifold [8] refers to a reduced
subspace of the state-time space towards which node ex-
pansion is directed. In our framework it takes the form of
heading and curvature alignment (θ andc) with respect to a
user-supplied reference path,

z(s) =
[
θ (s)− θref (s)
c (s)− cref (s)

]

= 0 ∀s > s0, (2)

leaving the desired lateral offset to the reference path,dref, as
well as the desired velocity,vref, at the curvilinear abscissa,
s, as free variables. The alignment is enforced for all states
ahead of the current curvilinear abscissa,s0. Along the
reference path, the terminal manifold,z, is then sampled into
a set of terminal states,M = D × V , built from a discrete
set of lateral offsets,D, and longitudinal vehicle velocities,
V . During node expansion, samplesm = (dref, vref), are
iteratively drawn fromM and used as a target states for
closed-loop system control. The functionexpand uses a
user-supplied controller,g, with u (t) = g (x (t) ,m) to
regulate the forward-simulated system modelf towards the
samplem over a fixed time period,Tsim. The newly retrieved
state and its incoming trajectory segment are pushed back
ontoQ as a node / edge-pair,(n∗, e∗).

Once the tree has been expanded to a desired search
depth (or maximum planning time has elapsed), edge and
accumulated node costs are computed. Then, the lowest

Fig. 2: A tree composed of system-compliant trajectory
segments. The edge in tree level zero corresponds to the
initial part of the solution found during the previous search
iteration. For subsequent tree levels, the lateral terminal
manifold is (for illustrative purposes) discretized into a
coarse set of three samples{−dmax, 0, dmax}.

cost node at maximal search depth is identified and back-
propagated, which results in the construction of the solution
trajectory. Depending on the fidelity of the system model
employed during edge construction, inputs corresponding
to the solution trajectory may be directly executed on the
platform as feed-forward commands.

Figure 2 illustrates a search tree created using a coarse
sampling of the terminal manifold. For illustrative purposes,
only one velocity profile and three lateral offsets are explored
in a tree of depth three.

III. A PPLICATION TO AN AUTONOMOUSCAR

In this section, we illustrate the proposed framework
of Section II by applying it to the problem of on-road
autonomous driving using lane centers as reference. Our
experimental platform—both in simulation and real-world
experiments—is a VW Golf prepared for the European V-
Charge project.

A. System Modeling

The described operating conditions require a modeling
approach that is particularly suitable for low-velocity maneu-
vers, where non-holonomic constraints dominate. Nonethe-
less, it also needs to maintain accuracy at higher velocities,
provided steering and acceleration commands remain within
comfortable ranges and operation is limited to surfaces with
sufficient traction (i.e., to paved roads).

The kinodynamic single-track model fulfills all of these
conditions. At the same time it remains suitably efficient to
implement and forward simulate. It combines 2D position,
(x / y), heading,θ, steering angle,φ, and longitudinal speed,

v into its state vector,x. The dynamics are then captured by








ẋ
ẏ

θ̇

φ̇
v̇









︸︷︷︸

ẋ

=









cos (θ) · v
sin (θ) · v
v
L
tan (φ)
0
0









+









0 0
0 0
0 0
1 0
0 1









[
u1

u2

]

︸︷︷ ︸

u

(3)

This translates into a system model as specified in equation
1 via f = x (t0)+

∫ t+∆t

t0
ẋ (t) dt. The inputs take the form of

steering speed,u1, and longitudinal acceleration,u2, stacked
into the control vector,u. L represents the inter-axle distance
of the vehicle. In addition, state and actuator constraintsare
considered during numerical integration. We limit steering
angle,φ ≤ φmax, steering speed,u1 ≤ φ̇max, longitudinal
speed,v ≤ vmax, longitudinal acceleration,u2 ≤ v̇max, and
longitudinal deceleration,u2 ≥ v̇min. Numerical values used
in our experiments derived from the manufacturer’s spec-
ifications are given in Table I. Retrieving a more involved
system model via an identification step is left as future work.

Parameter Value

maximum steering angle,φmax 0.64 rad

maximum steering speed,̇φmax 0.57 rad/s

longitudinal acceleration,̇vmax 1.0m/s2

longitudinal deceleration,̇vmin −1.5m/s2

inter-axle distance,L 2.578m

TABLE I: Vehicle parameters for the VW Golf platform.
Acceleration limits selected to ensure comfort.

B. Controller Design

Control of the single-track vehicle model given in (3) onto
a set of reference trajectories following the road (and thus
the generation of a set of locally expressive trajectory seg-
ments) is achieved via the nonlinear state-feedback controller
described in [15]. The controller is designed to follow a
moving reference cart, where center of the rear vehicle axle
serves as reference position. The error states for the lateral
control are given by the heading difference,∆θ, and the
lateral distance,∆d, to the reference cart in the ego-vehicle
frame, both depicted in Figure 3. The reference cart is placed
with a speed-dependant look-ahead along the reference path.
The lateral control output for the turning rateω then is

ω = ωf + k1vref
sin (∆θ)

∆θ
∆d− k2∆θ (4)

with an optional feed-forward term for the turning rate,ωf =
vrefcref, based on the curvature of the reference path.

While this control law guarantees the regulation of the
error states to zero eventually for an unconstrained system,
the introduction of actuator constraints may negate these
guarantees. In practice we have been successful in scheduling
the lateral control gainsk1 andk2 for specific longitudinal

Fig. 3: Control variables for lateral control, the nonlinear
state feedback regulates the error states∆θ and∆d to zero.

speed ranges. Note that a proof of stability is in this case
not required, as the controller only serves as a generator of
a locally expressive trajectory set, which is then assessedfor
suitability by the optimization routine, i.e., the cost function.

C. Cost Function

The design of the cost function should thus both penalize
divergence from the reference path as well as rewarding
progress along it. In general, these two criteria are conflicting
in situations where the vehicle is not well aligned with the
reference path. Due to the nonholonomic constraints acting
on the platform, the vehicle then needs to deviate from
the reference path in order to make progress along it. To
generate a behavior that attempts to fulfill both close and
quick path following, we linearly combine a lateral costJd
with a longitudinal costJs according to Equation (7).

Jd =
1

dmaxcf

cf∫

0

d (c) dc (5)

Js =
cf

vmaxTsim

(6)

J = kJd + (1− k)Js (7)

Jd integrates the lateral distance to the reference path over
the curvilinear abscissac, wherecf represents the curvilinear
abscissa of the reference path associated with the final
state of the simulated trajectory. The integral penalizes a
divergence of the platform from the reference path along
the simulated trajectory, which counteracts shortcuttingin
sharp turns. The longitudinal cost term, on the other hand,
is comprised of the final curvilinear abscissacf , normalized
by the largest feasible travel distancevmaxTsim. Hence, both
cost terms are normalized to lie within the range[0, 1], and
an intuitive combination into a single scalar cost termJ
becomes feasible. Via the factork, preference between close
versus rapid path following can be expressed.

Trajectories in collision with an obstacle at any single time
during simulation are assigned infinite cost.

Fig. 4: Left: Reference path (red) and forward simulated
trajectories (green) that have been obtained by controlling
the vehicle model onto the terminal manifold.Center: Path
distance transform of the reference path. Lighter colors refer
to larger distances.Right: Voronoi labeling. Colors refer to
the curvilinear abscissa of the associated reference path item.

D. Implementation Details

This section presents implementation details for aspects of
our sample application.

a) Collision Checking:The static map is represented
as an occupancy grid. To perform fast collision checks, we
compute a one-time dilatation on the grid at the start of
the planning cycle with the distance transform described in
[16]. The rectangular shape of the car is approximated by a
set of discs. The dilatation map is thresholded by the disk
radius which allows for a single look-up collision check per
disk. Collision checking with dynamic obstacles is achieved
in a similar manner. Predicted positions and timestamps of
obstacles are stored in an occupancy grid. Using a one-time
dilatation we obtain a map that, at a given position, allows for
fast look-ups of timestamps associated with that position’s
spatially closest dynamic obstacles. Note that this method
is limited to situations where predicted obstacle paths do
not overlap. For spatially colliding objects the time-gap is
inspected.

b) Path Distance Transform:Our proposed controller
requires the orthogonal projection of the current position
onto the reference path for all visited cells during the
forward simulation of the system. For a fast (approximate)
computation of said projection, we calculate in a precom-
putation step the Voronoi decomposition of the discretized
reference path with the method described in [17]. Each cell
in the map is associated with the curvilinear abscissa of the
nearest reference path item. The path distances themselves
are needed to calculate the lateral cost termJd. A sample of
the output of this step is displayed in figure 4.

c) Parallelization: The map dilatation of the occupancy
grid for fast collision checking and path distance transform
including Voronoi decomposition are operations that have
to be performed in a pre-processing step, but may run on
individual cores in parallel. We found the implementation
in OpenCVto operate sufficiently fast. InOpenCV≥ 2.4.3,
the function cv::distanceTransformprovides both distance
transform and Voronoi decomposition used for orthogonal
projection of any given position on the map onto the refer-
ence path. Computation times are given in table II.

The remainder of the total planning time is subsequently
allocated to the processes of trajectory generation and col-

lision checking. Both of these operations can be fully par-
allelized among CPU and GPU cores, thereby offering the
potential for substantial gains in search qaulity if adequate
hardware is available. Computation times provided in table
II are in terms of a single CPU.

IV. EXPERIMENTAL EVALUATION

Below we present experimental results based on the sys-
tem and controller implementations described in Section III.
We first analyze the effect of discontinuous and strongly
curved reference paths on the closed-loop system response.
Then, we qualitatively demonstrate the capabilities of our
framework in simulated inner-city traffic scenario. Finally,
we provide runtime results.

A. Sensitivity to Reference Path Shape

The reference path represents a key aspect of our frame-
work in that it defines the target manifold of the sampling
strategy. It is thus important that its shape does not negatively
affect planning results. In this regard, figure 1 indicates
that motion segments are not even unduly affected by path
discontinuities and curvatures close to vehicle limits. Infact,
it is the use of a closed-loop control strategy, which allows
to obtain system-compliant trajectories despite reference path
discontinuities. This property serves well in practice where
global localization jumps may result in similar effects.

B. Navigation in Simulated Traffic Scenario

In a simulated inner-city traffic scenario, we demonstrate
our planning framework’s capacity for complex decision-
making—including lane and intersection handling, static
and dynamic obstacle avoidance, as well as platooning1.
Importantly, the handling of these situationsemergesfrom
the interplay between the framework (in particular state-
time space collision checking) and the environment and thus
reduces the need for a separate situational awareness module.

Figure 5 shows an orthographic image of Zurich, Heg-
ibachplatz together with an artificially created referencepath
for the ego vehicle and three dynamic obstacle tracks. Each
dynamic obstacle track was populated with several circular
dynamic objects of radius1m with a constant time gap of
4 s between them. Obstacle predictions for the planner were
taken from the known obstacle tracks. The reference travel
speeds for the ego vehicle and the dynamic obstacles on
tracks1 and2 were set to8.33m/s = 30 km/h, while those
on track3 were set to2m/s to cause a congestion.
We applied a binary mask to the static environment to mask
impassable areas outside of drivable roads. In this regard
note, that the tram displayed in the orthographic image was
not considered in the scenario. The reference path for the
ego vehicle was created based on a hand-drawn reference
path in the image. Heading and curvature information was
extracted by pixel-based finite differences, post-processed via
a moving average filter for smoothing purposes. Despite the
smoothing step, heading as well as steering angle information

1A video of the run can be found athttp://www.asl.ethz.ch/
people/sculrich/hegibachplatz_iv13.avi.

Fig. 5: Simulated run at Zurich, Hegibachplatz.Left: Ortho-
graphic image of Zurich, Hegibachplatz. Reference paths for
the ego vehicle (red) and three dynamic obstacle tracks (yel-
low) are displayed, with their start (green) / end points (red)
indicated.Right: Binary occupied(black) / free(white) space
mask applied to the image, representing road information.

is rather noisy, which enables the demonstration of discontin-
uous reference information handling within our framework.
After every planning cycle, the vehicle in simulation executes
the initial parts of the solutionu =

[

φ̇, v̇
]

as feed-forward
commands. In figure 6 four snapshots of the simulated run
are displayed, capturing four distinct situations that chal-
lenge the planner’s capabilities:Intersection handling, static
obstacle avoidance, platooningand purelane following. In
the initial part of the run (t = [0 s, 10 s]), the ego vehicle
faces oncoming vehicles on track1. The knowledge that their
future movement is constrained to the oncoming lane allows
the ego vehicle to avoid improper evasive maneuvers. After
10 s, while approaching the first intersection, the vehicle
needs to yield to dynamic obstacles on track2. The ego
vehicle slows down to let the obstacles pass, as time does
not permit pulling out in front of them. Att = 18 s, the
vehicle encounters a static obstacle (black ellipse) in the
middle of the intersection and steers to the right to pass by.
This illustrates that the reference path is readily departed
if circumstances call for it. Thereafter, the vehicle faces
a convoy of four slow traveling obstacles with2m/s. It
decelerates and follows the convoy with a constant time gap
of 3 s as space does not permit an overtaking maneuver. As
soon as the road is clear, the ego vehicle accelerates again.
In order to come to a standstill at the end of the reference
path the ego vehicle brakes at the end of the run. All these
maneuvers emerged from the same cost function without
switching between different behavior or parameter sets.

C. Framework Runtime Results

A key aspect of every online planning algorithm is its cycle
runtime. Table II displays the execution times of the main
computation steps of our algorithm on a single core of an
Intel Core i7@2.67GHz, 4MiB cache. Using this setup, a set
of approximately 3500 trajectories can be evaluated (based
on 100 samples per trajectory) during a planning cycle of
200ms. This set is large enough to retain adequate motion
diversity as well as sampling density up to a tree depth of
two. Parallelization and GPU implementations would further

Fig. 6: Top: Snapshots of the run. The vehicle (odometry
solution in cyan) successfully avoids dynamic obstacles (blue
circles with velocity vectors) as well as static (black) ones
while following the reference path (red line). From a set of
explored trajectories (yellow lines), the best partial motion
plan (green line) is chosen.Bottom: The graph shows lon-
gitudinal speed as well as steering angle of the ego vehicle.
Vertical lines refer to the timestamps of the snapshots.

speed up the motion generation and collision checking steps.

operation computation time

obstacle map dilatation 6ms

path distance transform with Voronoi
decomposition

6ms

trajectory generation 43ms

collision checking 11ms

TABLE II: Computation times for the algorithm’s main
operations. The obstacle map contains 500× 500 cells at
0.1 m resolution. Trajectory generation and collision check
times are expressed per 1000 trajectories and 100 samples.

V. CONCLUSION

We presented a sampling-based framework for online
motion planning. Through a method capable of dealing

with arbitrary motion models and system constraints, the

framework is widely applicable. Motion samples aligned
with the reference path are generated via forward simulation
of a vehicle model. A controller regulates the vehicle towards
samples, representing a desired lateral offset and reference
speed. The method is able to generate motions for discontin-
uous reference paths, where previous methods often failed.
Due to the difficulty in controlling combustion engine cars at
low speed, future research will focus on the identification of a
system model for the real platform, capturing a probabilistic
input-output map. Incorporating a probabilistic treatment of
the ego motion uncertainty is intended.

REFERENCES

[1] D. Pomerleau and T. Jochem, “Rapidly adapting machine vision for
automated vehicle steering,”IEEE Expert, vol. 11, pp. 19 –27, apr
1996.

[2] A. Broggi et al., “The argo autonomous vehicles vision and control
systems,”International Journal of Intelligent Control and Systems,
pp. 409–441, 1999.

[3] J. Borenstein and Y. Koren, “The vector field histogram-fast obstacle
avoidance for mobile robots,”Robotics and Automation, IEEE Trans-
actions on, vol. 7, no. 3, pp. 278–288, 1991.

[4] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach
to collision avoidance,”Robotics Automation Magazine, IEEE, vol. 4,
pp. 23–33, Mar. 1997.

[5] M. Pivtoraiko and A. Kelly, “Constrained Motion Planning in Discrete
State Spaces,” inField and Service Robotics, pp. 269–280, 2005.

[6] M. Rufli and R. Siegwart, “On the design of deformable input- /
state-lattice graphs,” inRobotics and Automation (ICRA), 2010 IEEE
International Conference on, pp. 3071–3077, May 2010.

[7] S. M. LaValle, “Rapidly-Exploring Random Trees: A New Tool for
Path Planning,” Tech. Rep. 98-11, Dept. of Computer Science, Iowa
State University, 1998.

[8] M. Werling et al., “Optimal trajectories for time-critical street scenar-
ios using discretized terminal manifolds,”The International Journal
of Robotics Research, vol. 31, pp. 346–359, Dec. 2011.

[9] A. Bacha et al., “Odin: Team VictorTango’s entry in the DARPA Urban
Challenge,”Journal of Field Robotics, vol. 25, no. 8, pp. 467–492,
2008.

[10] M. Montemerlo et al., “Junior: The Stanford entry in theUrban
Challenge,”Journal of Field Robotics, vol. 25, no. 9, pp. 569–597,
2008.

[11] J. Bohren et al., “Little Ben: The Ben Franklin Racing Team’s entry
in the 2007 DARPA Urban Challenge,”Journal of Field Robotics,
vol. 25, no. 9, pp. 598–614, 2008.

[12] J. Ziegler and C. Stiller, “Spatiotemporal state lattices for fast trajec-
tory planning in dynamic on-road driving scenarios,”Intelligent Robots
and Systems (IROS), 2009.

[13] C. Urmson et al., “Autonomous driving in urban environments: Boss
and the Urban Challenge,”Journal of Field Robotics, vol. 25, no. 8,
pp. 425–466, 2008.

[14] T. M. Howard and A. Kelly, “Optimal Rough Terrain Trajectory
Generation for Wheeled Mobile Robots,”The International Journal
of Robotics Research, vol. 26, no. 2, pp. 141–166, 2007.

[15] C. Samson and K. Ait-Abderrahim, “Feedback control of anonholo-
nomic wheeled cart in cartesian space,” inRobotics and Automation,
1991. Proceedings., 1991 IEEE International Conference on, pp. 1136
–1141 vol.2, apr 1991.

[16] P. F. Felzenszwalb and D. P. Huttenlocher, “Distance transforms of
sampled functions,” tech. rep., Cornell Computing and Information
Science, 2004.

[17] G. Borgefors, “Distance transformations in digital images,”Comput.
Vision Graph. Image Process., vol. 34, pp. 344–371, June 1986.

