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Abstract
In this paper a method to calculate the thermal resistance of windings is presented and validated by
measurements. Two formulas have been developed for widely used wire types in power electronics
being round and litz wire. With the presented approach it is possible to describe the thermal resistance
of arbitrary wire arrangements. This analytical approach can either be used in fast forward designs of
magnetic devices, respectively can also be integrated in automatized optimization procedures to improve
the designs of magnetic components. The calculated results are showing good coincidence with the
measured values.

Introduction
In almost every converter the design of magnetic components is an important part of the overall design.
Due to the high number of degrees of freedom and geometric parameters this is often performed with the
help of optimization procedures (see Fig.1(a))[1]. At the end of every design of a magnetic component
the final component temperature is the constraint if the design is valid or the geometry has to be modified
by the optimizer. Therefore, to obtain the temperatures in each part of the magnetic component, thermal
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Figure 1: (a) General magnetic component optimization procedure. (b) Optimized transformer geometry.
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Figure 2: (a) Thermal equivalent circuit of a transformer. (b) Cross section of the transformer in Fig.1(b).

equivalent circuits are used. Based on the transformer thermal model (e.g.[1]), all critical temperatures
are determined (see Fig.2(a)). The model contains all types of heat transfers represented by equivalent
thermal resistors and all losses are modelled by current sources. In Fig.2(b) the thermal transition be-
tween core parts and windings (Rth,N1−CC), the heat transfer within the core (Rth,C) respectively between
primary and secondary winding (Rth,N1−N2) is performed by heat conduction. Also the heat transfer
within the windings (Rth,Nx) is represented by this type of heat transfer. The thermal resistances between
core and ambient (Rth,C−Am) or winding and ambient (Rth,N2−Am) are based on radiation and convection.
Most of before mentioned thermal resistors are well described in literature e.g. [2], but there exists a lack
concerning the accurate determination of the thermal winding resistance Rth,Nx. Either there is the use
of strongly simplified approximation formulas [3],[4],[5] where the transition between single wires and
winding layers is neglected, or the resistance is modelled with the help of measurements [6],[7] or finite
element method (FEM) [8],[9]. This paper presents an analytical expression for the thermal winding
resistor Rth,Nx which can be used within optimization algorithms for transformer or inductance design.
The derivation of Rth,Nx is given in detail in section II . In section III, a measurement setup to verify the
results of section II is presented. Finally, the results from calculation and measurement are compared in
section IV.

Derivation of the thermal resistance
To describe thermal transitions in transformer or inductance windings it is necessary to describe the way
of the heat flow Q̇. This way can be represented by a thermal resistance Rth,Nx which is derived in this
section. The thermal resistance Rth,Nx is formed by a parallel connection of a tangential resistance Rth,tan
and a radial part Rth,rad . The calculation of the tangential part is presented in a first step. The radial part
is based on an electrothermal analogy as will explained thereafter.
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Figure 3: Heat flow in multiple layer windings.



Tangential thermal resistance

The heat flow Q̇ in multiple layer windings can be divided into two shares [10] (see Fig. 3). First, in a
tangential part Q̇tan which takes the flow along the winding from layer to layer into account. Second, in
a radial part Q̇rad which represents the heat flow between two neighbouring winding layers through the
isolation layer. The tangential part between two corresponding winding layers Rth,tan can be calculated
by

Rth,tan =
lW · (2NpL−1)

2λCuACu
≈

lW ·NpL

λCuACu
(1)

where NpL is the number of turns per layer, lW is the mean length per turn and ACu the copper cross
section.

Electrothermal analogy
In literature, the electrothermal analogy is often described with the help of the electrical flow field and
the thermal flow field which leads to the thermal circuit model depicted in Fig.2 [11]. Another analogy is
between the electrostatic field and the thermal flow field. There, the electrical field lines can be regarded
as the heat flow lines in a thermodynamic problem. All relations between these analogies are listed in
Tab.I.
Basic winding arrangements can be divided into orthogonal arranged wires (see Fig.4) and orthocyclic
arranged wires (see Fig.5). In orthogonal windings, the wires of the second layer are lying exactly on
top or beside the next layer, whereas in orthocyclic windings the wires of the next layer are lying in
the gaps of the previous layer. Fig.4(b) shows the electrical field distribution between two orthogonal
arranged wires, each with different potential p1, p2 on an equipotential surface. The thermal flow field
distribution is shown in Fig.4(c). There, the conductor surface is approximately an isothermal surface
with given temperatures T1, T2. Comparing Fig.4 (b) and (c) shows a good match of the electrical and
the thermal field lines. Hence, the calculation of the radial thermal resistance Rth,rad between two round
orthogonal arranged conductors is based on the calculation of the electrical capacitance between two of
them as presented in [12]. For the sake of completeness, the derivation of the electrical capacitance is
shortly summarized at first and in a second step, the transition to the thermal resistance is given.

Orthogonal winding capacitance model
To derive the orthogonal winding capacitance model, two wires are arranged next to each other, separated
by an isolation layer (see Fig. 4(a)). In a first assumption, it can be stated that the electrical field lines
will have almost no deviation in the isolation layer because in most cases the isolation layer of the wire
with the thickness δ is much smaller than the radius ro of the wire and the deviation of the E-field lines
due to the different permittivities of copper and the isolation can be neglected. Finally, the field lines run
through the isolation layer h perpendicularly. Comparing Fig. 4 (a) and (b), the deviations of the field
lines have their maximum at ϕ = 0 and a minimum at ϕ = π/2. Due to the fact that most of the field lines
will run in the region of ϕ = π/2, the error is low. The derivation is given in the following.
According to the boundary conditions between wire isolation and air follows

εIsoEIso = EAir sinϕ (2)

Where εIso is the permittivity and EIso the electrical field strength of the wire isolation. EAir is the field
strength in air. The perpendicular ingress of the field lines from air into the isolation layer leads to

εLayELay = EAir (3)

E Q

T1
p1 T2p2

h hδ δ
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Figure 4: (a) Two orthogonal arranged wires with ideal assumed electrical field lines. (b) Electrical field lines
between two wires with potential p1 and p2. (c) Thermal heat flow between two wires simulated with COMSOL.



Table I: Electrothermal analogy

Electrostatic field Electrical flow field Thermal flow field
Charge Q Current I Heat flow Q̇
Capacitance C Conductance G Thermal conductance Gth
Voltage V Voltage V Temperature difference ∆T
Permittivity ε Specific conductivity γ Thermal conductivity λ

Q =C ·V I = G ·V Q̇ = Gth ·∆T

where εLay is the permittivity and ELay is the electrical field strength of the isolation layer. Performing
the line integral of the voltage between the two conductors gives

V = 2EIsoδ+ELayh+2EAirσ . (4)

Using (2), (3), (4) and introducing

sinϕ =

√
r2

o−ξ2

ro
and σ = ro−

√
r2

o−ξ2 (5)

and by substituting

α = 1− δ

εIsoro
and β =

1
α

(
1+

h
2εLayro

)
(6)

all field strengths can be calculated by

ELay=
V

2εLayα

(
βro−

√
r2

o−ξ2
) ,EIso=

V
√

r2
o−ξ2

2εIsoroα

(
βro−

√
r2

o−ξ2
) ,EAir=

V

2α

(
βro−

√
r2

o−ξ2
) . (7)

The different energy contributions are belonging to the area in the red rectangle (see Fig. 4(a)). The
energy in the isolation layer is

WLay =
εoεLay

2
lW h

∫ +ro

−ro

ELay(ξ)
2dξ . (8)

The energy in the wire isolation in polar coordinates with the origin in the center of the left wire is

WIso = εoεLaylW
∫

π

0

∫ +ro

ro− δ

2

EIso(ϕ)
2rdrdϕ (9)

and the energy in the air in cartesian coordinates

WAir = εolW
∫ +ro

−ro

∫
σ(x)

0
EAir(x,y)2dydx . (10)

The total energy then is formed by

Wall =WLay +WIso +WAir . (11)

After solving the integrals and several steps of substitution,

Wall =
εolWV 2

α

{
Y +

1
8εIso

(
2δ

ro

)2 Z
α

}
(12)

with

Y = arctan

(√
β+1
β−1

)
β√

β2−1
− π

4
(13)



and

Z =
β
(
β2−2

)
(β2−1)3/2 arctan

(√
β+1
β−1

)
− β

2β2−2
− π

4
. (14)

The capacitance can be found by comparison of coefficients (12) with W =CorthV 2/2 which leads to

Corth =
2εolW

α

{
Y +

1
8εIso

(
2δ

ro

)2 Z
α

}
. (15)

The transition to the thermal resistance follows below.

Orthocyclic winding capacitance model
In case of orthocyclic layers, the basic capacitance describes the energy which is stored between the two
neighbouring wires in the left layer and the one wire in the right layer as shown in the basic cell, which
is a triangle in Fig.5(a). Its energy has to be multiplied by two considering also the energy in both of the
adjacent triangles which are also contributing to the entire energy of the basic capacitance. Again, the
trends of the electrical and thermal flux lines depicted in Fig. 5 (b) and (c) showing good accordance like
in the orthogonal case. Taking the same assumptions into account for the electrical field lines like in the
orthogonal case leads to [12]:

Ccyc = 4εolW

[
MAir +MIso

(
δ

εDr2
o

)(
ro−

δ

2

)]
(16)

with

MAir =
∫ π

6

0

cos2 ψ− cosψ
√

cos2 ψ−0.75−0.5[
cosψ−α(

√
cos2 ψ−0.75+0.5)

]2 dψ (17)

MIso =
∫ π

6

0

sin2
ψ+ cosψ

√
cos2 ψ−0.75[

cosψ−α(
√

cos2 ψ−0.75+0.5)
]2 dψ . (18)

In the following, the transition to the thermal resistance is described next.

Radial thermal resistance
In order to determine the radial thermal resistance, the analogy between the electrostatic field and the
thermal flow field from Tab. I is applied. By simply replacing all permittivities with the equivalent
thermal conductivities and building the inverse of (15) and (16), Rth,rad can be obtained as

Rth,rad,orth=

[
2λAirlW

α

(
Y+

1
8λIso/λAir

(
2δ

ro

)2Z
α

)]−1

(19)
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Figure 5: (a) Three orthocyclic arranged wires with ideal assumed electrical field lines and basic cell (doted
triangle). (b) Electrical field lines between three orthocyclic arranged wires with potentials p1, p2 and p3.
(c) Thermal heat flow between three orthocyclic arranged wires simulated with COMSOL.



and

Rth,rad,cyc =

[
4λAirlW

(
MAir +MIso

(
δ

λIso/λAirr2
o

)(
ro−

δ

2

))]−1

(20)

with

εo
c sλAir εLay

c s λLay

λAir
εIso

c s λIso

λAir
(21)

Where λAir is the thermal conductivity of air, λLay the conductivity of the isolation layer and λIso is the
conductivity of the wire isolation.
Finally, in case of an either pure orthogonal or orthocycic winding the final thermal resistance can be
written as

Rth,Nx = (Rth,tan||Rth,rad)
NL

NpL
(22)

For simplification reasons Rth,rad,orth and Rth,rad,cyc are renamed to Rth,orth and Rth,cyc. In general every
winding is a combination of both thermal radial resistances and will be investigated in the next section.

Combined thermal resistance and split resistor model of round solid wire windings
Due to manufacturing reasons the overall thermal resistance Rth,Nx of a solid wire winding as shown for
example in Fig 6(a) is a combination of an orthogonal and an orthocyclic wire arrangement. Usually, at
least both halves of the outer layers of the winding can be regarded as one orthogonal layer (see Fig.7(a)
and (b)). This leads to the general form

Rth,Nx = (Rth,tan||Rth,cyc)
NL−North

NpL
+(Rth,tan||Rth,orth)

North

NpL
(23)

where North is the number of considered orthogonal layers.
Fig. 6(b) shows the transition from a winding with single solid copper wires and combined layers to a
split model with Rth,Nx which is used in Fig.2 to model the winding.

Orthogonal layers
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Rth,Nx

(a)
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Rth,orth/2 Rth,cyc

Rth,tan/2

(b)

Figure 6: (a) Cross section of a solid wire winding with orthogonal and orthocyclic layers. (b) Transition from the
physical solid wire winding with combined layers to the split resistor model.

Combined thermal resistance and split resistor model of litz wire windings
As litz wire is often used to reduce high frequency losses in windings, the analytical model for litz wire is
presented in the following. Fig.7(a) shows the cross section of a litz wire winding with three orthocyclic
layers and one orthogonal layer. The transition from the physical litz wire winding to the thermal split
model is shown in Fig.7(b) and can be performed in 3 steps. Step (A) starts with the transformation of
the round litz wire bundle with NS strands into a square litz bundle with side length

√
NS · 2ro. In step

(B), the resistance between each litz bundle is calculated and finally in step (C) this leads to the split
model. One way to model the thermal resistance of the litz wire bundle Rth,Litz is the series connection



of the orthocyclic contributions Rth,L,cyc between each litz strand and the orthogonal part Rth,L,orth at the
edges (see Fig.7(b)). Both resistors are determined by using litz strand parameters and (20) for Rth,L,cyc
and (19) for Rth,L,orth. Finally

Rth,Litz = Rth,L,cyc

(
1− 1√

NS

)
+

Rth,L,orth√
NS

. (24)
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Figure 7: (a) Cross section of a litz wire winding. (b) Transition from the round litz wire bundle into a square litz
bundle (A). There, the litz strands of the doted green square (A1) are rearranged to a squared pattern and the outer
isolation is shifted to the right (A2). (A3) shows the thermal network of one rearranged litz bundle. Calculation
of the thermal resistance between each bundle (B), leads to a split thermal resistor model (C) of the whole litz
winding.

An extended model of the litz wire bundle is depicted in Fig.8. There, the heat flow is modelled by the
already known radial part Q̇rad,L and in addition a part along a single litz strand Q̇SL caused by the lay.
There exists also a tangential contribution, but due to the high ratio between mean length per turn and
litz strand cross section it can be neglected. The way along the strand can be described by

Rth,SL =
SL/2

λCur2
o,Lπ

(25)

where SL is the lay length of the litz wire and results in the network shown in Fig.8(b). Solving this
network with a programm like PSPICE gives R

′
th,Litz. This thermal resistor represents one horizontal layer
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Figure 8: (a) Litz wire with two considered heat paths Q̇rad,L and Q̇SL. (b) Equivalent thermal network of one
horizontal litz strand layer from A to B and A’ to B’.



of litz wires from point A to B and from point A’ to B’. Due to this parallel path, the resulting resistor
R
′
th,Litz has to be divided by

√
NS · lW ·0.5. Additionally the resistors Rth,L,orth (litz strand parameters and

(19)) and Rth,L,cyc (litz strand parameters and (20)) have to be multiplied by lW .

Rth,Litz =
2R

′
th,Litz√
NSlW

with R
′
th,L,cyc = lW Rth,L,cyc and R

′
th,L,orth = lW Rth,L,orth (26)

Finally using (24) or (26) with litz strand parameters and (1), (19), (20) with litz bundle parameters gives
the general form of the thermal resistance of litz wire windings as

Rth,Nx = [Rth,tan||(Rth,cyc +Rth,Litz)]
NL−North

NpL
+[Rth,tan||(Rth,orth +Rth,Litz)]

North

NpL
. (27)

Measurement setup
For validating the models depicted in Fig.6 and Fig.7 two test setups as shown in Fig.9 have been built.
Three plastic layers are used for thermal isolation through which a negligible amount of heat is dissi-
pated and the generated heat will be forced to dissipate in y-direction through the winding. The inner
isolation layer is made of PET because this material withstands continuous temperatures up to 100 ◦C
but unfortunately has a relatively high thermal conductivity. To overcome this problem two additional
layers of PVC are attached on the top and bottom respectively.
Two power resistors are employed as heat sources mounted on an aluminium tube which is also used as
the winding bobbing. In the first case, the test windings consists of 14 winding layers NL and 16 turns
per layer NpL. The wire is an enamelled round Cu-wire with PEI and PAI isolation. In the second case,
litz wire is used to build a winding consisting of 10 winding layers NL and 10 turns per layer NpL. An
polyesterfilm folie (Mylar R©) is used for the outer isolation. To determine the inner and the outer winding
temperature two temperature sensors (K-type thermo couples) are mounted as shown in Fig.9(a) and (b).
All other material and geometric properties are listed in Tab. II. The photo of the test setup is shown in
Fig. 9(b), once without the winding and with mounted heating resistor and once completely assembled.
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Figure 9: (a) Thermal test setup cross section. (b) Manufactured thermal test setup, here of single solid wire.

Results
The comparison between the measurements and the analytical model is given in the following for the
single solid wire winding exemplarily (see Fig.9(b)).
Using (23) and the parameters from Tab.II results in Rth,Nx = 2.06◦C/W. Concerning that the isolation
of the wire is a combination of a PEI and a PAI material the mean value of both of them will be used for
the thermal conductivity λIso. The thermal resistance in x-direction of the thermal isolation layer is

Rth,PVC,PET = 2(2Rth,PVC +Rth,PET ) = 18.5◦C/W where Rth,X =
4l

d2
AπλX

. (28)



Table II: Material properties and winding parameters.

Material properties

Material Parameter
Thermal conductivity
λ in W/Km

Max. continuous temperature
Tmax in C◦

Air [13] λAir 0.028 −
Copper (Cu) [13] λCu 401 ∼ 1000
Polyvenylchlodrid (PVC) [14] λX 0.15 60
Polyethylenterephthalat (PET) [14] λX 0.24 100
Polyetherimid (PEI) [14] λIso 0.24 170
Polyurethan (PU,PUR) [14] λIso,Ls 0.245 120
Polyamidimid (PAI) [15] λIso 0.26 250
Polyesterfilm (Mylar R©) [16] λIso,L 0.155 < 200

Winding parameters Round wire Litz wire
SH-Term 210 Grad 2 [17] RUPALIT R©Safety V155 [18]

ro [mm] 1.563 2.5
δ [µm] 63 37.5

lW [mm] 357.4 377
h [mm] 0 0

ro,L [µm] − 50
δL [µm] − 4
SL [mm] − 47
NS − − 1260
NL − 14 10
NpL − 16 10
North − 1,6 1

Due to the fact that the ratio between Rth,PVC,PET and Rth,Nx is about 9 the heat loss through the isolation
layer can be neglected and the thermal setup will be described with the simplified thermal circuit as
shown in Fig. 10. The Rth,Nxm from measurements can then be found by

Rth,Nxm =
∆T
Q̇

=
T1−T2

Q̇
. (29)

Using North = 6 (as given in Fig.6(a)) results in a low error between the calculated and the measured
resistance in the case of round wire, as can be seen in Tab. III. Generally, the number of North is not
available, so the deviation for at least both halves of the outer layers which can be regarded as one

T1

ΔT Q

T2 Rth,Nx

+
-

Figure 10: Simplified thermal equivalent circuit of the test setup.

Table III: Results

Measured results Calculated results Used equ. North

∆T [◦C] Q̇[W] Rth,Nxm[
◦C/W] Rth,Nx[

◦C/W] Error [%]

Round wire [17] 45.6 22.1788 2.06
1.6343 −20.7 (23) 1
2.1124 +2.5 (23) 6

Litz wire [18] 52.6 20.98 2.51
3.9132 +55.9 (24),(27) 1
3.757 +49.68 (25),(26),(27) 1



orthogonal layer (North = 1) is also given below. The deviation in case of litz wire is higher. This can be
explained by the fact that the analytical approach is assuming that the heat transition points towards the
bobbin and between the wires are pure contact points, not as seen in Fig.7(a) some kind of contact areas.
Therefore, the calculated resistance is too high.

Conclusions
In this paper, the derivation of the thermal resistance of multiple layer windings with single solid wires
or litz wires has been presented and validated by measurements. This analytical approach can either
be used in fast forward designs of magnetic devices, respectively can also be integrated in automatized
optimization procedures. Replacing λAir by a corresponding thermal conductivity also moulded windings
can be considered. The error between the analytical solution and measurements in the case of round wire
is low. In the case of litz wire it is a worst case approximation.
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