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Abstract 

The research project OptiControl (www.opticontrol.ethz.ch) deals with the 

development of novel, predictive control strategies for buildings. The strategies are 

tested on a fully occupied, well instrumented typical Swiss office building. This work 

presents our experience with the application of Model Predictive Control (MPC). 

The application of novel rule-based control (RBC) strategies on the same building is 

presented in a companion paper (Integrated Predictive Rule-Based Control of a 

Swiss Office Building). 

Here we describe, first, the implementation and key aspects of model predictive 

building control. Second, we report on our experience with running the MPC 

controller on the building for three months. Third, we compare the controller’s 

performance in terms of comfort compliance and energy use to the previously 

installed industry standard RBC strategy using whole-year simulations with the 

EnergyPlus software.   

The experimental data show that the MPC operated reliably and successfully 

satisfied comfort constraints during a period of three months in summer. The 

simulation study suggests a superior control performance with respect to the 

original control strategy. 

 

Keywords – building automation; model predictive control; experiment. 

1. Introduction  

Approximately 40% of the global energy consumption occurs in 
buildings [1], of which, in industrial countries, roughly half is used for 
Heating, Ventilation, and Air Conditioning (HVAC) [2]. In industrialized 
countries the main building stock is already in place and refurbishments of 
the building hull are expensive, while control systems can be improved at 
comparatively low costs. This makes it attractive to focus on building 
automation, at least for reasonably insulated buildings. 

Model Predictive Control (MPC) is a promising alternative to standard 
strategies for building control. MPC uses a mathematical model of the 
building and predictions of disturbances (e.g., ambient temperature) over a 
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given prediction horizon (e.g., two days) for defining an optimization 
problem that is solved such as to maintain thermal comfort for the occupants 
while minimizing some objective (e.g., energy use or monetary cost). See [3] 
for more detail on MPC. In contrast to most conventional building control 
approaches, MPC makes it possible to integrate all available actuators and 
their interactions as well as predictions of weather, internal gains and 
electricity prices into a coherent, mathematically founded control framework 
that can handle constraints on control inputs and room temperatures. 

Several authors have proposed the application of MPC for buildings in a 
centralized control architecture [4],[5],[6]. For office buildings, this approach 
is particularly interesting since the control system is typically already 
organized in a centralized manner. 

In the first phase of the OptiControl project, the potential for new 
predictive control strategies was assessed with the aid of computer 
simulations [4],[7]. In the second, ongoing, phase, some of the newly 
developed control strategies are applied to a fully occupied, well 
instrumented demonstrator building. 

Here we present our experience with the application of MPC to this 
building in experiment and simulation. The application of novel Rule-Based 
Control (RBC) strategies is reported in a companion paper [8]. 

2. Demonstrator Building 

Fig. 1 shows the demonstrator building, which is a typical Swiss office 
building, located in Allschwil, close to Basel. The building was constructed 
in 2007 and aside from the ground floor, it has five office levels and a total 
conditioned floor area of ca. 6’000 m

2
. The investigated control strategies 

were applied to the upper five floors, while the ground floor was seperately 
actuated. The measured average heat and electrical energy consumption of 
the whole building is 46 kWh/m

2
 and 83 kWh/m

2
 per year, respectively.  

The main heating/cooling source is a thermally activated building 
system (TABS), which is a series of pipes buried in the concrete slabs of the 
floors carrying hot/cold water. See [9] for a comprehensive treatment of 
TABS. The building’s HVAC system further includes an air handling unit 

Fig. 1: View of the building from south. 



(AHU) with a return air energy recovery system (ERC), an evaporative 
cooler and a heating coil. The blinds are the third centrally controlled 
actuator (local manual override possible). The cold water for the TABS is 
generated by a cooling tower (a heat exchanger to ambient air) while the hot 
water for the TABS and the AHU heating coil is generated by a gas boiler.  

As outlined in Section 3.1, the control strategies evaluated in this work 
have been implemented as high-level algorithms that manipulate setpoints 
and operating modes which are subsequently realized by the (already 
existing) low-level control. The high-level control interface comprised: i) 
supply air temperature and flow rate setpoints for the AHU; ii) supply water 
temperature and operating mode for the TABS (heat/cool/off); iii) blinds 
commands for each of the facades (open/low shading position/high shading 
position/close). 

Several additional sensors and meters (wireless room temperature 
sensors, electric load meters, TABS and AHU heating/cooling power meters) 
were installed to enable the thorough evaluation of the control experiments 
and validation of the building model as well as to support the high-level 
control strategies. Moreover, an industry PC for running the high-level 
control algorithms and an external database for monitoring the building’s 
operation were set up. 

3. MPC 

3.1 MPC Implementation 

We defined a clear interface between high-level (MPC) and (existing) 
low-level control, both on a conceptual and on a technical implementation 
level. The MPC algorithm was implemented on an industry PC in Matlab. 
Communication between control levels was accomplished through a 
BACnet-OPC server using Matlab as an OPC client. The read interface 
included all control relevant measurements, while the write interface 
comprised the actuator setpoints and operating modes as described in Section 
2. The chosen hierarchical control approach allowed us to keep the original 
low-level control essentially unchanged.  

Since the building was occupied throughout the experiments, a robust 
operation of the high-level control was of major importance. The 
implementation was such that switching back to the original control solution 
(that ran independently from the industry PC) was possible at all times. 
Conditions for triggering an automated switch back included communication 
failure between control levels or the failure of the high-level control (e.g., 
due to problems with the high-level control algorithm, the underlying 
software, or the input data acquisition). Error handling by the MPC 
algorithm is described in Section 3.2. 

The algorithm was executed in the Matlab computing environment with 
a sampling time of 15 minutes. The Matlab software was restarted at the 



beginning of every control iteration by a periodic Windows task in order to 
be robust against previous execution errors and to avoid memory 
fragmentation. The execution time of the algorithm was less than 2 minutes 
on a 2.8 GHz dual core PC. The optimization problem was solved by the 
CPLEX optimization software.  

3.2 MPC Control Algorithm 

Every iteration consisted of a Matlab session comprising the following steps: 

Step i) Reading of new measurements. The latest measurements are gathered 
via the OPC interface and measurement data quality checks are performed.  
Step ii) Kalman filtering. The current state of the building model used for 
MPC is estimated given the latest measurements. 
Step iii) Preparation of predictions. The latest available 72 hour prediction 
by the Swiss Federal Office of Meteorology and Climatology (MeteoSwiss) 
for ambient temperature and global radiation is combined with local 
radiation and temperature measurements as described in [4]. The forecast is 
uploaded by MeteoSwiss three times a day. If unavailable, we calculate a 
persistence forecast. Internal gains by people and equipment are predicted by 
hourly and weekly schedules based on measurements.  
Step iv) Preprocessing of costs and constraints. Maximum and minimum 
constraints for the future solar gains and TABS as well as the costs of the 
TABS operation are computed over the whole MPC horizon. 
Step v) Computing of new control inputs. If the previous steps were correctly 
executed, the optimization is run. Otherwise, the second entry of the 
previously computed control trajectory is used. If the controller fails to 
produce a new control trajectory in several consecutive iterations, the 
fallback strategy is activated. 
Step vi) Postprocessing of results & writing of setpoints and operating 
modes. The control vector is converted to setpoints and operating modes. 
They are checked and sent via the OPC interface to the low-level controller.  

3.3 MPC Optimization Problem 

The goal of the MPC was to minimize non renewable primary energy 
(NRPE) consumption while maintaining thermal, air quality and illumination 
comfort. Thermal comfort was defined by requiring during office hours the 
operative room temperatures (an average of the room air temperature and the 
mean radiant temperature) to be within a comfort band of 22°C to 25°C in 
cold and 22°C to 27°C in hot periods and constraining the minimum and 
maximum supply air temperature. Air quality was enforced by a minimum 
required supply air massflow rate during office hours and illumination 
comfort was considered by only setting three (morning, noon, evening) 
centrally-controlled blind movements per day while allowing only non-
closed positions during working hours and requiring some minimum shading 



in the afternoon in case of high solar radiation at noon. 
Equations (1a)-(1f) describe the MPC problem  
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with states ,x inputs ,u predicted disturbances v  and outputs y  as listed in 
Table 1. The prediction horizon was 58h, which implied N  = 232.  

The aim of minimizing NRPE was formalized in expression (1a) which 
considered the costs as a linear function of the control inputs. The time-
dependency of the cost vectors 

k
c was due to the cooling tower efficiency’s 

dependency on the ambient air temperature. The room temperature comfort 
was enforced by the constraints (1b). The building model (1c)-(1d) was at 
the very core of the MPC algorithm. It is bilinear in inputs and states as well 
as in inputs and disturbances. We used a sequential linear programming 
approach as described in [4] to solve the nonlinear optimization problem. For 
the modeling, we used a physical first-principles based algorithm to derive 
from basic geometry and construction data a model of the building’s thermal 
dynamics, which we then enhanced by submodels for the actuators and 
disturbances. For the details of this modeling method we refer to [10]. A 
difficulty encountered during the modeling was that the TABS and blinds 
could not be conveniently represented as a bilinear function of their 
corresponding setpoints and operating modes. Therefore, we had to model 
these actuators’ influence as heat fluxes (

TABS heating
u ,

TABS cooling
u ,

transm solar, {N,E,W,S}
u ). 

Since the constraints on these heat fluxes can typically be expressed as (time-
varying) lower and upper bounds and since their costs are (mostly linearly) 
proportional to their magnitude, this approach allowed us to express their 
costs and constraints in a convex way which made the resulting optimization 
problem tractable. Hence, the non-convexity of the actuator models was 
bypassed by (i) an appropriate preprocessing of costs and constraints (see 
Step iv) in Section 3.2) and (ii) a postprocessing step that computed actual 
setpoints and operating modes from the ‘intermediate’ heat fluxes used in the 
optimization. In (1e), aside from the physical limits on the actuators, the air 
quality comfort constraint as well as the limits on the ventilation supply air 



Table 1: Overview of MPC optimization variables. {N,E,W,S} in the subscript of a 

variable denotes that there are individual variables per north/east/west/south orientation. 

Variable  Unit Description 

avg room T,{N,E,W,S}
y   °C averaged room temperature  

TABS heating
u  W TABS heating heat flux  

TABS cooling
u  W TABS cooling heat flux  

transm solar, {N,E,W,S}
u  W/m

2
 average transmitted solar heat flux  

AHU m ERC
u  kg/s air massflow through ERC 

AHU m noERC
u  kg/s air massflow bypassing ERC 

AHU m cooler
u  kg/s air massflow through air cooler 

AHU heater
u  W AHU heat coil heat flux 

IG
v  W/m

2
 internal gains 

T ambient
v  °C ambient air temperature 

solar, {N,E,W,S}
v  W/m

2
 solar radiation on façade 

 temperatures are encoded. Equation (1f) finally expresses that the initial state 
is given by the current state estimate generated by a standard Kalman filter.  

4. Experimental Results   

The MPC was used to control the demonstrator building from May 1 
until July 31, 2012. Fig. 2 shows the ambient temperature during this time. 
Although this was mainly a cooling period, temperatures dropped to 5°C 
around May 15 which required some heating action. Fig. 3 depicts for the 
second floor (which was the most thoroughly equipped) the measured 
individual office temperatures and their mean. The lower comfort bound was 
set to 22°C, while the upper bound (computed according to [11]) varied 
between 25°C and 27°. The controller managed to keep the mean room 
temperature within the prescribed comfort range except for one day around 
the end of June when temperatures were high enough that the cooling 
capability of the technical system was overwhelmed (the controller had 
operated the cooling for several days at maximum capacity up to this date). 
Individual room temperature trajectories exhibited several downward spikes. 
A closer analysis revealed, that these had been caused by open windows over 
night. Apart from these spikes and the very hot period around end of June, 
comfort was maintained at a satisfactory level for each single room. 

A second, more qualitative, assessment of thermal comfort was possible 
thanks to the feedback from the facility manager, who is in direct contact 
with the occupants of the building. Apart from the need for a small 
adjustment of the maximum allowed supply air temperature, no complaints 
were issued. 

Throughout the whole experiment, the controller was found to operate 



smoothly and the fallback strategy was never activated. Also, the facility 
manager was very satisfied with the control system’s overall performance. 

5. Simulation Results  

The sequential nature of on-site experiments and the varying operating 
conditions make the experimental comparison of different controllers very 
difficult. For comparative controller assessment we therefore resorted to 
whole-year simulations based on a detailed and validated model of the 
building’s second floor. The model was built with the EnergyPlus software 
and was coupled to Matlab with the Building Controls Virtual Test Bed 
(BCVTB) middleware. Details on the simulation environment are given in 
[12]. Below we compare the simulated performances of MPC and the rule-
based baseline strategy RBC-0 as originally implemented in the building.  

We simulated one year with weather data recorded in Basel in 2010. The 
left and right bars of the bar pairs in Fig. 4 and 5 correspond to MPC and the 
RBC-0 strategy, respectively. Fig. 4 shows in the left plot the annual and in 
the right plot the monthly energy consumption by load type for the simulated 
second floor. MPC used 14% less energy (including lighting and equipment 
energy consumption) compared to RBC-0. These numbers correspond to 
annual NRPE savings

1
 of 15.8 MWh NRPE/a or 21.8 kWh NRPE/(m

2
·a). 

                                                           
1 The corresponding numbers for net energy usage (not shown in the plots) were 23%, 

13MWh/a, 18 kWh/(m2·a), respectively. 

Fig. 3: Measured individual and mean office temperatures and comfort bounds. 

Fig. 2: Measured ambient air temperature. 



Most of the savings were realized in the heating period. MPC used slightly 
more control energy during the Summer months but it provided during this 
time significantly improved thermal comfort. Interestingly, MPC relied for 
heating more on the AHU and used the TABS only when a very high heating 
demand was predicted. 

Fig. 5 shows the comfort violation in terms of Kelvin-hours (Kh) which 
is the time integral of the comfort bound violations. We distinguish 
violations of the lower bound (‘Too cold’) and of the upper bound during 
warm (‘Too warm (high 

out
T )’) and cold periods (‘Too warm (low 

out
T )’). 

Fig. 5 visualizes the number of Kelvin-hours of the room with the most 
violations on an annual (left plot) and on a monthly (right plot) basis. The 
MPC control resulted in an increase in lower bound violations but achieved a 
significant reduction of the upper bound violations such that the overall 
comfort was improved. A closer analysis revealed that the lower bound 
violations mainly stemmed from the fact that MPC controlled the average 
temperatures of groups of rooms instead of individual room temperatures. In 
the summer months, in particular in August, the MPC control resulted in 
significantly less Kh violations as compared to RBC-0. 

Fig. 4: Energy simulation results for the second floor. Simulated year: 2010. Left plot: whole-

year energy comparisons. Right plot: monthly energy comparisons (left bar: MPC; right bar: 
rule-based baseline strategy RBC-0). 

Fig. 5: Comfort simulation results for the second floor. Simulated year: 2010. Left: Maximum 

annual comfort violations (i.e. maximum over all zones of the annual sum of each of the three 

violation types) Right: Maximum monthly violations (left bar: MPC; right bar: rule-based 
baseline strategy RBC-0) 



6. Discussion 

The experimental results of Section 4 show that MPC successfully 
satisifed the thermal comfort in the demonstrator building. In addition, the 
results of Section 5 indicate, in accordance to previous results, that MPC has 
a significant energy savings potential compared to industry standard control. 
However, the efforts undertaken in this research project would be prohibitive 
in an industrial application of MPC. For the current MPC algorithm to be 
implemented on another building, it would be necessary to have, i) a PC 
running Matlab and an optimization solution; ii) an interface to the building 
automation system (BAS) that is capable of reading measurements and 
setting setpoints and operating modes; iii) measurements of temperatures on 
a per room basis and of the overall electricity consumption (for the 
estimation of internal gains) as well as of the TABS and AHU supply and 
return temperatures and massflow rates; iv) weather measurements and 
forecasts; v) a model in the form of (1c), (1d).  

It can be expected that in an industrial application of MPC, custom (non-
Matlab) software solutions would be developed, which, together with the fact 
that today’s BAS include powerful automation stations or industry PCs 
would render i)&ii) uncritical. Regarding iii), temperature and electricity 
sensors are not expensive and – if not already in place – readily connected to 
the BAS. Moreover, although the current state estimation makes use of 
temperature sensors on a per room basis, it is possible that a subset of 
reference rooms would be sufficient. Many commercial buildings include 
weather stations and weather services increasingly offer quantitative 
forecasts via the web. Hence, while coping with points i-iv) required a lot of 
work in this project, they probably are not critical in an industrial 
application. However, the derivation of a good MPC applicable model is not 
expected to be easily standardized for commercial application, which makes 
v) the most critical, if not the currently prohibitive factor. For MPC as a 
product to be successful on the market, the modeling effort must be 
negligible and the model parametrization must be practicable for a typical 
building control expert. The modeling methodology of [10] that we applied 
aims in this direction by generating suitable models in a systematic way from 
basic construction data. There is still room and need for improvement but we 
believe that the methodology can eventually be used to efficiently develop 
models that are accurate enough to enable MPC controllers and which can be 
refined during operation (when long-term measurements become available) 
in order to further improve the MPC’s performance. 

We believe that the need for improved energy efficiency, the growing 
complexity of appliances and systems, the increasing propagation of time-
varying electricity tariffs and peak-power penalties as well as benefits related 
to online visualization of cost-comfort tradeoffs will make MPC an even 
more attractive alternative in the near future. 



7. Conclusions 

In this work a representative, fully occupied Swiss office building was 
controlled by MPC. During a three month experimental period the controller 
ran smoothly and maintained the requested thermal comfort to the occupants’ 
and facility manager’s full satisfaction. Whole-year simulation comparisons 
against the originally implemented standard rule-based controller showed for 
MPC a significantly better control performance in terms of both, energy 
usage and comfort. 
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