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The processes used to generate a 106-member agent population for a long-
range study of 2030 travel in Switzerland are presented in this paper. This 
study was part of an effort to assess the effects of electric vehicles on the 
energy production and stability of the electric supply network. The process 
used well-established statistical methods—survey calibration and statisti-
cal matching. Both methods are described, and consistency with known 
approaches in transportation planning is shown. The paper introduces 
a new approach that allows exogenous specification of shares of activity 
types while maintaining the representativeness of the population: survey 
calibration is applied to satisfy these constraints, and statistical match-
ing allows the joining of data sets with common variables. The discus-
sion of the results for Switzerland focuses on the quality metrics available 
and highlights the links between the activity schedules and total shares of 
the activity types. Furthermore, the error introduced by the calibration 
and matching stages was analyzed and quantified, with special emphasis 
placed on uncontrolled sociodemographic and travel variables. The speci-
fied activity shares could be replicated almost perfectly; the resultant mean 
error in the uncontrolled variables was within the range of a few percent-
age points. Therefore, this approach is a viable alternative to a complicated 
estimation of an activity schedule model that would be necessary other-
wise. Finally, two practical issues—data sets describing different popula-
tions and biased surveys—and their effect on the outcome were tested by  
suitably adjusting the input data.

Agent-based transportation models simulate activities and trips over 
time at the level of individual agents. In contrast to traditional four-
step models, the simulation results provide detailed activity and trip 
information for each agent. This allows incorporating features such as 
emissions (1) or the loading on the electric supply network incurred 
by electric vehicles (2). However, agent-based models also require a 
detailed synthetic agent population as input [see Müller and Axhausen 
for a review (3)], including a distribution of daily activity schedules.

The agent-based models in the tradition of Bowman et al. (4) use 
multilevel nested logit models to predict the likelihood of different 
types of daily activity schedules (5–12). To keep the logit model 
estimable, the number of allowed patterns is generally restricted to 
a reasonable subset of all observed daily schedules. Decision tree–
based models, such as ALBATROSS, equally restrict the structures 

available (13). Still, these models capture some of the trade-offs 
made by travelers and can therefore assess the impact of certain 
transport policies that affect the generalized costs of travel, as cap-
tured by the logsum terms of the different nests feeding into the main 
scheduling choice models at the top of the overall model structure. 
This ability comes at the cost of careful and time-consuming model 
estimation, which is not always available to a project. In addition, 
the models are by definition constrained to transport investment- and 
policy-related processes. In some cases, the analyst is asked to assess 
the impact of exogenous targets on the activity schedules or poli-
cies or both that a transport model cannot capture, for example, the 
arrival of reliable and affordable Internet-based daily and nondaily 
shopping or work-from-home initiatives.

Balmer describes the extraction of observed activity schedules 
from the Swiss transportation microcensus (14). The extracted activity 
schedules are stochastically attached to synthetic agents to create the 
initial demand for a MATSim model (15). The distribution of activ-
ity schedules can be influenced only by using some of the extracted 
activity schedules more often than others. Hettinger proposes a custom 
weighting procedure, the results of which could be used to affect the 
selection of activity schedules during distribution (16).

A novel approach is presented here to estimate weights for a sample 
of persons with observed activity schedules to reproduce given targets 
for the future shares or total durations of different activity types, while 
the sociodemographic distribution is held fixed. In contrast to Balmer 
(14) and Hettinger (16), the activity schedule remains connected to 
the sociodemographic data. While the approach cannot give insights 
into the individual trade-offs made by travelers, it produces a distribu-
tion consistent with the target values at low computational costs and 
without the model estimation effort. Special emphasis is placed on 
using methods that are well established in the statistics community but 
perhaps not so widely recognized in the transportation community:

•	 Survey calibration to reweight data sets to satisfy exogenous 
constraints (17, 18) and
•	 Statistical matching to combine multiple data sets (19).

These methods are presented in detail, along with results for an appli-
cation for all of Switzerland in which a synthetic population of about 
808,000 agents (10% of the population) with corresponding activity 
schedules is created. The case study is part of an effort to assess the 
effects of electric vehicles on energy production and the stability of 
the electric supply network.

The rest of this paper is organized as follows. After the data are 
outlined, the methodology is presented in detail. Subsequently, sim-
ulation results are shown and discussed; the paper then concludes 
with a summary.
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Data

Two major data sets and a classification of communes have been 
used for generating the synthetic population. This section presents 
the data sources and shows which parts of the final population are 
derived from which data source.

Register Survey

As of 2010, the full population census of Switzerland has been 
replaced by the combination of a full register survey and a detailed 
2.5% population survey. The data are collected every year, as opposed 
to the census that was collected every 10 years. The register survey 
describes the full population of Switzerland on a certain day of 2010. 
In the present study, detailed data for all persons have been used 
(8.08 million observations); however, an aggregated version that 
lists only person counts per hectare is freely available and could be 
used as well.

The data set contains the de jure spatial location at the hectare level, 
in addition to basic sociodemographics available from the civil registry. 
A 10% random sample without replacement has been drawn, as this 
was the target sampling fraction for the transport model. Only the age, 
sex, and location attributes were used. The age was binned in three 
classes: younger than 25 years, 25 to 64 years, and 65 years or older.

The population survey has not been used for this study, as the 
transportation microcensus (see below) already contains all necessary 
information.

transportation Microcensus

A nationwide representative survey on mobility behavior, the trans-
portation microcensus, is collected every 5 years in Switzerland, the 
last time in 2010. It contains, among other information, extended 
sociodemographics and information on mobility behavior (activities 
and detailed trips) for 1 day for about 62,900 persons (0.78%). Only 
persons 6 years old and above are included in the sample.

The survey days are distributed uniformly over the year for the 
entire sample. To generate a population that is representative of a typi-
cal working day, only roughly 24,300 (0.3%) midweek observations 
(Tuesday till Thursday) were used. Weights are provided to make the 
sample representative of the full population and of all weekdays. The 
data set also contains location information at the hectare level, but that 
information cannot be used directly because of the relative sparsity 
of the sample.

The microcensus contains a very detailed description of the activ-
ities. Each activity type has been mapped to one of home, work, educa-
tion, leisure, or shopping. (For the present study, daily and long-term 
shopping is not distinguished.) The activity schedule consisting of the 
five activity types above, as well as age, sex, work status, and location, 
has been used from this data set. In addition, activity durations have 
been used for validation (see section on results).

Commune Classification

The Swiss communes are classified into 22 types according to com-
muter movement, occupation, housing conditions, wealth, tour-
ism, population, and role in the central place theory as defined by 
Christaller (20). A coarser version of this classification with nine 
levels is provided. This nine-level classification has been applied 
to the transportation microcensus and the register survey data to 

keep the reweighted sample representative of the population (see 
section on survey calibration) and to determine matching classes 
(see section on statistical matching).

target Population

The transport model requires the following attributes for each agent:

•	 Age,
•	 Sex,
•	 Precise home location,
•	 Precise workplace location,
•	 Education level,
•	 Income, and
•	 Activity schedule with durations for each activity.

The first three attributes are provided by the register survey. For 
imputing the workplace location, a calibrated commuter matrix and 
detailed data on businesses are matched; that procedure is beyond the 
scope of this paper, however. Education level and activity schedule are 
imputed to the register data by statistically matching them with the data 
taken from the transportation microcensus. The implementation of the 
population synthesis procedure is detailed in the following section.

MethoDology

This section shows the process of generating a synthetic popula-
tion as described above in regard to survey calibration and statisti-
cal matching. The process consists of two stages. In the first stage, 
survey calibration is used to reweight a person sample with activity 
schedules to reflect postulated changes in the frequency of certain 
activity types. The second stage combines this calibrated data set 
with the register survey data by means of statistical matching. The 
method used in each stage is described in detail.

Survey Calibration

Estimating a contingency table that satisfies known marginal con-
straints is a classical application of iterative proportional fitting (IPF) 
(21). In the field of transportation modeling, it is used to update a com-
muter matrix to known in- and outflows. Beckman et al. described its 
use for generating a synthetic population, a data set that is statistically 
consistent with microdata and aggregate controls (22). For Beckman 
et al., the rationale for using IPF was to maintain the odds ratios in 
the contingency table, as these define the correlation structure (22). 
From the perspective of population modeling, using IPF is equivalent 
to estimating a log-linear model in which the aggregate controls define 
the model structure and the survey data define the previous distribution 
(23). From an information-theoretic perspective, IPF minimizes the 
Kullback–Leibler divergence between the original and the generated 
data (24). As noted by Pritchard and Miller, the IPF algorithm can also 
be run without first creating a contingency table from the microdata; 
in that case, the result is a weighting of the microdata (25). This tech-
nique is also applied in various propositions to fit a hierarchical sample 
(e.g., persons in households) to constraints at both levels (26–28). See 
also Müller and Axhausen (3) for a detailed description and recent 
improvements of the original approach by Beckman et al. (22).

The problem of adapting a detailed data set to aggregate controls in 
a statistically consistent fashion also occurs in the domain of survey 
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statistics. Sampling weights are adjusted to match known population 
totals, to make the (usually nonuniform) sample more representative 
of the population and to improve the precision of estimation (29). The 
simplest form of adjustment of weights is poststratification: the popu-
lation is divided into strata for which the population totals are known, 
and each stratum is reweighted independently to match the given 
totals. If population totals are known for several overlapping stratifi-
cations, poststratification can be applied repeatedly for each stratum 
in a round-robin fashion until convergence. This procedure is called 
“raking” and is essentially the IPF algorithm. Both poststratification 
and raking operate on categorical variables only. Deville and Särndal 
(17) suggest a more general set of weighting schemes called “gener-
alized raking,” which is developed further in Deville et al. (18). Gen-
eralized raking allows direct estimation of the calibration weights, 
with classical raking as a special case. The procedure offers direct 
support for calibrating continuous variables, for calibrating against 
totals given for different categorizations of a categorical variable, and 
for calibrating nested structures such as persons in households. The 
calibration weights are optimized with respect to a distance function; 
some control over their distribution is possible by choosing one of the 
four alternatives suggested in Deville et al. (18).

The generation of a synthetic population can also be looked at as 
estimation of a population total (the total number of, e.g., persons in 
the population) for each combination of characteristics. The fact that 
the IPF method is used for both population synthesis and survey cali-
bration further suggests that the problems are inherently similar. Con-
sequently, the methods used for survey calibration are well applicable 
to generating synthetic populations. In particular, generalized raking is 
able to solve a superset of the problems that occur with population syn-
thesis. The method is well understood and theoretically justified, and a 
free implementation (30, 31) is available for the R platform for statisti-
cal computing (32). In the following, a brief outline of the generalized 
raking algorithm is given; see Deville et al. for a detailed description 
(18). For simplicity, boldface lowercase letters denote row vectors.

The input is a real-valued matrix X with n rows xk (one per survey 
record) and m columns (one per calibration variable). A vector of totals 
t is provided, and optionally a vector d of original weights (defaults 
to a vector of ones). For a given distance measure, the objective is to 
find a vector w of weights so that w • X = t and the distance between 
w and d is minimal. Several distance measures are suggested, one of 
them (the multiplicative or raking ratio method) makes the algorithm 
equivalent to IPF. The underlying optimization problem is then solved 
numerically by using the method of Lagrange multipliers.

The generation of the input matrix X and the totals from survey 
data are described below.

Continuous Variables

As seen above, generalized raking fits the weighted sum over all attri-
butes to a vector of totals; thus, continuous variables are calibrated in a 
straightforward fashion. Continuous variables and their totals are used 
directly, without transformation, as columns in X and t. (Example: 
number of cars in a household versus a known number of privately 
owned cars.)

Categorical Variables

The categorical variable is the only kind of variable supported by 
IPF. In generalized raking, for a categorical variable with j catego-
ries, j binary indicator columns are created in X, and the correspond-

ing totals are appended to t (example: household type—single, 
family, single with child, . . . ).

Nested Structures

When nested structures are calibrated, for example, persons in 
households, each row in X represents a household. For a continu-
ous variable at the person level, the per-household sum is stored 
in one column in X. Likewise, a categorical variable at the person 
level is converted to j count columns in X, indicating the number 
of persons in the household with the respective characteristics. A 
similar transformation has been suggested by Bar-Gera et al. (26) 
(example: individual age group.)

Survey calibration can be used in a straightforward fashion for 
reweighting a sample of persons with activity schedules as described 
in the section on transportation microcensus. In fact, activity sched-
ules are also a nested structure—different activities grouped together. 
Therefore, the X matrix contains four columns, one for each activity 
type (except home), and each cell contains the number of activities 
of the respective type in the given activity schedule. (Controlling 
home activities would unnecessarily restrict the optimization prob-
lem and lead to more extreme weights; this issue is discussed further 
in the section on deterministic results.) The t vector contains the new 
total number of trips for each type. Four scenarios are analyzed here, 
reflecting the following assumptions based on totals derived from 
the microcensus data (percentages correspond to those totals derived 
from the microcensus data):

•	 Baseline. Original frequency of activities, nothing changes.
•	 Home office. Working from home is encouraged; number of 

work trips decreases by 20%.
•	 Delivery. Home delivery of goods plays a larger role; people 

replace 20% of their shopping trips by leisure trips.
•	 Combined. The combination of the former two scenarios.

In addition, the sample is stratified by age, sex, and commune clas-
sification, and the population in each stratum is kept unchanged to 
ensure that the reweighted sample remains representative of the person 
population. The three age, two sex, and nine commune classes yield 54 
additional columns in X. This is essentially a poststratification applied 
on top of the actual update of activity schedule frequencies—weights 
are estimated to simultaneously satisfy both constraints. The weights 
supplied with the transportation microcensus are used naturally as 
previous weights, which are not changed by the baseline scenario.

The matrix

X =





















0 1 1 0 1 0 0 0 0 0

0 0 1 1 0 0 0 1 0 0

1 0 1 0 0 0 1 0 0 0

0 0 2 0 0 0 0 0 0 1

(1)

corresponds to the following hypothetical set of persons with activity 
schedules:

•	 Young male, HEHLH;
•	 Middle-aged female, HSLH;
•	 Middle-aged male, HWLH; and
•	 Elderly female, HLHLH.
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The first four columns of the matrix represent the frequencies of the 
work (W), education (E), leisure (L), and shopping (S) activities, and 
the remaining six columns denote the sociodemographic attributes 
of the person. (For simplification, the commune classification is not 
considered here.) For the delivery scenario, t = (1, 1, 6, 0.8, 1, 0, 1, 1, 
0, 1) would be used as the calibration totals. (For this small example, 
no solution exists; this is not a problem when the microcensus data are 
used, even in respect to the commune classification.)

All scenarios potentially change the total number of activities in 
the population compared with the baseline scenario. In particular 
the home office scenario leads to an unrealistic decrease in the total 
number of activities, contrary to evidence by, for example, Pendyala 
et al. (33). This issue can be alleviated by choosing appropriate rela-
tive changes for other activity types; however, for the present case 
study it is assumed that the suppressed work trips are not substituted.

Statistical Matching

The term “statistical matching” (or “data fusion”) refers to a stochas-
tic procedure for integration of nonoverlapping data sets (X, Y ) and 
(X, Z) with a common variable X. Here, X, Y, and Z can be multivariate. 
For this procedure, two approaches are distinguished:

•	 Macro. The joint distribution (X, Y, Z) or its key characteristics 
are estimated directly from the input data sets.
•	 Micro. A complete synthetic data set (X, Y, Z) is constructed.

The micro approach is of particular interest for generating a syn-
thetic population. In the simplest case, conditional independence is 
assumed between Y and Z given X. The matching can be performed 
by choosing one data set as recipient and the other as donor and then 
drawing, for each recipient record, a compatible record from the donor  
data set. For categorical X, two records (xy, y) and (xz, z) can be treated 
as compatible if xy = xz or if they are sufficiently close with respect 
to some distance measure. Weights in the donor data set can be used 
during the drawing of a compatible record. This particular kind of 
matching is also referred to as “hot deck imputation,” and it seems to 
be a natural and plausible approach to the problem. A practice-ready 
R package offers an implementation of this algorithm (34).

Many more procedures and tools are available in the statisti-
cal matching framework, such as parametric methods, Bayesian 
approaches, replacement of the assumption of conditional indepen-
dence by the assumption of pairwise independence or by auxiliary 
information, and evaluation of matching uncertainty by using multiple 
imputation and expectation maximization. These procedures and tools 
can be seen as extensions of the hot deck approach. See D’Orazio  
et al. for a detailed treatment of the subject (19).

For the case study presented here, a 10% sample of the register 
survey is combined with the calibrated transportation microcensus 
by using statistical matching with hot deck imputation. The first data 
set is a complete data set with detailed location information, and 
the second data set contains important attributes such as extended 
sociodemographics and activity schedules. As the interest here is in 
generating a complete population, the register survey is used as the 
recipient data set. The calibration weights derived in the section on 
survey calibration are used as matching weights. Common variables 
in both data sets are age, sex, and commune classification; records 
with identical values for all variables are considered compatible. As 
the transportation microcensus contains only persons 6 years old and 
above, these persons were excluded from the register survey before 

matching. (The effect of ignoring this is analyzed in the subsection 
on population mismatch of the section on stochastic results.)

D’Orazio et al. recommend using the larger data set as donor and 
the smaller data set as recipient (19). Violating this recommendation 
obviously leads to donor records used more than once and, there-
fore, to a modification of the variability of the imputed variables 
(in this case, extended sociodemographics and activity schedules). 
Potential sampling errors in the transportation microcensus will 
be amplified. However, both data sets can be considered reliable, 
despite their differences in size. While the generated data set is perhaps 
not optimal for statistical inference, it is usable as input to a transport 
microsimulation.

ReSultS

This section presents experimental results from generating 100 
synthetic populations with different random seeds, with a fixed 
10% sample of the register survey. The section on deterministic 
results presents the results after the calibration of the transporta-
tion microcensus to the four scenarios (see the section on survey 
calibration). Because this method is entirely deterministic, only 
one run per scenario is considered here. Matching the calibrated 
microcensus to the register survey sample yields the final synthetic 
population; this result is discussed in the subsequent section on 
stochastic results.

The experiments were conducted by using the R platform for sta-
tistical computing and the packages survey (30) and StatMatch (34), 
among others. The calibration took only a few seconds per run; 
creating the 10% population requires just under 15 min on a current 
computer server, including data input and output.

Deterministic Results

First, the weights that result from calibrating the transportation micro-
census are considered. After that, average activity counts and durations 
and activity chain frequencies are analyzed.

Weights

The original data are also weighted; these weights are used for the 
baseline scenario. The larger the relative difference of a weight from 
the average weight, the more (or less) emphasis is put on the corre-
sponding observation. Extreme weights might be necessary to ensure 
representativeness (or, in this case, satisfaction of external controls); 
however, observations with extreme weights substantially contribute 
to the variance of population estimators (17).

Figure 1a shows three graphs; all of these graphs show the dis-
tribution of weights against the rank by decreasing weight. The 
top graph shows absolute values on a logarithmic scale (rotated 
cumulative distribution function). All curves are very similar, most 
weights are between 0.3 and 3, and the median weight is below 
1 for all scenarios. The middle graph shows the cumulative sum; 
the deviation from the straight line is an indicator of nonuniform-
ness (35). In turn, the graph at the bottom is a sheared version of  
the middle plot; uniform weights now correspond to a horizontal 
line. As expected, the combined scenario deviates most, followed by 
the delivery and the home office scenarios. However, it appears that 
the bias in the baseline scenario, which uses the original microcensus 
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weights, is much larger than the additional bias introduced by each 
of the scenarios.

Although the weights do not seem to differ much on average 
between the scenarios, they do differ significantly for individual obser-
vations. Figure 1b is a plot of the weights of a sample of 50 observa-
tions for all scenarios. For individual observations, when the scenarios 
are compared with the baseline scenario, the deviation of the com-
bined scenario seems to equal the added deviation of the home office 
and delivery scenarios (on the logarithmic scale); this equality is true 
only in approximation.

Activity Count and Duration

Table 1 shows the relative difference compared with the baseline 
scenario of mean activity count and duration for the different activity 
types and scenarios. In the frequency side of the table the change in 
activity counts from the baseline scenario is shown; the frequency is 
exactly as specified by the configuration of the scenario, except for 
home activities, which have not been controlled for and for which the 
frequency is between −1.6% and 1.9%. The deviation of the average 
activity duration per activity type is in an acceptable range, between 
−2.4% and 8.1%. Notably, among all scenarios, the activity duration is 
altered most for the home office scenario. Activities of all types, espe-
cially work activities, tend to take longer on average. An interpretation 
is attempted in the following subsection.

Activity Schedules

The distribution of the 20 most frequent types of activity schedules in 
the different scenarios, sorted according to their frequency in the base-
line scenario, is shown in Table 2. The table shows, for each activity 
schedule type, the relative frequency, the deviation from the baseline 
scenario, and the change in rank compared with the baseline. Perhaps 
the biggest surprise is the first row, activity schedule type HWH. For 
the home office scenario, the frequency of this activity schedule type 
increases, while it decreases for the other scenarios. A possible rea-
son for this counterintuitive result might be a correlation between 
this activity schedule type and the person classification (age, sex, and 
type of residential commune) (see the section on survey calibration). 
This result is even worse when the analyst is also controlling for the 
average frequency of home activities during calibration. In the home 
office scenario the share of the HLH and HSH schedules increases 
to compensate for the unexpected increase of the share of HWH 
schedules. The HWHWH and HWLWH schedules drop by six posi-
tions each in the overall frequency ranking. That result might explain 
the increase in the average duration of work activities: the share of 
HWH schedules (with long work activities) increases slightly while 
the share of schedules with two (shorter) work activities decreases.

For the combined scenario, the absolute increase of share is largest 
for the HLH and HLHLH schedules. The relative differences for the 
home office and delivery scenarios sum up very closely to that of the 
combined scenario.

Stochastic Results

In the following, the results after matching are presented. In contrast 
to the previous section, the results are of a stochastic nature, and 
therefore the analysis will also cover mostly the distribution along 
with point estimates. First, the frequency and duration of activity 
types under the four scenarios are examined. After the effect on 
uncontrolled variables is analyzed, a sensitivity analysis to assess 
the impact of data sets describing different populations and biased 
survey data is performed.

Activity Count and Duration

The results after matching are summarized in Figure 2, a and b. The 
box plot in Figure 2, a and b, respectively, compares the distribu-
tion of the frequency and duration, for the supported activity types 
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FIGURE 1  Distribution of weights after survey calibration:  
(a) distribution against rank by decreasing weight and (b) plot  
of weights of sample of 50 observations for all scenarios.



162 Transportation Research Record 2429

in the final population with the corresponding value that resulted 
from calibration. The comparison was performed for all scenarios; 
each scenario was run 100 times to obtain a sample of these error 
distributions. There is some slight bias, mostly well within the range  
of ±1%, and about −3% for frequency of education activities (Fig-
ure 2a, middle panel). Because this bias is present even for the base-
line scenario where the calibration does not alter the original weights, 
the bias can be attributed to the statistical matching. A possible rea-

son for the bias might be that the data sets used for the matching 
describe slightly different populations. The most notable difference, 
the absence of persons under 6 years of age in the microcensus, has 
been accounted for; however, the microcensus weights are based 
on the de facto population while the register survey reports the 
de jure population. Fortunately, the relative deviation of the other 
scenarios from the baseline scenario is, on average, much smaller 
than the bias in the baseline scenario. On average, the external 

TABLE 1  Frequency and Duration by Activity Type, After Calibration

Activity Type

Frequency, by Scenario Duration (h), by Scenario

Baseline Home Office Delivery Combined Baseline Home Office Delivery Combined

Home
 Absolute 2.44 2.40 2.49 2.46 2.08 2.20 2.06 2.17
 Relative (%) 0.00 −1.62 1.93 0.63 0.00 5.77 −0.61 4.63

Work
 Absolute 0.66 0.53 0.66 0.53 5.79 6.26 5.68 6.14
 Relative (%) 0.00 −20.00 0.00 −20.00 0.00 8.12 −1.85 5.97

Education
 Absolute 0.21 0.21 0.21 0.21 3.91 3.99 3.88 3.96
 Relative (%) 0.00 0.00 0.00 0.00 0.00 1.89 −0.72 1.11

Leisure
 Absolute 0.89 0.89 1.07 1.07 1.58 1.66 1.54 1.62
 Relative (%) 0.00 0.00 20.00 20.00 0.00 5.23 −2.35 2.44

Shopping
 Absolute 0.41 0.41 0.33 0.33 0.56 0.59 0.56 0.59
 Relative (%) 0.00 0.00 −20.00 −20.00 0.00 5.25 0.06 4.91

TABLE 2  Most Frequent Activity Schedule Types, After Calibration

Schedule

Baseline Home Office Delivery Combined

f (%) Rank f (%) Rank f (%) Rank f (%) Rank

HWH 10.8 1 10.9 (0.1) 2↓1 9.7 (−1.1) 2↓1 9.8 (−1.0) 2↓1

HLH 9.9 2 11.6 (1.7) 1↑1 11.5 (1.6) 1↑1 13.4 (3.5) 1↑1

HSH 6.7 3 7.4 (0.7) 3↔ 4.5 (−2.2) 4↓1 4.9 (−1.8) 4↓1

HWHWH 3.4 4 2.5 (−1.0) 10↓6 3.0 (−0.4) 6↓2 2.2(−1.3) 11↓7

HWHLH 3.3 5 3.3 (0.0) 6↓1 3.7 (0.4) 5↔ 3.7 (0.4) 5↔
HLHLH 3.1 6 3.6 (0.5) 4↑2 4.5 (1.4) 3↑3 5.3 (2.2) 3↑3

H 3.0 7 3.4 (0.5) 5↑2 2.8 (−0.2) 7↔ 3.2 (0.2) 6↑1

HSHLH 2.5 8 2.8 (0.3) 7↑1 2.1 (−0.4) 11↓3 2.3 (−0.2) 9↓1

HWLWH 2.5 9 1.8 (−0.7) 15↓6 2.7 (0.3) 8↑1 2.0 (−0.5) 13↓4

HEH 2.5 10 2.7 (0.2) 8↑2 2.2 (−0.3) 10↔ 2.4 (−0.1) 8↑2

HLSH 2.4 11 2.7 (0.3) 9↑2 2.1 (−0.4) 12↓1 2.3 (−0.2) 10↑1

HWLH 2.3 12 2.3 (0.0) 11↑1 2.6 (0.3) 9↑3 2.6 (0.3) 7↑5

HEHEH 1.9 13 1.9 (0.0) 14↓1 1.6 (−0.2) 14↓1 1.6 (−0.3) 14↓1

HSLH 1.7 14 1.9 (0.2) 12↑2 1.5 (−0.3) 15↓1 1.6 (−0.1) 15↓1

HEHLH 1.7 15 1.9 (0.1) 13↑2 1.9 (0.2) 13↑2 2.0 (0.3) 12↑3

HWSH 1.7 16 1.7 (−0.1) 16↔ 1.1 (−0.6) 17↓1 1.1 (−0.7) 20↓4

HEHEHLH 1.1 17 1.1 (0.0) 19↓2 1.2 (0.1) 16↑1 1.2 (0.1) 19↓2

HLSHLH 1.0 18 1.1 (0.2) 18↔ 1.0 (0.1) 21↓3 1.2 (0.2) 18↔
HWHWHLH 1.0 19 0.7 (−0.3) 23↓4 1.1 (0.1) 19↔ 0.7 (−0.2) 23↓4

HLHSH 0.9 20 1.0 (0.1) 20↔ 0.8 (−0.2) 24↓4 0.9 (−0.1) 21↓1

Note: Figures in parentheses denote relative change to share in baseline scenario; arrows denote change in rank. Differences 
may be off by ±0.1 as a result of rounding.
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specification of activity type frequency is not expected to contribute 
substantial bias to the resultant synthetic population.

Table 3 shows the relative error and the coefficient of variation 
(CV) of activity frequency and duration, compared with the baseline 
scenario. The relative error is very close to that shown in Table 1, an 
indication that little additional error is introduced with the statistical 
matching. The CVs can be considered negligible.

Uncontrolled Variables

Figures 3 and 4 show the effect of the statistical matching on uncon-
trolled sociodemographic and travel variables, respectively. Figure 3 
shows, for each classification from a list of sociodemographic vari-
ables, its absolute share in the survey data and the distribution of the 
error under each scenario when scenario data are compared with the 
survey data. Figure 4 is a similar plot for travel variables. According 
to Figure 3, the error is mostly well within ±6% for sociodemographic 
variables. For marital status, separated is over- and single is under-
represented even in the baseline scenario. Education remains mostly 
unchanged; a tendency toward higher education can be seen in the 
delivery scenario. Generally, the resultant populations are biased 
toward lower income levels, fewer cars, fewer driving licenses, 
and less access to a car. This bias is reduced in the delivery sce-
nario, aggravated in the home office scenario, and balanced again 
in the combined scenario. A conceivable correlation between leisure 
activities and an expensive lifestyle could explain the preference for 
the latter in the delivery scenario. However, the reduction of work 
trips in the home office scenario seems to put more weight on the 
nonworking part of the population.

For travel variables (Figure 4), almost unchanged distributions in 
the baseline scenario are observed; the error varies mostly between 
−6% and 10% for the other scenarios. For daily travel times, the 
home office scenario slightly prefers shorter times and distances, 
while the delivery and combined scenarios put a strong preference 
on longer trips—again, the result of the increased share of leisure 
trips. The situation is similar for the travel distance by car; how-
ever, the preference for longer distances is not as strong as with the 
daily travel time, and the combined scenario is almost unbiased with 
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FIGURE 2  Relative error of (a) frequency and (b) duration per  
activity type.

TABLE 3  Frequency and Duration by Activity Type, After Matching

Activity Type

Frequency (%), by Scenario Duration (%), by Scenario

Baseline Home Office Delivery Combined Baseline Home Office Delivery Combined

Home
 Mean 0.00 −1.62 1.91 0.61 0.00 5.72 −0.67 4.54
 CV 0.04 0.04 0.04 0.04 0.15 0.16 0.14 0.14

Work
 Mean 0.00 −20.04 0.03 −20.01 0.00 8.15 −1.88 5.98
 CV 0.15 0.11 0.14 0.13 0.10 0.10 0.10 0.11

Education
 Mean 0.00 −0.01 0.05 0.02 0.00 1.90 −0.75 1.10
 CV 0.22 0.23 0.25 0.24 0.15 0.14 0.15 0.15

Leisure
 Mean 0.00 0.00 20.01 19.98 0.00 5.20 −2.26 2.54
 CV 0.11 0.11 0.12 0.13 0.15 0.15 0.13 0.15

Shopping
 Mean 0.00 0.05 −19.99 −19.95 0.00 5.12 0.00 4.73
 CV 0.13 0.15 0.14 0.13 0.25 0.26 0.25 0.27
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respect to these indicators. In all scenarios there seems to be a dis-
approval of public transport, perhaps because leisure trips are mostly 
undertaken by car, and a reduction of work trips implicitly leads to a 
reduction of public transport trips.

Population Mismatch

In an earlier version of the simulation an attempt was made to 
match the calibrated microcensus with the full register survey, not 
accounting for the population mismatch resulting from the absence 
of small children younger than 6 years of age in the microcensus. 
That procedure has resulted in an extreme overrepresentation 
of education activities and a slight underrepresentation of other 
activity types. All records in the register survey corresponding to 
small children are matched to microcensus records that very likely 
include an education activity and prefer out-of-home leisure time 
to time at home.

The results presented earlier in the subsection on activity count and 
duration were obtained by ignoring small children for the statistical 
matching. In this subsection simulations in which the age threshold 
has been varied between zero (i.e., using all records) and 10 in steps 
of two are analyzed. For each scenario and each age threshold, only 

one simulation has been run. Figure 5, a and b, shows the rela-
tive error of the frequency and duration, respectively, of educa-
tion activities. The error in frequency introduced by the population 
mismatch is much larger than the difference between the scenarios. 
However, although the error in duration shows a negative trend 
with increasing age threshold, the stochastic variation reverses the 
trend in some cases.

Biased Survey Data

For the simulation of a highly biased survey, the previous micro-
census weights d are transformed. The weight of each record is 
substituted by its kth power with k ∈ {0, 1, 2}; this process leads 
to three scenarios: uniform weights, unaltered weights, and exag-
gerated weights. For each scenario and each weight transformation, 
10 synthetic populations were generated; all of them satisfied the 
external constraints. Figure 6, a and b, shows the distribution of the 
errors compared with the original microcensus data.

The differences between the scenarios are often negligible com-
pared with the differences between different initial weights. A large 
additional error introduced by the matching process might be an 
indicator for potential bias in the data.
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CoNCluSioN

This paper presents a novel approach to weighting a sample of 
persons with activity schedules so that given targets for shares of 
different activity types are satisfied. The weighting is then used to 
randomly distribute the persons over the study area. An application is 
presented in which a 10% synthetic population for all of Switzerland 
is created.

The methodology used for reweighting the synthetic population 
has been successfully applied in the field of survey statistics for more 
than 20 years. Stochastic distribution is considered as a special case 
of statistical matching, a relatively new area of research focusing on 
combining data sets according to common attributes. Both meth-
ods can be applied in a straightforward fashion to the problem at 
hand, with very little modeling and computational effort. The result 
is a synthetic population that matches the targets almost perfectly 
and introduces very little bias. Only a little programming effort was 
required thanks to the availability of free implementations for survey 
calibration and statistical matching for the R platform for statistical 
computing.

Assessing the error introduced by statistical matching is possible 
only if the matched data sets refer to the same population. Potential 
enhancements include the control for total duration per activity type 
and support for a finer categorization of activities (e.g., the distinc-
tion between daily and long-term shopping). Finally, the weighting 
approach could be compared with a model-based approach by using 
actual simulation results of a transportation model.
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