
DISS. ETH NO. 17671

Proofs for the
Working Engineer

A dissertation submitted to

ETH ZURICH

for the degree of

Doctor of Sciences

presented by

Farhad Dinshaw Mehta

Master of Science, Technische Universität München
Bachelor of Technology, Indian Institute of Technology Delhi

born 11.01.1980
citizen of India

accepted on the recommendation of

Prof. Jean-Raymond Abrial
Prof. Peter Müller
Prof. Cliff Jones

2008

Abstract

Over the last couple of decades the advantages of including formal proof
within the development process for computer based systems has become in-
creasingly clear. This has lead to a plethora of logics and proof tools that
propose to fulfill this need. Nevertheless, the inclusion of theorem proving
within the development process, even in domains where clear benefits can be
expected, is rather an exception than the rule.

One of the main goals of the formal methods endeavour is to bring the ac-
tivity of formal theorem proving closer to the engineer developing computer
based systems. This thesis makes some important practical contributions
towards realising this goal. It hopes to shows that proper tool support can
not only ease theorem proving, but also strenghten its role as a design aid.
It shows that it is feasible to integrate interactive proof within a reactive
development environment for formal systems. It shows that it is possible to
design a proof tool whose reasoning capabilities can be easily extended using
external theorem provers. It proposes a representation for the proofs con-
structed using such an extensible proof tool, such that these proofs can be
incrementally reused, refactored, and revalidated. On the more theoretical
side, but with major practical implications, it shows how one can formally
reason about partial functions without abandoning the well understood do-
main of classical two-valued predicate calculus.

The ideas presented here have been used to design and implement the
proof infrastructure for the RODIN platform which is an open, extensible,
industry-strength formal development environment for safety critical sys-
tems. Nevertheless, the contributions made in this thesis stand on their own
and are independent of the tool implementing them. This thesis is therefore
not a description of a working proof tool, but the resulting tool is a proof of
the feasibility of the ideas presented in this thesis.

i

ii

Zusammenfassung

Das Ziel dieser Arbeit ist, dem Entwickler computergestützte formale Beweise
näherzubringen. In den letzten Jahrzehnten ist mehr und mehr klar gewor-
den, dass es vorteilhaft ist, formale Beweise in den Entwicklungsprozess von
computerbasierten Systemen miteinzubeziehen. Dadurch ist eine Vielzahl
von Logiken und Beweiswerkzeugen entstanden, die versprechen, diesen Ansatz
in die Tat umzusetzen. Trotzdem ist es eher die Ausnahme als die Regel, dass
formale Beweise in den Entwicklungsprozess miteinbezogen werden, selbst in
Bereichen, in denen deutliche Gewinne erzielt werden können.

Wir beginnen, indem wir versuchen, Gründe für die langsame Akzep-
tanz des formalen Beweisens bei Entwicklern zu finden. Wir zeigen auf,
dass praktische Anwendungen spezielle, aber überschaubare Anforderungen
an Beweiswerkzeuge stellen. Damit computergestütztes Beweisen industriell
genutzt werden kann, müssen diese Anforderungen untersucht werden. Dies
hat Konsequenzen für das Design von Beweiswerkzeugen.

Wir zeigen in dieser Arbeit, dass computergestütztes Beweisen als ein in-
gineurswissenschaftliches Werkzeug verwendet werden kann, so dass Beweise
ein praktikabler Teil des Endproduktes werden. Wir erklären darüber hinaus,
wie Beweise die Entwicklung von computerbasierten Systemen unterstützen.

Die hier vorgestellten Ideen sind verwendet worden, um die Beweisin-
frastruktur der RODIN Plattform zu entwickeln. Die RODIN Plattform ist
eine freie, erweiterbare, praxisnahe Entwicklungsumgebung für sicherheit-
skritische Systeme. Dennoch sind die Beiträge dieser Arbeit unabhängig von
dem Werkzeug, in dem sie umgesetzt wurden. Diese Arbeit ist daher keine
Beschreibung eines Beweiswerkzeugs, jedoch ist das Werkzeug ein Beweis für
die Umsetzbarkeit der Ideen aus dieser Arbeit.

iii

iv

Acknowledgments

I would like to start by thanking Prof. Jean-Raymond Abrial for being not
only a patient and dedicated mentor, but also a dear friend during the three
years I spent working with him. I am also very grateful to Laurent Voisin for
his help with many of the ideas that have gone into this thesis. Additionally,
I would like to thank Son Thai Huang, Stefan Hallerstede, Ádám Darvas,
Vijay D’silva, Achim Brucker, Burkhart Wolf and Joseph Ruskevitz for the
numerous discussions I have had with them, and for making for my stay at
the the ETH so enjoyable.

I am grateful to Prof. Peter Müller and Prof. Cliff Jones for taking the
time to read and comment on my thesis. My research was funded by the
EU research project IST 511599 (RODIN). I am also deeply indebted to
Prof. David Basin for his support, and for welcoming me to the information
security group during the last six months of my stay at the ETH.

Although I started my doctoral studies at the ETH in 2004, I consider
the two years I spent in the Isabelle group at the Technische Universität
München before that to be a crucial learning experience. I would like to thank
Prof. Tobias Nipkow, and my other colleagues at the time for introducing me
to the world of computer aided proof.

From my undergraduate years, I am grateful to Prof. Sanjiva Prasad,
Prof. S. Arun Kumar and Prof. Subhashis Banerjee at the Indian Institute
of Technology Delhi, and Prof. Gérard Huet at INRIA Paris-Rocquencourt
for kindling in me, almost through osmosis, an interest and fascination for
computer science. Last, but not least, I would like to thank Yvonne Gahler
and my parents, Zarin and Dinshaw Mehta for their continual support.

v

vi

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Formal Methods . 2
1.3 Computer Aided Proof . 3
1.4 Formal Interactive Proof . 3
1.5 Non Proof-based Approaches 4
1.6 Problems with Existing Proof Tools 5
1.7 Scope of this Thesis . 7
1.8 Contributions and Structure 8

2 Practical Setting 13
2.1 Reactive Development . 13
2.2 Reactive Formal Development in RODIN 14
2.3 A Simple Formal Development 15
2.4 A Reactive Prover - Challenges 20
2.5 Prover Requirements . 20
2.6 Related Work . 21

3 Mathematical Logic 23
3.1 Introduction . 23
3.2 Sequent Calculus . 23

3.2.1 Sequents . 24
3.2.2 Proof Rules . 24
3.2.3 Theories . 24
3.2.4 Proofs . 25

3.3 Propositional Calculus . 26
3.3.1 Predicates . 26
3.3.2 Sequents . 27
3.3.3 Syntax of basicPC . 27
3.3.4 Proof Rule Schemas 27
3.3.5 Proof Rules of basicPC 28

vii

viii CONTENTS

3.3.6 Derived Logical Operators 28
3.3.7 Reasoning . 29
3.3.8 Summary of PC . 29

3.4 First-order Predicate Calculus 30
3.4.1 Expressions . 30
3.4.2 Variables . 31
3.4.3 Syntax of basicFoPCe 31
3.4.4 Proof Rules of basicFoPCe 31
3.4.5 Syntactic Operators . 32
3.4.6 Derived Logical Operators 32
3.4.7 Summary of FoPCe . 32

3.5 Conclusion . 33

4 Partial Functions and Well-Definedness 35
4.1 Introduction . 35
4.2 Defining Partial Functions . 36

4.2.1 Conditional Definitions 36
4.2.2 Recursive Definitions 37
4.2.3 A Running Example 38

4.3 Separating WD and Validity 38
4.4 The Well-Definedness Operator 40

4.4.1 Defining D . 40
4.4.2 Proving properties about D 41

4.5 Well-Definedness and Proof 42
4.5.1 Defining D for Sequents 42
4.5.2 Well-Defined Sequents 43
4.5.3 WD preserving Proof Rules 45
4.5.4 Deriving FoPCeD . 45
4.5.5 Summary . 49

4.6 Proving WDD and ValidityD 49
4.7 Related Work . 50

4.7.1 Comparison . 52
4.8 Conclusion . 54

5 Prover Architecture and Extensibility 55
5.1 Introduction . 55
5.2 Prover Extensibility . 56
5.3 The Basic Prover Architecture 57
5.4 Programing Notation . 58
5.5 Predicates . 60
5.6 Sequents . 60

CONTENTS ix

5.7 Proof Rules . 61

5.8 Reasoners . 63

5.8.1 Reasoner Requirements 64

5.8.2 Examples of Reasoners 64

5.8.3 Integrating External Theorem Provers 67

5.9 Proof Trees . 68

5.9.1 Constraints on Proof Trees 69

5.9.2 Operations on Proof Trees 70

5.9.3 Example Proof Tree Construction 72

5.10 Tactics . 74

5.10.1 Examples of Tactics 75

5.11 Related Work . 79

5.12 Conclusion . 81

6 Representing and Reusing Proofs 83

6.1 Introduction . 83

6.2 Proof Obligation Changes . 85

6.2.1 Characterising Changes 86

6.2.2 Reacting to Changes 86

6.2.3 Requirements . 88

6.3 Representing Proof Attempts 88

6.3.1 A Running Example 90

6.3.2 Recording Proofs Explicitly 90

6.3.3 Recording Reasoner Calls 91

6.3.4 Recording Tactic Applications 92

6.3.5 Summary . 93

6.4 Proof Skeletons . 94

6.4.1 Constructing Proof Skeletons 94

6.4.2 Reusing Proof Skeletons 96

6.4.3 Proof Dependencies . 100

6.4.4 Satisfying Requirements 103

6.5 Evaluation . 105

6.5.1 Success of Proof Reuse 105

6.5.2 Scalability . 107

6.5.3 Improved reaction times 108

6.6 Related Work . 110

6.7 Conclusion . 112

x CONTENTS

7 Reengineering Proofs 113
7.1 Introduction . 113
7.2 Modifying Hypotheses . 114
7.3 Copying and Pasting Sub-proofs 120
7.4 Automatic Proof Completion 122
7.5 Removing Redundant Proof Steps 123
7.6 Inserting Steps in the Middle of Proofs 125
7.7 Automatically Moving Sub-proofs 127
7.8 Related Work . 129
7.9 Conclusion . 130

8 Revalidating Proofs 133
8.1 Introduction . 133
8.2 Validation Conditions . 134
8.3 Revalidating Rule Objects . 135
8.4 Revalidating Proof Skeletons 136
8.5 Related Work . 137
8.6 Conclusion . 138

9 Conclusion 139
9.1 Summary of Contributions . 139
9.2 User Evaluation . 140
9.3 Future Work . 141
9.4 Closing Remarks . 143

Chapter 1

Introduction

The aim of this chapter is to put the relevance of this thesis in perspective
with computer science in general, and with formal methods in particular.
It starts by pointing out the importance and inevitability of having formal
interactive proof as a part of the development process for computer based sys-
tems. It then motivates the chapters that follow by discussing the problems
encountered while using existing proof tools in an engineering setting.

1.1 Motivation

In comparison with other more conventional engineering sciences, informat-
ics is in its infancy. The modern civil or mechanical engineer has a variety
of tried and tested methods, and ways of thinking about the tasks of his
discipline. No construction starts before performing structural analysis, nor
is any mechanical device fabricated before scrutinizing its blueprint. Such
procedures which are the norm in most engineering disciplines have no coun-
terpart in informatics. Their absence is increasingly felt whenever human or
financial loss occurs as a result of computer malfunction. In the year 1994 an
error in the floating point unit of the Intel Pentium processor [34] cost the
company an estimated $475 million in losses. In 1996 a software error in the
navigation system of the Ariane 5 launcher [11] led it to explode 40 seconds
after take-off. The losses resulting from the malfunction are estimated at
e850 million. Both these failures could have been prevented, given that the
necessary procedures to systematically engineer and verify these systems to
be correct were in place [84, 59, 54, 71].

These, and other such disasters have put pressure on informatics to de-
velop practices to ensure error-free design and construction of computer-
based systems.

1

2 CHAPTER 1. INTRODUCTION

1.2 Formal Methods

The term formal methods refers to mathematically based techniques for the
specification, development and verification of software and hardware systems.
Formal specification is at the heart of these techniques. A formal specification
is the definition, in precise mathematical terms, of the criteria by which we
can judge that the future computer based system or program is working
correctly. The aim of a formal method then is to ensure that a program
fulfills its formal specification.

Formal methods can be classified into two broad categories based on the
methodology they use:

Verification In this context the program being created and its formal spec-
ification live in different worlds until the last step of the development
process when the program is in its finished state. At this point it is
proved that the program fulfills its formal specification. In this setting,
ensuring correctness is post-facto, seen an afterthought, and decoupled
from the program development process. An example of the verification
of a non-trivial algorithm can be found in [66].

Correct by construction In this context a programming task begins with
the creation of a formal specification. The desired computer program
is then created, either mechanically or manually, with this specification
in mind. This creation process may involve intermediate design phases
similar to an architect systematically drawing more and more detailed
blue prints until all details of the construction have been worked out.
Certain mathematical properties are attributed to the intermediate de-
signs and the created program. The created program is proved to im-
plement its formal specification, possibly via its intermediate designs.
In this setting, the proof assumes a role greater than just ensuring cor-
rectness of a system, namely that of a design aid, as discussed in §6 of
[62]. This idea will be developed further in chapter 2. An example of
the correct construction the same non-trivial algorithm verified in [66]
can be found in [4].

Regardless of the methodology used, formal methods stress on:

A formal specification defining what the program is supposed to do.

An implementation aimed at realizing this specification.

A proof ensuring that this is actually the case.

Only in this way can we be sure that a computer program does exactly what
is stated in its specification.

1.3. COMPUTER AIDED PROOF 3

1.3 Computer Aided Proof

In the last century mathematics has been introspectively concerned with the
mathematical nature of its own proofs [91]. The results of this for computer
science is that a computer can represent proofs as data objects, just like
bank accounts or CAD designs. There even exist a number of computer-
based automated and interactive proof tools. The power of using computers
to create and maintain formal proofs versus doing them informally on paper
is that they can be checked and operated upon mechanically, and therefore
efficiently and in a less error prone way.

Although it is not possible for a computer to prove any arbitrary valid
theorem [48] there are classes of proofs where they perform well [88]. For
the rest an interactive proof is required, where human intuition is needed to
steer the proof to a good conclusion.

1.4 Formal Interactive Proof

In §1.2 we have seen that proofs play a central role in the correct construc-
tion and verification of computer-based systems. Ensuring that a program
conforms to its specification cannot be done automatically per se. Since the
formal specification and the properties of the created system have a precise
mathematical meaning, a proof of the correctness of the system with respect
to its specification can be done using mathematical logic. Mathematical logic
gives us the power to make sound inferences from given assumptions using
truth preserving inference rules.

The term formal means that expressions are handled on the basis of
their ‘form’ (i.e. syntax) by precise calculational rules, in contrast to being
informally handled on the basis of their interpretation (semantics) in some
application domain. Additionally, by formal proofs we mean proofs not only
grounded in mathematics, but also those that can be mechanically stored and
checked, in contrast to those done with pencil and paper. Assuming no-one
made any mistakes, proofs done with pencil and paper would be adequate.
But since the exact opposite of this assumption is the raison d’être for formal
methods, we need proofs that can be mechanically checked. A computer is
capable of independently and efficiently checking a mathematical proof.

The combination of formal proofs with computers gives us a back door
to mechanically reason about properties that would otherwise be impossible
to be solved automatically. For instance the halting problem says that it is
impossible for a computer program to check that another computer program
terminates. But a formal proof of the termination of a program (for instance

4 CHAPTER 1. INTRODUCTION

by showing that there is a measure on the state of the program that always
decreases) can easily be checked with the help of a computer. Even failed
proof attempts are of great use since they point out bugs or oversights in the
system implementation, design or specification.

Nevertheless, for the engineer this translates to one extra deliverable that
may well end up taking longer to produce than the actual program. This
would not be a problem if all such proofs could somehow be taken care of
mechanically. Unfortunately there exist theoretical results [48] showing that
this is not always possible for many problems of interest to us.

Even so, if our main aim is to keep an engineer’s hands away from the
proving process the only avenues open to us are to:

� Restrict ourselves to simple properties where proofs are decidable.

� Restrict ourselves to small systems where automated provers have a
good chance of succeeding.

The next subsection discusses alternatives to the proof-based approach
that try their best to live with these restrictions.

1.5 Non Proof-based Approaches

Alternatives do exist that are not proof based. These are informally referred
to as ‘push-button’ solutions. The most popular of these are model check-
ing [32], abstract interpretation [71] and testing [29]. These methods do not
require the user to prove anything. The ‘proofs’ are either simple enough
to be done by brute computational force, or implicit in the system, or just
absent. Without the full power of formal proof at their disposal, they pose
restrictions on the systems they can treat, the properties they can verify, or
their completeness:

Model checking works well for simple systems with a restricted, finite state
space. It is most often applied to hardware designs. For software, this
approach cannot be fully decidable; it may typically fail to prove or
disprove a given property.

Abstract interpretation has been successfully used to automatically prove
the absence of run-time errors (such as null pointer and array out of
bounds exceptions) for large programs. This approach is not well suited
for proving very general properties (such as functional correctness) be-
cause of the compromise that needs to be made between the precision
of the analysis and its decidability.

1.6. PROBLEMS WITH EXISTING PROOF TOOLS 5

Testing is currently the most widely used method for checking the correct-
ness of programs in industry. It does not require any notion of formal
proof, but has its limitations, as expressed by Dijkstra in his famous
quote [40]: “Program testing can be used to show the presence of bugs,
but never to show their absence”.

To summarise, each of the above three approaches, although collectively
more widely used than proof-based approaches, have their limitations (such
as complexity of the system being developed, the properties that can be
guaranteed, and completeness) when compared to in proof-based approaches.

A second point to note is that model checking, abstract interpretation,
and testing are all approaches used for post-facto verification since they
mostly work on the final versions of executable programs, and not interme-
diate models of programs that may not have any notion of execution. They
therefore do not aid design as well as proofs do in the correct by construction
approach discussed in §1.2.

Having seen some of the current alternatives to proof-based formal de-
velopment and their limitations, in the rest of this thesis we will focus on
easing proof-based formal development for applications where this is seen as
desirable.

1.6 Problems with Existing Proof Tools

Constructing formal proofs is hard and tedious work, and typically accounts
for a very large share of the total time spent doing formal development. Al-
though a central part of this process, doing formal proof is often regarded as
drudgery; something that has to be done quickly and gotten out of the way.
So great is the aversion to it, that the techniques that have caught the atten-
tion of industry have largely been the ‘push-button’ solutions talked about
in §1.5. In that section we have also seen that interactive formal proof is
something that often becomes a necessity. The studies presented in [5], and
[16] show that performing formal proofs can even be a more economical alter-
native to the heavy testing currently required for safety critical systems. We
will therefore have to deal with the problems associated with the widespread
use of formal proof tools sooner or later.

In the rest of this section we give an overview of the problems, encountered
when doing formal interactive proof in the engineering setting, that will be
addressed in this thesis.

a. Complicated Mathematical Language Although most software en-
gineers have a knowledge of mathematics, they still need to learn how

6 CHAPTER 1. INTRODUCTION

to carry out formal proof. Most of their notions of proof correspond
to informal ones in mathematics. Engineers are not used to thinking
of proof as a way of reasoning about and developing computer-based
systems. Additionally, there exists a plethora of different logics, each
with their own peculiarities and notations, which makes for a great deal
of confusion.

b. Nature of Arising Proof Obligations Proof obligations arising from
engineering applications are different from those that are encountered
in mathematics. A medium sized formal development typically results
in the generation of hundreds of proof obligations. Each of these proof
obligations in turn typically contain hundreds of hypotheses, and large
goals. Although most of these proof obligations are typically trivial,
manually proving or even inspecting each generated proof obligations
is not feasible.

c. Inadequate Support for Intuitive User Interaction Although ideal
user interfaces for interactive proof are an area of research in them-
selves [13] and will not be dealt with in this thesis, the architecture of
the underlying proof tool can severely restrict the types of features that
can be offered by its user interface. For instance, a user would typically
like to visualise and move freely between the steps of a proof without
having to undo and redo his proof. This is not possible in most proof
tools since they only keep a record of the pending sub goals of a proof,
and not of each proof step.

d. Inadequate Support for Incremental Development The development
of large computer-based systems is an incremental activity. The final
product is the result of adding details and removing errors in existing
designs. Changes in the development, no matter how small, are often
reflected as changes in a large number proof obligations arising from
it, invalidating existing proofs. Not managing such changes properly
results in repetition of work and waste of previous proof effort.

e. Inadequate Support for Integrating Existing Provers There exist
a large number of powerful automated theorem provers that could be
used to automatically discharge pending sub goals in an interactive
proof and save the user from having to prove them manually. Ex-
tending the reasoning capabilities of existing proof tools using external
automated theorem provers is not straightforward. A major reason for
this difficulty is that proof tools are often designed as closed systems,
leaving such extensions as afterthoughts.

1.7. SCOPE OF THIS THESIS 7

In §1.8 we present overview of how we propose to tackle these problems
later in this thesis. Before that we first discuss the nature and scope of this
thesis in the next section.

1.7 Scope of this Thesis

The subjects covered by this thesis lie in the intersection of the three fields of
formal methods, logic, and software engineering, as illustrated in figure 1.1.

Formal
Methods Logic

Software
Engineering

Figure 1.1: Scope of this Thesis.

The primary contribution of this thesis is to use existing theoretical results
as a basis to solve practical engineering problems. This point can be seen
in analogy with the first theses in the area of compiler design. Their basis
was theoretical. They depended on existing theoretical results in lexical
analysis, parsing, machine grammars, etc. ,but their contribution was to solve
a practical engineering problem: How to design compilers that can be used
in a practical setting. In a forward to a recent book on program verification
[22], K. Rustan M. Leino also touches on this point:

. . . Yet, program verification tools have not reached the same
kind of maturity as, say, compilers. It took many years of devel-
oping and refining the theory underlying modern compilers, in-
cluding context-free grammars and data-flow analyses, but these
are now taught in undergraduate computer science curricula. We
can only hope that program verifiers will eventually become as
well understood.

8 CHAPTER 1. INTRODUCTION

. . . The ultimate goal of program verification is not the theory
behind the tools, or the tools themselves, but the application of
the theory and tools in the software engineering process.

As an engineering thesis, the four essential questions I try to answer are:

1. What is the engineering problem to be solved?

2. In what sense are previous solutions to this problem unsatisfactory?

3. What is my solution?

4. What evidence is there that my solution is an improvement over pre-
vious solutions?

The ideas presented here have been used to design and implement the
proof infrastructure for the RODIN formal development environment which
is described in §2. Nevertheless, the contributions made in this thesis stand
on their own and are independent of the tool implementing them. This thesis
is therefore not a description of a working proof tool, but the resulting tool
is a proof of the feasibility of the ideas presented in this thesis.

The RODIN platform was developed by the formal methods technology
group headed by Jean-Raymond Abrial at the ETH Zurich. Apart from my-
self, this group consisted of Laurent Voisin, Son Thai Hoang, Stefan Hallerst-
ede and Françios Terrier. Although the development of this tool was a group
effort, I have only included ideas that I have personally worked on and imple-
mented in this thesis and have tried my best to present them independently
of the RODIN tool. These ideas have been improved through discussion with
my colleagues (in particular Jean-Raymond Abrial and Laurent Voisin) to
whom I am grateful.
The next section gives an overview of the structure and contributions of this
thesis.

1.8 Contributions and Structure

The first two chapters of this thesis are motivational. They provide an
overview of the setting and of the problems tackled in this thesis. Chap-
ter 2 describes the practical setting of the work done in this thesis. Chapter
3 defines its theoretical point of departure. Chapter 4 is the major theoretical
contribution of this thesis: How can one formally reason about partial func-
tions without abandoning the well understood domain of classical two-valued
predicate calculus. The remainder of the chapters are about contributions of

1.8. CONTRIBUTIONS AND STRUCTURE 9

a more engineering nature. They propose practical solutions to the following
questions related to providing proof support in a tool:

� How can a proof tool be designed so that its reasoning capabilities are
easily extensible? (chapter 5)

� How should proofs be stored so that they can be reused efficiently?
(chapter 6)

� How can proofs themselves be manipulated in useful ways?(chapter 7)

� How can stored proofs be re-validated? (chapter 8)

Chapter 9 summarizes the main contributions of this thesis and compares its
results with related approaches. Here are more detailed descriptions for each
chapter:

Chapter 2: Practical Setting In this chapter we describe the practical
setting of the work done in this thesis. We show how the activities of
modeling and proving go hand in hand, emphasising the role of proving
as a modeling aid. We then talk about the tool support required to
facilitate such a style of development in practice. We argue for a reac-
tive development environment, where proofs are automatically updated
whenever models change. We discuss the challenges of providing tool
support for proof in such a reactive development environment. We con-
clude with a set of requirements for a proof tool that we use to guide
its design in chapters 5 and 6.

Chapter 3: Mathematical Logic In this chapter we give an overview of
the mathematical notation and logic used in this thesis. We start with
an abstract view of proofs in sequent calculus. We then refine this view
for proofs in propositional calculus and further refine this to first-order
predicate calculus with equality. The mathematical logic and notion of
proof presented in this chapter will be used as the basis of discussions
in the rest of the thesis.

Chapter 4: Partial Functions and Well Definedness In this chapter we
show how to formally reason about partial functions without abandon-
ing the well understood domain of classical two-valued predicate calcu-
lus. In order to achieve this, we further extend our mathematical logic
with the notion of well-definedness. We show how well-definedness can
be used to filter out potentially ill-defined statements from proofs. We
extend our existing proof calculus with a new set of derived proof rules

10 CHAPTER 1. INTRODUCTION

that can be used to preserve well-definedness in order to make proofs
involving partial functions less tedious to perform.

Chapter 5: Prover Architecture and Extensibility In this chapter we
present the basic architecture of the proof tool and the ways in which
its proving capabilities can be extended. For clarity we restrict this
basic architecture to the propositional subset of our mathematical lan-
guage. We show how proofs can be constructed in the proof tool, and
how these constructed proofs correspond to our mathematical notion
of proof discussed in chapter 3. The implementation of the proof tool is
sketched using an object-oriented pseudo-code notation. This chapter
provides a concrete basis for the discussions in chapters 6, 7, and 8.

Chapter 6: Representing and Reusing Proofs This chapter is concerned
with representing and reusing proofs constructed in the proof tool.
We start by discussing the most frequently occurring proof obligation
changes that we experience during reactive formal development, as dis-
cussed in chapter 2, and propose a strategy to manage such changes.
We then state some concrete requirements on the way proof attempts
are represented and reused. We discuss the various possibilities we
have of representing proofs, and their consequences on proof reuse. We
then use the requirements stated earlier to propose a new a way of
representing proof attempts (that we call proof skeletons) that are re-
silient to change and amenable to reuse. Experimental evidence on
the effectiveness of our solution to represent and reuse proofs is also
presented.

Chapter 7: Reengineering Proofs This chapter builds on the idea that
proofs are themselves formal objects that can be manipulated to per-
form some useful operations. This chapter is not meant to be a cata-
logue of all possible proof manipulations, but uses examples to sketch
some proof manipulations that are useful in an engineering setting.

Chapter 8: Revalidating Proofs In this chapter we show how proof skele-
tons can be revalidated. In particular we show how the proof checking
paradigm can be used to cross-check each step of a proof with respect
to an independent third-party proof tool.

Chapter 9: Conclusion This chapter brings this thesis to a close by sum-
marizing its main contributions, providing evidence that suggests that
these contributions lead to an increase in user productivity, and dis-
cussing areas of further work.

1.8. CONTRIBUTIONS AND STRUCTURE 11

Since this thesis covers a number of subjects, figure 1.2 has been included
to aid its reading. It illustrates the dependencies between the chapters of
this thesis.

Chapter 1
Introduction

Chapter 2
Practical Setting

Chapter 4
Partial Functions and

Well-Definedness

Chapter 3
Mathematical Logic

Chapter 5
Prover Architecture

and Extensibility

Chapter 6
Representing and
Reusing Proofs

Chapter 7
Reengineering Proofs

Chapter 8
Revalidating Proofs

Chapter 9
Conclusion

Figure 1.2: Dependencies between the chapters of this thesis.

12 CHAPTER 1. INTRODUCTION

Chapter 2

Practical Setting

In this chapter we describe the practical setting of the work done in this
thesis. We show how the activities of modeling and proving go hand in hand,
emphasising the role of proving as a modeling aid. We then talk about the
tool support required to facilitate such a style of development in practice. We
argue for a reactive development environment, where proofs are automatically
updated whenever models change. We discuss the challenges of providing tool
support for proof in such a reactive development environment. We conclude
with a set of requirements for a proof tool that we use to guide its design in
chapters 5 and 6.

2.1 Reactive Development

One of the major issues of software engineering is the inevitability of change.
Change can occur as the result of a change in requirements, the need for new
functionality, the discovery of bugs, etc. But these are not the only sources
of change. Smaller incremental changes are unavoidable when developing
large, real world systems. The construction of such systems is an incremental
activity since, in practice, getting things right the first time around is highly
unlikely [21]. Modern development environments, such as the Eclipse IDE for
Java [41], support incremental construction by managing change and giving
the engineer quick feedback on the consequences of the latest modification
of a program. Such development tools work behind the scenes to report
compile time errors while the programmer modifies his program. This quick
feedback allows the programmer to immediately correct any errors while he
is editing his program without having to wait till the next compile cycle, thus
increasing productivity.

Formal model development is also an incremental activity [85]. One of

13

14 CHAPTER 2. PRACTICAL SETTING

the major criticisms of using formal methods in practice is the lack of ade-
quate tool support, especially for proof. The RODIN platform [1] addresses
this by providing a similar reactive development environment for the correct
construction of complex systems using refinement and proof. It is based on
the Event-B [6] formal method. The development process consists of model-
ing the desired system and proving proof obligations arising from it. A proof
obligation is a logical statement derived from a model. It must be proved
in order to guarantee that the model is intrinsically consistent and that it
refines its abstraction (if any).

In the correct by construction setting introduced in §1.2, the proving
process is seen as not merely justifying that certain properties of the system
hold, but also as a modeling aid to help steer the course of the modeling
process. In contrast to post-construction verification, the proving process
assists modeling, in the same way testing and debugging assists programing.
Figure 2.1 illustrates this analogue between programing and debugging, and
modeling and proving.

Programing Debugging /
Testing

Modeling Proving

Figure 2.1: Programing vs Model Development

But the way the proving process is supported by formal development tools
used today does not take advantage of this interaction between modeling and
proving. The main reason for this is that modeling and proving are treated
as isolated activities, making it hard for the user to move freely between
them in order to use proving insights to aid modeling.

2.2 Reactive Formal Development in RODIN

From the experience of how a previous generation of development tools [33, 8]
were used, the RODIN platform proposes a reactive development environ-
ment, similar to a modern IDE, where the user working on a model is con-
stantly notified on the status of his proofs. To achieve this, the tools present
in the RODIN platform are run in a reactive manner. This means that when
a model is modified, it is automatically:

2.3. A SIMPLE FORMAL DEVELOPMENT 15

Error Messages

Modeling Proving

Static

Checker

Proof Obl.

Generator

Proof Attempts

& Status

Unchecked

Model

Checked

Model Obligations

Proof

Proving

& Prover

PO ManagerModeling

UI

UI

Figure 2.2: The RODIN Tool Chain

1. Checked for syntax and type errors,

2. its proof obligations are generated, and

3. the status of its proofs are updated, possibly by calling automated
provers, or reusing old proof attempts.

The RODIN tool chain is illustrated in figure 2.2. The user gets immediate
notification on how his last modeling change affects his proofs. Inspecting
failed proofs often gives the user a clue on how to further modify his model.
The user may then use this feedback to make further modifications to his
model, or decide to work interactively on a proof that the prover was unable
to discharge automatically. A detailed description of the RODIN tools and
user interface can be found in [7].

2.3 A Simple Formal Development

In this section we demonstrate the use of the RODIN reactive development
environment using a simple formal development with screen-shots taken from
the tool. Our aim is to show in practice how the proving process can be an
aid to modeling when both these processes are tightly integrated within a
reactive development environment.

The user wants to model a simple bank account with operations to deposit
and withdraw money from this account. The following screen-shot shows our
point of departure for this simple model.

16 CHAPTER 2. PRACTICAL SETTING

The user has modeled a machine called ‘Account ’ with only one variable called
‘balance’ which can be incremented or decremented by a value ‘amount’ us-
ing the events ‘deposit’ and ‘withdrawal’ respectively. The invariant ‘inv1’
for this machine states that ‘balance’ is a natural number, and therefore can-
not be negative. After saving this model, the tool automatically generates its
proof obligations and runs a collection of automated provers on the generated
proof obligations as discussed in §2.2. The tool communicates its progress in
proving each proof obligation via the ‘Obligation Explorer’ as follows.

2.3. A SIMPLE FORMAL DEVELOPMENT 17

The tool has generated three proof obligations for this model. The first
two proof obligations have been successfully proved automatically. This is
indicated by the green ‘

√
’ icon with the super-scripted ‘A’. The last proof

obligation is still pending, indicated by the red ‘?’ icon. This indicates to the
user that this proof obligation could not be automatically discharged. The
reason for this could be either that:

1. The proof obligation is provable, but needs an interactive proof.

2. The proof obligation is not provable due to an error in the model.

In order to figure out which of the above is the case, the user inspects the
pending proof obligation which is then displayed to him as follows.

18 CHAPTER 2. PRACTICAL SETTING

Upon inspecting this proof obligation, the user infers that it cannot be
proved. This indicates that he needs to change his initial model. He then
asks the tool to show him the relevant parts of the model used to generate
this proof obligations in order to help him decide what to change. He is then
presented with the following ‘Proof Information’.

From the above information he can clearly see that the cause of the error
is that the ‘withdrawal’ event could result in a negative ‘balance’, which
would invalidate the invariant ‘inv1’. He also finds two alternatives to fix
this error. He could either weaken the invariant ‘inv1’ to allow ‘balance’ to
have negative values, or he could add a second guard to the ‘withdrawal’
event to prevent the resulting ‘balance’ from becoming negative. He chooses
the latter solution and adds a new guard ‘grd2’ to the ‘withdrawal’ event.
What follows is a screen-shot of the modified model, with the added guard
highlighted in blue:

2.3. A SIMPLE FORMAL DEVELOPMENT 19

Upon saving this modified model, the tool runs in the background to recom-
pute the status of its proof obligations and updates them as follows:

20 CHAPTER 2. PRACTICAL SETTING

The user now sees that all three proof obligations have been proved and
can continue with his development. The tool did not need to re-run the
automated provers on the first two proof obligations that were previously
discharged, but only on the third proof obligation that was modified as a
result of the modeling change.

Supporting such a reactive development environment poses new chal-
lenges for the tools involved, particularly the prover. This is the subject
of the next section.

2.4 A Reactive Prover - Challenges

In a reactive development environment, a change in a model is immediately
reflected as changes in proof obligations. The main challenge for a proof tool
in such an environment is to make the best use of previous proof attempts in
the midst of changing proof obligations. Reusing previous proof attempts is
important since considerable computational and manual effort is needed to
produce a proof. This problem will be tackled in chapter 6 of this thesis.

2.5 Prover Requirements

It is our view that the major bottleneck in doing formal development is the
time and effort required for proof. We conclude this chapter with two high-
level requirements for the proof tool used in the RODIN platform that we
treat in this thesis that address this bottleneck:

Efficiency We require that the proof tool runs efficiently so that the user can
be provided with instant feedback of the effect of his modeling changes
on his proofs. The proof tool must therefore be aware of changes and

2.6. RELATED WORK 21

be able to efficiently recover from them. This requirement heavily in-
fluences the way proof attempts are represented and reused in chapter
6.

Extensibility Since it is hard to anticipate the types of proof obligations
that the user may encounter in the future, we additionally require that
the reasoning capabilities of the proof tool are easily extensible. This re-
quirement heavily influences the architecture of the proof tool in chap-
ter 5.

2.6 Related Work

Reactive development environments for program development such as Eclipse
[41] have been around for some time now, and have significantly increased
the productivity of software engineers by integrating development tools such
as compilers, debuggers and program analysers to avoid having developers
call these tool individually.

In this section we present related work in the area of development envi-
ronments that support formal proof. The idea of generating proof obliga-
tions (or verification conditions) from program texts has been around since
James King’s 1970 thesis [60] and has been used in a large number of veri-
fication approaches, the most recent of which include VDM [56], KIV [15],
Jive [69], KeY [22], Isabelle/HOL/Hoare [72], ESC/Java [64], Caduceus [43],
JACK [20] and Spec# [18], just to name a few. But, with the exception of
the Boogie program verifier [17] treated in the next paragraph, none of the
currently used formal development tools support the type of direct modeling-
proving interaction that we have demonstrated in this chapter. Moving be-
tween the modeling and proving activities in such development tools requires
explicit manual interaction to check models, generate proof obligations, and
reload proofs. This increases the time required to switch between modeling
and proving and reduces the impact of proving as a modeling aid.

The Boogie program verifier [17] is integrated within the Visual Studio
development environment for C#. It accepts program specifications as as-
sertions in Spec# and provides ‘design-time feedback’ of possibly invalid
assertions to the programmer. A central design decision of Boogie is that it
only uses automated provers to check the validity of the verification condi-
tions it generates. The main difference between the Boogie approach and the
one taken in the RODIN platform is that the latter approach also supports
interactive proof, which gives the user an extra degree of freedom since he
is not restricted to only entering models that can be automatically proved,

22 CHAPTER 2. PRACTICAL SETTING

but may additionally decide to interactively prove proof obligations that are
valid, but not automatically provable. To provide this extra freedom, the
RODIN platform needs to additionally manage additional user input in the
form of interactive proof attempts. Chapter 6 describes how this is done.
Extending Boogie to support interactive proof can also be done along similar
lines.

Chapter 3

Mathematical Logic

In this chapter we give an overview of the mathematical notation used in this
thesis. The mathematical logic and notion of proof presented in this chapter
will be used as the basis of discussions in the chapters to come.

3.1 Introduction

The mathematical notion of proof plays a central role in this thesis. This
notion of proof will be used in two ways:

1. It is used to perform actual proofs in chapters 4 and 8.

2. It is used as a specification for proofs generated using the proof tool
introduced in chapter 5.

The aim of this chapter is to formally define what we mean by a mathe-
matical proof. We start with an abstract view of proofs in sequent calculus
in §3.2. We then refine this view for proofs in propositional calculus in §3.3
and further refine this to first-order predicate calculus with equality in §3.4.
The logic is developed in a style similar to the one used in [3] and [6] to
develop the logic used for the B and Event-B methods. Although some of
the individual proof rules have been modified to conform more closely to
those from the (single succedent) sequent calculus [47], both sets of rules are
equivalent.

3.2 Sequent Calculus

In this section we present an abstract view of proofs in sequent calculus.

23

24 CHAPTER 3. MATHEMATICAL LOGIC

3.2.1 Sequents

A sequent is a generic name for a statement that we want to prove. A proof
is associated with a sequent. We will refine our notion of what a sequent is
in §3.3.2. In this section will use identifiers such as S1 , S2 , etc. to denote
sequents.

Definition 3.1 (Sequent). A sequent is a generic name for a statement that
we want to prove.

3.2.2 Proof Rules

A proof rule is device used to construct proofs of sequents. It is made up of
two parts, the antecedent part, and a consequent part. The antecedent part
consists of a list (i.e. a finite, ordered sequence) of sequents (the antecedents).
The consequent part consists of a single sequent (the consequent). The proof

rule named r with antecedents ~A and consequent C is written as:

~A
C

r

The proof rule r yields a proof of the sequent C as soon as we have proofs
of each sequent in ~A. The ‘~ ’ above A indicates that the antecedents are lists
of sequents. Using this rule, proofs of each of the sequents in ~A is transformed
into a proof of C. Alternatively, if we want to prove C, after applying the
rule r to it we only need to prove the sequents in ~A.

Definition 3.2 (Proof Rule). A proof rule is a device used to construct proofs
of sequents. It consists of a list of antecedent sequents, and a consequent
sequent.

In case the list of antecedents ~A is empty, the rule is said to discharge the
sequent C. Here are some examples of proof rules:

S2 S3 S4
S1

r1
S5 S6

S2
r2

S7
S3

r3
S4

r4

3.2.3 Theories

A theory or calculus is a set of proof rules. This set is normally infinite and
is specified using a finite set of proof rule schemas. At the moment we do not
have enough logical machinery to show how this takes place. We will come
back to this point later in §3.3.4.

3.2. SEQUENT CALCULUS 25

Definition 3.3 (Theory). A theory is a (possibly infinite) set of proof rules.

Here is a theory T with seven proof rules :

S2 S3 S4
S1

r1
S5 S6

S2
r2

S7
S3

r3

S4
r4

S5
r5

S6
r6

S7
r7

3.2.4 Proofs

A proof is a device for combining individual proof rules to form larger infer-
ence steps. It is defined formally as follows.

Definition 3.4 (Proof). A proof of a sequent within a given theory is a finite
tree whose nodes have the following properties:

� Each node consists of a sequent and an optional proof rule of the theory.

� The root node contains the sequent we want to prove.

� A node with no proof rule has no child nodes.

� In case a node contains a proof rule:

– Its sequent is identical to the consequent of the proof rule.

– It has a child node corresponding to each antecedent of the proof
rule.

– The sequent of each child node is identical to its corresponding
antecedent.

Here is a proof of the sequent S1 using the theory T just presented:

S5
r5

S6
r6

S2
r2

S7
S3

r3
S4

r4

S1
r1

The sequent S7 is said to be a pending sub-goal of the above proof.

Definition 3.5 (Pending Sub-goals of a Proof). The leaf nodes of a proof
that do not contain proof rules are said to be pending nodes. The sequents of
such pending nodes are said to be the pending sub-goals of a proof.

26 CHAPTER 3. MATHEMATICAL LOGIC

A proof can either be complete or incomplete. These terms are defined for-
mally as follows.

Definition 3.6 (Complete Proof). A proof is said to be complete iff it has
no pending sub-goals.

Definition 3.7 (Incomplete Proof). A proof is said to be incomplete iff it
has at least one pending sub-goal.

The proof just presented above is an example of an incomplete proof.
It can be made complete by applying the rule r7 to the pending node with
sequent S7 . The resulting complete proof is:

S5
r5

S6
r6

S2
r2

S7
r7

S3
r3

S4
r4

S1
r1

In the next section we refine this abstract view of proofs to proofs in
propositional calculus.

3.3 Propositional Calculus

In this section we define the mathematical language of propositional calcu-
lus (PC).

3.3.1 Predicates

A predicate is a syntactic construct appearing in sequents. They are used to
formally express properties that we would like to reason about using proof.
Semantically, predicates can be thought of as entities having a truth value
associated to them (i.e. they can either be true or false).

Definition 3.8 (Predicate). A predicate is a formal statement expressing a
certain property that we may assume, or a certain property that we wish to
prove.

Here is an example of a predicate:

A ∧B ⇒B ∧ A

The syntax for predicates will be defined in §3.3.3 and §3.3.6.

3.3. PROPOSITIONAL CALCULUS 27

3.3.2 Sequents

We now refine our concept of sequents introduced in §3.2.1. A sequent is
composed of a finite set of hypotheses predicates, and a single goal predicate.
A sequent with the hypotheses ‘H’ and the goal ‘G’ is written:

H ` G

and is to be read as “Under the hypotheses H, prove the goal G ”.

Definition 3.9 (Sequent in Predicate Calculus). A sequent in predicate cal-
culus is composed of a finite set of hypotheses predicates ‘H’, and a single
goal predicate ‘G’, written ‘H ` G ’.

We now introduce the syntax and proof rules of PC . This will be done
in two steps. In the first step we introduce basicPC in §3.3.3 with a minimal
syntax. In §3.3.6 we then introduce the additional derived logical operators
in terms of the predicates of basicPC .

3.3.3 Syntax of basicPC

The syntax for predicates of basicPC is defined as follows:

P ::= ⊥ | ¬P | P ∧ P

where ‘⊥’ is the ‘false’ predicate, and ‘¬’, ‘∧’ are the logical operators for
negation and conjunction respectively.

3.3.4 Proof Rule Schemas

A theory is specified using a finite set of proof rule schemas. Each proof
rule schema represents an infinite number of proof rules of the same form. A
proof rules may be derived from its rule schemas by instantiating its so-called
meta variables. For instance consider the rule schema:

H ` P H, P ` Q

H ` Q
cut

The letters H, P , and Q are meta variables. The letter H is a meta variable
standing for a finite set of predicates, whereas the letters P and Q are meta
variables standing for single predicates. Replacing these meta variables by
actual predicates gives us a proof rule. Here is an instance of the above rule
schema:

28 CHAPTER 3. MATHEMATICAL LOGIC

A ` B A, B ` C

A ` C
cut instantiated

where A, B, and C are concrete predicates. A single proof rule schema
therefore denotes an infinite number of proof rules present in a theory.

3.3.5 Proof Rules of basicPC

The proof rules of basicPC are defined using the following rule schemas:

H, P ` P
hyp

H ` Q

H, P ` Q
mon

H ` P H, P ` Q

H ` Q
cut

H,⊥ ` P
⊥hyp

H,¬P ` ⊥
H ` P

contr

H, P ` ⊥
H ` ¬P

¬goal H ` P
H,¬P ` Q

¬hyp

H ` P H ` Q

H ` P ∧Q
∧goal

H, P, Q ` R

H, P ∧Q ` R
∧hyp

3.3.6 Derived Logical Operators

We extend the basicPC to PC by introducing the ‘true’ predicate ‘>’, and the
logical operators ‘∨’, ‘⇒’, and ‘⇔’ using the following syntactic definitions :

> =̂ ¬⊥ (3.1)

P ∨Q =̂ ¬(¬P ∧ ¬Q) (3.2)

P ⇒Q =̂ ¬P ∨Q (3.3)

P ⇔Q =̂ (P ⇒Q) ∧ (Q⇒ P) (3.4)

Note that the ‘=̂’ symbol used above represents syntactic equivalence. It is
not itself part of the syntax, but a meta-logical connective.

The following proof rule schemas can be derived from the above definitions
and the rule schemas of basicPC from §3.3.5:

H ` > >goal

H ` P
H ` P ∨Q

∨goal1
H ` Q

H ` P ∨Q
∨goal2

H, P ` R H, Q ` R

H, P ∨Q ` R
∨hyp

3.3. PROPOSITIONAL CALCULUS 29

H, P ` Q

H ` P ⇒Q
⇒goal

H ` P H, Q ` R

H, P ⇒Q ` R
⇒hyp

H ` P ⇒Q H ` Q⇒ P

H ` P ⇔Q
⇔goal

H, P ⇒Q, Q⇒ P ` R

H, P ⇔Q ` R
⇔hyp

The next sub-section is a short note on the types of reasoning required
in order to prove the derived rule schemas just presented, and others that
appear in this thesis.

3.3.7 Reasoning

There are two forms of reasoning that we use in this thesis. The first is
syntactic rewriting using syntactic definitions such as ‘> =̂ ¬⊥’, where all
occurrences of ‘>’ in a formula may be replaced with ‘¬⊥’, purely on the
syntactic level, to get a syntactically equivalent formula. The second is logical
validity where we additionally appeal to the notion of proof. Most proofs
done in this thesis rely on both syntactic and logical reasoning.

As an example, here is a proof of the derived rule schema >goal . The
derived rule appears boxed on the right, followed by its proof:

H ` > >goal

H,⊥ ` ⊥ ⊥hyp

H ` ¬⊥ ¬goal

H ` > (3.1)

The first step of this proof, labelled (3.1), has been justified using the
referred syntactic definition ‘> =̂ ¬⊥’, and the next two steps have been
justified using rule schemas appearing in §3.3.5. In the proofs presented
in the rest of this thesis only important proof steps are shown. Combined
proof steps are justified using a sequence of previously appearing proof rules,
definitions and equivalences.

3.3.8 Summary of PC

To summarise this section, here is the syntax and proof rule schemas for PC .
We will later also refer to PC as the propositional subset of our mathematical
language.

P ::= ⊥ | > | ¬P | P ∧ P | P ∨ P | P ⇒ P | P ⇔ P

30 CHAPTER 3. MATHEMATICAL LOGIC

H, P ` P
hyp

H ` Q

H, P ` Q
mon

H ` P H, P ` Q

H ` Q
cut

H,⊥ ` P
⊥hyp

H ` > >goal
H,¬P ` ⊥

H ` P
contr

H, P ` ⊥
H ` ¬P

¬goal H ` P
H,¬P ` Q

¬hyp

H ` P H ` Q

H ` P ∧Q
∧goal

H, P, Q ` R

H, P ∧Q ` R
∧hyp

H ` P
H ` P ∨Q

∨goal1
H ` Q

H ` P ∨Q
∨goal2

H, P ` R H, Q ` R

H, P ∨Q ` R
∨hyp

H, P ` Q

H ` P ⇒Q
⇒goal

H ` P H, Q ` R

H, P ⇒Q ` R
⇒hyp

H ` P ⇒Q H ` Q⇒ P

H ` P ⇔Q
⇔goal

H, P ⇒Q, Q⇒ P ` R

H, P ⇔Q ` R
⇔hyp

3.4 First-order Predicate Calculus

In this section we will refine PC with additional syntax and proof rules to
obtain the first-order predicate calculus with equality (FoPCe). The syntax
of PC is extended with new kinds of predicates, and also with two new
syntactic categories for expressions and variables.

3.4.1 Expressions

An expression is a syntactic construct that denotes a mathematical object,
such as a number, a set, a function, etc. .

Definition 3.10 (Expression). An expression is a formal statement denoting
a mathematical object.

Here are some examples of expressions:

f(x) x g(x, f(x))

The syntax for expressions will be defined in §3.4.3. An important distinction
between expressions and predicates is that there is no concept of proof for
an expression, as there is for predicates. One cannot prove an expression.

3.4. FIRST-ORDER PREDICATE CALCULUS 31

3.4.2 Variables

A variable is an identifier that denotes an unknown mathematical object. A
variable is therefore an expression. A variable is subject to substitution (i.e.
being replaced by another expression).

Definition 3.11 (Variable). A variable is an identifier that denotes an un-
known expression.

The identifier ‘x’ is a variable in the expression ‘f(x)’ and in the predicate
‘x = f(x)’ . A predicate may contain occurrences of so called free variables.
Semantically, the truth value of a predicate depends on the free variables
occurring in it.

We now introduce the syntax and proof rules of FoPCe. As done for
PC , this will be also be done in two steps. In the first step we introduce
the minimal basicFoPCe in §3.4.3 and later define additional derived logical
operators in §3.4.6.

3.4.3 Syntax of basicFoPCe

Formulæ in basicFoPCe can either be predicates (P) or expressions (E). The
syntax of basicFoPCe is the syntax of basicPC extended as follows:

P ::= . . . | ∀x.P | E = E | R(~E)

E ::= x | f(~E)

where x is a variable, ~E is a list of expressions, R is a relational predicate
symbol, and f is a function symbol. The predicate R(~E) is the relational

predicate symbol R, applied to the arguments ~E. Equality is denoted by the
infix binary relational predicate symbol ‘=’. The expression f(~E) denotes

the function symbol f , applied to the arguments ~E.

3.4.4 Proof Rules of basicFoPCe

We add the following rule schemas to the rule schemas of basicPC to get the
rule schemas for basicFoPCe:

H ` P
H ` ∀x·P ∀goal (x n̂fin H)

H, [x := E]P ` Q

H,∀x·P ` Q
∀hyp

H ` E = E
= goal

H ` [x := E]P

H, E = F ` [x := F]P
= hyp

32 CHAPTER 3. MATHEMATICAL LOGIC

The syntactic operators ‘ n̂fin’ and ‘[x := E]’ occurring in the above rule
schemas are described in the next sub-section.

3.4.5 Syntactic Operators

The rules of basicFoPCe contain occurrences of so-called syntactic operators
for substitution and non-freeness. The predicate ‘[x := E]P ’ denotes the
syntactic operator for substitution [x := E], applied to the predicate P . The
resulting predicate is P , with all free occurrences of the variable x replaced
by the expression E. The side condition ‘(x n̂fin H)’ asserts that the variable
‘x’ is not free in any of the predicates contained in ‘H’. Both these syntactic
operators are defined at the meta-logical level (using ‘=̂’) on the inductive
structure of the formulæ of basicFoPCe in such a way that they can always
be evaluated away. Their formal definitions can be found in [6]. Syntactic
operators can be thought of as ‘macros’ whose repeated replacement always
results in a formula of basicFoPCe. Our basic syntax for formulæ therefore
does not need to be extended to take syntactic operators into account.

3.4.6 Derived Logical Operators

To obtain the mathematical language FoPCe from basicFoPCe , we add the
derived logical operators of PC , as described in §3.3.6, and the existential
quantifier ‘∃’ which is defined using the following syntactic definition:

∃x·P =̂ ¬∀x·¬P (3.5)

The following proof rule schemas can be derived from the above definition
and the rule schemas of PC in §3.3.8 and basicFoPCe in §3.4.4:

H ` [x := E]P

H ` ∃x·P ∃goal H, P ` Q

H,∃x·P ` Q
∃hyp (x n̂finH ∪ {Q})

3.4.7 Summary of FoPCe

To summarise this section, here are the additional syntactic constructs and
proof rule schemas that we have added to PC (whose summary appears in
§3.3.8) to obtain our mathematical language FoPCe.

P ::= . . . | ∀x.P | ∃x.P | E = E | R(~E)

E ::= x | f(~E)

3.5. CONCLUSION 33

H ` P
H ` ∀x·P ∀goal (x n̂fin H)

H, [x := E]P ` Q

H,∀x·P ` Q
∀hyp

H ` [x := E]P

H ` ∃x·P ∃goal H, P ` Q

H,∃x·P ` Q
∃hyp (x n̂fin H ∪ {Q})

H ` E = E
= goal

H ` [x := E]P

H, E = F ` [x := F]P
= hyp

3.5 Conclusion

In this chapter we have introduced the notion of formal mathematical proof in
first-order predicate calculus with equality (FoPCe) and in its propositional
fragment (PC). PC is equivalent to the standard classical propositional
calculus [44], and FoPCeis equivalent to the standard classical predicate cal-
culus with equality [44, 14]. They are currently the most heavily studied and
used calculi for formal proof.

Both these calculi will be used as a basis of discussion in the remainder of
this thesis. PC will be used as an initial specification for the proofs generated
using the proof tool introduced in chapter 5, and also for performing actual
proofs in chapter 8. FoPCe will be extended to support reasoning in the
setting of partial functions in chapter 4, and will also be used to perform
actual proofs in this chapter.

34 CHAPTER 3. MATHEMATICAL LOGIC

Chapter 4

Partial Functions and
Well-Definedness

In this chapter we show how to formally reason about partial functions with-
out abandoning the well understood domain of classical two-valued predicate
calculus. In order to achieve this, we further extend our mathematical logic
with the notion of well-definedness. We show how well-definedness can be
used to filter out potentially ill-defined statements from proofs. We extend
our existing proof calculus with a new set of derived proof rules that can be
used to preserve well-definedness in order to make proofs involving partial
functions less tedious to perform.

4.1 Introduction

Partial functions are frequently used when specifying and reasoning about
computer programs. Some basic mathematical operations (such as division)
are partial, some basic programming operations (such as array look-ups or
pointer dereferencing) are partial, and many functions that arise through
recursive definitions are partial. Using partial functions entails reasoning
about potentially ill-defined expressions (such as 3/0) in proofs which (as
discussed later in §4.2 and §4.3) can be tedious and problematic to work with.
Providing proper logical and tool support for reasoning in the presence of
partial functions is therefore important in our engineering setting. Although
the contributions of this chapter are theoretical in nature, they result in
practical benefits which will be stated later in this section.

The current approaches for reasoning in this partial setting [19, 25, 74]
are based on three-valued logic where the valuation of a predicate is either
true, false, or undefined (for predicates containing ill-defined expressions).

35

36 CHAPTER 4. PARTIAL FUNCTIONS AND WELL-DEFINEDNESS

They also propose their own ‘special-purpose’ proof calculi for performing
such proofs. Using such a special-purpose proof calculus has the drawback
that it differs from the standard predicate calculus FoPCe. For instance,
it may disallow the use of the law of excluded middle (to avoid proving
‘3/0 = x ∨ 3/0 6= x’). These differences make any special-purpose calculus
unintuitive to use for someone well versed in standard predicate calculus
since, for instance, it is hard to mentally anticipate the consequences of
disallowing the law of excluded middle on the validity of a logical statement.
Automation too requires additional effort since the well-developed automated
theorem proving support already present for standard predicate calculus [88]
cannot be readily reused. Additionally, as stated in [26], there is currently
no consensus on which is the ‘right’ calculus to use.

In this chapter we present a general methodology of using standard predi-
cate calculus to reason in the ‘partial’ setting by extending it with new syntax
and derived rules. We then derive one such special-purpose calculus using
this general methodology. The novelty of this approach is that we are able to
reduce all our reasoning to standard predicate calculus, which is both widely
understood and has well-developed automated tool support. This approach
additionally gives us a theoretical basis for comparing the different special-
purpose proof calculi already present, and the practical benefit of being able
to exchange proofs and theorems between different theorem proving systems.

The ideas presented in this chapter have additionally resulted in providing
better tool support for proving in this partial setting within the RODIN
development environment [2] for Event-B [6].

4.2 Defining Partial Functions

In this section we show how a partial function is defined in our mathematical
logic. We first present how this can be done in general, and then follow with
an example that will be used in the rest of this chapter.

4.2.1 Conditional Definitions

A partial function symbol ‘f ’ is defined using the following conditional defi-
nition:

Cf
~x ` y = f(~x) ⇔ Df

~x,y

fdef

Conditional definitions of the above form can safely be added to FoPCe as
an axiom, provided:

4.2. DEFINING PARTIAL FUNCTIONS 37

1. The variable ‘y’ is not free in ‘Cf
~x ’.

2. The predicate ‘Df
~x,y’ only contains the free variables from ‘~x’ and ‘y’.

3. The predicates ‘Cf
~x ’ and ‘Df

~x,y’ only contain previously defined symbols.

4. The theorems:

Uniqueness: Cf
~x ` ∀y, z · Df

~x,y ∧Df
~x,z ⇒ y = z

Existence: Cf
~x ` ∃y · Df

~x,y

must both be provable using FoPCe and the previously introduced
definitions.

The predicate ‘Cf
~x ’ is the well-definedness condition for ‘f ’ and specifies its

domain. For a total function symbol, ‘Cf
~x ’ is ‘>’. Provided ‘Cf

~x ’ holds, fdef
can be used to eliminate all occurrences of ‘f ’ in a formula in favor of its
definition ‘Df

~x,y’. More details on conditional definitions can be found in [10].

4.2.2 Recursive Definitions

Note that conditional definitions as described above cannot be directly used
to define function symbols recursively since the definition of a function sym-
bol ‘Df

~x,y’ may not itself contain the function symbol ‘f ’ that it defines, as
stated in the third condition above.

It is still possible to define partial functions recursively in a theory (such
as the set theory described in [10] and [6]) which supports the applications of
functions that are expressions (i.e. not plain function symbols) in the theory.
Such recursively defined functions are then defined as constant symbols (i.e.
total function symbols with no parameters). Function application is done
using an additional function symbol for function application (often denoted
using the standard function application syntax ‘·(·)’) with two parameters
which are both expressions: the function to apply, and the expression to
apply it to. The definition of this function application symbol is conditional.
Its well definedness predicate ensures that the its first parameter is indeed
a function, and its second parameter is an expression that belongs to the
domain of this function. This methodology is described in detail in [10]
which also describes (in §1.5) how functions can be defined recursively.

38 CHAPTER 4. PARTIAL FUNCTIONS AND WELL-DEFINEDNESS

4.2.3 A Running Example

For our running example, let us assume that our syntax contains the nullary
function symbol ‘0’, and the unary function symbol ‘succ’, and our theory
contains the rules for Peano arithmetic. We may now introduce a new unary
function symbol ‘pred ’ in terms of ‘succ’ using the following conditional def-
inition:

E 6= 0 ` y = pred(E) ⇔ succ(y) = E
preddef

Defined in this way, ‘pred ’ is partial since its definition can only be un-
folded when we know that its argument is not equal to 0. The expression
‘pred(0)’ is still a syntactically valid expression, but is under-specified since
we have no way of unfolding its definition. The expression ‘pred(0)’ is there-
fore said to be ill-defined. We do not have any way to prove or refute the
predicate ‘pred(0) = x’.

The predicates ‘pred(0) = pred(0)’ and ‘pred(0) = x ∨ pred(0) 6= x’
though, can still be proved to be valid in FoPCe on the basis of their logical
structure. This puts us in a difficult position since these predicates contain
ill-defined expressions. The standard proof calculus FoPCe is therefore not
suitable if we want to restrict our notion of validity only to sequents that do
not contain ill-defined formulæ.

4.3 Separating WD and Validity

Since our aim is to still be able to use FoPCe in our proofs, we are not free
to change our notion of validity. We instead take the pragmatic approach of
separating the concern of validity from that of well-definedness and require
that both properties hold if we want to avoid proving potentially ill-defined
proof obligations. In this case, we still allow the predicate ‘pred(0) = pred(0)’
to be proved to be valid, but we additionally ensure that it cannot be proved
to be well-defined. When proving a proof obligation ‘H ` G’ we are then
obliged to prove two proof obligations:

WD : ` D(H ` G) Validity : H ` G

The first proof obligation, WD, is the well-definedness proof obligation for the
sequent ‘H ` G’. It is expressed using the well-definedness (WD) operator
D that is introduced in §4.4 and defined for sequents in §4.5.1. The second
proof obligation, Validity, is its validity proof obligation. An important point
to note here is that both these proof obligations may be proved using FoPCe.

4.3. SEPARATING WD AND VALIDITY 39

Proving WD can be seen as filtering out proof obligations containing
ill-defined expressions. For instance, for ‘` pred(0) = pred(0)’ we are addi-
tionally required to prove ‘` 0 6= 0∧0 6= 0’ as its WD (this proof obligation is
computed using definitions that appear in §4.4 and §4.5.1). Since this is not
provable, we have filtered out (and therefore rejected) ‘` pred(0) = pred(0)’
as not being well-defined in the same way as we would have filtered out
and rejected ‘` 0 = ∅’ as not being well-typed. Well-definedness though,
is undecidable and therefore needs to be proved. Figure 4.1 illustrates how
well-definedness can be thought of as an additional proof-based filter for math-
ematical texts.

Mathematical
text to prove

Lexical
analysis

Syntactic
analysis

Type
checking

Well
definedness Validity

Static filters Proof-based filter

Figure 4.1: Well-definedness as an additional filter

When proving Validity, we may then additionally assume that the initial
sequent ‘H ` G’ is well-defined. The assumption that a sequent is well-
defined can be used to greatly ease its proof. It allows us to avoid proving
that a formula is well-defined every time we want to use it (by expanding its
definition, or applying its derived rules) in our proof. For instance we may
apply the simplification rule ‘x 6= 0 ` pred(x + y) = pred(x) + y’ without
proving its premise ‘x 6= 0’. This corresponds to the way a mathematician
works.

In §4.5.4 we show this key result formally; i.e. how conditional definitions
become ‘unconditional’ for well-defined sequents.

For the moment though, we may only assume that the initial sequent of
Validity is well-defined. In order to take advantage of this property through-
out a proof we need to use proof rules that preserve well-definedness. Pre-
serving well-definedness in an interactive proof also has the advantage of
preventing the user from introducing possibly erroneous ill-defined terms
into a proof. A proof calculus preserving well-definedness is presented in
§4.5. Before that, in the next section, we first introduce the well-definedness
operator.

40 CHAPTER 4. PARTIAL FUNCTIONS AND WELL-DEFINEDNESS

4.4 The Well-Definedness Operator

The WD operator ‘D’ formally encodes what we mean by well-definedness.
D is a syntactic operator (similar in status to the substitution operator
‘[x := E]’ seen in §3.4.5) that maps formulæ to their well-definedness (WD)
predicates. We interpret the predicate denoted by D(F) as being valid iff F
is well-defined. The D operator is attributed to Kleene [61] and also appears
in [10, 25, 26, 36], and as the ‘δ’ operator in [19, 45].

Since D has been previously well studied, we only give in this section an
overview of the properties of D from [10] that we use later in this chapter.
In §4.4.1 we define D for formulæ in basicFoPCe. In §4.4.2 we derive equiv-
alences that allow D for all formulæ in FoPCe to be computed, and state an
important properties of D that we use later in §4.5.

4.4.1 Defining D
D is defined on the structure of formulæ in basicFoPCe using syntactic defi-
nitions. For expressions, D is defined as follows:

D(x) =̂ > (4.1)

D(f(~E)) =̂ ~D(~E) ∧ Cf
~E

(4.2)

where ~D is D extended for sequences of formulæ (i.e. ~D() =̂ >, ~D(F, ~F) =̂

D(F)∧ ~D(~F)). An occurrence of a variable in a formula is always well-defined.
The occurrence of a function application is well-defined iff all its operands
are well-defined (i.e. ~D(~E) holds), and the well-definedness condition ‘Cf

~E
’

from the conditional definition of f holds. The resulting definition for the
running example ‘pred’ is:

D(pred(E)) =̂ D(E) ∧ E 6= 0

Similarly, D for ⊥, ¬, = and relational predicate application is defined as
follows:

D(⊥) =̂ > (4.3)

D(¬P) =̂ D(P) (4.4)

D(E1 = E2) =̂ D(E1) ∧ D(E2) (4.5)

D(R(~E)) =̂ ~D(~E) (4.6)

4.4. THE WELL-DEFINEDNESS OPERATOR 41

Note that we regard relational predicate application as always being total. In
case we require partial relational predicate symbols, they can be supported
in the same way as partial function symbols.

Since we would like predicates such as ‘x 6= 0∧pred(x) = x’ (or similarly,
‘x 6= 0⇒ pred(x) 6= x’) to be well-defined special care is taken while defining
the well-definedness of ∧ and ∀ as follows:

D(P ∧Q) =̂ (D(P) ∧ D(Q)) ∨ (D(P) ∧ ¬P) ∨ (D(Q) ∧ ¬Q) (4.7)

D(∀x·P) =̂ (∀x·D(P)) ∨ (∃x·D(P) ∧ ¬P) (4.8)

Intuitively, the above definitions enumerate all the possible conditions where
a conjunctive or universally quantified predicate could be well-defined. A
formal derivation of these definitions can be found in [10]. From these def-
initions we can see that D is itself total and can always be eliminated from
any formula.

4.4.2 Proving properties about D
All proofs done in this chapter use the standard predicate calculus FoPCe.
When we say that a predicate ‘P ’ is valid or provable, we mean that we have
a proof of the sequent ‘ ` P ’ using FoPCe.

In this section (and in §4.5.4) we show some important logical (as opposed
to syntactic) properties about D. Care must be taken when proving state-
ments that contain both syntactic and logical operators. Since D is not a
logical operator, but a syntactic one, modifying its argument using standard
logical transformations is not valid. For instance, given that ‘P ⇔ Q’ holds
(i.e. is valid in FoPCe), it is wrong to conclude that ‘D(P) ⇔D(Q)’ (con-
sider the valid predicate ‘>⇔ pred(0) = pred(0)’). The only modifications
that can be made to the arguments of D are purely syntactic ones, such as
applying syntactic rewrites (using syntactic definitions that use ‘=̂’). In this
section we state some properties of D.

D of WD predicates An important property of D is that for any formula
F ,

D(D(F)) ⇔ > (4.9)

This means that all WD predicates are themselves well-defined . This prop-
erty can be proved by induction on the structure of basic formulæ. A proof

42 CHAPTER 4. PARTIAL FUNCTIONS AND WELL-DEFINEDNESS

of this nature can be found in the appendix of [10]. Note that the above
property is expressed in terms of logical equivalence ‘⇔’ and not syntactic
definition ‘=̂’.

D for Derived Logical Operators The following equivalences can be
used to compute the WD predicates of the derived logical operators >, ∨,
⇒, ⇔ and ∃:

D(>) ⇔ > (4.10)

D(P ∨Q) ⇔ (D(P) ∧ D(Q)) ∨ (D(P) ∧ P) ∨ (D(Q) ∧Q) (4.11)

D(P ⇒Q) ⇔ (D(P) ∧ D(Q)) ∨ (D(P) ∧ ¬P) ∨ (D(Q) ∧Q) (4.12)

D(P ⇔Q) ⇔ D(P) ∧ D(Q) (4.13)

D(∃x·P) ⇔ (∀x·D(P)) ∨ (∃x·D(P) ∧ P) (4.14)

The statements above can be proved using FoPCe (considering the discussion
in §3.3.7 and the precautions stated in the beginning of this section) after
unfolding the definitions of the derived logical operators and D.

4.5 Well-Definedness and Proof

This section contains the main contribution of this chapter. The theme of
§4.4 was the well-definedness of individual formulæ. In this section we show
how the notion of well-definedness can be integrated into proofs (i.e. sequents
and proof rules). In §4.5.1 we define D for sequents. We then formally define
the notions of a well-defined sequent (§4.5.2) and a WD preserving proof rule
(§4.5.3) as motivated in §4.3. In §4.5.4 we derive the proof calculus FoPCeD ,
the WD preserving version of FoPCe, that we use to preserve well-definedness
in a proof. We summarise the results of this section in §4.5.5.

4.5.1 Defining D for Sequents

We now extend our definition of D to sequents. Observing that the sequent
‘ H ` G ’ is valid iff ‘ ` ∀~x.

∧
H ⇒ G ’ is also valid (where ‘∀~x’ denotes

the universal quantification of all free variables occurring in H and G, and
‘
∧

H’ denotes the conjunction of all predicates present in H), we extend our
well-definedness operator to sequents as follows:

D(H ` G) =̂ D(∀~x.
∧

H ⇒ G) (4.15)

4.5. WELL-DEFINEDNESS AND PROOF 43

Note that if we blindly use the definitions (4.15), (4.8), (4.12), and (4.7) to
evaluate ‘D(H ` G)’ we get a disjunctive predicate that grows exponentially
with respect to the number of free variables and hypotheses in the sequent.
We present ways to overcome this problem in §4.5.2.2 and §4.6.

4.5.2 Well-Defined Sequents

In §4.3 we said that the initial sequent of the Validity proof obligation could be
considered well-defined since we also prove WD. More generally, we say that
a sequent ‘H ` G’ is well-defined if we can additionally assume ‘D(H ` G)’
to be present in its hypotheses. We thereby encode the well-definedness of a
sequent within its hypotheses. We introduce additional syntactic sugar ‘ D̀ ’
to denote such a well-defined sequent:

H D̀G =̂ D(H ` G), H ` G (4.16)

4.5.2.1 Re-stating WD and Validity

We may re-state our original proof obligations from §4.3 in terms of ‘ D̀ ’ as
follows:

WDD : D̀ D(H ` G) ValidityD : H D̀G

Justification The WDD proof obligation is equivalent to the original WD
proof obligation since we know from (4.9) that ‘D(D(H ` G))⇔>’. To get
ValidityD , we add the extra hypothesis ‘D(H ` G)’ to Validity using the cut
rule whose first antecedent can be discharged using the proof of WD.

We return to the issue of proving WDD and ValidityD in §4.6. The rest of
this section is concerned with proving well-defined ‘ D̀ ’ sequents in general.

4.5.2.2 Simplifying D̀

Directly unfolding (4.16) introduces the predicate ‘D(H ` G)’ that, as we
have seen in §4.5.1, grows exponentially when further unfolded. We avoid
unfolding ‘D(H ` G)’ by using the following derived rule instead of (4.16)
to introduce or eliminate D̀ from a proof :

D̂(H),D(G), H ` G

H D̀G D̀eqv

44 CHAPTER 4. PARTIAL FUNCTIONS AND WELL-DEFINEDNESS

The D̂ operator isD extended for finite sets of formulæ (i.e. D̂(F) =̂
⋃

F∈F{D(F)}).
Note that D̂(H) denotes a set of predicates. The double inference line means
that this rule can be used in both directions. The rule D̀eqv says that when
proving the validity of a well defined sequent, we may assume that all its
hypotheses and its goal are individually well-defined.

Proof of D̀eqv We will use the following three derived rules as lemmas in
order to prove D̀eqv :

D(P) ` P

D(∀x·P) ` ∀x·P
∀D

D(P),D(Q), P ` Q

D(P ⇒Q) ` P ⇒Q
⇒D

H,D(P),D(Q), P, Q ` R

H,D(P ∧Q), P ∧Q ` R
∧D

The proofs of ⇒D and ∧D in both directions are straightforward using the
definitions of D and the rules of FoPCe, and are similar to the proof of
`Deqv simple shown later in this section. The proof of ∀D though is tricky,
but almost identical to the proof of another derived rule ∀goal

D
presented in

§4.5.4.1.
The proof of D̀eqv proceeds as follows. The logical content of the sequent

(i.e. the hypotheses and the goal) is first packed into the goal of the sequent
using the rules of FoPCe. This goal is then unraveled in parallel with its
well-definedness predicate using the three derived rules stated above. Here
is the proof:

D̂(H),D(G), H ` G

H D̀G D̀eqv

D̂(H),D(G), H ` G

D(
∧

H),D(G),
∧

H ` G
∧|H|
D

D(
∧

H ⇒ G) `
∧

H ⇒ G
⇒D

D(∀~x·
∧

H ⇒ G) ` ∀~x·
∧

H ⇒ G
∀|~x|
D

D(H ` G) ` ∀~x·
∧

H ⇒ G
(4.15)

D(H ` G), H ` G
FoPCe

H D̀G
(4.16)

Superscripts above the rules ∀D and ∧D indicate the number of applications
of these rules. For instance ∀|~x|

D
indicates |~x| (which is the number of free

4.5. WELL-DEFINEDNESS AND PROOF 45

variables in the original sequent) applications of the rule ∀D . Note that
this is allowed since the number of free variables (|~x|) and hypotheses (|H|)
contained in a sequent are finite.

In what follows we try to give the reader intuition on why D̀eqv is valid
since this cannot be easily seen from the proof just presented. The fact that
`Deqv holds in the downward direction (i.e. if the hypotheses and goal of
a sequent are well-defined, then the sequent as a whole is well-defined) is
easy to see since hypotheses are weakened. For the upward direction, we
present the proof of the simpler case where the well-defined sequent has no
free variables and only one hypothesis. The derived rule corresponding to
this simple case appears boxed on the right, followed by its proof:

D(H),D(G), H ` G

H D̀G D̀eqv simple

D(H),D(G), H ` G D(H),¬H, H ` G
¬hyp; hyp D(G), G, H ` G

hyp

(D(H) ∧ D(G)) ∨ (D(H) ∧ ¬H) ∨ (D(G) ∧G), H ` G
FoPCe

D(H ⇒G), H ` G
(4.12)

H D̀G
(4.16); (4.15)

From the proof above we can see that, apart from the case where the hy-
pothesis and the goal are individually well-defined, all other possible cases
in which the sequent could be well-defined (i.e. the remaining disjuncts of
‘D(H ⇒G)’) can be discharged using the rules in FoPCe.

4.5.3 WD preserving Proof Rules

We say that a proof rule preserves well-definedness iff its consequent and
antecedents only contain well-defined sequents (i.e. D̀ sequents). Examples
of WD preserving proof rules can be found in §4.5.4.

We may derive such rules by first using D̀eqv to rewrite D̀ sequents in
terms of ‘`’ and then use FoPCe and the properties of D to complete the
proof. Such proofs are discussed in detail in §4.5.4.1.

4.5.4 Deriving FoPCeD

We now have enough formal machinery in place to derive the WD preserving
proof calculus FoPCeD . For each proof rule ‘r’ in FoPCe we derive its WD
preserving version ‘rD ’ that only contains sequents using ‘ D̀ ’ instead of ‘`’.
Here are the resulting proof rules for basicFoPCeD that are (apart from the

D̀ turnstile) identical to their counterparts in basicFoPCe:

46 CHAPTER 4. PARTIAL FUNCTIONS AND WELL-DEFINEDNESS

H, P D̀P
hyp

D

H D̀Q

H, P D̀Q
monD

H,¬P D̀⊥
H D̀P

contrD

H,⊥ D̀P
⊥hyp

D

H, P D̀⊥
H D̀¬P

¬goal
D

H D̀P

H,¬P D̀Q
¬hyp

D

H D̀P H D̀Q

H D̀P ∧Q
∧goal

D

H, P, Q D̀R

H, P ∧Q D̀R
∧hyp

D

H D̀P

H D̀∀x·P
∀goal

D
(x nfin H)

H D̀E = E
= goal

D

H D̀ [x := E]P

H, E = F D̀ [x := F]P
= hyp

D

The remaining rules, cut and ∀hyp, need to be reformulated by adding new
antecedents (that appear boxed below) to make them WD preserving:

H D̀D(P) H D̀P H, P D̀Q

H D̀Q
cutD

H D̀D(E) H, [x := E]P D̀Q

H,∀x·P D̀Q
∀hyp

D

These new antecedents are WD sub-goals that need to be discharged when
these rules are used in a proof.

The original rules (cut and ∀hyp) are not WD preserving since they in-
troduce new predicates and expressions that may be ill-defined into a proof.
Note that the converse is not true. A valid proof rule in FoPCe that does
not introduce any new formulæ into a proof can be non WD preserving. The
following derived proof rule illustrates this:

H ` P H, P ` Q

H ` P ∧Q

Although this rule is valid (it can be proved using ∧goal and cut) and does
not introduce any new formulæ, it does not preserve well-definedness. The
first antecedent would be ill-defined in the case where P (say ‘pred(x) = 0’)
is only well-defined in conjunction with Q (say ‘x 6= 0’).
The proofs of the rules of basicFoPCeD are discussed later in §4.5.4.1.

4.5. WELL-DEFINEDNESS AND PROOF 47

Derived Logical Operators Once we have derived the rules of basicFoPCeD
stated above, we may use them directly (i.e. without the detour through `
sequents) to derive the corresponding WD preserving proof rules for the de-
rived logical operators >, ∨, ⇒, ⇔ and ∃ that appear below:

H D̀>
>goal

D

H D̀P

H D̀P ∨Q
∨goal1D

H D̀Q

H D̀P ∨Q
∨goal2D

H, P D̀R H, Q D̀R

H, P ∨Q D̀R
∨hyp

D

H, P D̀Q

H D̀P ⇒Q
⇒goal

D

H D̀P H, Q D̀R

H, P ⇒Q D̀R
⇒hyp

D

H D̀P ⇒Q H D̀Q⇒ P

H D̀P ⇔Q
⇔goal

D

H, P ⇒Q, Q⇒ P D̀R

H, P ⇔Q D̀R
⇔hyp

D

H D̀D(E) H D̀ [x := E]P

H D̀∃x·P
∃goal

D

H, P D̀Q

H,∃x·P D̀Q
∃hyp

D
(x n̂finH ∪ {Q})

The only rule here that needs modification is the existential dual of ∀hyp
(i.e. ∃goal). The resulting proof rules constitute our complete WD preserving
proof calculus FoPCeD .

Conditional Definitions The payoff achieved by using FoPCeD instead
of FoPCe in proofs is that conditional definitions in FoPCe become ‘uncon-
ditional’ in FoPCeD . The ‘ D̀ ’ version of the fdef rule from §4.2 is:

D̀ y = f(~x) ⇔ Df
~x,y

fdef D

The above rule differs from fdef in that it does not explicitly require the WD

condition ‘Cf
~x ’ in order to be applied, simplifying proofs. The above rule can

be derived from fdef since D
(

y = f(~x) ⇔ Df
~x,y

)
⇒ Cf

~x .

4.5.4.1 Proofs of basicFoPCeD

The proofs of each rule in basicFoPCeD that appear in §4.5.4 follow essentially
from D̀eqv , the properties of D, and the rules in FoPCe. Since some of the
proofs are not straightforward we outline some of their major steps in this
section as an aid the reader who wants to reproduce them. This section may
otherwise be skipped.

48 CHAPTER 4. PARTIAL FUNCTIONS AND WELL-DEFINEDNESS

The proofs of hyp
D
, ⊥hyp

D
and = goal

D
are trivial since these rules

contain no antecedents. In general, any valid rule having no antecedents is
trivially WD preserving.

The proofs for monD , contrD , ¬goal
D
, ¬hyp

D
, and ∧hyp

D
are straightfor-

ward and similar in style to the proof of cutD shown below:

H D̀D(P) H D̀P H, P D̀Q

H D̀Q
cutD

H D̀D(P)

D̂(H),D(Q), H ` D(P)
(4.9); D̀eqv

H D̀P H, P D̀Q

D̂(H),D(Q), H,D(P) ` Q
cut (P); D̀eqv

D̂(H),D(Q), H ` Q
cut (D(P))

H D̀Q D̀eqv

The proofs of ∀hyp
D

and = goal
D

require the following additional prop-
erties about how D interacts with the substitution operator:

D([x := E]F) ⇒ [x := E]D(F) (4.17)

([x := E]D(F)) ∧ D(E) ⇒ D([x := E]F) (4.18)

Both these properties can be proved by induction on the structure of basic
formulæ.

The proofs of ∧goal
D

and ∀goal
D

are tricky and require rewriting defini-
tions (4.7) and (4.8) as follows:

D(P ∧Q) ⇔ (D(P) ∧ (P ⇒D(Q))) ∨ (D(Q) ∧ (Q⇒D(P)))(4.19)

D(∀x·P) ⇔ ∃x· (D(P) ∧ (P ⇒∀x·D(P))) (4.20)

Using these equivalences instead of (4.7) and (4.8) allows for more natural
case splits in these proofs. The proof of ∧goal

D
is similar to the proof of

∀goal
D

shown below:

H D̀P

H D̀∀x·P
∀goal

D
(x nfin H)

4.6. PROVING WDD AND VALIDITYD 49

H D̀P

D̂(H),D(P), H ` P
D̀eqv

H D̀P

D̂(H),∀x·D(P), H ` P
∀hyp; D̀eqv

D̂(H),∀x·D(P), H ` ∀x·P
∀goal (x nfin H)

D̂(H),D(P),∀x·D(P), H ` ∀x·P
mon(D(P))

D̂(H),D(P), P ⇒∀x·D(P), H ` ∀x·P
⇒hyp

D̂(H),∃x·(D(P) ∧ (P ⇒∀x·D(P))), H ` ∀x·P
∃hyp;∧hyp

H D̀∀x·P D̀eqv ; (4.20)

We now summarise the results of this section.

4.5.5 Summary

In this section we have shown how the notion of well-definedness can be
integrated into proofs by extending the definition of D to sequents (§4.5.1),
and characterising well-defined ‘`D ’ sequents (§4.5.2). We have derived the
proof rule D̀eqv (§4.5.2.2) that allows us to freely move between ordinary ‘`’
sequents and well-defined ‘ D̀ ’ sequents in proofs. We have formally derived
the proof calculus FoPCeD (§4.5) whose rules preserve well-definedness. The
rules of FoPCeD are identical to those in FoPCe except for three cases (cut ,
∀hyp and ∃goal) where additional WD sub-goals need to be proved.

We now return to the practical issue of proving the WD and Validity proof
obligations introduced in §4.3.

4.6 Proving WDD and ValidityD

In §4.5.2.1 we re-stated our original proof obligations from §4.3 in terms of
‘ D̀ ’ as follows:

WDD : D̀ D(H ` G) ValidityD : H D̀G

Proving WDD In our practical setting we factor out proving WDD for each
proof obligation individually by proving instead that the (source) models
used to generate these proof obligations are well-defined. Details on well-
definedness of models can be found in [25]. We are guaranteed that all proof
obligations generated from a well-defined model are themselves well-defined
and therefore do not need to generate or prove the well-definedness of each
proof obligation individually. This considerably reduces the number of proofs
that need to be done.

50 CHAPTER 4. PARTIAL FUNCTIONS AND WELL-DEFINEDNESS

Proving ValidityD From the ‘ D̀ ’ turnstile we immediately see that the ini-
tial sequent of ValidityD is well-defined. We have two choices for how to pro-
ceed with this proof. We may either use FoPCeD to preserve well-definedness,
or the standard FoPCe.

We prefer using the WD preserving calculus FoPCeD (with additional
WD sub-goals) instead of FoPCe for interactive proofs for three reasons.
Firstly, as seen in §4.3, the assumption that a sequent is well-defined can
be used to greatly ease its proof. Secondly, the extra WD sub-goals require
only minimal additional effort to prove in practice, and are in most cases
automatically discharged. Thirdly, proving WD sub-goals allows us to filter
out erroneous ill-defined formulæ entered by the user.

Alternatively, we may use the rule `Deqv (§4.5.2.2) to make the well-
definedness assumptions of a ‘ D̀ ’ sequent explicit and use the standard proof
rules in FoPCe to complete a proof. This may not be a prudent way to per-
form interactive proof, but it allows us to use existing automated theorem
provers for FoPCe (that do not have any notion of well-definedness) to au-
tomatically discharge pending sub-goals.

4.7 Related Work

A lot of work has been done in the area of reasoning in the presence of partial
functions. A good review of this work can be found in [51] and [10]. In this
section we first describe some approaches that are most relevant to the work
presented in this chapter and then compare our work to these approaches in
§4.7.1.

The current approaches to reason about the undefined can be classified
into two broad categories: those that explicitly reason about undefined values
using a three-valued logic [61], and those that avoid reasoning about the
undefined using underspecification. We start with the former.

A well known approach is the Logic of Partial Functions (LPF) [57, 19]
used by the VDM [56] community. Its semantics is based on three-valued
logic [61]. The resulting proof calculus for LPF can then be used to simul-
taneously prove the validity and well-definedness of a logical statement. A
drawback of using LPF (or any other special-purpose proof calculus) is that
it differs from the standard predicate calculus since it disallows use of the law
of excluded middle (to avoid proving ‘3/0 = x ∨ 3/0 6= x’) and additionally
requires a second ‘weak’ notion of equality (to avoid proving ‘3/0 = 3/0’).
Additional effort is therefore needed to learn or automate LPF, as for any
special-purpose proof calculus, as mentioned in §4.1.

4.7. RELATED WORK 51

In PVS [74], partial functions are modelled as total functions whose do-
main is a predicate subtype. For instance, the partial function ‘/’ is defined
as a total function whose second argument belongs to the subtype of non-
zero reals. Type-checking then avoids ill-definedness but requires proof.
The user needs to prove type correctness conditions (TCCs) before starting
or introducing new formulæ into a proof. A shortcoming of this approach is
that type-checking requires complicated typing rules [75] and special tool sup-
port. This approach additionally blurs the distinction between type-checking
(which is usually accepted to be automatically decidable) and proof.

In [25], Behm et al. use a three-valued semantics to develop a proof cal-
culus for B [3]. Its main difference from LPF is that the undefined value,
although part of the logical semantics, does not enter into proofs, as ex-
plained below. In this approach, all formulæ that appear in a proof need to
be proved to be well-defined. Proving well-definedness is similar to proving
TCCs in PVS. It has the role of filtering out expressions that may be ill-
defined. Once this is done, the proof may continue in a pseudo-two-valued
logic since the undefined value is proved never to occur. The drawback of this
approach is similar to that of LPF. Although the proof calculus presented for
this pseudo-two-valued logic “is close to the standard sequent calculus”[25],
this too is a special-purpose logic. No concrete connection with the standard
predicate calculus is evident since this approach, from the start, assumes a
three-valued semantics.

In [10], Abrial and Mussat formalise the notion of well-definedness with-
out any detour through a three-valued semantics, remaining entirely within
the “syntactic manipulation of proofs”[10] in standard predicate calculus.
The resulting well-definedness filter is identical to that in [25]. They formally
show how proving statements that passed this filter could be made simpler
(i.e. with fewer checks) on the basis of their well-definedness. What is miss-
ing in [10] however is a proof calculus (like the one in [25]) that preserves
well-definedness, which could additionally be used for interactive proof.

In [26], Berezin et al. also use the approach of filtering out ill-defined
statements before attempting to prove them in the automated theorem prover
CVC lite. The filter used is identical to the one used in [25] and [10]. Al-
though they too start from a three-valued logic, they show (using semantic
arguments) how the proof of a statement that has passed this filter may pro-
ceed in standard two-valued logic. Apart from introducing three-valued logic
only to reduce it later to two-valued logic, this approach is concerned with
purely automated theorem proving and therefore provides no proof calculus
that preserves well-definedness to use in interactive proofs. It is advanta-
geous to preserve well-definedness in interactive proofs (reasons for this are
given in §4.3).

52 CHAPTER 4. PARTIAL FUNCTIONS AND WELL-DEFINEDNESS

The idea of avoiding reasoning about undefined values using underspec-
ification [51] is used in many approaches that stick to using two-valued
logic in the presence of partial functions. This is the approach used in Is-
abelle/HOL [73], HOL [49], JML [31] and Spec# [18]. In this setting, an
expression such as ‘3/0’ is still a valid expression, but its value is unspecified.
Although underspecification allows proofs involving partial functions to be
done in two-valued logic, it has two shortcomings. First, (as described in §4.2)
it also allows statements that contain ill-defined terms such as ‘3/0 = 3/0’
to be proved valid. In the context of generating or verifying program code,
expressions such as ‘3/0’ originating from a proved development can lead to a
run-time error as described in [31]. Second, doing proofs in this setting may
require repeatedly proving that a possibly undefined expression (e.g. ‘3/x’) is
actually well defined (i.e. that ‘x 6= 0’) in multiple proof steps.

4.7.1 Comparison

In this section we compare the approach presented in this chapter (§4.4,
§4.5) with the related work just presented. The work presented here extends
the approach of [10] by showing how the notion of well-definedness can be
integrated into a proof calculus that is suitable for interactive proof.

The role of proving TCCs in PVS is identical to that of proving well-
definedness in our approach (i.e. proving the WD proof obligation and the
additional WD sub-goals in cutD , ∀hyp

D
, and ∃goal

D
). With regards to

its logical foundations, we find the possibility of directly defining truly par-
tial functions in our setting more convenient and intuitive as opposed to
expressing them as total functions over a restricted subtype. The logical
machinery we use is much simpler too since we do not need to introduce
predicate subtypes and dependent types for this purpose. Since we use stan-
dard (decidable) type-checking we have a clear conceptual separation between
type-checking and proof. Although our approach does not eliminate the un-
decidability of checking well-definedness, it saves type checking from being
undecidable.

With respect to B [25] and LPF [19], the approach used here does not
start from a three-valued semantics but instead reduces all reasoning about
well-definedness to standard predicate calculus. We develop the notion of
well-definedness purely on the basis of the syntactic operator ‘D’ and proofs
in standard predicate calculus. In §4.5 we derive a proof calculus preserving
well-definedness that is identical to the one presented in [25]. Alternatively,
we could have chosen to derive the proof calculus used in LPF in a similar
fashion. If our definition of well-defined sequents is modified from the one
appearing in §4.5.2 to

4.7. RELATED WORK 53

H
L̀PF

G =̂ D̂(H), H ` G ∧ D(G) (4.21)

the rules that follow for a proof calculus that preserves ‘
L̀PF

’ correspond to
those in LPF [19]. The only difference between ‘`

LPF
’ and ‘`D ’ is that the

latter also assumes the well-definedness of the goal, whereas this has to be
additionally proved for ‘`

LPF
’. We therefore have a clear basis to compare

these two approaches. In LPF, well-definedness and validity of the goal are
proved simultaneously, whereas in [25] (and also as presented in §4.3), these
two proofs are performed separately, where proving WD acts as a filter. Since
what is proved is essentially the same, the choice of which approach to use is
a methodological preference. We use the latter approach although it requires
proving two proof obligations because of four reasons. First, the majority of
the WD sub-goals that we encounter in practice (from models and interactive
proof steps) are discharged automatically. Second, failure to discharge a proof
obligation due to ill-definedness can be detected earlier and more precisely,
before effort is spent on proving validity. Third, the structure of ‘ D̀ ’ sequents
allows us to more directly use the results in [10] and [26] to automate proofs.
Fourth, we find FoPCeD more intuitive to use in interactive proofs since its
rules are ‘closer’ to the standard sequent calculus (only three rules need to
be modified with an extra WD sub-goal).

An additional contribution over [25] (and [19]) is that we may, at any time,
choose to reduce all our reasoning to standard predicate calculus (using the

D̀eqv rule derived in §4.5.2.2). This is a choice that could not be taken in
[25].

We now compare our work to related approaches that use underspeci-
fication [51]. As described in §4.2, underspecification is the starting point
from which we develop our approach. The work presented in this chap-
ter can be used to overcome two of the shortcomings the underspecifica-
tion approach mentioned earlier. First, (as discussed in §4.3) proving the
well-definedness of proof obligations (or of the source model) gives us an ad-
ditional guarantee that partial (underspecified) functions are not evaluated
outside their domain in specifications or program code. This has been re-
cently done along similar lines for Spec# [18] in [83]. Second, (as discussed
in §4.3 and §4.5.3) preserving well-definedness in proofs allows us to avoid
having to prove well-definedness repeatedly, every time we are confronted
with a possibly ill-defined expression during proof.

54 CHAPTER 4. PARTIAL FUNCTIONS AND WELL-DEFINEDNESS

4.8 Conclusion

In this chapter we have shown how standard predicate calculus can be used
to reason in a setting with potentially ill-defined expressions by extending it
with new syntax and derived rules for this purpose.

The results presented in §4.5 provide a deeper understanding of reasoning
in the context of well-definedness, and its connection with the standard pred-
icate calculus. This work has also resulted in providing better tool support
for proving within the RODIN development environment [1] for Event-B.

Chapter 5

Prover Architecture and
Extensibility

In this chapter we present the basic architecture of the proof tool and the ways
in which its proving capabilities can be extended. For clarity we restrict this
basic architecture to the propositional subset of our mathematical language.
We show how proofs can be constructed in the proof tool, and how these
constructed proofs correspond to our mathematical notion of proof discussed
in chapter 3. The implementation of the proof tool is sketched using an
object-oriented pseudo-code notation. This chapter provides a concrete basis
for the discussions in chapters 6, 7, and 8.

5.1 Introduction

The proof tool is a computer program that implements the mathematical
logic described in chapter 3, the latter being its formal specification. The
main aim of the proof tool is to allow us to discharge proof obligations, which
are sequents as described in §3.3.2. A proof obligation can be discharged by
constructing a proof for it as described in §3.2.4. A proof constructed in the
tool is a reflection of its mathematical sequent-style proof.

Before starting, it is appropriate to mention that the proof tool proposed
in this chapter, and the rest of this thesis is not a meta-prover able to be
parametrized by a variety of distinct logics such as Isabelle [78]. It is neither
a Logical Framework such as ELF [53] or Twelf [86] designed to be used for
studying the properties of a given logical system. The prover described here
is meant to be a practical tool aimed at discharging proof obligations using
a specific mathematical logic, in our case the one described in chapter 3.

The key points of the proof tool that will be covered in this chapter are:

55

56 CHAPTER 5. PROVER ARCHITECTURE AND EXTENSIBILITY

� The main data-structures and algorithms used.

� The extension mechanisms used.

� How proofs are constructed.

� The correspondence between proofs constructed using the tool and
proofs in the mathematical logic described in chapter 3.

Special importance is given to extensibility of the proof tool. In partic-
ular, a central point in its design was to allow external automated theorem
provers to be easily integrated within the proof tool. As described in [38], [68]
and [67] reusing the reasoning capabilities of off-the-shelf automated theorem
provers has been observed to be very advantageous for program varification
tasks.

The next section gives an informal overview of the proof tool architecture,
with emphasis on how the proof tool can be extended.

5.2 Prover Extensibility

A central requirement of our proof tool is that its reasoning capabilities
should be extensible. By this we mean that it should be possible to add
commonly used derived proof rules or automated decision procedures into
the repertoire of the proof tool and use them when constructing proofs.

In order to allow for this type of extensibility, we choose a modular archi-
tecture where we separate the extensible parts of the proof tool, responsible
for generating individual proof rules, from the static part responsible for
putting proof rules together to construct and manage proofs. The ‘trusted
code-base’ of the proof tool comprises of:

a. A collection of Reasoners that are responsible for generating valid proof
rules.

b. The Proof Manager which is responsible for putting these generated
rules together to construct a valid proof.

The basic reasoning capabilities of the proof tool can be extended by
adding new reasoners to it. A reasoner may for instance implement a decision
procedure for automated proof, or a derived rule schema for interactive proof.
The main point to note here is that (in contrast to most currently used proof
tools as discussed in §5.11) the internal workings of an individual reasoner
are not visible to the rest of the proof tool. It is only required that a reasoner

5.3. THE BASIC PROVER ARCHITECTURE 57

satisfies a minimal set of requirements (stated in §5.8.1) in order to guarantee
soundness of the proof tool. It is therefore possible to integrate external
theorem provers into the proof tool with very little effort. Reasoners are
described in detail in §5.8.

The proof tool also provides tactics that encapsulate frequently used proof
construction and manipulation steps. Tactics provide a convenient way to
structure high-level strategic or heuristic knowledge about proof search and
manipulation. They provide control structures to call reasoners or other
tactics to modify entire proofs. Tactics are described in detail in §5.10.

The second way to extend the proof tool is to add new tactics to it. In
contrast to reasoner extensions, tactic extensions are easier to write and do
not compromise the soundness of the proof tool.

5.3 The Basic Prover Architecture

In the rest of this chapter we present the architecture of the proof tool in
greater detail and sketch its implementation. In order to bring out the main
points clearly, we do not present the actual implementation of the proof
tool, but instead present its basic architecture which differs from its actual
implementation on two points as described in the paragraphs that follow.

First, we restrict ourselves to the propositional subset of our mathemat-
ical language (which is summarised in §3.3.8) in order to bring out the key
ideas behind the proof tool in a simpler setting. The implemented proof tool
supports the complete mathematical language, including well-definedness as
described in chapter 4 and can be found online at [2]. The major addi-
tion required in order to support the complete mathematical language is the
treatment of free and bound variables. This is both well understood and
straightforward to incorporate by adding additional non-freeness checks and
dependencies to the pseudo-code shown here, but has been omitted in our
presentation to increase its clarity.

Second, we use an object-oriented pseudo-code notation (that we are about
to introduce in §5.4) for presentation. The main aim of using this notation
is to communicate the design and implementation of the proof tool in a way
that is clear and simple, in the spirit of how many textbooks on algorithm
design present their implementations.

We avoid showing the actual Java [50] implementation to avoid cluttering
our presentation with language specific artifacts that have no relevance here.

Although it would have been possible to use an established formal mod-
eling notation (such as the Event-B notation supported by the RODIN tool)

58 CHAPTER 5. PROVER ARCHITECTURE AND EXTENSIBILITY

this has not been done since:

� We would like to base our discussions on the actual implementation of
the proof tool, and not on a model of its actual implementation.

� A formal specification of the proof tool (i.e. what it means for a proof
to be valid) is already covered in chapter 3.

� Using such a formal model would require us to additionally argue about
how faithful the actual implementation is to the model.

� Some amount of clarity would be sacrificed in translating the inherently
object oriented concepts used here to those of the modeling notation.

That having been said, we incorporate some ideas (such as invariants,
pre-conditions and post-conditions) from formal modeling notations such as
JML [63] and Event-B in order to express properties of the pseudo-code we
present. The main disadvantage of using pseudo-code in this respect is that
we cannot mechanically prove that these properties hold.

The complete Java implementation of the proof tool that supports the en-
tire mathematical language, including well-definedness as described in chap-
ter 4, can be found online at [2].

5.4 Programing Notation

This section describes the programing notation used to present data-structures
and algorithms in the rest of this thesis. The proof tool is implemented in the
object-oriented programing language Java [50]. In order to avoid going into
implementation details, while still remaining faithful to the implementation
we use an object-oriented pseudo-code notation for presentation purposes.
What follows is a short description of the main points of this notation.

A class is the basis of modularity and structure in an object-oriented
setting. A class defines a unit consisting of a data specification and its
behaviour. Its data specification is defined by its attributes, and its behaviour
is defined by its methods. Here is an example of a class definition for Point

with two integer attributes:

1 class Point{
2 int x;
3 int y;
4 }

5.4. PROGRAMING NOTATION 59

An object is an instance of a class. We use the following notation to
declare and construct objects of a particular class:

1 Point origin := PointL x := 0, y:=0 M;

The object origin is said to have the type Point. We define the method
divide for the class Point as follows:

1 boolean Point::divide(int i){
2 if (i = 0){
3 return false;
4 }
5 else{
6 this.x := this.x ÷ i;
7 this.y := this.y ÷ i;
8 return true;
9 }

10 }

Line 1 contains the signature of the method. It says that this method returns
a boolean and accepts the integer parameter ‘i’ as input. The ‘Point::’ before
the method name indicates that this method belongs to the Point class. The
above method can be invoked on the object origin of type Point with the
input parameter ‘0’ using the method call notation ‘origin.divide(0)’. The
body of the method (lines 2 to 9) is an imperative program. It first checks if
i equals 0 (line 2) and returns false if this is the case (line 3). Otherwise it
modifies the attributes of the invoking object by dividing them by i (lines 6
and 7) and returns true (line 8). The keyword ‘this’ in the method body is
used to access and modify the attributes of the invoking object.

We declare an attribute of a class as being immutable if this attribute is
not allowed to be modified after its construction. Declaring a class to be
immutable makes all its attributes immutable.

The types int and boolean are used for integer and boolean values re-
spectively. We assume that we have the type constructors ‘[]’ for lists, and
‘{}’ for sets of objects of a particular type. We use the syntax ‘Point[]’ and
‘Point{}’ to denote the type of lists and sets of Point objects respectively.
Lists and sets of objects are declared and constructed using the following
notation:

1 Point[] pointList := [point1, point2, point3];
2 Point{} pointSet := {point1, point2, point3};

We use the square bracket notation ‘pointList[i]’ to access the ith ele-
ment of pointList. List indices start at 0. We use ‘pointList.length’ to ac-
cess the length of pointList. We also use the notation ‘pointList[i]:=point’

60 CHAPTER 5. PROVER ARCHITECTURE AND EXTENSIBILITY

to modify the ith element of pointList, or to append an element to pointList

in case its current length is i. We use the expression ‘[]’ to denote the empty
list, and the operator ‘a’ to denote list concatenation.

We use ‘∅’ to denote the empty set, and use the standard mathematical
notation (∈, /∈, ⊆, 6⊆, ∪) for operations on sets.

We use the equality symbol ‘=’ in the mathematical sense (i.e. deep equal-
ity, and not just referential equality) to compare two objects of the same type.

As common programing practice, we sometimes use the null value to model
the ends of data-structures and the return values of failed method invoca-
tions. The super-scripted type annotation ‘?’ after a type indicates that
an object of that type may be equal to null. For instance the declaration
‘Point? point’ indicates that point may be equal to null and that this needs
to be checked before trying to access its attributes.

An interface is an abstract class containing only method signatures. Here
is an example of an interface declaration:

1 interface Dividable{
2 boolean divide(int i);
3 }

We say that the class Point implements the interface Dividable since
it provides the divide method with the same signature as in the interface.
Interfaces are used to support extensibility of the proof tool.

We now use this pseudo-code notation to describe the main data struc-
tures and algorithms used in the proof tool.

5.5 Predicates

We assume we have a class Predicate that implements the abstract syn-
tax tree for predicates and provides methods to query and construct such
predicates. The objects of type Predicate are immutable.

1 immutable class Predicate{
2 . . .
3 }

5.6 Sequents

A sequent is implemented as a class containing two attributes:

1 immutable class Sequent{

5.7. PROOF RULES 61

2 Predicate goal;
3 Predicate{} hyps;
4 }

The goal attribute refers to the single goal predicate, and hyps, to the
set of hypotheses predicates. The values of both these attributes cannot be
null. Additionally, the objects of type Sequent are immutable.

5.7 Proof Rules

Proof rules are implemented as objects of the following Rule class:

1 immutable class Rule{
2 Predicate usedGoal;
3 Predicate{} usedHyps;
4 RuleAntecedent[] ruleAntecedents;
5

6 Reasoner generatedBy;
7 ReasonerInput generatedUsing;
8 }
9

10 immutable class RuleAntecedent{
11 Predicate newGoal;
12 Predicate{} addedHyps;
13 }

An object of type Rule is composed of a used goal predicate (usedGoal),
a set of used hypotheses predicates (usedHyps), and a list of rule antecedents
(ruleAntecedents of type RuleAntecedent[]). Each rule antecedent composed
of a new goal predicate (newGoal), and a set of added hypotheses predi-
cates (addedHyps). Both classes are immutable and contain only non-null
attributes. The attributes generatedBy and generatedUsing in Rule are used
to record the Reasoner and ReasonerInput used to generate the rule and will
be described later in §5.8.

Note that the representation we have chosen here for rule objects is not the
same as the definition of a proof rule in the mathematical theory from §3.2.2
which states that a proof rule is composed of a consequent sequent and a
list of antecedent sequents. The representation we have chosen here contains
more structure and actually represents a set of ‘mathematical’ proof rules
(or a proof rule schema, as we will see shortly). Using this representation
not only reduces the space required to store rule objects, but also has many
advantages for proof reuse as we will see in the chapter 6.

62 CHAPTER 5. PROVER ARCHITECTURE AND EXTENSIBILITY

With respect to the mathematical theory, an object of type Rule with n
rule antecedents implements the proof rule schema shown in figure 5.1 with
n antecedents.

H, Hu, HA0 ` GA0 . . . H, Hu, HAn−1 ` GAn−1

H, Hu ` Gu

Where :
Hu = usedHyps HAi

= ruleAntededents[i].addedHyps
Gu = usedGoal GAi

= ruleAntededents[i].newGoal

Figure 5.1: The rule schema implemented by a rule object

In this rule schema, Hu is the set of used hypotheses and Gu the used goal of
the rule object. In each of its antecedents, HAi

is the set of added hypotheses
and GAi

the new goal of the ith rule antecedent.
Note that the only meta-variable in this rule schema that can be instanti-

ated is H. Instantiating H with a set of predicates results in a concrete proof
rule as defined in §3.2.2. In the tool, this instantiation is done implicitly
by the Rule::apply() method below that applies a rule object to a potential
consequent sequent and returns a list of antecedent sequents if successful:

1 Sequent[]? Rule::apply(Sequent consequent){
2 if (consequent.goal 6= this.usedGoal) return null;
3 if (consequent.hyps 6⊆ this.usedHyps) return null;
4 Sequent[] antecedents := [];
5 for (int i := 0, i < this.ruleAntecedents.length, i++){
6 antecedents[i] := SequentL
7 goal := this.ruleAntecedents[i].goal,
8 hyps := sequent.hyps ∪ this.ruleAntecedents[i].addedHyps
9 M;

10 }
11 return antecedents;
12 }

The above method returns null if the rule is inapplicable to the given se-
quent. A rule is inapplicable to the given sequent if its goal is not identical
to the used goal of the rule object (line 2), or the used hypotheses of the
rule object are not contained in its hypotheses (line 3). In case the given
sequent passes both these checks, it is an applicable consequent of the rule,
and its antecedent sequents are calculated and returned (lines 4 - 11). The
goal of each antecedent sequent is the new goal of the corresponding rule

5.8. REASONERS 63

antecedent (line 7). The set of hypotheses of each antecedent sequent is the
union of hypotheses of the given consequent and the added hypotheses of the
corresponding rule antecedent (line 8).

The only proof rules (in the mathematical sense) that cannot be imple-
mented using such rule objects are those that remove hypotheses from the
consequent sequent (i.e. those proof rules that have a hypothesis in the con-
clusion that is not present an antecedent). Proof rules arising from the mon
rule schema from §3.4.4 are examples of this. We may overlook this issue
since the presence of extra hypotheses does not hinder us during proof. We
have instead built the assumption that our logic is monotonic into the proof
tool in the way Rule::apply() is implemented, and also in the way proofs are
reused in chapter 6.

5.8 Reasoners

A reasoner is a computer program that generates Rule objects. As seen
earlier in §5.2, the set of reasoners present in the proof tool is not fixed.
Adding new reasoners is a way of extending the proving capabilities of the
proof tool.

The implementation of a reasoner is hidden from the rest of the proof tool,
which allows external theorem provers to be easily integrated into our frame-
work. Programatically, reasoners are classes that implement the following
Reasoner interface:

1 interface Reasoner{
2 Rule? apply(Sequent sequent, ReasonerInput? input);
3 }
4

5 interface ReasonerInput{
6 }

Each reasoner provides an apply() method that returns a Rule object in case
of success, or null in case of failure. The input parameters to this method
are a sequent to prove, and an optional, reasoner-specific input. Reasoners
that require specialised input need to implement the empty ReasonerInput

interface. Both these input parameters are mere suggestions that the reasoner
may use to generate a rule. The generated rule, on the other hand, is trusted
by the proof tool and therefore must conform to certain requirements that
are treated in the next sub-section.

64 CHAPTER 5. PROVER ARCHITECTURE AND EXTENSIBILITY

5.8.1 Reasoner Requirements

All rule objects generated by a reasoner need to be:

a.Logically Valid By generating a rule object, a reasoner guarantees that
the proof rule schema corresponding to this rule object (shown in figure
5.1) is valid (i.e. can be derived) in the mathematical logic. For the
moment we assume that all reasoners present in our proof tool generate
logically valid rules. In chapter 8 we will see how a rule can be checked
for logical validity independent of the reasoner that generated it.

b.Replayable It is also required that reasoners work deterministically, i.e.
given similar inputs (a sequent with the used hypotheses and used goal,
and the identical reasoner input), they generate identical rule objects.
The following pseudo-code checks generated rules for this property:

1 boolean Rule::isReplayable(){
2 Rule? regeneratedRule := this.generatedBy.apply(
3 SequentL goal := this.usedGoal, hyps := this.usedHyps M,
4 this.generatedUsing
5);
6 if (regeneratedRule 6= null ∧ this = regeneratedRule) {
7 return true;
8 } else {
9 return false;

10 };
11 }

The above method must return true for all proof rules that satisfy the
‘replayable’ property. This method can be seen as a class invariant for
rule objects, or a post-condition for the Rule::apply() method in case
it generates a rule object.

5.8.2 Examples of Reasoners

We now present some examples of reasoners and show how they can be
implemented within this framework.

Goal in Hypotheses

The following reasoner implements the hyp proof rule schema from §3.3.5
that appears just below:

5.8. REASONERS 65

H, P ` P
hyp

1 class Hyp implements Reasoner{
2

3 Rule? apply(Sequent sequent, ReasonerInput? input){
4 if (sequent.goal ∈ sequent.hyps) {
5 return RuleL
6 usedGoal := sequent.goal,
7 usedHyps := {sequent.goal},
8 antecedents := [],
9 generatedBy := this,

10 generatedUsing := input
11 M;
12 } else {
13 return null;
14 }
15 }
16 }

The above reasoner uses the sequent parameter as its only input. It
checks the input sequent to see if its goal is present in its hypotheses (line
4). In case this is true, an appropriate rule object with no rule antecedents is
returned (lines 5-11). Otherwise the reasoner fails and returns null (line 13).

The proof rule schema corresponding to each rule object generated by the
above reasoner is of the form:

H, G ` G
Hyp()

where G is a concrete predicate (i.e. it instantiates the meta-variable P in the
hyp rule schema) that is identical to the goal of the input sequent provided
to the Hyp::apply() method. We use such rule schemas to represent generated
rule objects more concisely on paper. We follow the convention of labeling
such rule schemas using the name of the reasoner that generated it, followed
by its additional input in sub-scripted brackets. The label Hyp() in the above
rule schema indicates that it was generated by the Hyp reasoner using an
input sequent of the form ‘H, G ` G’, without any additional input.

Split Conjunctive Goal

We may similarly have the following reasoner that implements the ∧goal
proof rule schema from §3.3.5:

66 CHAPTER 5. PROVER ARCHITECTURE AND EXTENSIBILITY

H ` P H ` Q

H ` P ∧Q
∧goal

1 class ConjGoal implements Reasoner{
2

3 Rule? apply(Sequent sequent, ReasonerInput? input){
4 if (sequent.goal.isConj()) {
5 return RuleL
6 usedGoal := sequent.goal,
7 usedHyps := ∅,
8 antecedents := [
9 AntecedentL newGoal:= sequent.goal.conjLeft(), addedHyps:= ∅ M,

10 AntecedentL newGoal:= sequent.goal.conjRight(), addedHyps:= ∅ M
11]
12 M;
13 } else {
14 return null;
15 }
16 }
17 }

We assume we are given the method Predicate::isConj() to check if a predi-
cate is a conjunction, and the methods Predicate::conjLeft() and Predicate::conjRight()
that return the left and right conjuncts of a conjunctive predicate respec-
tively.

The proof rule schema corresponding to each rule object generated by the
above reasoner is of the form:

H ` G1 H ` G2

H ` G1 ∧G2

ConjGoal()

The Cut Rule

A reasoner for the cut rule schema can similarly be implemented as follows:

H ` P H, P ` Q

H ` Q
cut

1 class Cut implements Reasoner{
2

3 Rule? apply(Sequent sequent, ReasonerInput? input){
4 if (input = null ∨ ¬(input instanceof SinglePredInput)) return null;
5 Predicate lemma = ((SinglePredInput)input).pred;

5.8. REASONERS 67

6 return RuleL
7 usedGoal := sequent.goal,
8 usedHyps := ∅,
9 antecedents := [

10 AntecedentL newGoal := lemma, addedHyps := ∅ M,
11 AntecedentL newGoal := sequent.goal, addedHyps := {lemma} M
12]
13 M;
14 }
15 }
16

17 class SinglePredInput implements ReasonerInput{
18 Predicate pred;
19 }

The main difference between this reasoner and the ones we have seen before
is that it expects specialised input of the type SinglePredInput that contains
the predicate to perform the cut on. This additional input is needed since
it cannot be inferred from the input sequent alone. The given input is first
checked to be of the correct type in line 4.

The proof rule schema corresponding to each rule object generated by the
above reasoner is of the form:

H ` L H, L ` G

H ` G
Cut(L)

The sub-scripted predicate ‘L’ in parenthesis after the reasoner name in-
dicates that this predicate was an additional input that was used by the
reasoner to generate this rule.

The next sub-section demonstrates how external theorem provers can be
integrated as reasoners into the proof tool.

5.8.3 Integrating External Theorem Provers

The examples of reasoners we have seen in §5.8.2 implemented simple rule
schemas in the native implementation language of the prover (in our case,
the pseudo-code notation). As mentioned several times earlier, since the only
requirements placed on reasoners are those stated in §5.8.1, it is also possible
to integrate external off-the-shelf theorem provers as reasoners of the proof
tool. The following pseudo-code shows how this can be done:

1 class ExtProver implements Reasoner{
2

3 Rule? apply(Sequent sequent, ReasonerInput? input){

68 CHAPTER 5. PROVER ARCHITECTURE AND EXTENSIBILITY

4 boolean success := proveExternally(sequent);
5 if (success) {
6 return RuleL
7 usedGoal := sequent.goal,
8 usedHyps := sequent.hyps,
9 antecedents := [],

10 generatedBy := this,
11 generatedUsing := input
12 M;
13 } else {
14 return null;
15 }
16 }
17 }

The ‘proveExternally(sequent)’ method call in line 4 calls a designated
external theorem prover to discharge the given sequent, after translating it
into a form suitable for the external prover, and returns true iff the external
prover was successful in discharging the given sequent. In the case of success,
an appropriate rule object with no rule antecedents is returned (lines 6-12).
Otherwise the reasoner fails and returns null (line 14).

Although the above reasoner expects no input, in practice reasoners that
call external theorem provers are typically given a time-out and other prover
specific inputs. In case an external prover is smart enough to return the set
of hypotheses it used to perform a proof, this information can be propagated
to the resulting rule object (by modifying line 5) and can be used by the
proof tool to calculate proof dependencies more accurately for better proof
reuse (this will be discussed later in chapter 6).

Using this approach we1 were able to successfully integrate previously
developed external theorem provers from the Atelier-B [33] tool into the
RODIN platform. The bulk of reasoning done using RODIN is done using
these automated provers. We have also successfully integrated other auto-
mated theorem provers based on the TPTP [88] syntax using this approach.

In the next section we show how proof trees, the counterparts of mathe-
matical proofs, are implemented in the proof tool.

5.9 Proof Trees

A proof tree is implemented as the following recursive data-structure:

1This was joint work with Laurent Voisin and François Terrier

5.9. PROOF TREES 69

1 class ProofTreeNode{
2 immutable Sequent sequent;
3 Rule? rule;
4 ProofTreeNode[]? childNodes;
5 }

An object of type ProofTreeNode represents both, a single proof tree node,
and the proof tree (or sub-tree) rooted at that node. The structure of a
proof tree is very similar to that of a mathematical proof defined in §3.2.4.
Each proof tree node contains an immutable, non-null sequent attribute that
corresponds to the sequent at that node. The rule attribute, if non-null,
contains the rule corresponding to this proof tree node. A node is pending
if its rule attribute is null. Otherwise it is non-pending. The childNodes

attribute of a non-pending proof tree node contains its child proof tree nodes.
The childNodes of a pending proof tree node should be null.

Note that objects of the type ProofTreeNode are mutable since their rule
and childNodes attributes may be modified. In order to ensure that such
proof tree nodes correspond to proofs in our mathematical logic we need to
enforce certain constraints on how proof trees are constructed and modified.

5.9.1 Constraints on Proof Trees

Since we want objects of type ProofTreeNode to reflect proofs that can be con-
structed in our mathematical logic as defined in §3.2.4, we need to constrain
the range of objects of this type to valid proof tree nodes. The following
pseudo-code illustrates what it means for a proof tree node to be valid:

1 boolean ProofTreeNode::isValid(){
2 if (this.rule = null ∧ this.childNodes = null) return true;
3 if (this.rule = null ∨ this.childNodes = null) return false;
4 Sequent[]? antecedents := rule.apply(this.sequent);
5 if (antecedents = null) return false;
6 if (antecedents.length 6= this.childNodes.length) return false;
7 for (int i := 0, i < antecedents.length, i++){
8 if (antecedents[i] 6= this.childNodes[i].sequent) return false;
9 if (¬ this.childNodes[i].isValid()) return false;

10 }
11 return true;
12 }

For a pending proof tree node to be valid, its childNodes must be null (line
2). For a non-pending proof tree node to be valid, its childNodes must be

70 CHAPTER 5. PROVER ARCHITECTURE AND EXTENSIBILITY

non-null (line 3), its rule must be applicable to its sequent (lines 4 and
5) , and each of its childNodes must correspond to the result of this rule
application (lines 6 and 8) and itself be valid (line 9).

The ProofTreeNode::isValid() method can be seen as a class invariant
that needs to hold for all objects of its type. In order to constrain all proof
tree nodes to be valid we require that they are constructed and modified in
a controlled way by only using operations that establish and preserve this
notion of validity. These operations are described in the next sub-section.

5.9.2 Operations on Proof Trees

In order to ensure that all proof trees constructed by the proof tool are valid
(as defined above in §5.9.1) we enforce that they can only be constructed and
modified using the following methods:

Construction In order to start constructing a proof tree we first construct
its root as a pending proof tree node using the following method:

1 ProofTreeNode makePendingNode(Sequent seq){
2 return ProofTreeNodeL
3 sequent := seq,
4 rule := null,
5 childNodes := null
6 M;
7 }

The proof tree nodes returned by this method are trivially valid since
they are pending and have no rule object or child nodes associated to
them.

Rule Application A proof tree grows when rules are applied to its pending
nodes. The following method applies a given rule to the invoking proof
tree node:

1 boolean ProofTreeNode::apply(Rule rule){
2 if (this.rule = null) return false;
3 Sequent[]? antecedents := rule.apply(this.sequent);
4 if (antecedents = null) return false;
5 ProofTreeNode[] newChildNodes;
6 for (int i := 0, i < antecedents.length, i++){
7 newChildNodes[i] := makePendingNode(antecedents[i]);
8 }
9 this.rule := rule;

5.9. PROOF TREES 71

10 this.childNodes := newChildNodes;
11 return true;
12 }

The apply() method returns true iff it was successful. We first check
that the current proof tree node is pending (line 2). The given rule is
then applied to the sequent of the node to get the list antecedents of
antecedent sequents (line 3). In case this rule application is successful
(checked in line 4), the node gets a new rule and pending child nodes
(lines 5-11). The sequents of the new pending child nodes are identical
to the generated antecedents (line 7). The resulting proof tree node is
therefore valid.

Pruning In order to backtrack from a failed proof, a proof tree node may
be pruned, making it pending again:

1 ProofTreeNode::prune(){
2 this.rule := null;
3 this.childNodes := null;
4 }

The resulting proof tree node is trivially valid since it is pending and
has no rule object or child nodes associated to it.

The status of a proof tree node can be queried using the following methods:

Pending Proof Tree Nodes The pending nodes of a proof tree may be
computed recursively as follows:

1 ProofTreeNode[] ProofTreeNode::getPendingChildNodes(){
2 if (this.rule = null) return [this];
3 ProofTreeNode[] result := [];
4 for (int i=0, i < this.childNodes.length, i++){
5 result := result a this.childNodes[i].getPendingChildNodes();
6 }
7 return result;
8 }

The ‘a’ operator on line 5 denotes list concatenation. The above
method returns a list of all pending proof tree nodes of the proof tree
rooted at the invoking proof tree node.

Complete Proof Trees A proof tree is complete if it contains no pending
child nodes. This can be computed using the following method:

72 CHAPTER 5. PROVER ARCHITECTURE AND EXTENSIBILITY

1 boolean ProofTreeNode::isComplete(){
2 return (this.getPendingChildNodes().length = 0);
3 }

In the next sub-section we show how a proof tree can be constructed and
queried using the operations discussed in this section.

5.9.3 Example Proof Tree Construction

In this section we show how a complete proof tree for the sequent ‘A, B, C `
A ∧ B’ can be constructed using the reasoners presented in §5.8.2 and the
operations on proof trees described in §5.9.2. We proceed in a step-wise
manner:

Step 1 We first construct a new pending proof tree node with the sequent
‘A, B, C ` A ∧ B’ using the makePendingNode() method. We illustrate
this pending proof tree node as follows:

A,B, C ! A ∧B

?

The boxed question mark above the sequent indicates that this node
does not have a rule object associated to it, and is therefore pending.

Step 2 Next, we apply the ConjGoal reasoner to the pending sequent ‘A, B, C `
A ∧B’ to construct the following rule object:

H ` A H ` B
H ` A ∧B

ConjGoal()

The above rule object is then applied to the pending proof tree node
from step 1 using the ProofTreeNode::apply() method. Here is he re-
sulting proof tree:

5.9. PROOF TREES 73

A,B, C ! A ∧B

H ! A H ! B
H ! A ∧B

ConjGoal()

A,B, C ! A A,B, C ! B

??

The original node is no longer pending and now has two pending child
nodes that appear above it. The two pending child nodes can be ac-
cessed via the ProofTreeNode::getPendingChildNodes() method.

Step 3 Next, we apply the Hyp reasoner to the first pending sequent ‘A, B, C `
A’ to construct the following rule object:

H, A ` A
Hyp()

The above rule object is then applied to the first pending node resulting
in the following proof tree with only one pending node:

A,B, C ! A ∧B

H ! A H ! B
H ! A ∧B

ConjGoal()

A,B, C ! A

H, A ! A
Hyp()

A,B, C ! B

?

Step 4 The remaining pending proof tree node is similarly discharged as
in step 3, resulting in the following complete proof tree for ‘A, B, C `
A ∧B’.

74 CHAPTER 5. PROVER ARCHITECTURE AND EXTENSIBILITY

A,B, C ! A ∧B

H ! A H ! B
H ! A ∧B

ConjGoal()

A,B, C ! A

H, B ! B
Hyp()

H, A ! A
Hyp()

A,B, C ! B

As seen in this example, directly using reasoners and the basic proof tree
operations to construct proof trees is a tedious process. In the next section
we introduce the notion of tactics that make this job easier.

5.10 Tactics

The proof tool provides tactics to make the task of constructing and manip-
ulating proofs easier. Tactics provide a convenient way to structure strategic
or heuristic knowledge about proof search and manipulation. They provide
control structures to call reasoners or other tactics to modify entire proofs.

Typically, all user level interactions for proof construction are expressed
via tactics since they provide a concise and high level language to express
proof construction steps. Internally, all tactic applications are translated, via
reasoner calls, into rule applications.

Tactics are classes that implement the following Tactic interface:

1 interface Tactic{
2 boolean apply(ProofTreeNode node);
3 }

Each tactic provides an apply() method. The input parameter to this method
is a proof tree node corresponding to the point of application of the tactic.
The purpose of the apply() method is to modify the given proof tree in some
controlled way. The method returns true if this modification was successful.
This information on whether a tactic was successful or not is used when
combining tactics.

As seen earlier in §5.2, it is possible to add new tactics to the proof tool
to automate frequently used proof construction steps. In contrast to reasoner

5.10. TACTICS 75

extensions, tactic extensions are easier to write and do not compromise the
soundness of the proof tool.

5.10.1 Examples of Tactics

In this section we present some examples of commonly used tactics. We first
start with some basic tactics and then show how tactics can be combined to
construct new tactics that encode more complex proof strategies.

5.10.1.1 Basic Tactics

We call a tactic basic if its application only modifies the proof tree node at
its point of application. Such tactics provide the basic building blocks that
can be combined using tacticals (that will be introduced later) to construct
more complex tactics.

Prune Instances of the following tactic class, when applied to a non-pending
proof tree node, prunes it:

1 class PruneTac implements Tactic{
2

3 boolean apply(ProofTreeNode node){
4 if (this.rule = null) return false;
5 node.prune();
6 return true;
7 }
8 }

This tactic fails if the point of application of the tactic is already a
pending proof tree node (line 4).

Rule Application Instances of the following tactic class apply a rule object
to pending proof tree nodes:

1 class RuleTac implements Tactic{
2

3 Rule rule;
4

5 boolean apply(ProofTreeNode node){
6 return node.apply(this.rule);
7 }
8 }

76 CHAPTER 5. PROVER ARCHITECTURE AND EXTENSIBILITY

The rule to apply is given as the rule attribute in the constructor of
this class. An application of this tactic is successful iff this rule could
be successfully applied to the given proof tree node.

Reasoner Application Instances of the following tactic class encapsulate
reasoner calls on proof tree nodes:

1 class ReasonerTac implements Tactic{
2

3 Reasoner reasoner;
4 ReasonerInput input;
5

6 boolean apply(ProofTreeNode node){
7 Rule? rule := this.reasoner.apply(node.sequent, this.input);
8 if (rule = null) return false;
9 return RuleTacticLrule := ruleM.apply(node);

10 }
11 }

The apply() method above first calls a reasoner with some input and the
sequent of the given node, and then applies the generated rule object
to the given node. The tactic fails if either the reasoner call fails (line
8), or the subsequent rule application fails (line 9).

The following pseudo-code illustrates how the reasoners Hyp and ConjGoal

from §5.8.2 can be encapsulated into the basic tactics HypTac and ConjGoalTac

respectively:

1 Tactic HypTac := ReasonerTacL reasoner := Hyp, input := null M;
2 Tactic ConjGoalTac := ReasonerTacL reasoner := ConjGoal, input := null M;

The resulting tactics HypTac and ConjGoalTac can then be directly applied
(via their apply() methods) to individual proof tree nodes instead of doing
this in multiple steps as described in step 2 of §5.9.3.

5.10.1.2 Tacticals

Tacticals are tactic classes that allow us to construct new tactics by combin-
ing already existing tactics. They allow us to express strategic or heuristic
knowledge about proof search in a concise way.

Apply On All Pending It is often useful to shift the point of application
of a tactic to another node in a proof tree. For instance, the tactics
HypTac and ConjGoalTac seen earlier are only meant to be applied to

5.10. TACTICS 77

pending proof tree nodes. The following tactical applies a given tactic
to all pending nodes of a proof tree:

1 class OnAllPendingTac implements Tactic{
2

3 Tactic tactic;
4

5 boolean apply(ProofTreeNode node){
6 boolean success := false;
7 ProofTreeNode[] pendingChildNodes := node.getPendingChildNodes();
8 for (int i=0, i < pendingChildNodes.length, i++){
9 if (this.tactic.apply(pendingChildNodes[i])) success := true;

10 }
11 return success;
12 }
13 }

The resulting tactic is successful iff the given tactic was successful at
least once.

Repeating a Tactic It is also often useful to apply a given tactic repeatedly
until it fails. The following tactical achieves this:

1 class RepeatTac extends Tactic{
2

3 Tactic tactic;
4

5 boolean apply(ProofTreeNode node){
6 boolean success := false;
7 while (this.tactic.apply(node)){
8 success := true;
9 }

10 return success;
11 }
12 }

The resulting tactic is successful iff the given tactic is successful at least
once.

Composing Tactics The following tactic sequentially composes a list of
tactics:

1 class ComposeTac extends Tactic{
2

3 Tactic[] tactics;

78 CHAPTER 5. PROVER ARCHITECTURE AND EXTENSIBILITY

4

5 boolean apply(ProofTreeNode node){
6 boolean success = false;
7 for (int i=0, i < this.tactics.length, i++){
8 if (this.tactics[i].apply(node)) success := true;
9 }

10 return success;
11 }
12 }

The resulting tactic is successful iff at least one of the given tactics was
successful.

5.10.1.3 Encoding a Proof Strategy

To end this section we show how we can use the basic tactics and tacticals
introduced in this section to encode a proof strategy that can be used to
construct a complete proof tree for the sequent ‘A, B, C ` A∧B’ as presented
in §5.9.3. The proof strategy we want to encode is as follows:

1. Split all pending conjunctive goals until this is no longer possible.

2. Discharge the remaining pending sub-goals whose goal appears in the
hypotheses.

The following pseudo-code shows how the above proof strategy can be en-
coded as a tactic:

1 Tactic ConjGoalThenHyp = ComposeTacL
2 tactics := [
3 RepeatTacL
4 tactic := OnAllPendingTacL tactic := ConjGoalTac M
5 M,
6 OnAllPendingTacL tactic := HypTac M
7]
8 M;

The resulting tactic ConjGoalThenHyp first repeatedly applies ConjGoalTac on
all pending nodes of the given proof tree (lines 3,4) until it is no more appli-
cable, and then tries to discharge each pending node using HypTac (line 6).
Applying the resulting tactic to the sequent ‘A, B, C ` A ∧B’ has the same
effect as performing the stepwise proof presented in §5.9.3.

5.11. RELATED WORK 79

5.11 Related Work

The architecture of proof tools is the subject of much heated debate. The
main issue here is reaching a reasonable trade-off, given the opposing require-
ments of efficiency, providing easy extensibility and ensuring soundness.

Many proof tools follow the so-called LCF approach, first used in the
LCF theorem prover [77], but also used by the theorem provers Isabelle [79]
and HOL [49]. These theorem provers are implemented in the functional
programing language ML [76]. The valid theorems in such systems are values
of a special protected ‘theorem’ abstract data-type. The ML type system
ensures that theorems are derived using only the inference rules given by the
operations of this abstract data-type. These operations are encoded in a very
compact ‘logical kernel’, that is manually inspected for bugs. In this way, one
has a very high degree of confidence in the validity of the theorems proved in
such LCF style proof tools. But such a design takes its toll on extensibility
and efficiency. Extending the proving capabilities of an LCF style proof
tool is done by writing new ‘tactics’ in ML that generate new theorems. It
is hard and specialized work to port an existing decision procedure into a
tactic that fits into this framework. Details for one such effort for a decision
procedure for Pressburger arithmetic can be found in [30], and an effort to
integrate external automated theorem provers for first order logic can be
found in [68]. Both these efforts were long term PhD research projects.
Porting such decision procedures also makes them less efficient because of
the lack of sufficiently efficient compilers for ML, and the extra bookkeeping
required by such tactics. There is the possibility of adding external decision
procedures as ‘oracles’ into such systems. The results of these oracles do not
need to go through the logical kernel, and are blindly trusted in the same way
as the results of reasoners are trusted in our setting. Using oracles though
undermines the advantages of using the LCF style approach in the first place.

The architecture of the PVS [74] system is similar to the LPF approach
just described, but is more liberal in its incorporation of external ‘unverified’
decision procedures. The PVS user therefore has many more automated
provers at his disposal, albeit with the possibility of encountering soundness
bugs. A good comparison of the approach used by PVS and Isabelle from
the point of view of a user using these systems is given in [52]. It mentions
that although it is sometimes annoying, “soundness bugs are hardly ever
unintentionally explored” during proof, and that “most mistakes in a system
to be verified are detected in the process of making a formal specification”.
Our experience with the RODIN system is similar.

Having said that, the proof tool described in this chapter does use some
of the main ideas from the LCF style approach. The proof trees described

80 CHAPTER 5. PROVER ARCHITECTURE AND EXTENSIBILITY

in §5.9 are ‘protected’ in a way similar to the ‘theorem’ data-type in the
LCF approach. Proof trees can only be created and manipulated using the
select few carefully written and inspected operations discussed in §5.9.2. The
notions of tactics and tacticals described in §5.10 also draw inspiration from
their counterparts in Isabelle and HOL. Another point to note carefully in
this comparison is that although the rules generated by our reasoners are
trusted, there is nothing to stop the developer of a reasoner from using the
LCF style approach (or even one of the LCF style provers directly) to obtain
more confidence on the soundness of the generated rules. Additionally, in
chapter 8 we show how the soundness of generated rules can be checked,
independently of the reasoner that generated them. Our approach is therefore
more pragmatic than that of LCF style provers, and aims to do the best it
can, given the central requirement of allowing external reasoners to extend
the reasoning capabilities of the proof tool.

The architecture of the mural system [58] is very similar to the architec-
ture of the proof tool described in this chapter. There are two main differ-
ences. First, as for the LCF style systems just described, the mural system
was designed to be extensible using internally proved deduction rules, and
not using external reasoners. Secondly, the mural system represents proofs
in the natural deduction style, whereas we use the sequent style to represent
proofs. Although both these representations are theoretically equivalent, it
is not clear how proofs constructed using external reasoners can be replayed
since the order in which proof steps are performed is not clear from a natural
deduction proof.

With respect to prover extensibility, our approach differs from the ap-
proach used in many current program verification tools such as Jive [70],
Boogie [17], ESC/Java [64], Caduceus [43], and JACK [20]. These tools
come with no (or very limited) native proof support. All proofs are per-
formed externally using third-party (back-end) interactive proof tools such
as Isabelle [79], PVS [74] and Coq [28], or automated theorem provers such as
Simplify [39] and haRVey [12]. This is achieved by translating the verification
conditions generated by these verification tools directly into a form suitable
to be proved by an external proof tool. The proofs are then completely
performed in one of these external proof tools.

Our approach is fundamentally different from the approaches mentioned
in the previous paragraph. Although external reasoners are used to generate
individual proof steps, the complete proof (modulo its individual steps) is
still recorded and managed by the proof tool. The proof tool described in
this chapter serves as an integration framework (as motivated by [37]) to
put together externally generated proof steps to construct a coherent proof.

5.12. CONCLUSION 81

Furthermore, (although technically still possible) interactive proofs are not
performed within external proof tools, but using the proving UI (not covered
in this thesis) within the RODIN development environment, although it is
still possible for an external proof tool to generate the logical content of such
an interactive proof step. In this sense, external provers are truly back-ends
for theorem proving since the user is not exposed to their internal workings
or user interfaces.

Our approach has three advantages over the approach used by the above
mentioned program verifiers. First, it is possible to use multiple external
proof tools to discharge a single proof obligation. This is important in prac-
tice since automated theorem provers are often specialised to solve certain
types of problems (e.g. arithmetic or set theory). It is often the case (as
described in [80], [8] and [38]) that a few simple interactive proof steps are
required to simplify and split a proof obligation into multiple sub-goals that
can then be discharged using different automated provers. This approach
therefore allows a finer granularity for integrating external theorem provers.
Second, the user is given a uniform user interface for interactive proof that is
integrated within the development environment. This means that he does not
need to master the use of multiple theorem provers and switch between them
in order to perform proofs. Third, all results of external theorem provers are
recorded, and can be used later for proof reuse, reengineering and revalida-
tion, as will be discussed in chapters 6, 7 and 8 respectively.

5.12 Conclusion

In this chapter we have presented the basic architecture of the proof tool and
the ways in which its proving capabilities can be extended. We have sketched
its implementation using object-oriented pseudo-code. We have shown how
proofs can be constructed in the proof tool, and how these constructed proofs
correspond to our mathematical notion of proof. This chapter provides the
basis for the discussions that follow in chapters 6, 7, and 8.

82 CHAPTER 5. PROVER ARCHITECTURE AND EXTENSIBILITY

Chapter 6

Representing and Reusing
Proofs

This chapter is concerned with representing and reusing proofs constructed
in the proof tool. We start by discussing the most frequently occurring proof
obligation changes that we experience during reactive formal development,
as discussed in chapter 2, and propose a strategy to manage such changes.
We then state some concrete requirements on the way proof attempts are
represented and reused. We discuss the various possibilities we have of rep-
resenting proofs, and their consequences on proof reuse. The main contribu-
tion of this chapter is to propose a new a way of representing proof attempts
(that we call proof skeletons) that can be incrementally reused and satisfy
the requirements stated earlier. Experimental evidence on the effectiveness
of our solution to represent and reuse proofs is also presented.

6.1 Introduction

A proof tool must allow saving and reloading of proofs from saved proof at-
tempts. There are may reasons why storing and reusing proofs is important:

� Proofs are rarely completed in one sitting. Users frequently resume
work on a previous partial proof attempt.

� Even when a proof is complete, its recorded proof attempt is evidence
that the proof indeed succeeded.

� Recording proof attempts allows them to be reused when proof obliga-
tions change.

Using a proof tool as part of a reactive development environment also places
special requirements on how proofs should be stored and reused.

83

84 CHAPTER 6. REPRESENTING AND REUSING PROOFS

Proof Reuse in a Reactive Setting In chapter 2 we proposed a reactive
formal development environment where a change in a model is immediately
reflected as changes in proof obligations. The main challenge for a proof tool
in such an environment is to make the best use of previous proof attempts in
the midst of changing proof obligations. Reusing previous proof attempts is
important since considerable computational and manual effort is needed to
produce a proof.

The main difference between current approaches of proof reuse, and what
is required for proof reuse in the reactive setting is the frequency with which
changes occur, and the efficiency with which these changes need to be pro-
cessed in the reactive setting. The current approaches used to represent and
reuse proof attempts are not well suited for the frequency with which some
common types of change occur in the reactive setting since they require
entire proofs to be recomputed even for minor proof obligation changes for
which this is not required. This point will be discussed in detail in §6.2, §6.3
and §6.6.

Reactive development environments for programming such as Eclipse [41]
use incremental compilation [87] to reduce compilation time (and therefore
reaction times) when working on large programs. In this chapter we try
to extend this idea of incremental compilation to proofs to achieve similar
benefits. We propose a new way of representing proof attempts (proof skele-
tons) that can be reused incrementally, but where explicit reuse may even be
avoided for some (recoverable) changes for which proof skeletons are guaran-
teed to be resilient. We first define some key terms that will be used in this
chapter.

Key Terms Unless otherwise obvious, we use the term proof to denote a
mathematical proof as defined in §3.2.4 and the term proof tree to refer to
the proof tree data structure constructed by the proof tool (that represents
a mathematical proof) as discussed in §5.9. We use the term proof attempt
to denote some record of the construction of a proof that can be stored and
reused to reconstruct a proof. We say that a proof attempt is applicable for
a given proof obligation if this proof attempt can be used to reconstruct a
proof tree for the given proof obligation. For applicability we also require
that if the proof attempt is the record of a complete proof, the reconstructed
proof tree should also be complete.

Since proof construction is a layered process (tactics call reasoners, gener-
ating rules), we have a choice of what we want to record as a proof attempt.
This choice is governed by the requirements we have on the applicability
of proof attempts when their proof obligations change. The next section

6.2. PROOF OBLIGATION CHANGES 85

discusses proof obligation changes and concludes with these requirements.

6.2 Proof Obligation Changes

We start by describing the different types of proof obligation changes that
we treat in this chapter and the required effects of these changes on the
applicability of proof attempts. The changes are presented in the order of
the frequency (from experimental evidence presented in §6.5) with which they
occur:

1. Adding hypotheses: Common modeling changes, such as importing a
new theory, or adding a new property to the system being modeled
result in new hypotheses being added to almost all proof obligations
in a formal development. Since the logic we use is monotonic, we
should not allow this sort of change to make a previous proof attempt
inapplicable.

2. Removing unused hypotheses: It is often the case that the user chooses
to remove or replace a property he thinks is wrong or redundant. The
properties of a system are reflected as hypotheses in almost all proof
obligations. The removal of a property therefore results in the removal
of a hypothesis in a large number of proof obligations. Removing a
hypothesis from a proof obligation per se renders its previous proof
attempt inapplicable. But proof attempts typically only use a small
subset of the hypotheses present in a proof obligation. Removal of un-
used hypotheses from a proof obligation should not make its previous
proof attempt inapplicable.

3. More severe changes Next come changes to proof obligations that do
not fit in the above two categories, for instance the removal of a hy-
pothesis that is used in a proof, or the change of a goal that the proof
manipulates. In these cases it is clear that the previous proof attempt
is no longer applicable and needs to be modified, either automatically
or interactively.

Experimental evidence presented later in §6.5 confirms that the first two
types of proof obligation change described above account for about 47% of
all proof obligation changes observed while using the tool. It is therefore
crucial that such changes are efficiently detected and do not make previous
proof attempts inapplicable.

86 CHAPTER 6. REPRESENTING AND REUSING PROOFS

6.2.1 Characterising Changes

In general, changes to a proof obligation can be classified into two categories
with respect to how they affect the applicability of a previous proof attempt:

Recoverable Those changes for which the system can automatically and
efficiently guarantee that a previous proof attempt is still applicable.
Previous proof attempts in this case need not be modified. We want
changes 1 and 2 from §6.2 to fall under this category.

Irrecoverable Those changes for which the system cannot guarantee that
a previous proof attempt is still applicable. In this case a proof at-
tempt may need to be modified (either automatically or interactively)
to account for this change. Change 3 from §6.2 falls under this category.

The next section describes how the system should react to changes in
each of these categories.

6.2.2 Reacting to Changes

Automatically reacting to proof obligation changes as they occur gives the
user immediate feedback on how his last modeling change affects his proof
development. But automatically reacting to a change should not result in a
loss of some previous proof effort. In this section we describe how the system
should react to change, keeping these two points in mind.

We start by making a distinction between reacting to a change, and recov-
ering from it. The system reacts every time it notices that a proof obligation
has changed. Recovering from a change means that the system, at the end
of the recovery process, ensures that the current proof attempt is applicable
for the changed proof obligation. Reacting to a change may mean recovering
from it, but later in this section we will see that this is not always desirable.

We would always like to recover from a recoverable proof obligation
change (as defined in §6.2.1) since:

� Recovery is guaranteed to succeed.

� Recovery is not computationally intensive.

� The previous proof attempt is not modified.

In this case, recovery only involves checking that the proof attempt is still
applicable and marking it as such.

6.2. PROOF OBLIGATION CHANGES 87

On the other hand, if the change is irrecoverable, the previous proof
attempt is now inapplicable. Recovering from such a change requires the
creation of a new proof, possibly with the help of a previous proof attempt.
Reacting to such changes by trying to immediately recover from them is
undesirable because:

� Recovery may fail.

� Recovery may be computationally intensive

� Recovery may need user interaction.

� The previous proof attempt may be lost.

The user typically does not want to spend time and resources on proving
proof obligations after every modeling change, but only at points where he
thinks his model is stable enough to be worthy of proof effort. At other points
in his development, the model may be unstable or incomplete, resulting in
incomplete or unstable proof obligations. Immediate recovery from such
changes would mean that time and effort is spent on proving proof obligations
that will change in the very near future. A more serious consequence of this
is that any previous proof attempt would be modified, or even lost. The
user should be able to make experimental changes without worrying about
the system modifying his proofs. Since the system does not have a way of
knowing the intent of a modeling change, the best thing to do in this case
would be to mark any previous proof attempt as now being inapplicable. The
user can later make this proof attempt applicable again, either by undoing
his modeling change, or explicitly asking the system to recover by reusing a
previous proof attempt.

Proof attempts generated automatically (i.e. without any user interac-
tion) are an exception to this rule. Losing such proof attempts is not that
serious since they can be regenerated automatically. In this case, a system
may try to immediately recover from an irrecoverable change (by possibly
re-running automated provers) and replace the previous proof attempt with
a new one in case this was successful.

Table 6.1 summarises how the system should react to recoverable and
irrecoverable changes. From this table we see that it is important that proof
attempts are represented such that they are recoverable whenever possible,
and that the check for applicability is efficient.

88 CHAPTER 6. REPRESENTING AND REUSING PROOFS

Change Previous Reaction
Proof Attempt

Recoverable - Recover by marking
proof attempt applicable

Irrecoverable Interactive Mark proof
attempt inapplicable

Automatic Recover with new
automatic proof attempt

Table 6.1: Reacting to Changes

6.2.3 Requirements

We conclude this section by placing concrete requirements on the way proof
attempts are represented and reused:

1. Addition of hypotheses should be guaranteed to be recoverable proof
obligation changes.

2. Removal of unused hypotheses should be guaranteed to be recoverable
proof obligation changes.

3. The check to see if a proof attempt is applicable for a proof obligation
should be efficient.

4. For irrecoverable changes, proof attempts should be reused incremen-
tally to construct new proof attempts.

The next two sections talk about how to represent proof attempts so that
they fulfil these requirements.

6.3 Representing Proof Attempts

As mentioned earlier, a proof attempt is a record of the construction of a
proof that can be stored and reused. There are two types of information
that a proof attempt can record about the construction of a proof:

� what has been proved.

� how a proof is constructed.

6.3. REPRESENTING PROOF ATTEMPTS 89

Proofs in the mathematical sense (as defined in chapter 3) are just trees
of sequents. They only record what has been proved. In contrast, a list of
tactic applications provides information on how a proof was constructed.

In our setting where proof obligations are subject to change, using in-
formation about how a proof was constructed is of great importance while
reusing a proof attempt when its proof obligation changes. A central assump-
tion here is that proof obligations normally do not change so drastically that
they require a radically different approach to prove them. At the same time,
it is also important to record what was proved since we would like to do this
reuse incrementally. In particular, we do not want to reconstruct a proof
from a proof attempt just to check if it is still applicable for a new proof
obligation.

As a thought exercise we review the following three commonly used ways
of representing proof attempts in the coming sub-sections. The type of in-
formation they record are in parenthesis:

1. As a tree of sequents. (what)

2. As a tree of reasoner calls. (how)

3. As a list of tactic applications. (how)

Most proof tools in use today use one of the last two approaches to record
proof attempts. The first approach corresponds to how proofs are represented
in mathematical logic, and is presented for completeness. We evaluate these
three ways of recording a proof attempt with the following criteria in mind:

Efficiency: How efficient is this approach with respect to the space required
to store proof attempts, the computation required to show that a proof
attempt is applicable for a proof obligation, and the computation re-
quired to reconstruct an actual proof from it?

Reusability: What possibilities do we have to reuse proof attempts as they
are represented using this approach?

We will see that none of these three approaches are suitable for our re-
active setting since they do not satisfy the requirements stated in §6.2.3. In
§6.4 we propose a solution (proof skeletons) that fulfils our requirements. We
first introduce a running example to serve as a basis for comparison in the
remainder of this chapter.

90 CHAPTER 6. REPRESENTING AND REUSING PROOFS

6.3.1 A Running Example

As a running example we use the following complete proof of the sequent
‘A, B, C ` A ∧B’:

A, B, C ` A
hyp

A, B, C ` B
hyp

A, B, C ` A ∧B
∧goal

We assume that the proof tree (generated by the tool as shown in §5.9.3)
corresponding to the above proof is as follows:

A,B, C ! A ∧B

H ! A H ! B
H ! A ∧B

ConjGoal()

A,B, C ! A

H, B ! B
Hyp()

H, A ! A
Hyp()

A,B, C ! B

We assume that the above proof tree has been constructed using the tactic
ConjGoalThenHyp defined at the end of §5.10.1.

6.3.2 Recording Proofs Explicitly

As a first attempt, we represent a proof attempt explicitly as a proof in the
mathematical sense (i.e. as a tree of sequents as defined in §3.2.4). This
approach corresponds to the proof object view of looking at a proof attempt
and records what has been proved in full detail.

Efficiency Proof trees are large and cumbersome data structures. Because
of this, most proof tools in use today by default avoid the explicit construction
of proof trees all together. In our setting, a proof obligation may easily
contain hundreds of hypotheses which are mostly repeated in all nodes of a
proof tree. Representing proof attempts in this way therefore raises serious
storage concerns. Reconstructing a proof tree though is a trivial task; it only
has to be reloaded. Checking if a proof attempt is recoverable for a proof
obligation is also trivial; it has to be identical to the root sequent of the proof
tree. No reasoner calls are required for both these operations.

6.3. REPRESENTING PROOF ATTEMPTS 91

Reusability Although this approach eliminates the need for proof recon-
struction, it gives us absolutely no way of reusing proof attempts when proof
obligations change. A proof can only be associated with a single proof obli-
gation: the sequent occurring in its root node. When a proof obligation
changes, its proof is no more applicable.

To illustrate this, here is how the proof attempt of the proof presented in
§6.3.1 (our running example) would look like in this setting:

A, B, C ` A A, B, C ` B

A, B, C ` A ∧B

The rule names have been left out since they have no relevance here. Trying
to reuse this proof attempt for the identical proof obligation A, B, C ` A∧B
is fine. Any slight changes though (for instance adding a hypothesis) make
this proof attempt inapplicable.

The next two subsections describe proof attempts that record how a proof
was constructed.

6.3.3 Recording Reasoner Calls

In this approach, a proof attempt is represented as a tree that records all
reasoner calls required to construct a proof. The structure of this tree is
identical to that of a proof tree. The nodes of this tree though do not store
sequents or proof rules, but the reasoner calls that were used to generate
these proof rules. In contrast to the previous approach, a proof attempt now
stores how a proof was constructed.

Efficiency This representation of a proof attempt requires much less stor-
age since we do not need to store sequents. Reconstructing a proof from such
a proof attempt now requires extra computation since each proof rule needs
to be regenerated by calling the reasoner that originally generated it. Check-
ing that a proof attempt is applicable for a proof obligation (even if it has
not changed) is expensive since it requires its proof tree to be reconstructed.

Reusability Compared to the previous approach, proof attempts stored in
this way give us more possibilities for reuse when proof obligations change.
This is because we now have a layer of computation between a proof attempt
and the proof tree reconstructed from it. This makes it possible for a proof
attempt to recover from proof obligation changes. How much change a proof
attempt is able to recover from depends on how well each reasoner deals
with change in its input sequent. In practice, reasoners are specialised for

92 CHAPTER 6. REPRESENTING AND REUSING PROOFS

a particular task and are ignorant of most details present in their input
sequents. For instance, the reasoner ConjGoal only needs the goal to be a
conjunction and is ignorant of the hypotheses.

Here is how the proof attempt of our running example would look like in
this setting:

Hyp() Hyp()

ConjGoal()

As in the previous case, trying to reuse this proof attempt for the identical
proof obligation A, B, C ` A ∧ B succeeds. If we added an extra hypothesis
D, or removed the hypothesis C that was not needed by any reasoner in the
proof, this proof attempt would still be reusable. In both these cases though,
this cannot be guaranteed without re-executing each reasoner call. If the
goal changes from A ∧ B to just A, reuse would fail since the first reasoner
call to ConjGoal, which requires a conjunctive goal, would fail.

6.3.4 Recording Tactic Applications

As mentioned earlier, all user level interactions for proof construction are
expressed using tactic applications. If one could keep track of the sequence
of tactic applications the user used to construct a proof, this information
could also be recorded as a proof attempt. This is how proof attempts are
represented in most proof tools [79, 74].

Efficiency Proofs are reconstructed by replaying all tactic applications in
the order they were applied when constructing the proof. This approach
simulates the original construction of the proof at the user interaction level.
Since tactics introduce a second level of execution to proof construction, and
may call reasoners that fail, reconstructing a proof from such a proof attempt
requires the greatest amount of computation of all three approaches. The
same is true for checking if a proof attempt is applicable for a proof obligation.
The amount of storage required for such a proof attempt is the least of all
three approaches.

Reusability Since this way of representing a proof attempt records each
user interaction with the proof tool, it could in principle give us the greatest

6.3. REPRESENTING PROOF ATTEMPTS 93

possibility for reusing proof attempts. But since the way a tactic works
is unconstrained (it may globally modify the entire proof tree) and highly
unpredictable (we have no control over what it does), in practice we have
very weak guarantees for when such a proof attempt is reusable for changes
in a proof obligation.

Going back to our running example, its proof attempt in this setting is a
list with only one tactic application that may be represented as follows:

apply(ConjGoalThenHyp)

It may be reused successfully for A, B, C ` A ∧ B, and for variations of it
with the addition or removal of unused hypotheses, and even for A, B, C ` A.
But we can make this claim only because we know what the tactic does.
In general, it can be the case that the addition of a hypothesis makes a
serious change in the way a tactic works (for instance the addition of a
disjunctive hypothesis may trigger a tactic to start a case distinction), leaving
the remainder of a proof attempt irrelevant and unusable. This is a recurrent
problem in proof tools where proof attempts are stored as tactic applications
[35].

We see that this approach gives us even weaker guarantees (compared
to §6.3.3) about the applicability of a tactic to a changed proof obligation.
Tactic applications are therefore not well suited for reuse in our setting.

6.3.5 Summary

Till now we have seen three approaches to represent proof attempts. The
first three rows of table 6.2 compares these representations with respect to
our requirements in §6.2.3.

Is it recoverable for: How is it reused
Proof Attempt Original PO How? Original PO How? for irrecoverable
Representation ± (unused) hyps changes?
Explicit Proofs Yes guaranteed No - Not possible
Reasoner calls Yes reasoner replay Yes reasoner replay reasoner replay
Tactics Yes tactic replay maybe tactic replay tactic replay
Proof skeletons Yes guaranteed Yes guaranteed incremental

Table 6.2: Comparing Proof Attempt Representations

From this table we see that none of the three approaches considered so far
in isolation fulfils our requirements. In the next section we combine combine
the advantages of two of these approaches to devise a proof attempt repre-
sentation (called proof skeletons) that fulfils our requirements from §6.2.3.

94 CHAPTER 6. REPRESENTING AND REUSING PROOFS

6.4 Proof Skeletons

We now describe the way proof attempts are represented and reused in the
proof tool in order to fulfil the requirements stated earlier in §6.2.3.

A proof attempt is represented as a proof skeleton. We build on the
representation discussed in §6.3.3 where a proof attempt is represented as a
tree of reasoner calls. The main problem we faced with this representation
was that it required us to re-execute each reasoner call in order to reconstruct
a proof, or even to check if a proof attempt was applicable for a given proof
obligation. A reasoner call is typically a time intensive operation. In order to
avoid unnecessary reasoner calls, in addition to the reasoner call information
(i.e. the name and input of the reasoner) we also store the rule object gener-
ated by executing this reasoner call at each node. We will show later in §6.4.2
and §6.4.3, how these cached rule objects can be used to avoid unnecessary
reasoner calls when reusing and checking the applicability of proof skeletons.

In terms of our pseudo-code notation, a proof skeleton is an object be-
longing to the following ProofSkelNode class:

1 immutable class ProofSkelNode{
2 Rule? rule;
3 ProofSkelNode[]? childNodes;
4 }

A proof skeleton is identical to a proof tree, as defined in §5.9, without
the sequent attribute. Note that the rule abject declared in line 2 already
contains a reference to the reasoner and the reasoner input used to generate
it (as stated in §5.7), and this does not need to be additionally stored.

6.4.1 Constructing Proof Skeletons

The only way to construct a proof skeleton object is to extract it from an
already constructed proof tree. The following method illustrates how this
can be done:

1 ProofSkelNode ProofTreeNode::getProofSkel(){
2 if (this.rule = null){
3 return ProofSkelNodeL rule := null, childNodes := null M;
4 }
5 ProofSkelNode[] skelChidNodes;
6 for (int i:=0, i < this.childNodes.length, i++){
7 skelChidNodes[i] := this.childNodes[i].getProofSkel();
8 }
9 return ProofSkelNodeL

6.4. PROOF SKELETONS 95

10 rule := this.rule,
11 childNodes := skelChildNodes
12 M;
13 }

The above ProofTreeNode::getProofSkel() method recursively copies the rule
attributes of the invoking proof tree to construct its proof skeleton. In case
the invoking proof tree is pending, this method returns a proof skeleton
whose rule and childNodes attributes are set to null (lines 2-4). Otherwise,
this method first recursively computes the proof skeletons for each of its
child nodes and stores them in skelChildNodes (lines 5-8). It then returns
a proof skeleton whose rule attribute is identical to the rule attribute of
the invoking proof tree (line 10), and whose childNodes attribute is set to
skelChildNodes computed earlier (line 11).

Here is the proof skeleton extracted from the proof tree of our running
example that appears in §6.3.1:

H ! A H ! B
H ! A ∧B

ConjGoal()

H, B ! B
Hyp()

H, A ! A
Hyp()

By restricting the construction of proof skeletons in this way we ensure
that all constructed proof skeletons correspond to valid proof trees as they
are defined in §5.9.1. In particular, we are ensured that the rule antecedents
of each rule at a proof skeleton node agree with its child nodes (i.e. they
are of the same number, and the used goal of a rule at the child node, if
present, is identical to the new goal of its corresponding rule antecedent).
Furthermore, we are guaranteed that there exists an initial sequent for which
all the rules in a proof skeleton can be successfully reapplied to construct a
proof tree with an identical tree structure as that of the proof skeleton.

In §6.4.2 we see how a proof skeleton can be reused to reconstruct a proof
tree for a given initial sequent. In §6.4.3 we show how we can characterize the
set of initial sequents for which a proof skeleton can be successfully reused.

96 CHAPTER 6. REPRESENTING AND REUSING PROOFS

6.4.2 Reusing Proof Skeletons

In this section we show how a proof skeleton can be reused to reconstruct a
proof tree for a given initial sequent. We describe three methods in which
this can be done. We first define what we mean by successful reuse.

Successful Reuse We say that reuse is successful iff the proof skeleton
used, and reconstructed proof have the identical tree structure. The following
pseudo-code illustrates what it means for a proof skeleton and a proof to have
the identical tree structure:

1 boolean hasIdentTreeStruct(ProofTreeNode node, ProofSkelNode skel){
2 if (node.rule = null ∧ skel.rule = null) return true;
3 if (node.rule = null ∨ skel.rule = null) return false;
4 if (node.childNodes.length 6= skel.childNodes.length) return false;
5 for (int i:=0, i < node.childNodes.length, i++){
6 if (¬ hasIdentTreeStruct(node.childNodes[i],skel.childNodes[i]))
7 return false;
8 }
9 return true;

10 }

We use the tree structure to evaluate the success of reuse. This means that if a
complete proof skeleton (i.e. a proof skeleton extracted from a complete proof
tree) is successfully reused to reconstruct a proof, we are guaranteed that
the reconstructed proof is complete too. In the case of reusing an incomplete
proof skeleton, successful reuse implies that the reconstructed proof exhibits
the same amount of progress in a proof.

We now describe three ways of reusing proof skeletons to reconstruct
proof trees.

6.4.2.1 Direct Rule Reuse

The most efficient way to reuse a proof skeleton for a given initial sequent
is to reapply each of its rule objects (using the ProofTree::apply() method
from §5.9.2) in the given order to reconstruct its proof tree. The following
method illustrates how this can be done recursively:

1 boolean reuse(ProofTreeNode node, ProofSkelNode skel){
2 if (skel.rule = null) return true;
3 boolean success := RuleTacticL rule := skel.rule M.apply(node);
4 if (¬ success) return false;
5 if (node.childNodes.length 6= skel.childNodes.length) return false;
6 for (int i:=0, i < node.childNodes.length, i++){

6.4. PROOF SKELETONS 97

7 if (¬ reuse(node.childNodes[i],skel.childNodes[i]))
8 success := false;
9 }

10 return success;
11 }

The input parameter skel is the proof skeleton to reuse, and node is a pending
proof tree node with the desired initial sequent. The above method recur-
sively adds children to node to reconstruct its proof tree, and returns true iff
reuse was successful.

Guarantees This way of reusing proof skeletons to reconstruct proof trees
fulfils the first two requirements from §6.2.3. The proof skeleton for our
running example can be directly reused to reconstruct a complete proof tree
for an initial sequent with additional hypotheses (for instance ‘A, B, C,D `
A ∧ B’), or for an initial sequent without the unused hypothesis C (i.e. for
‘A, B ` A ∧B’).

Note that no reasoners need to be called when directly reusing a proof
skeleton. Only the generated parts of each rule object are reused. Also note
that the proof skeleton extracted from a successfully reconstructed proof tree
is identical to the reused proof skeleton. We therefore say that direct reuse
does not modify the current proof attempt. Both these properties may not
always be true in the other two methods of proof reuse described in §6.4.2.2
and §6.4.2.3.

6.4.2.2 Reasoner Replay

We could alternatively disregard the generated parts of each rule object com-
pletely and choose to regenerate each rule object by calling the reasoner that
generated it. This method of proof reuse was seen earlier in §6.3.3. The
following method illustrates how this can be done for proof skeletons:

1 boolean replay(ProofTreeNode node, ProofSkelNode skel){
2 if (skel.rule = null) return true;
3 boolean success := ReasonerTacL
4 reasoner := skel.rule.generatedBy,
5 input := skel.rule.generatedUsing
6 M.apply(node);
7 if (¬ success) return false;
8 if (node.childNodes.length 6= skel.childNodes.length) return false;
9 for (int i:=0, i < node.childNodes.length, i++){

10 if (¬ replay(node.childNodes[i],skel.childNodes[i]))
11 success := false;

98 CHAPTER 6. REPRESENTING AND REUSING PROOFS

12 }
13 return success;
14 }

The only difference between the replay() method above, and the reuse()
method seen previously is that each rule object that is used is regenerated
in lines 3-6.

Guarantees Since we can assume that all rule objects are replayable (see
§5.8.1) we are guaranteed that if a proof skeleton is directly reusable, it is
also replayable. We use the following statement to illustrate this property:

reuse(makePendingNode(seq), skel)
⇒

replay(makePendingNode(seq), skel)

Showing that direct reuse is successful is therefore sufficient to ensure that
reasoner replay would also be successful and need not be additionally checked.
Since replay requires more computation, and may result in a proof tree whose
proof skeleton is different from the one used (i.e. it modifies the current
proof attempt) , it is advantageous to directly reuse proof skeletons whenever
possible.

Reasoner replay though could succeed when direct reuse fails. Consider
reusing the proof skeleton from our running example for the initial sequent
‘A, B, C ` A ∧ C’, whose goal has changed from ‘A ∧ B’ to ‘A ∧ C’. Direct
reuse would fail, whereas reasoner replay would succeed, resulting in the
following proof tree:

A,B, C ! A

H, A ! A
Hyp()

H ! A H ! C
H ! A ∧ C

ConjGoal()

H, C ! C
Hyp()

A,B, C ! A ∧ C

A,B, C ! C

!

!!†

The ‘	’ symbol on the right of each proof tree node indicates that the rule
object for this node was regenerated. Note that the rule object for the

6.4. PROOF SKELETONS 99

rule marked ‘†’ is identical to the rule object in the proof skeleton used to
reconstruct it (shown in §6.4.1). Regenerating this rule object could have
therefore been avoided.

In the next section we show this can be achieved by incrementally replay-
ing proof skeletons.

6.4.2.3 Incremental Reasoner Replay

In this section we show how proof skeletons can be reused incrementally. The
following method illustrates how this can be done:

1 boolean incrementalReplay(ProofTreeNode node, ProofSkelNode skel){
2 if (skel.rule = null) return true;
3 boolean success := RuleTacticL rule := skel.rule M.apply(node);
4 if (¬ success){
5 success := ReasonerTacL
6 reasoner := skel.rule.generatedBy,
7 input := skel.rule.generatedUsing
8 M.apply(node);
9 }

10 if (¬ success) return false;
11 if (node.childNodes.length 6= skel.childNodes.length) return false;
12 for (int i:=0, i < node.childNodes.length, i++){
13 if (¬ incrementalReplay(node.childNodes[i],skel.childNodes[i]))
14 success := false;
15 }
16 return success;
17 }

The main difference between the method above, and the replay() method
seen previously is that reasoners are called to regenerate rule objects (lines 5-
8) only when the existing rule objects are not applicable (lines 3,4).

Guarantees This way of reusing proof skeletons to reconstruct proof trees
fulfils the fourth requirement from §6.2.3. Since all rule objects are re-
playable, we are guaranteed that a proof skeleton is incrementally replayable
iff it is replayable:

replay(makePendingNode(seq), skel)
⇔

incrementalReplay(makePendingNode(seq), skel)

There is therefore no observable difference between incremental replay and
non-incremental reasoner replay seen earlier, except that the former may
require less computation.

100 CHAPTER 6. REPRESENTING AND REUSING PROOFS

Coming back to our running example, our proof skeleton from §6.4.1 can
be incrementally reused successfully to construct a complete proof tree for
the initial sequents ‘A, B, C,D ` A ∧ B’ and ‘A, B ` A ∧ B’ without any
reasoner calls as in the case for direct reuse in §6.4.2.1. Incremental reuse
would also be successful for the initial sequent ‘A, B, C,D ` A∧B’, resulting
in the following proof tree:

A,B, C ! A

H, A ! A
Hyp()

H ! A H ! C
H ! A ∧ C

ConjGoal()

H, C ! C
Hyp()

A,B, C ! A ∧ C

A,B, C ! C

!

!†

In contrast to the proof tree constructed using non-incremental reasoner re-
play in §6.4.2.2, reconstructing the node marked ‘†’ above does not require a
reasoner call. The reconstructed proof trees are otherwise identical. Saving
such reasoner calls at the ends of proofs trees is important in a practical
setting since the leaf nodes of proof trees often correspond to automated
decision procedures that take time to compute.

Till now, the only way of checking whether a given proof skeleton is
applicable for a given sequent is by explicitly reconstructing a proof tree and
checking if this reconstructed proof tree is complete. In the next section we
show how the dependencies of a proof skeleton can be computed and used to
decide applicability more efficiently.

6.4.3 Proof Dependencies

In this section we show how to compute the dependencies of a proof skeleton.
Proof skeleton dependencies consist of a used goal and used hypotheses for
entire proof skeletons. They are used to characterise the set of sequents for
which a proof skeleton can be directly reused as described in §6.4.2.1.

The aim of calculating and storing dependencies along with proof skele-
tons is that they can be used to efficiently decide if a proof skeleton is reusable
for a given initial sequent without having to reconstruct its proof tree explic-
itly.

6.4. PROOF SKELETONS 101

Proof skeleton dependencies are implemented as objects of the following
class:

1 immutable class ProofSkelDeps{
2 Predicate? usedGoal;
3 Predicate{} usedHyps;
4 }

The usedGoal field contains the used goal of a proof skeleton, and is null

in case a proof skeleton is empty (i.e. its root node does not contain a rule)
and therefore has no dependencies. The usedHyps field contains the used
hypotheses of the proof skeleton, which is the empty set ‘∅’ in case the proof
skeleton is empty.

6.4.3.1 Checking Sequents

The following method can be used to check if such dependencies are satisfied
by a given sequent:

1 boolean ProofSkelDeps::satisfiedBy(Sequent seq){
2 return (
3 (this.usedGoal = null ∨ this.usedGoal = seq.goal) ∧
4 (this.usedHyps ⊆ seq.hyps)
5);
6 }

The method checks that the used goal is either null, or identical to the goal
of the given sequent (line 3), and that the used hypotheses are contained in
the hypotheses of the sequent (line 4).

6.4.3.2 Calculating Dependencies

The following pseudo-code shows how the dependencies of a proof skeleton
are calculated:

1 ProofSkelDeps ProofSkelNode::getProofDeps(){
2 if (this.rule = null){
3 return ProofSkelDepsL
4 usedGoal := null,
5 usedHyps := ∅
6 M;
7 } else {
8 return ProofSkelDepsL
9 usedGoal := this.rule.usedGoal,

10 usedHyps := this.getUsedHyps()

102 CHAPTER 6. REPRESENTING AND REUSING PROOFS

11 M;
12 }
13 }

An empty proof skeleton has dependencies that can be satisfied by any se-
quent (lines 2-6). The dependencies of a non-empty proof skeleton are re-
turned in lines 8-11. Its used goal is the used goal of the rule at is root node
(line 8). This is guaranteed from the way proof skeletons are constructed
(see the discussion in §6.4.1). The used hypotheses of a proof skeleton are
calculated recursively using the following method:

1 Predicate{} ProofSkelNode::getUsedHyps(){
2 if (this.rule = null) return ∅;
3 Predicate{} usedHyps := this.rule.usedHyps;
4 for (int i, i < this.childNodes.length, i++){
5 usedHyps := usedHyps ∪
6 (this.childNodes[i].getUsedHyps() −
7 rule.antecedents[i].addedHyps);
8 }
9 return usedHyps;

10 }

An empty proof skeleton has no used hypotheses (line 2). The used hypothe-
ses for a non-empty proof skeleton is calculated as follows. In order for the
rule at its root node to be reusable, the used hypotheses of a proof skeleton
must contain the set of used hypotheses of this root rule (line 3). In order
for each of its child proof skeletons to also be reusable, their used hypothe-
ses must also be added (lines 5,6), removing the hypotheses added in each
corresponding rule antecedent (line 7).

Guarantees

From the way dependencies are calculated we are guaranteed that a proof
skeleton can be reused successfully to reconstruct a proof tree for a given
sequent iff this sequent satisfies the dependencies of the proof skeleton. For
any sequent seq, and any proof skeleton skel, the following statement holds:

skel.getProofDeps().satisfiedBy(seq)
⇔

reuse(makePendingNode(seq), skel)

Proof skeleton dependencies can therefore be used to efficiently decide if
a proof skeleton is reusable for a given initial sequent without having to
reconstruct its proof tree explicitly.

6.4. PROOF SKELETONS 103

The dependencies for the proof skeleton from our running example cal-
culated using getProofDeps() appears below:

usedHyps := {A,B}
usedGoal := A ∧B

The above dependencies can be used to efficiently check if this proof skeleton
can be directly reused to reconstruct a proof tree for any given initial sequent
as shown in the table below:

Initial Sequent Dependencies Satisfied

A, B, C ` A ∧B
√

A, B, C,D ` A ∧B
√

A, B ` A ∧B
√

A, C ` A ∧B ×
A, B, C ` A ∧ C ×
A, B, C ` A ×

6.4.4 Satisfying Requirements

We summarise this section now by stating concretely how proof attempts are
stored and used in the proof tool to fulfill the requirements stated in §6.2.3.
Each stored proof attempt is made up of three parts:

1. A proof skeleton extracted from the constructed proof tree.

2. The dependencies of this proof skeleton.

3. The status of this proof skeleton, which can either be complete or
incomplete.

The proof status (part 3) is also stored as it is frequently required by the
user interface in order to be displayed. Although parts 2 and 3 can always be
computed from the stored proof skeleton (part 1), they are additionally stored
and cached in order to avoid having to traverse the proof skeleton repeatedly
in order to regenerate this information. The complete proof skeleton only
needs to be read when entering an interactive proof or recovering from an
irrecoverable proof obligation change.

Here is the final stored proof attempt for the proof tree of our running
example with its corresponding parts labelled on their right hand sides:

104 CHAPTER 6. REPRESENTING AND REUSING PROOFS

H ! A H ! B
H ! A ∧B

ConjGoal()

H, B ! B
Hyp()

H, A ! A
Hyp()

1

usedHyps := {A,B}
usedGoal := A ∧B

2

proofStatus := complete

3

The proof skeleton dependencies are used to efficiently decide if a proof
attempt is still applicable when its proof obligation changes (as shown in
§6.4.3). Addition and removal of unused hypotheses are guaranteed to be
recoverable proof obligation changes (as seen in §6.4.2.1). For irrecoverable
changes, proof attempts can be reused incrementally (as seen in §6.4.2.3).
With this, we have satisfied all of our requirements from §6.2.3.

The space required for this proof representation is more than what would
be required if we just stored reasoner calls (as discussed in §6.3.3) since we
require to cache at two levels (i.e. generated rule objects at each node, and
dependencies for entire proofs) in order to satisfy our requirements. This
extra space requirement has not hindered us in practice from constructing
large proofs (of around 100 steps) within the tool. Note that the space
required for proof skeletons is significantly less than that required to store
proofs explicitly (as discussed in §6.3.2) since rule objects do not store entire
sequents (which are typically large due to the number of hypotheses they
contain), but only the change a sequent undergoes as a result of applying
the rule object (as described in §5.7).

6.5. EVALUATION 105

6.5 Evaluation

In this section we present an evaluation of the effectiveness of our solution
to represent and reuse proofs as presented in this chapter. In particular, we
show concrete practical benefits experienced as a result of implementing the
ideas presented in §6.4 using empirical results gathered from the tool.

The details of the experiment performed are as follows. The RODIN
tool was modified to generate proof reuse statistics. In particular, the proof
obligation (PO) manager shown in figure 2.2 was modified to record the
success with which it could guarantee proof reuse for all proof obligations it
was required to process in a log file. The PO manager is invoked every time
proof obligations are generated from a model, which is done automatically
every time the user saves the model he is working on. The task of the PO
manager (as described in §6.2.2) is to maintain consistency between the proof
obligations generated from a model and their proofs.

The modified tool was then given to two users (Matthias Schmaltz and
Thai Son Hoang) to collect proof reuse statistics over a two month period
from mid November 2007 to mid January 2008. During this period they
worked on the formal development of an elevator system and various other
smaller formal developments that were representative of how the tool would
be used in a practical setting. The resulting log files were then combined and
analysed mechanically. It was observed that the PO manager was invoked 742
times during this period in order to process total of 31,074 proof obligations.

In the following sub-sections we interpret the data collected in order to
experimentally evaluate the ideas presented in this chapter. The points we
consider for this evaluation are:

1. How successful was our approach in terms of percentage of proofs that
could be reused?

2. How scalability was our approach as developments grew larger?

3. What was the benefit to the user in terms of improved reaction times
of the system?

The following sub-sections answer these questions in this order.

6.5.1 Success of Proof Reuse

Out of the total 31,074 proof obligations processed, the number of proof
obligations observed to fall into the following categories (as illustrated in
figure 6.1) were:

106 CHAPTER 6. REPRESENTING AND REUSING PROOFS

0%

10%

20%

30%

40%

50%

New Irrecoverable Unchanged Recoverable

47%

39%

12%

2%

Type of Proof Obligations Encountered

F
re

q
u

e
n

c
y

Proof Reuse: 86%

Figure 6.1: Observed frequency with which proofs were reused.

6.5. EVALUATION 107

New: 613 (2%) of the proof obligations processed were new and therefore
not associated with any previous proof attempt. The PO manager
would typically run a collection of automated provers the first time it
encounters such a new proof obligation.

Irrecoverable: 3595 (12%) of these proof obligations were irrecoverable, by
which we mean that if a proof of a previous version of the proof obliga-
tion existed, it could not be guaranteed reusable since it had undergone
an irrecoverable change such as the removal of a used hypothesis or the
modification of the goal as described in §6.2.1.

Unchanged: 12,201 (39%) of the proof obligations processed were unchanged,
by which we mean that they had undergone no change since the last
time they were processed by the PO manager. All previous proof at-
tempts for such unchanged proof obligations would trivially still be
valid. Although our approach of using proof dependencies from §6.4.3
would also guarantee proof reuse in this degenerate case, we still make
a distinction here between unchanged proof obligations, and those that
are ‘changed but recoverable’ (the category that follows) in order to em-
phasise the additional benefit of using a smarter proof reuse strategy
(i.e. using dependencies) verses using one that is the most straightfor-
ward (i.e. checking that proof obligations are identical).

Recoverable: 14,665 (47%) of the proof obligations processed were recov-
erable, by which we mean that although these proof obligations had
suffered a change, any previous proofs associated with them would still
be guaranteed to be valid on the basis of their proof dependencies (as
explained in §6.4.3) since they had undergone a recoverable change such
as the addition of a hypothesis, or the removal of an unused hypothesis
as described in §6.2.1.

Figure 6.1, which illustrates this collected data, shows that stored proofs
were guaranteed to be reusable 86% of the time using the ideas presented in
this chapter. It also shows that the major percentage of these proofs (47%)
could not have been reused with a simpler proof reuse strategy that just
checked if proof obligations were identical.

6.5.2 Scalability

In order to evaluate the scalability of our approach for large developments,
the data collected was analysed to compute the average percentage of proof
reuse observed as the size of the development increased. The number of proof

108 CHAPTER 6. REPRESENTING AND REUSING PROOFS

obligations processed in a single invocation of the PO manager was used as
a measure of the size of the development since larger developments result in
a greater number of generated proof obligations that need to be processed
by the PO manager.

The largest number of proof obligations that needed to be processed in
a single invocation of the PO manager that we observed from this data was
198. The associated development was that of an elevator system whose final
version had a total of 28 variables, 79 invariants and 35 events over 8 succes-
sively refined models, and resulted in a total of 429 proof obligations being
generated (excluding those that were trivially valid due to purely syntactic
considerations), making this a sufficiently large model to consider for this
study.

The results of this analysis are presented in the area graph in figure
6.2. As in §6.5.1 we also make a distinction here between unchanged and
changed, but recoverable proof obligations in this graph in order to bring
out the additional benefit of using our approach over a more straightforward
one. The area in the graph representing proof reuse due to recoverable proof
obligations subsumes that due to those that are unchanged since unchanged
proof obligations are trivially recoverable.

From figure 6.2 we see that the percentage of proof reuse remains within
a very high range (between 90% and 100%) even when developments be-
come large. We also observe that the percentage of proofs reused actually
increase when developments increase in size (notice that average proof reuse
is relatively low for developments with less that 10 proof obligations). This
increase in proof reuse can be explained, since larger developments typically
result in more proof obligations being generated, most of which become good
candidates for proof reuse.

Note that an increase in the percentage of proofs reused with an increase
in the size of developments does not imply that the tool runs faster as devel-
opments get larger since the actual number of proof obligations also grows.
What this does imply though is that proof reuse has a bigger impact on larger
developments than smaller ones and therefore makes it possible to perform
larger developments more efficiently with the tool.

6.5.3 Improved reaction times

Facilitating such a high percentage of proof reuse was not an end in itself,
but motivated by our requirement of supporting a reactive development en-
vironment as discussed in chapter 2. Our main aim was to reduce the time
needed for the system to compute the impact of a modeling change on proofs.

We now proceed to use the experimental data just presented in §6.5.1

6.5. EVALUATION 109

0%

25%

50%

75%

100%

1 5 9

1
3

1
7

2
2

2
6

3
0

3
4

3
8

4
2

4
6

5
0

6
3

7
2

7
8

8
4

8
8

9
2

9
6

1
0

0

1
0

7

1
2

0

1
3

3

1
4

5

1
5

1

1
6

4

1
6

9

1
7

7

1
9

8

Number of POs processed in a single invocation

of the PO manager.

A
v
e
ra

g
e
 p

e
rc

e
n

ta
g

e
 p

ro
o

f
re

u
s
e
 o

b
s
e
rv

e
d

U
n

c
h

a
n

g
e
d

R
e
c
o

v
e
ra

b
le

Figure 6.2: Observed scalability with which proofs were reused.

110 CHAPTER 6. REPRESENTING AND REUSING PROOFS

to evaluate the concrete benefit (in terms of improved reaction times of the
tool after a save) achieved using our approach. The average time the system
currently requires to react after a save is about 3-5 seconds, which is just
about acceptable for reactive development. This includes the time required
for parsing, type-checking, and generating proof obligations for the saved
model, as well as running automated provers on all new proof obligations.

We now compute a rough estimate of the extra time needed in case proofs
were not reused and always needed to be replayed (as described in §6.4.2.2)
in order to determine their validity. For this we assume that on average
we need an extra 500ms in order to replay a proof attempt. Note that
this extra 500ms is a rather conservative estimate since each proof typically
contains multiple invocations of automated provers that require about 300ms
each. On average, 42 (i.e. 31,074 ÷ 742) proof obligations were processed
per save. If we did not have any support for proof reuse, the tool would have
required on average an extra 18 seconds (i.e. 42 × 86% × .5) every time the
user saved his model, resulting in an approximate five fold increase in the
reaction time of the tool. Note that the calculated 18 second additional delay
is for the average case. For large developments, the additional delay would
be much longer. For instance in the case where 198 proof obligations need
to be processed, the additional delay would be around 85 seconds (i.e. 198
× 86% × .5). Such delays would be unacceptable for a reactive development
environment.

We have therefore demonstrated using experimental evidence that the
ideas presented in this chapter have resulted in a very high rate of proof
reuse and that our approach is scalable for large developments. We have also
used this data to show that supporting a reactive development environment
as described in chapter 2 would be practically infeasible without such high
rates of proof reuse in place.

One question that still remains to be answered is whether these increased
reaction times (and the reactive development paradigm as a whole) actually
helps the working engineer. In particular, does it make learning the formal
method easier, and does it increase the productivity in applying the formal
method to solve practical problems. This will be dissed later in §9.2.

6.6 Related Work

The topic of proof reuse has been heavily studied in the context of pro-
gram verification. The KIV and KeY systems use dynamic logic to verify
imperative and object oriented programs. Both systems support a form of

6.6. RELATED WORK 111

proof reuse [81, 23] based on reasoner replay as discussed in §6.3.3. They
show impressive results using heuristics that are fine tuned for their partic-
ular setting. Similar heuristics can be incorporated into our setting to bet-
ter handle irrecoverable changes. Our solution independently contributes to
their approach (and other replay based approaches) since proof attempts are
guaranteed resilient to simple changes where explicit replay may be avoided.

Our solution for avoiding explicit reuse is similar to [42, 85], where a
proof is generalized using meta-variables that can be reinstantiated for proof
reuse. Although more general, this approach requires higher-order unification
(which is undecidable) for reinstantiating proofs. The authors in [42] claim
that the unification problems they encounter are fairly simple, but we believe
that in our setting (where a sequent may have hundreds of hypotheses),
unification, even if well behaved, would still take more time than reasoner
replay. We opt for a less general, but simpler and more efficient solution to
support the types of reuse that we frequently need.

The VSE system supports proof reuse [85] over an evolving specification
by explicitly transforming specifications and proofs simultaneously using a
set of predefined basic ‘development transformations’. Although this allows
for a more controlled proof reuse, we do not take this approach due to two
reasons. First, as discussed in §6.2.2, we do not want to forcibly recover
from every modeling change. Secondly, we believe that a proof tool should
use proof obligations, and not models as a source of change. We want the
proof tool to work independently of the modeling constructs used, allowing
both to evolve independently. Our proof tool does have the possibility of
accepting ‘hints’ from the modeling tools (e.g. relevant hypotheses, constant
renaming), but these have a logical meaning independent of the modeling
formalism used.

Our approach is similar to earlier work done on the mural system [58] for
checking the consistency of proofs when theories change [82]. Proof attempts
were represented explicitly as natural deduction style proofs that could be
traversed and checked for consistency when their proof obligations changed.
Explicit proof dependencies though were not computed. It is unclear from the
documentation how such proof attempts could be replayed for irrecoverable
changes.

Proof reuse is not such a hot topic in pure logic based proof assistants
such as Isabelle [79]. Users do reuse proof attempts, but by rerunning tactic
application scripts. This is justified since in such systems one does not prove
‘proof obligations’ (that are machine generated and change often), but ‘theo-
rems’ (that are entered by the user and are somewhat stable). Nevertheless,
the need for proof management and reuse is felt [35], the more such tools are
used for verification. Recent work on theorem reuse [55] in Isabelle is a step

112 CHAPTER 6. REPRESENTING AND REUSING PROOFS

in this direction, but this is a post proof consideration and requires explicit
user guidance.

6.7 Conclusion

In this chapter we have presented a solution to represent and manage proof
attempts such that:

� They are guaranteed to be resilient (still applicable) for some simple (re-
coverable) changes that proof obligations frequently go through when
using a reactive development environment.

� It is efficient to check that a proof attempt is still applicable when its
proof obligation changes.

� For irrecoverable changes, proof attempts can be reused incrementally
to construct new proof attempts.

We have found the ideas presented in this chapter important for support-
ing proof within the RODIN reactive development environment. This has
facilitated better interaction between the modeling and proving processes
and has resulted in a marked improvement in the usability of this tool over
the previous generation of tools [33, 8] for the B method. A less detailed
description of the ideas presented in this chapter can be found in [65].

Chapter 7

Reengineering Proofs

This chapter builds on the idea that proofs are themselves formal objects
that can be manipulated to perform some useful operations. This chapter
is not meant to be a catalogue of all possible proof manipulations, but uses
examples to sketch some proof manipulations that are useful in an engineering
setting. The main contribution of this chapter is to propose tool support
for some frequently occurring manipulations on proofs that would otherwise
be tedious and error-prone to perform manually. Inspiration is drawn from
similar approaches used to refactor program code.

7.1 Introduction

Proof reengineering involves modifying an existing proof attempt for a new
purpose. In chapter 6 we derived a way of representing proof attempts that
could be efficiently reused when proof obligations change. In this chapter
we show how such proof attempts can be manipulated to support additional
operations that are useful in the engineering setting.

Viewing proof attempts themselves as large pieces of software, we draw
our inspiration from the benefits observed from current approaches for refac-
toring program code [46] such as variable renaming, dead code removal and
code extraction, and try to support their counterparts for proofs. In the
context of program code, refactoring refers to a disciplined technique for al-
tering the internal structure of existing code without changing its external
behavior. Not all the proof manipulations that we describe in this chapter
can be termed refactorings in the strict sense of this definition since the aim
of some of them is to alter the internal structure of a proof for a new pur-
pose, for instance by changing what is proved, or how much of the existing
proof remains. We therefore use the more general term ‘proof reengineering’

113

114 CHAPTER 7. REENGINEERING PROOFS

to characterize the operations presented here.
These operations provide the user with tool support for improving the

structure of existing proofs and reusing existing proof fragments to prove
similar sub-goals. In the sections that follow we use simple examples to
clearly show how proof attempts can be reengineered to support the following
operations:

1. Modifying hypotheses.

2. Copying and pasting sub-proofs.

3. Automatic proof completion.

4. Removing redundant proof steps.

5. Inserting steps in the middle of proofs.

6. Automatically moving sub-proofs.

Operations 4 and 6 can be considered pure refactorings since they only im-
prove the internal structure of a proof without changing its purpose.

Currently, such proof reengineering steps are performed in existing proof
tools by way of trial and error, by users manually editing and replaying
existing proof attempts. This becomes tedious and error prone once proofs
become large, as stated in [35], which advocates proper tool support for such
tasks.

We try to show how our way of representing and working with proofs as
described in chapters 5 and 6 can be used to provide better tool support for
proof reengineering as compared to current approaches. In certain cases the
proof tool is even capable of automatically suggesting proof reengineering
steps on the basis of information it can gather about the logical structure of
a proof, which is not possible in other approaches.

The reengineering support discussed in this chapter does not compromise
the soundness of the proof tool (i.e. does not make proof trees invalid) since
each operation in effect only modifies proof trees using the validity preserving
methods described in §5.9.2.

7.2 Modifying Hypotheses

In chapter 6 we have seen that the hypotheses of proof obligations frequently
change during formal development. We have also seen that addition of hy-
potheses, and removal of unused hypotheses are recoverable proof obligation

7.2. MODIFYING HYPOTHESES 115

changes when proof attempts are represented as proof skeletons. In this sec-
tion we will see how such a proof attempt can be replayed even if a used
hypothesis has changed. This approach can also be used to replay proofs
after a renaming of variables. The main idea used is to track the changes
that hypotheses undergo as a result of rule application, and to use these
changes to suggest new reasoner inputs when replay fails. This technique is
illustrated in detail using the example that follows.

Consider the following complete proof tree for the sequent ‘A∧ (B∧C) ` B’:

H, B ! B
Hyp()

A ∧ (B ∧ C), A, B ∧ C,B,C " B

H, B ∧ C,B,C " B

H, B ∧ C " B
ConjHyp(B∧C)

A ∧ (B ∧ C), A, B ∧ C " B

H, A ∧ (B ∧ C), A, B ∧ C " B

H, A ∧ (B ∧ C) " B
ConjHyp(A∧(B∧C))

A ∧ (B ∧ C) " B

The reasoner ConjHyp implements the ∧hyp rule schema from §3.4.4. Here
is the proof skeleton of this proof tree followed by its dependencies:

116 CHAPTER 7. REENGINEERING PROOFS

1

2

3

H, B ! B
Hyp()

H, B ∧ C,B,C " B

H, B ∧ C " B
ConjHyp(B∧C)

H, A ∧ (B ∧ C), A, B ∧ C " B

H, A ∧ (B ∧ C) " B
ConjHyp(A∧(B∧C))

usedHyps := {A ∧ (B ∧ C)}
usedGoal := B

Now, suppose that the hypothesis ‘A∧(B∧C)’ has been modified to ‘A∧(B∧
C ′)’, making the initial sequent ‘A∧ (B∧C ′) ` B’. The above proof skeleton
cannot be reused to reconstruct a proof tree for the changed sequent. This
can be clearly seen from the dependencies of the proof skeleton. Replaying
this proof skeleton would also not be successful since the input predicate
‘A ∧ (B ∧ C)’ to the ConjHyp reasoner in node 1 is no more present in the
hypotheses, making this reasoner call fail.

The example chosen may look a bit contrived since the user could have
chosen to keep the hypotheses A, B, and C separate, in which case the se-
quent ‘A, B, C ` B’ would have been directly discharged using Hyp. Chang-
ing the unused hypothesis C to C ′ would have then not had any impact on
this proof. But such simplifications can not always be performed, and it is
common that used hypotheses are modified in practice. For instance, users
frequently enter universally quantified predicates as invariants, which are (as
hypotheses) frequently instantiated (using the ∀hyp rule from §3.4.4) to de-
rive new hypotheses that are used later in the proof and appear as reasoner
inputs. Changing such universally quantified invariants (which occurs often
since getting the right invariant is an iterative process) without propagating
this change to reasoner inputs (as described here for the more specialised
case of a conjunctive predicate) would require such proofs to be manually
redone.

Coming back to our example, in order to get around this problem, we

7.2. MODIFYING HYPOTHESES 117

could use the information that the hypothesis that was originally ‘A∧(B∧C)’
is now ‘A ∧ (B ∧ C ′)’, and modify the reasoner input at node 1 accordingly.
We are then faced with the same problem when replaying node 2 since the
reasoner input is the predicate ‘B ∧ C’ that is no longer present in the hy-
potheses. Note that ‘B ∧ C’ was not a hypothesis of the initial sequent in
the original proof tree, but was added as an additional hypothesis in node 1.

The solution to this problem is to start with a mapping of the hypothesis
modifications (that we call replay hints) in the initial sequent, and use this
mapping to suggest new reasoner inputs when replay fails. Since new hy-
potheses can be added at each proof tree node, new hypothesis modifications
need to be added to the replay hints when reconstructing a proof. We show
how this can be done for our current example in a step-wise fashion:

Step 1 We start with a pending proof tree node with the new initial sequent
‘A ∧ (B ∧ C ′) ` B’, the original proof skeleton shown earlier, and the
replay hint:

A ∧ (B ∧ C) 7→ A ∧ (B ∧ C ′)

that signifies that the hypothesis ‘A ∧ (B ∧ C)’ in the original initial
sequent has been modified to ‘A ∧ (B ∧ C ′)’.

Step 2 We now try to reuse node 1 of the proof skeleton. Direct reuse of
the rule object is not possible since the needed hypothesis ‘A∧(B∧C)’
is not present. Reasoner replay also fails because of the same reason.
At this point we try to suggest a new reasoner input for this node.
Using the replay hints from step 1 we modify the reasoner input to
‘A ∧ (B ∧ C ′)’, and call the reasoner again with this changed input.
The resulting rule object is:

H, A ∧ (B ∧ C ′), A,B ∧ C ′ ` B

H, A ∧ (B ∧ C ′) ` B
ConjHyp(A∧(B∧C′))

and can be successfully applied to the new initial sequent ‘A∧(B∧C ′) `
B’, resulting in the following proof tree:

118 CHAPTER 7. REENGINEERING PROOFS

A ∧ (B ∧ C ′) " B

H, A ∧ (B ∧ C ′), A, B ∧ C ′ " B

H, A ∧ (B ∧ C ′) " B
ConjHyp(A∧(B∧C′))

A ∧ (B ∧ C ′), A, B ∧ C ′ " B

1′

2′

?

Step 3 We now add new replay hints that we can use to reconstruct the
rest of the proof tree. We compare the rule antecedent of node 1 from
the original proof skeleton with the rule antecedent of node 1′ above.
This comparison is done automatically by comparing the set of added
hypotheses of both these rule antecedents. To make this set comparison
more efficient and precise in practice, these two sets are ordered (using
an order specified by the reasoner) and compared in this order. In the
above example, the lists of added hypotheses ‘A, B∧C ′’ and ‘A, B∧C’
are compared in order to infer that the hypothesis ‘B ∧ C ′’ has taken
the place of the hypothesis ‘B ∧ C’ in the original proof skeleton. We
therefore add a new mapping to our replay hints to make it:

A ∧ (B ∧ C) 7→ A ∧ (B ∧ C ′)

B ∧ C 7→ B ∧ C ′

Step 4 We now repeat steps 2 and 3 to reconstruct node 2 from our proof
skeleton. Since direct reuse and reasoner replay fail, we modify the
reasoner input of node 2 to ‘B ∧ C ′’ using the second mapping in the
replay hints added in step 3. Re-calling the reasoner with this changed
input is then successful, resulting in the following proof tree:

7.2. MODIFYING HYPOTHESES 119

A ∧ (B ∧ C ′), A, B ∧ C ′, B, C ′ " B

A ∧ (B ∧ C ′) " B

H, A ∧ (B ∧ C ′), A, B ∧ C ′ " B

H, A ∧ (B ∧ C ′) " B
ConjHyp(A∧(B∧C′))

A ∧ (B ∧ C ′), A, B ∧ C ′ " B

H, B ∧ C ′, B, C ′ " B

H, B ∧ C ′ " B
ConjHyp(B∧C′)

1′

2′

3′

?

After comparing the rule antecedent of node 2 with that of node 2′ we
add a new mapping to our replay hints, making it:

A ∧ (B ∧ C) 7→ A ∧ (B ∧ C ′)

B ∧ C 7→ B ∧ C ′

C 7→ C ′

Step 5 We now try to reconstruct node 3 from our proof skeleton. In this
case, directly reusing the rule object succeeds, resulting in the following
complete proof tree:

120 CHAPTER 7. REENGINEERING PROOFS

H, B ! B
Hyp()

A ∧ (B ∧ C ′), A, B ∧ C ′, B, C ′ " B

A ∧ (B ∧ C ′) " B

H, A ∧ (B ∧ C ′), A, B ∧ C ′ " B

H, A ∧ (B ∧ C ′) " B
ConjHyp(A∧(B∧C′))

A ∧ (B ∧ C ′), A, B ∧ C ′ " B

H, B ∧ C ′, B, C ′ " B

H, B ∧ C ′ " B
ConjHyp(B∧C′)

1′

2′

3′

It is clear that this method of reconstructing proof trees when used hy-
potheses are modified is not always guaranteed to succeed. In practice
though, it gives us a good heuristic to suggest new reasoner inputs that work,
and can therefore save the user from manually redoing proofs when needed
hypotheses are modified. Such an approach can also be used to replay proofs
after a renaming of variables.

7.3 Copying and Pasting Sub-proofs

While performing interactive proof, a user may notice that he has encoun-
tered a pending sub-goal that is very similar to one that he has already proved
before. In this case it would be convenient to copy part of a proof tree into
a proof clipboard and reuse or paste it at another given proof tree node. The
basic operations that make this possible have already been introduced in
chapter 6 and are sketched below:

Copying Sub-proofs In order to copy a sub-proof tree we extract its proof
skeleton using the ProofTreeNode::getProofSkel() method from §6.4.1
and store it in the proof clipboard.

Pasting Sub-proofs In order to paste a proof skeleton from the proof
clipboard at a given proof tree node we use the incrementalReplay()

7.3. COPYING AND PASTING SUB-PROOFS 121

method from §6.4.2.3 to incrementally replay this proof skeleton at the
given proof tree node.

Copying and pasting sub-proofs in this way will be used as basic operations
in the rest of this chapter. As a running example, consider the following
proof tree:

·

A ! G
·

·?

...

1

2

4 5

A,C ! G
?

3

A,¬C ! G

A,C ! L A,C, L ! G

Its rule objects are not relevant and have replaced by ‘·’. Nodes with ‘?’ rule
objects are still used to denote pending proof tree nodes. The three vertical
dots above node 5 denote that there is a sub-proof tree rooted at this node.

After examining node 3, the user may infer that its proof is very similar
to the proof of node 5 that he has just worked on. He can then choose to
manually copy the sub-proof at node 5 and try to paste it at node 3. The
proof tool then tries to incrementally replay the copied proof skeleton starting
from node 3, resulting in the following proof tree:

·

A ! G
·

·?

...

1

2

4 5

A,C ! G

3

A,¬C ! G

A,C ! L A,C, L ! G

·

...

122 CHAPTER 7. REENGINEERING PROOFS

7.4 Automatic Proof Completion

In the last section we saw how a user could manually copy and paste sub-
proofs to complete a proof. In this section we will show how the proof tool can
automatically suggest such proof completions to the user using precomputed
proof dependencies (as discussed in §6.4.3) for each complete proof tree node.
This idea is similar to how variable and method names are auto-completed
in modern program development environments.

Consider the following proof tree which is similar to our running example
from the last section:

·

A ! G
·

·?

...

1

2

4 5

A,C ! G

3

A,¬C ! G

A,C ! L A,C, L ! G

complete

?

usedHyps := {A}
usedGoal := G

The proof tree rooted at node 5 is complete. Its dependencies have been
computed and shown on its right hand side.

The proof tool may now analyse all pending sub-goals and infer that the
pending node 3 can be made complete by reusing the proof rooted at node
5 and suggest this to the user. The user can then decide to go ahead with
this completion, in which case, the proof tool copies the sub-proof at node 5
to node 3, resulting in the following proof tree:

7.5. REMOVING REDUNDANT PROOF STEPS 123

·

A ! G
·

·?

...

1

2

4 5

A,C ! G

3

A,¬C ! G

A,C ! L A,C, L ! G

complete

...
complete

·

7.5 Removing Redundant Proof Steps

Interactive proof is an exploratory process. A user often rewrites hypotheses,
and introduces case splits and lemmas to better understand the sub-goal he
is trying to prove. This often leads to redundant proof steps that need to be
removed to complete the proof, or to make the proof more readable.

Removing redundant proof steps can be done manually using the basic
copy, prune, and paste operations on proof tree nodes. Doing this manually
though is tedious and error-prone, and requires an understanding of the proof.
In this section we show how the proof tool can do this automatically, in the
spirit of §7.4, using dependency information.

Consider the following proof tree which is identical to the one we started
with in §7.4:

·

A ! G
·

·?

...

1

2

4 5

A,C ! G

3

A,¬C ! G

A,C ! L A,C, L ! G

complete

?

usedHyps := {A}
usedGoal := G

124 CHAPTER 7. REENGINEERING PROOFS

The user now asks the proof tool to automatically remove all redundant
proof steps from this proof tree. The proof tool first computes the proof
dependencies of all complete proof tree nodes in this tree. It then looks at
each internal proof tree node, starting from the root and checks if it finds a
shorter sub-proof that would discharge it.

In the case of the above example it would infer that the sub-proof at node
5 can be reused to reconstruct a complete proof tree for node 1. The proof
tool then performs the following operations:

1. Copy the sub-proof at node 5.
2. Prune node 1.
3. Paste the copied sub-proof to node 1.

The resulting proof tree is:

A ! G
·1

...
complete

A proof obligation change may also make certain proof steps redundant.
For instance, consider the following proof tree:

·?

...

1

2 3

complete

A ! G

A ! L A,L ! G

Cut(L)

The user has first decided to introduce the lemma ‘L’ at node 1, and has used
this lemma to complete the sub-proof at node 3. Now, when trying to prove
the lemma in node 2, he notices that this is not possible, and therefore needs
to modify his model (for instance, by adding ‘L’ as an invariant) in order to
include ‘L’ as a hypothesis in his original proof obligation. After doing this,
the previous proof is reused, resulting in the following reconstructed proof
tree:

7.6. INSERTING STEPS IN THE MIDDLE OF PROOFS 125

·?

...

1

2 3

complete

A,L ! G

Cut(L)

A,L ! G

A,L ! L

usedHyps := {A,L}
usedGoal := G

At this point, node 2 is still pending, but can trivially be discharged using
the Hyp reasoner. A more elegant solution though would be to remove the
redundant first step (i.e. Cut(L)) from this proof all together. As in the
previous example, the proof tool can automatically decide that this step is
redundant since the proof dependencies at node 3 (as shown in the figure)
are satisfied by the sequent at node 1. In this particular case though, this
decision can be made even without considering proof dependencies. Since the
sequents at nodes 1 and 3 are identical, we are guaranteed that any complete
proof tree for node 3 is also a proof tree for node 1. Copying the sub-proof
from node 3 to node 1 results in the following proof tree with the redundant
lemma introduction removed:

·1

...
complete

A,L ! G

7.6 Inserting Steps in the Middle of Proofs

In §5.9.2 we have seen that adding new nodes to a proof tree is only possible
at its pending leaf nodes. It is often useful to add nodes in the middle of a
proof tree.

A good example of when this is useful is when introducing lemmas. In-
troducing a lemma near the root of a proof tree requires it to be proved only
once, but makes it available for the proofs of multiple pending sub-goals.

Introducing lemmas in the middle of proofs is an inherent feature of nat-
ural deduction style proofs such as those supported by the mural system [58],
but not something that is inherently possible in the sequent calculus style
where new proof steps are introduced only at the pending leaves of proof
trees.

126 CHAPTER 7. REENGINEERING PROOFS

In this section we show how the effect of inserting steps in the middle of
proof trees can still be simulated for sequent style proofs by systematically
copying, pruning, and pasting sub-proofs. Apart from just introducing
lemmas, this approach can also be used to insert other useful proof steps
(such as case distinctions) that leave the goal of at least one antecedent
unchanged, in the middle of a proof tree.

The example that follows illustrates how lemmas can be introduced in
the middle of a proof tree. Consider the following proof tree:

A,B, C ! G A,B,¬C ! G A,¬B ! G
?? ?

A ! G
·

2

1

3 4

The dotted lines mean that there may be more proof tree nodes in between
node 1 and nodes 2, 3 and 4. After inspecting node 2, the user finds that he
has missed an important lemma that would also be useful in proving nodes
3 and 4. Instead of introducing and proving this lemma at all three nodes
individually, he indicates that he would like to introduce the lemma ‘L’ in the
middle of the proof tree, at node 1. The proof tool then copies the sub-proof
rooted at node 1 and prunes this node, making it pending. The lemma ‘L’
is then introduced at node 1, resulting in the following proof tree:

A ! G

Cut(L)

A ! L
?

A,L ! G

1

2 3 ?

The copied sub proof is then pasted to node 3, resulting in the following
proof tree:

7.7. AUTOMATICALLY MOVING SUB-PROOFS 127

A,L,B,¬C ! G
?

A,L,B, C ! G
?

A,L,¬B ! G
?

A ! G

Cut(L)

A ! L
?

A,L ! G
·

1

2 3

4 5 6

The user can now resume his original proof at node 4. The introduced lemma
‘L’ is available at nodes 5 and 6 too, but only needs to be proved once at
node 2.

7.7 Automatically Moving Sub-proofs

In the previous section we demonstrated how a lemma could be introduced
in the middle of a proof tree. The choice of where to introduce this lemma
was however left to the user. It would be most advantageous to introduce a
new lemma at the root node of a proof tree. The new lemma would then be
available in all pending proof tree nodes. However this is not always possible
since the proof of a lemma could need hypotheses that are introduced later
in a proof (for instance after a case distinction). The choice of where to
introduce a lemma is therefore important. Too close to the root, and it may
not be provable. Too far away, and it will not be available to other pending
nodes.

When proof trees become large, the optimal point at which to introduce a
lemma is not always clear to a user. In such cases it would be convenient if the
proof tool could use the proof of the lemma to find this point automatically.
The user could then introduce and prove the lemma at a pending leaf node,
and then instruct the proof tool to move the introduction and proof of this
lemma as close to the root as possible. In this section we show how this is
possible using proof dependency information in the spirit of §7.4.

Consider the following proof tree which is identical to the initial proof
tree from the previous section, but with the hidden nodes shown:

128 CHAPTER 7. REENGINEERING PROOFS

A,B,¬C ! G
?

A,B, C ! G
?

2 3

4

A ! G
·1

A,¬B ! G
?·

A,B ! G

5

The user now introduces a lemma ‘L’ at node 5 and proves this lemma,
resulting in the following proof tree:

A,B,¬C ! GA,B, C ! G
?

2 3

4

A ! G
·1

A,¬B ! G
?·

A,B ! G

5

A,B,¬C,L ! G
?

A,B,¬C ! L

...
complete

·

Cut(L)

usedHyps := {A,B}
usedGoal := L

The user now instructs the proof tool to move the introduction of this lemma
down the proof tree so that it is made available at other pending nodes. The
proof tool now tries to find the lowest point on the path between node 5 and
the root node where the lemma introduction and its proof can be moved.
It uses the used hypotheses of the proof of the lemma (shown in the figure)
to find this point. It starts with node 2, whose sequent contains these used
hypotheses and is therefore a possible candidate for the move. Looking for
a lower point, it then considers node 1. Moving the lemma to node 1 would

7.8. RELATED WORK 129

not be successful since its sequent does not contain the hypothesis ‘B’ used
in the proof of the lemma.

The proof tool therefore infers that node 2 is the furthest node on the
path to the root where this move can take place. The move itself can then
be realised using a combination of copy, prune, and paste operations as seen
repeatedly throughout this chapter. The resulting proof tree is:

?
4

?
5

...
complete

·

Cut(L)

2 3

A ! G
·1

A,¬B ! G
?

·

A,B ! G

A,B ! L A,B, L ! G

A,B, L, C ! G A,B, L,¬C ! G

As a result of the move, the newly introduced lemma is additionally available
at node 4 too.

7.8 Related Work

As stated in §7.1 we have drawn our inspiration in this chapter from the
benefits achieved from program refactoring. A huge amount of work has been
done on refactoring program code for which [46] is a principal reference.

In [35], Curzon highlights the importance of proof reengineering to main-
tain old proofs and speed up the creation of new ones when proof develop-
ments become large. His work was done using the HOL proof assistant [49],
but also applies to other proof tools that represent proof attempts as tactic
scripts such as Isabelle [79] and PVS [74]. In these tools, proof reengineering
is performed manually by users editing and replaying existing proof scripts.
This process involves trial and error, and becomes tedious and error prone
once proofs become large, in which case users typically avoid reengineering

130 CHAPTER 7. REENGINEERING PROOFS

old proofs, resulting in proofs that are hard to understand and to maintain.
Curzon’s conclusion is that proper tool support could prevent this from hap-
pening in the first place and could significantly reduce the time needed to
create new proofs. Despite this, tool support for proof reengineering has
not made it into the above stated proof tools. A possible reason for this, as
stated in [35], is that proof creation, rather than proof reuse and maintenance
has been the main concern of proof tool designers. Additionally, represent-
ing proof attempts as tactic scripts gives us almost no information on the
logical structure of a proof that can be used by the proof tool to support
reengineering.

Similar proof reengineering operations could also be realised for natural
deduction style proofs such as those used by the mural system [58]. Sup-
porting such operations could be easier (or may even not be required in the
case of §7.6) for natural deduction style proofs because of the flat and global
nature of its derivation steps. For instance, introducing a lemma in a nat-
ural deduction style proof makes it automatically available to all pending
sub-goals in its context. Proof reengineering may also have better results on
natural deduction style proofs because of the more fine grained dependencies
it can store.

7.9 Conclusion

In this chapter we have seen how our proof tool can provide support for
reengineering proof attempts. The following useful reengineering operations
were considered:

1. Modifying hypotheses (§7.2)

2. Copying and pasting sub-proofs (§7.3)

3. Automatic proof completion (§7.4)

4. Removing redundant proof steps (§7.5)

5. Inserting steps in the middle of proofs (§7.6)

6. Automatically moving sub-proofs (§7.7)

Some of these operations have already been successfully implemented in
the RODIN proof tool. The method outlined in §7.2 has been used to replay
proof attempts after renaming variables. Copying and pasting sub-proofs
are available to the user via a drop down menu in the user interface. These

7.9. CONCLUSION 131

operations are used frequently when users work on large proofs. A user may
also introduce a lemma, or a case distinction in the middle of a proof, which
has also been proved to be useful when working on large proofs. The cost
of implementing these operations has been very low (1-2 days) compared to
its benefits to users.

The rest of the operations (items 3, 4, 6) still need to be implemented.
Although implementing these operations in the proof tool is straightforward,
designing an intuitive user interface to allow the user to perform these oper-
ations requires some additional thought.

132 CHAPTER 7. REENGINEERING PROOFS

Chapter 8

Revalidating Proofs

In this chapter we present an additional use of proof skeletons as proof de-
liverables that can be mechanically revalidated. We also show how the proof
checking paradigm can be used to cross-check each step of a proof with re-
spect to an independent third-party proof tool.

8.1 Introduction

The use of formal methods also advocates, in addition to the system being
developed, the delivery of all proofs related to the developed system. Such
a proof deliverable is intended to provide evidence of the correctness of the
developed system that is machine checkable. In this chapter we take such a
‘proof deliverable’ view on the way proofs are represented in this thesis (i.e.
as proof skeletons) and show how they can be mechanically checked.

A second use of the proof checking paradigm in our setting is to provide
a ‘second opinion’ on the proof steps returned by individual (possibly un-
trusted) reasoners that extend the proof tool. In §5.8.1 we have seen that
the rule objects generated by reasoners are required to be logically valid and
are trusted by the proof tool as being so. An ill-behaved reasoner may there-
fore compromise the soundness of the proof tool. Proof checking, although
not a substitute for a sound collection of reasoners, provides a second line of
defence against such soundness bugs.

In this chapter we show how individual rule objects can be checked for
logical validity within the proof tool, but independent of the reasoner that
generated them. Entire proof skeletons can then be revalidated by checking
the logical validity of each of its rules.

In the next section we show how a rule object can be used to generate its
logically equivalent validation condition.

133

134 CHAPTER 8. REVALIDATING PROOFS

8.2 Validation Conditions

In §5.7 we have seen that a rule object with n antecedents implements a
mathematical proof rule schema of the form:

H, Hu, HA0 ` GA0 . . . H, Hu, HAn−1 ` GAn−1

H, Hu ` Gu

The validity of the above rule schema cannot be directly proved within the
proof tool since:

1. It contains the meta variable ‘H’, but the proof tool accepts only con-
crete formulæ.

2. It is an inference rule, but the proof tool can only prove the validity of
sequents.

In order to be able to prove the validity of the above rule schema within
the tool, we generate its logically equivalent validation condition, which is a
sequent containing no meta variables. The validation condition of the proof
rule schema implemented by a rule object is:

Hu ` ((
∧

HA0 ⇒GA0) ∧ . . . ∧ (
∧

HAn−1 ⇒GAn−1))⇒Gu

We now prove the logical equivalence between the rule schema imple-
mented by a rule object, and its validation condition as the following theo-
rem:

Theorem. The following proof rule schemas in PC are logically equivalent:

H, Hu, HA0 ` GA0 . . . H, Hu, HAn−1 ` GAn−1

H, Hu ` Gu
rule

Hu ` (A0 ∧ . . . ∧ An−1)⇒Gu

vc

where Ai =̂
∧

HAi
⇒GAi

.

Proof. Here is a proof of vc, assuming rule:

....
Hu, A0 . . . An−1, HA0 ` GA0 . . .

....
Hu, A0 . . . An−1, HAn−1 ` GAn−1

Hu, A0 . . . An−1 ` Gu
rule

Hu, A0 ∧ . . . ∧ An−1 ` Gu
∧hyp∗

Hu ` (A0 ∧ . . . ∧ An−1)⇒Gu
⇒goal

8.3. REVALIDATING RULE OBJECTS 135

where the remaining n dotted sub-proofs for each i ∈ [0, n− 1] are:

HAi
`

∧
HAi

∧goal∗; hyp
HAi

, GAi
` GAi

hyp∧
HAi

⇒GAi
, HAi

` GAi

⇒hyp

Ai, HAi
` GAi

=̂Ai

Hu, A0 . . . An−1, HAi
` GAi

mon∗

Here is a proof of rule, assuming vc:

Hu ` A⇒Gu
vc

H, Hu ` A⇒Gu
mon∗

H, Hu, HA0 ` GA0....
H, Hu ` A0 . . .

H, Hu, HAn−1 ` GAn−1....
H, Hu ` An−1

H, Hu ` A
∧goal∗

H, Hu, Gu ` Gu
hyp

H, Hu, A⇒Gu ` Gu
⇒hyp

H, Hu ` Gu
cutA⇒Gu

where A =̂ A0 ∧ . . . ∧ An−1, and the remaining n dotted sub-proofs for each
i ∈ [0, n− 1] are:

H, Hu, HAi
` GAi

H, Hu,
∧

HAi
` GAi

∧hyp∗

H, Hu `
∧

HAi
⇒GAi

⇒goal

H, Hu ` Ai
=̂Ai

We have therefore shown that proving vc is necessary and sufficient to
show that rule is valid.

8.3 Revalidating Rule Objects

Programatically, the following method can be used to generate the validation
condition for any given rule object:

1 Sequent Rule::getVC(){
2 Predicate[] antecedentParts := [];
3 for(int i:=0, i < this.ruleAntecedents.length, i++){
4 antecedentParts[i] :=
5 makeImp(
6 makeConj(this.ruleAntecedents[i].addedHyps),
7 this.ruleAntecedents[i].newGoal
8);
9 }

136 CHAPTER 8. REVALIDATING PROOFS

10 return SequentL
11 goal := makeImp(makeConj(antecedentParts),this.usedGoal),
12 hyps := this.usedHyps
13 M;
14 }

The methods makeImp() and makeConj() respectively construct implicative
and conjunctive predicates from their input predicates.

As an example, here is a rule object generated by the Cut reasoner from
§5.8.2, followed by its validation condition:

H ` L H, L ` G

H ` G
Cut(L)

VC : ` (L ∧ (L⇒G))⇒G

The generated validation conditions can then be revalidated by trying to
discharge them using a revalidation tactic. The following method shows how
this can be done:

1 boolean Rule::revalidate(Tactic rvTactic){
2 ProofTreeNode vc := makePendingNode(this.getVC());
3 rvTactic.apply(vc);
4 if (vc.isComplete())
5 return true;
6 else
7 return false;
8 }

The above method returns true iff the invoking rule object could be reval-
idated using the given revalidation tactic rvTactic. The method first con-
structs a pending proof tree node from the validation condition of the rule
object (line 2) and then applies the given revalidation tactic to it (line 3) and
returns true iff the resulting proof tree is complete (lines 4-7).

8.4 Revalidating Proof Skeletons

Entire proof skeletons can be revalidated by revalidating each of its rule
objects as discussed in §8.3. The verification conditions for the following
proof skeleton appears below:

8.5. RELATED WORK 137

H ! A H ! B
H ! A ∧B

ConjGoal()

H, B ! B
Hyp()

H, A ! A
Hyp()

1

2 3

VC1 : ` (A ∧B)⇒ (A ∧B)
VC2 : A ` A
VC3 : B ` B

Each verification condition is sub-scripted with the node in the proof skeleton
from which it is generated.

8.5 Related Work

The possibilities available for proof checking heavily depend on the architec-
ture of the proof tool used and the way it represents proofs.

An elegant approach is possible in LCF style provers such as Isabelle [79]
and HOL [49]. Isabelle can be asked to record and output a logically equiv-
alent ‘proof term’[27] in typed λcalculus that can be independently checked
by a much simpler proof checker. Generating such a proof term is possible
(although optional) in such systems since all logical inferences go through
a logical kernel as described in §5.11. The resulting proof terms are large
and require non-trivial compression techniques as stated in [27] in order to
be manageable. Similarly, HOL [49] can be asked to generate a sequence of
basic inference steps (as described in [89]) for each proof. Significantly more
time is required to additionally generate this information (65s vs. 40min as
reported in [89]). As a result, generating such a proof deliverable is seldom
done.

The approach presented in this chapter is the best we can achieve in our
setting where we place no restrictions on the internal workings of reasoners
that are added to our proof tool. Although we are only able to record proof
steps at a larger granularity than that possible in the LCF style provers
just discussed, this also makes it feasible to always generate such a proof
deliverable.

138 CHAPTER 8. REVALIDATING PROOFS

The approach used in this chapter is similar to the approach used by the
automated prover SPASS described in [90] that can be asked to double check
its proof steps with respect to another external automated theorem prover.

8.6 Conclusion

In this chapter we have shown how individual rule objects and entire proof
skeletons can be checked for logical validity within the proof tool, indepen-
dently of the reasoners that generated them.

The methodology introduced here, of generating and proving validation
conditions for each rule object, has also been successfully used to test the
correctness of newly written reasoners with respect to several freely available
automated theorem provers [88]. This has resulted in the discovery of several
bugs before integrating such reasoners into the proof tool.

Chapter 9

Conclusion

We now bring this thesis to a close by summarizing its main contributions,
providing evidence that suggests that these contributions lead to an increase
in user productivity, and discussing areas of further work.

9.1 Summary of Contributions

This thesis has made the following important practical contributions towards
the goal of making formal theorem proving an engineering activity:

� It has shown that proper tool support can strenghten the role of theo-
rem proving as a design aid.

� It has shown that it is feasible to integrate theorem proving into a
reactive development environment.

� It has shown that it is possible to design a proof tool whose reasoning
capabilities can be easily extended using external theorem provers.

� It has proposed a representation for the proofs constructed using such
an extensible proof tool, such that these proofs can be:

– Incrementally reused

– Reengineered and refactored

– Revalidated

On the more theoretical side it has shown how one can formally reason
about partial functions without abandoning the well understood domain of
classical two-valued predicate calculus. This too has major practical impli-
cations since:

139

140 CHAPTER 9. CONCLUSION

� This makes it easier for users already familiar with standard predicate
calculus to reason about partial functions.

� This makes it possible to reuse existing theorem provers for standard
predicate calculus to reason in the partial setting.

The ideas presented here have been used to design and implement the
proof infrastructure for the RODIN platform and have resulted in a marked
improvement in the usability of this tool over the previous generation of tools
[33, 8] for the B-method, as will shortly be discussed in §9.2. These ideas
are independent of the Event-B formal method and the logic it uses, and can
also be used to achieve similar benefits in other existing proof tools.

9.2 User Evaluation

In this section we present practical evidence to suggest that the ideas de-
veloped in this thesis help the engineer doing formal system development.
It further develops on the evaluation presented in §6.5 by focusing not just
on the benefit of one of the contributions made in this thesis (proof reuse
in the case of §6.5), but on the overall effect of all contributions on user
productivity.

A comparison is made between the previous generation Click’n’Prove [8]
tool and the newer RODIN [2] tool which implements the ideas from the
thesis. Click’n’Prove is a very good candidate for this comparison since both
tools support the same formal method, use the same logic for proofs, use iden-
tical automated decision procedures, and have a similar interactive proof UI.
Click’n’Prove uses the more standard way of representing and reusing proofs,
i.e. as tactic scripts that need to be replayed, as in most currently used proof
tools such as Isabelle and PVS. A major change in RODIN is the way proofs
are represented, reused, and manipulated (using the ideas presented in the
thesis) and the reactive nature of the development environment, which would
not have otherwise been feasible (as shown in §6.5). The RODIN tool addi-
tionally supports reasoning using the well-definedness approach discussed in
chapter 4.

In what follows we show the difference in productivity between these two
tools for users with no prior experience with any of them. An advanced
course in Event-B is offered every year to students at the ETH Zurich. A
major part of this course is a project which involves a large non-trivial formal
development that lasts about 12 weeks. We compare observations of the
success of students with this project over two runs of this course. The first

9.3. FUTURE WORK 141

course (course 1) was offered in the winter semester of 2004, and the second
(course 2) in the autumn semester of 2007. The project for both these courses
was identical: the formal development of an elevator system satisfying certain
safety properties.

A main difference between these two runs of the course was that the stu-
dents of course 1 used the Click’n’Prove tool, and the students of course 2
used the RODIN tool. Apart from this, course 1 had more qualified stu-
dents (mostly Doctoral students with a formal methods related thesis topic),
whereas course 2 had mostly undergraduate and masters students. The de-
tails of each of these two courses, along with the number of groups that
completed the project are as follows:

Course 1 (with Click’n’Prove) 13 students (10 Doctoral and 3 Masters)
initially enrolled for this course, out of which 6 students (5 Doctoral, 1
Masters) remained. The others opted out of the course before starting
the project. The remaining 6 students formed 3 groups of 2 students
each in order to work on the project. Out of these 3 groups, only 2
were successful in completing the project.

Course 2 (with RODIN) 13 students (2 Doctoral, 5 Masters, and 6 Bach-
elors) also initially enrolled for this course, out of which 12 students
(2 Doctoral, 4 Masters, and 6 Bachelors) remained. These 12 students
formed 6 groups (4 groups with 2 students each, 1 group with 1 stu-
dent, and 1 group with 3 students) in order to work on the project. All
6 groups successfully completed the project.

These observation show that the students of course 2 were more success-
ful with the project. Although there may be a number of explanations for
this difference in performance between these two courses (such as student
aptitude, or better user interfaces), one very likely factor for explaining this
increase in productivity would be that using the new RODIN tool (which
implements the ideas from the thesis that are specifically aimed to ease and
aid formal proof-based development) allows users to learn and use the for-
mal development method more productively when compared to Click’n’Prove
which did not use such ideas.

9.3 Future Work

In this section we outline some possible areas of future work. In particular,
we focus on work that could not be done within the scope of the thesis due
to practical reasons or because these issues only came up during later stages
of work.

142 CHAPTER 9. CONCLUSION

Proving the Prover In chapter 5 we presented the basic architecture of the
proof tool and its properties using a pseudo-code notation whose main
aim was ease of communication. Since an established formal modeling
notation was not used (because of the reasons stated in §5.3), these
properties could not be mechanically proved.

In many circles, mechanically proving the correctness of a proof tool
is currently not considered to be an absolute necessity. A case for this
point of view is made in [24] which states that (mechanically proved)
correctness is not the only criterion for a proof tool to be used success-
fully in an engineering setting, and that limited resources may be better
spent on improving proof tools in other ways (such as usability and ef-
ficiency). The point of view taken by the PVS community is similar, as
mentioned in [52] that although it is sometimes annoying, “soundness
bugs are hardly ever unintentionally explored” during proof, and that
“most mistakes in a system to be verified are detected in the process
of making a formal specification”.

Nevertheless, mechanically proving the correctness of the proof tool
would still be useful for three reasons. First, it would give us addi-
tional confidence (over manual inspection) on the correctness of its im-
plementation. Second, it would support one of the overall claims of the
formal methods endeavour; that the correctness of computer programs
can (and should) be mechanically provable. Third, proving the prover
would be in interesting exercise in formal bootstrapping. Although, this
could not be done within the scope of this thesis, it would be possible
to achieve in the future using established formal modeling notations
(such as JML and Event-B).

Supporting Sound Reasoner Construction The initial worry of having
such an open policy for accepting reasoner extensions was that exter-
nal automated provers would compromise the soundness of the proof
tool. In hindsight, it was surprising to notice during the development
of the proof tool that the majority of the observed reasoner related
bugs did not originate from off-the-shelf automated provers, but from
natively coded reasoners that generated smaller proof steps to be used
in interactive proof. Although the approach discussed in chapter 8 has
been successfully used to find and correct these bugs, better support
for writing new reasoners would be beneficial to ease their construction,
and to avoid such bugs in the future.

One possibility could be to integrate an LCF style prover such as Is-
abelle as a prover back-end to generate small interactive proof steps too.

9.4. CLOSING REMARKS 143

Implementing a new reasoner would then require one to first prove an
inference rule within Isabelle, and then use it (in the background) to
generate valid proof rules to be used in our proof tool. Such an inte-
gration would provide better support for writing new reasoners since
proving a simple inference rule is typically easier and less error prone
than manually coding it. The one-time effort required to support such
an integration would be to encode the logic used within the meta-logic
used by Isabelle, and then provide an appropriate interface to connect
the two provers.

Supporting Mathematical Extensions The proof tool described in this
thesis has been designed to discharge sequents (comprising of a fi-
nite set of hypothesis predicates, and a goal predicate as described
in §3.3.2). The mathematical theory used is fixed (i.e. set theory with
well-definedness in the case of RODIN). Although the proof tool has
not been designed to develop and use generic mathematical theories
(such as partial orders, groups, or lists), this can sometimes be useful.
This can be supported currently by adding the axioms or rules of the
theory as hypotheses in all proof obligations, but this approach would
not be scalable for large theories. Although [9] presents some ideas
on how mathematical theory extensions can be developed within the
B-method, it is still not clear what concrete form they will take in the
future. Once this is in place it would be useful to consider a more
elegant approach of using such mathematical extensions in proofs.

9.4 Closing Remarks

The work presented in this thesis has made several practical contributions
towards bringing formal theorem proving closer to the working engineer.

Out of these contributions, the success with which proofs could be incre-
mentally reused during a typical formal development (details of which are
presented in §6.5) far surpassed our expectations and turned out to be the
real enabling factor that made it possible for us to integrate theorem proving
into a modern reactive development environment. It is our hope that this
technology becomes standard for formal development tools in the future, just
like incremental compilation has now become standard practice in software
engineering.

The other contributions (such as the ones described in chapter 7) have
not yet had such a visible impact on end users. This may be since their use
requires some prior knowledge and experience with the tool. It is our hope

144 CHAPTER 9. CONCLUSION

that better documentation and user help will result in these features being
more widely used in the future to increase user productivity.

Bibliography

[1] Rigorous Open Development Environment for Complex Systems
(RODIN) official website. http://www.event-b.org/.

[2] Rigorous Open Development Environment for Complex Systems
(RODIN) sourceforge website. http://sourceforge.net/projects/

rodin-b-sharp/.

[3] Jean-Raymond Abrial. The B-Book: Assigning programs to meanings.
Cambridge, 1996. ISBN 0-521-49619-5.

[4] Jean-Raymond Abrial. Event based sequential program development:
Application to constructing a pointer program. In K. Araki, S. Gnesi,
and D. Mandrioli, editors, Formal Methods Europe (FME 2003), volume
2805 of Lect. Notes in Comp. Sci., pages 51–74. Springer-Verlag, 2003.

[5] Jean-Raymond Abrial. Formal methods in industry: achievements,
problems, future. In ICSE ’06: Proceeding of the 28th international con-
ference on Software engineering, pages 761–768, New York, NY, USA,
2006. ACM.

[6] Jean-Raymond Abrial. Modeling in Event B: System and Softtware De-
sign. Cambridge, 2007. to appear.

[7] Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, and Laurent
Voisin. An open extensible tool environment for Event-B. In Z. Liu
and J. He, editors, ICFEM 2006, volume 4260, pages 588–605. Springer,
2006.

[8] Jean-Raymond Abrial and Dominique Cansell. Click’n prove: Interac-
tive proofs within set theory. In David A. Basin and Burkhart Wolff,
editors, Theorem Proving in Higher Order Logics, TPHOLs 2003, vol-
ume 2758 of Lect. Notes in Comp. Sci., pages 1–24. Springer-Verlag,
2003.

145

http://www.event-b.org/
http://sourceforge.net/projects/rodin-b-sharp/
http://sourceforge.net/projects/rodin-b-sharp/

146 BIBLIOGRAPHY

[9] Jean-Raymond Abrial, Dominique Cansell, and Guy Laffitte. ”Higher-
Order” mathematics in B. In ZB ’02: Proceedings of the 2nd Interna-
tional Conference of B and Z Users on Formal Specification and Devel-
opment in Z and B, pages 370–393, London, UK, 2002. Springer-Verlag.

[10] Jean-Raymond Abrial and Louis Mussat. On using conditional defini-
tions in formal theories. In ZB’2002 – Formal Specification and De-
velopment in Z and B, volume 2272 of Lecture Notes in Computer Sci-
ence (Springer-Verlag), pages 242–269, Grenoble, France, January 2002.
LSR-IMAG.

[11] European Space Agency. Press release no 33-1996: Ariane 501 - Presen-
tation of inquiry board report. http://www.esa.int/export/esaCP/

Pr 33 1996 p EN.html.

[12] Alessandro Armando, Silvio Ranise, and Michaël Rusinowitch. A rewrit-
ing approach to satisfiability procedures. Inf. Comput., 183(2):140–164,
2003.

[13] David Aspinall and Christoph Lüth, editors. User Interfaces for Theo-
rem Provers, volume 103, 2003.

[14] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cam-
bridge University Press, United Kingdom, 1998.

[15] M. Balser, W. Reif, G. Schellhorn, K. Stenzel, and A. Thums. Formal
system development with KIV. In T. Maibaum, editor, Fundamental
Approaches to Software Engineering, number 1783 in LNCS. Springer,
2000.

[16] Janet Barnes, Rod Chapman, Randy Johnson, James Widmaier, David
Cooper, and Bill Everett. Engineering the tokeneer enclave protection
software. In ISSSE ’06: Proceeding of IEEE International Symposium
on Secure Software Engineering, 2006.

[17] Mike Barnett, Bor-Yuh Chang, Robert DeLine, Bart Jacobs, and
K. Rustan M. Leino. Boogie: A Modular Reusable Verifier for Object-
Oriented Programs. In FMCO 2005, volume LNCS. Springer-Verlag,
2005.

[18] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec#
programming system: An overview. Construction and Analysis of Safe,
Secure, and Interoperable Smart Devices, pages 49–69, 2005.

http://www.esa.int/export/esaCP/Pr_33_1996_p_EN.html
http://www.esa.int/export/esaCP/Pr_33_1996_p_EN.html

BIBLIOGRAPHY 147

[19] Howard Barringer, Jen H. Cheng, and Cliff B. Jones. A logic covering
undefinedness in program proofs. Acta Inf., 21:251–269, 1984.

[20] Gilles Barthe, Lilian Burdy, Julien Charles, Benjamin Grégoire, Marieke
Huisman, Jean-Louis Lanet, Mariela Pavlova, and Antoine Requets.
JACK: a tool for validation of security and behaviour of Java appli-
cations. In FMCO: Proceedings of 5th International Symposium on For-
mal Methods for Components and Objects, Lecture Notes in Computer
Science. Springer-Verlag, 2007.

[21] Kent Beck and Cynthia Andres. Extreme Programming Explained: Em-
brace Change (2nd Edition). Addison-Wesley Professional, 2004.

[22] Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt, editors. Veri-
fication of Object-Oriented Software: The KeY Approach. LNCS 4334.
Springer-Verlag, 2007.

[23] Bernhard Beckert and Vladimir Klebanov. Proof reuse for deductive
program verification. In J. Cuellar and Z. Liu, editors, Proceedings, Soft-
ware Engineering and Formal Methods (SEFM), Beijing, China. IEEE
Press, 2004.

[24] Bernhard Beckert and Vladimir Klebanov. Must program verification
systems and calculi be verified? In Proceedings, 3rd International Verifi-
cation Workshop (VERIFY), Workshop at Federated Logic Conferences
(FLoC), Seattle, USA, 2006.

[25] Patrick Behm, Lilian Burdy, and Jean-Marc Meynadier. Well defined
B. In B ’98: Proceedings of the Second International B Conference on
Recent Advances in the Development and Use of the B Method, pages
29–45, London, UK, 1998. Springer-Verlag.

[26] Sergey Berezin, Clark Barrett, Igor Shikanian, Marsha Chechik, Arie
Gurfinkel, and David L. Dill. A practical approach to partial functions
in CVC Lite.

[27] Stefan Berghofer and Tobias Nipkow. Proof terms for simply typed
higher order logic. In TPHOLs, pages 38–52, 2000.

[28] Yves Bertot and Pierre Castéran. Interactive theorem proving and pro-
gram development: Coq’Art: the calculus of inductive constructions.
Texts in theoretical computer science. Springer-Verlag, 2004.

148 BIBLIOGRAPHY

[29] Robert V. Binder. Testing Object-Oriented Systems: Models, Patterns,
and Tools. Addison-Wesley, 1999. ISBN 0-201-80938-9.

[30] Amine Chaieb and Tobias Nipkow. Verifying and reflecting quantifier
elimination for Presburger arithmetic. In G. Stutcliffe and A. Voronkov,
editors, Logic for Programming, Artificial Intelligence, and Reasoning,
volume 3835 of LNAI. Springer, 2005.

[31] Patrice Chalin. Logical foundations of program assertions: What do
practitioners want? In SEFM, pages 383–393, 2005.

[32] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Check-
ing. MIT Press, 1999. ISBN 0-262-03270-8.

[33] Clearsy. Atelier B. User Manual, 2001. Aix-en-Provence.

[34] Intel Corporation. Statistical analysis of the floating point flaw - Intel
white paper. http://www.intel.com/support/processors/pentium/
fdiv/wp/.

[35] Paul Curzon. The importance of proof maintenance and reengineer-
ing. In Int. Workshop on Higher Order Logic Theorem Proving and Its
Applications, 1995.

[36] Ádám Darvas, Farhad Mehta, and Arsenii Rudich. Efficient well-
definedness checking. In International Joint Conference on Automated
Reasoning (IJCAR), Lecture Notes in Computer Science. Springer-
Verlag, 2008. To appear.

[37] Leonardo de Moura, Sam Owre, John Rushby, Harald Rueß, and Natara-
jan Shankar. Integrating verification components: The interface is the
message. To appear in the Proceedings of the 2004 Monterey Workshop,
2004.

[38] Ewen Denney, Bernd Fischer, and Johann Schumann. An empirical
evaluation of automated theorem provers in software certification. In-
ternational Journal on Artificial Intelligence Tools, 15(1):81–108, 2006.

[39] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem
prover for program checking. J. ACM, 52(3):365–473, 2005.

[40] Edsger W. Dijkstra. On the reliability of programs. circulated privately,
1972.

http://www.intel.com/support/processors/pentium/fdiv/wp/
http://www.intel.com/support/processors/pentium/fdiv/wp/

BIBLIOGRAPHY 149

[41] Eclipse - an open development platform, official website. http://www.

eclipse.org.

[42] Amy Felty and Douglas Howe. Generalization and reuse of tactic proofs.
In Frank Pfenning, editor, Proceedings of the 5th International Confer-
ence on Logic Programming and Automated Reasoning, volume 822 of
LNAI, pages 1–15, Kiev, Ukraine, 1994. Springer-Verlag.

[43] Jean-Christophe Filliâtre and Claude Marché. Multi-prover verification
of c programs. In ICFEM, pages 15–29, 2004.

[44] Melvin Fitting. First-order logic and automated theorem proving (2nd
ed.). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1996.

[45] John S. Fitzgerald and Cliff B. Jones. The connection between two
ways of reasoning about partial functions. Technical Report CS-TR-
1044, School of Computing Science, Newcastle University, August 2007.

[46] Martin Fowler. Refactoring: improving the design of existing code.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[47] Gerhard Gentzen. Investigations into logical deductions. In M. E. Szabo,
editor, The Collected Papers of Gerhard Gentzen, pages 68–131. North-
Holland Publishing Co., Amsterdam, 1969.

[48] Kurt Gödel. On Formally Undecidable Propositions of Principia Math-
ematica and Related Systems. New York: Dover, 1992. English transla-
tion of 1931 paper “Über Formal Unentscheidbare Sätze der Principia
Mathematica und Verwandter System”, ISBN 0-486-66980-7.

[49] Michael J. C. Gordon and Tom F. Melham, editors. Introduction to
HOL: a theorem proving environment for higher order logic. Cambridge
University Press, New York, NY, USA, 1993.

[50] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Lan-
guage Specification Third Edition. Addison-Wesley, Boston, Mass., 2005.

[51] David Gries and Fred B. Schneider. Avoiding the undefined by un-
derspecification. In Jan van Leeuwen, editor, Computer Science To-
day: Recent Trends and Developments, number 1000, pages 366–373.
Springer-Verlag, New York, N.Y., 1995.

[52] W. O. David Griffioen and Marieke Huisman. A comparison of PVS and
Isabelle/HOL. In TPHOLs, pages 123–142, 1998.

http://www.eclipse.org
http://www.eclipse.org

150 BIBLIOGRAPHY

[53] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for
defining logics. In Proceedings 2nd Annual IEEE Symp. on Logic in
Computer Science, LICS’87, Ithaca, NY, USA, 22–25 June 1987, pages
194–204. IEEE Computer Society Press, New York, 1987.

[54] Jean-Marc Jézéquel and Bertrand Meyer. Design by Contract: The
lessons of Ariane. Computer (IEEE), pages 129–130, January 1997.

[55] Einar Broch Johnsen and Christoph Lüth. Theorem reuse by proof
term transformation. In Konrad Slind, Annette Bunker, and Ganesh
Gopalakrishnan, editors, International Conference on Theorem Proving
in Higher-Order Logics TPHOLs 2004, volume 3223 of Lecture Notes in
Computer Science, pages 152–167. Springer, September 2004.

[56] Cliff B. Jones. Systematic software development using VDM (2nd ed.).
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1990.

[57] Cliff B. Jones. Reasoning about partial functions in the formal develop-
ment of programs. Electr. Notes Theor. Comput. Sci., 145:3–25, 2006.

[58] Cliff B. Jones, Kevin D. Jones, Prter A. Lindsay, and Richard Moore.
mural: A Formal Development Support System. Springer-Verlag, 1991.

[59] Deepak Kapur and Mahadavan Subramaniam. Mechanizing verification
of arithmetic circuits: SRT division. In S. Ramesh and G. Sivakumar,
editors, FSTTCS, volume 1346 of Lect. Notes in Comp. Sci., pages 103–
122. Springer-Verlag, 1997.

[60] James Cornelius King. A program verifier. PhD thesis, Carnegie Mellon
University, Pittsburgh, PA, USA, 1970.

[61] Stephen Cole Kleene. Introduction to metamathematics. Bibl. Matem-
atica. North-Holland, Amsterdam, 1952.

[62] Gary T. Leavens, Jean-Raymond Abrial, Don Batory, Michael Butler,
Alessandro Coglio, Kathi Fisler, Eric Hehner, Cliff Jones, Dale Miller,
Simon Peyton-Jones, Murali Sitaraman, Douglas R. Smith, and Aaron
Stump. Roadmap for enhanced languages and methods to aid verifi-
cation. Technical Report 06-21, Iowa State University, Department of
Computer Science, Ames, IA, July 2006.

[63] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design
of jml: a behavioral interface specification language for java. SIGSOFT
Softw. Eng. Notes, 31(3):1–38, 2006.

BIBLIOGRAPHY 151

[64] K. Rustan M. Leino. Extended static checking: A ten-year perspective.
Lecture Notes in Computer Science, 2000, 2001.

[65] Farhad Mehta. Supporting proof in a reactive development environment.
In Mike Hinchey and Tiziana Margaria, editors, Proceedings, 5th IEEE
International Conference on Software Engineering and Formal Methods
(SEFM), London, UK. IEEE Press, 2007.

[66] Farhad Mehta and Tobias Nipkow. Proving pointer programs in higher-
order logic. In Franz Baader, editor, CADE special issue of Information
and Computation. Elsevier, 2005.

[67] Farhad Mehta and Silvio Ranise. Automated provers doing (higher-
order) proof search: A case study in the verification of pointer pro-
grams. Pragmatics of Decision Procedures in Automated Reasoning
(PDPAR’04) Workshop affiliated to the 2nd International Joint Confer-
ence on Automated Reasoning (IJCAR’04), July 2004.

[68] Jia Meng, Claire Quigley, and Lawrence C. Paulson. Automation for
interactive proof: First prototype. Inf. Comput., 204(10):1575–1596,
2006.

[69] Jörg Meyer, Peter Müller, and Arnd Poetzsch-Heffter. The jive
system—implementation description. Unpublished, 2000.

[70] Jörg Meyer and Arnd Poetzsch-Heffter. Interactive verification envi-
ronments for object-oriented programs. Journal of Universal Computer
Science, 5(3):208–225, 1999.

[71] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of
Program Analysis. Springer-Verlag, 1999.

[72] Tobias Nipkow. Winskel is (almost) right: Towards a mechanized se-
mantics. Formal Aspects of Computing, 10(2):171–186, 1998.

[73] Tobias Nipkow, Lawrence Paulson, and Markus Wenzel. Isabelle/HOL
— A Proof Assistant for Higher-Order Logic, volume 2283 of Lect. Notes
in Comp. Sci. Springer-Verlag, 2002.

[74] Sam Owre, John M. Rushby, and Natarajan Shankar. PVS: A prototype
verification system, January 15 2001.

[75] Sam Owre and Natarajan Shankar. The formal semantics of PVS.
http://www.csl.sri.com/papers/csl-97-2/, March 1999.

152 BIBLIOGRAPHY

[76] Laurence Paulson. ML for the working programmer. Cambridge, 1993.
ISBN 0-521-39022-2.

[77] Lawrence C. Paulson. Logic and computation: interactive proof with
Cambridge LCF. Cambridge University Press, New York, NY, USA,
1987.

[78] Lawrence C. Paulson. Isabelle: The next 700 theorem provers. In
P. Odifreddi, editor, Logic and Computer Science, pages 361–386. Aca-
demic Press, 1990.

[79] Lawrence C. Paulson. Isabelle: A Generic Theorem Prover, volume 828
of Lecture Notes in Computer Science. Springer Verlag, 1994.

[80] Lawrence C. Paulson. Generic automatic proof tools. In R. Veroff,
editor, Automated Reasoning and its Applications: Essays in Honor of
Larry Wos, pages 23–47. MIT Press, 1997.

[81] Wolfgang Reif and Kurt Stenzel. Reuse of Proofs in Software Verifica-
tion. In J. Köhler, editor, Workshop on Formal Approaches to the Reuse
of Plans, Proofs, and Programs, IJCAI. Montreal, Quebec, 1995.

[82] Kelvin J. Ross and Peter A. Lindsay. Maintaining consistency under
changes to formal specifications. In FME, pages 558–577, 1993.

[83] Arsenii Rudich, Ádám Darvas, and Peter Müller. Checking well-
formedness of pure-method specifications. In Formal Methods (FM),
Lecture Notes in Computer Science. Springer-Verlag, 2008. To appear.

[84] Harald Rues, Natarajan Shankar, and Mandayam K. Srivas. Modular
Verification of SRT Division. In Computer Aided Verification, 1996.

[85] Axel Schairer and Dieter Hutter. Proof transformations for evolution-
ary formal software development. In AMAST ’02: Proceedings of the 9th
International Conference on Algebraic Methodology and Software Tech-
nology, pages 441–456, London, UK, 2002. Springer-Verlag.

[86] Carsten Schürmann. Twelf and Delphin: Logic and functional program-
ming in a meta-logical framework. In Yukiyoshi Kameyama and Peter J.
Stuckey, editors, FLOPS, volume 2998 of Lecture Notes in Computer
Science, pages 22–23. Springer, 2004.

[87] Steven P. Smith, Andrew D. Padawer, David T. Jones, Gregory F.
Whitten, and Craig H. Wittenberg. Incremental compiler. US patent
No.5204960, April 1993.

BIBLIOGRAPHY 153

[88] Geoff Sutcliffe and Christian B. Suttner. The TPTP (Thousands of
Problems for Theorem Provers) Problem Library: CNF Release v1.2.1.
Journal of Automated Reasoning, 21(2):177–203, 1998.

[89] Wai Wong. Recording and Checking HOL Proofs. In E.T. Schubert,
P.J. Windley, and J. Alves-Foss, editors, 8th International Workshop
on Higher Order Logic Theorem Proving and its Applications, volume
971, pages 353–368, Aspen Grove, Utah, USA, 1995. Springer-Verlag.

[90] Christoph Weidenbach. System description: Spass version 1.0.0. In
CADE, pages 378–382, 1999.

[91] Alfred North Whitehead and Bertrand Russell. Principia Mathematica
to ’56. Cambridge Mathematical Library, 1997. ISBN 0-521-62606-4.

	Introduction
	Motivation
	Formal Methods
	Computer Aided Proof
	Formal Interactive Proof
	Non Proof-based Approaches
	Problems with Existing Proof Tools
	Scope of this Thesis
	Contributions and Structure

	Practical Setting
	Reactive Development
	Reactive Formal Development in RODIN
	A Simple Formal Development
	A Reactive Prover - Challenges
	Prover Requirements
	Related Work

	Mathematical Logic
	Introduction
	Sequent Calculus
	Sequents
	Proof Rules
	Theories
	Proofs

	Propositional Calculus
	Predicates
	Sequents
	Syntax of basicPC
	Proof Rule Schemas
	Proof Rules of basicPC
	Derived Logical Operators
	Reasoning
	Summary of PC

	First-order Predicate Calculus
	Expressions
	Variables
	Syntax of basicFoPCe
	Proof Rules of basicFoPCe
	Syntactic Operators
	Derived Logical Operators
	Summary of FoPCe

	Conclusion

	Partial Functions and Well-Definedness
	Introduction
	Defining Partial Functions
	Conditional Definitions
	Recursive Definitions
	A Running Example

	Separating WD and Validity
	The Well-Definedness Operator
	Defining D
	Proving properties about D

	Well-Definedness and Proof
	Defining D for Sequents
	Well-Defined Sequents
	WD preserving Proof Rules
	Deriving FoPCeD
	Summary

	Proving WDD and ValidityD
	Related Work
	Comparison

	Conclusion

	Prover Architecture and Extensibility
	Introduction
	Prover Extensibility
	The Basic Prover Architecture
	Programing Notation
	Predicates
	Sequents
	Proof Rules
	Reasoners
	Reasoner Requirements
	Examples of Reasoners
	Integrating External Theorem Provers

	Proof Trees
	Constraints on Proof Trees
	Operations on Proof Trees
	Example Proof Tree Construction

	Tactics
	Examples of Tactics

	Related Work
	Conclusion

	Representing and Reusing Proofs
	Introduction
	Proof Obligation Changes
	Characterising Changes
	Reacting to Changes
	Requirements

	Representing Proof Attempts
	A Running Example
	Recording Proofs Explicitly
	Recording Reasoner Calls
	Recording Tactic Applications
	Summary

	Proof Skeletons
	Constructing Proof Skeletons
	Reusing Proof Skeletons
	Proof Dependencies
	Satisfying Requirements

	Evaluation
	Success of Proof Reuse
	Scalability
	Improved reaction times

	Related Work
	Conclusion

	Reengineering Proofs
	Introduction
	Modifying Hypotheses
	Copying and Pasting Sub-proofs
	Automatic Proof Completion
	Removing Redundant Proof Steps
	Inserting Steps in the Middle of Proofs
	Automatically Moving Sub-proofs
	Related Work
	Conclusion

	Revalidating Proofs
	Introduction
	Validation Conditions
	Revalidating Rule Objects
	Revalidating Proof Skeletons
	Related Work
	Conclusion

	Conclusion
	Summary of Contributions
	User Evaluation
	Future Work
	Closing Remarks

