
ETH Library

Decentralized Composite Access
Control

Report

Author(s):
Tsankov, Petar; Marinovic, Srdjan; Dashti, Mohammad Torabi; Basin, David

Publication date:
2014

Permanent link:
https://doi.org/10.3929/ethz-a-010045530

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-010045530
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Decentralized Composite Access Control

Petar Tsankov, Srdjan Marinovic, Mohammad Torabi Dashti, David Basin
{ptsankov, srdanm, torabidm, basin}@inf.ethz.ch

Institute of Information Security, ETH Zurich

Abstract. Formal foundations for access control policies with both au-
thority delegation and policy composition operators are partial and lim-
ited. Correctness guarantees cannot therefore be formally stated and
verified for decentralized composite access control systems, such as those
based on XACML 3. To address this problem we develop a formal pol-
icy language BelLog that can express both delegation and composition
operators. We illustrate, through examples, how BelLog can be used
to specify practical policies. Moreover, we present an analysis framework
for reasoning about BelLog policies and we give decidability and com-
plexity results for policy entailment and policy containment in BelLog.

1 Introduction

We present the first formal language for specifying and reasoning about decen-
tralized composite access control policies, which are policies that require both
authority delegation and policy compositions. Below, we illustrate these con-
cepts, and motivate the need for their formal study.

Consider a simple grid system. The grid owner allows privileged clients to
issue access control policies for the grid’s storage space by delegating the au-
thority over the storage resources to them. Privileged clients issue policies, and
may also further delegate this authority. To decide who can access storage re-
sources, the grid owner composes the collected policies using different compo-
sition operators, such as permit-override (permit if at least one client grants
access), majority voting (permit if most clients grant access), etc. This example
demonstrates how modern access control systems require both authority dele-
gation and policy composition features, hence going beyond composition-only
systems, e.g. those based on XACML 2, and delegation-only systems, such as
KeyNote 2 [1]. Real-world examples include grid resource sharing systems [2],
electronic health record management [3] and highly distributed Web services [4].
To cater for such decentralized composite access control systems, the industry
has recently released the XACML 3 standard.

The need for a formal foundation is evident: Without it, one cannot precisely
define how existing and future decentralized composite access control systems
should behave (e.g. the ones built upon XACML 3 implementations). Further-
more, formal guarantees about the correctness of decentralized composite poli-
cies, e.g. by answering policy entailment and containment questions, cannot be
derived. The existing formal access control languages fall short in this regard.

They either express authority delegation or policy composition, but not both
together; see the related work.

Contributions. We are the first to address the problem of formally specifying
and reasoning about decentralized composite policies. We develop a novel logic
programming language, dubbed BelLog, for constructing decentralized com-
posite policy languages. BelLog is an extension of Datalog [5], where the truth
values come from Belnap’s four-valued logic [6]. All delegation languages based
on Datalog can therefore be mapped to BelLog. Furthermore, BelLog is more
expressive than the existing multi-valued policy algebras, such as PBel [7] and
PTaCL [8].

Through examples, we illustrate how decentralized composite policies can
be encoded in BelLog. We also present syntactic extensions of BelLog that
ease the specification of common policy composition and authority delegation
idioms, for instance: permit-override, only-one-applicable, agreement, hand-off
trust application, transitive delegation, etc.

We present a policy analysis framework for verifying policies written in Bel-
Log, and demonstrate how different policy analysis questions are used to reason
about a policy’s behavior in some or all system configurations. We show that
verifying BelLog policies for a given system configuration is in ptime, and
verification for all possible system configurations of a finite domain of subjects
and objects is in co-np-complete. We furthermore identify a useful fragment
of BelLog where verification for all possible system configurations for infinitely
many subjects and objects belongs to co-nexp.

Finally, BelLog can be used as a four-valued logic programming language for
reasoning with inconsistent and incomplete knowledge. BelLog and its decision
procedures are therefore of independent interest.

Related Work. The closest related works to BelLog are policy algebras, for-
mal delegation languages, and XACML 3, which is an informal policy language.

Policy algebras—such as PBel [7], PTaCL [8], and D-Algebra [9]—are lan-
guages for composing a set of policies. A composite policy is a tree, where the
internal nodes are composition operators, and the leaf nodes are core policies.
Existing policy algebras cannot express arbitrarily long delegation chains and
therefore cannot be used for decentralized composite access control. Moreover,
they lack operators for composing intensionally defined policy sets, i.e. policy
sets that are not fixed at the policy specification time; see §4.

Delegation languages—such as KeyNote2 [1], DKAL [10], SecPAL [11], RT [12],
GP [13], and DCC [14]—allow a policy writer to delegate to other principals
authority over attributes and policy decisions. In contrast to BelLog, these
languages support only the permit-override operator for composing policies. Al-
though the permit-override operator is sufficient in their access control setup,
this is not the case for decentralized composite policies. Most existing delegation
languages are founded on logic programming. We remark that although many-
valued extensions for logic programming exist [15–17], they also cannot express

2

PDP

SubjectsPrincipals

Policies, Request,
AttributesAttributes PEP

Attributes

Fig. 1: The system model with the Policy Enforcement Point (PEP), Policy De-
cision Point (PDP), principals, subjects, requests, and attributes.

all composition operators found in policy algebras, e.g. the only-one-applicable
operator; that is, they are functionally incomplete.

XACML 3 is currently the only access control language supporting decen-
tralized composite access control. Similarly to BelLog, XACML 3 has four
policy decisions and operators for encoding delegation and policy composition.
In contrast to BelLog, XACML is informal and some aspects are underspeci-
fied; for example, loop handling in delegation chains is left to implementations.
Moreover, XACML 3 has a fixed set of composition operators and new operators
cannot be added as syntactic extensions. Kolovski et al. [18] give a formalization
of XACML 3 which focuses on delegations and supports only three composition
operators. BelLog, in contrast, supports all finitary composition operators.

Finally, we remark that BelLog is not meant to be an all-encompassing pol-
icy specification language. For example, the constraint-based conditions of [11]
are not expressible in BelLog.

Organization. In §2, we introduce our system model. In §3, we define our
logic programming language BelLog and define the main decision problems
for BelLog programs. In §4, we illustrate the specification of decentralized
composite policies in BelLog. In §5, we present our policy analysis framework.
We conclude the paper in §6. Note that proofs and technical details are in the
appendices.

2 System Model and the Running Example

A Policy Decision Point (PDP) maps access requests to policy decisions and
a Policy Enforcement Point (PEP) enforces the policy decisions made by the
PDP. We consider an open distributed system, as illustrated in Figure 1, where
there are multiple principals that may issue policies and attributes and store
them at the PDP. One principal is designated as the PDP’s administrator. The
administrator writes the policy against which all requests are evaluated.

Subject and object attributes are issued and signed by principals. Authority
over attributes can be delegated to other principals. An attribute issued by a
principal is either stored at the PDP, or given to the subject, who may provide
it to the PDP together with a request. Attributes that are not explicitly commu-
nicated to the PDP are assumed not to have been issued, as is the case in other
decentralized systems [1]. A policy domain database contains the identifiers of
objects such as roles, file names, etc. Both the administrator and authorized
principals can extend this database.

3

To illustrate our system model, consider a grid system that stores files for
multiple research projects. Each project has one or more project leaders. The
grid system has one PDP that decides access for all files. The PDP’s policy,
inspired by policies in the Swedish Grid Initiative (SweGrid) system [2], is:

R1: A project leader controls access to the project’s files and folders, and can
delegate these rights.

R2: If there is a conflicting decision among the project leaders for a given request,
then grant access only to requests made by the project leaders.

R3: If no policy applies to a given request, then grant the request if its target
is a public project folder, otherwise deny it.

R4: Access rights are recursively extended to sub-folders.

This policy exemplifies the tight coupling between the use of delegation and
composition in decentralized composite policies. The PDP must first compute
the delegations for each folder according to R1, then compose the access rights
for each folder according to R2 and R3, and finally extend the policy decisions
to sub-folders according to R4. Note that R4 can be encoded as delegation from
a parent folder to its children. Such couplings of delegation and composition
idioms prevent the decentralized composite policies from being split into and
evaluated as two independent, delegation and composition, parts.

3 BelLog

In this section, we define the syntax and semantics of BelLog and study the
time complexity of its decision problems. BelLog builds upon the syntax and
semantics of stratified Datalog [5], and extends it over a four-valued truth space.
We see BelLog as a foundation for constructing high-level access control lan-
guages, and we therefore present BelLog as a generic many-valued logic pro-
gramming language. In §4, we illustrate how BelLog can be used to specify
practical access control policies.

Syntax.We fix a finite set P of predicate symbols, where D4 = {f4,⊥4,>4, t4} ⊆
P, along with a countably infinite set C of constants, and a countably infinite
set V of variables. The sets P, C, and V are pairwise disjoint. Each predicate
symbol p ∈ P is associated with an arity and we may write pn to emphasize that
p’s arity is n. The predicate symbols in D4 have zero arity. As a convention, we
write P to denote a BelLog program and use the remaining uppercase letters
to denote variables. Predicate and constant symbols are written using lowercase
italic and sans font respectively.

A domain Σ is a nonempty finite set of constants. We associate a domain Σ
with a set of atoms AΣ(V) = {pn(t1, · · · , tn) | pn ∈ P, {t1, · · · , tn} ⊆ Σ ∪ V}.
A literal is either a, ¬a, or ∼a, for a ∈ AΣ(V), and LΣ(V) denotes the set of
literals over Σ. We refer to ¬a as negative literals and to a and ∼a as non-
negative literals. The function vars : AΣ(V) 7→ 2V maps atoms to the set of
variables appearing in them. An atom a is ground iff vars(a) = ∅, and AΣ(∅)
denotes the set of ground atoms. We extend vars to literals in the standard way.

4

⊥ >

t

f

�

�k

Fig. 2: BelLog’s truth space.

¬ ∼
f t f
⊥ ⊥ >
> > ⊥
t f t

∧ f ⊥ > t
f f f f f
⊥ f ⊥ f ⊥
> f f > >
t f ⊥ > t

∨ f ⊥ > t
f f ⊥ > t
⊥ ⊥ ⊥ t t
> > t > t
t t t t t

Fig. 3: Truth tables of BelLog’s operators.

A BelLog program, defined over the domain Σ, is a finite set of rules of the
form:

p← q1, . . . , qn ,

where n > 0, p ∈ AΣ(V), {q1, · · · , qn} ⊆ LΣ(V), and vars(p) ⊆
⋃

1≤i≤n vars(qi).
We refer to p as the rule’s head and to q1, . . . , qn as the rule’s body.

The predicate symbols in a BelLog program P are partitioned into inten-
sionally defined predicates, denoted idbP , and extensionally defined predicates,
denoted edbP . The set idbP contains all predicate symbols that appear in the
heads of P ’s rules, and the set edbP contains the remaining predicate symbols.
We write AedbP

Σ(V) (L
edbP
Σ(V)) and A

idbP
Σ(V) (L

idbP
Σ(V)) to denote the sets of atoms (literals)

constructed from predicate symbols in edbP and idbP respectively.
A rule p← q1, · · · , qn is ground iff all the literals in its body are ground. The

grounding of a BelLog program P is the finite set of ground rules, denoted by
P ↓, obtained by substituting all variables in P ’s rules with constants from Σ in
all possible ways.

A BelLog program P is stratified iff the rules in P can be partitioned into
sets P0, · · · , Pn called strata, such that: (1) for every predicate symbol p, all rules
with p in their heads are in one stratum Pi; (2) if a predicate symbol p occurs as
a non-negative literal in a rule of Pi, then all rules with p in their heads are in
a stratum Pj with j ≤ i; (3) if a predicate symbol p occurs as a negative literal
in a rule’s body in Pi, then all rules with p in their heads are in a stratum Pj
with j < i. The given definition of stratified BelLog extends with non-negative
literals that of stratified Datalog [19].

Semantics. The truth space of BelLog is the lattice (D,�,∧,∨), where D =
{f,⊥,>, t}, � is the partial truth ordering on D, and ∧ and ∨ are the meet and
join operators. Figure 2 shows the lattice’s Hasse diagram, where � is depicted
upwards. We adopt the meaning of the non-classical truth values ⊥ and > from
Belnap’s four-valued logic [6]: ⊥ denotes missing information and > denotes
conflicting information. We define the partial knowledge ordering on D, denoted
with �k, and depict it in Figure 2 rightwards. We denote the meet and join
operators on the lattice (D,�k) by ⊗ and ⊕, respectively. The truth tables of
the unary operators ¬ and ∼ are given in Figure 3, where we also depict the
truth tables for the operators ∧ and ∨ for convenience.

An interpretation I, over a domain Σ, is a function I : AΣ(∅) → D, mapping
ground atoms to truth values, where I(f4) = f, I(⊥4) = ⊥, I(>4) = >, and
I(t4) = t. Fix a domain Σ, and let I be the set of all interpretations over Σ.

5

We define a partial ordering v on interpretations: given I1, I2 ∈ I, I1 v I2 iff
∀a ∈ AΣ(∅). I1(a) � I2(a). We define the meet u and join t operators on I as:
I1 u I2 = λa. I1(a) ∧ I2(a) and I1 t I2 = λa. I1(a) ∨ I2(a). The structure (I,v
,u,t, If, It) is a complete lattice where If = λa.f is the least element and It = λa.t
is the greatest element. Given a continuous function Φ : I → I, we write dΦe for
the least fixed point of Φ. The interpretation dΦe is calculated, using the Kleene
fixed point theorem, as Mω where M0 = If, and M i+1 = Φ(M i) for i ≥ 0.

We extend interpretations over the operators ¬ and ∼ as I(¬a) = ¬I(a) and
I(∼a) = ∼I(a) respectively, where a ∈ AΣ(∅). We also extend interpretations
over vectors of literals as I(l) = I(l1) ∧ · · · ∧ I(ln) where l = l1, · · · , ln and
{l1, · · · , ln} ⊆ LΣ(∅). We write

∨
{v1, · · · vn} for v1 ∨ · · · ∨ vn. For the empty set

we put
∨
{} = f.

An interpretation I is a model of a given program P iff ∀(a← l) ∈ P ↓. I(a) �
I(l). A model therefore, for every rule, assigns to the head a truth value no
smaller, in �, than the truth value assigned to the body. A model I is supported
iff ∀a ∈ AΣ(∅). I(a) =

∨
{I(l) | (a ← l) ∈ P ↓}. Note that the definition

of supported models for BelLog programs extends that of stratified Datalog.
Intuitively, a model I is supported if it does not over-assign truth values to
head atoms. In contrast to stratified Datalog, BelLog’s truth values are not
totally ordered; therefore, a supported model I of a BelLog program P does
not guarantee that for an atom a there is a rule (a← l) ∈ P ↓ such that I(a) =
I(l). For example, for the program P = {a ← >4, a ← ⊥4} the interpretation
I = {a 7→ t} is a supported model; note that {a 7→ ⊥} and {a 7→ >} are not
models of P .

We associate a BelLog program P with the operator TP : I 7→ I:

TP (J)(a) =
∨
{J(l) | (a← l) ∈ P ↓}

Lemma 1. Given a BelLog program P , an interpretation I is a supported
model iff TP (I) = I.

The proof follows immediately from the definition of TP .
In general, a program P may have multiple supported models. For instance,

any interpretation is a supported model for the program {p← p}. For BelLog’s
semantics we choose a minimal supported model: a supported model I isminimal
iff there does not exist another supported model I ′ such that I ′ @ I. For a
program P where only non-negative literals are in its rules, TP is monotone (see
Appendix B.1), hence continuous due to the finiteness of I, and has a unique
minimal supported model. In contrast, if a program P contains negative literals
in its rules, then the operator TP is not monotone, and there could be multiple
minimal supported models. For example, the program P = {a← ¬b} has more
than one minimal supported models, e.g. {a 7→ f, b 7→ t} and {a 7→ t, b 7→ f}.

For a stratified BelLog program P , we construct one minimal supported
model by computing, for each strata of P , the minimal supported model that
contains the model of the previous stratum. This construction is analogous to
that of stratified Datalog given in [20]. To define the model construction, we
introduce the following notation. We write (P ↓) / I for the program obtained by

6

replacing all literals in P ↓ constructed with edbP predicate symbols with their
truth values according to I. Formally,

(P ↓) / I = {p← q′1, · · · , q′n | (p← q1, · · · , qn) ∈ P ↓,
q′i = I(qi) if qi ∈ LedbP

Σ(∅), otherwise q
′
i = qi} .

Note that all negative literals in a stratum Pi of a stratified BelLog program
are constructed with predicate symbols in edbPi . Given an interpretation I, the
program P ↓i / I therefore contains only non-negative literals, and the operator
TP↓i /I

is monotone.
We now define the model semantics of a stratified BelLog program:

Definition 1. Given a stratified BelLog program P , with strata P0, · · · , Pn,
the model of P , denoted [[P]], is the interpretation Mn, where M−1 = If, and
Mi = dTP↓i /Mi−1

e tMi−1 for 0 ≤ i ≤ n.

Each Mi, for 0 ≤ i ≤ n, is well-defined because the operators TP↓i /Mi−1
are

monotone, and therefore continuous because the lattice (I,v,u,t) is finite.

Theorem 1. Given a stratified BelLog program P , [[P]] is a minimal supported
model.

For the previous example P = {a ← ¬b}, the given construction results in
[[P]] = {a 7→ t, b 7→ f}. We justify our choice of semantics in Appendix A.

We remark that a BelLog program P that does not use the predicates >4,
⊥4, and the operator ∼ in its rules is a syntactically valid stratified Datalog
program. In Appendix B.2 we show that stratified BelLog subsumes stratified
Datalog. In particular, this means that BelLog can express all policy languages
based on stratified Datalog.

The input to a BelLog program P is an interpretation I ∈ I, where all
atoms from AidbP

Σ(∅) are mapped to f. For a program P and the input I, we write
[[P]]I as a shorthand for [[P ∪ P ′]], where P ′ = {a← v4 | I(a) = v} and v ∈ D.

From the definition of stratification, it is immediate that given a stratified
program P with strata P0, · · · , Pn, and an input I, the program P ∪ P ′ can be
stratified into strata P ′, P0, · · · , Pn.

We finally remark that the semantics of a BelLog program is independent
of the given stratification. We state and prove this theorem in Appendix B.3.

Decision Problems. We define BelLog’s decision problems. In §5, we reduce
the decision problems within our policy analysis framework to BelLog’s decision
problems.

Let P be a stratified BelLog program, Σ be a domain of constants, and q
be a ground atom. For a given input I, the query entailment decision problem,
denoted P |=IΣ q, asks whether [[P]]I(q) = t. The general case of [[P]]I(q) = v,
with v ∈ D, is immediately reducible to the query entailment problem. The
query validity decision problem, denoted P |=Σ q, asks whether for all inputs I
defined over Σ, P |=IΣ q. Similarly to the data complexity of Datalog [21], we
study the complexity of the given decision problems when the maximum arity of

7

predicates in P and the set of variables that appear in P are fixed. The input size
for BelLog’s decision problems is thus determined by the number of predicate
symbols in P, the number of rules in P , and the number of constants in the
domain Σ.

Theorem 2. The query entailment problem and the query validity problem be-
long, respectively, to the complexity classes ptime and co-np-complete.

We next consider a generalization of the query validity problem. Let ΣP
denote the set of constants that appear in P . The all-domains query validity
decision problem, denoted P |= q, asks whether P |=Σ′ q for all domains Σ′ ⊆
C that contain ΣP and the constants in q; recall that C is the infinite set of
constants. The problem of all-domains query validity is in general undecidable
for BelLog programs, because the problem of query validity in Datalog, which
is undecidable [22], can be reduced to this problem. We show, however, that all-
domains query validity is decidable for any stratified BelLog program P that
has only unary predicate symbols in edbP . We call those unary-edb programs.
We show in §5 that the unary-edb BelLog programs capture a useful class of
policies. Namely, those policies where the set of principals is finite.

Theorem 3. The all-domains query validity problem for a unary-edb BelLog
program belongs to the complexity class co-nexp.

Note that the input for the all-domains query validity problem is determined
only by the number of predicate symbols in P and the number of rules in the
program P .

Syntactic Extensions. We now present a set of syntactic extension to Bel-
Log to ease the specification of complex rules. In §4, we use them for writing
decentralized composite policies.

We extend the syntax for writing policy rules to

rule ::= p← body

body ::= q1, · · · , qn | ¬body | ∼body | body ∧ body ,

where n > 0, p ∈ AΣ(V), and {q1, · · · , qn} ⊆ LΣ(V). We call the rules of the form
p ← q1, · · · , qn basic rules and the remaining rules composite rules. Similarly
to basic rules, we require that for any composite rule p ← body , vars(p) ⊆
vars(body).

We define the translation function T that maps a basic rule r to the set {r}:
T (p← q1, · · · , qn) = {p← q1, · · · , qn} ,

and maps a composite rule p← body to a set of basic rules:

T (p← ¬body) = {p← ¬pfresh(X)} ∪ T (pfresh(X)← body)

T (p← ∼body) = {p← ∼pfresh(X)} ∪ T (pfresh(X)← body)

T (p← body1 ∧ body2) = {p← pfresh1(X1), pfresh2(X2)}
∪ T (pfresh1(X1)← body1) ∪ T (pfresh2(X2)← body2)

8

p ∨ q := ¬(¬p ∧ ¬q) p⊗ q := (p ∧ ⊥) ∨ (q ∧ ⊥) ∨ (p ∧ q)

p⊕ q := (p ∧ >) ∨ (q ∧ >) ∨ (p ∧ q) p = t := p ∧ ∼p
p = f := ¬(p ∨ ∼p) p = ⊥ := (p 6= f) ∧ (p 6= t) ∧ ((p ∨ >) = t)

p = > := (p 6= f) ∧ (p 6= t) ∧ ((p ∨ ⊥) = t) p 6= v := ¬(p = v)

Fig. 4: Derived connectives for combining composite rule bodies. Here p, q, and
c denote rule bodies and v ∈ D.

In these rules pfresh, pfresh1, pfresh2 are predicate symbols that do not appear in P,
X = vars(body) and Xi = vars(body i) for i ∈ {1, 2}. Note that the recursive
function T terminates for any composite rule and yields a set of basic rules; see
Appendix B.4. The size of the set is linear in the number of nested bodies in the
composite rule.

The meaning of a BelLog program P with composite rules is that of the
BelLog program P ′ =

⋃
r∈P (T (r)). For example, consider the composite rule:

p(X)← ¬∼q(X,Y) .

The function T translates this composite rule into a set of basic rules:

{p(X)← ¬pfresh(X,Y), pfresh(X,Y)← ∼q(X,Y)} .
A BelLog program P with composite rules is well-formed iff its rules can

be partitioned into sets P0, · · · , Pn such that: (1) for every predicate symbol p,
all rules with p in their heads are in one stratum Pi; (2) if a predicate symbol
p occurs as a non-negative literal in a basic body in Pi, then all rules with p
in their heads are in a stratum Pj with j ≤ i; and (3) if a predicate symbol p
occurs in the body of a composite rule in Pi or as a negative literal in a basic
rule in Pi, then all rules with p in their heads are in a stratum Pj with j < i.
Note that well-formed BelLog extends stratified BelLog with the condition
that if a predicate symbol p occurs in the body of a composite rule in Pi, then
all rules with p in their heads are in a stratum Pj with j < i. This is a sufficient
but not necessary condition that any composite rule of a well-formed program
is translated into a stratified set of basic rules.

Theorem 4. The translation of a well-formed BelLog program with composite
rules is a stratified BelLog program.

In Figure 4, we derive additional connectives using syntactic combinations
of ¬, ∼, and ∧. The binary connective _ ∨ _ corresponds to the join operator
on the lattice (D,�), and the binary connectives _⊗_ and _⊕_ correspond
to the meet and join operators on the lattice (D,�k), respectively; for details
see [6]. The unary connective _ = v, where v ∈ D, indicates whether the truth
value assigned to the atom is v. The result of p = v is t if p’s result is v, and f
otherwise. The composition p 6= v returns t only if p’s result is not v, otherwise
it returns f. Furthermore, we formally establish that BelLog can represent any
n-ary operator Dn → D:

9

Theorem 5. Given an operator g : Dn → D and a list of n rule bodies q1, · · · , qn,
there exists a body expression φ for a BelLog composite rule p← φ such that

[[P]]I(p) = g([[P]]I(q1), . . . , [[P]]I(qn)) ,

for all inputs I, and programs P where {p ← φ} ⊆ P and p is not the head of
any other rule.

4 Decentralized Composite Policies in BelLog

We first introduce the basic building blocks, namely attributes and delegations,
and then we demonstrate how to encode decentralized composite policies in Bel-
Log, including the grid policy from §2. We conclude with a discussion of Bel-
Log’s more intricate features for policy specifications.

We assume that the PDP’s domain database contains all constants that ap-
pear in the policies, attributes, and access requests, as well as any other addi-
tional constants which may denote roles, file names, etc.

Attributes and Delegations.We represent attributes with attribute_name(·)
predicate symbols. We take the first argument of an attribute as the issuing
principal’s identifier. For example, hr(ann, fred) denotes that, according to Ann,
Fred works in the Human Resources department. To highlight the attribute’s
issuer, we may write hr(fred)@ann instead of hr(ann, fred).

The truth value of an attribute a is t if it is either stored at the PDP or
provided by the subject; otherwise it is f. In short, the attributes are by default
assumed not to exist if they are not present. For some policies it may however
be more appropriate to assume that a given attribute (e.g. an attribute that is
provided by the subject) is missing (⊥) rather than non-existent (f). BelLog
can accommodate for such policies too. For example, given an attribute a, we
can define its assume-missing counterpart a⊥ with the rule a⊥ ← a ∨ ⊥.

Attribute delegations are specified with BelLog rules where the rule’s head
is the delegated attribute and the rule body is the delegation condition. For
example, with the rule

researcher(S)@ann← hr(S′)@ann, labcard(S)@S′ ,

Ann asserts that a subject S is a researcher if a subject S′ with the attribute hr
asserts that S is a researcher. That is, Ann delegates the attribute researcher to
subjects that have the attribute hr . For example, if Fred has the attribute hr
and issues labcard(dave)@fred, then the PDP derives researcher(dave)@ann.

Delegations may require non-monotonic operators. Imagine that Ann stores
at the PDP a list of revoked subjects, and she will not accept delegations of the
attribute researcher for revoked subjects. We extend her delegation rule as

researcher(S)@ann← hr(S′)@ann, labcard(S)@S′,¬revoked(S)@ann .

Non-monotonic operators must be used with caution when applied to the
attributes that subjects supply. This is because a subject may gain access if she
can withhold the attribute revoked from the PDP; cf. [8]. In §5, we return to this

10

issue and show how one can verify whether a policy is monotone with respect to
the attributes provided by the subject.

BelLog’s composite rules can be used to express more complex delegation
conditions. In our grid example, the administrator may for instance require two
project leaders—Ann and Fred—to agree on the pub file attribute, denoting that
a file is public. This is written as

pub_agree(F)@admin← pub(F)@ann⊕ pub(F)@fred ,

where ⊕ is the maximal agreement operator. Note that the administrator derives
a conflict if the principals disagree whether a file is public, because f⊕ t = >.

As illustrated, BelLog can specify standard attribute delegations, as well as
non-monotonic delegation idioms which cannot be captured in existing Datalog-
based languages. There are other delegation idioms that BelLog can express,
but we omit their presentation due to space constraints. For example, the hand-
off idiom [14], where a principal delegates authority over all attributes, can be
expressed in BelLog by representing attributes with a predicate says where
one of the arguments denotes an attribute name.

Policy Decisions. We take the t, f,⊥, and > elements as, respectively, grant,
deny, gap, and conflict policy decisions. The gap decision indicates that a policy
neither grants nor denies a request, and conflict indicates that a policy can
both grant and deny a request. The partial ordering � in Figure 2 defines the
permissiveness of policy decisions. The meet ∧ and join ∨ operators on the
lattice (D,�) correspond to the standard deny-override and permit-override
operators for composing policy decisions. The meet ⊗ and join ⊕ operators on
the lattice (D,�k) correspond to the maximal agreement and minimal agreement
composition operators; see [15].

Policies. A principal can issue multiple policies for different subjects and re-
sources; we insist however that each principal has one designated root policy. A
root policy combines all of the principal’s sub-policies and possibly other princi-
pals’ policies. In our grid scenario, we use the atom pol_name(Sub,File)@Prin
to denote the decision of the policy name, issued by Prin, for Sub accessing File.
We fix the atom pol(Sub,File)@Prin to denote Prin’s root policy. For example,
when the PDP derives t for the atom pol(fred, foo.txt)@piet, the PDP interprets
this as “Piet’s root policy grants Fred access to the file foo.txt”. Principals may
choose any other predicate symbols to denote decisions of their sub-policies.

Policies are encoded as BelLog rules where the head of a policy rule is a
policy name atom. For example, the project leader Piet may issue the policy

pol(S, F)@piet← researcher(S)@piet, prj_file(F)@piet ,

which grants his researchers S access to any project files F . Similarly, Ann, who
is a project leader, may issue the policy

pol(ann, F)@ann← prj_file(F)@ann

pol(S, F)@ann← pol(S′, F)@ann, give_access(S, F)@S′ ,

11

p / c . q := ((c = t) ∧ p) ∨ ((c 6= t) ∧ q) p
v7→ q := q / (p = v) . p

p ./ q := p / (q = ⊥) . (q / (p = ⊥) .⊥) p I q := q / (p = t) .⊥

Fig. 5: Conditional and override policy composition operators.

where the first rule grants Ann access to any project file F , and the second
rule states that any subject S′ with access to F may delegate this access to
any subject S by issuing a give_access attribute. Then, Ann may provide
access to Fred by issuing give_access(fred, foo.txt)@ann; Fred too may issue
give_access(dave, foo.txt)@fred to further delegate to Dave access to foo.txt.

A policy can also combine the decisions of a set of sub-policies; we call these
composite policies. A composite policy encoded with a basic BelLog rule, for
example, implicitly combines the sub-policies’ decisions using the deny-override
∧ operator. Composite policies that combine their sub-policies’ decisions with
more complex composition operators, such as the gap- and conflict-override op-
erators, are encoded with BelLog composite rules.

In addition to ∧, BelLog’s operators ¬, ∼, ∨, ⊗, ⊕ can also be employed
as composition operators. To complement these operators, in Figure 5 we define
further conditional and override operators for composing policies. The ternary
operator _ / _ . _ is the if-then-else operator. The result of the composition
p / c . q is p’s decision only if c’s result is t, otherwise q’s decision is taken.

The binary operator _ v7→ _ represents the v-override operator, where v ∈ D.
The result of the composition p v7→ q is q if p’s decision is v, otherwise it results in
p’s decision. The operators ⊥7→ and >7→ correspond to the gap-override and conflict-
override operators, respectively. Given a list of policies p1, · · · , pn, we encode the
operator first-applicable as p1

⊥7→ (p2
⊥7→ (· · · ⊥7→ pn)), i.e. the composition takes

the decision of the first policy in the list whose decision is not ⊥.
The binary operator _ ./ _ is the only-one-applicable operator, i.e. the

composition p ./ q results in⊥ if both policy decisions are not⊥ or both decisions
are ⊥, otherwise the result is the policy decision that is not ⊥.

The binary operator _ I _ is the on-permit-apply-second1 operator. The
composition p I q returns q only if the decision of p is t, otherwise it returns
⊥. The operator I is useful for specifying policies that either (1) grant or pro-
vide no decision, or (2) deny or provide no decision. For example, the policy
researcher(Sub) I t grants access only if the subject Sub is a researcher; other-
wise, the policy returns ⊥. In contrast, the policy revoked(Sub) I f denies access
if the subject Sub is revoked, and provides no decision otherwise. We also use the
operator I for specifying policies with policy targets, which define the requests
that are applicable to a policy. Given a policy p and its target ptarget, ptarget I p
results in ⊥ if ptarget does not evaluate to t, otherwise it results in p’s decision.

1 The on-permit-apply-second operator has been recently proposed as an additional
operator for the XACML 3 standard. See [23] for full description.

12

We finally remark that BelLog can express any four-valued policy compo-
sition language, such as PBel [7]. This is a corollary of Theorem 5.

Grid Policy. We now exercise these operators in our grid scenario. The admin-
istrator may compose the policies issued by the project leaders Piet and Ann
with the maximal agreement operator:

pol_leaders(S, F)@admin← pol(S, F)@piet⊕ pol(S, F)@ann .

For brevity, we have not specified the policies of Piet and Ann. The composition
of their policies may result in conflicts and gaps. According to requirements R2
and R3 (see §2), the administrator must resolve conflicts by granting requests
made by project leaders, and resolve gaps by granting access only to public
folders. The pol_root policy encodes these requirements:

pol_root(S, F)@admin←

(pol_leaders(S, F)@admin
>7→ prj_leader(S)@admin)

⊥7→ pub(F)@admin .

The composite policy pol_leaders considers the decisions of Piet’s and Ann’s
policies for all requests. The administrator may, however, want to consider the
decisions of Piet’s policy only for the files contained in the folder prj1. This can
be encoded by defining a policy with an explicit policy target:

pol_piet(S, F)@admin← contains(prj1, F)@admin I pol(S, F)@piet ,

where the attribute contains(F1, F2)@admin indicates that the folder F1 contains
F2. The attribute is transitively assigned to sub-folders:

contains(F1, F2)@admin← subfolder(F1, F2)@fs ,

contains(F1, F3)@admin← contains(F1, F2)@admin, contains(F2, F3)@admin ,

where the attribute subfolder(F1, F2)@fs is provided by the file system fs and
indicates that F1 is directly contained in F2. Note that the policy pol_piet results
in ⊥ for any request to a file not contained in the folder prj1.

The administrator must also encode the requirement R4, which states that
any access right to a folder is transitively extended to sub-folders. Namely

pol_root(S, F)@admin← contains(F ′, F)@admin, pol_root(S, F ′)@admin .

Note that the policy decision for a folder is extended to sub-folders with the
permit-override operator. This is because instantiating the variable F ′ results in
multiple rules with the same head atom, which are combined with the operator ∨
according to BelLog’s semantics. To illustrate this, consider the folder f3, where
f3 is contained in f2, which in turn is contained in f1. Instantiating the variable
F ′ and simplifying the instantiated rules result in the following rule:

pol_root(S, f3)@admin← pol_root(S, f1)@admin ∨ pol_root(S, f2)@admin .

Alternatively, the administrator may want to combine the instantiated rule bod-
ies with deny-override, maximal agreement, or minimal agreement. We show how
this can be done with BelLog’s intensional operators, defined below.

13

Intensional Compositions. So far, we have presented extensional policy com-
position operators that compose a fixed, explicitly given list of sub-policies. For
example, we used

pol_leaders(S, F)@admin← pol(S, F)@piet⊕ pol(S, F)@ann

to combine policies of two project leaders, one from Piet and one from Ann,
with the maximal agreement operator. Such extensional encodings are tediously
“static”, because if new project leaders are added to or removed from the PDP,
then the administrator must explicitly change the policy rule. Alternatively, the
administrator may write a rule that composes the policies that are issued by any
principal who is a project leader. One attempt to do this is:

pol_leaders(S, F)@admin← pol(S, F)@P, prj_leader(P)@admin ,

where the set of composed policies is intensionally defined as those issued by
project leaders. This attempt however fails because the project leaders’ policies
are implicitly combined with the permit-override operator, instead of the maxi-
mal agreement operator ⊕. This is because BelLog’s semantics, much like other
logic programs, uses the join operator ∨ when combining rule bodies with the
same head atom.

We extend BelLog’s syntax with additional operators to account for inten-
sional compositions:

rule ::= p← [
∨
|
∧
|
⊕

|
⊗

] body ,

where p ∈ AΣ(V), body is a composite rule body, as defined in §3, and vars(p) ⊆
vars(body). We refer to the operators written in front of body as intensional com-
position operators. Intuitively, the intensional operator

⊕
combines all grounded

bodies of rules with the same head atom with the ⊕ operator. For example,
grounding the simple rule p(a) ←

⊕
q(X) over the domain Σ = {a, b} results

in two grounded bodies, q(a) and q(b), with the same head atom p(a). The
grounded bodies are combined with ⊕; the meaning of p(a)←

⊕
q(X) is there-

fore p(a) ← q(a) ⊕ q(b). Other operators behave similarly with respect to their
syntactic counterparts. We give the formal translation of intensional operators to
BelLog’s core syntax in Appendix C. We remark that the intensional operators∧
,
⊕

, and
⊗

cannot have the head atom appear in the rule body because their
encoding uses composite rules.

We can now encode the intensional composition of the project leaders’ policies
with the maximal agreement operator as

pol_leaders(S, F)@admin←
⊕

(pol(S, F)@P / prj_leader(P)@admin . ⊥) .

Note that the policies that are not issued by a project leader are replaced with ⊥,
and the composition “ignores” such policies, because v ⊕⊥ = v for any v ∈ D.

Intensional compositions are also useful for specifying policies that propagate
policy decisions over hierarchically structured data, such as file systems, role
hierarchies, etc. To illustrate, we extend our grid example with Piet’s policy
that by default permits a subject S to access a folder F , unless Piet issues
the attribute deny(S, F). In contrast to the requirement R4, he uses the deny-

14

override operator to propagate deny decisions over the sub-folders:

pol_fold(S, F)@piet← ¬deny(S, F)@piet

pol(S, F)@piet←
∧

(pol_fold(S, F ′)@piet / contains(F ′, F)@admin . t) .

The last rule replaces the policy decisions for folders F ′ that do not contain F
with t, since for any v ∈ D we have v ∧ t = v.

We summarize the key difference between intensional and extensional oper-
ators as follows. The intensional operators reflect changes in the domain (e.g.
addition and removal of principals, files, etc.) through changes in the policy in-
put. The extensional operators require explicit modification of the policy rules
to reflect such changes.

5 Analysis

Writing a correct policy, i.e. one that grants and denies requests as intended by
the policy writer, is often challenging in practice. This is both because policies are
often initially given informally and imprecisely and because the policy writer can
err in their formalization. In particular, a policy writer must foresee all possible
policy inputs, understand how the delegation rules, the sub-policies, and their
compositions influence the policy’s behavior, and verify that the policy does not
exhibit any unintended decisions. As a first step towards verifying the policy’s
behavior, the policy writer specifies the high-level requirements as formal policy
analysis questions. Second, a decision procedure is used to check, in an automated
manner, whether the analysis questions are answered positively, or not.

Below we present our framework for analyzing policies written in BelLog. A
policy set is a set of delegations and policies, which are encoded as BelLog rules
and collectively define a BelLog program. Every policy set has a designated
root policy. The decision of a policy set for a given request is the decision of
the policy set’s root policy. We fix the predicate pol(Subject ,Object) to denote
a root policy’s decisions. For brevity, we omit writing the issuer of policies and
attributes. We use the terms input and (policy) context interchangeably.

Policy Entailment. Policy entailment answers whether a policy set entails a
given permission in a given policy context.

Definition 2. (Policy Entailment) Given a policy set P and a policy context I,
P entails the request pol(S,O) iff P |=IΣ pol(S,O).

Policy entailment analysis is akin to software testing in that the policy writer
checks the policy set for unintended grants and denies in specific policy contexts
(i.e. test scenarios). Although limited in its scope, since the policy writer must
give a specific context, determining policy entailment scales with the size of the
domain, unlike the policy containment problem which we define shortly. Note
that policy entailment can also be used for constructing PDPs.

To illustrate policy entailment, consider the following policy set P :

{ pol(S,O)←(pol_leaders(S,O)
>7→ prj_leader(S))

⊥7→ pub(O) } .

15

For simplicity we do not specify the policy pol_leaders. One requirement for P ,
which is derived from the requirement R2 given in §2, may be to deny access to
subjects who are not project leaders whenever the policy pol_leaders returns a
conflict. To check this property, we may ask whether the policy set entails the
permission pol(fred, foo.txt) in the context:

I = {pol_leaders(fred, foo.txt) 7→ >, prj_leader(fred) 7→ f} ,
where the remaining atoms are mapped to f. For this context the policy set does
not entail the permission, as expected.

Because the guarantees provided by entailment analysis are limited to the
context provided by the policy writer, the requirement may not hold for other
policy contexts. For example, the given policy set P violates its requirement for

I ′ = {pol_leaders(fred, foo.txt) 7→ >, prj_leader(fred) 7→ ⊥, pub(foo.txt) 7→ t} ,
because the policy set entails pol(fred, foo.txt), although pol_leaders results in
a conflict and the PDP does not know whether Fred is a project leader.

Deciding policy entailment is reducible to query entailment; see §3. Policy
entailment can be therefore decided in time polynomial in the size of the context.

Policy Containment. Policy containment thoroughly analyzes a policy set
against all policy contexts. It can be used to answer questions such as: “Do all
requests in all policy contexts evaluate to a conclusive policy decision, i.e. grant
or deny? ” Containment analysis is done either for a particular policy domain or
for all possible policy domains. In more detail, the domain policy containment
answers whether a policy set P1 is more permissive than another policy set P2

for all policy contexts for a given domain. The all-domains policy containment
answers whether a policy set P1 is more permissive than another policy set P2 for
all policy contexts for all possible domains. Even though all-domains evaluations
imply those for one domain, checking for all domains is decidable only for a
fragment of BelLog, as we later show.

Many analysis questions require that only specific subsets of policy contexts
and requests are considered for comparisons. For example, to verify that the
policy set P correctly encodes our requirement derived from R2, the policy writer
may ask whether P denies all requests made by subjects who are not project
leaders, for all contexts where the policy pol_leaders results in a conflict. We
encode such analysis questions with a condition that constraints the contexts and
requests where the policy sets are compared. Formally, the syntax for writing
containment questions is

cond ⇒ P1 � P2 .

The symbols P1 and P2 are policy sets and cond is inductively defined as

cond ::= ∀X.cond | attr � v | v � attr | ¬cond | cond ∧ cond | t
v ::= ⊥ | > ,

where X ∈ V, attr ∈ AedbP
Σ(V), i.e. attr is an input attribute. Note that the at-

tributes in a condition may contain variables. We write fv(cond) for the set of
variables in cond that are not in the scope of ∀. We fix the variables S and O to

16

denote the subject and the object in the request pol(S,O). A policy containment
question cond ⇒ P1 � P2 is well-formed iff fv(cond) ⊆ {S,O}.

We define the satisfaction relation Σ between a policy context I, a condition
cond of a well-formed policy containment question, and a policy domain Σ:

I Σ t
I Σ q � v if I(q) � v
I Σ v � q if v � I(q)
I Σ ¬cond if I 6Σ cond

I Σ cond1 ∧ cond2 if I Σ cond1 and I Σ cond2

I Σ ∀X.cond(X) if ∀X ∈ Σ. I Σ cond(X)

As a shorthand, in the following we write q = v for (q � v) ∧ (v � q) where
v ∈ {⊥,>}, q = f for (q � ⊥) ∧ (q � >), and q = t for ¬(q � ⊥) ∧ ¬(q � >).
Given two conditions c1 and c2 we define their disjunction c1∨c2 in the standard
way as ¬(¬c1 ∧ ¬c2). To compare the truth values of any two attributes p and
q, we write p = q as a shorthand for (p = f ∧ q = f) ∨ (p = ⊥ ∧ q = ⊥) ∨ (p =
> ∧ q = >) ∨ (p = t ∧ q = t).

Definition 3. (Domain Policy Containment) Given a question cond ⇒ P1 �
P2, and a domain Σ, then P1 is contained in P2 for all policy contexts over Σ
that satisfy cond , denoted by Σ cond ⇒ P1 � P2, iff

∀I ∈ I,∀S,O ∈ Σ. (I Σ cond)→ ([[P1]]I(pol(S,O)) � [[P2]]I(pol(S,O))) ,

where I is the set of all policy contexts defined over the domain Σ.

Note that we overload the relation Σ .
In practice, the policy domain may change over time, e.g. subjects and objects

are added to and removed from the system. After changes to Σ, domain policy
containment may no longer hold. As mentioned, a stronger policy containment
guarantee is thus to verify that P1 is contained in P2 for all domains Σ′.

Definition 4. (All-domains Policy Containment) Given a question cond ⇒
P1 � P2, P1 is contained in P2 for all policy contexts in all policy domains,
denoted cond ⇒ P1 � P2, iff Σ cond ⇒ P1 � P2 holds for all domains Σ.

To illustrate how containment questions are specified and used, we start with
the previously given question: “Do all requests in all policy contexts evaluate to
a conclusive policy decision”. To encode this question for the policy set P , we
construct a policy set P ′ by first renaming the predicate symbol pol in P to pol ′

and then adding the rule

pol(S,O)← (pol ′(S,O)
>7→ f) ⊥7→ f .

By construction, the policy set P ′ denies all requests that are evaluated to gap
or conflict by the policy set P . Therefore, |=Σ t ⇒ P � P ′ holds iff the policy
set P is conclusive. We set the condition to t because we must check containment
for all requests and for all policy contexts.

17

As a second example, we use policy containment to encode the requirement
that the policy set P denies access to subjects who are not project leaders
whenever the policy pol_leaders results in a conflict:

(pol_leaders(S,O) = >) ∧ ¬(prj_leader(S) = t)⇒ P � Pf ,

where Pf is the policy set that denies all requests. This asks whether P denies
pol(S,O) in all contexts where the policy pol_leaders results in a conflict for the
request pol(S,O) (pol_leaders(S,O) = >) and the subject S is not a project
leader (¬(prj_leader(S) = t)). Both domain and all-domains containment eval-
uations give negative answers; see the counterexample above. The policy set,
however, satisfies the requirement if the attribute prj_leader is either t or f. We
can easily encode this assumption as

(pol_leaders(S,O) = >) ∧ (prj_leader(S) = f)⇒ P � Pf .

Domain and all-domains containment evaluations answer this question positively.
Policy containment is also useful for comparing a policy set’s behavior in one

context to its behavior in a different policy context. Consider a scenario where
a subject can push some attributes to the PDP. An important property for the
policy set is that a subject cannot influence the policy set to grant a request by
withholding attributes. We refer to such policy sets as push-monotonic: whenever
a subject provides fewer attributes to the PDP, the policy set results in a less
permissive decision. Consider the policy set P :

{ pol(S,O)← researcher(S), prj_file(O)

researcher(S)← hr(S′), labcard(S′, S),¬revoked(S) }
The policy writer may formulate the question: “Is the policy set more restrictive
when the subject provides fewer (pushed) attributes? ” To answer this question,
one must compare the policy set to itself in all policy contexts that are identical
except for the attributes pushed by the subject. To encode this question, we first
construct a policy set P ′ by renaming every predicate symbol p that appears in
edbP to p′, where edbP = {revoked(·), labcard(·, ·), hr(·), revoked(·), prj_file(·)}.
Suppose the attribute revoked is locally stored at the PDP and the remaining
attributes are pushed by the subject. The analysis question is encoded as

∀X. (revoked(X) = revoked ′(X)) ∧ ∀X,Y. (labcard(X,Y) � labcard ′(X,Y))

∧ ∀X. (hr(X) � hr ′(X)) ∧ ∀X. (prj_file(X) � prj_file ′(X))⇒ P � P ′ .
This analysis problem asks whether P is less permissive than P ′ in all policy
contexts that are identical for the stored attribute and all pushed attributes to
P are also pushed to P ′. The question indeed holds for the policy set P .

The problems of deciding domain and all-domains policy containment are
reducible to domain and all-domains query validity, respectively.

Theorem 6. Policy containment is polynomially reducible to query validity.

Corollary 1. The problem of domain policy containment belongs to the com-
plexity class co-np-complete. The problem of all-domains policy containment
for unary-edb policy sets belongs to the complexity class co-nexp.

18

Analysis problem Entailment Domain All-domains All-domains
containment containment containment?

Complexity ptime co-np-complete undecidable co-nexp

? For policies that belong to the unary-edb BelLog fragment.

Table 1: Complexity of BelLog’s policy analysis problems.

If a policy set has attributes associated to a single user, group, resource,
etc. and there are finitely many principals, then the policy set can be writ-
ten in the unary-edb fragment. This is because all attributes have the form
attr_name(Issuer ,Object) can be re-encoded as attr_nameIssuer (Object) since
there are finitely many principals.

6 Conclusions

In this paper we present BelLog, a formal language for specifying access con-
trol policies that require both authority delegation and policy composition. This
sets BelLog apart from the existing formal access control languages, which
support either authority delegation or policy composition. BelLog can there-
fore specify decentralized composite policies, which thus far have lacked formal
semantics; examples include policies based on the XACML 3 standard [24] and
policies for large-scale distributed systems, such as [2–4,25]. We present an anal-
ysis framework for reasoning about BelLog policies and give complexity bounds
for deciding policy entailment and policy containment in BelLog, summarized
in Table 1.

We see BelLog as a foundation for constructing high-level policy languages
for decentralized composite access control, much like Datalog is the foundation
for delegation languages such as RT [12] and SecPAL [11]. We plan to build
implementations of BelLog and apply them in practice. In particular we will
focus on algorithms for fast evaluation of practically-relevant policies, and sound
approximation techniques for deciding the policy analysis problems efficiently.

References

1. Blaze, M., Feigenbaum, J., Ioannidis, J., Keromytis, A.: The KeyNote Trust-
Management System Version 2. RFC 2704 (Informational) (September 1999)

2. SNIC: SweGrid: e-Infrastructure for Computing and Storage. http://www.snic.
vr.se/projects/swegrid/

3. Axiomatics: Policy Decision Points (September 2013)
4. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee,

G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A View of Cloud Computing.
Commun. ACM 53(4) (April 2010) 50–58

5. Ceri, S., Gottlob, G., Tanca, L.: What You Always Wanted to Know About Datalog
(And Never Dared to Ask). IEEE Trans. on Knowl. and Data Eng. (1989) 146–166

6. Belnap, N.D.: A Useful Four-Valued Logic. In: Modern Uses of Multiple-Valued
Logic. D. Reidel (1977)

19

7. Bruns, G., Huth, M.: Access Control via Belnap Logic: Intuitive, Expressive, and
Analyzable Policy Composition. ACM Trans. Inf. Syst. Secur. (2011) 1–27

8. Crampton, J., Morisset, C.: PTaCL: A Language for Attribute-Based Access Con-
trol in Open Systems. In: POST. (2012) 390–409

9. Ni, Q., Bertino, E., Lobo, J.: D-Algebra for Composing Access Control Policy
Decisions. In: Proceedings of the 4th International Symposium on Information,
Computer, and Communications Security. ASIACCS ’09, ACM (2009) 298–309

10. Gurevich, Y., Neeman, I.: DKAL: Distributed-Knowledge Authorization Language.
In: Computer Security Foundations Symposium, 2008. (2008) 149 –162

11. Becker, M.Y., Fournet, C., Gordon, A.D.: SecPAL: Design and semantics of a
decentralized authorization language. Journal of Computer Security (2010) 619–
665

12. Li, N., Mitchell, J., Winsborough, W.: Design of a Role-based Trust-management
Framework. In: IEEE Symposium on Security and Privacy. (2002) 114 – 130

13. Garg, D., Pfenn, F.: Non-Interference in Constructive Authorization Logic. In:
Proceedings of the 19th IEEE workshop on Computer Security Foundations. CSFW
’06, Washington, DC, USA, IEEE Computer Society (2006) 283–296

14. Abadi, M.: Access Control in a Core Calculus of Dependency. Electronic Notes in
Theoretical Computer Science 172(0) (2007) 5 – 31

15. Fitting, M.: Bilattices in Logic Programming. In: Multiple-Valued Logic, 1990.,
Proceedings of the Twentieth International Symposium on. (1990) 238–246

16. Marinovic, S., Craven, R., Ma, J., Dulay, N.: Rumpole: A Flexible Break-glass
Access Control Model. In: Symposium on Access Control Models and Technologies.
SACMAT ’11, ACM (2011) 73–82

17. Dong, C., Dulay, N.: Shinren: Non-monotonic Trust Management for Distributed
Systems. In: Trust Management IV. Volume 321 of IFIP Advances in Information
and Communication Technology., Springer (2010) 125–140

18. Kolovski, V., Hendler, J., Parsia, B.: Analyzing Web Access Control Policies. In:
Proceedings of the 16th international conference on WWW, ACM (2007) 677–686

19. Apt, K.R., Blair, H.A., Walker, A.: Towards a Theory of Declarative Knowledge.
In Minker, J., ed.: Foundations of deductive databases and logic programming.
Morgan Kaufmann Publishers Inc. (1988) 89–148

20. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

21. Vardi, M.Y.: The Complexity of Relational Query Languages (Extended Abstract).
In: Proceedings of the fourteenth annual ACM symposium on Theory of computing.
STOC ’82, New York, NY, USA, ACM (1982) 137–146

22. Shmueli, O.: Decidability and Expressiveness Aspects of Logic Queries. In: Pro-
ceedings of the ACM Symposium on Principles of database systems, ACM (1987)

23. Rissanen, E.: XACML 3.0 Additional Combining Algorithms Profile Version 1.0.
Technical report, Axiomatics

24. OASIS: eXtensible Access Control Markup Language. http://docs.oasis-open.
org/xacml/3.0/xacml-3.0-core-spec-os-en.html

25. Seitz, L., Rissanen, E., Sandholm, T., Firozabadi, B.S., Mulmo, O.: Policy Admin-
istration Control and Delegation Using XACML and Delegent. In: Proceedings of
the International Workshop on Grid Computing, IEEE (2005) 49–54

A On the Choice of BelLog’s Minimal Supported Model

We choose a minimal supported model for BelLog semantics because it does
not over-assign truth values to head atoms and it assumes the least amount

20

of truth for the atoms which are not explicitly assigned a truth value. If there
are multiple minimal supported models, we select the one constructed with the
iterative fixed point construction; see §3. In the following we justify, in terms
of access control decisions, our choice of minimal supported model through a
simple example. Consider the BelLog program P :

{ permit(Sub)@admin← ¬blist(Sub)@piet,

blist(Sub)@piet← blist(Sub)@ann,

blist(Sub)@ann← blist(Sub)@piet }
The program P specifies a blacklist policy blist , which grants access to subjects
that have not been blacklisted. Piet delegates to Ann the attribute blist , and
vice versa.

Consider the domain Σ = {bob, admin, ann, piet}. The program P has the
following minimal supported models:

M1 = {permit(bob)@admin 7→ t, blist(bob)@piet 7→ f, blist(bob)@ann 7→ f}
M2 = {permit(bob)@admin 7→ f, blist(bob)@piet 7→ t, blist(bob)@ann 7→ t}
M3 = {permit(bob)@admin 7→ ⊥, blist(bob)@piet 7→ ⊥, blist(bob)@ann 7→ ⊥}
M4 = {permit(bob)@admin 7→ >, blist(bob)@piet 7→ >, blist(bob)@ann 7→ >}

In these models we only show the attributes for the subject Bob. Our construc-
tion results in the model M1, which grants access to Bob because there is no
evidence that he has been revoked. That is, the attribute blist(bob) is assigned f,
which is in line with our system model: a statement is false if there is no evidence
for the statement. In contrast, the remaining minimal supported models do not
grant access to Bob while there is no evidence supporting such a decision. The
model M2 assumes that Bob is blacklisted, M3 that it is unknown whether Bob
is blacklisted, and M4 that there is conflicting evidence concerning Bob being
blacklisted.

B Proofs

B.1 TP Operator

Theorem 7. For a BelLog program P , defined over a domain Σ, where P
has only non-negative literals in its rules, the operator TP is monotone.

Proof. Let I1 v I2 for some I1, I2 ∈ I, where I is the set of all interpretations
defined over the domain Σ. We show that TP (I1) v TP (I2).

To prove the claim we need to show that for an arbitrary atom a ∈ AΣ(∅),
TP (I1)(a) � TP (I2)(a). By definition of the TP operator,

TP (Ii)(a) =
∨
{Ii(l) | (a← l) ∈ P ↓},

for i ∈ {1, 2}.

21

– If the sets {Ii(l) | (a ← l) ∈ P ↓} are the empty set, then TP (I1)(a) =
TP (I2)(a) =

∨
{} = f.

– Otherwise, there is at least one rule in P ↓ with a in its head. Note that
the operator ∼ is monotone, because for any v1, v2 ∈ D, if v1 � v2 then
∼v1 � ∼v2. Furthermore, P ’s rules have only non-negative literals and the
operator ∧ is monotone. Therefore for any rule body l we have I1(l) � I2(l),
simply because I1 v I2. By definition of TP , all rule bodies with a in their
heads are combined with the ∨ operator. Since ∨ is monotone it follows that
TP (I1)(a) � TP (I2)(a).

This concludes our proof. ut

We proceed with three lemmas, pertaining to the TP operator, which we use
throughout the remaining proofs in this section. For a program P defined over
a domain Σ, we say that an atom q is an edb atom of P if q ∈ AedbP

Σ(∅). Similarly
we say that an atom q is an idb atom of P if q ∈ AidbP

Σ(∅). When the program P

is clear from the context, we may write edb atom instead of edb atom of P . We
refer to the set of atoms that appear in the bodies of P ’s rules as the body atoms
of P .

Lemma 2. Given two programs P and P ′ and an interpretation I, TP∪P ′(I) =
TP (I) t TP ′(I).

Proof. By definition TP computes each rule independently and then combines
their result using the meet ∨ operator. As the operator ∨ is associative and
symmetric, we get TP∪P ′(I) = TP (I) t TP ′(I). ut

Lemma 3. Given a program P , and interpretations I1, I2, if I1(q) � I2(q) for
any body atom q of P , then TP (I1 t I2) = TP (I2).

Proof. Since for any body atom q we have I1(q) � I2(q), TP (I1tI2) computes the
body atoms’ truth values according to I2 because (I1t I2)(q) = I2(q). Therefore
TP (I1 t I2) = TP (I2). ut

Lemma 4. Given a program P , and interpretations I1, I2, if for any edb atom
q it holds that I1(q) � I2(q) and for any idb atom it holds that I2(q) � I1(q),
then TP (I1 t I2) = TP↓/I2(I1).

Proof. By definition of TP we have TP (I1 t I2) = TP↓(I1 t I2).
Recall that P ↓ / I2 replaces the edb atoms in P ’s rules by their truth values

according to I2. Since for any edb atom q we have I1(q) � I2(q), it follows
that (I1 t I2)(q) = I2(q). Therefore the computation of TP↓(I1 t I2) always
computes the edb atoms’ truth values according to I2, and therefore TP↓(I1 t
I2) = TP↓/I2(I1 t I2).

Finally, note that the body atoms of P ↓ / I2 are the idb atoms of P . Because
for any idb atom q of P , we have I2(q) � I1(q), for any body atom q of P ↓ /I2 we
have I2(q) � I1(q). By Lemma 3 it follows that TP↓/I2(I1t I2) = TP↓/I2(I1). ut

22

Recall that [[P]] = Mn where M−1 = If and Mi = dTP↓i /Mi−1
e tMi−1 for

0 ≤ i ≤ n. Here, Pi are the strata of P , with 0 ≤ i ≤ n. Note that the fixed
points dTP↓i /Mi−1

e are well-defined due to Theorem 7.

Lemma 5. Given a stratified BelLog program P , the interpretation [[P]] is a
supported model of P .

Proof. By Lemma 1, the interpretation [[P]] is a supported model of P iff [[P]] is
a fixed point of TP .

To show that [[P]] is a fixed point of TP , we use induction to prove that
TPk∪···∪P0(Mk) =Mk holds for 0 ≤ k ≤ n. Note that TP = TPn∪···∪P0 .

For the base case, k = 0, we have M0 = dTP↓0 /Ife t If. Since no edb of P0 is

the head of a rule in P ↓0 / If, any edb atom a of P0 is mapped to f in dTP↓0 /Ife,
thus dTP↓0 /Ife(a) � If(a). Also, for any idb atom q of P0, If(a) � dTP↓0 /Ife(a). By
Lemma 4, it follows that

TP0
(M0) = TP0

(dTP↓0 /Ife t If) = TP↓0 /If
(dTP↓0 /Ife) = dTP↓0 /Ife (1)

Since M0 = dTP↓0 /Ife t If = dTP↓0 /Ife, we conclude that TP0(M0) =M0.
By induction hypothesis, for a given 0 ≤ k < n, TPk∪···∪P0

(Mk) = Mk.
We prove that TPk+1∪···∪P0

(Mk+1) = Mk+1. By Lemma 2, we can now rewrite
TPk+1∪···∪P0(Mk+1) to

TPk+1
(Mk+1) t TPk∪···∪P0

(Mk+1) (2)

Recall that Mk+1 = dTP↓k+1/Mk
e tMk. We first simplify TPk+1

(Mk+1). Since no

edb atom of Pk+1 is the head of a rule in P ↓k+1 /Mk, any edb atom a of Pk+1 is
mapped to f in dTP↓k+1/Mk

e, and thus dTP↓k+1/Mk
e(a) �Mk(a). Also, for any idb

atom a of Pk+1 we have Mk(a) = f � dTP↓k+1/Mk
e(a). By Lemma 4,

TPk+1
(Mk+1) = TPk+1

(dTP↓k+1/Mk
e tMk) =

= TP↓k+1/Mk
(dTP↓k+1/Mk

e) = dTP↓k+1/Mk
e (3)

We second simplify TPk∪···∪P0
(Mk+1). Due to stratification, any body atom a of

Pk ∪ · · · ∪ P0 is not the head of a rule in Pk+1 and therefore a is mapped to f in
dTP↓k+1/Mk

e; thus dTP↓k+1/Mk
e(a) �Mk(a) for any body atom a of Pk ∪ · · · ∪ P0.

Now, by Lemma 3, and the induction hypothesis, we get:

TPk∪···P0
(Mk+1) = TPk∪···∪P0

(dTP↓k+1/Mk
e tMk) =

= TPk∪···∪P0(Mk) =Mk (4)

From (2), (3), and (4) it follows that TPk+1∪···∪P0
(Mk+1) = dTP↓k+1/Mk

etMk,
and therefore TPk+1∪···∪P0

(Mk+1) =Mk+1. ut

Theorem 1. Given a stratified BelLog program P , [[P]] is a minimal supported
model of P .

23

Proof. [[P]] is a supported model of P by Lemma 5. We claim that [[P]] is min-
imal. We use induction to show that for any interpretation I, if I v Mk and
TP0∪···∪Pk(I) = I then I = Mk for 0 ≤ k ≤ n. Note that the case k = n proves
the claim.

For the base case, assume that I vM0 and TP0(I) = I for some interpretation
I. We prove that I = M0. Since no edb atom of P0 appears in the head of a
rule in P0, for any edb atom q of P0 we have I(q) = TP0

(I)(q) = f. That is,
I(q) = f � If(q) for any edb atom q of P0. For any idb atom q of P0 we have
If(q) = f � I(q). Now, by Lemma 4 we get TP0

(I) = TP0
(I t If) = TP↓0 /If

(I) = I.
Hence, I is a fixed point of TP↓0 /If . FromM0 = dTP↓0 /IfetIf = dTP↓0 /Ife, it follows
that M0 is the least fixed point of TP↓0 /If . Thus, M0 v I. From the assumption
I vM0, it then follows that I =M0.

By induction hypothesis, for a given 0 ≤ k < n and any interpretation J , if
J vMk and TP0∪···∪Pk(J) = J , then J =Mk. We prove that I =Mk+1 for any
interpretation I where I vMk+1 and TP0∪···∪Pk+1

(I) = I.
It is immediate that I can be uniquely decomposed into I = Ik t Ik+1 such

that Ik maps all idb atoms of Pk+1 to f and Ik+1 maps all edb atoms of Pk+1 to
f. By Lemma 2:

TP0∪···∪Pk(Ik t Ik+1) t TPk+1
(Ik t Ik+1) = Ik t Ik+1 (5)

Note that TP0∪···∪Pk(Ik t Ik+1) maps all idb atoms of Pk+1 to f and TPk+1
(Ik t

Ik+1) maps all edb atoms of Pk+1 to f. Therefore TP0∪···∪Pk(Ik t Ik+1) = Ik and
TPk+1

(Ik t Ik+1) = Ik+1, by the uniqueness of the decomposition.
In the following, we show that (a) Ik = Mk and (b) Ik+1 = dTPk+1/Mk

e.
These two entail I =Mk+1, thus completing the proof.

Part (a). For any edb atom q of Pk+1 we have Ik+1(q) = f � Ik(q), simply
because only edb atoms of Pk+1 can appear in the rule bodies of P0 ∪ · · · ∪ Pk.
Now by Lemma 3 we get TP0∪···∪Pk(Ik t Ik+1) = TP0∪···∪Pk(Ik). That is, Ik is a
fixed point of TP0∪···∪Pk :

TP0∪···∪Pk(Ik) = Ik (6)

Recall that I = Ik t Ik+1 vMk+1 =Mk tdTPk+1/Mk
e, by the assumption. If

q is an edb atom of Pk+1, then (Ik t Ik+1)(q) = Ik(q) � (Mk tdTPk+1/Mk
e)(q) =

Mk(q); otherwise q is an idb atom of Pk+1 and we have Ik(q) = Mk(q) = f.
Therefore,

Ik vMk. (7)

From 6, 7, and the induction hypothesis, it follows that Ik =Mk.

Part (b).With an argument similar to Part (a), it follows that Ik+1 v dTPk+1/Mk
e.

Then, by replacing Ik with Mk in TPk+1
(Ik t Ik+1) = Ik+1 we get TPk+1

(Mk t
Ik+1) = Ik+1. For any edb atom q of Pk+1 we have Ik+1(q) = f � Mk(q),
and Mk(r) = f � Ik+1(r) for any idb atom r of Pk+1. Applying Lemma 4
we get TPk+1

(Mk t Ik+1) = TPk+1/Mk
(Ik+1) = Ik+1. That is, Ik+1 is a fixed

24

point of TPk+1/Mk
. Since dTPk+1/Mk

e is the least fixed point of TPk+1/Mk
and

Ik+1 v dTPk+1/Mk
e, we have Ik+1 = dTPk+1/Mk

e.
ut

B.2 Semantic Link between Datalog and BelLog

We first define Datalog’s syntax and semantics before proceeding with the proof
of the theorem.

Syntax of Stratified Datalog. We define the syntax of stratified Datalog as
a syntactic restriction of BelLog: A stratified Datalog program is any stratified
BelLog program P where the predicates ⊥,>, and the operator ∼ do not appear
in P ’s rules.

In the following we fix a stratified Datalog program P , with strata P0, · · · , Pn,
defined over a domain Σ.

Semantics of Stratified Datalog. We adopt the semantics of stratified Dat-
alog programs from [19]. Let ID = 2AΣ(∅) . The structure (ID,⊆,∪,∩, ∅,AΣ(∅))
is a complete lattice. Define TDP : ID 7→ ID as

TDP (I) = {a ∈ AΣ(V) | ∃(a← l1, · · · , ln) ∈ P ↓. ∀l ∈ {l1, · · · , ln}. I |=D li}
where I |=D l iff (1) l is an atom a and a ∈ I, or (2) l is a negative literal ¬a
and a 6∈ I. The powers of the operator TDP are defined as:

TDP ↑0 (I) = I

TDP ↑i+1 (I) = TDP (TDP ↑i (I)) ∪ TDP ↑i (I), for i > 0

The model of P , denoted with [[P]]D is MD
n , where MD

−1 = ∅ and MD
i = TDPi ↑

ω

(MD
i−1), for 0 ≤ i ≤ n.
We link Datalog’s models to BelLog’s models with the function α : ID 7→ I,

defined as α(ID)(a) = t if a ∈ ID, and α(ID)(a) = f otherwise.

Theorem 8. Given a stratified Datalog program P , α([[P]]D) = [[P]].

Proof. We prove using induction that α(MD
k) =Mk for −1 ≤ k ≤ n.

For the base case, we have α(MD
−1) = α(∅) = If =M−1.

By induction hypothesis assume that α(MD
k) = Mk, for some k where 0 ≤

k < n. The definition of the operators ∨, ∧, and ¬, if the predicates ⊥,>
and the operator ∼ do not appear in Pk+1’s rules then the truth values ⊥ and
> do not appear in TPk+1

(I) for any interpretation I. Therefore to show that
α(MD

k+1) = Mk+1, it is sufficient to prove that a ∈ MD
k+1 iff Mk+1(a) = t, for

any atom a.
We proceed by case distinction on atoms.

– Assume that a is an edb atom of Pk+1. Then, for any set of atoms from
Datalog’s domain J ∈ ID, a 6∈ TDPk+1

(J) because a does not appear in the
head of any rule in Pk+1. Therefore a ∈ MD

k+1 iff a ∈ MD
k . Similarly, for

any interpretation J ∈ I, TP↓k+1/Mk
(J)(a) = f, and therefore Mk+1(a) = t iff

25

Mk(a) = t. From the induction hypothesis, we conclude that a ∈ MD
k+1 iff

Mk+1(a) = t.
– Assume that a is an idb atom of Pk+1. For any idb atom a, a 6∈ MD

k and
Mk(a) = f. Therefore, a ∈MD

k+1 iff a is derived in some iteration of TDPk+1
↑i

(MD
k). Similarly,Mk+1(a) = t iff dTP↓k+1/Mk

e(a) = t. By the definition of the

operators TDPk+1
and TP↓k+1/Mk

, a ∈ TDPk+1
(I) iff TP↓k+1/Mk

(α(I))(a) = t, for

any I ∈ ID. From the induction hypothesis Mk = α(MD
k), and because at

every iteration the operators TDPk+1
and TP↓k+1/Mk

derive the same idb atoms,

we conclude that a ∈MD
k+1 iff Mk+1(a) = t.

This concludes our proof. ut

B.3 Independence of Stratification

We prove that given two different stratifications of a program P , the iterative
fixed point construction defined in §3 results in the same minimal supported
model for P .

Given a stratification P0, · · · , Pn of a program P , we writeMPi for the model
of P0 ∪ · · · ∪ Pi obtained using the iterative fixed point construction; see §3. A
predicate symbol p is defined in Pi if all rules with p in their heads are in Pi.
Given a program P , a predicate symbol p refers-to q iff there is a rule r in P such
that p appears in r’s head and q appears in r’s body. Let p depends-on q be the
transitive closure of the refers-to relation. A stratum Pi is minimal iff for any
two predicate symbols p, q ∈ P defined in Pi, p depends-on q iff q depends-on p.
A stratification P0, · · · , Pn is refined iff all Pi are minimal, with 0 ≤ i ≤ n. It is
straightforward to see that given two different refined stratifications P0, · · · , Pn
and P ′0, · · · , P ′m, n = m and for any stratum Pi, there is a stratum P ′j such that
Pi = P ′j , for 0 ≤ i ≤ n and 0 ≤ j ≤ m, and vice versa.

The proof proceeds as follows. We will show that any stratification P0, · · · , Pn
can be transformed into a refined stratification P ′0, · · · , P ′m such that MPn =
MP ′m

. Then we will prove that for any two refined stratifications the iterative
fixed point construction results in the same model. These two points establish
that the computed model for P is independent to how the rules are partitioned
into strata. We start with the following lemma which allows us to partition the
set of rules of a non-minimal stratum:

Lemma 6. Given a program P where all negative literals in P are constructed
from predicate symbols in edbP , an input I, and a stratification P1, P2 of P , we
have M =M2 where M = dTP↓/IetI, M1 = dTP↓1 /IetI, M2 = dTP↓2 /M1

etM1.

Proof. We proceed by case distinction on the atoms a.

– Case a is an edb atom of P . Because M(a) = I(a), and M2(a) = M1(a) =
I(a), it is immediate that M(a) =M2(a).

26

– Case a is an idb atom of P1. Due to the stratification requirements, all rules
with a in their heads are contained in P1. It follows that M2(a) =M1(a) =
dTP↓1 /Ie(a). Since no atoms defined in P2 appear in the rule bodies in P1, we
get M(a) = dTP↓/Ie(a) = dTP↓1 /Ie(a). Therefore M(a) =M2(a).

– Case a is an idb atom of P2. For M(a) we have M(a) = dTP↓/Ie(a), and
for M2(a) we have M2(a) = dTP↓2 /M1

e(a). Any idb atom of P1 has the same
truth value in M1 and dTP↓/Ie(a); see previous case. We can thus subtract
the rules of P1 from P and replace the truth values of idb atoms of P1

according to M1, i.e. we get dTP↓/Ie(a) = dTP↓2 /M1
e(a).

This concludes our proof. ut

We now prove that any two refined stratifications result in the same model
for P .

Lemma 7. Given two refined stratifications P0, · · · , Pn and P ′0, · · · , P ′n, MPn =
MP ′n

.

Proof. We use induction to prove that for any atom a, if a is defined in P0∪· · ·∪Pi
and P ′0 ∪ · · · ∪ P ′j then MPi(a) = MP ′j

(a), for 0 ≤ i ≤ n and 0 ≤ j ≤ n. Note
that the case for i = j = n completes our proof.

For the base case, let a is defined in P0 and P ′0; otherwise the claim obviously
holds. It is immediate that MP0(a) =MP ′0

(a) because P0 = P ′0.
By induction hypothesis, for a given 0 ≤ i < n and 0 ≤ j < n, if a is defined

in P0 ∪ · · · ∪ Pi and P ′0 ∪ · · · ∪ P ′j then MPi(a) =MP ′j
(a). We claim that for any

atom a, if a is defined in P0∪· · ·∪Pi+1 and P ′0∪· · ·∪P ′j , thenMPi+1
(a) =MP ′j

(a).
The inductive step for j + 1 is symmetric.

Consider an atom a. Let a be defined in P ′0 ∪ · · · ∪ P ′j . Note that otherwise
the claim obviously holds.

Assume a is defined in P0∪· · ·∪Pi, thenMPi+1(a) =MPi(a) because no rules
with a in the head appear in Pi+1, The claim holds by the induction hypothesis.

Assume a is not defined in P0∪· · ·∪Pi. Let a be defined in P0∪· · ·∪Pi+1. Note
that otherwise the claim obviously holds. By the stratification requirements, a
is defined in exactly one stratum. Let P ′k, with 0 ≤ k ≤ j, be the stratum
where a is defined in P ′0 ∪ · · · ∪P ′j . Since the stratifications are refined, it follows
that Pi+1 = P ′k. Due to the stratification requirements, all edb atoms of Pi+1

and P ′k are defined in previous strata, and by the induction hypothesis they
are mapped to the same truth values according to MPi and MP ′k−1

. Therefore
MPi+1(a) =MP ′k

(a). ut

We show that any stratification can be transformed into a refined stratifi-
cation. Take a stratification P0, · · · , Pn and a stratum Pi that is not-minimal,
with 0 ≤ i ≤ n. Let Pi = P 1

i ∪ P 2
i such that P 1

i , P
2
i is a stratification of Pi. The

iterative fixed point construction applied on P0, · · · , Pi−1, P 1
i , P

2
i , Pi+1, · · · , Pn

results in the same model for P , because MP 2
i

= MPi due to Lemma 6. We
successively partition the non-minimal strata to obtain a refined stratification
with the same model as MPn .

27

It follows that any stratification can be transformed into a refined one. Now,
by Lemma 7 the following theorem is immediate.

Theorem 9. Given two stratifications P0, · · · , Pn and P ′0, · · · , P ′m, of a strati-
fied program P , MPn =MP ′m

.

B.4 BelLog Extensions

We associate a BelLog rule r with the measure µ(r), where µ is inductively
defined as:

µ(p← body) = µ(body)

µ(q1, · · · , qn) = 1

µ(¬body) = 1 + µ(body)

µ(∼body) = 1 + µ(body)

µ(body1 ∧ body2) = 1 + µ(body1) + µ(body2)

Recall that given a BelLog program P with composite rules, the program
P is translated into a program P ′ =

⋃
r∈P T (r) with basic rules, where T is

the recursive function that maps rules to sets of basic rules. To show that this
translation terminates, we state and prove the following Lemma.

Lemma 8. Given a rule r, the recursive function T (r) terminates.

Proof. The proof proceeds by showing that given a rule r, ∀r′ ∈ T (r). (µ(r) =
µ(r′) = 1) ∨ (µ(r′) < µ(r)). By definition of µ, for any rule r, µ(r) ≥ 1.

Assume µ(r) = 1. By definition of µ, r must be a basic rule p← q1, · · · , qn.
T (r) terminates simply because T (p← q1, · · · , qn) = {p← q1, · · · , qn}.

Assume µ(r) > 1. By definition of µ, r must be a composite rule. By definition
of T , the intermediate step of T (r) is a set of rules that contains one basic rule
and one or two fresh rules, and then T is recursively applied on the fresh rules.
We show that µ(r′) < µ(r), where r′ is a fresh rule generated by T . We proceed
by case distinction on r:

– Case r = p ← ¬body . T generates one fresh rule r′ = pfresh ← body . By
definition of µ we have µ(r) = 1+µ(body) and µ(r′) = µ(body), thus µ(r′) <
µ(r).

– Case r = p← ∼body . Similarly to the case r = p← ¬body , T generates one
fresh rule r′ = pfresh ← body , and we get µ(r′) < µ(r).

– Case r = p← body1∧body2. T generates two fresh rules r1 = pfresh1 ← body1

and r2 = pfresh2 ← body2. Because µ(r) = 1 + µ(body1) + µ(body2), µ(r1) =
µ(body1), and µ(r2) = µ(body2), we get µ(r1) < µ(r) and µ(r2) < µ(r).

This completes our proof. ut

Theorem 4. Given a well-formed BelLog program P with composite rules, the
translated program P ′ =

⋃
r∈P T (r) is stratified.

28

Proof. The definition of a well-formed program extends the conditions of a strat-
ified program. Therefore, any well-formed program P that contains only basic
rules is stratified.

Let r ∈ P be a rule of a well-formed program P , and P0, · · · , Pn are the
partitions that satisfy the conditions of a well-formed program. Assume r ∈ Pi
for some 0 ≤ i ≤ n. By definition of T , the intermediate result of applying T
on r is a set of rules R containing one basic rule and one or two fresh rules. We
claim that (P \{r})∪R is well-formed. Since T is applied on P ’s rules to obtain
a program P ′ with basic rules, the claim implies that P ′ is well-formed, thus
stratified, which completes our proof.

We prove that (P \ {r})∪R is well-formed by case distinction on the rule r.

– Case r = p ← q1, · · · , qn. R = {p ← q1, · · · , qn}, and clearly the partitions
P0, · · · , Pi−1, (Pi\{r})∪{p← q1, · · · , qn}, Pi+1, · · · , Pn satisfy the conditions
of a well-formed program, because Pi = (Pi \ {r}) ∪ {p← q1, · · · , qn}.

– Case r = p← ¬body . R = {p← ¬pfresh, pfresh ← body}, and the partitions

P0, · · · , Pi−1, {pfresh ← body}, (Pi \ {r}) ∪ {p← ¬pfresh}, Pi+1, · · · , Pn
satisfy the conditions of a well-formed program, because all rules with p’s
predicate symbol in the heads are contained in (Pi \ {r}) ∪ {p ← ¬pfresh},
and all predicate symbols that appear in body can only appear in the heads
of the rules contained in P0 ∪ · · · ∪ Pi−1.

– Case r = p← ∼body . This case is analogous to the case r = p← ¬body .
– Case r = p ← body1 ∧ body2. R = {(p ← pfresh1, pfresh2), (pfresh1 ← body1),

(pfresh2 ← body2)}. The partitions

P0, · · · , Pi−1, {(pfresh1 ← body1), (pfresh2 ← body2)},
(Pi \ {r}) ∪ {p← pfresh1, pfresh2}, Pi+1, · · · , Pn

satisfy the conditions of a well-formed program, because all rules with p’s
predicate symbol in the heads are contained in (Pi\{r})∪{p← pfresh1, pfresh2},
and all predicate symbols that appear in body1 and body2 can only appear
in the heads of the rules contained in P0 ∪ · · · ∪ Pi−1.

ut

Theorem 5.Given an operator g : Dn → D and a list of n rule bodies q1, · · · , qn,
there exists a body expression φ for a BelLog composite rule p← φ such that

[[P]]I(p) = g([[P]]I(q1), . . . , [[P]]I(qn)) ,

for all inputs I, and programs P where {p ← φ} ⊆ P and p is not the head of
any other rule.

Proof. Fix an arbitrary g : Dn → D, for some n > 0, and let q1, · · · , qn be the
list of rule bodies.

For each (d1, · · · , dn) ∈ Dn, we construct the composite body

φd1,··· ,dn := (p1 = d1 ∧ · · · ∧ pn = dn)
t7→ g(d1, · · · , dn)

29

Let the body φ of the rule q ← φ be the disjunction of composite bodies φd1,...,dn
for all possible (d1, · · · , dn) ∈ Dn. That is,

φ =
∨
{φd1,··· ,dn | (d1, · · · , dn) ∈ Dn}

By construction, given an input I, exactly one φd1,...,dn , namely the one where
[[P]]I(pi) = di for 1 ≤ i ≤ n, evaluates to t; all others evaluate to f. The body φ
thus evaluates to g(d1, · · · , dn).

Finally, we remark that for any well-formed program P where q does not
appear in the head of any rule in P , the program P ∪ {q ← φ} is well-formed.

ut

B.5 Complexities of Decision Problems

In this section we show the complexities of BelLog’s decision problems. Given
a program P , the maximum arity of predicates in P and the set of variables that
appear in P are fixed. The input size for BelLog’s decision problems is thus
determined by the number of predicate symbols in P, the number of rules in the
program P , and the number of constants in the domain Σ.

Lemma 9. Given a set P of ground rules with non-negative literals, the com-
plexity of computing the least fixed point of TP belongs to the complexity class ptime.

Proof. Following Kleene’s fixed point theorem, we can compute the least fixed
point dTP e as Tω where T0 = If and T i+1 = TP (T

i) for i ≥ 0; recall that TP is
monotone by Theorem 7, and due to the finiteness of the lattice of interpretations
monotonicity of TP entails its continuity.

We claim that the operator TP needs to be iteratively applied to If at most
3×|AΣ(∅)| times (to compute the least fixed point dTP e). This is because in each
application of TP at least one ground atom changes its truth value to a value
strictly higher in the lattice (D,�); otherwise, a fixed point has been reached.
Since the height of the lattice (D,�) is 3, the number of iterated applications
of TP is bound by 3× the number of ground atoms in AΣ(∅). This proves the
aforementioned claim.

The number of ground atoms in AΣ(∅) is at most |P| × |Σ|c, where c is
the fixed maximum arity of the predicate symbols in P. We conclude that the
number of iterated applications of TP is at most 3× |P| × |Σ|c.

Finally, the number of steps taken when computing TP (I), for any inter-
pretation I, is linear in the number of (ground) rules in P . Consequently, the
complexity of computing the least fixed point dTP e (under the assumption that
the maximum arity of the predicates in P is fixed) is polynomial in the number
of predicate symbols in P, the number of constants in Σ, and the number of
rules in P . ut

Lemma 10. The query entailment problem for stratified BelLog programs be-
longs to the complexity class ptime.

30

Proof. The query entailment problem P |=IΣ q can be decided by constructing
P ’s model [[P]] and then checking whether, or not, [[P]](q) = t holds.

To compute the model [[P]] of P , we must compute the interpretationMi asso-
ciated to each stratum Pi. Consider a stratum Pi. To computeMi = dTP↓i /Mi−1

et
Mi−1, we need to compute the least fixed point of TP↓i /Mi−1

; recall that this op-
erator is continuous.

The number of rules in P ↓i / Mi−1 is bounded by |Pi| × |Σ|k, where |Pi| is
the number of (non-ground) rules in Pi, and k is the fixed number of variables
that appear in Pi’s rules. By Lemma 9,Mi can be computed in ptime. Since the
number of strata of P is no larger than the number of rules in P , we conclude
that the complexity of computing the model [[P]], and in turn the complexity of
deciding query entailment, is in ptime. ut

Lemma 11. The query validity problem for stratified BelLog programs belongs
to co-np-complete.

Proof. First, we show that the query validity problem is in co-np. The com-
plement of P |=Σ q, namely P 6|=Σ q, can be decided by non-deterministically
choosing an input I such that P 6|=IΣ q. By Lemma 10, the complexity of deciding
P |=IΣ q belongs to ptime, and therefore the complexity of deciding P 6|=Σ q be-
longs to the complexity class np. Therefore, the complexity of deciding P |=Σ q
belongs to co-np.

Second, we reduce the proposition validity decision problem, which belongs
to co-np-complete, to query validity. Take an instance of propositional validity
φ, where φ is a propositional formula constructed with propositions, ∧, and ∨.
Let P = {q ← φ} be a BelLog program, where q does not appear in φ. Clearly
P is well-formed. It is immediate that P |=Σ q iff φ is valid in any interpretation.

ut

The following theorem immediately follows from Lemma 10 and Lemma 11.

Theorem 2. The query entailment problem and the query validity problem for
stratified BelLog programs belong, respectively, to the complexity classes ptime
and co-np-complete.

Deciding all-domains query validity. In the following we prove that the
all-domains query validity decision problem is decidable for unary-edb BelLog
programs.

We fix a stratified program P with strata P0, · · · , Pn, and with unary predi-
cate symbols in edbP . We also fix a query q. In the following, we assume, without
loss of generality, that the constants appearing in the query q also appear in P .
Let ΣP be the set of constants that appear in P . A domain Σ ⊆ C is suitable for
P iff ΣP ⊆ Σ, where C is the infinite countable set of constant symbols. Let I be
the set of all interpretations over all suitable domains for P . Each interpretation
I ∈ I is associated with a domain Σ over which I is defined. We write dom(I)
to denote I’s domain.

31

We define a constant type as a four-way partitioning (tf, t⊥, t>, tt) of the
predicate symbols in edbP . Let T be the finite set of all possible constant types.
Given an interpretation I ∈ I with dom(I) = Σ, a constant c ∈ Σ is of type
(tf, t⊥, t>, tt) iff ∀v ∈ D. ∀p ∈ tv. I(p(c)) = v. We write τ(c, I) to denote the type
of the constant c according to I. For c, c′ ∈ dom(I), write c ≡ c′ iff τ(c, I) =
τ(c′, I). It is straightforward that the equivalence ≡ is a congruence, c ≡ c′ =⇒
TP (I)p(· · · , c, · · ·) = TP (I)p(· · · , c′, · · ·), for any p ∈ P and any input I.

Let I ∈ I and define ΣI = ΣP ∪ {[c]≡ | c ∈ dom(I) \ ΣP }. Now, for any
interpretation J defined over ΣI , we say I and J agree iff ∀c ∈ ΣP . τ(c, I) =
τ(c, J) and ∀c 6∈ ΣP . τ(c, I) = τ([c]≡, J). We claim [[P]]I(q) = [[P]]J(q).

Lemma 12. [[P]]I(q) = [[P]]J(q).

Proof. The proof is immediate by induction on the minimal fixed points of the
strata of P . The only non-trivial observation pertains to that any c ∈ dom(I)\ΣP
and the corresponding [c]≡ ∈ ΣI (recall that dom(J) = ΣI) have the same
constant types. ut

Note that for any I ∈ I, the set ΣI can have finitely many elements. This
is because ΣP is finite and there are finitely many constant types. Therefore,
there are finitely many interpretations J that agree with the infinitely many
interpretations of I. The proof of decidability therefore is immediate now: one
needs to answer finitely many problems of the form P |=Jdom(J) q to answer P |=
q. These problems are decidable, due to Lemma 10. The proof of the following
theorem is now immediate.

Theorem 10. The all-domains query validity problem for unary-edb BelLog
programs is decidable.

Theorem 3. The all-domains query validity problem for unary-edb BelLog
programs belongs to co-nexp.

Proof. The complement of P |= q can be decided by non-deterministically choos-
ing an input I such that P 6|=Idom(I) q. Due to Lemma 12, instead of checking
P 6|=Idom(I) q we can check P 6|=JΣI q for some J where I and J agree. The size of
ΣI is bounded 4|edbP | + |ΣP |, because there are at most 4|edbP | constant types.
Therefore, by Lemma 10, the complexity P 6|= q is in nexp. The complexity of
P |= q is thus co-nexp. ut

Reducing Policy Containment to Query Validity.

Theorem 6. Policy containment is polynomially reducible to query validity.

Proof. Fix a domain Σ and two programs P1 and P2 defined over Σ such that
idbP1

= idbP2
. We reduce the problem of deciding Σ cond ⇒ P1 � P2 to the

problem of query validity P |=Σ φ, where P and φ are constructed as follows.

32

Let P = ∅. For all rules in P1 we rename every predicate symbol p in idbP1

to p1. Similarly, we rename every predicate symbol p from idbP2
in P2’s rules to

p2. The renamed rules are added to P .
We then encode the condition cond using the recursive function T :
T (p,∀X.cond) := {p(Y)← ¬pfresh1(Y), pfresh1(Y)← ¬pfresh2({X} ∪ Y)}

∪ T (pfresh2, cond), where Y = vars(cond) \ {X}
T (p, attr � v) := {p(X)← attr(X) � v}, where X = vars(attr)

T (p, v � attr) := {p(X)← v � attr(X)}, where X = vars(attr)

T (p,¬cond) := {p(X)← ¬pfresh(X)} ∪ T (pfresh, cond),

where X = vars(cond)

T (p, cond1 ∧ cond2) := {p(X)← pfresh1(X1) ∧ pfresh2(X2)} ∪ T (pfresh1, cond1)

∪ T (pfresh2, cond2), where X1 = vars(cond1),

X2 = vars(cond2),X = X1 ∪X2

T (p, t) := {p← t}
The operator� which appears in the generated rule bodies is defined as p � q = t
iff p � q, otherwise p � q = f. Note that by Theorem 5 this operator can be
expressed in BelLog. The rules generated by T (pcond , cond), where cond is the
containment condition in Σ cond ⇒ P1 � p2, are added to P .

Finally, we define the operator p → q in the standard way ¬p ∨ q, and add
the following rule to P :

φ← (pcond(S,O)→ (pol1(S,O) � pol2(S,O)))

By construction we get P |=Σ φ iff Σ cond ⇒ P1 � P2. ut

C Intensional Operators

We define the semantics of the intensional operators
∨
,
∧
,
⊕

, and
⊗

, as their
translation into BelLog using the function T :

T (p(X)←
∨
b(X ∪ Y)) = {p(X)← b(X ∪ Y)}

T (p(X)←
∧
b(X ∪ Y)) = {p(X)← ¬pfresh(X), pfresh(X)← ¬b(X ∪ Y)}

T (p(X)←
⊕

b(X ∪ Y)) = {p(X)← b(X ∪ Y) ∧ >, p(X)← ¬pfresh(X),

pfresh(X)← ¬b(X ∪ Y)}

T (p(X)←
⊗

b(X ∪ Y)) = {p(X)← b(X ∪ Y) ∧ ⊥, p(X)← ¬pfresh(X),

pfresh(X)← ¬b(X ∪ Y)}
where X = vars(p), Y = vars(b) \X.

As an example we illustrate the operator
⊕

. Consider the simple policy
rule p(X) ←

⊕
q(X,Y). We have X = {X}, and Y = {Y }. According to the

translation function T , this policy rule is translated into the following set of

33

rules:

p(X)← q(X,Y) ∧ > (r1)

p(X)← ¬pfresh(X) (r2)

pfresh(X)← ¬q(X,Y) (r3)

where pfresh is a fresh predicate symbol. For the policy domain Σ = {a, b},
grounding the variable Y in rule r3 results in two rules, which are (by default)
combined with ∨

pfresh(X)← ¬q(X, a) ∨ ¬q(X, b)
We rewrite r2 by replacing pfresh(X) with ¬q(X, a) ∨ ¬q(X, b) and get

p(X)← ¬(¬q(X, a) ∨ ¬q(X, b)) (r4)

We simplify r4 to p(X) ← q(X, a) ∧ q(X, b). Finally, we ground the variable Y
in r1 and combine the result with the simplified rule r4:

p(X)← (q(X, a) ∧ >) ∨ (q(X, b) ∧ >) ∨ (q(X, a) ∧ q(X, b)) ,
which can be simplified, according to the derived operators in §3, to

p(X)← q(X, a)⊕ q(X, b) .

34

