
DISS. ETH NO. 20419

MODELING AND ENFORCING
WORKFLOW AUTHORIZATIONS

A dissertation submitted to
ETH ZURICH

for the degree of
Doctor of Sciences

presented by

Samuel Jakob Burri
MSc ETH CS

born on 12 October 1981
citizen of Root (LU) and Malters (LU)

accepted on the recommendation of
Prof. Dr. David Basin, examiner
Dr. Günter Karjoth, co-examiner

Prof. Dr. Srdjan Capkun, co-examiner

2012





Was ist bloss mit den Wörtern los?
Ich schüttle Sätze, wie man eine kaputte Uhr schüttelt,
und nehme sie auseinander;
darüber vergeht die Zeit, die sie nicht anzeigt.

Max Frisch, 2010





Abstract

Authorizations are fundamental in protecting information systems. In this dis-
sertation, we study the modeling and enforcement of authorizations for work-
flows, which are a well-established abstraction of an organization’s business pro-
cesses. We thereby make authorizations sensitive to their business environment.
For example, they may be tailored to workflow-specific relations between tasks
and may anticipate potential future task executions. A prevalent class of au-
thorizations, whose realization benefits from this additional information, are
Separation of Duty (SoD) constraints. They aim at reducing fraud and errors
and are therefore commonplace in regulated environments, such as the financial
industry. More specifically, we address two main problems.

First, we study the refinement of abstract SoD constraints to concrete work-
flow models, and how to integrate an enforcement monitor for the resulting
refinement into a heterogeneous workflow environment. We thereby bridge the
gap between the formalization of high-level, workflow-independent authoriza-
tion requirements and their enforcement. Our enforcement formalization and
its service-oriented implementation account for the dynamics of today’s busi-
ness environments. In particular, we model administrative activities that reflect
organizational changes occurring during workflow execution, addressing a well-
known source of fraud.

Second, we propose a novel approach to aligning the enforcement of autho-
rizations with their workflow-based business environment. Existing workflow
authorization models make strong restrictions on workflows’ control-flows; for
example, they do not support loops. Our approach, in particular our novel
technique for scoping authorizations within workflows, lifts this restriction. We
proceed by identifying the notion of an obstruction, which generalizes deadlock
caused by authorizations, and we study the construction of obstruction-free en-
forcement mechanisms. Finally, we introduce the concept of optimal authoriza-
tions for a workflow that maximize protection, yet allow for their obstruction-
free enforcement. We provide tool support for our approach by extending a
modeling platform and by building on algorithms from optimization theory.

i



ii



Zusammenfassung

Autorisierungen sind ein fundamentaler Bestandteil des Schutzes von Informa-
tionssystemen. Im Fokus dieser Dissertation steht das Modellieren und Durch-
setzen von Autorisierungen im Kontext von Workflows, einer etablierten Abs-
traktion von Geschäftsprozessen. Dadurch werden Autorisierungen mit dem
Geschäftsumfeld verknüpft und können beispielsweise auf Beziehungen zwi-
schen mehreren Arbeitsschritten zugeschnitten werden und zukünftige Arbeits-
schritte antizipieren. Ein weitverbreitetes Autorisierungskonzept, dessen Reali-
sierung von diesen zusätzlichen Informationen profitiert, ist das Mehr-Augen-
Prinzip. Dieses bezweckt, Betrug und Fehler zu verhindern, und ist in reg-
ulierten Geschäftsfeldern, wie beispielsweise der Finanzindustrie, allgegenwär-
tig. Wir beschäftigen uns mit zwei Hauptproblemen.

Erstens studieren wir das Verfeinern von abstrakten Bestimmungen, die auf
dem Mehr-Augen-Prinzip beruhen, zu konkreten Workflow-Modellen und die
Frage, wie die gewonnenen Verfeinerungen in heterogenen Workflow-Umge-
bungen durchgesetzt werden können. Damit überbrücken wir die Kluft zwi-
schen einer Workflow-unabhängigen Spezifikation von Autorisierungsanforde-
rungen und deren Durchsetzung. Unsere Formalisierung und deren Service-
orientierte Umsetzung sind an die Dynamik der heutigen Geschäftswelt ange-
passt. So modellieren wir beispielsweise administrative Aktivitäten während
der Ausführung von Workflows, die zu Autorisierungsveränderungen führen
und bei Nichtbeachtung Betrug begünstigen.

Zweitens präsentieren wir einen neuen Ansatz, um die Durchsetzung von
Autorisierungen mit ihrem Workflow-basierten Geschäftsumfeld abzustimmen.
Existierende Workflow-Autorisierungsmodelle schränken den Kontrollfluss von
Workflows stark ein, da sie beispielsweise keine Schleifen erlauben. Unser An-
satz, insbesondere unsere Technik zum Abgrenzen von Autorisierungen, hebt
diese Einschränkungen auf. Weiter führen wir den Begriff der Obstruction ein,
die eine durch Autorisierungen begründete, teilweise Blockierung einer Work-
flow-Ausführung beschreibt. Darauf aufbauend studieren wir die Konstrukti-
on von Obstruction-freien Durchsetzungsmechanismen. Schliesslich führen wir

iii



das Konzept von optimalen Autorisierungen für einen Workflow ein, die eine
Obstruction-freie Durchsetzung ermöglichen und dabei maximalen Schutz bi-
eten, beziehungsweise Kosten minimieren. Durch die Erweiterung einer beste-
henden Modellierungssoftware und unter Anwendung von bekannten Opti-
mierungsalgorithmen stellen wir eine Werkzeugunterstützung für unseren An-
satz bereit.

iv



Acknowledgments

First, I want to thank David Basin and Günter Karjoth for supervising my PhD
and for letting me pursue my ideas while acting as a tough but fair sounding
board. Their flexibility, generosity, and trust made me feel at home both at IBM
Research and at ETH Zurich. Inspired by their curiosity and sense of precision,
I learned how to develop and crystallize ideas by undergoing the painful yet re-
warding process of putting them into words. Hence, the epigraph. Furthermore,
I thank Srdjan Capkun for serving as my co-examiner.

Second, I want to thank my current and former colleagues at IBM and ETH
for creating a sociable and stimulating work environment. In particular, I want
to mention Patrik Bichsel, Maria Dubovitskaya, Konrad Eriksson, Chris Giblin,
Anja Lehmann, Samuel Müller, Franz-Stefan Preiss, Dieter Sommer, and Mario
Verdicchio with whom I enjoyed work-related but also many political, social,
and geeky discussions. I am grateful to Mohammad Torabi Dashti and Srdjan
Marinovic who provided rigorous feedback on multiple drafts of my thesis and
thereby repeatedly fueled my ambition to improve my work. Furthermore, I
thank my godfather Matthias Burri for proofreading my thesis’ Zusammenfas-
sung. Finally, I thank Michael Osborne and Andreas Wespi for their support in
dealing with IBM’s bureaucracy and politics.

Third, I want to express my gratitude to my family and friends for supporting
me wholeheartedly. More specifically, I thank my parents Katharina Burri-Bräm
and Balz Burri for giving me an excellent mix of freedom, rules, values, and love
throughout my childhood and to the current day. Furthermore, I thank my sister
Nina Burri for her often blunt feedback and advice on numerous topics. I am
truly blessed to count on the friendship of many great individuals. In particular,
the “5 Freunde” gang and their families who have been enriching my life ever
since high school. Also, my Unitech friends, in particular, those with whom I
had the pleasure to revitalize Unitech’s alumni association. Finally, I am deeply
indebted to my girlfriend Natalie Surber who not only puts up with me and
my undertakings, such as my PhD, but who also gives me a lot of strength and
guidance with her good heart, calm, and love.

v



vi



Contents

1 Introduction 1
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

I Context 11

2 Background 13
2.1 Communicating Sequential Processes . . . . . . . . . . . . . . . . . 13
2.2 Multisets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Graph Coloring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Business Process Modeling Notation . . . . . . . . . . . . . . . . . . 18
2.5 Integer Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Requirements 23
3.1 Workflow Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Refining Regulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

II A Workflow-Independent Approach 29

4 Authorization-Constrained Workflows 31
4.1 Workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Authorization Classes and Enforcement Approach . . . . . . . . . . 34
4.3 Basic Authorizations . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Generalization of SoDA 39
5.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Multiset Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3 Enforcement Requirements . . . . . . . . . . . . . . . . . . . . . . . 43

vii



CONTENTS

5.4 Trace Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.5 Mapping Terms to Processes . . . . . . . . . . . . . . . . . . . . . . 47

6 Implementation 51
6.1 Technical Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.3 Enforcement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.4 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.5 Performance Measurements . . . . . . . . . . . . . . . . . . . . . . . 57

7 Evaluation 61
7.1 Limitations of an Automated Mapping . . . . . . . . . . . . . . . . 61
7.2 Continuous Satisfiability . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.3 Communication Versus Statefulness . . . . . . . . . . . . . . . . . . 63
7.4 Abstractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

III A Workflow-Specific Approach 65

8 Scoping Constraints With Release Points 67
8.1 Formalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.2 BPMN Extension and Serialization . . . . . . . . . . . . . . . . . . . 74
8.3 Tool Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

9 Aligning Authorization and Business Objectives 77
9.1 Obstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
9.2 Enforcement Processes . . . . . . . . . . . . . . . . . . . . . . . . . . 78
9.3 The Enforcement Process Existence Problem . . . . . . . . . . . . . 80
9.4 Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

10 Optimal Workflow-Aware Authorizations 87
10.1 Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
10.2 The General Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
10.3 A Role-Based Cost Function . . . . . . . . . . . . . . . . . . . . . . . 93
10.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

11 Evaluation 101
11.1 Allocations Versus Enforcement Processes . . . . . . . . . . . . . . . 101
11.2 When Users Become Unavailable . . . . . . . . . . . . . . . . . . . . 102
11.3 Optimizing for Partially Executed Workflows . . . . . . . . . . . . . 104

viii



Contents

IV Closing 105

12 Related Work 107
12.1 Authorizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
12.2 Workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
12.3 Authorizations in the Context of Workflows . . . . . . . . . . . . . 112

13 Conclusion 117
13.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
13.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Bibliography 120

Curriculum Vitae 133

A Proofs 135
A.1 Proof of Lemma 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
A.2 Proof of Lemma 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
A.3 Proof of Lemma 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
A.4 Proof of Theorem 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
A.5 Proof of Theorem 9.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
A.6 Proof of Lemma 9.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
A.7 Proof of Lemma 10.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
A.8 Proof of Lemma 10.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
A.9 Proof of Lemma 10.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

B SoDAS 151

ix



x



Chapter 1

Introduction

Authorizations govern which actions subjects are permitted to perform on pro-
tected resources [Saltzer and Schroeder 1975; Harrison et al. 1976]. A central
problem when specifying authorizations is to strike a balance between protect-
ing a system’s resources and empowering its subjects. Tailoring authorization
models to the environment in which their respective policies are enforced sim-
plifies this balancing and is thus integral to both the successful operation and
protection of today’s ubiquitous information systems.

In this dissertation, we present novel results on modeling and enforcing au-
thorizations in the context of workflows, which are a well-established abstrac-
tion of an organization’s business processes [Curtis et al. 1992; Georgakopoulos
et al. 1995; van der Aalst 1998]. The composition of authorization and workflow
models thus enables us to tailor authorizations to their business environment.
Yet, the concept of a workflow is abstract enough that our results are applicable
across a broad range of domains.

More precisely, a workflow models causal dependencies between a set of
tasks, whose execution constitutes a business objective. In this authorization
context, subjects are users and the execution of task instances corresponds to
performing actions on resources. In the workflow context, authorization deci-
sions are no longer made in isolation. They may depend on previously exe-
cuted task instances and on the set of potential future executions, derived from
the workflow’s control-flow. Authorizations can also mitigate threats specific
to this additional context. For example, Separation of Duties (SoD), also known
as Four-Eyes-Principle, aims at reducing fraud and errors by preventing users
from executing multiple tasks that result in a conflict of interest [Saltzer and
Schroeder 1975; Sandhu 1988]. Similarly, Binding of Duties (BoD), dual to SoD,
aims at reusing existing knowledge and preventing widespread dissemination
of sensitive information by restricting the execution of related tasks to a small
set of users.

1



Chapter 1. Introduction

A further driver for weaving workflows and authorizations together is the
increasing number of regulatory requirements, such as the Sarbanes-Oxley
Act (SOX) [2002], and best-practice frameworks like COBIT [ITGI 2005]. They
mandate organizations to document their business processes, to identify con-
flicts of interests, to adopt countermeasures, and to audit and control these activ-
ities. These requirements are motivated by the observation that security threats
often come from situations where authorized users accidentally or intentionally
misuse resources [E&Y 2009]. Examples of such situations are non-compliance
and include the scandals as reported by [The Economist 2001]. Hence, as in-
formation systems increasingly automate business processes, studying how to
apply and extend traditional authorization models to this context becomes in-
evitable.

1.1 Problem Statement

We first illustrate and motivate the two main problems that we address in this
dissertation with an example. Afterward, we describe each problem in more
detail.

Example 1.1 (Simple Payment Workflow) Consider the simple payment work-
flow illustrated on the left of Figure 1.1. First, a user prepares the payment (t1).
Depending on the amount of money involved, afterward the payment is either
approved by a peer (t2) or an executive (t3). Let an execution of the payment
workflow be constrained by the authorizations illustrated as assignments from
users to tasks on the right of Figure 1.1. For example, Bob may execute the
executive approval (t3) whereas Alice is not authorized to do so.

Suppose now that an organization that executes the payment workflow has
the abstract SoD policy P that at least two different users must participate in
the execution of business processes dealing with financial transactions. The first
main problem that we address is how to refine such abstract policies to concrete

Figure 1.1. Simple payment workflow

2



1.1. Problem Statement

workflows, like the payment workflow, and how to combine and integrate such
policies with other authorizations, such as a user-task assignment.

When enforcing P and the user-task assignment shown in Figure 1.1, the
following problem may occur: After Bob executes t1, no user is authorized to
execute t3; if Alice were to execute t3, she would violate the user-task assignment
and if Bob were to execute t3, he would violate P. However, if Alice executes t2,
the workflow can still successfully terminate, but with fewer options to reach the
business objective. Thus, the second main problem that we address is how to
align the enforcement of authorizations with the business objective represented
by a workflow and thereby avoiding situations as sketched above. F

Refinement and Integration. As illustrated by the policy P in Example 1.1, reg-
ulatory requirements and best-practice frameworks are typically specified in an
informal and workflow-independent form. An abstract policy model can cap-
ture such requirements in their full generality, independent of a specific work-
flow. However, before the respective policies can be enforced, they must be
refined to a concrete workflow. This translation is labor-intensive, error-prone,
and therefore inadequate for environments with frequent changes to require-
ments and business processes. However, such dynamics are common in today’s
business world due to outsourcing, mergers, acquisitions, etc. At the same time,
these dynamics create loopholes, which are prone to exploitation by insiders
and increase the likelihood of fraud [E&Y 2009]. Hence, in the environments
where they are most needed, consistent authorisations and regulations are most
difficult to implement.

We address the problem of automating the refinement of abstract authoriza-
tion requirements to concrete workflows and integrating an enforcement mech-
anism for these refined policies into an heterogeneous and dynamic workflow
environment. We thereby enable a faster adaptation to changes and a reduction
in errors and manual work. Furthermore, auditing is simplified due to a formal-
ization of requirements, which is needed for automation, resulting in an increase
of precision and transparency.

Alignment and Optimality. We have observed above that modeling and enforc-
ing authorizations requires striking a balance between protection and empower-
ment. If all task executions were permitted, the underlying system would be op-
erating freely and users would enjoy unlimited empowerment. The protection of
the resources’ confidentiality and integrity, however, would be minimal. In con-
trast, if all task executions were prohibited, the resources’ protection would be
ensured but the system’s underlying business objectives could not be achieved.

3



Chapter 1. Introduction

We thus address the following fundamental problem: How are the conflicting
objectives of protecting resources and empowering users best balanced? We dis-
tinguish two cases.

First, we consider the case where an authorization policy and a workflow are
given. As illustrated in Example 1.1, enforcing authorizations may result in a
workflow system that deadlocks or is obstructed in that fewer options are avail-
able to achieve the workflow’s business objective than were originally designed.
We thus analyze the question whether it is possible to enforce authorizations
without obstructing workflows, i.e. how to align authorizations and business
objectives.

Second, we consider the case where a workflow is given, and we are asked
to specify an authorization policy that allows an obstruction-free enforcement.
A classical answer to the question how to specify authorizations is the principle
of least privilege [Saltzer and Schroeder 1975], which says that users shall only
be authorized to execute the tasks necessary to complete their job. However,
in an environment where multiple users may execute different tasks, multiple
authorization policies may satisfy least privilege. The choice of an authoriza-
tion policy may be further influenced by the cost associated with the respective
administrative change. Thus, although least privilege is a guiding principle, it
does not provide the final answer to the question of what constitutes an optimal
authorization policy for a workflow. We revisit this question, building on our
results from the first case.

1.2 Contributions

This dissertation makes two main contributions, built upon their respective sub-
contributions.

1.2.1 Enforcement of Abstract SoD Constraints

To address the problem of refinement and integration, we present a novel ap-
proach to bridging the gap between the abstract specification of SoD constraints
and their enforcement in a dynamic and heterogeneous enterprise workflow en-
vironment. We build on Li and Wang’s SoD Algebra (SoDA) [2008], which allows
the modeling of SoD constraints at a high level of abstraction, independent of a
specific workflow, and capturing quantification and qualification requirements.
As a consequence, business experts can focus on modeling business processes
as workflows and security experts on specifying internal controls. Each of them
requires minimal interaction with the other, thereby saving efforts and cost. In

4



1.2. Contributions

order to go from abstract authorization specifications to their enforcement, we
make the following contributions:

• Generalization of SoDA’s Semantics: Due to SoDA’s abstract nature, de-
sign decisions arise when mapping SoD policies formalized in SoDA onto
workflow instances. We provide a solution to this problem by refining Li
and Wang’s set-based SoDA semantics first to a multiset semantics and
then to a trace-based semantics. A correctness proof for our formal model
establishes that every SoD-constrained workflow instance that successful-
ly terminates satisfies the respective SoDA term with respect to our trace
semantics.

• SoD as a Service: New technologies and methodologies, such as Serv-
ice-Oriented Architectures (SOAs), facilitate the extension of legacy infor-
mation systems with new functionality. We build on these advances by
provisioning the SoD enforcement functionality as an instance of the soft-
ware delivery model Software as a Service (SaaS) [Turner et al. 2003], which
we call SoD as a Service. We implement SoD as a Service combining off-
the-shelf software and newly developed components. Our architecture
and implementation enables a loose coupling between a workflow engine
that executes the business logic, a user repository that administers users
and their workflow-independent authorizations, and the enforcement of
abstract SoD constraints. In exchange for a moderate increase in commu-
nication, our architecture separates concerns and reduces implementation
and configuration costs. At the same time, changing legal requirements
and organizational changes can quickly be reflected in our architecture.

• Accounting for Administrative Changes to Authorizations: As mentioned
in Section 1.1, organizational changes are commonplace and a major source
of fraud. However, previous work on SoD enforcement implicitly assumes
that authorizations are not administrated, i.e. their policies are not edited,
during workflow execution. We relax this assumption by modeling admin-
istrative activities in our trace-based SoDA semantics. Our formal models
and the thereupon building implementation of SoD as a Service are there-
fore well-suited to handle the dynamics of today’s fast-paced business en-
vironments.

These results are published in [Basin et al. 2009; 2011a] and consolidated in a
journal article, which is under submission [Basin et al. 2012a].

5



Chapter 1. Introduction

1.2.2 Alignment of Authorizations and Business Objectives

Orthogonal to the contributions outlined in the previous section, we present a
novel approach to enforcing authorizations in alignment with a business objec-
tive, modeled by a workflow. To this end, we propose a new class of SoD and
BoD constraints, which impose no restrictions on the expressivity of the under-
lying workflow modeling language. We thereby overcome the weakness that is
shared by most existing SoD and BoD models, namely that they cannot cope
with workflows containing loops and conditional execution because they model
workflows as sequences or partially ordered sets of tasks. Loops and condi-
tional execution, however, are well-established in the business process commu-
nity [van der Aalst et al. 2003] and supported by commercial workflow model-
ing languages such as the Business Process Modeling Notation (BPMN) [OMG
2011a].

We then study the enforcement of authorization policies which are composed
of our SoD and BoD constraints and workflow-independent authorizations, such
as a Role-based Access Control (RBAC) [Ferraiolo et al. 2001] policy stored in a user
repository. We make the following contributions:

• Release Points: We present a novel approach to scoping authorizations to
subsets of task instances. We demarcate scopes with markers, called release
points, which are inserted into a workflow’s control-flow. This approach
imposes no restriction on a workflow’s control-flow. Release points are,
in particular, of interest in the presence of loops. We demonstrate the
expressive power of release points by incorporating them into our SoD and
BoD constraints and visualize them by extending BPMN. Furthermore, we
provide tool support for our modeling approach by extending an existing
modeling platform, namely Oryx [2012].

• Obstruction-Free Authorization Enforcement: Given an authorization
policy and a workflow, we formulate the existence of an obstruction-free
enforcement mechanism as a decision problem, which we call the enforce-
ment process existence (EPE) problem. EPE proposes a notion of alignment
between authorizations and business objectives, generalizing the deadlock-
freedom of processes to also include cases where progress of the workflow
execution is possible but with fewer options than specified by the work-
flow’s control-flow. We prove that EPE is decidable, but NP-hard. Further-
more, we present an approximation algorithms for EPE with a polynomial
runtime complexity, which has good approximation results when the set
of users is large and workflow-independent authorizations are equally dis-
tributed among them.

6



1.3. Organization

• Optimal Workflow-Aware Authorizations: We refine the decision problem
of whether an authorization policy allows an obstruction-free enforcement
on a given workflow to the notion of an optimal authorization policy that
satisfies this property. Our approach provides considerable modeling free-
dom in terms of the optimality notion used. For example, we may aim to
minimize the cost associated with a policy change or maximize the pro-
tection resulting from the new policy. We thereby facilitate a fine-grained
balancing of empowerment and protection with respect to various crite-
ria. Moreover, we prove that finding an optimal role-based authorization
policy that enables an obstruction-free enforcement is NP-complete.

These results are published in [Basin et al. 2011c; 2012c] and a journal paper
extending the former paper is under submission [Basin et al. 2012b].

1.3 Organization

We first introduce in Section 1.3.1 our classification of authorizations, which
we use as roadmap for our work in addition to the problems introduced in
Section 1.1 and the contributions presented in Section 1.2. Afterward, we present
in Section 1.3.2 the outline of this dissertation.

1.3.1 Authorization Classification

We classify authorizations with respect to three criteria:

• Modeling Scope: Workflow-specific authorizations are designed in align-
ment with a given workflow and may be tailored to a workflow’s specific
properties such as its control-flow. In contrast, workflow-independent autho-
rizations are specified without any knowledge of the workflow on which
they will be enforced. As such, workflow-independent authorizations are
more generic and are enforceable across different workflows, but they do
not account for workflow-specific properties.

• History Dependence: Authorizations whose evaluation depends on
who has, or who has not, executed previous task instances are called
history-dependent; otherwise, they are called history-independent. History-
dependent authorizations are more flexible than history-independent au-
thorizations. However, their enforcement and analysis is more complex as
it also encompasses an execution history.

7



Chapter 1. Introduction

Figure 1.2. Classification of authorizations

• Administrability: Users join or leave organizations or are promoted. Au-
thorizations that may be administrated during workflow execution, i.e. the
respective policy is edited to reflect organizational changes, are called ad-
ministrable. Non-administrable authorizations, in contrast, cannot be admin-
istrated during workflow execution.

Figure 1.2 shows a cube with all combinations of these criteria. The entries of
the matrix refer to the parts of this dissertation where examples of the respective
combinations are studied in detail. We comment in Chapter 12, related work, on
combinations that are not studied throughout the main parts.

In practice, e.g. [IBM 2011], the effective authorization policy that constrains
the execution of a workflow is a composition of different (sub-)policies. For
example, records of employees and their workflow-independent and history-
independent authorizations may be stored in a user repository. Changes to
these entries may occur at any time, i.e. they are administrable. In addition,
a workflow may be augmented by workflow-specific, history-dependent, and
non-administrable authorizations. Authorized task executions are then deter-
mined by a composition of the authorizations stored in the user repository and
those stored in the workflow.

1.3.2 Outline

The structure of this dissertation follows our problem description and the cor-
responding contributions. Part II addresses the problem of refinement and inte-
gration, while Part III addresses the problem of alignment and optimality. These
main parts are preceded by Part I, which builds context, and followed by closing
observations in Part IV. In more detail:

8



1.3. Organization

In Part I, we introduce the theoretical groundwork that we build upon
throughout the rest of this dissertation, and we present the regulations and
best-practice frameworks that function as our requirements. In particular, we
summarize in Chapter 2 the process algebra CSP and the workflow model-
ing language BPMN, which we use to formalize and visualize authorization-
constrained workflows, respectively. We also give a definition of multisets re-
quired for our generalization of SoDA’s semantics in Part II, graph coloring
definitions used in algorithms and complexity reductions in Part III, and integer
linear programming employed for solving optimization problems in Part III.

In Part II, we present our workflow-independent approach to enforcing ab-
stract SoD constraints, formalized as SoDA terms, in a dynamic workflow en-
vironment. We proceed in Chapter 4 by constructing CSP models of workflows
and history-independent authorizations. In Chapter 5, we introduce SoDA and
generalize its semantics to multisets and traces. Furthermore, we present a map-
ping from SoDA terms to CSP processes, which we combine with the previously
introduced processes to model an SoD-secure workflow system. These models
serve in Chapter 6 as blueprint for our SoD as a Service implementation. We
analyze the runtime complexity of this implementation and support our find-
ings with performance measurements from a realistic example workflow. We
conclude Part II with an evaluation of our approach in Chapter 7.

In Part III, we present our workflow-specific approach to aligning authoriza-
tions and business objectives and to compute an optimal authorization policy
for a given workflow. We start in Chapter 8 by refining the CSP-based work-
flow and authorization models introduced in Part II. In particular, we intro-
duce a novel class of workflow-specific and history-dependent SoD and BoD
constraints. To graphically model our SoD and BoD constraints, we propose
an extension of BPMN and report on its integration into the modeling platform
Oryx [2012]. In Chapter 9, we introduce the enforcement process existence (EPE)
problem and present algorithms both to solve and approximate EPE. In Chap-
ter 10, we drop the previous assumption that workflow-independent authoriza-
tions are non-administrable and model the price of changing from one history-
independent authorization policy to another one by a cost function. We then re-
duce the problem of finding a cost-minimizing authorization policy that allows
an obstruction-free authorization enforcement to the well-established integer lin-
ear programming (ILP) problem. Finally, we conclude Part III in Chapter 11 with
an evaluation of our results.

In Part IV, we round off this dissertation with a presentation of related work
in Chapter 12 and conclusions in Chapter 13.

9



10



Part I

Context

11



12



Chapter 2

Background

This chapter recaptures the underlying definitions and results that we use
throughout this dissertation.

We denote by N and N0 the set of natural numbers, excluding and including
zero, respectively, by Z the set of integers, and by R the set of real numbers. Let
Z, Z1, and Z2 be sets. The power set of Z, denoted 2Z, is the set of all subsets of Z;
formally, 2Z = {Z′ | Z′ ⊆ Z}. We may identify a function π : Z1 → Z2 with its
relation (graph) π ⊆ Z1 × Z2. For example, for z1 ∈ Z1 and z2 ∈ Z2, if π(z1) = z2

we may equivalently write (z1,z2) ∈ π. We refer to the domain of a relation π as
dom(π), to its range as ran(π), and to its inverse as π−1.

2.1 Communicating Sequential Processes

We use a subset of Hoare’s process algebra CSP [Roscoe 2005] to model the
specification and enforcement of authorization constraints on workflows. CSP
describes a system as a set of communicating processes. A process is referred
to by a name; let N be the set of all process names. Processes communicate
with each other by concurrently engaging in events. Σ is the set of all regular
events, which may be structured as tuples. For example, z1.z2. . . . .zk denotes
the event that corresponds to the tuple (z1,z2, . . . ,zk) ∈ Z1 × Z2 × . . . × Zk, for
sets Z1, Z2, . . . , Zk and k ∈ N. In addition to regular events, there are two
special events: τ, a process-internal, hidden event, and X that communicates
successful termination. Let D⊆ Σ be a subset of regular events. We write Dτ for
D ∪ {τ}, DX for D ∪ {X}, and Dτ,X for D ∪ {X,τ}. In particular, Στ,X is the set
of all events.

A trace is a sequence of regular events, possibly ending with X. 〈〉 is the
empty trace and 〈σ1, . . . ,σk〉 is the trace containing the events σ1 to σk, for k ∈N.
For two traces i1 and i2, their concatenation is denoted i1ˆi2. D∗ is the set of
all finite traces over D and its superset D∗X = D∗ ∪ {i ˆ〈X〉 | i ∈ D∗} includes
also all traces ending with X. For a trace i, i � D denotes i restricted to events

13



Chapter 2. Background

in D. Formally, 〈〉 � D = 〈〉 and, for i = 〈σ〉ˆi′, i � D = 〈σ〉ˆ(i′ � D) if σ ∈ D and
i � D = (i′ � D) if σ /∈ D. We abuse the set-membership operator ∈ and write
σ ∈ i for an event σ and a trace i, if there exist two traces i1 and i2 such that
i = i1ˆ〈σ〉ˆi2.

For an event σ ∈ Σ, a set of events D ⊆ Σ, a name n ∈ N , and a relation
R ⊆ Σ× Σ, the set of processes P is inductively defined by the grammar

P ::= σ→P | SKIP | STOP | n | P � P | P u P | P ‖
D
P | P ; P | P [R] .

There are different approaches to formally describing the behavior of a pro-
cess. CSP’s denotational semantics describes a process P as a prefix-closed set of
traces T(P) ⊆ Σ∗X, called the traces model. The operational semantics describes
P as a labelled transition system. The two semantics are compatible. Because we
mainly use the traces model in this dissertation, we describe in the following the
process composition operators, introduced above, in terms of the denotational
semantics. Afterward, we review the subset of CSP’s operational semantics that
we require in forthcoming proofs.

Denotational Semantics. Let P, P1, P2 ∈ P be processes. The process σ→ P en-
gages in the event σ first and behaves like P afterward. Formally, T(σ→ P) =
{〈σ〉ˆi | i ∈ T(P)} ∪ {〈〉} This notation can be extended. The expression σ : D→ P
represents a process that engages in a σ ∈ D first and behaves like P afterward.
SKIP engages in X and no further event afterward; T(SKIP) = {〈〉, 〈X〉}. STOP
represents the process that does not engage in any event; T(STOP) = {〈〉}. In
other words, SKIP represents successful termination and STOP a deadlock. The
assignment of P to n is denoted by n = P and can be parametrized. For example,
n(z) = P defines a process named n that is parametrized by the variable z and
behaves like P. The process P1� P2 represents the external choice and P1 u P2 the
internal choice between P1 and P2. With respect to the traces model, P1 � P2 and
P1 u P2 are indistinguishable, namely T(P1 � P2) = T(P1 u P2) = T(P1)∪T(P2).
The failures model explained below distinguishes between the two processes.
The process P1 ‖

D
P2 represents the parallel composition of P1 and P2 synchronized

on D. This means, P1 ‖
D

P2 engages in an event σ1 ∈ D if P1 and P2 synchronously

engage in σ1 and P1 ‖
D

P2 engages in an event σ2 6∈ D if either P1 or P2 engages

in σ2. The special event X is always implicitly contained in the set of synchro-
nization events D, i.e. P1 ‖

D
P2 can only successfully terminate if both P1 and

P2 can successfully terminate. P1 ‖ P2 is an alternative notation for the fully
synchronized parallel composition P1 ‖

Σ
P2; formally T(P1 ‖ P2) = T(P1) ∩ T(P2).

14



2.1. Communicating Sequential Processes

Similarly, P1 ||| P2 denotes to the unsynchronized parallel composition of P1 and
P2, P1 ‖

∅
P2. The process P1 ; P2 denotes the sequential composition of P1 and P2.

It first behaves like P1. Upon successful termination of P1, the event X is hidden,
which is denoted by the invisible event τ. Afterward, the process behaves like
P2. Formally, T(P1 ; P2) = (T(P1)∩ Σ∗)∪ {i1ˆi2 | i1ˆ〈X〉 ∈ T(P1), i2 ∈ T(P2)}. Note
that the invisible event τ does not appear in traces, similar to ε-transitions in
nondeterministic automata. The process P[R] denotes P renamed by R. For every
tuple (σ1,σ2) ∈ R, P[R] engages in σ2 if P engages in σ1. If T(P1) ⊆ T(P2), then
P1 is a trace refinement of P2, denoted P2 vT P1. If P2 vT P1 and P1 vT P2, then P1

and P2 are trace equivalent, denoted P1 =T P2.

The traces model is insensitive to nondeterminism. It describes what pro-
cesses can do but not what they may refuse to do. The failures model F is a
refinement of the traces model that overcomes this shortcoming. A refusal set
of a process P is a set of events all of which P can refuse to engage in and
rs(P) ⊆ 2ΣX is the set of all refusal sets of P. The set of P’s failures is then
F(P) = {(i, D) | i ∈ T(P), D ∈ rs(P \ i)}, where P \ i represents the process P after
engaging in the events in the trace i. If F(P1) ⊆ F(P2), then P1 is a failure refine-
ment of P2, denoted P2 vF P1. Furthermore, P1 is failure equivalent to P2, written
P1 =F P2, if P1 vF P2 and P2 vF P1. The transition system interpretation of pro-
cesses under CSP’s operational semantics, presented below, defines failures in
terms of non-existing transitions.

Operational Semantics. A labelled transition system (LTS) is a quadruple
(Q, D,δ,q0), where Q is a set of states, D is a set of input symbols, δ⊆Q×D×Q
is a state transition relation, and q0 ∈ Q is a start state. For k ∈N, q0,qk ∈ Q, and

a sequence of events 〈σ1, . . . ,σk〉 ∈ D∗, we write q0
〈σ1,...,σk〉−→ qk if there exists a se-

quence of states 〈q1, . . . ,qk−1〉 such that (ql−1,σl,ql) ∈ δ for all l ∈ {1, . . . ,k}.

CSP’s operational semantics interprets a process as an LTS where the input
symbols correspond to the events that the process engages in, i.e. D ⊆ Στ,X. Let

L = (Q,Στ,X,δ,q0) be an LTS. For q1,q2 ∈Q and a trace i∈ Σ∗X, we write q1
i

=⇒ q2

if there exists a sequence of events h ∈ (Στ)∗X such that q1
h−→ q2 and i is equal

to h without τ events.

Let q ∈ Q be a state and D ⊆ ΣX a set of events. The set D is a refusal set
of q, written q ref D, if D ⊆ {σ ∈ ΣX | ¬∃q′ ∈ Q, (q,σ,q′) ∈ δ}. We say an LTS

15



Chapter 2. Background

L = (Q,Στ,X,δ,q0) corresponds1 to a process P, denoted LP, if

F(P) = {(i, D) | ∃q ∈ Q,q0
i

=⇒ q,q ref D} ∪ {(i, D) | ∃q ∈ Q,q0
i ˆ〈X〉
=⇒ q, D ⊆ ΣX} .

Note that there may be multiple LTSs that correspond to the same process. We
call a process P finite if there exists an LTS LP with finitely many states and input
symbols.

2.2 Multisets

A multiset, or bag, is a collection of objects where repetition is allowed [Syropou-
los 2000]. Formally, given a set Z, a multiset Z of Z is a pair (Z, f ), where the
function f : Z→N0 defines how often each element z ∈ Z occurs in Z. We write
Z(z) as shorthand for f (z) and say that z is an element of Z, written z ∈ Z, if
Z(z) ≥ 1. We use double curly-brackets to define multisets, e.g. Z = {{z1,z1}} is
the multiset where Z(z1) = 2 and Z(z) = 0 for all z ∈ Z \ {z1}. For a finite mul-
tiset Z, |Z| denotes its cardinality and is defined as ∑z∈Z Z(z). Let Z1 and Z2 be
two multisets of Z. Their intersection, denoted Z1 ∩ Z2, is the multiset Z, where
for all z ∈ Z, Z(z) = min(Z1(z),Z2(z)). Similarly, their union, denoted Z1 ∪ Z2,
is the multiset Z, where for all z ∈ Z, Z(z) = max(Z1(z),Z2(z)), and their sum,
denoted Z1 ]Z2, is the multiset Z, where for all z ∈ Z, Z(z) = Z1(z) +Z2(z). The
empty multiset ∅∅∅ of Z is the multiset where ∅∅∅(z) = 0, for all z ∈ Z.

2.3 Graph Coloring

A graph G is a tuple (V, E) where V is a set of vertices and E ⊆ {e ⊆ V | 2 = |e|}
is a set of 2-element subsets of V called edges. The maximal degree of a graph G,
denoted ∆(G), is maxv∈V |{v′ ∈ V | {v,v′} ∈ E}|, i.e. the maximal number of
edges linking a vertex to other vertices.

Definition 2.1 (The k-Coloring Problem)

Input: A graph G = (V, E) and an integer k ∈N.

Output: Yes if there exists a function col : V→ {1, . . . ,k} such that for every edge
{v1,v2} ∈ E, col(v1) 6= col(v2) or No otherwise.

Let a graph G and an integer k be given. We call a function col a k-coloring
for G if col satisfies the condition described in the k-Coloring problem for G

1The CSP-versed reader may have realized that we omit a discussion of divergence. We im-
plicitly assume that the processes that model workflows in the following chapters are divergence-
free. Our renaming relations and authorization processes do not introduce divergence.

16



2.3. Graph Coloring

and k. The k-Coloring problem is NP-complete [Chartrand and Zhang 2008].
The following problem generalizes k-Coloring.

Definition 2.2 (The ListColoring Problem)

Input: A graph G = (V, E) and a function L : V→ 2Z, for a set Z.

Output: Yes if there exists a function colL : V→ Z such that for every vertex v ∈ V,
colL(v) ∈ L(v) and for every edge {v1,v2} ∈ E, colL(v1) 6= colL(v2) or
No otherwise.

Unlike k-Coloring, ListColoring does not offer the same set of colors for
every vertex; instead, a color-list function L defines a “list” of possible colors
L(v) ⊆ Z for each vertex v. Note, for historical reasons, what is called a “list” is
actually a set. For consistency with the literature, we stick to the term list. Given
a graph G and a color-list function L, we call a function colL an L-coloring for G
if colL satisfies the condition described in Definition 2.2. We call L a k-color-list
function if |L(v)| ≥ k, for all v ∈ V. Given a graph G, the smallest integer k, such
that G is L-colorable for all k-color-list functions L, is called G’s list-chromatic
number and is denoted χl(G). The maximal degree of a graph gives us an upper
bound for the list-chromatic number.

Lemma 2.1 For every graph G,

χl(G) ≤ 1 + ∆(G)

and a greedy algorithm for graph coloring with polynomial runtime complexity finds an
L-coloring for G for every (1 + ∆(G))-color-list function L.

See [Chartrand and Zhang 2008] for a proof of Lemma 2.1 and the definition
of a greedy algorithm for graph coloring.

ListColoring generalizes k-Coloring because a k-Coloring instance can be
translated to a ListColoring instance by setting Z = {1, . . . ,k} and L(v) = Z, for
every v ∈ V. Since a solution to the ListColoring problem can be checked in
polynomial time, ListColoring is also NP-complete. Algorithm 1, called LCol,
solves ListColoring in exponential time in the size of the input. The following
lemma, which we prove in Appendix A.1, states that given a graph G and a
color-list function L, LCol returns an L-coloring for G if and only if there exists
an L-coloring for G.

Lemma 2.2 Let a graph G = (V, E), with |V| ≥ 1, and a color-list function L : V→ 2Z,
for a set Z, be given.

• Soundness: If LCol(V, E,L) returns a function f, then f is an L-coloring for G.

• Completeness: If there exists an L-coloring for G, then LCol(V, E,L) returns a
function f.

17



Chapter 2. Background

Algorithm 1: LCol(V, E,L)

Input: |V| ≥ 1, E ⊆ {e ⊆ V | 2 = |e|}, and L : V→ 2Z, for a set Z
Output: returns an L-coloring for (V, E) if it exists and No otherwise

1 if V = {v} then
2 if |L(v)| ≥ 1 then
3 let c ∈ L(v)
4 return {(v, c)}
5 else
6 return No

7 else
8 let v ∈ V
9 foreach c ∈ L(v) do

10 V′← V \ {v}
11 E′← {e ∈ E | v 6∈ e}
12 L′← {(v′,L(v′)) | v′ ∈ V′,{v,v′} 6∈ E} ∪

{(v′,L(v′) \ {c}) | v′ ∈ V′,{v,v′} ∈ E}
13 r← LCol(V′, E′, L′)
14 if r 6= No then
15 return r ∪ {(v, c)}

16 return No

2.4 Business Process Modeling Notation

We introduce a subset of the Business Process Modeling Notation (BPMN) [OMG
2011a] that we later extend to visually model authorization constraints for work-
flows. BPMN defines graphical elements for modeling workflows at a high level
of abstraction. A workflow model is called a process in BPMN. In order to dif-
ferentiate BPMN processes and CSP processes, we use the term process for CSP
processes and write explicitly BPMN process to refer to the concept of a process
in BPMN. In this article we consider BPMN processes that are composed of the
six kinds of modeling elements shown in Figure 2.1.

The BPMN standard [OMG 2011a] describes its modeling elements and their
relationships in a meta-model using UML class diagrams [OMG 2011b]. Fig-
ure 2.2 shows an extract of this meta-model with the classes relevant to our
BPMN extension presented in Chapter 8. We only explain the classes depict-
ed in white for now, and return to the gray classes in Section 8.2. Italic class
names denote abstract classes. Based on the meta-model, the BPMN standard

18



2.4. Business Process Modeling Notation

Figure 2.1. BPMN modeling elements

also specifies an XML [W3C 2011] serialization for BPMN processes, which pro-
vides software vendors with a tool-independent interchange format for BPMN
models. In order not to dive too deeply into XML details, we describe our BPMN
extension only in terms of the meta-model. Its mapping to XML Schema [W3C
2010] is straightforward. In the following, we introduce the modeling elements
shown in Figure 2.1 and reference the corresponding meta-model classes given
in Figure 2.2 in sans-serif font, e.g. Event.

BPMN calls a unit of work an activity (Activity). We consider two kinds of
activities in this dissertation: tasks (Task) and sub-processes (SubProcess). Tasks
are visualized by rectangles with rounded corners, labelled with the name of
the task. A small icon in the upper left corner may specify the task’s type. For
example, an icon depicting a script visualizes tasks that model the execution
of some code. We consider mostly tasks that are executed by humans, called
user tasks (UserTask), visualized by an icon depicting a person. Sub-processes are
visualized by rectangles with rounded corners, a small boxed “+”-symbol at the
bottom, and which are labelled by the name of the sub-process. A sub-process
models a BPMN process that constitutes part of the parent BPMN process. The
refinement of a BPMN process into sub-processes is a powerful means to model
workflows at different levels of abstraction.

An event (Event) models the occurrence of a condition or an interaction with
the environment. Events are circle-shaped and their boundary indicates whether
their occurrence triggers a workflow instantiation, called a start event, whether

19



Chapter 2. Background

Figure 2.2. Extract of BPMN meta-model in white and our extensions in gray

they occur during the workflow’s execution, called an intermediate event, or
whether their occurrence terminates a workflow instance, called an end event.
Furthermore, an event’s interior may contain an icon, which determines the
event’s type. Examples are the arrival of a message or the expiration of a dead-
line, illustrated by an envelope and a clock, respectively.

Flows describe the causal and temporal dependencies between modeling el-
ements. A sequence flow, illustrated by a solid line with an arrow, defines the
order in which tasks are executed and events occur. Message-based communica-
tion is modeled by message flows, visualized by a dashed line with a circle at the
sender’s end and an arrow at the recipient’s end. Sequence flows and message
flows together determine a workflow’s control-flow.

Merging and branching of the control-flow is modeled by gateways. A gate-
way has n ≥ 1 incoming and m ≥ 1 outgoing sequence flows. Exclusive gate-
ways are depicted by an empty (or with an “x” labeled) diamond. Whenever the
control-flow reaches an exclusive gateway on an incoming sequence flow, it pass-
es on the control-flow immediately to exactly one of the m outgoing sequence
flows, based on the evaluation of the condition c associated with the gateway.
Parallel gateways are illustrated by a diamond labeled with the symbol “+”. They
synchronize the control-flow on the n incoming sequence flows and spawn the
concurrent execution on the m outgoing sequence flows.

We distinguish two containers for partitioning BPMN processes. Pools are typ-
ically used to model organizational entities participating in a workflow’s execu-
tion or they are simply used to demarcate a model’s main BPMN process. Pools
may be further subdivided into lanes, called swimlanes in other workflow model-
ing languages. Control-flow within pools is typically modeled by sequence flows
and control-flow across pools may only be defined in terms of message flows. A

20



2.5. Integer Programming

BPMN process’s environment, in particular the source of input messages and the
recipient of its return values, is often modeled by an empty pool [Silver 2009].

Modeling elements for annotations are called artifacts (Artifact). Sets of tasks
are defined by placing them in a dot-dashed box, called a group (Group). Textual
annotations as visualized by a dotted line, called an association (Association), and
a half-open box containing text.

2.5 Integer Programming

Let m,n ∈N. We specify by A ∈ Rm×n an m by n matrix A of real numbers.
Furthermore, b ∈ Rm is a (column) vector composed of m real numbers. Let
A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and x ∈Zn. For i ∈ {1, . . . ,m} and j ∈ {1, . . . ,n}, we
refer to A’s ith row vector as ai and aij is the jth element in ai. Correspondingly,
bi is b’s ith element. Moreover, Ax denotes matrix-vector multiplication resulting
in a vector d ∈ Rm and cTx denotes vector multiplication ∑n

j=1 cjxj, where cT is
c’s transposed. For b,d ∈Rm, we write d ≤ b if for all i ∈ {1, . . . ,m}, di ≤ bi.

We now recall basic definitions from integer linear programming.

Definition 2.3 (The Integer Linear Programming (ILP) Problem)

Input: A ∈Rm×n, b ∈Rm, and c ∈Rn, for m,n ∈N.

Output: min
x∈Zn

{cTx | Ax ≤ b} or No if the set is empty.

Let A ∈ Rm×n, b ∈ Rm, and c ∈ Rn be an ILP instance, and let i ∈ {1, . . . ,m}
and j∈ {1, . . . ,n}. We may refer to the output corresponding to the input (A,b,c)
as ILP(A,b,c). A variable xj is called a decision variable and cTx is called the ob-
jective function. Note that Ax ≤ b can be decomposed into m inequalities of the
form aix = ∑n

j=1 aijxj ≤ bi, each called a constraint. If x satisfies Ax ≤ b, i.e. all m
constraints, it is called a feasible solution. If there exists no feasible solution for a
given ILP instance, then the instance is infeasible. A feasible solution that min-
imizes the objective function with respect to all feasible solutions is an optimal
(feasible) solution.

It is common practice to use shorthand notation for constraints. For example,
the equality aix = bi is equivalent to the two constraints aix≤ bi and −aix≤−bi.
If variables are not defined, they are implicitly assumed to be zero. For example,
the constraint ai1x1 + ai2x2 + ai3x3 ≤ bi is equivalent to aix≤ bi where ai4 = . . . =
ain = 0.

Integer linear programming is a specialization of linear programming in that
decision variables assume only values from Z and not from R. This is necessary
for modeling situations where only a discrete set of states is possible. However,

21



Chapter 2. Background

this restriction has substantial algorithmic implications that are outside the scope
of this paper. We simply note that ILP is NP-complete [Schrijver 1998].

22



Chapter 3

Requirements

In this chapter, we present requirements for workflow models and their related
authorizations originating from regulations, standards, and best-practice frame-
works. We thereby embed our work in a legislative, organizational, and business
environment and emphasize its practical relevance.

3.1 Workflow Models

Frameworks that provide organizations guidance in the specification and docu-
mentation of their business activities vary with respect to the level of detail of
their workflow models and differ in how domain-specific they are. Based on
these differences, we classify them in three groups, summarized in Table 3.1.

General Business MIT Process Handbook
Activity Frameworks Process Classification Framework (PCF)

Domain-Specific Process Reference Model for IT (PRM-IT)
Business Activity IT Infrastructure Library (ITIL)
Frameworks Control Objectives for Information and Related Technology (COBIT)

Supply Chain Operations Reference (SCOR)

Workflow Template IBM Tivoli Unified Processes (ITUP)
Frameworks Insurance Application Architecture (IAA)

Information FrameWork (IFW)

Table 3.1. Best-practice frameworks for business activities, categorized with respect to their
domain-specificity and the level of details of their workflow models.

23



Chapter 3. Requirements

3.1.1 General Business Activity Frameworks

General business activity frameworks, such as the MIT Process Handbook [Her-
man and Malone 2003] and the Process Classification Framework (PCF) [APQC
2009], serve as comprehensive blueprints of an organization’s activities and pro-
cesses. Since such frameworks encompass various kinds of activities, their mod-
els are abstract and generic.

For example, the MIT Process Handbook structures business activities using
a part-of relationship. The activities Evaluate Suppliers, Manage Supplier Policies,
and Manage Supplier Relationships, for instance, are part of the activity Manage
Suppliers, which in return is part of the activity Buy. The activity Evaluate Suppliers
is not further decomposed into sub-activities and the part-of relationship ab-
stracts away from control-flow and data-flow.

3.1.2 Domain-Specific Business Activity Frameworks

In contrast to general business activity frameworks, domain-specific frameworks
specify workflows at greater level of detail. An example is the Supply Chain
Operations Reference (SCOR) [SCC 2010], which defines activities to execute and
manage supply chains.

Particularly interesting for our work are frameworks that specify activities to
design and manage IT systems. They not only specify business activities and
related workflows, but also propose protection mechanisms. Examples of these
frameworks are the Process Reference Model for IT (PRM-IT) [IBM 2007], the IT
Infrastructure Library (ITIL) [OGC 2010], and Control Objectives for Information and
related Technology (COBIT) [ITGI 2005]. Some of these models, such as PRM-
IT, were developed by companies to support their consulting activities. Others,
such as ITIL, are proposed by governmental bodies. Finally, some originate from
non-profit organizations. In particular, COBIT, which we present in more detail
in Section 3.2.3, has been developed by ISACA, an association for IT governance
professionals. The common goal of these frameworks is to standardize a baseline
for the specification of IT requirements and thereby improve the quality and
lower the cost of IT systems and IT projects.

Even though workflows of domain-specific frameworks are more refined
than those of general business activity frameworks, they are still abstract and
their implementation requires additional refinement steps. For example, PRM-
IT defines the workflow security management, which encompasses tasks such
as Plan Security Practices, Apply Security Protection Mechanisms, and Operate Security
Protection Mechanisms. A workflow’s control-flow and data-flow is defined in
terms of the dependencies of its tasks’ input and output parameters, e.g. access

24



3.2. Refining Regulations

control lists are an output of the task Apply Security Protection Mechanisms and an
input of Operate Security Protection Mechanisms.

3.1.3 Workflow Template Frameworks

Workflow template frameworks specify yet more detailed workflows than do-
main-specific business activity frameworks. Typically sold alongside consulting
services that instantiate and implement the respective templates, these frame-
works additionally specify data types and organizational roles. They thereby
simplify the integration of software and services from different vendors and im-
prove interoperability of systems maintained by different organizations.

Instead of giving an example here, we refer to the collateral evaluation work-
flow presented in Example 8.1, which is based on a template from the Information
FrameWork (IFW) [IBM 2010b], a collection of templates used by the financial
industry. Further workflow template frameworks are the Insurance Application
Architecture (IAA) [IBM 2009] and the IBM Tivoli Unified Processes (ITUP) [IBM
2010a]. Some workflow template frameworks come with mappings to related
domain-specific frameworks, which are used to show how the implementation
of the former corresponds to the conformance with the latter. For example,
ITUP specifies how its workflow templates correspond to activities of COBIT
and PRM-IT.

3.1.4 Concrete Workflows

To show that our results are applicable across multiple domains, we use example
workflows from different sources, modeling different business objectives. In ad-
dition to the collateral evaluation workflow mentioned above, we present in Ex-
ample 4.1 a workflow that models the dispensation of drugs in a hospital, which
was analyzed throughout the European research project MASTER [Marino et al.
2009], and in Example 10.1 a workflow modelling the payment of electronic
invoices as sketched in a report on the harmonization of electronic payment
processes in the European Union [EGEI 2009].

3.2 Refining Regulations

We illustrate the refinement of regulations to control mechanisms by means of an
example, based on SOX compliance. Figure 3.1 visualizes the refinement steps,
which we describe in the following.

25



Chapter 3. Requirements

Figure 3.1. Refinement of regulations to control mechanisms

3.2.1 Legislation

In the wake of a series of corporate scandals, e.g. as reported by [The Economist
2001], the U.S. Congress enacted the Sarbanes-Oxley (SOX) Act [SOX 2002], which
mandates publicly traded companies to exercise stricter financial governance.
Most interesting to our work is that SOX requires a well-documented and ag-
ile financial reporting environment including effective control mechanisms that
prevent fraud and errors (SOX sections 404 and 409).

The enactment of SOX had negative economical consequences for effected
companies [Zhang 2007], and some authors even claim that SOX led to an in-
crease in delistings [Engel et al. 2007]. This emphasizes that SOX compliance is
a pressing issue and that a simplification and automation of this process is of
great value to many companies.

3.2.2 General Control Framework

The U.S. Securities and Exchange Commission (SEC) supports companies in the
interpretation and implementation of SOX. For example, it acknowledges [SEC
2003] the adoption of the Internal Control – Integrated Framework (ICIF) of the

26



3.2. Refining Regulations

Committee of Sponsoring Organizations of the Treadway Commission (COSO) [COSO
2011] as means to comply with SOX. Various domain-specific business activity
frameworks (see Section 3.1.2) refine the IT governance activities specified in
the ICIF. We focus in the following section on COBIT, which contains a detailed
mapping between its activities and those specified in the ICIF.

3.2.3 IT Governance

COBIT [ITGI 2005] provides organizations guidance in planning, building, exe-
cuting, and monitoring their IT systems. It specifies about three dozen activities
whose execution aims at aligning business processes and IT systems, clarify-
ing responsibilities and ownership, identifying critical resources, defining and
enforcing protection mechanisms, and establishing controls that enable manage-
ment to evaluate the effectiveness of these mechanisms. We list in the following
three of these activities and link them to results presented in forthcoming chap-
ters.

• Define the IT Processes, Organization, and Relationships (activity PO4):
This activity connects the modeling of business processes as workflows
and the specification of authorizations, the overarching topic of our work.
In particular, recommended sub-activities of PO4 are the establishment of
roles and responsibilities and the segregation of duties, i.e. the specification
and enforcement of SoD. We address these requirements with the use of
RBAC, SoDA, and the introduction of the novel SoD constraints, presented
in Part III.

• Manage IT Human Resources (activity PO7): This activity encompass-
es the timely reflection of job changes and terminations in authorizations
policies, while also guaranteeing the continuity of business operations. In
Part II, our formalization of authorization-constrained workflows and its
implementation account for organizational changes during workflow ex-
ecution. Furthermore, we present in Chapter 10 algorithms to compute
optimal authorization changes that enable an obstruction-free workflow
execution.

• Ensure System Security (activity DS5): This activity is decomposed into
various security measures. Interesting for our work is the requirement
to manage users and their authorizations in line with a system’s business
objectives, the main topic of Part III. COBIT refers to ISO 27k, which we
present in the following section, for concrete security mechanisms.

27



Chapter 3. Requirements

3.2.4 Information Security Standard

ISO 27k refers to a set of standards, which together specify requirements and
guidelines for the implementation, operation, and auditing of a so-called Infor-
mation Security Management System (ISMS) [ISO 2009]. ISO 27002 [2005b] lists
control mechanisms that an ISMS must implement, depending on the securi-
ty requirements identified with the processes specified in ISO 27001 [2005a].
ISO 27002 defines concrete protection mechanisms in areas such as network and
operation system security. However, with respect to our work, only a few rec-
ommendations are more specific than those in COBIT. For example, ISO 27002
says that the activation and deactivation of users should include “checking that
the level of access granted is appropriate to the business purpose [. . . ] and is
consistent with [the] organizational security policy, e.g. it does not compromise
segregation of duties” and furthermore “immediately removing or blocking ac-
cess rights of users who have changed roles or jobs or left the organization”. Our
contributions listed in Chapter 1 address these requirements directly.

The examples presented in this chapter illustrate that a workflow model and
its authorizations are typically the result of a sequence of refinement steps. This
observation motivates our work in Part II.

28



Part II

A Workflow-Independent Approach

29



30



Chapter 4

Authorization-Constrained Workflows

We start with an informal introduction to the life cycle of authorization-con-
strained workflows. Afterward, we use CSP to formalize the underlying con-
cepts. We shall see that CSP’s notion of parallel, synchronized process execution
facilitates a concise description of workflow systems that are composed from
multiple sub-processes, each modeling a separate system aspect. Furthermore,
its notion of renaming allows a mapping between different levels of abstraction
of a workflow. Many definitions given in this chapter are, with minor adjust-
ments, also used in Part III.

We call an atomic unit of work a task. A workflow models causal dependencies
between a set of tasks, whose execution constitutes a business objective. An
alternative name for workflow is business process. Although we prefer the term
workflow as it avoids further overloading the term process.

We distinguish two phases in a workflow’s life cycle. At design time, a busi-
ness expert designs a workflow using a modeling language such as BPMN and
afterward deploys it to a workflow engine. At run time, the workflow engine exe-
cutes the workflow. We call a workflow execution a workflow instance. A work-
flow engine may execute multiple instances of the same workflow in parallel.
According to the workflow’s control-flow and depending on the evaluation of
gateway conditions, a workflow engine schedules and instantiates tasks, called
task instances, during workflow execution. Standard workflow modeling lan-
guages, such as BPMN, allow the specification of parallel and conditional execu-
tion and loops. Therefore, there may be zero or more instances of the same task
in one workflow instance. Depending on a task’s type, its instances are executed
by humans, by a software program, through the invocation of a web service, etc.
In this dissertation, we focus on tasks whose instances are executed by humans,
either directly, e.g. by completing a form, or indirectly, e.g. by executing a pro-
gram on their behalf. An authorization specifies whether or not a user is allowed
to execute a task instance.

31



Chapter 4. Authorization-Constrained Workflows

Figure 4.1. BPMN model of drug dispensation workflow

4.1 Workflows

There are numerous translations from BPMN and similar workflow modeling
languages to process calculi. We present some of them in Chapter 12. The
technical differences are unimportant for our work here and we use a straight-
forward translation to CSP, illustrated in forthcoming examples.

For the remainder of this dissertation, let T be a set of tasks and U a set of
users. For a task t and a user u, the CSP event t.u models the execution of an
instance of t by u. We call t.u a (task) execution event. Let X = {t.u | t ∈ T ,u ∈ U}
be the set of all execution events. We then model a workflow as follows.

Definition 4.1 (Workflow Execution Process) A workflow execution process is a
process W such that T(W) ⊆ X ∗X.

32



4.1. Workflows

In other words, a workflow execution process may engage in an arbitrary
number of execution events and finally the event X.

Definition 4.2 (Workflow Trace) Let W be a workflow execution process. A trace
i ∈ Σ∗X is a workflow trace of W if (i � XX) ∈ T(W).

A workflow trace i models a workflow instance. Note that i may not only
include execution events. We will subsequently introduce administrative events
that model complementary activities taking place during workflow execution.
However, in order to be a workflow trace of a workflow execution process W,
only the execution events in i must be a trace of W; hence the restriction i � XX.
The workflow instance modeled by i has successfully terminated if X ∈ i.

Given a trace i, the auxiliary function users returns the multiset of users con-
tained in execution events in i.

users(i) =


∅∅∅ if i = 〈〉,
{{u}} ] users(i′) for i = 〈t.u〉ˆi′ and t.u ∈ X ,
users(i′) for i = 〈σ〉ˆi′ and σ 6∈ X .

We illustrate these definitions with the drug dispensation workflow from [Mari-
no et al. 2009]. This workflow serves also as a running example for the remainder
of Part II.

Example 4.1 (Drug Dispensation Workflow) A BPMN model1 of the drug dis-
pensation workflow is shown in Figure 4.1. Ignore the gray annotations for the
moment. This workflow defines the tasks that must be executed to dispense
drugs to patients within a hospital. The drugs dispensed are either in an exper-
imental state or very expensive and therefore require special diligence.

For this example, let T = {t1, . . . , t10}, where t1 refers to Request Drugs, t2

to Retrieve Patient Record, etc., and U = {Alice,Bob,Claire,Dave,Emma,Fritz,Gerda}.
An instance of the drug dispensation workflow is started by a user acting as
patient who requests drugs by handing his prescription to the hospital. The
hospital personnel first retrieves the patient’s record from the hospital’s database
and afterward determines whether the respective data must be anonymized. If
anonymization is required, this is done by a computer program. We ignore
this task in our forthcoming discussion as we focus on human tasks. Next, the
hospital personnel reviews therapeutic notes if contained in the prescription and
adds in parallel research-related data to the record if the requested drugs are in
an experimental state. Finally, the dispensation is either approved, the drugs

1The gateway inside the BPMN process Patients is an exclusive gateway. It passes on the
control-flow to the sequence flow that points to the event that occurs first after the control-flow
has reached the gateway.

33



Chapter 4. Authorization-Constrained Workflows

are collected from the stock, and handed to the patient, or the dispensation is
denied and the patient is informed accordingly.

We model the drug dispensation workflow in CSP by the workflow execution
process

W = t1.u1 : U → t2.u2 : U → t3.u3 : U →
(
(W1 |||W2) ; W3

)
W1 = SKIP u (t5.u5 : U → SKIP)

W2 = SKIP u (t6.u6 : U → SKIP)

W3 = t7.u7 : U →
(
(t8.u8 : U → SKIP) u (t9.u9 : U → t10.u10 : U → SKIP)

)
.

Because we do not model data-flow, we over-approximate gateway decisions,
such as whether therapeutical notes must be reviewed, with CSP’s internal
choice operator u . Note that the tasks in W are fixed, i.e. t1 corresponds to
the task Request Drugs, whereas the users are not fixed, i.e. for every execution
event the respective user can be chosen freely from U . Consider now the traces

i1 = 〈t1.Fritz, t3.Fritz, t5.Bob,X〉 and i2 = 〈t1.Fritz, t2.Emma, t3.Fritz, t5.Bob〉 .

The trace i1 is not a workflow trace of W because (i1 � XX) 6∈ T(W). How-
ever, i2 is a workflow trace of W because (i2 � XX) ∈ T(W) and users(i2) =
{{Bob,Emma,Fritz,Fritz}} is the multiset of users who are executing task instances
in i2. F

4.2 Authorization Classes and Enforcement Approach

We model three classes of authorization constraints in this dissertation:

• Basic Authorizations: This class encompasses all authorizations that re-
strict the execution of task instances to users with the necessary qualifi-
cations and responsibilities in a history-independent and workflow-inde-
pendent manner. Examples are access control lists (ACLs) [Sandhu and
Samarati 1994], the Bell-LaPadula (BLP) model [Bell and LaPadula 1973],
and Role-based Access Control (RBAC) [Ferraiolo et al. 2001] without ses-
sions. What is often called a permission in the context of basic authoriza-
tions corresponds here to the right to execute a task.

• Separation of Duties (SoD): Authorizations to execute task instances are
restricted to ensure that different users execute those instances whose ex-
ecution results in a conflict of interest. For example, consider two tasks t1

and t2 and suppose that their execution by the same user results in a con-
flict of interest. An SoD constraint is then used to prevent such a conflict

34



4.3. Basic Authorizations

by not authorizing a user from executing an instance of t2 after executing
an instance of t1 and vice versa.

• Binding of Duties (BoD): Authorizations to execute task instances are re-
stricted based on who has executed previous task instances to limit the
exposure of sensitive data and to reuse knowledge that users have gained
from previous task executions. For example, consider two tasks t1 and t2,
both revealing the same sensitive information. A BoD constraint may force
a user to execute all instances of t2 (and further instances of t1) after having
executed an instance of t1 and vice versa.

As defined here, SoD and BoD constraints are history-dependent. Note
that related work on SoD and BoD often uses the term dynamic for what we
call history-dependent and static for history-independent. We implicitly subsume
history-independent SoD and BoD by basic authorizations. A detailed compari-
son of our terminology and related work follows in Chapter 12.

We formalize authorized executions of task instances in terms of processes.
More specifically, for each authorization policy φ, we define a process Aφ and
say that a workflow trace i satisfies φ if i ∈ T(Aφ). Given a workflow execution
process W, we then describe the enforcement of φ on W by the parallel execution
of Aφ and W, synchronized on execution events; formally, W ‖

X
Aφ.

4.3 Basic Authorizations

In the interest of ecumenical neutrality and supporting numerous authorization
models, we first formalize basic authorizations abstractly as a relation UT ⊆
U × T , called the user-task assignment. Later, we refine user-task assignments
using roles. In particular, we use roles to model administrative activities in
the remaining chapters of Part II and to model the cost associated with such
activities in Chapter 10.

Given a user-task assignment UT, a user u is authorized to execute instances
of a task t if (u, t) ∈UT. Expressed as a process, we have the definition:

Definition 4.3 (Basic Authorization Process) For a user-task assignment UT, a basic
authorization process for UT is the process

AUT = (t.u) : UT−1→ AUT

� σ : (Σ \ X )→ AUT

� SKIP .

35



Chapter 4. Authorization-Constrained Workflows

The process AUT engages in every execution event t.u if the user u is autho-
rized to execute the task t with respect to UT. Furthermore, AUT engages in
every event σ that is not an execution event and it can terminate at any time.
The history-independent nature of UT is reflected by the fact that AUT behaves
again like AUT after engaging in every event (except the final event X).

For the remainder of this dissertation, let R be a set of roles. We now refine
user-task assignments using the core idea of RBAC [Ferraiolo et al. 2001], namely
the decomposition of a user-task assignment into two relations.

Definition 4.4 (RBAC Policy) An RBAC policy is a tuple (UR, RT), where UR ⊆
U ×R is a user-role assignment and RT ⊆R× T is a role-task assignment .

Given an RBAC policy (UR, RT), we can derive a user-task assignment UT
by composing RT and UR with the composition operator ◦. Formally, UT =

RT ◦UR = {(u, t) | ∃r ∈ R.(u,r) ∈UR and (r, t) ∈ RT}.
Let (UR, RT) be an RBAC policy and u a user. For a role r, we say that u acts

in the role r if (u,r) ∈ UR. Furthermore, for a task t we say that u is authorized to
execute t with respect to (UR, RT) if (u, t) ∈ RT ◦UR.

In contrast to the NIST RBAC standard [Ferraiolo et al. 2001], we omit the
concept of sessions. This is without loss of generality as the activation and
deactivation of roles within a session can be modeled by administrative activities
that change RBAC policies as introduced below.

We model changes to an RBAC policy by a set of eventsA⊆ Σ that we call the
administrative events. For a user u and a role r, the administrative event add.u.r
(respectively rm.u.r) models the addition (respectively the removal) of (u,r) from
the user-role assignment. We do not consider administrative events that change
role-task assignments. This design decision is due to the observation that user-
role assignments and the availability of users in general changes much more
frequently in practice than workflow and role models.

Having introduced all the kinds of events that we need in Part II, specifically,
Σ = X ∪ A, we now specify the evolution and enforcement of an RBAC policy
in terms of a process.

Definition 4.5 (RBAC Process) For an RBAC policy (UR, RT), the process

RBAC(UR, RT) = (t.u) : (RT ◦UR)−1→ RBAC(UR, RT)

� add.u : U .r :R→ RBAC(UR ∪ {(u,r)}, RT)

� rm.u : U .r :R→ RBAC(UR \ {(u,r)}, RT)

� SKIP

is called an RBAC process.

36



4.3. Basic Authorizations

Figure 4.2. User-role assignments for the drug dispensation workflow

An RBAC process is parametrized by an RBAC policy (UR, RT) and en-
gages in every execution event t.u if u is authorized to execute t with respect
to (UR, RT). Furthermore, an RBAC process changes its user-role assignment
by engaging in administrative events and may terminate at any time. We now
compose a workflow execution process with an RBAC process.

Definition 4.6 (Secure Workflow Process) For a workflow execution process W and
an RBAC policy (UR, RT), we call the process

SW(UR, RT) = W ‖
X

RBAC(UR, RT)

a secure (workflow) process.

Like an RBAC process, a secure process SW(UR, RT) is parametrized by an
RBAC policy. SW(UR, RT) engages in every execution event t.u if W engages
in t.u, i.e. if the workflow foresees the execution of the respective task instance,
and u is authorized to execute t with respect to (UR, RT). By synchronizing
only on execution events, arbitrary administrative events can be interleaved with
execution events in any order. Thus, the RBAC policy can change during a
workflow’s execution.

Example 4.2 (Secure Workflow Process) Consider again the drug dispensation
workflow presented in Example 4.1. Figure 4.2 shows the set of users U intro-
duced in Example 4.1 and additionally the set of roles R that we use throughout

37



Chapter 4. Authorization-Constrained Workflows

this example. Let (UR1, RT) be the initial RBAC policy. The user-role assign-
ment UR1 is depicted in Figure 4.2, ignoring the dashed and dotted lines be-
tween users and roles, e.g. (Alice,Therapist) ∈ UR1 and (Alice,Pharmacist) 6∈ UR1.
We specify the role-task assignment RT by means of BPMN annotations in Fig-
ure 4.1. For example, only users acting in the role Nurse are authorized to exe-
cute t2 with respect to (UR1, RT). We assigned only one role to each task but in
general tasks can be annotated with sets of roles.

Let SW(UR1, RT) be the secure process for W and (UR1, RT). We concluded
in Example 4.1 that i2 = 〈t1.Fritz, t2.Emma, t3.Fritz, t5.Bob〉 is a workflow trace of W
because (i2 � XX) ∈ T(W). However, i2 is not a trace of SW(UR1, RT) because
Fritz is not a PrivacyAdvocate and therefore not authorized to execute t3 with
respect to (UR1, RT).

Consider now the trace i3 = 〈t1.Fritz, t2.Emma,add.Fritz.PrivacyAdvocate, t3.Fritz,
t5.Bob〉. This trace is similar to i2 but includes the administrative event
add.Fritz.PrivacyAdvocate. By engaging in this event, the user-role assignment UR1

becomes UR2 = UR1 ∪ {(Fritz,PrivacyAdvocate)}. Because Fritz is authorized to ex-
ecute t3 with respect to (UR2, RT), i3 is a trace of SW(UR1, RT). With respect to
execution events, i3 is equal to i2, i.e. i3 � XX = i2 � XX, and therefore i3 is also a
workflow trace of W. F

38



Chapter 5

Generalization of SoDA

Our workflow-independent approach to bridging the gap between the abstract
specification of SoD constraints and their enforcement in a dynamic enter-
prise workflow environment builds on Li and Wang’s Separation of Duty Alge-
bra (SoDA) [2008]. We first present a small motivational example that demon-
strates SoDA’s quantitative and qualitative expressivity. Afterward, we intro-
duce SoDA’s syntax, generalize its original semantics, and finally map SoDA
terms to CSP processes.

Consider the SoD policy that requires the involvement of a user other than
Bob that acts in the role of a Manager and one or two additional users, acting as
an Accountant and a Clerk. Using SoDA, this policy can be modeled by the term

(Manageru ¬{Bob})⊗ (Accountant� Clerk) .

The term’s left side is satisfied by any Manager other than Bob. Under the seman-
tics of the �-operator, the right side is satisfied by a single user that acts as an
Accountant and a Clerk or by two users, provided one of them acts as an Accountant
and the other as a Clerk. Finally, the ⊗-operator requires that the users in the
two parts are disjoint. It thereby separates their duties. As this example shows,
SoDA terms specify both the number and kinds of users who must execute
task instances in a workflow, though independent of the details of the workflow
itself. Separating concerns this way facilitates a loose coupling between an ap-
plication’s business logic and its security constraints and is therefore well-suited
to formalize abstract, workflow-independent authorization requirements.

5.1 Syntax

We present below the syntax of SoDA terms.

Definition 5.1 (SoDA Grammar) A SoDA grammar S with respect to a set of users
U = {u1, . . . ,un} and a set of roles R = {r1, . . . ,rm} is a quadruple (N, T, P,S) where:

39



Chapter 5. Generalization of SoDA

• N = {S, CT, UT, AT, UR, U, R} is the set of nonterminal symbols,

• T = {′,′ , (, ), {, }, ⊗, �, t, u, +, ¬,All} ∪ U ∪ R are the terminal symbols,

• the set of productions P ⊆ ( N × (N ∪ T)∗ ) is given by:

S ::= CT |UT

CT ::= (CT t S) | (CT u S) | (S⊗ S) | (S� S) | (UT)+

UT ::= AT | (UT uUT) | (UT tUT) | ¬UT

AT ::= {UR} | R | All
UR ::= U |U, UR

U ::= u1 | . . . | un

R ::= r1 | . . . | rm

• and S ∈ N is the start symbol.

The terminal symbols ⊗, �, t, u, +, and ¬ are called operators. Without loss
of generality, we omit the productions CT ::= (S u CT) and CT ::= (S t CT). Li
and Wang showed in [2008] that u and t are commutative with respect to their
semantics and this is also the case for our semantics. Therefore, each term that
could be constructed with these additional productions can be transformed to a
semantically equivalent term constructed without them.

Let →1
S ∈ (N ∪ T)+ × (N ∪ T)∗ denote one derivation step of S and →∗S

the transitive closure of →1
S. We call an element of {s ∈ T∗ | S→∗S s} a term.

Furthermore, we call an element of {s ∈ T∗ | AT→∗S s} an atomic term. These are
either a non-empty set of users, e.g. {Alice,Bob}, a single role, e.g. Clerk, or the
keyword All. We call an element of {s ∈ T∗ |UT→∗S s} a unit term. These terms
do not contain the operators ⊗, �, and +. Finally, a complex term is an element
of {s ∈ T∗ | CT→∗S s}. In contrast to unit terms, they contain at least one of the
operators ⊗, �, or +. For a term φ, we call a unit term φut a maximal unit term
of φ, if φut is a unit term, a subterm of φ, and if there is no other unit term φ′ut
that is also a subterm of φ and φut is a proper subterm of φ′ut.

5.2 Multiset Semantics

Li and Wang define in [2008] the satisfaction of SoDA terms for sets of users.
We refer to their semantics as SODAS and summarize it in Appendix B. SODAS

allows for quantitative constraints where terms define how many different users
must execute tasks in a workflow instance. However, SODAS does not capture
how many tasks each of these users must execute. Consider the policy P that re-
quires Bob to execute two tasks, modeled by the SoDA term φ = {Bob} � {Bob}.

40



5.2. Multiset Semantics

Under SODAS, φ is satisfied by the set {Bob}. There is no satisfactory mapping
of φ to a process that accepts all workflow traces that correspond to satisfying
assignments of φ. If we define the correspondence between sets and workflow
traces in a way that {Bob} maps to the set of traces containing exactly one exe-
cution event involving Bob, this would not satisfy P. Alternatively, if we map
{Bob} to the set of traces containing arbitrarily many execution events involving
Bob, this set would also include traces that do not satisfy P, for example, the
trace containing three execution events involving Bob. The problem is that sets
of users are too abstract: users cannot be repeated and hence information is lost
on how many tasks a user (here Bob) must execute.

To address this problem, we introduce a novel semantics, SODAM, that de-
fines term satisfaction based on multisets of users. SODAM allows us to make
finer distinctions concerning repetition (quantification requirements) than in
SODAS. As shown below, under SODAM, φ is only satisfied by the multiset
{{Bob,Bob}}. Mapping multisets to workflow traces is straightforward. For ex-
ample, workflow traces corresponding to {{Bob,Bob}} include exactly two execu-
tion events involving Bob. In this respect, SODAM allows a more precise mapping
to workflow traces than SODAS.

Definition 5.2 (SODAM) Let U ⊆ U be a non-empty set of users and r ∈ R a role. For
a multiset of users U, a term φ, and a user-role assignment UR, multiset satisfiability
is the smallest ternary relation between multisets of users, user-role assignments, and
terms, written U |=M

UR φ, that is closed under the rules:

(1) {{u}} |=M
UR All

u ∈ dom(UR) (2) {{u}} |=M
UR r

(u,r) ∈UR

(3) {{u}} |=M
UR U

u ∈U and u ∈ dom(UR) (4)
{{u}} 6|=M

UR φ

{{u}} |=M
UR ¬φ

(5)
{{u}} |=M

UR φ

{{u}} |=M
UR φ+

(6)
{{u}} |=M

UR φ, U |=M
UR φ+

{{u}} ]U |=M
UR φ+

(7)
U |=M

UR φ

U |=M
UR (φ t ψ)

(8)
U |=M

UR ψ

U |=M
UR (φ t ψ)

(9)
U |=M

UR φ, U |=M
UR ψ

U |=M
UR (φ u ψ)

(10)
U |=M

UR φ, V |=M
UR ψ

U ]V |=M
UR (φ� ψ)

(11)
U |=M

UR φ, V |=M
UR ψ

U ]V |=M
UR (φ⊗ ψ)

(U ∩V) =∅∅∅ .

41



Chapter 5. Generalization of SoDA

We say that U satisfies φ with respect to UR if U |=M
UR φ. Informally, a user u

satisfies the term All if there exists a role r such that (u,r) ∈UR. A user u satisfies
a role r if u acts in the role r with respect to UR, and u satisfies a set of users U if
u is a member of U and there exists a role r such that (u,r) ∈UR. A unit term ¬φ

is satisfied by u if u does not satisfy φ. A non-empty multiset of users U satisfies
a complex term φ+ if each user u ∈ U satisfies the unit term φ. A multiset of
users U satisfies a term φ t ψ if U satisfies either φ or ψ, and U satisfies a term
φ u ψ if U satisfies both φ and ψ. A term φ ⊗ ψ is satisfied by a multiset of
users W, if W can be partitioned into two disjoint multisets U and V, and U
satisfies φ and V satisfies ψ. Because every user in W must be in either U or
V, but not both, the ⊗-operator separates duties between two multisets of users.
In contrast, a term φ� ψ is satisfied by a multiset of users W, if there are two
multisets U and V, which may share users, and U satisfies φ, V satisfies ψ, and
W is the sum of U and V. Thus, the �-operator allows “overlapping” duties in
that a user may be contained in both U and V.

With SODAM the significance of maximal unit terms becomes evident. If a
multiset of users U satisfies a term φ, every user in U corresponds to at least one
maximal unit term in φ. We associate below a user u ∈U with the execution of a
task instance by u, i.e. an execution event t.u, for an arbitrary task t. When map-
ping terms to processes, the satisfaction of a maximal unit term will therefore
correspond to engaging in an execution event.

We now provide two examples of SoDA terms. The first serves as the SoD
policy for the drug dispensation workflow and the second illustrates the differ-
ence between SODAM and SODAS.

Example 5.1 (SoD Policy for Drug Dispensation Workflow) Fraudulent or erro-
neous drug dispensations may jeopardize a patients’ health, may violate regu-
lations, and could severely impact the hospital’s finances and reputation. We
therefore assume that a hospital who executes the drug dispensation workflow
enforces SoD constraints in order to reduce these risks. Concretely, a Pharmacist
may not dispense drugs to himself; i.e. he should not act as a Patient and a
Pharmacist within the same workflow instance. Similarly, the Nurse who pre-
pares the drugs should not be the same user as the Pharmacist who approves
the dispensation. Furthermore, the PrivacyAdvocate must be different from any
other user involved in the same workflow instance. Finally, the nurse Claire
may not be involved in the dispensation due to her drug abuse history. How-
ever, as a Patient she may receive drugs. All these constraints are formalized by
the term φ = Patient ⊗ ( (¬{Claire})+ u (PrivacyAdvocate⊗ Pharmacist ⊗ (Nurse t
Researcher t Therapist )+)).

42



5.3. Enforcement Requirements

Consider now the user-role assignment UR3 shown in Figure 4.2. The mul-
tiset U1 = {{Alice,Bob,Dave,Emma,Fritz,Gerda,Gerda}} satisfies φ with respect to
UR3. However, U2 = {{Bob,Emma,Fritz,Gerda,Gerda}} does not satisfy φ with re-
spect to UR3 because φ requires at least one user acting as Pharmacist and U2

contains no user who acts as Pharmacist with respect to UR3. F

Example 5.2 (Difference Between SODAS and SODAM) Under SODAM, the term
{Bob} � {Bob} � {Bob}+ is satisfied by all multisets that contain Bob three or
more times, i.e. Bob must execute at least three tasks. Under SODAS, this term
is only satisfied by the set {Bob} and therefore does not define how many tasks
Bob must actually execute. F

We conclude by formally relating SODAM and SODAS. As summarized in
Appendix B, under SODAS, Y |=S

(U,UR) φ denotes the satisfaction of a term φ by a
set of users Y⊆U with respect to a tuple (U,UR), where U⊆U and UR⊆U×R.
Because tasks can only be executed by users who are assigned to at least one role,
we simplify this tuple and extract the available users from UR, as can be seen in
Rule (3) of Definition. 5.2. For a user-role assignment UR, the auxiliary function
lwconf(UR) = (dom(UR),UR) maps UR to the corresponding tuple in SODAS.
Moreover, given a multiset of users U, the function userset(U) = {u | u ∈ U}
returns the set of users contained in U. The following lemma, which we prove
in Appendix A.2, relates SODAM to SODAS.

Lemma 5.1 For all terms φ, all user-role assignments UR, and all multisets of users U,
if U |=M

UR φ, then userset(U) |=S

lwconf(UR) φ.

5.3 Enforcement Requirements

As shown above, SoDA specifies SoD constraints at a high level of abstraction.
However, the enforcement takes place at run time in the context of a workflow in-
stance. Given a term φ, we now describe how to construct an enforcement mon-
itor for φ. Our construction maps φ to a process SODAφ(UR), called the SoDA-
enforcement process, parametrized by a user-role assignment UR. SODAφ(UR) ac-
cepts all workflow traces corresponding to a multiset that satisfies φ with respect
to UR. We show later in Chapter 6 how to implement SODAφ(UR) as a service
and how to provision and integrate this service in an enterprise environment.

In practice, it is critical to allow administrative events during workflow ex-
ecution. If Bob leaves his company, it should be possible to remove all his as-
signments to roles, thereby preventing him from subsequently executing task
instances. Similarly, if Alice joins a company or changes positions, and is there-
fore assigned to new roles, she should also be able to execute task instances in

43



Chapter 5. Generalization of SoDA

workflow instances that were started prior to the organizational change. As-
suming that a user-role assignment does not change during the execution of a
workflow instance is therefore overly restrictive. The SoDA-enforcement process
defined below accounts for such changes. The function upd (“update”) describes
how a trace of administrative events changes a user-role assignment.

Definition 5.3 (Administrative Update) Let a ∈ A∗ be a trace of administrative
events and UR a user-role assignment. The function upd is then defined as

upd(UR, a) =


UR if a = 〈〉,
upd(UR ∪ {(u,r)}, a′) if a = 〈add.u.r〉ˆ a′,

upd(UR \ {(u,r)}, a′) if a = 〈rm.u.r〉ˆ a′,

where u ranges over U , r over R, and a′ over A∗.

Let φ be a term, UR a user-role assignment, and SODAφ(UR) the SoDA-
enforcement process for φ and UR. We postulate the following requirements for
SODAφ(UR):

(R1) SODAφ(UR) must accept every trace of admin events a, and behave like
SODAφ(UR′) afterward, for UR′ = upd(UR, a).

(R2) SODAφ(UR) must engage in an execution event t.u, if {{u}} satisfies at least
one maximal unit term of φ with respect to UR.

(R3) The semantics of the operators +, t, u, �, and ⊗ with respect to traces
must agree with their definition in SODAM.

Requirement (R1) says that administrative events are always possible and
their effects are reflected in the user-role assignment. (R2) formulates agreement
with SODAM, where for a multiset of users U, if U |=M

UR φ, then each user in
U satisfies at least one maximal unit term of φ with respect to UR. Similarly,
SODAφ(UR) must not engage in an execution event if the corresponding user
does not contribute to the satisfaction of φ. As for (R3), consider for example
the terms φ ⊗ ψ and φ � ψ. It must be possible to partition a trace satisfying
φ⊗ ψ or φ� ψ into two subtraces, one satisfying φ and the other one satisfying
ψ. In the case of φ⊗ ψ, the users who execute task instances in one trace must
be disjoint from the users executing task instances in the other trace. In contrast,
for φ� ψ, the multisets of users need not be disjoint. In particular, (R3) states
that if SODAφ(UR) accepts a trace i that contains no admin event and reaches a
final state, then users(i) |=M

UR φ.

44



5.4. Trace Semantics

5.4 Trace Semantics

The following example shows that SODAM is not expressive enough to capture
the requirements (R1)–(R3).

Example 5.3 (Limitations of SODAM) Suppose that SODAM were expressive
enough to capture (R1)–(R3). Consider the policy P that requires one task
to be executed by a user acting as a Pharmacist and another task to be exe-
cuted by a user who is not acting as a Pharmacist. We model P by the term
φ = Pharmacist�¬Pharmacist and consider the trace

i = 〈add.Alice.Pharmacist, t1.Alice, rm.Alice.Pharmacist, t2.Alice〉 ,

for two arbitrary tasks t1 and t2. From (R1)–(R3), it follows that SODAφ(∅)

must accept i. In particular, by (R1), SODAφ(∅) engages in add.Alice.Pharmacist
and afterward behaves like SODAφ(UR), for UR = {(Alice,Pharmacist)}. Next,
SODAφ(UR) engages in t1.Alice by (R2) and (R3) because Alice acts as a
Pharmacist. Again by (R1), SODAφ(UR) engages in rm.Alice.Pharmacist and af-
terward behaves like SODAφ(∅). Finally, by (R2) and (R3), SODAφ(∅) engages
in t2.Alice because Alice does not act as a Pharmacist. In the end, SODAφ engaged
in an execution event with a user that acted as a Pharmacist and in another execu-
tion event with a user not acting as a Pharmacist, satisfying the policy P. Because
of the administrative events it was possible that both tasks were executed by
the same user, i.e. users(i) = {{Alice,Alice}}. However, under SODAM, φ can on-
ly be satisfied by a multiset of users that contains two different users, which
contradicts users(i) = {{Alice,Alice}}. Hence, SODAM is not expressive enough to
capture (R1)–(R3). F

The inability to handle administrative changes motivates the introduction of
a third semantics, SODAT. In SODAT, subterms correspond to separate traces
that may interleave with each other in any order. Administrative events, though,
must occur in all traces in the same order. This reflects that SoDA terms do
not constrain the order of executed tasks but that the user-role assignment must
be consistent across all subterms at any time. We formalize this relation by the
synchronized interleaving predicate si. For traces i, i1, and i2, si(i, i1, i2) holds if and
only if i1 and i2 “partition” i such that each administrative event in i is contained
in both i1 and i2, and each execution event is either in i1 or i2. More precisely:

45



Chapter 5. Generalization of SoDA

Definition 5.4 (Synchronized Interleaving) Let i, i1, i2 ∈ (X ∪ A)∗ be traces. The
synchronized interleaving predicate si(i, i1, i2) is defined as:

si(i, i1, i2) =



true if i = 〈〉, i1 = 〈〉 and i2 = 〈〉,
si(i′, i′1, i′2) if i = 〈a〉ˆi′, i1 = 〈a〉ˆi′1,and i2 = 〈a〉ˆi′2,

si(i′, i′1, i2) or si(i′, i1, i′2) if i = 〈x〉ˆi′, i1 = 〈x〉ˆi′1,and i2 = 〈x〉ˆi′2,

si(i′, i′1, i2) if i = 〈x〉ˆi′, i1 = 〈x〉ˆi′1,and i2 6= 〈x〉ˆi′2,

si(i′, i1, i′2) if i = 〈x〉ˆi′, i1 6= 〈x〉ˆi′1,and i2 = 〈x〉ˆi′2,

f alse otherwise,

where a ranges over A, x over X , and i′, i′1, and i′2 over (X ∪A)∗.
Note that the Boolean or in the third case arises as there are two possible in-
terleavings. The predicate si will hold (evaluate to true) if either of the two
interleavings hold. We illustrate si with an example.

i = 〈 x1, x2, x3, a1, x4, x4, a2, x5, a3, x6, a4 〉
i1 = 〈 x1, x3, a1, x4, a2, a3, x6, a4 〉
i2 = 〈 x2, a1, x4, a2, x5, a3, a4 〉

For these three traces, si(i, i1, i2) holds. We now define the satisfaction of SoDA
terms by traces.

Definition 5.5 (SODAT) Let u ∈ U be a user, t ∈ T a task, x ∈ X an execution event,
and a ∈ A an administrative event. For a trace i ∈ (X ∪ A)∗, a user-role assign-
ment UR, a term φ, and a unit term φut, trace satisfiability is the smallest ternary
relation between traces, user-role assignments, and terms, written i |=T

UR φ, closed un-
der the rules:

(1)
{{u}} |=M

UR φut

〈t.u〉 |=T
UR φut

(2)
i |=T

UR φ

i ˆ〈a〉 |=T
UR φ

(3)
i |=T

UR∪{(u,r)} φ

〈add.u.r〉ˆi |=T
UR φ

(4)
i |=T

UR\{(u,r)} φ

〈rm.u.r〉ˆi |=T
UR φ

(5)
〈x〉 |=T

UR φut

〈x〉 |=T
UR φ+

ut
(6)
〈x〉 |=T

UR φut , i |=T
UR φ+

ut

〈x〉ˆi |=T
UR φ+

ut

(7)
i |=T

UR φ

i |=T
UR φ t ψ

(8)
i |=T

UR ψ

i |=T
UR φ t ψ

(9)
i |=T

UR φ , i |=T
UR ψ

i |=T
UR φ u ψ

(10)
i1 |=T

UR φ , i2 |=T
UR ψ

i |=T
UR φ� ψ

si(i, i1, i2)

(11)
i1 |=T

UR φ , i2 |=T
UR ψ

i |=T
UR φ⊗ ψ

si(i, i1, i2) and users(i1) ∩ users(i2) =∅∅∅ .

46



5.5. Mapping Terms to Processes

We say that i satisfies φ with respect to UR, if i |=T
UR φ. SODAT fulfills the

requirements of Section 5.3: (R1) follows from rules (2) to (4), (R2) from rule (1),
and (R3) from the rules corresponding to the respective operators. That SODAM

agrees with SODAT in the absence of administrative events is shown by the
following lemma, which we prove in Appendix A.3.

Lemma 5.2 For all terms φ, all user-role assignments UR, and all traces i ∈ X ∗, if
i |=T

UR φ, then users(i) |=M
UR φ.

Consider again the trace i and the term φ from Example 5.3. It is straightfor-
ward to see that i satisfies φ with respect to UR = ∅. Hence, SODAT overcomes
the limitations of SODAM illustrated in Example 5.3.

Summarizing, we first generalized SODAS to SODAM and thereby solved the
problem that SODAS does not specify how many tasks each user who contributes
to the satisfaction of a term must execute. Second, we introduced administra-
tive events that may change user-role assignments, defined requirements that
an SoDA enforcement incorporating these events must satisfy, and showed that
SODAM does not capture them. Third, we further generalized SODAM to SODAT

and showed that SODAT satisfies our requirements. Next, we define a map-
ping from terms to processes, which model enforcement monitors, and prove
the mapping’s correctness with respect to SODAT.

5.5 Mapping Terms to Processes

We first introduce the auxiliary process END that engages in an arbitrary num-
ber of admin events before it successfully terminates.

END = (a :A→ END)� SKIP

Using END, we define the mapping [.]UUR.

Definition 5.6 (Mapping [.]UUR) Given a set of users U, a user-role assignment UR,
and a term φ, the mapping [φ]UUR returns a process parametrized by UR. For a unit
term φut and terms φ and ψ, the mapping [.]UUR is defined as follows.

(1) [φut]UUR = t : T .u : {u′ ∈U | {{u′}} |=M
UR φut } → END

� add.u : U .r :R→ [φut]UUR ∪ {(u,r)}

� rm.u : U .r :R→ [φut]UUR \ {(u,r)}

47



Chapter 5. Generalization of SoDA

(2) [φ+
ut]

U
UR = t : T .u : {u′ ∈U | {{u′}} |=M

UR φut } → (END � [φ+
ut]

U
UR)

� add.u : U .r :R→ [φ+
ut]

U
UR ∪ {(u,r)}

� rm.u : U .r :R→ [φ+
ut]

U
UR \ {(u,r)}

(3) [φ t ψ]UUR = [φ]UUR � [ψ]UUR

(4) [φ u ψ]UUR = [φ]UUR ‖ [ψ]UUR

(5) [φ� ψ]UUR = [φ]UUR ‖
A
[ψ]UUR

(6) [φ⊗ ψ]UUR = �
{ (Uφ,Uψ) |Uφ∪Uψ=U ∧Uφ∩Uψ=∅}

[φ]
Uφ

UR ‖
A
[ψ]

Uψ

UR

Note that the equations (1) and (2) require determining whether {{u′}} |=M
UR φut.

This problem is analogous to testing whether a propositional formula is satisfi-
able under a given assignment and is also decidable in polynomial time.

Definition 5.7 (SoDA-Enforcement Process) For a term φ and a user-role assign-
ment UR, the SoDA-enforcement process SODAφ(UR) is the process [φ]UUR.

Before we show how a SoDA-enforcement process is used together with
workflow execution processes and an RBAC process, we define correctness for
the mapping [.]UUR.

Definition 5.8 (Corectness of [.]UUR) The mapping [.]UUR is correct if for all terms φ,
all user-role assignments UR, and all traces i ∈ Σ∗, i ˆ〈X〉 ∈ T(SODAφ(UR)) if and
only if i |=T

UR φ.

Informally, the mapping [.]UUR is correct if the following properties hold for
all SoDA-enforcement processes SODAφ: (1) if SODAφ accepts a workflow trace
that corresponds to a successfully terminated workflow instance, then its prefix
excluding X satisfies φ under SODAT, and (2) if a workflow trace satisfies φ

under SODAT, then its extension by X corresponds to a successfully terminated
workflow instance and is accepted by SODAφ. We prove the following theorem
in Appendix A.4.

Theorem 5.1 The mapping [.]UUR is correct.

Hence, if the SoDA-enforcement process accepts a successfully terminated
workflow instance, then the corresponding SoD constraint is satisfied. We al-
so know that no workflow instance that satisfies the SoD constraint is falsely
blocked by the SoDA-enforcement process. The following corollary relates the
set of traces of SoDA-enforcement processes without administrative events and

48



5.5. Mapping Terms to Processes

their corresponding multisets of users under the multiset semantics. Its proof
follows directly from Theorem 5.1 and Lemma 5.2.

Corollary 5.1 For all terms φ, all user-role assignments UR, and all traces i ∈ X ∗, if
i ˆ〈X〉 ∈ T(SODAφ(UR)), then users(i) |=M

UR φ.

Given a workflow execution process W, an RBAC policy (UR, RT), and a
term φ, the SoDA-secure (workflow) process SSWφ is the parallel, partially syn-
chronized composition of W, the RBAC process for (UR, RT), and the SoDA-
enforcement process SODAφ, parametrized by an RBAC policy.

SSWφ(UR, RT) = W ‖
X
(RBAC(UR, RT) ‖ SODAφ(UR))

Let x = t.u be an execution event, for a task t and a user u. SSWφ(UR, RT)
engages in x if W, RBAC(UR, RT), and SODAφ(UR) each engage in x. In other
words, t must be one of the next tasks according to the workflow specification,
the user u must be authorized to execute the task t with respect to (UR, RT), and
u must not violate the SoD policy formalized by φ, given the previously executed
execution events and UR. Furthermore, RBAC and SODAφ can synchronously
engage in an administrative event at any time and thereby change their RBAC
policy. Finally, SSWφ(UR, RT) engages in X if W, RBAC, and SODAφ(UR) syn-
chronously engage in X.

Example 5.4 (SoDA-Secure Workflow Process) We return to our running exam-
ple. Consider again the drug dispensation workflow, modeled by the work-
flow execution process W, the user-role assignments UR1, UR2, and UR3, and
the role-task assignment RT, introduced in Section 4.1 and 4.3, respective-
ly. Furthermore, recall the workflow’s SoD policy introduced in Example 5.1
and formalized by the term φ = Patient ⊗ ( (¬{Claire})+ u (PrivacyAdvocate⊗
Pharmacist ⊗ (Nurse t Researcher t Therapist )+)). We concluded in Exam-
ple 4.2 that i3 = 〈t1.Fritz, t2.Emma, add.Fritz.PrivacyAdvocate, t3.Fritz, t5.Bob〉 is a
trace of SW(UR1, RT). However, i3 is not a trace of the SoDA-secure process
SSWφ(UR1, RT) because i3 is not a trace of SODAφ(UR1). In particular, when
Fritz executes t1 in i3 he acts only in the role Patient and when he later executes t3

he acts as a Patient and a PrivacyAdvocate. By Definition 5.6 and 5.7, SODAφ(UR1)

engages in one execution event where the respective user acts as a Patient and
one where the user acts as a PrivacyAdvocate. However, due to the ⊗-operator
between the corresponding subterms in φ, these users must be different, i.e. both
cannot be Fritz. Of course SODAφ(UR1) engages in further execution events, but
Fritz does not satisfy the respective subterms. Hence, SODAφ(UR1) accepts i3’s
prefix 〈t1.Fritz, t2.Emma,add.Fritz.PrivacyAdvocate〉 but does not engage in t3.Fritz
afterward.

49



Chapter 5. Generalization of SoDA

In contrast, SODAφ(UR1) accepts the trace i4 = 〈t1.Dave, t2.Emma,
add.Fritz.PrivacyAdvocate, t3.Fritz, t5.Bob, add.Alice.Pharmacist, t7.Alice, t9.Gerda,
t10.Gerda,X〉. By Theorem 5.1 and because X ∈ i4 we have that (i4 � Σ) |=T

UR1
φ.

In other words, i4 models a workflow instance that satisfies the drug dispen-
sation workflow’s SoD policy. Furthermore, by engaging in the first adminis-
trative event in i4, the user-role assignment changes to UR2 and after engaging
in the second administrative event it becomes UR3. Thereby, every task exe-
cution is authorized and RBAC(UR1, RT) accepts i4 as well. Finally, it is easy
to see that (i4 � XX) ∈ T(W), i.e. i4 is also a workflow trace of W. As a result,
i4 ∈ T(SSWφ(UR1, RT)). F

This example illustrates how the three kinds of processes presented so far
interact and how each of them enforces its corresponding specification: W for-
malizes the workflow model, RBAC a possibly changing workflow-independent
RBAC policy, and SODAφ(UR) an SoD policy formalized in SoDA, while ac-
counting for changing user-role assignments.

We are now ready to map our processes to a software implementation. We
return to the drug dispensation workflow in Section 6.5, when reporting on the
performance of our implementation.

50



Chapter 6

Implementation

In this chapter, we describe an implementation of SoD as a Service. Our goal
is to demonstrate the flexibility of this approach, to analyze its scalability, and
to identify performance-critical parameters. We use the SoDA-secure process as
blueprint for our implementation. Its sub-processes naturally map to compo-
nents of a SOA as illustrated in Figure 6.1. The components’ interfaces can be
inferred from the sets of events on which the respective processes synchronize
and the processes themselves describe the components’ behavior. We proceed by
implementing W by a workflow engine, RBAC by a user repository, and SODAφ

by a program called a SoDA-enforcement monitor. Workflow engines and user
repositories are well-established concepts and we therefore realize them using
off-the-shelf components. The standalone SoDA-enforcement monitor, howev-
er, is something fundamentally new. Hence, we implemented it from scratch,
indicated by dark gray in Figure 6.1.

Figure 6.1. From theory to practice: mapping processes to software components.

6.1 Technical Objectives

We aim to realize an effective, practical, and efficient implementation of SoD
as a Service. By effective we mean that the implementation fulfills its purpose.
Namely, it should support the execution of arbitrary workflows, facilitate chang-

51



Chapter 6. Implementation

ing RBAC policies, and correctly enforce SoD constraints that are specified as
SoDA terms.

We understand practicability in the sense that the integration and configura-
tion effort is moderate. The main components of our system should be loosely
coupled in order to enable a separation of concerns and to allow the integration
of preexisting components, such as a legacy workflow system. Furthermore,
the system should be configurable using standard means, e.g. a workflow def-
inition, an RBAC policy, and an SoD policy, rather than requiring additional,
labor-intensive settings.

The performance of our implementation is critical to the success of our ap-
proach. We call the running time of a system with a workflow engine and a user
repository, but without a SoDA-enforcement monitor, the running time baseline.
Our objective is to enforce SoD constraints efficiently, that is with a low overhead
compared to the running time baseline.

6.2 Architecture

As defined in Section 5.5, a SoDA-secure process is the parallel, partially syn-
chronized execution of three sub-processes, each responsible for a specific task.
Due to the associativity of CSP’s synchronous parallel-composition operator ‖ ,
these three processes can be grouped in any order. Furthermore, the set of events
on which these processes synchronize defines the kinds of events each process
engages in. Therefore, any subset of these three processes can be mapped to
an enforcement monitor and the set of events synchronized with the remaining
processes specifies the monitor’s interface. This is of particular interest if a sys-
tem already provides one of the components we model by our processes. For
example, suppose a system comes with a workflow engine and an enforcement
monitor for workflow-independent authorizations. In this case, it is sufficient to
generate an enforcement monitor for the SoDA-enforcement process and to syn-
chronize all execution and administrative events with the existing components.

Figure 6.1 shows our general approach of mapping W, RBAC, and SODAφ

to individual system components. The concrete software tools we use and their
intercommunication are illustrated in Figure 6.2; newly developed components
are again indicated in gray. Ignore the arrows and labels for the moment.

• Workflow Engine: We use the IBM WebSphere Process Server (WPS)
[2011] as a workflow engine. WPS runs on top of the IBM WebSphere
Application Server (WAS) [2012b], which is IBM’s Java EE application serv-
er [Haugland et al. 2004].

52



6.2. Architecture

Figure 6.2. SoD as a Service architecture

• User Repository: The IBM Tivoli Directory Server (TDS) [2012a] serves
as a user repository. TDS is an LDAP server whose LDAP schema we
configured to support RBAC policies.

• SoDA-Enforcement Monitor: We implemented the SoDA-enforcement
monitor in Java and wrapped it as a web service, using Apache Axis [2012a]
running on top of Apache Tomcat [2012b].

Along with the various web service standards, many semi-formal business
process modeling languages have emerged. Backed by numerous software ven-
dors, the Web Service Business Process Execution Language (WS-BPEL) [Alves et al.
2007], or BPEL for short, is a popular standard for describing workflows at the
implementation-level. A BPEL workflow definition can be directly executed by a
workflow engine. At design time, we define a workflow in BPEL, possibly gen-
erated from a BPMN model, and deploy it to WPS. We use the BPEL extension
BPEL4People [Agrawal et al. 2007] to specify human tasks.

LDAP supports RBAC with the object class accessRole. Instances of this
class represent a role and store the distinguished name of their members, typ-
ically instances of inetOrgPerson, in the field member. We encode U , R, and
UR in LDAP’s export format LDIF and send it to TDS, or we administer them
directly through TDS’ web interface.

Using an ASCII version of the SoDA grammar, we encode SoDA terms as
character strings and send them to the SoDA-enforcement monitor with a stan-
dalone client.

53



Chapter 6. Implementation

By adopting a service-oriented architecture, we achieve a loose coupling
between our three main system components. This allows us to integrate two
off-the-shelf components and our newly developed SoDA-enforcement monitor.
Hence, we achieve the flexibility described in Section 6.1.

The downside of a SOA approach is the increased communication and seri-
alization overhead. To determine whether a user is authorized to execute a task
instance with respect to an SoD constraint, the SoDA-enforcement monitor re-
quires context information, which must be sent across the network. Our design
decisions in this regard are explained in Chapter 7 and the performance analy-
sis in Section 6.5 shows that the communication overhead is acceptable. Similar
trade-offs between flexible, distributed architectures with an increased commu-
nication overhead versus monolithic architectures with a smaller communication
overhead have been made in the past. For example, the Hierarchical Resource
Profile for XACML [Anderson 2005] proposes sending the hierarchy, based on
which an authorization decision is made, to the access control monitor along
with each access request. As with our architecture, the access control monitor
needs considerable context information to compute an access decision.

6.3 Enforcement

Our prototype system implements a SoDA-secure workflow process SSWφ as
follows. The SSWφ process engages in three kinds of events: execution events,
administrative events, and the event X. The implementation and handling of
administrative events and the event X is straightforward. We take therefore a
closer look at execution events and explain why every task instance in our sys-
tem corresponds to an execution event that is accepted by SSWφ. An execution
event corresponds to a sequence of steps in our implementation.

Consider the SoDA-secure workflow process

SSWφ(UR, RT) = W ‖
X
(RBAC(UR, RT) ‖ SODAφ(UR))

for a SoDA term φ, an RBAC policy (UR, RT), and a workflow execution pro-
cess W that models a workflow w. Assume that i ∈ T(SSWφ(UR, RT)) corre-
sponds to an unfinished workflow instance of w. Let UR′ be the user-role as-
signment after executing the administrative events in i. Assume that t is the
next task of w that is instantiated and executed in the workflow instance corre-
sponding to i. We now look at the steps that our architecture performs, which
will finally constitute an execution event x = t.u, for a user u. We refer to an
arrow labeled with k in Figure 6.2 as (Ak).

54



6.3. Enforcement

1. Instantiation: The creation of x is triggered by the termination of the pre-
ceding task instance, i.e. the rightmost execution event in i, or by the in-
stantiation of the workflow instance corresponding to i.

2. RBAC Authorization: In SSWφ, authorization decisions are made by the
processes RBAC and SODAφ, whereas W simply defines the order in which
task instances are executed. This is handled differently in most commercial
workflow systems, including ours. For example, BPEL4People requires the
definition of a query, called a people link, for every task. When the workflow
engine instantiates the task, it executes the respective query against the
user repository. The returned users are candidates for executing the newly
created task instance.

For a user u, the process RBAC(UR′, RT) accepts the execution event t.u if
u is assigned to one of the roles in Rt = {r | (r, t) ∈ RT} with respect to UR′.
Therefore, during design time, we specify t’s people link in such a way that
the user repository returns all users who are assigned to a role in Rt. In
other words, the user repository keeps track of the user-role assignment UR
and the workflow definition specifies the role-task assignment RT.

WPS evaluates t’s people link after every instantiation of t. Initially, the
people link is sent to TDS (A1). Afterward, TDS returns the set of users
U1 = {u | ∃r ∈ Rt . (u,r) ∈UR′} to WPS (A2).

3. Refinement to SoD-Compliant Users: Next, we select those users from U1

who are allowed to execute t with respect to φ and i. Namely, we compute
the set of users U2 = {u ∈U1 | i ˆ〈t.u〉 ∈ T(SODAφ(UR′))}.

WPS provides a plugin interface that allows one to post-process the sets of
users returned by a user repository. We wrote a plugin for this interface
that sends U1, their assignments to roles UR′1 = {(u,r) ∈UR′ | u ∈U1}, and
the identifiers of w and i to the SoDA-enforcement monitor (A3). We refer
to this web service call as a refinement call.

For every workflow, the SoDA-enforcement monitor stores the correspond-
ing SoDA term. Furthermore, it keeps track of the users who execute task
instances (see step Claim). Together with the above mentioned inputs, the
SoDA-enforcement monitor therefore has all the necessary parameters to
compute U2, which it then returns to WPS (A4).

4. Display: A user can interact with WPS through a personalized web inter-
face. Once a user has successfully logged into the system, WPS displays
a list of task instances that the user is authorized to execute. We call this

55



Chapter 6. Implementation

list the user’s inbox. For every user u ∈ U2, i ˆ〈t.u〉 ∈ T(SSWφ(UR, RT)).
Therefore, WPS displays t in the inbox of every user in U2.

5. Claim: In the workflow terminology, if a user requests to execute a task,
he is said to claim the task. One of the users in U2 must claim t by clicking
on t in his inbox. Assume the user u claims t, which corresponds to the
execution event t.u. Instantaneously, t is removed from the inboxes of all
other users. At this point, we must communicate to the SoDA-enforcement
monitor that u is executing t. In addition, we send the roles assigned to u
to the monitor (A5). We refer to this web service call as a claim call.

6. Termination: Afterward, u is prompted with a form whose completion
constitutes the work associated with t. The work is completed when the
form is submitted. If the instance of t does not terminate the workflow
instance, its execution triggers the instantiation of at least one more task.

Summarizing, our system effectively enforces abstract SoD constraints as
specified in Section 6.1. Arbitrary workflows, constrained by a possibly chang-
ing RBAC policy and an abstract SoD policy, can be executed on WPS. The prac-
ticability of our approach is further supported by performance measurements
for our running example in Section 6.5. However, we first examine its runtime
complexity.

6.4 Complexity

When analyzing the runtime complexity of our SoDA-enforcement monitor im-
plementation, it suffices to consider the complexity of refinement calls. The com-
plexity of claim calls are negligible compared to refinement calls and is therefore
not discussed.

In general, the problem of deciding whether a term is satisfied by a set of
users is NP-complete [Li and Wang 2008]. The SoDA-enforcement monitor must
solve this decision problem for every user received through a refinement call.
Therefore, it comes as no surprise that refinement calls have a worst-case expo-
nential runtime complexity. However, we can show that the exponent remains
small for moderate size workflows.

The parameters of a refinement call are a set of users, U1, their role assign-
ments, UR′1, and the identifiers of i and w. Using the identifier of w, the monitor
retrieves φ. With the identifier of i, it retrieves all the users who have executed
task instances in i and their role assignments at that time.

For each u ∈U1, the SoDA-enforcement monitor computes whether i ˆ〈t.u〉 ∈
T(SODAφ(UR′1)). This computation is executed |U1| = n times. Consider the

56



6.5. Performance Measurements

[.]-mapping. The evaluation of a unit term can be performed in polynomial
time in the size of |U | and |R|; i.e. p(|U |, |R|) for a polynomial p. In the worst
case, SODAφ(UR′1) branches 2|U | times per operator in φ. If m is the number of
operators, the worst-case runtime complexity is thus in O(n m2|U | p(|U |, |R|)).

The exponential factor originates from the ⊗-operator, which causes
SODAφ(UR′1) to branch for all disjoint subsets of U . Let Ui+u = userset(users(i))∪
{u}, i.e. the set of users in execution events in i and u. If we check whether
i ˆ〈t.u〉 ∈ T(SODAφ(UR′1)), the users in U \ Ui+u are not relevant. We there-
fore need not branch over all partitions of U but only over those of Ui+u. If φ

does not contain a +-operator, then the maximal number of users in business
events in i is m + 1 and therefore |Ui+u| ≤ m + 2. If φ does contain a +-operator,
then |Ui+u| ≤ |U |. Our implementation exploits these observations. Hence, its
runtime complexity is in O(n m2|Ui+u| p(|U |, |R|)) for |Ui+u| as discussed above.

Our experience with business process catalogs, such as the IBM Insurance
Application Architecture (IAA) [IBM 2009], is that workflows contain a good
dozen human tasks on the average. Furthermore, most workflow modeling lan-
guages allow the decomposition of workflows into sub-workflows. Hence, we
conclude that the performance penalty imposed by the SoD as a Service ap-
proach remains acceptable for most workflows. We provide performance mea-
surements that support this in the following section.

6.5 Performance Measurements

We return to the drug dispensation workflow introduced in Chapter 4, the term
φ from Example 5.1, and the trace i4 = 〈t1.Dave, t2.Emma, add.Fritz.PrivacyAdvocate,
t3.Fritz, t5.Bob, add.Alice.Pharmacist, t7.Alice, t9.Gerda, t10.Gerda,X〉 from Exam-
ple 5.4.

We modeled the workflow in BPEL, extended by BPEL4People, and deployed
it on WPS. We set up the initial user-role assignment UR1 using TDS’ web in-
terface and deployed φ, encoded as string, to the SoDA-enforcement monitor.
Furthermore, we configured WPS to use our plugin to post-process the sets of
users returned when evaluating people links. We then executed instances of
the drug dispensation workflow. For example, we logged into WPS as Dave
and started a workflow instance by submitting a form that corresponds to t1

(Request Drugs). Next, we logged into the system as Emma, claimed the newly
created instance of the task t2 (Retrieve Patient Record), and executed it by filling
in the corresponding form. Through TDS’ web interface we then assigned Fritz to
the role PrivacyAdvocate. Thereby, UR1 evolved to UR2. Afterward, we executed
t3 (Check Anonymization Requirements) as Fritz. This sequence of activities corre-

57



Chapter 6. Implementation

a. Refinement calls b. Claim calls

Figure 6.3. Average service call times in milliseconds (ms)

sponds to a prefix of i4. In the following, we report on the average performance
of ten executions of workflow instances corresponding to i4.

Compared to the running time baseline, the running time of our prototype
system is increased by a refinement and a claim call for every task instance. We
call the time it takes to call a web service and to retrieve its return values the
total running time of a web service, which we decompose into two parts: the
communication time encompasses the time to serialize, transmit, and deserialize
the exchanged data and the computation time is the time to execute the service’s
functionality. Figure 6.3 illustrates the averaged communication and computa-
tion times in milliseconds (ms) for the ith task instance, for i ∈ {1, . . . ,7}.

The communication time depends on various factors including the network
throughput, latency, the payload size, and also the time taken to serialize Java
objects to SOAP message parameters using the Apache Axis framework. We
run the service client and the SoDA-enforcement monitor on two different com-
puters at the same geographical location, connected by a standard enterprise
network with an average latency of 1 ms. Both computers have off-the-shelf
configurations.1 The communication time averages between 150 ms and 200 ms
per call.

The computation time for claim calls was always around 24 ms. The compu-
tation time of refinement calls, however, increased with the number of executed
task instances. As derived in Section 6.4, the operators in φ cause this time to
increase exponentially.

1Client: MS Windows XP on Intel Core Duo 2 GHz processor with 3 GB RAM. Server: MS
Windows Server 2003 on Intel Xeon 2.9 GHz processor with 4 GB RAM.

58



6.5. Performance Measurements

Finally, we compare the total running time of these additional calls to the
time it takes to execute a task instance in a system without a SoDA-enforce-
ment monitor. The refinement call increases the time between the termination of
a preceding task instance and the moment the new task instance is ready to be
claimed by a user. The durations for these steps range between 2 and 15 seconds,
depending on the load on WPS and the latest patches installed on it. Claiming
a new task instance takes only 1–3 seconds. A user clicks on the instance in
his inbox and the corresponding form is displayed on his screen. In both cases,
the additional running time caused by the SoDA-enforcement monitor calls is
an order of magnitude smaller than the running time baseline, which varied
between 2 and 5 seconds.

Given the observations made in the previous section and the times reported
here, we conclude that the integration of our SoD as a Service implementation
into an existing workflow system imposes a performance penalty below 10%.
Consequently, we achieved all the objectives described in Section 6.1.

59



60



Chapter 7

Evaluation

We conclude Part II with an evaluation of our workflow-independent approach
to enforcing abstract SoD constraints in a dynamic workflow environment, de-
veloped in the previous chapters. Many of the shortcomings presented below
serve as motivation for Part III.

7.1 Limitations of an Automated Mapping

As elaborated in Chapter 5, the abstract nature of SoDA has valuable advantages.
However, it also poses a challenge when mapping terms onto workflows. In
particular, Li and Wang’s set-based semantics SODAS does not specify a mapping
between subterms and tasks. We use the workflows in Figure 7.1 to evaluate our
generalization of SODAS to SODAT, our automated mapping to processes, and
explore directions for future work.

Consider the medical workflow shown in Figure 7.1a and suppose that we
want to enforce the SoDA term Nurse ⊗ Doctor. This term does not specify
whether the Doctor performs the surgery and the Nurse prepares the instruments
or vice versa. We solve this problem by incorporating an RBAC policy into the
SoDA-secure process. For this medical workflow, the depicted role-task assign-
ment rules out workflow instances where the Nurse performs the surgery and
the Doctor prepares the instruments.

However, incorporating an RBAC policy does not solve all refinement ques-
tions related to mapping terms to processes. In particular, when duties are to be
separated between tasks assigned to the same role, an RBAC policy is of little
help. Consider the payment workflow in Figure 7.1b, ignoring the gray parts
for the moment, and the term Accountant⊗ Accountant+. Implicitly, we would
assume that a separation of duties between the tasks Prepare and Approve is in-
tended. However, a trace that corresponds to a workflow instance where one
Accountant executes Prepare and Approve and another Accountant executes Issue is
also accepted by the SoDA-secure process. A semi-automated approach where

61



Chapter 7. Evaluation

a. Medical workflow b. Payment workflow

Figure 7.1. Strengths and weaknesses of role-based refinement

subterms are manually mapped to tasks would solve this problem. However, we
studied only fully automated mappings and consider semi-automated solutions
outside the scope of this dissertation; left to future work.

An inherent weakness of SoDA that is revealed by an automated mapping is
its poor support for loops. Consider the payment workflow in Figure 7.1b, now
also including the gray elements, i.e. looping over the tasks Prepare and Approve
until the payment is approved. SoDA provides no means to specify an SoD
constraint for each loop iteration. For example, we cannot specify that each pair
of instances of Prepare and Approve must be executed by different users. Only
terms containing a +-operator map to SoDA-enforcement processes that accept
an arbitrary number of execution events. By SoDA’s syntax S however, the
+-operator only ranges over unit terms. Li and Wang [2008] motivate this design
decisions with the psychological acceptability principle postulated by Saltzer and
Schroeder [1975]. As a consequence, our approach supports only finitely many
SoD constraints, i.e. ⊗-operators, per term and does therefore not support loops
in their full generality. Decomposing workflows into sub-workflows that do not
contain loops is a possible solution to overcome this limitation. However, it is not
fully automated either and also remains as future work. The concept of release,
which we introduce in Chapter 8, supports a scoping of authorization constraints
and is therefore a candidate solution for manually decomposing workflows and
refining SoDA’s subterm-task mapping.

7.2 Continuous Satisfiability

The original semantics for SoDA, SODAS, as well as our generalizations SODAM

and SODAT provide a binary decision as to whether a set, multiset, or trace,
respectively, satisfy a given term. For example, consider a term φ and a trace i.
SODAT tells us whether i satisfies φ but it makes no statement whether there
exists a trace i′ such that iˆ i′ satisfies φ. In other words, SoDA’s notion of sat-
isfaction does not mean “we can still fulfill all constraints” but rather “all con-
straints have been fulfilled”. As a consequence, a workflow trace corresponding

62



7.3. Communication Versus Statefulness

to a workflow instance that has just been started typically does not satisfy φ.
Only when engaging in the final event X is φ supposed to be satisfied. This is
also reflected in Theorem 5.1, which makes only statements about successfully
terminated workflow instances and not about their prefixes.

Developing an enforcement monitor that continuously ensures that every ac-
cepted prefix can be extended to a workflow trace that satisfies φ is therefore
another direction for future work. In Chapter 9, we formalize a generalization
of this problem by the notion of an obstruction and introduce enforcement pro-
cesses, which ensure an obstruction-free authorization enforcement.

7.3 Communication Versus Statefulness

A SoDA-enforcement process SODAφ(UR) is parametrized by the user-assign-
ment relation UR that is modified when the process engages in administra-
tive events. Our SoDA-enforcement monitor, however, does not store all tuples
of UR. It receives all relevant tuples as call parameters and stores only those of
users who claim a task instance. Although this approach increases the commu-
nication overhead between WPS and the SoDA-enforcement monitor, it reduces
unnecessary replication. In fact, user repositories of large enterprises may con-
tain thousands of entries and only a few of them may be relevant with respect
to a given workflow instance.

Our SoDA-enforcement monitor is stateful because the enforcement of SoD
constraints ranges over multiple tasks and may depend on user-role assign-
ments. The service must keep track of the users who execute task instances
and the roles they act in at that time. Workflow engines such as WPS keep
track of the users who execute task instances but they do not store the history of
their assignments to roles. This information is stored in the SoDA-enforcement
monitor; the workflow engine and the user repository remain unchanged.

7.4 Abstractions

For simplicity, our SoDA-enforcement monitor does not cope with the abort or
suspension of task instances. In practice, however, WPS users can hand back
unfinished task instances to the workflow engine or trigger the abortion of a
workflow instance. Furthermore, we enforce exactly one term per workflow.
This is not a limitation as two or more terms can be combined into a single
term with the appropriate SoDA operators; e.g. u for a conjunction or t for
a disjunction. If no SoD constraint must be enforced, the term All+, which is
satisfied by every non-empty multiset of users, can be used.

63



64



Part III

A Workflow-Specific Approach

65



66



Chapter 8

Scoping Constraints
With Release Points

To separate or bind duties between tasks in a history-dependent manner, we
must keep track of which users executed previous instances of these tasks in
order to determine who is authorized to execute future instances. Thus, we build
up associations between task instances and users during workflow execution.
Future authorization decisions in turn depend on these associations. In this
chapter, we introduce the concept of release, which removes such associations
and thereby scopes authorizations to subsets of task instances. We annotate
workflow models with so-called release points. At run time, releasing is triggered
when the control-flow passes through a release point, linking the enforcement of
authorizations and a workflow’s control-flow. Hence, this approach is workflow-
specific.

8.1 Formalization

Analogous to Part II, we use CSP to formalize workflows and authorizations
that constrain their execution. We build on previous definitions but refine the
workflow formalization introduced in Chapter 4. In particular, we change the
underlying set of events and model workflows at two levels of abstraction.

8.1.1 Workflows

At the specification level, a workflow models the tasks and their causal dependen-
cies that together implement a business objective. The execution level refines the
specification level and also models who executes which task. The benefit of this
distinction becomes evident in Chapter 9. For now, we only make the observa-
tion that the specification of a workflow’s control-flow, and thereby its business
objective, is independent of who is executing tasks. For example, the workflow

67



Chapter 8. Scoping Constraints With Release Points

Figure 8.1. BPMN model of the collateral evaluation workflow

execution process modeling the drug dispensation workflow in Example 4.1 al-
lows every task to be executed by any user. Thus, we may just as well abstract
away from users when specifying workflows.

For the remainder of this part, let O be a set of points, which we use to
model BPMN events. At the specification level, workflows are then formalized
as follows.

Definition 8.1 (Workflow Specification Process) A workflow specification pro-
cess is a process W such that T(W) ⊆ (T ∪O)∗X.

In other words, a workflow specification process may engage in tasks, points,
and finally the event X. We give below an example workflow, visualized in
BPMN, and a corresponding workflow specification process. This workflow
serves as running example for this and the next chapter.

Example 8.1 (Collateral Evaluation Workflow) The financial industry distin-
guishes between secured and unsecured loans. In a secured loan, the borrower
pledges some asset, such as a house or a car, as collateral for his debt. If the bor-
rower defaults, the creditor takes possession of the asset to mitigate his financial
loss.

Figure 8.1 shows a BPMN model of the collateral evaluation workflow, which
we adopted from IBM’s Information FrameWork [2010b]. Ignore the gray BPMN
elements for the moment. This workflow is executed by a financial institution to
evaluate, accept, and prepare the safeguarding of the collateral that a borrower
pledges in return for a secured loan.

For this example, let T = {t1, . . . , t5} where t1 refers to Compute Market Value,
t2 to Control Computation, etc., and O = {o1,o2,o3}, as shown in Figure 8.1. The

68



8.1. Formalization

workflow specification process W models the collateral evaluation workflow as
follows.

W = (W1 |||W2) ; (t5→ ((o2→W) u SKIP))
W1 = t1→ t2→ ((o1→W1) u SKIP)
W2 = o3→ t3→ ((t4→ SKIP) u SKIP)

We do not model data-flow in our example and therefore overapproximate gate-
way decisions with CSP’s internal choice operator u . F

Next, we model workflows at the execution level. The auxiliary relation
π = {(t.u, t) | t ∈ T ,u ∈ U}, which maps every execution event t.u to the task t,
links the specification level and the execution level. Given a workflow specifi-
cation process W, the process W[π−1] then models W at the execution level. It
engages in the execution event t.u, for any u ∈ U , if W engages in the task t. The
application of π−1 to W has no effect on points and X; i.e. if W engages in a
point or X, then so does W[π−1]. We may abuse the renaming notation to map
a trace i ∈ T(W[π−1]) to a trace i[π] ∈ T(W).

We disregard in Part III administrative events and thus Σ = T ∪X ∪O. Note
that what we call a workflow execution process in Part II corresponds in this part
to a workflow specification process W mapped to the execution level, i.e. W[π−1].
Furthermore, we adjust the definition of a workflow trace to also incorporate a
workflow’s points.

Definition 8.2 (Workflow Trace) A workflow trace is a trace i ∈ (X ∪ O)∗X. In
particular, for a workflow specification process W, if i ∈ T(W[π−1]) then i is a workflow
trace of W.

Example 8.2 (Workflow Traces) Let U = {Alice, Bob, Claire, Dave} for the collateral
evaluation workflow. Consider the following workflow traces:

i1 = 〈t1.Alice, t2.Bob, t4.Claire〉
i2 = 〈t1.Alice, o3, t3.Bob, t2.Alice, o1, t1.Bob, t2.Claire, t5.Claire, X〉
i3 = 〈t1.Alice, o3, t3.Bob, t2.Bob, o1, t1.Alice, t4.Dave, t2.Claire, t5.Claire, X〉
i4 = 〈t1.Alice, o3, t3.Bob, t2.Bob, o1, t1.Bob, t4.Bob, t2.Claire, t5.Dave, X〉

The traces i2, i3, and i4 model successfully terminated workflow instances of
the collateral evaluation workflow, where the inner loop was executed twice,
i.e. i2, i3, i4 ∈ T(W[π−1]). We discuss the differences between these traces in lat-
er examples. The trace i1, however, neither models a successfully terminated
workflow instance nor is it a workflow trace of W[π−1] because t4 can only be
executed after t3 has been executed. F

Example 8.2 supports our observation in Chapter 4 that successfully termi-
nated workflow instances may contain multiple instances of a task. For example,

69



Chapter 8. Scoping Constraints With Release Points

t2 and t4 are part of the collateral evaluation workflow and i2 contains two exe-
cution events involving t2 but none involving t4.

8.1.2 SoD Constraints

Let T1 and T2 be two non-empty, disjoint sets of tasks , i.e. |T1| ≥ 1, |T2| ≥ 1, and
T1 ∩ T2 =∅, and let O be a set of points. An SoD constraint is a triple (T1, T2,O).

Definition 8.3 (SoD Process) For an SoD constraint s = (T1, T2,O), the SoD process
for s is the process As(U ,U ) where

As(UT1 ,UT2) = t : T1.u : UT1 → As(UT1 ,UT2 \ {u})

� t : T2.u : UT2 → As(UT1 \ {u},UT2)

� o : O→ As(U ,U )

� t : T \ (T1 ∪ T2).u : U → As(UT1 ,UT2)

� o :O \O→ As(UT1 ,UT2)

� SKIP .

An SoD process As(UT1 ,UT2) offers the (external) choice between six kinds
of events. (1) For a task t ∈ T1 and user u ∈ UT1 , As engages in the execution
event t.u. Afterward, As associates u with T1 by removing u from UT2 and there-
by blocking u from executing future instances of tasks in T2. (2) Symmetrically,
As associates a user u∈UT2 with T2 and blocks u from executing future instances
of tasks in T1 after executing an instance of a task in T2. (3) By engaging in a
point o ∈ O, As releases all users from their associations with T1 and T2. We
therefore call a point used in an SoD (or BoD) constraint a release point. (4) As

engages also in every execution event involving tasks other than T1 and T2 and
(5) points other than O without changing its behavior. (6) Finally, As may behave
like SKIP and terminate at any time.

We may use the following shorthand notation to describe SoD constraints
and to avoid cluttering graphical workflow models. Consider the SoD constraint
(T1, T2,O). If T1, T2, or O are singleton sets, we simply use the respective element
and omit the set notation. For example, if T1 = {t1}, T2 = {t2}, and O = {o}, we
write (t1, t2,o).

To visualize SoD constraints in BPMN, we introduce a novel class of internal
(BPMN) events, called release events. This facilitates the description of releasing
as part of a workflow’s control-flow. The release event icon is a user who leaves
a door, as shown in Figure 8.1 with o1, o2, and o3. We use the dot-dashed BPMN
notation for grouping tasks to specify sets of tasks. For example, Figure 8.1

70



8.1. Formalization

Figure 8.2. Location matters: The placement of a release point within a workflow effects the
semantics of the respective SoD constraint.

contains a group denoting the set of tasks {t1, t2, t3, t4}. An SoD constraint is
graphically described by linking two disjoint, non-empty sets of tasks and a set
of release events with a dotted line, joined by a node labeled with the sym-
bol “ 6=”. This notation is an adaptation of BPMN’s textual annotation of tasks.
If one of the sets of tasks is a singleton set, we may omit the BPMN grouping
and directly link the respective task and the 6=-node. For example, Figure 8.1
contains the SoD constraint s2 = ({t1, t2, t3, t4}, t5,o1).

The effect of an SoD constraint is only fully defined with respect to a work-
flow specification process, which defines the order in which task instances are
executed and release points are reached. We illustrate the effect of different
placements of a release point with an example.

Example 8.3 (Release Point Placement) Figure 8.2 shows a workflow with two
tasks and three SoD constraints, si = (t1, t2,oi) for i ∈ {1,2,3}. Successfully ter-
minated instances of this workflow correspond to workflow traces of the form

〈 o1, o2,o3, t1.u1,1, . . . ,o3, t1.u1,n1 , t2.u1,n1+1,

o2,o3, t1.u2,1, . . . ,o3, t1.u2,n2 , t2.u2,n2+1,

. . .

o2,o3, t1.um,1, . . . ,o3, t1.um,nm , t2.um,nm+1,X〉

for nm,m ≥ 1. The only difference between s1, s2, and s3 is the position of the
respective release point within the workflow. The SoD constraint s1 is satisfied
if {u1,1,u1,2, . . . ,u1,n1 ,u2,1, . . . ,um,nm} ∩ {u1,n1+1,u2,n2+1, . . . ,um,nm+1}=∅. In other
words, s1 is satisfied if no user who executes instances of t1 executes instances
of t2 and vice versa. Because o1 is reached only once and before any task instance
is executed, effectively no releasing takes place. Reaching a release point that is
placed at the very start or end of a workflow has no effect and, hence, the con-
straint separates duties over all instances of the respective tasks. This illustrates
that our policies are more expressive than existing SoD formalisms that do not
distinguish between different instances of the same task.

71



Chapter 8. Scoping Constraints With Release Points

Let k∈ {1,2, . . . ,m}. The SoD constraint s2 is satisfied if uk,nk+1 6∈ {uk,1,uk,2, . . . ,
uk,nk
}. That is, for every execution of the workflow’s outer loop, s2 separates

the duties between users who execute instances of t1 and those who execute
instances of t2. Finally, s3 is satisfied if uk,nk

6= uk,nk+1. Thus, in every execution
of the workflow’s outer loop, only the user who executes the last instance of t1

must differ from the user who executes t2’s instance. It follows that a workflow
instance that satisfies s1 also satisfies s2 and s3. Moreover, an instance satisfying
s2 also satisfies s3. F

8.1.3 BoD Constraints

Assume we want to bind duties between a set of tasks T. At first, every user is
authorized to execute an instance of a task in T. Once a user has executed an
instance of a task in T, no other user is authorized to execute future instances
of tasks in T anymore. Again we use release points to scope BoD constraints to
subsets of task instances.

Let T be a non-empty set of tasks, i.e. |T| ≥ 1, and let O be a set of points.
A BoD constraint is a tuple (T,O).

Definition 8.4 (BoD Process) For a BoD constraint b = (T,O), the BoD process for
b is the process Ab(U ) where

Ab(U) = t : T.u : U→ Ab({u})

� o : O→ Ab(U )

� t : T \ T.u : U → Ab(U)

� o :O \O→ Ab(U)

� SKIP .

The BoD process Ab(U) offers the external choice between five kinds of
events. (1) It engages in every execution event t.u for t ∈ T and u ∈ U. Ini-
tially U = U . Once a user u executes an instance of a task in T, U is updated to
{u}. Only after engaging in one of the release points in O are users other than u
authorized to execute instances of tasks in T again. Thus, for t ∈ T, executing t.u
“binds” u to T until (2) an o ∈ O is reached and u is released. In particular, for
|T| = 1 the respective BoD constraint binds the duties of all instances of a sin-
gle task. Similar to SoD processes, Ab(U) engages (3) in every execution event
involving tasks other than those in T, (4) points other than the ones in O, and
(5) may behave like SKIP and terminate at any time.

As with SoD constraints, we visualize BoD constraints in BPMN by linking a
non-empty set of tasks and a set of release events with a dotted line, joined by

72



8.1. Formalization

Figure 8.3. RBAC policy for the collateral evaluation workflow

a node labeled with the symbol “=”. We may also use the shorthand notation
introduced for SoD constraints. For example, Figure 8.1 contains the BoD con-
straint b = ({t3, t4},o3). Similar to SoD processes, the placement of release points
with respect to a workflow specification process effects the semantics of a BoD
constraint.

8.1.4 Composition

Let UT be a user-task assignment, S a set of SoD constraints, and B a set of
BoD constraints. The triple (UT,S, B), called an authorization policy, combines
workflow-independent and history-independent authorizations in the form of
UT and workflow-specific, history-dependent authorizations in the form of S
and B. We define the semantics of authorization policies by composing the
respective processes.

Definition 8.5 (Authorization Process) For an authorization policy φ = (UT,S, B),
the authorization process for φ is the process

Aφ = AUT ‖ ( ‖
s∈S

As) ‖ ( ‖
b∈B

Ab) .

By the trace semantics of CSP, a workflow trace i satisfies an authorization
policy φ = (UT,S, B), i.e. i ∈ T(Aφ), if and only if i satisfies UT, all SoD con-
straints in S, and all BoD constraints in B. Given a workflow specification pro-
cess W, we say φ is an authorization policy for W if all tasks and points in φ

appear in W. In the following example, we provide an authorization policy for
the collateral evaluation workflow.

73



Chapter 8. Scoping Constraints With Release Points

Figure 8.4. BPMN extension for modeling authorization constraints

Example 8.4 (Authorization Policy) Consider the authorization policy φ =

(UT,S, B), where UT = RT ◦UR, for the user-role assignment UR and the role-
task assignment RT illustrated in Figure 8.3, and S = {s1, s2} and B = {b} illus-
trated in Figure 8.1. Furthermore, consider the traces i2, i3, and i4 of Example 8.2,
which model successfully terminated instances of the collateral evaluation work-
flow. Trace i2 does not satisfy φ because Alice executed instances of t1 and t2

before reaching o1, thereby violating s1. Trace i3 does not satisfy φ for several
reasons: s2 is violated because Claire executed an instance of t2 and an instance
of t5, b is violated because the instances of t3 and t4 are not executed by the same
user, and Claire is not authorized to execute instances of t5 with respect to UT.
However, i4 satisfies φ. F

8.2 BPMN Extension and Serialization

We return to BPMN’s meta-model introduced in Section 2.4. Figure 2.2 shows
BPMN’s meta-model classes in white and the new classes that we defined for
our extension in gray. Furthermore, Figure 8.4 shows the concrete notation used
to visualize the respective new modeling elements. New modeling elements are
shown in black and how they are connected to existing or other new elements is
illustrated in gray.

Let s = (T1, T2,O) be an SoD constraint. Using our BPMN extension, s is
modeled by a combination of new and existing modeling elements. The class
SoDConstraintNode connects all relevant elements. Each set of tasks is either mod-
eled by an instance of Activity or they are identified by an instance of Group. The
respective classes are connected to the SoDConstraintNode by instances of Con-
strainedTaskAssociation. Each release point in O is modeled by an instance of
class ReleaseEvent and all of them are connected to the SoDConstraintNode by

74



8.3. Tool Support

instances of ReleaseAssociation. A BoD constraint b = (T,O) is modeled analo-
gously. Instead of SoDConstraintNode, the central class is BoDConstraintNode and
instead of two sets of tasks only one set of tasks is connected to it.

The BPMN standard provides an extension mechanism [OMG 2011a]. Using
the extended meta-model as a blueprint, we specified an XML schema for our
BPMN extension. As Figure 2.2 shows, new modeling elements can be easily de-
fined by connecting to, and inheriting from, existing elements. Correspondingly,
our new schema file is only a few dozen lines long. We modeled the collateral
evaluation workflow in BPMN including our extensions and serialized the mod-
el in XML. Afterward, we successfully validated the XML file against the official
BPMN XML schema and the XML schema specifying our extension.

8.3 Tool Support

We implemented tool support for our BPMN extension by extending the model-
ing platform Oryx [2012]. Our objective was to gain modeling experience with
our BPMN extension, demonstrate its expressivity in a hands-on fashion, and
validate its ease of use.

Oryx is a good choice for our purpose. First, Oryx is designed to be extensi-
ble. As a result, our implementation required little programming effort. Second,
Oryx’s architecture and code is well-documented and mature. In particular, it
is the basis for commercial tools such as Signavio’s Process Editor [Signavio
2012] and the Activiti BPM Platform [Activiti 2012]. Third, Oryx’s source code
is freely available under the MIT license [OSI 2012], which gives us full access to
all implementation details and does not impede a potential commercial exploita-
tion. Finally, Oryx’s web-based architecture is ideal for demonstration purposes
because BPMN processes are modeled directly in a web browser and no extra
software need be installed.

Oryx adopts a standard three-tier architecture, with a web browser acting
as the presentation tier, a J2EE server as the application tier, and a database
as the data tier. The implementation provides extension mechanisms in the
presentation and application tier. We report on the performance of an extension
we made to the application layer in Section 9.4.3. In the following, we describe
our extension of the presentation layer to support our BPMN extension.

Oryx groups modeling elements and defines their visualization in so-called
stencil sets [Polak 2007]. A stencil set may extend existing stencil sets, thereby
extending an existing modeling language. We defined a stencil set that specifies
the modeling elements of our BPMN extension, as introduced in Section 8.2,
extending Oryx’s existing BPMN stencil sets. Figure 8.5 shows the user interface

75



Chapter 8. Scoping Constraints With Release Points

Figure 8.5. Screenshot of Oryx BPMN editor including authorization extension

of Oryx’s BPMN editor. Each palette on the left corresponds to a stencil set;
BPMN’s standard stencil sets are located on the top and our additional stencil set
is at the bottom. A BPMN model of the collateral evaluation workflow is shown
on the right, combining modeling elements from various stencil sets including
our new one.

76



Chapter 9

Aligning Authorization
and Business Objectives

In this chapter, we investigate the question of how to enforce an authorization
policy on a workflow without obstructing the workflow’s underlying business
objectives. To this end, we introduce the notion of an obstruction, formalizing
the misalignment of authorizations and business objectives. We start with a
motivational example.

Figure 9.1. Enforcement with and without obstruction

Example 9.1 (Obstruction Motivation) Consider again the simple payment
workflow and the abstract SoD policy P introduced in Example 1.1. Let UT
be the user-task assignment illustrated in Figure 1.1, let s = (t1,{t2, t3}) be the
SoD constraint that formalizes P, and thus the authorization policy for this ex-
ample is φ = (UT,{s},∅). As illustrated in Figure 9.1, we formalize the simple
payment workflow as the labelled transition system W and study its refinements
W1 and W2, both respecting φ. In W1, Bob may execute t1 but afterward only t3

is executable without violating φ. This, however, corresponds to a restriction of
the workflow at the specification level, indicated by the jagged arrow. We call
this situation an obstruction. In contrast, W2 avoids obstructions by being more
restrictive than W1 and not allowing Bob to execute t1. F

This example illustrates the tension between authorization and business ob-
jectives and suggests that authorization enforcement should be designed in a

77



Chapter 9. Aligning Authorization and Business Objectives

way that aligns both objectives. Our underlying assumption is that for achiev-
ing business objectives, it does not matter who is executing a task as long as
every task can be executed by an authorized user. As illustrated by Example 9.1,
we give the preservation of a workflow at the specification level priority over the
choice of who can execute a task at the execution level. We proceed by formulat-
ing the existence of an obstruction-free authorization enforcement as a decision
problem and analyzing its complexity.

9.1 Obstruction

We link the specification and execution level by the notion of an obstruction.

Definition 9.1 (Obstruction) Let W be a workflow specification process, φ an autho-
rization policy, and i ∈ T(W[π−1]) a workflow trace of W. We say that i is obstructed
if there exists a task t such that i[π]ˆt ∈ T(W) but there does not exist a user u such
that iˆ〈t.u〉 satisfies φ.

An obstruction describes a state of a workflow instance where the enforce-
ment of the authorization policy conflicts with the business objective represented
by the workflow. At the specification level, the business objective can be achieved
by executing a task t but at the execution level there is no user who is authorized
to execute t without violating the authorization policy φ.

Example 9.2 (Obstructed Workflow Trace) Consider the workflow specification
process W and the authorization policy φ introduced in Examples 8.1 and 8.4,
respectively. Furthermore, consider the workflow trace i = 〈t1.Alice, t2.Claire,
t3.Dave, t4.Dave〉, modeling an instance of the collateral evaluation workflow,
i.e. i ∈ T(W[π−1]). After executing the workflow instance corresponding to i, an
instance of task t5 can be executed according to the collateral evaluation work-
flow, i.e. i[π]ˆt5 ∈ T(W). However, the only users who are authorized to execute
instances of t5 with respect to UT are Alice and Dave, but neither iˆ〈t5.Alice〉
nor iˆ〈t5.Dave〉 satisfy φ. Hence, i is obstructed. In this example, the workflow
instance cannot even successfully terminate without violating φ. F

9.2 Enforcement Processes

We describe the enforcement of an authorization policy on a workflow specifi-
cation process W in terms of a process E that executes in parallel with W[π−1],
formally W[π−1] ‖ E.

78



9.2. Enforcement Processes

Definition 9.2 (Enforcement Process) Let a workflow specification process W and an
authorization policy φ for W be given. An enforcement process for φ on W, written
Eφ,W , is a process that satisfies the conditions

(1) Aφ vT Eφ,W and

(2) (W[π−1] ‖ Eφ,W)[π] =F W .

Unlike the authorization process, the enforcement process not only imple-
ments the authorization policy φ but also takes W into account. Condition (1)
states that Eφ,W is at least as restrictive as Aφ. The failure equivalence used in
condition (2) states that at the specification level W is indistinguishable from
W constrained by Eφ,W .

Suppose Eφ,W is an enforcement process for φ on W. By CSP’s traces model,
if i ∈ T(W[π−1] ‖ Eφ,W) then i ∈ T(W[π−1]) and i ∈ T(Eφ,W). For a task t, it
follows by the failure equivalence of (W[π−1] ‖ Eφ,W)[π] and W, i.e. condition (2),
that if i[π]ˆt ∈ T(W) then there exists a user u such that iˆ〈t.u〉 ∈ T(Eφ,W). By
condition (1), it follows that iˆ〈t.u〉 satisfies φ. Hence, i is not obstructed and
Eφ,W is an obstruction-free enforcement of φ on W.

We now give an example of an enforcement process for the authorization-
constrained collateral evaluation workflow.

Example 9.3 (Enforcement Process) Consider W and φ from Example 9.2 and
the following processes.

E = (E1 ||| E2) ; (t5.Dave→ ((o2→ E) u SKIP))
E1 = t1.Alice→ t2.Claire→ ((o1→ E1) u SKIP)
E2 = o3→ t3.Bob→ ((t4.Bob→ SKIP) u SKIP)

All traces of E satisfy φ and therefore condition (1) of Definition 9.2 holds. By
the laws of CSP and the structure of E, (W[π−1] ‖ E)[π] = W[π−1][π] ‖ E[π] =

W ‖W = W and therefore condition (2) holds too. Thus, E is an enforcement
process for φ on W. F

For illustration purposes, this example is rather simple in that all instances
of the same task must be executed by the same user. For example, Alice is the
only user who executes instances of t1. Enforcement processes can, of course, be
much more complex and also authorize multiple users to execute instances of
the same task.

According to Definition 9.2, an authorization policy is only enforceable if
a workflow remains unchanged at the specification level. This is a design de-
cision and other options are possible. For example, one could choose to give
authorizations precedence over an obstruction-free enforcement. However, even

79



Chapter 9. Aligning Authorization and Business Objectives

if obstructed workflow instances are tolerated, our approach is helpful because
it reveals tasks that may not be executed. The workflow can consequently be
simplified without reducing the set of possible workflow instances.

9.3 The Enforcement Process Existence Problem

We now formulate the existence of an enforcement process as a decision problem
and present complexity bounds.

Definition 9.3 (The Enforcement Process Existence (EPE) Problem)

Input: A workflow specification process W and an authorization policy φ for W.

Output: Yes if there exists an enforcement process for φ on W or No otherwise.

We first show that EPE is NP-hard by reducing the NP-hard k-Coloring prob-
lem, summarized in Section 2.3, to EPE.

Lemma 9.1 EPE is NP-hard.

Proof. Given a k-Coloring instance consisting of a graph G = (V, E) and an in-
teger k, we describe a polynomial reduction to EPE. We construct a workflow
specification process W and an authorization policy φ = (UT,S, B) and show
that there exists a k-coloring for G if and only if there exists an enforcement
process for φ on W. Let T = V, for V = {v1,v2, . . . ,vn}, and let U = {1,2, . . . ,k}.
Now consider W = v1 → v2 → . . .→ vn → SKIP, UT = U × T , B = ∅, and for
every edge {vl,vm} ∈ E we construct an SoD constraint (vl,vm,∅). Figure 9.2
illustrates this construction for a graph with n = 5 and k = 4.

Figure 9.2. Reduction from k-COLORING to EPE

Let h = 〈v1,v2, . . . ,vn,X〉. Note that by the construction of W, h ∈ T(W). If an
algorithm for EPE returns Yes, then an enforcement process Eφ,W exists by Defi-
nition 9.3 and h ∈ T((W[π−1] ‖ Eφ,W)[π]) by Definition 9.2. It follows that there

80



9.3. The Enforcement Process Existence Problem

exists a workflow trace i = 〈v1.u1,v2.u2, . . . ,vn.un,X〉 ∈ T(W[π−1] ‖ Eφ,W). By our
construction, uj ∈ {1, . . . ,k}, for j ∈ {1, . . . ,n}. Therefore, every task (i.e. node)
is executed exactly once and thus associated with one of k users (i.e. colors).
By Definition 9.2, i ∈ T(Aφ) and therefore i satisfies every constraint in φ. In
particular, for every SoD constraint (vl,vm,∅) in S, the user ul who executes vl
is different from the user um who executes vm. Hence, i describes a k-coloring
for G.

Conversely, let col : V→ {1, . . . ,k} be a k-coloring for G and consider the pro-
cess P = v1.col(v1)→ v2.col(v2)→ . . .→ vn.col(vn)→ SKIP. Let i = 〈v1.col(v1),
v2.col(v2), . . . ,vn.col(vn),X〉. By our construction and because col is a k-coloring
of G, i ∈ T(As) for every s ∈ S. Furthermore, by our definition of UT, i ∈
T(AUT). It follows by Definition 8.5 and B = ∅ that i ∈ T(Aφ). Because every
trace in T(P) is a prefix of i, Aφ vT P. Furthermore, P[π] =F W and therefore
(W[π−1] ‖ P)[π] =F W. Hence, P is an enforcement process for φ on W by Defi-
nition 9.2.

Because this reduction is in polynomial time, it follows that EPE is NP-hard.
�

We do not know whether EPE is in NP. However, it is decidable when U and
W are finite.

Theorem 9.1 EPE is decidable if U and W are finite.

We sketch a proof here and give full details in Appendix A.5.

Proof Sketch. If U and W are finite, it follows by Definitions 4.3, 8.3, 8.4, and 8.5
and the operational semantics of CSP that Aφ is finite too. If there is an enforce-
ment process Eφ,W , it must satisfy the two conditions of Definition 9.2. Because
Aφ is finite, for every process P, such that Aφ vT P, there is a finite labelled
transition system that corresponds to P. We can therefore construct all processes
P that are candidates to be Eφ,W with respect to condition (1). Let P be one of
them. Because W and U are finite, so is W[π−1]. Furthermore, (W[π−1] ‖ P)[π]

is finite because π and P are finite. Because failure-refinement is decidable for
finite processes [Roscoe 1994], we can check if P satisfies condition (2), i.e. if
(W[π−1] ‖ P)[π] =F W. If P satisfies condition (2), then P is an enforcement
process for φ on W. If none of the finitely many candidate processes P satisfies
condition (2), then there exists no enforcement process for φ on W. �

The runtime complexity of solving EPE as sketched above is as follows. For
an SoD constraint s, consider the SoD process As. The number of states of a tran-
sition system that corresponds to As is in O(2|U |) because As is parametrized by
two subsets of U and there is a state for every possible subset. The number of

81



Chapter 9. Aligning Authorization and Business Objectives

states of a transition system corresponding to Ab, for a BoD constraint b, is linear
in the size of U . The number of states of a transition system corresponding to
AUT, for an user-task assignment UT, is constant. Let φ = (UT,S, B). By Defini-
tion 8.5 and CSP’s operational semantics for the parallel, synchronized compo-
sition of two processes (see Definition A.1 in Appendix A.5), it follows that the
number of states of a transition system corresponding to Aφ is in O(|U ||B|2|S||U |).
The set of input symbols of a transition system corresponding to Aφ is (X ∪O)X.
Therefore, the number of transitions is in O((|O|+ |T ||U |)|U |2|B|22|S||U |).

The above described decision procedure checks for each transition system
that has a subset of Aφ’s transitions whether it satisfies condition (2) of Defini-
tion 9.2. This requires deciding failure equivalence which is PSPACE-complete
[Roscoe 1994]. Thus, this approach has a runtime complexity that is double ex-
ponential in the number of users and constraints. Hence, it is not practical for
workflows with large sets of users. We therefore propose approximation algo-
rithms for EPE in the following section.

9.4 Approximations

We now present an approximation algorithm EPEA for EPE. EPEA is an ap-
proximation in that it may return No even when an enforcement process for the
given input exists. However, EPEA makes no approximation error in the oppo-
site case: if there does not exist an enforcement process for φ on W, then EPEA’s
output is always No. EPEA has an exponential runtime complexity. We show
in a second step how to change EPEA to approximate EPE in polynomial time
using bounds from graph-coloring.

9.4.1 Exponential Approximation

EPEA, defined in Algorithm 2, takes an instance of EPE as input and returns No

or a relation that can be transformed to an enforcement process for the given
EPE instance. In detail, EPEA is defined as the composition of CGraph and
LCol. CGraph, defined in Algorithm 3, transforms the tasks of a workflow
specification process W, i.e. T = {t ∈ T | ∃i ∈ T(W), t ∈ i}, and an authorization
policy φ = (UT,S, B) to an instance of the ListColoring problem. CGraph re-
turns either V, E, and L, where (V, E) is a graph and L : V → 2U is a color-list
function for (V, E), or No. The vertices in V are sets of tasks of W. Every task of
W is contained in one vertex. The BoD constraints B define which sets of tasks
form vertices, UT defines L, and the edges correspond to the SoD constraints
in S.

82



9.4. Approximations

Algorithm 2: EPEA(T,φ)
Input: T and φ = (UT,S, B)
Output: returns a relation R ⊆ π−1 or No

1 if T =∅ then
2 return ∅
3 else
4 colL← LCol(CGraph(T,φ))
5 if CGraph or LCol return No then
6 return No

7 else
8 return {(t, t.u) | (T,u) ∈ colL, t ∈ T}

CGraph returns No if W contains two tasks t1 and t2 whose execution is
constrained by an SoD constraint in S and if there is a subset of BoD constraints
in B that bind the duties between t1 and t2.

Example 9.4 (Graph Returned by CGraph) Figure 9.3 depicts the graph and the
color-list function L returned by CGraph for the tasks of the collateral evaluation
workflow and our example authorization policy φ. F

Figure 9.3. Constraint graph of the collateral evaluation workflow

EPEA solves the ListColoring instance returned by CGraph using LCol,
introduced in Section 2.3. Finally, it transforms the coloring returned by LCol

to a relation between tasks and execution events and returns this relation. If
CGraph fails to build a graph or LCol does not find a coloring, then EPEA
returns No. The following lemma, which we prove in Appendix A.6, shows
how a relation returned by EPEA defines an enforcement process.

Lemma 9.2 Let W be a workflow specification process, T = {t ∈ T | ∃i ∈ T(W), t ∈ i},
and φ an authorization policy. If EPEA(T,φ) returns a relation R, then W[R] is an
enforcement process for φ on W.

83



Chapter 9. Aligning Authorization and Business Objectives

Algorithm 3: CGraph(T,φ)
Input: T and φ = (UT,S, B)
Output: returns a graph (V, E) and a color-list function L : V→ 2U or No

1 V, E,L←∅
2 foreach t ∈ T do
3 V← V ∪ {{t}}
4 L← L∪ {({t},{u | (u, t) ∈UT})}
5 foreach (T1,O) ∈ B do
6 pick a t1 ∈ T1

7 let v1 ∈ V s.t. t1 ∈ v1

8 foreach t2 ∈ T1 \ {t} do
9 let v2 ∈ V s.t. t2 ∈ v2

10 V← (V \ {v1,v2}) ∪ {v1 ∪ v2}
11 L← (L \ {(v1,L(v1)), (v2,L(v2))}) ∪ {(v1 ∪ v2,L(v1) ∩ L(v2))}

12 foreach (T1, T2,O) ∈ S do
13 foreach t1 ∈ T1 do
14 let v1 ∈ V s.t. t1 ∈ v1

15 foreach t2 ∈ T2 do
16 let v2 ∈ V s.t. t2 ∈ v2

17 if v1 6= v2 then
18 E← E ∪ {{v1,v2}}
19 else
20 return No

21 return V, E, L

9.4.2 Polynomial Approximation

We now approximate EPE in polynomial time using graph-coloring bounds.

Corollary 9.1 For a workflow specification process W and an authorization policy φ,
let T = {t ∈ T | ∃i ∈ T(W), t ∈ i} and (V, E,L) = CGraph(T,φ). If

max
v∈V
|{v′ | {v,v′} ∈ E}| < min

v∈V
|L(v)|

then there exists an enforcement process for φ on W.

Proof. Let W be a workflow specification process, φ an authorization policy,
T = {t ∈ T | ∃i ∈ T(W), t ∈ i}, and (V, E,L) = CGraph(T,φ). Then maxv∈V |{v′ |

84



9.4. Approximations

{v,v′} ∈ E}| is the maximal degree ∆(V, E) of (V, E). Furthermore, let k =

minv∈V |L(v)|, i.e. L is a k-color-list function for (V, E). Assume that ∆(V, E)< k.
By Lemma 2.1 it follows that χl(V, E) ≤ k. Therefore, there exists an L-coloring
for (V, E). Hence, EPEA(T,φ) returns a relation R and, by Lemma 9.2, W[R] is
an enforcement process for φ on W. �

Informally, Corollary 9.1 tells us the following. If the maximal number of
SoD constraints under which a task is constrained is less than the minimal num-
ber of users who are authorized to execute a task with respect to the user-task
assignment, then there exists an enforcement process. Simplified, there exists an
enforcement process if the set of users is large and their workflow-independent
authorizations are evenly distributed.

Assume a workflow specification process W and an authorization policy φ.
The algorithm CGraph computes (V, E,L) in polynomial time or returns No.
We can then check if the condition of Corollary 9.1 holds for V, E, and L. If it
holds, we only know that an enforcement process for φ on W exists but Eφ,W
is not constructed yet. However, by Lemma 2.1 and because the condition of
Corollary 9.1 holds, a greedy algorithm with polynomial runtime complexity
finds an L-coloring for (V, E). We can therefore replace the call to LCol in EPEA
by a call to the greedy algorithm. It follows that we can approximate EPE in
polynomial time.

9.4.3 EPEA Implementation

As presented in Section 8.3, our extension of Oryx’s presentation tier enables us
to graphically model workflows including SoD and BoD constraints. Addition-
ally, we extended Oryx by a window for specifying user-task assignments. We
now describe how we analyze EPE instances, which are specified using these
extensions in Oryx’s presentation tier, with our EPEA implementation in Oryx’s
application tier.

For performance reasons, we do not use LCol to solve ListColoring-in-
stances. Instead, we transform them into Boolean formulae with a variable for
each vertex-color combination and clauses encoding the coloring constraints im-
posed by edges and the requirement that a color must be chosen for every vertex.
Such a reduction is standard and we therefore omit a correctness proof. We then
use the SAT-solver sat4j [Berre and Parrain 2010] to compute satisfying assign-
ments for these formulae. Transforming assignments back into colorings for the
initial ListColoring instances is straightforward and if a formula is unsatisfiable
then no coloring exists.

85



Chapter 9. Aligning Authorization and Business Objectives

We decompose the total running time required for solving an EPE instance
into three parts. The communication time is the time required to send the EPE
instance from Oryx’s presentation tier to its application tier and finally to return
the result back to the presentation tier. The transformation time is the time it takes
to transform the EPE instance to a Boolean formula and the solving time is the
time it takes to compute a satisfying assignment for the formula with sat4j.

The communication time depends on various factors such as the network
throughput, latency, and the payload size. We run the presentation tier and the
application tier on two different computers, which are connected by a standard
enterprise network with an average latency of 1 millisecond (ms). Computing an
enforcement process for our running example has on the average a communica-
tion time of 100 ms, a transformation time of 80 ms, and a solving time of 15 ms,
summing up to a total running time of 200 ms. We also tested our implementa-
tion with random user-task assignments with up to 50 users and could observe
a minor increase in the solving time while the communication and transforma-
tion time remained relatively stable. However, with these numbers of users, the
communication time still overshadows the solving time.

86



Chapter 10

Optimal Workflow-Aware Authorizations

In this chapter, we drop the assumption that history-independent authorizations
are non-administrable and we model the price of changing from one authoriza-
tion policy to another one by a cost-function. This function may account for
the cost of changing to the new policy, of maintaining it, and the risk associat-
ed with it. We consider minimizing risk equivalent to maximizing protection.
Based on the EPE approximation introduced in Section 9.4, we then investigate
the complexity of computing a cost-minimizing authorization policy that can be
enforced on a given workflow without obstructions. The resulting authorization
policy is optimal in the sense that it empowers users to execute job-relevant tasks
while maximizing the protection of the workflow’s underlying resources.

We first define a generic version of the optimization problem, which models
history-independent authorizations as user-task assignments. Afterward, we re-
fine user-task assignments to RBAC policies whose additional structure enables
us to map the optimization problem to the Integer Linear Programming (ILP)
problem. We use the following running example to illustrate our results and to
measure the performance of our mapping’s implementation.

Example 10.1 (Payment Workflow) Figure 10.1 shows a BPMN model of a pay-
ment workflow, which is based on [EGEI 2009] and defines the tasks that a cus-
tomer (organization) executes to process an invoice received by a supplier. Upon
receipt of an invoice, a user checks whether the invoice is correct (t1). In parallel,
a user checks whether the goods corresponding to the invoice have arrived (t2).
If they have not arrived yet and their arrival is not overdue, the user waits for
three days and checks again. Otherwise, the workflow proceeds. If inconsis-
tencies have occurred, i.e. if the invoice is incorrect or the arrival is overdue, a
user sends a dispute case (t3) to the supplier and the workflow terminates. If no
inconsistencies have occurred, a user prepares the payment (t4). Afterward, the
payment is either approved (t5), executed (t6) and the workflow terminates, or
the payment is not approved (t5) and the workflow loops back to the start.

87



Chapter 10. Optimal Workflow-Aware Authorizations

Figure 10.1. Payment workflow modeled in BPMN

We model the payment workflow by the workflow specification process W:

W = ((t1→ SKIP) ‖W1) ; ((t3→ SKIP) u W2)

W1 = t2→ (SKIP u W1)

W2 = t4→ t5→ (W1 u (t6→ SKIP))

Since we build in this chapter on the EPE approximation presented in Section 9.4,
we effectively only use the set of tasks T = {t1, . . . , t6}, which W engages in, and
abstract away from W’s control-flow.

Figure 10.1 also shows that the payment workflow is annotated by three
history-dependent, workflow-specific authorization constraints. The SoD con-
straint s1 = (t2, t3,∅) ensures that a user cannot embezzle the received goods
and later initiate a dispute case. Similarly, s2 = ({t1, t2, t4}, t5,∅) ensures that
any user who approves a payment did not execute one of the preceding task in-
stances. Therefore, the approval of a fraudulent payment requires the collusion
of at least two users. The BoD constraint b = (t2,∅) requires that only one user
checks whether the goods have arrived. This facilitates the reuse of knowledge
and thereby increases efficiency if multiple checks are required.

Furthermore, Figure 10.2 shows the payment workflow’s initial RBAC policy
(UR, RT). We refer to the role Procurement Clerk as r1, Warehouse Clerk as r2,
Procurement Manager as r3, and Accountant as r4. The set of roles is thus R =

{r1,r2,r3,r4} and UT = RT ◦ UR is the user-task assignment corresponding to
(UR, RT). In summary, we get the authorization policy φ = (UT,{s1, s2},{b}).

F

We use a user-task assignment UT to specify workflow-independent and
history-independent authorizations. Moreover, its domain dom(UT) also rep-
resents the set of available users and, conversely, U \ dom(UT) is the set of un-
available users, e.g. those users who are not ready to work or not part of the

88



10.1. Allocation

Figure 10.2. Initial RBAC policy for the payment workflow

organization. For our running example, the set of available users is dom(UT) =
{Alice,Bob,Claire,Dave}, whereas Emma and Fritz are unavailable (see also Fig-
ure 10.2).

10.1 Allocation

In the previous chapter, we approximated EPE by first transforming an EPE
instance to a ListColoring instance, then computing a coloring for this ListCol-
oring instance, and finally we derived a mapping from users to tasks from this
coloring. We now formalize the properties of this mapping as a function, which
we call an allocation.

Definition 10.1 (Allocation) Let W be a workflow specification process, φ = (UT,S, B)
an authorization policy for W, and T = {t ∈ T | ∃i ∈ T(W) . t ∈ i}. We call a function
alloc : T→U an allocation for W and φ, written alloc |= (W,φ), if

(1) for all t ∈ T, (alloc(t), t) ∈UT,

(2) for all (T1, T2,O) ∈ S, t1 ∈ T1, and t2 ∈ T2, alloc(t1) 6= alloc(t2), and

(3) for all (T′,O) ∈ B, and t1, t2 ∈ T′, alloc(t1) = alloc(t2).

Given a workflow specification process W and an authorization policy φ for W,
we write |=∃ (W,φ) if there exists an allocation for W and T. The following lem-
ma, which we prove in Appendix A.7, formalizes the relation between EPEA’s
output and the existence of an allocation.

89



Chapter 10. Optimal Workflow-Aware Authorizations

Lemma 10.1 Let W be a workflow specification process, φ = (UT,S, B) an authorization
policy for W, and T = {t ∈ T | ∃i ∈ T(W) . t ∈ i}.

(1) If EPEA(T,φ) returns a relation R, then {(t,u) | (t, t.u) ∈ R} |= (W,φ).

(2) If there exists an allocation alloc for W and φ, then CGraph(T,φ) returns a graph
(V, E) and a color-list function L and {(v,u) | v ∈ V,∃t ∈ v . alloc(t) = u} is an
L-coloring for (V, E).

The following corollary, which follows directly from Algorithm 2, Lemma 9.2,
and Lemma 10.1, shows that an allocation for a workflow specification process
W and an authorization policy φ defines an enforcement process for φ on W.

Corollary 10.1 Let W be a workflow specification process, φ an authorization policy,
and alloc and allocation for W and φ. W[{(t, t.u) | (t,u) ∈ alloc}] is an enforcement
process for φ on W.

In the remainder of this chapter, we focus on computing optimal authoriza-
tion policies for which an allocation exists. By Corollary 10.1 such an optimal
authorization policy allows an obstruction-free enforcement. We now proceed
with an example of an allocation for the payment workflow and then cast the
existence of an allocation as a decision problem.

Example 10.2 (Allocation) Consider again the payment workflow. In particular,
let W be the workflow specification process and φ the authorization policy in-
troduced in Example 10.2. The function alloc = {(t1,Alice), (t2,Bob), (t3,Alice),
(t4,Dave), (t5,Claire), (t6,Dave)} is an allocation for W and T. F

Definition 10.2 (The Allocation Existence Problem (AEP))
Input: A workflow specification process W and an authorization policy φ.

Output: Yes if |=∃ (W,φ) or No otherwise.

The following lemma, which we prove in Appendix A.8, states that AEP is
NP-complete. The NP-hardness reduction is analogous to the proof of Lem-
ma 9.1 and completeness follows immediately from the fact that an allocation
can be verified in polynomial time. Lemma 10.2 gives us a lower bound on the
complexity of forthcoming problems that build on AEP.

Lemma 10.2 AEP is NP-complete.

We do not provide an algorithm for AEP here. Instead, we show in Sec-
tion 10.3 how to use algorithms for problems that build on AEP to solve instances
of AEP.

90



10.2. The General Problem

10.2 The General Problem

The concept of an allocation gives us a notion of empowerment that is required
for achieving a business objective. We now investigate the counterpart of em-
powerment, namely protection, and in particular the question of how to maxi-
mize protection without sacrificing the achievement of business objectives. Con-
sider the following motivational example.

Figure 10.3. Changed RBAC policy

Example 10.3 (No Allocation For Changed RBAC Policy) Let UR0 be the user-
role assignment UR illustrated in Figure 10.2 and let RT be the corresponding
role-task assignment. Furthermore, let φ0 = (RT ◦ UR0,{s1, s2},{b}). We con-
cluded in Example 10.2 that there exists an allocation for the payment workflow
and φ0. Suppose now that Alice and Dave become unavailable, say they went on
holiday. The new RBAC policy (UR, RT) is illustrated in Figure 10.3, ignoring the
dotted arrows for the moment. As a result, we get the new user-task assignment
UT = RT ◦UR and the new authorization policy is φ = (UT,{s1, s2},{b}).

The only user who may execute t1 with respect to φ is Claire and t2 may only
be executed by Bob. Only Bob and Claire are available with respect to UT but
it follows by s2 that neither Bob nor Claire can be allocated to t5. Hence, there
exists no allocation for W and φ. F

To overcome the situation illustrated in this example, we must change UT by
assigning more roles to available users or making previously unavailable users
available. However, this change should incur minimal cost. In the following,

91



Chapter 10. Optimal Workflow-Aware Authorizations

we introduce a cost function that models the administrative cost of changing UT
to UT′ and the associated risks. We use this function to evaluate potential new
user-task assignments and to find the optimal assignment UT′.

Definition 10.3 (Cost Function) For a totally ordered set C, a cost function is a
partial function cost : 2U×T × 2U×T → C.

We use a cost function for two purposes. For two user-task assignments UT
and UT′

1. cost(UT,UT′) is the cost of changing UT to UT′ and

2. dom(cost) defines the feasible changes, i.e. it is possible to change from UT
to UT′ if (UT,UT′) ∈ dom(cost).

In this general setting, the cost of changing from a user-task assignment UT
to a user-task assignment UT′ can have many meanings and cost may satisfy
different properties accordingly. We give a few examples of potential costs that
may be modeled using cost. A concrete example for a role-based cost function
follows in the next section.

Risk. By empowering users to execute tasks, a user-task assignment expos-
es the underlying resources to risks, such as fraud, errors, and data leakage.
There exist various methodologies for performing a risk analysis [Molloy et al.
2008; Basin et al. 2011b]. We consider them outside the scope of this dissertation
and simply point out that the expected value computed by a quantitative risk
analysis corresponds to a cost [Molloy et al. 2008]. If the cost function encodes
only risks, the value of cost(UT,UT′) is independent of UT. Additionally, if the
risk quantifies only the misuse of authorizations, it is reasonable to assume that
cost(UT,∅) ≤ cost(UT,UT′) for all user-task assignments UT and UT′. In other
words, empowering no user to execute a task entails the least risk, i.e. maximizes
protection.

Administrative Cost. The activities associated with changing an authorization
policy are typically not for free. For example, recruiting a new employee, as-
signing her initial authorizations, and training her to use them appropriately
may be costly [Casa Mont et al. 2010]. Consequently, if cost encodes only admin-
istrative costs it is reasonable to assume that cost(UT,UT)≤ cost(UT,UT′) for all
user-task assignments UT and UT′. In other words, it costs the least to make no
changes at all.

92



10.3. A Role-Based Cost Function

Maintenance Cost. Maintaining an authorization policy may involve costs such
as salaries and license fees required for task executions. Abstractly, a cost func-
tion only encoding maintenance costs behaves the same way as a cost function
only encoding risk: it is cheapest to maintain an empty user-task assignment.

Using the existence of an allocation as the empowerment condition and a cost
function as measure of protection, we now reduce the question of how to balance
empowerment and protection to an optimization problem.

Definition 10.4 (The Optimal Workflow-Aware Authorization (OWA) Problem)

Input: A cost function cost, a workflow specification process W, and an autho-
rization policy (UT,S, B).

Output: min
UT′
{cost(UT,UT′)| |=∃

(W, (UT′,S, B)) and (UT,UT′) ∈ dom(cost)}

or No if the above set is empty.

The optimal workflow-aware authorization (OWA) problem asks for a user-
task assignment that allows an obstruction-free enforcement on the given work-
flow and incurs minimal cost.

Without any assumptions about the structure of the cost function, it is im-
possible to make statements about OWA’s runtime or space complexity. The
refined cost function that we propose in the following section allows us to de-
termine these complexities.

10.3 A Role-Based Cost Function

To demonstrate the applicability of OWA to a realistic example, we refine OWA
by decomposing user-task assignments into RBAC policies and let the cost func-
tion be role-based. For simplicity, we let the totally ordered set C be R. Specif-
ically, we define the cost function in terms of the following auxiliary functions.
For a role r ∈ R:

• risk(r) ∈R models the risk associated with the assignment of a user to r,

• add(r) ∈R models the administrative cost of assigning a user to r,

• rm(r) ∈R models the administrative cost of removing a user’s assignment
from r, and

• ma(r) ∈R models the maintenance cost of having a user assigned to r.

Using these functions, we define the cost of changing a user-role assignment.

93



Chapter 10. Optimal Workflow-Aware Authorizations

Definition 10.5 (Role Cost Function) Given the auxiliary functions risk,add, rm,
ma : R → R, a role cost function is a function costR : 2U×R × 2U×R → R, such
that for two user-role assignments UR and UR′,

costR(UR,UR′) = ∑(u,r)∈UR′(risk(r) + ma(r)) +

∑(u,r)∈UR′\UR add(r) + ∑(u,r)∈UR\UR′ rm(r)

A role cost function defines the cost of changing from UR to UR′ simply
as the sum of all the risk and maintenance costs associated with UR′ and the
administrative cost of adding and removing assignments when changing from
UR to UR′. We assume that the auxiliary functions risk, add, rm, and ma are
total and hence costR is total too. Instead of using costR’s domain to determine
feasible user-role assignment changes, we define a maximal user-role assignment
URmax ⊆ U × R and assume that every user-role assignment UR ⊆ URmax is
feasible.

Example 10.4 (Role Cost Function) Table 10.1 lists the risk, maintenance, and
administrative costs associated with the four roles of the payment workflow. We
adopt the elementary approach that roles assigned to a large number of tasks
represent more responsibility and are therefore more costly [Han et al. 2009]. Let
costR be the corresponding role cost function.

risk ma add rm

Procurement Clerk (r1) 5 3 2 1
Warehouse Clerk (r2) 3 3 2 1
Procurement Manager (r3) 12 5 3 2
Accountant (r4) 7 4 2 1

Table 10.1. Decomposition of the role cost function

Recall the RBAC policy (UR, RT) shown in Figure 10.3 and let the solid
and dotted arrows between users and roles be the maximal user-role assign-
ment URmax for the payment workflow. For example, Emma is unavailable with
respect respect to UT. Because (Emma,r3) ∈ URmax, we may change Emma’s
availability by assigning her to r3, resulting in the user-role assignment UR′ =
UR ∪ {(Emma,r3)}. The administrative activity of assigning Emma to r3 costs 3
and the overall risk and maintenance cost rises by 12+ 5. Thus, costR(UR,UR′)−
costR(UR,UR) = 3 + 12 + 5 = 20. F

Using costR and URmax, we now refine OWA to ROWA.

94



10.3. A Role-Based Cost Function

Definition 10.6 (The Role-Based Optimal Workflow-Aware Authorization
(ROWA) Problem)

Input: A role cost function costR, a maximal user-role assignment URmax, a work-
flow specification process W, an RBAC policy (UR, RT), a set of SoD con-
straints S, and a set of BoD constraints B.

Output: min
UR′⊆URmax

{costR(UR,UR′)| |=∃
(W, (RT ◦UR′,S, B))}

or No if the above set is empty.

We refer to the output corresponding to the ROWA instance rowa as
ROWA(rowa). In the following, we define a function ROWAtoILP that trans-
forms a ROWA instance to an ILP instance. We specify the matrix A and the
vectors b, c, and x indirectly by defining the respective (ILP) constraints and
the cost function in terms of sums. Furthermore, we index decision variables
with a superscript, which should not be mistaken for an exponent. We thereby
simplify the forthcoming proofs. Transforming the constraints and variables to
a matrix-vector form is straightforward and therefore not shown in detail.

Definition 10.7 (ROWAtoILP) Let (costR,URmax,W, (UR, RT),S, B) be a ROWA in-
stance, let costR be composed of the auxiliary functions risk, add, rm, and ma, let
T = {t ∈ T | ∃i ∈ T(W) . t ∈ i}, and let U = dom(URmax) and R = ran(URmax). The
function ROWAtoILP transforms (costR,URmax,W, (UR, RT),S, B) to an ILP instance
as follows:

Decision variables: xu,r, xu,t ∈Z for every u ∈U,r ∈ R, and t ∈ T

Objective function:

∑
(u,r)∈U×R

xu,r(risk(r) +ma(r)) + ∑
(u,r)∈(U×R)\UR

xu,radd(r) + ∑
(u,r)∈UR

(1− xu,r)rm(r)

Constraints:

(1) ∀ t ∈ T, u ∈U . ∑{r|(r,t)∈RT} xu,r ≥ xu,t

(2) ∀ t ∈ T.∑u∈U xu,t = 1

(3) ∀ (T1, T2,O)∈S, t1∈T1, t2∈T2,u∈U . xu,t1 + xu,t2 ≤ 1

(4) ∀ (T′,O) ∈ B, t1, t2 ∈ T′,u ∈U . xu,t1 = xu,t2

(5) ∑(u,r)∈(U×R)\URmax xu,r = 0

(6) ∀ u ∈U, r ∈ R . xu,r ≥ 0 and xu,r ≤ 1

(7) ∀ u ∈U, t ∈ T . xu,t ≥ 0 and xu,t ≤ 1

95



Chapter 10. Optimal Workflow-Aware Authorizations

Consider a ROWA instance composed of costR, URmax, W, (UR, RT), S, and
B, and let (A,b,c) be the corresponding ILP instance returned by ROWAtoILP.
We refer to a constraint or a set of constraints i in Definition 10.7 as Ci. Next,
we define a relation between feasible solutions of ILP instances generated by
ROWAtoILP, and user-role assignments and allocations for their corresponding
ROWA instances. Afterward, we use this relation to explain the constraints C1–
C7 and to prove the soundness and completeness of ROWAtoILP.

Note that a feasible solution x for (A,b,c) is composed of the decision vari-
ables xu,r and xu,t, where u ranges over dom(URmax), r over ran(URmax), and t
over T. Because x is a feasible solution, the decision variables satisfy all con-
straints listed in Definition 10.7, in particular C6 and C7. Therefore, the decision
variables assume either the value 0 or 1.

Definition 10.8 (Correspondence Relation) Let (costR,URmax,W, (UR, RT),S, B)
be a ROWA instance and (A,b,c) the corresponding ILP-instance returned by
ROWAtoILP. Furthermore, let x be a feasible solution for (A,b,c), T = {t ∈ T |
∃i ∈ T(W) . t ∈ i}, U = dom(URmax), and R = ran(URmax). For a user-role assign-
ment UR′ and an allocation alloc, we say that x corresponds to (UR′,alloc), written
x ∼ (UR′,alloc), if

(1) UR′ = {(u,r) ∈U × R | xu,r = 1} and

(2) alloc= {(t,u) ∈ T ×U | xu,t = 1} .

In other words, the decision variables of the form xu,r determine UR′ and those
of the form xu,t determine alloc. More specifically, if xu,r = 1, for a user u and a
role r, then u is assigned to r in UR′. Moreover, for a user u and a task t, xu,t = 1
implies that alloc maps t to u. Note that the correspondence relation ∼ uniquely
determines a tuple (UR′,alloc) given a vector x and vice versa.

We now informally describe the (ILP) constraints created by ROWAtoILP. We
expand upon this in the proof of Lemma 10.3. C1 ensures that an allocation
assigns a user u only to a task t if u is assigned to a role r that is assigned to t.
C2 enforces that an allocation maps every task to exactly one user. C3 and C4
enforce that an allocation satisfies the given SoD and BoD constraints, respec-
tively. Finally, C5 restricts user-role assignments to subsets of the given maximal
user-role assignment. C6 and C7 were already explained above.

The following lemma, which we prove in Appendix A.9, establishes that
ROWAtoILP is both sound and complete.

Lemma 10.3 Let (costR,URmax,W, (UR, RT),S, B) be a ROWA instance and (A,b,c)
the corresponding ILP-instance returned by ROWAtoILP. Let x be a vector, UR′ a user-
role assignment, and alloc an allocation, such that x ∼ (UR′,alloc).

96



10.3. A Role-Based Cost Function

• Soundness: If x is a feasible solution for (A,b,c) then UR′ ⊆ URmax and
alloc |= (W, (RT ◦UR′,S, B)).

• Completeness: If UR′ ⊆ URmax and alloc |= (W, (RT ◦UR′,S, B)) then x is a
feasible solution for (A,b,c).

Given the soundness and completeness of ROWAtoILP, we now show with
Theorem 10.1 that ROWAtoILP and algorithms for ILP can be employed to solve
ROWA instances.

Theorem 10.1 For every ROWA instance rowa,

ROWA(rowa) = ILP(ROWAtoILP(rowa)) .

Proof. Let (costR,URmax,W, (UR, RT),S, B) be a ROWA instance and (A,b,c) be
the corresponding ILP-instance returned by ROWAtoILP. Let U = dom(URmax),
R = ran(URmax), and let costR be defined by the auxiliary functions risk, add, rm,
and ma. Furthermore, let UR′ be a user-role assignment, alloc an allocation, and
x a vector such that UR′ ⊆ URmax, alloc |= (W, (RT ◦UR′)) and x ∼ (UR′,alloc).
From Lemma 10.3 we have that x is a feasible solution for (A,b,c).

It follows from Definitions 10.5, 10.7, and 10.8 that

costR(UR,UR′) = ∑(u,r)∈UR′(risk(r) + ma(r))

+ ∑(u,r)∈UR′\UR add(r) + ∑(u,r)∈UR\UR′ rm(r)

= ∑(u,r)∈UR′ 1 (risk(r) + ma(r))

+ ∑(u,r)∈(U×R)\UR′ 0 (risk(r) + ma(r))

+ ∑(u,r)∈UR′\UR 1 add(r) + ∑(u,r)∈((U×R)\UR′)\UR 0 add(r)

+ ∑(u,r)∈UR\UR′ 1 rm(r) + ∑(u,r)∈UR∩UR′ 0 rm(r)

= ∑(u,r)∈U×R xu,r(risk(r) +ma(r))

+ ∑(u,r)∈(U×R)\UR xu,radd(r) + ∑(u,r)∈UR(1− xu,r)rm(r)

= cTx .

Assume that UR′ minimizes costR with respect to all user-role assignments
UR′′ ⊆ URmax such that |=∃ (W, (RT ◦ UR′′,S, B)), i.e. costR(UR,UR′) =

ROWA(costR,URmax,W, (UR, RT),S, B). To derive a contradiction, assume that
ILP(A,b,c) 6= costR(UR,UR′). Because x is a feasible solution for (A,b,c) and
costR(UR,UR′) = cTx, there exists a feasible solution y for (A,b,c) such that

97



Chapter 10. Optimal Workflow-Aware Authorizations

costR(UR,UR′) > cTy. Let UR′′ be a user-role assignment and alloc′ an alloca-
tion such that y∼ (UR′′,alloc′). It follows by Lemma 10.3 that UR′′ ⊆URmax and
alloc′ |= (W, (RT ◦UR′′,S, B)). As reasoned before, we have costR(UR,UR′′) = cTy
and therefore costR(UR,UR′)> costR(UR,UR′′). However, this violates our min-
imality assumption for costR(UR,UR′). Hence, x is an optimal solution for
(A,b,c) and the two outputs are equal. �

We now establish the space and runtime complexity of ROWAtoILP. Let
(costR,URmax,W, (UR, RT),S, B) again be a ROWA instance and (A,b,c) the
corresponding ILP instance returned by ROWAtoILP. Furthermore, let U =

dom(URmax), R = ran(URmax), and T = {t ∈ T | ∃i ∈ T(W) . t ∈ i}. The ILP
instance (A,b,c) ranges over |U||R| + |U||T| decision variables, which corre-
sponds to the same number of columns of the matrix A. There are |T||U|
constraints of kind (1), |T| constraints of kinds (2), O(|S||T|2|U|) constraints of
kind (3), O(|B||T|2|U|) constraints of kind (4), there is one constraint of kind (5),
|U||R| constraints of kind (6), and |U||T| constraints of kind (7). Thus, the total
number of constraints is in O(|U|(|T|2(|S|+ |B|) + |R|+ |T|)), corresponding to
the same number of rows of A. Hence, ROWAtoILP is a polynomial reduction
from ROWA to ILP.

Solving ROWA requires solving AEP, which is NP-complete by Lemma 10.2.
Therefore, the following corollary is a direct consequence of Theorem 10.1 and
the observation that ROWAtoILP is a polynomial reduction from ROWA to the
NP-complete problem ILP.

Corollary 10.2 ROWA is NP-complete.

We have thereby shown that finding an optimal authorization policy that al-
lows an obstruction-free enforcement on given workflow is in the same complex-
ity class as deciding whether a given authorization policy allows an obstruction-
free enforcement. Furthermore, the polynomial reduction from ROWA to ILP
enables us to solve ROWA instances using well-established algorithms for ILP.
An example follows in the next section.

Note that ROWAtoILP and an algorithm for ILP can also be used to solve
AEP. Let (W, (UT,S, B)) be an AEP instance. Using a set of roles R, we de-
compose UT into an RBAC policy (UR, RT) such that RT ◦UR = UT. Further-
more, let URmax = UR, and costR be the role cost function composed of the
auxiliary functions risk(r) = ma(r) = 0 and add(r) = rm(r) = 1, for all r ∈ R.
ROWA(costR,URmax,W, (UR, RT),S, B) = 0 if and only if |=∃ (W, (UT,S, B)). This
follows from the observation that the minimal value of costR is 0, which is only
possible for costR(UR,UR) = 0, implying that |=∃ (W, (RT ◦UR,S, B)).

98



10.4. Experimental Results

10.4 Experimental Results

We return to our running example and demonstrate how off-the-shelf software
can be used to solve ROWA instances using our reduction to ILP. We implement-
ed ROWAtoILP using the numerical software Matlab [The MathWorks 2012].

Example 10.5 (Optimal Authorization Policy for the Payment Workflow) Recall
the RBAC policy (UR, RT) shown in Figure 10.3 and our observation in Exam-
ple 10.3 that there exists no allocation for the workflow specification process
W and (UR ◦ RT,S, B). Furthermore, recall the role cost function costR and the
maximal user-role assignment URmax presented in Example 10.4.

Using our ROWAtoILP-implementation, we transform the ROWA instance
(costR,URmax,W, (UR, RT),S, B) to an ILP instance (A,b,c) and compute an opti-
mal solution x, which corresponds by Definition 10.8 to the user-role assignment
UR′ = {(Bob,r2), (Claire,r3), (Emma,r3)} and the allocation alloc = {(t1,Emma),
(t2,Bob), (t3,Claire), (t4,Emma), (t5,Claire), (t6,Claire)}. The cost of changing
from UR to UR′ is costR(UR,UR′) = 43. Hence the optimal administrative
change with respect to costR is to extend UR by assigning Emma to the role
Procurement Manager (r3). This empowers the users to execute the payment work-
flow without obstructions.

Suppose now that the risk exposure changes in that the risk associat-
ed with an assignment to role r3 increases by 3 to 15. The other num-
bers in Table 10.1 remain unchanged. By running our program again,
we see that this small change of cost results in a different optimal solu-
tion. The optimal user-role assignment is now UR′′ = {(Bob,r2), (Bob,r2),
(Claire,r3), (Fritz,r4)}, the respective allocation is alloc′ = {(t1,Bob), (t2,Bob),
(t3,Claire), (t4,Fritz), (t5,Claire), (t6,Claire)}, and costR(UR,UR′′) = 46. Because
the risk associated with r3 increased, it is now cheaper, i.e. less risky, to assign
Bob additionally to the role Procurement Clerk (r1) and Fritz to Accountant (r4) in-
stead of assigning Emma to the role Procurement Manager (r3). F

Computing optimal solutions for ILP instances, such as the ones presented
in the example above, takes about 100 milliseconds on a standard PC configura-
tion.1 We also experimented with larger, randomly generated maximal user-role
assignments. On our test system, we observed an exponential increase of the
running time in the size of the input, which is consistent with our complexi-
ty analysis of ROWAtoILP and Corollary 10.2. However, we did not investigate
optimizations of our prototype implementation.

1Mac OS X, 2.5 GHz Intel Core 2 Duo, 2 GB RAM.

99



100



Chapter 11

Evaluation

We conclude Part III with an evaluation of our workflow-specific approach to
aligning the enforcement of authorizations with business objectives.

11.1 Allocations Versus Enforcement Processes

Most related work formalizes the existence of a workflow execution that satisfies
a set of authorizations similar to our notion of an allocation, see e.g. [Crampton
2005; Li et al. 2009]. As established by Lemma 10.1 and Corollary 10.1, an allo-
cation corresponds to our graph-based approximation of enforcement processes,
presented in Section 9.4. We now illustrate by means of examples the limitations
of this approximation. At the same time, these examples illustrate the expres-
sivity of enforcement processes and properties of the EPE problem in general.

Example 11.1 (Release Points Matter) Consider the workflow shown in Fig-
ure 11.1a, which we formalize by the workflow specification process Wa = t1→
((o1 → t2 → SKIP) u (o2 → t2 → SKIP)). Furthermore, let b = ({t1, t2},o1) and
s = (t1, t2,o2) be the BoD and SoD constraints shown in Figure 11.1a and let UT =

{(Alice, t1), (Alice, t2), (Bob, t2)} be a user-task assignment. Given T = {t1, t2} and
φ = (UT,{s},{b}), CGraph fails to produce an instance of ListColoring because
t1 and t2 are both bound and separated by b and s, respectively. Correspond-
ingly, the output corresponding to the AEP instance (W,φ) is No. However,

a. Enforcement process but no allocation b. Inverted control-flow

Figure 11.1. Limitations of EPE approximations

101



Chapter 11. Evaluation

no matter how the workflow is executed, when t2 is instantiated either b’s or
s’s history has been released and the respective constraint is irrelevant at this
point. Thus, E = t1.Alice→ ((o1→ t2.Bob→ SKIP) u (o2→ t2.Alice→ SKIP)) is
an enforcement process for φ on Wa. F

This example shows that by abstracting away from release points, our ap-
proximation misses information needed to determine whether an enforcement
process exists. Moreover, our approximation not only abstracts away release
points but also control-flow. Example 11.2 illustrates how the existence of an
enforcement process may only depend on control-flow.

Example 11.2 (Control-Flow Matters) Consider the EPE instance shown in Fig-
ure 11.1b, which is equivalent to the EPE instance examined in Example 11.1,
except that the workflow’s control-flow is inverted. Let Wb = t2→ ((o1→ t1→
SKIP) u (o2→ t1→ SKIP)) be the corresponding workflow specification process.
There exists no enforcement process for φ on Wb because when t2 is instantiat-
ed one cannot know whether the execution later passes through o1 or o2 and
whether Alice or Bob should therefore execute t2’s instance. Hence, an algorithm
for EPE that disregards control-flow can only approximate EPE. F

11.2 When Users Become Unavailable

Dropping the assumption that authorizations are non-administrable leads to
the question what to do if users become unavailable during workflow execu-
tion. Clearly, when no user is available, obstructions, in fact even deadlock,
is unavoidable. If only some users become unavailable, the existence of an
obstruction-free enforcement depends on which task instances these users have
executed in the past and what history-independent authorizations the remain-
ing, i.e. available, users have. The analysis of administrable authorizations fur-
thermore reveals a fundamental difference between SoD and BoD constraints,
illustrated by the following example.

Example 11.3 (Recovering From Unavailable Users) Consider the workflow
shown in Figure 11.2, ignoring the release point o for the moment, and let
W = W1 ; (t2→ (W u SKIP)), for W1 = t1→ (W u SKIP), be the respective work-
flow specification process. Furthermore, let s = (t1, t2,∅) be an SoD constraint,
b = (t1,∅) a BoD constraint, UT = {(Alice, t1), (Bob, t2)} a user-task assignment,
and φ = (UT,{s},{b}) the corresponding authorization policy. It is easy to see
that i = 〈t1.Alice, t2.Bob〉 is a workflow trace of W, satisfying φ.

Suppose now that after the workflow trace corresponding to i has been ex-
ecuted, Alice becomes unavailable, resulting in the new authorization policy

102



11.2. When Users Become Unavailable

Figure 11.2. Recovering from unavailable users

φ′ = ({(t2,Bob)},{s},{b}). If the workflow instance loops back, at least one
more instance of t1 and t2 need to be executed before the workflow instance
can successfully terminate. However, there is no user who is authorized to ex-
ecute t1 with respect to φ′. When evaluating possible changes to φ′ that allow
an obstruction-free enforcement, more specifically when analyzing which user
to assign to t1, it turns out that in order to satisfy s, every user except Bob is fine.
Though, there is only one assignment that satisfies b, namely to again assign
Alice to t1. F

The observation made in Example 11.3 shows the dual nature of SoD and
BoD. Generalizing, if a user becomes unavailable and he has previously executed
a task instance that is bound by a BoD constraint to a task that might still be
executed, obstructions can only be avoided if the very same user is again made
available. In contrast, if a user becomes unavailable and she has previously
executed a task instance that is separated from another task that might still be
executed, obstructions can be avoided if arbitrary though enough users are assigned
to the appropriate tasks.

One option to lift the restrictions imposed by previous task executions is the
augmentation of the workflow by release points. To give an example, consider
again the workflow shown in Figure 11.2, now including the release point o,
and recall the workflow trace i presented in Example 11.3. If the workflow cor-
responding to i loops back to the beginning, it passes through o and previous
task executions become thereby irrelevant with respect to the SoD constraint
s′ = (t1, t2,o) and the BoD constraint b′ = (t1,o). As a result, if Alice becomes
unavailable, any other user who is assigned to t1 may execute t1 without vio-
lating b′. Thus, performing administrative activities when a workflow passes
through release points lowers the risk of obstructions.

Some real world events that trigger administrative activities, such as acci-
dents, cannot be planned and are therefore not in sync with release points. In
such cases a violation of authorizations may be unavoidable. This leads to the
idea of providing some sort of exception mechanism. Authorizations may for
example be associated with compensational activities, which must be executed
if the respective authorizations are violated. The work on break-glass autho-

103



Chapter 11. Evaluation

rization models [Povey 2000; Marinovic et al. 2011], which allow an override of
default authorizations if certain conditions are met, is a promising starting point
for exploring this direction of future work. Additionally, our optimization ap-
proach may be extended to identify the least risky authorization overrides that
allow an obstruction-free workflow execution.

11.3 Optimizing for Partially Executed Workflows

Our notion of an allocation does not account for previously executed task in-
stances. Consequently, OWA and ROWA, which build on the definition of an
allocation, describe just the problem of finding an optimal authorization policy
for a workflow (instance) that has not been executed yet. However, as modeled
by administrative events in Part II, administrative changes may not only happen
before a workflow is being executed but also during its execution.

In fact, in our paper [Basin et al. 2012c], upon which Chapter 10 is based, we
do account for previously executed task instances. However, we decided to dis-
regard partially executed workflows in Chapter 10 to formally relate obstruction-
freedom and the notion of an optimal, workflow-aware authorization policy;
more specifically, to relate allocations to our EPE approximation presented in
Section 9.4. This reduction of expressivity has no impact on the complexity of
AEP and ROWA. In other words, AEP and ROWA are both NP-complete no
matter whether we do account for partially executed workflow instances or not.

104



Part IV

Closing

105



106



Chapter 12

Related Work

While Chapter 3 identifies related requirements arising from the business con-
text of our work, in this chapter, we compare our work to related approaches
from the scientific literature.

12.1 Authorizations

The specification of authorizations is a prerequisite for the protection of a com-
puter system’s resources [Saltzer and Schroeder 1975]. Various models and
languages for capturing authorizations have been proposed. Two of the most
classical models are mandatory access control (MAC) and discretionary access con-
trol (DAC), e.g. formalized by Sandhu in [1993] and Harrison et al. in [1976],
respectively. The main difference between the two models is who specifies the
respective policies. In MAC, a central authority assigns security labels to both
subjects and resources, which then determine authorized actions. In contrast,
DAC allows every subject to alter a part of the so-called access matrix, which
represents the ternary relation between subjects, actions, and resources. This
ternary relation is often decomposed into a binary relation between subjects and
permissions, where permissions represent action-resource pairs, see e.g. [Ferraio-
lo et al. 2001]. In our work, we consider only one kind of action, the execution
of a task, and thus by assigning a user to a task we implicitly assign her the
permission to execute the respective task.

Different decompositions of access matrices have been proposed. For exam-
ple, capability lists correspond to their decomposition by subject, whereas access
control lists (ACLs) correspond to their decomposition by resource, see e.g. [Sand-
hu and Samarati 1994]. A very popular decomposition is the Role-based Access
Control (RBAC) model [Ferraiolo et al. 2001], which we introduced already in
Chapter 4.

Various extensions to the classical subject-resource-action triple have been
published to account for further security-critical elements. For example, Berti-

107



Chapter 12. Related Work

no et al. propose temporal RBAC (TRBAC) [2001a], an extension of RBAC by
conditions constraining the temporal availability of roles. A related extension
is history-based access control [Fong 2004] where authorizations depend on events
that happened in the past. In contrast to the authorization models introduced
above, TRBAC and history-based access control are history-dependent, may in
fact encode a workflow instance, and are as such similar to our authorization
processes. However, they do not account for potential future task executions.

These different decomposition and extension options lead to numerous de-
sign decisions. As a result, some authors propose generic, comprehensive autho-
rization languages, such as the extensible access control markup language (XACML)
[Parducci et al. 2009] and the flexible authorization framework [Jajodia et al. 2001],
supporting various authorization models, whereas other authors investigate
domain-specific languages, e.g. authorizations for XML documents [Bertino et al.
2001b]. Our authorization policies combine generic, history-independent au-
thorizations, which may be described with different authorization models, and
concrete, history-dependent authorizations — SoDA terms in Part II, and SoD
and BoD constraints in Part III.

12.1.1 Constraints

The term constraint is often used for properties that an authorization policy must
satisfy, in particular in the context of RBAC [Jaeger 1999; Ahn and Sandhu 2000;
Ferraiolo et al. 2001; Bertino et al. 2001a; Li et al. 2007; Jha et al. 2008]. For example,
Li et al. propose in [2007] SoD constraints of the form ({p1, . . . , pn},k), for a set
of permissions {p1, . . . , pn} and n,k ∈N, which satisfy an RBAC policy if there
is no set of subjects smaller than k that is together assigned to all n permissions.
This example illustrates that SoD is realizable in a history-independent manner.

Related work on SoD, e.g. [Simon and Zurko 1997; Gligor et al. 1998], uses
often the term static for what we call history-independent and dynamic for history-
dependent. Because we distinguish authorizations both with respect to their de-
pendency on a workflow’s execution history and their administrability, the term
dynamic is not sufficiently refined. Hence, we avoid it. We present related work
on history-dependent SoD and BoD constraints in Section 12.3.

12.1.2 Enforcement

The fundamental ideas pursued in Part II are in line with the notion of model-
driven security (MDS) [Basin et al. 2006] that aims at synthesizing a system’s im-
plementation from the composition of abstract specifications of its business and
security requirements. In particular, Basin et al. [2003] generate implementations

108



12.1. Authorizations

of workflow systems that include authorization requirements. In contrast, we
focus specifically on SoD constraints and our SoD as a Service implementation
integrates with heterogeneous software components as opposed to being an au-
tomatically generated, monolithic software application.

Another approach to enforcing security policies is to execute an enforcement
monitor in parallel to an insecure system, checking whether commands are au-
thorized prior to their execution and blocking the insecure system if they are
not. Schneider formalized this concept as a security automaton [2000]. To the
best of our knowledge, Basin et al. [2007] were the first to use CSP to formalize
security automata. Like them, we encode what is known in other authorization
architectures as policy decision point (PDP) as a CSP process and the synchronous
process composition constitutes the policy enforcement point (PEP).

Security automata are limited in that preventing unauthorized commands
either causes the target system to terminate or requires exception handling to be
part of the security automaton as well as the target system. To overcome this
limitation, several extensions to security automata, such as edit automata [Ligatti
et al. 2005], have been proposed. Our notion of an enforcement process follows a
different direction. By incorporating knowledge about the system’s control-flow,
modeled by a workflow, into the enforcement monitor, we avoid obstructions
and thereby undesired termination.

12.1.3 Administration and Delegation

Given the large number of authorization models, there is consequently also a
large number of models for administrating them. Harrison, Ruzzo, and Ull-
man’s access matrix [1976], and in particular the commands that allow subjects
to administrate parts of the matrix, is one of the first formal authorization-
administration models, often called the HRU model. Examples of models for
administrating RBAC policies are ARBAC [Sandhu et al. 1999], Crampton and
Loizou’s SARBAC [2003], and Li and Mao’s UARBAC [2007]. All of them could
be employed to refine the set of administrative events in Part II and to constrain
the set of possible policy changes in Chapter 10.

A question that naturally arises from the design of an authorization-admi-
nistration model is formalized by the safety problem [Harrison et al. 1976]. This
problem asks whether a sequence of administrative activities can transform an
initial authorization policy to another policy that satisfies a particular property,
e.g. that a subject is given permissions he should not have. The safety problem is
not decidable for the HRU model [Harrison et al. 1976]. However, it is decidable,
more precisely PSPACE-complete, for ARBAC [Jha et al. 2008].

109



Chapter 12. Related Work

Delegation allows a subject to transfer authorizations to other subjects, who
may then perform activities on behalf of the former subject [Barka and Sandhu
2000; Li et al. 2003]. Delegations are a standard approach to overcome situa-
tions where not enough subjects are available to perform an activity in a timely
way. They also serve as building block for authorization languages, such as
DKAL [2008], that are tailored to distributed and dynamic environments. We
revisit delegations in the context of workflows in Section 12.3.

12.1.4 Risk

The notion of risk has been introduced into authorization models to adapt au-
thorization policies to changing conditions. Methods to measure and quanti-
fy risks are given in [Cheng et al. 2007; Molloy et al. 2008]. Aziz et al. [2006]
use a risk semantics to transform policies with respect to operational, combi-
natorial, and conflict of interest risks. In contrast to our approach presented in
Chapter 10, they transform role-task assignments, leaving user-role assignments,
where changes occur in practice more frequently, untouched.

To quantify the risk of delegations, Han et al. [2009] consider the position
of the delegated role within the role hierarchy and the number of permissions
gained. Associating risk and benefit vectors with every read and update transac-
tions, Zhang et al. [2006] study the optimization of an allowed transaction graph
with respect to a given accessibility graph that defines the underlying commu-
nication system. The cost drivers for authorization management identified by
Casassa Mont et al. [2010] provide further metrics for defining role cost func-
tions.

12.2 Workflows

Georgakopoulos et al. [1995] are among the first to propose a comprehensive
workflow management terminology, which they then use to compare commer-
cial workflow systems. Van der Aalst predicts in [1998] that workflow func-
tionality will become an essential building block required by a large number of
applications, comparable to the importance of databases. It is debatable whether
workflow functionality has meanwhile reached this importance. However, an-
alysts see business process management (PBM) as a core discipline for business
success [Dixon and Jones 2011], the BPM market is expected to grow at double-
digit rates annually during the next years [Fleming and Silverstein 2011], and
the alignment of business activities and IT functionality by means of business

110



12.2. Workflows

processes was repeatedly identified as a top priority of IT executives [McDonald
and Aron 2012].

12.2.1 Patterns and Modeling Languages

There are many languages for modeling workflows, for example the XML Process
Definition Language (XPDL) [WFMC 2008], UML Activity Diagrams [OMG 2011b],
and Yet Another Workflow Language (YAWL) [YAWL 2011]. We used BPMN [OMG
2011a] for visualizing workflows and BPEL [Alves et al. 2007], including its hu-
man task extension BPEL4People [Agrawal et al. 2007], for their implementation
in Part II.

To compare different workflow modeling languages, van der Aalst et al. iden-
tify a set of workflow patterns [2003] and analyze to what extent some given
workflow systems support them. Later overview articles compare modeling
languages not only with respect to their control-flow expressivity, i.e. support-
ed workflow patterns, but also with respect to other modeling aspects such as
whether the languages support visualization [Mendling et al. 2004; List and Ko-
rherr 2006]. Our choice of BPMN and BPEL is motivated by their expressivi-
ty, standardization, vendor-independence, and the fact that they are both well-
established.

12.2.2 Formalizations and Properties

Petri Nets [Peterson 1977] is the predominant theory used by the business pro-
cess community for formalizing workflows. Process calculi lack the graphical
appeal of Petri Nets but their notion of parallel, synchronous process execu-
tion is well-suited to formally decompose a workflow system into different sub-
components, a technique that we use intensively. We give a few examples of
workflow formalizations with process calculi: Puhlmann and Weske map gener-
ic workflow patterns to π-calculus [2005], Wong and Gibbons formalize BPMN
in CSP [2008], and Cámara et al. use CCS to formalize BPEL [2006]. Yet anoth-
er approach to formalizing workflows is pursued by Börger and Sörensen who
formalize BPMN by abstract state machines [2011].

The question of what constitutes a well-formed workflow model has been
extensively investigated in the business process community. For example,
van der Aalst calls a workflow sound if it has no dead transitions and it does not
deadlock before completing its final task [1996]. Obstruction-freedom is a com-
plementary property; combined with soundness it guarantees that the workflow
will always successfully terminate and thus will achieve its business objectives.

111



Chapter 12. Related Work

12.3 Authorizations in the Context of Workflows

In his seminal paper [1988], Sandhu introduces transaction control expressions for
specifying history-dependent SoD constraints on data objects. A workflow, as-
sociated with a data object, is defined by a list of tasks, each with one or more
attached roles. A user is authorized to execute a task if she acts in one of these
roles. By default, all tasks must be executed by different users.

Bertino et al. [1999] propose a framework, often called the BFA model, for
specifying (first-order) predicates on the execution of a workflow’s tasks. Knorr
and Stormer [2002] map history-dependent SoD constraints along with basic
workflow models to Prolog clauses in order to compute all workflow instances
that satisfy the specified constraints.

In Nash and Poland’s object-based SoD [1990], each data object keeps track of
the users who have executed actions on it. If a user requests to execute an action
on an object, this is only granted if he has not executed an action on this object
before. By associating a SoDA-enforcement process with every data object, this
functionality could also be modeled with our formalisms.

Crampton et al. develop an algebraic formalism to constrain a workflow’s task
executions [Crampton 2003; Tan et al. 2004; Crampton 2005]. Their constraints
have the form (U, (t1, t2),π), for a set of users U, a pair of tasks (t1, t2), and a
binary relation π ⊆ U × U on users. If a user u1 ∈ U executes t1, then a user u2

who executes t2 must satisfy (u1,u2)∈π. The relation π may encode SoD or BoD
constraints but also other properties such seniority. In this respect, Crampton’s
model is similar to our model proposed in Part III but it is more expressive in
terms of the relations it supports between users.

Wolter et al. [2007; 2008; 2010] propose an extension to BPMN to visual-
ly model entailment constraints that allow the specification of lower and upper
bounds on the number of different users that must execute a set of tasks. To
enforce their constraints, the authors propose a translation to XACML [2007].

None of the above models supports a scoping of constraints to task instances,
such as our concept of release. In the following, we discuss what kind of work-
flow patterns these models support, what analysis algorithms the respective au-
thors propose, and relate the models to the authorization classification intro-
duced in Chapter 1.

12.3.1 Workflow Abstraction

Early work on authorizations in the context of workflows, e.g. Sandhu’s transac-
tion control expressions [1988], model workflows only as part of the constraints.
The BFA model is the first to model workflows explicitly, formalizing them as se-

112



12.3. Authorizations in the Context of Workflows

quences of tasks [Bertino et al. 1999]. Later, Crampton refines workflow models
to partially ordered sets of tasks [2005].

These workflow formalizations and most other work on authorizations in the
context of workflows do not support loops and conditional execution. A notable
exception is Solworth [2006], who models a workflow as a directed graph. How-
ever, authorizations in the presence of loops are restricted such that the first task
must always be executed by the same person. Given a sufficient number of users
per task, this restriction ensures that a workflow instance can always successfully
terminate if there are no conflicts between SoD and BoD constraints. The graph
transformation used in CGraph is inspired by Solworth’s conflict graph [2006].

Our CSP-based formalization of workflows imposes no restriction on a work-
flow’s control-flow. By introducing release points into workflows, we support a
fine-grained scoping of authorizations to subsets of task instances. This feature
is particularly powerful in the presence of loops.

12.3.2 Analysis

Crampton was the first to analyze the computational complexity of deciding for
a given workflow whether an allocation of users to tasks exists such that an
authorization policy is satisfied [2005]. In [2010], Wang and Li call this decision
problem the workflow satisfiability problem and prove it to be NP-complete for
their authorization model. AEP is an adaptation of the workflow satisfiability
problem to our SoD and BoD constraints and serves as a building block for the
definition of OWA and ROWA.

As illustrated in Chapter 11, enforcement processes are more expressive in
terms of the authorization policies they support than an allocation of users to
tasks. However, this additional expressivity comes at the cost of EPE’s double
exponential complexity, which led us to investigate EPE approximations. Sol-
worth’s notion of scheduled approvability [2006], requiring that every workflow
instance can be extended to a final state no matter which path is taken, lies in
terms of expressivity between allocations and enforcement processes.

Schaad et al. employ a symbolic model checker to automate the analy-
sis of whether delegations allow a circumvention of SoD constraints [2006].
Wolter et al. [2009] use the model checker SPIN [Holzmann 2003] to find incon-
sistencies in their BPMN-based authorization model. To solve instances of the
workflow satisfiability problem, Wang and Li use SAT solvers [2010]. We exper-
imented with FDR [FSE 2005] on small instances of the EPE problem. However,
a thorough investigation of this automation approach remains future work.

To the best of our knowledge, we are the first to employ integer program-
ming to compute optimal, workflow-aware authorization policies. However,

113



Chapter 12. Related Work

planning algorithms developed in the operations research community, e.g. [Blum
and Furst 1997], solve the related problem of finding an optimal allocation of re-
sources that satisfies a set of constraints. In particular, Senkul et al. study the
planning problem in the context of workflows [2002].

12.3.3 Modeling Scope

Most authorization models for workflows describe constraints between two or
more explicit tasks and are therefore tightly coupled with a workflow model
[Sandhu 1988; Bertino et al. 1999; Kandala and Sandhu 2002; Crampton 2005;
Wang and Li 2010; Wolter and Meinel 2010]. However, there are exceptions,
such as Li and Wang’s SoDA [2008], that are workflow-independent. This has
the advantages presented in Chapter 5 but poses the challenges elaborated in
Chapter 7.

All of the above mentioned workflow authorization models are history-de-
pendent. With respect to history-dependence and modeling scope, the only
combination that we did not consider is history-independent, workflow-specific
authorizations. An example of such authorizations are lanes, which may be used
to group tasks with respect to the organizational unit that is responsible for their
execution [Silver 2009; OMG 2011b]. Lanes are sometimes directly interpreted
as workflow-specific roles [OMG 2011b]. However, if tasks can be executed by
multiple roles, a workflow may have exponentially many lanes in the number of
roles, which leads to large representations.

12.3.4 Administrability

Most work on authorization-constrained workflows implicitly assumes that au-
thorizations are non-administrable, i.e. the respective policies are not edited dur-
ing workflow execution. One exception is the work on delegation in workflow
systems. Building on and extending the seminal work of Atluri et al. [2003], dif-
ferent delegation models for workflows have been proposed [Atluri and Warner
2005; Wainer et al. 2007]. Crampton and Khambhammettu [2008] were the first to
check if permitting a delegation request prevents the completion of a workflow
instance.

Another exception is the workflow resiliency problem introduced by Wang and
Li [2010], which asks whether a workflow can be executed successfully if a given
number of users is unavailable. However, none of these works consider optimal-
ity of authorization policies.

114



12.3.5 Workflow Language Extensions and Tool Support

Different authors use BPMN’s extension mechanism to augment workflow mod-
els with security requirements [Wolter and Schaad 2007; Rodríguez et al. 2007].
We see this approach as an instance of model-driven security [Basin et al.
2006]. Our BPMN and Oryx extension builds on Rüegger’s master thesis [2011].
Wolter et al.[2009] also extend Oryx to provide tool support for their workflow
authorization model. In particular, they invoked the model checker SPIN in
Oryx’s application tier to reason about their constraint models.

Although not fully specified, the query language for people links in
BPEL4People allows one to specify basic SoD constraints [Agrawal et al. 2007;
Mendling et al. 2008]. By using SoDA, SoD as a Service supports more expres-
sive constraints. Paci et al. [2008] propose another authorization extension for
BPEL, which is based on Crampton’s model [2005]. Authorizations, including
SoD constraints, are enforced by a web service, which pools all information that
is relevant for enforcement: the history of workflow instances, an RBAC policy,
and SoD constraints. The underlying workflow model [Crampton 2005], how-
ever, does not support loops, which is in conflict with the workflow patterns
supported by BPEL.



116



Chapter 13

Conclusion

We conclude this dissertation with a summary of our results and an outlook on
open problems and future work.

13.1 Summary

We presented two orthogonal approaches, each addressing a separate problem
in the area of authorization-constrained workflows.

Refinement and Integration. In Part II, we studied a workflow-independent ap-
proach to refining abstract SoD constraints to concrete workflow models and to
integrating an enforcement monitor for the resulting refinement into a dynam-
ic and heterogeneous workflow environment. One of our central assumptions
was that a workflow-independent, abstract language for SoD constraints facil-
itates a separation of concerns between business and security personnel. This
separation enables a higher degree of flexibility with respect to integration and
enforcement.

Starting out with a generalization of SoDA’s semantics and ending up with
a prototype implementation, we went the full distance from theory to practice.
The key ideas were, first, to generalize SoDA’s semantics to traces and to de-
scribe a mapping from terms to CSP processes that accept the respective traces;
second, to use our CSP formalization as blueprint for the architecture of SoD as
a Service, which enables the dynamic integration and configuration of SoD en-
forcement in a SOA; and third, to make our formalization and implementation
account for administrative activities that change authorizations during workflow
execution. The choice of software components for our proof-of-concept imple-
mentation illustrates how SoD as a Service enables the integration of new inter-
nal controls into existing workflow environments. Our approach allows enter-
prises to quickly adapt to organizational, regulatory, and technological changes.

117



Chapter 13. Conclusion

Alignment and Optimality. In Part III, we presented a workflow-specific ap-
proach to aligning the enforcement of authorizations with their workflow-based
business environment. We then studied the concept of an optimal authoriza-
tion policy that allows such an alignment. Our notion of optimality comes with
considerable modeling freedom. For example, the objective function can model
the risk associated with an authorization policy and, hence, the optimal policy
minimizes risk, which corresponds to maximizing protection.

These results serve to strike a balance between the protection of a system’s
resources and the empowerment of its users. The key ideas here were to first
augment workflow models with release points to scope authorizations to subsets
of task instances without imposing restrictions on a workflow’s control-flow;
second, to model workflows at two levels of abstraction, to link these levels by
the notion of an obstruction, and to formalize an obstruction-free enforcement
in terms of a process; and third, to model the cost associated with changes to
authorization policies by a function and to cast the problem of finding a cost-
minimizing authorization policy as a well-known optimization problem.

We experimentally validated both of our approaches with a respective im-
plementation. Furthermore, we supported our complexity analyses with perfor-
mance measurements from realistic example workflows.

13.2 Outlook

Our work gives rise to many interesting follow-up questions. We present four
of them in more detail.

Combining Our Two Approaches. An obvious direction for future work is to
study further refinements of our SoDA-based approach presented in Part II
using our results on alignment developed in Part III. More specifically, to in-
vestigate how a SoDA-enforcement process could be refined to an enforcement
process that avoids obstructions.

Conversely, the semantics of SoDA points us at potential refinements of en-
forcement processes. We designed enforcement processes for the authorization
model presented in Chapter 8, which has the property that every prefix of a trace
that satisfies an authorization policy φ, also satisfies φ. Thus, every trace that is
accepted by an enforcement process satisfies the respective authorization policy.
As observed in Section 7.2, SODAT does not have the same prefix property, in
other words, a prefix of a trace that satisfies a SoDA term φ does not necessar-
ily satisfy φ, too. Hence, refining enforcement processes such that they would

118



13.2. Outlook

guarantee that every accepted prefix i can be extended by a trace i′ such that i ˆi′

satisfies the respective SoDA term φ, is another direction of future work.

Extended Study of Enforcement Processes. As shown in Chapter 11, enforce-
ment processes are more expressive in terms of the authorizations they can en-
force without obstructions than allocations. Moreover, the concept of an enforce-
ment process is neither tied to CSP nor to our authorization model. It is therefore
worthwhile to explore the use of enforcement processes for other authorization
models and to study the construction of enforcement processes in more detail.
For example, given a workflow specification process W and an authorization
policy φ, many processes may meet the conditions of an enforcement process for
φ on W as required by Definition 9.2. This raises the question of what constitutes
a “good” enforcement process. One possibility is to search for an enforcement
process Eφ,W such that T(Aφ) \ T(Eφ,W) is minimal. In other words, one that
maximizes the number of authorized execution events and thereby minimizes
the restrictions enforced at the execution level.

We would also like to sharpen our complexity analysis for EPE, ideally find-
ing upper-bounds that match the lower-bounds we have given.

Refinement of Optimization. The generality of our optimization approach gives
rise to many design decisions and consequently to various directions for fu-
ture work. For example, other workflow authorization models provide differ-
ent features than our model introduced in Chapter 8, e.g. support for delega-
tion [Crampton and Khambhammettu 2008]. Similarly, user-task assignments
can be refined based on different authorization models and our role-based cost
function could be further refined to account for additional properties such as
role hierarchies.

Meaningful risk metrics for authorization policies are a precondition for the
effective use of our optimization approach. We pointed in Section 12.1.4 to var-
ious methods for quantifying the risk associated with authorization policies.
However, finding such metrics is challenging. This does not, of course, reduce
the importance of such metrics and we see our results as providing additional
evidence for their usefulness.

Combination of Obstruction-Freedom and Safety Problem. Our authorization ad-
ministration models are abstract and basic. We simply allow the assignment
and the removal of users to roles and restrict in Chapter 10 additionally the set
of possible assignments by maximal user-role assignments. As summarized in

119



Chapter 13. Conclusion

Section 12.1.3, there exist various administration models that may be used to
describe possible authorization changes in more detail.

With a more concrete administration model comes the question whether cer-
tain sequences of administrative activities may lead to undesired authorization
policies. As introduced in Section 12.1.3, related work calls this question the
safety problem. To study the safety problem of administrative models in the
context of workflows leads to the question how safety relates to obstructions.
For example, the safety problem could be generalized to not only range over
the transitions described by the administrative model but also encompass the
transitions corresponding to potential task executions. Thus, understanding the
relation between obstruction-freedom and the safety problem promises to disen-
tangle the interdependency between the execution of workflows and the admin-
istration of related authorizations.

As this list of topics for future work and the evaluation of our results in
Chapters 7 and 11 show, many questions in the intersection of security and
business process management remain to be studied. Additionally, we expect
that this research field will gain in importance as the number of security threats
and regulations keeps growing and the level of automation and distribution of
work further increases.

120



Bibliography

Activiti 2012. Activiti BPM Platform. www.activiti.org.

Agrawal, A., Amend, M., Das, M., Ford, M., Keller, C., Kloppmann, M., König, D.,
Leymann, F., Müller, R., Pfau, G., Plösser, K., Rangaswamy, R., Rickayzen, A.,
Rowley, M., Schmidt, P., Trickovic, I., Yiu, A., and Zeller, M. 2007. WS-BPEL ex-
tension for people (BPEL4People), v. 1.0.

Ahn, G.-J. and Sandhu, R. S. 2000. Role-based authorization constraints specifica-
tion. ACM Transactions on Information and System Security (TISSEC), vol. 3, no. 4,
pp. 207–226. ACM Press, New York, NY, USA.

Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B., Curbera, F., Ford, M.,
Goland, Y., Guizar, A., Kartha, N., Liu, C. K., Khalaf, R., König, D., Marin, M.,
Mehta, V., Thatte, S., van der Rijn, D., Yendluri, P., and Yiu, A. 2007. Web services
business process execution language (WS-BPEL), v. 2.0. OASIS Standard, OASIS, Burling-
ton, MA, USA.

Anderson, A. 2005. Hierarchical resource profile of XACML, v. 2.0. OASIS Standard,
OASIS, Burlington, MA, USA.

APQC 2009. Process classification framework (PCF). American Productivity and Quality
Center (APQC), Houston, TX, USA.

ASF 2012a. Apache Axis2, http://ws.apache.org/axis2. The Apache Software Foun-
dation (ASF), Forest Hill, MD, USA.

ASF 2012b. Apache Tomcat, http://tomcat.apache.org. The Apache Software Founda-
tion (ASF), Forest Hill, MD, USA.

Atluri, V., Bertino, E., Ferrari, E., and Mazzoleni, P. 2003. Supporting delegation
in secure workflow management systems. In Proceedings of the 17th Annual Working
Conference on Data and Application Security, pp. 190–202. Springer, Berlin, Germany.

Atluri, V. and Warner, J. 2005. Supporting conditional delegation in secure workflow
management systems. In Proceedings of the 10th ACM Symposium on Access Control
Models and Technologies (SACMAT ’05), pp. 49–58. ACM Press, New York, NY, USA.

121

www.activiti.org
http://ws.apache.org/axis2
http://tomcat.apache.org


BIBLIOGRAPHY

Aziz, B., Foley, S. N., Herbert, J., and Swart, G. 2006. Reconfiguring role based access
control policies using risk semantics. Journal of High Speed Networks, vol. 15, no. 3,
pp. 261–273. IOS Press, Amsterdam, The Netherlands.

Barka, E. and Sandhu, R. S. 2000. Framework for role-based delegation models. In
Proceedings of the 16th Annual Computer Security Applications Conference (ACSAC ’00).
pp. 168–176. IEEE Computer Society Press, Los Alamitos, CA, USA.

Basin, D., Burri, S. J., and Karjoth, G. 2011a. Separation of duties as a service. In
Proceedings of the 6th ACM Symposium on Information, Computer and Communications
Security (ASIACCS ’11), pp. 423–429. ACM Press, New York, NY, USA.

Basin, D., Burri, S. J., and Karjoth, G. 2012a (accepted for publication). Dynamic en-
forcement of abstract separation of duty constraints. ACM Transactions on Information
and System Security (TISSEC). ACM Press, New York, NY, USA.

Basin, D., Burri, S. J., and Karjoth, G. 2012b (under submission). Obstruction-free
authorization enforcement: Aligning security and business objectives. Journal of Com-
puter Security (JCS). IOS Press, Amsterdam, The Netherlands.

Basin, D., Burri, S. J., and Karjoth, G. 2012c. Optimal workflow-aware authorizations.
In Proceedings of the 17th ACM Symposium on Access Control Models and Technologies
(SACMAT ’12), pp. 93–102. ACM Press, New York, NY, USA.

Basin, D., Doser, J., and Lodderstedt, T. 2003. Model driven security for process-
oriented systems. In Proceedings of the 8th ACM Symposium on Access Control Models
and Technologies (SACMAT ’03), pp. 100–109. ACM, New York, NY, USA.

Basin, D., Doser, J., and Lodderstedt, T. 2006. Model driven security: From UML mod-
els to access control infrastructures. ACM Transactions on Software Engineering Method-
ologies (TOSEM), vol. 15, no. 1, pp. 39–91. ACM, New York, NY, USA.

Basin, D., Schaller, P., and Schläpfer, M. 2011b. Applied Information Security. Springer,
Berlin, Germany.

Basin, D., Burri, S. J., and Karjoth, G. 2009. Dynamic enforcement of abstract sepa-
ration of duty constraints. In Proceedings of the 14th European Symposium on Research in
Computer Security (ESORICS ’09), pp. 250–267. Springer, Berlin, Germany.

Basin, D., Burri, S. J., and Karjoth, G. 2011c. Obstruction-free authorization enforce-
ment: Aligning security with business objectives. In Proceedings of the 24th IEEE Com-
puter Security Foundations Symposium (CSF ’11), pp. 99–113. IEEE Computer Society
Press, Los Alamitos, CA, USA.

Basin, D., Olderog, E.-R., and Sevinç, P. E. 2007. Specifying and analyzing security
automata using CSP-OZ. In Proceedings of the 2nd ACM Symposium on Information,

122



Bibliography

Computer and Communications Security (ASIACCS ’07), pp. 70–81. ACM, New York,
NY, USA.

Bell, D. E. and LaPadula, L. J. 1973. Secure computer systems: Mathematical foundations.
Technical Report MTR-2547, The Mitre Corporation, Bedford, MA, USA.

Berre, D. L. and Parrain, A. 2010. The Sat4j library, release 2.2. Journal on Satisfiability,
Boolean Modeling and Computation (JSAT), vol. 7, pp. 59–64. IOS Press, Amsterdam, The
Netherlands.

Bertino, E., Bonatti, P. A., and Ferrari, E. 2001a. TRBAC: A temporal role-based
access control model. ACM Transactions on Information and System Security (TISSEC),
vol. 4, no. 3, pp. 191–233. ACM, New York, NY, USA.

Bertino, E., Castano, S., and Ferrari, E. 2001b. Securing XML documents with
Author-X. IEEE Internet Computing, vol. 5, no. 3, pp. 21–31. IEEE Computer Society
Press, Los Alamitos, CA, USA.

Bertino, E., Ferrari, E., and Atluri, V. 1999. The specification and enforce-
ment of authorization constraints in workflow management systems. ACM Trans-
actions on Information and System Security (TISSEC), vol. 2, no. 1, pp. 65–104. ACM,
New York, NY, USA.

Blum, A. and Furst, M. L. 1997. Fast planning through planning graph analysis. Artifi-
cial Intelligence, vol. 90, no. 1–2, pp. 281–300. Elsevier, Amsterdam, The Netherlands.

Börger, E. and Sörensen, O. 2011. BPMN core modeling concepts: Inheritance-based
execution semantics. In Handbook of conceptual modeling, ch. 9, D. W. Embley and

B. Thalheim, Eds. Springer, Berlin, Germany.

Cámara, J., Canal, C., Cubo, J., and Vallecillo, A. 2006. Formalizing WSBPEL busi-
ness processes using process algebra. Electronic Notes in Theoretical Computer Science
(ENTCS), vol. 154, no. 1, pp. 159–173. Elsevier, Amsterdam, The Netherlands.

Casa Mont, M., Beresnevichiene, Y., Pym, D., and Shiu, S. 2010. Economics of iden-
tity and access management: Providing decision support for investments. In Network
Operations and Management Symposium Workshops (NOMS Wksps), pp. 134 –141. IEEE
Computer Society Press, Los Alamitos, CA, USA.

Chartrand, G. and Zhang, P. 2008. Chromatic graph theory. Chapman & Hall/CRC
Press, Boca Raton, FL, USA.

Cheng, P.-C., Rohatgi, P., Keser, C., Karger, P. A., Wagner, G. M., and Reninger,
A. S. 2007. Fuzzy multi-level security: An experiment on quantified risk-adaptive
access control. In Proceedings of the IEEE Symposium on Security and Privacy (S&P ’07),
pp. 222–230. IEEE Computer Society Press, Los Alamitos, CA, USA.

123



BIBLIOGRAPHY

COSO 2011. Internal control - integrated framework, Public exposure draft. The Com-
mittee of Sponsoring Organizations of the Treadway Commission (COSO), New
York, NY, USA.

Crampton, J. 2003. Specifying and enforcing constraints in role-based access control. In
Proceedings of the 8th ACM Symposium on Access Control Models and Technologies (SAC-
MAT ’03), pp. 43–50. ACM, New York, NY, USA.

Crampton, J. 2005. A reference monitor for workflow systems with constrained task
execution. In Proceedings of the 10th ACM Symposium on Access Control Models and Tech-
nologies (SACMAT ’05), pp. 38–47. ACM, New York, NY, USA.

Crampton, J. and Khambhammettu, H. 2008. Delegation and satisfiability in work-
flow systems. In Proceedings of the 13th ACM Symposium on Access Control Models and
Technologies (SACMAT ’08), pp. 31–40. ACM, New York, NY, USA.

Crampton, J. and Loizou, G. 2003. Administrative scope: A foundation for role-based
administrative models. ACM Transactions on Information and System Security (TISSEC),
vol. 6, no. 2, pp. 201–231. ACM, New York, NY, USA.

Curtis, B., Kellner, M. I., and Over, J. 1992. Process modeling. Communications of the
ACM, vol. 35, no. 9, pp. 75–90. ACM, New York, NY, USA.

Dixon, J. and Jones, T. 2011. Hype cycle for business process management, 2011. Gartner
Report G00214214, Gartner, Stamford, CT, USA.

E&Y 2009. European fraud survey 2009 – is integrity a casualty of the downturn? Technical
Report, Ernest & Young, London, UK.

EGEI 2009. Final report of the expert group on e-invoicing. Expert Group on e-Invoicing
(EGEI), European Commission, Brussels, Belgium.

Engel, E., Hayes, R. M., and Wang, X. 2007. The The Sarbanes-Oxley Act and
firms’ going-private decisions. Journal of Accounting and Economics, vol. 44, no. 1–2,
pp. 116–145. Elsevier, Amsterdam, The Netherlands.

Ferraiolo, D. F., Sandhu, R. S., Gavrila, S. I., Kuhn, D. R., and Chandramouli, R.
2001. Proposed NIST standard for role-based access control. ACM Transactions on In-
formation and System Security (TISSEC), vol. 4, no. 3, pp. 224–274. ACM, New York,
NY, USA.

Fleming, M. and Silverstein, K. 2011. Woldwide business process management soft-
ware 2011–2015 forecast. IDC Market Analysis 229788, International Data Corpora-
tion (IDC), Framingham, MA, USA.

124



Bibliography

Fong, P. W. L. 2004. Access control by tracking shallow execution history. In Proceedings
of the IEEE Symposium on Security and Privacy (S&P ’04), pp. 43–55. IEEE Computer
Society Press, Los Alamitos, CA, USA.

Frisch, M. 2010. Entwürfe zu einem dritten Tagebuch. Suhrkamp Verlag, Berlin, Germany.

FSE 2005. Failures-divergence refinement, FDR2 user manual. Formal Systems Europe (FSE),
Oxford, UK.

Georgakopoulos, D., Hornick, M. F., and Sheth, A. P. 1995. An overview of work-
flow management: From process modeling to workflow automation infrastructure.
Distributed and Parallel Databases, vol. 3, no. 2, pp. 119–153. Kluwer Academic Publish-
ers, Boston, MA, USA.

Gligor, V. D., Gavrila, S. I., and Ferraiolo, D. 1998. On the formal definition of
separation-of-duty policies and their composition. In Proceedings of the IEEE Sympo-
sium on Security and Privacy (S&P ’98), pp. 172–183. IEEE Computer Society Press, Los
Alamitos, CA, USA.

Gurevich, Y. and Neeman, I. 2008. DKAL: Distributed-knowledge authorization
language. In Proceedings of the 21st IEEE Computer Security Foundations Symposium
(CSF ’08), pp. 149–162. IEEE Computer Society Press, Los Alamitos, CA, USA.

Han, W., Ni, Q., and Chen, H. 2009. Apply measurable risk to strengthen security
of a role-based delegation supporting workflow system. In In Proceedings of the IEEE
International Symposium on Policies for Distributed Systems and Networks (POLICY ’09),
pp. 45–52. IEEE Computer Society Press, Los Alamitos, CA, USA.

Harrison, M. A., Ruzzo, W. L., and Ullman, J. D. 1976. Protection in operat-
ing systems. Communications of the ACM, vol. 19, no. 8, pp. 461–471. ACM, New
York, NY, USA.

Haugland, S., Cade, M., and Orapallo, A. 2004. J2EE 1.4: The big picture. Prentice Hall
PTR, Upper Saddle River, NJ, USA.

Herman, G. A. and Malone, T. W. 2003. What is in the process handbook? In Orga-
nizing business knowledge: The MIT process handbook, ch. 8, pp. 221–258. The MIT Press,
Cambridge, MA, USA.

Holzmann, G. J. 2003. The SPIN model checker: Primer and reference manual. Addison-
Wesley, Boston, MA, USA.

IBM 2007. Sequencing the DNA of IT management: IBM process reference model for IT
(PRM-IT). IBM Corporation, Armonk, NY, USA.

IBM 2009. IBM industry models for insurance, the insurance process and service models, general
information manual. IBM Corporation, Armonk, NY, USA.

125



BIBLIOGRAPHY

IBM 2010a. IBM Tivoli Unified Process (ITUP). IBM Corporation, Armonk, NY, USA.

IBM 2010b. Information Framework (IFW). IBM Corporation, Armonk, NY, USA.

IBM 2011. WebSphere Process Server (WSP), v. 6.2. IBM Corporation, Armonk, NY, USA.

IBM 2012a. Tivoli Directory Server (TDS), v. 6. IBM Corporation, Armonk, NY, USA.

IBM 2012b. WebSphere Application Server (WAS), v. 6.1. IBM Corporation, Armonk,
NY, USA.

ISO 2005a. ISO Standard 27001-2005: Information technology – Security techniques – Infor-
mation security management systems – Requirements. International Standardization Or-
ganization (ISO), Geneva, Switzerland.

ISO 2005b. ISO Standard 27002-2005: Information technology – Security techniques – Code of
practice for information security management. International Standardization Organization
(ISO), Geneva, Switzerland.

ISO 2009. ISO Standard 27000-2009: Information technology – Security techniques – Informa-
tion security management systems – Overview and vocabulary. International Standardiza-
tion Organization (ISO), Geneva, Switzerland.

ITGI 2005. Control objectives for information and related technology (COBIT) 4.1. The IT Gov-
ernance Institute (ITGI), Rolling Meadows, IL, USA.

Jaeger, T. 1999. On the increasing importance of constraints. In Proceedings of the
4th ACM workshop on Role-based access control (RBAC ’99), pp. 33–42. ACM, New
York, NY, USA.

Jajodia, S., Samarati, P., Sapino, M. L., and Subrahmanian, V. S. 2001. Flexible sup-
port for multiple access control policies. ACM Transactions on Database Systems (TODS),
vol. 26, no. 2, pp. 214–260. ACM, New York, NY, USA.

Jha, S., Li, N., Tripunitara, M. V., Wang, Q., and Winsborough, W. H. 2008. Towards
formal verification of role-based access control policies. IEEE Transactions on Depend-
able and Secure Computing (TDSC), vol. 5, no. 4, pp. 242–255. IEEE Computer Society
Press, Los Alamitos, CA, USA.

Kandala, S. and Sandhu, R. S. 2002. Secure role-based workflow models. Proceedings of
the 15th annual working conference on Database and application security (Das ’01), pp. 45–
58. Kluwer Academic Publishers, Boston, MA, USA.

Li, N., Grosof, B. N., and Feigenbaum, J. 2003. Delegation logic: A logic-based ap-
proach to distributed authorization. ACM Transactions on Information and System Secu-
rity (TISSEC), vol. 6, no. 1, pp. 128–171. ACM, New York, NY, USA.

126



Bibliography

Li, N. and Mao, Z. 2007. Administration in role-based access control. In Proceedings of the
ACM Symposium on Information, Computer and Communications Security (ASIACCS ’07),
pp. 127–138. ACM, New York, NY, USA.

Li, N., Tripunitara, M. V., and Bizri, Z. 2007. On mutually exclusive roles and
separation-of-duty. ACM Transactions on Information and System Security (TISSEC),
vol. 10, no. 2, pp. 1–36. ACM, New York, NY, USA.

Li, N. and Wang, Q. 2008. Beyond separation of duty: An algebra for specifying high-
level security policies. Journal of the ACM (JACM), vol. 55, no. 3, pp. 12.1–46. ACM,
New York, NY, USA.

Li, N., Wang, Q., and Tripunitara, M. V. 2009. Resiliency policies in access con-
trol. ACM Transactions on Information and System Security (TISSEC), vol. 12, no. 4,
pp. 20.1–34. ACM, New York, NY, USA.

Ligatti, J., Bauer, L., and Walker, D. 2005. Edit automata: Enforcement mechanisms
for run-time security policies. International Journal of Information Security (IJIS), vol. 4,
no. 1-2, pp. 2–16. Springer, Berlin, Germany.

List, B. and Korherr, B. 2006. An evaluation of conceptual business process mod-
elling languages. In Proceedings of the ACM Symposium on Applied Computing (SAC ’06),
pp. 1532–1539. ACM, New York, NY, USA.

Marino, D., Potral, J. J., Hall, M., Rodriguez, C. B., Rodriguez, P. S., Sobota, J., Jiri,
M., and Asnar, Y. D. W. 2009. D1.2.1: MASTER scenarios. FP7 EU project MASTER.

Marinovic, S., Craven, R., Ma, J., and Dulay, N. 2011. Rumpole: a flexible break-
glass access control model. In Proceedings of the 16th ACM Symposium on Access Control
Models and Technologies (SACMAT ’11), pp. 73–82. ACM, New York, NY, USA.

McDonald, M. P. and Aron, D. 2012. Amplifying the enterprise: The 2012 CIO agenda.
Gartner Report G00230430, Gartner, Stamford, CT, USA.

Mendling, J., Neumann, G., and Nüttgens, M. 2004. A comparison of XML in-
terchange formats for business process modelling. In Beiträge des Workshops der GI-
Fachgruppe Informationssysteme im E-Business und E-Government (EMISA), pp. 129–140.
Gesellschaft für Informatik, Bonn, Germany.

Mendling, J., Ploesser, K., and Strembeck, M. 2008. Specifying separation of duty
constraints in BPEL4People processes. In Proceedings of the 11th International Conference
on Business Information Systems (BIS ’08), pp. 273–284. Springer, Berlin, Germany.

Molloy, I., Cheng, P.-C., and Rohatgi, P. 2008. Trading in risk: Using markets to im-
prove access control. In Proceedings of the New Security Paradigms Workshop (NSPW ’08),
pp. 107–125. ACM, New York, NY, USA.

127



BIBLIOGRAPHY

Nash, M. J. and Poland, K. R. 1990. Some conundrums concerning separation of duty.
In Proceedings of the IEEE Symposium on Security and Privacy (S&P ’90), pp. 201–207.
IEEE Computer Society Press, Los Alamitos, CA, USA.

OGC 2010. Information technology infrastructure library (ITIL). Office of Government
Commerce (OGC), Norwich, UK.

OMG 2011a. Business process model and notation (BPMN), v. 2.0. OMG Standard, Object
Management Group (OMG), Needham, MA, USA.

OMG 2011b. OMG unified modeling language (OMG UML), superstructure, v. 2.4.1. OMG
Standard, Object Management Group (OMG), Needham, MA, USA.

Oryx 2012. The Oryx project. http://bpt.hpi.uni-potsdam.de/Oryx. Business Process
Technology group, Hasso-Plattner-Institute, Potsdam, Germany.

OSI 2012. The MIT license. Open Source Initiative (OSI), San Francisco, CA, USA.

Paci, F., Bertino, E., and Crampton, J. 2008. An access-control framework for
WS-BPEL. International Journal of Web Services Research, vol. 5, no. 3, pp. 20–43. IGI
Publishing, Hershey, PA, USA.

Parducci, B., Lockhart, H., and Rissanen, E. 2009. Extensible access control markup
language (XACML), v. 3.0. OASIS Standard, OASIS, Burlington, MA, USA.

Peterson, J. L. 1977. Petri nets. ACM Computing Surveys, vol. 9, no. 3, pp. 223–252. ACM
Press, New York, NY, USA.

Polak, D. 2007. Oryx – BPMN stencil set implementation. Bachelor Thesis, Hasso-Plattner-
Institute, Potsdam, Germany.

Povey, D. 2000. Optimistic security: a new access control paradigm. In Proceedings of New
Security Paradigms Workflow (NSPW ’99), pp. 40–45. ACM, New York, NY, USA.

Puhlmann, F. and Weske, M. 2005. Using the π-calculus for formalizing workflow pat-
terns. In Proceedings of the 3rd International Conference on Business Process Management
(BPM ’05), pp. 153–168. Springer, Berlin, Germany.

Rodríguez, A., Fernández-Medina, E., and Piattini, M. 2007. A BPMN extension for
the modeling of security requirements in business processes. Transactions on Informa-
tion and Systems, vol. E90-D, no. 4, pp. 745–752. The Institute of Electronics, Informa-
tion and Communication Engineers (IEICE), Tokyo, Japan.

Roscoe, A. W. 1994. Model-checking CSP. In A classical mind: Essays in honour of
C. A. R. Hoare, pp. 353–378. Prentice Hall, Upper Saddle River, NJ, USA.

128

http://bpt.hpi.uni-potsdam.de/Oryx


Bibliography

Roscoe, A. W. 2005. The theory and practice of concurrency. Pearson, Upper Saddle River,
NJ, USA.

Rüegger, D. 2011. Tool support for authorization-constrained workflows. Master’s thesis ETH
Zurich, Switzerland.

Saltzer, J. and Schroeder, M. 1975. The protection of information in computer sys-
tems. Proceeding of the IEEE, vol. 63, no. 9, pp. 1278–1308. IEEE Computer Society
Press, Los Alamitos, CA, USA.

Sandhu, R. S. and Samarati, P. 1994. Access control: Principle and practice. IEEE
Communications Magazine, vol. 32, no. 9, pp. 40–48. IEEE Computer Society Press, Los
Alamitos, CA, USA.

Sandhu, R. S. 1988. Transaction control expressions for separation of duties. In Proceed-
ings of the 4th IEEE Aerospace Computer Security Applications Conference, pp. 282–286.
IEEE Computer Society Press, Los Alamitos, CA, USA.

Sandhu, R. S. 1993. Lattice-based access control models. IEEE Computer, vol. 26, no. 11,
pp. 9–19. IEEE Computer Society Press, Los Alamitos, CA, USA.

Sandhu, R. S., Bhamidipati, V., and Munawer, Q. 1999. The ARBAC97 model for role-
based administration of roles. ACM Transactions on Information and System Security
(TISSEC), vol. 2, no. 1, pp. 105–135. ACM Press, New York, NY, USA.

SCC 2010. Supply chain operations reference (SCOR) model, v. 10. Supply Chain Coun-
cil (SCC), Cypress, TX, USA.

Schaad, A., Lotz, V., and Sohr, K. 2006. A model-checking approach to analysing
organisational controls in a loan origination process. In Proceedings of the 11th ACM
Symposium on Access Control Models and Technologies (SACMAT ’06), pp. 139–149. ACM
Press, New York, NY, USA.

Schneider, F. B. 2000. Enforceable security policies. ACM Transactions on Information and
System Security (TISSEC), vol. 3, no. 1, pp. 30–50. ACM Press, New York, NY, USA.

Schrijver, A. 1998. Theory of linear and integer programming. Wiley, Hoboken, NJ, USA.

SEC 2003. Final rule: Management’s report on internal control over financial reporting and
certification of disclosure in exchange act periodic reports. Securities and Exchange Com-
mission (SEC), Washington, DC, USA.

Senkul, P., Kifer, M., and Toroslu, I. H. 2002. A logical framework for scheduling
workflows under resource allocation constraints. In Proceedings of the 28th International
Conference on Very Large Data Bases (VLDB ’02), pp. 694–705. Very Large Data Base
Endowment.

129



BIBLIOGRAPHY

Signavio 2012. Signavio Process Editor. www.signavio.com.

Silver, B. 2009. BPMN method & style. Cody-Cassidy Press, Aptos, CA, USA.

Simon, R. and Zurko, M. E. 1997. Separation of duty in role-based environments. In
Proceedings of the 10th IEEE Workshop on Computer Security Foundations (CSFW ’97),
pp. 183–194. IEEE Computer Society Press, Los Alamitos, CA, USA.

Solworth, J. A. 2006. Approvability. In Proceedings of the 1st ACM Symposium on Informa-
tion, Computer and Communications Security (ASIACCS ’06), pp. 231–242. ACM Press,
New York, NY, USA.

SOX 2002. Sarbanes-Oxley Act of 2002. United States Government Printing Office, Wash-
ington, DC, USA.

Syropoulos, A. 2000. Mathematics of multisets. In Proceedings of the Workshop on Multiset
Processing (WMP ’00), pp. 347–358. Springer, Berlin, Germany.

Tan, K., Crampton, J., and Gunter, C. A. 2004. The consistency of task-based au-
thorization constraints in workflow systems. In Proceedings of the 17th IEEE Computer
Security Foundations Workshop (CSFW ’04), pp. 155–169. IEEE Computer Society Press,
Los Alamitos, CA, USA.

The Economist 2001. Enron, see you in court. The Economist, Nov. 15, London, UK.

The MathWorks 2012. Matlab r2011b. The MathWorks, Natick, MA, USA.

Turner, M., Budgen, D., and Brereton, P. 2003. Turning software into a service. Com-
puter, vol. 36, pp. 38–44. IEEE Computer Society Press, Los Alamitos, CA, USA.

van der Aalst, W. M. P. 1996. Structural characterization of sound workflow nets. Comput-
ing Science Reports 96123, Eindhoven University of Technology, The Netherlands.

van der Aalst, W. M. P. 1998. The application of petri nets to workflow management.
Journal of Circuits, Systems, and Computers (JCSC), vol. 8, no. 1, pp. 21–66. World Scien-
tific Publishing, Singapore.

van der Aalst, W. M. P., ter Hofstede, A. H. M., Kiepuszewski, B., and Barros, A. P.
2003. Workflow patterns. Distributed and Parallel Databases, vol. 14, no. 1, pp. 5–51.
Springer, Berlin, Germany.

W3C 2010. XML schema. World Wide Web Consortium (W3C), Sophia Antipolis, France.

W3C 2011. Extensible markup language (XML). World Wide Web Consortium (W3C),
Sophia Antipolis, France.

130

www.signavio.com


Wainer, J., Kumar, A., and Barthelmess, P. 2007. DW-RBAC: A formal security model
of delegation and revocation in workflow systems. Information Systems, vol. 32, no. 3,
pp. 365–384. Elsevier, Amsterdam, The Netherlands.

Wang, Q. and Li, N. 2010. Satisfiability and resiliency in workflow authorization sys-
tems. ACM Transactions on Information and System Security (TISSEC), vol. 13, no. 4,
pp. 40.1–35. ACM Press, New York, NY, USA.

WFMC 2008. Process definition interface – XML process definition language, v. 2.1a.
Standard WFMC-TC-1025, The Workflow Management Coalition (WFMC),
Hingham, MA, USA.

Wolter, C. and Meinel, C. 2010. An approach to capture authorisation requirements
in business processes. Requirements Engineering, vol. 15, no. 4, pp. 359–373. Springer,
Berlin, Germany.

Wolter, C., Miseldine, P., and Meinel, C. 2009. Verification of business process entail-
ment constraints using SPIN. In Proceedings of the First International Symposium on En-
gineering Secure Software and Systems (ESSoS ’09), pp. 1–15. Springer, Berlin, Germany.

Wolter, C. and Schaad, A. 2007. Modeling of task-based authorization constraints in
BPMN. In Proceedings of the 5th International Conference on Business Process Management
(BPM ’07), pp. 64–79. Springer, Berlin, Germany.

Wolter, C., Schaad, A., and Meinel, C. 2007. Deriving XACML policies from business
process models. In Proceedings of the 2007 International Workshop on Web Information
Systems Engineering (WISE ’07). pp. 142–153. Springer, Berlin, Germany.

Wolter, C., Schaad, A., and Meinel, C. 2008. Task-based entailment constraints for
basic workflow patterns. In Proceedings of the 13th ACM Symposium on Access Control
Models and Technologies (SACMAT ’08), pp. 51–60. ACM Press, New York, NY, USA.

Wong, P. Y. H. and Gibbons, J. 2008. A process semantics for BPMN. In Proceedings of the
10th International Conference on Formal Engineering Methods (ICFEM ’08), pp. 355–374.
Springer, Berlin, Germany.

YAWL 2011. YAWL user manual. The YAWL Foundation, www.yawlfoundation.org.

Zhang, I. X. 2007. Economic consequences of the Sarbanes-Oxley Act of 2002. Journal
of Accounting and Economics, vol. 44, no. 1–2, pp. 74–115. Elsevier, Amsterdam, The
Netherlands.

Zhang, L., Brodsky, A., and Jajodia, S. 2006. Toward information sharing: Benefit and
risk access control (BARAC). In In Proceedings of the 7th IEEE International Workshop on
Policies for Distributed Systems and Networks (POLICY ’06), pp. 45–53. IEEE Computer
Society Press, Los Alamitos, CA, USA.

131

www.yawlfoundation.org


132



Curriculum Vitae

Personal Information

Name Samuel Jakob Burri

Date of birth 12 October 1981

Place of origin Root (LU) and Malters (LU)

Nationality Swiss

Education

April 2008 – May 2012 Doctoral studies at ETH Zurich, Switzerland

October 2002 – January 2008 Studies in computer science at
ETH Zurich, Switzerland (MSc ETH CS)

February 2006 – June 2006 Exchange semester at
TU Delft, The Netherlands

August 1996 – January 2001 Kantonsschule Romanshorn, Switzerland

Professional Experience

April 2008 – May 2012 Predoctoral researcher at
IBM Research – Zurich, Switzerland

October 2006 – April 2007 Intern at Siemens R&D, Beijing, China

June 2002 – March 2008 Software engineer (part-time) at
panta rhei pr, Amriswil, Switzerland

June 2002 – January 2006 Software engineer (part-time) at
apfelX MedienDesign, Konstanz, Germany

October 2001 – May 2002 Web designer at
euro style advertising, San Diego, CA, USA

133



134



Appendix A

Proofs

When proving the equivalence of two statements, we may refer to the left-hand
side as LHS, to the right-hand side as RHS, and make a case distinction between
LHS⇒ RHS and LHS⇐ RHS.

A.1 Proof of Lemma 2.2

Proof. Let G = (V, E) be a graph, with |V| ≥ 1, and L : V→ 2Z a color-list function,
for a set Z. We refer to a line i of Algorithm 1 as LCi. We prove by induction
over V first the soundness property and afterward the completeness property.

Soundness: For the base case, let V = {v}. Furthermore, let f = {(v,z)} =
LCol({v}, E,L), for z ∈ Z. Because |f| = 1, Algorithm 1 returns at LC4. There-
fore, |L(v)| ≥ 1 by LC2 and it follows by LC3 that f(v) ∈ L(v). Because |V| = 1,
we have E =∅ by the definition of a graph. Hence, f is an L-coloring of G.

For the step case, let |V| ≥ 2 and v ∈ V. Furthermore, let G′ = (V′, E′), for
V′ = V \ {v}, E′ = {e ∈ E | v 6∈ e}, and L′ : V′ → 2Z. Induction hypothesis: If
LCol(V′, E′,L′) returns a function f ′, then f ′ is an L′-coloring for G′. Let f =

LCol(V, E,L). Because |V| ≥ 2, Algorithm 1 returns at LC15. Let f = r ∪ {(v,z)}.
By LC13, LC14, and the induction hypothesis, r is an L′-coloring for G′ = (V′, E′),
for V′, E′, and L′ as defined in LC10, LC11, and LC12. Therefore, f(v′) ∈ L′(v′)
for all v′ ∈ V′ and f(v1) 6= f(v2) for all {v1,v2} ∈ E′. Let E′′ = E \ E′. It follows
by LC11 that for every {v1,v2} ∈ E′′ either v1 = v or v2 = v. Without loss of
generality let v1 = v. By LC10, v2 ∈ V′. By LC12, f(v2) 6= z and therefore f(v1) 6=
f(v2). Furthermore, f(v) ∈ L(v) by LC9. Hence, f is an L-coloring of G and the
soundness property of Lemma 2.2 follows.

Completeness: Let colL be an L-coloring for G. For the base case, let V = {v}. By
the definition of an L-coloring, colL(v) ∈ L(v) and therefore, |L(v)| ≥ 1. It follows
from LC1 and LC2 that LCol({v}, E,L) returns a function at LC4.

135



Appendix A. Proofs

For the step case, let |V| ≥ 2 and v ∈ V. Furthermore, let G′ = (V′, E′), for
V′ = V \ {v} and E′ = {e ∈ E | v 6∈ e}, and let L′ : V′→ 2Z. Induction hypothe-
sis: If there exists an L′-coloring for G′, then LCol(V′, E′,L′) returns a function.
Because |V| ≥ 2, LCol(V, E, L) passes through LC8; let v be the vertex chosen
in LC8 and z = colL(v). Algorithm 1 cannot return No before z is chosen in
LC9. Let V′, E′, and L′ as defined in LC10, LC11, and LC12. The coloring
colL′ = colL \ {(v,z)} is an L′-coloring for (V′, E′). Therefore, LCol(V′, E′,L′) re-
turns a function f ′ at LC13 by the induction hypothesis. Hence, LCol(V, E,L)
returns the function f ′ ∪ {(v, c)} at LC15 and the completeness property of Lem-
ma 2.2 follows. �

A.2 Proof of Lemma 5.1

We refer to rule i of Definition 5.2 as MUi and to rule j of Definition B.1 as SEj.
We first establish two auxiliary propositions and then prove Lemma 5.1.

Proposition A.1 Under SODAM, unit terms are only satisfied by multisets of users
that contain exactly one element.

Proof. The only rules of Definition 5.2 that allow for the derivation of a unit term
are MU1–MU4 and MU7–MU9. The rules MU1–MU4 have a conclusion with
a multiset that contains exactly one user. The remaining rules, MU7–MU9, have
only multisets in their conclusions that are also in their premises. Hence, every
unit term is only satisfied by a multiset of users that contains one element. �

Proposition A.2 For all unit terms φut, all user-role assignments UR, and all users
u ∈ U , {{u}} |=M

UR φut if and only if {u} |=S

lwconf(UR) φut.

Proof. We reason by induction on the structure of φut. The only rules of Defini-
tion 5.2 that allow for the derivation of a unit term are MU1–MU4 and MU7–
MU9. All other rules can be safely ignored. Let a user-role assignment UR and
a user u be given. Furthermore, let (U,UR) = lwconf(UR).

LHS⇒ RHS:

Base Cases: Consider the term All and let {{u}} |=M
UR All. By MU1, there exists an

r ∈ R such that (u,r) ∈ UR. Therefore, u ∈ U by the definition of lwconf. From
SE1 it follows that {u} |=S

(U,UR) All.
Consider a term of the form r, for r ∈ R, and let {{u}} |=M

UR r. From MU2 it
follows that (u,r) ∈UR and therefore, {u} |=S

(U,UR) r by SE2.

136



A.2. Proof of Lemma 5.1

Consider a term of the form S, for S⊆ U , and let {{u}} |=M
UR S. By MU3, u ∈ S

and there exists an r ∈R such that (u,r) ∈UR. By the definition of lwconf, u ∈U
and therefore u ∈U ∩ S. From SE3 it follows that {u} |=S

(U,UR) S.

Step Cases: Assume that Proposition A.2 holds for two unit terms φut and
ψut. Consider now the term ¬φut and let {{u}} |=M

UR ¬φut. By MU4, {u} 6|=M
UR

φut. From the induction hypothesis, it follows that {u} 6|=S

(U,UR) φut. Therefore,
{u} |=S

(U,UR) ¬φut by SE4.

Consider the term φut t ψut and let {{u}} |=M
UR φut t ψut. By MU7 and MU8,

either {{u}} |=M
UR φut or {{u}} |=M

UR ψut. In the first case, by the induction hypothe-
sis, {u} |=S

(U,UR) φut and therefore {u} |=S

(U,UR) φut t ψut by SE7. The second case
is analogous. Hence, {u} |=S

(U,UR) φut t ψut.

Consider the term φut u ψut and let {{u}} |=M
UR φut u ψut. By MU9, {{u}} |=M

UR
φut and {{u}} |=M

UR ψut. By the induction hypothesis, {u} |=S

(U,UR) φut and
{u} |=S

(U,UR) ψut. Therefore, {u} |=S

(U,UR) φut u ψut by SE9.

LHS⇐ RHS:

Base Cases: Consider the term All and let {u} |=S

(U,UR) All. By SE1, u ∈ U and
therefore, there exists an r ∈ R such that (u,r) ∈ UR, by the definition of lwconf.
From MU1 it follows that {{u}} |=M

UR All.
Consider a term of the form r, for r ∈ R, and let {u} |=S

(U,UR) r. From SE2 it
follows that (u,r) ∈UR and therefore {{u}} |=M

UR r by MU2.
Consider a term of the form S, for S ⊆ U , and let {u} |=S

(U,UR) S. By SE3,
u ∈ U ∩ S and therefore, u ∈ U and u ∈ S. From the definition of lwconf, it
follows that there exists an r ∈ R such that (u,r) ∈UR. By MU3, {{u}} |=M

UR S.

Step Cases: Assume that Proposition A.2 holds for two unit terms φut and ψut.
Consider now the term ¬φut and let {u} |=S

(U,UR) ¬φut. By SE4, {u} 6|=S

(U,UR) φut.
From the induction hypothesis, it follows that {u} 6|=M

UR φut. Therefore, {{u}} |=M
UR

¬φut by MU4.
Consider the term φut t ψut and let {u} |=S

(U,UR) φut t ψut. By SE7 and SE8,
either {u} |=S

(U,UR) φut or {u} |=S

(U,UR) ψut. In the first case, by the induction
hypothesis, {{u}} |=M

UR φut and therefore {{u}} |=M
UR φut tψut by MU7. The second

case is analogous. Hence, {{u}} |=M
UR φut t ψut.

Consider the term φut u ψut and let {u} |=S

(U,UR) φut u ψut. By SE9,
{u} |=S

(U,UR) φut and {u} |=S

(U,UR) ψut. By the induction hypothesis, {{u}} |=M
UR φut

and {{u}} |=M
UR ψut. Therefore, {{u}} |=M

UR φut u ψut by MU9.
�

137



Appendix A. Proofs

Proof of Lemma 5.1. Let UR be a user-role assignment and U a multiset of users.
Furthermore, let (U,UR) = lwconf(UR). We reason inductively over the structure
of SoDA terms.

Base Case: Consider a unit term φut and let U |=M
UR φut. By Proposition A.1,

U = {{u}}, for a user u ∈ U . From Proposition A.2 it follows that {u} |=S

(U,UR) φut.
By the definition of userset, {u}= userset(U) and therefore userset(U) |=S

(U,UR) φut.

Step Cases: Assume that Lemma 5.1 holds for two terms φ and ψ. Consider now
the term φ+, let U |=M

UR φ+ and Y = userset(U). From MU5 and MU6 follows
that for every user u ∈ U, {{u}} |=M

UR φ. By the induction hypothesis and the
definition of userset follows that for every user u ∈ Y, {u} |=S

(U,UR) φ. From SE5
and SE6 it follows that Y |=S

(U,UR) φ+.

Consider the term φ t ψ and let U |=M
UR φ t ψ. By MU7 and MU8, either

U |=M
UR φ or U |=M

UR ψ. In the first case, by the induction hypothesis,
userset(U) |=S

(U,UR) φ and therefore userset(U) |=S

(U,UR) φ t ψ by SE7. The sec-
ond case is analogous. Hence, userset(U) |=S

(U,UR) φ t ψ.

Consider the term φu ψ and let U |=M
UR φu ψ. By MU9, U |=M

UR φ and U |=M
UR

ψ. By the induction hypothesis, userset(U) |=S

(U,UR) φ and userset(U) |=S

(U,UR) ψ.
Therefore, userset(U) |=S

(U,UR) φ u ψ by SE9.

Consider the term φ � ψ and let U |=M
UR φ � ψ. By MU10, there are two

multisets of users V and W such that V |=M
UR φ and W |=M

UR ψ. By the induc-
tion hypothesis, userset(V) |=S

(U,UR) φ and userset(W) |=S

(U,UR) ψ. By the defini-
tion of userset, userset(U) = userset(V) ∪ userset(W). From SE10 it follows that
userset(U) |=S

(U,UR) ψ� ψ.

Consider the term φ ⊗ ψ and let U |=M
UR φ ⊗ ψ. By MU11, there are two

multisets of users V and W such that V |=M
UR φ, W |=M

UR ψ, and V ∩W =∅∅∅. By
the induction hypothesis, userset(V) |=S

(U,UR) φ and userset(W) |=S

(U,UR) ψ. By the
definition of userset, userset(U) = userset(V) ∪ userset(W). Furthermore, if V and
W are disjoint, then userset(V) and userset(W) are disjoint too. Therefore, by
SE11 userset(U) |=S

(U,UR) ψ⊗ ψ. �

A.3 Proof of Lemma 5.2

We refer to rule i of Definition 5.2 as MUi and to rule j of Definition 5.5 as TRj.
We first establish two auxiliary propositions and then prove Lemma 5.2.

Proposition A.3 For i, i1, i2 ∈ Σ∗, if si(i, i1, i2) then users(i) = users(i1) ] users(i2).

138



A.3. Proof of Lemma 5.2

Proof. By Definition 5.4, each execution event in i is either in i1 or i2, but not in
both. Therefore, users(i) = users(i1)] users(i2) since the function users returns the
multiset of users that are contained in the business events of its argument. �

Proposition A.4 For i ∈ X ∗, i1, i2 ∈ Σ∗, if si(i, i1, i2) then i1 ∈ X ∗ and i2 ∈ X ∗.

Proof. By Definition 5.4, each event that is in i1 or i2 is also in i. Since i ∈ X ∗, we
therefore have that i1 and i2 contain only execution events. �

Proof of Lemma 5.2. Let UR be a user-role assignment. We reason inductively
over the structure of SoDA terms.

Base Cases: Consider a unit term φut and a trace i ∈ X ∗. Let i |=T
UR φut. The only

rules of Definition 5.5 that may have a unit term in their conclusion are TR1–TR4
and TR7–TR9. Because i contains no admin events, only TR1 and TR7–TR9 are
applicable. In the case of TR7–TR9 i is already contained in at least one premise.
In a derivation tree for i |=T

UR φut, i must therefore be in the conclusion of rule
TR1 by the structure of terms, i.e. Definition 5.1. Therefore, i must be of the form
〈t.u〉, for an execution event t.u. By TR1, {{u}} |=M

UR φut, which is equivalent to
users(i) |=M

UR φut by the definition of users.
Consider a term of the form φ+

ut and a trace i ∈ X ∗. Let i |=T
UR φ+

ut. The only
rules of Definition 5.5 that have a term of the form φ+

ut in the conclusion are TR5
and TR6. For both rules, the trace i must contain at least one execution event
x such that 〈x〉 |=T

UR φut. As derived before, users(〈x〉) |=M
UR φut and therefore,

by MU5, users(〈x〉) |=M
UR φ+

ut. By induction over the length of i, with 〈x〉 as the
induction basis, it follows that users(i) |=M

UR φ+
ut from TR6 and MU6.

Step Cases: Assume that Lemma 5.2 holds for two terms φ and ψ. Consider now
the term φ t ψ and a trace i ∈ X ∗. Let i |=T

UR φ t ψ. By TR7 and TR8, either
i |=T

UR φ or i |=T
UR ψ. In the first case, by the induction hypothesis, users(i) |=M

UR φ

and therefore users(i) |=M
UR φ t ψ by MU7. The second case is analogous. Hence,

users(i) |=M
UR φ t ψ.

Consider the term φ u ψ and a trace i ∈X ∗. Let i |=T
UR φ u ψ. By TR9, i |=T

UR φ

and i |=T
UR ψ. From the induction hypothesis, users(i) |=M

UR φ and users(i) |=M
UR ψ.

Therefore, users(i) |=M
UR φ u ψ by MU9.

Consider the term φ � ψ and a trace i ∈ X ∗. Let i |=T
UR φ � ψ. By TR10,

there exist two traces i1 and i2 such that si(i, i1, i2), i1 |=T
UR φ, and i2 |=T

UR ψ. By
Proposition A.4, i1 and i2 consist only of admin events because i ∈X ∗. Therefore,
from the induction hypothesis, users(i1) |=M

UR φ and users(i2) |=M
UR ψ. Moreover,

by Proposition A.3, users(i) = users(i1) ] users(i2). Hence, users(i) |=M
UR φ � ψ

by MU10.

139



Appendix A. Proofs

Finally, consider the term φ ⊗ ψ and a trace i ∈ X ∗. Let i |=T
UR φ ⊗ ψ. By

TR11, there exist two traces i1 and i2 such that si(i, i1, i2), users(i1)∩ users(i2) =∅∅∅,
i1 |=T

UR φ, and i2 |=T
UR ψ. By Proposition A.4, i1 and i2 consist only of admin events

because i ∈ X ∗. Therefore, from the induction hypothesis, users(i1) |=M
UR φ and

users(i2) |=M
UR ψ. Furthermore, by Proposition A.3, users(i) = users(i1) ] users(i2).

Hence, users(i) |=M
UR φ⊗ ψ by MU11. �

A.4 Proof of Theorem 5.1

We refer to rule i of Definition 5.5 as TRi and to rule j of Definition 5.6 as MAj.
We first establish four auxiliary propositions and then prove Theorem 5.1. Recall
Definition 5.8. We prove that for all terms φ, all user-role assignments UR, and
all traces i ∈ Σ∗, i ˆ〈X〉 ∈ T(SODAφ(UR)) if and only if i |=T

UR φ.

Proposition A.5 For a term φ, a trace i ∈ Σ∗, a trace of admin events a ∈ A∗, a user-
role assignment UR, and UR′ = upd(UR, a), i |=T

UR′ φ if and only if aˆi |=T
UR φ.

Proof Sketch. Proposition A.5 follows by induction on a directly from TR3, TR4,
and Definition 5.3. �

Proposition A.6 For a user-role assignment UR, a term φ, a trace i ∈ Σ∗, and a trace
of admin events a ∈ A∗, i |=T

UR φ if and only if i ˆa |=T
UR φ.

Proof Sketch. Proposition A.6 follows directly by applying TR2 for each admin
event in a to i |=T

UR φ. �

Proposition A.7 For a user-role assignment UR, a term φ, and a set of users U, the
process [φ]UUR engages only in an execution event t.u, for a task t and a user u, if u ∈U.

Proof. Let UR be a user-role assignment, φ a term, U a set of users, and t.u an
execution event, for a task t and a user u. We reason inductively on the structure
of φ. Terms of the form φut and φ+

ut are the base cases. By MA1 and MA2,
[φ]UUR and [φ+]UUR only engage in t.u, if u ∈ U. For two terms φ and ψ, assume
that Proposition A.7 holds. By MA3, MA4, and MA5, the processes [φ t ψ]UUR,
[φ u ψ]UUR, and [φ � ψ]UUR only engage in t.u if either [φ]UUR or [ψ]UUR engage in
t.u. By MA6, the process [φ⊗ ψ]UUR only engages in t.u if either [φ]U

′
UR or [ψ]U

′′
UR

engage in t.u, for U′,U′′ ⊆ U. From the induction hypothesis, it follows that all
processes only engage in t.u if u ∈U. �

Proposition A.8 For the traces i, i1, i2 ∈ Σ∗ and the processes P, Q ∈ P , if i1 ∈ T(P),
i2 ∈ T(Q) and si(i, i1, i2), then i ∈ T(P ‖

A
Q).

140



A.4. Proof of Theorem 5.1

Proof Sketch. The proof is by induction over i. Proposition A.8 follows by the
definition of the ||-operator under the denotational semantics of CSP and by
Definition 5.4. The implicit synchronization on X can be ignored because i, i1,
and i2 do not contain X. �

Proof of Theorem 5.1. We prove that for all terms φ, all user-role assignments UR,
and all traces i ∈ Σ∗, LHS⇒ RHS and LHS⇐ RHS. In both cases we reason by
induction on the structure of φ. Let UR be given.

LHS⇒ RHS:

Base Cases: Consider a unit term φut and let i ˆ〈X〉 ∈ T(SODAφut(UR)). By MA1
and the denotational semantics of CSP, i is of the form a1ˆ〈t.u〉ˆa2, for a1, a2 ∈A∗,
a task t, and a user u. Let UR′ = upd(UR, a1). Because [φut]UUR′ engages in t.u,
{{u}} |=M

UR′ φut by MA1. From TR1 it follows that 〈t.u〉 |=T

UR′ φut. Therefore, by
Proposition A.5, a1ˆ〈t.u〉 |=T

UR φut and by Proposition A.6 a1ˆ〈t.u〉ˆa2 |=T
UR φut.

Hence, i |=T
UR φut.

Consider a term of the form φ+
ut and let i ˆ〈X〉 ∈ T(SODAφ+

ut
(UR)). By MA2

and the denotational semantics of CSP, i is of the form a1ˆ〈t1.u1〉ˆ . . .ˆanˆ〈tn.un〉
ˆan+1, for ai ∈ A∗, an+1 ∈ A∗, ti ∈ T , ui ∈ U , i ∈ {1 . . . n}, and n ∈N. We reason
inductively over n. Assume n = 1 and let UR′ = upd(UR, a1). Analogous to the
previous case, it follows that a1ˆ〈t1.u1〉ˆa2 |=T

UR φut. By TR5, a1ˆ〈t1.u1〉ˆa2 |=T
UR

φ+
ut. We now assume n > 1 and a2ˆ〈t2.u2〉ˆa3ˆ . . .ˆanˆ〈tn.un〉ˆan+1 |=T

UR′ φ+
ut, for

UR′ = upd(UR, a1). Because [φut]UUR′ engages in t1.u1, {{u}} |=M

UR′ φut by MA2.
From TR1 it follows that 〈t1.u1〉 |=T

UR′ φut and from TR6 that 〈t1.u1〉ˆa2ˆ〈t2.u2〉
ˆa3ˆ . . .ˆanˆ〈tn.un〉ˆan+1 |=T

UR′ φ+
ut. By Proposition A.5, a1ˆ〈t1.u1〉ˆa2ˆ〈t2.u2〉ˆa3ˆ . . .ˆ

anˆ〈tn.un〉ˆan+1 |=T
UR φ+

ut and hence i |=T
UR φ+

ut.

Step Cases: For two terms φ and ψ, assume that LHS⇒ RHS holds. Consider
now the term φ t ψ and let i ˆ〈X〉 ∈ T(SODAφtψ(UR)). By MA3, SODAφtψ(UR)
= SODAφ(UR) � SODAψ(UR). From the denotational semantics of CSP it fol-
lows that either i ˆ〈X〉 ∈ T(SODAφ(UR)) or i ˆ〈X〉 ∈ T(SODAψ(UR)). Consider
the first case. From the induction hypothesis i |=T

UR φ. By TR7, i |=T
UR φ t ψ. The

second case follows analogously by TR8. Hence, i |=T
UR φ t ψ.

Consider the term φ u ψ and let i ˆ 〈X〉 ∈ T(SODAφuψ(UR)). By MA4,
SODAφuψ(UR) = SODAφ(UR) ‖ SODAψ(UR). From the denotational semantics
of CSP it follows that i ˆ〈X〉 ∈ T(SODAφ(UR)) and i ˆ〈X〉 ∈ T(SODAψ(UR)). By
the induction hypothesis, i |=T

UR φ and i |=T
UR ψ. Therefore, i |=T

UR φ u ψ follows
by TR9.

Consider the term φ � ψ and let i ˆ〈X〉 ∈ T(SODAφ�ψ(UR)). By MA5,
SODAφ�ψ(UR) = SODAφ(UR) ‖

A
SODAψ(UR). From the denotational seman-

141



Appendix A. Proofs

tics of CSP it follows that there are two traces iφ, iψ ∈ Σ∗ such that iφ ˆ〈X〉 ∈
T(SODAφ(UR)) and iψ ˆ〈X〉 ∈ T(SODAψ(UR)). From the induction hypothe-
sis, it follows that iφ |=T

UR φ and iψ |=T
UR ψ. Moreover, because SODAφ(UR) and

SODAψ(UR) synchronize on A but not on X , si(i, iφ, iψ). By TR10, i |=T
UR φ� ψ.

Finally, consider the term φ⊗ ψ and let i ˆ〈X〉 ∈ T(SODAφ⊗ψ(UR)). By MA6,

SODAφ⊗ψ(UR) = ([φ]
Uφ

UR ‖
A
[ψ]

Uψ

UR)� . . . . From MA6 and the denotational seman-

tics of CSP it follows that there are two disjoint sets of users Uφ and Uψ such that

i ˆ〈X〉 ∈ T([φ]
Uφ

UR ‖
A
[ψ]

Uψ

UR). Analogous to the previous case, there are two traces

iφ, iψ ∈ Σ∗ such that iφ |=T
UR φ, iψ |=T

UR ψ, and si(i, iφ, iψ). By Proposition A.7, users
in users(iφ) are in Uφ and users in users(iψ) are in Uψ. Because Uφ ∩Uψ = ∅, it
follows that users(iφ) ∩ users(iψ) =∅∅∅. Therefore, by TR11, i |=T

UR φ⊗ ψ.

LHS⇐ RHS:

Base Cases: Consider a unit term φut and let i be a trace such that i |=T
UR φut.

The only rules of Definition 5.5 that allow for the derivation of φut are TR1–
TR4 and TR7–TR9. We can safely ignore TR7–TR9 because all these rules do
not change the trace that is derived. I.e. the same trace that is contained in the
conclusion is already contained in a premise. Out of TR1–TR4, only TR1 does not
have a trace in its premises. Therefore, TR1 is at the leaves of every derivation
tree of i |=T

UR φut and, thus, i contains an execution event t.u for a task t and a
user u. By iteratively applying the rules TR2–TR4, one can add admin events
before and after t.u but no additional execution event (otherwise φut would not
be a unit term). It follows that i is of the form a1ˆ〈t.u〉ˆa2, for a1, a2 ∈ A∗. Let
UR′ = upd(UR, a1). From Proposition A.5 it follows that 〈t.u〉ˆa2 |=T

UR′ φut and
therefore {{u}} |=M

UR′ φut by TR1. By MA1, SODAφut(UR) accepts a1 and behaves
like SODAφut(UR′) afterward. Because {{u}} |=M

UR′ φut, SODAφut(UR′) engages in
t.u and behaves like END afterward. From END’s definition, it follows that END
accepts a2 ˆ〈X〉. Hence, i ˆ〈X〉 ∈ T(SODAφut(UR)).

Consider a term φ+
ut and let i be a trace such that i |=T

UR φ+
ut. The only rules

of Definition 5.5 that allow for the derivation of φ+
ut are TR2–TR6. Out of these,

only TR5 does not have a trace that satisfies φ+
ut in its premises. Therefore, every

derivation of i |=T
UR φ+

ut contains one application of TR5 and, thus, i contains at
least one execution event t.u, for a task t and a user u. By TR2–TR4 and TR6, it
follows that i is of the form a1ˆ〈t1.u1〉ˆ . . .ˆanˆ〈tn.un〉ˆan+1 for ai ∈ A∗, an+1 ∈ A∗,
ti ∈ T , ui ∈ U , i ∈ {1, . . . ,n}, and n ∈N0. Because there is at least one execution
event in i, n ≥ 1. We reason inductively over n. For n = 1, it follows analogous
to the unit term case that a1ˆ〈t1.u1〉ˆa2 ˆ〈X〉 ∈ T(SODAφ+

ut
(UR)) by MA2. For

n > 1, assume a2ˆ〈t2.u2〉ˆ . . .ˆanˆ〈tn.un〉ˆan+1 ˆ〈X〉 ∈ T(SODAφ+
ut
(UR′)), for UR′ =

142



A.4. Proof of Theorem 5.1

upd(UR, a1). Because a1ˆ〈t1.u1〉ˆ . . .ˆanˆ〈tn.un〉ˆan+1 |=T
UR φ+

ut, {{u}} |=M

UR′ φut by
TR1, TR6, and Proposition A.5. By MA2, SODAφ+

ut
(UR) accepts a1 and behaves

like SODAφ+
ut
(UR′) afterward. Because {{u}} |=M

UR′ φut, SODAφ+
ut
(UR′) engages

in t1.u1 and behaves like the external choice between SODAφ+
ut
(UR′) and END

afterward. We can therefore decide that the process behaves like SODAφ+
ut
(UR′).

Therefore, by the induction hypothesis, a1ˆ〈t1.u1〉ˆa2 ˆ〈t2.u2〉ˆ . . .ˆanˆ〈tn.un〉ˆan+1

ˆ〈X〉 ∈ T(SODAφ+
ut
(UR)). Hence, i ˆ〈X〉 ∈ T(SODAφ+

ut
(UR)).

Step Cases: For two terms φ and ψ, assume that LHS ⇐ RHS holds. Con-
sider now a term of the form φ t ψ and let i |=T

UR φ t ψ. By TR7 and TR8,
either i |=T

UR φ or i |=T
UR ψ. Consider the first case. By MA3 and the denota-

tional semantics of CSP, T(SODAφtψ(UR)) = T(SODAφ(UR))∪T(SODAψ(UR)).
From the induction hypothesis it follows that i ˆ〈X〉 ∈T(SODAφ(UR)) and there-
fore, i ˆ〈X〉 ∈ T(SODAφtψ(UR)). The second case is analogous. Hence, i ˆ〈X〉 ∈
T(SODAφtψ(UR)).

Consider the term φ u ψ and let i |=T
UR φ u ψ. By TR9, i |=T

UR φ and i |=T
UR ψ.

By MA4 and the denotational semantics of CSP, T(SODAφuψ(UR)) =

T(SODAφ(UR)) ∩ T(SODAψ(UR)). From the induction hypothesis it follows
that i ˆ〈X〉 ∈ T(SODAφ(UR)) and i ˆ〈X〉 ∈ T(SODAψ(UR)) and therefore, i ˆ〈X〉 ∈
T(SODAφuψ(UR)).

Consider the term φ � ψ and let i |=T
UR φ � ψ. By TR10, there exist two

traces iφ, iψ ∈ Σ∗ such that iφ |=T
UR φ, iψ |=T

UR ψ, and si(i, iφ, iψ). By the induc-
tion hypothesis, iφ ˆ〈X〉 ∈ T(SODAφ(UR)) and iψ ˆ〈X〉 ∈ T(SODAψ(UR)), and
therefore also iφ ∈ T(SODAφ(UR)) and iψ ∈ T(SODAψ(UR)). From MA5 and
Proposition A.8 it follows that i ∈ T(SODAφ�ψ(UR)). Moreover, by MA5, be-
cause SODAφ(UR) and SODAψ(UR) both engage in X after having accepted iφ

and iψ respectively, SODAφ�ψ(UR) engages in X too, after having accepted i.
Hence, i ˆ〈X〉 ∈ T(SODAφ�ψ(UR)).

Finally, consider a term of the form φ⊗ψ and let i |=T
UR φ⊗ψ. By TR11, there

exist two traces iφ and iψ such that iφ |=T
UR φ, iψ |=T

UR ψ, si(i, iφ, iψ), and users(iφ)∩
users(iψ) = ∅∅∅. Because users(iφ) ∩ users(iψ) = ∅∅∅, there exist two sets of users
Uφ,Uψ ⊆ U such that Uφ ∪ Uψ = U , Uφ ∩ Uψ = ∅, userset(users(iφ)) ⊆ Uφ, and
userset(users(iψ)) ⊆ Uψ. By the induction hypothesis, iφ ˆ〈X〉 ∈ T(SODAφ(UR))
and iψ ˆ〈X〉 ∈ T(SODAψ(UR)), and therefore also iφ ∈ T(SODAφ(UR)) and iψ ∈
T(SODAψ(UR)). From Proposition A.7, [φ]

Uφ

UR therefore accepts iφ and [ψ]
Uψ

UR
accepts iψ. By MA6 and the denotational semantics of CSP, SODAφ⊗ψ(UR) also

behaves like [φ]
Uφ

UR ‖
A
[ψ]

Uψ

UR. Analogous to the previous case, it follows that i ∈

T(SODAφ⊗ψ(UR)) and i ˆ〈X〉 ∈ T(SODAφ⊗ψ(UR)). �

143



Appendix A. Proofs

A.5 Proof of Theorem 9.1

The proof of Theorem 9.1 requires a formal definition of the parallel, (fully-)
synchronized composition of two processes in terms of the operational semantics
of CSP, which is a standard parallel composition of two LTSs. Without loss of
generality, we let the set of input symbols to an LTS that correspond to a process
be the set of all events Στ,X.

Definition A.1 (Operational Semantics of the Parallel, Synchronized Process
Composition) Let P1 and P2 be two processes and let LP1 = (QP1 ,Στ,X,δP1 ,qP1

0 ) and
LP2 = (QP2 ,Στ,X,δP2 ,qP2

0 ). An LTS LP1 ‖ P2
= (QP12 ,Στ,X,δP12 ,qP12

0 ) corresponding to
the process P1 ‖ P2 can be constructed as follows:

• QP12 = QP1 ×QP2

• δP12 = {((qP1
1 ,qP2

1 ),σ, (qP1
2 ,qP2

2 )) | (qP1
1 ,σ,qP1

2 ) ∈ δP1 , (qP2
1 ,σ,qP2

2 ) ∈ δP2 , σ ∈ ΣX}
∪ {((qP1

1 ,qP2),τ, (qP1
2 ,qP2)) | (qP1

1 ,τ,qP1
2 ) ∈ δP1 , qP2 ∈ QP2}

∪ {((qP1 ,qP2
1 ),τ, (qP1 ,qP2

2 )) | (qP2
1 ,τ,qP2

2 ) ∈ δP2 ,qP1 ∈ QP1}

• qP12
0 = (qP1

0 ,qP2
0 )

Proof of Theorem 9.1. Assume U is finite. Let φ = (UT,S, B) be an autho-
rization policy, W be a finite workflow specification process, and LW =

(QW ,Στ,X,δW ,qW
0 ). Because U is finite, π−1 maps the finite number of tasks T

of W to a finite number of execution events. We construct a finite LTS LW[π−1] =

(QW[π−1],Στ,X,δW[π−1],qW[π−1]
0 ) as follows: QW[π−1] = QW , δW[π−1] = {(q1, t.u,q2) |

(q1, t,q2) ∈ δW , t ∈ T ,u ∈ U} ∪ {(q1,σ,q2) | (q1,σ,q2) ∈ δW ,σ ∈ (Στ,X \ T )}, and

qW[π−1]
0 = qW

0 . In other words, LW[π−1] is the same LTS as LW except for every

transition q1
〈t〉−→ q2 in LW , for a task t, there is a set of transitions q1

〈t.u〉−→ q2 in
LW[π−1], for every user u ∈ U .

Because T and U are finite, the basic authorization process AUT is finite by
Definition 4.3, every SoD process As, for s ∈ S, is finite by Definition 8.3, and
every BoD process Ab, for b ∈ B, is finite by Definition 8.4. By Definition 8.5,
Aφ is the parallel, synchronized composition of AUT, every As, for s ∈ S, and
every Ab, for b ∈ B. From Definition A.1, it follows that Aφ is finite too. Let

LAφ
= (QAφ ,Στ,X,δAφ ,q

Aφ

0 ).
By condition (1) of Definition 9.2, an enforcement process Eφ,W for φ on W

must trace refine Aφ, i.e. AφvT Eφ,W . Therefore, if Eφ,W exists, there exists an LTS

LEφ,W = (QEφ,W ,Στ,X,δEφ,W ,q
Eφ,W
0 ) for QEφ,W = QAφ , δEφ,W ⊆ δAφ , and q

Eφ,W
0 = q

Aφ

0 .

144



A.6. Proof of Lemma 9.2

Because Aφ is finite, so is δAφ and there are finitely many LTSs that are can-
didates to be LEφ,W . It is straightforward to construct a process from an LTS.
Because there are finitely many LTSs, there are also finitely many correspond-
ing processes. For each such process P, we can check if (W[π−1] ‖ P)[π] =F W.
Failure equivalence of finite processes is decidable [Roscoe 1994], for example
using the CSP model-checker FDR [FSE 2005]. If none of the candidate process-
es P satisfies the above check, i.e. condition (2) of Definition 9.2, there exists no
enforcement process for φ on W. �

A.6 Proof of Lemma 9.2

We refer to a line i of CGraph as CGi and to line j of EPEA as EAj.

Proof. Assume a workflow specification process W, let T = {t∈ T | ∃i ∈T(W), t∈
i}, and φ = (UT,S, B) be an authorization policy. Assume EPEA(T,φ) returns a
relation R.

If T = ∅, then W does not engage in any task and R = ∅ by EA2. Because
φ is an authorization policy for W and W contains no tasks, UT = ∅, S = ∅,
and B = ∅. It follows that Aφ = AUT. Therefore, Aφ engages in every point
and X, by Definition 4.3. It follows that AUT vT W, i.e. condition (1) of Defini-
tion 9.2 holds. By the trace semantics of CSP and because W does not engage
in tasks, (W[π−1] ‖W[∅])[π] =F (W ‖W)[π] =F W[π] =F W, i.e. condition (2) of
Definition 9.2 holds.

Assume T 6= ∅. Because EPEA returns a relation and T 6= ∅, CGraph(T,φ)
returns a graph (V, E) and a function L by EA1, EA4, and EA5. Furthermore,
LCol(V, E,L) returns a coloring colL by EA4 and EA5. Because T 6= ∅ and by
CG2, CG3, and CG10, V ≥ 1. It follows from Lemma 2.2 (soundness and com-
pleteness of LCol) that colL is an L-coloring for (V, E). Let t ∈ T. By CG2, CG3,
and CG10, there is exactly one vertex v ∈ V such that t ∈ v. Therefore, there is
exactly one tuple (t, t.u) ∈ R by EA8, for a user u.

Let i ∈ T(W[R]). In the following, we show for every constraint c ∈ ({UT} ∪
S ∪ B) that i ˆ〈t.u〉 ∈ T(Ac). By Definitions 4.3, 8.3, and 8.4, also i ˆ〈o〉 ∈ T(Ac),
for o ∈ O, and i ˆ〈X〉 ∈ T(Ac). It follows by Definition 8.5 that Aφ vT W[R],
i.e. condition (1) of Definition 9.2 holds.

Case UT: Let v ∈ V such that t ∈ v. By EA8, u = colL(v). By the definition of
L-coloring, colL(v) ∈ L(v). By CG4 and CG11, L(v) ⊆ {u′ | (u′, t) ∈ UT}. Hence,
(u, t) ∈UT and i ˆ〈t.u〉 ∈ T(AUT) by Definition 4.3.

Case s ∈ S: Let s = (T1, T2,O). If t 6∈ (T1 ∪ T2) then i ˆ〈t.u〉 ∈ T(As) by Def-
inition 8.3. Consider the case t ∈ (T1 ∪ T2). (T1 ∩ T2) = ∅ by the definition

145



Appendix A. Proofs

of SoD constraints. Without loss of generality, let t ∈ T1 and t 6∈ T2. Further-
more, let t2 ∈ T2 and (t2, t2.u2) ∈ R, for a user u2, and let v1,v2 ∈ V such that
t ∈ v1 and t2 ∈ v2. By CG12–CG18, {v1,v2} ∈ E. By the definition of L-coloring,
colL(v1) 6= colL(v2) and therefore u 6= u2 by EA8. Because there is only one exe-
cution event in R for every task, t2.u 6∈ i and therefore i ˆ〈t.u〉 ∈ T(As) by Defini-
tion 8.3.

Case b ∈ B: Let b = (T1,O). If t 6∈ T1 then i ˆ〈t.u〉 ∈ T(Ab) by Definition 8.4.
Consider the case t ∈ T1. Let t2 ∈ T1 and (t2, t2.u2) ∈ R for a user u2. Let v ∈ V
such that t ∈ v. By CG5–CG11 it holds that t2 ∈ v. By EA8 it follows that
u = u2. Therefore, no matter whether t2.u2 ∈ i or t2.u2 6∈ i, i ˆ〈t.u〉 ∈ T(Ab) by
Definition 8.4.

It remains to be shown that W[R] satisfies condition (2) of Defini-
tion 9.2. By CSP’s traces model and because R ⊆ π−1, (W[π−1] ‖W[R])[π] =F

W[R][π] =F W. �

A.7 Proof of Lemma 10.1

We refer to a line i of CGraph as CGi and to line j of EPEA as EAj.

Proof of Lemma 10.1. Let W be a workflow specification process, φ = (UT,S, B) an
authorization policy, and T = {t ∈ T | ∃i ∈ T(W) . t ∈ i}.

Property (1): Assume EPEA(T,φ) returns the relation R and let alloc = {(t,u) |
(t, t.u) ∈ R}. We first show that alloc is a function that maps every task in T to
a user and afterward that alloc |= (W,φ). Because EPEA(T,φ) returns a relation,
it follows by EA4, EA5, and EA8 that CGraph(T,φ) returns a graph (V, E) and
a color-list function L. Furthermore, LCol(V, E,L) returns an L-coloring colL for
(V, E). By CG1, CG3, and CG10, for every t ∈ T there is exactly one v ∈ V such
that t ∈ v. It follows by the definition of an L-coloring, EA8, and the definition
of alloc that alloc maps every t ∈ T to a user.

We now show that the three conditions of Definition 10.1 hold for alloc.
Condition (1): Let t ∈ T and v ∈ V such that t ∈ v. By the definition of alloc

and EA8, alloc(t) = colL(v). Furthermore, by the definition of an L-coloring,
colL(v) ∈ L(v) and thus alloc(t) ∈ L(v). By CG1, CG4, and CG11 it follows that
L(v) ⊆ {u | (u, t) ∈UT} and therefore (alloc(t), t) ∈UT.

Condition (2): Let (T1, T2,O) ∈ S be an SoD constraint and t1 ∈ T1 and t2 ∈ T2.
Furthermore, let v1,v2 ∈ V such that t1 ∈ v1 and t2 ∈ v2. It follows by CG12–
CG18 that {v1,v2} ∈ E. By the definition of L-coloring, colL(v1) 6= colL(v2) and
therefore alloc(t1) 6= alloc(t2) by EA8 and the definition of alloc.

146



A.8. Proof of Lemma 10.2

Condition (3): Let (T′,O) ∈ B be a BoD constraint and t1, t2 ∈ T′. By CG5–
CG10, there is a v ∈ V such that t1 ∈ v and t2 ∈ v. It follows by EA8 and the
definition of alloc that alloc(t1) = alloc(t2).

Property (2): Assume alloc is an allocation for W and φ. We prove by contra-
diction that CGraph(T,φ) returns a graph and a color list function. Assume
that CGraph(T,φ) returns No. By CG20, and CG12–CG17, there exists an SoD
constraint (T1, T2,O) ∈ S with t1 ∈ T1 and t2 ∈ T2, such that between CG1 and
CG11 a vertex v was created with t1 ∈ v and t2 ∈ v. It follows by CG1, CG3,
and CG5–CG10 that there is a set of BoD constraints {(T3,O3), . . . , (Tn,On)} ⊆ B
such that for all i, j ∈ {3, . . . ,n}, Ti ∩ Tj 6= ∅ and {t1, t2} ⊆ T3 ∪ . . . ∪ Tn. Be-
cause (T1, T2,O) ∈ S it follows by condition (2) of Definition 10.1 that alloc(t1) 6=
alloc(t2). However, by repeatedly applying condition (3) of Definition 10.1, for
(T3,O3) to (Tn,On), we also have alloc(t1) = alloc(t2), contradicting alloc(t1) 6=
alloc(t2). Hence, CGraph(T,φ) returns a graph (V, E) and a color list function L.

Next, we show that for every v ∈ V and t1, t2 ∈ v, alloc(t1) = alloc(t2). Let
v ∈ V and t1, t2 ∈ v. If t1 = t2, then the property trivially holds. Otherwise,
it again follows by CG1, CG3, and CG5–CG10 that there is a set of BoD con-
straints {(T3,O3), . . . , (Tn,On)} ⊆ B such that for all i, j ∈ {3, . . . ,n}, Ti ∩ Tj 6=
∅ and {t1, t2} ⊆ T3 ∪ . . . ∪ Tn. By repeatedly applying condition (3) of Defi-
nition 10.1, we get alloc(t1) = alloc(t2). Therefore, colL = {(v,u) | v ∈ V,∃t ∈
v . alloc(t) = u} is a function that maps every vertex in V to a user.

Finally, we shown that colL is an L-coloring for (V, E). Let v ∈ V be a vertex.
Because alloc(t1) = alloc(t2), for all t1, t2 ∈ v, colL(v) ∈ ∩t∈v{u | (u, t) ∈ UT} by
condition (1) of Definition 10.1 and the definition of colL. By CG1, CG4, and
CG11, L(v) = ∩t∈v{u | (u, t) ∈UT}, and therefore colL(v) ∈ L(v). Let {v1,v2} ∈ E
be an edge. By CG12–CG18 there is an SoD constraint (T1, T2,O) ∈ S such that
t1 ∈ v1 and t2 ∈ v2. It follows by condition (2) of Definition 10.1 that alloc(t1) 6=
alloc(t2). By the definition of colL therefore colL(v1) 6= colL(v2). Hence, colL is an
L-coloring for (V, E). �

A.8 Proof of Lemma 10.2

Proof. Let a graph (V, E) and an integer k be an instance of the NP-complete k-
Coloring problem. In the following, we present a polynomial reduction to AEP.
Let T = V and, for V = {v1, . . . ,vn}, let W = v1→ . . .→ vn→ SKIP be a workflow
specification process. Furthermore, let U = {1, . . . ,k} and UT = U × T. For every
{v1,v2} ∈ E, we add an SoD constraint (v1,v2,∅) to the set of SoD constraints S,
let B =∅, and thus we get the authorization policy φ = (UT,S,∅).

147



Appendix A. Proofs

Suppose an algorithm for AEP finds an allocation alloc such that alloc |=
(W,φ). We show that alloc is a k-coloring for (V, E). By our construction and
Definition 10.1, alloc : V → {1, . . . ,k}, i.e. alloc has the domain and range of a
k-coloring for (V, E). Consider an edge {v1,v2} ∈ E and let (v1,v2,∅) be the
corresponding SoD constraint S. By condition (2) of Definition 10.1, it follows
that alloc(v1) 6= alloc(v2). Hence, alloc is a k-coloring for (V, E).

Conversely, let col : V → {1, . . . ,k} be a k-coloring for (V, E). Because UT =

{1, . . . ,k} × V, col satisfies condition (1) of Definition 10.1. By our construction
and because col is a k-coloring for (V, E), for every SoD constraint (v1,v2,∅) ∈ S,
col(v1) 6= col(v2), i.e. col satisfies condition (2) of Definition 10.1. Because B =∅,
col trivially satisfies condition (3) of Definition 10.1, too. Hence, col |= (W,φ) and
AEP is NP-hard.

Given an instance (W,φ) of AEP and a function alloc : T → U , one can check
in polynomial time whether alloc |= (W,φ) by verifying that alloc satisfies all three
conditions of Definition 10.1. Hence, AEP is in NP and thereby NP-complete.

�

A.9 Proof of Lemma 10.3

We refer to a constraint or a set of constraints i in Definition 10.7 as Ci.

Proof. Let (costR,URmax,W, (UR, RT),S, B) be a ROWA instance and (A,b,c)
the corresponding ILP-instance returned by ROWAtoILP. Furthermore, let U =

dom(URmax), R = ran(URmax), and T = {t ∈ T | ∃i ∈ T(W) . t ∈ i}.

Soundness: Let x be a feasible solution for (A,b,c), UR′ a user-role assignment,
and alloc an allocation, such that x ∼ (UR′,alloc). We first show that UR′ ⊆
URmax. To derive a contradiction, assume (u,r) ∈ UR′ \URmax, for a user u and
a role r. By Definition 10.8, it follows that xu,r = 1. However, this contradicts C5,
which forces xu,r to be 0 (Remember, decision variables of a feasible solution only
assume the values 0 and 1). Hence, UR′ \URmax =∅ and therefore UR′ ⊆URmax.

By C2, alloc maps every task to exactly one user and is therefore a total
function. We now show that alloc |= (W, (RT ◦UR′,S, B)). Let (t,u) ∈ alloc, for
a task t and a user u. By Definition 10.8, xu,t = 1. It follows by C1 that there
exists an r such that xu,r = 1 and (r, t) ∈ RT. By Definition 10.8, (u,r) ∈ UR′ and
therefore (u, t) ∈ RT ◦UR′. Hence, condition (1) of Definition 10.1 holds.

To show that condition (2) of Definition 10.1 holds, consider an SoD con-
straint (T1, T2,O) ∈ S. Let u ∈ U, t1 ∈ T1, and t2 ∈ T2. If alloc(t1) = u, then
xu,t1 = 1. It follows by C3 that xu,t2 = 0 and therefore alloc(t1) 6= alloc(t2). The
case where alloc(t2) = u is analogous.

148



A.9. Proof of Lemma 10.3

For condition (3) of Definition 10.1, consider a BoD constraint (T′,O) ∈ B.
Let u ∈ U, t1 ∈ T′, and t2 ∈ T′. If alloc(t1) = u, then xu,t1 = 1. It follows by C4
that xu,t2 = 1 and therefore alloc(t1) = alloc(t2). The case where alloc(t1) 6= u is
analogous.

Completeness: Let UR′ be a user-role assignment, alloc an allocation, and x a
vector such that UR′ ⊆ URmax, alloc |= (W, (RT ◦UR′,S, B)), and x ∼ (UR′,alloc).
In the following, we show that x is a feasible solution for (A,b,c) by showing
that every constraint of (A,b,c) is satisfied.

C1: Let t be a task, u a user, and consider the constraint ∑{r|(r,t)∈RT} xu,r ≥ xu,t.
If alloc(t) 6= u, then xu,t = 0 by Definition 10.8 and the constraint is trivially
satisfied. If alloc(t) = u, it follows by condition (1) of Definition 10.1 that (u, t) ∈
RT ◦UR′. Therefore, there exists an r ∈ R such that (u,r) ∈ UR′ and (r, t) ∈ RT.
By Definition 10.8, xu,r = 1 and the constraint is therefore satisfied.

C2: Let t be a task. By Definition 10.1, alloc is a total function and there-
fore maps t to one user u ∈ U. By Definition 10.8 we have xu,t = 1. Hence,
∑u∈U xu,t = 1.

C3: Let (T1, T2,O) ∈ S be an SoD constraint, t1 ∈ T1, t2 ∈ T2, and u ∈ U.
Consider the constraint xu,t1 + xu,t2 ≤ 1. If alloc(t1) 6= u, then xu,t1 = 0 by Defi-
nition 10.8 and the constraint is trivially satisfied. If alloc(t1) = u, then xu,t1 = 1
by Definition 10.8. To derive a contradiction, assume that xu,t2 = 1. It follows
by Definition 10.8 that alloc(t2) = u. However, this contradicts condition (2) of
Definition 10.1, which must hold because alloc |= (W, (RT ◦ UR′,S, B)). Hence
xu,t2 = 0 and the constraint is satisfied.

C4: Let (T′,O) ∈ B be a BoD constraint, t1, t2 ∈ T′, and u ∈ U. Consider
the constraint xu,t1 = xu,t2 and let xu,t1 = 1. It follows from Definition 10.8 that
alloc(t1) = u. To derive a contradiction, assume xu,t2 = 0. By C2, there exists an
u2 ∈ U such that u 6= u2 and xu2,t2 = 1. By Definition 10.8, then alloc(t2) = u2.
However, this contradicts condition (3) of Definition 10.1, which must hold be-
cause alloc |= (W, (RT ◦UR′,S, B)). Hence xu,t2 = 1 and the constraint is satisfied.
The case where xu,t1 = 0 and we derive a contradiction for xu,t2 = 1 is analogous.

C5: ∑(u,r)∈(U×R)\URmax xu,r = 0 follows directly from UR′ ⊆ URmax and Defi-
nition 10.8.

C6 and C7: The satisfaction of these constraints follows directly from Defini-
tion 10.8. �

149



150



Appendix B

SoDAS

We summarize SODAS, the semantics for SoDA terms that was originally intro-
duced by Li and Wang [2008]. They define satisfaction with respect to a tuple
(U,UR), where U ⊆ U and UR ⊆ U ×R. In contrast, we defined multiset satis-
faction SODAM simply with respect to a user-role assignment UR.

Definition B.1 (SODAS) Let S be a non-empty set of users and r ∈ R a role. Further-
more, let U be a set of users and UR ⊆ U ×R a user-role assignment. For two sets
of users Y and Z, and a term φ, set satisfiability is the smallest relation between two
sets of users, user-role assignments, and terms, written Y |=S

(U,UR) φ, closed under the
following rules:

(1) {u} |=S

(U,UR) All
u ∈U (2) {u} |=S

(U,UR) r
(u,r) ∈UR

(3) {u} |=S

(U,UR) S
u ∈ (S ∩U) (4)

{u} 6|=S

(U,UR) φ

{u} |=S

(U,UR) ¬φ

(5)
{u} |=S

(U,UR) φ

{u} |=S

(U,UR) φ+
(6)

{u} |=S

(U,UR) φ, Y |=S

(U,UR) φ+

({u} ∪Y) |=S

(U,UR) φ+

(7)
Y |=S

(U,UR) φ

Y |=S

(U,UR) (φ t ψ)
(8)

Y |=S

(U,UR) ψ

Y |=S

(U,UR) (φ t ψ)

(9)
Y |=S

(U,UR) φ, Y |=S

(U,UR) ψ

Y |=S

(U,UR) (φ u ψ)
(10)

Y |=S

(U,UR) φ, Z |=S

(U,UR) ψ

(Y ∪ Z) |=S

(U,UR) (φ� ψ)

(11)
Y |=S

(U,UR) φ, Z |=S

(U,UR) ψ

(Y ∪ Z) |=S

(U,UR) (φ⊗ ψ)
(Y ∩ Z) =∅ .

151



152


	Introduction
	Problem Statement
	Contributions
	Organization

	I Context
	Background
	Communicating Sequential Processes
	Multisets
	Graph Coloring
	Business Process Modeling Notation
	Integer Programming

	Requirements
	Workflow Models
	Refining Regulations


	II A Workflow-Independent Approach
	Authorization-Constrained Workflows
	Workflows
	Authorization Classes and Enforcement Approach
	Basic Authorizations

	Generalization of SoDA
	Syntax
	Multiset Semantics
	Enforcement Requirements
	Trace Semantics
	Mapping Terms to Processes

	Implementation
	Technical Objectives
	Architecture
	Enforcement
	Complexity
	Performance Measurements

	Evaluation
	Limitations of an Automated Mapping
	Continuous Satisfiability
	Communication Versus Statefulness
	Abstractions


	III A Workflow-Specific Approach
	Scoping Constraints With Release Points
	Formalization
	BPMN Extension and Serialization
	Tool Support

	Aligning Authorization and Business Objectives
	Obstruction
	Enforcement Processes
	The Enforcement Process Existence Problem
	Approximations

	Optimal Workflow-Aware Authorizations
	Allocation
	The General Problem
	A Role-Based Cost Function
	Experimental Results

	Evaluation
	Allocations Versus Enforcement Processes
	When Users Become Unavailable
	Optimizing for Partially Executed Workflows


	IV Closing
	Related Work
	Authorizations
	Workflows
	Authorizations in the Context of Workflows

	Conclusion
	Summary
	Outlook

	Bibliography
	Curriculum Vitae
	Proofs
	Proof of Lemma 2.2
	Proof of Lemma 5.1
	Proof of Lemma 5.2
	Proof of Theorem 5.1
	Proof of Theorem 9.1
	Proof of Lemma 9.2
	Proof of Lemma 10.1
	Proof of Lemma 10.2
	Proof of Lemma 10.3

	SoDAS


