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Abstract

The theory of combinatorial games is a rapidly developing subject of
modern combinatorics. It is concerned with the study of certain two-
player-games, ranging from popular games as Tic-Tac-Toe and Con-
nect Four to merely abstract games defined in graph-theoretic terms.
Besides being of interest on their own right, combinatorial games are
strongly connected to other areas of combinatorics, such as the prob-
abilistic method, Ramsey theory, random graphs and extremal graph
theory. The study of this subject inspired the derivation of several im-
portant results in theoretical computer science. One such highlight is
the first algorithmization of the famous Lovász Local Lemma by Beck.

Though some scattered results about combinatorial games appeared
much earlier, the systematic research on this subject originated from a
seminal paper of Erdős and Selfridge. Later the study of combinatorial
games was developed greatly by Beck in a series of influential works.
Since then this field has grown more and more, and quite a few new and
important results have been published.

An intriguing phenomenon in the theory of combinatorial games is the
mysterious relationship to probability theory: Informally, the outcome
of a game involving two clever opponents can often be predicted quite
accurately by studying the setting where the same game is played by
two players who act completely randomly. This phenomenon, which is
often referred to as the random graph intuition, was first pointed out by
Chvátal and Erdős, only a few years after the seminal paper of Erdős
and Selfridge was published. So far, the random graph intuition has
proven to be valid in various games, and we only know surprisingly few
games where it fails.

In this thesis we address several issues arising in the study of com-
binatorial games. First, we verify the random graph intuition for cer-
tain games, thereby solving some open problems by Beck. Second, we
consider some games for which the question “who wins?” is already
solved. For these games we are concerned with finding fast winning
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Abstract

strategies, i.e., strategies which guarantee that a player can win in very
few moves. Third, we study a game-theoretic variant of the famous
Ramsey-numbers. Finally, we construct a special class of binary trees
with certain structural properties. These trees allow us to disprove a con-
jecture of Beck on combinatorial games, and, moreover, they also lead
to a new result in the field of satisfiability of Boolean formulas. This is
yet another example for the fact that combinatorial games connect to
various problems in (sometimes seemingly unrelated) other areas.
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Zusammenfassung

Die kombinatorische Spieltheorie ist ein junges, sich rasant entwickeln-
des Gebiet der Kombinatorik, auf dem in den letzten Jahren grosse
Fortschritte erzielt wurden. Es beschäftigt sich mit der Analyse einer be-
stimmten Klasse von Spielen für zwei Mitspieler – sie beinhaltet sowohl
bekannte, verbreitete Gesellschaftsspiele wie Tic Tac Toe oder Vier Ge-
winnt, als auch eher abstrakte Spiele, deren Beschreibung auf graphen-
theoretischen Begriffen basiert. Die kombinatorische Spieltheorie ist eng
verbunden mit anderen Gebieten der Kombinatorik, wie beispielsweise
der Ramsey-Theorie, der extremalen Graphentheorie, der probabilis-
tischen Methode und der Theorie der randomisierten Graphen. Einige
Resultate in diesem Themenbereich dienten überdies als Inspiration für
die Herleitung bedeutender Ergebnisse in der Theoretischen Informatik.
Ein solcher Glanzpunkt ist beispielsweise die erste Algorithmisierung des
berühmten Lovász Local Lemma von Beck.

Obschon einzelne Resultate über kombinatorische Spiele bereits viel
früher publiziert worder waren, wird die wegweisende Arbeit von Erdős
und Selfridge weithin als Beginn der systematischen Forschung auf die-
sem Gebiet angesehen. Das Studium der kombinatorischen Spiele wurde
später von Beck in einer Reihe von einflussreichen Arbeiten bedeutend
weiterentwickelt. In der Zwischenzeit ist dieses Gebiet mehr und mehr
gewachsen, und es wurden verschiedene wichtige Resultate publiziert.

Ein sehr verblüffendes Phänomen in der Theorie der kombinatorischen
Spiele sind die überraschenden Parallelen zur Wahrscheinlichkeitstheo-
rie: Der Ausgang eines Spiels lässt sich, vereinfacht gesagt, relativ oft
erstaunlich genau voraussagen, indem man das Szenario analysiert, bei
welchem zwei komplett zufällige Spieler gegeinander agieren. Dieses
Phänomen, welches oft als random graph intuition bezeichnet wird, wurde
als erstes von Chvátal und Erdős aufgezeigt, lediglich wenige Jahre nach
der Publikation der bahnbrechenden Arbeit von Erdős und Selfridge. Bis
jetzt konnte diese Intuition für diverse Spiele bestätigt werden, und es
ist erst für überraschend wenige Spiele bekannt, dass die Intuition in
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Zusammenfassung

diesem Fall nicht zutrifft.
In dieser Arbeit beschäftigen wir uns mit verschiedenen Aspekten, die

beim Studium der kombinatorischen Spiele auftreten.
Zunächst verifizieren wir die random graph intuition für einige aus-

gewählte Spiele, was uns unter anderem ermöglicht, mehrere von Beck
gestellte offene Probleme zu lösen. Ausserdem betrachten wir einige
Spiele, für welche die Frage ”welcher Spieler gewinnt?” bereits beant-
wortet ist. Für diese Spiele entwickeln wir sogenannte schnelle Strate-
gien, das bedeutet Strategien, welche garantieren, dass ein Spieler schon
in relativ wenigen Zügen gewinnen kann. Desweiteren studieren wir eine
spieltheoretische Variante der berühmten Ramsey-Zahlen. Schlussend-
lich konstruieren wir eine spezielle Klasse von binären Bäumen mit be-
stimmten strukturellen Eigenschaften. Mithilfe dieser Bäume können wir
zum einen eine Vermutung von Beck über kombinatorische Spiele wider-
legen, und zum andern ein neues Ergebnis über die Erfüllbarkeit von
logischen Formeln herleiten. Dies illustriert einmal mehr die Tatsache,
dass kombinatorische Spiele eng mit einer Vielzahl von Problemen in an-
deren (manchmal scheinbar unverwandten) Gebieten zusammenhängen.
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1
Introduction

The theory of combinatorial games is a rapidly developing subject of
modern combinatorics. It is concerned with analyzing certain perfect
information games involving two players, ranging from well-known clas-
sical games as Tic-Tac-Toe and Connect Four to completely abstract
games defined in graph-theoretic terms. Besides being an interesting
field on its own, the theory of combinatorial games is strongly connected
to quite a few other branches of combinatorics, such as the probabilistic
method, Ramsey theory, random graphs and extremal graph theory. The
study of this subject inspired the derivation of several important results
in theoretical computer science, including many derandomization tech-
niques. One such highlight is the first algorithmization of the famous
Lovász Local Lemma by Beck [16].

Though some scattered results about combinatorial games appeared
much earlier, the seminal paper of Erdős and Selfridge is widely consid-
ered the origin of the systematic research on this subject, which after-
wards was greatly developed by Beck in a series of influential papers.
Since then the field of combinatorial games has grown more and more,
and quite a few new and important results have been published.

For further discussion we introduce the following notation. For a given
nonempty set X and some subset F ⊆ 2X (”2X” denotes the power set,
i.e., the set consisting of all subsets of X) we consider the combinatorial
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2 Chapter 1. Introduction

Figure 1.1: The Tic Tac Toe Board (on the left) and some of its winning
sets.

game (sometimes also called positional game) (X,F) where two players
alternately take turns at claiming a previously unclaimed element of
X . We refer to X and F as the ”board” and the ”family of winning
sets”, respectively. For example, the ordinary Tic-Tac-Toe game can be
represented by the combinatorial game (X,F) where X consists of the
nine squares (arranged in a 3 × 3 array) and F is the set of all square-
triples in a line (horizontal, vertical, or diagonal). Figure 1.1 shows an
illustration. In such games as Tic-Tac-Toe, the player who occupies first
a winning set completely is the winner. In the language of combinatorial
games, these games are called strong games. Apart from a handful of
very simple cases like Tic-Tac-Toe, strong games are so far very hard
to analyze and, considering the currently known methods, it seems that
extensive case distinctions are inevitable.

The situation significantly changes when we consider the weak version
of these games instead. Here, the goal of the players is not symmetric:
One player, called Maker, aims to fully occupy a winning set, whereas
the other player, called Breaker, tries to prevent Maker from achieving
his goal. In other words, Breaker wins if, after all elements of X have
been claimed, Maker does not possess all elements of some winning set.

It turns out that weak games exhibit interesting combinatorial struc-
tures and connect to quite a few other problems. So, they are more
natural in the sense that their analysis is not only simpler but can some-
times also be applied to other areas. We will point out some of these
connections in Section 1.1.

Clearly, there are no draws in weak games: Every weak game has the
property that either Maker has a winning strategy (i.e., playing against
an arbitrary strategy of Breaker, Maker can fully occupy a winning set)
or Breaker has a winning strategy. In the first case we say that the
game is a Maker’s win and in the second case we say that the game is a
Breaker’s win.

Throughout this thesis we will only consider weak games, thus we
abbreviate them by ”games”. Unless otherwise stated we will assume
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that Maker starts the game, although for most of the games of our
interest we are after asymptotic statements which do not depend on
which player makes the first move. Classical examples of such games
are played on the edge set of the complete graph on n vertices (so X =
E(Kn)). Often the family of winning sets consists of all edge-sets which
have some (usually monotone) graph-property P . Such games, which will
be called graph games, are, e.g., the connectivity game, where Maker’s
goal is to occupy a spanning tree (i.e., P is the property that the edge-set
contains a spanning subgraph) or the clique game, where Maker aims to
build a clique of some fixed size.

We will sometimes also consider a generalized version of games where
Maker and Breaker do not claim one but several elements of X in one
round: In an (m : b) game Maker claims m elements and Breaker claims
b elements per turn.

In Section 1.1 we have a closer look at some selected connections be-
tween combinatorial games and other problems. In Sections 1.2–1.5 we
describe the game-variations we study and give a short introduction to
each chapter of this thesis.

1.1 Connection to Other Problems

1.1.1 Satisfiability of Boolean Formulas

We consider so called CNF formulas. For example,

F = (x ∨ ȳ ∨ z) ∧ (x ∨ a ∨ z̄) ∧ (a ∨ b ∨ c) ∧ (x ∨ ȳ ∨ z̄)

is a CNF formula. Formally, we define a CNF formula as the conjunction
of clauses where a clause is the disjunction of literals (a literal is either
a Boolean variable or its negation). An interesting subclass is the class
of CNF formulas where every clause contains exactly k literals. These
formulas are called k-CNF formulas. For example, F is a 3-CNF formula.
For every assignment of true/false-values to its variables, we can evaluate
a given formula: e.g., by setting a to true and all other variables to
false, F evaluates to true, whereas by setting all variables to false, F
evaluates to false. A given CNF formula G is called satisfiable if there
is an assignment where G evaluates to true. We call such an assignment
a satisfying assignment. The problem of deciding whether a given CNF
formula is satisfiable, often abbreviated by SAT, plays a major role in
theoretical computer science; e.g., it is often referred to as the ’mother’
of NP-complete problems.
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The following is a well-known result.

Every k-CNF formula with fewer than 2k clauses is satisfiable. (1.1)

This result is clearly tight as the k-CNF formula consisting of all possible
k-clauses on k fixed variables is not satisfiable. One way to prove (1.1)
is to consider the probability distribution where every variable is set to
true with probability 1

2 , independently of the other variables. It can
be checked that the probability that this random assignment satisfies all
clauses is strictly larger than zero. This argument yields that a satisfying
assignment exists but it does not (at least not in an obvious way) provide
an algorithm for finding such an assignment substantially faster than the
exhaustive search approach.

Method of Conditional Expectation The famous Erdős-Selfridge The-
orem [42] states a result similar to (1.1) for games:

If every winning set of a game has size exactly k and the number of
winning sets is smaller than 2k−1 then Breaker has a winning strategy.

In their proof, Erdős and Selfridge showed that Breaker can succeed
using the following strategy. In each of his moves he selects (among all
not yet claimed elements of X) the element of X which minimizes the
expected number of winning sets completely occupied by Maker, with
respect to the probability distribution where every remaining element is
assigned to either player independently with probability 1/2.

Their approach of developing an algorithm which proceeds step by
step, choosing each step in such a way that a carefully chosen expecta-
tion value is minimized (or maximized), turned out to be applicable to
a bunch of other problems and thus became known as ”the method of
conditional expectation”. For example, it can be used to give an algo-
rithmic proof for (1.1): Consider the algorithm which in each step picks
an arbitrary variable (which has not been set to true or false yet) and
chooses its Boolean value in such a way that the expected number of
satisfied clauses is maximized, with respect to the probability distribu-
tion where every remaining variable is assigned a value of {true, false}
uniformly and independently. It can be shown that this algorithm effi-
ciently computes a satisfying assignment for every given k-CNF formula
with at most 2k − 1 clauses.

Satisfiability in Terms of Games In a game (X,F) Maker can always
use a strategy of the following kind. At the beginning he divides all
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elements of X into pairs and whenever Breaker claims one vertex of
a pair he takes the other one (for simplicity we assume here that the
cardinality of X is even and that Maker lets Breaker start the game).
Such a strategy is called a pairing strategy. Every CNF formula G can
be considered as the game where the board consists of the set of literals,
the family of winning sets contains all clauses of G and, as an additional
restriction, Maker is required to use the pairing strategy where every
literal x is paired with its negated version x̄. With every course of such
a game we can associate the assignment which sets a literal to true if
and only if it was claimed by Breaker. If G is satisfiable then Breaker
can win this game by fixing a satisfying assignment and claiming those
literals which are set to true by this assignment. Conversely, if Breaker
has a winning strategy then the corresponding assignment satisfies G. So
the satisfiability of G is equivalent to Breaker having a winning strategy
in the corresponding game.

The Lovász Local Lemma The famous Lovász Local Lemma allows
to extend (1.1) to a much more powerful statement, replacing the global
constraint on the size of the formula with an appropriate local constraint.
We say that two clauses intersect if they share at least one variable.

Every k-CNF formula where every clause intersects

at most
2k

e
− 1 other clauses is satisfiable.

(1.2)

It was a long-standing open problem to derandomize (1.2), i.e., to de-
velop an algorithm which efficiently finds a satisfying assignment for
every given k-CNF formula fulfilling the condition of (1.2). In 1991,
Beck achieved a breakthrough by proving in [16] that a polynomial-time
algorithm exists which finds a satisfying assignment for every k-CNF
formula in which each clause intersects at most 2k/48 other clauses. This
very first derandomization of the Lovász Local Lemma was inspired by
his research in the theory of combinatorial games.

In the meantime the k
48 in the exponent has been successively improved

in a series of papers to k
8 [8], k

4 [72], k
2 [63] until Moser and Tardos

[62] gave a fully constructive version of the Lovász Local Lemma, with
the implication that for every k-CNF formula fulfilling the condition
of (1.2) their algorithm finds a satisfying assignment in (probabilistic)
polynomial time.
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Our Contribution In Chapter 5 we construct a special class of binary
trees which have implications to games and – due to the connection be-
tween games and SAT described above – also to SAT. In the context of
games we consider a conjecture of Beck which basically states that a sim-
ilar phenomenon as the Local Lemma holds for games. More precisely, it
says that in every game (X,F) where every winning set intersects fewer
than 2k−1 − 1 other winning sets, Breaker has a winning strategy. We
refute this conjecture.

In the context of SAT we consider the following problem. For every k
we let f(k) denote the largest integer s such that every k-CNF formula
where every variable occurs in at most s clauses is satisfiable. f(k) is a
value with many interesting properties, which has been widely studied.
The Local Lemma can be used to give a lower bound on f(k). We provide
a construction of appropriate unsatisfiable k-CNF formulas which shows
that this lower bound is asymptotically tight. More precisely, we prove

that f(k) = (1 + o(1))2k+1

ek . Here, o(1) is some function that tends to 0
as k grows.

1.1.2 Random Graphs

In this subsection we restrict on graph games, i.e., the board is the
edge set of a complete graph on n vertices and Maker’s goal is to cre-
ate a graph which possesses some fixed monotone property P . Recall
that the variant of a game where Maker claims m edges per turn and
Breaker claims b edges per turn is called an (m : b)-game. An interesting
paradigm, which was pointed out first by Chvátal and Erdős [34], and
was later investigated further in many papers of Beck [15, 17, 18, 19]
and Bednarska and  Luczak [22], is the random graph intuition: Let G
denote an (m : b) game and let P denote the corresponding graph prop-
erty Maker aims to achieve. In the random game the players are replaced
with “random players” which select their edges in each round completely
at random; i.e., RandomMaker claims m random unclaimed edges per
move and RandomBreaker claims b random unclaimed edges per move.
So, by the end of the game RandomMaker’s graph looks like a random
graph G(n, M) with M = ⌈ m

m+b

(
n
2

)
⌉ edges (following the standard nota-

tion, G(n, M) denotes the probability space of graphs where each graph
with n vertices and M edges occurs with the same probability). The
random graph intuition basically says that if G(n, M) contains P with
high probability, then this indicates that Maker has a winning strategy
in G, and, conversely, if G(n, M) with high probability does not contain
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P , then this indicates that Breaker has a winning strategy in G.

An example supporting the random graph intuition is the q-clique
game, where Maker’s goal is to occupy all edges of a clique on q vertices.
It is well-known that with high probability the size of the largest clique in
G(n, 1

2

(
n
2

)
) is (2−o(1)) log n, thus the threshold where the random (1 : 1)

q-clique game turns from a RandomMaker’s win to a RandomBreaker’s
win is around q = (2 − o(1)) log n. Due to a result of Beck [21] the
situation is the same in the deterministic case: The largest value q such
that Maker has a winning strategy in the (1 : 1) q-clique game is (2 −
o(1)) log n.

So far, for various games it has been proved that they support the
random graph intuition, see, e.g., [18, 22, 49, 73]. For a small number of
games it has been established that the random graph intuition fails: In
the diameter game the graph property Maker aims to achieve is that the
diameter is at least two (i.e., every pair of vertices has distance at most
two in his graph). It is known (and not very difficult to show) that in the
random graph G(n, 1

2

(
n
2

)
) with high probability every pair of vertices has

distance at most two. Hence, RandomMaker wins the random (1 : 1)
diameter game with high probability. However, Balogh, Martin and
Pluhár [11] proved that actually Breaker has a strategy to win the (1 : 1)
diameter game, which yields that the probabilistic intuition fails in this
case. Second, for a given b, let GNP(b) denote the (1 : b) non-planarity
game, where the graph property Maker aims to achieve is non-planarity.
That is, Maker wins if at the end of the game his graph has no planar
embedding. (Note that if b ≤ n

6 − 1, Maker’s graph finally contains
1

1+b

(
n
2

)
> 3n − 6 edges and hence is non-planar. Thus, for b ≤ n

6 − 1,
Maker will always win, no matter what strategy he uses.) Due to known
results about random graphs, for b ≤ (1 − o(1))n, RandomMaker wins
the random version of GNP(b) with high probability. On the other hand,
Hefetz, Krivelevich, Stojaković and Szabó [52] showed, applying a result
of Bednarska and Pikhurko [23], that Breaker has a strategy to win
GNP(b) for b ≥ n

2 . This means that the random graph intuition fails for
every b with n

2 ≤ b ≤ (1 − o(1))n.
It is an interesting open problem to determine suitable criteria which

guarantee that for a given game the random graph intuition (or maybe
some weaker version of it) holds.

Our Contribution We verify the random graph intuition for a few other
games (e.g., the connectivity game where Maker’s goal is to build a span-
ning tree), thereby solving two problems Beck [21] included in his list of
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the seven most humiliating open problems of the field of combinatorial
games. Moreover, we show that, though the random graph intuition is
supported by the (1 : 1) clique game, it fails for the (m : m) clique game
for every m ≥ 6. On first sight this is surprising because it seems that,
since each player can claim equally many edges per turn as his opponent,
the (m : m) game is “as fair as” the (1 : 1) game. However, it turns
out that the larger m gets the more Maker can profit from it. Thus, the
outcome of the (m : m) clique game is significantly different from the
outcome of the (1 : 1) game, and as a consequence the random graph
intuition fails for large enough m.

1.2 Verifying the Random Graph Intuition

A classical, well-studied graph game is the Shannon switching game an-
alyzed completely by Lehman [61]. In the Shannon switching game both
players take one edge per turn and Maker tries to occupy the edges of
a spanning tree. Lehman proved that Maker wins this game “easily”.
Here by “easily” we mean that Maker does not need the full edge-set of
Kn, he wins even if the game is played on the restricted board consisting
of the edges of two edge-disjoint spanning trees.

Chvátal and Erdős [34] suggested to even out this advantage of Maker
by allowing Breaker to occupy b edges in each round instead of just one.
The integer b = b(n) > 1 is called the bias of Breaker. Chvátal and
Erdős provided a strategy for Maker to occupy a spanning tree even if
Breaker plays with bias (1

4 − o(1)) n
ln n . They also showed that Breaker,

playing with a bias (1 + o(1)) n
lnn can occupy all edges incident to some

vertex, thus of course making it impossible for Maker to build a spanning
tree. Motivated partially by this problem, Beck [13] devised a general
potential function method to deal with biased combinatorial games under
much more general circumstances. He then used his criterion to infer a
strategy for Maker for occupying a spanning tree even if Breaker’s bias
is as large as (ln 2 − o(1)) n

ln n ≈ 0.69 n
ln n .

We let bT denote the largest bias b of Breaker such that Maker, taking
one edge in each turn, can occupy a spanning tree while Breaker takes b
edges in each turn. The above results yield that

0.69
n

lnn
≤ bT ≤ (1 + o(1))

n

ln n
.

From the theory of random graphs it is known that the threshold M
where the probability that the random graph G(n, M) contains a span-
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ning tree turns from almost 0 to almost 1, is M = (1
2 + o(1))n ln n.

Thus the random graph intuition (c.f. Subsection 1.1.2) suggests that
bT = (1 + o(1)) n

ln n . In our main result of Chapter 2 we show that

bT = (1 + o(1))
n

ln n
, (1.3)

which supports the random graph intuition. Our proof is not based on
the potential function technique of Beck, rather on the analysis of a quite
natural strategy of Maker, involving a delicate inductive argument.

It is well-known from the theory of random graphs that several natural
graph properties, like hamiltonicity (i.e., containing a Hamilton cycle),
c-connectivity (i.e., after removing any set of c− 1 vertices the resulting
graph is still connected), or minimum degree at least c, for constant c,
all have the same sharp threshold edge number 1

2n ln n. In an intuitive
language this says that the main reason a random graph is not connected
(not hamiltonian, respectively) is that it contains a vertex of degree zero.

We let T , H, Cc and Dc denote the graph properties connectivity,
hamiltonicity, c-connectivity and minimum degree at least c, respec-
tively, and for every property P ∈ {H, Cc,Dc} we let – analogously to
bT – bP denote the largest bias b such that Maker, taking one edge per
turn, has a strategy to build a graph with property P , playing against
a Breaker with bias b. Note that T = C1. Moreover, the aforemen-
tioned result of Chvátal and Erdős that Breaker, playing with a bias
(1 + o(1)) n

ln n , can occupy all edges incident to some vertex, implies that

bD1 ≤ (1 + o(1))
n

ln n
. (1.4)

Krivelevich and Szabó [59] established that (ln 2 − o(1)) n
ln n is a lower

bound for bH, bCc , and bDc . Motivated by the extremely tight correla-
tion between the appearance of the properties T and D1 in the random
graph, they conjectured that bT = bD1 for all n large enough. While
this conjecture is still open, (1.3), together with (1.4) and the inequality
bT ≤ bD1 , does establish its asymptotic correctness.

Finally, we improve the lower bound of Krivelevich and Szabó for the
family Dc, provided c is an arbitrary constant. We show that

bDc = (1 + o(1))
n

ln n
,

which means that the random graph intuition is valid asymptotically for
the minimum-degree-c game as well. In Chapter 2 we generalize this
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result to the case where c is upper bounded by a slowly growing function
in n (which is around ln ln n). Furthermore, we show how Maker can
merge his strategies for constructing a spanning tree and a graph of
minimum degree c to obtain a strategy which allows him to accomplish
both of these goals at the same time.

The results presented in Chapter 2 are joint work with Tibor Szabó
[49].

1.3 On the Clique-Game

The q-clique game is a widely studied graph game (recall that in this
game Maker’s goal is to build a clique of size q). An immediate question
is how large q can be (in terms of n) such that Maker can achieve a Kq

in the game on Kn. Remarkably, for the ordinary (1 : 1) game the exact
solution to this question is known! The following theorem is due to Beck
(log stands for the binary logarithm).

Theorem 1.1. (Theorem 6.4, [21]) The largest q such that Maker has a
winning strategy in the (1 : 1) q-clique game is q = ⌊2 log n−2 log log n+
2 log e − 3 + o(1)⌋.

As pointed out in Subsection 1.1.2, Theorem 1.1 supports the random
graph intuition. In Chapter 3 we study three variations of the clique
game.

The Biased Game

We call an (m : b) game biased if m 6= 1 or b 6= 1 (i.e., if at least one
of the players claims more than one edge per turn). In contrast to the
(1 : 1) clique game, which has been analyzed in depth, for the biased
clique game not so much is known.

Let fn(m, b) denote the largest q such that Maker can occupy a Kq

in the (m : b) game on Kn. The random graph intuition suggests that
fn(m, b) is roughly 2

log(m+b)−log m log n (see, e.g., [27]). Beck formulated

the following open problem which, for the case where m and b are con-
stants, reads as follows.

Open Problem 1.2. (Open Problem 30.2, [21])

Let gn(m, b) =
(

2
log(m+b)−log m + o(1)

)

log n. Is it true that fn(m, b) =

gn(m, b)?
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We remark that in [21] the function g was specified more precisely. Note
that by Theorem 1.1 we have fn(1, 1) = gn(1, 1) for n large enough.
Moreover, Beck [21] proved that fn(m, 1) ≥ gn(m, 1) for every m and
every large enough n.

We will show that for infinitely many m, b the values fn(m, b) and
gn(m, b) are substantially different. To this end we prove that for every
constants m, b, in the (m : b) game Maker has a strategy to occupy a Kq

with q =
(

m
log(b+1) − o(1)

)

· log n. This yields that for constant m ≥ 6

and large enough n,

fn(m, m) ≥
(

m

log(m + 1)
− o(1)

)

log n > gn(m, m) = (2 + o(1)) log n.

Building a Clique Fast

So far we considered the issue of building a q-clique on a complete graph
containing as few vertices as possible (in terms of q). Another issue is
to build a clique fast.

Open Problem 1.3. (Open Problem 25.1, [21]) Playing the (1 : 1)
game on the infinite complete graph K∞ (or at least on a “very large”
finite Kn), how long does it take for Maker to build a Kq?

Let s(q) denote the minimum number of moves Maker needs to build a
Kq. Theorem 1.1 implies that Maker can build a Kq on Kn with n =
(1 + o(1))q2

q
2 . Hence, s(q) ≤ 1

2

(
n
2

)
≤ q22q for large enough q. The best

known upper bound on s(q) is s(q) ≤ 2q+2, which has been discovered
by Beck [20] and, independently, by Pekeč [65]. From the other side,
Breaker can prevent Maker from building a Kq in 2

q
2 moves, provided

q is large enough [20]; thus s(q) ≥ 2
q
2 . Beck asks whether the upper

bound O(2q) can be improved. We will show that s(q) ≤ 2
2q
3 poly(q),

where poly(q) is some polynomial in q.

Building a Tournament

A third variation of the q-clique game is the so called q-tournament game
(sometimes abbreviated by tournament game). A tournament is a di-
rected graph where every pair of vertices is connected by a single directed
edge. The q-tournament game is played on Kn. At the beginning Breaker
fixes an arbitrary tournament Tq on q vertices. Maker and Breaker then
alternately take turns in claiming one unclaimed edge e and selecting
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one of the two possible orientations. Maker wins if his graph contains a
copy of the goal tournament Tq; otherwise Breaker wins 1. Note that a
winning strategy for Breaker in the q-clique game allows him to prevent
Maker from achieving any tournament Tq on q vertices. Hence, Theorem
1.1 yields that for q = (2 − o(1)) log n, Breaker has a winning strategy
in the q-tournament game. From the other side, Beck [21] showed that
Maker has a winning strategy for q = (1

2 − o(1)) log n. Actually, he even
proved the stronger statement that Maker has a strategy to achieve that
his graph contains a copy of all possible Tq.

The random graph intuition suggests that Maker already has a winning
strategy if q = (1 − o(1)) log n. Beck [21] included the following open
problem in his list of the seven most humiliating open problems of the
field of combinatorial games.

Open Problem 1.4. Is it true that Maker has a winning strategy in
the q-tournament game for q = (1 − o(1)) log n?

We will prove that the answer to Open Problem 1.4 is ”yes”.

1.4 Size Ramsey Number of Bounded Degree
Graphs for Games

In Chapter 4 we study graph games which are not played on a complete
graph but on some sparse graph. In our main contribution we show that
for every graph G on n vertices with maximum degree d there is a graph
H with at most cn edges (where c is a constant depending on d but
not on n) such that Maker has a strategy to occupy a copy of G in the
(1 : 1) game on H . This is a result about a game-theoretic variant of
the Ramsey numbers, which we describe in the following.

Ordinary Ramsey Numbers and a Game-Theoretic Variant The Ram-
sey number r(G) of a graph G is the smallest number N such that in any
two-coloring of the edges of the complete graph KN there is a monochro-
matic copy of G. For example, we clearly have that for every subgraph

1We note that here the orientations chosen by Breaker are irrelevant. The rule
that Breaker also has to orient his edges is convenient when studying adapted
versions of the tournament game; e.g: At the beginning Breaker fixes Tq and
arbitrarily colors its edges with red and blue. Then Maker and Breaker take
turns, as described above. Additionally, an edge is colored red if it has been
claimed by Maker, and blue if it has been claimed by Breaker. Maker wins if
there is a (correctly colored) copy of Tq.
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H of G, r(H) ≤ r(G) since every monochromatic copy of G contains
a monochromatic copy of H . Moreover, it is well-known that for the
complete graph Kn on n vertices it holds that poly(n)2

n
2 ≤ r(Kn) ≤

4npoly(n). Due to a result of Chvátal, Rödl, Szemerédi and Trotter [36],
we have that for every graph G on n vertices of maximum degree d (the
class of graphs we are focussing on in Chapter 4), there is a constant
c (depending on d but not on n) such that every two-coloring of Kcn

contains a copy of G; thus r(G) ≤ cn.

A game-theoretic variant of the Ramsey number was introduced by
Beck [12]: Let r′(G) denote the smallest N such that Maker has a strat-
egy to occupy a copy of G in the game on KN (we assume here that Maker
and Breaker each claim one edge per turn). A standard strategy-stealing
argument shows that r′(G) ≤ r(G). Suppose, for a contradiction, that
r′(G) > r(G). Thus, for N := r(G), Breaker has a strategy to prevent
Maker from building a copy of G in the game on KN . But by defini-
tion of r(G) this implies that by the end of the game Breaker’s graph
contains a copy of G. Since Maker starts the game he can now “steal”
Breaker’s strategy by starting with an arbitrary first move and then fol-
lowing Breaker’s strategy (if this strategy calls for something he occupied
before he takes an arbitrary edge: no extra move is disadvantageous for
him). This enables him to occupy a copy of G.

Hence, due to the result of Chvátal, Rödl, Szemerédi and Trotter, we
immediately obtain that for every graph G of maximum degree d we have
that r′(G) ≤ r(G) ≤ c(d)n. Further progress was made when Beck [18]
showed that if N ≥ poly(d)3d · n then in the game on KN Maker has a
strategy to create a universal graph for the class of graphs on n vertices
of maximum degree d, i.e., a graph that contains all such graphs.

Size Ramsey Numbers and a Game-Theoretic Variant A graph H
is called G-Ramsey if every two-coloring of the edges of H contains a
monochromatic copy of G. The size Ramsey number r̂(G), introduced
by Erdős, Faudree, Rousseau and Schelp [41], is the smallest number M
such that there exists a graph H with M edges where H is G-Ramsey.
It is known that r̂(Kn) =

(
r(Kn)

2

)
, which means that among all Kn-

Ramsey graphs, the complete graph Kr(Kn) minimizes both the number
of vertices and the number of edges. Naturally, for sparse graphs the
situation is quite different: For many sparse graphs G (as cycles and
trees of fixed maximum degree) it has been proved that r̂(G) is linear
in n [14, 45, 51]. From the other side, Rödl and Szemerédi [68] showed
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that there exists a graph G on n vertices of maximum degree 3 where

r̂(G) ≥ cn log
1
60 n,

ruling out the possibility, raised by Beck and Erdős (see [35]), that for
every d there is a constant c = c(d) such that for any graph G on n
vertices of maximum degree d, r̂(G) ≤ cn.

The best known upper bound for the class of all graphs with constant
maximum degree is due to Kohayakawa, Rödl, Schacht and Szemerédi
[56], who derived that for every natural number d there exists a constant
c = c(d) such that for every graph G on n vertices of maximum degree
d,

r̂(G) ≤ cn2− 1
d log

1
d n. (1.5)

Similarly as for the ordinary Ramsey number, there is a game-theoretic
variant of the size Ramsey number: For every graph G we let r̂′(G)
denote the smallest M such that there exists a graph H with M edges
such that Maker has a strategy to occupy a copy of G in the game
on H . By a similar strategy stealing argument as above we get that
r̂′(G) ≤ r̂(G).

We investigate r̂′(G) for graphs G with constant maximum degree d.
Clearly, for d-regular graphs G where d ≥ 1 we have that r̂′(G) is at
least linear in n. From the other side, (1.5) has so far been the best
known upper bound (to our knowledge) for r̂′(G). We close this gap by
showing that r̂′(G) ≤ cn for some constant c depending on d but not on
n.

Related Work Feldheim and Krivelevich [40] studied a slightly different
problem: For a given graph G and some N ≥ r′(G) they investigated
the minimum number of moves Maker needs to build a copy of G in the
game on KN (note that due to the definition of r′(G) this number is at
most

(
N
2

)
). They found, using a powerful theorem of Alon, Krivelevich,

Spencer and Szabó about discrepancy games, that if G is a sparse graph
on n vertices and N is large enough then Maker can succeed in a linear
number of rounds (in n). More precisely, they showed that for every
integer d there are constants c = c(d), c′ = c′(d) such that for every
graph G on n vertices of maximum degree d and every N > cn, Maker
has a strategy to occupy a copy of G in the game on KN in at most c′n
rounds. We remark that they actually proved this result for the more
general class of d-degenerate graphs. The values of the constants are
c = d1122d+9 and c′ = d1122d+7.



1.5. Special Trees With Implications to SAT and Games 15

Their proof contains quite a few concepts and features which are very
helpful for our problem. So in our construction we will use many ingre-
dients of their approach.

1.5 Special Trees With Implications to SAT
and Games

In Chapter 5 we construct a special class of binary trees, which have
implications on games and SAT.

1.5.1 Trees

By a binary tree we mean a rooted tree where every node has either two
or no children. We say that a leaf v of a binary tree is l-close to a node
w if w is an ancestor of v, at distance at most l from v. For positive
integers k and d, we call a binary tree T a (k, d)-tree if (i) every leaf has
depth at least k and (ii) for every node u of T there are at most d leaves
that are k-close to u. Clearly, every binary tree with all leaves at depth
at least k is a (k, 2k)-tree. The following will be the main ingredient in
proving some new results on games and SAT.

A

(

k,

(
2

e
+ O(1/

√
k)

)
2k

k

)

-tree exists. (1.6)

1.5.2 Implications to Games

Here we regard the very general class of games introduced at the begin-
ning of this chapter: For a set X and some family F ⊆ 2X of winning
sets we denote by (X,F) the game where Maker and Breaker alternately
claim an element of X , and Maker’s goal is to completely occupy a win-
ning set. Since a hypergraph G is defined as a pair (V, E), where V is
a finite set whose elements are called vertices and E is a family of sub-
sets of V , called hyperedges, we can consider every game (X,F) as a
hypergraph. This will simplify our notation.

A hypergraph is k-uniform if every hyperedge contains exactly k ver-
tices. The famous Erdős-Selfridge Theorem [42] (c.f. Subsection 1.1.1)
states that for each k-uniform hypergraph with less than 2k−1 hyperedges
Breaker has a winning strategy. It can be shown that this upper bound
on the number of hyperedges is best possible. Beck conjectured that
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furthermore a similar phenomenon as the Lovász Local Lemma holds for
games.

Neighborhood Conjecture. (Open Problem 9.1(a), [21]) Assume that
G is a k-uniform hypergraph where every hyperedge intersects at most
2k−1 − 1 other hyperedges. Is it true that Breaker has a winning strategy
on G?

The best known result in the direction of the Neighborhood Conjecture
is that if every vertex of a k-uniform hypergraph occurs in at most ⌊k

2 ⌋
hyperedges then Breaker has a winning strategy. The proof uses Hall’s
Theorem to assign two of its vertices to every hyperedge such that no
vertex is assigned to more than one hyperedge. If Breaker pairs the two
corresponding vertices (i.e., whenever Maker claims a vertex, he takes
the vertex assigned to the same hyperedge) he can occupy at least one
vertex in every hyperedge, thus he has a winning strategy.

We now describe how an appropriate (k, d)-tree yields a counterexam-
ple to the Neighborhood Conjecture. With every (k − 1, d)-tree T we
associate the k-uniform hypergraph GT whose vertices are the nodes of T
and whose hyperedges are the vertex sets of paths that start at a leaf and
go up k− 1 levels. Figure 1.2 depicts such a hypergraph. By first claim-
ing the root and then pairing every node with its sibling (i.e. the node
having the same parent) Maker can finally occupy all vertices on some
path from the root to a leaf, which by assumption contains a hyperedge.
Thus, Maker has a winning strategy on GT . Moreover, it can be seen
that by construction, every node occurs in at most d hyperedges. Hence
every hyperedge intersects at most dk other hyperedges. By choosing T
to be the tree from (1.6) we obtain that every hyperedge of GT intersects

at most
(

2
e + o(1)

)
2k−1

k−1 k ≤ (1 + o(1)) 2k

e other hyperedges, refuting the
Neighborhood Conjecture. The construction of GT relies on the proof
that suitable (k, d)-trees exists, which is rather involved and long. So
we will additionally give a second counterexample for the Neighborhood
Conjecture which is slightly weaker (in the sense that the hypergraph
has more hyperedges) but can be obtained by a simpler construction.

1.5.3 Implications to SAT

The satisfiability of Boolean formulas is the archetypical NP-hard prob-
lem. Following the notation introduced at the beginning of this chapter,
a k-CNF formula is a conjunction of clauses that are the disjunction of
exactly k distinct literals. The problem of deciding whether a k-CNF
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Figure 1.2: A (3, 6)-tree T (on the left) and some exemplary hyperedges
of GT (on the right).

formula is satisfiable is denoted by k-SAT, it is solvable in polynomial
time for k = 2, and is NP-complete for every k ≥ 3 as shown by Cook
[37].

Papadimitriou and Yannakakis [64] have shown that k-SAT is even
MAX-SNP-complete for every k ≥ 2.

The first level of difficulty in satisfying a CNF formula arises when
two clauses share at least one variable. For a finer view into the tran-
sition to NP-hardness, a grading of the class of k-CNF formulas can be
introduced, that limits how much clauses interact locally. A k-CNF for-
mula is called a (k, s)-CNF formula if every variable appears in at most s
clauses. The problem of satisfiability of (k, s)-CNF formulas is denoted
by (k, s)-SAT.

Hardness Jump

Tovey [76] proved that while every (3, 3)-CNF formula is satisfiable (due
to Hall’s Theorem), the problem of deciding whether a (3, 4)-CNF for-
mula is satisfiable is already NP-hard. Dubois [39] showed that (4, 6)-
SAT and (5, 11)-SAT are also NP-complete.

Kratochv́ıl, Savický, and Tuza [58] defined the value f(k) to be the
largest integer s such that every (k, s)-CNF formula is satisfiable. They
also generalized Tovey’s result by showing that for every k ≥ 3, (k, f(k)+
1)-SAT is already NP-complete. In other words, for every k ≥ 3 the
(k, s)-SAT problem goes through a kind of “complexity phase transition”
at the value s = f(k). On the one hand the (k, f(k))-SAT problem is
trivial by definition in the sense that every instance of the problem is
a “YES”-instance. On the other hand the (k, f(k) + 1)-SAT problem is
already NP-hard, so the problem becomes hard from being trivial just by
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allowing one more occurrence of each variable. For large values of k this
might seem astonishing, as the value of the transition is exponential in
k: one might think that the change of just one in the parameter should
have hardly any effect.

The complexity hardness jump is even greater: the problem of (k, s)-
SAT is also MAX-SNP-complete for every s > f(k) as was shown by
Berman, Karpinski, and Scott [24] (generalizing a result of Feige [44]
who showed that (3, 5)-SAT is hard to approximate within a certain
constant factor).

The determination of where this complexity hardness jump occurs is
one of the main topics of Chapter 5.

Known Bounds

For a lower bound the best tool available is the Lovász Local Lemma
(c.f. Subsection 1.1.1). We call a pair of clauses sharing at least one
variable an intersecting pair, and for a clause C of a CNF formula F we
denote by the neighborhood Γ(C) of C the set of other clauses (excluding
C itself) intersecting C. A straightforward consequence of the Local
Lemma states that if |Γ(C)| ≤ 2k/e − 1 for every clause C of a k-CNF
formula F then F is satisfiable. A natural question is how tight this
bound is: Analogously to f(k) let l(k) denote the largest integer r such
that every k-CNF formula F for which |Γ(C)| ≤ r, for every clause C of
F , is satisfiable. With this notation the Local Lemma implies that

l(k) ≥
⌊

2k

e

⌋

− 1. (1.7)

The order of magnitude of this bound is trivially optimal: l(k) < 2k − 1
follows from the unsatisfiable k-CNF formula consisting of all possible
k-clauses on only k variables.

In [48] a hardness jump is proved for the function l: deciding the
satisfiability of k-CNF formulas with maximum neighborhood size at
most max{l(k) + 2, k + 3} is NP-complete.

As observed by Kratochv́ıl, Savický and Tuza [58] the bound (1.7)
immediately implies

f(k) ≥
⌊

l(k)

k

⌋

+ 1 ≥
⌊

2k

ek

⌋

. (1.8)

From the other side Savický and Sgall [70] established that f(k) =

O
(

k0.74 · 2k

k

)

. This was improved by Hoory and Szeider [53] who came
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within a logarithmic factor: f(k) = O
(

log k · 2k

k

)

, which is the previ-

ously best known upper bound.

Our Contribution

We determine the asymptotics of f(k), thereby settling some questions
from [48]. We show that the lower bound (1.8) can be strengthened by
a factor of 2 and that this bound is tight. That is,

f(k) =

(
2

e
+ O

(
1√
k

))
2k

k
. (1.9)

We quickly describe how a (k, d)-tree yields an unsatisfiable (k, d)-CNF
formula: Let T be a (k, d)-tree and suppose that we assign to every
non-leaf node w of T a variable xw, and label one of its children with
the literal xw and the other with the negated version x̄w. With every
leaf v of T we then associate a clause Cv by walking along a path of
length k − 1 from v towards the root and taking the disjunction of all
labels encountered on this path (i.e., the labels of all nodes to which v
is (k − 1)-close). Finally we let FT denote the conjunction of all such
clauses Cv. Figure 1.3 gives an illustration. FT is unsatisfiable, for if an
assignment α is given, it defines a path from the root to a leaf, say v, by
always proceeding to the unique child whose label is mapped to false by
α; thus Cv is violated by α. Moreover, the defining property of (k, d)-
trees guarantees that no variable appears in more than d clauses. Hence
FT is an unsatisfiable (k, d)-CNF formula and therefore (1.6) gives the
upper bound in (1.9).

Since the Local Lemma was fully algorithmized by Moser and Tardos
[62] we now have that not only every (k, s)-CNF formula for s = (1 +

o(1))2k+1

ek has a satisfying assignment but there is also an algorithm that
finds such an assignment in probabilistic polynomial time. Moreover, for
just a little bit larger value of the parameter s one cannot find a satisfying
assignment efficiently, simply because already the decision problem is
NP-hard.

Our construction also shows that the lower bound (1.7) on l(k) is
asymptotically tight:

l(k) =

(
1

e
+ O

(
1√
k

))

2k.

The results in Chapter 5 are obtained jointly with Tibor Szabó and
Gábor Tardos [50].
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x1 x̄1

x2 x̄2

x3 x̄3

x4 x̄4

x5 x̄5

FT = (x2 ∨ x1) ∧ (x3 ∨ x̄2) ∧ (x̄3 ∨ x̄2) ∧ (x4 ∨ x̄1) ∧ (x5 ∨ x̄4) ∧ (x̄5 ∨ x̄4)

Figure 1.3: A (2, 3)-tree T and FT .

1.6 Notation

Throughout this thesis log denotes the binary logarithm and ln denotes
the natural logarithm. Ceiling and floor signs are routinely omitted
whenever they are not crucial for clarity. Let G be a graph and let
V (G) and E(G) denote the set of vertices and the set of edges of G,
respectively. For U ⊆ V (G), EG(U) denotes the set of edges spanned by
U and, similarly, for disjoint subsets U, W ⊆ V (G), EG(U, W ) denotes
the set of edges with one endpoint in U and the other in W . When there
is no danger of confusion we sometimes omit the index G. Furthermore,
G\U denotes the graph obtained by taking G and deleting all the vertices
of U . The subgraph induced by U , G[U ], denotes the graph obtained from
deleting all vertices of V (G)\U in G.



2
Verifying the Random Graph

Intuition

2.1 Introduction

Recall that bT (bDc respectively) denotes the largest bias b of Breaker
such that Maker, taking one edge in each turn, can occupy a spanning
tree (a graph with minimum degree c, respectively) while Breaker takes
b edges in each turn. Due to a result of Chvátal and Erdős [34],

bD1 ≤ n

ln n
+ O

(
n ln ln n

ln2 n

)

= (1 + o(1))
n

ln n
. (2.1)

Clearly, bT ≤ bD1 . Hence (2.1) yields that bT ≤ (1 + o(1)) n
ln n . In our

first result we show that this bound is asymptotically optimal.

Theorem 2.1. Maker has a strategy to build a spanning tree while play-
ing against a Breaker with bias b := (ln n − ln ln n − 6) n

ln2 n
, provided n

is large enough.

The constant 6 in the error term could be improved somewhat, but we
do not know whether the second order term is best possible.

21
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(2.1) gives that bDc ≤ (1 + o(1)) n
ln n for every c ≥ 1. We establish that

bDc = (1 + o(1)) n
lnn for every constant c, which means that the random

graph intuition is valid asymptotically for the minimum-degree-c game
as well.

Theorem 2.2. Let c = c(n) < ln ln n
3 . Maker has a strategy to build a

graph with minimum degree at least c while playing against Breaker with
bias b := (ln n − ln ln n − (2c + 3)) n

ln2 n
, provided n is large enough.

As a third example of the surprising validity of the random graph intu-
ition, for any constant ǫ > 0 there is a δ = δ(ǫ) > 0 such that Maker is
able to build a graph with minimum-degree at least δ ln(n) while playing
against a Breaker’s bias (1 − ǫ) · n

ln(n) .

Theorem 2.3. Let ǫ > 0 be a constant. Then Maker has a strategy
to build a graph with minimum degree at least ǫ

3(1−ǫ) ln n while playing

against a Breaker’s bias of (1 − ǫ) · n
ln n .

The order ln n for the largest achievable minimum degree against a bias

of (1− ǫ) n
lnn is obviously best possible: Maker has at most

(n
2)

b+1 edges by

the end, which allows a minimum degree at most ln n
1−ǫ .

Finally, by merging the strategies of Maker for achieving a spanning
tree and a graph of minimum degree c, it can be proven that Maker has
a strategy to accomplish both of these goals at the same time.

Theorem 2.4. Let c = c(n) < ln ln n
3 . Maker has a strategy to build a

connected graph with minimum degree c while playing against Breaker
with bias b := (ln n− ln ln n− (2c + 5)) n

ln2 n
, provided n is large enough.

As in the minimum-degree case we can show that Theorem 2.4 remains
true if we let ǫ > 0 be a constant and replace c by δ ln(n) with δ > 0
being a constant depending on ǫ only.

Theorem 2.5. Let ǫ > 0 be a constant. Then Maker has a strategy to
build a connected graph with minimum degree ǫ

3(1−ǫ) ln n while playing

against a Breaker’s bias of (1 − ǫ) · n
ln n .

Notation We denote by Hs the sth harmonic number
∑s

j=1
1
j and often

use the well-known fact that for every positive integer s

ln s ≤ Hs ≤ ln s + 1. (2.2)
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2.2 Building a Spanning Tree

Proof of Theorem 2.1: An important message of Beck’s potential func-
tion argument (which allowed him to prove bT ≥ (ln 2 − o(1)) n

ln n ) was
that instead of concentrating on “making” a spanning tree, one concen-
trates on “breaking” into every cut – the success of which would then
imply connectivity. In our proof we abandon this dual approach and
plainly focus on the original goal: building a spanning tree.

We assume that Breaker starts the game. Otherwise Maker can start
with an arbitrary first move, then follow his strategy. If his strategy calls
for something he occupied before he takes an arbitrary edge; no extra
move is disadvantageous for him.

In the following proof by a component we always mean a connected
component of Maker’s graph. For a vertex v, we denote by C(v) the
component containing v. We call a component dangerous if it contains
at most 2b vertices. By the degree of a vertex v (or deg(v) in short) we
always mean the degree of v in Breaker’s graph.

We define a danger function on the vertex set of Kn. Let

dang(v) =

{
deg(v) if C(v) is dangerous
−1 otherwise

Maker’s Strategy At the beginning every vertex is active. For his ith
move, Maker identifies a vertex vi with the largest danger value among
active vertices (ties are broken arbitrarily) and he occupies one arbitrary
free edge connecting C(vi) to another component. He deletes vi from
the set of active vertices and calls vi deactivated. This strategy of Maker
will be denoted by SM .

The following observation follows easily from SM by induction on the
number of rounds.

Observation 2.6. Every component contains exactly one active vertex.
�

Note that due to Observation 2.6 Maker can always make a move
according to SM unless his graph is a tree (thus he won) or Breaker
occupied a cut (and Breaker won). Hence during our analysis Maker’s
graph is always a forest.

Proof of Maker’s Win Suppose, for a contradiction, that Breaker has
a strategy SB to win the (1 : b) connectivity game against Maker. Let
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Bi and Mi denote the ith move of Breaker and Maker, respectively,
in the game where they play against each other using their respective
strategies SB and SM . Let g be the length of this game, i.e., g is the
smallest integer such that Breaker finished occupying all edges in a cut
(K, V \ K) in move Bg. We call this the end of the game. Note that
g ≤ n − 1, as Maker’s strategy does not allow him to occupy a cycle.

Let |K| ≤ |V \ K|. Observe that |K| ≤ 2b, since otherwise Breaker
would have had to occupy at least 2b(n−2b) > gb edges in g < n rounds,
a contradiction for large n. This implies that during the game there is
always at least one dangerous component. Since Maker’s strategy prefers
to deactivate active vertices in dangerous components we also have the
following.

Observation 2.7. Vertex vi is in a dangerous component at and before
its deactivation. �

In his last move Breaker takes b edges to completely occupy all edges
between K and V \ K. In order to be able to do that, directly before
Breaker’s last move all vertices of K must have degree at least n−2b−b.
Let vg ∈ K be an arbitrary active vertex; by Observation 2.6 there is
one in each component inside K.

Recall that v1, . . . , vg−1 were defined during the game. For 0 ≤ i ≤ g−
1, let Ii = {vg−i, . . . vg}. For a non-empty subset I ⊆ V , let dangBi

(I) =
P

v∈I dang(v)

|I| denote the average danger value of the vertices in I directly

before move Bi of Breaker. Analogously, dangMi
(I) denotes the average

danger value before Mi.
The following lemma is a consequence of Maker’s strategy. It considers

the change of danger during Maker’s move.

Lemma 2.8. For every i, 1 ≤ i ≤ g − 1, directly before Mg−i we have
that dangMg−i

(Ii) ≥ dangBg−i+1
(Ii−1).

Proof: All the vertices vg−i+1, . . . , vg constituting Ii−1 are in a dan-
gerous component directly before Bg−i+1, so their danger value does not
change during Mg−i. Hence dangMg−i

(Ii−1) = dangBg−i+1
(Ii−1). Maker

deactivated vg−i in Mg−i, because its danger was maximum among ac-
tive vertices. All vertices of Ii−1 were still active before Mg−i, thus
dang(vg−i) ≥ max{dang(vg−i+1), . . . , dang(vg)} implying dangMg−i

(Ii) ≥
dangMg−i

(Ii−1) and the lemma follows. �

The following lemma bounds the change of the danger value during
Breaker’s moves. The first estimate is used during the first part of the
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game. It will guarantee the existence of many vertices with large average
degree, which eventually leads to a contradiction. For the rounds closer
to the end we need a stronger inductive statement, which is provided by
the second estimate of the lemma.

Lemma 2.9. Let i be an integer, 1 ≤ i ≤ g − 1.

(i) dangMg−i
(Ii) − dangBg−i

(Ii) ≤ 2b
i+1

(ii) dangMg−i
(Ii) − dangBg−i

(Ii) ≤ b+i+a(i−1)−a(i)
i+1 , where a(i) denotes

the number of edges spanned by Ii which Breaker took in the first
g − i − 1 rounds.

Proof: All the components C(vg−i), . . . , C(vg) are dangerous before
Mg−i. Since components do not change during Breaker’s move the
danger value of the vertices of Ii depend solely on their degrees. In
Bg−i Breaker claims b edges, so the increase of the sum of degrees of
vg−i, . . . , vg during Bg−i is at most 2b. Hence dang(Ii) increases by at
most 2b

i+1 , which proves (i).

For (ii), we will be more careful. Let edouble denote the number of
edges taken in Bg−i whose both endpoints are in Ii. Then the increase

of
∑i

j=0 deg(vg−j) during Bg−i is at most b + edouble. Hence dang(Ii)

increases by at most edouble+b
i+1 . We now bound edouble. By definition,

Breaker occupied a(i) edges spanned by Ii in his first g − i − 1 moves.
So, all in all, Breaker occupied a(i) + edouble edges spanned by Ii in his
first g − i moves. On the other hand, we know that among these edges
exactly a(i− 1) are spanned by Ii−1 = Ii \ {vg−i} and there are at most
i edges in Ii incident to vg−i. Hence a(i) + edouble ≤ a(i − 1) + i, giving
us edouble ≤ i + a(i − 1) − a(i). �

Using Lemmas 2.8 and 2.9 we will derive that before B1, dang(Ig−1) >
0. This is of course in contradiction with the fact that at the beginning
of the game every vertex has danger value 0.

Let k := ⌊ n
ln n⌋. For the analysis, we split the game into two parts:

The main game, and the end game consisting of the last k rounds.

Recall that the danger value of vg directly before Bg is at least n−3b.
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Assume first that k > g.

dangB1
(Ig−1) = dangBg

(I0)

+

g−1
∑

i=1

(

dangMg−i
(Ii) − dangBg−i+1

(Ii−1)
)

−
g−1
∑

i=1

(

dangMg−i
(Ii) − dangBg−i

(Ii)
)

.

Hence,

dangB1
(Ig−1) ≥ n − 3b +

g−1
∑

i=1

0 −
g−1
∑

i=1

b + i + a(i − 1) − a(i)

i + 1

≥ n − 3b − b(Hg − 1) − (g − 1) − a(0)

2

+

g−2
∑

i=1

a(i)

(i + 2)(i + 1)
+

a(g − 1)

g

≥ n − b(Hg + 2) − g [since a(0) = 0 and a(i) ≥ 0]

≥ n − b(ln k + 3) − k [since g ≤ k]

≥ n − n

ln n
(ln n − ln ln n + 3) − n

ln n

≥ n ln ln n

ln n
− O

( n

ln n

)

> 0.

Assume now that k ≤ g. We then have

dangB1
(Ig−1) = dangBg

(I0) +

g−1
∑

i=1

(

dangMg−i
(Ii) − dangBg−i+1

(Ii−1)
)

−
k−1∑

i=1

(

dangMg−i
(Ii) − dangBg−i

(Ii)
)

−
g−1
∑

i=k

(

dangMg−i
(Ii) − dangBg−i

(Ii)
)

.

Thus,

dangB1
(Ig−1) ≥ n − 3b +

g−1
∑

i=1

0 −
k−1∑

i=1

b + i + a(i − 1) − a(i)

i + 1
−

g−1
∑

i=k

2b

i + 1
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≥ n − 3b − b(Hk − 1) − (k − 1) − a(0)

2

+
k−2∑

i=1

a(i)

(i + 2)(i + 1)
+

a(k − 1)

k
− 2b(Hg − Hk)

≥ n − b(2Hg − Hk + 2) − k

≥ n − b(2 ln n − ln k + 4) − k

≥ n −
(

n

ln n
− n ln ln n

ln2 n
− 6

n

ln2 n

)

(ln n + ln ln n + 5)

− n

ln n

≥ n(ln ln n)2

ln2 n
> 0.

�

2.3 Achieving Large Minimum Degree

Proof of Theorem 2.2: As in the previous proof we assume that Breaker
starts the game. We say that the game ends when either all vertices
have degree at least c in Maker’s graph (and Maker won) or one vertex
has degree at least n − c in Breaker’s graph (and Breaker won). With
degM (v) and degB(v) we denote the degree of a vertex v in Maker’s graph
and in Breaker’s graph, respectively. A vertex v is called dangerous if
degM (v) ≤ c − 1. To establish Maker’s strategy we define the danger
value of a vertex v as dang(v) := degB(v) − 2b · degM (v).

Maker’s Strategy SM Before his ith move Maker identifies a dangerous
vertex vi with the largest danger value, ties are broken arbitrarily. Then,
as his ith move Maker claims an edge incident to vi. We refer to this
step as “easing vi”.

Observation 2.10. Maker can always make a move according to his
strategy unless no vertex is dangerous (thus he won) or Breaker occupied
at least n − c edges incident to a vertex (and Breaker won). �

Observation 2.11. Vertex vi is dangerous any time before Maker’s ith
move. �
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Suppose, for a contradiction, that Breaker, playing with a bias b, has
a strategy SB to win the min-degree-c game against Maker who plays
with bias 1. Let Bi and Mi denote the ith move of Breaker and Maker,
respectively, in the game where they play against each other using their
respective strategies SB and SM . Let g be the length of this game, i.e.,
the maximum degree of Breaker’s graph becomes larger than n − 1 − c
in move Bg. We call this the end of the game.

For a set I ⊆ V of vertices we let dang(I) denote the average danger

value
P

v∈I dang(v)

|I| of the vertices of I. When there is risk of confusion

we add an index and write dangBi
(v) or dangMi

(v) to emphasize that
we mean the danger-value of v directly before Bi or Mi, respectively.

In his last move Breaker takes b edges to increase the maximum
Breaker-degree of his graph to at least n − c. In order to be able to
do that, directly before Breaker’s last move Bg there must be a dan-
gerous vertex vg whose Breaker-degree is at least n − c − b. Thus
dangBg

(vg) ≥ n − c − b − 2b(c − 1).
Recall that v1, . . . , vg−1 were defined during the game. For 0 ≤ i ≤

g − 1, let Ii = {vg−i, . . . vg}.
The following lemma estimates the change in the average danger dur-

ing Maker’s move.

Lemma 2.12. Let i, 1 ≤ i ≤ g − 1,

(i) if Ii 6= Ii−1, then dangMg−i
(Ii) − dangBg−i+1

(Ii−1) ≥ 0.

(ii) if Ii = Ii−1, then dangMg−i
(Ii) − dangBg−i+1

(Ii−1) ≥ 2b
|Ii| .

Proof: For part (i), we have that vg−i /∈ Ii−1. Since danger val-
ues do not increase during Maker’s move we have dangMg−i

(Ii−1) ≥
dangBg−i+1

(Ii−1). Before Mg−i Maker selected to ease vertex vg−i be-
cause its danger was highest among dangerous vertices. Since all ver-
tices of Ii−1 are dangerous before Mg−i we have that dang(vg−i) ≥
max(dang(vg−i+1), . . . , dang(vg)), which then implies that dangMg−i

(Ii)

≥ dangMg−i
(Ii−1). Combining the two inequalities establishes part (i).

For part (ii), we have that vg−i ∈ Ii−1. In Mg−i degM (vg−i) increases
by 1 and degM (v) does not decrease for any other v ∈ Ii. Besides,
the degrees in Breaker’s graph do not change during Maker’s move. So
dang(vg−i) decreases by 2b, whereas dang(v) do not increase for any other
vertex v ∈ Ii. Hence dang(Ii) decreases by at least 2b

|Ii| , which implies

(ii). �
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The next lemma bounds the change of the danger value during Breaker’s
moves.

Lemma 2.13. Let i be an integer, 1 ≤ i ≤ g − 1.

(i) dangMg−i
(Ii) − dangBg−i

(Ii) ≤ 2b
|Ii|

(ii) dangMg−i
(Ii) − dangBg−i

(Ii) ≤ b+|Ii|−1+a(i−1)−a(i)
|Ii| , where a(i) de-

notes the number of edges spanned by Ii which Breaker took in the
first g − i − 1 rounds.

Proof: Let edouble denote the number of those edges with both end-
points in Ii which are occupied by Breaker in Bg−i. Then the increase
of

∑

v∈Ii
degB(v) during Bg−i is at most b + edouble. Since the degrees

in Maker’s graph do not change during Breaker’s move the increase of
dang(Ii) (during Bg−i) is at most b+edouble

|Ii| .

Part (i) is then immediate after noting that edouble ≤ b.
For (ii), we bound edouble more carefully. By definition, Breaker oc-

cupied a(i) edges spanned by Ii in his first g − i − 1 moves. So, all in
all, Breaker occupied a(i) + edouble edges spanned by Ii in his first g − i
moves. On the other hand, we know that among these edges exactly
a(i− 1) are spanned by Ii−1 ⊇ Ii \ {vg−i} and there are at most |Ii| − 1
edges in Ii incident to vg−i. Hence a(i) + edouble ≤ a(i − 1) + |Ii| − 1,
giving us edouble ≤ |Ii| − 1 + a(i − 1) − a(i). �

The following estimates for the change of average danger during one
full round are immediate corollaries of the previous two lemmas.

Corollary 2.14. Let i be an integer, 1 ≤ i ≤ g − 1.

(i) if Ii = Ii−1, then dangBg−i
(Ii) − dangBg−i+1

(Ii−1) ≥ 0.

(ii) if Ii 6= Ii−1, then dangBg−i
(Ii) − dangBg−i+1

(Ii−1) ≥ − 2b
|Ii|

(iii) if Ii 6= Ii−1, then

dangBg−i
(Ii) − dangBg−i+1

(Ii−1) ≥ −b + |Ii| − 1 + a(i − 1) − a(i)

|Ii|
,

where a(i) denotes the number of edges spanned by Ii which Breaker
took in the first g − i − 1 rounds.

Using Corollary 2.14 we derive that before B1, dang(Ig−1) > 0, which
contradicts the fact that at the beginning of the game every vertex has
danger value 0.
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Let k := ⌊ n
ln n⌋. For the analysis, we split the game into two parts:

The main game, and the end game which starts when |Ii| ≤ k.

Let |Ig| = r. Let i1 < . . . < ir−1 be those indices for which Iij 6= Iij−1.
Note that |Iij | = j + 1. Observe that by definition a(ij−1) ≥ a(ij − 1).

Recall that the danger value of vg directly before Bg is at least n −
c − b(2c − 1).

Assume first that k > r.

dangB1
(Ig−1) = dangBg

(I0) +

g−1
∑

i=1

(

dangBg−i
(Ii) − dangBg−i+1

(Ii−1)
)

≥ dangBg
(I0)

+

r−1∑

j=1

(

dangBg−ij
(Iij ) − dangBg−ij+1

(Iij−1)
)

[by Corollary 2.14(i)]

≥ dangBg
(I0) −

r−1∑

j=1

b + j + a(ij − 1) − a(ij)

j + 1

[by Corollary 2.14(iii)]

Hence,

dangB1
(Ig−1) ≥ dangBg

(I0) − bHr − r − a(0)

2

+

r−1∑

j=2

a(ij−1)

(j + 1)j
+

a(ir−1)

r
[since a(ij−1) ≥ a(ij − 1)]

≥ dangBg
(I0) − bHk − k [since a(0) = 0 and r ≤ k]

≥ n − c − b(2c + ln k) − k

≥ n − n

ln n
(2c + ln n − ln ln n) − n

ln n
− c

≥ n ln ln n

3 ln n
− n

ln n
− c

> 0 [for large n]. (2.3)

Assume now that k ≤ r.
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dangB1
(Ig−1) = dangBg

(I0) +

g−1
∑

i=1

(

dangBg−i
(Ii) − dangBg−i+1

(Ii−1)
)

≥ dangBg
(I0)

+
r−1∑

j=1

(

dangBg−ij
(Iij ) − dangBg−ij+1

(Iij−1)
)

[by Corollary 2.14(i)]

Thus,

dangB1
(Ig−1) ≥ dangBg

(I0)

+

k−1∑

j=1

(

dangBg−ij
(Iij ) − dangBg−ij+1

(Iij−1)
)

+
r−1∑

j=k

(

dangBg−ij
(Iij ) − dangBg−ij+1

(Iij−1)
)

,

and therefore,

dangB1
(Ig−1) ≥ dangBg

(I0) −
k−1∑

j=1

b + j + a(ij − 1) − a(ij)

j + 1

−
r−1∑

j=k

2b

j + 1
[by Corollary 2.14(iii) and (ii)]

≥ dangBg
(I0) − b(2Hr − Hk) − k − a(0)

2

+

k−1∑

j=2

a(ij−1)

(j + 1)j
+

a(ik−1)

k

≥ n − c − b(2c − 1 + 2Hn − Hk) − k

[since n ≥ r and a(0) = 0]

≥ n − c

−
„

n

ln n
−

n ln ln n

ln2
n

−

(2c + 3)n

ln2
n

«
(ln n + ln ln n + 2c + 2)

− n

ln n
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≥ n(ln ln n)2

ln2 n
[for n large enough]

> 0. (2.4)

�

Proof of Theorem 2.3: The previous proof works line by line, we only
have to adapt the last few lines of the calculations of (2.3) and (2.4).
For (2.3), we have

dangB1
(Ig−1) ≥ n − c − b(2c + ln k) − k

≥ n − c − (1 − ǫ) · n

ln n
·
(

2ǫ

3(1 − ǫ)
· ln n + ln n − ln ln n

)

− n

ln n

≥ ǫ

3
n

> 0.

For (2.4), we obtain

dangB1
(Ig−1) ≥ n − c − b(2c + 2 ln n − ln k + 1) − k

≥ n − c

−(1 − ǫ) · n

ln n
·
(

2ǫ

3(1 − ǫ)
· ln n + ln n + ln ln n + 2

)

− n

ln n

≥ ǫ

4
n [for large n]

> 0.

�

2.4 Building a Connected Graph with High

Minimum Degree

Proof of Theorem 2.4: To establish a suitable strategy for Maker we
basically merge his strategies for occupying a spanning tree and achieving
a graph of min-degree c. We will adopt most of the terminology used
in the two corresponding proofs, but sometimes with a slightly modified
content. We assume that Breaker starts the game and denote by degM (v)
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and degB(v) the degree of a vertex v in Maker’s graph and in Breaker’s
graph, respectively. We adopt the concept of active vertices as well, at
the beginning each vertex is active. After each of his moves Maker deletes
one or two vertices from the set of active vertices. The corresponding
vertices are called deactivated.

By a component, we always refer to a connected component of Maker’s
graph. A component is called dangerous if it contains at most 2bc ver-
tices. In contrast to Section 2.2 we will have active vertices in dangerous
components only. We call a vertex v dangerous if it is active or has
degree at most c − 1 in Maker’s graph.

We define a danger function on the vertex set. Let

dang(v) =

{
degB(v) if v is active
degB(v) − 2b · degM (v) otherwise

Maker’s Strategy SM . If there are no dangerous vertices left then
Maker occupies an arbitrary free edge connecting two components. Oth-
erwise, for his ith move Maker identifies a dangerous vertex vi with the
largest danger value (ties are broken arbitrarily) and eases vi by doing
the following. If vi is active then Maker claims an arbitrary edge con-
necting C(vi) to another component C′ and deactivates vi. In case C′

also had an active vertex and |C(vi)| + |C′| > 2bc, then Maker deac-
tivates the active vertex of C′ as well. If vi is not active then Maker
claims an arbitrary edge e incident to vi. In case a new component C
emerges upon the selection of e, Maker deactivates some of the (at most
two) active vertices of C arbitrarily such that C has one or zero active
vertex depending on whether C is dangerous or not, respectively.

Note that Maker can always make a move according to his strategy
unless his graph is connected and has minimum degree at least c (thus
he won) or Breaker occupied either a cut or an (n− c)-star (and Breaker
won).

The following is an immediate consequence of the strategy SM .

Observation 2.15. Every dangerous component contains exactly one
active vertex whereas other components do not have active vertices. �

Since vi is only defined for moves when there are still dangerous ver-
tices, we have the following.

Observation 2.16. Vertex vi is dangerous any time before Maker’s ith
move. �
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Proof of Maker’s Win Suppose, for a contradiction, that Breaker, play-
ing with a bias b, has a strategy SB to win the game in question against
Maker who plays with bias 1. Let Bi and Mi denote the ith move of
Breaker and Maker, respectively, in the game where they play against
each other using their respective strategies SB and SM . Let g be the
length of this game, i.e., g is the smallest integer such that in move Bg

Breaker finished occupying either all edges in a cut (K, V \K) or all edges
of an (n − c)-star. We call this the end of the game.

Proposition 2.17. g < (c + 1) · n

Proof: Each move of Maker is used either to decrease the number of
components or to ease a vertex (occasionally both). Since the number of
components can be decreased at most n − 1 times and each vertex can
be eased at most c times (thereafter it stops being dangerous), Maker
can make at most n − 1 + cn moves. �

Analogously to Section 2.3, for a set I ⊆ V of vertices we let dang(I)

denote the average danger value
P

v∈I dang(v)

|I| of the vertices of I. When

there is risk of confusion we again add an index and write dangBi
(v)

or dangMi
(v) to emphasize that we mean the danger-value of v directly

before Bi or Mi, respectively.

Observation 2.18. Before Breaker’s last move Bg there is a dangerous
vertex vg with dang(vg) ≥ n − b · (2c + 1)

This can be seen by distinguishing two cases.

Case 1. After Bg Breaker has completely occupied an (n − c)-star.
In order to be able to do that, directly before Bg there must be
a vertex vg with degM (vg) < c and degB(vg) ≥ n − c − b. Thus
dangBg

(vg) ≥ n − c − b − 2b(c − 1) > n − b · (2c + 1).

Case 2. After Bg Breaker has completely occupied a cut (K, V \K) with
|K| ≤ |K\V |.
In order to be able to do that, directly before Bg all vertices of K
must have degree at least n − |K| − b in Maker’s graph. Observe
that |K| ≤ 2bc since otherwise Breaker would had to occupy at
least 2bc(n − 2bc) > gb (by Proposition 2.17) edges in g rounds, a
contradiction for large n. Hence by Observation 2.15 K contains
an active vertex vg, whose danger value is at least degB(vg) ≥
n − |K| − b ≥ n − 2bc − b = n − b(2c + 1). �
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Since vg is dangerous before Breaker’s last move it is dangerous through-
out the whole game. So before each move of Maker there is at least one
dangerous vertex, implying that in each move Maker eases a vertex and
v1, . . . , vg−1 are all defined during the game. For 0 ≤ i ≤ g − 1, let
Ii = {vg−i, . . . , vg}.

For an estimate of the change in the average danger during Maker’s
move the statement of Lemma 2.12 is valid; we still copy it here since
its proof has to be slightly adapted.

Lemma 2.19. Let i, 1 ≤ i ≤ g − 1,

(i) if Ii 6= Ii−1, then dangMg−i
(Ii) − dangBg−i+1

(Ii−1) ≥ 0.

(ii) if Ii = Ii−1, then dangMg−i
(Ii) − dangBg−i+1

(Ii−1) ≥ 2b
|Ii| .

Proof: Part (i) can be shown by following the proof of part (i) of
Lemma 2.12 word by word. For part (ii) we have that vg−i ∈ Ii−1 = Ii.
We distinguish two cases.

Case 1. vg−i was active before Mg−i.
Due to Maker’s strategy vg−i is deactivated after Mg−i, implying
that during Mg−i dang(vg−i) decreases by 2b · degM (vg−i) (where
degM (vg−i) refers to the moment directly after Mg−i). Since after
Mg−i vg−i is not isolated in Maker’s graph (otherwise it would still
be active) it has positive degree in Maker’s graph, implying that
dang(vg−i) decreased by at least 2b. No vertices increased their
danger value during Maker’s move, hence dang(Ii) decreases by at
least 2b

|Ii| , which implies (ii).

Case 2. vg−i was already deactivated before Mg−i.
In this case we can proceed along similar lines as in the proof of
part (ii) of Lemma 2.12. �

The rest of the proof agrees with the one of Theorem 2.2 mutatis
mutandis, the only difference being in the calculation that dang(vg) is
lower bounded by n − b(2c + 1) instead of n − c − b(2c − 1). �

The proof of Theorem 2.5 follows similarly to Theorem 2.3.





3
On the Clique-Game

3.1 Introduction

In this chapter we study three variations of the clique game.

The Biased Game

Recall that fN (m, b) denotes the largest q such that Maker can build a
Kq in the (m : b) game on KN . Beck [21] showed that

fN(1, 1) = ⌊2 log N − 2 log log N + 2 log e − 3 + o(1)⌋
= (2 + o(1)) log N. (3.1)

Furthermore, Beck [21] defined a function gN (m, b) which for constant

m, b evaluates to
(

2
log(m+b)−log m + o(1)

)

log N . The definition of gN (m, b)

is motivated by the so called Biased Meta-Conjecture by Beck: an adap-
tation of the random graph intuition which also considers some particular
criteria guaranteeing a Maker’s win. While fN (1, 1) = gN (1, 1) (by (3.1))
and fN(m, 1) ≥ gN(m, 1) (by a result in [21]) for every m and every large
enough N , we will show in Section 3.3 that for infinitely many m, b the
values fN (m, b) and gN(m, b) are substantially different.

37
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Theorem 3.1. Let m, b be constants. In the (m : b) game Maker has a

strategy to occupy a Kq with q =
(

m
log(b+1) − o(1)

)

· log N .

In particular, for constant m ≥ 6 and large enough N ,

fN(m, m) ≥
(

m

log(m + 1)
− o(1)

)

log N > gN (m, m) = (2 + o(1)) log N.

(3.2)
This connects to the following open problem by Beck.

Open Problem 3.2. (Open Problem 31.1, [21])

(a) Is it true that in the (2 : 2) game Maker has a strategy to occupy a
Kq for q = 2 log N − 2 log log N + O(1)?

(b) Is it true that in the (2 : 2) game Breaker has a strategy to prevent
Maker from occupying a Kq for q = 2 log N − 2 log log N + O(1)?

Open Problem 3.2 is still unsolved but (3.2) points out that in the (6 : 6)
game Maker has a strategy to occupy a Kq with q = 2.13 log N . So, if in
Open Problem 3.2 ”(2 : 2)” was replaced with ”(6 : 6)”, then the answer
to (a) would be ”yes” whereas the answer to (b) would be ”no”. Hence,
it is plausible that the answers are similar in Open Problem 3.2 as well.

Building a Clique Fast

In Section 3.4 we investigate the minimum number of moves s(q) Maker
needs to build a Kq in the game on an arbitrarily large KN . (3.1) implies
the following.

Corollary 3.3. Maker can build a Kq on KN with N = (1 + o(1))q2
q
2 .

Hence s(q) is upper bounded by 1
2

(
N
2

)
≤ q22q. According to the best

known bounds, s(q) is sandwiched between 2
q
2 (due to Beck [20]) and

2q+2 (a result obtained independently by Beck [20] and Pekeč [65]). In
our second theorem we improve the upper bound on s(q).

Theorem 3.4. Maker has a strategy to build a Kq in 2
2q
3 poly(q) moves.

Building a Tournament

Finally, we derive a strategy for Maker for occupying a large tournament,
which supports the random graph intuition.
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Theorem 3.5. If q ≤ (1−o(1)) log N , then Maker has a winning strategy
in the q-tournament game.

We will prove Theorem 3.5 in Section 3.5.

Notation

Suppose that we consider a game played on the edge set of a graph G.
Then, for every vertex v ∈ V (G) we let dB(v) denote the degree of v in
Breaker’s graph.

3.2 Proof Sketches for Theorems 3.1, 3.4
and 3.5

We first sketch a very natural strategy for Maker in the ordinary (1 : 1)
game, which allows him to build a Kq with q = (1 − o(1)) log N in 2N
moves. For the clique size this bound is weaker than (3.1) by a factor of
2; however, appropriate adaptations of our strategy form new Maker’s
strategies for some variations of the clique game, allowing us to prove
Theorem 3.1, Theorem 3.4 and Theorem 3.5.

Maker’s Strategy We consider the following strategy S for Maker.
Maker first selects an arbitrary vertex v1 of the vertex set of KN . As his
ith move Maker claims a free edge (v1, wi) until all edges incident to v1

are occupied. We refer to this sequence of moves as processing v1.

Note that by applying S Maker achieves that at least r := N−1
2 vertices

w1, w2, . . . , wr are connected to v1 in his graph. So he can restrict him-
self to building a (q−1)-clique in the subgraph induced by {w1, . . . , wr},
which has roughly N

2 vertices. This suggests that by applying S recur-
sively Maker can, for q ≈ log N , build a q-clique. We note that, actually,
there is an obstacle which has to be taken into account: It is possible that
before Maker finishes processing v1, Breaker already claimed some edges
in the subgraph induced by {w1, w2, . . . , wr}, which might be a handicap
for Maker. However, this can be resolved by ignoring all vertices whose
degree in Breaker’s graph is larger than some carefully chosen threshold
t, and setting up a more involved recurrence. (A detailed description
will be given in the sequel.)

We now sketch three modifications of S which can be applied to some
variations of the clique game.
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The Biased Game For the biased clique game, we consider the follow-
ing modification of S: At the beginning, instead of selecting one vertex
v1, Maker occupies an m-clique on some vertex set {v1, v2 . . . , vm}. (In
the more detailed analysis in Section 3.3 we will show how this can be
achieved.) As long as there are vertices v for which (v, v1), . . . , (v, vm)
are all unclaimed, as his move, Maker fixes such a v and connects v to
v1, . . . , vm. In this way Maker can achieve that in his graph roughly
N

b+1 vertices are adjacent to every vi ∈ {v1, . . . , vm}. So he can restrict
himself to occupying a (q − m)-clique on the graph G′ induced by the
set of those vertices w which are adjacent to every vi with 1 ≤ i ≤ m in
his graph.

A handwaving analysis (neglecting again the fact that Breaker might
have claimed edges of G′) gives that Maker can build a Kq if N ≥
(b + 1)

q
m , i.e., if q ≤ m logb+1(N) = m

log(b+1) log N . This is close to the

bound we will prove in Section 3.3.

Building a Clique Fast Let N ≈ q2
2q
3 . Maker proceeds in two phases.

In the first phase he applies S: This allows him to occupy roughly N
2

edges of the form (v1, w1), (v1, w2), . . . , (v1, wN
2

). Again we will not take

into account that Breaker might have claimed edges in the subgraph
induced by {w1, . . . , wN

2
}. Thus Maker can proceed recursively on the

subgraph induced by {w1, . . . , wN
2
}.

By applying S exactly q
3 times he can obtain vertices v1, . . . , v q

3
and

w1, . . . , w N

2q/3
= wq2q/3 such that every wj is connected with every vi in

his graph. This will take him roughly
∑q/3

i=1
N
2i ≤ N = q2

2q
3 moves.

By Corollary 3.3, Maker can occupy a K 2q
3

on the subgraph induced

by {w1, . . . , wq2q/3} (provided q is large enough); clearly, this takes him

at most (q2
q
3 )2 ≤ q22

2q
3 moves. This forms the second phase. The two

phases together allow Maker to achieve a Kq in roughly 2q22
2q
3 moves.

The Tournament Game Finally, for the tournament game Maker can
adapt his strategy S as follows. Let T be the goal-tournament of Maker
on the vertex set {u1, . . . , uq}. During the game Maker will maintain so
called candidate sets V1, . . . , Vq such that every vi ∈ Vi is still suitable for
the part of vertex ui. In the first round Maker selects a vertex v1 ∈ V1

and then responds to each Breaker’s move as follows: If Breaker claims
an edge connecting v1 with a vertex in Vi with i ≥ 2, then Maker claims
another, free edge e connecting v1 with Vi (if there is no such edge e,
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Maker just claims an arbitrary edge). Otherwise, he claims any free edge
e = (v1, vi) with vi ∈ Vi for some i ≥ 2. In either case Maker orients e in
such a way that v1 is the sink of e if and only if u1 is the sink of (u1, ui).

In this way Maker can restrict himself to occupying a copy of T \{u1}
in the subgraph induced by W2∪W3 ∪ . . .∪Wq where Wj ⊆ Vj is the set
of vertices in Vj which are in Maker’s graph adjacent to v1. By Maker’s

strategy, the size of Wj is at least
|Vj |
2 . This suggests that Maker can

succeed if N
q ≥ 2q (at the beginning every candidate set Vj has size N

q ,

and in every round at least half of the vertices of Vj remain candidates),
i.e., if q = (1 − o(1)) log N . (Again we did not take into account that
some of the edges in the subgraph induced by W2 ∪ W3 . . . Wq might
already have been claimed by Breaker in the first round.)

3.3 The Biased Game

The next statement is a well known fact in graph theory.

Observation 3.6. Let G be a graph on n vertices where every vertex
has degree at most d. Then G contains an independent set of size at
least n

d+1 .

This can be seen by considering the following greedy algorithm for build-
ing an independent set: Start with an empty set S and then, as long as
G contains at least one vertex, iteratively select an arbitrary vertex v,
add it to S and remove v and all its neighbors from G. Finally, at most
(d + 1)|S| vertices were deleted and therefore, |S| ≥ n

d+1 .
In this chapter we will use the following observation several times.

Observation 3.7. Let d ≥ 0, dcrit ≥ 1 be integers, let G be a graph, and
let S ⊆ V (G) such that dB(v) ≤ d for every v ∈ S. Suppose that Breaker
claims e additional edges which have at least one endpoint in S. Then
there are at least |S| − 2e

dcrit
vertices w ∈ S where dB(w) ≤ d + dcrit.

This can be seen as follows. In Breaker’s graph, the sum of vertex-
degrees in S is increased by at most 2e. Let W ⊆ S denote the set of
vertices w ∈ S where dB(w) is increased by more than dcrit. If |W | > 2e

dcrit
,

then the sum of vertex-degrees in S (in Breaker’s graph) is increased by
at least |W |dcrit > 2e, which leads to a contradiction. Hence, |W | ≤ 2e

dcrit
.

We have dB(v) ≤ d + dcrit for every v ∈ S\W , as claimed
Before proving Theorem 3.1 we formulate some more auxiliary facts.

Observation 3.6 directly implies the next corollary.
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Corollary 3.8. Let G be a graph on n vertices where dB(v) ≤ d for
every vertex v ∈ V (G). Then there is an S ⊆ V (G) with |S| ≥ n

d+1 such
that S is an independent set in Breaker’s graph.

The next proposition shows that Maker can build any clique on a com-
plete graph of sufficiently large size.

Proposition 3.9. For every integers q, m, b there is an n = n(q, m, b)
such that for every n′ ≥ n Maker has a strategy to build a Kq in the
(m : b) game played on Kn′ .

Proof: It suffices to consider the case where m = 1 (Maker can only
benefit from larger values). We proceed by induction on q. Clearly,
Maker can always build a K1. Suppose now that q > 1 and let ñ =
n(q − 1, 1, b).

Let V denote the vertex set of a Kn (n is to be determined later).
Maker uses the following strategy. He first selects an arbitrary vertex
v ∈ V . In each of his moves he claims an edge incident to v until all such
edges are occupied. In this way, at least n−1

b+1 vertices are connected to
v in Maker’s graph. In the meantime Breaker claimed at most b(n − 1)
edges. Maker ignores all vertices in V \{v} with degree at least 4b(b+1) in

Breaker’s graph. Hence he ignores at most 2b(n−1)
4b(b+1) = n−1

2(b+1) vertices and

therefore has a set W of n−1
b+1 − n−1

2(b+1) = n−1
2(b+1) vertices where dB(w) <

4b(b+1) for every w ∈ W , and all edges in E({v}, W ) belong to his graph.

By Corollary 3.8, there is a subset W ′ ⊆ W with |W ′| ≥ |W |
4b(b+1) such

that none of the edges in E(W ′) belongs to Breaker’s graph. Note that

|W ′| ≥
n−1

2(b+1)

4b(b+1) . By choosing n appropriately we obtain that |W ′| ≥ ñ,

and thus by induction, Maker can build a Kq−1 on W ′, which together
with v forms a Kq.

Proof of Theorem 3.1: Choose C = C(m, b) in such a way that Maker
has a strategy to build a Km in the (m : b) game played on KC . (Propo-
sition 3.9 guarantees that such a C exists.) Note that since we consider
b and m as constants, C is also a constant. Throughout this section we
abbreviate (m : b) game by game.

The next lemma shows how Maker can reduce the task of occupying a
Kq to the task of occupying a Kq−m. To this end we consider complete
graphs where some of the edges are already occupied by either Maker or
Breaker.
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vmv1

w
n
′w1

Figure 3.1: The drawn edges represent edges in Maker’s graph.

Lemma 3.10. Let G be a complete graph on n vertices where dB(v) ≤ d
for every v ∈ V (G) and n ≥ C(d + 1). Let

n′ =
n − m − md − 2b

(
C
2

)

b + 1
. (3.3)

If n′ ≥ 1, then Maker can achieve that there are disjoint sets {v1, . . . , vm},
{w1, . . . , wn′} ⊆ V (G) where
(i) all edges in E({v1, . . . , vm}) ∪ E({v1, . . . , vm}, {w1, . . . , wn′}) belong
to Maker’s graph, and
(ii) dB(wi) ≤ d + 2(b + 1) for every i, 1 ≤ i ≤ n′.

Figure 3.1 shows an illustration of Lemma 3.10.(i) for m = 4 and n′ =
6. Before proving Lemma 3.10 we first show its consequences. Note
that if Maker manages to occupy a (q − m)-clique induced by some
vertex set W ⊆ {w1, . . . , wn′}, then he possesses the q-clique induced
by W ∪ {v1, . . . , vm}. We will use this fact to analyze Maker’s strategy
recursively. For integers n, d we let G(n, d) denote the set of complete
graphs G on n vertices where dB(v) ≤ d for every vertex v ∈ V (G).
Lemma 3.10 implies the following.

Corollary 3.11. Let d, n, q be integers with n ≥ C(d + 1) and q ≥ m,
let G ∈ G(n, d), and let n′ ≥ 1 be defined as in Lemma 3.10. Maker can
build a Kq in the game on G if for every G′ ∈ G(n′, d + 2(b + 1)) he can
build a Kq−m in the game on G′.

The following corollary is a direct consequence of Corollary 3.8 and the
definition of C.

Corollary 3.12. Let G ∈ G(n, d). If n ≥ C(d + 1), then Maker can
build a Km in the game on G.

Let c = m + 2b
(
C
2

)
and let i ≥ 2. By applying Corollary 3.11 (i − 1)

times and using Corollary 3.12, we obtain that in the original game on
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KN , Maker can occupy a Kim if

N − (c + 0 · m)

b + 1
− (c + 2(b + 1)m)

b + 1
− (c + 4(b + 1)m)

...

b + 1
− (c + 2(i − 2)(b + 1)m)

b + 1

is at least C(d′ + 1) where d′ = 2(i − 1)(b + 1).
Hence, Maker can build a Kim if

N

(b + 1)i−1
− (c + 2(i − 2)(b + 1)m)

i−1∑

j=1

1

(b + 1)j
≥

C(2(i − 1)(b + 1) + 1). (3.4)

Since C, m, b are constants, (3.4) is equivalent to N
(b+1)i−1 ≥ c′+c′′(i−2),

for appropriately chosen positive constants c′, c′′. Let k = c′ + c′′. Hence
we have the following.

Corollary 3.13. If N ≥ ki(b + 1)i−1 for some i ≥ 2, then Maker can
occupy a Kim in the game on KN .

Let

q =

(
m

log(b + 1)
− 1

log log N

)

· log N.

We apply Corollary 3.13 for i = q
m (for simplicity, we assume that q is

divisible by m). Using that q ≤ m log N , we get

k
q

m
(b + 1)

q
m−1 ≤ k log N(b + 1)(

1
log(b+1)− 1

m log log N ) log N

= kN log N(b + 1)−
log N

m log log N

= kN(b + 1)
log log N
log(b+1)

− log N
m log log N

(since log N = (b + 1)
log log N
log(b+1) )

< N (provided N is large enough).

Hence, Maker can occupy a Kq in the game on KN , which concludes the
proof of Theorem 3.1.
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It remains to show Lemma 3.10.
Proof of Lemma 3.10: We assume that no edge of G belongs to Maker’s

graph. Otherwise, Maker can follow his strategy and, whenever this
strategy calls for an edge he already possesses, then he takes an arbitrary
free edge: no extra move is disadvantageous for him.

Maker proceeds in two phases.

Phase 1 By assumption, n ≥ C(d+1) and thus by Corollary 3.8, there
is an S ⊆ V (G) with |S| = C such that none of the edges in E(S)
belongs to Breaker’s graph. Maker first builds a Km on some vertex set
{v1, . . . , vm} ⊆ S (this is possible by the choice of C). Note that in the
meantime Breaker occupied at most b

(
C
2

)
edges. From now on Maker

will ignore all vertices v ∈ V (G)\{v1, . . . , vm} incident to one of these
edges. Moreover, Maker will also ignore those vertices v ∈ V (G) which
are connected to some vi, i ∈ {1, . . . , m} in Breaker’s graph. In total
Maker ignores at most 2b

(
C
2

)
+ md vertices. Let W denote the set of

remaining vertices in V (G)\{v1, . . . , vm} and note that

|W | ≥ n − m − 2b

(
C

2

)

− md. (3.5)

Every Breaker’s edge incident to a vertex in W has been occupied be-
fore Phase 1. So, dB(w) ≤ d for every w ∈ W . Moreover, no edge in
E({v1, . . . , vm}, W ) belongs to Breaker’s graph. Using a similar argu-
ment as in the beginning of the proof we can assume, without loss of
generality, that no edge in E({v1, . . . , vm}, W ) is assigned to Maker.

Phase 2 As long as there are vertices w ∈ W where (w, vi) is unclaimed
for every i ∈ {1, . . . , m}, as his move Maker selects such a w and occupies
the edges (w, v1), (w, v2), . . . , (w, vm). We refer to such a move as “saving
w”.

Let r denote the number of vertices Maker saved and, additionally,
let W ′ = {w1, . . . , wr} denote the corresponding vertex set. Clearly,

r ≥ |W |
b+1 . Moreover, after Phase 2 every w ∈ W\W ′ is connected to

some vi with i ∈ {1, . . . , m} in Breaker’s graph, for otherwise, Maker
would have saved w. In total, Breaker claimed rb edges during Phase 2,
at least |W |− r of which are in E(W\W ′, {v1, . . . , vm}). Hence, Breaker
claimed at most rb− (|W | − r) = r(b + 1)− |W | edges with an endpoint
in W ′. Figure 3.2 shows an illustration of the two phases for m = 4 and
r = 6.
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vm
v1

wrw1
W

′W\W ′

Figure 3.2: The solid edges represent Maker’s edges and the dotted edges
indicate that every w ∈ W\W ′ is adjacent to some vi in
Breaker’s graph.

Let W ′′ denote the set of those vertices w ∈ W ′ where dB(w) ≤
d + 2(b + 1). By Observation 3.7, |W ′′| ≥ |W ′| −

(
2(r(b+1)−|W |)

2(b+1)

)

=

r−
(

r − |W |
b+1

)

= |W |
b+1 . So, {v1, . . . , vm}, W ′′ form the required sets.

3.4 Building a Clique Fast

Proof of Theorem 3.4: Throughout this section we consider the (1 : 1)
game. We will describe a strategy which allows Maker to occupy a Kq

fast. Maker proceeds in two phases. The next lemma describes the first
phase.

Lemma 3.14. Let i, r ≥ 1 be integers and let N = 9ir2i. Then in the
game on KN , Maker can achieve in at most 2N moves that for some
disjoint V, W ⊆ V (G) with |V | = i and |W | = r,

(i) all edges in E(V ) ∪ E(V, W ) belong to Maker’s graph, and

(ii) the subgraph induced by W does not contain any edge of Breaker’s
graph.

Figure 3.3 shows an illustration of Lemma 3.14 for i = 4 and r = 6.
We postpone the proof of Lemma 3.14 and continue with the proof of
Theorem 3.4. For the second phase we apply Corollary 3.3 for the sub-

graph induced by W . Let r = 2q′2
q′
2 for some large enough q′, and

let V, W be the vertex sets from Lemma 3.14. By Corollary 3.3, Maker
can build a Kq′ on the subgraph induced by W , which takes him at

most
(

r
2

)
≤ 2q′22q′

moves. Hence, altogether Maker can build a Ki+q′ in
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V

W

Figure 3.3: The drawn edges belong to Maker’s graph. None of the edges
spanned by W belongs to Breaker’s graph.

2N +2q′22q′
= 36iq′2

q′
2 +i +2q′22q′

moves. By setting i = q
3 and q′ = 2q

3 ,
we obtain Theorem 3.4.

It remains to show Lemma 3.14. The next lemma describes a main
ingredient of Maker’s strategy. As in the proof of Theorem 3.1 we con-
sider complete graphs where some of the edges are already occupied by
either Maker or Breaker.

Lemma 3.15. Let G be a complete graph on n vertices where dB(w) ≤ d
for every w ∈ V (G), let v ∈ V (G), and let

n′ =
n − (d + 1)

2
. (3.6)

If n′ ≥ 1, then Maker can achieve in at most n moves that for some
{w1, . . . , wn′} ⊆ V (G), (v, wi) belongs to Maker’s graph and dB(wi) ≤
d + 4 for every i, 1 ≤ i ≤ n′.

Proof: As in the proof of Lemma 3.10 we can assume, without loss of
generality, that no edge of G belongs to Maker’s graph. By assumption,
dB(v) ≤ d, and hence there is a W ⊆ V (G)\{v} with |W | ≥ n − (d + 1)
such that none of the edges in E({v}, W ) belongs to Breaker’s graph.
Maker proceeds as follows. Until all edges in E({v}, W ) are occupied,
as his ith move he claims a free edge (v, wi) ∈ E({v}, W ). Suppose that
he can make r such moves (note that r ≤ n).

In the meantime Breaker occupied r edges, including (v, w) for every
w ∈ W\{w1, . . . , wr}, since otherwise, Maker would have claimed (v, w).
So, Breaker occupied at most r− (|W | − r) = 2r− |W | edges incident to
a vertex in {w1, . . . , wr}.

By Observation 3.7, there is a W ′ ⊆ {w1, . . . , wr} with |W ′| ≥ r −
2(2r−|W |)

4 = |W |
2 ≥ n−(d+1)

2 where dB(w′) ≤ d+ 4 for every w′ ∈ W ′. So,
W ′ forms the required vertex set.
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Proof of Lemma 3.14: Maker proceeds in i steps. It will turn out
that every step j yields appropriate, disjoint vertex sets Vj , Wj ⊆ V (G)
where all edges in E(Vj) ∪ E(Vj , Wj) belong to Maker’s graph.

Let V0 := ∅ and W0 := V (G). (So, obviously, all edges in E(V0) ∪
E(V0, W0) = ∅ belong to Maker’s graph.) Let j ≥ 1 and suppose that
Maker has finished step j − 1. Thus by induction, he occupied all edges

in E(Vj−1) ∪ E(Vj−1, Wj−1). For every w ∈ Wj−1, let d
(j−1)
B (w) denote

the number of Breaker’s edges incident to w in the subgraph induced by

Wj−1 (note that if j = 0, then d
(j−1)
B (w) = dB(w) for every w ∈ V (G)).

Moreover, let dmax be the maximum of d
(j−1)
B (w) over all vertices w ∈

Wj−1 and let v be an arbitrary vertex of Wj−1. Applying Lemma 3.15
for the subgraph induced by Wj−1 gives that Maker can achieve in at

most |Wj−1| moves that for some W ⊆ Wj−1 with |W | =
|Wj−1|−(dmax+1)

2 ,

the edge (v, w) belongs to Maker’s graph and d
(j−1)
B (w) ≤ dmax + 4 for

every w ∈ W . Let Vj := Vj−1 ∪ {v} and Wj := W . This completes step
j. Note that by construction, all edges in E(Vj) ∪ E(Vj , Wj) belong to

Maker’s graph and d
(j)
B (w) ≤ d

(j−1)
B (w) ≤ dmax + 4, for every w ∈ Wj .

By repeatedly applying Lemma 3.15, we obtain that |Vi| = i,

|Wi| :=

N − (0 + 1)

2
− (4 + 1)

2
− (8 + 1)

...

2
− (4(i − 1) + 1)

2
,

and that d
(i)
B (w) ≤ 4i for every w ∈ Wi. Note that Vi and Wi are

disjoint and that |Wi| ≥ N
2i − 4i(1

2 + 1
4 + . . . + 1

2i ) ≥ N
2i − 4i ≥ 5ir (the

last inequality is due to our choice of N). Finally, Maker needed at most
N + N

2 + . . .+ N
2i−1 ≤ 2N moves to occupy the edges in E(Vi)∪E(Vi, Wi).

By Corollary 3.8, there is a W ⊆ Wi with |W | ≥ |Wi|
4i+1 such that none of

the edges in E(W ) belongs to Breaker’s graph. We have |W | ≥ 5ir
4i+1 ≥ r,

and thus Vi, W form the required sets.

3.5 Building a Tournament

We will consider a modification of the tournament game which is ad-
vantageous for Breaker. The advanced q-clique game is played on KN .
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At the beginning Breaker fixes a partition V1, V2, . . . , Vq of the vertex
set with |V1| = |V2| = . . . = |Vq| = N

q . (For simplicity we assume here
that N is divisible by q. The case where N is not divisible by q could
be handled by fixing q disjoint vertex sets V1, V2, . . . , Vq with |Vi| = ⌊N

q ⌋
for every i, 1 ≤ i ≤ q.) Maker’s goal is to build a Kq on some vertex set
{v1, v2, . . . , vq} with vi ∈ Vi for every i, 1 ≤ i ≤ q; and Breaker’s goal is
to prevent this.

Observation 3.16. Let N be an integer and let T be any tournament
on q vertices. If Maker has a strategy to win the advanced q-clique game
on KN , then he has a strategy to occupy a copy of T on KN .

This can be seen as follows. Let {u1, . . . , uq} denote the vertex set
of T . Suppose that Maker has a strategy S to win the advanced q-
clique game on KN . To occupy a copy of T , he first fixes an arbitrary
partition V1, V2, . . . , Vq of the vertex set of KN with |Vi| = N

q for every

i ∈ {1, . . . , q}, and then, in each of his moves, he applies S together
with the following rule for directing the currently claimed edge e: If
e = (vi, vj) for some vi ∈ Vi, vj ∈ Vj with i 6= j, then he orients e in such
a way that e is directed from vi to vj if and only if the edge between ui

and uj is directed from ui to uj. Otherwise, e is spanned by some set
Vi, in which case Maker chooses an arbitrary orientation.

Since S is a winning strategy for the advanced q-clique game, Maker
manages to occupy a copy of T in this way.

Proof of Theorem 3.5: By Observation 3.16, it suffices to show that
Maker has a strategy to win the advanced q-clique game, abbreviated
by q-clique game in the following, on KN . Let dcrit be an integer to be
determined later. The next lemma shows how a winning strategy for the
(q − 1)-clique game yields a winning strategy for the q-clique game. As
in the proof of Theorem 3.1 we let G(n, d) denote the set of complete
graphs G on n vertices where dB(v) ≤ d for every v ∈ V (G).

Lemma 3.17. Let d, n, q be positive integers, let G ∈ G(qn, d), and let
V1, V2, . . . , Vq be a partition of V (G) with |Vi| = n for every i, 1 ≤ i ≤ q.
Moreover, let v1 ∈ V1 and let

n′ =
n − d

2
− 2nq

dcrit .

If n′ ≥ 1, then Maker can achieve that for some W2 ⊆ V2, W3 ⊆
V3, . . . , Wq ⊆ Vq,

(i) |Wi| = n′, for every i, 2 ≤ i ≤ q,
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(ii) all edges in E({v1}, Wi) belong to Maker’s graph, for every i, 2 ≤
i ≤ q, and

(iii) dB(w) ≤ d + dcrit, for every w ∈ W2 ∪ W3 ∪ . . . ∪ Wq.

Before proving Lemma 3.17 we first consider its consequences.

Corollary 3.18. Let d, n, q be positive integers, let G ∈ G(qn, d) and
let n′ ≥ 1 be defined as in Lemma 3.17. Maker has a strategy to win
the q-clique game on G if for every G′ ∈ G((q − 1)n′, d + dcrit) he has a
strategy to win the (q − 1)-clique game on G′.

Suppose that dcrit > 4q and let n′ be defined as in Lemma 3.17. Then,

n′ = n
dcrit − 4q

2dcrit

− d

2
=

n
2dcrit

dcrit−4q

− d

2
=

n

2 + 8q
dcrit−4q

− d

2 .
(3.7)

Let s(q) = 2 + 8q
dcrit−4q . By repeatedly applying Corollary 3.18 and (3.7),

we obtain that Maker has a winning strategy in the q-clique game on
Kqn if ñ ≥ 1 where

ñ :=

n

s(q)
− 0/2

s(q − 1)
− dcrit/2

s(q − 2)
− 2dcrit/2

...

s(2)
− (q − 2)dcrit/2 .

Recall that we assumed that dcrit > 4q. Hence, s(q) ≥ 2 and for every
1 ≤ i ≤ j ≤ q, s(i) = 2dcrit

dcrit−4i ≤ 2dcrit

dcrit−4j = s(j). So, ñ ≥ n
s(q)q−1 − (q −

2)dcrit

2

(

1 + 1
s(2) + 1

s(2)2 + . . . + 1
s(2)q−2

)

≥ n
s(q)q − qdcrit.

Corollary 3.19. Let N, q and dcrit > 4q be integers and let n = N
q .

If n
s(q)q − qdcrit ≥ 1 with s(q) = 2 + 8q

dcrit−4q , then Maker has a winning

strategy in the q-clique game on KN .

We apply Corollary 3.19 for dcrit = 5q2 and q = (1 − 5 log log N
log N ) log N .

For large enough N we have s(q) = 2 + 8q
5q2−4q ≤ 2 + 2

q . Hence, s(q)q ≤
(2 + 2

q )q = 2q(1 + 1
q )q ≤ 2qe. Using that q ≤ log N and 2q = N

25 log log N

we get

n

s(q)q
−qdcrit ≥

N

q2qe
−5q3 ≥ 25 log log N

e log N
−5 log3 N ≥ log4 N

e
−5 log3 N ≥ 1,
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for large enough N . This concludes our proof of Theorem 3.5
Proof of Lemma 3.17: As in the proof of Lemma 3.10 we can assume,

without loss of generality, that no edge of G belongs to Maker’s graph.
Since dB(v1) ≤ d, for every i ∈ {2, . . . , q} there are at most d vertices
v ∈ Vi where (v1, v) belongs to Breaker’s graph. As long as there are
unclaimed edges incident to v1 Maker responds to each Breaker’s move
as follows. If Breaker claims an edge of the form (v1, vi) with vi ∈ Vi

for some i ≥ 2 and there are still unclaimed edges in E({v1}, Vi), then
Maker occupies an arbitrary free edge in E({v1}, Vi). Otherwise, Maker
claims any free edge incident to v1. He stops as soon as all edges incident
to v1 have been claimed. Hence, Maker and Breaker each made at most
qn moves. Note that due to his strategy, for every i ∈ {2, . . . , q} Maker
occupied at least half of those edges in E({v1}, Vi) which were initially
unclaimed; hence, there is a V ′

i ⊆ Vi with |V ′
i | = n−d

2 such that all edges
in E({v1}, V ′

i ) belong to Maker’s graph.
Since Breaker made at most qn moves he claimed at most qn edges;

thus, by Observation 3.7, for every i ∈ {2, . . . , q} there is a Wi ⊆ V ′
i

with |Wi| ≥ |V ′
i |− 2qn

dcrit
= n−d

2 − 2qn
dcrit

such that dB(w) ≤ d+dcrit for every
w ∈ Wi.





4
Size Ramsey Number of

Bounded Degree Graphs for
Games

4.1 Introduction

In this chapter we show that Maker can build a copy of any given graph
of bounded maximum degree on a sparse board.

Theorem 4.1. Let d be a natural number. Then there is a constant c =
c(d) with the property that for every graph G on n vertices of maximum
degree d there is a graph H on at most cn edges such that Maker has a
strategy to occupy a copy of G in the game on H.

Let v1, . . . , vn denote the vertices of G and let E(G) denote the edge
set of G. The graph H we will construct in the proof of Theorem 4.1
has the additional property that for some carefully chosen constant c
(depending on d but not on n), we will have H = Gc where Gc denotes
the graph obtained by replacing every vi with a set Vi of size c, and
connecting two vertices u ∈ Vi and v ∈ Vj with an edge if and only
if (vi, vj) ∈ E(G). Figure 4.1 depicts such a graph. Note that H is a
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v1 v2

v3 v4

V1 V2

V3 V4

Figure 4.1: A graph G (on the left) and G2 (on the right).

graph on cn vertices of maximum degree cd, and thus has at most 1
2c2dn

edges. Moreover, the strategy we will describe guarantees that by the
end of the game Maker’s graph contains a copy of G spanned by some
w1 ∈ V1, . . . , wn ∈ Vn where every wi plays the role of vi.

Previous Work Feldheim and Krivelevich [40] considered a related prob-
lem: For a given graph G they investigated the minimum number of
moves Maker needs to build a copy of G in the game on a sufficiently
large KN . They derived a strategy for Maker to quickly occupy every
given graph of bounded degree. An important aspect of this strategy
is that Maker’s task is reduced to winning a series of carefully designed
discrepancy games. By a result of Alon, Krivelevich, Spencer and Szabó
[7], which guarantees that Maker can win each of these subgames, the
strategy of Feldheim and Krivelevich gives the following.

Theorem 4.2. Let d be an integer. Then there are constants c =
c(d), c′ = c′(d) such that for every graph G on n vertices of maximum
degree d and every N > cn, Maker has a strategy to occupy a copy of G
in the game on KN in at most c′n rounds.

We remark that they actually proved this result for the more general class
of d-degenerate graphs. The values of the constants are c = d1122d+9

and c′ = d1122d+7. Our construction for proving Theorem 4.1 builds on
quite a few of their findings and approaches, and couples them with new
ingredients.

Universal Graphs For a given family G of graphs, a graph H is called
G-universal if H contains a copy of every G ∈ G. The construction of
sparse universal graphs for several families of graphs occurs in the study
of VLSI circuit design (c.f.[26] and [33]). Universal graphs for forests,
planar graphs, and related classes have been studied in a series of papers
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(see, e.g., [25, 30, 31, 32, 45], and [10, 25, 28, 29, 67]). Alon, Capalbo,
Kohayakawa, Rödl, Ruciński and Szemerédi [5] considered the class Gn,d

of graphs on n vertices with maximum degree d. They proved that for
every d there exists an ǫ = ǫ(d) > 0 such that for every n there is a Gn,d-
universal graph with at most n2−ǫ edges. Further progress was made
in a series of publications, yielding several deterministic and randomized
constructions of sparse Gn,d-universal graphs (see, e.g., [2, 3, 6]). Finally,
Alon and Capalbo [4] found the following.

Theorem 4.3. For every d ≥ 3 there exists positive constants c1, c2

such that for every n there is an (explicitly constructible) Gn,d-universal

graph H with at most c1n vertices and at most c2n
2− 2

d edges.

Theorem 4.3 is tight since it has been shown in [5] that every Gn,d-

universal graph contains at least Ω(n2− 2
d ) edges.

Ramsey Universal Graphs and a Game-Theoretic Variant For a given
family G of graphs, a graph H is called G-Ramsey-universal if any two-
coloring of the edges of H contains a monochromatic G-universal graph.
Clearly, the lower bound Ω(n2− 2

d ) (of [5]) on the number of edges in a
Gn,d-universal graph also serves as a lower bound on the number of edges
in a Gn,d-Ramsey-universal graph. From the other side, Kohayakawa,
Rödl, Schacht and Szemerédi [56] showed that there is a Gn,d-Ramsey-
universal graph with at most

O(n2− 1
d log

1
d n) (4.1)

edges, which is a generalization of (1.5) on page 14. It is a wide open

problem whether this upper bound can be pushed down to O(n2− 2
d ).

As for the ordinary Ramsey property, there is a game-theoretic variant
of Ramsey-universality: For a given family G of graphs we are interested
in those graphs H where for every G ∈ G, Maker has a strategy to build
a copy of G in the game on H . (In other words, Maker first fixes H and
afterwards Breaker chooses G, and then the actual game starts.) We
denote the set of these graphs H by S(G) and investigate the smallest
number s = s(G) such that there exists a graph H in S(G) with s edges.

Every graph in S(G) is clearly G-universal. Thus, the lower bound

Ω(n2− 2
d ) (of [5]) on the number of edges in a Gn,d-universal graph yields

that every graph in S(Gn,d) has at least Ω(n2− 2
d ) edges. Hence,

s(Gn,d) ≥ Ω(n2− 2
d ). (4.2)
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From the other side, a standard strategy-stealing argument yields that
if a graph H is G-Ramsey (i.e., if every two-coloring of the edges of H
contains a monochromatic copy of G) then Maker can build a copy of
G in the game on H . Thus, every Gn,d-Ramsey-universal graph is also
in S(Gn,d). Hence (4.1) implies that some graph in S(Gn,d) has at most

O(n2− 1
d log

1
d n) edges. Together with (4.2) this gives that

Ω(n2− 2
d ) ≤ s(Gn,d) ≤ O(n2− 1

d log
1
d n).

Our construction for proving Theorem 4.1 closes the gap between these
two bounds: Let H be the graph from Theorem 4.3 and let H ′ =
Hc for some carefully chosen constant c. By construction, |E(H ′)| =

c2|E(H)| = O(n2− 2
d ), and, furthermore, H ′ contains Gc for every G ∈

Gn,d. Thus, by choosing c as in the proof of Theorem 4.1, for ev-
ery G ∈ Gn,d, Maker has a strategy to occupy a copy of G. Hence,

H ′ ∈ S(Gn,d) and therefore, s(Gn,d) ≤ O(n2− 2
d ), which together with

(4.2) gives that s(Gn,d) = Θ(n2− 2
d ).

Notation We first define some game-theoretic notions. Following the
standard notation, for a graph property P of N -vertex graphs and a
graph H on the vertex set V (H) = V (KN ) we let (E(H),P) denote the
game where Maker’s goal is to create a graph which possesses P . In
this chapter we investigate the case where P is the property that the
graph contains a copy of a fixed graph G. We call H the base graph or
the board. The base graph along with the sets of Maker’s and Breaker’s
claimed edges is called a game position, or just a position for short.
Adopting the notation of [40], to distinguish between vertices of G and
vertices of H we mark the vertices of H with an asterisk.

Throughout this chapter we will assume that Breaker starts the game.
Otherwise Maker can start with an arbitrary move, then follow his strat-
egy. If his strategy calls for an edge he already claimed he takes an
arbitrary edge (he can only benefit from extra moves). By slightly mod-
ifying the standard notation, we let a round denote a pair consisting of
a Breaker’s move and the consecutive Maker’s move.

We will also need some graph-terminology. Let G be a graph and let
u, v ∈ V (G). The neighborhood NG(v) of v denotes the set of vertices
which are adjacent to v in G. The distance distG(u, v) between u and
v is defined as the number of edges in a shortest path in G connecting
u and v. For a fixed ordering v1, . . . , vn of the vertices of G we let
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N−
G (vi) = NG(vi)∩{v1, . . . , vi−1}, and N+

G (vi) = NG(vi)∩{vi+1, . . . , vn}.
When there is no danger of confusion we sometimes omit the index G.

Let D be a directed acyclic graph and let u, v ∈ V (D). If (u, v) ∈ E(D)
then v is called an out-neighbor of u. If there is a directed path of length
at least one from u to v in D then v is called a descendant of u. Note
that according to this convention, no vertex is considered a descendant
of itself.

Organization of this Chapter In Section 4.2 we highlight some features
of the approach of Feldheim and Krivelevich, and formulate the basic
idea of our proof. In Section 4.3 we devise an appropriate ordering Π
of the vertices of G and point out some properties of Π which will be
essential for Maker’s strategy. In Sections 4.4 and 4.5 we give (slightly
modified versions of) some key-concepts and results of Feldheim and
Krivelevich, and apply them to our problem. Finally, in Section 4.6 we
derive a winning strategy for Maker, using the ingredients presented in
the preceding sections together with some new ideas.

4.2 Sketching a Known Result and Our
Contribution

Let G be a graph of maximum degree d and suppose that V (G) =
{v1, . . . , vn}. We first point out some important properties of Maker’s
strategy S (for constructing G fast in the game on KN) presented by
Feldheim and Krivelevich. Maker processes the vertices v1, . . . , vn one by
one. For each vi he chooses a set Wi ⊆ V (KN ) of ”fresh vertices” (i.e.,
vertices where no incident edge has been claimed by Maker or Breaker)
where |Wi| is some fixed constant c (depending on d but not on n). Then
he starts claiming edges connecting Wi with the already constructed sets
W1, . . . , Wi−1, according to an involved strategy S(i), until Maker’s sub-
graph spanned by E(Wi, W1 ∪ . . . ∪ Wi−1) has some carefully specified
properties. Then Maker chooses a set Wi+1 ⊆ V (KN ) of fresh vertices
and continues in this way. Feldheim and Krivelevich derive that the
strategies S(i) guarantee that by the end of the game Maker can find
vertices w⋆

1 ∈ W1, w⋆
2 ∈ W2, . . . , w

⋆
n ∈ Wn such that {w⋆

1 , . . . , w
⋆
n} span

a copy of G, where every w⋆
i plays the role of vi.

We aim to modify this strategy in such a way that it allows Maker to
occupy a copy of G on a sparse board. Recall that Gc denotes the graph
obtained by replacing every vi with a set Vi of size c, and connecting two
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vertices u ∈ Vi and v ∈ Vj with an edge if and only if (vi, vj) ∈ E(G).
The basic idea is to set H := Gc, and Wi := Vi for every i ∈ {1, . . . , n}.
So, in contrast to the above strategy, the Wi are already determined at
the beginning of the game. At first glance it may seem that the only thing
Maker has to do is to respond to Breaker claiming an edge in E(Wi, Wj)
where i < j, by applying a move according to S(j) – the property of
the S(j) pointed out above then guarantees that Maker’s graph finally
contains a copy of G. However, the obstacle is that the S(j) can not be
applied in “parallel”, since S(j) depends on the outcome of processing
v1, . . . , vj−1.

We observe that in order to apply S(j), Maker, actually, only has
to process a certain subset of {v1, . . . , vj−1}. More precisely, for every
vertex vj we specify a subset P (vj) ⊆ {v1, . . . , vj−1} with the property
that, after processing all vertices in P (vj), Maker can apply S(j).

The basic idea of our new strategy for Maker is that, whenever Breaker
claims an edge connecting Wi and Wj (suppose that i < j), Maker first
checks whether the vertices in P (vj) have already been processed. If this
is the case he makes a move according to S(j), otherwise he processes
some vertex in P (vj). We will show that for a carefully chosen ordering
v1, . . . , vn of the vertices, the sets P (vj) are all very small, which yields
that Breaker can not claim too many edges connecting Wi and Wj before
Maker is ready to apply S(j). Thus, Maker’s “delay” in each board
E(Wj , W1 ∪ . . . ∪ Wj−1) is small enough so that he can basically still
apply S(j), which finally enables him to occupy a copy of G.

4.3 Defining a Suitable Ordering of the

Vertices

Let G be a graph. Using the standard notation, ∆(G) denotes the maxi-
mum degree of G and the chromatic number χ(G) denotes the minimum
c such that G is c-colorable. We will apply the following well-known
bound.

Lemma 4.4. For every graph G, χ(G) ≤ ∆(G) + 1.

This can be seen as follows: Let G = (V, E), let V = {v1, . . . , vn} and
let C = {1, . . . , ∆(G) + 1} be a set of colors. By coloring the vertices in
the order v1, . . . , vn, assigning to vi the smallest color of C not already
used on a neighbor of vi, we obtain a proper coloring.
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v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

Figure 4.2: A graph G (on the left) and D2(G) (on the right).

For a given graph G = (V, E) we let D2(G) = (V ′, E′) denote the
graph where V ′ = V and E′ consists of all pairs (u, v) of vertices where
u 6= v and u, v have distance at most two in G. Figure 4.2 shows an
example. Note that, with ∆ := ∆(G), the maximum degree of D2(G) is
at most ∆ + ∆(∆− 1) = ∆2. Moreover, every independent set of D2(G)
corresponds to a subset S ⊆ V where every two vertices in S have
distance at least three in G. The next corollary is a direct consequence
of Lemma 4.4.

Corollary 4.5. Let G = (V, E) be a graph and let ∆ = ∆(G). Then
χ(D2(G)) ≤ ∆2+1. In particular, we can color V with colors {1, . . . , ∆2+
1} such that every two vertices of the same color have distance at least
3 in G.

Coloring the Vertices From now on we let G be a fixed graph on n
vertices of maximum degree d and we let l : V (G) → {1, . . . , d2 + 1}
be the coloring of Corollary 4.5. Figure 4.4(a) shows an example. We
also fix an ordering v1, . . . , vn of the vertices in V (G) such that l(v1) ≤
l(v2) ≤ . . . ≤ l(vn). Finally, we assume without loss of generality that
d ≥ 2. (Note that if the maximum degree is at most 1 then we can just
consider a supergraph G′ ⊇ G with maximum degree 2.)

Let 1 ≤ i < j ≤ n. We say that an index r is neighborwise sandwiched
between i and j if i < r < j and vr ∈ NG(vi). For every (vi, vj) ∈ E(G)
where i < j we let Si,j denote the set of indices r which are neighborwise
sandwiched between i and j. Figure 4.3 shows an illustration. Moreover,
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v3 v4 v5 v6 v7 v8 v9 v10 v11

Figure 4.3: An example for i = 3 and j = 11. We have S3,11 = {5, 8, 9}.

for every index j we let Sj denote the union of all sets Si := {i} ∪ Si,j

where vi ∈ N−
G (vj). Note that all vertices in Sj have distance at most

two from vj , thus

|Sj | ≤ d + d(d − 1) = d2. (4.3)

It will turn out that for every j the set of indices Sj plays an important
role in Maker’s strategy. Intuitively, it will be the case that he can only
process a vertex vj as soon as he ”completed” all vertices vi where i ∈ Sj

(more details will be given in the sequel).

For further discussion we aim to express the relation ”i ∈ Sj” by a
graph: Let D denote the directed graph on the vertex set v1, . . . , vn

where there is an arc from vj to vi if and only if i ∈ Sj . Figures 4.4(b)
and 4.4(c) depict an example. For every arc (vk, vi) ∈ E(D) we have
l(vk) ≥ l(vi) and l(vk) 6= l(vi) (because dist(vi, vk) ≤ 2), thus l(vk) >
l(vi), and therefore D is acyclic.

Observation 4.6. For every j ∈ {1, . . . , n} we have that the number of

descendants of vj in D is at most (d2)d2+1.

This can be seen as follows. By (4.3) and the construction of D, every
vertex has at most d2 out-neighbors in D. Since l(vk) > l(vi) for every
arc (vk, vi) in D, the vertices of every directed path in D have distinct
colors. Thus, every directed path in D with start vertex vj has at most
l(vj) ≤ d2 + 1 vertices. So the number of descendants of vj is at most
l(vj)−1∑

i=1

(d2)i ≤ (d2)l(vj) ≤ (d2)d2+1.

In terms of the intuition formulated above, Observation 4.6 yields that
in order to be able to process a vertex vj , Maker only has to complete a
constant number of vertices. A precise analysis will be given in Section
4.6 when we devise Maker’s overall strategy.
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1 2 3 1 2 3

(a)

v1 v2 v3 v4
v5 v6

(b)

v5 v6

v3 v4

v1 v2

Color 3

Color 2

Color 1

(c)

Figure 4.4: A coloring l of a path of length 5 such that vertices with the
same color have distance at least 3 (on the top left), and an
ordering of the vertices according to l (on the top right). The
figure on the bottom shows the corresponding graph D.

Construction of the Board Recall that we fixed an ordering of the
vertices v1, . . . , vn of G according to the coloring l of Corollary 4.5. Let

cd = d52d+4, and (4.4)

c = dc2
dd

2d2+2 + cd + 2. (4.5)

We set
H := Gc. (4.6)

Recall that, by definition of Gc, H is the graph resulting from replacing
every vi with a set Vi of size c, and connecting two vertices u ∈ Vi and
v ∈ Vj with an edge if and only if (vi, vj) ∈ E(G).

4.4 Candidates and Candidate Schemes

We introduce the concepts of a candidate vertex and a candidate scheme
by stating adapted versions of Definitions 2.1–2.3 in [40]. Recall that,
according to (4.6), V (H) = V1 ∪ . . . ∪ Vn, and that a position is the
board graph H along with the sets of Maker’s and Breaker’s claimed
edges. The intuition behind the Bk ⊆ Vk used in the next definitions
is that during the game, as a part of his strategy, Maker will define for
every k ∈ {1, . . . , n} an appropriate subset Bk ⊆ Vk with |Bk| = cd.
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Bi Bk1 Bk2
Vj

b⋆
1

b⋆
2

x⋆

Figure 4.5: An illustration of Definition 4.7 for t = 3: Many vertices in
Bi are connected to all three vertices b⋆

1, b
⋆
2, x

⋆.

Definition 4.7. (Vertex candidate with respect to a specific edge) Let
H⋆ be a position, let (vi, vj) ∈ E(G) where i < j, and suppose that
Si,j = {k1, . . . , kt−1}. Moreover, for every k ∈ {i} ∪ {k1, . . . , kt−1}, let
Bk ⊆ Vk be a non-empty set. A vertex x⋆ ∈ Vj is called a candidate with
respect to the edge (vi, vj) and the family B = {Bi, Bk1 , . . . , Bkt−1} if
for every choice of vertices b⋆

1 ∈ Bk1 , b
⋆
2 ∈ Bk2 , . . . , b

⋆
t−1 ∈ Bkt−1 we have

|{b⋆ ∈ Bi : Maker claimed (b⋆, b⋆
1), . . . , (b⋆, b⋆

t−1), (b⋆, x⋆) in H⋆}|
|Bi|

≥ 1

t2t
.

Figure 4.5 illustrates Definition 4.7. Note that if no index is neighborwise
sandwiched between i and j (i.e., if t = 1) then a vertex x⋆ ∈ Vj is a
candidate with respect to (vi, vj) and B = {Bi} if and only if x⋆ is
connected to at least half of the vertices of Bi in Maker’s graph.

We will now specify those vertices x⋆ ∈ Vj which are candidates for
every edge (vi, vj) ∈ E(G) with i < j.

Definition 4.8. (Vertex candidate) Let H⋆ be a position, let 1 ≤ j ≤ n
and for every k ∈ Sj let Bk ⊆ Vk. Moreover, let B = {Bk : k ∈ Sj}.
A vertex x⋆ ∈ Vj is called a candidate with respect to the family B
if for every vi ∈ N−

G (vj), x⋆ is a candidate with respect to (vi, vj) and
{Bi} ∪ {Bk : k ∈ Si,j}.

Note that if N−
G (vj) = ∅ then every x⋆ ∈ Vj is a candidate with respect

to the empty set. Finally, we define a candidate scheme which, as we
will see, guarantees that Maker’s graph contains a copy of G.

Definition 4.9. (Candidate Scheme) Let H⋆ be a position and for every
1 ≤ j ≤ n, let Bj ⊆ Vj with |Bj | ≥ d2d. We say that (B1, B2, . . . , Bn)
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form a candidate scheme if for every 1 ≤ j ≤ n and every x⋆ ∈ Bj, x⋆

is a candidate with respect to {Bk : k ∈ Sj}.

The next lemma, which is a slight adaptation of Lemma 2.1 in [40], shows
that a candidate scheme is sufficient for Maker’s win.

Lemma 4.10. (Feldheim, Krivelevich) Let H⋆ be a position and let
(B1, B2, . . . , Bn) be a candidate scheme. Then Maker’s graph contains a
copy of G.

For completeness we reproduce the proof given in [40].
Proof of Lemma 4.10: Our goal is to construct an embedding Φ :

{v1, . . . , vn} → V (H) such that Φ(vi) ∈ Bi for every 1 ≤ i ≤ n, and
Φ(v1), . . . , Φ(vn) span a copy of G in Maker’s graph. We proceed in-
ductively, starting from Φ(vn) and moving down to Φ(v1). First, we
choose an arbitrary x⋆ ∈ Bn and set Φ(vn) := x⋆. Let i ≤ n − 1
and suppose that we have already defined Φ(vi+1), . . . , Φ(vn) in such
a way that they span a copy of G[{vi+1, . . . , vn}] in Maker’s graph.
If N+

G (vi) = ∅ then we choose an arbitrary vertex x⋆ ∈ Bi as Φ(vi);
clearly, Φ(vi), . . . , Φ(vn) span a copy of G[{vi, . . . , vn}] in Maker’s graph.
Otherwise, let {vk1 , . . . , vkt} = N+

G (vi) and note that by assumption,
t ≤ d. Since Φ(vkt ) is a candidate with respect to the edge (vi, vkt) and
{Bi, Bk1 , . . . , Bkt−1} we get that

|{b⋆ ∈ Bi : Maker claimed (b⋆, Φ(vk1)), . . . , (b⋆, Φ(vkt)) in H⋆}| ≥ |Bi|
t2t

,

which is at least |Bi|
d2d ≥ 1. We choose one of these vertices as Φ(vi). This

gives that Φ(vi), . . . , Φ(vn) span a copy of G[{vi, . . . , vn}] in Maker’s
graph.

4.5 Two Suitable Subgames

Our goal is to devise a strategy which allows Maker to obtain a candidate
scheme. To this end we first analyze two appropriate subgames. We
will need the concept of untouched vertices: Let H⋆ be a position. A
vertex x⋆ ∈ Vj is touched if Maker or Breaker claimed an edge of the
form (y⋆, x⋆) where y⋆ ∈ V1 ∪ V2 ∪ . . . ∪ Vj−1. Otherwise x⋆ is called
untouched.

In the first subgame Maker’s goal is to achieve the situation described
in Definition 4.7.



64

Chapter 4. Size Ramsey Number of Bounded Degree Graphs for

Games

Definition 4.11. Let H⋆ be a position, let (vi, vj) ∈ E(G) where i <
j, and suppose that Si,j = {k1, . . . , kt−1}. Moreover, for every k ∈
{i} ∪ {k1, . . . , kt−1}, let Bk ⊆ Vk be a non-empty set. For every vertex
x⋆ ∈ Vj which is untouched in H⋆, the game GBi,x⋆ with respect to
{Bk1 , . . . , Bkt−1} is defined as follows. The board consists of the set of
edges EH(Bi, {x⋆}), and Maker’s goal is to achieve that x⋆ becomes a
candidate with respect to (vi, vj) and {Bi, Bk1 , . . . , Bkt−1}.
Note that for some positions H⋆, the game is hopeless for Maker; e.g. for
every H⋆ where for some 1 ≤ r ≤ t − 1 and some y⋆ ∈ Bkr , all edges in
EH(Bi, {y⋆}) belong to Breaker’s graph. The strategy for Maker, which
we will describe, however, guarantees that the Bk are convenient.

Maker’s goal in the second subgame is that several x⋆ ∈ Vj become a
candidate with respect to all edges (vi, vj) where i < j.

Definition 4.12. Let H⋆ be a position, let 1 ≤ j ≤ n, and for every
k ∈ Sj, let Bk ⊆ Vk be a non-empty set. For every set Bj ⊆ Vj where
all vertices of Bj are untouched in H⋆, the game GBj with respect to
{Bk : k ∈ Sj} is defined as follows. The board consists of the union of the
edge-sets EH(Bi, Bj) where vi ∈ N−

G (vj), and Maker’s goal is to achieve
that every x⋆ ∈ Bj becomes a candidate with respect to {Bk : k ∈ Sj}.
We will show that Maker has a strategy to determine the Bj in such a
way that he succeeds in every GBj , which finally allows him to obtain a
candidate scheme.

We first express the board size of the game GBj in terms of the size

of the Bi where vi ∈ N−
G (vj).

Observation 4.13. Let H⋆ be a position, let 1 ≤ j ≤ n, and for every
k ∈ Sj ∪ {j} let Bk ⊆ Vk be as in Definition 4.12. The board size of the
game GBj (with respect to {Bk : k ∈ Sj}) is

∑

vi∈N−
G (vj)

|Bi||Bj |.

We now use an adaptation of Lemma 2.2 in [40] to show that for con-
venient Bk1 , . . . , Bkt−1 , Maker has a strategy to win the game GBi,x⋆

described in Definition 4.11.

Lemma 4.14. Let H⋆ be a given position, let (vi, vj) ∈ E(G) where
i < j, and suppose that Si,j = {k1, . . . , kt−1}. Moreover, for every
k ∈ {i} ∪ {k1, . . . , kt−1}, let Bk ⊆ Vk where |Bk| = cd. Suppose that
for every 1 ≤ r ≤ t − 1 we have that every y⋆ ∈ Bkr is a candidate
with respect to (vi, vkr ) and {Bi} ∪ {Bk1 , . . . , Bkr−1}. Then, for every
x⋆ ∈ Vj which is untouched in H⋆, Maker has a strategy to win GBi,x⋆

with respect to {Bk1 , . . . , Bkt−1}.
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Lemma 4.14 can be shown along similar lines as Lemma 2.2 in [40]. For
completeness we reproduce the proof here.

We first need some notation. Let F = (V, E) be a hypergraph, i.e.,
the hyperedge set E is a subset of the power set 2V . We consider the
game where Maker and Breaker alternately claim an unclaimed vertex
of V until all vertices are claimed. We will use the following result by
Alon, Krivelevich, Spencer and Szabó [7], extending a previous result by
Székely [75].

Theorem 4.15. (Alon, Krivelevich, Spencer, Szabó) Let F be a hyper-
graph with X hyperedges, whose smallest hyperedge contains at least x

vertices. Then Maker has a strategy to claim at least x
2 −

√
x ln(2X)

2

vertices of each hyperedge.

Proof of Lemma 4.14: If t = 1 then Maker can win easily: In each of
his moves he claims a free edge connecting x⋆ with a vertex in Bi; this
guarantees that by the end of the game half of the edges in E(Bi, {x⋆})
belong to Maker’s graph, as claimed. Suppose now that t ≥ 2 and let F
denote the hypergraph where V (F ) = E(Bi, {x⋆}) and E(F ) is obtained
by adding (to the initially empty set), for every choice of vertices b⋆

1 ∈
Bk1 , b

⋆
2 ∈ Bk2 , . . . , b

⋆
t−1 ∈ Bkt−1 , the hyperedge

eb⋆
1 ,...,b⋆

t−1
:=

{(b⋆, x⋆) ∈ E(Bi, {x⋆}) : Maker claimed (b⋆, b⋆
1), . . . , (b⋆, b⋆

t−1)}.

By interpreting GBi,x⋆ as a game on F , we get that Lemma 4.14 is
equivalent to the statement that Maker has a strategy to claim at least
|Bi|
t2t = cd

t2t vertices of each hyperedge. Our goal is to show the latter. By
(4.4) we have that

|E(F )| ≤
t−1∏

r=1

|Bkr | = cd
t−1 =

(
d52d+4

)t−1
.

Let b⋆
1 ∈ Bk1 , . . . , b

⋆
t−1 ∈ Bkt−1 be any choice of vertices. We get

that |eb⋆
1,...,b⋆

t−1
| = |{b⋆ ∈ Bi : Maker claimed (b⋆, b⋆

1), . . . , (b⋆, b⋆
t−1)}|.

Since (by assumption) b⋆
t−1 is a candidate with respect to (vi, vkt−1) and

{Bi, Bk1 , . . . , Bkt−2}, we obtain that

|eb⋆
1 ,...,b⋆

t−1
| ≥ |Bi|

(t − 1)2t−1
=

cd

(t − 1)2t−1
=

d52d+4

(t − 1)2t−1
.
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By Theorem 4.15, Maker has a strategy to claim at least

d52d−t+4

t − 1
−

√

d52d−t+4

t − 1
ln(2(d52d+4)t−1) (4.7)

vertices of each hyperedge. We need some auxiliary calculations. It can
easily be seen that for every integer d,

d524 > 5d4 ln d + (d + 4)d4 ln 2 + d3 ln 2.

Hence, for every integers 1 < t ≤ d we have that

d52d−t+4

(t − 1)t2
>

1

(t − 1)t2
(
5t4 ln d + (d + 4)t4 ln 2 + t3 ln 2

)

> 5(t − 1) ln d + (d + 4)(t − 1) ln 2 + ln 2

= ln(2(d52d+4)t−1).

Multiplying with d52d−t+4

(t−1) and taking the root gives that

d52d−t+4

(t − 1)t
>

√

d52d−t+4

t − 1
ln(2(d52d+4)t−1),

which, together with the fact that 1
t = 1− t−1

t , directly implies that the

expression in (4.7) is at least d52d−t+4

t = cd

t2t , which concludes the proof.

The next corollary is a consequence of Lemma 4.14.

Corollary 4.16. Let H⋆ be a position, let 1 ≤ j ≤ n, and for every
k ∈ Sj, let Bk ⊆ Vk where |Bk| = cd. Suppose that for every vi ∈ N−

G (vj)
and every q ∈ Si,j we have that every y⋆ ∈ Bq is a candidate with respect
to (vi, vq) and {Bi} ∪ {Br : r ∈ Si,q}. Then, for every Bj ⊆ Vj which
is untouched in H⋆, Maker has a strategy to win GBj with respect to
{Bk : k ∈ Sj}.
Proof: We first note that for every vi ∈ N−

G (vj) the conditions of
Lemma 4.14 are satisfied. Indeed, let Si,j = {k1, . . . , kt−1}. By as-
sumption, for every kr ∈ {k1, . . . , kt−1} we have that all vertices in Bkr

are candidates with respect to (vi, vkr ) and {Bi} ∪ {Bs : s ∈ Si,kr} =
{Bi} ∪ {Bk1 , . . . , Bkr−1}.

Consider the following strategy for Maker. Suppose that Breaker
claims an edge (b⋆, x⋆) with b⋆ ∈ Bi and x⋆ ∈ Bj where i < j. Then
Maker responds in the game GBi,x⋆ (with respect to {Br : r ∈ Si,j}).
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Since the boards of the games GBi,x⋆ are pairwise disjoint, Maker can
treat each game GBi,x⋆ separately. Thus Lemma 4.14 yields a winning
strategy for Maker in GBj .

The next observation shows that the game GBj is finished after a
reasonably small number of rounds.

Observation 4.17. Let H⋆ be a position, let 1 ≤ j ≤ n, and for ev-
ery k ∈ Sj ∪ {j} let Bk ⊆ Vk be such that the conditions of Corollary
4.16 are satisfied. Suppose additionally that |Bj | = cd. By Observation
4.13 the board size of the game GBj (with respect to {Bk : k ∈ Sj}) is
∑

vi∈N−
G (vj)

|Bi||Bj | ≤ dc2
d, hence GBj lasts at most dc2

d rounds.

Corollary 4.16 Gives a Strategy for Winning Fast We point out that
Theorem 4.2 is a consequence of Corollary 4.16. To this end we first
note that in the setting of Theorem 4.2, H is a complete graph on N
vertices, so we do not define V1, . . . , Vn. Suppose that Maker proceeds
as follows. He processes the vertices v1, . . . , vn one by one, maintaining
the invariant that after processing vj−1 he has vertex sets B1, . . . , Bj−1

of size cd such that for every i ∈ {1, . . . , j − 1}, every vertex of Bi is
a candidate with respect to {Bk : k ∈ Si}. (Note that for j = 1 the
invariant is clearly fulfilled.) After processing vj−1, Maker selects a set
Bj of cd untouched vertices (the existence of such a Bj can be guaranteed
by choosing a large enough N) and applies Corollary 4.16, which gives
him a strategy to transform all vertices of Bj into candidates with respect
to {Bk : k ∈ Sj}. Thus, the invariant is still fulfilled after processing
vj . By induction, after processing vn, (B1, . . . , Bn) form a candidate
scheme, which by Lemma 4.10 guarantees that Maker’s graph contains a
copy of G. Due to Observation 4.17, processing v1, . . . , vn takes at most
dc2

dn rounds, hence Maker needs only a linear number of rounds.

4.6 Obtaining a Candidate Scheme via the

Subgames

Equipped with Corollary 4.16 we can now describe a strategy for Maker
to obtain a candidate scheme (which due to Lemma 4.10 guarantees that
Maker’s graph contains a copy of the goal-graph G). We first need some
more notation. Recall that D denotes the directed graph where V (D) =
{v1, . . . , vn} and E(D) = {(vj , vi) : i ∈ Sj}. For every vertex vj we let
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Nout(vj) denote the set of out-neighbors of vj and we let Desc(vj) denote
the set of descendants of vj .

During the game Maker will determine for each j ∈ {1, . . . , n} a sub-
set Bj ⊆ Vj with |Bj | = cd (which is untouched at the time of its
determination). For a vertex vj where for every k ∈ Sj ∪ {j} the set
Bk has already been determined, we say that vj is completed if Maker
won the game GBj , i.e., if every x⋆ ∈ Bj is a candidate with respect
to {Bk : k ∈ Sj}. Conversely, we say that vj is spoiled if all edges of
the board of GBj have been claimed and at least one x⋆ ∈ Bj is not a
candidate with respect to {Bk : k ∈ Sj}.

Note that, as soon as v1, . . . , vn are all completed, (B1, . . . , Bn) form
a candidate scheme, and thus Maker won.

Furthermore, we call a vertex vj ready if every vertex vk where k ∈ Sj

is completed. In other words, vj is ready if all vertices in Nout(vj) are
completed. In the following, for every ready vertex vj we abbreviate by
”GBj ” the game GBj with respect to {Bk : k ∈ Sj} (note that since
vj is ready the Bk are all determined). Maker’s strategy will have the
property that every completed vertex is also ready.

Maker’s Strategy At the very beginning of the game, for every vj

where Sj = ∅, Maker chooses Bj to be an arbitrary subset of Vj where
|Bj | = cd . (Thus, by definition, vj is completed.) By slightly abusing
notation, we refer to this as round zero. For every vertex vi which became
ready in round zero, Maker also determines an arbitrary Bi ⊆ Vi of size
cd. Maker will proceed in such a way that after each round r the following
two invariants are maintained.

(I1) For every vertex vj which is not ready yet, at least cd + 2 vertices
of Vj are untouched.

(I2) Suppose that a vertex vj became ready in round r (i.e., vj was
not ready after round r − 1). Then, after round r Maker selects a
subset S ⊆ Vj of cd untouched vertices and sets Bj := S.

At the very beginning of the game (i.e., after round 0) the invariants
(I1) and (I2) clearly hold. Suppose that r − 1 rounds have been played.
By induction we can assume that (I1) and (I2) are fulfilled so far.

Assume that in round r Breaker claims the edge (x⋆, y⋆), and suppose
that x⋆ ∈ Vi, y⋆ ∈ Vj and i < j. If some vertex vk is spoiled at this
point, Maker immediately forfeits. Otherwise we distinguish three cases.
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Case 1: vj is ready and (x⋆, y⋆) ∈ EH(Bi, Bj). Then Maker responds
in the game GBj . (If all edges of the board of GBj are occupied,
Maker claims any edge in some game GBk

; no extra move is dis-
advantageous for him.)

Case 2: vj is ready and (x⋆, y⋆) /∈ EH(Bi, Bj). Then Maker claims any
edge in some game GBk

.

Case 3: vj is not ready. Then there is at least one vertex vk ∈ Desc(vj)
such that vk is ready but not completed. (This can be seen as
follows. By definition of readiness, Nout(vj) ⊆ Desc(vj) contains at
least one vertex which is not completed. Let vk be a non-completed
vertex in Desc(vj) where k is minimal. Every vl ∈ Nout(vk) has the
property that l < k, hence by minimality all vertices in Nout(vk)
are completed, thus vk is ready.) By our choice of vk and the
assumption that Maker did not forfeit, vk is neither completed
nor spoiled, implying that not all edges of the board of GBk

are
occupied. Maker claims any free edge in the board of GBk

. (Figure
4.6 depicts one such vk ∈ Desc(vj).)

In any case, if a vertex vk became ready in round r then Maker chooses
a subset S ⊆ Vk of cd + 2 vertices which were all untouched after round
r − 1 (such an S exists due to (I1)). Note that at most two vertices
z⋆
1 , z⋆

2 ∈ S became touched in round r. Maker sets Bk := S\{z⋆
1 , z

⋆
2}.

Checking the Invariants Assuming that Maker did not forfeit, the in-
variant (I2) is clearly fulfilled after round r. To prove (I1), we fix a vertex
vj which is non-ready after round r. Note that due to his strategy Maker
did not claim any edge incident to a vertex in Vj so far. We observe that
every time a vertex y⋆ ∈ Vj was touched by Breaker, Maker selected
some (ready) vertex vk ∈ Desc(vj) and occupied an edge in the board
of GBk

(here it is crucial that a vertex y⋆ ∈ Vj is only called touched if
some player claimed an edge in E({y⋆}, V1 ∪ . . . ∪ Vj−1)). We fix such a
vertex vk and set f(y⋆) := vk. Then the number of touched vertices in
Vj (after r rounds) is bounded by the number of preimages of Desc(vj)
under f . We have

|f−1(Desc(vj))| = | ∪vk∈Desc(vj) f−1({vk})|.

By Observation 4.13, the board size of every GBk
is at most dc2

d, and
thus,

|f−1({vk})| ≤ dc2
d.
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VjVk

Figure 4.6: An example for an index k with vk ∈ Desc(vj). (A thick
line indicates that the two corresponding vertex sets form a
complete bipartite graph.)

Hence, by Observation 4.6 we obtain that

|f−1(Desc(vj))| ≤ dc2
d|Desc(vj)| ≤ dc2

dd
2d2+2,

which together with (4.5) and (4.6) implies that at least cd + 2 vertices
in Vj remain untouched. Hence (I1) is also fulfilled after round r.

We finally show that Maker did not forfeit in round r. Let vj be a
vertex which was ready after round r − 1 (note that a non-ready vertex
vk can not be spoiled since Bk is not determined yet). By assumption we
have that every vi where i ∈ Sj is completed. Assume that vj became
ready in round r′ ≤ r−1. It can be checked that (due to Maker’s strategy
and the definition of readiness) after round r′ the conditions of Corollary
4.16 were satisfied. Note that Maker’s strategy has the property that
from this point on, whenever Breaker claims an edge of the board of
GBj , Maker will respond in GBj . In this way Maker can treat each GBi

separately, following the strategy of Corollary 4.16. This guarantees that
Maker will eventually win GBj . Hence vj can not become spoiled. Thus,
Maker did not forfeit in round r. By induction we get the following.

Observation 4.18. Throughout the game, no vertex becomes spoiled.
Hence Maker never forfeits.

Proof of Maker’s Win We first note that Maker can always make a
move according to his strategy unless all edges of the boards of the GBk

are occupied. We now show by induction that every vertex vi eventually
becomes completed. For i = 1 the claim is clearly true (note that v1 is
already completed at the very beginning of the game). Let i ≥ 2 and
let r be the smallest integer such that after round r, v1, . . . , vi−1 are
all completed (such an r exists by induction). Hence, after round r the
vertex vi is ready. As long as vi is neither completed nor spoiled, there
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are still free edges in the board of GBi , guaranteeing that Maker can
make a move according to his strategy. Since the board H is finite, vi

eventually becomes either completed or spoiled. Observation 4.18 rules
out the latter, implying that vi finally becomes completed.

Hence, at some point, v1, . . . , vn are all completed, which yields that
(B1, . . . , Bn) form a candidate scheme. By Lemma 4.10 this guarantees
that Maker’s graph contains a copy of G. This concludes the proof of
Theorem 4.1.





5
Special Trees With Implications

to SAT and Games

5.1 Introduction

5.1.1 Trees

We first consider a special class of trees, which connect both to SAT and
games. Throughout this chapter, by a binary tree we mean a rooted tree
where every node has either two or no children. We say that a leaf v of
a binary tree is l-close to a node w if w is an ancestor of v, at distance
at most l from v. For positive integers k and d, we call a binary tree
T a (k, d)-tree if (i) every leaf has depth at least k and (ii) for every
node u of T there are at most d leaves that are k-close to u. Clearly,
every binary tree with all leaves at depth at least k is a (k, 2k)-tree. The
following lemma will be the main ingredient in proving some new results
on games and SAT.

Lemma 5.1. A
(

k,
(

2
e + O(1/

√
k)

)
2k

k

)

-tree exists.

We will use the following observation a few times.

73
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Observation 5.2. Lemma 5.1 gives that a
(

k − 1,
(

1
e + O(1/

√
k)

)
2k

k

)

-

tree exists.

5.1.2 Games

Let F be a k-uniform hypergraph. The degree d(v) of a vertex v is the
number of hyperedges containing v and the maximum degree ∆(F) of a
hypergraph F is the maximum degree of its vertices. The neighborhood
N(e) of a hyperedge e is the set of hyperedges of F which intersect
e, excluding e itself, and the maximum neighborhood size of F is the
maximum of |N(e)| where e runs over all hyperedges of F .

The famous Erdős-Selfridge Theorem [42] states that for each k-uniform
hypergraph F with less than 2k−1 hyperedges Breaker has a winning
strategy. This upper bound on the number of hyperedges is best pos-
sible as the following example shows. Let T be a full binary tree with
k levels and let G be the hypergraph whose hyperedges are exactly the
sets {v0, . . . vk−1} such that v0, . . . , vk−1 is a path from the root to a
leaf. Note that the number of hyperedges of G is 2k−1. By first claiming
the root and then pairing every vertex with its sibling (i.e. the vertex
having the same parent) Maker can finally occupy all vertices on some
path from the root to a leaf, which by construction contains a hyperedge.
Hence Maker has a winning strategy on G.

Note that the maximum degree of G is 2k−1, thus equally large as
the number of hyperedges of G. This provides some evidence that in
order to be a Maker’s win a hypergraph must have largely overlapping
hyperedges. Moreover, Beck [21] conjectured that the main criterion
for whether a hypergraph is a Breaker’s win is not the cardinality of
the hyperedge set but rather the maximum neighborhood size, i.e., the
actual reason why each hypergraph H with less than 2k−1 edges is a
Breaker’s win is that the maximum neighborhood size of H is smaller
than 2k−1 − 1.

Neighborhood Conjecture. (Open Problem 9.1(a), [21]) Assume that
F is a k-uniform hypergraph, and its maximum neighborhood size is
smaller than 2k−1 − 1. Is it true that Breaker has a winning strategy on
F?

The hypergraph G considered above yields that if the Neighborhood
Conjecture is true then it is also best possible. The best known result
in the direction of the Neighborhood Conjecture is that if the maximum
degree of a k-uniform hypergraph is at most ⌊k

2 ⌋ then Breaker has a
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winning strategy. This can be seen as follows. Hall’s Theorem asserts
that one can assign to every hyperedge two of its vertices such that every
vertex is assigned to at most one hyperedge. By pairing the two vertices
assigned to the same hyperedge Breaker can occupy at least one vertex
in every hyperedge, thus he has a winning strategy.

Further motivation for the Neighborhood Conjecture is the well-known
Erdős-Lovász 2-coloring Theorem – a direct consequence of the Lovász
Local Lemma – which states that every k-uniform hypergraph with max-

imum neighborhood size at most 2k−1

e − 1 has a proper 2-coloring. An
interesting feature of this theorem is that the size of the hypergraph does
not matter. By another application of the Local Lemma we prove (in
Theorem 5.7) that every k-uniform hypergraph with maximum degree

at most 2k−2

ek has a so called proper halving 2-coloring, i.e., a proper 2-
coloring where the number of red vertices and the number of blue vertices
differ by at most 1. This guarantees the existence of a course of the game
such that at the end Breaker owns at least one vertex of each hyperedge
and thus is the winner. Moreover, the existence of a proper halving 2-
coloring is a necessary condition for Breaker having a winning strategy.
Indeed, assume for a contradiction that Breaker has a winning strategy
on a hypergraph F which does not admit a proper halving 2-coloring.
Suppose further that during the game Maker colors his vertices red and
Breaker colors his vertices blue. Note that by the end of the game the
vertices are colored in such a way that the number of red vertices and
the number of blue vertices differ by at most 1. By assumption Breaker
has a winning strategy, thus every hyperedge contains at least one blue
vertex. Since F does not admit a proper halving 2-coloring there must
be at least one hyperedge containing only blue vertices. Since Maker
starts the game he can now “steal” Breaker’s strategy by starting with
an arbitrary first vertex and then following Breaker’s strategy (if this
strategy calls for a vertex he occupied before he takes an arbitrary free
vertex: no extra move is disadvantageous for him). This enables him to
occupy all vertices of some hyperedge.

We now describe a connection between (k, d)-trees and games, which
will allow us to disprove the Neighborhood Conjecture, in this strongest
of its forms.

Connection to Trees Let T be a binary tree where every leaf has depth
at least k − 1. By HT = HT (k) we denote the k-uniform hypergraph
whose hyperedges are the vertex sets of paths that start at a leaf and go
up k − 1 levels. Note that the set of non-root nodes of T can be divided
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into pairs of siblings. So by first claiming the root of T and then pairing
every node with its sibling Maker can finally occupy all vertices on some
path from the root to a leaf, which by assumption contains a hyperedge.
Hence we have the following.

Observation 5.3. Let T be a binary tree where every leaf has depth at
least k − 1. Then Maker has a winning pairing strategy on HT .

The next observation is a direct consequence of Observation 5.3 and the
defining property of (k, d)-trees.

Observation 5.4. Let T be a (k − 1, d)-tree. Then

(i) Maker has a winning pairing strategy on HT , and

(ii) every vertex of HT occurs in at most d hyperedges.

Observation 5.2 and Observation 5.4 imply the next corollary, which
disproves the Neighborhood Conjecture. Note that the maximum neigh-
borhood size of a k-uniform hypergraph H is upper bounded by k ·∆(H).

Corollary 5.5. For every k there is a k-uniform hypergraph H with

maximum degree
(

1 + O(1/
√

k)
)

2k

ek where Maker has a winning pair-

ing strategy. In particular, H has maximum neighborhood size at most
(

1 + O(1/
√

k)
)

2k

e .

We will point out in Section 5.2 that we can actually push down the
second bound of Corollary 5.5 by a factor of 2. The construction of H
relies on the proof of Lemma 5.1, which is rather involved and long. So
we will additionally give a second counterexample for the Neighborhood
Conjecture which is slightly weaker (in the sense that the hypergraph
has more hyperedges) but can be obtained by a simpler construction.

In his book [21] Beck also poses several weaker versions of the Neigh-
borhood Conjecture. The last one is as follows.

Open Problem 5.6. (Open Problem 9.1(f), [21]) How about if we just
want a proper halving 2-coloring?

Recall that a proper halving 2-coloring is a proper 2-coloring where the
number of red vertices and the number of blue vertices differ by at most
one. It is already known [21] that the answer to Open Problem 5.6 is

positive if the maximum degree is at most
(

3
2 − o(1)

)k
. According to

Beck [21] the real question is whether or not 3
2 can be replaced by 2. We

prove that the answer is yes.
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Theorem 5.7. Let k be a large enough integer. For every k-uniform

hypergraph F with maximum degree at most 2k−2

ek there is a proper halving
2-coloring.

5.1.3 SAT

The satisfiability of Boolean formulas, often abbreviated by SAT, is
widely considered the ’mother’ of all NP-complete problems. Following
the standard notation, a k-CNF formula is the conjunction of clauses
that are the disjunction of exactly k distinct literals; and a (k, s)-CNF
formula is a k-CNF formula where every variable appears in at most
s clauses. A pair of clauses sharing at least one variable is called an
intersecting pair.

The largest integer f(k) for which every (k, f(k))-CNF formula is sat-
isfiable, is a value with many interesting properties, which has been
widely studied. The best known lower bound on f(k), a consequence of
the Lovász Local Lemma, is due to Kratochv́ıl, Savický, and Tuza [58]:

f(k) ≥
⌊

2k

ek

⌋

. (5.1)

The previously best known upper bound is due to Hoory and Szeider

[53] who showed that f(k) ≤ O
(

log k · 2k

k

)

. We determine f(k) up to

lower order terms.

Theorem 5.8.

f(k) =

(
2

e
+ O

(
1√
k

))
2k

k
.

So (5.1) can be strengthen by a factor of two and this bound is tight. To
prove the upper bound of Theorem 5.8 we will use Lemma 5.1 and show
that we can associate with every (k, d)-tree an unsatisfiable (k, d)-CNF
formula.

The lower bound is achieved via the lopsided version of the Local
Lemma. The key of the proof is to assign the random values of the
variables counter-intuitively: each variable is more probable to satisfy
those clauses where it appears as a literal with its less frequent sign. The
lower bound can also be derived from a theorem of Berman, Karpinski
and Scott [24] tailored to give good lower bounds on f(k) for small values
of k. In [24] the asymptotic behavior of the bound is not calculated,
since the authors do not believe in its optimality. In Section 5.4 we
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reproduce a simple argument giving these asymptotics, because the proof
of [24] contains a couple of inaccuracies, so the unusual choice of the
probabilities is not apparent.

We now briefly give the intuition of where the factor two improve-
ment is coming from and how to achieve it. The lopsided version of the
Local Lemma [43] allows for a more restricted definition of “intersect-
ing” clauses in a CNF formula. Namely, one can consider two clauses
intersect only if they contain a common variable with different sign and
this still allows the same conclusion as in the original Local Lemma. If
all variables in a (k, s)-CNF formula are balanced, that is they appear
an equal number of times with either sign, then each clause intersects
only at most ks/2 other clauses in this restricted sense, instead of the at
most k(s− 1) other clauses it may intersect in the original sense and the
factor two improvement is immediate. To handle the unbalanced case we
consider a distribution on assignments where the variables are assigned
true or false values with some bias. It would be natural to favor the
assignment that satisfies more clauses, but the opposite turns out to be
the distribution that works. This is because the clauses with some vari-
ables receiving the less frequent sign are those that intersect more than
average other clauses, so those are the ones whose satisfiability should
be boosted with the bias put on the assignments.

Bounded Neighborhood Size For a clause C of a CNF formula the
neighborhood Γ(C) of C denotes the set of other clauses (excluding C
itself) intersecting C. Analogously to f(k), we let l(k) denote the largest
integer r such that every k-CNF formula F for which |Γ(C)| ≤ r, for
every clause C of F , is satisfiable. An immediate consequence of the
Local Lemma states that if |Γ(C)| ≤ 2k/e − 1 for every clause C of a
k-CNF formula F then F is satisfiable. Thus,

l(k) ≥
⌊

2k

e

⌋

− 1. (5.2)

From the other side, the complete formula consisting of all 2k clauses of
size k over k variables is clearly unsatisfiable, implying that l(k) < 2k−1.
Our construction for proving the upper bound of Theorem 5.8 also shows
that (5.2) is tight (up to lower order terms).

Theorem 5.9.

l(k) =

(
1

e
+ O

(
1√
k

))

2k.
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One may wonder how the lower bound on l(k) implied by the (original)
Local Lemma is tight and no improvement can be achieved using the
lopsided version. This is no surprise when we see that in the formulas
we construct every pair of clauses that intersects in the original sense
also does in the more restricted sense.

The Class MU(1)

The function f(k) is not known to be computable. In order to still be
able to upper bound its value, one tries to restrict to a smaller/simpler
class of formulas. When looking for unsatisfiable (k, s)-CNF formulas
it is naturally enough to consider minimal unsatisfiable formulas, i.e.,
unsatisfiable CNF formulas that become satisfiable if we delete any one
of their clauses. The set of minimal unsatisfiable CNF formulas is de-
noted by MU. As observed by Tarsi (c.f. [1]), all formulas in MU have
more clauses than variables, but some have only one more. The class of
these MU formulas, having one more clauses than variables is denoted
by MU(1). This class has been widely studied (see, e.g., [1], [38], [55],
[60], [74]). Hoory and Szeider [54] considered the function f1(k), denot-
ing the largest integer such that no (k, f1(k))-CNF formula is in MU(1),
and showed that f1(k) is computable. Their computer search deter-
mined the values of f1(k) for small k: f1(5) = 7, f1(6) = 11, f1(7) = 17,
f1(8) = 29, f1(9) = 51. Via the trivial inequality f(k) ≤ f1(k), these are
the best known upper bounds on f(k) in this range. In contrast, even
the value of f(5) is not known.

It is an interesting open problem whether f(k) = f1(k) for every

k. While the derivation of the previous bound of f(k) = O(log k · 2k

k )
by Hoory and Szeider did not go via an MU(1) formula, our upper
bound construction from Theorem 5.8 does reside in the class MU(1)
and hence shows that f(k) and f1(k) are equal asymptotically: f(k) =
(1 + o(1))f1(k).

Scheder [71] showed that for almost disjoint k-CNF formulas (i.e. k-
CNF formulas where any two clauses have at most one variable in com-
mon) the two functions are not the same. That is, if f̃(k) denotes the
maximum s such that every almost disjoint (k, s)-CNF formula is satisfi-
able, for k large enough every unsatisfiable almost disjoint (k, f̃(k) + 1)-
CNF formula is outside of MU(1).
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Connection to Trees.

For every binary tree T with all leaves having depth at least k we can
construct a k-CNF formula as follows. For every non-leaf node w ∈ V (T )
we create a variable xw and label one of its children with the literal xw

and the other with the negated version x̄w. Note that the root does not
receive a literal. With every leaf v ∈ V (T ) we associate a clause Cv by
walking along a path of length k− 1 from v towards the root and taking
the disjunction of all labels encountered on this path (i.e., the labels of
all nodes to which v is (k − 1)-close). Finally, we let F(T ) denote the
conjunction of all such clauses Cv. We will show in Section 5.3 that
F(T ) has the following properties.

Lemma 5.10. Let k ≥ 1 and d ≥ 1 be integers and let T be a (k, d)-
tree. Then F = F(T ) is an unsatisfiable (k, d)-CNF formula. If T is
minimal with respect to the number of leaves then F belongs to MU(1).
In particular, f(k), f1(k) ≤ d − 1.

Lemma 5.10 establishes a direct connection between (k, d)-trees and
(k, d)-CNF formulas, which together with Lemma 5.1 immediately gives
the upper bound of Theorem 5.8. However, it does not imply (at least
not in an obvious way) the upper bound of Theorem 5.9: The main ob-
stacle is that we cannot improve the immediate bound |Γ(C)| ≤ k(d−1)
for a clause C of F(T ) (in order to derive Theorem 5.9 we should have
an upper bound for |Γ(C)| which is around kd

2 ).
So we also need a second construction: For every (k − 1, d)-tree T we

let bT denote the binary tree obtained by attaching the roots of two copies
of T as the children of a new root. Every leaf of bT has depth at least
k and the number of leaves at distance at most k from a given non-leaf
vertex w is equal to the number of leaves which are (k − 1)-close to any
child of w, thus at most 2d. Hence bT is a (k, 2d)-tree. We set

G(T ) = F( bT ).

In Section 5.3 we will show that G(T ) has the following properties.

Lemma 5.11. Let k ≥ 2 and d ≥ 1 be integers and let T be a (k−1, d)-
tree. Then G = G(T ) is an unsatisfiable (k, 2d)-CNF formula with the
following properties.

(a) Every literal occurs in at most d clauses of G.
(b) For every two distinct clauses C, D having a variable in common
there is a variable that appears in C and D with opposite signs.
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(c) If T is minimal with respect to the number of leaves then G belongs
to MU(1).
(d) |Γ(C)| ≤ kd for all clauses C of G.

In particular, f(k), f1(k) ≤ 2d − 1 and l(k) ≤ kd − 1.

Note that Lemma 5.11 together with Observation 5.2 directly implies
the upper bound of Theorem 5.9. We remark that Lemma 5.11 (coupled
with Observation 5.2) also implies the upper bound of Theorem 5.8.

Implications on Trees Let ftree(k) be the largest integer d such that
no (k, d)-tree exists. Lemma 5.10 gives that

f(k) ≤ f1(k) ≤ ftree(k). (5.3)

Lemma 5.1 implies that ftree(k) ≤
(

2
e + O(1/

√
k)

)
2k

k . The lower bound

of Theorem 5.8, coupled with (5.3), yields that this upper bound on
ftree(k) is tight (up to lower order terms). Hence we obtain the following.

Observation 5.12. ftree(k) =
(

2
e + O(1/

√
k)

)
2k

k = (1 + o(1))f(k).

5.1.4 Structure of this Chapter

In Section 5.2 we first consider Corollary 5.5, which disproves the Neigh-
borhood Conjecture in the strongest of its forms, and point out that
it can be improved. Additionally, we present a second, slightly weaker
counterexample (in the sense that the hypergraph has more hyperedges)
for the Neighborhood Conjecture which can be obtained by a much sim-
pler construction. Finally, we show Theorem 5.7.

In Section 5.3 we establish a connection between the trees we study
and SAT by proving Lemmas 5.10 and 5.11. In Section 5.4 we show the
lower bound of Theorem 5.8.

The proof of Lemma 5.1 (which together with Lemmas 5.10 and 5.11
directly implies the upper bounds of Theorems 5.8 and 5.9) contains
several technically involved arguments. However, a weaker statement,
still settling the asymptotics of f(k), can be shown with less effort: In
Section 5.5 we present a short (and explicit) proof of the existence of

(k, ⌊ 2k+3

k ⌋)-trees for k ≥ 1.
In Section 5.6 we give an informal proof of Lemma 5.1 in order to

sketch the main ideas and intuitions behind our approach. To this end



82 Chapter 5. Special Trees With Implications to SAT and Games

we define a suitable continuous setting for the construction of the appro-
priate binary trees, which allows us to study the problem via a differential
equation. The solution of this differential equation corresponds to our
construction of the binary trees, which then can be given completely
discretely. This is the subject of Section 5.7.

In Section 5.8 we finally give an outlook and state some open problems.

Notation Let T be a binary tree. Following the standard notation,
the level (or, alternatively, the depth) of a vertex v denotes the distance
from v to the root (so, in particular, the root has depth zero). A path
of T is a sequence of vertices v1, v2, . . . , vj of T where vk is a child of
vk−1 for every k = 2, . . . , j. Depending on the context we consider a
hyperedge e of a hypergraph HT either as a set or as a path in T . So we
will sometimes speak of the start or end node of a hyperedge.

5.2 Results on Games

Improving Corollary 5.5 Let k ≥ 3 and let T be a (k−2, d)-tree. Recall
that bT denotes the (k−1, 2d)-tree obtained by attaching the roots of two
copies of T as the children of a new root. Clearly, for every node v there
are at most d leaves (k − 2)-close to v. As defined above, H bT denotes

the k-uniform hypergraph obtained by associating with every leaf v0 of
bT a hyperedge ev0 consisting of all vertices v0, v1, . . . , vk−1 on the path
that starts at v0 and goes up k − 1 levels. Let ew0 be any hyperedge
intersecting ev0 and let i be the smallest number such that vi occurs both
in ev0 and ew0 . By construction ew0 contains the child v′i of vi which
does not belong to ev0 . Note that w0 is (k − 2)-close to v′i.

For every i ∈ {1, . . . , k − 1} let v′i denote the child of vi which does
not belong to ev0 . Since ew0 was chosen arbitrarily, we get that every
hyperedge intersecting ev0 contains some v′i, hence |N(ev0)| is at most
the number of leaves which are (k−2)-close to some v′i. By construction,
we have

|N(ev0)| ≤ (k − 1)d. (5.4)

By Lemma 5.1 there exists a (k−2, d)-tree for d =
(

2
e + O(1/

√
k)

)
2k−2

k−2 .

Together with (5.4) this gives that

|N(ev0)| ≤
(

1 + O(1/
√

k)
) 2k−1

e
.
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Thus, the maximum neighborhood size of H bT is actually bounded by
(

1 + O(1/
√

k)
)

2k−1

e , improving the second bound in Corollary 5.5 by a

factor of 2.

A Second Counterexample for the Neighborhood Conjecture Corol-
lary 5.5 relies on Lemma 5.1, whose proof is rather long. However, a
slightly weaker statement, still disproving the Neighborhood Conjecture,
can be shown with less effort.

Proposition 5.13. For every k ≥ 3 there is a binary tree T where every
leaf has depth at least k − 1 such that HT has maximum neighborhood
size 2k−2 + 2k−3.

Note that Observation 5.3 guarantees that Maker has a winning strategy
on HT .

Proof of Proposition 5.13. Let T ′ be a full binary tree with k−1 levels.
For each leaf u of T ′ we proceed as follows: We add two children v, w
to u and let v be a leaf. Then we attach a full binary tree S with k − 2
levels to w (such that w is the root of S). For each leaf u′ of S we add
two children v′, w′ to u′ and let v′ be a leaf. Note that the hyperedge
ending at v′ starts at u. Finally, we attach a full binary tree S′ with
k − 1 levels to w′ (such that w′ is the root of S′), see Figure 5.1. Let T
denote the resulting tree.

Clearly, every leaf of T has depth at least k − 1. It remains to show
that the maximum neighborhood size of HT is at most 2k−2 + 2k−3.

Claim. Every hyperedge e of HT intersects at most 2k−2 + 2k−3 other
hyperedges.

In order to prove this claim, we fix six vertices u, u′, v, v′, w, w′ according
to the above description, i.e., u is a node on level k − 2 whose children
are v and w, u′ is a descendant of w on level 2k − 4 whose children are
v′ and w′. Let e be a hyperedge of HT . Note that the start node of e is
either the root r of T , a node on the same level as u or a node on the
same level as u′. We now distinguish these cases.

(a) The start node of e is r (recall that r denotes the root). By symme-
try we assume that e ends at v. According to the construction of T the
hyperedge e intersects the 2k−2−1 other hyperedges starting at r and the
2k−3 hyperedges starting at u. So altogether e intersects 2k−2 +2k−3−1
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u

v w

u
′

v
′

w
′

k − 2

k − 1

k − 1

Figure 5.1: An illustration of HT . The marked paths represent exem-
plary hyperedges.

other hyperedges.

(b) The start node of e is on the same level as u. By symmetry we
suppose that e starts at u and ends at v′. The hyperedges intersecting
e can be divided into the following three categories.

• The hyperedge starting at r and ending at v,

• the 2k−3 − 1 hyperedges different from e starting at u, and

• the 2k−2 hyperedges starting at u′,

implying that e intersects 2k−2 + 2k−3 other hyperedges in total.

(c) The start node of e is on the same level as u′. By symmetry we
assume that e starts at u′. Then e intersects the 2k−2 − 1 other hyper-
edges starting at u′ and the hyperedge starting at u and ending at v′,
thus 2k−2 other hyperedges altogether.

Establishing a Proper Halving 2-Coloring Proof of Theorem 5.7: Let
F = (V, E). We can assume without loss of generality that |V | is even.
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(Otherwise we let V ′ be the vertex set obtained by adding a new dummy
vertex x to V and we consider the hypergraph F ′ = (V ′, E) instead of
F . Since every proper halving 2-coloring of F ′ is also a proper halving 2-
coloring of F it suffices to show that F ′ has as proper halving 2-coloring).
We will show the following stronger claim.

Proposition 5.14. Let k be a large enough integer and let F = (V, E)
be a k-uniform hypergraph with 2r vertices and maximum degree at most
2k−2

ek . Then for every partition (v1, v
′
1), . . . , (vr, v

′
r) of V into pairs, there

is a proper 2-coloring such that vi and v′i have different colors for every
i, i = 1, . . . , r.

Before starting with the proof we need some notation. First, let P =
(v1, v

′
1), . . . , (vr, v

′
r) be a partition of V into pairs. By a (proper) P -2-

coloring we denote a (proper) 2-coloring of F such that vi and v′i have
different colors for every i, i = 1, . . . , r. Moreover, for every vertex x ∈ V
we denote by f(x) the vertex which is paired with x in P (i.e., f(vi) = v′i
and f(v′i) = vi).

Proof of Proposition 5.14: We fix a partition P = (v1, v
′
1), . . . , (vr, v

′
r)

of V into pairs. Our goal is to show that there is a proper P -2-coloring.
For each hyperedge e = (w1, . . . , wk) we add e and e′ = (f(w1), . . . , f(wk))
and denote the resulting hypergraph by F ′. Note that ∆(F ′) ≤ 2 ·
∆(F) ≤ 2k−1

ek . We now transform F ′ into a SAT instance. For every
hyperedge e = (u1, . . . , uk) of F ′ we form a clause Ce = (u1∨u2 . . .∨uk)
and set H := ∧e∈E(F ′)Ce with E(F ′) denoting the hyperedge set of F ′.
Then we replace (in H) vi and v′i with xi and x̄i, respectively, for every i,

i = 1, . . . , r. Note that every variable xi occurs in at most 2∆(F ′) ≤ 2k

ek
clauses of H. Due to Theorem 5.8 there is a satisfying assignment α
of H. Note that by construction, every clause C of H contains two lit-
erals x, y where α(x) = 1 and α(y) = 0. For every variable xi where
i ∈ {1, . . . , r} we proceed as follows. If α(xi) = 1 then we color vi red
and v′i blue, otherwise we do it the other way round. Clearly, this yields
a proper P -2-coloring of F ′.

We note that the above proof implies that Theorem 5.7 remains true

if we replace 2k−2

ek with (1 + O(1/
√

k))2k−1

ek .

5.3 Proof of Lemmas 5.10 and 5.11

In the proof of Lemmas 5.10 and 5.11 we will use a powerful characteriza-
tion of MU(1)-formulas, established by Davydov, Davydova, and Kleine



86 Chapter 5. Special Trees With Implications to SAT and Games

Büning [38]. (Here a clause C = (x1 ∨x2 ∨ . . .∨xk) is represented as the
set {x1, . . . , xk} of its literals, and a CNF formula F = C1∧C2∧ . . .∧Cn

is represented as the set {C1, . . . , Cn} of its clauses. “vbl(F)” denotes
the set of variables which occur in F .)

Lemma 5.15. (Davydov, Davydova, and Kleine Büning [38])
F ∈ MU(1) if and only if either F = {∅} or F is the disjoint union of
formulas F ′

1,F ′
2 such that for a variable x we have

• vbl(F ′
1) ∩ vbl(F ′

2) = {x} and {x, x̄} ⊆ ⋃

C∈F C;

• F1 := {C\{x} : C ∈ F ′
1} ∈ MU(1);

• F2 := {C\{x̄} : C ∈ F ′
2} ∈ MU(1).

Let T be a binary tree and suppose that, as in our construction of F(T ),
every vertex different from the root is labeled with a literal such that
the two children of any non-leaf vertex are labeled with complementary
literals. A CNF formula G is called a T -formula if G can be obtained by
associating with every leaf v of T a clause Cv that is the disjunction of
some literals along the path from v to the root, and taking the conjunc-
tion of all the Cv. Note that according to our construction, F(T ) is a
T -formula and G(T ) is a bT -formula.

The following characterization of MU(1)-formulas is an immediate
(and known) consequence of Lemma 5.15.

Corollary 5.16. A CNF formula G is in MU(1) if and only if G is a T -
formula for some binary tree T where every literal associated to a vertex
of T does appear in G.

Proof of Lemma 5.10: Let T be a (k, d)-tree and suppose that every
non-leaf vertex w is assigned a variable xw such that one child of w is
labeled with the literal xw and the other child is labeled with the literal
x̄w. Recall that with every leaf v ∈ V (T ) we associate the clause Cv

which is the disjunction of the first k labels encountered on the path
from v to the root (including the label of v), and that F(T ) denotes the
conjunction of all such clauses Cv.
F is unsatisfiable, for if an assignment α over the variables of T is

given, it defines a path from the root to a leaf, say v, by always proceed-
ing to the unique child whose label is mapped to false by α; thus the
clause Cv associated with v is violated by α. Moreover, by construction,
for every fixed non-leaf node w the variable xw occurs in exactly those
clauses Cv where v is a leaf at distance at most k from w. Thus the
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defining property of (k, d)-trees guarantees that every variable occurs in
at most d clauses.

It remains to show the second claim of Lemma 5.10. Let T be a
(k, d)-tree which is minimal with respect to the number of leaves. Due
to the minimality of T , every non-root node w of T has at least one
leaf descendant at distance at most k − 1, since otherwise the subtree
of T rooted at w would be a (k, d)-tree with fewer leaves than T . Thus,
every literal associated to a node of T does appear in F , and therefore
Corollary 5.16 yields that F belongs to MU(1).

Proof of Lemma 5.11: Recall that bT is the binary tree obtained by
attaching the roots of two copies of T as the children of a new root, and
G(T ) = F( bT ). Thus, by Lemma 5.10, G is an unsatisfiable (k, 2d)-CNF
formula. Moreover, the defining property of (k − 1, d)-trees asserts that
no literal appears in more than d clauses (hence (a)). We now settle (b).
Let Cu, Cv be two clauses sharing at least one variable and let w denote
the lowest common ancestor of u and v (i.e. the node of maximum depth
that appears on both paths from u and v, respectively, to the root). Then
one child of w occurs in Cu whereas the other child occurs in Cv. Since
siblings have complementary literals (b) is shown.

Next we prove (c). Note that G is a bT -formula. Due to the minimality
of T , every non-root node w of T has at least one leaf descendant at
distance at most k − 2, since otherwise the subtree of T rooted at w
would be a (k − 1, d)-tree with fewer leaves than T . Hence every node
of T (including the root) has at least one leaf descendant at distance at
most k−1, and thus every literal associated to a vertex of bT does appear
in G. Thus, by Corollary 5.16 G belongs to MU(1).

(d) follows from (a) and (b): Indeed, if we define occ(u) as the number
of clauses of G containing a literal u, and if we abbreviate ”the clause C
contains the literal u” by ”u ∈ C”, then (b) allows us to write |Γ(C)| as
∑

u∈C occ(u), which is at most kd for every clause C of G.

5.4 Proof of the Lower Bound of Theorem 5.8

For our proof we use the Lopsided Local Lemma of Erdős and Spencer
[43].

Lemma 5.17. (Lopsided Local Lemma) Let {AC}C∈I be a finite set of
events in some probability space. Let Γ(C) be a subset of I for each
C ∈ I such that for every subset J ⊆ I \ (Γ(C) ∪ {C}) we have

Pr(AC | ∧D∈J ĀD) ≤ Pr(AC).
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Suppose there are real numbers 0 < xC < 1 for C ∈ I such that for every
C ∈ I we have

Pr(AC) ≤ xC

∏

D∈Γ(C)

(1 − xD).

Then
Pr(∧C∈IĀC) > 0.

Let F be a (k, s)-CNF formula with s =
⌊

2k+1

e(k+1)

⌋

.

We set the values of the variables randomly and independently, but
not according to the uniform distribution. This seems reasonable to do
as the number of appearances of a variable xi in F as a non-negated
literal could be significantly different from the number of clauses where
xi appears negated. It is even possible that a variable xi appears negated
in only a few, maybe even in a single clause, in which case one tends to
think that it is reasonable to set this variable to true with much larger
probability than setting it to false. In fact it is exactly the opposite we
will do. The more a variable appears in the clauses of F as non-negated,
the less likely we will set it to true. The intuition behind this is explained
in the introduction of this chapter.

For a literal v we denote by dv the number of occurrences of v in F . We
set a variable x to true with probability Px = 1

2 + 2dx̄−s
2sk . This makes the

negated version x̄ satisfied with probability Px̄ = 1
2 − 2dx̄−s

2sk ≥ 1
2 + 2dx−s

2sk
as we have dx + dx̄ ≤ s. So any literal v is satisfied with probability at
least 1

2 + 2dv̄−s
2sk .

For each clause C in F , we define the ”bad event” AC to be that C
is not satisfied. Moreover, for every C in F we define Γ(C) to be the
family of clauses D in F that have at least one such variable in common
with C whose sign is different in C and D. Finally we set the value of
each xC to be x = e

2k .
We need to check that for every subset J ⊆ I \ (Γ(C) ∪ {C}) we have

Pr(AC | ∧D∈J ĀD) ≤ Pr(AC).

This can be seen as follows. If C is not satisfied then all literals in C are
set to false. Thus, Pr(∧D∈J ĀD|AC) ≤ Pr(∧D∈J ĀD). Therefore,

Pr(AC | ∧D∈J ĀD) =
Pr(AC

∧
(∧D∈J ĀD))

Pr(∧D∈J ĀD)

=
Pr(∧D∈J ĀD|AC) · Pr(AC)

Pr
(
∧D∈J ĀD

) ≤ Pr(AC).
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We need to check also the other condition of the lemma. Let C be an
arbitrary clause and let us denote the literals it contains by v1, . . . , vk.
For C not to be satisfied we must not set any of the independent literals
in C to true and therefore we have

Pr(AC) =

k∏

i=1

(1 − Pvi)

≤
k∏

i=1

(
1

2
− 2dv̄i − s

2sk

)

≤ 1

2k

k∏

i=1

((

1 +
1

k

) (

1 − edv̄i

2k

))

≤
(
1 + 1

k

)k

2k

k∏

i=1

(1 − x)dv̄i

<
e

2k
(1 − x)|Γ(C)|

= x
∏

D∈Γ(C)

(1 − x).

The inequality in the fourth line holds due to the well-known inequality
that 1− ax ≤ (1− x)a for every 0 < x < 1 and a ≥ 1. As the conditions
of the Lopsided Local Lemma are satisfied, its conclusion must also hold.
It states that the random evaluation of the variables we consider satisfies
the (k, s)-CNF F with positive probability. Thus F must be satisfiable

and we have f(k) ≥ s =
⌊

2k+1

e(k+1)

⌋

.

5.5 Proof of a Weaker Version of Lemma 5.1

We need some notation first. Let T be a binary tree (not necessarily
with all leaves having depth at least k) and let v be a vertex of T .
In the following we denote by the degree d(v) of v the number of leaf
descendants which have distance at most k from v. As a first step towards
proving Lemma 5.1 we show the following weaker bound, which already
settles the asymptotics of f(k).

Proposition 5.18. A (k, ⌊ 2k+3

k ⌋)-tree exists for every k ≥ 1.
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k

2
− 1

log k − 1

k

k/2

Figure 5.2: The construction of T where k is a power of 2.

Proof: Note that the full binary tree of height k is a (k, 2k)-tree. We

have ⌊ 2k+3

k ⌋ ≥ 2k for k ≤ 8 so we can assume that k > 8. Let r =

2k+2−⌊log k⌋ and note that r ≤ ⌊ 2k+3

k ⌋. Let T ′ be a full binary tree of

height k. We subdivide its leaves into s = 2k−⌊log k⌋+1 intervals I1, . . . , Is

of length 2⌊log k⌋−1 each (i.e., an interval Ij contains all leaf descendants
of some vertex on level k − (⌊log k⌋ − 1)). For every such interval Ij =
{v0, . . . , v2⌊log k⌋−1−1} and every vi ∈ Ij we attach a full binary subtree
of height i to vi. Let T denote the resulting tree. Figure 5.2 shows an
illustration for the case where k is a power of 2. It suffices to prove the
following.

Proposition 5.19. Let v be a vertex of T . Then d(v) ≤ r.

Proof: We apply induction on the depth i of v. For i = 0 the claim is

clearly true. Indeed, the degree of the root is 2k

2⌊log k⌋−1 = 2k+1−⌊log k⌋ =
r
2 . Now suppose that v has depth i ∈ {1, . . . , 2⌊log k⌋−1 − 1}. Note that

the set of descendants of v on level k can be subdivided into 2k−i

2⌊log k⌋−1

intervals, i.e., at least one interval for the values of i we consider. Let v′

denote the parent of v. By construction the number of leaf descendants

which have distance at most k − 1 from v equals d(v′)
2 . Moreover, every

interval {v0, . . . , v2⌊log k⌋−1−1} gives rise to 2i leaves on level k+i, implying
that the number of leaf descendants of v which have distance exactly k

from v equals 2k−i

2⌊log k⌋−1 · 2i = 2k+1−⌊log k⌋ = r
2 . So altogether, d(v) ≤

d(v′)
2 + r

2 ≤ r. It remains to consider the case where v has depth at

least 2⌊log k⌋−1. By construction no leaf of T has depth larger than
k + 2⌊log k⌋−1 − 1, implying that the degree of v is at most the degree of
its parent.
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5.6 Informal Proof of Lemma 5.1 via a

Continuous Construction

In this section we give most of the formal definitions and sketch the
main informal ideas behind the construction of the tree of Lemma 5.1.
Even though the final construction can be formulated without mention-
ing the underlying continuous context, we feel that an informal descrip-
tion greatly helps in motivating it.

5.6.1 Vectors and Constructibility

Given a binary tree T , we assign a leaf-vector ~dw = (x0, x1, . . . , xk) to
each node w ∈ V (T ), where xi denotes the number of leaf descendants of

w having distance i from w. E.g., for a leaf w we have ~dw = (1, 0, . . . , 0),

and for the root w of a full binary tree of height l ≤ k we have ~dw =
(0, 0, . . . , 0, 2l, 0, . . . , 0). For every vector ~x = (x0, . . . , xk) we set |~x| =
∑k

i=0 xi. By definition, for every node w of a (k, d)-tree we have |~dw| ≤ d.
For some vector ~x with |~x| ≤ d we define a (k, d, ~x)-tree as a binary tree

where (i) the root has a leaf-vector ~y which is coordinate-wise dominated
by ~x (i.e., yi ≤ xi for every i), and (ii) each vertex has at most d leaf
descendants that are k-close. E.g., a tree consisting of a parent with two
children is a (k, d, ~x)-tree, for every ~x with x1 ≥ 2 and

∑k
i=0 xi ≤ d. A

vector ~x is (k, d)-constructible (or constructible if k and d are clear from
the context), if a (k, d, ~x)-tree exists. E.g., (1, 0, . . . , 0), or more generally
(0, 0, . . . , 0
︸ ︷︷ ︸

l

, 2l, 0, . . . , 0) are constructible as long as 2l ≤ d. Observe that

the constructibility of the vector (0, . . . , 0, r) for some r ≤ d readily
implies the existence of a (k, d)-tree.

If |~x| ≤ d then ~x is a (k, d)-vector. For a vector ~x = (x0, . . . , xk)

the weight w(~x) is
∑k

i=0 xi/2i. The next lemma gives a useful sufficient
condition for the constructibility of a vector.

Lemma 5.20. Let ~x be a (k, d)-vector. If w(~x) ≥ 1 then ~x is con-
structible.

We note that Lemma 5.20 is a direct consequence of Kraft’s inequality.
For completeness we give a proof here.

Proof of Lemma 5.20: We build a binary tree starting with the root
and adding the levels one by one. Among the vertices on level i we select
a set of xi vertices and let them be leaves. We construct the next level
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by adding two children to the remaining 2i(1−∑i
j=0

xj

2j ) vertices on level

i. At the first level i where
∑i

j=0
xj

2j ≥ 1 we mark all vertices as leaves
and stop the construction of the tree. The total number of leaves is at
most

∑k
i=0 xi ≤ d and the number of leaves at distance i from the root

is at most xi, so the constructed tree is clearly a (k, d, ~x)-tree.
In our new terminology, the proof of Proposition 5.18 establishes the

constructibility of the vector ~v = (0, . . . , 0, 1, 2, . . . , 2s), provided s =
k + 1 − ⌊log k⌋ and d ≥ 2s+1. This is an immediate consequence of
Lemma 5.20. By considering a full binary tree T with all leaves at
depth s and attaching a (k, d, ~v)-tree to every leaf l of T (such that l
is the root) one can obtain the constructibility of (0, . . . , 0, 2s), which
directly implies the existence of a (k, d)-tree for k large enough and

d = 2s+1 = 2k+2−⌊log k⌋ ≤ ⌊ 2k+3

k ⌋.
A non-leaf vertex v of a binary tree “distributes” its k-close leaf descen-

dants between its children w′ and w′′. That is, if ~dw′ = (x′
0, x

′
1, . . . , x

′
k)

and ~dw′′ = (x′′
0 , x′′

1 , . . . , x′′
k), then we have

~dv = (0, x′
0 + x′′

0 , x′
1 + x′′

1 , . . . , x′
k−1 + x′′

k−1) (5.5)

We will consider two fundamentally different kinds of way a parent vertex
v with leaf-vector ~dv = (x0, x1, . . . , xk) can distribute its k-close leaf
descendants between its children. Here we assume that d is a large
power of 2.

Even Distributions First, a distribution is even if x′
i = x′′

i = xi+1

2 for
every i ∈ {0, . . . , k−1}. (We assume for the moment that the coordinates

of ~dv are even.)

Observation 5.21. Let m be an integer and let ~x = (x0, x1, . . . , xk) be
a (k, d)-vector where xi is divisible by 2m, for every i ≥ m. Then

~x(m) =

(
xm

2m
,
xm+1

2m
, . . . ,

xk

2m
,

d

2m
,

d

2m−1
, . . . ,

d

2

)

is a (k, d)-vector. Moreover, if ~x(m) is constructible then ~x is con-
structible.

Proof: The first statement is immediate. For the second statement,
attach a copy of a (k, d, ~x(m))-tree to each leaf of a full binary tree of
height m. This gives a (k, d, ~x)-tree.

The next corollary is a direct consequence of Observation 5.21 (for
m = log d − 1).
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Corollary 5.22. Let d ≤ 2k+1 be a power of 2. If (0, . . . , 0, 1, 2, . . . , d
4 , d

2 )

is constructible then (0, . . . , 0, d
2 ) is constructible and thus a (k, d)-tree

exists.

Piecewise Distribution Recall that we assumed v to be a non-leaf node
of a binary tree with children w′ and w′′, and that we denote by xi, x

′
i and

x′′
i the ith coordinate of ~dv, ~dw′ and ~dw′′ , respectively. The corresponding

distribution is piecewise if there is some threshold index t such that for
i ≤ t − 1, x′

i = xi+1 and x′′
i = 0, whereas for t ≤ i ≤ k − 1, x′

i = 0 and
x′′

i = xi+1. The next observation is the analogon of Observation 5.21.

Observation 5.23. Let ~x = (x0, . . . , xk) be a (k, d)-vector and let 0 ≤
t ≤ k. Then ~x′ = (x1, . . . , xt, 0, . . . , 0) and ~x′′ = (0, . . . , 0, xt+1, . . . , xk, 0).
are (k, d)-vectors. Furthermore, the constructibility of ~x′ and the con-
structibility of ~x′′ imply the constructibility of ~x.

To build our (k, d)-tree we will construct a (k, d, ~y)-tree for the vector
~y = (0, . . . , 0, 1, 2, . . . , d

4 , d
2 ) (note that by Corollary 5.22 this readily

gives a (k, d)-tree) from the root down to the leaves. Note that as d is
of the order 2k/k the number of 0s at the beginning is about log k.

The Cut Subroutine The typical subroutine we use to define the leaf-
vectors of the children of some node is the one we call cut at t. This
involves first a piecewise distribution at t, such that Lemma 5.20 is ap-
plicable for the first child w′, that is

∑t−1
i=0 xi+1/2i ≥ 1. Then the even

distribution is applied m = log xt+1 times to the second child w′′ (c.f.
Observation 5.21) in order to produce a leaf-vector

(0, . . . , 0, 1,
xt+2

2m
, . . . ,

xk

2m
, 0,

d

2m
, . . . ,

d

2
)

(for simplicity we assume for a moment that all xis are large enough
powers of 2). In fact we produce 2m copies of this vector, but since (by
Observation 5.21) its constructibility implies the constructibility of ~x′′ :=
(0, . . . , 0, xt+1, . . . , xk, 0), and thus (by the assumption that Lemma 5.20
is applicable for ~x′ := (x1, . . . , xt, 0, . . . , 0)) also the constructibility of
~x = (x0, . . . , xk), we concentrate on producing one.

Deep Cuts We will need a generalization of the above cut subroutine,
which we will call an l-deep cut at t. The idea is to choose a very small
t, and distribute the possibly very little gain in the weight of ~x′′ more
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evenly on all the coordinates x′′
i . In order to be able to cut at a very

small t and still being able to use Lemma 5.20 we need to multiply the
weight of ~x′ by a large number (we will use 2l) to compensate for the
shortness of the cut. We do that by actually distributing the vector ~x
into 2l vectors averaging ~x, out of one will (roughly) be the first t entries
of ~x shifted by l positions and all the others will (roughly) be the last
k− t entries multiplied by 1/(2l−1) and shifted by l positions. This can
be achieved by a full binary tree of height l connecting the corresponding
trees.

For a more precise description let ~x = (x0, . . . , xk) be a (k, d)-vector
and let l < t. Moreover, let ~x′ = (xl, . . . , xt, 0, . . . , 0) and let ~x′′ =
(0, . . . , 0, xt+1

2l−1 , . . . , xk

2l−1 , 0, d
2l−1 , . . . , d

2 ) (we omit floor signs for the sake
of convenience). We note that ~x′ and ~x′′ are (k, d)-vectors and that the
constructibility of ~x′ and ~x′′ readily imply the constructibility of ~x. The
latter can be seen by taking a full binary tree of height l, attaching a
(k, d, ~x′)-tree to one leaf, and attaching a (k, d, ~x′′)-tree to each of the
remaining 2l − 1 leaves. Figure 5.3 shows an illustration. Finally, by

evaluating Observation 5.21 for m = log
(

xt+1

2l−1

)

(for simplicity we as-

sume for a moment that all the xi

2l−1
are large enough powers of 2) we

obtain that the constructibility of ~x′′ directly implies the constructibil-
ity of ~x′′′ = (0, . . . , 0, 1, xt+2

2m(2l−1)
, . . . , xk

2m(2l−1)
, 0, d

2m+l−1 . . . , d
2 ). Putting

everything together we get that the constructibility of ~x′ and the con-
structibility of ~x′′′ yield the constructibility of ~x. We will refer to the
two vectors ~x′ and ~x′′′ as the outcome of applying to ~x an l-deep cut at
t.

In the next subsection we give an indication how, using only the simple

cut-subroutine, we can produce a (k, d)-tree with d ≤ 2
3 · 2k+1

k . Then we
use l-deep cuts to push the bound on d to the limit.

5.6.2 Passing to Continuous

The goal of this subsection is to give the motivation behind the formal
proof of the next section. Recall that our goal is to obtain a (k, d)-tree
for

d =
1

T

2k+1

k
(5.6)

where T should be as large as possible. By the lower bound in Obser-
vation 5.12 we know that we can not achieve T > e, our goal is to have
T ≥ e − ǫ for every ǫ > 0 and k large enough.
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l

~x = (x0, . . . , xk)

~x′ ~x′′ ~x′′

Figure 5.3: Attaching a (k, d, ~x′)-tree and 2l − 1 (k, d, ~x′′)-trees to the
leaves of a full binary tree of height l gives a (k, d, ~x)-tree.

After fixing a target constant T , it will be helpful to consider the
leaf-vectors in a normalized form, which then will enable us to inter-
pret them as continuous functions on the [0, 1] interval. For a given
desired value d and a leaf-vector ~x = (x0, . . . , xk) the normalized vec-

tor, ~y = ~y(~x) is defined as (y0, . . . , yk) with yj = 1
2j

2k+1

d xj , i.e., ~y =
(2k+1 x0

d , 2k x1

d , . . . , 4
xk−1

d , 2xk

d ). We say that a normalized vector ~y(~x) is
constructible if ~x is constructible. The next observation follows directly
from Lemma 5.20 and (5.6).

Observation 5.24. Let ~y = (y0, y1, . . . , yk) be a normalized vector. If
∑k

i=0 yi ≥ Tk then ~y is constructible.

By Corollary 5.22 we immediately get the following.

Observation 5.25. Let d be a power of 2. If the normalized vector
(0, . . . , 0, 1, . . . , 1) where the last log d entries are ones is constructible
then a (k, d)-tree exists.

The relationship between the normalized vectors of a parent and its
children is also described by an equation similar to (5.5). The normalized
vector of the parent is

(

0,
y′
0 + y′′

0

2
,
y′
1 + y′′

1

2
, . . . ,

y′
k−1 + y′′

k−1

2

)

(5.7)

We use this normalizing operation to help us see the leaf-vectors more
and more as functions, defined on the [0, 1] interval, possibly in a contin-
uous manner. Indeed, if k is large enough then normalized vectors can
be represented as step-functions.
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For example, the normalizing operation transforms the leaf-vector ~x =
(0, . . . , 0, 1, 2, . . . , 2s) with 2s = d

2 into the normalized vector ~y(~x) =
(0, . . . , 0, 1, . . . , 1). If s ≈ k − log k, then only o(k) entries are 0 and
most entries are 1. We want to disregard this small error and consider
this normalized vector as the constant 1 function defined on the interval
[0, 1]. Hence in the continuous setting we can reformulate Observation
5.25 as follows. (The ⋆ denotes that this is not a formal statement.)

Lemma⋆ 5.26. The constructibility of the constant 1 function f implies
the existence of a (k, d)-tree.

In general we will talk about real functions on the interval [0, 1] and we
will routinely ignore the little o(1) sized pieces – by choosing k large
enough the normalized vectors are approximated well by the real func-
tions and the o(1) errors will be insignificant.

The following is a reformulation of Observation 5.24 into the contin-
uous setting. The underlying intuition is that for a given normalized
vector y we set f(x) = y⌊kx⌋.

Lemma⋆ 5.27. If
∫ 1

x=0
f(x) dx ≥ T then f is constructible.

We say that f is easily constructible if Lemma⋆ 5.27 applies.

Target T = 1.5

First we take a look at how the cut subroutine of the previous subsection
can be pushed to give an easily constructible function with target T =
1.5.

In the continuous the subroutine will be called cut at v which, given
a function f on [0, 1] and a value v between 0 and 1, creates the follow-
ing two functions (corresponding to the two leaf-vectors in the previous
subsection):

fleft(x) =

{
2f(x) x ∈ [0, v)
0 x ∈ [v, 1]

fright(x) =

{
2f(x + v) x ∈ [0, 1 − v)
1 x ∈ [1 − v, 1]

(5.8)

As in the cut subroutine of the previous subsection, where the child w′

is expected to use Lemma 5.20, here we want that the function fleft is
able to use Lemma⋆ 5.27 and hence is easily constructible. We will refer
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to fleft and fright as the left child function and the right child function,
respectively, of f .

Starting with the constant 1 function f and performing a cut at 1− δ
with any small constant δ, we obtain that the integral of fleft is at least
2− 2δ ≥ 1.5, hence Lemma⋆ 5.27 applies. The other child, fright, on the
other hand is significantly improved compared to his parent: its value
on the interval [0, δ) is not 1, but 2. Hence we are able to perform a
cut at 1− 2δ for fright, obtaining a large enough value for the integral of
the left child function. Suppose that we repeatedly cut the right child
functions at vi = 1 − iδ and let fi denote the ith right child function
obtained in this way. By induction we get that, as long as iδ < 1

2 ,

fi(x) =

{
2 x ∈ [0, iδ)
1 x ∈ [iδ, 1]

(5.9)

By our construction the left child function of fi (obtained by cutting fi

at vi+1 = 1 − (i + 1)δ) is as follows.

fi,left(x) =







4 x ∈ [0, iδ)
2 x ∈ [iδ, 1 − (i + 1)δ)
0 x ∈ [1 − (i + 1)δ, 1]

(5.10)

Figure 5.4 depicts fi and its children. By (5.10) the integral of fi,left

is at least 2 − 2δ ≥ 1.5 and therefore the functions fi,left can always
immediately use Lemma⋆ 5.27. Note that by our definition, fi,right =
fi+1. (5.9) gives that as soon iδ reaches 1/2, the integral of fi equals
1.5 and thus Lemma⋆ 5.27 applies to it. So the constant 1 function f is
constructible, which together with Lemma⋆ 5.26 implies that a (k, d)-tree

exists for d = 1
T

2k+1

k = 2
3

2k+1

k .
We point out that a careful analysis yields that by continuing cutting

the right child functions at vi = 1 − iδ we obtain that as soon as iδ
reaches 2

3 , the integral of the current right child function gets larger
than 2. Furthermore, it can be shown that the integral of every left
child function occurring in this process is at least 2−8δ. Thus, for every
ǫ we can also achieve the target T = 2− ǫ. We will not give more details,
since below we will strive for a better target anyway.

Target Close to e

We now illustrate how the l-deep-cut subroutine of the previous subsec-
tion can be applied to achieve the target T = e − ǫ. In the continuous
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(2, . . . , 2
︸ ︷︷ ︸

iδ

, 1, . . . , 1)

(4, . . . , 4
︸ ︷︷ ︸

iδ

, 2, . . . , 2

︸ ︷︷ ︸

1−(i+1)δ

, 0, . . . , 0) (2, . . . , 2
︸ ︷︷ ︸

(i+1)δ

, 1, . . . , 1)

Figure 5.4: An illustration of fi, its left child function fi,left and its right
child function fi,right = fi+1. For better readability we use
the vector-representation ignoring the little o(1) sized pieces.

the subroutine will be called l-deep cut at v which, given a function f
on [0, 1] and a value v between 0 and 1, creates the following two func-
tions (where f , fleft and fright correspond to the vectors ~x, ~x′ and ~x′′′,
respectively, of the previous subsection).

fleft(x) =

{
2lf(x) x ∈ [0, v)
0 x ∈ [v, 1]

fright(x) =

{
2l

2l−1
f(x + v) x ∈ [0, 1 − v)

1 x ∈ [1 − v, 1]

We can cut very close to 0 and this is what we will do. On the other
hand, the improvement in the value of the right child function is then
hardly visible, but is very evenly distributed and is tailored for continu-
ous analysis.

We define a function that approximates well how the right child func-
tions develop if we repeatedly apply an li-deep cut at vi to the current
right child function fi where vi is very close to 0 (the values of the li
and the vi will be determined later). For every t which is of the form

t =
∑i

j=1 vj for some i and for every x ∈ [0, 1] we define F (t, x) as fi+1(x)
(recall that fi+1 is the (i + 1)th right child function we consider). Since
the vi will become infinitesimally small we can regard F (t, x) as a con-
tinuous two-variable function, and we will refer to t as the time that has
elapsed since we started our process. We will have the initial conditions
F (0, x) = 1 (we start with the constant 1 function) and F (t, 1) = 1 (by
definition the right child function f of an l-deep cut has the property
that f(1) = 1).
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Let F (t, x) be our current right child function (defined on the [0, 1]
interval with variable x) for some fixed t. What happens if we cut at
some infinitesimally small δ ∈ [0, 1] with a cut of sufficiently large depth?
In order to have the left child function use Lemma⋆ 5.27 immediately
the integral of the function on the interval [0, δ], times 2l should be
at least T : approximating this integral with δF (t, 0) we should have
l = log(T/(δF (t, 0))).

After this cut the right child function fright(x) is 1 on the infinitesi-
mally small interval [1−δ, 1]. On the long interval our right child function
is defined as

fright(x) =
2l

2l − 1
F (t, x + δ).

By construction, we have fright(x) = F (t + δ, x). Hence by our choice of

l and by the approximation 2l

2l−1 ≈ 1 + 1
2l we get that

F (t + δ, x − δ) ≈
(

1 +
1

2l

)

F (t, x) = (1 +
δF (t, 0)

T
)F (t, x).

This gives us an equation on the derivative of F (t, x) (in direction
(1,−1)) which describes how fast the function values tend to change.

F ′(t, x)

F (t, x)
=

1

F (t, x)

F (t + δ, x − δ) − F (t, x)

δ
=

F (t, 0)

T
.

Integrating on the segment from (s − 1, 1) to (s, 0) we obtain

∫

(ln F )′ =
1

T

∫ s

s−1

F (t, 0)dt.

The left hand side evaluates to ln F (s, 0) by the initial condition. As-
suming that the function F (t, 0) is monotonically increasing gives that

the right hand side is at least F (s−1,0)
T , which implies that

F (s, 0) ≥ e
F(s−1,0)

T . (5.11)

Our goal is to show that F (s, 0) tends to infinity for T = e − ǫ. To this
end we need the following observation.

Observation 5.28. By elementary calculus we get that x
ln x ≥ e for

every x > 1.
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Estimating F (s, 0) as a sequence (say on the integers), and setting a0 :=

F (0, 0) and as := e
as−1

T , we obtain that as ≤ F (s, 0). The initial con-
dition gives that a0 = 1. Note that by Observation 5.28 and our choice
of T we have that the sequence (as) is monotonically increasing. If (as)
does not diverge then for ǫ′ := ǫ

2 ln a1 we can find an index s such that
as −as−1 ≤ ǫ′. Thus, by definition of as and by Observation 5.28 we get
that

T =
as−1

ln as
≥ as − ǫ′

ln as
≥ e − ǫ

2
,

contradicting our choice of T .
Hence (as) diverges and therefore the function F (s, 0) tends to infinity

(for T = e−ǫ), showing that the right child function can also use Lemma⋆

5.27 after a while.
The above continuous heuristic is the underlying idea of the construc-

tion described in Section 5.7. It provides a good approximation to what
happens in the discrete case, even though a large number of small errors
must be introduced and the handling of all of them is quite technical.
Crucially the number of these errors depends only on the given ǫ and
hence one can plan for them in advance.

5.7 Formal Proof of Lemma 5.1

To simplify notation we will omit vector arrows throughout this section.
Let us fix the positive integers k, d and l. We will not show the

dependence on these parameters in the next definitions to simplify the
notation, although d′, E, Cr and C∗

r depend on them. We let d′ =
d(1 − 1/(2l − 1)). For a (k, d)-vector x = (x0, . . . , xk) we define E(x) =
(⌊x1/2⌋, ⌊x2/2⌋, . . . , ⌊xk/2⌋, ⌊d′/2⌋). We denote by Em(x) the vector
obtained from x by m applications of the operation E. For l ≤ r ≤ k we
define Cr(x) to be the (k + 1)-tuple starting with r + 1 − l zero entries
followed by ⌊xj/(2l − 1)⌋ for j = r + 1, . . . , k, followed by ⌊d′/2l−j⌋ for
j = 0, 1, . . . , l− 1 and let C∗

r (x) be the (k + 1)-tuple starting with xj for
j = l, l + 1, . . . , r followed by k − r + l zeros.

Note that for the following lemma to hold we could use d instead of
d′ in the definition of E and also in most places in the definition of C.
The one place where we cannot do this is the entry ⌊d′/2l⌋ of Cr(x)
right after ⌊xk/(2l − 1)⌋. If we used a higher value there, then one of
the children of the root of the tree constructed in the proof below would
have more than d leaves among its descendants in distance at most k.
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We use d′ everywhere to be consistent and provide for the monotonicity
as used in the subsequent proof of Lemma 5.1. The first part of the next
lemma is a reformulation of Observation 5.21 whereas the second part
deals with the l-deep-cut subroutine.

Lemma 5.29. Let k, d and l be positive integers and x a (k, d)-vector.

(a) E(x) is a (k, d)-vector. If E(x) is constructible, then so is x.
(b) For l ≤ r ≤ k both Cr(x) and C∗

r (x) are (k, d)-vectors. If both
of these vectors are constructible and |C∗

r (x)| < d/2l, then x is
also constructible.

Proof: (a) We have |E(x)| ≤ |x|/2 + d′/2 < d, so E(x) is a (k, d)-vector.
If there exists a (k, d, E(x))-tree, take two disjoint copies of such a tree
and connect them with a new root vertex, whose children are the roots
of these trees. The new binary tree so obtained is a (k, d, x)-tree.

(b) The sum of the first k+1−l entries of Cr(x) is at most |x|/(2l−1) ≤
d/(2l −1), the remaining fixed terms sum to less than d′ = d(1−1/(2l −
1)), so |Cr(x)| ≤ d. We trivially have |C∗

r (x)| ≤ |x| ≤ d, so both Cr(x)
and C∗

r (x) are (k, d)-vectors.

Let T be a (k, d, Cr(x))-tree and T ∗ a (k, d, C∗
r (x))-tree. Consider a

full binary tree of height l and attach T ∗ to one of the 2l leaves of this
tree and attach a separate copy of T to all remaining 2l − 1 leaves. This
way we obtain a finite binary tree T ′. To check condition (i) of the
definition (of a (k, d, x)-tree) notice that no leaf of T ′ is in distance less
than l from the root, leaves in distance l ≤ j ≤ r are all in T ∗ and leaves
in distance r < j ≤ k are all in the 2l − 1 copies of T . Condition (ii) we
have to check only for vertices in distance 1 ≤ j ≤ l from the root. There
are two types of vertices in distance j. One of them has 2l−j copies of
T below it, the other has one less and also T ∗. In the first case we can
bound the number of leaf descendants in distance at most k by

2l−j

(
xr+1 + . . . + xk

2l − 1
+

d′

2l
+ . . . +

d′

2l−j+1

)

≤ 2l−j

2l − 1
· d + d′

(

1 − 1

2j

)

≤ 2l−j

2l − 1
· d + d

(
2l − 2

2l − 1

) (

1 − 1

2j

)
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=
d

2l − 1








2l−j + 2l

(

1 − 1

2j

)

− 2

(

1 − 1

2j

)

︸ ︷︷ ︸

≥1








≤ d

2l − 1
(2l − 1) ≤ d. (5.12)

We point out that here it is crucial that we use the specific value of
d′ < d.

In the second case, the number of leaf descendants in distance at most
k is bounded by

(2l−j − 1)

(
xr+1 + . . . + xk

2l − 1
+

d′

2l
+ . . . +

d′

2l−j+1

)

+ |C∗
r (x)|

≤ 2l−j − 1

2l − 1
· d + d′

(

1 − 1

2j

)

+
d

2l − 1

≤ 2l−j

2l − 1
· d + d′

(

1 − 1

2j

)

,

which by (5.12) is at most d.
Armed with the last lemma we are ready to prove Lemma 5.1.

Proof of Lemma 5.1

We will show that (k, d)-trees exist for large enough k and with d =
⌊2k+1/(ek) + 100 · 2k+1/k3/2⌋.

We set l = ⌊log k/2⌋ and s = 2l. Thus 2l ≈
√

k. We define the (k, d)-

vectors x(t) = (x
(t)
0 , . . . , x

(t)
k ) recursively. We start with x(0) = Ek−s(z),

where z denotes the all zero (k, d)-vector. For t ≥ 0 we define x(t+1) =
Ert−s−l(Crt(x

(t))), where rt is the is the smallest index in the range

s + l ≤ rt ≤ k with
∑rt

j=0 x
(t)
j /2j ≥ 2−l. At this point we may consider

the sequence of the (k, d)-vectors x(t) end whenever the weight of one of
them falls below 2−l and thus the definition of rt does not make sense.
But we will establish below that this never happens and the sequence is
infinite.

Notice first, that we have x
(t)
j = 0 for all t and 0 ≤ j ≤ s, while

the entries x
(t)
j for s < j ≤ k are all obtained from d′ by repeated

application of dividing by an integer (namely by 2l − 1 or by a power
of 2) and taking lower integer part. Using the simple observation that
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⌊⌊a⌋/j⌋ = ⌊a/j⌋ if a is real and j is a positive integer we can ignore all
roundings but the last. This way we can write each of these entries in the

form
⌊

d′

2i(2l−1)j

⌋

=

⌊

d′

2i+lj

(

1 + 1
2l−1

)j
⌋

for some non-negative integers i

and j. Using the values α = 1 + 1/(2l − 1) and qt = rt − s (this is the
amount of “left shift” between xt and xt+1) we can give the exponents
explicitly.

x
(t)
j =

⌊
d′

2k+1−j
αc(t,j)

⌋

(5.13)

for all s < j ≤ k and all t, where c(t, j) is the largest integer 0 ≤ c ≤ t

satisfying
∑t−1

i=t−c qi ≤ k − j. We define c(t, j) = 0 if qt−1 > k − j.

The formal inductive proof of this formula is a straight forward cal-
culation. What really happens here (ignoring the rounding) is that each
entry enters at the right end of the vector as d′/2 and is divided by 2
every time it moves one place to the left (application of E) but when it
moves l places to the left through an application of Crt it is divided by
2l − 1 instead of 2l so it gains a factor of α. The exponent c(t, j) counts
how many such factors are accumulated. If the “ancestor” of the entry

x
(t)
j was first introduced in x(t′), then c(t, j) = t − t′.

We claim next that c(t, j) and x
(t)
j increases monotonously in t for

each fixed s < j ≤ k, while qt decreases monotonously with t. We prove
these statements by induction on t. We have c(0, j) = 0 for all j, so
c(1, j) ≥ c(0, j). If c(t + 1, j) ≥ c(t, j) for all j, then all entries of x(t+1)

dominate the corresponding entries of x(t) by (5.13). If x
(t+1)
j ≥ x

(t)
j for

all j, then we have rt+1 ≤ rt by the definition of these numbers, so we
also have qt+1 ≤ qt. Finally, if qi is decreasing for i ≤ t + 1, then by the
definition of c(i, j) we have c(i + 1, j) ≥ c(i, j) for i ≤ t + 1.

The monotonicity just established also implies that the weight of x(t)

is also increasing, so if the weight of x(0) is at least 2−l, then so is the
weight of all the other x(t), and thus the sequence is infinite. The weight
of x(0) is

k∑

j=s+1

⌊
d′

2k+1−j

⌋

2j

>

k∑

j=s+1

d′

2k+1−j − 1

2j
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> (k − s)
d′

2k+1
− 2−s

> (k − s)
1 − 1

2l−1

ek
− 2−s,

where the last inequality follows from d > 2k+1/(ek) and the last term
tends to e−1 as k tends to infinity, so it is larger than 2−l for large enough
k.

We have just established that the sequence x(t) of (k, d)-vectors is infi-
nite and coordinate-wise increasing. Since |x(t)| ≤ d and it must strictly
increase before the sequence stabilizes, the sequence must stabilize in at
most d steps. So x(t) = x = (x0, . . . , xk) for t ≥ d. This implies that
qt also stabilizes with qt = q for t ≥ d. (5.13) as applied to t > d + k
simplifies to

xj =

⌊
d′

2k+1−j
α⌊(k−j)/q⌋

⌋

. (5.14)

Recall that q = rt0 − s, and rt0 is defined as the smallest index in the
range s + l ≤ r ≤ k with

∑r
j=0 xj/2j ≥ 2−l. Thus we have q ≥ l. We

claim that equality holds. Assume for contradiction that q > l Then by
the minimality of rt0 we must have

2−l >

s+q−1
∑

j=0

xj

2j

=

s+q−1
∑

j=s+1

⌊
d′

2k+1−j α⌊(k−j)/q⌋
⌋

2j

>

s+q−1
∑

j=s+1

d′

2k+1−j α(k−j)/q−1 − 1

2j

> (q − 1)
d′

2k+1
αk/q−4 − 2−2l.

In the last inequality we used s = 2l and that j
q ≤ s+q

q = 1 + s
q ≤

1 + 2l
l = 3. This inequality simplifies to

2−l(1 + 2−l)α4 2k+1

d′
> (q − 1)αk/q . (5.15)

Simple calculus gives that the right hand side takes its minimum for
q ≥ 2 between c − 1 and c − 2 for c = k ln α and this minimum is more
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than (c − 3)e. Using α = 1 + 1/(2l − 1) > e2−l

we have c ≥ k/2l. So
(5.15) yields

2−l(1 + 2−l)α4 2k+1

d′
>

ke

2l
− 3e.

Thus,

(1 + 2−l)α4 2k+1

d′
− ke + 3e2l > 0.

Substituting our choice for d, d′, α and l (as functions of k) and assuming
that k is large enough we get that the left hand side is at most

(

1 +
2√
k

) (

1 +
2√

k − 2

)4
2k+1

d
(

1 − 2√
k−2

) − ek + 3e
√

k

≤
(

1 +
2√
k

) (

1 +
4√
k

)4
2k+1

d
(

1 − 4√
k

) − ek + 3e
√

k

≤
(

1 +
19√
k

)
ek

(

1 − 4√
k

)(

1 + 99e√
k

) − ek + 3e
√

k

≤
(

1 − 70√
k

)

ek − ek + 3e
√

k = −70e
√

k + 3e
√

k < 0,

which contradicts our assumption. Hence q = l as claimed.

We finish the proof of the theorem by establishing that the (k, d)-
vectors x(t) are constructible. We prove this statement by downward
induction for t. We start with t = d, where x(d) = x. Using (5.14) and
the fact that q = l we get that for large k,

w(x) ≥ xs+1

2s+1
≥ d′

2k+1
α

k−s−1
l −1 − 1

≥ d′

2k+1
α

k
2l − 1

≥ d/2

2k+1

(

1 +
1√
k

) k
log k

− 1

≥ 1

2ek
e

k

2
√

k log k − 1 > 1.

The first inequality on the last line holds due to the well-known fact that

1 + 1
y ≥ e

1
2y for y large enough. So by Lemma 5.20 x is constructible.



106 Chapter 5. Special Trees With Implications to SAT and Games

Now assume that x(t+1) is constructible. Recall that we have x(t+1) =
Ert−s−l(Crt(x

(t))), so by (the repeated use of) Lemma 5.29 part (a)
Crt(x

(t)) is constructible. By part (b) of the same lemma x(t) is also
constructible (and thus the inductive step is complete) if we can (i) show
that C∗

rt
(x(t)) is constructible and (ii) establish that |C∗

rt
(x(t))| ≤ d/2l.

For (i) we use the definition of rt:
∑rt

j=0 x
(t)
j /2j ≥ 2−l. But the weight

of C∗
rt

(x(t)) is
∑rt

j=l x
(t)
j /2j−l, so the contribution of each term with

j ≥ l is multiplied by 2l, while the missing terms j < l contributed zero
anyway as l < s. This shows that the weight of C∗

rt
is at least 1 and

therefore Lemma 5.20 proves (i). For (ii) we use monotonicity to see
rt ≤ r0 and (5.13) to see that r0 ≤ 5k/2l for large enough k. Then we

use monotonicity again to see |C∗
rt

(x(t))| =
∑rt

j=s+1 x
(t)
j ≤ ∑rt

j=s+1 xj .
Finally, by (5.14) and the fact that q = l we get that for large k,

|C∗
rt

(x(t))| ≤ d′
rt∑

j=s+1

1

2k+1−j
· α k−j

l

≤ d

rt∑

j=s+1

αk−j

2k−j

≤ d

rt∑

j=s+1

(α

2

)k−j

≤ d

(
3

4

)k−rt

· 4

(

since
α

2
≤ 3

4

)

≤ d

(
3

4

) k
2

· 4

(

since rt ≤
5k

2l
≤ k

2

)

<
d√
k
≤ d

2l
.

This finishes the proof of (ii) and hence the inductive proof that x(t) is
constructible for every t.

As x(0) = Ek−s(z) is constructible Lemma 5.29 (a) implies that z is
also constructible, so there exists (k, d, z)-tree T . As z is the all zero
vector, T must also be a (k, d)-tree.
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5.8 Outlook and Open Problems

5.8.1 MU(1) Formulas and Trees

We first summarize some results of the previous sections. Let T be a
binary tree where every vertex different from the root is labeled with a
literal such that the two children of any non-leaf vertex are labeled with
complementary literals. A CNF formula G is called a T -formula if G can
be obtained by associating with every leaf v of T a clause Cv that is the
disjunction of some literals along the path from v to the root, and taking
the conjunction of all those Cv. By Corollary 5.16, a CNF formula G is
in MU(1) if and only if G is a T -formula for some binary tree T where
all literals associated to vertices of T do appear in G.

In our construction for the upper bound on f(k) (c.f. Theorem 5.8 on
page 77) we restrict to T -formulas of the form F(T ), where T is some
(k, d)-tree and with every leaf v of T we associate the clause which is the
disjunction of the first k labels on the path from v to the root. By Lemma
5.10, F(T ) is an unsatisfiable (k, d)-CNF formula. We call a (k, d)-
tree T minimal if none of its subtrees is a (k, d)-tree. Note that every
non-root vertex w of a minimal (k, d)-tree T has a leaf descendant at
distance at most k−1 (otherwise the subtree rooted at w is a (k, d)-tree,
contradicting the minimality of T ); thus, by construction, every literal of
T does appear in F(T ), and therefore, due to the above characterization
of MU(1) formulas, F(T ) belongs to MU(1). Hence,

f(k) ≤ f1(k) ≤ ftree(k), (5.16)

where f1(k) denotes the largest integer s such that no (k, s)-CNF formula
is in MU(1), and ftree(k) denotes the largest integer d such that no (k, d)-
tree exists. Finally, Observation 5.12 gives that the values f(k), f1(k)
and ftree(k) are equal up to lower order terms:

ftree(k) =

(
2

e
+ O(1/

√
k)

)
2k

k
= (1 + o(1))f(k). (5.17)

5.8.2 On the Size of Unsatisfiable Formulas

By the size of a rooted tree we mean the number of its leaves and by
the size of a CNF formula we mean the number of its clauses. With
this notation the size of a minimal (k, d)-tree T and the size of the
corresponding (k, d)-CNF formula F(T ) in MU(1) are the same. If a
(k, d)-tree T is not minimal then by picking a minimal subtree T ′ of T
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and considering F(T ′) we can readily find a corresponding (k, d)-CNF
formula in MU(1) whose size is at most the size of T .

By a minimum (k, d)-tree we denote a (k, d)-tree which has the small-
est size of all (k, d)-trees. A minimum (k, d)-CNF formula is then defined
analogously. In the proof of Lemma 5.1 we constructed (k, d)-trees for

d ≈ 2k+1

ek . Their size and therefore the size of the corresponding (k, d)-
CNF formula in MU(1) is at most 2h, where h is the height of the tree:
the largest root-leaf distance. In fact, the size of the trees we constructed
is very close to this upper bound. Therefore it makes sense to take a
closer look at the height.

Recall that we associated with a vertex v of a (k, d)-tree the (k, d)-
vector (x0, . . . , xk), where xj is the number of leaf descendants of v of
distance j from v. A minimum (k, d)-tree has no two vertices along the
same branch with identical vectors, so the height of a minimum (k, d)-
tree is limited by the number of (k, d)-vectors, less than (d + 1)k+1.

For d = f(k) + 1 this is 2Θ(k2). The same bound for minimum (k, d)-
CNF formulas in MU(1) is implicit in [54]. There is numerical evidence
that the size of the minimum (k, ftree(k) + 1)-tree and the minimum
(k, f1(k)+1)-CNF formula in MU(1) might indeed be doubly exponential
in k (consider the size of the minimum (7, 18)-tree and the minimum
(7, 18)-CNF formula in MU(1) mentioned below).

A closer analysis of the proof of Lemma 5.1 shows that the height of
the (k, d)-tree constructed in it is at most kd. While this is better than
the general upper bound above it still allows for trees with sizes that are
doubly exponential in k.

This height can, however, be substantially decreased if we allow the

error term in d to slightly grow. If we allow d = (1 + ǫ)2k+1

ek for a
fixed ǫ > 0, then a more careful analysis shows that the height of the
tree created becomes O(k). This bounds the size of the tree and the
corresponding formula by a polynomial in d.

Let us define f1(k, d) for d > f1(k) to be the size of the minimum
(k, d)-CNF formula in MU(1) and let ftree(k, d) stand for the size of the
minimum (k, d)-tree, assuming d > ftree(k). While f1(k, f1(k) + 1) and
similarly ftree(k, ftree(k) + 1) are probably doubly exponential in k, for
slightly larger values of d, f1(k, d) and ftree(k, d) are polynomial in d
(and thus simply exponential in k).
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5.8.3 Extremal Values and Algorithms

Finally, we mention the question whether f1(k) = ftree(k) for all k. In
other words, we ask whether we lose by selecting the k vertices farthest
from the root when making an MU(1) k-CNF formula from a binary
tree. As mentioned above, f(k) = f1(k) is also open, but f1(k) = ftree(k)
seems to be a simpler question as both functions are computable. Com-
puting their values up to k = 8 we found these values agreed. To gain
more insight we computed the corresponding size functions too and found
that f1(k, d) = ftree(k, d) for k ≤ 7 and all d > f1(k) with just a sin-
gle exception. We have f1(7) = 17 and f1(7, 18) = 10, 197, 246, 480, 846,
while ftree(7, 18) = 10, 262, 519, 933, 858. Does this indicate that all other
equalities are coincidences and f1 and ftree will eventually diverge?

A related algorithmic question is whether the somewhat simpler struc-
ture of (k, d)-trees can be used to find an algorithm computing ftree(k)
substantially faster than the algorithm of Hoory and Szeider [54] for com-
puting f1(k). Such an algorithm would give useful estimates for f1(k)
and also f(k). At present we use a similar (and similarly slow) algorithm
for either function.
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[35] F. Chung and R. Graham. Erdős on graphs. His Legacy of Unsolved
Problems. A K Peters, Ltd., Wellesley, MA, (1998).
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[75] L. A. Székely. On two concepts of discrepancy in a class of combi-
natorial games. Infinite and Finite Sets, Colloquia Mathematica Soci-
etatis János Bolyai, 37, (1984) 679–683.

[76] C.A. Tovey. A simplified NP-complete satisfiability problem. Discr.
Appl. Math. 8 (1), (1984), 85–89.



Curriculum Vitae

Heidi Gebauer

born August 21, 1981 in Zürich, Switzerland
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