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Abstract

Breakup of fractal aggregates in laminar and turbulent flow has been investigated experimentally by
three dimensional particle tracking velocimetry (3D-PTV). The motivation of the thesis is to understand
the breakup mechanism in Lagrangian frame so that the entire history of the flow dynamics around the
aggregate can be unveiled. This will render access to the intriguing evolution of the ”character” of the
key parameters responsible for breakup. Our current understanding on aggregate breakup within the
scope of experiment and numerics is limited to measuring the average size distribution and proposing
the so called breakage kernels accordingly. This is where we bring forward the essential question which
is: What is the Lagrangian contribution of the flow field to which an aggregate is exposed to for a certain
time before it breaks apart?

Our intention to investigate breakup aligns with this question throughout this work which involves some
stand alone features worth mentioning. We take the advantage of the capability of 3D-PTV to simul-
taneously measure the full tensor of the velocity gradient, ∂ui

∂xj
, around the aggregate and track it in a

Lagrangian way while looking at the breakage phenomena as it happens. That means we come to know
how an aggregate along its life time is experiencing the instantaneous velocity gradients which in turn
will complement our present knowledge on breakup mechanism. Finite size non inertial aggregates are
injected into the flow individually which ensures that the carrier fluid property is not subject to change due
to high concentrations of the particle phase and technically it is easier to track a single breakage event
once at a time. First we analyze the breakup in laminar flow condition, i.e., axisymmetric elongational
flow generated in an orifice where the rate of strain increases monotonically towards the orifice. Because
of the steady nature of the flow, we measure the flow field separately and analyze the aggregate breakup
based on the averaged flow field using an Eulerian grid with a spacing of ∆ = 0.5mm. The domain sym-
metry provides a useful means to determine the accuracy of the measured velocity field. The accuracy
is sufficient to take spatial derivatives and thus to obtain the complete field of velocity gradients, ∂ui

∂xj
.

Before the orifice entrance, the intermediate eigen vector λ2 together with the equally strong λ3 of the
rate of strain tensor sij = 1

2

(
∂ui

∂xj
+

∂uj

∂xi

)

play an effective role by compressing the aggregates with the

stretching exerted by λ1, whereas the most extensional eigen vector λ1 and the ratio of the intermediate
to the most compressive eigen value, i.e., |Λ2

Λ3
| → 0 past the orifice acts as a demarcation for the transi-

tion from elongation to simple shear. We found most of the breakage taking place within ∼ 2-3 mm on
either side of the contraction where s2 reaches its maximum value.

In the second part of the experiment, we analyze breakup in fully turbulent flow. To study the structure
of the homogeneous quasi isotropic turbulence at a Taylor based Reynolds number Reλ = 90 around
the aggregate we compute the coarse grained velocity derivative, ∂ũi

∂xj
which exhibits roughly the same

characteristic properties like their small scale counterpart. Probably one of the most important properties
we have observed is 〈Λ2〉 > 0 which indicates that ∂ũi

∂xj
also feels self amplification at our scale of
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measurement, which is just at the upper end of the viscous scale. More generally, the effect of the small
scale dynamics on the aggregates can be reflected appropriately through the measured coarse grained
velocity derivative. We measure the coarse grained strain s̃2 and enstrophy ω̃2 along the Lagrangian
trajectories of the aggregate which are on an average ∼ 10τη long where τη is the Kolmogorov time scale
of the flow. That means we are capable of looking into the history of the instantaneous flow dynamics
in the proximity of the aggregates as long as 10τη which is supposed to be sufficient for understanding
the Lagrangian influence on breakup beacuse the characteristic time scale of vorticity and strain is of
order O(τη). While s2 is the key agent for the structural deformation, ω2 governs the rotation of the
aggregates along its trajectory. Hence in the region of high ω2 an aggregate is expected to experience
less deformation but to tumble whereas in s2 dominated regions of the flow an aggregate is subject to
larger deformation. Besides studying how the strain s̃2 and enstrophy ω̃2 evolve over time along the
aggregate trajectory, we also study the role of the competing mechanism of s̃2 and ω̃2 on the breakup.
Therefore, we examine the orientation of the aggregate with respect to the eigen frame of the rate of strain
tensor, i.e., λi’s. That sheds light on how the aggregate responds to the rapid evolution of the strain eigen
frame that continuously exerts stretching and compression. We measure the separation vector r, a vector
between the fragments at the time of breakage. It is interesting to observe how consistently r aligns itself
with λ1, the most extensional eigen vector along its Lagrangian trajectory. For inconsistent alignment,
this will also show how frequently ω2 interferes with s2 to deflect the aggregate from λi’s. To address the
situations where an aggregate might sustain higher s2 but undergoes fragmentation at somewhat lower
s2, we investigate if strain is directionally biased towards the separation direction between the fragments.
If we assume the plane across which an aggregate breaks apart is the weakest plane, i.e., mechanical
anisotropy is more pronounced there than anywhere inside the aggregate, then before the breakage,
stretching along r should exhibit a smaller value than the one at breakage. In principle, we want to explore
if there exists a critical behavior between the strain and the direction along which breakup occurs. This is
informative to understand, at least on a qualitative level, the effect of sij on the aggregate’s mechanical
property. Finally, to study the cumulative effect of ∂ũ

∂xj
on the aggregate, we use the Cauchy-Green

deformation tensor W. The aggregates are soft matter and fractal in morphology. Therefore they are
susceptible to deform considerably over a certain time scale and that is why the pointwise measure of s2

or ω2 might prove inadequate to explain the underlying breakup mechanics simply due to the reason that
the instantaneous estimate does not acknowledge the preceding history. If the aggregates experience
finite deformation over a finite length of time and thereafter fail to sustain their unbroken state then we
stress on the importance to investigate critical deformation and the time that yields that state. The ratio
of the intermediate eigen value of W to the most extensional one allows to estimate the ”shape” of the
deformed aggregate and consequently the dominant role between the two. We found that, indeed the
direction along which breakage takes place is the most stretching direction of the Cauchy-Green eigen
vector. That means an aggregates breaks into two parts in the direction along which it experiences
the maximum integrated stretching. The appropriate time scale for which we found this result most
pronounced is about twice the Batchelor time scale which is equivalent to four Kolmogorov time scales
in our experiment.
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Zusammenfassung

In dieser Doktorarbeit wurde das Brechverhalten von fraktalen, kolloiden Polymer-Aggregaten experi-
mentell mittels drei-dimensionaler Particle Tracking Velocimetry (3D-PTV) unter laminaren sowie turbu-
lenten Strömungsbedingungen untersucht. Die Zielsetzung war ein tieferes Verständnis der Brechmech-
anismen in einem Lagrange’schen Bezugssystem, das Zugang zum zeitlichen Ablauf der Strömungs-
dynamik in der direkten Umgebung und entlang der Bahnlinien von Aggregaten ermöglicht. Dies brachte
neue Einblicke in die Eigenschaften von Brechmechanismen und deren Schlüsselparameter. Unser bish-
eriges Verständnis von Brechverhalten von kolloiden Aggregaten stützte sich vor allem auf experimentell
und numerisch erfasste mittlere Grössenverteilungen und damit verbundene Bruchkriterien. Letztere
basieren im Wesentlichen auf unmittelbar wirkende Kräfte und lassen ihre zeitliche Entwicklung und ku-
mulierten Effekt ausser Acht. Hier setzt unsere Kernfrage an, die lautet: was ist der Lagrange’sche
Beitrag des Strömungsfeldes, welchem ein Aggregat für eine bestimmte Zeit ausgesetzt ist bevor es
letztendlich bricht?

Unsere Vorhaben, das Brechverhalten zu untersuchen ist auf diese Frage ausgerichtet und basiert
auf folgenden Eckpunkten. In erster Linie wurde die Fähigkeit der Messmethode 3D-PTV, den vollen
Geschwindigkeitsgradienten Tensor entlang der Bahnkurven von Aggregaten während des Brechens
ermitteln zu können, ausgeschöpft. Das heisst, es konnten Informationen darüber ermittelt werden,
wie Aggregate über ihrer Lebenszeit durch Geschwindigkeitsgradienten beeinflusst werden, was direkte
Auskunft über Bruchmechanismen gab. Aggregate finiter Grösse wurden einzeln in die Strömung einge-
bracht, sodass die Strömung selbst nicht durch die Aggregate beeinflusst wurde, und damit nur jeweils
ein Brechereignis stattfinden konnte, was die Detektion vereinfachte. Als erstes wurde das Brechver-
halten unter laminaren Bedingungen, und zwar unter einer achsensymmetrischen Dehnströmung un-
tersucht. Diese wurde durch einen Fluss durch eine kleine Mündung realisiert, gegen welche die
Dehnung monoton zunimmt. Wegen der stationären Natur der Strömung wurden Brechverhalten und
Geschwindigkeitsmessungen separat untersucht und nicht simultan erfasst. Die Symmetrie der Strömung
ermöglicht eine Abschätzung der Messgenauigkeit, die ausreichte, um den Geschwindigkeitsgradienten
Tensor ∂ui

∂xj
zu berechnen. Vor der Mündung spielt der zweite Eigenvektor λ2 des Dehnungstensors

sij = ∂ui

∂xj
+

∂uj

∂xi
zusammen mit dem gleichstarken dritten Eigenvektor λ3 eine effektive Rolle, indem sie

eine Kompression ausüben, während λ1 für starke Dehnung verantwortlich ist. Das Verhältnis der Eigen-
werte des Dehntensors |Λ2

Λ3
| → 0 nach der Mündung markiert den Übergang von der Dehn- zu einer

Scherströmung. Die Messungen ergaben, dass die meisten Brüche an einem Abstand von etwa 2-3 mm
vor und nach der Mündung auftraten, wo s2ij maximal war.

Im zweiten Experiment wurde das Brechen von Aggregaten in einer voll entwickelten turbulenten Strömung
untersucht. Um die Struktur der homogenen, quasi isotropen Turbulenz mit einer Taylor Reynoldszahl von
Reλ = 90 zu erfassen, wurde der gefilterte Geschwindigkeitsgradienten Tensor ∂ũi

∂xj
gemessen, welcher

iii



im Wesentlichen dieselben Eigenschaften seines fein-skaligen Gegenübers erfüllt. Möglicherweise die
wichtigste Eigenschaft, die beobachtet wurde war Λ2 > 0, welche besagt, dass ∂ũi

∂xj
Selbstverstärkung auf

unserer Messskala, welche am oberen Ende des viskosen Bereichs liegt, spürt. Im Allgemeinen konnte
der Effekt von fein-skaliger Dynamik auf Aggregaten angemessen durch den gefilterten Geschwindigkeits-
gradienten Tensors wiedergegeben werden. Die gefilterte Dehnung s2ij und Wirbelstärke ω2 wurde ent-
lang Aggregatsbahnen gemessen, die im Mittel etwa 10τη lang waren, wo τη die Kolmogorov Zeit der
Strömung ist. Das heisst, die instantane Strömunsdynamik konnte über eine Zeitspanne von 10 τη bevor
dem Brechen ermittelt werden. Diese Zeitspanne ist ausreichend um den Lagrange’schen Einfluss auf
das Brechverhalten zu untersuchen, da die charakteristisch Zeitskala von Dehnung und Wirbelstärke
O(τη) ist. Während s2ij strukturelle Deformation verursacht, ist ω2 verantwortlich für die Rotation von
Aggregaten entlang ihrer Bahnkurven. In Regionen, wo ω2 dominant ist, rotiert ein Aggregat stark und
wird nur schwach deformiert, während in Regionen, wo s2ij dominiert, das Gegenteil der Fall ist. Neben
der Studie von s2ij und ω2 entlang Partikelbahnen, wurde auch die konkurrierende Rolle von s2ij und ω2

für das Brechverhalten untersucht, das sich in der Ausrichtung zwischen Aggregat und den Eigenvek-
toren des Dehntensors manifestiert. Dies brachte Einblicke wie ein Aggregat auf die schnelle Dynamik
des Dehntensors und abwechselnde Kompression und Dehnung reagiert. Der Abstandsvektor zwis-
chen den Fragmenten zeigte eine präferentielle Ausrichtung mit dem Dehneigenvektor λ1 entlang ihrer
Bahnkurven. Bei schwacher Ausrichtung kann ein Einfluss von ω2 festgestellt werden, der Aggregate
von einer bestimmten Ausgangkonfiguration wegdreht. Um Situationen zu verstehen, in denen ein Ag-
gregat starke Dehnung überlebt, um dann an einem späteren Zeitpunkt bei relativ schwacher Dehnung
zu brechen, wurde die Dehnung entlang r untersucht. Unter der Annahme, dass die Ebene entlang der
ein Aggregat bricht, die mechanisch schwächste Ebene sei, d.h. die mechanische Anisotropie ist am
stärksten entlang dieser Ebene, sollte die Dehnung entlang r bevor dem Brechen kleiner sein, als zum
Brechzeitpunkt selbst. Das heisst, die Dehnkomponente entlang r sollte ein kritisches Verhalten zeigen
und gleichzeitig Aufschluss auf die mechanische Anisotropie der Aggregate geben. Letztlich wurde der
Cauchy-Green Tensor W berechnet, um den kumulativen Effekt von ∂ui

∂xj
zu erfassen. Aggregate sind

aus flexiblem Material und haben eine fraktale Form, deshalb können sie über eine bestimmte Zeit er-
heblich deformiert werden. Das heisst auch, dass das momentane s2ij und ω2 wohl nicht ausreichend
sind, um Brechmechanismen vollständig zu erklären, da der zeitliche Ablauf eine wichtige Rolle spielt.
Wenn ein Aggregat eine endliche Deformierung über eine bestimmte Zeitdauer erfährt, und folglich dem
Brechen nicht standhalten kann, weisst das auf die Wichtigkeit von kritischer Deformierung sowie der
Zeitdauer, um diese zu erreichen, hin. Das Verhältnis zwischen mittlerem und grösstem Eigenwert von
W erlaubt Rückschlüsse auf die Form der Deformierung des Aggregats. Es hat sich herausgestellt, dass
die Brechrichtung mit dem Eigenvektor des grössten Eigenwertes von W ausgerichtet ist. Das heisst,
ein Aggregat bricht in zwei Teile in der Richtung entlang der es die grösste integrierte Dehnung erfährt.
Die passende Zeitskala, für die dieses Resultat am ausgeprägtesten war, ist etwa zwei Batchelor Zeiten,
was ungefähr vier Kolmogorov Zeiten in unserer Strömung entspricht.
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Chapter 1

Introduction

Aggregates are constellations of tiny particles. They are subject to breaking into fragments in turbulent
and non-turbulent flows. The objective of this thesis is to experimentally investigate the breakup mech-
anism of aggregates. Indeed, an aggregate breaks at a certain time and space in a flow but when the
mechanism comes into the question, i.e., how and why an aggregate breaks, one needs to carefully study
the history of the forces that a colloid is exposed to until it disintegrates. This is where the motivation of
the thesis sets in. We want to capture the underlying physics of the breakup in the Lagrangian frame
work i.e., using a reference system that moves with the particle for which we realize the first ever exper-
imental effort of its kind. We will use three dimensional particle tracking velocimetry (3D-PTV), a whole
field non intrusive flow diagnostic technique based on image acquisition, as the working tool. The novelty
of this experimental work is to exploit the proven ability of 3D-PTV to simultaneously measure the flow
field and track the aggregate itself. It gives access to the properties of the fluid phase, i.e., the full tensor
of the velocity gradient in the close proximity of the aggregate before, during and after the breakage. In
plain words, the field of strain applies the force on the aggregate and vorticity determines the orientation
of the aggregate relative to this force. Since 3D-PTV can disclose the entire history of the interactive
dynamics of strain and vorticity along the aggregate trajectory it will allow us to substantiate the present
understanding of breakup providing broader insight through the Lagrangian effect on breakage kinetics.

1
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1.1 Literature background of the previous work

Suspensions of aggregates are quite prevalent in industrial and environmental flows. Aggregates and
their interaction with the carrier fluid play an integral role in a number of chemical processes such as
crystallization, separation processes and reaction in multiphase systems [21, 60, 104]. For the dense
colloidal systems, suspension properties like rheology, conductivity and opacity are determined by the
evolution of the size of the aggregates and the internal structure during operations like polymer man-
ufacturing, pharmaceutical industry, food processing and many others [12, 37, 20, 117, 121]. Further,
colloid aggregation and breakage is also involved in environmental flows. Marine colloids have received
increased attention because of their significance in biogeochemical cycling of organic matter as well as
the fate and transport of the elements of marine chemistry which in turn influence the carbon budget in
the ocean [93, 63, 106, 88, 131]. Aerosols are also colloids and they are playing a key role in climate
dynamics [1, 61]. The most recent medical application of aggregate breakage shows the promise to
bust the blood clot obstructing critical blood vessel because of thrombosis by means of nano particles
coated with drugs [94]. Due to this broad spectrum of application, significant efforts have been invested
to understand aggregation and breakage dynamics.

Since Smoluchowski [110, 111] put forward the dynamics of aggregation, the mechanism of floc growth in
solutions has been studied in significant detail and clarified fairly well, both in modeling [135, 64, 65, 66,
105, 136] and experiments [33, 62]. In parallel, theoretical interpretation developed so far confirms the
experimental outcome [33, 62, 8, 7, 116]. On the other hand breakup mechanism of coagulated particles,
especially large aggregates of arbitrary shape remains poorly understood up to now [2, 137, 48].

The number of bonds and cohesive force of the bonds between the constituent particles determines the
aggregate strength [120, 76, 58, 112]. The bond strength is a function of the material and surface proper-
ties of the primary particle and chemical properties of the flocculant while the number of bonds inside an
aggregate depends on the structure of the aggregates itself. There exists no direct way to measure the
strength of the aggregate because of the structural heterogeneity, diverse physicochemical properties
of the aggregate, wide range of aggregation mechanisms and lack of quantification of the relevant flow
properties in a realistic flow environment that drives the breakage kinetics. The most common approach
to examine the strength of an aggregate is to break it under a particular flow condition and analyze the
produced fragments.

In a flow, an aggregate experiences both fluid-particle and inter-particle interactions. An equilibrium
among all the interactions determines if an aggregate will be broken or restructured, i.e., spatial rear-
rangement of primary particles within the cluster occurs [36]. Breakage is believed to occur at a cost
of local hydrodynamic stress transcending the bond energy associated with the aggregate, i.e., aggre-
gate strength [28, 112, 132, 100, 95, 119, 128]. Van de Van and Hunter [126] pointed out the crucial
factors involved in the breakup process. Depending on the variation in severity of the event, breakup
is classified into two distinct modes [97, 99]. Gradual dispersion of tiny fragments from the surface of
the parent aggregate is referred to as erosion [55, 109, 41] and large scale disintegration or breakage
into fragments of comparable sizes is recognized as fragmentation [40, 68, 125]. In principal, tangential
shear and tensile stress exerted on the radial and axial direction of the aggregate mass, respectively,
are responsible for generating these two breakage modes [122, 90]. The rate of energy dissipation and
relevant time scales of the flow are also qualitatively reflected through these modes. Lower energy input
causes erosion between cohesionless or weakly cohesive primary particles [102] while higher energy
input triggers fracture along the plane transecting through the center of aggregate mass [11]. These two
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modes also show different time scales. Fragmentation is abrupt and hence needs a shorter time scale,
i.e., it is discontinuous in time leading to a step reduction in initial mass, whereas continuously shearing
off the particles from the surface takes place over a longer time scale [97]. Physicochemical properties of
the flocculant environment also influence the mode [40]. Vassileva et al. [127] concluded that only large
particles are subject to fragmentation which is due to the defects within aggregate structure, in agree-
ment with Yeung et al.’s [134] finding that breakup occurs at the weakest point in the aggregate. The size
dependence of breakage is attributed to the fact that a large particle experiences a larger normal force
in the center of mass while restructuring in the central part is unlikely. This triggers the breakup by crack
growth in the particle body [102]. On the other hand, small particles can undergo restructuring which
inhibits crack growth but erosion can take place deep inside the center.

There exists a canonical power law behavior between the the statistical mean of the steady state radius
of gyration of the floc and applied stress where the exponent corresponds to the fractal dimension of
the aggregate. The fractal dimension is an indicator of inhomogeneous internal structure with density
decreasing away from the center of gravity, i.e., structure is somewhat open and tenuous [112, 40, 46,
113, 34, 52]. Zaccone et al. [136] attributed the structural property as characterized by the fractal
dimension and the mechanical property given by the elasticity to the power law scaling of the steady-
state fragment size with the hydrodynamic stress. The breakage rate also shows a power law scaling
with the product of aggregate size and stress, but as opposed to the relation between steady state size
of the fragments and stress, it is sensitive to the size of the primary particle [45]. The structure of the
final aggregates is reported to be more compact than the structure of the initial ones [101]. The evolution
of the morphology of the aggregate is observed only for open structured aggregates independent of the
primary particle size. This infers that, breakage and restructuring are coexisting for open aggregates
but for dense aggregates only breakage is present. That means that the evolution to the final aggregate
morphology is a function of the aggregate’s initial struture [46]. According to Glasgow et. al [40] the
strength per unit mass decreases with increasing floc size,i.e., the critical shear rate depends weakly on
the aggregate’s initial size independent of the initial size of the constituent particle and modes of breakup
[57, 134, 58, 127].

A systematic investigation revealed different breakup behavior in shear and in elongational flow. Kao
and Mason [55] first observed that simple shear and strain have different influences on the breakage of
the particles. Photographic observation from Blaser et al. [16] found floc rotation is more pronounced
than stretching in simple shear. Constituent particles are discretely and gradually disengaged from the
aggregate surface leading to fine particle erosion and insignificant distortion in shape [112]. Shear flow
keeps the aggregate rotating and hence the stress on its surface varies with time. As a result it escapes
the persistent stretching along the eigen direction of the rate of strain tensor. Rotation is absent in
converging flow [15, 50, 112, 49] and flocs undergo a remarkable change in shape from nearly spherical
to ellipsoidal. Flocs are aligned and broken along the axis of strain. That is why elongational flow is
more efficient to break aggregates than simple shear. In elongational flow, the variation of average radii
of gyration with the strain rate is insignificant in contrast to the result from shear flow [112] where there
is a variable drag force exerted on the constituent particles at different axial positions as summarized
by Higashitani et al. [50]. Flocs of comparable size might have variable vulnerability towards breakup in
elongational flow partly because of the fact that streamlines carrying the aggregates might experience
slightly different residence time near the stagnation point among other reasons like mechanical stability
and structure being different in different flocs.

Experimental results in a Taylor Couette reactor from Serra et al. [108] showed that the final aggregate
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diameter in the turbulent regime is independent of monomer size and is instead fully controlled by the
Kolmogorov scale as also found by Jankowski et. al [53]. In isotropic turbulence the maximum floc size
is a function of dissipation in the viscous subrange [120], hence confirming that the flow dissipation is
important for breakage. The fragment mass distribution is also defined by turbulent fluctuations of stress
and the fragmentation rate is controlled by the frequency of the critical hydrodynamic stress [5]. Whereas
for the laminar flow regime the final diameter of the aggregates exhibits a weak tendency to decrease
with increasing diameter of the constituent particle. Marchisio et al. [87] simulated the evolution of
colloid size distributions in a Taylor Couette flow to test for different breakage kernels (in the context of
numerical simulations, aggregation and breakage models are called as kernels), exponential and power
law, with several assumptions on how colloids break apart. Best agreement with experiment is found for
power law kernels that assume colloids breaking into parts of comparable size. Discrete element method
[48], finite element simulation [13] and Stokesian dynamics [19] are the most prominent and commonly
used modeling schemes to analyze aggregate breakup in shear flow. Among other limitations, these
models are used to analyze only one kind of interaction in necessary detail, i.e., either hydrodynamic
or inter particle while the other is dealt with an empirical approach [30, 13, 14, 44, 49] which in turn
could be insufficient for robust interpretation of the breakup mechanism. However, it is strongly felt that
better understanding of colloid breakage is necessary for further progress in this field, see, e.g., [87, 86]
and [117, 118, 116] among others. It is at this point where an image based technique like 3D-PTV
becomes desirable. In particular, one that could simultaneously measure the local strain or shear field
while observing breakage events.

1.2 Framing the present work

The vast literature clearly shows the deficit in understanding of the physics underlying the breakup mech-
anism. There is no probing experimental result that could couple aggregate breakup to the hydrodynamic
interaction. The previous experimental works on breakup of aggregates were limited to some prescribed
geometry with steady state laminar conditions where the flow field was resolved either analytically or
numerically while similar studies in turbulence are missing. Due to the very broad distribution of the ve-
locity gradient and the large variation of the hydrodynamic stress, experimental investigation of breakup
in turbulent flow remained challenging and the intricacy of the problem clearly pushed the choice towards
the units operating under laminar conditions where a narrower distribution of the hydrodynamic stress
exists, e.g., rheometers and four roll mills [16] or contracting nozzles [58, 54]. Technically, experimental
methods were not developed sufficiently to offer the required resolution, considering the fact that break-
age is a very fast and small scale process [112, 6], allowing the observation of the motion of the particles
of small size and simultaneously accessing the details of the turbulent flow field carrying them.

From the work of Blaser, Marchisio and Soos [16, 15, 87, 86, 115, 118] it is clear that image based
analysis is necessary to advance understanding of breakage. Moreover implementing high speed cam-
eras enables the detection of individual breakage events. Glasgow and Hsu [40] and Liu and Glasgow
[41] applied this method to study the breakup of aggregates in a turbulent jet (600>Rejet>5400). The
common conclusion of mechanisms governing breakage being poorly understood leaves an implication
that more factors than “shear”are important and the role of vorticity was found to be crucial [16, 15].
In situations with equal strain, breakage may or may not occur depending on instantaneous vorticity. If
strain is balanced by vorticity, i.e. in a shear situation, aggregates remain stable. Only in situations with
extensional straining, i.e. in the absence of vorticity, aggregates break apart. In helical flows, i.e. flocs
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spinning along their flow path, breakage was strongest, presumably because of more persistent strain-
ing, i.e., as an effect of the Lagrangian history. The main message is that intensity of velocity gradients
in turbulent flows is influencing the competing mechanisms of colloid aggregation and breakage [41, 2].
An important feature of the field of turbulent velocity gradients is self amplification. This self amplification
results in production of strain and vorticity and ultimately it is responsible for dissipation of kinetic energy
into heat [124]. Turbulent flow constantly produces small scale gradients [124], causing strong shear of
the colloids. This straining field and its cumulative effect on a colloid moving through the shear field are
believed to govern colloid breakage. This already indicates the emphasis on hydrodynamic Lagrangian
effects on colloid breakage. The critical hydrodynamic stress depends on the colloid orientation with re-
spect to the straining field. This implies that also the flow history of the passive colloid plays a role. From
the basic point of view the understanding of colloid breakage is closely related to the field of passive
objects such as material lines and surfaces, fluid particles and the evolution of multi-point constellations
in turbulent flows. How passive small objects move and orient themselves in a turbulent flow is discussed
by, e.g., Girimaji et al. and Guala et al. [39] and [77] among others. If breakage is the final result of
a fatigue process then the breakage dependence on the hydrodynamics stresses becomes even more
complicated. This leads to difficulties in breakage parameterization for given material properties as a
function of colloid scale and turbulence intensity. The objective of this thesis is to relate the colloid break-
age mechanism to the dynamics of the local velocity gradient field both in laminar and turbulent flow, i.e.,
measure simultaneously velocity gradients and breakage with 3D-PTV in axisymmetric straining flow and
identify Lagrangian velocity gradient breakage criteria in homogeneous isotropic turbulence. Ultimately
we want to measure the local straining and vorticity fields of the fluid phase around a breaking colloid
employing a three dimensional particle tracking velocimetry (3D-PTV) system.





Chapter 2

Materials and methods

Experiments on aggregate breakage were carried out for two different flows in two different setups. In
the first experiments, breakage was observed in axisymmetric and extensional steady flow, i.e., ∂

∂t (·) = 0

and ∇ × ~v = 0 but 1
2 (

∂ui

∂xj
+

∂uj

∂xi
) 6= 0. In the second experiment, aggregates were broken in quasi

homogeneous isotropic turbulence, 〈u2
1〉 = 〈u2

2〉 = 〈u2
3〉, with zero mean flow. Technically, among others,

off the shelf high end optical accessories were used for imaging the flow and colloidal particles as well
as detecting the breakage. The method of aggregation of colloidal particles proved to be the most crucial
part from the experimental point of view. Because of the intent of the investigation, the aggregates need
to be strong enough so that they are broken after leaving a trail of Lagrangian history. Since breakage
will be observed directly by identifying individual fragments, aggregates and fragments have to be not too
small to be detectable on the images. Furthermore, the flow field where breakage takes place should be
resolved appropriately by 3D-PTV, i.e., the spatio-temporal resolution needs to be high enough to resolve
velocity gradients. Such a set of a priori requirements proved to be challenging, requiring e.g. the ability
to manipulate the strength of the aggregate and thereby the aggregation procedure. This chapter will
illustrate in detail the experimental setups, the aggregation method and the data analysis tools used in
this thesis.

7
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2.1 Orifice: Extensional flow

The first setup realizes an extensional flow through an orifice. The flow chamber is made of PVC (Poly
Vinyl Chloride). Considering transparency for convenient access of an illumination on to the observation
domain, the setup was made of plexi glass in the beginning. But the drawback of the material as seen in
Fig. 2.1, is the intense reflection upon illumination which outshines the brightness of the aggregate. This
clearly hampers an unambiguous visual detection of tracer particles and colloidal aggregates. As every
material tends to reflect to a certain degree, the set up was reconstructed from relatively less reflective
and opaque PVC. To inhibit the reflection below the level that could upset the detection, the observation
domain was painted black.

Figure 2.1: Orifice setup made of plexiglass. Under incandescent light the channel (left) and the chamber
(right) are undesirably reflective. The photograph shows the flow chamber with a calibration block (black
part with dotted pattern) contained in it. The block is removed after calibration and then the flow and
breakage measurements are realized.

Geometrically the setup consists of two identical rectangular sinks (75 mm × 15 mm ) on each side of a
narrow and shallow channel (20 × 3 × 3 mm3) as seen in Fig. 2.2. The entire design is imparted to its
shape by a mold from a single piece of a PVC block. Soos et al. [113] employed an equivalent setup but
much simpler in construction using two modified syringes connecting head on. This abrupt contraction in
axisymmetric structure causes a monotonic increment in velocity. There are three inlets in the upstream
of the channel. Two transverse inlets are used for the fluid and the inlet at the bottom is used for injecting
the aggregates. The entire chamber is sealed with a glass cover closed to the PVC by a series of closely
spaced screws. To prevent leakage, a slender elastic thread is inserted into the incised macro canal
enclosing the whole chamber. Because of the geometry of the narrow channel, the system required a
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Figure 2.2: Orifice setup made of PVC. Schematic drawing showing the flow chamber (left) and pho-
tographs showing a complete assembly with optical system from side (middle) and top view (right).

very steep viewing angle which makes the optical arrangement very congested as seen from Fig. 2.2
(right).

2.2 Turbulent box: Homogeneous Isotropic Turbulence

The second experiment was a quasi homogeneous and isotropic turbulent flow. It was performed inside
a glass tank with the dimensions 420×420×440 mm3 as shown in Fig. 2.3. Turbulent flow was generated
by eight counter rotating disks with a diameter of 40 mm. Two sets of four disks, equidistant and square
positioned, were braced across 140 mm to the hollow plate containing the gear shaft assembly (see Fig.
2.4). Powered by an AC Servo motor (230V), a maximum angular speed of 4000 rpm can be achieved. In
this study, an observation volume of 30×30×40 mm3 was used to capture breakage. In Fig. 2.4 (left), the
location of the observation volume is indicated in between the rotating disks. From Fig. 2.3 it is clear that
the only way to illuminate the experimental domain is from the bottom of the glass tank because two sides
and the top wall are blocked by the walls of the stirring device and two sides are taken by the optics and
the colloidal particle inlet, respectively. Fig. 2.4 (top right) shows the illuminated flow volume seeded with
tracer particles. There is a mirror attached to the top wall of the structure to reflect back laser light and
enhance the available light intensity. Introducing the aggregates into the flow was a non trivial task. In
Fig. 2.4 (bottom right) it can be seen that a PTFE (polytetrafluoroethylene) tube with a diameter of 2 mm
is intruding into the domain. This tube carrying the aggregate is delicately placed to the back layer of the
illuminated volume in order to avoid reflection coming from the surface of the tube. The aggregates were
pushed gently into the turbulent flow by a syringe pump. Multiple aggregates might collide with each
other leading to further aggregation or breakage. Therefore, in both experiments aggregate injection
was controlled such that a single aggregate appears in the investigation regime at a time. The whole
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Figure 2.3: A laboratory view of the experimental setup for the breakage of aggregates in turbulence.

process to seize a breakage event is further complicated that aggregates often may not break and be
advected out of the observed volume. This uncertainty leads to prohibitively long experimentation time
for gathering a large number of breakage events.

2.3 Aggregates

The most challenging part of this experimental work was the preparation of the aggregate. The flow field
and the experimental technique dictate the size and strength of the aggregate suitable for the experi-
ment. This potentially limits the degrees of freedom while trying different aggregation methods and using
different constituent particles. The essential requirements of the experiment are as follows

1) The initial size of the aggregate should be on the order of the smallest length scale of the flow.
2) The aggregates should neither be vulnerable nor resilient to the strain field.
3) The aggregates should sustain the strain for a few characteristic flow time scales to obtain adequate
Lagrangian data to examine the effect of flow history on breakage.

Those constraints leave little window to vary the aggregation methods. For example, perikinetic aggre-
gation where the constituent particles are driven by Brownian motion to form clusters [75] proved to be
suitable for straining flow through an orifice although these aggregates are too fragile when put into tur-
bulent flow at moderate Reynolds number, i.e., they are broken almost immediately the moment they
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Figure 2.4: A schematic view showing the disks connected with gears and the location of the observation
volume (left). On the top right, an illustration of the flow field seeded with tracer particles under laser light
is shown. The figure on the bottom right shows the position of the tube carrying the aggregate into the
flow field.

are introduced into the flow. On the other hand, aggregates produced by orthokinetic aggregation where
flocs are formed from the constituent particles exposed to a velocity gradients are relatively stronger. But
in this case the final floc size becomes unfavorably small to be detected by 3D-PTV.

A diffusion limited cluster aggregates (DLCA) are used for the breakage experiment in the orifce setup.
These aggregates posses a fractal morphology. The fractal character of the aggregate can be attributed
to the fact that the systematic growth of an aggregates is not a function of its size. Fractal aggregates
exhibit a scaling behavior between their mass, m and radius, RG, as m ∝ (Rg/Rp)

df where the radius
of gyration of the aggregate, Rg, is normalized by the constituent primary particle radius, Rp, and where
the fractal dimension, df , appears as an exponent. The fractal dimension is an estimate of the internal
architecture of the produced aggregates, i.e., how the primary particles are arranged inside the cluster.
A higher fractal dimension is indicative of a compact aggregate whereas a lower fractal dimension is
associated with very open aggregates as explained by Ehrl et al. [31] and Lu et al. [71].

Lin et al. [67] reported df ≈ 1.8 when aggregation is carried out in quiescent conditions using fully
destabilized primary particles. However, Ehrl et al. [32] and Soos et al. [114] found df ≈ 2.7 when
aggregates are prepared under turbulent flow conditions. Aggregates were prepared from surfactant
free mono disperse white sulphate polystyrene latex of diameter 420 nm manufactured by Interfacial
Dynamics Corp. (IDC), Portland, OR (USA) (Product- No: 1-800, cumulative variation = 2%, batch no:
642, 4, solid% = 8.0 SO4

−2 charge and charge density 5.2 µC/cm2). Initially, 0.3 mL of latex solution
were diluted in 15 mL deionized water and then destabilized by dissolving in 15 mL of 2.5 molar NaCl.
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Figure 2.5: Aggregates grown in quiescent flow (left), macroscopic view showing the amorphous struc-
ture (middle). Aggregates grown in shear flow condition (right).

The final solid volume fraction of the solution was 10−4(m3/m3) and its density is 1.05 kg/m3. Therefore
the produced aggregates are expected to be neutrally buoyant in deionized water. Approximately 12
hours were required to grow the aggregates. Flocs appeared as chunks with random shape and size
suspended in the solution as seen in Fig. 2.5. A gentle shaking helped to segregate the larger lumps
to suitable size, i.e., preferably smaller than the orifice width (3 mm). These flocs were too weak to use
in homogeneous turbulent flow as they were observed to pulverize as soon as they were exposed to
the turbulent flow. Therefore, for the turbulence, flow induced aggregation was opted for. The solution
carrying primary particles are subject to periodic circulation through the tube driven by a syringe pump
where the piston moves back and forth at a speed of 2mm/sec. Neutrally buoyant tracers (polyamide
particles with a mean diameter of 100 µm, trade name: Vestosint, manufactured by Evonik Industries,
Germany) were used for flow characterization.

2.4 3D-PTV

Three dimensional particle tracking velocimetry (3D-PTV) is an image analysis based nonintrusive La-
grangian flow measurement technique. Only a synopsis of the core idea governing the working principle
of 3D-PTV and those parameters pertinent to the context of this experimental work will be given in the
following description rather than revisiting the rigorous explanation of the technical details by Mass et al.
[81, 80, 78, 82] and Malik et al. [84, 85].

The determination of the particle position from image to object space and the linking those positions in
time, forms the basic framework of 3D-PTV. On an image, an observed object occupies a patch consisting
of a certain number of pixels. Therefore, the particle detection mainly relies on pixel width and grey scale
intensity. The particle center is computed as the arithmetic mean of the pixel coordinates weighted by
the associated grey values. This particle detection and determination of particle coordinates constitutes
the first step of the PTV algorithm. Through a stereoscopic principle and careful calibration of camera
positions and orientations, 3D particle positions are computed from 2D images of the particles observed
from different viewing directions at a given time instant. Before this can be done, a particle image from
a given camera view needs to be associated with the corresponding particle images in the other camera
views, the so-called correspondences step. The particles used as flow markers do not feature any unique
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Figure 2.6: The projection of epipolar lines from different cameras intersect to obtain 3D coordinates from
2D images in the so-called correspondences step of the PTV algorithm

character by which they can be identified individually by the cameras. Therefore, image coordinates of a
stereo pair are used to compute 3-D particle coordinate, i.e., 2D particle coordinates are matched in 3D
cartesian space based on epipolar constraints as seen from Fig. 2.6. A particular image point on one
camera can be found found on the epipolar line of another camera computed by using the orientation
parameters of the calibrated system. There could be more than one candidate particle on the epipolar
line for the corresponding particle. In order to reduce position ambiguities due to the large number of
particles, an empirical tolerance threshold is used to narrow the epipolar search domain and four cameras
have been used which reduces ambiguities substantially as compared to a two-camera system [81].

Having 3D positions established, the next step goes on to track corresponding particles through consec-
utive time steps. This is called the tracking phase and builds the candidate Lagrangian trajectories. In
the first step, the location of the particle in the next time step is predicted. Based on the assumption that
a particle moves with insignificant acceleration, the predicted position from the residence frame to the
immediate next frame is a linear function of the velocity, i.e.,

xfn+1 = xfn + vfn∆t (2.1)

where xf and xf+1 refer to the position in the present and the next frame respectively and ∆t is the time
interval between the consecutive frames.

A core part of the tracking deals with the demarcation of the search volume centered at this predicted
position in order to detect the authentic position of the particle. The maximum radius of the search
neighborhood is bounded through an estimate of the maximum flow velocity. Another possibility is to
use the velocity decorrelation over δt obtained from Lagrangian structure function in turbulent flow as
a measure of the search radius. More precisely, the position to be linked in the future in frame, fn+1,
forms a set of trajectories with all the possible positions within the search radius in frame fn+2 including
the predicted position together with the established links from the current frame, fn. Using the central
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Figure 2.7: Figure showing the correspondence and tracking phase of 3D-PTV. A point,P1, seen by a
camera can be found on the epipolar line of the next camera together with other possible points (marked
by yellow dots). After the true correspondence of the particle in all four images, this particle is tracked in
time based on minimum acceleration criterion.

differences, the acceleration along each possible link is computed as

afn =
xfn − 2xfn+1 + xfn+2

2∆t2
(2.2)

Among the set of candidate links, the one satisfying the minimum acceleration criterion qualifies for the
true link between xfn and xfn+1 . Fig. 2.7 briefly illustrates the concept of correspondence and tracking. A
rigorous description explaining the conceptual and algorithmic aspects of the tracking procedure can be
found in Guezennec et al., Hassan et al., Malik et al. and Papantoniou et al. [43, 47, 84, 85, 98]. Obtained
trajectories are post-processed and velocity gradients are obtained by using the methods described by
Luethi et al. [74].

2.4.1 Optical arrangement

A stereoscopic observation system has to be arranged with camera views focused on a common obser-
vation volume, as shown in Fig. 2.9. The generic setup of a synchronized four camera system can be
replaced by a cost effective design introduced by Hoyer et al. [51] that needs a single camera without
compromising the robustness provided by four camera stations. In this ”image splitter” design a four
camera assembly is emulated by a combination of four mirrors and a four face prism placed in front of
the camera. Four separate pieces of mirrors are overlayed on to the outer surfaces of the convex part
of the image splitter. Hoyer et al. [51] used four separate mirrors glued on the surface of the pyramid to
obtain a four face prism. Differently, the image splitter used in this experiment (50mm×50mm×41mm) is
made of one piece. The entire pyramid surface is coated with SiO2 and acts as a single convoluted mirror
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Figure 2.8: Schematic illustrating how an image splitter aligned with the center of the chip (denoted ny
green line) projects an image reflected by four mirrors onto the camera chip in four different parts and
mimic a four camera system. Laboratory view of the optical setup from the back of the image splitter
shows the arrangement of the mirror with respect to the position of the image splitter.

facing out in four different directions. Successful imitation of the four camera system needs the tip of the
pyramid to be aligned with the mid point of the image chip which in consequence splits the image chip of
size 1024×1024 pixel into four equal virtual image chips of 512×512 pixel each. Four mirrors, each 40×58

mm2, are installed on the off-the-shelf mounting column, inclined towards the four pyramid surfaces. The
connection clamps enable the mirrors to tilt, translate and rotate facilitating independent adjustment of
the viewing angle to observe the investigation domain. There are three more tuning screws on the back
of the mirror base offering additional three degrees of freedom of movement for fine adjustment. This set
of mirrors reflects an observation point on to the pyramid surface. Each surface then projects the same
image on a different quarter of the same chip. This is how a combination of mirrors and image splitter
emulates the four camera system by utilizing one camera. Fig. 2.8 (left) shows schematically how an
image chip is divided into four quarters using the combination of the image splitter and four mirrors and
Fig. 2.8 (right) shows the laboratory view of the system. Fig. 2.9 presents a four camera and a single
camera system with image splitter. The high speed camera used for this experiment is a FASTCAM SA5
from Photron USA, Inc., which can record up to 7000 frames per second at maximum spatial resolution of
1024× 1024 pixel. With 16 GB built-in memory, it is capable of storing 10918 images at the full resolution.
In this study a Nikkor Micro 60 mm lens was used with an f -stop 11 and imaging frequency of 4000 Hz
for the orifice and 250 Hz for the turbulence experiment.
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Figure 2.9: Photograph of the high speed camera system and optical setup using four mirrors and an
image splitter (left) and the conventional system with four cameras (right).

2.4.2 Illumination

3D-PTV is a volumetric flow visualization technique that requires an illuminated volume. The illumination
intensity has to be sufficient for the depth of view within which small tracer particles can be followed
reliably. Since the location of a breakage event in turbulent flow is highly probabilistic, it is necessary
to use a thick volume in order to visualize the breakage. This requires a strong light source. In this
experiment a 20 Watt Ar Ion continuous laser (λ = 513nm) has been used. The brightness of the
particle is also influenced by the spectral response of the CCD sensor of the camera and the optical
properties of the particle. The CCD sensor yields the maximum sensitivity in the red color spectrum
(λ = 620− 750nm) whereas for the Ar-Ion laser (λ = 514nm), the image sensor responds only up to 70%
of the spectral intensity of the Ar Ion laser. The tracer particle scatters light and the scattering intensity
varies depending on the stereo angle of the cameras. It is unfeasible to place all the cameras in the
same favorable direction from where the particles look most bright. This is the main reason of variable
brightness of the same particle on different locations of the same image sensor. In an attempt to resolve
this problem to some degree, a mirror is attached perpendicular to the laser path in the turbulent flow
setup. Laser light is monochromatic and therefore free of optical dispersion. But the Gaussian distribution
of the intensity on either side of the illuminated volume causes the particles near the boundary of the
investigation regime to be poorly illuminated. For this reason a few breakage events taking place close
to the boundary were discarded as there exists almost no illuminated tracer particle around it to calculate
the velocity gradients.

2.4.3 Calibration

The PTV system has to be calibrated for the determination of accurate 3-D particle coordinates. Calibra-
tion means determination of the exterior and interior orientation parameters of the camera with respect
to the observation domain. Optical aberrations, diffraction, lens distortion, inhomogeneous glass walls
disturbing the incidence angle, local temperature gradients affecting the refractive index are the major
causes that may deteriorate image quality which potentially leads to the large errors in particle coordinate
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Figure 2.10: Calibration target inside the orifice (left) and within the investigation domain of the turbulent
flow setup (right).

determination. The fundamental photogrammetric model based on the laws of perspective projection
i.e., object point, camera projective center and image point should lie on a straight line according to the
collinearity condition, is revised to take these effects into account (e.g., see Mass et al. [82, 78, 79],
Gruen et al. [42], Kotowski et al. [59] and Nishino et al. [96]). As a result, a linearized functional model
emerges as the observation equation and is applied to the calibration procedure. The reference frame
method is used to calibrate the camera system in this experimental work. For this study, a calibration
block with uniformly bright target points of diameter 300 µm which are set apart by 1 mm from each other
and distributed in three equidistant layers was placed into the observation volume and imaged once by
all cameras of the system (see Fig. 2.11). Calibration begins with the user’s pre-defined arbitrary orien-
tation of the camera and a set of four points on the reference body as an initial input to the model. This
invokes the calibration to make a preliminary estimate of the parameters to adjust user supported feed in
the beginning.

2.5 Breakage detection

The 3D-PTV software outputs for each particle the number of pixels in x and y directions on the image
and the ”total” number as well. The number of pixels occupied by the particle is a measure of it’s size.
A reduction in size is indicative of a breakage event and can be used to detect breakage. In addition
to the size, 3D-PTV also measures the gray value weighted center of gravity of the particle. The gray
value intensity continuously moves away from the center as an aggregate undergoes breakage. Hence
discontinuity in gray value intensity can also be used to identify breakup. Due to the difficult viewing
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Figure 2.11: Change in total pixel when an aggregate is broken into two parts close to the entrance of
the orifice (left). The drop in gray value is another indicator of the same breakage event (right).

angle of the mirrors for the orifice setup, several Lagrangian trajectories of the aggregate appeared inter-
rupted. This results in ambiguous discontinuity in aggregate’s gray value more than the size. Therefore,
a reduction in size has been used to detect the breakage in orifice. In the turbulent experiment, none
of the aggregate trajectories are interrupted. Hence gray value discontinuity was used as the breakage
detection parameter.

2.5.1 Breakage detection in orifice

Breakage in axisymmetric converging flow in an orifice is detected in a rigorous way by systematic ex-
amination of the reduction of the size (i.e. total number of pixels on the image) of the aggregate along
the Lagrangian trajectory. An aggregate subject to break will inevitably be reduced in its size which is
measured in the number of pixels of the image patch pertaining to the particle. Hence, segmentation that
takes place at one single time can be identified by a large drop in the number of pixels. But the pixel scale
in image space can vary depending on the position of the aggregate in object space with respect to the
objective center of the lens due to the reasons explained above (inhomogeneous distribution of available
light intensity etc.). Therefore an arbitrary sharp drop in pixel value is not necessarily implicative of a size
reduction and consequently considered to be breakage. Therefore, a moving time integrated change
in the number of pixels number is measured along the parent track to identify the time span where the
change of size over a certain time interval is significant which is expressed as

Pi =

ti+α∆t∫

ti

∂P (t)∂t (2.3)

The pre-factor α is an integer number that refers to the integration window and ∂P is the change in the
number of pixels at a given frame. In this experiment, a change in the number of pixels, ∂P (t), over thirty
time steps is integrated along the parent track. To validate the breakage detection, an accuracy potential
vector, ξ, is set as
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ξ =
[

δx δy δz P ′ δr Ω
]

(2.4)

where δx, δy, and δz denote the rms of the position inaccuracy of the aggregate and P ′ is an empirical
tolerable deviation in the number of pixels. δr is the spatial tolerance used to capture the probable
children tracks associated with the parent track whereas Ω is the non dimensional breakage tolerance
that is used to measure the distance between the child and the parent track.

If there exists a drop exceeding the threshold of tolerable deviation in total pixel number, i.e., Pi< -P ′, then
it provides the preliminary indication of a breakage event. In this case, the entire Lagrangian trajectory
contains both the parent track (up to the breakage point) and thereafter one of the fragment tracks. Local
minima of the number of pixels within that particular time interval pin points the time when breakage
occurs. On the contrary, if the integral change in the number of pixels along the Lagrangian trajectory
of the aggregate stays within the tolerable fluctuation, i.e., Pi> -P ′, then breakage is assumed to occur
at the terminal point of the trajectory. The difference between the mean pixel number value before and
after the breakage, ∆〈P〉 = 〈Pparent〉 − 〈Pfragment〉, is measured to further validate the trajectory of the
aggregate undergoing breakage with an inequality condition such that

∆〈P〉 > P ′

This particular constraint is justified by the fact that considerable size reduction is attributed to the break-
age event. For the case where a parent track is long only up to the breakage point, this condition is
recalled after identifying the related child track. It is obvious that this condition requires the pixel informa-
tion from the child track. Detecting the children trajectories can be non trivial especially when there are
multiple breakage events, each producing several fragments takeing place within a short time interval.

Finding the children trajectory is based on the principle of recursive nearest neighborhood search around
the breakage point in time and space. First, within a selected time scale (which is the integration time
window of thirty time steps in this experiment) with respect to the time when breakage occurs, all the
isolated trajectories are considered and a second order polynomial is fitted for each spatial component
as a function of time.

Using those polynomials, the children tracks are projected onto the time of breakage to derive 3D-
coordinates of the interpolated neighbors close to the breakage location. The spatial tolerance, δr,
defines an isotropic search radius centered at the breakage point and includes the most probable set of
starting points of the children track. The minimum spatial offset, normalized by the position inaccuracy
δxi, between the breakage position and the set of close neighbors is then measured with the stipulated
threshold for breakage tolerance, Ω, which is a multiple of the square root of the tracking dimension
in cartesian coordinates. A children track is found if the minimum offset is smaller than the prescribed
breakage tolerance. Fig. 2.11 illustrates the result of the breakage detection algorithm through an ex-
ample where an aggregate is fragmented into two parts when characterized by the number of pixels.
This particular breakage event also exhibits a substantial decrease in grey value along the children track
since the smaller children particles scatter less light and appear less bright on the image compared to
the parent particle.
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2.5.2 Breakage detection in turbulent flow

Breakage detection in homogeneous isotropic turbulence is not based on size, but on the gray value
intensity. Every pixel that is a part of an image of the aggregate possesses a certain intensity information.
In 3D-PTV the color depth of the recorded image is 8-bit grey scale, i.e., the intensity of a pixel can be
represented by a value ranging from 0 (black) to 255 (white). In 3D-PTV, the image coordinates of the
particle are determined by the grey value weighted center of gravity as

χ =

∫
wg,ixi
∫
wg,i

where wg is the corresponding grey value of the pixel coordinate xi. In principle, a particle is detected
when the grey value from all the pixels occupied by that particle are larger than a given threshold set by
the user threshold. Although a particle exhibits only one local maximum of gray value, it starts to attenuate
radially. An anisotropic threshold operator, G, makes use of this property to examine the discontinuity of
the grey value inside a particle image and if it exceeds an empirical threshold of tolerable discontinuity
then the image is assumed to be composed of two separate particles and is splitted into two parts. This
criterion to detect breakup of an aggregate has been verified by comparison to visual observation. Fig.
2.12 shows a breakage event (large particle) in a sequence of four time steps overlayed onto one image
in homogeneous isotropic turbulent flow seeded with tracer seen as tiny white particles. By measuring
the grey value along the Lagrangian trajectory of the parent as a function of time, normalized by the
smallest time scale of the flow, i.e., the Kolmogorov time scale, τη, this breakage event is detected in
time as set to zero on the time axis (see Fig. 2.13). Among the minor fluctuations along the time series
of the gray value, there is a large and distinct drop within O(τη) that is below the threshold of tolerable
discontinuity and duely characterizes the breakage event.

The breakage detection approach based on the drop in the number of pixels, i.e., the size difference be-
tween the parent and the children can be regarded as an additional measure while discontinuity in gray
value is proven to be adequate. In the orifice experiment, where several breakage events occurred al-
most simultaneously, children trajectories were required to be appropriately identified with the respective
parent track and therefore size difference was the proper criterion for breakage detection. In the case of
breakage in homogeneous isotropic turbulence, where only one event at a time was recorded whenever
possible, no further detection operator than G was required.

2.6 Ellipse fitting

In an attempt to measure the size of the aggregate beyond the number of pixels given in two directions of
the image coordinate system, a standard geometric shape is chosen for parametric fitting. Fractal aggre-
gates prepared under non turbulent flow conditions posses an anisotropic shapes and can be elongated
when exposed to stresses. Because of the dynamic change in shape, an aggregate is approximated by
an ellipse using the generic conic equation

ax2 + bxy + cy2 + dx+ ey + f = 0 (2.5)

for the set of boundary pixel coordinates according to a non weighted least squares fit. Fig. 2.14 shows
an ensemble of aggregate shapes from different experiments which are appropriately enclosed by an
ellipse.
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Figure 2.12: An arbitrary breakage event seen from a single camera. Here four exposures are overlaid
to make a continuous sequence.

In canonical form, an ellipse is centered at (0,0) and non rotational relative to principal axis. But in prac-
tise, an aggregate is subject to dynamic translation and rotation with respect to the laboratory coordinate.
If the coefficient of the term xy in equation (2.5) is non zero then an ellipse is associated with a tilt. By
systematic substitution, the tilt of the ellipse is removed and the orientation angle is extracted such that

θ =
1

2
atan(

b

c− a
) (2.6)

Using θ, other coefficients in equation (2.5) can be trigonometrically parameterized to reduce the conic
representation to the following form

(X −X0)
2

a2
+

(Y − Y0)
2

b2
= 1 (2.7)

where (X0, Y0) is the center of the ellipse and a,b are the sub axis. This simplified ellipse equation (2.7) is
then used to measure the aggregate with non tilted state. The perimeter of the aggregate is determined
by border pixels which are connected with at least four other neighboring pixels. As a first approximation,
the aggregate is measured with a single ellipse assuming smooth curvilinear periphery. After the fit, the
original orientation of the aggregate is obtained back by the following rotation matrix, M

M =

[

cos(θ) −sin(θ)

sin(θ) cos(θ)

]

(2.8)

Then the difference between the actual coordinates of the perimeter pixels and the fitted coordinates, δk,
where k= number of camera, is measured to know the accuracy of the fitting.
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Figure 2.13: Change in gray value over time is a measure of the segmentation of an image blob. Here a
breakage event is detected as the gray value drops drastically. Here the time axis is normalized by the
Kolmogorov time scale and the breakage instance is pinned at zero.

Figure 2.14: Ellipse fitting for different aggregate shapes.

δk =

n∑

i=1

‖x
2
i

a2
+

y2i
b2

− 1‖ (2.9)

On the other hand, because of the irregular boundary, an aggregate shape can deviate from the ideal
elliptic shape. In this case, fitting a single ellipse might either underestimate or overestimate the actual
shape (see Fig. 2.15 and Fig. 2.16). To make the estimate robust, a combination of two ellipses rather
than a single one is used to measure the intricate shape of the aggregate, if necessary. This approach to
accommodate two ellipses onto an aggregate starts estimating ellipses simultaneously from both ends
of the transverse diameter as illustrated in Fig. 2.17. With respect to the local maxima of the boundary
coordinates, an arbitrary number of nine points, four flanked on either side of the vertex are chosen
to fit an ellipse. The remaining boundary coordinates are then used to fit an ellipse from the border
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Figure 2.15: Aggregate area is overestimated while measured with a single ellipse (left). Two ellipse
fitting appropriately determines the actual shape (right).

Figure 2.16: Two ellipses (top right) are more accurate than a single one (bottom right) for describing an
aggregate in turbulent flow few moments before the break up.

coordinates of local minima of the tilted aggregate. The chosen boundary coordinates to fit the ellipses
from both ends are mutually exclusive, i.e., as more coordinates are included to fit from the vertex, less
points remain available from the other end of the transverse axis. At the end, a set of ellipses sweeps
across the entire aggregate. The best pair of ellipses from all possible combination is selected based on
the minimum deviation from the ideal fit employing all four camera images.

∆k =

n∑

i=9

‖x
2
i

α2
+

y2i
β2

− 1‖+
i=9∑

n−9

‖ x2
i

α′2 +
y2i
β′2 − 1‖ (2.10)

This pair of ellipses is further examined in order to justify the necessity to approximate an aggregate
shape by two ellipses. Basically two strict geometric constrains are used for the validation procedure. If
δ` refers to the center to center distance between the two ellipses and α, α′ are the two conjugate major
axis then,

δ` >
1

2
max(α′, α)

and

∆k < δk
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Figure 2.17: A set of ellipses are drawn using different number of boundary pixel coordinate from both
ends of an aggregate in order to produce a pair for the best estimation.

Figure 2.18: Comparison of an aggregate shape by one ellipse (left) and two ellipse (right). Here,
in this, case, two ellipse are considered to be unnecessarily redundant according to preset geometric
constraints.

are the necessary conditions to measure an aggregate by two ellipse. Explicitly, these two inequality
conditions dictates the separation distance between the ellipses by a margin larger than the maximum
of the major axis. In Fig. 2.15, this condition is satisfied and the aggregate shape is measured by two
ellipses whereas for the aggregate shown in Fig. 2.18, the ”two ellipse” approach is discouraged as error
from pair fitting is larger than the single ellipse estimation, i.e., ∆k > δk.

The major and minor axis of an ellipse, represent the characteristic length scales of an aggregate in
pixel dimension. The 3D investigation domain has been mapped in order to convert the pixel scale into
metric dimensions. A large set of 3D world coordinates (± 0.5 mm positions) covering the illuminated
volume are projected onto the 2D-image space and the change in pixel position with respect to the
spatial variation is checked. With this mapping, we can readily measure how large the aggregates are
in 3D-world coordinates, i.e., the cartesian position of the aggregate is fed into the map to know the
corresponding pixel dimension which is used as a local scale to convert the major and minor axis of the
aggregate.



2.7. Aggregate in turbulence 25

2.7 Aggregate in turbulence

Finally in this section we study the aggregate itself. The sizes of the aggregates used in the experiment
are not exactly mono disperse, they rather have a distribution with standard deviation, σ = 0.5 mm and
mean 〈dp〉 ' 1 mm. Therefore, when normalized by the smallest length scale of the turbulent carrier
flow, the Kolmogorov length scale, η = 0.3 mm in our turbulent flow experiment, we have a size range
dp/η ∈ [1, 4]. It is noteworthy to mention that, statistically, the majority of the aggregate sizes has a size
that is comparable or larger than the smallest length scale. Because of the size exceeding η, aggregates
in our experiment can be affected by inertia and may deviate from that of the neutrally buoyant tracer
particles used as flow markers. In this section we investigate whether the aggregates exhibit any inertial
signature and consequently this is an effect of their finite size on the carrier flow. The material density of
the aggregates, ρp=1.06 kg/m3 almost matches with the specific density of the carrier fluid (deionized wa-
ter), ρf= 1.0 kg/m3, i.e., ρp/ρf ≈ 1. We inject a single aggregate into the flow once at a time. Therefore,
the role of the density gradient and finite size effect can be neglected as neither any global modulation
of the turbulent structure due to concentration of the aggregate nor any change in rheological property
of the fluid is expected. We shall systematically explore in the following how the above mentioned list of
parameters shed light on the character of the large particles. At this point we would like to mention two
necessary points. First, the morphology and size of the aggregates used in axysymmetric extensional
flow and homogeneous isotropic turbulence are almost non differentiable. Hence, we consider the an-
swer to the question of whether the aggregates behave passive or not to the flow, originally posed for
aggregates in turbulent flow, also holds true for laminar flow. Second and importantly, the scope of the
experiment in turbulent flow did not allow to produce an independent statistical analysis for quantitative
conclusions on the dynamics of the aggregates. Therefore, our analysis in this particular section will be
clearly biased towards exploiting the results from a list of researchers in an attempt to bridge between
the deficit in statistics and our understanding on the aggregates’ dynamics as well as its coupling with
that of the flow.

The Stokes number, St, which is commonly used to estimate how perfectly a tracer particle follows the
flow, is defined as

St =
τv
τη

(2.11)

where τv is the particle response time to the flow, in this classical definition it is the viscous relaxation
time of the particle defined as

τv =
1

18

(
ρp
ρf

)
d2p
ν

(2.12)

and τη is the Kolmogorov time scale, the smallest time scale in turbulent flow.

τη =

√
ν

ε
(2.13)

Therefore the ratio for the Stokes number unfolds as

St =
1

18

(
ρp
ρf

)
d2pε

1
2

ν
3
2

=
1

18

ρp
ρf

(
dp
η

)2

(2.14)
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where

η =

(
ν3

ε

) 1
4

(2.15)

where dp is the particle size, η is the Kolmogorov length, ρp and ρf are the specific densities of the
particle and fluid respectively, ε is the rate of energy dissipation per unit mass and ν is the kinematic
viscosity of the fluid. In principal, the Stokes number reflects the dynamic behavior of the particle relative
to the carrier flow dynamics. If St� 1, the particle is considered to be passive with respect to the flow
and follows the fluid motion reliably. If St�1 then the particle dynamics departs strongly from the flow,
i.e., inertial particles are insensitive to the flow and follow their own trajectories. The relevant time scales
defining the conventional Stokes number are valid for point particle approximation, i.e., the limiting size
of the particle is smaller than the smallest spatial scale of the flow η at which the velocity gradients are
smooth and particles are able to feel the spatial and temporal changes in the flow structure. On the other
hand, particles larger than η are assumed to be affected by inertia and deviate from the fluid particle
dynamics. To address the finite size effect on the advected particles in turbulence i.e., for dp > η, as in
the case of aggregates, both the flow and particle time scales need to be revised appropriately in order
to know if the aggregates can be legitimately thought to be passive when considering the Stokes number
as a control parameter. We revisit Xu et al. [133] and Schmitt et al. [107] to obtain the modified definition
of the Stokes number that accounts for the finite size particle as

Stp ≡ τp
τd

=
1

18
ζ

(
ρp
ρf

)(
dp
η

) 4
3

(2.16)

ζ =
1

1 + 0.01315Renp
(2.17)

Here the exponent n is also a function of the particle Reynolds number Rep as n = 0.82-0.05 log10 Rep.
In the limit of vanishing particle Reynolds number, i.e., Rep → 0 for size dp < η, the viscous relaxation
time τv is an appropriate choice for the particle response time. But for dp > η, aggregates as the relevant
example, Rep (Rep ≡ u′dp/ν) takes a finite value and therefore Stp incorporates a finite size particle
Reynolds number correction coefficient, ζ (see Xu et al. [133]). In addition it is conjectured that particles
with size dp > η act as a spatial filter to the turbulent flow for scales smaller than dp and therefore, finite
size particles should not feel the small scale gradients. Due to this reason, the Kolmogorov time, τη, is
replaced by the eddy turn over time at particle scale as

τd ≡
(

d2p
ε

) 1
3

(2.18)

We compute the Stokes number of the tracer particle (tracer particle size, φ = 100µm) using (2.14) and
then compare the aggregate Stokes number with velocity fluctuation, u′ = 0.03m/s and ν = 10−6m/s2

using both the conventional (2.14) and modified definition (2.16). We found the Stokes number for the
tracer particles is O(10−4) where as the Stokes number for aggregates lies at 1% and 3% using the
conventional and the modified definitions respectively. Therefore, the density effect is expected to be
negligible.

In the context of very large particles with a size approaching the integral scale of the flow, i.e., dp/η → L,
the Lagrangian velocity increments [103] revealed that even large particles exhibit the intermittency signa-
ture over a wide range of time scale, an obvious indication that they also experience strong acceleration
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events similar to small particles. The acceleration variance,〈a2p〉, of the large particle is a measure of how
intensely they feel the strong turbulent event. Among others, the systematic investigations by Xu et al.
[133] and Qureshi et al. [103] revealed that the tails of the acceleration PDF of the large particles get
narrower with growing particle size. That means, the acceleration variance decreases with increasing
particle dimension or in other words the insensitivity to strong events grows with larger particles. Qualita-
tively, the pressure gradient causing the particle motion is averaged over the larger space with the larger
particle size. This impact of the finite size on acceleration reflects the fact that large particles filter the
drastic turbulent events which is attributed to a longer particle reaction time to the flow. Based on the
scaling between acceleration variance and size in the inertial range, i.e., 〈a2p〉 decreases with (dp/η)

−2/3.
Qureshi et al. [103] drew a demarcation on size beyond which the attenuation of 〈a2p〉 is pronounced. Fi-
nite size effects start to set in at about 5 < dp/η < 15. An independent study from Xu et al. [133] showed
that it starts at about dp/η > 7. In essence, the critical size of the large particle behaving like the tracers
is dp/η ' 5 (see, e.g.,Qureshi et al. [103], Brown et al. [22] and Volk et al. [129]). This is also supported
by the results from an optical investigation by Voth et al. [130] in fully developed turbulence showing
that 〈a2p〉 for the size dp/η ≤ 5 scales correctly in the viscous range following the Heisenberg-Yaglom law
[92], i.e., 〈a2p〉 ∼ η−2/3. Since the upper bound of the aggregate size in our experiment is ∼ 5η, above
mentioned arguments suggest that the aggregate dynamics can be expected to be similar to that of flow
tracers and even our biggest aggregates should not dampen the small scale features, i.e., they should
be still reactive to violent events of the flow.

Arguments based on Stokes number and acceleration statistics discussed above showed clear evidence
that the aggregates used in our experiment can be equivalently treated as small tracer particles. We
proceed further to know whether the standard equation of motion valid for infinitesimally small particles is
interchangeable for finite size aggregates or to which extent the equation should be refined by addressing
the finite size issue in order to make it functional for the aggregates. The interaction between the carrier
fluid and a transported particles is important considering the fact that the nonlinear dynamics of energy
transfer among the spectrum of spatial scales is reversibly coupled with the finite size particle which
results in the modification of the small scale gradients due to the particle inertial response to the fluid
acceleration. The Maxey- Riley- Gatignol equation [89, 38] is an exact derivation governing the particle
motion in an unsteady incompressible fluid based on the fundamental assumption restricting the particle
size to be small, i.e., computationally it is assumed to be a point particle and hence does not perturb
the flow, in the limit of vanishing particle Reynolds number, Rep → 0 and initial particle slip velocity,
|u − v| → 0. Following Babiano et al. [4], we recall the basic equation of motion originally derived by
Maxey- Riley- Gatignol [89, 38]

ρp
dv
dt = ρf

Du

Dt
︸ ︷︷ ︸

Fluid acceleration

+(ρp − ρf )g
︸ ︷︷ ︸

Buoyancy

− 9νρf
2a2

(

v − u− a2

6
∇2u

)

︸ ︷︷ ︸

Stoke’s drag

− ρf
2

(
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− D
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∇2u
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− 9ρf
2a

√
ν

π

∫ t

0

1√
t− ζ
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dζ
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6
∇2u

)

dζ

︸ ︷︷ ︸

Basset-Boussinesq history froce

(2.19)

where ρp and ρf denote the particle and fluid densities respectively, ν is the kinematic viscosity of the
fluid, a is the radius of the particle, u and v are the fluid and particle velocities respectively, Du/Dt is the
Lagrangian acceleration of the fluid and g refers to the gravitational acceleration. The terms in a2∇2u is
the Faxén correction [35] explained in the following.



28 Chapter 2. Materials and methods

The net hydrodynamic force exerted on a particle by equation (2.19) can be decomposed into several
contributions as labeled along the equation namely, fluid acceleration due to the combined effect of
pressure gradient and viscous force, buoyancy due to the displaced fluid mass by the particle itself,
drag force which is a function of the particle slip velocity, added mass as a result of the inertia added
to the system induced by the acceleration of the fluid volume in the vicinity of the particle which is
proportional to the difference between the Lagrangian acceleration of the fluid and acceleration of the
particle and the last term stated in the equation, Basset history force taking into account the cumulative
viscous memory effect. While equation (2.19), valid for infinitesimally small particles which are one way
coupled to the carrier flow, is adequate to describe the dynamics of small and heavy particles [123],
deriving a deterministic formulation for the particle motion is much more complicated when the size of
the particle exceeds the dissipative scale of the flow, dp > η [3, 70, 69]. For finite Rep, as in the case of
the aggregates, non linear flow dynamics in the proximity of the aggregate can no longer be neglected
as studied in details by Michaelides et al. [91]. The point particle approximation is violated since the
aggregate size is larger than η. Moreover, density matching between the aggregate and fluid phase
does not allow to simplify the equation (2.19) by excluding some terms such as pressure drag, Basset
force or the effect of added mass. Therefore, besides the validity of equation (2.19) itself to estimate the
dynamics of aggregate motion, recognizing the governing force terms and their necessary modification
or neglecting the sub dominant force in the context of aggregate motion is non trivial.

A recent study by Zimmermann et al. [139, 140] reported a comprehensive analysis resolving the full
motion of a large particle in intense turbulence with a particular emphasis on rotational intermittency and
turbulence induced lift experienced by a finite size particle. Higher order dynamics between shear and
vorticity at finite Rep is attributed to the difficulty to determine the lift force. Investigation of the lift force
acting on a bubble by Magnaudet et al. [83] also provides an approximate expression equally justified for
the large particle in turbulent flow. The Basset history term needs to be refined as well as since Stokes
flow assumption does not include the inertial response of the particle to the carrier fluid and propagation
of the vorticity in the wake of the particle. However, Auton et al. [3] derived a complete solution for the
added mass which is valid for any Rep.

Among all other terms involved in the equation (2.19), Stokes drag received the most attention as the
key term as reflected from the research by Bagchi et al. [9, 10], Burton et al. [23] and Zeng et al. [138].
An approach forwarded by Babiano et al. [4] and later on followed by Calzavarini et al. [25, 24] considers
only three terms as the key quantities, namely, fluid acceleration, Stokes drag and added mass. It is
crucial if the spatial velocity derivative or pressure gradient is subject to vary at the particle scale as in
that case flow dynamics close to the particle which actively contributes to the added mass and stokes
drag would yield incorrect estimates. Faxén’s law, a corrective measure to Stokes’ law takes into account
the non linear flow dynamics at the particle scale when dp > η. To address the size effect, the Faxén
correction for the Stokes’ drag performs the spatial averaging of the inhomogeneous local velocity field
over the surface of the particle as

fD = 6π

(
dp
2

)

µf

(∫

sp
u(x)dS
∫

sp

− v

)

(2.20)

Moreover, Gatignol [38] emphasized the importance of the Faxén correction for the inertial effect acting
on the particle, i.e., Lagrangian acceleration and added mass, by the volume average of the local flow
field at particle scale. Finally, considering Lagrangian acceleration, Stokes drag and added mass as the
active terms in the equation (2.19) and incorporating the Faxén corrections at Rep 9 0, Calzavarini et al.
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[25] proposed a first order refinement of the equation (2.19) as

dv

dt
=

3ρf
ρf + 2ρp

(〈
Du

dt

〉

vp

+
3ν

r2
(〈u〉sp − v)

)

(2.21)

On the basis of order of magnitude estimate, Faxén corrections are valid for r ≥ η
√
Reλ [25]. Therefore,

given the scope of our experiment, 〈r〉 ' 0.6 mm, η = 0.3 mm and Reλ ∼ 70, Faxén corrections are
negligible. Therefore, based on the arguments above we conclude that the aggregates used in our
experiments are non inertial and their finite size does not affect the flow field.





Chapter 3

Results

This chapter contains the results of this experimental thesis. Here we compile all the relevant findings
from the breakup experiments and explain them in detail. As we shall go through, the architecture of the
chapter is as follows:

For the aggregate breakage in axisymmetric extensional flow, the analysis of the flow field is described
in § 1. We begin with the breakup investigation by focusing on a few exemplary events. The reason why
we look into some specific breakage events first is to obtain a raw impression on how we should proceed
to set up the necessary analysis frame work for the entire set of breakage phenomena leading to the
statistical conclusion presented in § 2. We organize our understanding derived from the experimental
outcome and § 3 holds the conclusion. This will eventually facilitate to make a constructive comparison
with the breakup results from the turbulent flow

We maintain the similar order of the description pattern formed for orifice experiment in the case of
aggregate breakage in turbulent flow. In § 4 we study the characteristic features of the homogeneous
quasi isotropic turbulent flow into which the aggregates are introduced. In this section we also interpret
in brief the core idea of how the coarse grained velocity gradient tensor is computed. Starting with the
representative breakup event analysis, § 5 explains the results of the breakup with § 6 containing the
key findings. In § 7 we compare the breakup mechanism of aggregates in laminar and turbulent flow
where we try to construct an overall understanding of the breakup mechanism which is central to this
experimental effort.

31
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3.1 Flow field analysis: Orifice

Experiments on aggregate breakage were carried out in an axisymmetric extensional flow. Since the
flow field is laminar and stationary, it was not necessary to measure the velocity gradient and aggre-
gate breakup simultaneously. Moreover, due to the difficult experimental conditions (wall bounded small
observation domain and difficult optical access) it was preferred to measure the flow field and breakup
phenomena separately. We obtained ∼ O(100) breakage events in laminar and stationary flow condition
in the orifice and analyze the break up mechanism based on the previously measured velocity field.

For the current experiment, the field of view extended from ∼ 4.5 mm upstream of the orifice to approxi-
mately 15 mm downstream of the channel entrance. The length of the channel is 20 mm, which means
we did not include the entire channel inside the field of view. There are two reasons that dictate the
choice. First, a steep increment in velocity due to abrupt contraction in flow cross section is expected to
trigger the breakup around the orifice entrance and we are primarily interested in capturing the events
particularly at that specific location. Second, considering the possibility that either a fragment might un-
dergo further breakup deep inside the channel, i.e., a cascade of breakage or even an aggregate itself
surviving from the anticipated zone of breakage, the field of view should ideally extend all along the chan-
nel length. But in practise, finding an optimal focus for every part of the domain is a non trivial technical
issue. To avoid the compromise on focus that could have an adverse effect on particle detection, we had
to strip off a length of ∼ 5 mm from the end of the channel and this exclusion did not prove essential
in terms of detecting breakage. Fig. 3.1 shows an ensemble of the tracer trajectories together with the
channel geometry from different viewing angles. The green and red dots refer to the beginning and end

Figure 3.1: A set of flow trajectories from the stationary flow in the orifice. The selection of these trajec-
tories are conditioned such as to pass the linear distance of ∼ 5mm across the orifice entrance which is
located at 25 mm downstream. The beginning and the end of a trajectory are marked with green and red
circles respectively.
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Figure 3.2: Pdf of the trajectory length in the orifice experiments. (left) Trajectories are measured in
number of frames they are tracked and an exponential decay in finding the longer tracks is observed.
Trajectories conditioned to pass the channel are also shown on the right with the trajectory lengths in
mm. The second peak is due to finite size of the domain, i.e. there is a cut off when particles leave the
field of view.

Figure 3.3: Velocity vectors labeled by magnitude in orifice showing the stationary flow. From ∼ 3 mm
upstream of the orifice to the entrance, the velocity grows almost an order of magnitude due to the abrupt
contraction in flow regime.

of a trajectory, respectively.

The orifice entrance is located at y = 24.5 mm upstream with respect to the origin of the laboratory
coordinate. The set of trajectories shown in Fig. 3.1 sets off ∼5 mm prior to the channel and is tracked
over a length of ∼ 15 mm. However, there are numerous shorter trajectories. Only trajectories longer
than ten frames are taken into account for the calculation of the velocity gradient. Fig. 3.2 shows the
probability density function of the trajectories for the whole data, for trajectories longer than 20 frames and
for trajectories that cross the orifice entrance. It is clear that the length of the trajectories, `t, increases
with decreasing population. There is an order of magnitude increase in trajectory length when the length
threshold is doubled from ten frames to twenty as indicated by the blue and red curves respectively. The
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Figure 3.4: Velocity magnitude shown in three different locations, i.e., close to the channel walls and
along the center line of the flow. There exists a high velocity gradient between the wall and the middle of
the orifice within a distance of 1.5 mm.

Figure 3.5: A set of trajectories starting from different locations in the flow field labeled with the time
they require to flow through the orifice. From the beginning of the tracking of an aggregate it takes ∼ 40
milliseconds to reach the orifice.

distribution is bimodal (see Fig. 3.2 (right)) and conditioned such that the trajectories should be spanned
across the orifice entrance by a spatial margin of the orifice width (3 mm) on either side. Most of the
trajectories can not be tracked beyond ∼ 30mm downstream (i.e., ∼ 5mm behind the orifice entrance).
A decrease of the number of trajectories with length is typical for this kind of experiments (see e.g., [74])
and is attributed to the combined effect of ambiguity in detection, solid boundary of the investigation
domain somewhat blocking the stereo angle of the cameras, out of focus problem, fluctuation of the
illumination intensity and unequal scattering intensity of the tracer particles. The field of view ends at
∼ 40mm downstream. There are some trajectories that could be tracked up to the end of the observation



3.1. Flow field analysis: Orifice 35

0 0.0125 0.0250 0.0375 0.0500
0

0.05

0.1

0.15

0.2

0.25

0.3

t(s)

v
(m

/
s)

 

 

0.021 0.022 0.023 0.024 0.025 0.026 0.027 0.028
0

0.05

0.1

0.15

0.2

0.25

0.3

y (m)

v
(m

/
s)

 

 

Figure 3.6: Ensemble average of the velocity over time and stream wise direction. It takes about 40
milliseconds for the velocity to grow almost an order of magnitude across the observation window, but in
fact it takes ∼ 1 millisecond to attain the largest velocity increment close to the orifice (left). The figure
on the right shows the monotonic increase of the velocity over the stream wise distance.

domain. This particular set of trajectories is responsible for the bimodal distribution.

The Lagrangian measurements of the velocity are interpolated onto a uniform Eulerian grid of ∆` =

0.5mm spacing and the spatial derivative ∂ui

∂xj
is obtained from the grid. In an axisymmetric converging

flow generated by a sudden contraction, a sharp increase in velocity is observed close to the constricted
regime. Fig. 3.3 shows the velocity magnitude along the streamlines. With a volumetric flow rate of 88
ml/min, the velocity grows from about v = 4 mm/sec in the chamber to approximately v =25 cm/sec in
the channel. Fig. 3.4 illustrates the velocity magnitude distribution in different cross sections, e.g., at
the near wall region inside the orifice, in the middle of the orifice and in front of the orifice entrance. An
equal magnitude in velocity, v ∼= 10cm/sec, close to both walls of the channel quantitatively proves the
axisymmetry of the flow pattern. Relative to the flow direction, crossing between the longitudinal plane
through the mid section of the channel and an orthogonal plane placed exactly at the channel opening
shows the spatial extent of the maximum velocity that starts from ∼ 1 mm in front of the orifice position
and extends to the limit of observation domain, i.e., ∼ 15 mm downstream from the orifice. However,
comparing the velocity in the near wall region with the velocity inside it, we found that within a millimeter
range in span wise direction, the velocity increases by a factor three. This high velocity gradient causes
large shear and is responsible for a shear driven breakup of aggregates passing close by the channel
boundary. For an order of magnitude increase in velocity, it takes merely 40 milliseconds over a distance
of ∼ 4 mm upstream from the orifice as can be seen from the ensemble average of the velocity (see Fig.
3.6).

The initial motivation was to investigate the aggregate breakage in a purely elongational flow generated
by an abrupt contraction in flow regime. During the recording we observed some aggregates are broken
as well when they were passing close to the wall. Therefore, breakage due to elongation and shear took
place in the orifice set up. Away from the wall, near the center line of the orifice, the velocity profile of the
uniaxial extensional flow in eigen frame can be defined as

v =






v1
v2
v3




 =






γ̇(t)e1

− γ̇(t)
2 e2

− γ̇(t)
2 e3




 (3.1)
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Here in equation (3.1), γ̇(t) and ei refer to the rate of stretching and the directions of the eigen frame
of the velocity gradient tensor respectively where a strong stretching is exerted along the e1 direction
while the aggregates are squeezed across the e2 − e3 plane. On the other hand a simple shear flow is
unidirectional, i.e.,

v =






v1
v2
v3




 =






√
2
2 e1
0√
2
2 e3




 (3.2)

Any flow can be constructed as the superposition of purely elongational and purely rotational flow [72].
Compared to the simple shear flow, an elongational flow delivers a more pronounced effect to the distor-
tion of aggregates as there exists no vanishing velocity component, i.e., aggregates are exposed to the
variable velocity around the surface as they are transported along a straining flow stream line. Therefore,
aggregates experience strong acceleration whereas the pure shear, in absence of acceleration, execute
a torque on the aggregates which is obviously less effective to induce breakage. Hence stretching of an
aggregate which could lead to the disintegration ceases in the vicinity of the walls where the rotational
effect of the shear is as strong as the strain. This is almost an ubiquitous phenomenon for the objects
like polymer chain tumbling and folding in shear flow. But the fractal aggregates used in this experiments
are seen to be ruptured along the solid boundary, not as a mere form of surface erosion but as a discrete
separation into parts.

To study the structure of the velocity field, we take a closer look at the measured velocity gradient, Aij

Aij =
∂ui

∂xj
(3.3)

s2(1/sec2)

Figure 3.7: s2 (1/sec2) contour on log10 scale. An isosurface of the maximum strain is labeled in red that
spans from the front of the orifice and exists inside the channel close to the wall. This isosurface of the
maximum s2 provides a qualitative impression for the most probable location for the breakup.
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Aij is a second rank tensor, i.e., it consists of nine components in three dimensions. The velocity gradient
Aij can be split into symmetric and skew symmetric parts as

Aij = Sij +Rij (3.4)

where

Sij =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)

=
1

2
(Aij +Aji) (3.5)

Rij =
1

2

(
∂ui

∂xj
− ∂uj

∂xi

)

=
1

2
(Aij −Aji) (3.6)

The symmetric part of Aij represents the rate of strain tensor, sij whereas the anti symmetric part
represents the rate of rotation tensor, Rij . Since the velocity field is divergence free for incompressible
flow, i.e., ∇ · v = 0, the trace of sij sums up to zero,

∑
Λi = 0. Here, the Λi ’s refer to the eigen values of

sij and the corresponding mutually perpendicular eigen vectors λi determine the principal axis of sij . By
convention, Λ1 represents the most stretching eigen value and is always positive, i.e., {Λ1 ∈ R|Λ1 > 0}
and Λ3 is the most compressive one and is always negative, i.e., {Λ3 ∈ R|Λ3 < 0}. The intermediate
eigen value, Λ2 can be either compressive or extensional.

Along a principal direction, for Λ1 > 0, a fluid blob is subjected to the stronger extension and for Λ3 <

0 it feels the stronger compression. The intermediate eigen value Λ2 can exert either extensional or
compressive force in the third direction. The rotation tensor Rij defines the vorticity vector as ω = ∇× v

that describes the rate of rotation of a fluid element. In the region of axisymmetric extensional flow in
the orifice ∇ × v = 0, i.e., the flow is irrotational and hence only the strain can be responsible for the
breakage of aggregates.

We take a closer look at the measured rate of strain, s2 = sijsij =
∑

Λ2
i shown in Fig. 3.7, where the

color bar is in the logarithmic scale. From the figure it is evident that the contraction is characterized by an
increase of s2 over several orders of magnitude. More precisely, in the chamber s2 is on the order of 0.1-1
sec−2 and reaches the values on the order of 104sec−2 in the center of the orifice. The isosurface marked
in red renders the maximum strain which appears close to the orifice entrance and extends inside the
orifice embracing the channel boundary. Therefore, at the orifice, both the contraction and the wall shear
give similar contributions to the total stress. Beyond the orifice and deep inside the narrow channel, as
the velocity profile quickly converges to the laminar profile of a rectangular duct, the contribution of the
boundaries will be dominating.

We gain further insight into the flow field through the eigen analysis of sij . Fig. 3.8 shows the principal
directions of sij , i.e., the three eigen vectors within the investigation domain. The most extensional
eigen vector is colored in red, the most compressive one is in blue and the intermediate one is in green.
While the role played by λ1 and λ3 is straight forward regarding the type of the stress they apply on
the aggregate, we focus on λ2 that can be both extensional and compressive. The probability density
function of the Λi’s, i.e., the magnitudes of the eigen values (see Fig. 3.8 right) shows that intermediate
eigen vector is mostly compressive in nature. It is instructive of the fact that a fluid element approaching
the orifice will be deformed due to the combined stress exerted by all three principal components of sij
which we can confirm by looking at the presence of all the three eigen vectors of the strain tensor prior to
the orifice entrance. It is noteworthy to mention that, the intermediate eigen vector, λ2 also takes part in
compression together with the conventionally compressive λ3 approximately 3 mm upstream of the orifice
as seen from the eigen vector map from Fig. 3.8. Before reaching the channel, the flow is in fact almost
two dimensional, i.e., there is an approximate ”radial” symmetry and Λ2 ∼ Λ3, i.e., the intermediate
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Figure 3.8: The most extensional, intermediate and the most compressive eigen vector of the rate of
strain tensor sij , i.e., λ1(red), λ2(green) and λ3(blue) respectively multiplied with their corresponding
eigen values Λi in stream wise view. In front of the orifice, the intermediate eigen vector (green) has a
considerable effect and comparing with the most compressive one (blue), it can be noticed that Λ2 ∼ Λ3.

and the compressive eigen vectors are nearly indistinguishable. When looking along the stream wise
direction of the flow, as in Fig. 3.9 (left) where the most extensional and compressive eigen vectors are
illustrated bidirectionally, it becomes distinctively clear that uniaxial straining exists near the center line of
the converging flow, away from the surrounding walls of the chamber and channel. The vertical line marks
the position of the orifice and the height of the channel spans from 9-12 mm. Thereafter, deep inside the
channel, Λ2 becomes vanishingly small which leaves Λ1 and Λ3 in balance. Close to the wall inside the
channel and near the chamber boundary located at 25 mm downstream, extensional and compressive
stress align themselves at 45◦ with respect to the wall. This is characteristic of the pure shear similar
to plain Couette flow. To further supplement our observation, we take a close look at the iso surfaces
of λi’s. On the basis of an empirical threshold, the ratios |Λ2

Λ1
| and |Λ2

Λ3
| produce the iso surfaces of Λ1

(red surface) and Λ3 (blue surface) respectively, shown in Fig. 3.10. We notice that, the iso surfaces of
the most extensional and compressive eigen vectors almost embrace each other close to the wall inside
the orifice which reconfirms the presence of simple shear inside the channel. Therefore, the aggregates
passing close to the boundary are expected to be sheared rather then elongated.

In short, in this first paragraph 3.1, we characterized the axisymmetric extensional flow field generated in
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Figure 3.9: Orientation of the most extensional and compressive eigen vector of the rate of strain tensor,
i.e., λ1(red) and λ3(blue) respectively along the stream wise direction (left) and the pdf of their magni-
tudes, Λi (right).

Figure 3.10: Iso surfaces of the eigen values Λi of the rate of strain tensor sij in the orifice. Red, green
and blue refer to the most extensional, intermediate and the most compressive eigen value iso surface
respectively. Iso surfaces of Λ1 and Λ3 nearly co exist inside channel.

the orifice setup and confirmed that 1) strain, s2 responsible for the breakup of the aggregates increases
monotonically as the flow converges towards the orifice which gives an impression of the most probable
location for the breakage, 2) eigen analysis of sij shows the region of uniaxial straining in front of the
orifice and simple shear inside the orifice. We shall see in the next section 3.2 how aggregates are
broken when introduced into the orifice setup.
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3.2 Breakage analysis in orifice

3.2.1 Example analysis

Brownian motion driven aggregation produces a range of different size aggregates. Not all of the ag-
gregates are worth investigating with respect to the breakage mechanism. In this experiment, we con-
sciously discarded those aggregates whose size is larger than the width of the orifice (see Fig. 3.11) as
they mostly undergo rigid body elastic deformation and resist breakup.

On the other hand, some breakage events from the aggregate size range below the channel width, 3 mm,
are hard to account for due to the difficulty to definitely detect the detached parts as fragments. Fig. 3.12
shows few examples where the breakup is inconclusive from a visual and technical detection point of
view and hence not considered for the analysis. Therefore, filtered by the aggregate’s initial size and the
pattern of breakage, we select the events which provide a certain number of distinguishable fragments
shown in Fig. 3.13 and Fig. 3.14 as the standard reference events. Here the breakup as it happened
during the experiment, is recreated in 2D by compiling four different time instances which illustrate the
course of the event. In Fig. 3.13, an aggregate breaks into two fragments whose Lagrangian tracks
are shown in Fig. 3.15 (left) and in Fig. 3.14 an aggregates is subjected to successive segmentation
whose Lagrangian tracks are seen in Fig. 3.15 (right). The blue trajectory refers to the parent and the red
ones are the fragment tracks. In situations where an aggregate might undergo continuous fragmentation
producing multiple pieces almost instantaneously, we limit the choice to select events based on a maxi-
mum of four pieces of fragments (see Fig. 3.14) above which breakup resembles a thread of apparently
detached parts which are hard to judge as distinct fragment entities.

Both the exemplary breakage events illustrated in Fig. 3.13 and Fig. 3.14 take place ∼ 1mm in front of
the orifice where s2(1/sec2) is maximum. The initial size of those two aggregates are comparable, i.e.,
∼ O(1mm). When s2 is measured along the trajectories, we found that the position at where they broke,
are superior in the magnitude of the strain responsible for the breakup (see Fig. 3.16). The only, but not
the least, differentiable feature between these two breakup events is the mode of breakage. Composed
of same primary particles, aggregates of equal size can be disintegrated into the different number of parts
although the critical s2 for both is identical. A crude consensus can be developed on this phenomenology
that, apart from the size and s2, inhomogeneous mechanical strength could also determine the onset of

Figure 3.11: Aggregates of size larger than the orifice width are not considered for analysis. Some
aggregates could grow as large as the orifice width of 3 mm or larger than that. Those aggregates are
observed to be only elongated as long as the orifice length without breaking and hence do not qualify for
the analysis.
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Figure 3.12: Ambiguous breakage events. The images are processed to remove unnecessary reflection
around the aggregates for the purpose of appropriate detection. Breakups are ambiguous in the sense
that fragments seem to connected by thin parts rather than visibly separated from each other.

Figure 3.13: An aggregates breaks into two parts is shown in four different snapshots of a sequence in
the orifice

breakup as well as the number of produced fragments. Looking at the breakage event in Fig. 3.14, one
could realize that diffusion limited aggregates exhibit irreversible deformation. Another standalone point
can be noticed from this material property. Elastic behavior of the aggregates implies an amorphous
structure capable to reassemble internally and helping to resist the break up (see Fig. 3.12 (left)) as
opposed to instantaneous crack propagation in a rigid body along the plane experiencing the critical s2.

Figure 3.14: An aggregates breaks into four parts is shown in four different snapshots of a sequence in
the orifice
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Figure 3.16: s2(1/sec2) along the trajectories (aggregate trajectory is in blue and fragments are in red)
in downstream direction. (left) One aggregate breaks into two and (right) the other one breaks into four
parts and both the events take place in front the orifice approximately at the same strain magnitude.
Location of the orifice entrance is indicated by the black vertical line
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3.2.2 Statistical analysis

Now, we focus on the statistical results derived from all of the breakage events, order of O(100). In princi-
ple, we will detect the locations of the breakage, measure the strain responsible for the breakage, analyze
the dominant contribution between uniaxial straining and simple shear to breakage and eventually verify
the scaling law between aggregate size and strain at breakage.

In Fig. 3.17 and Fig. 3.18 we show the breakage location with the respective strain rate,
√
s2. Most of the

breakage take place in front of the orifice entrance where the strain is maximum. Fig. 3.19 (left) shows
quantitatively that ∼ 1 mm on either side of the orifice entrance which is located at 25 mm downstream, is
the most probable flow domain for the breakup in converging flow at an average strain of s2 ∼ 104(1/sec2)

(right). Some aggregates passing close to the top of the channel experience the maximum strain rate,
i.e.,

√
s2 ∼ 200(1/sec2). From Fig. 3.4, comparing the velocity of the near wall region of the orifice with the

velocity inside it, we found that within a millimeter range in spanwise distance, the velocity is increased
by a factor of five. This high velocity gradient causes an immense shear leading to the breakup.

We look at the ratio of the intermediate and the most compressive eigen values of sij , i.e., |Λ2

Λ3
| to

understand the contribution of shear and uniaxial stretching in the breakup process. In Fig. 3.20 and
Fig. 3.21 we illustrate the breakage locations with the corresponding |Λ2

Λ3
|. Due to incompressibility of the

fluid, the trace of the rate of strain tensor sij is vanishing, i.e.,
∑

Λi = 0. If the intermediate eigenvalue
Λ2 grows close to the most compressive one Λ3 , i.e., |Λ2

Λ3
| → 1 then we come up with the relation

|Λ2| ∼ |Λ3| ' 1
2 |Λ1| which implies uniaxial stretching. On the other hand, if Λ2 is negligible compared to

Λ3, i.e., |Λ2

Λ3
| → 0 then |Λ1| ∼ |Λ3| which means stretching and compression equate each other leading

to the simple shear effect. Therefore, we look at the ratio of the intermediate and the most compressive
eigen values of sij , i.e., |Λ2

Λ3
| to understand the contribution of uniaxial stretching and shear in the breakup

process. In Fig. 3.20 and Fig. 3.21 we illustrate the breakage locations the in orifice in different views
and show the ratio |Λ2

Λ3
| at those breakage spots. We found that |Λ2

Λ3
| ≥ 0.5 flanked on either side of the

orifice entrance within a span of ∼ 1 mm as Fig. 3.23 also shows how |Λ2

Λ3
| computed at the breakage

Figure 3.17: Breakage locations (isometric view) inside the flow domain labeled with the strain rate
√
s2.
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Figure 3.18: Breakage locations from the top (left) and stream wise view (right) labeled with the strain
rate

√
s2.
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Figure 3.19: Probability density function of the breakage location (left) along the stream wise direction
and the corresponding strain s2 responsible for breakage (right).

location changes along the downstream. The position of the channel is marked by the black vertical line.
This means, at those particular locations aggregates broke due to uniaxial stretching. Here we reconfirm
our understanding while attributing breakup due to elongation preferably in front of the orifice by recalling
the Fig. 3.8 in 3.1 in which we see that Λ2 ∼ Λ3 in front of the orifice. Beyond the orifice entrance,
we also found a few breakage events deep inside the channel. From Fig. 3.21 we observe that most
of the events take place near the bottom and the top of the channel. At those breakage locations, the
intermediate eigen vector almost diminishes as we see |Λ2

Λ3
| ' 0. Hence we attribute simple shear for

those breakage events.

After identifying the breakup based on elongation and simple shear, we try to understand why most of the
aggregates break due to uniaxial straining and a few of them break due to simple shear considering the
fact that all of them are made of the same constituent particles following a specific aggregation procedure
and have comparable size. Besides this, the aggregates which are broken inside the channel raise
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Figure 3.20: Breakage locations (isometric view) inside the flow domain labeled with the ratio of the
intermediate and the most compressive eigen value |Λ2/Λ3| of the rate of strain tensor.

Figure 3.21: Breakage locations from the top (left) and stream wise view (right) inside the flow domain
labeled with the ratio of the intermediate and the most compressive eigen value |Λ2/Λ3| of the rate of
strain tensor

another question of how those aggregates managed to resist breakup while crossing the orifice entrance
where strain is maximum. To answer these questions we argue on the strength of the aggregates and
the pattern of the breakage.

The strength of an aggregate is not a function of its size. Therefore aggregates belonging to the same size
distribution could have variable mechanical strength. More than size, we consider physical morphology
of the aggregates to be of importance to gain a better insight about the strength. The parameter fractal
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Figure 3.23: The ratio of the intermediate and the most compressive eigen value |Λ2

Λ3
| at the point of

breakage where the breakage locations are shown in stream wise direction. The majority of the breakup
takes place ∼ 3 mm in front of the orifice due to the elongation,i.e., |Λ2

Λ3
| ≥ 0.5 and fewer events due to

simple shear, i.e., |Λ2

Λ3
| → 0, are observed inside the orifice.
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dimension can estimate the morphology of the aggregate. Unlike the topological dimension, the fractal
dimension can take any value between one and three including the fractions as the name suggests.
Lower fractal dimension refers to more open structure and weaker aggregates whereas higher fractal
dimension indicates compact aggregates and therefore stronger structures. It is worth to mention that,
we measured the so called population fractal dimension, df , of the aggregates used in our experiments
which is df ' 1.88. That means, on an average the aggregates are nearly two dimensional objects
with open structure (e.g. see Fig. 2.5). But the population fractal dimension does not represent an
individual aggregate’s morphology. Therefore, there might be some aggregates with relatively higher
fractal dimension and hence stronger so that could survive the maximum strain zone in front of the
orifice.

The way an aggregate breaks, mentioned earlier as the pattern of breakage, could also explain why
we observe some breakage events inside the orifice. We refer to Fig. 3.14 to infer that an aggregate,
when it undergoes breakage, experiences finite deformation which in turn indicates that as opposed
to a rigid object they are elastic to some extent. This elastic property of the aggregates could lead to
two possible phenomena. First, the aggregates being stretched prior to the orifice entrance could be
advected unbroken to some distance downstream and then break apart in the region of simple shear.
Second, a stretched aggregate can possibly undergo successive breakup. In that case, a fragment keeps
breaking further in downstream inside the channel. In these particular phenomena, i.e., an aggregate
breaks in the regime of simple shear as an aftermath of being elongated due to uniaxial stretching starting
form in front of the orifice such that it can not sustain the structural failure or continuous fragmentation
running down the channel, are the basic reasons of observing the breakup beyond ∼5 mm from the
orifice entrance. Hence we conclude that, breakup due to simple shear can not be decoupled from the
initial effect of uniaxial straining in our experiment in orifice, i.e., obviously an aggregate can not escape
elongation to be broken only due to simple shear.

Next we investigate the effect of aggregate size on breakup. In Fig. 3.22 we plot the initial size of the
aggregate as a function of the strain at breakage. In addition, we also embed |Λ2

Λ3
| in the same figure to

understand the size dependency of breakup due to elongation and shear. The size of the aggregates in
the orifice experiment is about one millimeter. We found that, the strain required to break the aggregates
increases with decreasing size. But with decreasing size the strain needed to break the aggregates does
not increase linearly. We notice that, aggregates of a size in the range φ|φ ∈ [0.3, 0.7] mm break at
variable s2. That means the strength of an aggregate seem to be rather independent of its size and that
explains why an aggregate of a certain size breaks at variable strain. While looking at the effect of size
on the breakup due to elongation and shear, we found that almost all the aggregates are prone to be
broken by uniaxial straining since for every size |Λ2

Λ3
| ≥ 0.5. Therefore, Brownian motion driven fractal

aggregates are broken mainly due to elongation irrespective of the size in the range φ|φ ∈ [0.3, 1.5] mm.
Based on our understanding regarding aggregate size and the strain responsible for breakup, we find
a so called ”envelope” from Fig. 3.22 (marked by dashed line). By ”envelope” we essentially define a
region in φ− s2 space which distinctly shows the inverse relation between size, φ and the strain, s2.

There exists an established power law scaling between the steady state size of the aggregates and the
critical strain. Steady state size of the aggregate refers to the size below which an aggregate would
not undergo further fragmentation. Now it is worthwhile to investigate how consistent our prediction is
with respect to the well known power law scaling. Based on the theoretical prediction of the power law
behavior proposed by Zaccone et al. [136], we use the experimental result obtained from small angle
light scattering (SALS) by Soos et al. [46]. The initial fractal dimension of the aggregate used in a small
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Figure 3.24: Evidence of the scaling law behavior between the size and strain is reflected as the mea-
sured data set from 3D-PTV (red) falls on the scaling results obtained from small angle light scattering
(SALS) measurements.

angle light scattering experiment is approximately the same as for the aggregates used in our orifice
experiment. Fig. 3.24 shows the size of the aggregate, φ and strain rate,

√
s2 in logarithmic scale. In Fig.

3.24 we present the result of aggregate breakup in converging flow by Soos et al. [46] representing the
power law scaling (black line) and append our result (red filled circles) therein to see whether the data
set collapses on the scaling behavior. We observe that our measurements relating the size and strain
rate do not exactly align with the line describing the scaling but rather appear to be seemingly scattered.
We explain this slight discrepancy on the basis of two arguments. First, we considered the initial size of
the aggregates and not the steady state fragment size as used by Soos et al. [46].

Experimental conditions do not favor to measure the authentic strain rate at which the fragments reach
their steady state. In order to attain the steady state size in our current setup, the broken parts need to
be reintroduced into the channel time and over again following an optimum recirculation route where the
fragments might keep breaking and reach the steady state well before they actually should. On the other
hand, from a technical point of view, the fast camera at full spatial resolution with an imaging frequency
of 4 kHz (the temporal resolution we used during orifice experiment) can record up to ∼ 3 seconds.
Therefore, continuous recording over a long time is not feasible. These are the basic reasons why we
used the initial size of the aggregates rather than the steady state size.

Second and most importantly, we measured the instantaneous strain rate experimentally at the location
of breakage. Light scattering technique is capable of measuring the size of an object but not the flow
field. Soos et al. [46] analyzed the flow field numerically (for the detailed description of the method
see e.g., [46]). To be specific, they measured the mean steady state size of the fragments and the
maximum strain rate of the flow field that produced that size. This shows the clear difference between
the analysis approaches. We measure the size of the individual aggregate, not the mean initial size
and the corresponding strain rate at the breakage which does not necessarily have to be always the
maximum. Moreover, from Fig. 3.24 we notice that, the scaling from 3D-PTV data is concentrated within
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a range of an order of magnitude in φ and
√
s2 whereas the reference power law scaling consists of the

steady state size and strain rate ranging over approximately four orders of magnitude both in φ and
√
s2.

Despite these differences, the results of aggregate breakage as observed by 3D-PTV shows significant
agreement with the power law scaling between size and strain rate which is mutually complementary for
both the techniques.

3.3 Concluding remark: Breakup in orifice

The synopsis of the results from the breakup of fractal aggregates in axisymmetric extensional flow
generated by an orifice, i.e., a sudden contraction in the flow regime, follows as :

• Our observation domain starts ∼ 4 mm upstream from the orifice entrance. It takes less than 40
milliseconds for the velocity to be increased by an order of magnitude, i.e., from ∼ 2 mm/sec to ∼ 30
cm/sec over this distance.

• Maximum strain, s2 ∼ O(104) (1/sec2) appears to exist from ∼ 2 mm in front of the orifice from which
one can predict the probable breakage locations.

• From the eigen vector map of the rate of strain tensor we see that, uniaxial straining exists before the
orifice and beyond the orifice close to the channel wall simple shear dominates.

• Detected breakage locations suggest that most of the aggregates break in front of the orifice where the
strain is maximum.

• By measuring the ratio of the intermediate eigen value, which we found compressive in nature, to the
most compressive eigen value of the rate of strain tensor we found that the majority of the breakup events
takes place due to axisymmetric straining.

• By measuring the initial size of the aggregates and the strain rate responsible for the breakage, we
come up with a nice agreement with the well known power law scaling.

3.4 Flow field analysis : Homogeneous quasi isotropic turbul ence

In this section we present the core idea of how the coarse grained velocity gradient tensor ∂ũi

∂xj
is com-

puted. We explain the necessary statistical checks and verifications of the measured data using kine-
matic relations. Then we show some important properties of ∂ũi

∂xj
that will establish the validity of the

coarse grained measurement of a random velocity field. We end this section by characterizing the flow
employed to break the aggregates.

Fig. 3.25 gives a qualitative impression of the trajectories which are ∼ 9η long, i.e., they are tracked over
0.8 seconds. The trajectories are encoded with the Lagrangian acceleration. The probability distribution
of the lengths of the those Lagrangian trajectories shows an exponential decay (see Fig. 3.26). The
statistics include all the trajectories, a portion of which is shorter than the Kolmogorov length η contribut-
ing to the lower value of the mean trajectory length and the mean trajectory length is i.e., 〈lt〉 ∼ 2η.

The structure of the quasi homogeneous isotropic turbulent flow is investigated by studying the coarse
grained velocity gradient tensor ∂ũi

∂xj
which is computed by differentiating the convoluted velocity field

using the approximation of Lüthi et al. [73].
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Figure 3.25: Trajectories in homogeneous isotropic turbulence at Reλ = 90. The selected trajectories
which are ∼ 9η long are color coded by the acceleration and tracked over ∼ 0.8 sec.
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ui(x
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n

∑
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 (3.7)

A random velocity field u(x) is convoluted by using a blurring filter ρ∆ which is continuous like a Gaussian
filter and has compact support like a top-hat filter (see e.g., [73]) to the coarse grained velocity field ũ(x)

as
ũ(x) =

∫

d3x′ρ∆(x− x′)u(x′) (3.8)

In equation (3.7), ∆ defines the filtering scale for the convolution. For homogeneous isotropic turbulence,
B∆ is essentially a sphere and n refers to the number of available data points contained within B∆

centered at x. 3D-PTV measures the velocity at those n seeding particles and not over the volume B∆.
Therefore the integral

∫
in equation (3.8) is approximated by the summation

∑
to estimate the coarse

grained ũ(x). This introduces an error in evaluating the velocity derivative tensor Ãij(x).

Lüthi et al. [73] removed the trace of Ãij as it leads to the best estimate of Ãij(x).

∂ũi

∂xj
= Ãij − γδijÃkk (3.9)
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Figure 3.26: Pdf of the length of the trajectories measured in number of frames they are tracked by 3D-
PTV, i.e., their temporal longevity and in Kolmogorov length scale η (inset) showing an exponential decay
in probability of finding longer tracks.

This central estimate for ∂ũi

∂xj
has a minimal variance with γ = 1

3 . Equations (3.7) and (3.9) are the

governing equations to derive coarse grained velocity derivatives, ∂ũi

∂xj
with γ = 1

3 filtered at scale ∆. The
integral accuracy strongly depends on the number of data points, n, within ∆B which in turn dictates the
filtering scale ∆. The lower bound of n is a function of the tracer concentration used in the experiment.
Lüthi et al. [73] reported that n ∼ 12 is the lower working limit for ∂ũi

∂xj
.

Fig. 3.27 (left) shows the probability density of the number of data points contributing to the ∂ũi

∂xj
around

the trajectories of the aggregates. By meeting the practical lower limit of n ∼ 12, we have the filter-
ing scale ∆ = 20η. We check the accuracy of the 3D-PTV measurement by looking at two particular
kinematic quantities namely divergence of the velocity, i.e., ∇ · u and the Lagrangian acceleration Dui

Dt .
Due to the incompressibility of the working fluid, i.e., water , Tr[ ∂ũi

∂xj
] should be zero at all the measured

data points in the ideal case. But in practice measurements are not entirely free of noise and hence
Tr[ ∂ũi

∂xj
] 6= 0. We exploit this fact to construct the joint distribution among components of the spatial

velocity derivative by writing ∇.u = 0 :

∂ui

∂xi
= −

(
∂uj

∂xj
+

∂uk

∂xk

)

(3.10)

Fig. 3.28 shows the joint pdf of equation (3.10). The distribution of the components of the Tr[ ∂ũi

∂xj
] lie

around the diagonal but not strictly along the diagonal which reflects the fact that the correlation coeffi-
cients indeed deviate from the ideal value of 1. We found the correlation coefficient for all the components
to be ∼ 0.9. As the next check, we use the kinematic expression for the Lagrangian acceleration where
we split the derivative into its local and convective parts as
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Figure 3.27: Pdf showing the number of data points within B∆ used for calculating the spatial velocity
gradient ∂ui

∂xj
(left). Pdf of the quality error (right) Q, which is the weighted sum of the relative divergence

and acceleration error revealing that > 80% of the measured data points stay below ∼ 0.25 error margin

Dui

Dt
=

∂ui

∂t
+ uj

∂ui

∂xj
(3.11)

3D-PTV is capable of measuring the Lagrangian acceleration ai =
Dui

Dt as a whole following an arbitrary
trajectory but its constituent parts, i.e., the local acceleration, al,i = ∂ui

∂t and the convective acceleration
ac,i = uj

∂ui

∂xj
involve the discrete information from the surrounding particles. This makes all the three

quantities in the equation (3.11) independent from each other. Therefore, equation (3.11) provides a
more robust check for the accuracy of the measurement. Fig. 3.29 shows the joint probability distribution
for each component of the Lagrangian acceleration with the subsequent summation of the other two. Like
the velocity distribution, the acceleration distribution also lies around the the diagonal with correlation
coefficients for all the components of ∼ 0.87.

Combination of the above mentioned checks defines another criterion called quality. In principal, quality is
the weighted sum of the relative divergence of the velocity gradient and acceleration which we formulate
as

Q = 0.01
|∂u1

∂x1
+ ∂u2

∂x2
+ ∂u3

∂x3
|

|∂u1

∂x1
|+ |∂u2

∂x2
|+ |∂u3

∂x3
|
+ 0.99

1

3

3∑

i=3

|ai − al,i − ac,i|
|ai|+ |al,i|+ |ac,i|

(3.12)

The quality parameter Q is made completely biased towards the relative acceleration error by providing
99% weight, as we learned that terms containing the Lagrangian acceleration are independent from
each other and give a rigorous estimates of the error. From equation (3.12) it is obvious that the lower
the Q the higher is the accuracy of the measured quantity. Fig. 3.27 (left) shows the pdf of the quality
from which we conclude that more than 80% of our measured data have quality error less than 0.25

and than 〈Q〉 ∼ 0.12. A detailed account of the procedure for determining the accuracy of the 3D-PTV
measurements and related verifications are given by Luthi et al. [74].
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Figure 3.28: The joint pdf of each component of the kinematic relation ∂ui

∂xi
=

∂uj

∂xj
+ ∂uk

∂xk
(no

∑
over the

index i, j k).

Figure 3.29: The joint pdf of each component of the kinematic relation ∂ui

∂t = ∂ui

∂t + uj
∂ui

∂xj
.

After the systematic statistical checks on the measured data we investigate the behavior of the coarse
grained velocity gradient ∂ũi

∂xj
by looking at several canonical characteristics of the turbulent flow. One

of the prominent features in turbulent flow is self amplification. The most important underlying features
of the self-amplifying dynamics of the velocity gradients are illustrated in Fig. 3.31. We look into the
“structure“ of the symmetric part of the ∂ũi

∂xj
, i.e., sij through the ratio between the intermediate eigen

value Λ2 and the most compressive one Λ3, Λ2

Λ3
. It has been established by now that in the dissipative

range, Λ2

Λ3
≈ 0.14 for a vast range of Reλ. (see, e.g., [56, 124, 17]). Borue et al. [18] and Bos et al. [29]

reported 〈Λ̃2〉 > 0 also in the equilibrium range. This is an obvious indication that, like the small scale
gradient in the viscous range, the coarse grained velocity gradient ∂ũi

∂xj
also experiences self amplification

in the inertial range. By measuring the ratio of Λ2

Λ3
from 3D-PTV data, we found an excellent agreement

as Λ2

Λ3
≈ 0.135 (see Fig. 3.31 (right)).

In Fig. 3.31 (left) the pdf of the measured alignment between vorticity, ω and the so-called vorticity
stretching vector, W = ωisij along with its positive mean value (black vertical line) are shown. The pos-
itiveness of the invariant cos(ω,W ) explains the occurrence of the vortex stretching when the projection
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of the stretching vector, W points to the same direction as of the vorticity vector ω. A strong alignment of
W with ω as seen in Fig. 3.31 (left) illustrates the positive mean enstrophy production in support of the
strong consensus of the prevalence of the vortex stretching over compression, a characteristic feature in
turbulent flow.
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Figure 3.31: Reflection of the self-amplification nature of turbulence; (left) Pdf of the cosine between
vorticity ω and the vorticity stretching vector W = ωjsij . (right) Pdf of the shape of the coarse grained
rate of strain tensor sij . Vertical dashed lines indicate the respective mean values.
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For turbulent flow characterization it has proven useful to study the so called Q-R plane (e.g. [26]). Q

is the second invariant, Q = 1
4 (2ω

2 − 2s2), of the velocity gradient tensor Aij and R is its third invariant,
R = − 1

3sijsjkski − 1
4ωiωjsij . In joint pdf plots of Q versus R a qualitatively identical “teardrop“ shape

(see Fig. 3.30 (left) ) for different kinds of turbulent flows was found by a number of investigators. Chacin
et al. [27] argue that the shape is a universal characteristic of the small-scale motions of turbulence.
Recently, very similar dynamics have also been observed for the coarse grained velocity gradients, see
e.g. Luthi et al. [73].
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Figure 3.33: Pdfs of the instantaneous velocity components showing that the flow is not exactly isotropic
as they do not collapse on to each other (left). Probability distributions of the eigen values of the rate of
strain tensor s̃ij supports the previous finding that 〈Λ̃2〉 > 0



56 Chapter 3. Results

Based on the data passing the robust accuracy checks and knowing the behavior of the coarse grained
velocity gradient ∂ũi

∂xj
exhibits the typical turbulent flow character, of the flow field which will be used for

the aggregate breakup. The observation volume for the experiment was (∼ 100η)3. From Fig. 3.33 we
found that the flow is not exactly isotropic as the probability distribution of one velocity component, u2,
does not merge with the other two components as they collapse on to each other. The PDF of the eigen
values Λi of the rate of strain tensor s̃ij shows consistency particulary with the fact discussed above that
〈Λ̃2〉 > 0.

The PTV velocity gradient measurements were performed on a scale of ∆ = 5.5 mm. The integral
scale, L and the mean rate of dissipation 〈ε〉, were obtained by fitting the parametrization of [17] (see
equation (3.13)) to the measured longitudinal second order velocity structure function S2(x) = 〈(δvr )2〉 =
〈(u⊥ (x+ r)− u⊥ (x))

2〉.

S2(r) = 2

(

1− exp

(

− r

(15Ck)
3
4 η

)) 4
3

· (εL)
2
3




r4

64L4

C6
k

+ r4





1
6

(3.13)

From Fig. 3.32 we observe that, the measured scaling between the velocity increment and separation
distance follows considerably well the parameterized scaling by Borgas et al. [17]. Luthi et al. [73]
derived an analytical formulation to compute the magnitude of the coarse grained s̃2 and ω̃2 as functions
of ∆ and S2(x) as

2〈s̃2〉 = 〈ω̃2〉 =
∫ ∆

0

S2(x)
1800

∆2

( x

∆

)3
(

1− 2
( x

∆

)2
)(( x

∆

)2

− 1

)
dx

∆
(3.14)

Here in equation (3.14), S2 is the Eulerian second order longitudinal velocity structure function which is
parameterized by Borgas et al. [17] (see equation (3.13)) as a function of the fluid particle separation
r, kinematic viscosity of the fluid ν, energy injection scale of the flow L, energy dissipation rate ε and
Kolmogorov constant Ck. Using equation (3.14), the coarse grained mean strain 〈2s̃2〉 is estimated to be
about 58 sec−2. The Pdfs of the s2 and ω2 measured by 3D-PTV and their respective means are shown
in Fig. 3.30 (right). We found an excellent agreement between the measured strain from 3D-PTV and
the analytical estimate from Luthi et al. [73].

In table 3.1, we present the characteristic flow properties measured by 3D-PTV.

urms L τη ε Reλ η G λ δrp
Nf

τη
res. V

( m
sec ) (mm) (sec) ( m2

sec3 ) (−) (mm) ( 1
sec ) (m) (η) ( frame

τη
)(η) (η3)

0.016 25.12 0.052 3.7×10−4 90 0.228 19 3.3×10−3 10 η 13 8η (100η)3

Table 3.1: Flow properties of the turbulent flow
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3.5 Breakage analysis in turbulence

3.5.1 Example analysis

We have recorded O(100) breakage events and for the sake of simplicity limited our choice to a binary
breakage pattern, i.e., one aggregate breaks into two parts, for the analysis. Before analyzing the whole
set of the breakage events, we randomly select a few single events as prototype examples and investigate
the role of the relevant flow dynamics along their Lagrangian trajectories. This intention of the single
event analysis is to provide the necessary means on how the rest of the events should be systematically
addressed in the remaining part. Fig. 3.34 shows the trajectories of an aggregate breakage (large white
patch on the image) as viewed from four cameras in the turbulent flow seeded with tracer particles (white
dots). The release point of the parent particle is on the extreme right of every image. Images from the
third and fourth camera (in Fig. 3.34, bottom right and left respectively) partly show the aggregate at
the time of breakage and the ”daughter ” fragments which are produced there (shorter separate track).
This particular aggregate is tracked over ∼ 20τη before and after the breakage and ∼ 2τη beyond its
breakage. Fig. 3.35 shows how an aggregate of the size of about 1 mm breaks into almost two equal
parts. The aggregate flows from the left to right in the figure.

First we take a look at the evolution of the magnitudes of the components of the velocity gradient tensor,
∂ui

∂xj
, i.e., strain s2 and enstrophy ω2 along the Lagrangian trajectory of the parent. Here we coined

the terms ”parent” and ”children” to essentially indicate the aggregate trajectory until breakage and
onwards as well as the fragment respectively. As revealed from the Fig. 3.37 (left), where we show
strain along the aggregate trajectory, the selected aggregate experienced the maximum s2 after ∼ 2τη
after it was introduced into the flow and broken after ∼ 20τη at s2, where s2b ≈

1
5s

2
max. The notation

s2b means the strain at breakage. We notice that during the time between s2max and s2b there exists a
monotonic decrease in the intensity of s2 up to ∼ 5τη before the breakage moment and the aggregate
goes to pieces shortly after it begins to ascend towards another relative maximum of s2, although if not
necessarily lies at the inflection point of s2.

Our preliminary deduction by looking at the time evolution of s2 is twofold. First, s2b 6 s2max, i.e., an
aggregate can be broken at a strain lower than the maximum strain it experiences any time before the
breakup. The second one is the consequence of the first deduction namely the aggregates need to be
exposed sufficiently long time to the fluctuating s2 dynamics. That means an aggregate which can sustain
s2max exerted on it requires a cumulative s2 effect, i.e.,

∫
s2 to eventually break. When we analyzed this

breakup event in the eigen frame of the rate of strain tensor, we find that Λ1, the most extensional eigen
value and hence responsible for the stretching, along the trajectories in Fig. 3.39 is slightly larger at the
time of breakage than before. The ratio |Λ2

Λ3
| along the trajectory of breakage refers to the influence of

compressive eigen vector on breakup. In the Fig. 3.39 (right) |Λ2

Λ3
| along the parent trajectory exhibits

strong variations over a range of −0.05 < Λ2

Λ3
< −0.5 and reaches Λ2

Λ3
' 1

2 shortly before the breakup.
Due to this variations in compressive eigen values of the strain, aggregates experience both uniaxial
straining and compression in the λ2 − λ3 plane.

That sets up an intriguing question of why and how an aggregate survives s2max but breaks apart at
relatively lower s2. We qualitatively attribute the resilient character of an aggregate to s2max to the internal
mechanical architecture, i.e., strength of an aggregate and ability to adjust the inner structure. Although
3D-PTV is incapable to probe into the internal structure of the aggregate and therefore the response
and rupture of the bonds making up the morphology, we observed quite a visible deformation during the
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Figure 3.34: Trajectories (in blue) from a breakage event as seen by four cameras. The longer trajectory
represents the parent track and the relatively shorter one is the fragment track within the flow field seeded
with tracer particles.

Mask

M
ask

Figure 3.35: An arbitrary breakage event is shown from one camera view in four different time instances.
The flow direction is from the left to right. The size of the aggregate is approximately 1 mm that breaks
into almost two equal parts after the breakup.
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course of the breakage. To illustrate this more clearly we picked up another breakage event where the
aggregate exhibits a pronounced structural deformation. Fig. 3.36 illustrates how an aggregate initially
looked like a uniform blob (far left) became straightened up almost like a thread like shape(third sequence
from the left) and finally disintegrated. From this phenomenon we infer that the aggregates we introduced
into the homogeneous quasi isotropic turbulent flow do not preserve their shape and structure but due to
their flexibility they can react to the flow by rearranging the internal structure and survive the intensity of
s2max. Their deformation over the observation time of ∼ 20τη, s2 continuously acts with varying intensity
to the moment when the aggregate can no longer resist to the stress and eventually breaks up.

ω2, the enstrophy, is responsible for the rotation of the aggregates relative to the strain eigen frame.
Therefore, ω2

b makes an aggregate to experience strain along varying direction. Therefore, a low ω2
b ,

where ω2
b refers to the enstrophy at the time of breakage, within [t0− ∼ 5τη] (see Fig. 3.37) allows s2 to

dominantly act on the aggregate rather than deflect it from the direction of s2. Here t0 indicates the time
at breakage.

3.5.2 Statistical analysis

Bringing along this conjecture, now we proceed to examine the effect of s2 and ω2 for the whole set of
recorded breakage events. We found our observation completely phenomenological while studying s2

and ω2 along the Lagrangian trajectories for all of the breakup events in the sense that there exists no
defining trend of the instantaneous s2 or ω2 at breakage responsible for the break up. Also the Lagrangian
history of s2 as well as ω2 towards the breakage point is unique from event to event i.e., they fluctuate
wildly without showing pattern and that is why instead of a single Lagrangian configuration of s2 and ω2

for the breakup, we categorize the events into three different sub groups on the basis of s2 history.

In the first group we classify those breakage events that take place at Ds2

Dt > 0. Irrespective of the global
or local maxima of s2, denoted as s2max,g or s2max,` respectively, we found a set of events occurring while
ascending the valley of s2max,g or s2max,` signal over different times starting from the time of injection into
the flow. Fig. 3.40 shows such of these events. We found that the aggregates were not subjected to
the high s2 along the way to the breakup and ω2 ≤ s2. Around [t0 − 5τη] when s2 tends to attain a peak
value of s2, enstrophy seems to be relatively dampened in most of the cases as ω2 declines towards s2b

Mask

M
ask

Figure 3.36: Deformation of an aggregate on the way to breakup captured in four different time instances.
In this example an aggregate undergoes significant stretching seen in the third sequence from the left
before it breaks apart into several pieces. This is illustrating of the fact that the aggregates posses elastic
properties.
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Figure 3.37: s2 (left) and ω2 (right) along the trajectories as a function of time normalized by Kolmogorov
time scale τη. The time at which the aggregate breaks apart is pinned at 0 on the time axis.
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Figure 3.38: s2 (left) and ω2 (right) along the trajectory of the parent and fragment (shorter track) of an
arbitrary breakage event. Green and red circles refer to the beginning and the end point of a trajectory
respectively. The line from the beginning of the fragment track to the parent track refers to the separation
vector, i.e., the direction along which the fragment has been separated at the time of breakage.

such that ω2 ≤ 10(1/sec2). However, this class of breakup events does not show a unique s2b but rather
a range s2b ∈ [5, 40](1/sec2).

In the second category we select the breakup events taking place when an aggregate can withstand
s2max,g and break during Ds2

Dt < 0 that seems to be a relaxation phase.. We notice a marked difference
between s2b and ω2

b at the point of breakage (see Fig. 3.41). There are situations where the difference
[s2b − ω2

b ] is rather small but aggregates are exposed to either strong fluctuation of s2 and ω2 (see Fig.
3.42) or sometimes a smooth descent in s2 and ω2 towards breakup (see Fig. 3.43). We understand that
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Figure 3.39: The most extensional eigen value Λ1 of s2 along the parent and children trajectory (left).
In this particular example of the breakage event, the aggregate is subjected to higher stretching at the
time of breakage. The ratio |Λ2
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| ' 1

2 (right) shortly before the breakage indicates that the aggregate also
experienced compression along the plane of λ2 − λ3.
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Figure 3.40: Three breakage events taking place at s2b → s2max,g or s2max,`. This category of breakage is
selected based on s2b approaching to the peak value of the measured s2 (red) together with the associated
ω2 (blue). The time when breakage takes place is pinned in 0 on the time axis normalized by Kolmogorov
time scale τη.

an aggregate experiences s2 over ∼ 15τη on an average and experiences substantial damage during this
time before the effect of ω2 starts to act upon the aggregate. From Fig. 3.41, Fig. 3.42 and Fig. 3.43 we
notice that for some breakage events s2 ≥ ω2 at the time of breakage. Enstrophy is believed not to be
responsible for the breakage. By looking at time series of the strain and enstrophy together, we infer that
higher ω2 close to the time of breakage might induce torsional deformation in addition to strain driven
structural damage.
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Figure 3.41: Few examples of breakage events where the local estimates of s2 and ω2 at the point of
breakage differs by a large margin.
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Figure 3.42: Breakage events where s2 and ω2 tend to equate each other at the breakage moment after
surpassing their respective peak values. Prior to the breakage, the fluctuation frequency of s2 and ω2 are
quite high.
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Figure 3.43: Aggregates survive the global maxima of s2 and ω2 where the evolution of s2 and ω2 are
rather smooth and thereafter break at almost equally low s2 and ω2.
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Figure 3.44: Breakup events taking place at a relative or absolute maxima of s2.

In the third category, we considered breakups occurring at Ds2

Dt ' 0 (see Fig. 3.44). Again the behavior
of ω2 is quite inconclusive compared to s2 evolution in the limit of break up point. Although at t0, s2b
attains a global or local maximum of s2, it takes approximately the same time for the aggregates to be
broken, i.e., the average time scale is ∼ 15τη. Although the aggregates break up at s2max,g or s2max,`, very
often they survive a high intensity point in the s2 signal before the breakage. Why and how an aggregate
can endure higher s2 than s2b remains an open question. As a possible explanation we think of their
mechanical inhomogeneity inside the aggregate may play an effective role, i.e., many bonds inside the
aggregate structure are already broken while few are still holding out the aggregate. Addressing the axis
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along which an aggregate undergoes breakage to be perpendicular to the initial separation vector, we
project the rate of strain tensor along the separation vector, r between the parent and the children. The
motive is to investigate if s2 persistently acts along the presumably weakest axis of the aggregate. We
obtain srr = rsijr

T where srr denotes the strain along r.

After careful investigation for every breakage event we found the temporal evolution of srr is similar to
that of sij for almost every cases of breakup. We consider the time evolution of srr taking the tilting of the
particle into account but found no critical behavior. Fig. 3.45 shows a set of examples where strain in the
direction of the axis of breakage, i.e., the axis along which the aggregate breaks into two parts, varies
over time. This implies that the breakage axis may not always be the weakest axis inside the aggregate
as it can sustain higher strain along that axis before breakage.
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Figure 3.45: Orientation of the aggregate with respect to the separation vector r, with the strain eigen
frame λi of arbitrarily chosen breakage events.

3.5.3 Alignments with the principal strain and deformation

Since the Lagrangian history of s2 and ω2 clearly appears to be relevant for the breakage, in the following
we investigate the orientation history of the aggregate with respect to the eigen frame of the rate of strain
tensor.

It is interesting to investigate in which spatial direction a fragment gets detached from the original aggre-
gate at the time it breaks. It would serve as an instantaneous measure of the locally predominant effect
of the rate of strain tensor on breakup in the strain eigen frame. With that purpose we measure cos(λi, r),
i.e., the alignment between the eigen frame of strain and the separation vector r between the children
and the parent. Fig. 3.46 illustrates how λ1 (red) and λ2 (green) orient themselves along the parent
(blue) and children (yellow) trajectory and Fig. 3.47 shows the orientation of λ3, the most compressive
eigen vector of strain of the particular breakup event illustrated in Fig. 3.35. In this breakup example we
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Figure 3.46: Mutual orientation of the most extensional (red) and intermediate eigen (green) vector of sij
along the parent (blue) and children trajectory (yellow).

notice that the separation vector (black) is preferentially aligned with λ1 (red), the most extensional eigen
vector at the time of breakage. Since λi and r are orthogonal to each other naturally r ⊥ λ3, which is
visible from Fig. 3.47. This means the aggregate, as it breaks, is directionally guided towards the most
stretching eigen direction.

We find that for all the breakage events two particles separate mostly in the direction of λ1, i.e., along
the direction where the aggregates experience the largest stretching, which can be observed from the
probability density function of the alignment cos(r, λ1,2) at t=0 in Fig. 3.48. In order to know for how
long the aggregates have been aligned with λ1, we track the aggregate back in time by projecting the
separation vector r onto the strain eigen frame λi. Fig. 3.49 shows the aggregate orientation in λi frame
based on arbitrarily selected breakage events. It can be conjectured that although the direction in which
an aggregate is broken is preferentially λ1 but the alignment cos(λ1, r) is not always persistent to the most
stretching eigen direction of sij . This reflects the fact that the aggregates do not immediately respond to
the ever evolving λi all along the Lagrangian trajectory but only with a finite retardation. The time scale
for which the aggregate remains aligned with λ1 prior to the breakage is about ∼ 2− 4τη.

Therefore, after studying breakage events individually by looking at the competition dynamics of s2 and ω2

we found neither a critical s2b nor a common and characteristic time scale of orientation of the aggregate
relative to λi. Although we found that at the time of breakage an aggregate becomes separated from
the fragment in the direction of λ1 which is indicative of the fact that breakup occurs due to the most
extensional strain, this does not explain the cumulative effect of the velocity gradient ∂ui

∂xj
acting along the

aggregate over time.
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Figure 3.47: The most compressive eigen vector of sij along the parent and children trajectory.
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Figure 3.48: Probability density function of the alignment between the separation vector (between the
parent and the child at breakage) and eigen direction of the rate of strain tensor shows that r is predom-
inantly aligned with λ1, i.e., direction of the most extensional eigen direction of strain .

3.5.4 Integrated deformation analysis

In pursuit of the key role played by ∂ui

∂xj
on an aggregate, we analyze the deformation of a fluid volume

approximating it as a passive material fluid blob along the trajectory which is expected to shed light on
how an aggregate is being volumetrically shaped and distorted in time until it breaks apart. In essence,
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Figure 3.49: Projection of the rate of strain tensor along the separation vector r between the parent and
fragment. The time axis has been normalized by the Kolmogorov time and the time when breakage takes
place is pinned at 0. There exists no critical strain along the breakage axis considering the rotation of the
aggregate.

we want to know if there exists a critical cumulative deformation ΘCr above which an aggregate is likely
to break which is in fact the result of the integral deformation over a certain length of history in time. We
follow Girimaji and Pope [39] to obtain the definition of the Cauchy-Green tensor W,

W = BBT (3.15)

Here B is the deformation tensor expressed as d
dtB = h(t) · B(t) and h(t) =

(
∂ui

∂xj

)

t
with the initial

condition B(0) = I, I being the identity matrix. The eigen values of the Cauchy-Green tensor, wi, where
w1 ≥ w2 ≥ w3 represent the three dimensional measure of the fluid blob as (w1)

1
2 : (w2)

1
2 : (w3)

1
2

representing the axis lengths of the approximating deformation ellipsoid. Initially, at τη = 0, the wi’s are
1 meaning that the fluid parcel is a sphere. By convention, the eigen vectors of W, namely, w1 and w3

refer to the most stretching and compressive direction respectively. The extent of deformation can be
estimated by the wi’s which evolve as

√
wi. Since volume is a conserved property hence at any time the

relationship w1 · w2 · w3 = 1 or equivalently
∑〈ln(wi)〉 = 0 holds true for a unit volume.

Since W is a measure of the integrated history of deformation, the crucial question is what should be the
appropriate time integration window over which one should account for the deformation of an aggregate.

As an appropriate unit, we choose the Batchelor time, τB =
(

∆2
0

ε

) 1
3

, the characteristic time scale over

which two fluid particles remember their initial separation i.e., two fluid particles separated by the scale
∆0 remain in the same eddy of the scale ∆ as the standard time window for the integration of B. After
several iterations in search for the appropriate integration time scale, we found a pre factor of 2τB which
yields to the strongest signal in our alignment statistics and thus suits best for the the integration purpose.
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Figure 3.50: An aggregate volume which is a sphere at t=0 is seen deformed by the velocity gradient ∂ui

∂xj

until the breakage point. Due to the integrated deformation the final shape of the aggregate becomes
an ellipse in this particular example of breakage. The embedded axis represents the eigen direction of
the Cauchy-Green tensor, i.e., wi. Red, green and blue lines denote w1, w2, w3 respectively and the
2D ellipse placed inside the volume indicates the plane along which the the fragment detaches from the
parent. The aggregate shown on the left is seen to be elongated along w1 (red) and w2 direction. The
direction along which the parent and the children get separated (embedded 2D ellipse) aligns approxi-
mately with w1. The aggregate shown in the right is seen to be elongated only along the w1 direction
whereas the separation plane is strongly aligned with w2.

Fig. 3.50 illustrates in two examples how a fluid volume, which was initially a sphere, becomes deformed
to an elliptic shape along the Lagrangian trajectory on the way to breakage. Besides the history of
the deformation, the evolution of Wi is also visible as the eigen vectors, i.e., w1, w2, w3 are shown in
red, green and blue respectively. In addition, the direction along which the fragment is detached from
the original aggregate body is shown by an elongated ellipse across the volume. In one event in Fig.
3.50 (right) we find that the aggregate is stretched not only along w1 but also almost equally strong in
the direction of w2 and eventually breaks apart along w2 confirmed by its preferred alignment with the
separation plane. On the other hand, from the event shown in Fig. 3.50 (left) we observe the aggregate
stretched only in w1 and approximately aligned with the separation plane. Fig. 3.52 shows an ensemble
of how r is aligned with these two stretching directions w1 and w2 in time and the way they mutually
prevail over each other.

In Fig. 3.51, we show how the alignment of the most extensional and compressive eigen vector of the
Cauchy-Green tensor with the separation vector between the fragments evolves integrating over different
Batchelor time scales. We choose two Batchelor time scales as an appropriate integration window as for
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Figure 3.51: Pdf of the alignment of the most extensive and compressive eigen vectors of Cauchy-
Green tensor with the separation direction between the fragments. The deformation of the fluid volume
is integrated using different Batchelor time scale.

this time scale we found comparatively better alignment and this time scale allows us to take almost all
the experiments into account for the analysis. Integrating over two Batchelor time scales requires longer
aggregate trajectories which become scarce.

Fig. 3.53 shows the probability distribution function of the alignment of the separation direction r with
the most stretching and compressive eigen direction of the Cauchy-Green deformation tensor. From Fig.
3.53 it is clear that the separation direction r is strongly aligned with the most stretching (left) and anti
aligned with the most compressive (right) eigen direction of the Cauchy-Green deformation tensor. This
reflects the fact that the aggregates are mostly broken due to the integrated deformation in the direction
of w1 despite of the stretching nature of w2.

To comprehend the ”look” of the deformed volume, the ”shape” of Sij or W expressed as the ratio of Λ2

Λ1

and ln(w2)
ln(w1)

respectively is used. In different limits of values such as Λ2

Λ1
∈ R and ln(w2)

ln(w1)
∈ R, the volume

of the deformed aggregate would resemble the shape of the so called ”pancake” or ”cigar”. Describing
the situation qualitatively, one could imagine the ”pancake” shape of an aggregate when both ln(w2) and
ln(w1) are active on the aggregate which will result in a minimum w3. Hence whenever an aggregate will
be subjected to bidirectional stretching and minimum compression the ”disc” like shape results which is
synonymously referred to as ”pancake”. By contrast, when w2 takes the minimum value, then the shape
will lead to a ”cigar” shape, i.e., unidirectional stretching by w1 and strong compression by w3.

The ratios Λ2

Λ1
and ln(w2)

ln(w1) from Fig. 3.54 do not show any defining indication for any of the shapes
discussed above. We attribute the narrow range of the aggregate size to this inconclusive picture of the
deformed shape.

Likewise we found no clear relation between the strain at breakage sb and the size of the aggregate.
Fig. 3.55 shows the size dependency on the strain required to break the aggregates. The aggregates
of almost same size, i.e., 1 mm are broken by the strain varying approximately two order of magnitude.
From the scaling between the size and strain as shown in Fig. 3.24, we observe that smaller aggregates
require higher strain to be broken and vice versa. But in the case of breakage in homogeneous quasi
isotropic turbulence we notice that smaller aggregates may not always need higher strain to be broken.
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Figure 3.52: Orientation of the separation vector r relative to W over 2τB. Figures in the top row shows
for some breakage events the aggregate remains consistently aligned with w1 whereas figures in the
bottom row reveals that stretching in w2 can dominate over w1 and hence the aggregate is aligned and
stretched along w2.
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Figure 3.53: Probability density function of the separation vector and Cauchy-Green eigen vector sug-
gests that separation takes place mostly in the direction where stretching is maximum.

We attribute this to the fluctuating strain that an aggregate experiences until breakup. Referring to the
Fig. 3.43, we infer that the smaller aggregates which are broken at relatively low strain might have
experienced higher strain before the breakup causing enough structural damage and eventually needed
a lower strain at the time of breakage. This is the reason why we found no explicit scaling between the
size of the aggregates and strain at breakage. From Fig. 3.55 we rather conclude that there exists an
envelope in the s2 limit of O(100)(1/sec2) with corresponding size limit on O(1)mm. In this Fig. 3.55 the
color bar represents the ratio of the intermediate to most compressive (left) and the most extensive to
compressive eigen values (right) of the rate of strain. The effect of stretching and compression on the size
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Figure 3.55: Aggregate size does not show any clear scaling with the corresponding strain responsible for
breakage. The aggregates of size ∼ 1mm are subject to break at a wide range of strain implying internal
mechanical inhomogeneity. The size is encoded by the ratio of the intermediate to most compressive
eigen value of the rate of strain, i.e., |Λ2

Λ3
| (left) which shows that majority of the breakage events take

place due to almost uniaxial straining during the breakup. This is also confirmed by looking at the ratio
of the most stretching to compressive eigen values of the rate of strain |Λ1

Λ3
| (right).

of the aggregates is also not pronounced as similar sized aggregates could experience contrasting values
of Λi’s. This means that an aggregate at the time of breakage might be elongated or sheared unlike the
breakage phenomena in axisymmetric extensional flow in the orifice where most of the aggregates were
broken due to elongation.
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3.6 Concluding remark: Breakup in homogeneous quasi isotro pic
turbulence

We summerize the findings of the aggregate breakup in homogeneous quasi isotropic turbulence as:

• Unlike in the orifice experiment, where most of aggregates broke in the flow domain where strain is
maximum, an aggregate in turbulent flow very often breaks at a strain magnitude smaller than the strain
intensity back in time along its Lagrangian trajectory.

• We investigated the Lagrangian history of individual aggregate trajectory and found that there exists no
critical strain which can uniquely define the breakage.

• The axis along which two fragments separate at the time of breakage is not always aligned with the
strain. Therefore strain has no persistent effect on the axis of breakage in history.

• The axis of breakage, i.e., the direction along which two fragments separate is also not consistently
aligned with the eigen frame of rate of strain tensor. So, the predominant effect of the most stretching
eigen vector is not pronounced back in history.

• We confirm that, there exits a time scale, as we found it as two Batchelor times, over which the in-
tegrated deformation define the breakage statistically, i.e., when an aggregate deformation is approxi-
mated by the Cauchy-Green deformation tensor integrating over two Batchelor times, equivalently four
Kolmogorov times in our experiment, exhibits critical deformation at which all the aggregates undergo
breakage. Therefore we conclude deformation over two Batchelor time as the defining criteria for the
breakup.
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Conclusion

Particle tracking experiments on the breakup of clusters made of nano particles, known as aggregates,
are carried out in axisymmetric extensional laminar flow and homogeneous quasi isotropic turbulence.
For uniaxial converging flow, we used Brownian motion driven aggregates, i.e., aggregation in quiescent
flow conditions whereas to investigate the breakup in turbulent flow we used aggregates produced under
shear flow. In both the experiments the mean aggregate size was 〈dp〉 ∼ 1mm with a standard deviation
of 0.5 mm and a fractal dimension df ∼ 1.88 which is indicative of an open structure. To the best of
our knowledge, this is the first experimental work on breakup of fractal aggregates where the underlying
breakup mechanism is investigated fully three dimensionally and in a Lagrangian frame using state of
the art optical instruments. Most importantly the simultaneous measurement of the fluid and the particle
phase sets a new milestone from the technical point of view.

For the converging laminar flow where the rate of strain, s2, increases monotonically approaching the
orifice where it reaches the maximum value of order O(104)(1/sec2), we found that most of the aggre-
gates are broken in the proximity of the orifice due to uniaxial straining by the most extensional eigen
value of the rate of strain tensor, Λ1. From the spatial distribution of the eigen values of sij , we found a
non vanishing intermediate eigen value Λ2 which appeared to be mostly compressive in nature in front
of the orifice and with the compressive eigen vector λ3 are compressing the aggregate on the plane
normal to the most extensional eigen vector λ1. Beyond the orifice, i.e., inside the channel in the limit of
vanishing Λ2, Λ1 and Λ3 are of equal magnitude and the associated eigen vectors approximately form
a 45◦ angle with respect to the wall, like in a canonical wall bounded shear flow. The stresses due
to the simple shear are lower in magnitude compared to the orifice entrance, but yet there are a few
breakage events that occur under the action of simple shear. We attribute the breakup of aggregates
occurring inside the channel, which indeed survived the maximum strain in front of the orifice, to the
fact that the mechanical strength of the aggregates is very heterogeneous. Simple shear is reported
to rotate the aggregates rather than deforming them and hence morphological compactification resists
disintegration. But in our experiment, the surviving aggregates having endured stretching in front of the
orifice that already weakens the cohesive bonds undergo fragmentation under the action of simple shear
at relatively low strain magnitude. Due to this unavoidable elongational effect a fair comparison between
the breakage governed by axisymmetric straining and simple shear is not possible in our laminar flow
experiment. Therefore, we infer that the breakup in the simple shear flow domain is actively assisted by
axisymmetric straining. In an attempt to establish a correlation between the size of the aggregate and
the critical strain, we found an inverse dependency of the size on critical strain, i.e., a smaller aggregate
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requires higher strain for breakage and vice versa.This is the first of our major findings. Despite the
fact the aggregates are very heterogeneous in strength, their breakage is consistent with the canonical

power law 〈dp〉 ∝
(√

s2
)−n

where n ∈ [−0.35,−0.55] by comparing the result as measured by 3D-PTV

with small angle light scattering (SALS). The variation of the individual size and strain ratio is significant
and possibly should be included into future breakage kernels.

In a second set of experiments we measured aggregate breakage in a fully turbulent flow. We follow
the aggregates in a Lagrangian way, measuring the full set of velocity gradient tensor, ∂ui

∂xj
along the

trajectories via simultaneous Lagrangian tracking of tracer particles. We find that the scaling between the
initial size of the aggregates and strain at breakage exhibits qualitative similarity with that of the one found
in axisymmetric straining flow. Going beyond the instantaneous state of straining at the time of breakage,
we emphasized on the history of straining and rotation prior to the breakage event. That means, our
result point to the importance of the Lagrangian history rather than the instantaneous contribution of the
small scale dynamics in pursuit of a critical parameter governing the breakup. Systematically studying
the strain and enstrophy that uniquely define the velocity gradient field along the aggregate trajectory
we found a competing mechanism between strain and enstrophy for the entire set of the experiments.
The critical values of s2 and ω2 appear not only completely stochastic but also they do not explain the
phenomena where an aggregate is broken after sustaining higher intensity of s2 at a significant time prior

to the actual failure. Similar to some breakage events in orifice experiments, this may be pointing to a
sort of fatigue process, where a major part of the bonds are already broken, while a few remaining bonds
still manage to hold the aggregate together for some time.

We found that the direction along which the fragments are separated predominantly aligns with λ1 in
agreement with the expectation that two parts belonging to an unbroken aggregate under stretching
should break and separate along the direction of stretching. Finally we analyzed the critical deformation
of the aggregate volume over a characteristic time scale. Integrating the Cauchy-Green deformation
tensor over the recent Lagrangian history, we found persistent alignment of the separation direction with
the most stretching eigen vector of the Cauchy-Green tensor for almost all of the breakup events. We
note that this alignment of the separation vector with the eigen frame of the Cauchy-Green tensor is
more pronounced than the corresponding alignment with sij , which is reflecting the predominance of
the Lagrangian history prior to breakage over the instantaneous state at breakage. It turns out that
this alignment is most prominent if the integration time spans two Batchelor times, in our particular case
equivalent to four Kolmogorv times. Thus we conclude that the Lagrangian retrospective of the integrated
deformation of the aggregates over 2τB, is the critical time scale needed for the breakup.
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