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Abstract

Quantum information theory is an area of physics which studies both fun¬

damental and applied issues in quantum mechanics from an information-

theoretic viewpoint. The underlying techniques are, however, often re¬

stricted to the analysis of systems which satisfy a certain independence con¬

dition. For example, it is assumed that an experiment can be repeated

independently many times or that a large physical system consists of many

virtually independent parts. Unfortunately, such assumptions are not al¬

ways justified. This is particularly the case for practical applications—e.g.,
in (quantum) cryptography—where parts of a system might have an arbi¬

trary and unknown behavior.

We propose an approach which allows to study general physical systems

for which the above mentioned independence condition does not necessarily
hold. It is based on an extension of various information-theoretic notions.

For example, we introduce new uncertainty measures, called smooth mm-

and max-entropy, which are generalizations of the von Neumann entropy.

Furthermore, we develop a quantum version of de Finetti's representation

theorem, as described below.

Consider a physical system consisting of n parts. These might, for in¬

stance, be the outcomes of n runs of a physical experiment. Moreover,

assume that the joint state of this n-partite system can be extended to an

{n + fc)-partite state which is symmetric under permutations of its parts

(for some k » 1). The de Fmetti representation theorem then says that

the original n-partite state is, in a certain sense, close to a mixture of prod¬

uct states. Independence thus follows (approximatively) from a symmetry

condition. This symmetry condition can easily be met in many natural situ¬

ations. For example, it holds for the joint state of n parts which are chosen

at random from an arbitrary (n + fc)-partite system.

As an application of these techniques, we prove the security of quantum

key distribution (QKD), i.e., secret key agreement by communication over

a quantum channel. In particular, we show that, in order to analyze QKD

protocols, it is generally sufficient to consider so-called collective attacks,
where the adversary is restricted to applying the same operation to each

particle sent over the quantum channel separately. The proof is generic and

thus applies to known protocols such as BB84 and B92 (where better bounds
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on the secret-key rate and on the the maximum tolerated noise level of the

quantum channel are obtained) as well as to continuous variable schemes

(where no full security proof has been known). Furthermore, the security
holds with respect to a strong so-called universally composable definition.

This implies that the keys generated by a QKD protocol can safely be used

in any application, e.g., for one-time pad encryption—which, remarkably, is

not the case for most of the standard definitions.



Zusammenfassung

Quanteninformationstheorie ist ein Gebiet der Physik, das sich sowohl mit

fundamentalen als auch angewandten Fragen innerhalb der Quantenme¬
chanik beschäftigt und diese aus einem informationstheoretischen Gesichts¬

punkt betrachtet. Die dabei verwendeten Techniken sind jedoch oft darauf

beschränkt, Systeme zu analyzieren, welche eine gewisse Unabhängigkeits¬

bedingung erfüllen. Beispielsweise wird angenommen, dass ein Experiment

viele Male unabhängig wiederholt werden kann, oder dass ein grosses phy¬
sikalisches System aus vielen nahezu unabhängigen Teilen besteht. Leider

sind solche Annahmen nicht immer gerechtfertigt. Dies gilt insbesondere für

praktische Anwendungen wie z.B. innerhalb der (Quanten)Kryptographie,
wo Teile eines Systems ein beliebiges und unbekanntes Verhalten aufweisen

können.

Wir stellen einen Ansatz vor, welcher es erlaubt, allgemeine physikali¬
sche Systeme zu studieren, für die keine solche Unabhängigkeitsbedingung

gilt. Er basiert auf einer Erweiterung verschiedener informationstheoreti¬

scher Konzepte. Zum Beispiel führen wir neue Entropiemasse ein, genannt

Smooth Mm-Entropy und Smooth Max-Entropy, welche die von Neumann-

Entropie verallgemeinern. Zudem entwickeln wir eine quantenmechanische
Version des Darstellungssatzes von de Finetti, die wir im folgenden beschrei¬

ben.

Wir betrachten ein physikalisches System, welches aus n Teilen besteht.

Diese könnten beispielsweise durch n Wiederholungen eines physikalischen

Experiments entstanden sein. Weiter nehmen wir an, dass der Gesamtzu¬

stand dieses n-teiligen Systems zu einem (n + Anteiligen Zustand erweitert

werden kann, welcher symmetrisch ist unter Vertauschungen der Teilsyste¬
me (für k » 1). Der Darstellungssatz von de Finetti besagt dann, dass der

Zustand des ursprünglichen n-teiligen Systems in einem gewissen Sinn na¬

he an einer Mischung von Produktzuständen ist. Die Unabhängigkeit der

Teilsysteme folgt also näherungsweise aus einer Symmetriebedingung. Diese

ist in vielen natürlichen Situationen einfach zu erfüllen. So gilt sie etwa für

ein System von n Teilen welche zufällig aus einem (n + Anteiligen System

ausgewählt worden sind.

Als Anwendung dieser Techniken beweisen wir die Sicherheit von Quan¬
tum Key Distribution (QKD), d.h., der Schlüsselverteilung über Quanten-
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kanäle. Insbesondere zeigen wir, dass es zur Analyse von QKD-Protokollen
im allgemeinen genügt, sogenannte kollektive Attacken zu betrachten, bei de¬

nen der Gegner darauf beschränkt ist, jedes über den Quantenkanal gesende¬
te Teilchen gleich zu behandeln. Der Beweis ist generisch und daher sowohl

auf bekannte Protokolle wie BB84 und B92 (für welche bessere Grenzen

an die Schlüsselrate und den maximal tolerierten Geräuschpegel des Quan¬
tenkanals folgen) als auch auf Continuous-Variable-Protokolle (für welche

kein vollständiger Sicherheitsbeweis bekannt war) anwendbar. Dabei ist Si¬

cherheit gemäss einer sogenannten universally composable Definition garan¬

tiert. Das bedeutet, dass die durch ein QKD-Protokoll erzeugten Schlüssel

in jeder denkbaren Anwendung verwendet werden dürfen, so z.B. für One-

Time-Pad-Verschlüsselung— was bemerkenswerterweise für die meisten ge¬

bräuchlichen Definitionen nicht zutrifft.
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Chapter 1

Introduction

1.1 Motivation

What is needed to establish a secret key between two spatially separated

parties? Clearly, this question is of immediate interest for practical cryp¬

tographic applications such as secure message transmission.1 More impor¬

tantly, however, it is related to fundamental problems in (classical and quan¬

tum) information theory. Is information physical? Is classical information

distinct from quantum information? In fact, it turns out that the possibility
of secret key agreement (over insecure channels) strongly depends on the

physical properties of information and that there is indeed a fundamental

difference between classical and quantum information.

In this thesis, we address several basic question of quantum information

theory: What does secrecy mean in a quantum world? (Chapter 2) How can

knowledge and uncertainty be quantified? (Chapter 3) What is the role of

symmetry? (Chapter 4) Can any type of randomness be transformed into

uniform randomness? (Chapter 5) As we shall see, the answers to these

questions allow us to treat the problem of secret key agreement in a very

natural way (Chapters 6 and 7).

1.2 Quantum key distribution: general facts

Cryptographic setting

We consider a setting where two distant parties, traditionally called Alice

and Bob, want to establish a common secret key, i.e., a string of random

bits which is unknown to an adversary, Eve. Throughout this thesis, we

focus on information-theoretic security, which is actually the strongest rea-

xFor example, using one-time pad encryption [Ver26], the problem of secretly exchang¬

ing £ message bits reduces to the problem of distributing a secret key consisting of £

bits

1



2 CHAPTER 1. INTRODUCTION

sonable notion of security.2 It guarantees that an adversary does not get

any information correlated to the key, except with negligible probability.

For the following, we assume that Alice and Bob already have at hand

some means to exchange classical messages in an authentic way.3 In fact,

only relatively weak resources are needed to turn a completely insecure com¬

munication channel into an authentic channel. For example, Alice and Bob

might invoke an authentication protocol (see, e.g., [Sti91, GN93]) for which

they need a short4 initial key. Actually, as shown in [RW03, RW04], it is

even sufficient for Alice and Bob to start with only weakly correlated and

partially secret information (instead of a short secret key).

Key agreement by quantum communication

Under the sole assumption that Alice and Bob are connected by a classical

authentic communication channel, secret communication—and thus also the

generation of a secret key—is impossible [Sha49, Mau93]. This changes

dramatically when quantum mechanics comes into the game. Bennett and

Brassard [BB84] (see also [Wie83]) were the first to propose a quantum key
distribution (QKD) scheme which uses communication over a (completely

insecure) quantum channel (in addition to the classical authentic channel).
The scheme is commonly known as the BB84 protocol.

Quantum key distribution is generally based on the impossibility to ob¬

serve a quantum mechanical system without changing its state. An adver¬

sary trying to wiretap the quantum communication between Alice and Bob

would thus inevitably leave traces which can be detected. A quantum key
distribution protocol thus achieves the following type of security: As long as

the adversary is passive, it generates an (arbitrarily long) secret key. On the

other hand, if the adversary tampers with the quantum channel, the pro¬

tocol recognizes the attack and aborts the computation of the key.5 (Note
that this is actually the best one can hope for: As the quantum channel

is completely insecure, an adversary might always interrupt the quantum

communication between Alice and Bob, in which case it is impossible to

generate a secret key.)

2An example of a weaker level of security is computational security, where one only

requires that it is difficult (i.e., time-consuming, but not impossible) for an adversary to

compute information on the key.
3Authentic means that, upon receiving a message, Bob can verify whether the message

was indeed sent by Alice, and vice-versa.

4The length of the key only grows logarithmically in the length of the message to be

authenticated.
5
More precisely, it is guaranteed that the protocol does not abort as long as the ad¬

versary is passive (this is called robustness). Moreover, for any attack on the quantum

channel, the probability that the protocol does not abort and the adversary gets informa¬

tion on the generated key is negligible (see Section 6.1.3 for details).
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An example: the BB84 protocol

To illustrate the main principle of quantum key distribution, let us have a

closer look at the BB84 protocol. It uses an encoding of classical bits in

qubits, i.e., two-level quantum systems6. The encoding is with respect to

one of two different orthogonal bases, called the rectilinear and the diagonal
basis.7 These two bases are mutually unbiased, that is, a measurement in

one of the bases reveals no information on a bit encoded with respect to the

other basis.

In the first step of the protocol, Alice chooses N random bits X\,..., Xn,

encodes each of these bits into qubits using at random8 either the rectilinear

or the diagonal basis, and transmits them to Bob (using the quantum chan¬

nel). Bob measures each of the qubits he receives with respect to—a random

choice of—either the rectilinear or the diagonal basis to obtain classical bits

Y%. The pair of classical bitstrings X = (X\,..., Xn) and Y = (Y\,..., Yn)
held by Alice and Bob after this step is called the raw key pair.

The remaining part of the protocol is purely classical (in particular,
Alice and Bob only communicate classically). First, Alice and Bob apply a

sifting step, where they announce their choices of bases used for the encoding
and the measurement, respectively. They discard all bits of their raw key
for which the encoding and measurement bases are not compatible. Then

Alice and Bob proceed with a parameter estimation step. They compare

some (small) randomly chosen set of bits of their raw key in order to get a

guess for the error rate, i.e., the fraction of positions 1 in which X% and Y%

disagree. If the error rate is too large—which might indicate the presence

of an adversary—Alice and Bob abort the protocol.

Let X' and Y' be the remaining parts of the raw keys (i.e., the bits of

X and Y that have neither been discarded in the sifting step nor used for

parameter estimation). These strings are now used for the actual compu¬

tation of the final key. In an information reconciliation step, Alice sends

certain error correcting information on X' to Bob.9 This, together with Y',
allows him to compute a guess for X'. (Note that, because of the parameter

estimation step, it is guaranteed that X' and Y' only differ in a limited

number of positions.) In the final step of the protocol, called privacy ampli¬

fication, Alice and Bob use two-universal hashing10 to turn the (generally
only partially secret) string X' into a shorter but secure key.

6For example, the classical bits might be encoded into the spin orientation of particles
7See Section 7 2 1 for a definition

8In the original proposal of the BB84 protocol, Alice and Bob choose the two bases

with equal probabilities However, as pointed out in [LCA05], the efficiency of the protocol
is increased if they select one of the two bases with probability almost one In this case,

the choices of Alice and Bob will coincide with high probability, which means that the

number of bits to be discarded in the sifting step is small

9The information reconciliation step might also be interactive

10See Section 5 4 for a definition of two-universality
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The security of the BB84 protocol is based on the fact that an adversary,

ignorant of the actual encoding bases used by Alice, cannot gain information

about the encoded bits without disturbing the qubits sent over the quantum

channel. If the disturbance is too large, Alice and Bob will observe a high
error rate and abort the protocol in the parameter estimation step. On the

other hand, if the disturbance is below a certain threshold, then the strings
X' and Y' held by Alice and Bob are sufficiently correlated and secret in

order to distill a secret key.

In order to prove security, one thus needs to quantify the amount of

information that an adversary has on the raw key, given the disturbance

measured by Alice and Bob. It is a main goal of this thesis to develop the

information-theoretic techniques which are needed for this analysis. (See
also Section 1.6.3 for a sketch of the security proof.)

Alternative protocols

Since the invention of quantum cryptography, a considerable effort has been

taken to get a better understanding of its theoretical foundations as well

as to make it more practical. In the course of this research, a large variety
of alternative QKD protocols has been proposed. Some of them are very

efficient with respect to the secret-key rate, i.e., the number of key bits

generated per channel use [Bru98, BPG99]. Others are designed to cope

with high channel noise or noise in the detector, which makes them more

suitable for practical implementations [SARG04].
The structure of these protocols is mostly very similar to the BB84

protocol described above. For example, the six-state protocol proposed
in [Bru98, BPG99] uses three different bases for the encoding (i.e., six dif¬

ferent states), but otherwise is identical to the BB84 protocol. On the other

hand, the B92 protocol [Ben92] is based on an encoding with respect to only
two non-orthogonal states.

QKD over noisy channels

Any realistic quantum channel is subject to intrinsic noise. Alice and Bob

will thus observe errors even if the adversary is passive. However, as these

errors are not distinguishable from errors caused by an attack, the distribu¬

tion of a secret key can only be successful if the noise level of the channel is

sufficiently low.

As an example, consider the BB84 protocol described above. In the

parameter estimation step, Alice and Bob compute a guess for the error

rate and abort the protocol if it exceeds a certain threshold. Hence, the

scheme only generates a key if the noise level of the channel is below this

threshold.
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The amount of noise tolerated by a QKD scheme is an important mea¬

sure for its practicability. In fact, in an implementation, the level of noise

inevitably depends on the distance between Alice and Bob (i.e., the length of

the optical fiber, for an implementation based on photons). To characterize

the efficiency of QKD schemes, one thus often considers the relation between

the channel noise and the secret-key rate (see plots in Chapter 7). Typically,
the secret-key rate decreases with increasing noise level and becomes zero

as soon as the noise reaches a certain bound, called the maximum tolerated

channel noise.

Quantum key distribution and distillation

Assume that Alice and Bob have access to some correlated quantum systems

(e.g., predistributed pairs of entangled particles). A quantum key distillation

protocol allows them to transform this correlation into a common secret key,
while using only classical authentic communication.

As explained below, a quantum key distribution (QKD) protocol can

generally be transformed into a key distillation protocol in such a way that

security of the latter implies security of the first. This is very convenient for

security proofs, as key distillation only involves quantum states (instead of

quantum channels) which are easier to analyze (see [Eke91, BBM92]).
The connection between key distillation and key distribution protocols

is based on the following observation: Let X be a classical value chosen

according to a distribution Px and let \<fix) be a quantum encoding of X.

This situation could now equivalently be obtained by the following two-step

process: (i) prepare a bipartite quantum state |\I>) := Ylx \JPx{x)\x) <8> \<jf),
where {|a;)}a; is some orthonormal basis of the first subsystem; (ii) measure

the first part of |\I>) with respect to the basis {|a;)}a;- In fact, it is easy

to verify that the outcome X is distributed according to Px and that the

remaining quantum system contains the correct encoding of X.

To illustrate how this observation applies to QKD, consider a proto¬

col where Alice uses the quantum channel to transmit an encoding \<fix) of

some randomly chosen value X to Bob (as, e.g., in the first step of the

BB84 protocol described above). According to the above discussion, this

can equivalently be achieved as follows:11 First, Alice locally prepares the

bipartite state |\I>) defined above, keeps the first half of it, and sends the

second half over the quantum channel to Bob. Second, Alice measures the

quantum system she kept to get the classical value X. (Such a protocol is

sometimes called an entanglement-based scheme.)
Note that, after the use of the quantum channel—but before the mea¬

surement—Alice and Bob share some (generally entangled) quantum state.

nMore generally, any arbitrary protocol step can be replaced by a coherent quantum

operation followed by some measurement
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The remaining part of the key distribution protocol is thus actually a quan¬

tum key distillation protocol. Hence, if this key distillation protocol is secure

(for any predistributed entanglement) then the original quantum key distri¬

bution protocol is secure (for any arbitrary attack of Eve).

1.3 Contributions

This thesis makes two different types of contributions. First, we introduce

various concepts and prove results which are of general interest in quantum

information theory and cryptography.12 These contributions are summa¬

rized in Section 1.3.1 below. Second, we apply our techniques to QKD in

order to derive a general security criterion. Some aspects and implications
of this result are discussed in Section 1.3.2.

1.3.1 New notions in quantum information theory

Smooth min- and max-entropies as generalizations of von Neu¬

mann entropy

The von Neumann entropy, as a measure for the uncertainty on the state of

a quantum system, plays an important role in quantum information theory.
This is mainly due to the fact that it characterizes fundamental information-

theoretic tasks such as randomness extraction or data compression. For

example, the von Neumann entropy of a source emitting quantum states can

be interpreted as the minimum space needed to encode these states such that

they can later be reconstructed with arbitrarily small error. However, any

such interpretation of the von Neumann entropy only holds asymptotically
in situations where a certain underlying experiment is repeated many times

independently. For the above example, this means that the encoding is over

many (sufficiently independent) outputs of the source.

In the context of cryptography, where an adversary might corrupt parts

of a system in an arbitrary way, this independence can often not be guar¬

anteed. The von Neumann entropy is thus usually not an appropriate mea¬

sure—e.g., to quantify the uncertainty of an adversary—unless we put some

severe restrictions on her capabilities (e.g., that her attack consists of many

independent repetitions of the same action).
In this thesis, we introduce two entropy measures, called smooth mm-

and max-entropy, which can be seen as generalizations of the von Neu¬

mann entropy. While smooth min-entropy quantifies the amount of uniform

12For example, our result on privacy amplification against quantum adversaries is not

only useful to prove the security of QKD It has also found interesting applications withm

other fields of cryptography, as for instance in the context of multi-party computation

(see, e g , [DFSS05] for a result on bit commitment)
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randomness that can be extracted from a quantum system, the smooth max-

entropy corresponds to the length of an optimal encoding of the system's
state. Unlike the von Neumann entropy, however, this characterization ap¬

plies to arbitrary situations—including those for which there is no underlying

independently repeated experiment.

In the special case of many independent repetitions (that is, if the sys¬

tem's state is described by a density operator which has product form),
smooth min- and max-entropy both reduce to the von Neumann entropy,

as expected. Moreover, smooth min- and max-entropy inherit most of the

properties known from the von Neumann entropy, as for example the strong

subadditivity. (We refer to Section 1.5 for a summary of these results.) On

the other hand, because the von Neumann entropy is a special case of smooth

min- and max-entropy, its properties follow directly from the corresponding

properties of the smooth min- or max-entropy. Interestingly, some of the

proofs are surprisingly easy in this general case. For example, the strong

subadditivity of the smooth min-entropy follows by a very short argument

(cf. Lemma 3.1.7 and Lemma 3.2.7). Note that this immediately gives a

simple proof for the strong subadditivity of the von Neumann entropy.

De Finetti representation theorem for finite symmetric quantum

states

An n-partite density operator pn is said to be N-exchangeable, for N > n,

if it is the partial state (i.e., pn = trfc(pjv)) of an A-partite density operator

pN which is invariant under permutations of the subsystems. Moreover, pn

is infinitely-exchangeable if it is A-exchangeable for all N > n. The quantum

de Finetti representation theorem [HM76] (which is the quantum version of

a theorem in probability theory named after its inventor Bruno de Finetti13)
makes a fundamental statement on such symmetric operators.14 Namely, it

says that any infinitely-exchangeable operator pn can be written as a convex

combination (i.e., a mixture) of product operators,

Pn= [o-®nv(a) .

Ja

We generalize the quantum de Finetti representation theorem for in¬

finitely exchangeable operators to the finite case.15 More precisely, we

show that the above formula still holds approximatively if pn is only N-

exchangeable for, some finite N which is sufficiently larger than n. (We
refer to Section 1.5 below for a more detailed description of this statement.)

13See [MC93] for a collection of de Fmetti's original papers

14See [CFS02] for a nice proof of the quantum de Finetti theorem based on its classical

analogue
1BThe result presented in this thesis is different from the one proposed in a previous

paper [KR05] (see Section 1 5 for more details)
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The de Finetti representation theorem turns out to be a useful tool in

quantum information theory. In fact, symmetric (and exchangeable) states

play an important role in many applications. For example, the operator

describing the joint state of n particles selected at random from a set of N

particles is A-exchangeable. Hence, according to our finite version of the de

Finetti representation theorem, the analysis of such states can be reduced to

the analysis of product states—which is often much easier than the general
case. Following this idea, we will use the finite de Finetti representation

theorem to argue that, for proving the security of a QKD scheme against

arbitrary attacks, it suffices to consider attacks that have a certain product
structure (so-called collective attacks, cf. Section 1.3.2).

Universal security of keys in a quantum world

In quantum cryptography, the security of a secret key S is typically defined

with respect to the classical information W that an adversary might obtain

when measuring her quantum system He- More precisely, S is said to be

secure if, for any measurement of the adversary's system He, the resulting
outcome W gives virtually no information on S. Although this definition

looks quite strong, we shall see that it is not sufficient for many applications,

e.g., if the key S is used for one-time pad encryption (see Section 2.2).
We propose a security definition which overcomes this problem. Roughly

speaking, we say that a key S is e-secure if, except with probability e,

S is equal to a perfect key which is uniformly distributed and completely

independent of the adversary's quantum system. In particular, our security
definition is universal in the sense that an e-secure key can safely be used

in any application, except with probability e.16

Security of privacy amplification against quantum adversaries

Let A be a classical random variable on which an adversary has some par¬

tial information. Privacy amplification is the art of transforming this par¬

tially secure X into a fully secure key S, and has been studied extensively
for the case where the adversary's information is purely classical. It has

been shown [BBR88, ILL89, BBCM95] that it is always possible to gener¬

ate an ^-bit key S which is secure against any adversary whose uncertainty

on X—measured in terms of the collision entropy17—is sufficiently larger
than £.

We generalize this classical privacy amplification theorem to include

quantum adversaries who might hold information on X encoded in the state

16Hence, our security definition fits into general frameworks concerned with the uni¬

versal security of quantum protocols, as proposed by Ben-Or and Mayers [BOM04] and

Unruh [Unr04] (see Section 2 2 for more details)
17The collision entropy, also called Renyi entropy of order two, of a probability distri¬

bution Px is the negative binary logarithm of its collision probability £) Px(x)2
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of a quantum system. We show that, similar to the classical result, X can

be transformed into a key of length £ which is secure18 if the uncertainty
of the adversary on X—this time measured in terms of the smooth min-

entropy—is at least roughly £. Because the smooth min-entropy is generally

larger than the collision entropy, this also implies the above classical result.

Our privacy amplification theorem is optimal with respect to the maxi¬

mum length £ of the extractable secret key—i.e., smooth min-entropy com¬

pletely characterizes the number of secret key bits that can be generated
from a partially secret string (up to some small constant). This also im¬

proves our previous results [KMR05, RK05] which are only optimal in cer¬

tain special cases.19

1.3.2 Properties and implications of the security result

We provide a simple and general20 criterion for the security of QKD against

any attack allowed by the laws of quantum physics. The following is a

summary of the most important properties and consequences of this result.

(For a more detailed description of the security criterion and a proof sketch,

we refer to Section 1.6 below.)

Coherent attacks are not stronger than collective attacks

An adversary might in principle apply an arbitrary operation on the quan¬

tum states exchanged between Alice and Bob. In the case of the most gen¬

eral, so-called coherent attacks, this operation could involve all subsystems

(particles) simultaneously, which makes it (seemingly) difficult to analyze.
One thus often considers a restricted class of attacks, called collective at¬

tacks [BM97b, BM97a], where the adversary is assumed to apply the same

transformation to each of the subsystems that is sent over the channel.21 A

natural and long-standing open question in this context is whether security

against collective attacks implies full security (see, e.g., [BBB+02]). Our

We prove security according to the strong definition proposed in Section 2.2—i.e., the

security is universal.

19The result proven in [RK05] is optimal if the density operator describing the initial

string together with the adversary's quantum information has product form.

20The security criterion is general in the sense that it applies to virtually all known

protocols. Note that this stands in contrast to previous security proofs, which are mostly

designed for specific protocols.
21An even more restricted type of attacks are the so-called individual attacks where,

additionally, the adversary is supposed to apply some fixed measurement operation to

each of the subsystems sent through the channel. In particular, this measurement cannot

depend on the classical information that Alice and Bob exchange for error correction and

privacy amplification. As shown in [BMS96], such individual attacks are generally weaker

than collective attacks. Hence, security against individual attacks does not imply full

security.
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result immediately answers this question in the positive, that is, coherent

attacks cannot be more powerful than collective attacks.22

Security of practical implementations

Because of technical limitations, practical implementations of QKD are sub¬

ject to many imperfections. In addition to noisy channels, these might
include faulty sources23 or detector losses. Because of its generality, our

security criterion can be used for the analysis of such practical settings.24

Keys generated by QKD can safely be used in applications

The security result holds with respect to a so-called universal security defini¬

tion. This guarantees that the key generated by a QKD protocol can safely
be used in applications such as for one-time pad encryption. (As mentioned

above, this is not necessarily the case for many of the standard security

definitions.)

Improved bounds on the efficiency of concrete protocols

Our security result applies to protocols which could not be analyzed with

previously known techniques (e.g., a reduction to entanglement purification

schemes, as proposed in [SP00]). In particular, it allows to compute the key
rates for new variants of known protocols.25 For example, we propose an

improved version of the six-state protocol and show that it is more efficient

than previous variants. Moreover, we derive new bounds on the maximum

tolerated channel noise of the BB84 or the six-state protocol with one-way

post-processing.

Explicit bounds on the security of finite keys

The security criterion gives explicit (non-asymptotic) bounds on the secrecy

and the length of keys generated from any (finite) number of invocations

of the quantum channel. Moreover, it applies to schemes which use arbi¬

trary (not necessarily optimal) subprotocols for information reconciliation.

This is in contrast to most known security results which—with a few excep¬

tions26—only hold asymptotically for large key sizes and for asymptotically

22
This statement holds for virtually any QKD protocol, the only requirement is that the

protocol is symmetric under permutations of the channel uses (see Section 1 6 for more

details)
23For example, it is difficult to design sources that emit perfect single-photon pulses
24
As there is no restriction on the structure of the underlying Hubert space, the security

criterion applies to any modeling of the physical system which is used for the quantum

communication between Alice and Bob
25
E g ,

we will analyze protocols that use an alternative method for the processing of

the raw key

26See, e g , [ILM01] for a nice and very careful explicit analysis of the BB84 protocol
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optimal information reconciliation.

1.4 Related work

The techniques developed in this thesis are partly motivated by ideas known

from classical information theory and, in particular, cryptography (e.g., clas¬

sical de Finetti-style theorems, privacy amplification against classical adver¬

saries, or universally composable security). For a discussion of these notions

and their relation to our results we refer to Section 1.3. In the following, we

rather focus on work related to the security of QKD.

Since Bennett and Brassard proposed the first QKD protocol in 1984

[BB84], it took more than a decade until Mayers [May96] proved that the

scheme is secure against arbitrary attacks.27 This result was followed by
various alternative proofs (see, e.g., [CRE04] or [LCA05] for an overview).

One of the most popular proof techniques was proposed by Shor and

Preskill [SPOO], based on ideas of Lo and Chau [LC99]. It uses a connection

between key distribution and entanglement purification [BBP+96] pointed

out by Ekert [Eke91] (see also [BBM92]). The proof technique of Shor and

Preskill was later refined and applied to other protocols (see, e.g., [GL03,

TKI03]).
In [CRE04], we have presented a general method for proving the secu¬

rity of QKD which does not rely on entanglement purification. Instead, it

is based on a result on the security of privacy amplification in the context

of quantum adversaries [KMR05, RK05]. Later, this method has been ex¬

tended and applied to prove the security of new variants of the BB84 and

the six-state protocol [RGK05, KGR05].28 The security proof given in this

thesis is based on ideas developed in these papers.

Our new approach for proving the security of QKD has already found

various applications. For example, it is used for the analysis of protocols
based on continuous systems as well as to improve the analysis of known

(practical) protocols exploiting the fact that an adversary cannot control

the noise in the physical devices owned by Alice and Bob (see, e.g., [Gro05,
NA05, Lo05]).

1.5 Outline of the thesis

The following is a brief summary of the main results obtained in each chap¬
ter.

27See also [MayOl] for an improved version of Mayers' proof.
28In [RGK05, KGR05] we use an alternative technique (different from the quantum de

Finetti theorem) to show that collective attacks are equivalent to coherent attacks for

certain QKD protocols.
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Chapter 2: Preliminaries

The first part of this chapter (Section 2.1) is concerned with the representa¬

tion of physical (cryptographic) systems as mathematical objects. We briefly
review the density operator formalism which is used to describe quantum

mechanical systems. Moreover, we present some variant of this formalism

which is useful when dealing with physical systems that consist of both

classical and quantum parts.

The second part of Chapter 2 (Section 2.2) is devoted to the security
definition for secret keys. We first argue that many of the widely used

definitions are problematic—in the sense that they do not imply the security
of applications such as one-time pad encryption. Then, as a solution to this

problem, we introduce a so-called universal security definition for secret keys
and discuss its properties.

Chapter 3: Smooth min- and max-entropy

This chapter introduces and studies smooth mm-entropy H^m and smooth

max-entropy H^ax, which both are entropy measures for density operators.

We first discuss some basic properties (Sections 3.1 and 3.2) which are ac¬

tually very similar to those of the von Neumann entropy (Theorem 3.2.12).
For example, the smooth min-entropy is strongly subadditive, that is,29

H£mm(A\BC) < H£mm(A\B) , (1.1)

and it obeys an inequality which can be interpreted as a chain rule,

H£mm(AB\C) < H£mm(A\BC) + Hmax(B) . (1.2)

Moreover, if the states in the subsystems Ha and He are independent con¬

ditioned on a classical value Y then

H£mm(AY\C) > H£mm(Y\C) + Hmm(A\Y) . (1.3)

The second part of Chapter 3 (Section 3.3) treats the special case where

the density operators have product form. In this case, smooth min- and max-

entropy both reduce to the von Neumann entropy. Formally, the smooth

min-entropy H^nm(An\Bn) of a product state pAnBn = 0"®jg satisfies

lim l-H£mm{An\Bn) = H(A\B) , (1.4)

where H(A\B) = H(aab) — H(<tb) is the (conditional) von Neumann en¬

tropy evaluated for the operator gab (cf. Theorem 3.3.6 and Corollary 3.3.7).

29We use a slightly simplified notation in this summary For example, we write

H^ln(A\B) to denote the smooth mm-entropy of a state pab given the second subsys¬
tem (instead of H!^11i1{.Pab\B) which is used in the technical part)
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Chapter 4: Symmetric states

This chapter is concerned with symmetric states, that is, states on n-fold

product system H®n that are invariant under permutations of the subsys¬
tems. We first show that any permutation-invariant density operator has

a symmetric purification, which allows us to restrict our attention to the

analysis of pure symmetric states (Section 4.2).
The main result of this section is a finite version of the quantum de Finetti

representation theorem (Section 4.3). It says that symmetric states can be

approximated by a convex combination of states which have "almost" prod¬

uct form (cf. Theorem 4.3.2). Formally, if pn^k is a permutation-invariant

operator on N = n + k subsystems H, then the partial state pn on H®n

(obtained by tracing over k subsystems) is approximated by a mixture of

operators pan, i.e.,

Pn~ py(o-) , (1-5)
No¬

where the integral ranges over all density operators a on one single sub¬

system H and v is some probability measure on these operators. Roughly

speaking, the states pan are superpositions of states which, on at least n — r

subsystems, for some small r, have product form o~®n~r. Moreover, the dis¬

tance30 between the left and the right hand side of the approximation (1.5)
decreases exponentially fast in r and k.31

The properties of the states pan occurring in the convex combination (1.5)
are similar to those of perfect product states a®n. The main result of Sec¬

tion 4.4 can be seen as a generalization of (1.4). It states that, for a state

pA^BBn which has almost product form a®ß (in the sense defined above,
where aab is a bipartite operator on Ha <S> Hb) the smooth min-entropy is

given by

lim ]-H£mm{An\Bn) = H(A\B) (1.6)

(see Theorem 4.4.132).
Analogously, in Section 4.5, we show that states pan which have almost

product form a®n lead to similar statistics as perfect product states a®n if

they are measured with respect to a product measurement. Formally, let

Pz be the distribution of the outcomes when measuring a with respect to

30The distance is measured with respect to the Li-distance, as defined in Section 2 14

31Note that this version of the finite quantum de Finetti representation theo¬

rem—although the same in spirit—is distinct from the the one proposed in [KR05]
In [KR05], the decomposition is with respect to perfect n-fold product states <7®n—instead

of states p^ which are products on only n — r subsystems—but the approximation is not

exponential
32Note that Theorem 4 4 1 only implies one direction (>) The other direction (<)

follows from a similar argument for the smooth max-entropy, which is an upper bound on

the smooth mm-entropy
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a POVM M. Moreover, let Az be the statistics (i.e., the frequency distri¬

bution) of the outcomes z = (z\,..., zn) of the product measurement M®n

applied to pan. Then

lim Az = Pz (1.7)
ra—>oo

(cf. Theorem 4.5.2).

Chapter 5: Privacy amplification

This chapter is on privacy amplification in the context of quantum adver¬

saries. The main result is an explicit expression for the secrecy of a key S

which is computed from an only partially secure string X by two-universal

hashing33 (Theorem 5.5.1 and Corollary 5.6.1). The result implies that the

key S is secure under the sole condition that its length £ is bounded by

^H£mm{X\E) (1.8)

where -ff^m(A|_B) denotes the smooth min-entropy of X given the adver¬

sary's initial information.

Chapter 6: Security of QKD

This chapter is devoted to the statement and proof of our main result on

the security of QKD. In particular, it contains an expression for the key
rate for a general class of protocols in terms of simple entropie quantities

(Theorem 6.5.1 and Corollary 6.5.2). (We refer to Section 1.6 for an overview

on this result and its proof.)

Chapter 7: Examples

As an illustration, we apply the general result of Chapter 6 to specific types

of QKD protocols. The focus is on schemes which are based on two-level

systems. In particular, we analyze different versions of the six-state QKD

protocol and compute explicit values for their rates (see Plots 7.1-7.5).

1.6 Outline of the security analysis of QKD

The following is a summary of our main result on the security of quantum key
distillation which—according to the discussion in Section 1.2—also implies
the security of quantum key distribution. Moreover, we give a sketch of

the security proof, which is based on the technical results summarized in

Section 1.5 above. (For a complete description of the security result and the

full proof, we refer to Chapter 6.)

33That is, S is the output f(X) of a function / which is randomly chosen from a so-called

two-universal family of hash functions (see Section 5 4 for a definition)
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1.6.1 Protocol

We start with a brief characterization of the general type of quantum key
distillation protocols to which our security proof applies. For this, we assume

that Alice and Bob start with N bipartite quantum systems Ha <S> Hb (de¬

scribing, e.g., pairs of entangled particles). The protocol then runs through
the following steps in order to transform this initial entanglement between

Alice and Bob into a common secret key.

• Parameter estimation: Alice and Bob sacrifice some small number, say

m, subsystems Ha <S> Hb in order to estimate their average correla¬

tion. For this, they both apply measurements with respect to different

bases and publicly announce the outcomes (using the authentic clas¬

sical communication channel). Depending on the resulting statistics,

they either decide to proceed with the computation of the key or to

abort the protocol.

• Measurement: Alice and Bob both apply measurements to their parts

of the remaining subsystems Ha <S> Hb to obtain a pair of raw keys.

(Note that these raw keys are generally only weakly correlated and

partially secure.)

• Block-wise processing: Alice and Bob might34 further process their raw

key pair in order to improve its correlation or secrecy. We assume that

this processing acts on n blocks of size b individually. For example,
Alice and Bob might invoke a so-called advantage distillation protocol

(see Section 7.1.3) whose purpose is to single out blocks of the raw key
that are highly correlated. We denote by Xn and Yn the strings held

by Alice and Bob after this step.

• Information reconciliation: The purpose of this step is to transform

the (possibly only weakly correlated) pair of strings Xn and Yn into a

pair of identical strings. Typically, Alice sends certain error correcting
information on Xn to Bob which allows him to compute a guess Xn

oîXn.

• Privacy amplification: Alice and Bob use two-universal hashing to

transform their strings Xn and Xn into secret keys of length £.

Additionally, we assume that the action of the protocol is invariant under

permutations of the N input systems. This does not restrict the generality
of our results, because any protocol can easily be turned into a permutation-

invariant one: Before starting with the parameter estimation, Alice and Bob

simply have to (publicly) agree on a random permutation which they use to

reorder their subsystems (see Section 1.6.3 below for more details).

34In many protocols, this step is omitted, 1 e
,
Alice and Bob directly proceed with

information reconciliation
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1.6.2 Security criterion

The security of a key distillation scheme depends on the actual choice of

various protocol parameters which we define in the following:

• T is the set of states on single subsystems which are not filtered by
the parameter estimation subprotocol: More precisely, V contains all

density operators aab such that, when starting with the product state

Panbn '= aAB> the Pr°tocol does not abort.

• £xYE^AbBbEb is the CPM35 on b subsystems which describes the mea¬

surement together with the block-wise processing on blocks of size b.

• n is the number of blocks of size b that are used for the actual com¬

putation of the key (i.e., the number of blocks of subsystems that are

left after the parameter estimation step).

• £ denotes the length of the final key generated in the privacy amplifi¬
cation step.

In addition, the security of the scheme depends on the efficiency of the

information reconciliation subprotocol, i.e., the amount of information that

is leaked to Eve. However, for this summary, we assume that Alice and

Bob use an optimal36 information reconciliation protocol. In this case, the

leakage is roughly equal to the entropy of Xn given Yn.37

We are now ready to formulate a general security criterion for quantum

key distillation (cf. Theorem 6.5.f): The scheme described above is secure

(for any initial state) if38

-

< min H(X\E) - H(X\Y) , (1.9)
n
~

(JAB&

where the minimum ranges over all states gab contained in the set T defined

above and where H(X\E) and H(X\Y) are the (conditional) von Neumann

entropies of

O-XYE = £xYE^AbBbEb((7ABE)

where gäbe is a purification of gab- Note that, because the operators gab

are on single subsystems, formula (1.9) is usually fairly easy to evaluate for

concrete protocols (cf. Chapter 7).

Typically, the number m of subsystem that are sacrificed for parameter

estimation is small compared to the total number N of initial subsystems.

35
See Section 2 11 for a definition of completely positive maps (CPM)

36In Section 6 3, we show that optimal information reconciliation protocols exist

37
We refer to Chapter 6 for the general result which deals with arbitrary—not necessarily

optimal—information reconciliation schemes

38The approximation ;$ m (1 9) indicates that the criterion holds asymptotically for

increasing n We refer to Chapter 6 for a non-asymptotic result
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Hence, the number n of blocks of size b that can be used for the actual

computation of the key is roughly given by n pa ^.39 The criterion (1.9)
can thus be turned into an expression for the key rate of the protocol (i.e.,
the number of key bits generated per channel use):

rate = \ min H{X\E) - H(X\Y) .

0 <TAB&

1.6.3 Security proof

We need to show that, for any initial state shared by Alice and Bob,
the probability that the protocol generates an insecure key is negligible.40
Roughly speaking, the proof consists of two parts. In the first (Steps 1-2)
we argue that we can restrict our analysis to a much smaller set of initial

states, namely those that have (almost) product form. In the second part

(Steps 3-5) we show that for each such state either of the following holds:

(i) there is not sufficient correlation between Alice and Bob in which case

the protocol aborts during the parameter estimation or (ii) a measurement

applied to the state generates an outcome with sufficient entropy such that

the key computed from it is secure.

Step 1: Restriction to permutation-invariant initial states

As we assumed that the protocol is invariant under permutations of the

input systems, we can equivalently think of a protocol which starts with

the following symmetrization step: Alice chooses a permutation ir at ran¬

dom and announces it to Bob, using the (insecure) classical communication

channel. Then Alice and Bob both permute the order of their N subsystems

according to ir. Obviously, the state pANbn of Alice and Bob's system after

this symmetrization step (averaged over all choices of tt) is invariant under

permutations.

Because the state pANbn is invariant under permutations, it has a pu¬

rification panbnen (with an auxiliary system H%N) which is symmetric as

well (cf. Lemma 4.2.2). As the pure state Panbnen cannot be correlated

with anything else (cf. Section 2.1.2) we can assume without loss of gener¬

ality that the knowledge of a potential adversary is fully described by the

auxiliary system.

39This is also true for QKD protocols with a sifting step (where Alice and Bob discard

the subsystems for which they have used incompatible encoding and decoding bases). In

fact, as mentioned in Section 1.2, if Alice and Bob choose one of the bases with probability
close to one, the fraction of positions lost in the sifting step is small.

40Note that the protocol might abort if the initial state held by Alice and Bob is not

sufficiently correlated.
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Step 2: Restriction to (almost) product states

Because Panbnen is invariant under permutations, it is, according to our

finite version of the de Finetti representation theorem approximated by a

mixture of states which have "almost" product form gabe—in the sense

described by formula (1.5).

Step 3: Smooth min-entropy of Alice and Bob's raw keys

Assume for the moment that the joint initial state Panbnen held by Alice,

Bob, and Eve has perfect product form gabe. As Alice and Bob's mea¬

surement operation (including the block-wise processing) Sxy^ab acts on

n blocks of size b individually, the density operator px^YnEn which describes

the situation before the information reconciliation step is given by

pXnYnEn = (SxY^AB <S> idß) n(pAbnBbnEbn) >

where Xn and Yn is Alice and Bob's raw key, respectively. Consequently,

pxnYnEn is the product of operators of the form

o-xYE = (Sxy^ab CS> idE)((rtBE) - (1.10)

By (1.4), the smooth min-entropy of pxnEn is approximated in terms of the

von Neumann entropy of gxe, i.e.,

H£mm{Xn\En) > nH{X\E) . (1.11)

Using (1.6), this argument can easily be generalized to states pANbnen

which have almost product form.

Step 4: Smooth min-entropy after information reconciliation

In the information reconciliation step, Alice sends error correcting infor¬

mation C about Xn to Bob, using the authentic classical communication

channel. Eve might wiretap this communication which generally decreases

the smooth min-entropy of Xn from her point of view.

As mentioned above, we assume for this summary that the information

reconciliation subprotocol is optimal with respect to the amount of informa¬

tion leaked to Eve. It follows from classical coding theory that the number of

bits that Alice has to send to Bob in order to allow him to compute her value

Xn is given by the Shannon entropy of Xn conditioned on Bob's knowledge
Yn. Formally, if pxnYn has product form GXy then the communication C

satisfies

tfmax(C) - Hmm(C\Xn) » nH{X\Y) , (1.12)

where H(X\Y) is the Shannon entropy of X given Y, evaluated for the

probability distribution defined by gxy- (Note that the entropy difference



1.6. OUTLINE OF THE SECURITY ANALYSIS OF QKD 19

on the left hand side can be interpreted as a measure for the information

that C gives on Xn.)
Let us now compute a lower bound on the smooth min-entropy of Xn

given Eve's knowledge after the information reconciliation step. By the

chain rule (1.2), we have

Hmm(xn\CEn) > H£mm(XnC\En) - Hmax(C) .

Moreover, because C is computed from Xn, we can apply inequality (1.3),

H£mm{XnC\En) > H£mm{Xn\En) + Hmm{C\Xn) .

Combining this with (1.12) gives

-^mm(A"'|C-B"') > H^nm(Xn\En) — (Hmax(C) — Hmm(C\Xn))
*H£mm(Xn\En)-nH(X\Y).

Finally, using the approximation (1.11) for H^[LlTL(Xn\En), we conclude

H£mm(Xn\CEn) > nH(X\E) - nH(X\Y) . (1.13)

Step 5: Security of the key generated by privacy amplification

To argue that the key generated in the final privacy amplification step is

secure, we apply criterion (1.8). Because the adversary has access to both the

quantum system and the classical communication C, this security criterion

reads

l £ H£mm{Xn\EnC) (1.14)

where £ is the length of the key.
As shown in Step 2, the state panbnen has almost product form gabe.

Hence, according to (f.7), the statistics obtained by Alice and Bob in the

parameter estimation step corresponds to the statistics that they would

obtain if they started with a perfect product state <rAB. We conclude that,

by the definition of the set V, the protocol aborts whenever gab fi V.

To bound the smooth min-entropy of the string held by Alice before

privacy amplification, it thus suffices to evaluate (1.13) for all states gab

contained in T. Formally,

-H^X^CE11) > min H{X\E) - H{X\Y) .

n
~

OABE

where the minimum is over all (pure) states gabe such that gab g T and

where H{X\E) and H(X\Y) are the entropies of the state gxye given

by (1.10). Combining this with criterion (1.14) concludes the proof.
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Chapter 2

Preliminaries

2.1 Representation of physical systems

2.1.1 Density operators, measurements, and operations

Quantum mechanics, like any other physical theory, allows us to make cer¬

tain predictions about the behavior of physical systems. These are, however,
not deterministic—a system's initial state merely determines a probability
distribution over all possible outcomes of an observation.1

Mathematically, the state of a quantum mechanical system with d de¬

grees of freedom is represented by a normalized nonnegative2 operator p,

called density operator, on a d-dimensional Hilbert space H. The normal¬

ization is with respect to the trace norm, i.e., ||p||i = tr(p) = 1. In the

following, we denote by V{H) the set of nonnegative operators on H, i.e., p

is a density operator on H if and only if p e V{H) and tr(p) = 1.

Any observation of a quantum system corresponds to a measurement

and is represented mathematically as a positive operator valued measure

(POVM), i.e., a family M = {Mw}weyy of nonnegative operators such that

J2wW-Mw = id-ft. The theory of quantum mechanics postulates that the

probability distribution Pw of the outcomes when measuring a system in

state p with respect to M is given by P\y(w) := tr(Mwp).

Consider a physical system whose state pz depends on the value z of a

classical random variable Z with distribution Pz- For an observer which is

ignorant of the value of Z, the state p of the system is given by the convex

1With his famous statement "Gott würfelt nicht," Einstein expressed his doubts about

the completeness of such a non-deterministic theory
2
An operator p on Ti is nonnegative if it is hermitian and has nonnegative eigenvalues

21
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combination

p=Y,Pz{z)pz- (2.1)

The decomposition (2.1) of a density operator p is generally not unique.

Consider for example the fully mixed state defined by p := ^f^id-^. In

the case of a two-level system, p might represent a photon which is polarized

horizontally or vertically with equal probabilities; but the same operator p

might also represent a photon which is polarized according to one of the two

diagonal directions with equal probabilities. In fact, the two settings cannot

be distinguished by any measurement.

A physical process is most generally described by a linear mapping £,
called a quantum operation, which takes the system's initial state p to its

final state p'.4 Mathematically, a quantum operation £ is a completely posi¬

tive map (CPM)5 from the set of hermitian operators on a Hilbert space H

to the set of hermitian operators on another Hilbert space H1. Additionally,
in order to ensure that the image £(p) of a density operator p is again a

density operator, £ must be trace-preserving, i.e., tr(£(p)) = tr(p), for any

p G V{H). It can be shown that any CPM £ can be written as

£{p) = J2 E^Ei (2-2)
wew

where {Ew}weyy is a family of linear operators from H to H'. On the other

hand, any mapping of the form (2.2) is a CPM.6 Moreover, it is trace-

preserving if and only if Y,weWEEw = idW-
As we have seen, the state of a quantum system might depend on some

classical event Q (e.g., that Z takes a certain value z). In this context, it is

often convenient to represent both the probability Pr[Q] of Q and the state

pn of the system conditioned on Q as one single mathematical object, namely
the nonnegative operator pn := Pr[Q] pn.7 For this reason, we formulate

most statements on quantum states in terms of general (not necessarily

normalized) nonnegative operators. Similarly, we often consider general (not

necessarily trace-preserving) CPMs £. The quantity tr(£(p)) can then be

3Because a measurement is a linear mapping from the set of density operators to the set

of probability distributions, this is consistent with the above description In particular, the

distribution of the outcomes resulting from a measurement of p is the convex combination

of the distributions obtained from measurements of pz
4A measurement can be seen as a special case of a quantum operation where the

outcome is classical (see Section 2 13)
5
Complete positivity means that any extension £ ig> id of the map £, where id is the

identity map on the set of hermitian operators on some auxiliary Hubert space H", maps

nonnegative operators to nonnegative operators Formally, {£ <%> id)(p) e V(7i' <%> TL") for

any peV(H®H")
6
This is m fact a direct consequence of Lemma B 5 1

7The probability of the event O is then equal to the trace of pil, l e
, Pr[0] = tr(pn),

and the system's state conditioned on O is p =

p
"L, p
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interpreted as the probability that the process represented by £ occurs when

starting with a system in state p.

2.1.2 Product systems and purifications

To analyze complex physical systems, it is often convenient to consider a

partitioning into a number of subsystems. This is particularly useful if

one is interested in the study of operations that act on the parts of the

system individually.8 Mathematically, the partition of a quantum system

into subsystems induces a product structure on the underlying Hilbert space.

For example, the state of a bipartite system is represented as a density

operator pAB on a product space Ha <S> Hb- The state of one part of a

product system is then obtained by taking the corresponding partial trace

of the overall state, e.g., pA = ^b{pab) for the first part of a bipartite

system.

A density operator p on H is said to be pure if it has rank9 one, that

is, p = \9){9\, for some \9) e H. If it is normalized, p is a projector10 onto

\9). A pure density operator can only be decomposed trivially, i.e., for any

decomposition of the form (2.2), pz = p holds for all zeZ. According to the

above interpretation, one could say that a pure state contains no classical

randomness, that is, it cannot be correlated with any other system.

The fact that a pure state cannot be correlated with the environment

plays a crucial role in cryptography. It implies, for example, that the ran¬

domness obtained from the measurement of a pure state is independent of

any other system and thus guaranteed to be secret. More generally, let pA be

an arbitrary operator on Ha and let pae be a purification of pA, i.e., pae is

a pure state on a product system Ha ®He such that tre(pae) = Pa- Then,
because pae is uncorrelated with any other system, the partial system He

comprises everything that might possibly be correlated with the system Ha

(including the knowledge of a potential adversary).

2.1.3 Quantum and classical systems

Consider a classical random variable Z with distribution Pz on some set Z.

In a quantum world, it is useful to view Z as a special case of a quantum

system. For this, one might think of the classical values z <E Z as being

represented by orthogonal11 states \z) on some Hilbert space Hz- The state

8This is typically the case m the context of cryptography, where various parties control

separated subsystems
9The rank of a hermitian operator S, denoted rank(S'), is the dimension of the support

supp(S'), l e
,
the space spanned by the eigenvectors of S with nonzero eigenvalues

10A hermitian operator P is said to be a projector if PP = P

nThe orthogonality of the states \z) guarantees that they can be distinguished perfectly,

as this is the case for classical values
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pz of the quantum system is then defined by

Pz = ^2Pz(z)\z)(z\. (2.3)
zez

We say that pz is the operator representation of the classical distribution

Pz (with respect to the basis {\z)}zez)-12
On the other hand, any operator pz can be written in the form (2.3)

where Pz(z) are the eigenvalues of pz and \z) are the corresponding eigen¬

vectors. The right hand side of (2.3) is called the spectral decomposition of

pz- Moreover, we say that Pz is the probability distribution defined by pz-

This notion can be extended to hybrid settings where the state pzA of a

quantum system Ha depends on the value z of a classical random variable

Z (see, e.g., [DW05]). The joint state of the system is then given by

Paz = J2pza®\z){z\, (2-4)
zez

where pA := Pz(z)pA.
We can also go in the other direction: If a density operator has the

form (2.4), for some basis {\z)}zez, then the first subsystem can be inter¬

preted as the representation of a classical random variable Z. This motivates

the following definition: An operator pAz G V{Ha <8>Hz) is said to be clas¬

sical with respect to {\z)}zez if there exists a family {pA}zez of operators

on Ha, called (non-normalized) conditional operators, such that pAz can be

written in the form (2.4). Moreover, we say that pAz is classical on Hz if

there exists a basis {|-z)}.ze.z of Hz such that pAz is classical with respect

to {\z)}zez.13
A similar definition can be used to characterize quantum operations (i.e.,

CPMs) whose outcomes are partly classical: A CPM £ from H to Ha <S> Hz

is said to be classical with respect to {\z)}zez (or simply classical on Hz) if

it can be written as

s(<r) = 1£ez(<T)®\z){z\,
zez

where, for any z G Z, £z is a CPM from H to Ha- Note that a measurement

on H with outcomes in Z can be seen as a CPM from H to Hz which is

classical on Hz-

12
This definition can easily be generalized to multi-partite nonnegative (not necessarily

normalized) functions (e g ,
Pxy G V(X x y), where V(X x y) denotes the set of non-

negative functions on X x y) in which case one gets nonnegative operators on product

systems (e g , pxy e V(7ix ® TLy))
13The operators pA, for z e 2, are uniquely defined by pAz and the basis {|z)}zg.z

Moreover, because pAZ is nonnegative, the operators pA, for z e Z, are also nonnegative
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2.1.4 Distance between states

Intuitively, we say that two states of a physical system are similar if any

observation of them leads to identical results, except with small probability.
For two operators p, p' G V(TL) representing the state of a quantum system,

this notion of similarity is captured by the L\-distance, i.e., the trace norm14

||p —p'||i of the difference between p and p'.15 The Li-distance for operators

can be seen as the quantum version of the Li-distance for probability distri¬

butions 16
(or, more generally, nonnegative functions), which is defined by

ll-P-^lli :=T,z\P(z)-P'(z)\, for P,P' eV(Z). In particular, if p and p'
are operator representations of probability distributions P and P', respec¬

tively, then the Li-distance between p and p' is equal to the Li-distance

between P and P'.

Under the action of a quantum operation, the Li-distance between two

density operators p and p1 cannot increase (cf. Lemma A.2.1). Because

any measurement can be seen as a quantum operation, this immediately

implies that the distance ||P — P'||i between the distributions P and P'

obtained from (identical) measurements of two density operators p and p',

respectively, is bounded by \\p — p'\\\.
The following proposition provides a very simple interpretation of the

Li-distance: If two probability distributions P and P' have Li-distance at

most 2e, then the two settings described by P and P', respectively, cannot

differ with probability more than e.

Proposition 2.1.1. Let P,P' G V{X) be probability distributions. Then

there exists a joint distribution Pxx' such that P and P' are the marginals

of Pxx' (i.e., P = Px, P' = Px1) and, for (x,xr) chosen according to Pxx1,

Pr [x^x'} < -\\P-P'\\i
•

(x,x') 2

In particular, if the Li-distance between two states is bounded by 2e,

then they cannot be distinguished with probability more than e.

2.2 Universal security of secret keys

Cryptographic primitives (e.g., a secret key or an authentic communication

channel) are often used as components within a more complex system. It is

thus natural to require that the security of a cryptographic scheme is not

compromised when it is employed as part of another system. This require¬

ment is captured by the notion of universal security. Roughly speaking,

14The trace norm, ||/S||i of a hermitian operator S on Ji is defined by \\S\\i = tr(|<S|)
1BThe Li-distance between two operators is closely related to the trace distance, which

is usually defined with an additional factor \
16The Li-distance between classical probability distributions is also known as variational

distance or statistical distance (which are often defined with an additional factor i)
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we say that a cryptographic primitive is universally secure if it is secure in

any arbitrary context. For example, the universal security of a secret key
S implies that any bit of S remains secret even if some other part of S is

given to an adversary.
In the past few years, universal security has attracted a lot of interest

and led to important new definitions and proofs (see, e.g., the so-called uni¬

versal composabihty framework of Canetti [CanOf] or Pfitzmann and Waid-

ner [PWOO]). Recently, Ben-Or and Mayers [BOM04] and Unruh [Unr04]
have generalized Canetti's notion of universal composabihty to the quantum

world.

Universal security definitions are usually based on the idea of charac¬

terizing the security of a real cryptographic scheme by its distance to an

ideal system which (by definition) is perfectly secure. For instance, a secret

key S is said to be secure if it is close to a perfect key U, i.e., a uniformly
distributed string which is independent of the adversary's information. As

we shall see, such a definition immediately implies that any cryptosystem

which is proven secure when using a perfect key U remains secure when U

is replaced by the (real) key S.

2.2.1 Standard security definitions are not universal

Unfortunately, many security definitions that are commonly used in quan¬

tum cryptography are not universal. For instance, the security of the key S

generated by a QKD scheme is typically defined in terms of the mutual infor¬

mation I(S; W) between S and the classical outcome IT of a measurement

of the adversary's system (see, e.g., [LC99, SPOO, NCOO, GL03, LCA05] and

also the discussion in [BOHL+05] and [RK05]). Formally, S is said to be

secure if, for some small e,

max/(S; WO <e
, (2.5)

w

where the maximum ranges over all measurements on the adversary's system

with output W. Such a definition—although it looks reasonable—does,

however, not guarantee that the key S can safely be used in applications.

Roughly speaking, the reason for this flaw is that criterion (2.5) does not

account for the fact that an adversary might wait with the measurement

of her system until she learns parts of the key. (We also refer to [RK05]
and [BOHL+05] for a more detailed discussion and an analysis of existing

security definitions with respect to this concern.17)

17Note that the conclusions in [BOHL+05] are somewhat different to ours It is shown

that existing privacy conditions of the form (2 5) do imply universal security, which seems

to contradict the counterexample sketched below However, the result of [BOHL+05] only
holds if the parameter e in (2 5) is exponentially small in the key size, which is not the

case for most of the existing protocols (In fact, the security parameter e can only be

made exponentially small at the expense of decreasing the key rate substantially )
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Let us illustrate this potential problem with a concrete example: Assume

that we would like to use an n-bit key S = (Si,..., Sn) as a one-time pad to

encrypt an n-bit message M = (Mi,..., Mn).ls Furthermore, assume that

an adversary is interested in the nth bit Mn of the message, but already
knows the first n — 1 bits Mi,..., Mn_\. Upon observing the ciphertext, the

adversary can easily determine19 the first n — 1 bits of S. Hence, in order

to guarantee the secrecy of the nth message bit Mn, we need to ensure that

the adversary still has no information on the nth key bit Sn, even though
she already knows all previous key bits S\,... ,Sn-\. This requirement,

however, is not implied by the above definition. Indeed, for any arbitrary
e > 0 and n depending on e, it is relatively easy to construct examples
which satisfy (2.5) whereas an adversary—once she knows the first n — f

bits of the key—can determine the nth bit Sn with certainty. For an explicit

construction and analysis of such examples, we refer to [Bar05].20

2.2.2 A universal security definition

Consider a key S distributed according to Ps and let pE be the state of the

adversary's system given that S takes the value s, for any element s of the

key space S. According to the discussion in Section 2.1.3, the joint state of

the classical key S and the adversary's quantum system can be represented

by the density operator

PSE-=Y,PS(S)\S)(S\^PE ,

ses

where {|s)}ses is an orthonormal basis of some Hilbert space Hs- We say

that S is e-secure with respect to He if

I,, m . .

-z\\Pse-Pu® Pe\\x<£ , (2.6)

where pu = J2ses "i^îls)(sl 1S the fully mixed state on Hs-

The universal security of a key S satisfying this definition follows from a

simple argument: Criterion (2.6) guarantees that the real situation described

by Pse is e-close—with respect to the Li-distance—to an ideal situation

where S is replaced by a perfect key U which is uniformly distributed and

independent of the state of the system He- Moreover, since the Li-distance

cannot increase when applying a quantum operation (cf. Lemma A.2.1),
this also holds for any further evolution of the world (where, e.g., the key is

used as part of a larger cryptographic system). In fact, it follows from the

18That is, the ciphertext C = (C1,...,Cn) is the bit-wise XOR of S and M, i.e.,

c\ = sz e mz.

"Note that Sl = Ml® C\.

20This phenomenon has also been studied in other contexts (see, e.g., [DHL+04,
HLSW04]) where it is called as locking of classical correlation.
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discussion in Section 2.1.4 that an e-secure key can be considered identical

to an ideal (perfect) key—except with probability e?1 In particular, an

e-secure key is secure within any reasonable framework providing universal

composabihty (e.g., [BOM04] or [Unr04]).22
The security of a key according to (2.6) also implies security with respect

to most of the standard security definitions in quantum cryptography. For

example, if S is e-secure with respect to He then the mutual information

between S and the outcome of any measurement applied to the adversary's

system is small (whereas the converse is often not true, as discussed above).
In particular, if the adversary is purely classical, (2.6) reduces to a classical

security definition which has been proposed in the context of information-

theoretically secure key agreement (see, e,g., [DM04]).

21For this statement to hold, it is crucial that the criterion (2.6) is formulated in terms

of the Li-distance (instead of other distance measures such as the fidelity).
22These frameworks are usually based on the so-called simulatability paradigm. That is,

a real cryptosystem is said to be as secure as an ideal cryptosystem if any attack to the real

scheme can be simulated by an attack to the ideal scheme (see also [MRH04]). It is easy

to see that our security criterion is compatible with this paradigm: Consider a (real) key

agreement protocol and assume that, for any possible attack of the adversary, the final key
satisfies (2.6). The adversary's quantum state after the attack is then almost independent
of the key, that is, the adversary could simulate virtually all her information without even

interacting with the cryptosystem. The real key agreement protocol is thus as secure as

an ideal key agreement scheme which, by definition, does not leak any information at all.



Chapter 3

(Smooth) Min- and

Max-Entropy

Entropy measures are indispensable tools in classical and quantum infor¬

mation theory. They quantify randomness, that is, the uncertainty that an

observer has on the state of a (quantum) physical system. In this chap¬

ter, we introduce two entropie quantities, called smooth mm-entropy and

smooth max-entropy. As we shall see, these are useful to characterize ran¬

domness with respect to fundamental information-theoretic tasks such as the

extraction of uniform randomness or data compression.1 Moreover, smooth

min- and max-entropies have natural properties which are similar to those

known from the von Neumann entropy and its classical special case, the

Shannon entropy2 (Sections 3.1 and 3.2). In fact, for product states, smooth

min- and max-entropy are asymptotically equal to the von Neumann entropy

(Section 3.3).
Smooth min- and max-entropies are actually families of entropy measures

parameterized by some nonnegative real number e, called smoothness. In

applications, the smoothness is related to the error probability of certain

information-theoretic tasks and is thus typically chosen to be small. We

first consider the "non-smooth" special case where e = 0 (Section 3.1). This

is the basis for the general definition where the smoothness e is arbitrary

(Section 3.2).
We will introduce a conditional version of smooth min- and max-entropy.

It is defined for bipartite operators pAs on Ha®Hb and measures the uncer¬

tainty on the state of the subsystem Ha given access to the subsystem Hb-
Unlike the conditional von Neumann entropy H(A\B) := H(pab) — H(pb),

1
Randomness extraction is actually privacy amplification and is the topic of Chap¬

ter 5 Data compression is closely related to information reconciliation which is treated

in Section 6 3

2The Shannon entropy of a probability distribution P is defined by H(P) =

— ~Y^x P{x) log P{x), where log denotes the binary logarithm Similarly, the von Neumann

entropy of a density operator p is H(p) = —ti(p\ogp)

29
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however, it cannot be written as a difference between two "unconditional"

entropy measures.

To illustrate our definition of (conditional) min- and max-entropy, let

us, as an analogy, consider an alternative formulation of the conditional von

Neumann entropy H(A\B). Let

H(pabWb) = -tr(pab(log Pab - log idA <g> aB)) , (3.1)

for some state gb on Hb- This quantity can be rewritten as

H(PabWb) = H(pab) ~ H(Pb) ~ D(Pb\Wb) ,

where D(pB\\GB) is the relative entropy3 of ps to gb- Because D(pB\\GB)
cannot be negative, this expression takes its maximum for gb = Pb, in which

case it is equal to H(A\B). We thus have

H(A\B) = sup H(pab\<tb) , (3-2)

where the supremum ranges over all density operators gb on Hb-

The definitions of (smooth) min- and max-entropies are inspired by this

approach. We first introduce a quantity which corresponds to (3.1) (cf. Def¬

initions 3.1.1 and 3.2.1) and then define our entropy measures by a formula

of the form (3.2) (Definitions 3.1.2 and 3.2.2).

3.1 Min- and max-entropy

This section introduce a "non-smooth" version of min- and max-entropy. It

is the basis for the considerations in Section 3.2, where these entropy mea¬

sures are generalized. The focus is on min-entropy, which is used extensively
in the remaining part of the thesis. However, most of the properties derived

in the following also hold for max-entropy.

3.1.1 Definition of min- and max-entropy

Definition 3.1.1. Let pab S V(TLa ®Hb) and gb £ V(TLb)- The mm-

entropy of pab relative to gb is

HmmipABWß) = - log A

where A is the minimum real number such that A id^ <g> gb — Pab is non-

negative. The max-entropy of pab relative to gb is

Hmax(pAB\o-B) = logtr((idA <S> ob)Pab)

where p°AB denotes the projector onto the support of pAB.

3The relative entropy D(p\\a) is defined by D(p\\a) = tr(plogp) — tr(ploga)
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Definition 3.1.2. Let pab G V{Ha <S> Hb)- The mm-entropy and the

max-entropy of pab given Hb are

Hmm(pAB\B) := supi?min(pab|o\b)

Hmax(pAB\B) := supHmax(pAB\o-B) ,

respectively, where the supremum ranges over all gb G V{Hb) with tr(ae) =

1.

Remark 3.1.3. It follows from Lemma B.5.3 that the min-entropy of pab

relative to gb, for gb invertible, can be written as

Hmm{pAB\o-B) = - fog Amax ((idyl ®ö-ß ) PAB (idyl ® 0~B )) ,

where Amax( ) denotes the maximum eigenvalue of the argument.

If Hb is the trivial space C, we simply write Hmm(pA) and Hmax(pA) to

denote the min- and the max-entropy of pA, respectively. In particular,

Hmm(pA) = -logAmax(pA)

Hmax(pA) = logrank(pA) •

The classical analogue

The above definitions can be specialized canonically to classical probability
distributions.4 More precisely, for Pxy G V{X x y) and Qy G V{y), we

have

#mm(-Pxy I Qy) := Hmm(pxY\o~Y)

Hmax(PxY\QY) '= Hmax(pxy\o~y)

where pxy and Gy are the operator representations of Pxy and Qy, respec¬

tively (cf. Section 2.1.3).

Remark 3.1.4. Let PXy G V(X x y) and Qy G V(y). Then5

tr m m a i
Pxy{x,v)

-ffmm (Pxy I Qy) =-log max max-

^max(PxYlQY) = log ^ Qy(|/) |supp(P|x)h

where P|- denotes the function Px : x i—> Pxy(x,y). In particular,

#max(PxyIT) = logmax|supp(P|)| .

yçy

4Similarly, the Shannon entropy can be seen as the classical special case of the von

Neumann entropy

BThe support of a nonnegative function / e T(X), denoted supp(/), is the set of values

x e X such that fix) > 0
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3.1.2 Basic properties of min- and max-entropy

Min-entropy cannot be larger than max-entropy

The following lemma gives a relation between min- and max-entropy. It

implies that, for a density operator pab, the min-entropy cannot be larger
than the max-entropy.

Lemma 3.1.5. Let pab G V{Ha ®Hb) and gb G V{Hb)- Then

Hmm(pAB\o-B) Tlogtr(pAB) < Hmax{pAB\o-B)

Proof. Let p°AB be the projector onto the support of pab and let A > 0

such that Hmm(pAB\GB) = —log A, i.e., A id^ ® aB — pAB is nonnegative.

Using the fact that the trace of the product of two nonnegative operators is

nonnegative (Lemma B.5.2), we have

tr(A (idyi ® o-B)pAB) - tr(pAß) = tr((A id^ ®aB- Pab)Pab) > °
•

Hence,

log tr ((idyi ® o-b)Pab) > logtr(pAß) - log A .

The assertion then follows by the definition of the max-entropy and the

choice of A. D

Additivity of min- and max-entropy

The von Neumann entropy of a state which consists of two independent

parts is equal to the sum of the entropies of each part, i.e., H(pA ® PA') =

H{Pa) + H(pA'). This also holds for min- and max-entropy.

Lemma 3.1.6. Let pab G V{Ha ® 'Hb), o~b g V{HB) and, similarly,

PA'B' G V{Ha>®Hb>), <tb> G V{Hb>). Then

Hmm{pAB ® PA'B'Wb ® GB') = Hmm(pAB\o~B) + Hmm(pA'B'^B')

Hmax(pAB ® PA'B'Wb ® 0~B') = Hmax(pAB\o~B) + Hmax(pA'B' \&B')

Proof. The statement follows immediately from Definition 3.1.1. D

Strong subadditivity

The von Neumann entropy is subadditive, i.e., H(A\BC) < H(A\B), which

means that the entropy cannot increase when conditioning on an additional

subsystem. This property can be generalized to min- and max-entropy.

Lemma 3.1.7. Let pABC G V{Ha ®Hb® Hc) and gBc G V{HB ® Hc)-
Then

Hmm(pABc\o~Bc) < Hmm(pAB\o~B)

Hmax(pABc\o~Bc) < Hmax(pAB\o~B)
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Note that, for min-entropy, the statement follows directly from the more

general fact that the entropy cannot decrease under certain quantum oper¬

ations (cf. Lemma 3.1.12).

Proof. Let A > 0 such that — log A = i?mm(PABc|o\Bc), he., A id^ ® gBc —

Pabc is nonnegative. Because the operator obtained by taking the partial
trace of a nonnegative operator is nonnegative, A id,4 ® gb — pas is also

nonnegative. This immediately implies —logA < Hmm(pAB\crB) and thus

concludes the proof of the statement for min-entropy.
To show that the assertion also holds for max-entropy, let pAB and p°ABC

be the projectors on the support of pab and pabc, respectively. Because

the support of pabc is contained in the tensor product of the support of pab

and He (cf. Lemma B.4.1), the operator p°AB <g> idc — Pabc 1S nonnegative.

Moreover, because the trace of the product of two nonnegative operators is

nonnegative (cf. Lemma B.5.2), we find

tr((idyi ® GB)pAB) - tr((idyi ® aBC)pABC)
= tr((i(Li eg) <tbc)(p°ab ® idc - Pabc)) > 0

•

The assertion then follows by the definition of the max-entropy. D

Note that the strong subadditivity of the max-entropy together with

Lemma 3.1.5 implies that Hmm(pAB\GB) < Hmax(pA), for density operators

Pab and gb.

Conditioning on classical information

The min- and max-entropies of states which are partially classical can be

expressed in terms of the min- and max-entropies of the corresponding con¬

ditional operators (see Section 2.1.3).

Lemma 3.1.8. Let pabz G V(Ha ®Hb ®Hz) and gBz G V(HB ®Hz) be

classical with respect to an orthonormal basis {\z)}zez of Hz, and let pAB

and gb be the corresponding (non-normalized) conditional operators. Then

Hmm(pABz\o~Bz) = inf Hmm(pAB\GB)
zez

Hmax(pABz\0-Bz) = log J2 2H^ab\°b)
.

zez

Proof. Because the vectors \z) are mutually orthogonal, the equivalence

A idyi ® o-BZ - Pabz G V{Ha ®Hb® Hz)

^^ Vz G Z : A idA®o-zB- pzAB G V(HA ® HB) (3.3)

holds for any A > 0. The assertion for the min-entropy then follows from

the fact that the negative logarithm of the minimum A satisfying the left
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hand side and the right hand side of (3.3) are equal to the quantities

Hmm{pABz\(7Bz) and m{zeZHmm(pzAB\GzB), respectively.
To prove the statement for the max-entropy, let p°ABZ and (pzAB)°, for z G

Z, be projectors onto the support of pabz and pAB, respectively. Because

the vectors \z) are mutually orthogonal, we have

PABZ = Y.(pABf®\z)(A ,

zez

and thus

tr((idyi ® gbz)pabz) = Y, tr((id^ ® aB)(pZAB)°)
zez

The assertion then follows by the definition of the max-entropy. D

Classical subsystems have nonnegative min-entropy

Similarly to the conditional von Neumann entropy, the min- and max-

entropies of entangled systems can generally be negative. This is, however,
not the case for the entropy of a classical subsystem. Lemma 3.1.9 below

implies that

#min(pxc|pc) > 0
,

for any density operator pxc which is classical on the first subsystem6. By
Lemma 3.1.5, the same holds for max-entropy.

Lemma 3.1.9. Let pxBC G V{Hx ®HB ®Hc) be classical on Hx and let

gc eV(Hc). Then

Hmm(pxBc\o~c) > Hmm(pBc\Gc)

Proof. Let A > 0 such that —logA = Hmm(pBc|cc)- Because pxBC is

classical on Hx, there exists an orthonormal basis {|a;)}a:eA' and a family

{pBC\xex of operators on HB ®Hc such that pxsc = ^2xex \x)(x\ ® Pbc-

By the definition of A, the operator

A idB ® gc - ^2 Pbc = ^ idB ® gc - pBc

xex

is nonnegative. Hence, for any x <E X, the operator A id# ® gc — pxBc must

also be nonnegative. This implies that the operator

A \àXB ® oc - Pxbc = Y A \x)(x\ ® idB ® gc-\x)(x\® pxBC
xex

is nonnegative as well. We thus have — log A < Hmm(pxBC \ o~c), from which

the assertion follows. D

6To see this, let Tis be the trivial space C and set oc = pc
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3.1.3 Chain rules for min-entropy

The chain rule for the von Neumann entropy reads H(AB\C) = H(A\BC) +

H(B\C). In particular, since H(B\C) cannot be larger than H(B), we have

H{AB\C) < H{A\BC)+H{B). The following lemma implies that a similar

statement holds for min-entropy, namely,

Hmm(pABc\C) < Hmm(pABc\BC) + Hmax(pB) .

Lemma 3.1.10. Let pabc G V(Ha ®Hb ®Hc), &c G V(Hc), and let

gb G V{HB) be the fully mixed state on the support of pB. Then

Hmm{pABc\o~c) = Hmm(pABc\o~B ® o~c) + Hmax(pB) .

Proof. Let HBi := supp(p^) be the support of pB and let A > 0. The

operator gb can then be written as gb = -^A—yid#/, where id#/ is the

identity on HBi. Hence, because the support of pabc is contained in Ha ®

HBi ® He (cf. Lemma B.4.1), the operator A \dA ® gb ® gc — Pabc is

nonnegative if and only if the operator A
ranw

-, id^ ® \dB ® gc — Pabc

is nonnegative. The assertion thus follows from the definition of the min-

entropy and the fact that Hmax(pB) = logrank(p^). D

Data processing

Let A, Y, and C be random variables such that A ^ Y ^ C is a Markov

chain, i.e., the conditional probability distributions Pac\y=v have product
form PA\Y=y x Pc\Y=y The uncertainty on A given Y is then equal to

the uncertainty on A given Y and C, that is, in terms of Shannon en¬

tropy, H(A\Y) = H(A\YC). Hence, by the chain rule, we get the equality

H{AY\C) = H{Y\C) + H(A\Y).
The same equality also holds for quantum states payc on Ha®Hy®Hc

which are classical on Hy and where, analogously to the Markov condition,
the conditional density operators pvAC have product form, i.e., pvAC = pvA ®
pyc. The following lemma generalizes this statement to min-entropy.

Lemma 3.1.11. Let payc G V(TLa ®Hy ®Hc) be classical with respect to

an orthonormal basis {\y)}yey °fHy such that the corresponding conditional

operators pvAC, for any y G y, have product form and let gc G V{Hc)- Then

Hmm(Payc I cc) > ^mm (Pyc I cc) + Hmm(pAy \ py) .

Proof. For any y G y, let py := tr(pyAC) and let pyAC := ^-pyAC be the

normalization of pyAc. The operator payc can then be written as

Payc = Y'Py Pa® \v)(y\ ® Pc

yey
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Let A, A' > 0 such that -log A = Hmm(pYC\ac), -log A' = Hmm(pAY\pY).
Because the vectors \y) are mutually orthogonal, it follows immediately from

the definition of the min-entropy that the operators A gc —

py pc and

A' idyi — p\ are nonnegative, for any y £y. Consequently, the operator

A A' idyi ® idy ®gc - Payc

= YX A' \dA®\y){y\®(Tc-py PA®\y)(y\®Pc
yey

is nonnegative as well. This implies

Hmm{pAYc\(7c) > - log(A A') = - log A - log A'

from which the assertion follows by the definition of A and A'. D

3.1.4 Quantum operations can only increase min-entropy

The min-entropy can only increase when applying quantum operations. Be¬

cause the partial trace is a quantum operation, this general statement also

implies the first assertion of Lemma 3.f .7 (strong subadditivity).

Lemma 3.1.12. Let pAB G V(HA®HB), gb g V(HB), äB> G V(HB>) and

let£ be a CPMfromHA®HB toHA>®7~(.B> such thatidA>®àB/—£(idA®crB)
is nonnegative. Then, for pa'B' '= £ (pab),

Hmm(pA'B'\vB') > Hmm(pAB\GB) .

Proof. Let A > 0 such that —logA = Hmm(pAB\crB), that is, the operator

A idyi ® o~b — Pab is nonnegative. Because £ is a quantum operation, the

operator A £ (idyi ® o~B) — £(pab) is also nonnegative. Combining this with

the assumption that idA ® &B' — £(icU ® gb) is nonnegative, we conclude

that the operator

A idyi/ ® aß' - PA'B'

= A(idA ® àBi - £(idyi ® <rB)) + A £ (idyi ® <rB) - pA'B'

is also nonnegative. The assertion then follows by the definition of the min-

entropy. D

3.1.5 Min-entropy of superpositions

Let {[a;)};!:^ be an orthonormal basis on Hx, let {\ipx)}xex be a family of

vectors on Ha ® 7~t>B ® 'He, and define

Pabe := I^X^I where |^) := J] |^) (3.4)
xex

PABEX = Yl IV^XV^I ® \x)(x\ - (3.5)
xex
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Note that, if the states \ipx) are orthogonal then Pabex can be seen as the

state resulting from an orthogonal measurement of pabe with respect to the

projectors along \ipx). While pabe is a superposition (linear combination) of

vectors \ipx), Pabe is a mixture of vectors \ipx). The following lemma gives

a lower bound on the min-entropy of pabe in terms of the min-entropy of

Pabe-

Lemma 3.1.13. Let pabe and pabex be defined by (3.4) and (3.5), re¬

spectively, and let gb g V(Hb). Then

Hmm(pAB\o~B) > Hmm(pAB\o~B) — Hmax(px)

Proof. Assume without loss of generality that, for all x G X, \ipx) is not the

zero vector. This implies Hmax(px) = log |A^|. Moreover, let A > 0 such

that — log A = Hmm(pAB\o~B)- It then suffices to show that the operator

A |;t| idyi ®(TB- pab (3.6)

is nonnegative.
Let \9) G Ha ®Hb. By linearity, we have

(o\PAB\o) = (e\trEmm\e) = E {o\trE{W)(r'\)\e) - (3.7)
x,x'ex

Let {[^l^ez be an orthonormal basis of He and define \9,z) := \9) ® \z).
Then, by the Cauchy-Schwartz inequality, for any x, x1 G X,

i<0itrB(i^><^'i)i0>i = \Y,(o,z\r)(r'\o,z)

zez yzez

= yJ(e\trEM*)(r\)\0)(9\trE(\r')(ipx'\)\0)
Combining this with (3.7) and using Jensen's inequality, we find

(o\pab\o)< J2 y/(o\tTE(\r)m)\o)(e\tTE(\^)(r'\)\e)
x,x'ex

< x\x E (o\trE{\r)(r\)\e)(e\trE{\r'){r'\)\e)

y x,x'ex

x\Y,(o\^E(mm)\ô)
xex

= \x\ (e\pAB\e).

By the choice of A, the operator A idyi ® o~B — Pab is nonnegative. Hence

(9\Pab\9) < A(ö|idyi ®gb\9) and thus, by the above inequality, (9\pab\9) <

A |X| (91idyi ® crB\9). Because this is true for any vector \9), we conclude

that the operator defined by (3.6) is nonnegative. D
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Lemma 3.1.14. Let pabe, Pabex be defined by (3.4) and (3.5), respec¬

tively, and let gBx G V(HB ®Hx)- Then

Hmm(pAB\o~B) > Hmm(pABx\o~Bx) ~ Hmax(px)

Proof. The assertion follows from Lemma 3.1.13 together with Lemma 3.1.7.

D

3.2 Smooth min- and max-entropy

The min-entropy and the max-entropy, as defined in the previous section,

are discontinuous in the sense that a slight modification of the system's
state might have a large impact on its entropy. To illustrate this, consider

for example a classical random variable X on the set {0,... ,n — 1} which

takes the values 0 and 1 with probability almost one half, i.e., Px(0) =

Px(l) = ^~y~, for some small e > 0, whereas the other values have equal

probabilities, i.e., Px(x) = ^2, for all x > 1. Then, by the definition of the

max-entropy, Hmax(Px) = logn. On the other hand, if we slightly change
the probability distribution Px to some probability distribution Px such

that Px(x) = 0, for all x > 1, then Hmax(Px) = 1. In particular, for n

large, Hmax(Px) > Hmax(Px), while \\PX -Px\\\<e.
We will see later (cf. Section 6.3) that the max-entropy Hmax(Px) can

be interpreted as the minimum number of bits needed to encode X in such

a way that its value can be recovered from the encoding without errors. The

above example is consistent with this interpretation. Indeed, while we need

at least logn bits to store a value X distributed according to Px, one single
bit is sufficient to store a value distributed according to Px- However, for

most applications, we allow some small error probability. For example, we

might want to encode X in such a way that its value can be recovered with

probability 1 — e. Obviously, in this case, one single bit is sufficient to store

X even if it is distributed according to Px-

The example illustrates that, given some probability distribution Px,

one might be interested in the maximum (or minimum) entropy of any dis¬

tribution Px which is close to Px- This idea is captured by the notion of

smooth min- and max-entropy.

3.2.1 Definition of smooth min- and max-entropy

The definition of smooth min- and max-entropy is based on the "non-

smooth" version (Definition 3.1.1).

Definition 3.2.1. Let pAB G V(HA®HB), gb G V(HB), and e > 0. The

e-smooth mm-entropy and the e-smooth max-entropy of pas relative to gb
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are

#min(PAB|ö\b) := SUP-ffmln(pylß|(Tß)
PAB

^max(PABkß) := ïnf ^max^/lßl0^) ,

PAB

where the supremum and infimum ranges over the set B£(pab) of all op¬

erators Pab G V(Ha ®Hb) such that \\Pab — Pab||i < tr(pAß) £ and

tr(pAB) < tr(pAB)-

Definition 3.2.2. Let pAB G V(TLa ®Hb) and let e > 0. The e-smooth

mm-entropy and the e-smooth max-entropy of pab given HB are

HLn(pAB\B) := SUp H^m(pAB\<7B)
<?B

HLaÀPAB\B) := supH^(pab\(Jb) ,

OB

where the supremum ranges over all gb g V(TLb) with \x{aB) = 1.

Note that, similar to the description in Section 3.1, these definitions can

be specialized to classical probability distributions.

Evaluating the suprema and infima

Remark 3.2.3. If the Hilbert space Ha ® HB has finite dimension, then

the set of operators Pab G B£(Ha ® HB) as well as the set of operators

gb G V{HB) with tr(<7e) = f is compact. Hence, the infima and suprema in

the above definitions can be replaced by minima and maxima, respectively.

Remark 3.2.4. The supremum in the definition of the smooth min-entropy

-^mm(PAB|cß) (Definition 3.2.f) can be restricted to the set of operators

Pab G B£{pAB) with supp(Pab) Ç supp(pA) ® supp(o\B).

Additionally, to compute H^^pAßz^Bz) where pabz and gBz are

classical with respect to an orthonormal basis {[z)}^^ on a subsystem Hz,
it is sufficient to take the supremum over operators Pabz G B£{pabz) which

are classical with respect to {\z)}zez-

Similarly, to compute H^^pxabWb) where pxAB is classical on a sub¬

system Hx, the supremum can be restricted to states pxAB G B£(pxab)
which are classical on Hx-

Proof. For the first statement, we show that any operator Pab G B£(pab)
can be transformed to an operator £{Pab) G B£(pab) which has at least

the same amount of min-entropy as Pab and, additionally, has support on

supp(pA) ® supp(ae).
Let £ be the operation on Ha ® Hb defined by

£(Pab) = (Pa ® '^b)pab(Pa ® ids) •
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Because the operator idyi ® &b — £()dA ® gb) is nonnegative, Lemma 3.1.12

implies that the min-entropy can only increase under the action of £. More¬

over, supp(pab) ç supp(pa) ®Hb (cf. Lemma B.4.1) and thus £(pab) =

Pab- Because £ is a projection, the Li-distance cannot increase under the

action ol £ (cf. Lemma A.2.1), i.e.,

||£(Pab) - Pab || !
= ||£(Pab -Pab) Hi < ||pab -PabI^ < tr(pAß) £

We thus have Pab G B£(pab)- The assertion then follows because we

can assume that supp(pAs) is contained in Ha ® supp(ae) (otherwise, the

min-entropy is arbitrarily negative and the statement is trivial) and thus

supp(£(pAB)) ç supp(pa) ®supp(o\B).
The statements for pabz and pxAB are proven similarly. D

Remark 3.2.5. Let pabz G V(Ha®Hb®Hz) be classical with respect to

an orthonormal basis {|-z)}.zez oiHz- Then the supremum in the definition

of the min-entropy H^^pabzIBZ) can be restricted to operators gbz G

V{Hb ®Hz) which are classical with respect to {\z)}zez-

Proof. We show that for any p'ABZ G B£(pabz) and g'bz g V(Hb ® Hz)
with tr{a'BZ) = 1 there exists Pabz G B£(pabz) and gBz G V(Hb ® Hz)
with tr(abz) = 1 such that gbz is classical with respect to {|-z)}.zez and

Hmm(pABz\o~Bz) > Hmm(p'ABZ\a'BZ).
Let thus Pabz e B£(pabz) and g'bz g V(Hb ®Hz) be fixed. Define

Pabz = (idAB ® £z){p'ABz) and <*bz = (ids ® £z){oBZ) where £z is the

projective measurement operation on Hz, i.e.,

£z(p) = ^\z){z\p\z){z\ .

zez

Note that gBz is classical with respect to {[z)}^^ and, because £z is

trace-preserving, tr{oBz) = tv(a'BZ) = 1. Similarly, tr(pABZ) = tv(p'ABZ).
Moreover, because (idab ®£z)(pabz) = Pabz and because the distance can

only decrease when applying 'iûab ®£z (cf. Lemma A.2.1), we have

WPabz — Pabz||i < WPabz ~ Pabz\\i

which implies Pabz G B£(pabz)- Finally, using Lemma 3.1.12, we find

Hmm(pABz\o~Bz) > Hmm(pABZ\GBZ). D

3.2.2 Basic properties of smooth min-entropy

Superadditivity

The following is a generalization of (one direction of) Lemma 3.f .6 to smooth

min-entropy.
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Lemma 3.2.6. Let pab G V(Ha ® 'Hb), &b G V(Hb) and, similarly,

pA'B' G V(HA' ®Hb'), ob' G V(HB'), and let e,é > 0. Then

^mln (PAB ® PA'B'Wb ® OB') > #min(PAb\ob) + H^m(pAfB'\ob')

Proof. For any v > 0, there exist Pab G £>£(Pab) and pA'B' G £>e (pA'B')
such that

-ffmin(pAB|o\B) > Hmm(pAB\oB) — V

Hmm(pA'B'\0'B') > HLm(pA'B'WB') ~ v

Hence, by Lemma 3.1.6,

Hmm(pAB ® PA'B'Wb ®(TB') > H^itl(pabWb) + #min(PA.B'|0'.B') - 2v
.

Because this holds for any v > 0, it remains to verify that Pab ® pA'B' G

B£+£ (pAB ® PA'B')- This is however a direct consequence of the triangle

inequality, i.e.,

11PAB ® PA'B' ~ PAB ® PAS'Id
< tr(pAB') 11 pAB - PAB Id +tr(pAB) \\pA'B' -PA'B'\\1

< tr(pAB ® pA'B')(e + e')

D

Strong subadditivity

The following statement is a generalization of Lemma 3.1.7 to smooth min-

entropy.

Lemma 3.2.7. Let pABc G V(Ha ®Hb ®Hc), (Jbc G V(HB ®HC), and

lete>0. Then

HLitl(PABcWbc) < #min(PAB|ö\B) •

Proof. For any v > 0, there exists Pabc G £>£(Pabc) such that

Hmm(pABc\cBc) > ^min(PABc|ö\Bc) ~ v

Hence, by Lemma 3.1.7, applied to the operator Pabc,

Hmm(pAB\0'B) > #min(PABc|<7Be) ~ V

Because this holds for any v > 0, it remains to show that Pab G B£(pab)-
This is however a direct consequence of the fact that the Li-distance cannot

increase when taking the partial trace (cf. Lemma A.2.1), i.e.,

11 PAB - PAB 111 < 11 PABC - PABC 111 < tr(pABc) £

D
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Conditioning on classical information

The following lemma generalizes (one direction of) Lemma 3.1.8 to smooth

min-entropy.

Lemma 3.2.8. Let pABZ G V(HA ®HB® Hz) and gBz G V(HB ® Hz)
be classical with respect to an orthonormal basis \\z)}z<^z of Hz, let pAB

and gb be the corresponding (non-normalized) conditional operators, and

lete>0. Then

Hmm(pABz\<7Bz) > inf H^m(pzAB\aB) .

zez

Proof. For any v > 0 and z <E Z, there exists pAB G B£(pAB) such that

Hmm(pAB\GzB) > H^m(pAB\aB) - v .

Let

Pabz = E^ab® \z)(z\
zez

Using Lemma 3.1.8, we find

Hmm(pABz\o-ßz) = inf Hmm(pAB\GzB) > inf H£mm(pAB\GzB) - v . (3.8)
zez zez

Because this holds for any value of v > 0, it suffices to verify that Pabz G

B£(pABz)- This is however a direct consequence of

\\pABZ ~ PABZ\\X = EII^AB-PIbUi < Etr(pAß) £ = ^(pABz) ,

zez zez

where the first equality follows from Lemma A.2.2. D

3.2.3 Chain rules for smooth min-entropy

The following lemma generalizes (one direction of) Lemma 3.f.fO to smooth

min-entropy.

Lemma 3.2.9. Let pABC G V(HA ®UB ®HC), oc G V(HC), let gb G

V(Hb) be the fully mixed state on the support of ps, and let e > 0. Then

H£ram(pABc\o-c) < ^min(PABckß ® <?c) + Hmax(pB)

Proof. According to Remark 3.2.4, for any v > 0, there exists Pabc G

B£(pABc) such that

HmlTL(pABcWc) > ^min(PABckc) ~ V (3.9)

and supp(pABc) Ç supp(pAß) ® H-c = supp(pAB ® idc)- Hence, from

Lemma B.4.2, supp(p^) ç supp(p^). Consequently, the operator ps is
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arbitrarily close to an operator whose support is equal to the support of pB.

By continuity, we can thus assume without loss of generality that supp(p^) =

supp(ps), that is,

Hmax(pB) = Hmax(pB) . (3.10)

Moreover, since Pabc G B£(pABc), we have

HLm(pABc\o-B ® (Tc) > Hmm(pABc\(TB ® <?c) (3-11)

Finally, because gb is the fully mixed state on supp(p^) = supp(p^),
Lemma 3.1.10, applied to the state Pabc, gives

Hmm(pABc\o~c) = Hmm(pABC'\o~B ® o~c) + Hmax(pB) .

Combining this with (3.9), (3.10), and (3.11) concludes the proof. D

Data processing

The following lemma is a generalization of Lemma 3.1.11 to smooth min-

entropy.

Lemma 3.2.10. Let payc G V(Ha ®Hy ®Hc) be classical with respect to

an orthonormal basis {\y)}yey °fHy such that the corresponding conditional

operators pvAC, for any y G y, have product form, let gc G V(Hc), and let

e > 0. Then

HLitl(PAYcWc) > #min(PYC\0~c) + #min(PAY\Py)

Proof. For any y G y, let py := tr(pyAC) and define pyA := ^-pyA- Because

pyAC has product form, we have

Payc = E Pa ® \y)(y\ ® Pc

yey

According to Remark 3.2.4, for any v > 0, there exists a nonnegative oper¬

ator pyc G B£(pyc) such that

Hmm (Pyc I (re) > Hmm(pYc\(Tc) - v (3.12)

where pyc is classical with respect to {\y)}yey, that is, pyc = J2yey \y)(y\®

pc, for some family {pc}yey of conditional operators on He- Let Payc G

V(HA ®HY®Hc)he defined by

Payc -=J2pA® \v)(v\ ® Pc

yey
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Because the operators pyA are normalized, we have

\\pAYC - PAYC\\X = EH^ ® Pc ~

PA ® Pclll
y

Ell -y y II

||Pc-Pclli

= 11Pyc — Pyc Id ,

where the first and the last equality follow from Lemma A.2.2. Because

pyc G B£(pYc), this implies pyiyc G B£(payc) and thus

HmlTL(pAYc\(Tc) > Hmm(pAYc\(Tc) (3.13)

Moreover, using Lemma 3.1.8 and the fact that, for any y G y, the operators

pyA and pyA only differ by a factor py, we have

#min (PaHPy) = inf Hmm(PA\^(PA))
yey

= inîHmm(pAMpyA)) (3.14)
yey

= Hmm(pAY\py)

Finally, applying Lemma 3.1.11 to the state pyiyc gives

Hmm(pAYc\(Tc) > Hmm(pYc\(Tc) + #min (PAy|Py) •

Combining this with (3.12), (3.13), and (3.14) concludes the proof. D

3.2.4 Smooth min-entropy of superpositions

The following statement generalizes Lemma 3.1.14.

Lemma 3.2.11. Let pabe, Pabex be defined by (3.4) and (3.5), respec¬

tively, for mutually orthogonal vectors \ipx), let gBx G V(HB ®Hx), and

lete>0. Then

Hmm(pAB\(TB) > Hmm(pABx\(TBx) ~ Hmax(px) ,

where è = gf^y.

Proof. By Remark 3.2.4, for any v > 0, there exists an operator pabx G

B£(pABx) which is classical with respect to the basis {|a;)}a:eA' such that

#min(PABx|o\Bx) > #min(PABx|ö\Bx) - V . (3.15)

Let {pAB}xex be the family of conditional operators defined by pabx

and {\x)}xex, be-, Pabx = J2xex Pab® \x)(x\. According to Lemma A.2.7,
for any x G X, there exists a purification l^)^^ of pAB such that

)-\r)\\<^\\pXAB-pXAB\\l
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Let l^) := J2xex IV^) and define pabe := \ip)(ip\. By the triangle inequality,
we find

||V> - |^)|| < EIH^) - l^)|| < E ^W~Pab - Pxab\\i
xex xex

Hence, with Jensen's inequality,

|IV>> - l^)|| < \X\ YJFab-P%b\\x
V xex

=

y 1^1 ||pabx — PabxI^ ,

where the equality follows from Lemma A.2.2. Because the vectors \ipx)
are orthogonal, we have tr(pABx) = tr(pAß)- Consequently, since pabx G

B£(pABx), we obtain

||h/>>-NÊ>||<\/|*l ë tr(pABx) = y/\X\ è ti(pab) - (3.16)

Assume without loss of generality that \X\ è < \ (otherwise, the asser¬

tion is trivial). Then, because \Jtr(pAB) = HIV')II, we have

+ 111^)11 < 2|||^)|| +

< 2\/tr(pAB) + J-tr(pAß) < \/6tr(pAß) •

and thus, by Lemma A.2.5,

11Pab -PAßHi < V6tr(pAß) HIV') - \ip)\\ < tr(pAß) £,

where the last inequality follows from (3.16). This implies

^min(PABkß) > Hmm(pAB\(TB) . (3-17)

Note that pabx can be seen as the operator obtained by taking the

partial trace of

Pabex = E I^X^I ® \x)(x\ •

xex

We can thus apply Lemma 3.1.14 to the operators Pabe and Pabex, which

gives

-ffmin(pAB|ö\B) > Hmm(fiABx\(TBx) ~ ^max(px) •

Finally, because the support of px is contained in the support of px, we

have Hmax(Px) < #max(px) and thus

-ffmin(pAB|ö\B) > Hmm(pABx\(TBx) ~ ^max(px) •

Combining this with (3.17) and (3.15) concludes the proof. D
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3.2.5 Smooth min-entropy calculus

The properties proven so far are formulated in terms of the smooth min-

entropy H(pAB\aB) relative to an operator gb (Definition 3.2.1). The follow¬

ing theorem translates these statements to conditional smooth min-entropy

H(pAB\B) (Definition 3.2.2).

Theorem 3.2.12. Let e,e' > 0. Then the following inequalities hold:

• (Super-) additwity:

^mm'(pAB ® PA'B'\BB') > H£mm(pAB\B) + H£mm(pA,B,\B') , (3.18)

for pab G V(Ha ® Hb) and pA>B> G V(Ha> ® Ti.B>).

• Strong subadditivity:

H£mm(pABc\BC) < H£mm(pAB\B) , (3.19)

for pabc G V(HA ®HB® He)-

• Conditioning on classical information:

H£mm(pABz\BZ) > inî Hmm(pzAB\B) , (3.20)
zez

for pabz G V(Ha ®Hb ®Hz) normalized and classical on Hz, and

for normalized conditional operators pAB.

• Cham rule:

H£mm(pABc\C) < H£mm(pABC\BC) + Hmax(pB) , (3.21)

for pabc G V(HA ®HB® He)-

• Data processing:

H£mm(pAYc\C) > H£mm(pyC\C) + #mm(pyiy|py) , (3-22)

for payc G V(Ha®Hy®Hc) classical onHy such that the conditional

operators pyAC have product form.

Proof. The statements follow immediately from Lemmata 3.2.6, 3.2.7, 3.2.8,

3.2.9, and 3.2.10. D

3.3 Smooth min- and max-entropy of products

In this section, we show that the smooth min- and max-entropies of product

states are asymptotically equal to the von Neumann entropy. In a first step,

we consider a purely classical situation, i.e., we prove that the smooth min-

and max-entropies of a sequence of independent and identically distributed

random variables can be expressed in terms of Shannon entropy (which is

the classical analogue of the von Neumann entropy). Then, in a second step,

we generalize this statement to quantum states (Section 3.3.2).
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3.3.1 The classical case

The proof of the main result of this section (Theorem 3.3.4) is based on

a Chernoff style bound (Theorem 3.3.3) which is actually a variant of the

asymptotic equipartition property (AEP) known from information theory

(see, e.g., [CT91]). It states that, with high probability, the negative loga¬
rithm of the probability of an n-tuple of values chosen according to a product
distribution Pn is close to the Shannon entropy of Pn.

Typical sequences and their probabilities

Lemma 3.3.1. Let Pxy G V(X x y) be a probability distribution. Then,

for anyteR with \t\ < log{\x]+3),

log E [Px\Y(x, y)-*] < tH(X\Y) + \t2 log(|*| + 3)2 ,

x,y Z

where the expectation is taken over pairs (x,y) chosen according to Pxy-

Proof. For any ( e E, let rt be the function on the open interval (0, oo)
defined by

rt(z):=zt-tlnz-l . (3.23)

We will use several properties of this function proven in Appendix B.6.

For any x <E X and y G y, let pX)V := Px\y(x, y)- If Px,y > 0 then

Px,y = n( ) +*ln + 1 <rt( + 3) + £ln + 1
,

Px,y Px,y Px,y Px,y

where the inequality holds because rt is monotonically increasing on the

interval [1, oo) (Lemma B.6.1) and -^—
=

p Y, ,
> 1. Because ——h 3 G

L ' ' V '
Px,y PxY(x,y)

—

Px,y

[4, oo) and because rt is concave on this interval (Lemma B.6.3 which can

2' 21
be applied because t G [—h, h]), Jensen's inequality leads to

E [Px?y] < E
xyy-

",y-1

xyy

l
+ t E

x,y

1
In

Px,y
n(— + 3

Px,y

<rt(E [ +3]) +t(ln2) E [log
\x,yLpx^y V x,yl

+ 1

1

Px,y
+ 1

where EX)2/[ ] denotes the expectation with respect to (x, y) chosen according

to the distribution Pxy- Because EX)2/[-^] = Y),xyPxY(x,y) P
Y_,J..\

= \X

and EX)2/[log ^— ] = H(X\Y), we obtain

(x,y)
= H(X\Y). we obtain

Px,y

E [p-*y] < rt(\X\+3)+t(ln2)H(X\Y) + 1
.

'.V

xty-
"'aJ

Furthermore, because log a < ^ (a — 1)

1

log E [p-*y] < ^rt(\X\+3)+tH(X\Y) .
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Finally, together with Lemma B.6.4, since \t\ < ,
(,i\+3), we conclude

log(|*|+3)'

JP*\,\ < It
x,y

log E
[p-*y]

<

(— - l)t2\og(\X\+3)2+tH(X\Y) .

The assertion follows because ^ — 1 < \- D

Lemma 3.3.2. Let Pxy G V(X x y) be a probability distribution and let 7

be the function on X x y defined by

7(x,y) :=-\ogPx\Y(x,y) - H(X\Y) .

Then, for any f gR with \t\ < , ,iL3>,

E r2*7(^,?/)l < 2è*2l°g(l^l+3)2
_

x,y

Proof The assertion follows directly from Lemma 3.3.f, that is,

E [2*^^1 = 2~tH(-x^ E iPxiYfay)-*]
x,y x,y

'

<2-tH(X\Y) 2tH(X|Y)+it2log(|A'|+3)2
_

D

Theorem 3.3.3. Let Pxy G V(X x y) be a probability distribution and

let n G N. Then, for any ö G [0, log 1^1] and (x, y) chosen according to

Px»Y» = (PXYT,

nS2

Pr[-logPXn,yn(x,y) >n(H(X\Y) + S)] <2 2iog(|*i+3)2

x,y
'

and, similarly,

nS2

Pr[-logPXn,yn(x,y) <n(H(X\Y)-S)] <2 2iog(|*i+3)2
_

x,y
'

Proof. Let x = (x\,... ,xn), y = (y\,... ,yn), and let 7 be the function

defined in Lemma 3.3.2 for the probability distribution Pxy- Then

n

E7(^,2/*) = -logPXn|y„(x,y) -nH(X\Y) . (3.24)

Using Markov's inequality, for any t > 0,

n

Pr[y7(x„î/,) > nö] = Pr[2*Sr=i7(^,%) > 2tn&]
x- v L< J J

x,y

EX)y[2*sr=i7(^,%)]

*=1 (3.25)

—

2*«.<5
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Moreover, because the pairs (xt,yt) are chosen independently,

j£ [2*Sr=i7(^,%)l _ ]g [TT2*^(:C»'*)1
x,y

*
x,y

L X X -I

n e [2*7(:
-1- -1- rr. 7/.

^,2/i)l

x%,y,b
i=l

< /2it2log(|A|+3)2x«

where the inequality follows from Lemma 3.3.2, for any \t\ <
lo (m+3y

Combining this with (3.25) gives

Pr[Ë7(»»,î/t)>^] <2^
-x.v L± ^ J

,int2log(|Ar|+3)2-tn<5

x,y

i=l

With £ :=
iOK(|/yi+3)2 (note that £ <

t /|L+3-, because ö < log |Af |), we

conclude

Pr[> ~t(xt,yt)>n6] <2 2^s(\x\+3)2

x,y
z—' J

The first inequality of the lemma then follows from (3.24).

Similarly, if t < 0,

PrHT l(xl,yl) < -no] = Pr [2*Sr=i7(^,%) > 2-
x.v

-^—^ J x,y

EX)y[2*sr=i7(^,%)]

ira<5l

x,y

^—'
x,y

<

2—tnS
'

and thus
n

X.V L-^- ^ J
x,yl

t=l

The second inequality follows with t := —
lo (-|/yi+3-)2-

D

Asymptotic equality of smooth entropy and Shannon entropy

Theorem 3.3.4. Let Pxy G V(X x y) be a probability distribution and let

n G N. Then, for any e > 0 and Pxy := (Pxy)"",

^max(PX"Y-|PY") < ^(A|T) + Ö

^min(Pxnyn|Pyn) > tf(A|T) - Ö
,

where Ö := log(|Af| + 3)^/21og^1/£).
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Proof. We first prove the bound on the (classical) smooth max-entropy

Hmax(Px«Y«\PY)- For any y G yn with Py«(y) > 0, let Xy be the set

of all n-tuples x G Xn such that

-logPXn|y„(x,y) <n(H(X\Y)+6) .

Furthermore, let PXnYn be the nonnegative function on Xn x yn defined by

d ( \

/Px«Y«(x,y) if x G Ay
PXnyn(x,y)

= <^
.

(3.26)
I 0 otherwise.

We can assume without loss of generality that ö < log \X\ (otherwise,
the statement is trivial). Hence, by the first inequality of Theorem 3.3.3,

PrX)y[x ^ Xy] < e. This implies ||PxnYn — PxyHi
—

£ and thus

^max(PxY \Py") < ^max(PxY I-Py") (3.27)

For any fixed y := (yi,..., yn) G Y1 with Pyn (y) > 0,

n

i> EUpx\y(^y^>\^-nmxlY)+s^
xexy i=i

where the second inequality follows from the definition of the set Xy. Conse¬

quently, we have |^y| < 2n(-H(-x\Y"l+s\ Moreover, by the definition of PXnyn,
the support of the function x i—> PXnyn(x, y) is contained in Xy. Hence,

using Remark 3.1.4,

tfmax(Pxnyn|Pyn) < log( E PY"(y) \*y\) < n(H(X\Y) + ö) .

yeyn

Combining this with (3.27) proves the first inequality of the lemma.

To prove the bound on the min-entropy Hmm(Px^Yn\PYn), let Xy, for

any y G yn with Pyn (y) > 0, be the set of n-tuples x G Xn such that

-\ogPXr^(K,y)>n(H(X\Y)-ö) ,

and let again Pxnyn be defined by (3.26). By the second inequality of The¬

orem 3.3.3, PrX)y[x ^ Xy] < e, which, similarly to the previous argument,

implies

^min (PxnYn I PY") > Hmm(Px"Y" I-Py") (3.28)

Moreover, using Remark 3.1.4

tj /t> \t> \ i
PxnYn(x'y)

-nmin(-PvnvnLryn)
= —

log max max—-———

yesuppCPynJxGA-« Pyn(y)

PX"Y" (x, y)
= — log max max ———

yesupp(PYn ) xGAy Py" (y)

> n(H(X\Y) - 6) ,

where the inequality follows from the definition of the set Xy. Combining
this with (3.28) proves the second inequality of the lemma. D
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Because the min-entropy Hmm(PxnYn IPrn) cannot be larger than the

max-entropy i^max(PxnY I Py) (cf. Lemma 3.1.5), Theorem 3.3.4 implies
that

^min(Px-Y"|PY") » ^L(Px-Y |iV») » ^(A^T") , (3.29)

where asymptotically, for increasing n, the approximation becomes an equal¬

ity.

Remark 3.3.5. It is easy to see that Theorem 3.3.4 can be generalized
to probability distributions Pxy which are the product of not necessar¬

ily identical distributions PxtYt- That is, for any distribution of the form

Pxnyn = nr=iP^^' the approximation (3.29) still holds.

3.3.2 The quantum case

The following theorem and its corollary can be seen as a quantum version

of Theorem 3.3.4 for smooth min-entropy (where the Shannon entropy is

replaced by the von Neumann entropy). The proof essentially follows the

same line as the classical argument described above.7 A similar argument

shows that the statement also holds for smooth max-entropy.

Theorem 3.3.6. Let pAB G V(Ha®Hb), gb g V(HB) be density operators,

and let n G N. Then, for any e > 0,

lH£min(p%\o-T) > H(pab) - H(pB) - D(Pb\\gb) - 5
,

where Ö := 2 log(rank(pyi) + tr(p2AB(idA ® gb1)) + 2) ^/^^ +Ï.

Proof. Define H(pAB\aB) := H(pAB) — H(pB) — D(pB\\aB). We show that

there exists a density operator pAnBn G B£(pAB) such that

Hmm(pA"B"\o-Bn) > nH(pAB\aB) - no
. (3.30)

According to the definition of min-entropy, this is equivalent to saying that

the operator A • (idyi ® crB)®n — pAnBn is nonnegative, for A > 0 such that

- log A = hH(pab\o-b) - nö.

Let

(idA®aB)®n= E<?z|z)(z|
zezn

7An alternative method to prove the statement ^-ffminCPAsI/0!") è H(pab) — H(pß) is

to use a chain rule of the form H^m(p%\p%n) > HLuIpab) ~ H^ZpB ) The entropies

on the right hand side of this inequality can be rewritten as the entropies of the classical

probability distributions defined by the eigenvalues of p®^ and pfn, respectively. The

desired bound then follows from the classical Theorem 3.3.4. However, the results obtained

with such an alternative method are less tight and less general than Theorem 3.3.6.
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be a spectral decomposition of (idyi ® &B)®n- We can assume without loss

of generality that there exists an order relation on the values Zn such that

<7z > Qz', for any z > z'. For any ze2, let Bz be the projector defined by

Bz:= E N'Xz'l-
z' z'>z

Moreover, let ßz, for z G Zn, be nonnegative coefficients such that, for any

z' G Zra,

E A = ^' •

z z<z'

Note that the spectral decomposition above can then be rewritten as

(idyl ® O-b)0U = E ß-B- (3-31)
zezn

Let

pTb = E ^ix>(xi

be a spectral decomposition of pAB. In the following, we denote by oo an

element which is larger than any element of Zn. Moreover, let px,z, for

x G Xn and z G Zn U {oo}, be nonnegative coefficients such that, for any

z' G Zn,

E ftc,. = minGfe, AfcO
z z<z'

E Px.z = Px •

zeZnU{oo}

We show that inequality (3.30) holds for the operator

PA"B" = E E Px,z-Bz|x)(x|_Bz .

xexn zezn

Note first that, by the definition of pX}Z and ßz, we have pX}Z < Xßz, for

any x G Xn and z G Zn, that is, the operator

E ^ßzBzBz - pA"B" = E E (A/3z -Px,z)-Bz|x)(x|_Bz
zez zezn xexn

is nonnegative. Using (3.3f) and the fact that the operators Bz are projec¬

tors, we conclude that the operator

A (idyi ® (tb)®"1 - PA"B" = E ^Ä-Bz - Pa"B

zezn
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is nonnegative, which implies (3.30). It thus remains to be proven that

PA^eB£(pTB)-
Using the above definitions and the convention that -Boo is the zero ma¬

trix, we have

||Pab-P^"|Ii = Il E E Px,z(|x)(x|-5z|x)(x|5z)||1
xexn zeZ"u{oo}

< E E Px,z|||x)(x| -5z|x)(x|5z||1 .

xexn zeZ"u{oo}

We can use Lemma A.2.8 to bound the trace distance on the right hand side

of this inequality, that is,

|||x)(x| - 5z|x)(x|5z||1 < 2^1-tr(JBz|x)(x|JBz) .

Because pab is a density operator, the nonnegative coefficients pX)Z sum up

to one. We can thus apply Jensen's inequality which gives

\\pTb-Pa^b^\\1<2 E E Px,z^l-tr(JBz|x)(x|JBz)
xexn zeZ"u{oo}

< 2 [Ë E Px,z(l-tr(5z|x)(x|5z)) (3-32)

y xexn zeznu{oo}

= 2-v/l -tv(pAnBn) .

The trace in the square root can be rewritten as

tr(pylnBn) = E (Z' I ( E E Px,Z-BZ | x) (x| _BZ J | z')
z'ezn xexn zezn

= E E E ^,zi<z'ix)i2 •

z'eZn z z<z' yieXn

Because the terms in the sum are all nonnegative, the sum can only be¬

come smaller if we restrict the set of values x over which the sum is taken.

Consequently,

ti(pA"B") > E E Kz'lx)|2 E Px>z

z'eZ" x Px<Açz/ z z<z'

By the definition of Px,z, we have J2Z z<z' Px,z = Px, for any (x, z') such that

Px < Mz', and hence

tr(pylnßn) > E ftc|(z'|x)|2 •

(x,z') Px<Açz/

Because /CzxPx|(z|x)|2 = f, this inequality can be rewritten as

1 ~tv(pAnBn) < E Px|(z|x)|2
(x,z) Px>Açz
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Recall that we need to prove that pAnBn G B£(pAB). Hence, combin¬

ing (3.32) with the above bound on tr(pAnBn), it remains to be shown that

2

E Px|(z|x)|2 < (-) . (3.33)

(x,z):px>Açz

Let

idyi ®<rB = E<fel^)(^l
zez

and

PAB = E^l*)(*l
xeX

be spectral decompositions oiidA®GB and pab, respectively. Moreover, let

P%z be the probability distribution defined by

pxz(x,z) := px\(z\x)\2 .

Note that |x) and px, as used above, can be defined as |x) := <S>l=i \xt)
and px = P(xlt...tXn) := U"=iPxt- Similarly, we can set |z) := ®=l\z%)
and qz = q^Zly...yZn) := YC=i^t- Then, the left hand side of (3.33) can be

rewritten as

E px|(z|x)|2 = Pr[px> \qz]
*—'

x,z

(x,z):px>Açz

= Pr[- logpx + log qz < - log A]
x,z

n

(3.34)

Pr E ~ loëPxz + log qZz <
- log A

X,Z \J- '

1=1

for (x, z) chosen according to the probability distribution (PxzT
By the definition of H(pAB\GB), we have

H(pAB\GB) = -tr(pAB log pab) + tr(pAB log idyi ® o-B)

= E^|(^)|2(log— - log—)
x,z

Vi Qz

= E[-logps + logqz] ,

x,z

for (x,y) chosen according to Pxy- According to Birkhoff's theorem (cf.
Theorem B.2.2) there exist nonnegative coefficients pn parameterized by the

bijections tt from X to Z such that J2tt P^ = 1 an(f |(^|ä;)|2 = J2tt PkÖz,tt(x)-
The identity above can thus be rewritten as

H(pabWb) = ^2px\(z\x)\2\og— = EptE^1oS~~ (3-35)
?

rX - fX
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For (x,z) chosen according to P^y,

'

X,Z
^Z

IT X ^(X)

For any ieK, let r^ be the function defined by (3.23). The last term in the

sum above can then be bounded by

px \-* rjp]+il3 + 1

Qtt(x)' V Px / Px

Qtt(x) Px 0\
, -,

^(ie)

< n*|
^^ + -^ + 2 + t In ^-^ + 1

1 A px g^(x) / px

where the inequality follows from the fact that, for all z > 0, rt(z) <

r\t\(z + j) (Lemma B.6.2) and the fact that rt is monotonically increasing

(Lemma B.6.1) on the interval [1, oo). Because -^^ + -^- +2 G [4, oo) and
PX <?7r(x)

because rt is concave on this interval (Lemma B.6.3) we can apply Jensen's

inequality, which gives

E [2-^*-^] < r]tl (Ep- T^PxC-^ +
^~

+ 2;

+ t(ln2)Ep-E^1°g^M + 1- (3-36)

Note that J2Z Qz = tr(i°U ® gb) = dim(7ïyi). As we can assume without loss

of generality that Ha is restricted to the support of pA, we have

E^E $*(*) = rank(P^0 •

TT X

Moreover,

E^E/^ = Ei^i^i2^^~1 = tr(^(id^cS)(7s1)) •

TT X T-'xyx)
x>z

Hence, together with (3.35), the bound (3.36) can be rewritten as

E[2-^°^-lo^]<rltl(1 + 2)+t(ln2)H(pAB\GB) + l,
x,z

' '

where 7 := rank(pA)+tr(p^B(idyi®(T^1)). Furthermore, using the fact that

log a < ^(ö — l) we find

]g r2-*(logPs-loggz)i < 2lo^v\t\(i+2)+t(ln2)H(PAB\o-B)+i)
x,z

< 2i^2rl'l(7+2)+*H(/:'ABl<JB)
.
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With Lemma B.6.4, we conclude

]g ^K-togPx+toglz-HipABWB))} < 2(hT2~1)*2k)g(7+2)2 < 2^*2log(7+2)2
_ (3_37)

x,z

Let now io(x,z) := Y,7=i(~ loëPxt + logfe, - H(pAB\aB)). Because the

expectation of the product of independent values is equal to the product
of the expectation of these values, we have, for (x, z) chosen according to

(PxzT,
j£ r2*w(x,z)i _ ^l2t(-loSPx+^ogqz-H(pAB\aB))m
x,z x,z

Hence, by Markov's inequality, for any t < 0,

Pr[io(x,z) < -nö] = Pr[2*w(x'z) > 2~tnS]
x,z x,z

EX)z[2*w(x'z)]
<

2~tnS

E [2*(_1°gP:I:+log^--H"(PABkB))lra
2~tnS

and thus, using (3.37),

Pr[io(x,z) < -nö] <2
x,z

Consequently, with t :=

^t2n\og(~(+2)2+tnS

log(7+2)2

x,z

£V

Pr[E ~ l°ëPxt + iogqZt < nH(pAB\GB) - no]

nS2

< Pr[io(x,z) < -no] < 2 2^(~i+2)2 <
.

x,z \2 /

Combining this with (3.34) implies (3.33) and thus concludes the proof. D

The following corollary specializes Theorem 3.3.6 to the case where the

first part of the state pab = Pxb is classical and where gb = pB.

Corollary 3.3.7. Let pxB G V(Hx ®HB) be a density operator which is

classical on Hx- Then, for any e > 0,

l-H£mm(p%\p%n) > H(pxb) - H(pB) - Ô
,

where Ö := (2Hm,x(px) + 3);/^^ + 1.
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Proof. Assume without loss of generality that pB is invertible (the general
statement then follows by continuity). Because the operator

idx ® Pb - Pxb = E idx ® Pb ~ \x)(x\ ® pxB
xex

is nonnegative, we can apply Lemma B.5.4 which gives

Amax(Pxl(idx ®PB1)Pxl) < 1
•

Hence, since pxB is normalized,

tr(Pxi?(idx ® Pb1)) = tr(pXBPxB(idx ® Pb^Pxb) ^ l

Using the fact that, for any a > 2, log(a + 3) < loga + §, we thus have

log(rank(px) + tr(p2ti?(idx ® eB1)) + 2) < log(rank(px) + 3)
3

< logrank(px) + -

= -ffmax(px) + ~
•

The assertion then follows directly from Theorem 3.3.6 with pAB := pxB

and gb '= Pb-
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Chapter 4

Symmetric States

The state of an n-partite quantum system is said to be symmetric or per¬

mutation-invariant if it is unchanged under reordering of the subsystems.
Such states have nice properties which are actually very similar to those of

product states.

The chapter is organized as follows: We first review some basic properties

of symmetric subspaces of product spaces (Section 4.1) and show that any

permutation-invariant density operator has a purification in such a space

(Section 4.2). Next, we state our main result on the structure of symmet¬

ric states, which generalizes the so-called de Finetti representation theorem

(Section 4.3). Based on this result, we derive expressions for the smooth

min-entropy (Section 4.4) and the measurement statistics (Section 4.5) of

symmetric states.

4.1 Definition and basic properties

4.1.1 Symmetric subspace of H®n

Let H be a Hilbert space and let Sn be the set of permutations on {1,..., n}.
For any tt G Sn, we denote by the same letter tt the unitary operation on

1i®n which permutes the n subsystems, that is,

7r(|0i)(g> ®|0„)):=|0,r-i(1))<g> <8>|^-i(ra)),

for any \6l),... ,\6n) &H.

Definition 4.1.1. Let H be a Hilbert space and let n > 0. The symmetric

subspace Sym(7Y®ra) of H®n is the subspace of H®n spanned by all vectors

which are invariant under permutations of the subsystems, that is,

Sym(^ra) := {|tf) G H®n : vr|*) = |*)} .

Remark 4.1.2. For any n',n" > 0,

Sym(H®n'+n") Ç Sym(^ra') <g> Sym(W0ra") .

59
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Lemma 4.1.3 below provides an alternative characterization of the sym¬

metric subspace Sym(7Y®ra).

Lemma 4.1.3. Let H be a Hubert space and let n>0. Then

Sym(H®n) = span{\6fn : \6) G H) .

Proof. For a proof of this statement, we refer to the standard literature on

symmetric functions or representation theory (see, e.g., [WG00]). D

A basis of the symmetric subspace

Let x = (x\,... ,xn) be an n-tuple of elements from X. The frequency
distribution Ax of x is the probability distribution on X defined by the

relative number of occurrences of each symbol, that is,

K(x) :=-\{i: xt = x}\
,

n' '

for any x G X. In the following, we denote by Q* the set of frequency
distributions of n-tuples on X, also called types with denominator n on X.

Moreover, for any type Q G Q%, we denote by A„ the corresponding type

class, i.e., the set of all n-tuples x = (x\,..., xn) with frequency distribution

Xx = Q-
Let {|a;)}a;eA' be an orthonormal basis oiH. For any Q G Q*, we define

the vector \GQ) on Sym(H0n) by

\eQ):=—L= E I2*)® ®\xn) , (4.1)

V |An| (Xl, ,x„)eA%

where, according to Lemma (B.1.2), |A^| =
^ ^Q(x)y

The vectors |6^), for Q G Q%, are mutually orthogonal and normalized.

We will see below (cf. Lemma 4.1.5) that the family {\@®)}q£qx is a basis

of Sym(H's'n). In particular, ÜH has dimension d, then dim(Sym(7i®ra)) =

IS« I = (n+dn~l) (cf- Lemma B.f.f).

4.1.2 Symmetric subspace along product states

Let H be a Hilbert space, let \9) G H be fixed, and let 0 < m < n. We

denote by V(H®n, \6)®m) the set of vectors |\I>) G H®n which, after some

reordering of the subsystems, are of the form \0)®m ® |^), that is,

V(H®n, \efjm) := {ir(\6fm ® |§)) : vr G Sn, |§) G H®n~m) . (4.2)

We will be interested in the subspace of Sym(7Y®ra) which only consists

of linear combinations of vectors from V(H®n, \9)®m).
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Definition 4.1.4. Let H be a Hilbert space, let \9) G ?i, and let 0 < m < n.

The symmetric subspace Sym(H®n, \9)®m) ofH®n along \0)®m is

Sym(H®n, \efm) := Sym(H®n) n span V(H®n, \6fm) ,

where V(W0ra, \6)®m) denotes the subset of H®n defined by (4.2).

Note that Sym(H®n, \6)®m) ç Sym(7^ra), where equality holds if m = 0.

In Section 4.4 and 4.5, we shall see that, if r := n — m is small compared
to n, then the states in Sym(H®n, \6)®m) have similar properties as product

states \6)®n.

Lemma 4.1.5. Let H be a Hubert space with orthonormal basis {\x)}x^x,
let \9) := \x) for some x G X, and let 0 < m <n. Then the family

B:= {\QQ)}QeQx Q(x)>m

of vectors |0^) defined by (4.1) is an orthonormal basis o/Sym(7Y®ra, \9)®m).

Note that, for m = 0, Lemma 4.1.5 implies that the family {\@®)}q£qx
is an orthonormal basis of Sym(H®n).

Proof. For any Q G Q%, the vector l©^) is invariant under permutations of

the subsystems, that is, \&Q) G Sym(7i0ra). Moreover, iîQ(x) > ^ then the

sum on the right hand side of (4.1) only runs over n-tuples which contain

at least m symbols x, that is, each term of the sum is contained in the

set V(H0n, \6)®m) defined by (4.2) and hence \GQ) G spanV(H0n, \6)®m).
This proves that all vectors |0^) G B are contained in Sym(7Y®ra, \6)®m).
Moreover, the vectors |0^) are mutually orthogonal and normalized.

It remains to be shown that §yni(H®n, \9)®m) is spanned by the vectors

\&Q) G B. Let thus |*) G Sym(?t:®ra, \9)®m) be fixed. Since {\x)}xeX is a

basis of H, there exist coefficients ax, for x = (x\,..., xn) G Xn, such that

I*) = E «xkl)® ®\xn)
xexn

Because |\I>) is invariant under permutations of the subsystems, the coeffi¬

cients ax can only depend on the frequency distribution Ax. This implies
that there exist coefficients Pq such that

i*) = E pq\qQ)

To conclude the proof, we need to verify that this sum can be restricted

to frequency distributions Q such that Q(x) > ^. Observe that, for any

Q G Qn with Q(x) < ^, the vector 10*3) is orthogonal to any vector

in V(H0n, \6)®m) and thus also to any vector in Sym(H®n, \6)®m). The

corresponding coefficient Pq must thus be zero. D
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Any vector |\t) G Sym(7i®ra, \9)®m) can be written as a linear com¬

bination of at most1 2"A(m/ra) vectors from the set V(H®n, \9)®m) defined

by (4.2).

Lemma 4.1.6. Let |*) G Sym(H®n, \9)®m). Then there exists an or¬

thonormal family {\^Js)}s^s of vectors from V(H®n,\9)®m) with cardinality

\S\ < 2nh{-m/^ such that |*) G span{|*s)},e5.

Proof. Let {la;)}^^ be an orthonormal basis of H such that \x) = \9). For

any n-tuple x = (x\,...,xn) G Xn, we denote by |x) the vector \x\) ®

® \xn). Because |*) G spanV(H®n, \9)®m), there exist coefficients px,
for x G Xn, such that

i*>= e ^ix>- (4-3)
x AxW>f

Let S be the set of all subsets s ç {1,... ,n} of cardinality |s| = m.

Moreover, for any x = (x\,..., xn) G Xn with Xx(x) > ^, let s(x) G S be a

set of m indices from {1,..., n} such that i G s(x) ==> xt = x. Finally, for

any s G S, let

|tt'):= E &l*>- (4-4)
x s(x)=s

The sum in (4.3) can then be rewritten as |\I>) = J2ses l*s)> that is, |\I>) G

span{|*s)}se5. Moreover, Lemma B.1.3 implies |«S| < 2nh{-mln\

It remains to be shown that {|\I>s)}se<s is an orthonormal family of vectors

from V(H®n, \9)®m). Let thus s G S be fixed and let tt be a permutation

such that 7r(s) = {1,..., m}. Hence, for any x with s(x) = s, the vector 7r|x)
has the form \9)®m <g> |§), for some |§) G H®n~m. By the definition (4.4),
the same holds for n\^!s), i.e., |\I>S) G V(H®n, \9)®m). Furthermore, because

for distinct s, s' G S, the sum in (4.4) runs over disjoint sets of n-tuples x,

and because the vectors |x) are mutually orthogonal, the states |*s) are also

mutually orthogonal. The assertion thus follows by normalizing the vectors

\^s). D

4.2 Symmetric purification

An operator pn on H®n is called permutation-invariant if npn^ = pn, for

any permutation tt g Sn. For example, the pure state pn = |\I>)(\I>|, for

some vector |\t) of the symmetric subspace of H®n, is permutation-invariant.

More generally, any mixture of symmetric pure states is permutation-invar¬

iant.

1h denotes the binary Shannon entropy function denned by h(p) = —p\og(p) —

(1 - p)log(l - p)
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The converse, however, is not always true. Consider for example the

fully mixed state p2 on H®2 where dm\(H) = 2. Because this operator can

be written as p2 = g®2, it is invariant under permutations. However, p2

has rank 4, whereas the symmetric subspace of H®2 only has dimension 3.

Consequently, p2 is not a mixture of symmetric pure states.

Lemma 4.2.2 below establishes another connection between permutation-

invariant operators and symmetric pure states. We show that any permuta¬

tion-invariant operator pn on H®n has a purification on the symmetric sub-

space of (H ® H)®n.
To prove this result, we need a technical lemma which states that a fully

entangled state on two subsystems is unchanged when the same unitary

operation is applied to both subsystems.

Lemma 4.2.1. Let {\x)}x^x be an orthonormal family of vectors on a

Hubert space H and define

|*) := E lœ) ® \x) ,

xex

where, for any x G X, \x) denotes the complex conjugate of\x) (with respect

to some basis ofH). Let U be a unitary operation on the subspace spanned

by {\x)}X£x and let U be its complex conjugate. Then

(U®V)\m) = \m) .

Proof. A simple calculation shows that, for any x, x1 G X,

((x\ ®JxT\)\y) =SXtX,

({x\®JxT\)(U®Ü)\^)=öxy .

The assertion follows because, obviously, {\x) ® \x')}x>xiex is a basis of the

subspace oiH®H that contains |\I>). D

Lemma 4.2.2. Let pn G V(H®n) be permutation-mvariant. Then there

exists a purification of pn on Sym((7Y ®H)®n).

Proof. Let {la;)}^^ be an (orthonormal) eigenbasis of pn and let A be the set

of eigenvalues of pn. For any A G A, let H\ be the corresponding eigenspace
of pn, i.e., pn\(f)) = \\(f)), for any \<p) G H\.

Because pn is invariant under permutations, we have 7rfpn7r|0) = X\4>),
for any \<fi) G H\ and tt G Sn- Applying the unitary operation tt to both

sides of this equality gives pra7r|</>) = A7r|0), that is, 7r|0) G H\. This proves

that the eigenspaces H\ of pn are invariant under permutations.

For any \<fi) G H®n, we denote by \<fi) the complex conjugate of \<fi) with

respect to some product basis on H®n. Moreover, for any eigenvalue A G A,
let

l*A) := E \x) ® \x) '

xexx
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where X\ := {x G X : \x) G Hx}, i.e., {I^)}^;^ is an orthonormal basis of

the eigenspace Hx- Finally, we define the vector |^) G H®n ®H®n by

|*}:=E^Ä|*A>-
aga

It is easy to verify that the operator obtained by taking the partial trace of

|*)(*| satisfies

trH®„(|*)(*|) = E E X\x)(x\ = Pn '

\eAxeX\

i.e., |lE')(lE'| is a purification of p„. It thus remains to be shown that |\I>) is

symmetric.
Let 7T G Sn be a fixed permutation. Note that its complex conjugate W

is equal to ir. (Recall that we defined the complex conjugate with respect

to a product basis of H®n.) Moreover, because tt is unitary on H®n and,

additionally, for any A G A, the subspace Hx is invariant under tt, the

restriction of tt to Hx is unitary as well. Hence, by Lemma 4.2.1,

(7T®7T)|*A) = (vr®7f)|*A) = |*A)

and thus, by linearity,

(7T®7T)|*) = E^(7r®7r)l*A) = E^I*A} = I*) •

aga aga

Because this holds for any permutation tt on H®n, we conclude |*) G

§ym((H®H)®n). D

4.3 De Finetti representation

While any product state pn = cr®n on H®n is permutation-invariant, the

converse is not true in general. Nevertheless, as we shall see, the properties of

permutation-invariant states pn are usually very similar to those of product
states.

The quantum de Finetti representation theorem makes this connection

explicit. In its basic version, it states that any density operator pn on H®n

which is infinitely exchangeable, i.e., pn is the partial state of a permutation-

invariant operator pn+k on n + k subsystems, for all k > 0, can be written

as a mixture of product states G®n.

In this section, we generalize the quantum de Finetti representation to

the finite case, where pn is only (n + fc)-exchangeable, i.e., pn is the partial

state of a permutation-invariant operator pn+k on n+k subsystems, for some

fixed k > 0. Theorem 4.3.2 below states that any pure density operator pn
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on H®n which is (n + fc)-exchangeable is close to a mixture of states pn

which have almost product form \9)®n, for \9) G H. More precisely, for any

\9), pn is a pure state of the symmetric subspace of H®n along |0)®n_r", for

some small r > 0. Because of Lemma 4.2.2, this statement also holds for

mixed states p„.

The proof of Theorem 4.3.2 is based on the following lemma which states

that the uniform mixture of product states (\9){9\)'s'n, for all normalized

vectors \9) G SX(H) := {\9) G H : |||0)|| = 1}, is equal to the fully mixed

state on the symmetric subspace of H®n.

Lemma 4.3.1. Let H be a d-dimensional Hubert space and let n>0. Then

(\9)(9\r^(\9)) = (n+dn-1)-1 idSym(^),
/5i(H)

where uo denotes the uniform probability measure on the unit sphere S\(H).

Lemma 4.3.1 can be proven using techniques from representation theory,
in particular, Schur's Lemma (see, e.g., [WG00]). In the following, however,

we propose an alternative proof.

Proof. Let

T:= / (\9)(9\rnu(\0)) -

We first show that T = c idSym(-W(gm) for some constant c.

Because the space Sym(H®n) is spanned by vectors of the form \9)®n
(cf. Lemma 4.f .3), it is sufficient to show that, for any \u), \v) G S\(H),

{U\ 1\V) - {U\ C lÜSym(H®")\v) l4-bJ

Let thus \u),\v) G S\(H) be fixed and define a := (u\v) and \w) :=

\v) — a\u), i.e., (u\w) = 0. Then

(ufjnT\vfn = [ (v\9)n(9\v)nuj(\9))
hm)

(4.6)

{u\9)n(a{9\u) + (9\w))nu(\9)) .

/5i(H)

Note that, for any m G {0,..., n},

(u\9)n(9\u)n-m(9\w)muü(\9)) = [ \(v\9)\2{*n-m)(v\9)m(9\w)müj(]9)).

Because, for any fixed value of (u\9), the integral runs over all phases of

(9\w) (recall that \u) and \w) are orthogonal) and because the probability
measure uj is invariant under unitary operations, this expression equals zero
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for any m > 0. The integral on the right hand side of (4.6) can thus be

rewritten as

(ufjnT\vfn = [ an\(v\9)\2nuj(]9))
Jsm)

(4J)
= {u\v)n \(u\9)\2ncü(\0))

Using again the fact that the probability measure to is invariant under uni¬

tary operations, we conclude that the integral on the right hand side cannot

depend on the vector \u), i.e., it is equal to a constant c. This implies (4.5)
and thus proves that T = c idSym(H®n)-

To determine the value of c,2 observe that

tr(T) = I tr((\9)(9\rn)ui(\9)) = I co(\9)) = 1
, (4.8)

where the last equality holds because w is a probability measure on S\(H).
On the other hand, we have tr(T) = c dim(Sym(7i®ra)). Hence, c_1 =

dim(Sym(H®n)) = (ra+^_1), which concludes the proof. D

We are now ready to state and prove a de Finetti style representation

theorem. Note that Theorem 4.3.2 is restricted to pure symmetric states.

The statement for general permutation-invariant states then follows because

any such state has a symmetric purification (see Lemma 4.2.2).

Theorem 4.3.2. Let pn+k be a pure density operator on Sym(7Y®ra+fc) and

let 0 < r < n. Then there exists a measure v on S\(TL) and, for each

\9) G S\(H), a pure density operator pn on Sym(7Y®ra, \Q}®n~r) such that

tTk(pn+k)- I Pt>v{\0))
Si{H)

<2e-^SWdim^lnfc
l

Proof. Because the density operator pn+k is pure, we have pn+k = l^1)^]
for some |*) G Sym(H0n+k). For any \9) G SX(H), let

l*|Ö>) := ^{k+dk~l) i}à^®(9fk) |*) ,

where d := dim(H). Because Sym(H®n+k) is a subspace of Sym(H®n) ®

Sym(W®fc) (see Remark 4.1.2), |*|ö)) is contained in Sym(W®ra). Let p|f} :=

2
Alternatively, the constant c can be computed by an explicit evaluation of the integral

on the right hand side of (4 7) Remarkably, this can be used to prove Lemma 4 13

Observe first that, by the arguments given m the proof, c_1 must be equal to the dimension

of the space spanned by the vectors of the form |$}®n On the other hand, the explicit

computation of c shows that c_1 equals (n+n~ ), which is the dimension of Sym(7i®n)
Because the space spanned by the vectors |$}®n is a subspace of Sym(7i®n), it follows

that these spaces are equal
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|*lö>)(*lö>|, let P^ be the projector onto the subspace Sym(7^ra, \9)®n~r),
and define

Pn — p{\0))r Pn r
>

where p(\9)) := ti(P^pn P^), be., pk is normalized and, because pn has

rank one, it is also pure. Finally, let v be the measure defined by v := p to,

where uj is the uniform probability measure on S\(H). It then suffices to

show that

ö:= tTk(pn+k) - / P^p^P^ u(\6)) < 2e" W+2rflnfc
. (4.9)

Mr^lUldlnfc

By the definition of pi/, we have

pl*> = |^|e>)^|e>| = (fc+d-i) . trfc(id®ra eg) (|0><0|)®fc • |*)<*|) , (4.10)

and thus, by Lemma 4.3.1,

pjf> w(|0» = (k+tl) I trfc(id®ra eg) (\9)(9\rk |*)<tt|) w(|6>))
5i(W) •/5i(W)

= trfc(id®^<g>idSym(H®fc) •!*)(*!) •

Since Sym(7i®n+fc) is a subspace of ft®ra eg) Sym(ft®fc), the vector |*) is

contained in H®n®§ym(H®k). The operation id^ra®idSym(-w®fc) in the above

expression thus leaves l*)^ unchanged. Because trfc(|\I>)(\I>|) = trfc(pra+fc),
we conclude

/ p^iü(\9))=trk(pn+k) (4.11)

Using this representation of trfc(pra+fc) and the triangle inequality, the

distance ö defined by (4.9) can be bounded by

5<f llp^-pl^pl^H^dô)).

Because the operators P^ are projectors, we can apply Lemma A.2.8 to

bound the distance between pn and P^pn p\e\ which gives

Ö<2J Jtr(p^)Jtr(p^)-tr(P^p^)iü(\9)) .

To bound the integral on the right hand side, we use the Cauchy-Schwartz in¬

equality for the scalar product defined by (f\g) := Js <H-, f(\9))g(\9))u)(\9)),
i.e.,

S<2J tT(p^)u(\9))J (tr(pke>)-tr(Pl*>pke>))u;(|0>).
V Jsi{H) V JsW)
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Because of (4.11), the first integral on the right hand side equals tr(pra+fc) =

1, that is,

S < 2J [ (tr(plÖ)) - tr(Plö>plÖ))) u(]9)) . (4.12)

Let P^ be the projector orthogonal to p\e\ i.e., P^ := idSym(H®n) ~ P^
With (4.10), the term in the integral can be rewritten as

tr(pjf>)-tr(pl«>pjf>)=tr(^>pjf>)
= {k+dk~l) tr(plö>cg)(|tf)(tf|)®fc |*)(*|) .

Let \9) G H be fixed and let {la))}^^ be an orthonormal basis of H

with \x) = \9), for some x G X. Moreover, for all frequency distributions

Q G Q% and Q G Q*+k, let |ei?) and |9^+fc) be the vectors in Sym(W®ra)
and Sym(7Y®ra+fc), respectively, defined by (4.1).

According to Lemma 4.1.5, the family of vectors \@n), for all Q G Q*, is

an orthonormal basis of Sym(H®n). Moreover, the subfamily where Q(x) >

^ is a basis of Sym(H®n, \9)®n~r). Consequently, the projector P^ on

the space orthogonal to Sym(7Y®ra, \Q)®n-r) can be written as

ple) = E ie^e^i •

Q Q(x)<^

Identity (4.13) then reads

tr(pj?>)-tr(plfl>pjf>) = (fc+t1) E |«öSl®<*l®fc) l*)f- (4-14)

Q Q{x)<^

Because the family of vectors |0„+fc), for Q G Qn+k> ^s a basis of the

symmetric subspace Sym(H®n+k) (see again Lemma 4.1.5) there exist coef¬

ficients olq such that

l*> = E«Äfc>> (4-15)

Q

where the sum runs over all Q G Qn+k-
It is easy to verify that, for any Q G Q* and Q G Q^+fc, the scalar

product ((On | ® (6,|®fc) \&n+k) equals zero unless

,.=, „
\nQ(x)+k if x = x

. .

(n + k)Q(x) = \ ^ (4.16)
\nQ(x) otherwise

holds for all x G X, in which case

\

UJnQ(x)y n\(nQ(x)+k)\

el ((+fc) <?(»)' v
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Let Q G Qn with Q(x) < ^ and let Q G Q„+fc such that (4.16) holds.

Then, from (4.15) and (4.17),

((@%\®(9fk) |*)
2_,_ 2 n!(nQ(a^) + fc)!

^, ^ |2

~qI

(n + fc)!(nQ(a))!
CKol ,

'

.
,„, ^,_^. <

ICKgl Dnifc,r

where A^,,. := (k+fc^n-r-i)! Note tri&t Q(a)) < ^ implies Q(x) <

ra+^r. Consequently, from (4.14),

tr(pj?>)-tr(pl«>pj?>) < (k+tl) Dn,k,r E l«d2 ^ (fc+n An,k,r ,

Q Q^XH^

where the last inequality follows from the fact that J2o \aQ\2 = III*)!!2 =

tr(pra+fc) = f. The term Dn,k,r can be bounded by

(n — r)(n — r + 1) (n + k — r — 1)
nAr

=

(n + l)(n + 2) (n~T¥)
'n + fc — r — lx

n + k

n + A;

Defining /? := ^±| and using the fact that, for any /? G [0,1], (1—Z?)1/'3 < e_1,
we find

^n)fc)r<(l-/3)fc=((l-/3)1//3) <e"

Finally, because for any k > 2 (note that, for k < 2, the assertion is trivial)

(k+dk~l) ^ fcd> we have

tv(pW)-tv(pWpW)<kde-k^ .

Inserting this into (4.12), the bound (4.9) follows because uj(\9)) is a prob¬

ability measure on S\(H). D

If the symmetric state pn+k on Sym(7Y®ra+fc) has some additional struc¬

ture then the set of states that contribute to the mixture in the expression of

Theorem 4.3.2 can be restricted. Remark 4.3.3 below treats the case where

the subspaces H = Ha ® 7~t>B are bipartite systems and where the partial

state on HAn+k has product form.

Remark 4.3.3. Let H := Ha ® Hb be a bipartite Hilbert space, let

pAn+kBn+k be a pure density operator on Sym(7Y®ra) such that pAn+k =

GAn+ ,
let 0 < r < n, and let v be the measure defined by Theorem 4.3.2.

Then, for any ö > 0, the set

F := {\9) G SX(H) : ||trB(|0)<0|) - ga\\x > 6}

has at most weight i/(f*) < e-ïkS2+dim(n)\nk_
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Proof. Let |*) G Sym(H0n+k) and p|f} G V(Sym(H0n)) as defined in the

proof of Theorem 4.3.2. It then suffices to show that

tr(pj?>M|0)) < e-^ks2+dlnk
, (4.18)

where to is the uniform probability measure on the unit sphere S\(H) and

d := dim(H).
Let \9) G F be fixed, i.e., ||trB(|0)(0|) - aA\\i > S. Then, by (4.10),

MpD = (k+tl) tr(id®*®(|0)<0|)®fc |*)<*|)
= (k+t~l) tr((|tf}(tf|)®fc pAkBk) ,

where pAkBk := tvn(pAn+kBn+k) = trn(|\I>)(\I>|). Since the fidelity cannot

decrease when taking the partial trace (cf. Lemma A.f .5) we get

tr((\9)(9\rkpAkBk) = F(pAkBk,(\9)(9\rkf

<F(pAk,trB(\9)(9\)®kf
= F(Gf,trB(\9)(9\rk)2
= F(GA,trB(\9)(9\))2k .

Because, by Lemma A.2.4,

2., 1„ 2^,_P

4
F(GA,tTB(\9)(9\)Y < 1 - -\\GA-tTB(\9)(9\)\\; < 1

we conclude

2. , A

tr(pj?>) < (k+tl) (1 - j)k < kdek^-V < e-ikS2+dl»k
,

where we have used ln(l — a) < —a, for a G [0,1]. Inequality (4.18) then

follows because w is a probability measure. D

4.4 Smooth min-entropy of symmetric states

Let \9) G H, let 8 he a quantum operation from H to Hx ®Hb, and define

pXr>B" := £®ra(|*)(*|), for |*) := |tf)®ra. Obviously, px^B" has product

form, i.e., pxnBn = &xb> where gxb = S(\9)(9\). Hence, as demonstrated

in Section 3.3 (Corollary 3.3.7), the smooth min-entropy of such a product

state can be expressed in terms of the von Neumann entropy, that is,

^Hmm(px«B«\Bn) > H(gxb) - H(gb) - (4.19)

Theorem 4.4.1 below states that this still holds if the product state |\I>) :=

\9)®n is replaced by a state in the symmetric subspace of H®n along |0)®n_r",
for some r <^in.
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Theorem 4.4.1. LetO<r< \n, let \9) G H and |*) G Sym(W®ra, \9)®n~r)
be normalized, and let 8 be a trace-preserving CPM from H to Hx ® 7~t>B

which is classical on Hx- Define pxnBn '= £®n(\'*&)(ty\) and gxb '=

8(\9)(9\). Then, for any e > 0,

\H£mm(px~BABn) > H(gxb) - H(gb) - 6
,

where Ö := (ftfmax(px) + ^)\f^W^+H^M-
Proof. According to Lemma 4.1.6, there exists a family {|\IJs)}se<s of or¬

thonormal vectors from V(H®n, \9)®n~r) of size |«S| < 2nh(-r/n^ such that

i*) = E^i*")' (4-2°)
ses

where ^s are coefficients with J2ses IT*!2 = 1-

Let {Ew}weyy he the family of operators from H to Hx®Hb defined by

the CPM 8, i.e., 8(g) = Ylwew E-wvEw, for any operator g on H. Moreover,

let Hw he a Hilbert space with orthonormal basis {|w)}«,ew and let U he

the operator from H to Hx ® Hb ® Hw defined by

U := E Ew ® \w) •

wew

Because 8 is trace-preserving, i.e., ^2wEwEw = id-^, we have WU = id-^,
that is, U is unitary. Furthermore, for any operator a on H,

trw(UGUf) = 8(g) . (4.21)

Let |$) := [J®!*) and, similarly, for any s G S, let \®s) := U®n\^s).
Then, using (4.20),

ses

Because U is unitary and the vectors \^s) are orthonormal, the vectors |$s)
are orthonormal as well. Moreover, using (4.21),

px-B- =^®ra(|*)(*|) = trwn(U®n\*)(*\(Ui)®n) =trw(|$)($|) .

Let pX"Bn := trvf(|3>s)(3>s|) and define the operator pxnBns on Hxn ®

H%n®Hs by

PX"B"S = E hs\2PX"B« ®\s)(s\ >

where Hs is a Hilbert space with orthonormal basis {|s)}ses. Lemma 3.2.11

then allows us to express the smooth min-entropy of pxnBn in terms of the

smooth min-entropy of pxnBns- Moreover, by Lemma 3.2.8, the smooth
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min-entropy of pxnBns is lower bounded by the min-entropy of the operators

PxnBn '
^nat is,

Hmm(pXnBn\pBn) > Hmm(pxnBns\pBns) ~ Hmax(ps)

> minHmm(psXnBn\pBn) - Hmax(ps) ,

ses

where è = =f==r. Using the fact that |<S| < 2nh(-r/n\ we find

#mm(Pxb I pb») > mm Hmm(pXnBn \psBn) - nh(r/n) (4.22)
ses

and

log(l/ê) < log(2/e) + log 6 + nh(r/n) . (4.23)

Let us now compute the min-entropies of the operators psX"Bn> f°r s e

S. Since |*s) G V(H®n, \9)®n~r), the vector \^s), after some appropriate

reordering of the subsystems, has the form |\ts) = \0)<g>n~r ® \^s), for some

\^s) G H®r. Hence, the same holds for the vector |$s), i.e.,

|$s) = U®n\ms) = (U\9)YJn~r eg) U0r\^s) .

Consequently, from (4.21) and the definition of gxb,

pW = (trw(U\9)(9\U^)fn-r®trWr(U®r\i's)(i's\(lß)®r)
_

®n-r „ -s
— <TXB (K) PxrBr i

where psXrBr := ^-®r(|^/'s)(^''s|)- Because 8 is classical on 7ïx, Pxtbt is

also classical on Hxr. Using the superadditivity of the smooth min-entropy

(Lemma 3.2.6) and the fact that the min-entropy of a classical subsystem
cannot be negative (Lemma 3.1.9) we find

Hmm(PX"Bn\pB") > ^min \aXB IV J + Hmm(pXrBr \pBr)
\ TTË ((g>n—r\(g>n—r\ ^ '

'

i- nmw\(JXB \aB J

Furthermore, because gxb is classical on Hx, we can use Corollary 3.3.7

to bound the smooth min-entropy of the product state in terms of the von

Neumann entropy,

HLn«B-rKn-r) > (" - r)(H(GXB) - H(gb) - 6')
> u(H(gxb) - H(gb)) - rHmax(px) - (n - r)S'

with 5' := (2Hmax(px) + 3) y log(^+1 Together with (4.22) and (4.24) we

conclude

1 n — r

-Hmm(pX"B"\pB") > H(gXb)-H(aB)-h(rjn)-r/nHmax(px) 6'
.

n(4.25)
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Moreover, from (4.23),

Vn~^ Ö' < (2Hm*x(px) + 3) v/log(2/e) + nh(r/n) + log 6 + 1
,

and hence, using the fact that c < y/c, for any c < 1,

^
• 8' < f-^ • 5' < (2Hm,x(Px) + 3) Jl0g(2/g)+4 + Wn)

n X n
y ' V n

Finally, because ^ < h(r/n) and h(r/n) < \Jh(r/n), we find

r /^ — r

h(r/n) + -Hms,x(px) + 5'

<(^max(px) + 4)y/^M±i + ,(r/n).

Inserting this into (4.25) concludes the proof. D

4.5 Statistics of symmetric states

Let z\,...,zn he the outcomes of n independent measurements of a state

\9) G H with respect to a POVM A4 = {Mz}zez- The law of large numbers

tells us that, for large n, the statistics Az of the n-tuple z = (z\,..., zn) is

close to the probability distribution Pz defined by Pz(z) := tr(Mz\9)(9\),
for ze2. Theorem 4.5.2 below states that the same is true if the n-tuple

z is the outcome of a product measurement M®n applied to a state |\I>) of

the symmetric subspace olH®n along \9)®n~r, for some small r«JJ.

For the proof of this result, we need the following technical lemma.

Lemma 4.5.1. Let \ip) = Y,xex IV^) and let p G V(H). Then

(^\p\^)<\x\Y,(r\p\r)
xex

Proof. Let p = ^yeyPy\y)(y\ he a spectral decomposition of p. For any

y^y,

2
= IE w>l2 < (E \(v\^)\)2 ^ i*i E i w>i2>

xex xex xex

where we have used the Cauchy-Schwartz inequality in the last step. Con-
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sequent ly,

<v>iPiv>> = E^iw>i2
yey

<i*iEE%iw>i2
yey xex

= l*lEE%(^|y)(y|^)
xex yey

HaiE^IpIV^}-
xex

Theorem 4.5.2. LetO<r< \n, let \9) eH and\m) G Sym(W®ra, |tf)®ra-r)
be normalized, let A4 = {Mz}zez be a POVM on H, and let Pz be the

probability distribution of the outcomes of the measurement M applied to

|. Then

Pr I A. - Pz\\i > 2\l^^ + h(r/n) +
^ log(^ + 1)

n n 2
<e

where the probability is taken over the outcomes z = (z\,...,zn) of the

product measurement M®n applied to |\I>)(\I>|.

Proof. According to Lemma 4.f .6, the vector |\t) can be written as a super¬

position of orthonormal vectors \^s) G V(H®n, \9)®n~r), that is,

i*) = E^i*")' (4-26)
ses

where S is a set of size |<S| < 2nh^> and where js are coefficients such that

J2ses hs\2 = 1-

Let now s G S he fixed. Because \^s) G V(H®n, \9)®n~r), there exists

a permutation ir which maps \^s) to a vector which, on the first n — r

subsystems, has the form \Q)®n-r_ ^e can ^us assume without loss of

generality that \^s) = |6>)®ra-r <g> |*), for some |*) G H0r.

Let z = (z\,..., zn) he the outcome of the measurement M®n applied to

|\I>S)(\I>S| and define z' := (z\,..., zn-r) and z" := (zn-r+\, , zn). Clearly,
z' is distributed according to the product distribution P^~r Hence, with

high probability, z' is a typical sequence, that is, by Corollary B.3.3,

Pr
z'

|V -Pzh > A/2(ln2)(J+ |Z|1°g^_7 + 1))] < 2-(-^
, (4.27)

for any 6 > 0. Moreover, because Az = ^^Xz' + ^z", we can apply the

triangle inequality which gives

iy-i rp rp rp

\\K-Pz\l< \\K' - Pz\l+ -\\K» - Pz\l < ||AZ/ -i^|L+-
•

M Ml
n

M Ml n\\ Ml M Ml
ß



4.5. STATISTICS OF SYMMETRIC STATES 75

Using this inequality and the assumption r < \n, (4.27) implies that

Pr [z G m] < 2~^
, (4.28)

zH*s)

where we write z <— \tys) to indicate that z is distributed according to the

outcomes of the measurement applied to \^s) and where W$ is the subset

of Zn defined by

/ 2 Z\ 77 V

m := {zeZn: ||AZ - Pz\\i > A/2(ln2)(5 + -L-Uog(- + 1)) + -} .

V It Zi lb

Let Mz := MZl ® ® MZn, for z = (z\, ...,zn) G Zn, he the linear

operators defined by the POVM A4®"-. Then, using Lemma 4.5.1, (4.26),
and (4.28) we get

Pr [z eWs]= V (*|MZ|*)
"H*>

z.W,

^ E i5iEi^i2(*i^zi*s)

=
|5|El7,|2 Prized]

it zH*s)

<- 2nh(r/n)2-!Y

= 2-n(l-h(r/n))

Hence, with 5 := 21og^1/£) + 2h{r/n),

Pr |Az-Pz||i>V4(ln2)(^^ + Mr/n) + ^log(^ + l))+^
v

n n 2 '
n

<e
.

The assertion then follows from the fact that y^ + ^ <
y c + ^, for any

c > 0 with c + ^f < 1, and from ^f < h(r/n). D
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Chapter 5

Privacy Amplification

A fundamental problem in cryptography is to distill a secret key from only

partially secret data, on which an adversary might have information encoded

into the state of a quantum system. In this chapter, we propose a general
solution to this problem, which is called privacy amplification: We show that

the key computed as the output of a hash function (chosen at random from

a two-universal1 family of functions) is secure under the sole condition that

its length is smaller than the adversary's uncertainty on the input, measured

in terms of (smooth) min-entropy.

We start with the derivation of various technical results (Sections 5.1-

5.4). These are used for the proof of the main statement, which is first

formulated in terms of min-entropy (Section 5.5) and then generalized to

smooth min-entropy (Section 5.6).

5.1 Bounding the norm of hermitian operators

In this section, we derive an upper bound on the trace norm for hermitian

operators (Lemma 5.1.3). The bound only involves matrix multiplications,
which makes it easy to evaluate.

Lemma 5.1.1. Let S and T be hermitian operators on H. Then

tr(ST) < ^tr(S2)tr(T2) .

Proof. Let S = ^yey Py\y) (y\ and T = J2zez^z\z)(z\ ^e spectral decom¬

positions of S and T, respectively. With the definition ay>z := |(y|z)|2, we

have

tr(ST) = E^7Ar(|y)(y| \z)(z\) = E/Vä* •

y,z y,z

xSee Section 5 4 for a definition

77
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On the other hand, tr(S*2) = J2y ßy and tr(T2) = J2zrYz- h thus suffices to

show that

£/vy*a*,*</(£$)(£7i). (5-x)
y,z

It is easy to verify that (aytZ)yey}Zez is a bistochastic matrix. Hence,

according to Birkhoff's theorem (cf. Theorem B.2.2) there exist nonnegative
coefficients u^ parameterized by the bijections tt from Z to y such that

X],;- Pit = f and, for any y G y, z G Z, ay>z = z2nP^^yMz)' ^e tnus nave

E ßyWy,* = E^£ ßvl^vM*) • (5-2)
y,z TT y,z

Furthermore, by the Cauchy-Schwartz inequality, for any fixed bijec-
tion 7T,

£/Wr*<J(£#w)Œ>f)-
2: V z z

This can be rewritten as

£/vyA*w </(£$)(£ 72
y,z

Inserting this into (5.2) implies (5.1) and thus concludes the proof. D

Lemma 5.1.2. Let S be a hermitian operator on H and let g be a nonneg-

atwe operator on H. Then

tr\VäSVä\ < ^tr(S2)tr(G2) .

Proof. Let {|v)}i,ey be an eigenbasis of ^S^ and let S = J2xex olx\x)(x\
he a spectral decomposition of S. Then

ir:\y/aSy/a\ = y^\(v\y/aSyfä\v)\
v

= EE^^i^i^^i^i^I
V X

< eEi^i^i^i^^i^i^
V X

= Y,(v\Ms\Mv)
V

= tr(yfr\S\y/a) .

Furthermore, by Lemma 5.1.1,

ti(y/ï\S\y/ï) = tr(\S\G) < ^tr(|5|2)tr((72) = Vtr(S2)tr(G2) ,

which concludes the proof. D
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Lemma 5.1.3. Let S be a hermitian operator on H and let g be a nonneg-

atwe operator on H. Then

\\S\\i < ^tr(G)tr(SG-l/2SG-1/2) .

Proof. The assertion follows directly from Lemma 5.1.2 with g := ^[g and

S := g~1/2Sg~1/2, that is, a = g2 and S = ^ßS^ß. D

5.2 Distance from uniform

According to the discussion on universal security in Section 2.2.2, the se¬

curity of a key is defined with respect to its Li-distance from a perfect

key which is uniformly distributed and independent of the adversary's state

(see (2.6)). This motivates the following definition.

Definition 5.2.1. Let pab G V(Ha ® 'Hb)- Then the L\-distance from

uniform of pab given B is

d(pAß\B) := \\pab -pu® Pb\\1 ,

where pu '= dim}n Tdyt is the fully mixed state on Ha-

For an operator pxz defined by a classical probability distribution Pxz,

d(pxz\Z) is the expectation (over z chosen according to Pz) of the Li-

distance between the conditional distribution Px\z=z and the uniform dis¬

tribution. This property is generalized by the following lemma.

Lemma 5.2.2. Let pabz be classical with respect to an orthonormal ba¬

sis {\z)}zez of Hz and let pzAB, for z G Z, be the corresponding (non-

normalized) conditional operators. Then

d(pABZ\BZ) = Y,d(pzAB\B) .

zez

Proof. Let pu he the fully mixed state on Ha- Then, by Lemma A.2.2,

d(pABz\BZ) = Wpabz - Pu ® Pbz\\i

= J2\\pzab-Pu®Pb\\i
zez

= Y^Pab\B)-
zex

D
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To derive our result on the security of privacy amplification, it is con¬

venient to consider an alternative measure for the distance from uniform.

Let pas G V(Hab) and gb G V(Hb)- The (conditional) L2-distance from

uniform of pab relative to gb is defined by

d>2(pAB\<7B) -=^(((pAB ~ PU ® Pß)(idA® (7Bl ))2

where pu is the fully mixed state on Ha- Note that ^(pabI^s) can equiv¬

alently be written as

d2(pAB\o-ß) = tr(((id,4 ® gb1/4)(pab - Pu® Pß)(idA ® o-Bl/4))2j , (5.3)

which proves that d2(pAB\o~B) cannot be negative.

The L2-distance from uniform can be used to bound the Li-distance

from uniform.

Lemma 5.2.3. Let pab G V(Ha ®Hb)- Then, for any gb G V(Hb),

d(pAB\B) < y/dim(HA)tv(aB)d2(pABWB)

Proof. The assertion follows directly from Lemma 5.1.3 with S := pAB —

pu ® Pb and g := id^ ® gb, where pu is the fully mixed state on Ha-

The following lemma provides an expression for the L2-distance from

uniform for the case where the first subsystem is classical.

Lemma 5.2.4. Let pxB G V(Hx ® Hb) be classical with respect to an

orthonormal basis {\x)}xex ofHx, let pxB, for x G X, be the corresponding

(non-normalized) conditional operators, and let g g V(Hb)- Then

MpxbWb) = J2tr((aB1/4pXB°7B1/4)2) ~ r^tr^B^Pi?^174)2) •

x
' '

Proof. Let pu he the fully mixed state on Hx- Because pxB is classical on

Hx, we have

Pxb -pu®pB = y~] \x)(x\ ® (pxB - -t—tPb) ,

x
' '

and thus

(idx ® (7Bl )(pXB -pu® Pß)(idx ® aB )

El w I ^ ( -1/4 x -1/4 1 -1/4 -l/4\
\X)(X\ Cg) \GB pBGB

-

—GB pB<JB J .



5.3. COLLISION ENTROPY 81

Hence, since {la))}^^ is an orthonormal basis,

tr(((idx ® (7Bl )(pXB - Pu ® Pß)(idx ® aB ))2

E,
( ( -1/4 x -1/4 1 -1/4 -1/4\2N

t^K PbO-B
~

T^-fB PBO-B
^

x
' '

= Etr((^1/4PW/4)2) " r^tr((,-1/4p^«1/4)2) ,

X
' '

where the second equality holds because J2X Pb = Pb- The assertion then

follows from (5.3). D

5.3 Collision entropy

Definition 5.3.f below can be seen as a generalization of the well-known

classical (conditional) collision entropy to quantum states.

Definition 5.3.1. Let pAB G V(HA ®HB) and gb G V(HB)- Then the

collision entropy of pab relative to gb is

H2(pabWb) = -log- -tr((pAB(idyi ® &B )))

Remark 5.3.2. It follows immediately from Lemma B.5.3 that

Hmm(pAB\o-B) < H2(pab\o-b)

Remark 5.3.3. If pxB G V(Hx ®Hb) is classical with respect to an or¬

thonormal basis {|a))}a;eA' oiHx such that the (non-normalized) conditional

operators pB on Hb, for x G X, are orthogonal then

h2(PxbWb) I STird«-1/*^-1/^
J^tI>«<2 l '

"-t^-)^"«'" <*"*

5.4 Two-universal hashing

Definition 5.4.1. Let J7 be a family of functions from X to Z and let Pp he

a probability distribution on T. The pair (T, Pp) is called two-universal if

Pvf[f(x) = f(x')] < -Ât, for any distinct x,x' G X and / chosen at random

from T according to the distribution Pp.

In accordance with the standard literature on two-universal hashing,
we will, for simplicity, assume that Pp is the uniform distribution on T.

In particular, the family T is said to be two-universal if (T,Pp), for Pp

uniform, is two-universal. It is, however, easy to see that all statements
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proven below also hold with respect to the general definition where Pf is

arbitrary.
We will use the following lemma on the existence of two-universal func¬

tion families.

Lemma 5.4.2. Let 0 < £ < n. Then there exists a two-universal family of
hash functions from {0, l}n to {0, l}e.

Proof. For the proof of this statement we refer to [CW79] or [WC81], where

explicit constructions of hash function families are given. D

Consider an operator pxB which is classical with respect to an orthonor¬

mal basis {|a))}a;eA' of Hx and assume that / is a function from X to Z.

The density operator describing the classical function output together with

the quantum system Hb is then given by

Pf(x)B = E \z^z\ ® Pb for Pb := E Pb > (5-4)
zez xef-i(z)

where {|-z)}.zez is an orthonormal basis of Hz-

Assume now that the function / is randomly chosen from a family of

functions T according to a probability distribution Pp. The function output

f(x), the state of the quantum system, and the choice of the function / is

then described by the operator

PF(X)BF = E PF(f)Pf(X)B ® I/) (/I (5-5)
fer

on Hz ® Hb ® Hf, where Hf is a Hilbert space with orthonormal basis

{|/>W-
The following lemma provides an upper bound on the expected L2-

distance from uniform of a key computed by two-universal hashing.

Lemma 5.4.3. Let pxB G V(Hx ® Kb) be classical on Hx, let gb G

V(Hb), and let T be a two-universal family of hash functions from X to Z.

Then

E[d2(pf{X)BWB)\ < tr(pxB)2-H^PXBl<7B),

for pf(x)B G V(Hz ®Hb) defined by (5.4) and f chosen uniformly from T.

Proof. Since pf(x)B is classical on Hz, we have, according to Lemma 5.2.4,

<k(Pf(X)BWB) = J2tr((aB1/4pZB°Bl,i)2) ~ J^tr{(aB1/4[PBVB1/4)2) ,

(5.6)
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where pzB, for z G Z, are the conditional operators defined by (5.4). The

first term on the right hand side of (5.6) can be rewritten as

£tr((*i1/4/W/4)2)

= £ £ tr((,-i/4pi^1/4)(^1/4pi;^1/4))
z xef-^z)

x'ef-^z)

= Y,Ôf^)J(^tr((aB1/4pB^B1/4)(aB1/4pB^B1/4))

Similarly, for the second term of (5.6) we find

-^tr((,-1/4p^-1/4)2) =E^tr((,-1/V|^1/4)(^1/4p|V-1/4)) .

x,x'

Hence,

IE[d2(p/(x)i?ki?)
= £?[*/(*)./(*) " |4] ' tr((^1/4pW/4)(a-1/4p|V-1/4)) . (5.7)

x,x'

Because / is chosen at random from a two-universal family of hash functions

from X to Z, we have, for any x / x',

j[Sf(x)j(x>) - ]è[]= p/[f{x) = f{x')] ~
\z\ -

°
'

Since the trace tr(gg') of two nonnegative operators g, g' g V(H) cannot be

negative (cf. Lemma B.5.2) the trace on the right hand side of (5.7) cannot

be negative, for any x, x' G X. Consequently, when omitting all terms with

x / x'', the sum can only get larger, that is,

à1")1)E d2(pf(X)B\<7BJ\ <Etr(((7i?1/4^(7i
J

x

The assertion then follows from Remark 5.3.3. D

5.5 Security of privacy amplification

We are now ready to state our main result on privacy amplification in the

context of quantum adversaries. Let A be a string and assume that an

adversary controls a quantum system Hb whose state is correlated with X.

Theorem 5.5.1 provides a bound on the security of a key /(A) computed
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from X by two-universal hashing. The bound only depends on the un¬

certainty of the adversary on X, measured in terms of collision entropy,

min-entropy (cf. Corollary 5.5.2), or smooth min-entropy (Corollary 5.6.1),
where the latter is (nearly) optimal (see Section 5.6).

Theorem 5.5.1. Let pxB G V(Hx ®Hb) be classical with respect to an

orthonormal basis {\x)}xex ofHx, let gb G V(Hb), and let J7 be a two-

universal family of hash function from X to {0,1}£. Then

d(pF(x)BF\BF) < V^(Pxb) tr(GB) 2-^H2^B^-^
,

for Pf(x)bf G V(Hz ®Hb ®Hf) defined by (5.5).

Proof. We use Lemma 5.2.2 to write the Li-distance from uniform as an

expectation value,

d(PF{x)BF\BF) = £Pf(/) d(pf{x)B\B)=E[d(pf{X)B\B)] .

fer

With Lemma 5.2.3, the term in the expectation can be bounded in terms of

the L2-distance from uniform, that is, for any gb G V(Hb),

d(pF{x)BF\BF) < yj2HT(<TB)j[yJd2(pfix)B\<TB)]
<^2Hr(GB)Md2(Pf{x)B\o-B)] ,

where we have used Jensen's inequality. Finally, we apply Lemma 5.4.3 to

bound the L2-distance from uniform in terms of the collision entropy, which

gives

d(PF(x)BF\BF) < ^2Hr(GB)\/tr(pxB)2-H2^B\aB) .

Corollary 5.5.2. Let pxB G V(Hx ®Hb) be classical with respect to an

orthonormal basis {\x)}xex ofHx and let J7 be a two-universal family of
hash functions from X to {0,1}£. Then

d(PF(x)BF\BF) < Vtrjpx^ 2-^-^1^) ,

for Pf(x)bf G V(Hz ®Hb ®Hf) defined by (5.5).

Proof. The assertion follows directly from Theorem 5.5.1 and Remark 5.3.2.

D



5.6. CHARACTERIZATION USING SMOOTH MIN-ENTROPY 85

5.6 Characterization using smooth min-entropy

The characterization of privacy amplification in terms of the collision en¬

tropy or min-entropy is not optimal.2 Because of Remark 5.3.2, the same

problem arises if we replace the collision entropy by the min-entropy (as in

Corollary 5.5.2). However, as we shall see, the statement of Theorem 5.5.1

still holds if the uncertainty is measured in terms of smooth min-entropy.
That is, the key generated from X by two-universal hashing is secure if its

length is slightly smaller than roughly Hmm(pxß\B), where pxB is the joint
state of the initial string X and the adversary's knowledge. This is essen¬

tially optimal, i.e., Hmm(pxß\B) is also an upper bound on the maximum

number of key bits that can be generated from A.3

Corollary 5.6.1. Let pxB G V(Hx ®Hb) be a density operator which is

classical with respect to an orthonormal basis {\x)}xex ofHx, let J7 be a

two-universal family of hash functions from X to {0,1}% and let e > 0.

Then

d(PF{x)BF\BF) <2e + 2-^H^(pxB\B)-e)
^

for Pf{x)bf G V(Hz ®Hb ®Hf) defined by (5.5).

Proof. Consider an arbitrary operator pxB G B£(pxs) and let Pf{x)bf G

V(Hz ®Hb ®Hf) he the corresponding operator defined by (5.5). Because

the Li-distance cannot increase when applying a trace-preserving quantum

operation (cf. Lemma A.2.f), we have Pf{x)bf G B£(pf(x)bf)- Hence, by
the triangle inequality,

d(pF{z)BF\BF) = \\pF(x)BF -pu® Pbf\\x
< \\PF(X)BF - Pf(X)Bf\\i + \\Pf(X)BF - PU ® PBF\\l + \\pBF ~ pBF\\l

<2e+ \\Pf{x)bf ~ Pu ® Pbf\\1 = 2e + d(pF(<Z)BF\BF) ,

where pu is the fully mixed state on Hz- Corollary 5.5.2, applied to pxB,

gives

d(PF(x)BF\BF) < 2e + ^tr(pXB) 2-^H^f>XB\B^^
.

Because this holds for any pxs G B£(Pxb), the assertion follows by the

definition of smooth min-entropy. D

2This also holds for the classical result, as observed m [BBCM95] In fact, depending
on the probability distribution Px of the initial string X, it might be possible to extract

a key whose length exceeds the collision entropy of Px

3To see this, let F be an arbitrary hash function It follows from Lemma 3 19 that the

smooth mm-entropy cannot increase when applying a function on X, 1 e
, ffjjln(pxj \B) >

Hram(.pF(X)BF\BF) Moreover, it is easy to verify that the smooth mm-entropy of a secret

key given the adversary's information is roughly equal to its length Hence, if F(X) is a

secret key of length £, we have H^aln(pp(x)BF\BF) > £ Combining this with the above

gives H^ln(pXB\B) >£
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Chapter 6

Security of QKD

In this chapter, we use the techniques developed in Chapters 3-5 to prove

the security of QKD.1 (The reader is referred to Section f .6 for a high-level

description of the material presented in the following, including a sketch

of the security proof.) Typically, a QKD protocol is built from several

subprotocols, e.g., for parameter estimation, information reconciliation, or

privacy amplification. We first describe and analyze these subprotocols (Sec¬
tions 6.2-6.4) and then put the parts together to get a general security cri¬

terion for quantum key distillation (Section 6.5), which directly implies the

security of quantum key distribution (QKD) (Section 6.6).

6.1 Preliminaries

6.1.1 Two-party protocols

A protocol V between two parties, Alice and Bob, is specified by a sequence

of operations, called (protocol) steps, to be performed by each of the parties.

In the first protocol step, Alice and Bob might take (classical or quantum)
inputs A and B, respectively (e.g., some correlated data). In each of the

following steps, Alice and Bob either perform local computations or ex¬

change messages (using a classical or a quantum communication channel).
Finally, in the last protocol step, Alice and Bob generate outputs A' and B',

respectively (e.g., a pair of secret keys).
We will mostly (except for Section 6.6) be concerned with the analysis

of protocols V that only use communication over a classical and authentic

channel. In this case, Alice and Bob's outputs as well as the transcript of the

communication do not depend on the attack of a potential adversary. Let

Pab and pA'B'c he the density operators describing Alice and Bob's inputs

A and B as well as their outputs A' and B' together with the communication

1As discussed in Chapter 1, we actually consider quantum key distillation, which is

somewhat more general than quantum key distribution (QKD)

87
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transcript C, respectively. The mapping that brings pab to pA'B'c, in the

following denoted by £a>b>c<-ab> 1S ^nen uniquely defined by the protocol

P. Moreover, because it must be physically realizable, Sa'B'c^ab 1S a CPM

(see Section 2.1.1).
To analyze the security of a protocol P, we need to include Eve's infor¬

mation in our description. Let pabe he the state of Alice and Bob's inputs

as well as Eve's initial information. Similarly, let pa'B'E' be the state of

Alice and Bob's outputs together with Eve's information after the protocol
execution. As Eve might get a transcript C of the messages sent over the

classical channel, the CPM that maps pabe to pa'B'E' is given by

^A'B'E'-^ABE := ^A'B'Ci-AB ® ^E ,

where He' '= 'He ® ~He-

6.1.2 Robustness of protocols

Depending on its input, a protocol might be unable to produce the desired

output. For example, if a key distillation protocol starts with uncorrelated

randomness, it cannot generate a pair of secret keys. In this case, the best

we can hope for is that the protocol recognizes this situation and aborts2

(instead of generating an insecure result).

Clearly, one is interested in designing protocols that are successful on

certain inputs. This requirement is captured by the notion of robustness.

Definition 6.1.1. Let P be a two-party protocol and let pAB G V(Ha ®

Hb)- We say that P is e-robust on pab if, for inputs defined by pab, the

probability that the protocol aborts is at most e.

Mathematically, we represent the state that describes the situation after

an abortion of the protocol as a zero operator. The CPM Sa'B'c^ab (as
defined in Section 6.1.1) is then a projection onto the space that represents

the outputs of successful protocol executions (i.e., where it did not abort).
The probability that the protocol is successful when starting with an initial

state pAs is thus equal to the trace tr(pAiBip) of the operator pA'B'E =

£a'B'c<-ab(Pab)- In particular, if P is e-robust on a density operator pab

then tr(pA'B'E) > 1 — £•

6.1.3 Security definition for key distillation

A (quantum) key distillation protocol KD is a two-party protocol with clas¬

sical communication where Alice and Bob take inputs from Ha and Hb,

respectively, and either output classical keys sa,sb G S, where S is called

the key space of KD, or abort the protocol.

2
Technically, the protocol might output a certain predefined symbol which indicates

that it is unable to accomplish the task
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Definition 6.1.2. Let KD be a key distillation protocol and let pabe G

V(TLa ® 7~(-b ® 'He)- We say that KD is e-secure on pabe if PsAsBE' '=

£saSbe'^abe(Pabe) satisfies

lu m

-j\\PsAsBE'
-

Puu®pE'\\1 <£ ,

where puu '= J2ses "dïïls)(sMs)(sl> for some family {|s)}s&s of orthonormal

vectors representing the values of the key space S.

Moreover, we say that KD is e-fully secure if it is e-secure on all density

operators pabe G V(Ha ® ~Hb ® H.p).

According to the discussion on universal security in Section 2.2.2,3 this

definition has a very intuitive interpretation: If the protocol is e-fully secure

then, for any arbitrary input, the probability of the event that Alice and

Bob do not abort and the adversary gets information on the key pair4 is at

most e.5 In other words, except with probability e, Alice and Bob either

abort or generate a pair of keys which are identical to a perfect key.

Remark 6.1.3. The above security definition for key distillation protocols
KD can be subdivided into two parts:

• e'-correctness: Pr[sA / sb] < e',6 for sa and sb chosen according to

the distribution defined by psAsB

• e"-secrecy of Alice's key: \d(psAcE\CE) < e".7

In particular, if KD is e'-correct and ^''-secret on pxye then it is (e1 + e")-
secure on pxye-

6.2 Parameter estimation

The purpose of a parameter estimation is to decide whether the input given

to the protocol can be used for a certain task, e.g. to distill a secret key.

Technically, a parameter estimation protocol PE is simply a two-party pro¬

tocol where Alice and Bob take inputs from Ha and Hb, respectively, and

either output "accept" or abort the protocol.

3If a key S is e-secure, one could define a perfectly secure (independent and uniformly

distributed) key U such that Pr[s / u] < e (see also Proposition 2.1.1).
"According to Footnote 3, one could say that the adversary gets information on a key

S whenever the value of S is not equal to the value of a perfect key U.

5Note that the adversary's information on the key, conditioned, on the event that Al¬

ice and Bob generate a key, is not necessarily small. In fact, if, for a certain input,

the probability that Alice and Bob generate a key is very small (e.g., smaller than e)
then—conditioned on this rare event—the key might be insecure (see also the discussion

in [BBB+05]).
6Pr[sA / sb] is the probability of the event that Alice and Bob do not abort and the

generated keys sA and sb are different.

7See Definition 5.2.1.
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Fig. 6.1 Parameter estimation protocol PEm,q-

Parameters:

A4: bipartite POVM {Mw}weW on HA ® HB

Q: set of frequency distributions on W

Alice

input space: HA
<S>n

Bob

input space: HB
<S>n

nA
meas. A4 <S>n

->w = (wi,...,wn
if Aw £ Q

then abort

else output "ace."

Definition 6.2.1. Let PE be a parameter estimation protocol and let pAß G

V(Ha ®Hb)- We say that PE e-securely filters pab if, on input pab, the

protocol aborts except with probability e.

A typical and generic example for parameter estimation is the protocol

PEm,q depicted in Fig. 6.1. Alice and Bob take inputs from an n-fold

product space. Then they measure each of the n subspaces according to a

POVM A4 = {Mw}weW.8 Finally, they output "accept" if the frequency
distribution Aw of the measurement outcomes w = (w\,..., wn) is contained

in a certain set Q.

For the analysis of this protocol, it is convenient to consider the set

q
of density operators gab for which the measurement A4 leads to a

distribution which has distance at most p to the set Q. Formally,
1M,

TM,Q := iaAB min ||P- Qh<p) (6-1)

where P^/B denotes the probability distribution of the outcomes when mea¬

suring gab according to A4, i.e., Pw(w) = ^(Mwgab), for any w G W.

Assume that the protocol PEy^g takes as input a product state pAnBn =

gab. Then, by the law of large numbers, the measurement statistics Aw

must be close to A4 (gAb). In particular, if the protocol accepts with non-

negligible probability (i.e., Aw is contained in Q) then gAb is likely to be

contained in Tj^q, for some small p > 0. In other words, the protocol

8A/! might be an arbitrary measurement that can be performed by two distant parties

connected by a classical channel.
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aborts with high probability if gab is not an element of the set Tj%Q. The

following lemma generalizes this statement to permutation-invariant inputs.

Lemma 6.2.2. Let M := {Mw}weW be a POVM(mHa®Hb, let Q be a set

of frequency distributions on W, let 0 < r < \n, and let e > 0. Moreover,

let \9) G Habe '= Ha®Hb ®He and let pAnBnEn be a density operator on

Sym(H%E, \6)®n-r). If trE(\0)(0\) is not contained m the setTj%Q defined

by (6.1), for

,:=2^MiM + ,î(r/„) + M log(»+1),

then the protocol PEm,q defined by Fig. 6.1 e-securely filters pAnBn-

Proof. The assertion follows directly from Theorem 4.5.2. D

Similarly to (6.1), we can define a set Tj^q containing all density oper¬

ators gab for which the measurement A4 leads to a distribution which has

distance at least p to the complement of Q. Formally,

?M,Q = Wab : min \\PtfB - Q||i > p} . (6.2)
QfQ

Analogously to the above argument, one can show that the protocol

PEm,q defined by Fig. 6.1 is e-robust on product operators gab, for any

&AB G 1
MtQ.

6.3 Information reconciliation

Assume that Alice and Bob hold weakly correlated classical values x and

y, respectively. The purpose of an information reconciliation protocol is to

transform x and y into a pair of fully correlated strings, while leaking only
a minimum amount of information (on the final strings) to an eavesdropper

(see, e.g., [BS94]).

6.3.1 Definition

We focus on information reconciliation schemes where Alice keeps her input

value x and where Bob outputs a guess x for x. Hence, technically, an

information reconciliation protocol IR is a two-party protocol where Alice

and Bob take classical inputs x G X and y G y, respectively, and where Bob

outputs a classical value x G X or aborts.

Definition 6.3.1. Let PXy G V(X x y) and let e > 0. We say that an

information reconciliation protocol IR is e-secure on Pxy if, for inputs x
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and y chosen according to Pxy, the probability that Bob's output x differs

from Alice's input x is at most e, i.e., Pv[x / x] < e.9

Moreover, we say that IR is e-fully secure if it is e-secure on all probability
distributions Pxy G V(X x y).

The communication transcript of an information reconciliation scheme

IR generally contains useful information on Alice and Bob's values. If the

communication channel is insecure, this information might be leaked to Eve.

Clearly, in the context of key agreement, one is interested in information

reconciliation schemes for which this leakage is minimal.

Definition 6.3.2. Let IR be an information reconciliation protocol where

Alice and Bob take inputs from X and y, respectively. Let C he the set of all

possible communication transcripts c and let Pc\x=x,Y=y be the distribution

of the transcripts c G C conditioned on inputs (x, y) G X x y. Then the

leakage of IR is

leakiR := log |C| - inf Hmm(Pc\x=x,Y=y)
,

x,y
'

where the infimum ranges over all (x, y) G X x y.

Note that the leakage is independent of the actual distribution Pxy of

Alice and Bob's values.

6.3.2 Information reconciliation with minimum leakage

A typical information reconciliation protocol is the protocol IR^^- defined

by Fig. 6.2. It is a so-called one-way protocol where only Alice sends mes¬

sages to Bob. We show that the leakage of this protocol, for appropriately
chosen parameters, is roughly bounded by the max-entropy of X given Y

(Lemma 6.3.3). This statement can be extended to smooth max-entropy

(Lemma 6.3.4), which turns out to be optimal, i.e., the minimum leakage of

an information reconciliation protocol for Pxy is exactly characterized by

-^max(A|T). In particular, for the special case where the input is chosen ac¬

cording to a product distribution, we get an asymptotic expression in terms

of Shannon entropy (Corollary 6.3.5), which corresponds to the Shannon

coding theorem.

Lemma 6.3.3. Let Pxy G V(X x y) and let e > 0. Then the information
reconciliation protocol IR^ T defined by Fig. 6.2, for an appropriate choice

of the parameters X and T, is 0-robust on Pxy, £-fully secure, and has

leakage

leak,R;e:F < Hm,x(PxY\Y) + log(2/e) .

9We denote by Pr[f / x] the probability of the event that the protocol does not abort

and x is different from x
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Fig. 6.2 Information reconciliation protocol IR^^-

Parameters:

X: family of sets Xy Ç X parameterized by y G y.

T: family of hash functions from X to Z.

Alice Bob

input: x G X input: y G y

/Gß^ fz

z := f(x) J-^ V :=

{x <EXy : f(x) = z}

if V + 0

then x Gb V

else abort

output x

Proof. Let k := [L7max(Pxy|T) + log(l/e)] and let JF be a two-universal

family of hash functions from X to Z := {0, f }k (which exists according to

Lemma 5.4.2). Furthermore, let X = {Xy}yey he the family of sets defined

by Xy := sur>r>(Px), where supp(P^) denotes the support of the function

Px : x^ PXY(x,y).
For any pair of inputs x and y and for any communication (/, z) =

(/, f(x)) computed by Alice, Bob can only output a wrong value if the set

Xy = sur>r>(Px) contains an element x / x such that f(x) = z. Because / is

chosen uniformly at random from the family of two-universal hash functions

T, we have Pvf[f(x) = f(x)] < r^y = 2~k, for any x / x. Hence, by the

union bound, for any fixed (x,y) G X x y,

Pr[f / x] < Pr[3Ä G sur>r>(Px) : x / x A f(x) = f(x)]

< |supp(P|)|-2-fc .

Because, by Remark 3.1.4, maxy/ | supp(P|-)| = 2Hras-x(-PxY\Y\ we conclude

Pr[£ ^X]< 2H^PXY\Y)-IHmMPxY\Y)+\og(l/e)] <- £
^

that is, IR^jp is e-secure on any probability distribution.

Moreover, if (x,y) is chosen according to the distribution Pxy, then,

clearly, x is always contained in Xy = supp(P^), that is, Bob never aborts.

This proves that the protocol is 0-robust.
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Since / is chosen uniformly at random and independently of x from

the family of hash-functions T, all nonzero probabilities of the distribution

Pc\x=x are equal to t^t . Hence, using the fact that C = T x Z,

leakiR = log \C\ - inf Hmm(Pc\x=x)
ri'-r xex

= log \T x Z\ - log \F\ < log \Z\=k .

The claimed bound on the leakage then follows by the definition of k. D

Lemma 6.3.4. Let Pxy G V(Xxy) and lete,e' > 0. Then the information
reconciliation protocol IR^ T defined by Fig. 6.2, for an appropriate choice

of the parameters X and T, is ë' -robust on Pxy, £-fully secure, and has

leakage

leak,R^ < H£m^(PXY\Y)+\og(2/e) .

Proof. For any v > 0 there exists Pxy G V(Hx ® Ti-y) such that

\\Pxy - PxyW, < e' (6.3)

and

Hm^PxY\Y) < H£m^(PXY\Y) + v . (6.4)

According to Lemma 6.3.3, there exists X and T such that IR^ T is e-fully

secure, 0-robust on Pxy, and has leakage

leak,R;e:F < L^max(Pxy|T) + log(2/e) .

The stated bound on the leakage follows immediately from this inequality
and (6.4). Moreover, the bound on the robustness is a direct consequence

of the bound (6.3) and the fact that the protocol is 0-robust on Pxy-

Corollary 6.3.5. Let Pxy G V(X xy) be a probability distribution, let n >

0, and let e > 0. Then there exists an information reconciliation protocol
IR which is e-fully secure, e-robust on the product distribution PxnYn '=

(Pxy)71, and has leakage

-leakiR < H(X\Y) +
,/31oë(2/g)

log(|^| + 3) .

n V n

Proof. Using Lemma 6.3.4 (with e = e1) and Theorem 3.3.4, we find

ileakIR < mX\Y) +
^M

+
J*J*m log(|^| + 3) .

n n V n

Let a := J and b := log(|,T| +3). The last two terms on the right hand

side of this inequality are then upper bounded by a + \[2ab < (f + \[2a)b,
which holds because b > 2. We can assume without loss of generality that

3a < 1 (otherwise, the statement is trivial). Then | + \[2a~ < \/3a. The

last two terms in the above inequality are thus bounded by Vsäb, which

concludes the proof. D
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Fig. 6.3 Classical post-processing protocol PPir,^.

Parameters:

IR: information reconciliation protocol.

T: family of hash functions from X to {0,1}£.

Alice Bob

input: x G X input: y G y

IR
x <

, y —> x

f^Rf f~

output sa '= f(x) output sb := f(x)

For practical applications, we are interested in protocols where Alice and

Bob's computations can be done efficiently (e.g., in time that only depends

polynomially on the length of their inputs). This is, however, not neces¬

sarily the case for the information reconciliation protocol IR^^- described

above. While Alice's task, i.e., the evaluation of the hash function, can be

done in polynomial time,10 no efficient algorithm is known for the decod¬

ing operation of Bob. Nevertheless, based on a specific encoding scheme,

one can show that there exist information reconciliation protocols which

only require polynomial-time computations and for which the statement of

Corollary 6.3.5 (asymptotically) still holds (see Appendix C).

6.4 Classical post-processing

Classical post-processing is used to transform an only partially secure11 pair

of raw keys x and y held by Alice and Bob, respectively, into a fully se¬

cure key pair. A classical post-processing protocol is thus actually a key
distillation protocol that starts with classical randomness.

In this section, we analyze the security of the generic post-processing

protocol depicted in Fig. 6.3. It consists of an information reconciliation

subprotocol (see Section 6.3) followed by privacy amplification (see Chap¬
ter 5).

10Recall that Alice only has to evaluate a function which is randomly chosen from a

two-universal family of functions For most known constructions of such families (see, e g ,

[CW79, WC81]), this can be done efficiently
nThat is, x and y are only weakly correlated and partially secret strings
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Lemma 6.4.1. Let IR be an information reconciliation protocol and let T

be a two-universal family of hash functions from X to {0, l}e. Additionally,
let pxye G V(Hx ® H,y ® He) be a density operator which is classical on

Hx ®Hy and let e',e" > 0. If\Ris e'-secure on the distribution defined by

Pxy and if
i < H£mm(pxE\E) - leakiR - 21og(l/e) ,

for e := \e", then the key distillation protocol PPir,^ defined by Fig. 6.3 is

(e' + e")-secure on Pxye-

Proof. For simplicity, we assume in the following that the protocol IR is one¬

way. It is straightforward to generalize this argument to arbitrary protocols.
Note first that the keys sa and sb generated by Alice and Bob can only

differ if x / x. Hence, because the information reconciliation protocol IR is

e'-secure on the distribution defined by pxY, the classical post-processing

protocol PP|r^ is e'-correct on pxye- According to Remark 6.1.3, it thus

remains to show that Alice's key is ^''-secret.

For this, we use the result on the security of privacy amplification by
two-universal hashing presented in Chapter 5. Because / is chosen from a

two-universal family of hash functions, Corollary 5.6.1 implies that the key

computed by Alice is ^''-secret if

H£mm(pxc'E\C'E) > 2 log(l/e) + £
, (6.5)

where PXxce := (^R®'1(^e)(pxye) is the operator describing the situation

after the execution of the information reconciliation protocol IR (where C

is the transcript of IR). It thus suffices to verify that the bound on the

entropy (6.5) holds.

Using the chain rule (cf. (3.2f) of Theorem 3.2.f2), the left hand side

of (6.5) can be bounded by

Hmm(PXC'E\C'E) > Hmm(pXC'E\E) - Hmax(pC')

Moreover, because the communication c' is computed only from x, the con¬

ditional operators pxc*E have product form and thus (cf. (3.22) of Theo¬

rem 3.2.12)

Hmm(pxc"E\C'E) > Hmm(pXE\E) + Hmm(pc"x\px) - L7max(pC') • (6.6)

Using the fact that Hm^pc) = logrank(pc) and Lemma 3.1.8, the last

two terms in the above expression can be bounded by

L7max(pc) - Hmm(pcx\px) < logrank(pc) - inf Hmm(Pc') >

xex

where, for any x G X, p^, is the normalized conditional operator defined by

pc'x- Hence, by the definition of leakage,

L7max(PC') - Hmm(pC'x\px) < leak|R .
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Combining this with (6.6), we find

Hmm(pxc'E\C'E) > Hmm(pXE\E) - leak|R ,

which, by the assumption on the length of the final key £, implies (6.5) and

thus concludes the proof. D

6.5 Quantum key distillation

We are now ready to describe and analyze a general quantum key distillation

protocol, which uses parameter estimation and classical post-processing as

discussed above. (For a high-level description of the content of this section,

we refer to Section f .6.)

6.5.1 Description of the protocol

Consider the quantum key distillation protocol QKDpe^i.pp depicted in

Fig. 6.4. Alice and Bob take inputs from product spaces HAN and HBN,
respectively. Then, they subsequently run the following subprotocols (see
also Table 6.1):

• Random permutation of the subsystems: Alice and Bob reorder their

subsystems according to a commonly chosen random permutation ir.

• Parameter estimation (PE): Alice and Bob sacrifice m subsystems to

perform some statistical checks. We assume that they do this using a

protocol of the form PE^g (see Fig. 6.f), which is characterized by a

POVM A4 = {Mw}weyy on Ha ® Hb and a set Q of valid frequency
distributions on W.

• Block-wise measurement and processing (Bl®ra): In order to obtain

classical data, Alice and Bob apply a measurement to the remaining
b n subsystems, possibly followed by some further processing (e.g.,
advantage distillation). We assume here that Alice and Bob group

their b n subsystems in n blocks of size b and then process each of

these blocks independently, according to some subprotocol, denoted

Bl. Each application of Bl to a block HA ® HB results in a pair of

classical outputs xt and yt.

• Classical post-processing (PP): Alice and Bob transform their classical

strings (x\,...,xn) and (y\,...,yn) into a pair of secret keys. For

this, they invoke a post-processing subprotocol of the form PPir^ (see

Fig. 6.3), for some (arbitrary) information reconciliation scheme IR and

a two-universal family of hash functions T for privacy amplification.
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Fig. 6.4 Quantum key distillation protocol QKDpe^i.pp-

Parameters:

PE: parameter estimation protocol on HAm ®HBm.
Bl: subprotocol on HAb ® HBb with classical output in X x y.

PP: classical post-processing protocol on Xn x yn.

N: Number of input systems (N > bn + m)

Alice Bob

input space: HAN input space: HBN

it Gb Sn
7T

permute subsyst. permute subsyst.

q_/0m
PE

HÎmnA ' ^B

—> acc./abort

(Hf)®"
> (X\,.. ., Xn)

-<
—- (Hf)®n

-» (Vl,---,Vn)

(xi,...,xn) - SA

pp
-<

—- (yi,---,Vn) -^ SB

output sa OUtput Sß

Table 6.1 Subprotocols used for QKDpe^i.pp (cf. Fig. 6.4).

PE := PEMyQ prot. on Hf71 ® Hf71 defined by Fig. 6.1

A4 = {Mw}wew POVM on HA ® UB

Q set of freq. dist. on W

Bl prot. on Hj
<8>b

, <
Htb with cl. output in X x y"-B

PP := PPlR,^
IR

prot. on Xn x yn defined by Fig. 6.3

inf. rec. prot. on Xn x yn

two-univ. fam. of hash func. from Xn to {0,1}£
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Table 6.2 Security parameters for QKDpe^i.pp (cf. Fig. 6.4).

A bn + m + k

r f (2log(9/e) + dim(HA ®HB)2lnk)
6' (| log \X\ + 4)yjh(r/n) + l log(18/e)

P 2^h(r/m) + £(log(9/2e) + \W\ log(f + 1))
5 5, + ^±fc) log dim(^ 0 Wß) + 1 fog(3/2£)

6.5.2 Robustness

The usefulness of a key distillation protocol depends on the set of inputs for

which it is robust, i.e., from which it can successfully distill secret keys. Ob¬

viously, the described protocol QKDpe,bi,pp is robust on all inputs for which

none of its subprotocols PE, Bl, or PP aborts. Note that the post-processing
PP = PP|r^ only aborts if the underlying information reconciliation scheme

IR aborts.

Typically, the subprotocols Bl and IR are chosen in such a way that they
are robust on any of the input states accepted by PE. In this case, the

key distillation protocol QKDpe,bi,pp is successful whenever it starts with an

input for which PE is robust. According to the discussion in Section 6.2, the

protocol PE = PEm,q is robust on product states a®^ if gAb is contained

in the set Tj^q defined by (6.2). Consequently, QKDpe^i.pp is robust on

all inputs of the form aAB, for gAb G Tj^q.

6.5.3 Security

The following is a generic criterion for the security of QKD.

Theorem 6.5.1. Let QKDpe^i.pp be the quantum key distillation protocol

defined by Fig. 6.4 and Table 6.1, lete,e' > 0, let 5, p be defined by Table 6.2,

and letTj^Q be defined by (6.1). Then QKDpe,bi,pp is (e + e')-fully secure

if the underlying information reconciliation protocol IR is e'-fully secure and

*/
£ < n min H(X\E) — leakiR — nö

,

°ab&jXq

where the entropy m the minimum is evaluated on

aXYE = £xYE^AbBbEb\aABE) '

for a purification gAbe of gAb-

Proof. Let panbn he any state held by Alice and Bob after they have applied
the random permutation ix (averaged over all possible choices of ix). Because,



100 CHAPTER 6. SECURITY OF QKD

obviously, panbn is permutation-invariant, Lemma 4.2.2 implies that there

exists a purification panbnen of panbn on the symmetric subspace of (Ha®
Hb®He)®n We show that the remaining part of the protocol is secure on

PAnbnen. This is sufficient because any density operator Panbne which

has the property that taking the partial trace over HE gives panbn can be

obtained from the pure state panbnen by a trace-preserving CPM which

only acts on Eve's space.

Let pAbn+mBbn+mEbn+m he the operator obtained by taking the partial
trace (over k subsystems Ha ® Hb ® He) of PAnbnen. h describes the

joint state on the m subsystems used for parameter estimation and the b n

subsystems which are given as input to B\®n. According to the de Finetti

representation theorem (Theorem 4.3.2) this density operator is approxi¬

mated by a convex combination of density operators, where each of them

is on the symmetric subspace along vectors \9) G Ha ® H,b ® He- More

precisely, with e :=
2e

9 '

\0)
PAbn+mBbn+mEbn+m / PAbn+mBbn+mEbn+m

^ {I ")) ^ £
, V3 •> )

Js1 1

where the integral runs over the set «Si := S\(TLa ®Hb ®He) of normalized

vectors in Ha ® H,b ® He and where, for any \9) G Ha ® H,b ® He,

P^bn+mBbn+mEbn+m^V(Sym((HA®HB®HErbn+m,\erbn+m-r)) (6.8)

We first analyze the situation after the parameter estimation is com¬

pleted. Let £AmBm he the CPM which maps all density operators on (Ha ®

Hb)®"1 either to the scalar 0 or 1, depending on whether the parameter

estimation protocol PEm,q accepts or aborts. Moreover, define

pAbnßbnEN := V&AbnBbn ®£AmBm ® idßN)(pAbn+mBbn+mßN)

|0>,PE ,.-, c-PE „ -A \f \0) \

PAbnBbnEbn •— \ÏO-Abn Bbn ® &Am£)m
(X)

lClgfcn j \PAbn+m Bbn+mEbn ) •

Because of (6.8), we have

&fr e V(Sym((HA®HB®HErbn, {9)®^)) , (6.9)

for any \9) G Ha®Hb®He- Moreover, from (6.7) and the fact that the Li-

distance cannot increase when applying a quantum operation (Lemma A.2.1)
we have

„PE f J0),pe

According to Lemma 6.2.2, the parameter estimation PEy^g ë-securely fil¬

ters all states pA{'nBbnEbn for which \9) is not contained in the set

V^={|ö)G5i:trE(|ö)(ö|)Gr^ß}.

PAbnBbnEbn
~

/ Pj, bn ßbnEbn V( I &)) < £ • (6.10)
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We can thus restrict the integral in (6.10) to the set Vß, thereby only losing
terms with total weight at most ë, i.e.,

„PE f J0),pe
PAbnBbnEbn 1 pAb"BbnEbn^^ l>

,

—

' (6.11
./vm 1

To describe the situation after the measurement and blockwise processing

B\®n, we define

PX"Y"E"Em+k := \(^XYE-^AbBbEb' ® ldgm+fcj(pAbn BbnEbn+m+k)

n\0) ._
(FB\ n®«, je>,PE x

I XnYnEn
'

^ XYE^AbBbEb' \PAbn Bbn Ebn ) •

Using once again the fact that the Li-distance cannot decrease under quan¬

tum operations (Lemma A.2.1), we conclude from (6.11) that

PXnynEn
- / pC„yn£,„I/(|0))

.

< 2£
• (6"12)

According to (6.9), the density operator pAi'nBbnEbn lies in the symmetric

subspace of the (b n)-fold product space (HA®HB®HE)®bn along \9)bn~r,
i.e., it has product form except on r subsystems. Equivalently, we can

view pAi'nBbnEbn as a density operator on the n-fold product of subsystems

HAbBbEb '= Hf®H%b®H%b. It then has product form an all but (at most)

r of these subsystems. That is, pA{'nBbnEbn is contained in the symmetric

subspace oiH®bBbEb along \9b)®n~r, where \9b) := \9)®b G HAbBbEb. This

allows us to apply Theorem 4.4.1 in order to bound the entropy of the

symmetric states pxnynEn- With the definition

J0) ._<7BI , ®b N

XYE
'~ °XYE^AbBbEb\uABE) '

where gAbe '= |#)(#|> we obtain

H£mm(P^\En) > <H^Xe) ~ H^e) ~ Ô')

Consequently, using (6.12) together with the inequalities (3.19) and (3.20)
of Theorem 3.2.12,

H^ÀPx-eAE") > n mm (H(a^E) - H(g^) - 5') .

\6)ev^

Moreover, by the chain rule for smooth min-entropy (cf. (3.21) of Theo¬

rem 3.2.12)

Tj'ie ( I Tri«, rpm+k

JrLmm\PxnEnEm+k\£J
^

'

\6)eV»

> nmin„(ff^) - H(g^) - 6') - 2tfmax(pßm+fc) •
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Finally, we use Lemma 6.4.1 which provides a criterion on the maxi¬

mum length £ such that the secret key computed by the post-processing

subprotocol PP is (e + e')-secure,

£<n min (H(g1°f) - H(g^]) - 6') - 2tfmax(pEm+fc) - leak,R - 2 log(3/2e) .

\0)ev^

The assertion then follows from

Hmax(pE+k) <(m + k) logdim(?^4 <g> HB) ,

the fact that \9) G Vß if and only if the trace gAb of gAbe '= \ö)(ö\ is

contained in the set Tj%Q, and the definition of 5 (cf. Table 6.2). D

Note that the protocol QKDpe^i.pp takes as input A subsystems and

generates a key of a certain fixed length £. In order to make asymptotic

statements, we need to consider a family {QKDp^ bi pp}weN of such pro¬

tocols, where, for any A G N, the corresponding protocol takes A input

systems and generates a key of length £(N). The rate of the protocol family
is then defined by

,.
t(N)

rate := lim .

N->oo N

Corollary 6.5.2. Let 6, p > 0, a protocol Bl acting on blocks of length b, a

POVM M = {Mw}weyy, and a set Q of probability distributions on W be

fixed, and let Tj^q be the set defined by (6.1). Then there exist 7 > 0 and

parameters n = n(N),m = m(N),£ = £(N) such that the class of protocols

QKDpe bi pp (parameterized by N G N) defined by Fig. 6.4 and Table 6.1 has

rate

rate = - min H(X\Ë) - H(X\Y) - Ö
,

where the entropies m the minimum are evaluated on

°XYE — cXYE^AbBbEb \aABE> '

for a purification gAbe of gAb- Moreover, for any N > 0, the protocol

QKDpe bi pp ls e~lN-fully secure.

Proof. The statement follows directly from Theorem 6.5.1 combined with

Corollary 6.3.5. D

6.6 Quantum key distribution

As described in Section 1.2, one can think of a quantum key distribution

(QKD) protocol as a two-step process where Alice and Bob first use the

quantum channel to distribute entanglement and then apply a quantum key



6.6. QUANTUM KEY DISTRIBUTION 103

distillation scheme to generate the final key pair. To prove security of a

QKD protocol, it thus suffices to verify that the underlying key distilla¬

tion protocol is secure on any input. Hence, the security results for key
distillation protocols derived in the previous section (Theorem 6.5.1 and

Corollary 6.5.2) directly apply to QKD protocols.
We can, however, further improve these results by taking into account

that the way Alice and Bob use the quantum channel in the first step im¬

poses some additional restrictions on the possible inputs to the distillation

protocol. For example, if Alice locally prepares entangled states and then

sends parts of them to Bob (note that this is actually the case for most QKD

protocols, viewed as entanglement-based schemes), it is impossible for the

adversary to tamper with the part belonging to Alice. Formally, this means

that the partial state on Alice's subsystem is independent of Eve's attack.

Using this observation, we can restrict the set Tj^q of states gAb (as
defined by (6.1)) over which the minimum is taken in the criterion of Theo¬

rem 6.5.1 and Corollary 6.5.2. In fact, it follows directly from Remark 4.3.3

that it suffices to consider states gAb such that ga = \xb(&ab) is fixed.
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Chapter 7

Examples

To illustrate the general results of the previous chapter, we analyze cer¬

tain concrete QKD protocols. We first specialize the formula for the rate

(cf. Corollary 6.5.2) to protocols based on two-level quantum systems (Sec¬
tion 7.1). Then, as an example, we analyze different variants of the six-state

protocol and compute explicit values for their rates (Section 7.2).

7.1 Protocols based on two-level systems

A large class of QKD protocols, including the well-known BB84 protocol or

the six-state protocol, are based on an encoding of binary classical values

using the state of a two-level quantum system, such as the the spin of a

photon. For the corresponding key distillation protocol (see Fig. 6.4), this

means that Alice and Bob take inputs from (products of) two-dimensional

Hilbert spaces on which they apply binary measurements. In the following,
we analyze different variants of such protocols.

7.1.1 One-way protocols

We start with a basic key distillation protocol which only uses informa¬

tion reconciliation and privacy amplification (as described in Section 6.4) to

transform the raw key pair into a pair of secret keys. More precisely, after

the measurement of their subsystems, Alice and Bob immediately invoke

an information reconciliation protocol (e.g., the protocol IR^^- depicted in

Fig. 6.2) such that Bob can compute a guess of Alice's values; the final key is

then obtained by two-universal hashing. Because this post-processing only

requires communication from Alice to Bob, such protocols are also called

one-way key distillation protocols.1

1Note, however, that bidirectional communication is always needed for the parameter

estimation step

105
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Clearly, the one-way key distillation protocol described above is a special

case of the general protocol QKDpe^i.pp depicted in Fig 6.4, where Bl :=

Meas is the subprotocol describing the measurement operation of Alice and

Bob. Additionally, assume that the parameter estimation subprotocol PE

is the protocol PE^g depicted in Fig. 6.1, where A4 is a POVM and Q is

the set of statistics for which the protocol does not abort. We can then use

Corollary 6.5.2 to compute the rate of the protocol, that is,

rate= min H(X\E) - H(X\Y) . (7.1)
&AB&

Here, the minimum ranges over the set

T := {gab : PawAB G 0} (7.2)

of all density operators gab on the 2 x 2-dimensional Hilbert space Ha ®Hb

such that the measurement with respect to M gives a probability distribu¬

tion P^fB which is contained in the set Q. Moreover, the von Neumann (or

Shannon) entropies H(X\E) and H(X\Y) are evaluated for the operators

0~XYE '= (SxyLaB ® idE)(o~ABE) ,

where gabe is a purification of gab-

Let {|0)yi, \1)a} and {|0)s,|l)s} be the bases that Alice and Bob use

for the measurement Meas.2 Lemma 7.1.1 below provides an explicit lower

bound on the entropy difference on the right hand side of (7.f) as a function

of (JABE- The bound only depends on the diagonal values of gab with

respect to the Bell basis, which is defined by the vectors

l$o)

|$2)

1*3)

where \x,y) := \x)a ® \v)b-

Lemma 7.1.1. Let both Ha and Hb be two-dimensional Hubert spaces, let

^abe G V(Ha ®Hb ®He) be a density operator, and let gxye be obtained

2
Meas describes the measurement that generates the data used for the computation of

the final key It might be different from the measurement .M which is used for parameter

estimation

>0) + 7!lu)

Aj|o,o)--L|u)

^|0.1>--L|l,0>.
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from gabe by applying orthonormal measurements on Ha and Hb- Then

H(X\E) -H(X\Y)

> 1 - (Ao + \i)h(-^— ) - (A2 + h)h(-^—) - h(\o + Ai) ,

Ao + M À2 + A3

where \t := ($i\gab\$i) are the diagonal values of gab with respect to the

Bell basis (defined relative to the measurement basis).

Proof. Let V he the CPM defined by

V(o-ab):=\ £ t®*gabt®2,
re{id,ax,ay,az}

where gx,gv, gz are the Pauli operators

** '= (Î J) Gy '= (° ~o) Gz = (J -°i) ' (7-3)

and let gabe he a purification of gab '= 'D(gab)- Moreover, let gabe he

an arbitrary purification of gab with auxiliary system He and define

VXYE '= (SxyLaB ® i&E)(vABE)

A straightforward calculation shows that the operator gab has the form

3

àab = ^At|$t)($t| ,

i.e., it is diagonal with respect to the Bell basis. Moreover, because V com¬

mutes with the measurement operation on Ha ® 'Hb, it is easy to verify
that the entropy H(X\Y) evaluated for gxy is upper bounded by the corre¬

sponding entropy for gxy Similarly, because gabe is a purification of gab,

the entropy H(X\E) evaluated for gxe is lower bounded by the entropy of

gxe- It thus suffices to show that the inequality of the lemma holds for the

operator gxye, which is obtained from the diagonal operator gab-

Let \et)t he an orthonormal basis of a 4-dimensional Hilbert space He-

Then the operator gabe = |*)(*| G V(Ha ®Hb® He) defined by

I*) =S^\f^i\®i)AB®\el)E
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is a purification of gab- With the definition

l/o,o) := yy|eo) +Yy|ei)

l/i,i> : = Û|e0) - Û |ei>

l/o,i) : = ë|e2> + ële3)

l/i,o) : = ë|e2) - ëles) ,

state 1*) can be rewritten as

l*> == El=x,y)® \fx,y/»
.

x,y

Because the operator gxye is obtained from gabe by orthonormal mea¬

surements on Ha and Hb, we conclude

àxYE = £ \x)(x\ ® LA '-1 ~x'y

x,y

where aE,y := \fx,y)(fx,y\-

Using this representation of the operator gxye, it is is easy to see that

H(gxe) = f + h(\0 + Ai)

^0 \
, / ,

,
, N , / A2

H(GE) = h(\0 + \i) + (\o + \i)h(—^—) + (\2 + \3)h(x
,

Ao + Ai A2 + A3

H(X\Y) = h(\0 + Ai) ,

from which the assertion follows. D

Using Lemma 7.1.1, we conclude that the above described one-way pro¬

tocol can generate secret-key bits at rate

rate > min 1 — (Ao + Xi)h(
Ao

(A0, ,A3)ediag(r) A0 + A 1

-(A2 + A3)ä(t4V)-MAo + Ai), (7.4)
A2 + A3

where diag(r) denotes the 4-tuples of diagonal entries (relative to the Bell

basis) of the operators gab G T, for V defined by (7.2).
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7.1.2 One-way protocols with noisy preprocessing

The efficiency of the basic QKD protocol described in Section 7.1.1 can

be increased in different ways. We consider an extension of the protocol

where, before starting with information reconciliation, Alice applies some

local preprocessing operation to her raw key. A very simple—but surpris¬

ingly useful—variant of preprocessing is to add noise, i.e., Alice flips each

of her bits independently with some probability q. In the following, we call

this noisy preprocessing.

To compute the rate of the one-way protocol enhanced with this type of

preprocessing, we need a generalization of Lemma 7.1.1.

Lemma 7.1.2. Let both Ha and Hb be two-dimensional Hubert spaces,

let gabe G V(Ha ® Hb ® He) be a density operator, and let gxye be

obtained from gabe by applying orthonormal measurements on Ha and Hb

where, additionally, the outcome of the measurement on Ha is flipped with

probability q G [0,1]. Then

H(X\E) -H(X\Y)

> 1 - (Ao + Ai) (h(a) - h(a, q)) - (A2 + A3) (h(ß) - h(ß, q))

-fc((A0 + Ai)g + (A2 + A3)(l-g)) ,

where \t := {$%\oab\$%), ol := j^, ß = j^, and

h(p, q) -=h(^± ^y/l-16p(l-p)q(l-q)) -

Proof. The statement follows by a straightforward extension of the proof of

Lemma 7.1.1. D

Similarly to formula (7.4), the rate of the one-way protocol with noisy

preprocessing—where Alice additionally flips her bits with probability q—is

given by the expression provided by Lemma 7.1.2, minimized over all 4-

tuples (Ao,..., A3) G diag(r). It turns out that this rate is generally larger
than the rate of the corresponding one-way protocol without preprocessing

(see Section 7.2 below).

7.1.3 Protocols with advantage distillation

To further increase the efficiency of the key distillation protocol described

above, one might insert an additional advantage distillation step after the

measurement Meas, i.e., before the classical one-way post-processing.3 Its

purpose is to identify subsets of highly correlated bit pairs such as to separate

these from only weakly correlated information.

3The concept of advantage distillation has first been introduced in a purely classical

context [Mau93], where a secret key is generated from some predistributed correlated data
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Fig. 7.1 Advantage distillation protocol AD5.

Parameters:

b: block length

Alice Bob

input: (xi,...,xb) input: (yi,...,yb)

reR{0,l}

(Cl,...,cb):=

(xi®r,...,xb®r)
v 1,^^^, bJ

• if (y 1 © c1,..., yb © cb)
G {0,1}

then ace := true

ace

if ace if ace

then output x\ then output y\

else output A else output A

A typical advantage distillation protocol is depicted in Fig. 7.1: Alice

and Bob split their bitstrings into blocks (x\,..., xb) and (y\,..., yb) of size

b. Then, depending on a randomly chosen binary value r, Alice announces

to Bob either (x\,... ,xb) or (x\(Bl, ,xb(Bl) (where © denotes the bitwise

xor). Bob compares this information with his block (y\,... ,yb) and accepts

if it either differs in none or in all positions, i.e., if the difference equals
either 0 := (0,..., 0) or 1 := (1,..., 1). In this case, Alice and Bob both

keep the first bit of their initial string. Otherwise, they output some dummy

symbol A.4 Obviously, if the error probability per bit (i.e., the error rate

of the channel) is e then the probability psacc that advantage distillation

on a block of length b is successful (i.e., Alice and Bob keep their bit) is

Psucc = eb + (f - e)b.
Let us now consider the general protocol QKDpe^i.pp where the subpro¬

tocol Bl consists of b binary measurements Meas of Alice and Bob followed

by the advantage distillation protocol AD5 described in Fig. 7.1, i.e.,

£xYE^AbBbEb = ^XYE^XbYbEb ° (^XyLaB ® 1(^e) (7.5)

4
As suggested in [Mau93], the efficiency of this advantage distillation protocol is further

increased if Alice and Bob, instead of acting on large blocks at once, iteratively repeat the

described protocol step on very small blocks (consisting of only 2 or 3 bits).
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It is easy to see that the subprotocol AD5 commutes with the measurement

Meas, that is, (7.5) can be rewritten as

cB\
_

//c-Meas \<g>6 „ -i \ MD
cXYE^AbBbEb ~ \\CXY^AB) ® mE) ° cABE^AbBbEb •

Moreover, a straightforward computation5 shows that, if gab has diagonal
entries Ao,..., A3 with respect to the Bell basis then, with probability

Psucc = (Ao + A1)6 + (À2 + A3)6 ,

the advantage distillation AD5 is successful and the operation SA^^AbBb
induced by AD5 (conditioned on the event that it is successful) maps aAB

to an operator gab with diagonal entries

~ (Ao + Ai)6 + (Ao-Ai)6
Ao =

Ai =

Ä2 =

Ä3 =

•^Psucc

(Ao + A1)6 - (Ao --A1)6

•^Psucc

(A2 + A3)6 + (A2 --A3)6

•^Psucc

(A2 + A3)6 - (A2 --A3)6
2ps

Inserting these coefficients into the expressions provided by Lemma 7.1.1

gives a bound on the entropy difference which can be inserted into the for¬

mula for the rate (7.f).6 We conclude that the key distillation protocol
enhanced with advantage distillation on blocks of length b can generate key
bits at rate

rate > - min psucc (l - (À0 + Xi)hU ^-)
b (Ao, ,A3)ediag(r) A0 +Ai

-(\2 + \3)h(r^^)-h(\o + \i)) , (7.6)
A2 + A3

where V is the set defined by (7.2). Note that, in the special case where the

block size b equals 1, the advantage distillation is trivial, that is, \t = \t,
and (7.6) reduces to (7.4).

Similarly to the discussion in Section 7.1.2, one might enhance the pro¬

tocol with noisy preprocessing on Alice's side, i.e., Alice flips her bits with

some probability q after the advantage distillation step. The rate is then

given by a formula similar to (7.6), where the expression in the minimum is

5For this computation, it is convenient to use the mapping T> defined above, which

allows to restrict the argument to the special case where aab is Bell diagonal
6Note that, conditioned on the event that ADb is not successful (1 e

,
Alice and Bob's

outputs are A), the entropy difference is zero
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replaced by the bound on the entropy difference provided by Lemma 7.1.2,
evaluated for the coefficients Xt.

Note that, as the block size b increases, the coefficients A2 and A3 ap¬

proach zero, while Ao and Ai both tend to \. To get an approximation, it is

thus sufficient to evaluate the expression of Lemma 7.f .2 up to small orders

in A2 and A3.

Lemma 7.1.3. Let Ao, A3 andGXYE be defined as m Lemma 7.1.2, where

Xo = (l-ö)^£-, Ai = (1-6)^, A2 = A3 = § for some o,e>0. Then

H(X\E) -H(X\Y)

>^-t){e2-M)(\-q? + 0(o* + e* + (\-qf).
In particular, this quantity is positive if e2 > 66.

Proof. The assertion follows immediately from a series expansion of the

bound provided by Lemma 7.f .2 about e = 0 and ö = 0. D

Lemma 7.f .3 can be used to compute a bound on the rate of the protocol
described above (advantage distillation followed by noisy preprocessing).
Under the assumption that the coefficients Ao,..., A3 are of the form

\o = (l-6)^
\1 = (l-ô)^

A2 = A3 = -

,

for some small 6, e > 0, we get, analogously to (7.6),

rate4(A0, ,ATdiag(r)Psucc (hiS^-^^-6^^-^2
+ 0(6*+e* + (1--qf)). (7.7)

7.2 The six-state protocol

To illustrate the results of Section 7.f, we apply them to different variants

of the six-state QKD protocol, for which we explicitly compute the rate and

the maximum tolerated channel noise. The six-state protocol is one of the

most efficient QKD schemes based on two-level systems, that is, the rate

at which secret key bits can be generated per channel use is relatively close

to the theoretical maximum. On the other hand, it is not very suitable for

practical implementations, as it requires devices for preparing and measuring
two-level quantum systems with respect to six different states.
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7.2.1 Description

Instead of describing the actual six-state QKD protocol, we specify the un¬

derlying key distillation scheme: Alice and Bob take as input entangled
two-level systems and measure each of them using at random one of three

mutually unbiased bases, which results in a pair of raw keys.7 Usually, these

are the rectilinear or z-basis {\ti)z, \i)z}, the diagonal or x-basis {|0)x, |l)m},
and the circular or y-basis {|0)y, |l)y}), which are related by

|0)x = ^(|0), + |1)A |0)y = ^(|0>*-M|1>*)
If). = ^(|0),-|1)A |l)y = ^(|0),-z|f)A .

Next, in a sifting step, Alice and Bob compare their choices of bases and

discard all outcomes for which these do not agree. Note that, if Alice and

Bob choose one of the bases with probability almost one, they only have to

discard a small fraction of their raw keys (see discussion in Section f .2).
In the parameter estimation step, Alice and Bob compare the bit values

of their raw keys for a small fraction of randomly chosen positions. They
abort if the error rate e—i.e., the fraction of positions for which their bits

differ—is larger than some threshold. For the following analysis, we as¬

sume that Alice and Bob additionally check whether the error e is equally
distributed among the different choices of the measurement bases and sym¬

metric under bitflips.

Finally, Alice and Bob use the remaining part of their raw key to generate

a pair of secret keys. For this, they might invoke different variants of ad¬

vantage distillation and one-way post-processing subprotocols, as described

in Section 7.1.

7.2.2 Analysis

To compute the rate of the six-state protocol (for different variants of the

post-processing) we use the formulas derived in Section 7.1. The set V, as

defined by (7.2), depends on the error rate e. For any fixed e, we get six

conditions on the operators gAb contained in V, namely

((b\u ® (b'\u)GAB(\b)u ® \b%) = | , (7.8)

for any u G {x, y, z} and b, b' G {0, f} with b / b'. It is easy to verify that

the only density operator that satisfies these equalities is Bell-diagonal and

has eigenvalues Ao = 1 —
-y, Ai = A2 = A3 = §. T is thus the set of all

7Because each of the three bases consists of two orthonormal vectors, the information

is encoded into six different states, which explains the name of the protocol
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density operators of the form (with respect to the Bell basis)

/l - f 0 0 0\

0 I o 0
aAB~

0 o § 0
'

V 0 o 0 §/

for any e > 0 below some threshold.

One-way six-state protocol

In a basic version of the six-state QKD protocol, Alice and Bob apply post¬

processing (i.e., information reconciliation followed by privacy amplification)
directly to their measured data, as described in Section 7.1.1. The rate of

this protocol can be computed using (7.4) where, according to the above

discussion, Ao = 1 — ^ and Ai = A2 = A3 = |. Plot 7.1 shows the result of a

numerical evaluation of this formula. In particular, the maximum tolerated

channel noise for which the key rate is nonzero is 12.6%.

Next, we consider the one-way six-state protocol enhanced with addi¬

tional noisy preprocessing as described in Section 7.1.2. That is, before

the information reconciliation step, Alice applies random bitflips with prob¬

ability q to her measurement outcomes. The rate of this protocol can be

computed with Lemma 7.1.2. A little bit surprisingly, it turns out that noisy

preprocessing increases its performance (see Plot 7.2). As shown in Plot 7.3,

the optimal value of the bit-flip probability q depends on the error rate of

the channel e. The protocol can tolerate errors up to 14.1% and thus beats

the basic version (without noisy preprocessing) described above. Note that

this result also improves on the previously best known lower bound for the

maximum error tolerance of the six-state protocol with one-way processing,
which was 12.7% [LoOO]. (Similarly, the same preprocessing can be applied
to the BB84 protocol, in which case we get an error tolerance of 12.4%,

compared to the best known value of 11.0% [SPOO].)

Six-state protocol with advantage distillation

The performance of the six-state protocol is increased if Alice and Bob addi¬

tionally use advantage distillation as described in Section 7.1.3. For example,
Alice and Bob might invoke the protocol AD5 depicted in Fig. 7.1 to pro¬

cess their measurement outcomes before the information reconciliation and

privacy amplification step. The rate of the protocol is then given by (7.6).
Because Ao = 1 —

-y
and Ai = A2 = A3 = |, the coefficients \t occurring in
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Plot 7.1 Rate of the basic one-way six-state protocol (without noisy pre¬

processing) as a function of the error rate e.
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Plot 7.2 Rate of the one-way six-state protocol with noisy preprocessing

(where Alice flips her bits with probability q as depicted in Plot 7.3).
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Plot 7.3 Optimal value of the bit-flip probability q for the noisy prepro¬

cessing used in the one-way six-state protocol.
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Plot 7.4 Rate of the six-state protocol with advantage distillation on blocks

of length 4.

rate

0.25(

\
0.2 \

\
0.15> \

D.I'

0.05

X

0.05 0.1 0.15 0.2 0.25 0.3

this formula are

Ào =

Àl =

Ä2 =

À3 =

(l-e)6 + (f--2e)6

^PsVLCC

(l-e)6-(f--2e)6

•^Psucc

eb

^PsVLCC

eb

2pt

where psucc = (f — e)6 + e6. Plot 7.4 shows the result of this computation

for a block size of b = 4.

Finally, we have a look at an extended protocol which combines ad¬

vantage distillation and noisy preprocessing. That is, after the advantage
distillation AD5, Alice flips her bits with probability q (see Plot 7.5). For

large block sizes b, the rate of the protocol is given by (7.7), for

0 =

(1 - e)6 + e6

l-2e^
e =

f-e

In particular, for b approaching infinity, the secret-key rate is positive if (see
Lemma 7.1.3)

/l-2e\2fe e6

\T^e~) -6(l-e)6 + e6
"

Some simple analysis shows that this inequality is satisfied (for large b) if

e<\

to 27A

e < \ — i§ ~ 0.276. We conclude that the protocol can tolerate errors up
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Plot 7.5 Rate of the six-state protocol with advantage distillation (on blocks

of optimal length) followed by (optimal) random bit-flips on Alice's side.
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Note that this value coincides with the corresponding error tolerance of

another variant of the six-state protocol due to Chau [Cha02] and is actually

optimal for this class of protocols (cf. [ABB+04]). However, compared to

Chau's protocol, the above described variant of the six-state protocol is

simpler8 and has a higher key rate.

8Instead of adding noise, Chau's protocol uses xor operations between different bits of

the raw key.
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Appendix A

Distance measures

A.l Fidelity

The fidelity between two (not necessarily normalized) states p, p1 G V(H) is

defined by

F(p,p') :=tr^pV2py/2 .

In particular, if p = \ip)(ip\ and p' = \ip')(ip'\ are pure states,

F(p,p') = KV#')l-

Remark A. 1.1. For any a,ß G M+,

F(ap, ßp') = y/äßF(p, p') .

Fidelity of purifications

Uhlmann's theorem states that the fidelity between two operators is equal
to the maximum fidelity of their purifications.

Theorem A.1.2 (Uhlmann). Let p,p' G V(H) and let \ip)(ip\ be a purifica¬
tion of p. Then

F(p,p')= max F(\ij)(ij\,W)m
w)w\

where the maximum is taken over all purifications \ip')(ip'\ of p'.

Proof. The assertion follows directly from the corresponding statement for

normalized density operators (see, e.g., Theorem 9.4 in [NCOO]) and Re¬

mark A.l.f. D

Remark A.1.3. Because the fidelity F(\ip)(ip\,\ip')(ip'\) does not depend

on the phase of the vectors, the vector \ip') which maximizes the expres¬

sion of Theorem A.f.2 can always be chosen such that {ip\ip') is real and

nonnegative.

119



120 APPENDIX A. DISTANCE MEASURES

Fidelity and quantum operations

The fidelity between two density operators is equal to the minimum fidelity
between the distributions of the outcomes resulting from a measurement.

Lemma A.1.4. Let p,p' G V(H). Then

F(p, p')= min F(PZ,P'Z)

where the minimum ranges over all POVMs {Mz}zez on H and where

Pz,P'z G V(Z) are defined by Pz(z) = tr(pMz) and P'z(z) = tr(p'Mz),
respectively.

Proof. The statement follows directly from the corresponding statement

for normalized density operators (cf. formula (9.74) in [NC00]) and Re¬

mark A.l.f. D

The fidelity between two operators cannot decrease when applying the

same quantum operation to both of them.

Lemma A.1.5. Let p, p' G V(H) and let £ be a trace-preserving CPM on H.

Then

F(£(p),£(p'))>F(p,p') .

Proof. See Theorem 9.6 of [NC00] and Remark A.l.l. D

A.2 Li-distance

Li-distance and quantum operations

The L\-distance between two density operators cannot increase when ap¬

plying the same (trace-preserving) quantum operation to both of them.

Lemma A.2.1. Let p, p' G V(H) and let £ be a CPM such that tr(£(a)) <

tr(cr) for any g g V(H). Then

\\£(p)-£(p')\\i<\\p-p'\\i.

Proof. It suffices to show that ||£(T)||i < ||T||i, for any hermitian operator

T. The assertion then follows with T := p — p' because £ is linear.

For any hermitian operator S, let H^Hoo := suV>\(f>)eH |||<A>||<1 11^1^)11 1°e

the Loo-operator norm. Note that the Loo-operator norm can equivalently
be written as

||5||oo = sup tr(SG) .

aeP(H) tr(<r)<l
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Moreover, it is easy to see that for any hermitian operator T

\\T\\i = sup |tr(ST)| . (A.f)
S ||S1|oo<l

Let {Ek}k he the family of linear operators from H to H' defined by the

CPM £, i.e., £(g) = EkGE]k, for any a G V(H). Moreover, let £t he the

CPM defined by S^(S') := Ylk^k^'^k, for any hermitian operator S' on

H1. We then have the identity

tr(£\S')G) = tr(S'£(G)) .

Hence

11^(501100= sup tr(£\S')G)
aeV(H) tr(<j)<l

sup tr(S'£(G)) (A.2)
aeP(H) tr(<j)<l

< ll^lloo ,

where the inequality holds because £(g) g V(H') and tr(£(<r)) < tr(cr) = 1,

for any g g V(H). Using (A.f), this implies that

\\£(T)\\l= sup \tr(£(T)S')\
S' l|S"l|oo<l

sup \tr(T£\S'))\
S' ||S'||oo<l

< sup tr(TS)
S ll^lloo^l

— W1 111 >

where the inequality follows from (A.2).
D

Li-distance of mixtures

Lemma A.2.2. Let pAz and pAz be classical with respect to an orthonormal

basis {\z)}zez of Hz and let {pzA}zez and {pA}zez be the corresponding
conditional operators. Then

\\pAZ -pAzWi = z2\\pA -PaWi
zez

Proof. For any z <E Z, let {\4>zx)}xex he an eigenbasis of pzA — pA. Then, the
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family {\(j)%) ® \z)}[x>z)^xxz is an eigenbasis of pAz — Paz- Hence,

\\paz - PazW, = Y, SK^I ® ^'l)E(^ " Pa) ® \z)(z\)(\<f>x) ® W))\
z'ezxex zez

= Y.Y.\^\Pa-PaWx)\
zeZxex

= 1^\\Pa-Pa\\1
zez

D

Li-distance of pure operators in terms of vector distance

The scalar product of a Hilbert space H induces a canonical norm, defined by

1110)11 := a/(0I0)> f°r any 10) G H. In particular, the norm of the difference

between two vectors \tp) and \ip'), \\\ip) — \ip')\\, is a metric on H.

The following lemma relates the Li-distance between two pure states

\ip)(ip\ and \ip')(ip'\ to the vector distance Hl^) — I^OII-

Lemma A.2.3. Let \ip), \ip') G H such that (ip\ip') is real. Then

iii^^i-i^o^'iii^in^-i^oii m^+iV'Oii •

Proof Define \a) := \ip) + \ip'), \ß) := \ip) - \i//) and let a := |||a)||, b :=

|||/3) ||. We then have

HlVXVI - IVO^'lll! = tr|^)(VI - WWW = ^tr||a)(/3| + \ß)(a\\ .

Moreover, because (ip\ip') is real, the scalar product (a\ß) = (ip\ip) — (ip'\ip')
is real as well. Using this, it is easy to verify that b\a) +a\ß) and b\a) —a\ß)
are eigenvectors of \a)(ß\ + \ß)(a\ with eigenvalues (a\ß) + ab and (a\ß) — ab,

respectively. Hence,

tr||a)(/3| + |/?)(o;|| = \(a\ß) + ab\ + \(a\ß) - ab\ = 2ab
,

where the last equality holds because the Cauchy-Schwartz inequality im¬

plies \(a\ß)\ <ab. D

Upper bound on Li-distance in terms of fidelity

Lemma A.2.4. Let p, p G V(H). Then

Wp-p'h < ^(tr(p)+tr(pO)2-4L(p,p02 .
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Proof. It follows from Uhlmann's theorem (see Theorem A.1.2 and remark

thereafter) that there exist purifications \ip)(ip\ an(f \ip')(ip'\ of p and p', re¬

spectively, such that (ip\ip') is nonnegative and F(p, p') = F(\ip)(ip\, \ip')(ip'\).
Using Lemma A.2.3, a simple calculation leads to

HlVXVI - IVO^'lll = V((V#) + <W))2-4<V#02 •

Since (V#) = tr(\tp)(tp\) = tr(p), (tp'\tp') = tr(p'), and F(\tp)(tp\, \tp')(tp'\) =

(ip\ip'), this identity can be rewritten as

|||V)<VI - IVO^'IH = ^(tr(p)+tr(pO)2-4L(p,p02 .

The assertion then follows from the fact that the Li-distance can only de¬

crease when taking the partial trace (cf. Lemma A.2.1). D

Upper bound on Li-distance in terms of vector distance

The following lemma is a generalization of one direction of Lemma A.2.3 to

mixed states.

Lemma A.2.5. Let p, p' <eV(H) and let \ip) (ip\ and\ip')(ip'\ be purifications

of p and p', respectively. Then

||p-/£/||i<(v/tr7^+v/trG^j) |||^-|^0||-

Proof. Let v G [0,27r] such that elu(ip\ip') is nonnegative and define \ip') :=

elu\ip'). Then, from Lemma A.2.3,

IlkWI - IV^'llk = IN -1?)|| IN +1?)||
fA 3)

<||IV>)-I?)|| (111^)11 + 111^011)

where the inequality follows from the triangle inequality for the norm || ||
and Hl^Oll = IIIV'Oll- Moreover, since (ip\ip') is nonnegative, it cannot be

smaller than the real value of the scalar product (ip\ip'), that is, $t((ip\ip')) =

|(V#0I = |(V#0I > ^((V#0), and thus

||IV>) -1?)|| = ^<V#) + W0-2K((V#0)

rçVim + wm-mm'))

= \\m-m\\-

Combining this with (A.3) gives

\\W)W\-W)m\\ = \\W)W\-\fi)(4/\\\
<(||IV>)|| + ||IV>0||) ||IV>)-IV>0||-

The assertion follows from the fact that the Li-distance cannot increase

when taking the partial trace (cf. Lemma A.2.1). D
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Lower bound on Li-distance in terms of fidelity

The following statement is the converse of Lemma A.2.4.

Lemma A.2.6. Let p, p' G V(H). Then

tr(p) + tr(pO - 2L(p, p') < \\p - p'\\i .

The proof is a direct generalization of an argument given in [NCOO] (see
formula (9.109) of [NCOO]).

Proof. According to Lemma A.f.4, there exists a POVM A4 = {Mz}zez
such that

F(p,p') = F(Pz,P'z),

for Pz and P'z defined by Pz(z) = tr(pMz) and P'z(z) = tr(p'Mz). Using
the abbreviation pz := Pz(z) and p'z := Pz1, we observe that

J2(Vp^ ~ VpZ)2 = J2{Pz + Pz
- 2^/p~pZ)

zez zez (A.4)
= tr(p)+tr(pO-2L(p,pO .

Moreover, because \^fp~z — \[WZ\ < ^fp~z + \/p^,

J2(.Vp^- VpZ)2 < J2\Vp^~ VpÏ\ (.Vp^ + VpÏ)
zez zez

= 2_J;pz-pz\
zez

< IIp-p'IIi ,

where the last inequality follows from the fact that the trace distance cannot

increase when applying a POVM (cf. Lemma A.2.f). The assertion then

follows by combining this with (A.4). D

Lower bound on Li-distance in terms of vector distance

The following statement can be seen as the converse of Lemma A.2.5.

Lemma A.2.7. Let p, p' G V(H) and let \ip)(ip\ be a purification of p. Then

there exists a purification \ip')(ip'\ of p' such that

\\\ip)-m\\<v\\p-p'h-

Proof Uhlmann's theorem (see Theorem A.1.2 and remark thereafter) im¬

plies that there exists a purification \ip')(ip'\ of p' such that F(p, p') = (ip\ip').
Hence,

IN - ivoil = Vim + ww) - <v#o - ww)

= 0r(p)+tr(pO-2L(p,pO .

The assertion then follows from Lemma A.2.6. D
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Li-distance and trace

A slightly different variant of the following statement is known as the Gentle

Measurement Lemma [Win99].

Lemma A.2.8. Let p, p G V(H) such that p = PpP for some projector P

on H. Then,

|p-p||i<2^tr(p)(tr(p)-tr(p)) .

Proof. We first show that the assertion holds if p is normalized (i.e., tr(p) =

1) and pure, that is, p = \4>)(4>\ for some normalized vector \<p). Since

F is a projector, the vector \<fi) can be written as a weighted sum of two

orthonormal vectors \a) and \b), \<fi) = a\a) + ß\b), for a,ß > 0, such that

P\a) = \a) and P\b) = 0. In particular, p = a2\a)(a\. A straightforward
calculation then shows that

||p — p|| i = \(a\a) + ß\b))(a(a\ + ß(b\) — a2\a)(a\\\1
<2ß = 2v/l-tr(p)

which concludes the proof for normalized pure states p.

To show that the assertion holds for general operators p G V(H), let p =

J2xexPx\x)(x\ be a spectral decomposition of p. In particular, ^2xeXpx =

tr(p). Define px := \x)(x\ and px := PpxP- By linearity, we have

p = PpP = ^2 pxpx .

xex

Hence, using the triangle inequality and the fact that the assertion holds for

the normalized pure states px, we find

Up - Pili < ^Px\\px - pz||i < 2 y^px\/i -tv(px).
xex xex

Moreover, with Jensen's inequality we find

Y^ PxV1~^(Px) = tr(p) Y T-^rVf-t^p,:)
xex xex

">

^W^M1-^
= ^tr(p)(tr(p)-tr(p)) ,

which concludes the proof. D
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Appendix B

Various Technical Results

B.l Combinatorics

For proofs of the following statements, we refer to the standard literature

on combinatorics.

Lemma B.1.1. The set Q* of types with denominator n on a set X has

cardinality
. -r, fn+\X\-l
\Q \ =

n

Lemma B.l.2. Let Q G Q* be a type with denominator n on a set X.

Then the type class A„ has cardinality

|A ' =
Uxex(nQ(x))l

•

Lemma B.l.3. A set of cardinality n has at most 2nh(-r/n"1 subsets of car¬

dinality r.

Proof. A set of cardinality n has exactly () subsets of cardinality r. The

assertion thus follows from the inequality1 () < 2nh(-r/n\ D

B.2 Birkhoff's Theorem

Definition B.2.1. A matrix (ax,y)xex,yey is bistochastic if ax>y > 0, for

any x G X, y G y, and Y,yey a*,y = Y,xex a%,y = 1-

It is easy to see that a matrix (ax>y)x^x,yey can only be bistochastic if

|<T| = \y\. The following theorem due to Birkhoff [Bir46] states that any

bistochastic matrix can be written as a mixture of permutation matrices.

(See, e.g., [HJ85] for a proof.)

^ee, e g , [CT91], Formula (12 40)
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Theorem B.2.2 (Birkhoflf's theorem). Let (aXty)xex,yey be a bistochastic

matrix. Then there exist nonnegative coefficients p^, parameterized by the

bijections tt from y to X, such that J2tt Ptt = f and, for any x G X, y G y,2

ax,y = / _,
Pn^x,iï(y)

TT

It follows immediately from Birkhoflf's theorem that any sum of the form

^ —

/ j
U'X,y'~,x,y

x,y

can be rewritten as

S = 2_^ /_^ P^x,-ïï{y)Sx,y = 2_^t Pk /_^t S*(y),y
x,y it TT y

B.3 Typical sequences

Let x be an n-tuple chosen according to an n-fold product distribution

(Px)n- Then, with probability almost one, x is a typical sequence, i.e., its

frequency distribution Ax is close to the distribution Px-

Theorem B.3.1. Let Px be a probability distribution on X and let x be

chosen according to the n-fold product distribution (Px)n- Then, for any

ö>0,

Pxr[^(Ax||Px) > Ô] < 2-^-1*1^+^)
.

Proof. See Theorem 12.2.1 of [CT91]. D

Theorem B.3.f quantifies the distance between Ax and Px with respect

to the relative entropy. To obtain a statement in terms of the Li-distance,

we need the following lemma.

Lemma B.3.2. Let P and Q be probability distributions. Then

\\P-Q\\i< V2(ln2)JD(P||Q) .

Proof. See Lemma 12.6.f of [CT91]. D

Corollary B.3.3. Let Px be a probability distribution on X and let x be

chosen according to the n-fold product distribution (Px)n- Then, for any

ö>0,

Pr[||Ax - Pxh >ô]< 2-^Wxi1^1) .

Proof. The assertion follows directly from Theorem B.3.f combined with

Lemma B.3.2. D

Jx 7r(y) denotes the Kronecker symbol which equals one if x = 7r(j/) and zero otherwise



B.4. PRODUCT SPACES 129

B.4 Product spaces

Lemma B.4.1. Let pAB G V(Ha ®Hb)- Then

supp(pAB) Ç supp(pa) ® supp(pB)

Proof. Assume first that pab is pure, i.e., pab = \^)W\- Let |\I>) =

J2zezaz\4>z) ® W) be a Schmidt decomposition of |\I>), i.e., {\<fiz)}zez and

{W)}zez are families of orthonormal vectors in Ha and Hb, respectively.
Then

supp(pab) = {)*)} Ç span{\<pz)}zez ®span{\ipz)}zeZ

Because span{\(f)z)}zez = supp(p^) and span{\ipz)}zez = supp(p^) the

assertion follows.

To show that the statement also holds for mixed states, let pab =

J2xex Pab be a decomposition of pab into pure states pAB, for x G X.

Then, because the lemma holds for the states pAB,

supp(pab) = span (J supp(p^B)
xex

ç span [J supp(p^) ® supp(pjl)
xex

ç (span (J supp(p^)J ® (span (J supp(p|)J
xex xex

= supp(pA) ® supp(pB) .

D

Lemma B.4.2. Let pab,Pab G V(Ha ® Hb) such that supp(pAß) ç

supp(pab)- Then supp(pA) Ç supp(pA).

Proof. Assume first that Pab is pure, i.e., Pab = \^)W\- Let |\I>) =

J2zezaz\(t)Z) ® W) be a Schmidt decomposition of |\I>), i.e., {\<fiz)}zez and

{W)}zez are families of orthonormal vectors in Ha and Hb, respectively.
Then supp(pAß) = {I*)}. Moreover, by Lemma B.4.1,

supp(pAB) Ç supp(pab) Ç supp(pa) ® supp(p^) ,

i.e., |*) G supp(pyi) ® supp(ps). This implies \<fiz) G supp(pyi), for any

z G Z, and thus span{\(f)z)}zez Ç supp(p^). The assertion then follows

because span{\(f)z)}zez = supp(pyi).
To show that the statement holds for mixed states, let Pab = J2xex Pab

he a decomposition of Pab into pure states pAB, for x G X. We then have

supp(p^B) ç supp(pab), for any x G X, and thus, because the lemma holds

for pure states, supp(p^) ç supp(pyi). Consequently,

supp(Pa) = span (J supp(p^) ç supp(pA) •

xex

D
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B.5 Nonnegative operators

Lemma B.5.1. Let p G V(H) and let S be a hermitian operator on H.

Then SpS is nonnegative.

Proof. Let p = J2xexP%\x)(x\ be a spectral decomposition of p. Then, for

any vector \9) G H,

(9\SpS\9) = Y,Px{0\S\x){x\S\6) = Y,vx\{e\s\x)\2 > o.

xex xex

The assertion then follows because SpS is hermitian. D

Lemma B.5.2. Let p,a G V(H). Then tr(pa) > 0.

Proof. The assertion is an immediate consequence of the fact that tr(pcr) =

tr(cr1/2p(T1/2) and Lemma B.5.1. D

Lemma B.5.3. Let p, g g V(H) such that g is invertible. Then the operator

A g — p is nonnegative if and only if

\m^-1/2po--1/2) < A
.

Proof. With D := A id - G~l/2pG~1/2, we have A a - p = g1'2Dg1/2.

Because of Lemma B.5.f, this operator is nonnegative if and only if D is

nonnegative, which is equivalent to say that all eigenvalues of G~1l2pG~1l2
are upper bounded by A. D

Lemma B.5.4. Let p, g g V(H) such that A a — p is nonnegative and g is

invertible. Then

Amax(p1/2a-1p1/2) < A
.

Proof. Assume without loss of generality that p is invertible (otherwise,
the statement follows by continuity). Because the operator A a — p is

nonnegative, the same holds for p_1/2(A a — p)p~1^2 = A p~1l2Gp~1l2 — id

(cf. Lemma B.5.1). Hence, all eigenvalues of p~1l2Gp~1l2 are at least A-1.

Consequently, the eigenvalues of the inverse pl/2G~lp1/2 cannot be larger
than A. D

B.6 Properties of the function rt

The class of functions rt : z i—> zl — t In z — 1, for t G M, is used in Section 3.3

for the proof of a Chernoflf style bound. In the following, we list some of its

properties.

Lemma B.6.1. For any teR, the function rt is monotonically increasing

on the interval [1, oo).
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Proof. The first derivative of rt is given by

±rt(z)=tzt-l-t- = -(zt-l).
dz z z

The assertion follows because the term on the right hand side is nonnegative
for any z G [1, oo). D

Lemma B.6.2. For any t G M and z G (0, oo),

n(z) <r\t\(z + -) .

Proof. Observe first that rt(z) = r-t(\). It thus suffices to show that the

statement holds for t > 0. If z > I, the assertion follows directly from

Lemma B.6.f. For the case where t > 0 and z < 1, let v := —tlnz. Then

rt(\) = ev — v — 1 and rt(z) = e~v + v — 1. Because v > 0, we have

e^ — e~v > 2v, which implies rt(z) < rt(-). The assertion then follows again
from Lemma B.6.f. D

Lemma B.6.3. For any t G [—\, \], the function rt is concave on the

interval [4, oo].

Proof. We show that -^if't(z) < 0 for any z > 4. Because j^if't(z) =

t(t — \)zl~2 + j2,
this is equivalent to t(l — t)zf > t. It thus suffices to verify

that

for any z > 4. Using some simple analysis, it is easy to see that the term on

the right hand side is monotonically increasing in t on the interval [—^,5]
and thus takes its maximum at t = \, in which case it equals 4. D

Lemma B.6.4. For any z G [1, 00) and t G |-j^, ^},

rt(z) < (f-ln2)(logz)2t2 .

Proof. Let v :=tlnz. Then

rt(z) etlnz — tlnz — 1 ev — v — 1

t2 t2 v2
(Inz)2 . (B.f)

We first show that the term on the right hand side of (B.f) is monotonically

increasing in v, that is,

d e" - v - 1 e" - 1 ev -v-1
2 s >0

.

dv v2 v2 v3

A simple calculation shows that this inequality can be rewritten as

2 ev'2 - e~v'2
1 >

v ev/2 + e~v/2
'
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which holds because, for any v G I

ev/2 _ e-v/2

gîj/2 I g—v/2

I ,
v I \v\

= tann - < —
1 21 ~

2

Hence, in order to find an upper bound on (B.f), it is sufficient to evalu¬

ate the right hand side of (B.f) for the maximum value off. By assumption,

we have v < In2, i.e.,

1

(Inz)2 < (1 -In2)(logzf

which concludes the proof. D



Appendix C

Computationally Efficient

Information Reconciliation

In Section 6.3, we have proposed a general one-way information reconcilia¬

tion scheme which is optimal with respect to its information leakage. The

scheme, however, requires the receiver of the error-correcting information to

perform some decoding operation for which no efficient algorithm is known.

In the following, we propose an alternative information reconciliation scheme

based on error-correcting codes where all computations can be done effi¬

ciently.

C.l Preliminaries

To describe and analyze the protocol, we need some terminology and basic

results from the theory of channel coding. Let £ be a discrete memoryless
channel which takes inputs from a set U and gives outputs from a set V.1

An encoding scheme for £ is a family of pairs (Cra,decra) parameterized by
n G N where Cn is a code on U of length n, i.e., a set of n-tuples u G Un,

called codewords, and decra is a decoding function, i.e., a mapping from Vn

to Cn. The rate of the code Cn is defined by rate(Cra) := - log \Cn\. Moreover,

the maximum error probability of (Cn, dec„) is defined by

£max(Cra,decra) := maxPr[u / dec(v)] ,

uecn v

where, for any u = (u\,... ,un) G Cn, the probability is over all outputs

v = (v\,..., vn) of n parallel invocations of £ on input u.

We will use the following fundamental theorem for channel coding (cf.,

e.g., [CT91], Section 8.7).

1A discrete memoryless channel £ from U to V is defined by the conditional probability
distributions Pv\u=u °n V, for any u elA

f33
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Proposition C.l.l. Let <L be a discrete memoryless channel from U to V

and let ö > 0. Then there exists an encoding scheme {(Cn,decn)}ne^ for £

such that the following holds:

• rate(Cra) > maxP[/ H(U) - H(U\V) - 5, for any n G N. (The en¬

tropies m the maximum are computed for the distribution Puv of an

input/output pair (u,v) of <t, where u is chosen according to Pu-)

• nmri_>00 emax[L.n, (iecn) — u.

C.2 Information reconciliation based on codes

Let us now consider an information reconciliation protocol based on chan¬

nel coding. For this, we assume that Alice's and Bob's inputs are strings
x = (x\,... ,xn) and y = (y\,... ,yn), respectively. Our protocol shall be

secure if the inputs x, y are distributed according to a product distribution

Px»Y» = (PxyT-
Let £ be the channel which maps any u G X to v := (x © u, y), where

the pair (x, y) is chosen according to the probability distribution Pxy and

where © is a group operation on X. For any n G N, let IRen,decn be the

information reconciliation protocol specified by Fig. C.l, where Cn is the

code and dec„ the decoding function defined by Proposition C.f.f.

It is easy to see that x = x holds whenever decra decodes to the correct

value û = u. Hence, the information reconciliation protocol IRen,decn is

era-secure, for en := emax(Cn,decn). Because, by Proposition C.f.f, the

maximum error probability emax(Cn,decn) of (Cra,decra) goes to zero, for n

approaching infinity, the protocol IRen,decn is asymptotically secure.

Moreover, by Proposition C.f.f,

rate(Cra) > max H(U) - H(U\X @U,Y)-5 .

Pu

Using the fact that the input u is chosen independently of the randomness of

the channel (x,y), a simple information-theoretic computation shows that

the entropy difference in the maximum can be rewritten as H(X ®U\Y) —

H(X\Y). Hence, because maxP[/ H(X © U\Y) = Hmax(Pu) = log |^f |, we
find

- log \Cn\ = rate(Cn) > log \X\ - H(X\Y) - 6
. (C.l)

The communication c of the protocol is contained in the set Xn. Further¬

more, because u is chosen uniformly at random from Cn, the distribution

-Pcixn=x °f the communication c, conditioned on any input x G Xn, is

uniform over a set of size \Cn\. The leakage of IRen,decn is thus given by

leak|Rcn decn
= log |;rra| - minL7min(PC|Xn=x) = nlog \X\ - log |Cra| .
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Fig. C.l Information reconciliation protocol IRcn,decn-

Parameters:

Cn: set of codewords from Xn

decra: decoding function from Xn x yn to Cn

©: group operation on X (with inverse 0).

Alice

input: x G A"7-

u G_r Cn

c := x©u

Bob

input: y eyn

û :=decra(c,y)

if decoding not succ.

then abort

output x := c 0 û

Combining this with (C.f) we conclude

1

n

-leak|R„ <H(X\Y)+Ö .

Because Proposition C.l.f also holds for efficient2 encoding schemes (see,

e.g., [Dum98]), Corollary 6.3.5 is asymptotically still true if we restrict to

computationally efficient protocols (see also [HR05]). More precisely, this

result can be formulated as follows.

Proposition C.2.1. Let Pxy G V(X xy) be a probability distribution and

let 5 > 0. Then there exists a family of computationally efficient information
reconciliation protocols IRen,decn (parameterized by n G N) which are en-

fully secure, en-robust on the product distribution (Pxy)"1, and have leakage

Meak|Rcn decn
< H(X\Y) + 6, for any n G N, where lim^oo en = 0.

2An encoding scheme {(Cn,decn)}n6N is said to be efficient if there exist polynomial-
time algorithms (in n) for sampling a codeword from the set Cn and for evaluating the

decoding function decn
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Appendix D

Notation

General

log binary logarithm
In natural logarithm

®x,y Kronecker symbol: öx,y G {0,1}, öx,y = 1 iff x = y

C complex conjugate of c

K(c) real value of c

V(X) set of nonnegative functions on the set X

Sn set of permutations on the set {1,..., n}

^x\f(x)\ expectation of f(x) over random choices of x

supp(/) support of the function /

[a,b] set of real numbers r such that a < r < b

[a,b) set of real numbers r such that a < r < b

Frequency distributions and types

Ax frequency distribution of the n-tuple x

Qn set of types with denominator n on the set X

An type class of the type Q with denominator n

Vectors

span V space spanned by the set of vectors V

(<fi\ip) scalar product of the vectors \<fi) and \tp)

|||ç!))|| norm of the vector \<fi)

\4>)(4>\ projector onto the vector \<fi)

S\(H) set of normalized vectors on H

137
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Operators

V(H) set of nonnegative operators on H

id identity

tr(S) trace of the hermitian operator S

supp(S*) support of the hermitian operator S

rank(S*) rank of the hermitian operator S

Amax('S') maximum eigenvalue of the hermitian operator S

||S*||i trace norm of the hermitian operator S

Distance measures for operators

P'lliIIP-

F(p,p')
d(pAB\B)

d2(pAB\o-ß)

Li-distance between p and p'

fidelity between p and p1.
L\-distance from uniform of pAB given B

L2-distance from uniform of pab relative to gb

Entropies

H(Px)

h(p)

H(pa)

H(A\B)

D(p\\G)

Hmm(pAB\o~B)

Hmax(pAB\o~B)

Hmm(pAB\o-B)
Hma,X(pAB\o-B)

Wmm(pAB\B)
HLax(pAB\B)

H£mm(A\B)
H£max(A\B)

H2(pab\o-b)

Shannon entropy of the probability distribution Px

binary Shannon entropy with bias p

von Neumann entropy of the density operator pA

conditional entropy H(pab) — H(ps)
relative entropy of p to g

min-entropy of pAB relative to gb

max-entropy of pab relative to gb

e-smooth min-entropy of pAB relative to gb

e-smooth max-entropy of pab relative to gb

e-smooth min-entropy of pab given Hb

e-smooth max-entropy of pab given Hb

abbreviation for H^m(pAB\B)
abbreviation for iL^ax(pAB|L>)
collision entropy of pab relative to gb

Symmetric spaces

§ym(H®n) Symmetric subspace of H®n

Sym(H0n, \6)®m) Symmetric subspace of H0n along \6)®m
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