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Abstract

The goal of this thesis is to provide numerical tools to systematically ad-
dress both the optimal sizing and the control problem of hybrid electric
buses. In this context, sizing refers to the choice of certain design pa-
rameters of the drivetrain, such as the nominal power of the engine, the
nominal power of the electric machine, and the nominal energy capacity
of the buffer. Control relates to the energy management problem, i.e., the
decision of how to split the instantaneous power demanded by the driver
between the engine and the energy buffer (e.g., battery or supercapac-
itor). Finally, optimal refers to the specific choice of component sizing
variables and energy management control inputs that, when combined,
globally minimize the fuel consumption of the bus driving along a cer-
tain bus line. This thesis focuses on the so-called serial hybrid electric or
Diesel-electric drivetrain.

Part I of this thesis first introduces a mathematical vehicle model
and then describes the numerical optimization of the energy management
problem with the aim to find the global optimal solution to the problem
using all the information that is available, i.e., causal as well as noncausal
information. Despite the fact that, due to its noncausality, this globally
optimal solution cannot be implemented on a vehicle, it represents an
absolute measure that does not depend on any tuning parameters. There-
fore, the globally optimal solution serves as a benchmark that allows the
potential of a given vehicle design or online energy management to be mea-
sured in an objective manner. Two methods are investigated, specifically
dynamic programming and convex optimization.

Part II of this thesis describes the development and implementation
of a real-time energy management controller whose performance may be
termed optimal in the stochastic sense. The control design task is ad-
dressed by stochastic dynamic programming that allows a systematic de-
sign procedure and facilitates the tuning process required to tune the con-
troller to a behavior that is acceptable in a city bus, e.g., avoiding high
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noise levels at bus stops or engine shut-offs when the engine is cold. The de-
sign methodology is very user friendly, and the resulting controller achieves
a close-to-optimal performance on flat inner city bus lines in a practical
test. Furthermore, the procedure allows the investigation of the optimal
tradeoff between contradicting objectives, such as fuel economy and driv-
ability. In order to reduce any sensitivity towards variations in the type
of driving mission, an extension to the baseline controller is developed
that takes into account information specific to the bus line, such as the
distance to the next stop and the future altitude profile of the bus line.
Together with this predictive extension, the baseline controller delivers
close-to-optimal results on a hilly bus line as well.



Zusammenfassung

Das Ziel dieser Arbeit ist die Entwicklung systematischer Methoden zur
optimalen Dimensionierung von Antriebskomponenten sowie der Entwick-
lung eines optimalen Energiemanagements für Busse mit seriellem Hy-
bridantrieb. Dimensioniert werden bestimmte Designparameter, wie die
nominellen Leistungswerte des Verbrennungs- und des Elektromotors, so-
wie die Energiespeicherkapazität des elektrischen Speichers (Batterie oder
Superkondensator). Mithilfe des Energiemanagements wird die Lastenauf-
teilung bestimmt, d.h., wie die vom Fahrer nachgefragte Leistung zwischen
dem elektrischen Energiespeicher und dem Verbrennungsmotor aufgeteilt
wird. Die optimale Dimensionierung ist diejenige Kombination von Design-
parametern und Energiemanagement, welche zusammengenommen eine
gewisse Zielfunktion minimieren (z.B. den Treibstoffverbrauch auf einer
gewissen Fahrstrecke). Im Zentrum der Betrachtungen steht der serielle
oder auch Diesel-elektrische Hybridantrieb.

Teil I dieser Arbeit bezieht sich auf die numerische Optimierung des
Energiemanagements mit dem Ziel, die global optimale Lösung zu fin-
den, wenn nötig unter Berücksichtigung aller verfügbaren Informationen
einschliesslich nicht-kausaler Information. Ein solches Energiemanagement
kann zwar nicht auf dem Fahrzeug eingesetzt werden, jedoch stellt seine
Performance eine absolute Grösse dar, die es erlaubt, verschiedene Ausle-
gungen des Antriebssystems oder des Energiemanagement-Reglers objek-
tiv miteinander zu vergleichen. Zu diesem Zweck werden im ersten Teil der
Arbeit zwei Methoden untersucht: die Dynamische Programmierung und
die Konvexe Optimierung.

Teil II dieser Arbeit beschreibt die Entwicklung eines Energiemanage-
ment-Reglers für den Einsatz auf dem Fahrzeug. Der Regler minimiert den
Treibstoffverbrauch im stochastischen Sinne. Zur Reglerauslegung wur-
de die stochastische Dynamische Programmierung verwendet. Diese er-
laubt eine systematische Reglerauslegung unter Berücksichtigung weite-
rer Performance-Merkmale, die im Stadtbus nicht vernachlässigt werden



dürfen, z.B. das Vermeiden von hohen Geräuschpegeln an Haltestellen oder
das Verhindern eines Start/Stopp-Betriebs des Dieselmotors bei niedrigen
Betriebstemperaturen. Diese Methode der Reglerauslegung ist benutzer-
freundlich und erreicht im Praxistest ein quasi-optimale Performance auf
flachen, innerstädtischen Buslinien. Um auch auf hügeligen Linien optima-
le Verbrauchswerte zu erzielen, wurde eine Erweiterung des Basis-Energie-
managements entwickelt, welche streckenspezifische Informationen berück-
sichtigt, z.B., die Distanz bis zur nächsten Haltestelle und das Höhenprofil
des weiteren Streckenverlaufs. Zusammen mit dieser prädiktiven Erwei-
terung erreicht der Energiemanagement-Regler auch auf hügeligen, an-
spruchsvollen Strecken quasi-optimale Verbrauchswerte.



Introduction

In order to sustain the current level of mobility while at the same time be-
ing able to reduce the corresponding CO2 emissions, we require efficient,
economic and comfortable means of transportation. The impact of pub-
lic transportation systems on our environment might be considered small
when it is compared to individual mobility. Yet there is potential to reduce
the emissions of noise, pollutants, and CO2 of public transit systems.

Hybrid electric buses represent one of many promising approaches to
reach this goal. The basic idea is to augment the drivetrain of a conven-
tional bus with an electric energy storage system. Such an augmentation
potentially reduces fuel consumption, since i) part of the kinetic energy of
the bus can be recovered by recuperation and ii) the overall efficiency can
be improved by applying intermittent operation of the diesel engine and
by moving its operating points towards the most efficient region. On the
negative side, electric hybridization increases the weight of the vehicle, the
complexity of the drivetrain and the cost. Therefore, only well-designed
hybrid electric buses can guarantee a reduction of CO2 emissions as well as
maintain passenger comfort and drivability on an equal level, while being
economically competitive with state-of-the-art diesel buses.

The main difficulty encountered during the design is the fact that
hybrid electric buses require an energy management system during opera-
tion. For instance, if the driver requests an acceleration by pressing down
the drive pedal, the energy management system must decide whether the
corresponding amount of traction energy is to be delivered by the diesel
engine or the energy storage system, or by a combination of both. The
quality of this energy management has a significant influence on the en-
ergy efficiency of the bus. An energy management strategy that yields
good fuel economy for one particular vehicle design A might deliver infe-
rior results when applied to another vehicle design B, even though design
B, when equipped with a suited energy management strategy, has the po-
tential to deliver better fuel economy results than design A. Therefore, the
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optimal sizing problem, i.e., finding the best component sizes for a hybrid
electric bus on a given driving mission, is closely coupled with the energy
management and cannot be solved separately. The first part of this thesis
describes a framework and dedicated numerical methods for finding the
optimal design of a hybrid electric bus.

During the operation of a hybrid electric bus, the main difficulty is
to ensure optimal fuel economy, no matter what driving situation might
occur along a mission. Here, manufacturers mostly rely on heuristic meth-
ods and expert intuition. The problem with these methods is that they
involve many tuning parameters without any guarantee for an optimality
of the results. Furthermore, even though it has been shown that incor-
porating route information into the energy management can improve its
performance, it is very difficult to do so in a heuristic approach. The sec-
ond part of this thesis presents an energy management controller based on
stochastic optimal control which, in a second step, is extended to incor-
porate route information. Furthermore, experimental results of the imple-
mentation of the proposed energy management strategy on a real bus are
presented.

Scientific Contribution

Within this research project, several scientific contributions to the litera-
ture were published. These are listed below.

Publications i through iii are dedicated to the topic of optimal compo-
nent design of hybrid electric vehicles. Publication i presents a mathemat-
ical vehicle model and the formulation of the energy management problem
as an optimal control problem. In publication ii, a numerically efficient
implementation of dynamic programming for solving n-dimensional opti-
mal control problems is presented. Publication iii introduces an algorithm
based on convex optimization that rapidly solves the energy management
problem of a serial hybrid electric bus. Together, the model and the algo-
rithms build the core of the component design software package for HESS
AG that was developed over the course of this project. Publication iv
summarizes some technical design issues that arose during the course of
this project.

Publications v and vi are dedicated to the topic of battery health.
Publication v investigates the possibility of improving the lifetime of a
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battery in hybrid electric passenger cars by augmenting the drivetrain with
an additional energy storage comprised of supercapacitors. Publication v
proposes an improved energy management strategy that is able to prolong
the lifetime of a battery without any further modifications of the vehicle
design. Finally, publication vii presents a framework for drivetrain sizing
under consideration of several contradictory objectives.

In order to keep this thesis concise, publications v through vii are not
discussed explicitly in this text.

i. Elbert, Philipp; Onder, Christopher; Gisler, Hans-Jörg ”Capacitors
vs. Batteries in a Serial Hybrid Electric Bus” IFAC Symposium Ad-
vances in Automotive Control (AAC), 2010, Munich, Germany.

ii. Elbert, Philipp; Ebbesen, Soren; Guzzella, Lino ”Implementation of
Dynamic Programming for n-Dimensional Optimal Control Problems
with Final State Constraints”, IEEE, Transactions on Control Sys-
tems Technology, Vol.21, No.3, pp.924-931, 2013.

iii. Elbert, Philipp; Nüesch, Tobias; Ritter, Andreas; Murgovski, Nikolce;
Guzzella, Lino ”Optimal Energy Management for a Serial Hybrid Elec-
tric Bus via Convex Optimization”, Accepted for publication in IEEE,
Transactions on Vehicular Technology, 2014.

iv. Gisler, Hans-Jörg; Elbert, Philipp ”Capacitors vs. Batteries in a Serial
Hybrid Electric Bus” 9th Symposium on Hybrid and Electric Vehicles,
IAV, 2012, Braunschweig, Germany.

v. Elbert, Philipp; Ebbesen, Soren; Guzzella, Lino ”Economic Viabil-
ity of Battery Load-Leveling in Hybrid Electric Vehicles using Super-
capacitors” Int. Scientific Conference on Hybrid Electric Vehicles,
RHEVE, 2011, Paris, France.

vi. Ebbesen, Soren; Elbert, Philipp; Guzzella, Lino ”Battery State-of-
Health Perceptive Energy Management for Hybrid Electric Vehicles”
IEEE, Transactions on Vehicular Technology, Vol.61, pp.2893-2900,
2012.

vii. Ebbesen, Soren; Elbert, Philipp; Guzzella, Lino ”Engine Downsizing
and Electric Hybridization Under Consideration of Cost and Drivabil-
ity” Oil & Gas Science and Technology – Rev. IFP Energies Nouvelles,
Vol.67, pp.109-116, 2012.
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Structure of this Thesis

This text is divided in two main parts. Part I is based on publications i, ii
and iii and presents a mathematical vehicle model and two algorithms that
rapidly evaluate the optimal energy management problem of hybrid electric
buses and thus allow the optimal component sizes for a given vehicle on a
given mission to be found. Part II discusses the design of an online energy
management strategy and its implementation on a serial hybrid electric
bus, and it presents the corresponding experimental results.



Part I

Optimal Component Design





Chapter 1

Vehicle Modeling

This chapter introduces a mathematical model of a serial hybrid electric
bus that was built by HESS AG in 2012. The model will later be used
for simulations and controller synthesis. The modeling methodology is
adopted from [1], resulting in a quasi-static model with a sampling fre-
quency of 1Hz. The model was first presented in publication i, while some
extensions are taken from publication iii.

1.1 The Vehicle

Figure 1.1 shows a photograph of the vehicle, which is a 12m city bus
with a total capacity of 85 passengers. The drivetrain components are
highlighted in Figure 1.2. The vehicle is propelled by an electric traction
motor (blue) of 280 kW, while the energy needed for propulsion is delivered
by a 170 kW diesel engine generator unit (red). Additionally, a 625Wh su-
percapacitor with a peak power of 300 kW (green) is used to buffer electric
energy, e.g., from brake energy recuperation. The energy management is
implemented in a dedicated on-board electronic control unit (yellow).

1.2 Longitudinal Vehicle Dynamics

Figure 1.3 shows the forces that act on the vehicle body during driving.
Assuming that the vehicle speed v(t) and acceleration a(t), the road grade
α(t) and the number of passengers on board np(t) have all been recorded
along a mission, the required traction force Ft(t) induced by the driving
cycle is given by

Ft(t) = (m(t) + mrot) ∙ a(t) + Fa(t) + Fr(t) + Fg(t), (1.1)
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Figure 1.1: Photograph of a serial hybrid electric bus.

Onboard control system

Energy storage system

Engine-generator unit

Traction motor

Figure 1.2: Drivetrain components of a serial hybrid electric bus.
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Fa

m ∙ g

Fg

Ft

Fr
α

Figure 1.3: Forces acting on the vehicle body during driving.

where Fa(t) is the aerodynamic drag force, Fr(t) the rolling friction force,
and Fg(t) is the up/downhill driving force given by

Fa(t) = 0.5 ∙ ρa ∙ cd ∙A ∙ v
2(t), (1.2)

Fa(t) = m(t) ∙ g ∙ cr ∙ cos(α(t)), (1.3)

Fg(t) = m(t) ∙ g ∙ sin(α(t)). (1.4)

The model accounts for forces in longitudinal direction only. All latitudinal
forces, variations of friction parameters during curves, wind forces, and
other disturbances are neglected. The term

mrot =
nwΘw + Θmγ2

t

r2
w

(1.5)

accounts for the overall inertia of the wheels nwΘw and for that of the
traction machine Θm. The mass of the vehicle can be approximated a
function of the number of passengers on board np(t)

m(t) = mv + np(t) ∙ 75 kg, (1.6)

where mv is the mass of the vehicle excluding passengers. When sizing
the drivetrain components of the vehicle, the change in vehicle weight has
to be taken into account. Therefore, the vehicle weight is modeled as a
function of the weights of the drivetrain components

mv = m0 + mm + mg + mb, (1.7)

where m0 stands for the mass of the vehicle without the powertrain com-
ponents, and mm, mg, and mb stand for the masses of the traction motor,
the engine-generator unit and the energy buffer, respectively.
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Table 1.1: Vehicle Model Parameters.

Parameter Symbol Value Unit

Gravitation constant g 9.81 [kg∙m/s2]

Air density ρa 1.20 [kg/m3]

Empty vehicle mass mv 13.6 [t]

Equivalent rotational mass mrot 0.6 [t]

Frontal area A 8.2 [m2]

Drag coefficient cd 0.9 [–]

Rolling friction coefficient cr 0.65 [%]

Number of wheels nw 4 [–]

Wheel radius rw 0.466 [m]

Transmission ratio γt 9.82 [–]

Transmission efficiency ηt 0.98 [–]

The electric traction motor is connected to the wheels via a single
gear and a final drive with an overall transmission ratio of γt. Thus, the
resulting torque, rotational speed and acceleration at the traction motor
are given by

ωm(t) = γt ∙ v(t)/rw, ω̇m(t) = γt ∙ a(t)/rw, (1.8)

and

Tm(t) =

{
Ft(t)∙rw

γt∙ηt
for Ft(t) ≥ 0

max{Ft(t)∙rw∙ηt

γt
, Tm,min(ωm(t))} for Ft(t) < 0,

(1.9)

where the overall transmission efficiency ηt is assumed to be constant. The
wheels have an effective radius of rw. The second case of (1.9) stands for
the possibility that kinetic energy has to be dissipated using the friction
brakes if the traction motor regenerative torque limit Tm,min(ωm(t)) (ex-
plained in next subsection) is exceeded.

Numerical values of the chassis model parameters are given in Ta-
ble 1.1.

1.3 Traction Motor

The electric traction motor is modeled by a scalable consumption map.
The electric power drawn (in traction mode) or supplied to the DC link
(in recuperation mode) is given by

Pm(t) = Γm(wm(t), Tm(t)), (1.10)
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Figure 1.4: Efficiency map of an electric traction machine of 280 kW.

where Γm is the electricity consumption map of the machine. The map
includes modeled energy losses in cables and in the converter. The traction
torque is limited by a speed dependent upper and lower bound given by

Tm,min(ωm) ≤ Tm ≤ Tm,max(ωm). (1.11)

Figure 1.4 shows the efficiency map and the speed dependent torque
limits of the electric traction machine of 280 kW used in the vehicle. The
data was provided by the manufacturer.

1.4 Power Split

The traction motor, the generator, the buffer, the braking resistor and
the vehicle auxiliaries are connected electrically via a DC link that allows
energy to be distributed among the components. Since the storage capacity
of the DC link itself is negligible, the following power balance holds

Pg(t) + Pb(t) ≥ Preq(t), (1.12)

where Pg(t) stands for the electric power delivered by the generator and
Pb(t) for the buffer power. The inequality stands for the possibility to
dissipate electric energy in a braking resistor that is used only if the power
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request is negative and the energy buffer is fully charged, or if the negative
power request exceeds the charging power limitation of the buffer.

The power request consists of the electric traction power and the
auxiliary power which was recorded along the driving mission together
with the vehicle speed

Preq(t) = Pm(t) + Paux(t). (1.13)

Note that for a given vehicle configuration and a given driving mission,
the power request is fully defined and can therefore be calculated prior to
the optimization of the energy management strategy. If Preq(t) is available
from a measurement on the vehicle, the data can be directly used as an
input to the drivetrain model. Inside the energy management strategy, the
power request is considered a disturbance.

1.5 Engine Generator Unit

The engine generator unit (EGU) consists of a diesel engine that is mechan-
ically connected to a generator via a crankshaft and a dedicated control
system. Given a desired electric power to be supplied to the DC link, the
EGU control system has to i) define a rotational speed setpoint that allows
the engine to deliver enough mechanical power without stalling, ii) control
the rotational speed to that setpoint and iii) control the engine and gener-
ator torque setpoints in such a way that the actual electric power matches
the desired power.

The engine rotational speed can be chosen freely by the control system
and thus represents a degree of freedom that can be used to optimize the
conversion efficiency from fuel to electricity. Applying a static optimization
algorithm results in an optimal operating curve that relates the electric
output power with an optimal rotational speed.

Figure 1.5 shows the overall conversion efficiency from fuel to elec-
tricity including the DC converter as a function of speed and torque. The
optimized operating curve (thin black line) is comprised of several dis-
tinct operating points (black dots). The most efficient operating point is
found at 90 kW. Note that the DC converter reduces its frequency below
1300 rpm resulting in a better conversion efficiency, which explains the dis-
continuity of the iso-efficiency lines. In the range from 50 to 90 kW, the
operating points were all shifted to 1200 rpm. While this procedure com-



Chapter 1. Vehicle Modeling 13

15 15 15
30 30

3035
35

35

37

37
37

37

38

38

38

39

39

T
or

qu
e

[N
m

]

Speed [rpm]

ηg [%]

← dc converter
frequency switch0 kW

20 kW

50 kW

90 kW

120 kW

165 kW

1000 1500 2000

0

200

400

600

800

1000

Figure 1.5: Efficiency map of a 165 kW engine generator unit. The optimized
operating points are indicated by black dots

promises the overall efficiency to a small extent, it allows for a smoother
operation of the engine generator unit in the range between 50 and 90 kW,
which is visited frequently in practice. The maximum rotational speed is
limited to 1800 rpm where the engine already delivers peak power. Avoid-
ing rotational speeds above 1800 rpm helps to reduce noise levels in the
bus.

The quasi static model assumes that the transition between any two
operating points on the optimal operating curve can be executed within
one second and thus within one time step of the model. Therefore, the
fuel energy consumed can be modeled as a static function of the electric
output power

Pf (t) = ṁf (Pg(t)) ∙Hlhv ∙ e(t), (1.14)

where ṁf (Pg(t)) is obtained from interpolation in a lookup table that
has been determined by a static optimization involving the consumption
maps of the engine and the generator. The variable Hlhv denotes the lower
heating value of diesel fuel. The binary decision variable e(t) ∈ {0, 1} is
required to represent the engine on/off decision. The electric output power
Pg(t) is limited to Pg(t) ∈ [0, Pg,max ∙ e(t)].
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Obviously, such a simplified model neglects many dynamic phenom-
ena, such as the additional fuel needed during an engine start/stop, the
reduced engine torque during transients due to the dynamics of the turbo
charger, etc. Therefore, the model presented here is only useful for vehicle
design. In the context of online energy management, as described in Chap-
ter 4, a different model able to capture those effects will be introduced.

1.6 Energy Buffer

Ub

R

Uoc

Ib

Figure 1.6: Supercapacitor equivalent circuit model.

The energy buffer, which can be either a battery or a supercapacitor,
is represented using an equivalent circuit model, i.e, a voltage source Uoc(t)
in series with a resistance R (see Figure 1.6). The power delivered to the
DC link Pb(t) is described by

Pb(t) = Uoc(t) ∙ Ib(t)−R ∙ I2
b (t), (1.15)

where Ib(t) is the current flowing through the buffer. Solving (1.15) for
the current yields

Ib(t) =
1

2R

(
Uoc(t)−

√
U2

oc(t)− 4 ∙ Pb(t) ∙Rb

)
, (1.16)

where the internal resistance R is assumed to be constant. Per definition, a
positive current (and positive power) will discharge the buffer and therefore

d

dt
E(t) = −Uoc(t) ∙ Ib(t). (1.17)

The energy content of the buffer at any time t is given by

E(t) =
∫ Q(t)

0

Uoc(t) dQ. (1.18)
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The absolute value of the current flowing through the energy buffer is
limited to a maximum value, leading to the following power limitations

Pb,max(t) = Ib,maxUoc(t)−RbI
2
b,max (1.19)

Pb,min(t) = −Ib,maxUoc(t) + RbI
2
b,max. (1.20)

The nominal power is defined as Pb,nom = Pb,max.

1.6.1 Supercapacitor

The vehicle under consideration is equipped with a bank of supercapacitor
modules. In this case, the open circuit voltage is a linear function of the
charge present on the buffer

Uoc(t) =
Qsc(t)
Csc

. (1.21)

Table 1.2 summarizes the most important parameters of the supercapacitor
stack used in the vehicle.

Table 1.2: Parameters of the supercapacitor.

Parameter Symbol Value Unit

Capacity Csc 12.5 [F]

Internal resistance Rsc 100 [mΩ]

Max. voltage Usc,max 600 [V]

Peak current Isc,max 500 [A]

Mass msc 250 [kg]

Peak power Psc,max 300 [kW]

Energy capacity Esc,nom 625 [Wh]
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Chapter 2

Dynamic Programming

Dynamic Programming (DP) is a powerful numerical method for solving
optimal control problems [2, 3]. For example, it can be used to calculate
the optimal energy management strategy for a hybrid vehicle on a given
driving mission. The main advantage compared to other methods is the
guarantee for a global optimal solution—regardless of the type of problem.
The dynamic system can be non-linear, non-smooth, and it can include
both continuous and discrete variables. The most notable drawback of
dynamic programming is the curse of dimensionality, i.e., the fact that
the computational effort grows exponentially with the number of state
variables and inputs of the underlying dynamic system. Another potential
problem is that the dynamic programming algorithm requires perfect a
priori knowledge of the entire driving cycle, and thus the solution is non-
causal.

Before applying the dynamic programming algorithm, all continuous
variables need to be discretized. It is possible to circumvent discretiza-
tion, e.g., if the so-called cost-to-go function can be expressed analytically.
However, in most cases, discretization is the only viable option. Thus, the
accuracy of the proposed solution depends on the integrity of the grid, i.e.,
the spacing between each node in the discretized variables. In order to
moderate numerical errors arising from discretization, a careful implemen-
tation is crucial.

If a problem includes final state constraints, any solution trajectory
is bound to lie inside the backward-reachable space, i.e., the space from
which the final state constraint can be reached within the given final time.
The backward-reachable space represents a dynamic state constraint that
neither coincides with the state constraints of the problem definition, nor
with the grid that is used for discretization. It was shown in [4] that it is
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important to carefully distinguish between backward-reachable and non-
backward-reachable space. Otherwise, significant numerical errors may
distort the solution.

In this chapter, a seemingly simple, yet non-trivial and efficient im-
plementation of the basic dynamic programming algorithm combined with
the reachability theory developed by [5, 6] and [7] is proposed. The algo-
rithm avoids numerical errors that are due to the interpolation between
backward-reachable and non-backward-reachable grid points, which im-
proves the accuracy of the found solution significantly. A case study is
used to demonstrate how the proposed method may lower the computa-
tional effort by over 300 times without loss of accuracy. In contrast to
that, previously proposed methods to reduce the computational effort of
dynamic programming, such as iterative [8], adaptive [9], approximate [10]
neuro- [11] or state increment dynamic programming [12], either sacrifice
global optimality or are applicable to a specific class of problems only.
Publications [4] and [13] propose algorithms that are based on the same
basic idea of calculating the backward-reachable space. However, they are
only applicable to first order systems, whereas the algorithm proposed here
is applicable to systems of any order.

The proposed algorithm has been integrated into the dpm-function [14],
which can be downloaded under www.idsc.ethz.ch/Downloads.

This chapter is based on publication ii, which has been co-authored
by Søren Ebbesen.

2.1 Optimal Control Problem

At this stage, only optimal control problems with fixed final time and
partially constrained final states are considered. The system has n state
variables and m inputs. The state variables are assumed to be continuous
variables. The proposed method can also handle problems where some,
or all variables are discrete, however, the benefits of the proposed method
are only apparent when the optimal control problem contains at least one
continuous state variable. The underlying dynamic system can either be
a continuous-time or a discrete-time system.

The optimal control problem is summarized as follows: find an ad-
missible control sequence uk, k = 0, 1, . . . , N such that the cost functional
(2.1) is minimized and the constraints (2.2–2.6) are satisfied.
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min
uk∈Uk

{

gN (xN ) +
N−1∑

0

gk(xk, uk)

}

(2.1)

xk+1 = fk(xk, uk) (2.2)

xk ∈ Xk ⊆ R
n (2.3)

x0 = xinit (2.4)

xN ∈ T ⊆ Rn (2.5)

uk ∈ Uk ⊆ R
m (2.6)

for all k = 0, 1, . . . , N.

The function gN (x) is the final cost term and gk(x, u) is the stage-cost,
i.e., the cost of applying the control signal u at discrete time k to the
dynamic system given by (2.2). Note that gk and fk are allowed to be
time-variant, hence the index k. The state variables are constrained to the
time-variant set Xk. The initial condition is given by xinit and the final
value is partially constrained by the target set T . Additionally, the input
signals are constrained by the time-variant set Uk.

Due to the discrete nature of dynamic programming, it is necessary
to discretize the independent variable, i.e., time, the state space and the
control space. Therefore, the functions fk and gk are discrete-time repre-
sentations of the dynamic system and the stage-cost function. At time k

the state space is discretized to the set Xk = {x1
k, x2

k, . . . , xq
k}. The super-

script i in xi
k denotes the state variable in the discretized state-time space

at the node with time index k and state index i. The continuous state
vector is denoted by xk. Analogously, the control space is represented
by the discrete set Uk = {u1

k, u2
k, . . . , ur

k}. Recall that the control inputs
can be either discrete or continuous. In the latter case Uk is a discrete
approximation of the true control space.

Typically, the final state constraint defined by (2.5) cannot be met
starting from every point in the search space. The evolution of the back-
ward-reachable space and its boundary is depicted in Figure 2.1 for a one
dimensional system. In this case, the exact calculation of the backward-
reachable space with the use of model inversion techniques, as was done
in [13] and [4] does not pose any particular problem. However, in the case of
a two dimensional problem, Figure 2.2, the the backward-reachable space
at any time k 6= N might be non-convex, even if the target set T is convex.



20 2.2. Basic Dynamic Programming
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Figure 2.1: Backward-reachable space for a system with only one dynamic
state variable. The final state constraint is given by the set T .

This makes the numerical representation of the backward-reachable space
a difficult task—especially in higher dimensional problems.

2.2 Basic Dynamic Programming

When applying dynamic programming, the optimal cost-to-go function
Jk(xi) is evaluated at every node in the discretized time-state space by
proceeding backwards in time, according to the following algorithm:

1. Initialization of cost-to-go function:

JN (xi) =

{
gN (xi) for xi ∈ T

∞ else.
(2.7)

2. Backward iteration for k = N − 1 to 0, ∀xi ∈ Xk:

Jk(xi) = min
uk∈Uk

{
gk(xi, uk) + Jk+1(fk(xi, uk))

}
. (2.8)

The optimal control signal at each node is given by the argument
minimizing the right-hand side of (2.8), yielding the optimal control policy
π = {μ0(x), μ1(x), . . . , μN−1(x)}.

Grid points that are not backward-reachable, are of course infinitely
expensive and therefore should have infinite cost, as in (2.7). However,
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Figure 2.2: (a) Backward-reachable space for a system with two dynamic state
variables. (b) Note that in this example, the backward-reachable space at time
k = n is a non-convex set.
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Figure 2.3: Interpolation between grid points with finite and infinite costs
diffuses the boundary of the backward-reachable space. The light gray area is
backward-reachable, but will apear not to be.

this causes numerical problems. Consider the scenario depicted in Fig-
ure 2.3. The cost-to-go Jk+1(x) is known for all grid points xi at time
k + 1. In order to evaluate the cost-to-go at point xp at time k, the al-
gorithm simulates the system over one time step by applying all possible
control candidates. Thereby, the system is driven into the points fk(xp, u)
with u ∈ Uk. Since these points do not generally coincide with the grid,
interpolation is used to find the values of the cost-to-go at Jk+1(fk(xp, u)).
In this study we used multi-linear interpolation. In the example shown in
Figure 2.3, interpolation will always rely on at least one grid point where
the cost-to-go has an infinite value. Therefore, the backward-reachable
space will appear smaller than it actually is and the cost-to-go at Jk(xp)
will be set to infinity, even though xp is perfectly backward-reachable.
This effect propagates throughout the entire grid, and thus the calculated
backward-reachable space will be underestimated.

A first remedy to this problem is to choose a large but finite cost
instead of an infinite value in (2.7). However, this technique results in a
steep gradient in the cost-to-go function that distorts the found solution.
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This procedure will be referred to as basic dynamic programming. Other
techniques would be to increase the density of the grid towards the end
of the problem, either by increasing the number of grid points (increase q,
as k approaches N), or decreasing the size of the search space. It will be
shown later that these methods fail to produce useful results.

2.3 Representation of the Backward-Reachable Space

A prerequisite for understanding the improved dynamic programming al-
gorithm, which will be introduced in the next section, is to understand
how level-set functions can be used to calculate the backward-reachable
space [5],[6],[7].

Generally, in an n-dimensional state space, it is not clear how the
boundaries of the backward-reachable space evolve. Furthermore, at any
time k, this space is not necessarily convex (see Figure 2.2). Therefore, an
exact numerical description is difficult. However, the feasible region at each
time k can be conveniently estimated by an implicit surface function or
level-set function, which is calculated by means of dynamic programming.
The main idea is the following. Let I be a function that acts on Rn:

I : X ⊆ Rn → R. (2.9)

Such a function can be used to represent a region G that is defined as
follows:

G = {x ∈ X|I(x) ≤ 0}. (2.10)

Figure 2.4 illustrates how a level-set function I(x) can be used to
represent the backward-reachable space shown in Figure 2.2. The advan-
tages of such a representation are the following. Firstly, a Cartesian grid
can be used for the evaluation of the function I(x). Together with (2.10)
it is numerically easy (by interpolation) to evaluate whether a point x is
backward-reachable or not. Secondly, such a function can represent regions
of any shape (even non-convex). Furthermore, the description is general
and can be applied to systems with any number of state variables and
control inputs. A drawback of this method is that the boundary of the
backward-reachable space is not represented exactly, but rather approxi-
mated by the level-set function. The error of this approximation decreases
with increasing grid density.
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Figure 2.4: Example of a level-set function I(x) at some time index k. The
bold curve represents I(x) = 0, i.e., the boundary of the backward-reachable
space.

2.3.1 Computing the Backward-Reachable Space

Assume that the final state constraint is given as a target set T , which is
defined by a level-set function h(x):

h : XN → R, where XN ⊆ R
n (2.11)

T = {x ∈ XN |h(x) ≤ 0}. (2.12)

Then, a dynamic programming algorithm is applied:

1. Initialization:
IN (xi) = h(xi). (2.13)

2. Backward iteration for k = N − 1 to 0:

Ik(xi) = min
uk∈Uk

{
Ik+1(fk(xi, uk))

}
. (2.14)

The cost-to-go function of this algorithm is interpreted as a level-set func-
tion. Therefore, a new symbol I is used in order to distinguish it from the
cost-to-go of the original problem. Figure 2.5 illustrates the algorithm.
Assume that the level-set function Ik+1(x) at time k + 1 is known at
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Figure 2.5: Illustration of the algorithm that propagates the backward-reach-
able space for a system with two dynamic state variables.

all nodes xi. Starting from a specific grid point xp at time k, the algo-
rithm applies all possible control candidates. This process yields the points
fk(xp, u) with u ∈ Uk. Then, as in (2.14), the algorithm assigns Ik(xp) to
be the minimum forward reachable value of Ik+1, i.e., the minimum value
of Ik+1(fk(xp, u)). In the example, this value is negative for xp, which
indicates that xp is a backward-reachable grid point. Contrarily, the point
xq is not backward-reachable.

2.4 The Improved Dynamic Programming Algorithm

The main idea behind the improved dynamic programming algorithm is
to use a level-set function to describe the backward-reachable space. This
allows identifying the grid points from which the final state constraints
cannot be met. Thus, large penalties in the cost-to-go function are no
longer necessary and the inherent steep gradient is avoided.

The value of the cost-to-go function at grid points outside the back-
ward-reachable space is not defined. Since interpolation might have to
rely on such grid points, a reasonable approximation needs to be found.
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The improved algorithm simply uses the value of the cost of driving the
system parallel to the boundary of the backward-reachable space, as close
as possible to the final state constraint. This delivers a smooth cost-to-go
function over the whole state space and therefore, interpolation will not
cause any particular numerical problem. This algorithm is referred to as
level-set algorithm.

2.4.1 The Level-Set Algorithm

1. Initialize k = N and the level-set and the cost-to-go functions as

IN (xi) = h(xi) (2.15)

JN (xi) = gN (xi), (2.16)

where h(x) is chosen to represent the target set T as in (2.11) and
(2.12).

2. Then reduce k by one and update the level-set function by

Ik(xi) = min
uk∈Uk

{
Ik+1(fk(xi, uk))

}
. (2.17)

3. For each grid point xi, find the set of control signals for which the
system trajectory ends up inside the backward-reachable space in
the next time step

UF
k (xi) = {uk ∈ Uk|Ik+1(fk(xi, uk)) ≤ 0} (2.18)

and the one control candidate that minimizes the level-set function

ũk(xi) = argmin
uk∈Uk

{
Ik+1(fk(xi, uk))

}
. (2.19)

4. Update the optimal cost-to-go by the following rule: if at least one
valid control candidate is found, i.e., UF

k (xi) 6= ∅, then calculate the
cost-to-go based upon the optimal candidate

Jk(xi) = min
uk∈UF

k (xi)

{
gk(xi, uk) + Jk+1(fk(xi, uk))

}
. (2.20)

If, however, the grid point is not backward-reachable, then calculate
the cost-to-go based on the control input ũk(xi)

Jk(xi) = gk(xi, ũk(xi)) + Jk+1(fk(xi, ũk(xi))). (2.21)

and repeat steps 2-4 until k = 0.
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Figure 2.6: Illustration of the level-set DP algorithm for a system with two
state variables.

Consider the scenario depicted in Figure 2.6. At time k + 1 the cost-
to-go and the level-set functions are known, e.g., from step 1. For the
point xp at time k, the algorithm applies all possible control candidates.
This will drive the system to the points fk(xp, u) with u ∈ Uk. Then, (step
2), the value of the level-set function Ik at point xp is set to be the mini-
mum reachable value of Ik+1, which will propagate the information about
backward reachability to time k. Then (step 3) the algorithm identifies
the valid control candidates UF

k (xp), based on the values of the level-set
function at the points I(fk(xp, u)) (black dots vs. empty diamonds). Fi-
nally (step 4), the cost-to-go at point xp is calculated considering the valid
control inputs only, as given by Eq. (2.20). The level-set function thus
enables the algorithm to distinguish between those trajectories that end
up inside the backward-reachable set and those who do not. Therefore, a
large penalty term in the cost-to-go to avoid infeasible states is no longer
needed, and numerical errors arising from the interpolation between a large
penalty and actual cost-to-go values are avoided.

After all, interpolation may still have to rely on grid points that are
not part of the backward-reachable space. For such a grid point xq, not
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a single valid control input can be found that drives the system back
into the backwards reachable space. In this case, the value of the cost-
to-go function is computed based on the control ũk(xq) as in (2.21). This
control input drives the system as closely as possible towards the backward-
reachable space (black triangle), which yields a cost-to-go function that is
smooth over the whole state space.

2.4.2 Forward Simulation

The result of the dynamic programming algorithm is the optimal cost-to-
go function for all times k and all grid points xi

k. In order to retrieve the
sequence of optimal control inputs and the corresponding optimal state
trajectory, a forward simulation is performed. For the level-set algorithm,
this forward simulation takes the following form:

1. Initialization at k = 0:
x0 = xinit. (2.22)

2. Find the feasible control candidates

UF
k = {uk ∈ Uk|Ik+1(fk(xk, uk)) ≤ 0}. (2.23)

3. If at least one valid control candidate can be found, i.e., if UF
k 6= ∅,

find the optimal control input by

uo
k(xk) = argmin

uk∈UF
k

{gk(xk, uk) + Jk+1(fk(xk, uk))} . (2.24)

If, however, the point xk is not backward reachable then use the
control input given by

uo
k(xk) = argmin

uk∈Uk

{Ik+1(fk(xk, uk))} . (2.25)

4. Simulate the system using the optimal control input:

xk+1 = fk(xk, uo
k, wk) (2.26)

and repeat steps 2, 3 and 4 until k = N .

Note that in the forward simulation xk can take continuous values,
therefore the superscript i does not appear in (2.22)-(2.26).
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Equation (2.25) is not strictly necessary, however it improves the ro-
bustness of the algorithm. It becomes active if xk comes to lies outside
the feasible region only. However, if xinit is inside the feasible region, this
case remains inactive.

2.4.3 Initialization of the Target Set

It is often desired to reach a specific final state, i.e., a single point in the
state space at time k = N . However, this is practically impossible to
achieve because only a discrete number of control signals are available.
Instead, it is advisable to accept a certain tolerance. In other words, a
target set, rather than a target point, is specified

T = [xmin
1 , xmax

1 ]× . . .× [xmin
n , xmax

n ] ∈ Rn, (2.27)

where xmin
n and xmax

n are the minimum and maximum allowed values for
the n-th state variable. When using linear interpolation, it makes sense to
define the function h(x) such that its value at any point x is equal to the
distance from x to the nearest bound

h(x) = max
j=1,...,n

{
max(xmin

j − xj , xj − xmax
j )

}
. (2.28)

Note that the sign of h(x) is such that

h(x)

{
≤ 0 if x ∈ T

> 0 else.
(2.29)

Thus the minimum of h(x) resides in the interior of the target set T .

2.4.4 Initialization of the Cost-to-go Function

As k approaches the final time N , the optimal trajectory is likely to move
along the boundary of the backward-reachable space and thus the inter-
polation needs to rely on grid points that are not part of the backward-
reachable space. Recall that the value of the cost-to-go function outside
backward-reachable space is calculated based on an approximation—the
control input that drives the system as close as possible to the target set
T . Therefore, the final cost function needs to take into account the cost
of driving the system from a point xi /∈ T into T . A linear approximation
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to replace (2.16) can easily be found and is sufficient in most cases

JN (xi) =

{
gN (xi) if xi ∈ T

gN (xi) + λT ∙ (xi − xT ) else.
(2.30)

Thereby (xi−xT ) is the minimum distance from point xi to the target set
T and λ is a vector of factors that converts the distance between the grid
point xi and the target set T into an equivalent cost. In literature the vec-
tor λ is typically referred to as equivalence factor or Lagrange multiplier,
hence the symbol λ.

2.4.5 Computational Effort

Typically, the number of model evaluations is the factor that has the great-
est influence on calculation time. The number of model-function evalua-
tions for the basic DP and the level-set DP with an equally spaced grid is
given by:

Nfeval = N ∙
n∏

i=1

Nxi ∙
m∏

j=1

Nuj (2.31)

where Nxi
is the number of grid points in the i-th state variable and Nuj

represents the number of grid points in the j-th control input.
Compared to the basic dynamic programming implementation, the

level-set algorithm leads to some increase in the computational demand due
to the interpolation of the level-set function (2.17) and the determination of
the valid control candidates (2.18). However, the system dynamic equation
fk and the arc-cost gk have to be evaluated only once for each state and
control input combination. In the limit case, where the time to evaluate the
model function tends to zero, the total evaluation time doubles compared
to that required by the basic algorithm. However, in a typical problem,
the evaluation of the model itself accounts for the largest fraction of the
calculation time. Thus, when using either algorithm to solve the identical
problem using the same grid discretization, the calculation time for the
level-set algorithm is only slightly longer than for the basic approach.

2.5 Case Study: Simple Dynamic System

The accuracy of a solution obtained by dynamic programming is highly
dependent on the discretization of the state space. Therefore, choosing a
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good level of discretization is a trade-off between accuracy and calculation
time. If a finer grid is chosen, the solution becomes more precise, but also
calculation time increases.

In this section, a simple optimal control problem based on a dynamic
system with two state variables and two inputs is used to compare the
accuracy of the basic DP and the level-set DP algorithms. Since the ana-
lytic solution to the problem is known, a fair comparison of the results is
possible.

2.5.1 Problem Definition

The system is described by the following dynamic equations:

ẋ1(t) = −
1
2
x1(t) + u1(t) ∙ u2(t) (2.32)

ẋ2(t) = −
1
2
x2(t) + u1(t) ∙ (1− u2(t)) (2.33)

with the constraints

x(t) ∈ [0, 1]× [0, 1] ∀t ∈ [0, tf ] (2.34)

u(t) ∈ [0, 1]× [0, 1] ∀t ∈ [0, tf ] (2.35)

and the initial and final conditions

x1(0) = x2(0) = 0 (2.36)

x1(tf ) = x2(tf ) ≥ 0.5 = xmin (2.37)

where tf = 2 seconds. The cost functional to be minimized is given as:

J =
∫ tf

0

u1(t) + 0.1 ∙ |u2(t)− 0.5|dt. (2.38)

The problem can be illustrated as in Figure 2.7. Within time tf , two water
reservoirs have to be filled from empty to a certain level x(tf ) = [0.5, 0.5]T ,
using the minimum amount of water. But the reservoirs both have a leak,
where the outflow is proportional to the amount of water in the reservoir.
The first control input determines the total water flow into the system,
whereas the second input determines how the water is distributed between
the two reservoirs. The second term in the cost functional penalizes the
action on the second control input and ensures that the problem has a
unique solution.
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x1 x2

u1
u2

Figure 2.7: Illustration of the example problem.

The optimal solution to this problem is to start filling in the water
as late as possible at time ton with the maximum inflow, such that the
final state constraint is exactly met at time tf . The inflow has to be
distributed between the two reservoirs equally. This way, the amount of
water lost through the leaks is minimized over the time horizon. Therefore,
the optimal control input is given as:

uo
1(t) =

{
0 if t < ton

1 if t ≥ ton
(2.39)

uo
2(t) = 0.5 ∀t ∈ [0, tf ] (2.40)

The optimal time to switch on the water is calculated by backwards in-
tegrating the system dynamics from the final state constraint using the
optimal control inputs. It can be shown that

ton = 2 + 2 ∙ ln

(
1
2

)

. (2.41)

Therefore, the value of the optimal cost functional is

Jo
analytic =

∫ tf

ton

1 dt = tf − ton (2.42)

= −2 ∙ ln

(
1
2

)

≈ 1.3863.

Since the optimal solution is to move along the boundary of the feasible
region, the dynamic programming algorithm is sensitive to the method
used to account for the final state constraints.
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2.5.2 Resolution Study

The problem stated above is solved using the basic and level-set DP al-
gorithms using various levels of state space discretization. The time dis-
cretization is chosen to be Δt = 0.01 seconds. The number of points used
to discretize each state variable are Nx = Nx1 ∙ Nx2 , while the control
space discretization is kept at Nu = Nu1 ∙Nu2 = 21×21 = 441. Due to the
discretization of time, an inherent minimal error is introduced

Jo
DP − Jo

analytic

Jo
analytic

=
1.39 + 2 ∙ ln( 1

2 )

−2 ∙ ln( 1
2 )

= 0.0027. (2.43)

For the basic dynamic programming algorithm the penalty cost for
non backward-reachable states is chosen to be the maximum cost that
can occur in the problem. The maximum cost accumulates when the wa-
ter valve is opened at t = 0 seconds and not closed again before tf , and
therefore J∞ =

∫ tf

0
1dt = 2.

For the level-set algorithm the cost-to-go function was initialized using
(2.30)

JN (xi) =
2∑

n=1

max(xmin − xi
n, 0), (2.44)

where xi
n is the n-th element of the vector xi ∈ XN . This accounts for

the fact that if either one of reservoirs n ends up at time k = N with a
level lower than xmin, it has to be filled up to the level xmin in future,
thus causing a future cost of (xmin − xi

n). From a physical standpoint it
therefore makes sense that the vector of equivalence factors is λ = [1, 1]T

in this example.
Figure 2.8 shows the found system trajectory and the corresponding

control inputs, when the algorithms are used with Nx = 51 × 51. In
the upper graph the optimal trajectories of xo

1(t) and xo
2(t) are equal and

therefore coincide. Clearly, the solution found by the level-set algorithm is
much closer to the analytic solution. With the basic approach, the water
valve is opened much too early and therefore more water is lost through
the leaks. The system is not able to move closely along the boundary
of the backward-reachable space due to the numerical problems described
before.
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Figure 2.8: System trajectory and control inputs when solving the problem
with Nx = 51 × 51.

The corresponding control inputs are depicted in the lower graph of
Figure 2.8. It can be seen that the basic algorithm causes a very erratic
trajectory for the first control input. The level-set method has the addi-
tional benefit that the control inputs are much smoother.

The relative deviation of the cost computed by dynamic programming
compared to the results obtained by the analytic solution is shown in
Figure 2.9. Over the whole range of levels of discretization the results
obtained by the level-set algorithm are substantially closer to the analytic
solution than those of the basic dynamic programming approach. Even
at the lowest level of discretization, the level-set algorithm yields better
results than the basic approach at the highest level of discretization.

When looking at the results presented in Figure 2.9 it is immediately
clear that an adaptive grid method, based on refining discretization to-
wards the end of the problem, can never reach the accuracy of the proposed
algorithm. E.g., an algorithm starting with Nx = 11 × 11 and ending with
Nx = 201 × 201 will never be more accurate than an algorithm with a
constant Nx = 201 × 201. Obviously, the new proposed method delivers
superior results.
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Figure 2.9: The relative deviation of the cost computed by DP compared to the
optimal cost obtained by the analytic solution for several levels of discretization
ranging from Nx1 = Nx2 = 11 up to 201.

2.5.3 Computational Effort

The computational effort of the level-set and basic dynamic programming
algorithms is shown in Table 2.1 for a similar level of accuracy. The level-
set algorithm allows choosing a significantly lower level of discretization.
Instead of a grid with 201 × 201 points, a grid of 11×11 points is sufficient.
Assuming that the speed of the algorithm is mainly determined by the
number of function evaluations, as defined in (2.31), the time savings can
be calculated, with the result that the level-set DP algorithm is 334 times
faster than the basic DP approach, and yet the resulting cost is closer to
that of the analytic solution.

In order to consolidate this statement, the calculation time to solve
the problem on a 2.66 GHz processor was measured. The last row in Ta-
ble 2.1 shows that the evaluation time is accelerated by a factor of about
390 when using the level-set DP algorithm instead of the basic DP algo-
rithm. This result seems somewhat counterintuitive since the benefit of
lowering the discretization is even greater than the value that was esti-
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Table 2.1: Results obtained with the two algorithms at similar accuracy for
the simple dynamic system problem.

level

basic DP set DP

level of discretization Nx 201 × 201 11 × 11

relative cost deviation ΔJ 0.034 0.027

function evaluations Nfeval 3’581’185’041 10’725’561

measured eval. time teval [min] 164 0.42

mated using (2.31). The reason for this effect is that the handling of the
large amounts of data, as required for a high level of discretization, causes
an additional significant computational effort which was not accounted
for in (2.31). Working with a low level of discretization therefore has an
additional positive effect.

2.6 Conclusion

The level-set algorithm presented in this paper considerably improves the
efficiency of dynamic programming. The method is generic as it does not
impose any additional requirements on the properties of the optimal con-
trol problem and it does not compromise the global optimality of the found
solution. The method can handle non-linear optimal control problems with
any number of state variables and control inputs. Of course, the method
can only improve the efficiency of the basic algorithm if the underlying
dynamic system contains at least one continuous state variable. In fact,
many real-world optimal control problems faced in engineering belong to
this class. In such problems the optimal state trajectory is close to the
boundary of the backward-reachable space when final time approaches.
Computational cost can be reduced since the proposed algorithm achieves
the same accuracy as the basic implementation at a much lower state space
resolution.
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Convex Optimization

Hybrid electric vehicles represent a promising approach to reduce both fuel
consumption and CO2 emissions. However, the system complexity makes
the design and control of such vehicles a difficult task. In component
sizing, i.e., finding the best possible size of the components in the drive-
train, the globally optimal energy management should be used in order to
exclude the influence of a possibly sub-optimal energy management [15].
One method to calculate the globally optimal energy management is dy-
namic programming [2, 3]. While being successfully applied to hybrid vehi-
cles [16, 17, 18, 19], dynamic programming is computationally expensive.
The so-called curse of dimensionality limits the application of dynamic
programming to low-order systems of typically not more than one or two
state variables. Another method to solve the energy management problem
is based on Pontryagin’s minimum principle [20]. The theory has been ap-
plied to hybrid vehicles [21, 22] where Pontryagin’s optimality conditions
lead to a two-point boundary value problem. However, the high sensitivity
towards the initial condition and the presence of state constraints make it
difficult to solve the problem.

In order to avoid these drawbacks, researchers recently proposed using
convex optimization [23] to solve the optimal energy management prob-
lem [24, 25, 26, 27, 28]. Using interior point convex solvers, the optimal
solution is obtained in polynomial time [23]. Moreover, convex optimiza-
tion allows to optimize design parameters and the energy management
simultaneously [29]. Unfortunately, discrete decision variables, such as the
engine on/off decision or the gear selection, cannot be included in a convex
formulation. The resulting problem would be a mixed-integer problem and
the computational effort to solve it would increase exponentially with its
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Optimize power split

via convex solver

Optimal Solution

Driving Data

Find optimal

on/off strategy

Figure 3.1: Sequential optimization of engine on/off strategy and power split.

duration.1 Currently available mixed-integer solvers can handle problems
of very short duration only, e.g. they are useable in a receding horizon
control problem [25]. In the case of hybrid vehicle optimization, how-
ever, much longer time horizons are needed. Thus, solving a mixed-integer
problem is not suitable.

A more effective technique consists of splitting the optimization prob-
lem into two parts [27, 28], as illustrated in Figure 3.1. The first part
consists of defining an engine on/off strategy, while the second part con-
sists of optimizing the power split based on that on/off strategy. This
procedure delivers optimal results if and only if the pre-defined engine
on/off strategy is optimal. In [30] the procedure is repeated several times
to improve the initial on/off strategy, but after all, the strategy is heuristic
and is not able to guarantee global optimality.

In this chapter, the optimal engine on/off strategy is calculated ana-
lytically using Pontryagin’s minimum principle. In Section 3.2, the optimal
strategy is to switch the engine on if and only if the requested power is
above a certain threshold [31, 32] that is a function of the energy level of the
buffer and of the equivalence factor. This on/off control law is then used
together with convex optimization to iteratively find the optimal solution.
Thereby, the algorithm makes use of information about the equivalence

1E.g. the number of possible solutions to a problem with only one binary decision

variable and a horizon of n time steps is proportional to 2n.
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factor that is provided by the convex solver in form of a dual variable.
The algorithm is then shown to converge towards a solution that fulfills
the necessary conditions for an optimal solution. In two case studies, the
proposed algorithm is shown to produce optimal results in less time than
the dynamic programming.

This chapter is structured as follows: In Section 3.1, the energy man-
agement problem is formulated along with a description of the vehicle
model. In Section 3.2, the optimal engine on/off conditions are derived
analytically. Moreover, the iterative algorithm to calculate the optimal
engine on/off strategy is explained in more detail. In Section 3.3, the
methods presented are validated in two case studies.

This chapter is based on publication iii, which has been co-authored
by Tobias Nüesch, Andreas Ritter and Nikolce Murgovski.

3.1 Convex Problem Formulation

The following sections summarize the steps required to obtain a quasi-
static [1] convex vehicle model. Since the steps required to obtain a convex
model, especially the relaxation of equality constraints by inequalities, are
analogous to [29, 33], these steps are described only briefly. The numerical
parameters of the vehicle model are summarized in Table 1.1.

In a series configuration, all disturbances to the energy management
can be lumped into a single electrical power request

Preq(t) = Pm(t) + Paux(t),

which can be pre-calculated for a given vehicle on a given mission. Further-
more, if the component sizes are not included into the problem formulation
as a decision variable, it is not necessary to reformulate the models of the
vehicle dynamics and the electric traction machine in convex form. In fact,
it has been shown that such a reformulation is possible without too strong
simplifications or approximations [29].

3.1.1 Convex EGU Model

In order to arrive at a convex model, it is necessary to approximate the
EGU consumption map by a convex expression, i.e., a second order poly-
nomial

Pf (t) = (p2 ∙ P
2
g (t) + p1 ∙ Pg(t) + p0) ∙ e(t) (3.1)
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Table 3.1: Parameters of the engine-generator unit model.

Parameter Symbol Value Unit

Engine-generator power Pg,max 165 [kW]

Polynom parameter p0 16.1 [kW]

Polynom parameter p1 2.22 [-]

Polynom parameter p2 0.0013 [1/kW]

where e(t) ∈ {0, 1} is a binary decision variable required to represent
the engine on/off decision. The electric output power Pg(t) is limited to
Pg(t) ∈ [0, Pg,max ∙ e(t)].

Figure 3.2 shows the conversion efficiency from fuel to electric energy
along the optimal operating curve. Clearly, the error introduced by the
approximation is small throughout the operating range. The parameters
of the convex engine generator model are summarized in Table 3.1.

3.1.2 Convex Energy Buffer Model

The buffer is represented by an equivalent circuit consisting of a voltage
source Uoc(t) connected in series with a resistance R. The power delivered
to the DC link Pb(t) is described by

Pb(t) = Uoc(t) ∙ Ib(t)−R ∙ I2
b (t), (3.2)

where Ib(t) is the current in the buffer. Solving (3.2) for the current yields

Ib(t) =
1

2R

(
Uoc(t)−

√
U2

oc(t)− 4RPb(t)
)

, (3.3)

where the term beneath the square-root is nonnegative. This can be con-
cluded by maximizing Pb in (3.3) with respect to Ib, which gives

Pb(t) <
U2

oc(t)
4R

. (3.4)

The internal resistance R is assumed to be a constant [1], and the
open-circuit voltage is assumed to be an affine function of the charge Q(t)
of the buffer

Uoc(t) =
Q(t)

C̃
+ U0. (3.5)

The parameter U0 has the unit of a voltage. The parameter C̃ has the unit
of a capacitance and is thus denoted as equivalent capacitance. Figure 3.3
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Figure 3.2: Original and approximated efficiency along the optimal operating
curve of a 165 kW engine generator unit as a function of the electric output
power Pg. Parameters of the convex model are listed in Table 3.1.
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Figure 3.3: Original and approximated open-circuit voltage curve of a 25 kWh
battery, as a function of the battery state of charge. The parameters for the
convex model are listed in Table 3.3.
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shows the original and the approximated open-circuit voltage curve of a
25 kWh battery pack as a function of Q(t). Clearly, the affine approxima-
tion holds well inside the operating range.

In order to obtain a convex model, the buffer energy E(t) is chosen
as the state variable. The energy content at time t is calculated by

E(t) =
∫ Q(t)

0

Uoc(y) dQ (3.6)

=
∫ Q(t)

0

(
1

C̃
Q(t) + U0) dQ (3.7)

=

(
Q2(t)

2C̃
+ U0Q(t)

)

(3.8)

By solving (3.5) for Q(t), and inserting the result into (3.8), the following
relationship is found

E(t) =
1
2
C̃ ∙ (U2

oc(t)− U2
0 ) (3.9)

=
1
2
C̃U2

oc(t)− E0, (3.10)

with E0 = 1
2 C̃U2

0 . Note that in the case of a supercapacitor U0 = 0V, and
thus E0 = 0J.

The equation for the buffer dynamics is found by realizing that

dE(t)
dt

= Uoc(t) ∙
Q(t)
dt

= Uoc(t) ∙ Ib(t). (3.11)

In (3.11), Uoc(t) and Ib(t) can be replaced using (3.10) and (3.3), respec-
tively. These steps yield the following dynamic equation

dE(t)
dt

≤ −
1

RC̃

[

E(t) + E0

−
√

(E(t) + E0)(E(t) + E0 − 2RC̃Pb(t))

]

. (3.12)

The right-hand side of (3.12) is concave because it consists of the sum
of an affine function and the geometric mean of two non-negative affine
functions2. Note that (3.12) has been relaxed by an inequality, which is

2The term E(t)+E0 − 2RC̃Pb(t) cannot become smaller than zero because of (3.4).
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necessary to make the model convex. In the case of the optimal solution,
(3.12) will hold with equality. The proof of this claim is straightforward.
Assume that the convex solver finds the optimal solution and (3.12) holds
with inequality. This means that the variation of the buffer energy in a
given time interval does not correspond to the cumulative input/output
power of the buffer, and hence some energy was wasted. Clearly, a better
solution can be found ((3.12) holding with equality). This in turn means
that the initial assumption ((3.12) holding with inequality is optimal) was
wrong.

The energy content of the battery is constrained to the interval

E(t) ∈ [Emin, Emax] , (3.13)

where Emin and Emax are obtained by inserting the minimum and maxi-
mum allowed charge Q(t) into (3.10). Moreover, the buffer power minimum
and maximum power limitations are approximated by affine functions in
E(t),

Pb(t) ≥ bu,1 ∙ E(t) + bu,0, (3.14)

Pb(t) ≤ bl,1 ∙ E(t) + bl,0. (3.15)

Details on the derivation of convex buffer model can be found in [33].

3.1.3 Optimal Control Problem

The optimal control problem is formulated as follows. For each time in-
stance from t = 0 to tf , find the optimal buffer power P o

b (t) that minimizes
the cost criterion

J(Pb(t)) =
∫ tf

0

Pf (Pb(t)) dt (3.16)

subject to the charge conservation condition E(tf ) = E(0) = Einit and the
vehicle model described above.

The complete convex optimal control problem is given by (3.17) in
Table 3.2. Note that, due to its non-convex nature, the engine on/off
decision e(t) cannot be included as a decision variable. That decision
must precede the process of solving the convex problem. Problem (3.17)
corresponds to the second block in Fig. 3.1, and its solution can be globally
optimal if and only if the pre-defined engine on/off strategy e(t) is globally
optimal.
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Table 3.2: Convex subproblem

Minimize

N∑

k=1

(
p2 ∙ P

2
g(k) + p1 ∙ P g(k) + p0

)
∙ e(k) ∙Δt (3.17a)

subject to

P g(k) ≥ Preq(k)− P b(k) (3.17b)

P g(k) ≤ Pg,max ∙ e(k) (3.17c)

P g(k) ≥ 0 (3.17d)

E(k + 1) ≤ E(k)−
Δt

RC̃

[

E(k) + E0

−
√

E(k) + E0 ∙
√

E(k) + E0 − 2RC̃P b(k)

]

(3.17e)

P b(k) ≤ bu,1 ∙ E(k) + bu,0 (3.17f)

P b(k) ≥ bl,1 ∙ E(k) + bl,1 (3.17g)

E(k) ≤ Emax (3.17h)

E(k) ≥ Emin (3.17i)

E(1) = E(N + 1) = Einit (3.17j)

for all k ∈ [1, . . . , N ].

The variable N denotes the number of time steps Δt (= 1 s) along the
driving mission. Bold symbols represent free optimization variables.
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3.2 Derivation of the Optimal On/Off Strategy

In this section, Pontryagin’s minimum principle is used to derive the opti-
mal engine on/off strategy based on a simplified buffer model. With this
simplification, the optimal engine on/off strategy is shown to be a func-
tion of the requested power, the equivalence factor, and buffer energy level
only.

3.2.1 Simplified Buffer Model

The power losses Pl over the internal resistance of the energy buffer

Pl(t) = RI2(t) (3.18)

=

(
Uoc(t)−

√
U2

oc(t)− 4RPb(t)
)2

4R
(3.19)

can be approximated well by a second-order polynomial. Applying a Taylor
series expansion around Pb = 0 leads to

Pl(t) =
R

U2
oc(t)

∙ P 2
b (t) =

C̃ ∙R
2(E(t) + ΔE)

∙ P 2
b (t) = β(t) ∙ P 2

b (t). (3.20)

Figure 3.4 shows the original and the approximated losses of a 25 kWh
battery as a function of the battery power for a fully charged and a fully
discharged battery. It can be seen that the approximation holds reasonably
well. Note that the approximations introduced in this section are used to
calculate the engine on/off strategy only. All simulations conducted later
are based on the convex model introduced in Section 3.1.

3.2.2 Simplified Vehicle Model

For fixed vehicle parameters, the required power Preq(t) can be pre-calculated
and thus, the overall equations of the simplified model can be summarized
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Figure 3.4: Convex and simplified power loss model of a 25 kWh battery, as a
function of the battery power for a fully charged and fully discharged battery.
The parameters for the convex model are listed in Table 3.3.

as follows:

Preq(t) ≤ Pg(t) + Pb(t), (3.21a)

Pf (t) = (p2 ∙ P
2
g (t) + p1 ∙ Pg(t) + p0) ∙ e(t), (3.21b)

d

dt
E(t) ≤ −Pb(t)− β(t) ∙ P 2

b (t), (3.21c)

β(t) =
C̃ ∙R

2(E(t) + ΔE)
, (3.21d)

Pg(t) ∈ [0, Pg,max ∙ u(t)], (3.21e)

Pb(t) ∈ [Pb,min(t), Pb,max(t)]. (3.21f)

3.2.3 Optimal Engine On/Off Strategy

In order to find the optimal engine on/off strategy, the optimal control
problem of Section 3.1.3 needs to be solved with the model equations (3.21)
instead of (3.17). The Hamiltonian function of the new optimal control
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problem [20] is

H(.) = Pf (t)− λ(t)
(
Pb(t) + β(t)P 2

b (t)
)
. (3.22)

By defining the equivalence factor as s(t) = −λ(t) [21], the Hamiltonian
function becomes

H(.) = Pf (t) + s(t)
(
Pb(t) + β(t)P 2

b (t)
)
. (3.23)

It is analyzed for two different cases [32]. In the first case, the engine-
generator unit is considered to be on, while in the second case it is consid-
ered to be off:

H(.) =

{
Hon(.) given that u(t) = 1

Hoff(.) given that u(t) = 0,
(3.24)

where

Hon(.) = (p2 ∙ P
2
g (t) + p1 ∙ Pg(t) + p0)

+ s(t)(Pb(t) + β(t)P 2
b (t)) (3.25)

Hoff(.) = s(t)(Pb(t) + β(t)P 2
b (t)). (3.26)

In a first step, the power limits (3.21e)-(3.21f) are neglected. In the case
where e(t) = 1, the subbranch of the Hamiltonian Hon(.) is minimized by

P o,on
b (t) =

2p2Preq(t) + p1 − so(t)
2(so(t)βo(t) + p2)

, (3.27)

while in the case where e(t) = 0,

P o,off
b (t) = Preq(t), (3.28)

since P o,off
g = 0 and (3.21a) has to be fulfilled3.

Minimizing the Hamiltonian function reveals that switching the engine
on is not optimal unless the following condition is satisfied

Hon(P o,on
b ) ≤ Hoff(P o,off

b ). (3.29)

3The case where P o,off
b (t) > Preq(t) can be ruled out by arguing that dissipating

energy in the braking resistor is not optimal unless the requested power is negative and

the buffer is already fully charged.
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By inserting (3.27) and (3.28) into (3.29) and solving for the requested
power, these steps lead to the condition

Preq(t) ≥
1
2 (p1 − so(t)) +

√
p0 ∙ (so(t)βo(t) + p2)

so(t)βo(t)
= Θo

lim(t). (3.30)

A more detailed analysis (see appendix of publication iii) reveals
that the engine-generator power limits (3.21e) do not influence this power
threshold, while the buffer power limits (3.21f) do. The overall switching
condition is thus

P o
lim(t) =






Pb,max(t) if Θo
lim(t) > Pb,max(t)

Pb,min(t) if Θo
lim(t) < Pb,min(t)

Θo
lim(t) otherwise.

(3.31)

From (3.21d), the variable β is a function of the state variable E(t),
and thus the optimal power threshold is a function of the optimal equiva-
lence factor so(t) and the optimal state trajectory Eo(t).

Overall, the optimal engine on/off strategy is given by

eo(t) =

{
1 if Preq(t) ≥ P o

lim(t)

0 else.
(3.32)

Figure 3.5 illustrates P o
lim as a function of the equivalence factor s(t) and

the buffer energy Eb(t) in the case of a serial hybrid electric bus equipped
with a 25 kWh battery. The threshold is calculated based on the original
nonlinear open-circuit voltage curve data.

In the remainder of this article, the notation e(Preq(t), Eb(t), s(t)) is
adopted to indicate the on/off strategy that corresponds to some given
trajectories of Preq(t), Eb(t) and s(t).

3.2.4 Necessary Conditions for Optimality

As illustrated by Figure 3.6, the findings of the previous section allow
the engine on/off strategy to be calculated for given trajectories of the
equivalence factor and the state variable ein(Preq,in, Eb,in, sin) (first block
in Figure 3.6). Then, convex optimization can be applied to calculate the
optimal power split for the predefined on/off strategy ein(.) (second block
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Figure 3.5: Engine on/off threshold in function of the equivalence factor and
the state of charge. The map was evaluated using the original open-circuit
voltage curve of a 25 kWh battery.

in Figure 3.6). As a result, the convex solver provides the optimal trajecto-
ries of the equivalence factor4 sout(t) and the state variable Eb,out(t) that
correspond to the specific on/off strategy ein(t). Thus, the solution found
by the convex solver is optimal for the entire energy management problem
(3.16) if and only if the optimal engine on/off strategy ein(t) ≡ eo(t) is
used as an input5, i.e.,

if ein(t) ≡ eo(t) ⇒ sout(t) ≡ so(t), and Eb,out(t) ≡ Eo
b (t). (3.33)

Furthermore, if the on/off strategy is calculated based on the optimal
trajectories so(t) and Eo(t), it will be the optimal on/off strategy, i.e.,

e(Preq, E
o(t), so(t)) ≡ uo(t). (3.34)

Combining (3.33) and (3.34) reveals that

if sin(t) ≡ so(t), and Ein(t) ≡ Eo(t) (3.35)

⇒ sin(t) ≡ so(t), and Ein(t) ≡ Eo(t), (3.36)

4The convex solver provides the Lagrangian multiplier in the form of a dual variable

that allows the calculation of the equivalence factor.
5The equivalence sign ’≡’ is used to indicate that ein(t) = eo(t), ∀t ∈ [0, tf ].
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Optimize power split

sin(t)

On/Off Strategy

ein(t)

Preq(t)

Eb,in(t)

Eb,out(t)sout(t)

e(Preq(t), Eb(t), s(t))

via convex solver

Figure 3.6: Sequential optimization of the engine on/off strategy and the power
split.

and therefore, every globally optimal solution satisfies

sout(t) ≡ sin(t), and Eout(t) ≡ Eout(t). (3.37)

Thus (3.37) is a necessary condition for a globally optimal solution.
In order to make sure that a solution satisfying the necessary contdi-

tion (3.37) is truly the globally optimal solutoin, one would need to prove
that there exists no other solution that satisfies (3.37) and results in a
lower total cost. This proof is generally not straightforward and not in-
vestigated further. In the case studies described in the following sections,
it will be shown that our proposed method indeed yields the same results
as the dynamic programming algorithm.

3.2.5 Solution Finding Procedure

Figure 3.7 illustrates an iterative algorithm that can be used to find the
optimal trajectory of the equivalence factor and thus the optimal solution
to the energy management problem. Accordingly, the equivalence fac-
tor and the state variable are initialized by some constant values sj=0

in (t)
and Ej=0

b,in (t). Then, the corresponding on/off strategy ein(t) is computed,
which is then used to optimize the power split by solving the convex prob-
lem (3.17). To converge towards the optimal equivalence factor so(t), the
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u(Preq, Ej
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in)
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Figure 3.7: Iterative search algorithm to find the optimal trajectories of the
equivalence factor and the state variable.

following update law is proposed (with j denoting the iteration index):

sj+1
in (t) = sj

in(t) + κ ∙ (sj
out(t)− sj

in(t)), (3.38)

Ej
b,in(t) = Ej

b,out(t). (3.39)

As shown in Fig. 3.7, the entire sequence is repeated until a given conver-
gence criterion is fulfilled, e.g. until the root mean square error

εj =

√
1
tf

∫ tf

0

(
sj
out(t)− sj

in(t)
)2

dt (3.40)

is smaller than a predefined tolerance.
The equivalence factor is initialized with a value that is large enough

to ensure that the resulting initial on/off strategy is feasible and that the
problem is solvable by the convex solver. If sj

in(t) was initialized with a
value larger than so(t), the resulting total engine-on time would be in-
creased compared to the optimal case, giving more time to recharge the
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Table 3.3: Battery Model Parameters

Parameter Symbol Value Unit

Energy Capacity E0 sb ∈[10,30] [kWh]

Nominal Power Pnom 6.46 ∙ sb [kW]

Equivalent Capacity C̃ 30.9/sb [kF]

Internal Resistance R 2.62 ∙ sb [mΩ]

Energy Offset ΔE 0.74 ∙ sb [kWh]

Max. Power Parameter bu,1 2.00 ∙ sb [kW/kWh]

Max. Power Parameter bu,0 4.46 ∙ sb [kW]

Mass mb 27.5 ∙ sb [kg]

buffer. Consequently, the resulting equivalence factor sj
out(t) would be

lower than so(t). A similar argument holds for the case where sj
in(t) < so(t)

and thus the optimal value of the equivalence factor lies within so(t) ∈
[sj

in(t), sj
out(t)]. Therefore, practical values of the feedback gain are found

to be around κ = 0.5.

3.3 Case Studies

3.3.1 Hybrid Electric Bus with a Battery

First, this section presents a small example to illustrate how the algorithm
described above works. Then, a sizing case study is presented where a
battery pack is optimized for a serial hybrid electric bus for four differ-
ent bus lines individually. The parameters used for the convex battery
model are listed in Table 3.3 as a function of the energy capacity. The
problem was implemented in Matlab [34]. The convex problem was parsed
with CVX [35] and solved with SeDuMi [36]. The dynamic programming
solution was found using the dpm function [19]. Note that the charge
conservation condition E(tf ) = E(0) was relaxed to E(tf ) ≥ E(0). This
relaxation has been shown to actually improve numerical precision of the
algorithm [4].

Driving Cycles

Figure 3.8 shows the velocity and altitude profile of the four bus lines
considered in the case study. The auxiliary power demand and the number
of passengers were recorded together with the data shown along the driving
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Figure 3.8: Speed (black lines) and altitude profiles (gray areas) of the bus
lines 1 through 4.

missions. All the data were subsequently resampled at a rate of 1Hz.
Lines 1-2 are rather flat inner city lines recorded in the cities of Braun-

schweig and Düsseldorf, while Line 3 is a slightly more hilly bus line mea-
sured in Hamburg. Line 4 is an artificial cycle that was used to validate the
drivetrain of the bus on a testbench. This cycle includes a severe altitude
profile and prolonged phases of driving at the power limits of the bus.

Example Solution

The proposed algorithm is now applied to a 16 kWh battery hybrid electric
bus driving on Line 1. The upper plot of Figure 3.9 shows the evolution
of the state variable of both the solution found by the proposed algorithm
(black line) and the optimal solution obtained using dynamic programming
(thick gray line). The lower plot shows the evolution of the equivalence
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Figure 3.9: Iterations 3, 4 and 5 when applying the proposed algorithm to
a 16 kWh battery hybrid electric bus on Line 1. The globally optimal solution
found by dynamic programming is indicated by a thick gray line in the upper
plot.

factor sj
in for the iterations 3, 4 and 5 (differently shaded solid lines) and

the final equivalence factor s5
out. Clearly, the algorithm converges towards

a solution very similar to the one found by dynamic programming.
In the proposed algorithm, the equivalence factor was initialized with

a constant value of sin,k=0(t) = 3, while the buffer energy was initialized by
Ein,k=0

b (t) = Eb,init ∀ t ∈ [0, tf ]. The gain was chosen κ = 0.5. After five
iterations the root mean square error εj was smaller than 1∙10−3 and the al-
gorithm terminated. The fuel consumption found is 35.26 l/100km, which is
0.02% lower than the one found by dynamic programming (35.27 l/100km).
The solution was found in less than 35 s, while the dynamic programming
approach required 417 s.

The equivalence factor is not constant because the battery open cir-
cuit voltage is an affine function of the battery charge. Furthermore, due
to discretization, dynamic programming is not completely free from nu-
merical errors, which is the reason for the fact that the solution found
is slightly worse than the one found by convex optimization. However,
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Figure 3.10: Fuel consumption as a function of the battery capacity, normalized
by the best possible fuel consumption on each line. The optimal battery size
found is indicated by a grey dot and a circle, respectively.

the proposed algorithm yields a more precise solution in less time than
dynamic programming.

Sizing Study

This subsection presents a case study in which the fuel-optimal battery size
of the serial hybrid bus is sought for each bus line individually. To do so,
the energy management problem was solved with the proposed method for
battery capacities between 10 and 30 kWh in steps of 1 kWh. Figure 3.10
shows the optimal fuel consumption and the corresponding battery ca-
pacity. The results from the iterative algorithm are indicated by a thin
black line. The identical problem was solved using dynamic program-
ming as well, providing the globally optimal solution indicated by a gray
thick line. The fuel optimal battery size for each line is indicated by a
black circle and a gray disk for the iterative and the dynamic program-
ming solution, respectively. For battery sizes smaller than the optimal
one, the fuel consumption increases because the battery cannot absorb all
the energy from recuperation, while for an increased battery size, due to
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Table 3.4: Model Parameters of the Supercapacitors

Parameter Symbol Value Unit

Energy Capacity Enom sc ∈[300,2000] [Wh]

Nominal Power Pnom 0.42 ∙ sc [kW]

Equivalent Capacity C 7.81/sc [kF]

Internal Resistance R 0.22 ∙ sc [mΩ]

Max. Power Parameter b1 1.04 ∙ sc [W/Wh]

Max. Power Parameter b0 0.12 ∙ sc [kW]

Mass mb 0.4 ∙ sc [kg]

the additional weight of the vehicle, fuel consumption increases as well.
The results from the iterative algorithm match the results from dynamic
programming with an error of less than 0.09% in fuel consumption. By
choosing the convergence criterion to be the root mean square of the er-
ror εj being smaller than 1 ∙ 10−3, the iterative algorithm terminated with
6.7 iterations on average. The maximum error regarding the fuel-optimal
battery size is 1 kWh on Line 1. This error is likely to be reduced if a
finer grid of battery capacity is chosen. The computation time of both the
proposed and the dynamic programming algorithms were measured on a
personal computer with an Intel Core i7 CPU 2.80 GHz 64-bit processor.
The dynamic programming algorithm required an average computation
time of more than 489 s per battery size and bus line combination. By
contrast, the proposed algorithm required an average computation time of
61 s.

3.3.2 Hybrid Electric Bus with Supercapacitors

The previous section demonstrated that the proposed algorithm exhibits
good convergence properties in the case of a battery hybrid electric bus.
However, with such large battery energy buffers, the state constraints, i.e.
the upper and lower bound of the battery energy content, rarely become
activated. In order to investigate whether the algorithm still shows good
convergence properties in the presence of active state constraints, it is now
being applied to a serial hybrid electric bus with supercapacitors. The
buffer parameters as a function of the energy capacity for this study are
listed in Table 3.4.
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Example Solution

Figure 3.11 shows iterations 2, 3, 5 and 8 when the proposed algorithm
is applied to a 400Wh serial hybrid electric bus driving on Line 1. The
upper graph shows the evolution of the state trajectory, while the lower
graph shows the equivalence factor that was used to calculate the on/off
strategy. Clearly, the upper state constraint is being activated regularly,
resulting in a well observable jump to a lower value in the equivalence fac-
tor. Furthermore, at time instances 84 s, 198 s and 1174 s, the buffer needs
to be fully discharged in order to maximize recuperation in the braking
phase that follows. During those braking intervals, the equivalence factor
jumps to a value of zero, because all energy that is left in the buffer before
entering the braking phase has to be wasted. Nevertheless, the algorithm
converges towards the solution calculated with dynamic programming. Af-
ter 8 iterations, the root mean square error between εj was smaller than
1 ∙ 10−2 and the algorithm terminated. The fuel consumption found by
the proposed algorithm is 35.73 l/100km, while the one found by dynamic
programming is 35.75 l/100km.

Sizing Study

Once again, a sizing study is performed to find the optimal supercapacitor
capacity of a hybrid electric bus on the four bus lines shown in Sect. 3.3.1.
The capacity is varied from 300 to 2000Wh in 100Wh steps. Figure 3.12
shows the fuel consumption as a function of the supercapacitor size for
each of the bus lines. For lines 1-3, there exists an optimal capacity within
the range studied. A lower capacity leads to an increased use of the brak-
ing resistor, while a higher capacity leads to a heavier vehicle and thus an
increased fuel consumption. On Line 4, which contains a long downhill
section, the optimal buffer capacity is larger than 2000Wh. With a capac-
ity below 400Wh, Line 4 is not driveable because the supercapacitor does
not provide enough power. Obviously, the proposed algorithm delivers
the same results as the dynamic programming algorithm. The maximum
deviation in fuel consumption between the two solutions is 0.2%. The
maximum error of the optimal buffer design found is 100Wh, which again
is likely to be reduced if a finer grid of capacity is chosen. The iterative al-
gorithm terminated after 7.6 iterations on average with a mean evaluation
time of 94 s, while the dynamic programming algorithm required 478 s on
average.
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Figure 3.11: Iterations 2,3,5 and 8 the proposed algorithm is applied to a
400 Wh supercapacitor hybrid electric bus on Line 1. The globally optimal so-
lution found by dynamic programming is indicated by a thick gray line in the
upper plot.

Comparison between Battery and Supercapacitor Designs

A comparison of the optimal designs found by the proposed and the dy-
namic programming algorithms is shown in Table 3.5 for both the battery
and the supercapacitor hybrid electric bus. For an optimally designed bus,
the fuel consumption is very similar for both types of buffers. On Lines
1-3, the supercapacitors have a slight advantage (up to 1.5% reduction
of fuel consumption) due to the fact that the optimal design weighs less
than that in the case of batteries; however in practice this difference seems
negligible. In the case of a hilly cycle such as that of Line 4, the superca-
pacitor would have to be severely oversized in order to be able to capture
all energy from recuperation.

Overall, from the viewpoint of energy efficiency, supercapacitors are
an alternative to batteries on rather flat inner city cycles. On hilly cycles
where a lot of energy has to be recuperated, batteries are better suited.
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normalized with respect to the fuel-optimal solution from dynamic programming.
The optimal capacity found is indicated by a grey dot and a circle, respectively.

3.4 Conclusion

This chapter addresses an open issue that usually occurs when attempting
to find the globally optimal solution of the energy management problem of
a hybrid electric vehicle using convex optimization. The open issue refers
to binary or integer decision variables, such as the engine on/off decision,
which cannot be included in the problem formulation because of their non-
convexity. Up to now, researchers have used suboptimal control strategies
to define these decisions prior to solving the actual energy management
problem. In this paper, we analytically analyze the problem in the case
of a serial hybrid electric bus and derive the engine on/off strategy to be
a function of the drive cycle data, the state variable and the equivalence
factor. These findings are then used to derive an iterative algorithm that
converges to the globally optimal solution after a few iterations. The
algorithm is shown to deliver optimal results in less time than dynamic
programming even in the presence of active state constraints.

Future work is to include testing the algorithm in the case where the
buffer capacity is included as a sizing variable in the convex program. Fur-
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Table 3.5: Optimal Designs found by the proposed algorithm

Bus Line 1 2 3 4

Battery Enom [kWh] 23 19 20 22

FC [l/100km] 30.66 35.21 29.29 41.59

EDP
nom [kWh] 24 19 20 22

FCDP [l/100km] 30.66 35.20 29.29 41.59

Supercapacitor Enom [Wh] 1200 1000 1100 >2000

FC [l/100km] 30.19 34.78 28.98 <45.06

EDP
nom [Wh] 1300 1100 1200 >2000

FCDP [l/100km] 30.20 34.79 28.98 <45.04

thermore, the method should be extended to other hybrid topologies, such
as the parallel topology, or hybrid powertrains with two buffer systems.
Finally, the algorithm should be extended to become capable of handling
integer decision variables, such as gear shifts.
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Online Energy Management





Chapter 4

Stochastic Dynamic Programming

Hybrid electric vehicles require an energy management system to define
the power split, i.e., to determine how the power that is requested by the
driver is split up between the electric energy buffer and the combustion
engine. A number of energy management strategies have been proposed in
the literature. Early heuristic strategies are based on fuzzy logic [37, 38] or
on rules obtained using engineering intuition [39, 40, 41]. Unfortunately,
those types of controllers are difficult to tune and fail to guarantee optimal
performance. Better strategies are based on optimal control theory, such as
the well known equivalent consumption minimization strategy [42, 43, 44],
which delivers good results when applied to battery hybrid electric vehicles.
Unfortunately, this strategy neglects the state constraints and requires the
equivalence factor to be approximated as a constant [21]. In the case of
the serial hybrid electric bus presented in Chapter 1 these assumptions are
invalid because supercapacitors with a rather limited storage capacity are
used as an electric buffer.1

Stochastic dynamic programming [2, 3] has been proposed by many
researchers for solving the energy management problem, and extensive
simulation results have been presented [45, 46, 47, 48, 49, 50]. Considering
a hybrid electric bus equipped with supercapacitors, the application of
stochastic dynamic programming is supported by two facts: First, in the
context of public transportation, the driver behavior is very repetitive and
may be approximated by a Markov chain [3] reasonably well. Second,
the stochastic dynamic programming algorithm neither neglects the state
constraints, nor requires any assumptions regarding the buffer parameters.

1With supercapacitors, the open-circuit voltage is a linear function of the actual

charge Usc =
Q(t)

C
. Applying Pontryagins minimum principle reveals that the equiva-

lence factor may not be approximated as a constant in this case.
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The advantage of such a controller is that i) optimal performance is
guaranteed with respect to the available information, ii) the controller can
be stored in a look-up table and can therefore easily be evaluated using lim-
ited computational resources, and iii) controller synthesis is a systematic
procedure that can easily be extended in a way that the resulting controller
optimally trades off multiple objectives, e.g., fuel economy vs. driveabil-
ity, while at the same time it monitors additional system variables such as
engine temperature, etc. Additionally, the concept offers the possibility to
customize energy management controllers for specific bus lines.

The drawbacks of this concept are i) the relatively high computational
burden for controller synthesis, and ii) the fact that it is not easily feasible
to integrate online predictive information about the bus line into the offline
controller synthesis process, e.g., the elevation profile of the bus line. The
former drawback can be overcome by an efficient implementation which
will be described below, while the latter can be handled by a predictive
extension as discussed in Chapter 5.

The algorithm presented in this chapter is an extension to the basic
stochastic dynamic programming algorithm. Instead of expressing the full
model as a Markov chain, the state update function is split up in two parts:
The driver behavior is expressed as a stationary Markov chain, while the
vehicle is modeled using deterministic equations. A similar decomposition
has been proposed in [50].

In this chapter the performance of the controller is tested in simu-
lation, as well as on the real vehicle using a standardized test procedure
that allows comparing fuel consumption results to those of other vehicles.
Simulation results show that the performance of the controller is close to
optimal, with an increase of only 3 to 5% with respect to the global optimal
solution obtained with dynamic programming.

This chapter is based in part on the work of Martin Widmer [51].

4.1 Problem Formulation

The controller sought in this chapter is a real-time capable, causal con-
troller that does not rely on any information about the future driving
profile. The only information required consists of the stochastic proper-
ties of the vehicle speed and the electric traction power as well as of the
corresponding real time measurement data. The vehicle model used for
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controller synthesis is the one presented in Chapter 1, augmented by one
additional state variable representing the engine temperature. The tem-
perature model is required to prevent the controller of permitting engine
stops under cold conditions.

This section first introduces some minor adaptations on the vehicle
model presented in Chapter 1, followed by the formulation of the optimal
control problem.

4.1.1 Vehicle Model

The vehicle model used in this chapter has three state variables

xk =




Eb,k

ωg,k

ϑe,k



 , (4.1)

where Eb,k is the energy currently present on the supercapacitor, ωg,k

is the rotational speed of the generator and ϑe,k is the engine coolant
temperature.

Engine Generator Unit

The models presented in Chapters 1 and 3 assumed that the energy man-
agement unit controls the buffer power. Here, a different definition of the
control input is used: The control input decides which out of several dis-
crete operating points u ∈ {1, 2, . . . Q} the engine generator unit is to be
operated on. Those operating points coincide with the curve of optimal
efficiency introduced in Section 1.5, Figure 1.5. The operating points in
the presented implementation correspond to 0, 20, 50, 60, 70, 80, 90, 120
and 165 kW of electric output power. In the case of zero output power the
engine can be either off or idling. Each operating point is defined by a
certain rotational speed

ωg,k ∈
{
ω1, . . . , ωQ

}
, (4.2)

and a certain electric output power

Pg,k =

{
Pu

g if ωk = ωu ≤ ωk−1,

0 else,
(4.3)



66 4.1. Problem Formulation

where Pu
g ∈ {P

1
g , ∙ ∙ ∙ , P Q

g }. The second case of (4.3) reflects the fact that
the generator is not allowed to brake the engine during an acceleration, in
order to achieve a quick transition between the operating points. Further-
more, the generator is not allowed to motor the engine except during the
start-up phase.

The implementation of such discretized controls compromises optimal-
ity to a small extent with respect to a continuous control input. However, a
comparison of the two variants using deterministic dynamic programming
reveals that the deterioration is negligible since the engine is operated at
maximum efficiency most of the time. Furthermore, the discrete defini-
tion results in a piecewise constant reference value for the EGU speed
controller, thus avoiding small variations that would occur otherwise.

Furthermore, the fuel consumption that corresponds to each discrete
operating point and to all possible transitions between any two operating
points has been identified from a dynamic model of the engine generator
unit involving the efficiency maps of the engine and the generator. The
values have been stored in a two-dimensional look-up table

ṁf,k = ffuel(xk, uk). (4.4)

This model assumes that the transition between any two operating
points can be realized within one time step. With a temporal discretization
of one second and the distribution of operating points chosen in the actual
vehicle, this assumption corresponds well with reality for all operating
points up to 90 kW. For operating points with a power above that value,
the turbocharger dynamics usually induce a longer transition time. In
these cases, the fuel map and the state update function are adjusted to
compensate for the errors of this assumption.

Engine Temperature

The energy management has the ability to stop and restart the engine
whenever adequate. However, if the engine is cold, e.g., shortly after the
vehicle is put into operation, stopping the engine should be avoided in order
to reduce thermal stress and keep emissions low. To find a controller that
monitors the engine temperature, the model used for controller synthesis
is augmented by the engine coolant temperature as an additional state
variable.
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Table 4.1: Parameters of the engine temperature model.

Parameter Symbol Value Unit

thermal capacity ce 480 [J/kg]

convective term κe 200 [W/K]

ambient temperature ϑamb 21 [deg C]

The dynamics of the engine coolant temperature ϑe are modeled by a
basic zero-dimensional, lumped parameter thermodynamic model, where
the engine is considered to be a metal block with equally distributed tem-
perature, discretized using the Euler forward method

ϑe,k+1 = ϑe,k +
1
ce

(q̇in,k − q̇out,k) ∙Δt (4.5)

= ϑe,k +
1
ce

(
1
2

(
ṁf,kHlhv − Te,kωe,k

)
− κe(ϑe,k − ϑamb)

)

∙Δt.

In this equation the following assumption is made: Half of the fuel energy
that is not transformed into mechanical energy is transferred to the cooling
system, while the other half is transported to the ambient together with
the exhaust gas. The engine coolant itself is cooled via convection. The
parameters are listed in Table 4.1. A rudimentary validation of this model
has been conducted by comparing the time constants of the model and the
real system during operation.

4.1.2 Markov Chain

The basic idea behind stochastic dynamic programming is that the driver
behavior can be modeled and predicted by a stationary Markov chain.
This section illustrates the concept.

The vehicle speed and the electric traction power are considered dis-
turbances to the energy management in the sense that they are measurable
online but are not known in advance. Consider the disturbances as a vector

wk =

(
vk

Preq,k

)

∈W = {w1, w2, . . . , wR}, (4.6)

where vk and Preq,k are the vehicle speed and the electric traction power at
timestep with index k. Furthermore, consider that the disturbance space
W has been discretized using R discrete values.
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Figure 4.1: Speed and requested power along a driving mission. Figure 4.2
shows the same data on the plane representing speed vs. requested power.
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Figure 4.2: Concept of a Markov chain illustrated in the plane that represents
speed vs. traction power: If the disturbance at timestep k is wk = wi ∈ W ,
then there exists a two-dimensional probability density function that describes
the probability that wk+1 = wj at timestep k + 1 for all wj ∈ W .
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Figures 4.1 and 4.2 illustrate the process of generating a Markov chain.
Figure 4.1 shows the velocity profile along a driving mission and the cor-
responding trajectory of the requested power. If the same data is plotted
in the speed-power plane as in Figure 4.2, it becomes clear that the driver
behavior can be predicted to some extent. Consider that the disturbance
is measured to be wk = wi at timestep k indicated by a dot in Figure 4.2.
Despite the fact that there are several possibilities for what happens next
(possible wk+1 indicated by boxes), it is obvious that the driver is in ac-
celeration mode. Thus, given the measurement wk = wi, there is a high
probability that the driver will continue to accelerate the vehicle and that
the velocity and the requested power will continue to rise during the up-
coming timesteps. Contrarily, there is a low probability for a negative
power request during the next timestep.

By examining the trajectories of the velocity and the requested power
for several complete missions in the same way as above, a transition prob-
ability matrix can be obtained for each velocity-power pair in the set W

pij = P (wk+1 = wj | wk = wi)

=
#(wk+1 = wj | wk = wi)

#(wk = wi)
∀ wi, wj ∈W, (4.7)

where each entry pij denotes the transition probability from wi to wj ,
which is determined by counting the number of times wj is visited exactly
one timestep after wi was visited, divided by the number of times wi was
visited in total.

Storing these transition probabilities for all possible permutations of
j and i in a matrix yields the Markov chain pij . Each row of the matrix (i
fixed) represents a discrete two-dimensional probability density function
for the transition starting from ωk = ωi, and thus

∑R
j=1 pij = 1 with

pij ≥ 0.
In the following, the variable w denotes a deterministic measurement

of the disturbance vector, while w̄ denotes a stochastic variable with the
probability distribution

w̄ ∼ P(w). (4.8)

The probability distribution function P is described by the Markov chain
pij .
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Implementation Issues

In order to avoid numerical problems, special care has to be taken when
calculating the matrix pij . First, given a measured value of ωk, which is
unlikely to coincide perfectly with one of the discrete values in W , linear
interpolation is used to evaluate the transition probability starting from ωk.
Second, certain combinations of vehicle speed and electric power wi ∈ W

may not be visited in the data set that is used to generate the Markov
chain and thus, the corresponding transition probability density function
cannot be identified, since division by zero occurs in (4.7). Therefore, each
measurement of w is overlaid with a normally distributed measurement
uncertainty, and is thus spread over several discrete points within W . Such
a spread ensures that there is a valid transition probability density function
for all discrete points contained in W .

4.1.3 Optimal Control Problem

A basic assumption required for solving the energy management problem
using a stochastic dynamic programming algorithm is that the stochastic
properties of all disturbances, i.e., vehicle speed and traction power, are
known and can be expressed as a Markov chain. In order to obtain a
stationary control policy, i.e., a control policy that is independent of time,
the problem is regarded as an infinite horizon problem, i.e., the bus never
finishes its mission. Alternatively, the problem could be formulated as a
discounted problem or a problem including a terminal state [3], however
these approaches require additional parameters to tune.

The optimal control problem is summarized as follows: find an admis-
sible, stationary control policy uk = μo(xk, wk) that minimizes the cost
functional (4.9) and satisfies the constraints (4.10–4.13)

min
μ(.)

lim
N→∞

N∑

k=0

E
wk

{g(xk, μ(.), wk)} (4.9)

xk+1 = f(xk, μ(.), wk) (4.10)

xk ∈ X (4.11)

uk ∈ U (4.12)

wk ∼ P(wk−1) (4.13)

for all k = 0, 1, . . . ,∞.
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Since the disturbance wk is a stochastic variable, the cost functional (4.9)
includes the expected value of the stage cost g(xk, uk, wk). Apart from
the fuel energy, the stage cost is allowed to contain several other weighted
penalty factors to trim the controller towards a behavior that is acceptable
in a vehicle

g(xk, uk, wk) = Hlhv ∙ ṁf,k + g1(xk, uk, wk) + g2 . . . (4.14)

4.2 Stochastic Dynamic Programming

The basic formulation of stochastic dynamic programming assumes that
the full process model (deterministic or stochastic) is a Markov chain. In
the slightly different derivation described in this chapter, the state update
function is assumed to be comprised of both a stochastic model of the
driver behavior expressed as a Markov chain, as well as a deterministic
vehicle model.

Due to the discrete nature of dynamic programming, the time, the
state, the control and the disturbance spaces must be discretized. The
state space is represented by the set X = {x1, x2, . . . , xP }. The con-
trol and the disturbance spaces have already been discretized to W =
{w1, w2, . . . , wR} and U = {1, 2, . . . , Q}. The remainder of this chapter
assumes that the variables x, u and w are always members of these discrete
sets.

In an infinite horizon problem, starting from any given combination
of a state xp and a disturbance wi at any given time with index k, the cost
to finish the problem is always the same, i.e., the optimal cost-to-go J o is
not a function of the time, and hence it is stationary

J o
k (x, w) = J o

k+1(x, w) = J o(x, w), (4.15)

where p = 1, . . . , P and i = 1, . . . , R. Therefore, the regular dynamic
programming iteration

J o
k (x, w) = min

μ(.)

[

g(x, μ(.), w) + E
w̄∼P(w)

{
J o

k+1(f(x, μ(.), w), w̄)
}
]

,

(4.16)
can be reformulated into an implicit equation

J o(x, w) = min
μ(.)

[

g(x, μ(.), w) + E
w̄∼P(w)

{J o (f(x, μ(.), w), w̄)}

]

. (4.17)
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If the optimal cost-to-go function is known, the optimal policy is given
by the argument minimizing the right-hand side of (4.17) . The expected
value E of the cost function is evaluated via a summation over all pos-
sible future values of the disturbance vector w̄ and their corresponding
probabilities stored in the Markov chain matrix pij .

4.2.1 Value Iteration

The simplest way of solving (4.17) is called value iteration [3]. First,
assume that a sub-optimal initial guess of the cost-to-go function J is
available. Then let T (.) be an operator that applies the following operation
on J

T (J ) = min
μ(.)

[

g(x, μ(.), w) + E
w̄∼P(w)

{J (f(x, μ(.), w), w̄)}

]

. (4.18)

Furthermore, let the repeated application of T (.) on J be denoted as

Tα(J ) = T (Tα−1(J )), (4.19)

where the superscript α denotes the number of iterations. With these
definitions, the repeated application of T (.) on J always converges to the
optimal cost-to-go function, regardless of the initial guess of J [3], i.e.,

lim
α→∞

Tα(J ) = J o. (4.20)

4.2.2 Modified Policy Iteration

Another algorithm is called policy iteration [3]. First, assume that an
initial guess of the control strategy μ(x, w) exists. Then let Tμ(.) be an
operator that applies the following operation on J

Tμ(J ) = g(x, μ(.), w) + E
w̄∼P(w)

{J (f(x, μ(.), w), w̄)} . (4.21)

The repeated application of Tμ(.) on J always converges to the true cost-
to-go of this specific policy [3], i.e.,

lim
α→∞

Tα
μ (J ) = Jμ, (4.22)

which is called policy evaluation.
Obviously, policy iteration alone does not lead to the globally optimal

solution. In order to find the true optimum, policy iteration has to be
combined with value iteration. The algorithm takes the following form.
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1. Initialization: Guess an initial policy μα=0.

2. Policy Evaluation: Given the current policy μα, evaluate Tμ(J ) m

times, i.e., Jμα = Tm
μα(J ), as in (4.21).

3. Policy Improvement: Update the policy μα+1 as the minimizing ar-
gument of T (Jμα), as in (4.18) .

4. Iteration: Iterate steps 2. to 3. until a stationary cost is found, i.e.,
until the condition Jμα = T (Jμα) is satisfied.

This algorithm usually converges much faster than value iteration. The
parameter m is problem specific and has to be defined by the user. It
determines the trade-off between the number of calculations needed per
iteration and the rate of convergence of the algorithm.

4.2.3 Implementation Issues

A number of problems have to be considered when implementing this al-
gorithm. These are listed below.

Gauss-Seidel Iteration

During step 2., the operation Tμ(Jμα) has to be evaluated m times. The
mathematically correct implementation would be to store an intermediate
cost-to-go function J i

μα for each i = 1, . . . , m. Obviously, such a storage
requires a lot of memory. By contrast, updating the entries of the matrix
Jμα one by one not only requires less memory, but also improves the
convergence of the algorithm [3].

Infinite Cost

If a problem lasts infinitely long, the cost to finish the problem may take
an infinite value

lim
N→∞

N∑

k=0

E
wk

{g(xk, μo(.), wk)} =∞. (4.23)

Obviously, infinite costs cannot be represented in a computer. However, a
remedy to this problem is to subtract a constant value h from the cost-to-
go function after each iteration. The dynamic programming iteration can
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be reformulated as follows:

H(x, w) + h = min
μ(.)

[

g(x, μ(.), w) + E
w̄∼P(w)

{H (f(x, μ(.), w), w̄)}

]

, (4.24)

where h is redefined after each iteration of the stochastic dynamic pro-
gramming algorithm such that H(x, w) stays in a valid range. Since min-
imization is relative, it is clear by intuition that the constant h does not
affect the optimal control law that is found by the optimization. For a
rigorous proof see [3].

Redundant calculations

During the execution of the stochastic dynamic programming algorithm
the discrete sets X, U and W are not changed. Thus, the permutations
of x, u and w remain the same over all iterations. This fact allows the
response of the system to be evaluated prior to executing the stochas-
tic dynamic programming algorithm, instead of re-evaluating the model
function in each iteration. The response is simply stored in two look-up
tables

xk+1 = F (x, u, w) : RP × RQ × RR → RP , (4.25)

gk = G(x, u, w) : RP × RQ × RR → R, (4.26)

where F represents the state dynamics, i.e., xk+1 for all possible discrete
permutations of states, control inputs and disturbances, and G represents
the stage cost.

Furthermore, since the values stored in F and G do not change over
the course of the execution of the algorithm, any interpolation that is de-
pendent on these values can be simplified. For example the cost-to-go func-
tion has to be evaluated at the values stored in F , i.e., J (xk+1 = F (.), w).
In fact, any n-dimensional interpolation can be split up into two steps:
i) determining the grid points relevant for the interpolation and their cor-
responding weights and ii) evaluating the weighted sum of the values at
the relevant grid points. The first step can be finished prior to running the
stochastic dynamic programming algorithm and thus has to be evaluated
only once.
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Table 4.2: Discretization of states and inputs.

Variable Symbol Range # Pts.

State of energy Eb 25–100 % 50

Engine speed ωg 0–2300 rpm 8

Engine coolant temperature ϑe 20–90 ◦C 4

Vehicle speed v 0–80 km/h 15

Requested power Preq -280–280 kW 30

Control input u 1–8 [–] 8

4.2.4 Discretization

The algorithm described above was applied to the vehicle model with the
discretization of state, input and disturbance variables listed in Table 4.2.
Obviously, there is a trade-off between number of discrete grid points in
each dimension and the computational effort. Here, a reasonable trade-off
was found by intuition.

4.2.5 Additional Penalty Factors

In the design of the controller, several additional penalty factors are used
to trim the controller towards a behavior that is acceptable in a vehicle.
These penalty factors are described below.

Buffer Limits

The controller automatically considers the upper limit of the buffer as
a constraint that should not be violated, since such states are naturally
penalized by the fact that braking energy is wasted and the overall fuel
consumption is increased.

In order to enforce the lower limit of the buffer, an additional penalty
factor is needed. The penalty is chosen linearly to the depth of the violation

g1 = κlow ∙max(0, Eb,min − Eb,k+1) (4.27)

The penalty is added to the cost functional as in (4.14). If the penalty
is assigned a low value, the resulting controller maximizes the use of the
energy buffer. However, the probability of the buffer being discharged
completely during an acceleration is high. In this case the traction power
is limited to the maximum power of the engine generator set, which is
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much lower than the nominal power of the traction machine, and thus this
state is not desirable. In contrast, a high value leads to a controller that
always starts to recharge the buffer way before the lower limit is reached,
and thus it does not make the best use of the available buffering capacity.

In fact, this penalty factor trades off good fuel economy against the
power reserve available to the driver. Since the parameter influences fuel
economy significantly, its value needs to be chosen carefully for each com-
bination of vehicle, driving mission and driving data used for controller
synthesis.

Recharging during Standstill

In the real vehicle, stopping the engine generator unit takes several seconds.
Therefore, the engine may be still running while the vehicle has already
arrived at a standstill. In such a situation it is optimal in the stochastic
sense to recharge the buffer to 100%. This fact is explained by considering
that on the one hand, the vehicle continues with an acceleration after the
stop, which implies a zero probability of wasting recuperation energy in
the future. On the other hand, the probability of violating the lower limit
of the buffer in the future is in fact quite high. Thus, the optimal action
to minimize the probability of running into the lower state constraint by
fully recharging the buffer.

Typically, the controller chooses an operating point close to the high-
est level of efficiency of the engine generator unit, which results in a rather
high rotational speed of the engine. However, running the engine at high
speed during standstill is not acceptable in a city bus. Therefore, an ad-
ditional penalty factor that limits the engine generator unit to operating
points with a low rotational speed is introduced

g2 =

{
κchg if (vk < 20km/h) ∩ (Preq,k < 20kW) ∩ (Pg,k > Pg,k−1)

0 else.
(4.28)

This factor penalizes any control input that leads to an increase of the
generator output power (and thus of the speed of the engine generator
unit) if the vehicle speed and power are low.

Since the conditions for this penalty are very specific, κchg can be
chosen to take a very high value without the risk of deteriorating the
performance of the controller. Thus the penalty factor does not require
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Figure 4.3: Online implementation of the stochastic dynamic programming
controller.

a specific tuning process. Note that this factor penalizes engine starts at
low vehicle speed and low traction power as well.

Engine Start/Stop

In order to avoid engine stops under cold conditions, the following penalty
term is added to the cost functional:

g3 =

{
κstop if (ϑe,k < 68◦C) ∩ (Pg,k−1 > 0) ∩ (Pg,k = 0)

0 else.
(4.29)

Again, the penalty factor is very specific and thus does not require a specific
tuning process. The factor κstop can be assigned a very high value.

4.3 Online Algorithm

Figure 4.3 shows how the resulting control strategy μ is to be used on
a vehicle. The straightforward way for such an online implementation,
would be to simply use the control policy as a look-up table in function of
the measured parameters

(
P o

g,k+1

ωo
g,k+1

)

= μ(xk, uk, wk) = μo(Eb,k, ωg,k, ϑe,k, vk, Preq,k). (4.30)
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However, since the optimal control policy μo is generally a non-smooth
function, interpolation does not generally lead to the optimal control input,
especially when a rather sparse grid, such as the one listed in Table 4.2 is
used.

The mathematically correct implementation would be to evaluate the
vehicle model using all possible control inputs at each timestep, followed
by a choice of the one control input that minimizes the right-hand side
of (4.17). However, this would require both additional computational re-
sources and storage capacity because both the model and the Markov chain
would have to be stored in and evaluated by the onboard control unit. Ob-
viously, those extras should be avoided. With the controller structure used
in the vehicle, the control policy look-up table can be transformed in a way
such as to allow for a smooth interpolation as follows:

Instead of directly calculating the optimal control input to be applied
in the next timestep, as in (4.30), the map μo may be partly inverted. This
inversion is achieved by finding a limit Elim,u

b that, when undershot by Eb

activates the corresponding input u, where u ∈ {1, 2, . . . , Q}. Consider
that the current energy level of the buffer is below the limit Eb,k < Elim,u

b .
In this case the controller chooses the one control input u with the highest
value satisfying the above condition, i.e., Pg,k+1 = Pu

g . Obviously, for this

inversion to be valid, the condition Elim,u+1
b ≤ Elim,u

b must hold for all
possible control candidates u.

Figure 4.4 shows the limits as functions of the requested power for
four different scenarios. The two upper plots show the limits for a low
vehicle speed of 17 km/h, while the two lower ones show those limits for a
higher vehicle speed of 51 km/h. The two plots on the left-hand side show
the limits for the case when the engine is currently off, the two on the
right-hand side for the case where the engine is currently running at an
electric output power of 90 kW. The shaded regions indicate which control
input is optimal. The darker the color, the higher the output power of the
engine generator unit.

Consider the graph on the lower right-hand side. For a positive trac-
tion power, the controller expects an acceleration to a higher velocity.
Therefore, the lower the energy level of the buffer, the higher a value of
the engine power is requested, e.g., for Preq = 100 kW, the engine is turned
off for an energy level of the buffer above 530Wh, while for lower energy
levels, the engine power is increased step by step.
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Figure 4.4: Visualization of the control input map obtained from stochastic
dynamic programming.

In certain situations the controller might exhibit a counterintuitive
behavior, e.g., at 200 kW of braking power at a rather low vehicle speed
(see upper left graph). The reason for this behaviour is explained by the
fact that these situations cannot occur in practise, as well as in the data set
used to generate the Markov chain. Therefore, the Markov chain was not
properly identified for these subsets of W . However, since these scenarios
cannot occur in practice, they are irrelevant.

4.3.1 Controller Synthesis

When the proposed stochastic dynamic programming algorithm is used to
synthesize an energy management controller, the resulting control law is
specific to a certain vehicle, driver and driving mission. A general baseline
controller can be found by using several different data sets, containing a
number of driving missions to generate the Markov chain. Additionally,
it is possible to generate controllers that are specific to a certain mission
or bus driver. In the results section it is demonstrated that such specific
controller exhibits a better performance than the baseline controller.
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4.4 Results

A baseline controller has been synthesized using data from several different
driving missions. The goal was to find a good, general purpose baseline
controller that can be used if the route is not known in advance. This base-
line controller was implemented on the electronic control unit of the bus
shown in Figure 1.1. After a relatively short test phase that was required
to tune the penalty factors and ensure good driveability, the fuel consump-
tion of the bus was evaluated in a practical test via the Standardized On
Road Test cycles [52]. The test is comprised of three regulatory test cycles
that correspond to SORT 1—heavy duty inner city, SORT 2—light city
and SORT 3—urban operation. In the test, only the fuel consumption
values corresponding to SORT 1 and 2 were evaluated.

For the SORT 2 test cycle, Figure 4.5 shows the velocity trajectory
driven, together with the requested power, the generator power and the
energy level of the supercapacitor. The driving of the bus was automated
in order to exclude the influence of the driver. To follow the reference
speed profile, a PI controller with feedforward action was used. Over the
last few meters before every stop, the driver was commanded to use the
service brakes to exactly position the vehicle at each stop.

The fuel consumption was measured using a fuel flow meter as well
as an estimation based on injection timing from the engine control unit.
For calculating reliably fuel economy values, each of the SORT test cycles
was driven at least ten times. Differences between the initial and the final
energy level of the buffer were compensated for by evaluating equivalent
fuel consumption values.

4.4.1 Comparison to a Diesel Bus

Figure 4.6 shows a comparison of the fuel consumption results obtained
from measurements conducted using both the HESS Hybrid and a con-
ventional benchmark vehicle with similar specifications. In a heavy traffic
inner city scenario, fuel consumption is reduced by more than 27% com-
pared to the conventional diesel bus. In a light city scenario, the savings
are about 22.6%. The urban operation contains less stop-and-go traffic
and longer phases of constant speed, causing the fuel saving potential to
be somewhat lower, but still at a substantial 17.5%.
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Figure 4.5: A single repetition of the SORT 2 test cycle. The graph shows
the velocity profile (upper graph) together with the requested and the generator
power (middle graph) and the energy level of the buffer (lower graph).
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Table 4.3: Comparison of fuel consumption results on the SORT cycles using
the baseline controller and the global optimal energy management. Values are
given in l/100km.

measured simulated optimal diff.
SORT 1 34.8±1.2 34.97 33.93 +3.07%
SORT 2 30.2±0.8 30.08 29.23 +2.91%
SORT 3 – 29.70 28.36 +4.72%

4.4.2 Optimality

In order to judge the quality of the controller, the results are compared to
those of the best possible controller, namely, the globally optimal solution.
For this comparison a validated model is needed. This comparison is shown
in Table 4.3 which contains three columns. The first column summarizes
the measured fuel consumption in l/100km for SORT 1 and 2, together with
the standard deviation of the measurement. The second column shows the
simulated fuel consumption on the SORT cycles using a validated model
and the strategy used in the experiments. Finally, the third column shows
the globally optimal fuel consumption simulated on the same validated
model, however using the optimal strategy calculated by means of the
deterministic dynamic programming algorithm.

Several observations can be made. First, the error between practical
results and simulation (columns 1 and 2) is well inside the tolerance of
the measurement, which speaks for a valid model. Second, the difference
between the baseline controller and the global optimal solution is smaller
than 3% for SORT 1 and 2, and below 5% for SORT 3. In other words,
any measure to improve the controller can reduce the fuel consumption by
3% to 5% maximally.

Compared to the optimal solution, the online controller leads to a
slightly increased number of engine starts (2.9 starts per repetition of the
SORT 1 test cycle instead of 2.1) and therefore to a slightly reduced overall
efficiency of the engine generator unit (37.8% instead of 38.5%), which is
the reason for the increased fuel consumption.
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Figure 4.7: Relative excess consumption with respect to the global optimal
solution obtained by dynamic programming.

4.4.3 Mission Specific Controller

The measurements on the SORT cycles were conducted using a general
purpose baseline controller. However, with the stochastic dynamic pro-
gramming algorithm it is possible to design specific controllers for each
of the SORT cycles, which may lead to a further reduction of fuel con-
sumption. Figure 4.7 shows the results of a small simulation study. The
vehicle driving the three SORT cycles was simulated three times: once
using the baseline controller that was used for the on-road test, once us-
ing the cycle-specific controllers, and finally, once using the global optimal
strategy obtained by dynamic programming.

Figure 4.7 shows that the baseline controller achieves close-to-optimal
results already. On the SORT 1 and 2 test cycles, the fuel consumption
is increased by about 3% compared to the theoretical global optimum. If
a cycle-specific controller is used, this difference can be further reduced
to about 2%. On the SORT 3 test cycle, a similar benefit of a specific
controller can be expected.

Compared to the baseline controller, the use of the specific controller
leads to a slightly better overall efficiency of the engine generator unit
(38.1% instead of 37.8%) and of the supercapacitor (97.4% instead of
97.1%). Table 4.4 shows the same results as Figure 4.7 in tabulated form.
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Table 4.4: Comparison of the fuel consumption results on the SORT cycles
using a specific controller. Values are given in l/100km.

specific controller optimal diff.
SORT 1 34.63 33.93 +2.06%
SORT 2 29.79 29.23 +1.92%
SORT 3 29.35 28.36 +3.49%

4.5 Conclusion

This chapter introduced an efficient algorithm that rapidly solves the
stochastic optimal energy management problem of a serial hybrid electric
bus. The result is a stationary control law that can be easily implemented
on an onboard electronic control unit. The design scheme allows the op-
timal tradeoff to be found among several objectives, such as good fuel
economy and the amount of power reserve. Furthermore, the controller
permits additional system variables to be monitored, such as the engine
coolant temperature. The behavior of the controller has been well received
by both passengers and drivers. The resulting fuel consumption has been
shown to be close to the one obtained by dynamic programming (3-5%
increase with respect to dynamic programming) on flat, repetitive driving
cycles. Furthermore, a small improvement can be achieved by designing
a specific controller for each bus line. The performance of the proposed
controller on a more realistic driving cycle is described in the next chapter.



Chapter 5

Predictive Energy Management

The previous chapter introduced an online energy management controller
based on stochastic dynamic programming. The controller has been shown
to deliver close to optimal results in practice when tested using the Stan-
dardized On-Road Test cycles. However, these test cycles arguably do not
represent realistic operating conditions of a bus.

Therefore, in this chapter, the performance of the controller is tested
on a more aggressive bus line with a pronounced altitude profile and with
prolonged phases of driving the bus at its power limits (Line 4 from Chap-
ter 3). In order to ensure a good comparability of the results, the tests are
conducted on a test bench. The performance of the baseline controller is
no longer close to optimal on this line, which can be explained by the fact
that the controller causes a dissipation of braking energy in the braking
resistor during the braking phase before stops or when driving downhill.

This is a well known problem with energy management strategies that
rely on real-time available information only. To circumvent this problem,
several predictive energy management controllers have been proposed in
the literature. Such predictive controllers usually combine satellite posi-
tioning with some kind of map to provide the energy management con-
troller with information about the route ahead of the vehicle. Some au-
thors use deterministic dynamic programming in a model-predictive con-
trol fashion [53, 26], some use dynamic programming to estimate the value
of the equivalence factor for the use in the equivalent consumption mini-
mization strategy [54]. Others directly adapt the equivalence factor using
heuristics [55, 56], pattern recognition algorithms [57], stochastic driver
models [58] or PI-feedback control [59] together with a state-of-charge ref-
erence profile that has been optimized using quadratic programming [60]
or dynamic programming [61].
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Analogous to findings presented in the literature, the energy losses ob-
served in our experiments with the serial hybrid electric bus are identified
to be caused by the fact that the baseline controller is not aware of future
driving conditions, such as future braking events or up/downhill sections
of the bus line. In the case of a city bus, the driving mission is perfectly
known in advance such that, together with satellite navigation, providing
trip-specific information to the energy management controller is possible.

This chapter introduces a predictive extension to the baseline con-
troller. The predictive extension recovers a large portion of the optimality
while using only a small amount of predictive information. Compared to
the global optimal solution, the predictive extension reduced the excess
consumption from 6.7% to 1.2% in the experiment.

5.1 Testbench

The predictive controller has been tested on a testbench, which greatly
simplifies its implementation. In an on-vehicle test, a satellite positioning
receiver and an algorithm that extracts the predictive data from a map
would be needed. On the testbench these subsystems were replaced by
look-up tables.

The testbench is shown in Figure 5.1. It includes all powertrain com-
ponents, together with their corresponding inverters and low-level con-
trollers, i.e., the engine generator unit, the electric traction motor, the
supercapacitor, the braking resistor and the DC link. The vehicle chassis
has been replaced by an electric testbench machine that emulates the forces
acting on the crankshaft of the traction machine. The vehicle/driver emu-
lation is detailed in the following subsection. The low level controllers for
the DC link, the supercapacitor, the engine generator unit etc., as well as
the energy management controller are implemented on their corresponding
onboard control units that have been installed on the testbench as well.

5.1.1 Vehicle and Driver Emulation

Figure 5.1 shows the vehicle and driver emulation that was implemented
on the testbench computer. Given a certain time t and a certain driven
distance s, the first block determines the vehicle speed setpoint and the
current road inclination. The second block emulates the driver, who is
approximated by a PI controller tracking the desired velocity profile. The
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Figure 5.1: Scheme of the testbench and the vehicle/driver emulation.

driver output is a torque setpoint that is communicated to and realized
by the low-level controller of the real traction motor mounted on the test-
bench. The last block emulates the forces currently acting on the vehicle
body and calculates the resulting acceleration and vehicle speed. This in-
formation is then communicated to and realized by the testbench machine
and its corresponding low-level controller. Furthermore, the vehicle speed
calculated by the emulation block is fed back to the driver emulation. The
vehicle speed signal serves to calculate by integration the distance driven.

5.1.2 First Results

The testbench is used to emulate the vehicle driving Line 4, shown in Fig-
ure 5.2. The fuel consumption of the engine is measured using a fuel flow
meter. The result is shown in Table 5.1, together with two computer sim-
ulations. The first simulation includes the baseline controller, while the
second simulation includes the global optimal energy management strat-
egy that was evaluated using dynamic programming. Table 5.1 the error
between measurement and simulation is small (0.6%), which speaks for a
valid model allowing the comparison to the optimal solution. Furthermore,
the performance of the baseline controller is suboptimal (+6.7% increase).
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Figure 5.2: Speed and altitude profile vs. distance of Line 4.

Table 5.1: Measured and simulated fuel consumption results on Line 4.

measurement 50.93 l/100km

simulation 50.62 l/100km

optimal solution 47.44 l/100km

increase vs. optimal +6.7 %

The increase in fuel consumption with respect to the optimal solution
is explained by the fact that the baseline energy management controller
does not include any information specific to the velocity driven and the
altitude profile. Compared to the globally optimal solution, this controller
results in an increased usage of the braking resistor (3.0 kWh instead of
2.6 kWh) and a slightly decreased efficiency of the engine generator unit
(32.8% instead of 34.5%). Overall, these effects result in a suboptimal
performance of the baseline controller.

5.2 Predictive Energy Management Controller

The idea pursued in this chapter is to find a predictive extension to the
baseline controller that recovers optimality by taking into account some
predictive information about the bus line. Using satellite navigation, the
current position of the bus can be detected, see Figure 5.3. Together with
a map stored on the onboard control unit, it is possible to provide the
controller with position dependent information about the bus line, such
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Figure 5.3: Road profile prediction.

as the future elevation profile or the distance to the next stop. The main
benefit of such a system is that the optimality of the energy management
controller performance can be recovered to a large extent. Furthermore,
the system can automatically shut off the engine generator unit at bus stops
in order to reduce noise levels. Another advantage is that the system can
recharge the buffer prior to a steep uphill section, where the bus is likely
to be operated at its power limits.

The predictive extension is shown in Figure 5.4. Basically, the exten-
sion calculates the energy to be delivered/absorbed by the energy buffer
until the next critical point where the buffer limits are likely to be violated.
Since the energy capacity of the supercapacitor is rather limited the next
critical point is usually the next stop, where all kinetic energy of the vehi-
cle should be used to recharge the buffer. Based on this energy request, an
upper and a lower bound for the current buffer energy level is calculated.
If the control actions of the baseline controller lead to a violation of the
upper or the lower bound in the future, the generator power is limited by
the predictive extension. If there is no violation, the predictive extension
remains inactive.
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5.2.1 Relevant Information

The energy projection requires some predictive information about the
busline. In order to keep the system as simple as possible, the algo-
rithm is designed to use i) as little information as possible and ii) only
non-probabilistic information. .

Since the vehicle is equipped with supercapacitors, the energy buffer-
ing capacity is very limited. The baseline controller often cannot prevent
braking energy from being wasted during the last braking phase before a
stop. The main purpose of the predictive extension is thus to avoid such
wasting events. This chapter proposes that this goal can be achieved by
using just the information concerning

• the distance to the upcoming stop sk,

• the absolute maximum altitude variation within 200 m Δhk,

• and the actual velocity vk.
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5.2.2 Projection of Energy

Based on this information, the energy to be delivered/absorbed by the
supercapacitor in the future can be estimated using a static relationship.
For instance, the energy to be absorbed by the supercapacitor is

Erec,k = Ekin + Epot − Er − Ea (5.1)

= η
1
2
mv2

k + η−sgn(Δhk)mgΔhk − crmgsk −
1
2
ρaAfcdv

2
ksk,

where Ekin and Epot are the recoverable parts of the kinetic and poten-
tial energy currently stored in the vehicle body and Er and Ea are the
amounts of energy required to overcome rolling and aerodynamic friction.
The quantity Erec,k is positive if the supercapacitor needs to absorb en-
ergy. Since it represents the minimum amount of energy that needs to be
absorbed, the generator power is assumed to be zero until the next stop.
The following assumptions were made in this relationship:

1. The efficiency of the traction machine and its power electronics is
constant. Due to the conversion efficiency being high throughout the
operating range of the traction machine, this assumption introduces
only a small error.

2. The aerodynamic friction force remains constant from the actual
position of the vehicle to the next stop. This assumption allows the
prediction to be conducted without the precise knowledge about the
future velocity profile. With a heavy vehicle driving at low velocity,
the aerodynamic friction is much smaller than the rolling friction,
and thus the error introduced by this assumption is almost negligible.

Note that the absolute maximum altitude variation is taken over a fixed
horizon rather than only up to the next stop. By this, up- or downhill
sections that lie beyond the next stop can be accounted for.

When the energy to be delivered by the supercapacitor until the next
stop is estimated the generator power needs to be considered as well:

Etrc,k = Er + Ea − Epot − Ekin − Eg (5.2)

= crmgsk +
1
2
ρaAfcdv

2
ksk − η−sgn(Δhk)mgΔhk − η

1
2
mv2

k

−P best
g

(
sk

vk
− tstart

(
1− e(t)

))

.
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Figure 5.5: Energy projections for the cases Erec,k > 0 (left) and Etrc,k > 0
(right), respectively.

Here, Eg is the maximum amount of energy that can be delivered by the
engine generator unit, considering that it is running all the time until
the next stop at its best efficiency operating point P best

g . The term sk

vk

estimates the time left before the next stop is reached. The variable e(t) ∈
{0, 1} is a boolean variable representing the current on/off state of the
engine. Its value is one if the engine is running, and zero if the engine is
shut off. The expression in brackets thus represents the time left to produce
energy until the next stop is reached. By multiplying this value with the
fuel optimal electric power of the engine generator unit, an estimate is
found of the maximum amount of energy that can be generated until the
next stop is reached. The quantity Etrc,k is positive if the supercapacitor
needs to deliver energy.

The remaining parts of the approximation remain the same as in (5.1).

5.2.3 Buffer Energy Limits

With the estimated amounts of energy Erec and Etrc it is possible to calcu-
late a maximum and a minimum energy level that should not be exceeded.
Figure 5.5 shows examples for the two cases where either Erec,k > 0 (left)
or Etrc,k > 0 (right). The current minimum buffer energy level Emin

p,k (sub-
script p stands for predicted) is obtained by adding Etrc,k to the minimum
allowed energy level Eb,min

Emin
p,k = Eb,min + max{Etrc,k, 0} (5.3)

Emax
p,k = max

{
Eb,max −max{Erec,k, 0}, Emin

p,k

}
. (5.4)
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The second equation is analog to the first one but furthermore, it ensures
that Emax

p,k cannot take any values smaller than Emin
p,k .

5.2.4 Predictive Control Action

The predictive extension adjusts the control action of the basic controller,
if it leads to a violation of one of the limits Emin

p,k and Emax
p,k only. If the

upper limit is violated the generator power needs to be reduced, while if
the lower limit is violated the generator power needs to be increased. A
proportional controller with a gain κ and with Preq as a reference serves
to calculate an upper and a lower bound on the generator power

Pmax
lim,k = Preq,k − κ(Eb,k − Emax

p,k ) (5.5)

Pmin
lim,k = Preq,k + κ(Emin

p,k − Eb,k) (5.6)

These values are then used to limit the control action of the basic controller,
if necessary

Pg,k = max
{

min{P o
g , Pmax

lim,k}, P
min
lim,k

}
. (5.7)

The gain κ determines by how much the control input is adjusted.

5.3 Results

As depicted in Figure 5.2, Line 4 once again was emulated on the testbench,
using the baseline controller together with the predictive extension. For
the downhill section, Figure 5.6 shows a comparison of the emulations with
and without the predictive extension, i.e., with preview in green and and
without preview in red. The upper graph shows the speed and altitude pro-
files, while the lower graph shows the buffer energy trajectories. Clearly
the predictive controller minimizes the dissipation of energy in the brak-
ing resistor (between 3200 and 3400m) by shutting off the engine earlier
(around 2950m). This action causes the overall energy consumption to be
minimized. Both controllers follow the reference speed profile (black line)
equally well.

Figure 5.7 shows an uphill section in the same way as Figure 5.6.
Here, the predictive extension makes use of the stops (around 800 and
1040m) to recharge the buffer. These recharges cause the supercapacitor
to not be fully discharged during driving (e.g., between 1100 and 1400m)
and thus to still have enough power to precisely follow the desired velocity
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Table 5.2: Measured and simulated fuel consumption results on Line 4.

without with
preview preview

measurement 50.93 50.54 l/100km

simulation 50.62 50.55 l/100km

optimal 47.44 49.97 l/100km

increase vs. optimal +6.7 +1.2 %

profile. Without the predictive extension, the buffer would tend to be
fully discharged because the baseline controller is not aware of the steep
uphill part following each of the stops. Therefore, without the predictive
extension, it is not possible to follow the desired velocity profile exactly.

5.3.1 Comparison to the Optimal Solution

Since the emulations are of the dynamic type rather than of the quasi-static
type, the driven velocity profile is influenced by control constraints, such
as the maximum power of the supercapacitors. As Figure 5.7 shows, in
the case without preview, the bus is not able to follow the desired velocity
profile exactly. However, instead of accumulating the delays caused by
driving more slowly, the delays are compensated for by shortening the
halting time at the stops. Overall, this compensation results in a lower
mechanical energy demand due to lower friction, which in turn prohibits
a direct comparison of fuel consumption results.

Therefore, the performance of the controller is once again evaluated by
a simulation on the validated vehicle model. The global optimal solution
is obtained with dynamic programming. Table 5.2 summarizes the results.
While the baseline controller alone results in an increase of 6.7% in the fuel
consumption with respect to the optimal solution, the predictive extension
is able to recover the optimality of the control performance to a large
extent. With the predictive extension, the fuel consumption is only 1.2%
higher than with the global optimal solution.
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5.4 Conclusion

This chapter analyzed the performance of the baseline energy manage-
ment controller based on stochastic dynamic programming that has been
shown to deliver close-to-optimal results on the Standardized On-Road
Test cycles. On a more realistic driving profile, including an aggressive
altitude profile and prolonged phases of driving at the power limits of
the bus, the control performance of the baseline controller was no longer
close to optimal. The sub-optimality has been identified to be caused by
a loss of braking energy during the last braking phase before a stop and
during the downhill sections of the driving cycle. Therefore, a predictive
extension to the baseline controller has been proposed that uses a mini-
mal amount of predictive information. The predictive extension restores
close-to-optimality, by preventing energy wasting events.

Future work includes testing the baseline controller and the predic-
tive extension in practice. An extensive test phase with a duration of six
months is scheduled to begin shortly after this thesis is published. Within
this test phase, the bus will be run by a public transportation operator in
a German city.



Summary

The component sizing problem studied in the first part of this thesis is usu-
ally adressed in a heuristic approach, in which the drivetrain components
such as engine, electric traction motor, and energy buffer are dimensioned
according to certain heuristic sizing rules. However, as it is described in
Part I, the problem of component sizing is closely coupled to the energy
management problem. Thus, an integrated design approach is necessary
to obtain globally optimal results. Two numerical methods have been in-
vestigated that solve the optimal control problem corresponding to the
energy management of a serial hybrid electric bus. The first one, dynamic
programming, is generic and can theoretically be applied to any kind of
hybrid powertrain. The vehicle model can be of any type, even non-linear,
or including discrete state and/or decision variables. The drawbacks of this
method are its high computational burden and the fact that the compu-
tational effort increases exponentially with the number of dimensions. For
instance, optimizing the energy management for a bus with both batteries
and supercapacitors requires a multiple of the evaluation time needed for
a single-buffer powertrain. Therefore, another methodology based on con-
vex optimization was developed. The required model approximations have
been shown to introduce moderate errors. In the case of a serial hybrid
powertrain, a method has been proposed that includes the discrete engine
on/off decision into the convex problem. Future work in this direction is
to investigate how this methodology can be extended to other topologies,
such as the parallel hybrid powertrain.

The second part of this thesis was devoted to implementing an online
energy management controller. First, a generic method was investigated
to find an energy management controller that performs optimally in the
probabilistic sense. The method delivers close-to-optimal results on the
Standardized On-Road Test cycles. Furthermore, the controller is easy to
trim towards a behavior that is acceptable in a city bus, e.g., avoiding high
noise levels at a stop or avoiding engine shut-offs when the engine coolant
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temperature is low. After this initial test phase, the performance of the
controller was tested on a more aggressive driving cycle using a testbench
emulation. Since the controller does not include any information specific
to the bus line, it may happen that the buffer is being fully charged during
the last braking phase before a stop or during a downhill section. Thus,
the excess energy from recuperation has to be dissipated in the braking
resistor. These so-called energy wasting events can be avoided using a pre-
dictive extension that takes into account specific route information. The
extension uses a minimum amount of predictive information that can be
easily stored in a map of the bus line. For an online implementation, a
global positioning system sensor is needed to determine the actual posi-
tion of the bus. On the testbench, close-to-optimal results were achieved
when using the predictive extension together with the baseline controller.
Furthermore, drivability is improved because the buffer is being recharged
prior to steep uphill sections of the busline, where the bus would run into
its power limits otherwise.

Future work includes the implementation of the predictive controller
on the bus. During a six-month test phase, the bus is to be run by a public
transportation operator in a German city.

* * *
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