
Diss. ETH No. 18832

Building Database Applications in the
Cloud

A dissertation submitted to the
SWISS FEDERAL INSTITUTE OF TECHNOLOGY

ZURICH

for the degree of
Doctor of Sciences

presented by
TIM KRASKA

Master of Science in Information Systems, Westfälische
Wilhelms-Universität Münster

Master of Information Technology, University of Sydney
born 29 September 1980

citizen of Germany

accepted on the recommendation of
Prof. Donald Kossmann, examiner
Prof. Elgar Fleisch, co-examiner

Prof. Samuel Madden, co-examiner
Prof. Nesime Tatbul, co-examiner

2010

ii

Abstract

Cloud computing has become one of the fastest growing fields in computer science. It
promises infinite scalability and high availability at low cost. To achieve this goal, cloud
solutions are based on commodity hardware, are highly distributed and designed to be
fault-tolerant against network and hardware failures. Although sometimes considered
as a hype, the main success of cloud computing is not technology-driven but economi-
cal. Cloud computing allows companies to outsource the IT infrastructure and thus, to
profit from a shorter time-to-market, the economies of scale and the leverage effect of
outsourcing.

Although the advantages of using cloud computing for building web-based database
applications are compelling, so far cloud infrastructure is also subject to certain limita-
tions. By today, there exists no consensus on cloud services, thus different providers
offer different functionality and interfaces, which makes it hard to port applications from
one provider to another. Furthermore, the systems sacrifice functionality and consis-
tency to allow for better scaling and availability. If more functionality and/or consistency
is required it has to be built on top. In addition, cloud providers use different program-
ming languages for different layers of the application, creating a jungle of languages
and services.

The purpose of this thesis is to explore how web-based database applications with low
or high consistency requirements can be developed and deployed on different cloud
infrastructure providers. The main contributions of this dissertation are associated with
three topics:

The first part of the thesis proposes an architecture for building web-based database
applications on top of an abstract cloud API. Using the API as a generalization of ex-
isting cloud offerings, the system is not bound to a single cloud provider and can easily
be ported to other providers. The architecture is modular and utilizes state-of-the-art
database techniques. In order to ensure different levels of consistency, the architecture
is based on a set of newly developed protocols guaranteeing eventual consistency up
to serializability.

iii

iv Abstract

In the second part of the thesis, we propose Consistency Rationing as a new transac-
tion paradigm, which not only allows to define the consistency guarantees on the data
instead of at transaction level, but also allows for automatically switching consistency
guarantees at run-time. As high consistency implies high cost per transaction and, in
some situations, reduced availability, low consistency is cheaper but it might result in
higher operational cost because of, e.g., overselling of products in a web shop. Consis-
tency Rationing provides the framework to manage this trade-off between consistency
and cost in a fine-grained way. We present a number of techniques that make the sys-
tem dynamically adapt the consistency level by monitoring the data and/or gathering
temporal statistics of the data. Thus, consistency becomes a probabilistic guarantee
which can be balanced against the cost of inconsistency.

The last part of the dissertation is concerned with XQuery as a unified programming
model for the cloud and, in particular, the missing capabilities of XQuery for windowing
and continuous queries. XQuery is able to run on all layers of the application stack,
is highly optimizable and parallelizable, and is able to work with structured and semi-
structured data. For these reasons, XQuery has already been proposed as a pro-
gramming language for the web. However, XQuery so far lacks the ability to process
continuous queries and windowing, which are important aspects for message process-
ing, monitoring systems and even document formatting (e.g., for pagination or table
formatting). In the last part of the thesis, we present two extensions for XQuery. The
first extension allows the definition and processing of different kinds of windows over an
input sequence, i.e., tumbling, sliding, and landmark windows. The second one extends
the XQuery data model (XDM) to support infinite sequences. These extensions enable
using XQuery as a language for continuous queries. In 2008, the windowing extension
for XQuery has been accepted for the upcoming XQuery 1.1 standard.

Zusammenfassung

Cloud Computing ist eines der am schnellsten wachsenden Gebiete in der Informatik.
Es verspricht nahezu unbegrenzte Skalierbarkeit und höchste Erreichbarkeit zu niedri-
gen Kosten. Um diese Eigenschaften zu erreichen, basieren Cloud-Lösungen auf Stan-
dardhardware, sind hoch verteilt, und so konzipiert, dass sie eine hohe Fehlertole-
ranz gegenüber Netzwerk- und Hardwareausfälle aufweisen. Cloud Computing wird
gelegentlich als ein Hype-Thema bezeichnet. Dabei basiert der Erfolg bisher nicht in
erster Linie auf technologischen Neuerungen, sondern in der Tat auf ökonomischen
Überlegungen. So erlaubt es Cloud Computing, Infrastruktur outzusourcen, und so von
kürzeren Markteintrittszeiten und (wie beim herkömmlichen Outsourcing) von Skalen-
und Leverageeffekten zu profitieren.

Obwohl die Vorteil von Cloud Computing-gestützten webbasierten Datenbankanwen-
dungen auf der Hand liegen, geben die derzeitigen Angebote an Cloud-Infrastruktur
doch Grenzen vor. So besteht nur ein geringer Konsens bzgl. der offerierten Dienste.
Die verschiedenen Anbieter bieten unterschiedlichste Funktionalitäten und Schnittstellen
an, was einen Wechsel von einem Anbieter zum anderen sichtlich erschwert. Im allge-
meinen wurde bei der Entwicklung der Systeme Skalierbarkeit und Erreichbarkeit der
Vorrang gegeben und dabei auf Datenbankfunktionalität (wie z.B. eine Query Sprache)
und höhere Datenkonsistenz verzichtet. Zusätzliche Funktionalität muss vom Anwen-
der entwickelt werden. Des Weiteren verwenden die diversen Anbieter unterschiedliche
Programmiersprachen für die verschiedenen Layer der Anwendung und vervollkomm-
nen so den Dschungel an Diensten und Sprachen.

Das Ziel dieser Dissertation ist es, einen Weg aufzuzeigen, wie webbasierte Daten-
bankanwendungen mit sowohl niedrigen als auch hohen Konsistenzanforderungen en-
twickelt und flexibel auf verschiedene Cloud-Lösungen aufgesetzt werden können. Drei
Themengebiete werden hierbei aufgegriffen:

Im ersten Teil dieser Dissertation wird eine allgemeine Coud API definiert und da-
rauf aufbauend eine Architektur für die Entwicklung webbasierter Datenbankanwendun-
gen vorgeschlagen. Die Cloud API stellt eine Verallgemeinerung bestehender Cloud-

v

vi Zusammenfassung

Services dar und erlaubt so einen problemlosen Wechsel von Anbietern. Die anvisierte
Architektur ist modular und verwendet aktuelle Datenbanktechniken. Für die unter-
schiedlichen Konsistenzanforderungen wurden eine Reihe neuer Protokolle entwickelt,
die je nach Anforderungen kombiniert werden können.

Der zweite Teil der Dissertation stellt mit dem Konzept des Consistency Rationings ein
neues Transaktionsparadigma vor. Konsistenzgarantien werden auf der Daten- und
eben nicht auf der Transaktionsebene definiert und es besteht die Möglichkeit, automa-
tisch während der Laufzeit zwischen verschiedenen Garantien zu wechseln. Höhere
Konsistenzanforderungen implizieren höhere Kosten je Transaktion und gegebenenfalls
eine reduzierte Erreichbarkeit. Hingegen erscheint eine weniger strikte Konsistenz-
garantie auf den ersten Blick billiger, kann aber zu weiteren operationellen Kosten,
z.B. durch die Verärgerung eines Kunden im Falle der Nichtlieferung eines Produk-
tes, führen. Consistency Rationing bietet in diesem Zusammenhang die Möglichkeit,
Konsistenz und (Gesamt-)Kosten gegeneinander abzuwägen. Es werden eine Anzahl
an Techniken und Strategien vorgestellt, die eine dynamische Anpassung der Konsis-
tenzanforderung auf Basis der Datenbewegungen und / oder temporärer Statistiken
steuern. Konsistenz wird somit zu einer stochastischen Garantie, die es gegen die
Kosten durch Inkonsistenz abzuwägen gilt.

Der letzte Teil der Dissertation beschäftigt sich schließlich mit XQuery als universelle
Programmiersprache für die Cloud. Insbesondere werden Windowing und kontinuier-
liche Queries behandelt. XQuery ist grundsätzlich auf allen Layern einer Anwendung
einsetzbar, hoch optimierbar und parallelisierbar, und kann strukturierte und semi-
strukturierte Daten verarbeiten. Aus diesem Grunde wurde XQuery schon als die
Sprache für das Web vorgeschlagen. Allerdings unterstützt XQuery bisher weder kon-
tinuierliche Queries noch Windowing, beides wichtige Aspekte beim Verarbeiten von
Nachrichten, der Überwachung von Systemen oder dem Formatieren von Dokumenten
(z.B. Pagination oder Tabellenformatierung). In diesem Teil werden zwei Erweiterun-
gen für XQuery vorgestellt, die eben diese Mängel adressieren. Zum einen werden
Semantik und Syntax für die Unterstützung sogenannter Tumbling, Siding und Land-
mark Windows aufgezeigt, zum anderen das XQuery Data Model (XDM) erweitert, um
auch kontinuierliche Queries zu erlauben. Die Windowing-Erweiterung von XQuery
wurde mittlerweile als Bestandteil des künftigen XQuery 1.1 Standards akzeptiert.

Acknowledgements

From the first week of my Master thesis in the database group of Donald Kossmann
at ETH Zurich, it was clear to me that this was the place where I wanted to do my
PhD and, luckily, there was not much need to convince Donald about this idea. Al-
though there were ups and downs during my years at ETH, I have never regretted it
since. We were among the very first who combined the arising topic of cloud comput-
ing with database technology, and thus in the lucky position of doing research on the
bleeding edge of technology. Among many other things, I had the possibility to work on
many different projects around cloud computing and XML/XQuery technology, became
a W3C member, helped to bootstrap the Zorba XQuery processor, and made contact
with many leading international researchers, as well as people from the industry. All
this broadened my horizon, gave me valuable insights for my research and helped me
to see problems from different angles. Here, I would like to acknowledge those who
assisted and supported me in this challenging and rewarding time.

First of all, I am truly grateful to my supervisor, Prof. Donald Kossmann, for guiding me
not only through my life as a PhD student but also inspiring me in other ways. He is
a remarkably visionary person who motivated me constantly. He often engaged me in
many fruitful discussions, was open-minded in countless chats and offered me so many
great opportunities.

I am also grateful for the work and availability of the other members of my committee;
Prof. Elgar Fleisch, Prof. Samuel Madden and Prof. Nesime Tatbul. They provided me
with interesting comments and questions that helped me to improve my work. I thank
Prof. Ueli Maurer for being available to chair my examination committee.

Throughout this thesis it was a great pleasure to collaborate and to be in contact with
many colleagues from ETH, as well as people outside ETH in research and industry.
In particular, I would like to thank Daniela Florescu. It is hard to keep up with her
speed, but if you try, it is amazing what you can get out of it. I would also like to
thank Peter M. Fischer. I was always able to count on him and he was in endless
ways helpful with advice and friendship. Irina Botan and Rokas Tamosevicius for their

vii

viii Acknowledgements

involvement in building the Windowing XQuery extension. Matthias Brantner and David
Graf for all the nights spent at ETH while building the first prototype and protocols for
the first part of this thesis. A special thanks goes to Martin Hentschel and Prof. Gustavo
Alonso. Without them the Consistency Rationing part would not have been possible.
Jena Bakula and Simonetta Zysset for proof-reading parts of this thesis and all the help
during my PhD.

I would also like to thank all my friends and colleagues in the Systems Group and ETH
Zurich, not only for the active discussions but in particular for all the fantastics things we
did together, such as skiing or the yearly cheese fondue. To Carsten and Dani, Marcos,
Cristian, Rokas, Peter and Anita, a special thank you. Without you, I would not have so
many nice memories and, hopefully, the whale watching will never end.

My special appreciation goes to my parents, Bärbel and Klaus, and my little sister, Rike,
for all the support and love they have given me throughout my life and the believe in
me.

Finally, I would like to thank Karin, who was the biggest help and probably ”suffered”
the most.

Contents

1 Introduction 1

1.1 Background & Motivation . 1

1.2 Problem Statement . 2

1.3 Contribution . 4

1.3.1 Building a Database on top of Cloud Infrastructure 5

1.3.2 Consistency Rationing . 5

1.3.3 Windowing for XQuery . 6

1.4 Structure . 7

2 State of the Art 9

2.1 Cloud Computing . 9

2.1.1 What is Cloud Computing? . 9

2.1.2 Cloud Service Overview . 10

2.1.2.1 Infrastructure as a Service (IaaS) 10

2.1.2.2 Platform as a Service (PaaS) 13

2.1.2.3 Software as a Service (SaaS) 15

2.2 Web-Based Database Applications in the Cloud 16

2.2.1 Applications using PaaS . 16

2.2.2 Applications using IaaS . 16

2.3 Cloud Storage Systems . 18

2.3.1 Foundations of Cloud Storage Systems 19

2.3.1.1 The Importance of the CAP Theorem 19

ix

2.3.1.2 Consistency Guarantees: ACID vs. BASE 20

2.3.1.3 Techniques . 20

2.3.2 Cloud Storage Services . 22

2.3.2.1 Commercial Storage Services 23

2.3.2.2 Open-Source Storage Systems 25

2.4 XQuery as the Programming Model . 27

2.4.1 Programming Models Overview . 27

2.4.2 What is XQuery? . 29

2.4.3 XQuery for Web-Based Applications 30

3 Building a Database on Top of Cloud Infrastructure 33

3.1 Motivation . 33

3.1.1 Contributions . 34

3.1.2 Outline . 35

3.2 Amazon Web Services . 35

3.2.1 Storage Service . 36

3.2.2 Servers . 39

3.2.3 Server Storage . 40

3.2.4 Queues . 40

3.2.5 Indexing Service . 41

3.3 Reference Cloud API for Database Applications 42

3.3.1 Storage Services . 42

3.3.2 Machine Reservation . 43

3.3.3 Simple Queues . 44

3.3.4 Advanced Queues . 45

3.3.5 Locking Service . 46

3.3.6 Advanced Counters . 47

3.3.7 Indexing . 48

3.4 Database Architecture Revisited . 49

x

3.4.1 Client-Server Architecture . 49

3.4.2 Record Manager . 52

3.4.3 Page Manager . 53

3.4.4 Indexes . 54

3.4.4.1 B-Tree Index . 55

3.4.4.2 Cloud Index . 55

3.4.5 Logging . 56

3.4.6 Security . 57

3.5 Basic Commit Protocols . 58

3.5.1 Overview . 60

3.5.2 PU Queues . 61

3.5.3 Checkpoint Protocol for Data Pages 63

3.5.4 Checkpoint Protocol for Collections 66

3.5.5 Checkpoint Protocol for Client-Side B-Trees 69

3.5.6 Unsafe Propagation Time . 70

3.5.7 Checkpoint Strategies . 71

3.6 Transactional Properties . 74

3.6.1 Atomicity . 74

3.6.2 Consistency Levels . 77

3.6.3 Atomicity for Strong Consistency 79

3.6.4 Generalized Snapshot Isolation . 82

3.6.5 2-Phase-Locking . 86

3.7 Implementation on Amazon Web Services 87

3.7.1 Storage Service . 87

3.7.2 Machine Reservation . 87

3.7.3 Simple Queues . 87

3.7.4 Advanced Queues . 88

3.7.5 Locking Service . 89

3.7.6 Advanced Counters . 89

xi

3.7.7 Indexing . 90

3.8 Performance Experiments and Results . 91

3.8.1 Software and Hardware Used . 91

3.8.1.1 TPC-W Benchmark . 91

3.8.2 Architectures and Benchmark Configuration 93

3.8.3 Response Time Experiments . 95

3.8.3.1 EU-BTree and EU-SDB 95

3.8.3.2 EC2-BTree and EC2-SDB 97

3.8.4 Cost of Consistency Protocols . 98

3.8.4.1 EU-BTree and EU-SDB 98

3.8.4.2 EC2-BTree and EC2-SDB 100

3.8.5 Scalability . 103

3.8.6 Tuning Parameters . 104

3.8.6.1 Page Size . 105

3.8.6.2 Time-to-Live . 106

3.8.7 Bulk-Loading Times . 107

3.9 Related Work . 107

3.10 Summary . 109

4 Consistency Rationing 111

4.1 Introduction . 111

4.1.1 Contributions . 113

4.1.2 Outline . 113

4.2 Use Cases . 114

4.3 Consistency Rationing . 116

4.3.1 Category C - Session Consistency 116

4.3.2 Category A - Serializable . 117

4.3.3 Category B - Adaptive . 117

4.3.4 Category Mixes . 118

xii

4.3.5 Development Model . 119

4.4 Adaptive Policies . 119

4.4.1 General Policy . 120

4.4.1.1 Model . 120

4.4.1.2 Temporal Statistics . 121

4.4.1.3 Setting the Adaptive Threshold 122

4.4.2 Time Policies . 123

4.4.3 Policies for Numeric Types . 124

4.4.3.1 Fixed Threshold Policy 124

4.4.3.2 Demarcation Policy . 125

4.4.3.3 Dynamic Policy . 126

4.5 Implementation . 127

4.5.1 Configuration of the Architecture 128

4.5.2 Logical Logging . 128

4.5.3 Meta-data . 129

4.5.4 Statistical Component and Policies 129

4.5.5 Implementation Alternatives . 131

4.6 Experiments . 132

4.6.1 Experimental Setup . 132

4.6.2 Experiment 1: Cost per Transaction 135

4.6.3 Experiment 2: Response Time . 136

4.6.4 Experiment 3: Policies . 137

4.6.5 Experiment 4: Fixed Threshold . 139

4.7 Related Work . 140

4.8 Conclusion . 142

5 Windowing for XQuery 145

5.1 Introduction . 145

5.2 Usage Scenarios . 148

xiii

5.2.1 Motivating Example . 148

5.2.2 Other Applications . 149

5.3 FORSEQ Clause . 150

5.3.1 Basic Idea . 150

5.3.2 Types of Windows . 152

5.3.2.1 Tumbling Windows . 153

5.3.2.2 Sliding and Landmark Windows 155

5.3.3 General Sub-Sequences . 156

5.3.4 Syntactic Sugar . 157

5.3.4.1 End of Sequence . 157

5.3.4.2 NEWSTART . 157

5.3.5 Summary . 157

5.4 Continuous XQuery . 158

5.5 Examples . 160

5.5.1 Web Log Analysis . 160

5.5.2 Stock Ticker . 160

5.5.3 Time-Outs . 161

5.5.4 Sensor State Aggregation . 162

5.6 Implementation . 163

5.6.1 MXQuery . 163

5.6.2 Plan of Attack . 165

5.6.3 Run-Time System . 166

5.6.3.1 Window Iterators . 166

5.6.3.2 Window Management . 166

5.6.3.3 General FORSEQ . 168

5.6.4 Optimizations . 168

5.6.4.1 Predicate Move-Around 169

5.6.4.2 Cheaper Windows . 169

5.6.4.3 Indexing Windows . 170

xiv

5.6.4.4 Improved Pipelining . 171

5.6.4.5 Hopeless Windows . 171

5.6.4.6 Aggressive Garbage Collection 171

5.7 Experiments and Results . 172

5.7.1 Linear Road Benchmark . 172

5.7.2 Benchmark Implementation . 173

5.7.3 Results . 174

5.8 Related Work . 175

5.9 Summary . 177

6 Conclusion 179

6.1 Summary of the Thesis . 179

6.2 Ongoing and Future Work . 181

A Appendix 185

A.1 Node Splitting . 185

A.2 XQuery 1.1 Window BNF . 187

List of Tables 189

List of Figures 191

List of Algorithms 193

Bibliography 195

xv

Chapter 1

Introduction

1.1 Background & Motivation

The web has made it easy to provide and consume content of any form. Building
a web page, starting a blog, and making them both searchable for the public have
become a commodity. Nonetheless, providing an own web application/web service
still requires a lot of effort. One of the most crucial problems is the cost to operate a
service with ideally 24 × 7 availability and acceptable latency. In order to run a large-
scale service like YouTube, several data centers around the world are needed. Running
a service becomes particularly challenging and expensive if the service is successful:
Success on the web can kill! In order to overcome these issues, utility computing (a.k.a.,
cloud computing) has been proposed as a new way to operate services on the internet
[RW04].

It is the goal of cloud computing - via specialized utility poviders - to provide the basic
ingredients such as storage, CPUs, and network bandwidth as a commodity at low
unit cost. For example, in the case of utility storage, users do not need to worry about
scalability because the storage provided is virtually infinite. In addition, utility computing
provides full availability, i.e., users can read and write data at any time without ever
being blocked. The response times are (virtually) constant and do not depend on the
number of concurrent users, the size of the database, or any other system parameter.
Furthermore, users do not need to worry about backups. If components fail, it is the
responsibility of the utility provider to replace them and make the data available using
replicas in the meantime. Another important reason to build new services based on
cloud computing is that service providers only pay for what they get, i.e., pay by use.
No upfront investments are required and the cost grows linearly and predictably with

1

2 Chapter 1. Introduction

the usage. Although sometimes considered as a hype, the main success of cloud
computing is not technology-driven but economical. Cloud computing allows companies
to outsource the IT infrastructure and thus, profit from the economics of scale and the
leverage effect of outsourcing. For this reason, it is unlikely that it is just a short-term
trend.

Although the advantages for building applications in the cloud are compelling, they
come with certain limitations. By today, there exists no consensus on cloud services.
Thus, different providers offer different functionality and interfaces, which makes it hard
to port applications from one provider to another. Furthermore, the systems sacrifice
functionality and consistency to allow for better scaling and availability. If more func-
tionality and/or consistency is required it has to be built on top. Although some cloud
providers offer best-practice guidelines on building applications in the cloud, the new
trade-offs - especially for applications which may require stronger consistency guaran-
tees (such as database applications) - are not addressed at all.

1.2 Problem Statement

Cloud computing is still a rather new field, which is not yet entirely defined. As a re-
sult, many interesting research problems exist, often combining different research areas
such as databases, distributed systems or operating systems. This dissertation focuses
on how to build web-based database applications on top of cloud infrastructure. In par-
ticular, the following problems are addressed:

• Infrastructure API: Today, the cloud service offerings vary significantly and no
standard exists. Thus, portability between services is not guaranteed. There does
not even exist a consensus what the right services are. Identifying a minimal
set of services and a corresponding API, which would allow to build advanced
applications, significantly lowers the burden of moving applications into the cloud.
Such a reference API is important as a basis for all further developments in this
area.

• Architecture: Although more and more web applications are moved to the cloud,
the right architecture is still not defined. The optimal architecture would preserve
the scalability and availability of utility services and achieve the same level of con-
sistency as traditional database systems (i.e, ACID transactions). Unfortunately,
it is not possible to have it all as Brewer’s CAP theorem states. The CAP theo-

1.2. Problem Statement 3

rem proves that availability, tolerance against network partitions, and consistency
cannot be achieved at the same time [GL]. Given the fact that in bigger systems
network partitions are happening, most infrastructure services sacrifice consis-
tency in favor of availability [Ama09d, CDG+06, CRS+08]. If an application re-
quires a higher consistency, it has to be implemented on top. One of the problems
addressed in this thesis is how to design a database of infrastructure services
to benefit from the existing features and at the same time provide different lev-
els of consistency for the different kinds of application requirements. Additional
questions, which arise when designing the architecture for web-based database
applications concern the hosting location of the application logic and the imple-
mentation of indexes. For instance, is it beneficial to run the application logic on
the client or should it run on a server provided by the utility provider (e.g., on a
rented virtualized machine)? Is it beneficial to push query processing into the
cloud and use services such as SimpleDB as opposed to implementing indexing
on the middle-tier?

• Application Consistency: Consistency plays an important role in the context of
cloud computing. It not only has a direct effect on the availability but also im-
pacts the performance and cost. In large-scale systems, high consistency implies
more messages which have to be sent between the servers if perfect partitioning
is not feasible. Here, perfect partitioning refers to a partitioning scheme where all
possible transactions can be executed on a single server of the system. In most
application (e.g., a web shop, social network applications, flight booking etc.) this
is not feasible if scalability through scale-out should be preserved. For example, in
a web shop all products can be in a single shopping cart. Thus, it is impossible to
partition the web shop by products, but other partitions (e.g., by customer) also do
not help, as again, the products are the overlapping parts. Without perfect parti-
tioning, consistency requires more messages to coordinate reads and writes. For
example, protocols for weak consistency (e.g., eventual consistency) typically do
not have a validation phase and often even allow detaching the update propaga-
tion from the transaction. As a result, those protocols have very low overhead. In
contrast, strong consistency (e.g., serializability with 2-Phase-Locking or snapshot
isolation with 2-Phase-Commit) requires several extra messages to gain locks,
propagate changes etc. As message transfer is orders of magnitudes more ex-
pensive (in particular across data-centers) than in-server memory or disk access,
high consistency implies higher latency. Further, as in the cloud service calls and
traffic are priced, strong consistency also implies higher costs. However, strong
consistency avoids penalty costs because of inconsistency (e.g., overselling of

4 Chapter 1. Introduction

products in a web shop). In comparison, low consistency leads to lower costs per
operation but might result in higher penalty costs. How to balance costs, availabil-
ity and consistency for different application requirements is a non-trivial task and
addressed in this thesis.

• Programming Languages: Another challenge of moving applications into the
cloud is the need to master multiple languages [Hay08]. Many applications rely
on a backend running SQL or other (simplified) languages. On the client side,
JavaScript embedded within HTML is used and the application server, standing
between the backend and the client, implements the logic using some kind of
scripting language (such as PHP, Java and Python). All layers typically communi-
cate through XML messages. To overcome the variety of languages, XQuery/XScript
has already been proposed as a unified programming language, that is able to run
on all layers [FPF+09, CEF+08, CCF+06, 28m09]. However, XQuery so far lacks
capabilities to process message streams, which is an important aspect for cloud
applications in order to be able to combine RSS feeds or to monitor services. One
of the main concepts for stream processing is windowing. Windowing allows to
partition a stream into sub-sequences. However, this functionality is also required
e.g. for pagination of web-pages making such an extension even more valuable
for web-application development.

1.3 Contribution

Instead of presenting a whole system, this thesis concentrates on specific aspects of
building web-based database applications in the cloud. The complete system lever-
aging the research results of this thesis is currently built by the 28msec Inc. with the
Sausalito product [28m09].

The main contributions of this dissertation are associated with three topics: How to
build a database on top of cloud infrastructure, consistency rationing, and a XQuery
extension in order to build applications with XQuery. In the following, we outline the
main contributions in each of those areas below.

1.3. Contribution 5

1.3.1 Building a Database on top of Cloud Infrastruc-
ture

The first building block studies how to build the database layer for web-based applica-
tions on top of cloud infrastructure. In particular, the following contributions are made:

• We define a set of basic services and a corresponding (abstract) API, forming
the foundation to develop database applications in the cloud for all kinds of con-
sistency requirements. The API is a generalization of existing cloud offerings.
Hence, the API can be implemented on top of different cloud provider’s services,
which increases the portability.

• We propose an architecture for building web-based database applications on top
of cloud infrastructure. Using the pre-defined service API, the application is not
bound to a single cloud provider and can be easily ported to other providers. The
architecture is modular and utilizes state-of-the-art database techniques. Further-
more, the architecture enables to host the application logic (including the database
operations) at the middle-tier as well as at the client-tier.

• We present a set of newly developed alternative protocols in order to ensure dif-
ferent levels of consistency. As stated earlier, most storage services guarantee
only eventual consistency, which has no support to coordinate and synchronize
parallel access to the same data. This thesis presents a number of protocols in
order to orchestrate concurrent updates and achieve higher levels of consistency,
such as monotonicity, snapshot isolation or serializability.

• We provide results of performance experiments with the TPC-W benchmark to
study the costs (response time and $) of running a web-based application at differ-
ent levels of consistency, client-server architectures, and indexes on top of utility
services.

The outcome of this part, published at SIGMOD 2008 [BFG+08], is patented under
US20090177658, and in use by 28msec Inc. in the Sausalito product [28m09].

1.3.2 Consistency Rationing

We propose consistency rationing as a new transaction paradigm, which not only allows
to define the consistency guarantees on the data instead of transaction level, but also

6 Chapter 1. Introduction

allows to automatically switch consistency guarantees at run-time. That is, consistency
rationing provides the framework to manage the trade-off between consistency and
costs in a fine-grained way. In more detail, the following contributions are made:

• We introduce the concept of Consistency Rationing, a new transaction paradigm,
that not only allows designers to define the consistency guarantees on the data in-
stead at the transaction level, but also enables to automatically switch consistency
guarantees at runtime.

• We define and analyze a number of policies to dynamically switch consistency
protocols at run-time. Our experiments show that dynamically adapting the con-
sistency outperforms statically assigned consistency guarantees.

• We introduce the notion of probabilistic guarantees for consistency (i.e., a per-
centile) using temporal statistics for numerical and non-numerical values.

• We present a complete implementation of Consistency Rationing using the pre-
viously developed architecture. We report on the costs ($) and performance of
running the TPC-W benchmark at several consistency categories, mixes of cat-
egories, and different policies of automatically switching the consistency require-
ments. The results of the experiments provide important insights into the cost of
running such systems, the cost structure of each operation, and the cost optimiza-
tion using appropriate models.

The result of this part has been published at VLDB 2009 [KHAK09].

1.3.3 Windowing for XQuery

The last part of the dissertation is concerned with XQuery as a programming language
and in particular, the missing capabilities of XQuery for stream processing and pagina-
tion. We propose syntax and semantics to define and process complex windows using
XQuery. Windowing describes the concept of selecting sub-sequences of an underly-
ing stream. Although originally intended for stream processing, windowing also turned
out to be useful in many other scenarios like pagination of results for web-pages. In
summary, the following contributions have been made to enable stream processing for
XQuery:

• Window Queries: We define the syntax and semantics of a new FORSEQ clause
in order to define and process complex windows using XQuery.

1.4. Structure 7

• Continuous Queries: We propose a simple extension to the XQuery data model
(XDM) in order to process infinite data streams and use XQuery for continuous
queries.

• Implementation Design: We show that the extensions can be implemented and in-
tegrated into existing XQuery engines with little effort and that simple optimization
techniques are applicable in order to get good performance.

• Linear Road Benchmark: We report the results of running the Linear Road bench-
mark [ACG+04] on top of an open source XQuery engine which was enhanced
with the proposed extensions. The benchmark results confirm that the proposed
XQuery extensions can be implemented efficiently.

The results of extending XQuery for stream processing have been published at VLDB
2007 [BFF+07]. Furthermore, the proposed window capabilities have been incorpo-
rated in the upcoming XQuery 1.1 standard [Kra08, CR08].

1.4 Structure

The remainder of this thesis is organized as follows:

• Chapter 2 provides an overview of cloud computing and XQuery as the program-
ming model. A definition of cloud computing is given and a large number of sam-
ple systems are listed. Common features and architectures of cloud systems are
discussed. Furthermore, a short overview about best practice in development of
web-applications and XQuery as a universal programming language is given.

• Chapter 3 investigates how to build a database on top of cloud infrastructure ser-
vices.

• Chapter 4 presents Consistency Rationing.

• Chapter 5 describes the XQuery windowing extensions for stream processing.

• Chapter 6 provides some concluding remarks and outlines future work.

Chapter 2

State of the Art

2.1 Cloud Computing

This section defines cloud computing in the context of this thesis. It further iterates over
existing building blocks of cloud providers.

2.1.1 What is Cloud Computing?

The roots of cloud computing are in utility and grid computing [FZRL09]. Utility com-
puting has been studied since the 90s, for instance with the OceanStore project at UC
Berkeley. However, it probably enjoyed its biggest success as grid computing in the
scientific community [FK04, Bje04]. Grid computing was designed for very specific pur-
poses - mostly, to run a large number of analysis processes on scientific data. Amazon
has brought the idea to the masses and strongly influenced the term cloud computing.

Cloud computing is characterized by off-site access to shared resources in an on de-
mand fashion [Hay08, Eco08]. It refers to both, the service delivered over the Inter-
net and the hardware and software in the data centers that provide those services
[MG09]. Although not much agreement exists on an exact definition of cloud comput-
ing [VRMCL09, MG09, YBS08, FZRL09, AFG+09], most agree on the following four
aspects which combined in this form are new for cloud computing:

• On demand: Requiring resources on demand, thereby eliminating the need for
up-front investments and planning ahead for hardware provisioning.

• Pay per use: The offer to pay for used computing resources in utility manner (e.g.
processor units per hour, storage per day), similar to an electricity bill.

9

10 Chapter 2. State of the Art

• Scalability: The illusion of the availability of infinite computing resources on de-
mand, eliminating the need for cloud computing users to plan ahead.

• Maintenance and fault tolerance: If a component fails, it is the responsibility of the
service provider to replace the component. Furthermore, the systems are built
in a highly reliable way, often replicated across several data centers, to minimize
outages.

Although sometimes considered as a hype, the main success of cloud computing is not
technology-driven but economical. Cloud computing allows companies to outsource the
IT infrastructure and thus, profit from the economies of scale and the leverage effect of
outsourcing [AFG+09, Eco08, PBA+08, Gar08]. Furthermore, cloud computing shifts
the risk of provisioning to the cloud providers, which further decreases the cost. For
this reason, it is unlikely that it is just a short-term trend.

The economical aspects also explain the new trend towards building private clouds
[PBA+08, AFG+09]. In contrast to public clouds, typically referred to by the general
term cloud computing, which offer a publicly available service, private clouds refer to
smaller installations hosted inside a company offering internal services. The term cloud
is used in this context, as cloud computing created a new mindset of how to develop
software. That is, the focus is first on low cost, scalability, fault tolerance, and ease
of maintenance and only afterwards, on performance, response time, functionality etc.
Thus, the software developed in the context of cloud computing can also help to reduce
the cost in local deployments. This is in particular desired, if trust or security issues
prevent using public clouds.

2.1.2 Cloud Service Overview

Cloud services can be categorized into three types: Infrastructure as a service (IaaS),
platform as a service (PaaS), and software as a service (SaaS) [VRMCL09, MG09,
YBS08]. This is also visualised in Figure 2.1.

2.1.2.1 Infrastructure as a Service (IaaS)

IaaS is the most general form of cloud services. It refers to lower-level services such as
the access to virtual machines, storage services, databases or queue services which
are required to build an application environment from scratch. IaaS makes it easy to

2.1. Cloud Computing 11

PaaS

IaaS

SaaS
SalesForce
GMail
NetSuite

Microsoft Azure
Google AppEngine
Heroku
Sausalito

Amazon EC2, S3, SQS
GoGrid
Mosso

Cl
ou

d
Se

rv
ice

 C
on

tin
uu

m

Figure 2.1: Cloud Continuum

provision and afford resources such as servers, network and storage. The services
are typically billed by the amount of consumed resources. IaaS provides the biggest
freedom to develop applications while at the same time requiring users to deal with
lower-level details such as virtual machines, operating systems, patches etc. The three
biggest IaaS providers today are Amazon, GoGrid and Mosso. The services offered by
those providers are shown in table 2.1.

Hosting services: The most universal infrastructure services the providers offer are
hosting services which allow clients to rent machines (CPU + disks) for a client-specified
period of time. Examples for such services are Amazon’s EC2, GoGrid Cloud Hosting
and Rackspace Cloud Server. Technically, the client gets a virtual machine (VM) which
is hosted on one of the provider’s servers. The services are typically priced between
0.01 and 1 USD per hour and instance depending on the configuration (e.g. memory,
CPU power, disk space), plus the additional cost per network traffic which is typically
priced between 0.1 and 0.5 USD per GB. The VMs are able to host almost all kinds
of linux and windows and, hence, allow for installing and operating almost every kind
of software in the cloud. The biggest advantage of hosting services is the possibility
to increase and decrease the number of virtual machines on demand. For example, if
an application requires more resources over lunch-time those resources can be added
in the form of additional VMs. Although most providers help spreading the load across
the servers with basic load-balancing mechanisms, the programmer still needs to take
care of sessions, data persistence, consistency, caches etc. Furthermore, the service

12 Chapter 2. State of the Art

Vendor Hosting Service Storage Service Other Services

Amazon
[Ama09a]

Elastic Compute Cloud
(EC2)

•Elastic Block Store
(EBS)
•Simple Storage
Service (S3)

•Simple Queue Ser-
vice (SQS)
•CloudFront
•SimpleDB

ServerPath
[Off09]

GoGrid Cloud Hosting
GoGrid Cloud Stor-
age

-

Rackspace
[Rac09] Cloud Servers Cloud Files -

Table 2.1: Infrastructure as a Service Providers and Products

providers do not guarantee high reliability for the VMs. That is, if a VM crashes (either
caused by the user or by the provider), the complete state of the VM including the state
of the local attached disk is lost.

Storage services: To persist data across the lifetime of a VM, service providers offer
separate storage services, such as Amazon’s Simple Storage Service or Elastic Block
Store, GoGrid Cloud Storage and Mosso’s Cloud Files. Again, those services are priced
in a utility manner, today around 0.1 - 0.3 USD per GB per month plus in- and outgoing
network traffic and quite often additional charges per write and read request. The ser-
vices themselves differ in the degree of concurrency they allow (single user per entity at
a time vs. multiple users per entity), consistency guarantees (strong ACID guarantees
vs. eventual consistency), the degree of reliability (single data center vs. multi data
center replication) and the features (simple key-value vs. queries). As the storage part
plays a significant role in the application development and all the services differ signif-
icantly in the guarantees they provide, we discuss the cloud storages in more detail in
Section 2.3.2.

Other services: Next to the fundamental services (i.e., hosting and storage), Ama-
zon offers additional services to help the developers in building their applications inside
the cloud. Most importantly, SimpleDB offers a simple way to store and retrieve struc-
tured data. The name, however, is misleading as SimpleDB is rather an index than a
database: no notion of transaction exists, the only datatype is text and queries are re-
stricted to simple predicates including sorting and counting but excluding joins or more
complex grouping functionality. SimpleDB is described in more detail in Section 3.2.5.
Next to SimpleDB, Amazon offers the Simple Queue Service (SQS). Again, the name
is misleading, as SQS does not offer queues with first-in-first-out semantics. Instead,

2.1. Cloud Computing 13

SQS is an exactly-once message service, where a message can be put into a so called
”queue” and retrieved from it. Section 3.2.4 discusses SQS in more detail. The last
service in the group of Amazon’s infrastructure offerings is CloudFront, a content deliv-
ery service. It allows developers to efficiently deliver content using a global network of
edge servers. CloudFront routes a request for an object to the nearest edge location
and thus, reduces latency.

Although it is possible to combine services from different providers, e.g. Amazon´s
S3 with the hosting service of GoGrid, such combinations are uncommon as the cost
of network traffic and latency makes them more expensive and slower. Furthermore,
so far no standard API exists between the cloud providers, thus making the migration
between service providers hard.

2.1.2.2 Platform as a Service (PaaS)

PaaS offerings provide a higher-level development platform to write applications, hid-
ing the low-level details like the operating system or load balancing from the developer.
PaaS platforms are often built on top of IaaS and restrict the developer to a single
(limited) programming language and a pre-defined set of libraries - a so-called plat-
form. The biggest advantage of PaaS is that the developer can completely concentrate
on the business logic without having to deal with lower-level details such as patches
to the operating system or firewall configurations. Furthermore, scalability is provided
automatically as long as the developer follows certain guidelines. Those restrictions
constitute the major downside of PaaS. This is especially true if parts of the applica-
tion already exist or certain libraries are required. Again, no standards between PaaS
providers exist. Therefore, changing the service provider is even harder and more cost
intensive than with IaaS as the application code depends heavily on the host language
and APIs.

The most prominent cloud platforms are Google’s App Engine, Microsoft’s Azure Plat-
form and Force.com (see Table 2.2). Google’s App Engine offers to host languages
in Java and Python, whereas Microsoft’s Azure Platform supports the .NET framework
and PHP. Both Microsoft and Google restrict the code which is able to run on their
service. For example, Google’s App Engine does not allow Java programs to spawn
threads, to write data to the local file system, to make arbitrary network connections or
to use JNI bindings.

Similar to IaaS, data persistence is again critical and both platforms offer dedicated
services for it. Google’s DataStore accepts storing structured and semi-structured data,

14 Chapter 2. State of the Art

Platform Runtime Environment Storage Service Additional Services

Google App
Engine[Goo08]

•Java*
•Python*
*with restrictions

DataStore

•Google accounts
•Image manipulation
•Mail
•Memcache

Microsoft Azure
Platform[Mic09]

Windows Azure: .Net
languages

•SQL Azure
Database
•Azure Storage
Service

•Access control
•Service bus
•Live services
•Sharepoint
•...

Force.com
Salesforce.com
[Sal09]

Force.com Platform:
•Apex (based on Java)
•Visualforce (for UI)
•Meta programming

Force.com
Database Ser-
vices

•Web service API
•Workflow engine
•Reporting & analytics
•Access control
•...

28msec, Inc.
[28m09]

Sausalito:
XQuery

Integrated into
Sausalito

XQuery function li-
braries:
•Authentication
•Atom
•Mail
•...

Table 2.2: Platform as a Service Providers and Products

supports transactions, and even has a simple query language called GQL. Nonetheless,
DataStore does not provide the same functionality as a ”full” database. For example,
the transaction support is rather rudimentary and GQL, though as a restricted language
being similar to SQL, lacks the functionality for joins and complex aggregations. On the
other hand, SQL Azure Database is a small MS SQL Server database and provides
the features of MS SQL Server. However, it is restricted in size (at the moment 10 GB
maximum). The storage services are re-visited in more detail in Section 2.3.2. Both
platforms offer additional services such as authentication, message busses etc. to
support the developer in programming the application. These services are beyond the
scope of this thesis.

2.1. Cloud Computing 15

Force.com offered by the Salesforce, Inc. [Sal09] applies an approach that is slightly
different from Google’s App Engine and MS Azure. The Force.com platform originates
from the software-as-a-service CRM product Salesforce.com and is in particular tailored
to create traditional business applications [WB09]. The whole platform applies a meta-
data driven development approach. Forms, reports, workflows, user access privileges,
business logic, customizations up to tables and index definitions exist all as meta-data
in Force.com’s Universal Data Dictionary (UDD). Force.com supports two different ways
of creating customized applications: the declarative way of using the provided applica-
tion framework and the programmatical approach of using the web-service APIs. The
programming language supported by the platform is APEX, a language derived from
Java, with data manipulation operations (e.g., insert, update, delete), transaction con-
trol operations (setSavepoint, rollback), as well as the possibility to embed the Sales-
force.com query (SOQL) and search (SOSL) languages. So far known, Salesforce
stores the entire data of one custumer/company inside one single relational database
using a de-composed multi-tenancy data layout [WB09]. As a result, the scalability is
restricted to one single database.

Next to the three big platforms, many smaller startups providing platforms in different
languages appear on the market like Heroku [Her09], Morph [Lab09], BungeeConnect
[Bun09] and 28msec [28m09]. Most of the architectures follow models similar to the
ones of Google and Microsoft. Worth mentioning is 28msec’s product Sausalito as it is
based on results of this thesis. Sausalito combines the application and database server
in one tier and uses XQuery as the programming language. Similar to Ruby on Rails the
platform provides a configuration by convention concepts and is particularly suited for
all types of web applications. Sausalito applies a shared-disk architecture as presented
in Chapter 3 and is entirely deployed inside Amazon’s Web Service infrastructure.

2.1.2.3 Software as a Service (SaaS)

SaaS is the highest form of services delivering a special-purpose software through
the internet. The biggest advantage for the customer is that no up-front investment in
servers or software licensing is required and the software is completely maintained by
the service provider. On the provider side, normally one single version of the app
is hosted and maintained for thousands of users, lowering the cost in hosting and
maintenance compared to traditional software models. The most prominent example
for SaaS is Salesforce, a customer-relationship-management software. However, dis-
cussing SaaS in more detail is beyond the scope of this thesis.

16 Chapter 2. State of the Art

2.2 Web-Based Database Applications in the
Cloud

With today’s choices the possibilities of building applications inside the cloud are un-
limited. Different services, possibly even from different providers, can be combined to
achieve the same goal. Furthermore, by using virtualized machines, any kind of ser-
vice can be created inside the cloud. Although there is no agreement on how to design
applications inside the cloud, certain best practice recommendations exist [Tod09].

2.2.1 Applications using PaaS

The simplest and probably fastest way to deploy an application inside the cloud is by
use of a PaaS (see Section 2.1.2.2). The platform hides the complexity of the under-
lying infrastructure (e.g. load balancing, operating system, fault tolerance, firewalls)
and provides all the services, typically through libraries, which are required to build an
application (e.g., tools for building web-based user interfaces, storage, authentication,
testing, etc.). As invoking services outside the platform provider is rather expensive
with respect to latency, best practice is to use the services and tools from a single
PaaS provider. Although PaaS offers many advantages, the biggest drawback is the
incompatibility between platforms and the enforced limitations of the platform. In addi-
tion, by today, the PaaS software is proprietary and no open-source systems exist, thus
preventing the use of this approach for private cloud installation.

2.2.2 Applications using IaaS

Developers requiring more freedom and/or not willing to restrict themselves to one pro-
vider, may directly use IaaS offerings. These enable a more direct access to the un-
derlying infrastructure. The canonical form of traditional web architectures is shown in
Figure 2.2. Clients connect by means of a web browser through a firewall to a web
server. The web server is responsible for rendering the web-sites and interacts with a
(possibly distributed) file system and an application server. The application server hosts
and executes the application logic and interacts with a database, and possibly with the
file system and other external systems. Although the general structure is similar for all
web-based database applications, a huge variety of extensions and deployment strate-
gies exists [CBF03]. By means of virtualized machines all of those variations are also

2.2. Web-Based Database Applications in the Cloud 17

Firewall

Web
Server

Application
Server

File
System

Database
System

External
SystemsWeb Browser

Figure 2.2: Canonical Web Architecture (modified from [Con02, CBF03])

deployable in the cloud. However, to profit from the elasticity of the cloud and the
pay-as-you-go pricing model, not every architecture is equally applicable [Gar09]. For
example, the quite popular monolithic (all-on-one server) architecture as epitomized by
the LAMP stack (i.e., Linux, Apache, MySQL, PHP on one server) is not amenable to
cloud applications. The architecture presents not only a single point of failure, but be-
cause it is limited to a single server instance, its scalability in case that traffic exceeds
the capacity of the machine is limited.

The best practice deployment strategy for web-applications using IaaS is shown in Fig-
ure 2.3. The application and the web server are deployed together on one VM, typically
by using a customized image. As discussed earlier, VMs normally loose all the data
if they crash. Thus, the web/application tier is typically designed stateless and uses
other services to persist session data (e.g. a storage service or database service). The
storage service (such as Amazon’s S3) is typically used for large objects like images,
or videos whereas a database is used for smaller records. The elasticity of the archi-
tecture is guaranteed by a load balancer which watches the utilization of the services,
initiates new instances of the web/application server and balances the load. The load
balancer is either a service which might itself run on a VM, or a service offered by the
cloud provider. In addition, the firewall is normally also offered as a service by the cloud
provider.

Regarding the deployment of database systems in the cloud, two camps of thought
exist. The first camp favours installing a full transactional (clustered) database system
(e.g., MySQL, Postgres, or Oracle) in the cloud, again by using a VM service. This ap-
proach provides the comfort of a traditional database management system and makes
the solution more autonomous from the cloud provider because it relies on less non-

18 Chapter 2. State of the Art

standardized APIs. On the downside, traditional database management systems are
hard to scale and not designed to run on VMs [Aba09, Kos08]. That is, the query op-
timizer and the storage management assume that they exclusively own the hardware
and that failures are rather rare. All this does not hold inside a cloud environment.
Furthermore, traditional database systems are not designed to constantly adapt to the
load, which not only increases the cost, but frequently requires manual interaction in
order to be able to react to the load.

The second camp prefers using a specially designed cloud storage or database ser-
vice instead of a full transactional database. The underlying architecture of such a
service is typically based on a key-value store designed for scalability and fault tol-
erance. This kind of service can either be self-deployed, typically using one of the
existing open-source systems (see Section 2.3.2.2), or is offered by the cloud provider
(see Section 2.3.2.1). The advantage of this approach lies in the system design for
fault tolerance, scalability, and often self-management. If the service is operated by
the cloud provider, it increases the outsourcing level. In this case, the cloud provider is
responsible for monitoring and maintaining the storage/database service. On the down-
side, these services are often simpler than full transactional database systems offering
neither ACID guarantees nor full SQL support. If the application requires more, it has
to be built on top without much support available so far. Nevertheless, this approach
is becoming more and more popular because of its simplicity and excellent scalability
[Tod09].

2.3 Cloud Storage Systems

This section discusses cloud storage systems in more detail because of their funda-
mental role in building database application in the cloud. At the same time, it provides
the foundation for Section 3. Here, we use the name cloud and database service in-
terchangeably, as none of the database services in the cloud really offers the same
comfort as a full-blown database (see Chapter 2.3.2) and, on the other hand, cloud
storage services are extended with more functionality (e.g., simple query languages)
making them more than a simple storage service. We would like to emphasize that we
are aware that the results presented in this chapter capture merely a snapshot (June
2009) of the current state-of-the-art in utility computing. Given the success of AWS
and the recent offerings by Google, it is likely that the utility computing market and its
offerings will evolve quickly. Nevertheless, we believe that the techniques and trade-
offs discussed in this and the subsequent chapters are fundamental and are going to

2.3. Cloud Storage Systems 19

Firewall Storage
Service

Database
System

External
Services

Load
Balancer

Web Browser

Figure 2.3: Cloud Web Architecture(modified from [Con02, CBF03])

continue to remain relevant.

2.3.1 Foundations of Cloud Storage Systems

The section explains the importance of the CAP theorem for developing cloud solutions
before presenting some of the basic tools used to build cloud services.

2.3.1.1 The Importance of the CAP Theorem

To achieve high scalability at low cost, cloud services are typically highly distributed
systems running on commodity hardware. Here scaling just requires adding a new off-
the-shelf server. Unfortunately, the CAP theorem states that it is not possible to achieve
Consistency, Availability and tolerance against network Partitioning at the same time
[Bre00, GL]. In order to completely avoid network partitioning, or at least to make it
extremely unlikely, single servers or servers on the same rack can be used. Both so-
lutions do not scale and, hence, are not suited for cloud systems. Furthermore, these
solutions also decrease the tolerance against other failures (e.g., power outages or
over-heating). Also, to use more reliable links between the networks does not elim-
inate the chance of partitioning, and increases the cost significantly. Thus, network
partitions are unavoidable and either consistency or availability can be achieved. As a
result, a cloud service needs to position itself somewhere in the design space between
consistency and availability.

20 Chapter 2. State of the Art

2.3.1.2 Consistency Guarantees: ACID vs. BASE

Strong consistency in the context of database systems is typically defined by means
of the ACID properties of transactions [RG02, WV02]. ACID requires that for every
transaction the following attributes hold:

• Atomicity: Either all of the tasks of a transaction are performed or none.

• Consistency: The data remains in a consistent state before the start of the trans-
action and after the transaction.

• Isolation: Concurrent transactions result in a serializable order.

• Durability: After reporting success, the modifications of the transaction will persist.

If ACID is chosen for consistency, it emphasizes consistency while at the same time
diminishing the importance of availability. Requiring ACID also implies that a pessimistic
view is taken, where inconsistencies should be avoided at any price. As a consequence,
to achieve ACID properties, complex protocols such as 2-phase-commit or consensus
protocols like Paxos are required.

On the other extreme, where availability is more important than consistency, BASE
[Bre00] is proposed as the counter-part for ACID. BASE stands for: Basically Available,
Soft state, Eventual consistent. Where ACID is pessimistic and forces consistency at
the end of every operation, BASE is optimistic and accepts inconsistency. Eventual
consistency only guarantees that updates will eventually become visible to all clients
and that the changes persist if the system comes to a quiescent state [SS05]. In con-
trast to ACID, eventual consistency is easy to achieve and makes the system highly
available.

Between the two extremes BASE and ACID, a range of consistency models from the
database community (e.g. the ISO isolation levels) [WV02] as well as from the dis-
tributed computing community [TS06] can be found. Most of the proposed models can
lead to inconsistencies but at the same time lower the likelihood of those.

2.3.1.3 Techniques

To achieve fault tolerance and ease of maintenance, cloud services make heavy use of
distributed algorithms such as Paxos and distributed hash-tables. This section presents
the basic tool box to build highly reliable and scalable cloud services and thus, the

2.3. Cloud Storage Systems 21

basic techniques to compare different cloud services. However, the focus here is on
distributed algorithms. Standard database techniques (e.g. 2-phase-commit, 3-phase-
commit etc.) are assumed to be known.

Master-Slave/Multi-Master: The most fundamental question when designing a sys-
tem is the decision for a master-slave or a multi-master architecture [TS06]. In the
master-slave model one device or process has the control over a resource. Every
change to the resource has to be approved by the master. The master is typically
elected from a group of eligible devices/processes. In the multi-master model the con-
trol of the resource is not owned by a single process; instead, every process/device can
modify the resource. A protocol is responsible for propagating the data modifications to
the rest of the group and resolve possible conflicts.

Distributed hash-table (DHT): A distributed hash-table provides a decentralized look-
up service [SMK+01, RD01]. Within a DHT the mappings from keys to values are dis-
tributed across nodes often including some redundancy to ensure fault tolerance. The
key properties of a DHT are that the disruptions caused by node joins or leaves are
minimized, typically by using consistent hashing [KLL+97], and that no node requires
the complete information. DHT implementations normally differ in the hash method they
apply (e.g. order preserving vs. random), the load-balancing mechanism and the rout-
ing to the final mapping [UPvS09]. The common use case for DHTs is to load-balance
and route data across several nodes.

Quorums: To update replicas, a quorum protocol is often used. A quorum system
has three parameters: a replication factor N, a read quorum R and a write quorum W.
A read/write request is sent to all replicas N, and each replica is typically on a separate
physical machine. The read quorum R (respectively the write quorum W) determines
the number of replicas that must successfully participate in a read (write) operation.
That is, to successfully read (write) a value, the value has to be read (written) by R
(W) numbers of replicas. Setting R + W > N ensures that always the latest update is
read. In this model, the latency of read/write is dictated by the slowest of the read/write
replicas. For this reason, R and W are normally set to be lower than the number of
replicas. Furthermore, by setting R and W accordingly the system is balanced between
read and write performance. The quorums also determine the availability and durability
of the system. For example, a small W increases the chance of loosing data and if fewer
nodes than W or R are available, reads or writes are not possible anymore. For systems
where availability and durability are more important than consistency, the concept of
sloppy quorums was introduced. In the presence of failures, sloppy quorums can use

22 Chapter 2. State of the Art

any node to persist data and these are reconsolidated later. As a consequence, sloppy
quorums also do not guarantee to read the latest value if R + W is set to be bigger than
N.

Vector Clocks: A vector clock is a list (i.e, vector) of (client, counter) pairs created
to capture causality between different versions of the same object [Lam78, DHJ+07].
Thus, a vector clock is associated with every version of every object. Each time a client
updates an object, it increments its (client, counter) pair (e.g., the own logical clock) in
the vector by one. One can determine whether two versions of an object are conflicting
or have a causal ordering, by examining their vector clocks. Causality of two versions
is given, if every counter for every client is higher or equal to the counter of every client
of the other version. Else, a branch (i.e., conflict) exists. Vector clocks are typically
used to detect conflicts of concurrent updates without requiring consistency control or
a centralized service [DHJ+07].

Paxos: Paxos is a consensus protocol for a network of unreliable processors [Lam98,
CGR07]. At its core, Paxos requires a majority to vote on a current state - similar to
the quorums explained above. However, Paxos goes further and can ensure strong
consistency as it is able to reject conflicting updates. Hence, Paxos is often applied in
multi-master architectures to ensure strong consistency - in contrast to simple quorum
protocols, which are typically used in eventually consistent scenarios.

Gossiping protocols: Gossiping protocols, also referred to as epidemic protocols,
are used to multi-cast information inside a system [DGH+87, RMH96]. They work simi-
lar to gossiping in social networks where a rumor (i.e., information) is spread from one
person to another in an asynchronous fashion. Gossip protocols are especially suited
for scenarios where maintaining an up-to-date view is expensive or impossible.

Merkle Trees: A Merkle tree or hash tree is a summarizing data structure, where
leaves are hashes of the data blocks (e.g., pages) [Mer88]. Nodes further up in the tree
are the hashes of their respective children. Hash trees allow to quickly identify if data
blocks have changed and allow further to locate the changed data. Thus, hash trees
are typically used to determine if replicas diverge from each other.

2.3.2 Cloud Storage Services

This section gives an overview of the available cloud storage services including open-
source projects, that help to create private cloud solutions.

2.3. Cloud Storage Systems 23

2.3.2.1 Commercial Storage Services

Amazon’s Storage Services: The most prominent storage service is Amazon’s S3
[Ama09d]. S3 is a simple key-value store. The system guarantees that data gets repli-
cated across several data centers, allows key-range scans, but only offers eventual
consistency guarantees. Thus, the services only promise that updates will eventually
become visible to all clients and that changes persist. More advanced concurrency
control mechanisms such as transactions are not supported. Not much is known about
the implementation of Amazon’s S3. Section 3.2 gives more details about the API and
cost infrastructure of S3 because we use it in parts of our experiments.

Next to S3, Amazon offers the Elastic Block Store (EBS) [Ama09c]. In EBS, data is
divided into storage volumes, and one volume can be mounted and accessed by exactly
one EC2 instance at a time. In contrast to S3, EBS is only replicated within a single
data center and provides session consistency [Rig08].

Internally, Amazon uses another system called Dynamo [DHJ+07]. Dynamo supports
high update rates for small objects and is therefore well-suited for storing shopping
carts etc. The functionality is similar to S3 but does not support range scans. Dynamo
applies a multi-master architecture where every node is organized in a ring. Distributed
hash tables are used to facilitate efficient look-ups and the replication and consistency
protocol is based on quorums. The failure of nodes is detected by using gossiping
and Merkle trees help to bring diverged replicas up-to-date. Dynamo applies sloppy
quorums to achieve high availability for writes. The only consistency guarantee given by
the system is eventual consistency, although the quorum configuration allows optimizing
the typical behavior (e.g., read-your-write monotonicity). The architecture of Dynamo
inspired many open-source projects such as Cassandra or Voldemort.

Google’s Storage Service: Two Google-internal projects are known: BigTable [CDG+06]
and Megastore [FKL+08]. The latter, Megastore, is most likely the system behind
Google’s AppEngine storage service.

Google’s BigTable [CDG+06] is a distributed storage system for structured data. Big-
Table can be regarded as a sparse, distributed, persistent, multi-dimensional sorted
map. The map is indexed by a row key, a column key, and a timestamp. No schema
is imposed and no higher query interface exists. BigTable uses a single-master archi-
tecture. To reduce the load on the master, data is divided into so-called tablets and
one tablet is exclusively handled by one slave (called tablet server). The master is re-
sponsible for (re-)assigning the tablets to tablet servers, for monitoring, load-balancing,
and certain maintenance tasks. Because BigTable clients do not rely on the master

24 Chapter 2. State of the Art

for tablet location information, and read/write request are handled by the tablet server,
most clients never communicate with the master.

Chubby [Bur06], Google’s distributed lock service, is used to elect the master, to deter-
mine the group-membership of servers, and to ensure one tablet server per tablet. As
its heart, Chubby uses Paxos to achieve strong consistency among the Chubby servers.

To store data persistently, BigTable relies on Google’s File System (GFS) [GGL03].
GFS is a distributed file system for large data files, that are a normally only appended
and rarely overwritten. Thus, BigTable stores the data on GFS in an append-only mode
and does not overwrite data. GFS only provides relaxed consistency but as BigTable
guarantees a single tablet server per tablet, no concurrent writes can appear, and at
row-level atomicity and monotonicity are achieved. BigTable and Chubby are designed
as a single data center solution. To make BigTable available across data centers an ad-
ditional replication protocol exists, providing eventual consistency guarantees [Dea09].

Google’s Megastore [FKL+08] is built on top of BigTable and allows to impose schemas
and a simple query interface. Similar to SimpleDB, the query language is restricted
and more advanced queries (e.g.,a join) are not possible. Furthermore, Megastore
supports transactions with serializable guarantees inside an entity group.1 Entity groups
are entirely user-defined and have no size restriction. Still, every transaction inside an
entity group is executed serially. Thus, if the number of concurrent transactions is high,
the entity group becomes a bottle-neck. Again, no consistency guarantees are made
between entity groups.

Yahoo’s Storage Service: Two systems are known: PNUTS [CRS+08] and a scal-
able data platform for small applications [YSY09]. The first is similar to Google’s Big-
Table. PNUTS applies a similar data model and also splits data horizontally into tablets.
In contrast to BigTable, PNUTS is designed to be distributed across several data cen-
ters. Thus, PNUTS assigns tablets to several servers across data center boundaries.
Every tablet server is the master for a set of records from the tablets. All updates to a
record are redirected to the record master and are afterwards propagated to the other
replicas using Yahoo’s message broker (YMB). The mastership of a record can migrate
between replicas depending on the usage and thus, increases the locality for writes.
Furthermore, PNUTS offers an API which allows the implementation of different levels
of consistency, such as eventual consistency or monotonicity.

Yahoo’s second system [YSY09] consists of several smaller databases and provides

1Also, transactions are executed in a serial order; serializability can be violated because of the lazy
updates to indexes [Ros09].

2.3. Cloud Storage Systems 25

strong consistency. Nodes/machines are organized into so-called colos with one colo
controller each. Nodes in one colo are located in the same data center, often even in the
same rack. Nodes in a colo run MySQL and host one or more user databases. The colo
controller is responsible for mapping the database to nodes. Furthermore, every user
database is replicated inside the colo. The client only interacts with the colo controller
and the controller forwards the request to the MySQL instance by using a read-once-
write-all replication protocol. Thus, ACID guarantees can be provided. Additionally,
user databases are replicated across colos using an asynchronous replication protocol
for disaster recovery. As a consequence, major failures can lead to data loss. Another
restriction imposed by the architecture is, that neither data nor transactions inside a
database can span more than one machine, implying a scalability limit on the database
size and usage.

Microsoft’s Storage Service: Microsoft offers two services: Azure Storage Service
[Cal08] and SQL Azure Database [Lee08]. Windows Azure storage consists of three
sub-services: blob service, queue service, table service. The blob service is best com-
pared to a key-value store for binary objects. The queue service provides a message
service, similar to SQS, and also does not guarantee first in/first out (FIFO) behavior.
The tablet service can be seen as an extension to the blob service. It allows to define
tables and even supports a simple query language. Within Azure Storage Service data
is replicated inside a single data center and monotonicity guarantees are provided per
record but here exists no notion of transactions for several records. Little is known about
the implementation, although the imposed data categorization and limitations look sim-
ilar to the architecture of BigTable.

The second service offered by Microsoft is SQL Azure Database. This service is struc-
tured similar to Yahoo’s platform for small applications but instead of running MySQL,
Microsoft SQL Server is used [Sen08]. The service offers full transaction support, a
simplified SQL-like query language (so far not all SQL Server features are exposed),
but restricts the consistency to a smaller set of records (i.e., 1 or 10 GB).

2.3.2.2 Open-Source Storage Systems

This section provides an overview about existing open-source storage systems. The
list is not exhaustive and many other systems such as Tokyo Cabinet [Hir09], MongoDB
[10g09], and Ringo[Tuu09] exist. However, those systems were chosen as they are
already more stable and/or provide some interesting features.

26 Chapter 2. State of the Art

Cassandra: Cassandra [Fac09] was designed by Facebook to provide a scalable re-
verse index per user-mailbox. Cassandra tries to combine the flexible data model of
BigTable with the decentralized administration and always-writable approach of Dy-
namo. To efficiently support the reverse index, Cassandra supports an additional three-
dimensional data structure which allows the user to store and query index like struc-
tures. For replication and load-balancing, Cassandra makes use of a quorum system
and a DHT similar to Dynamo.

CouchDB: CouchDB [The09b] is a JSON-based document database written in Er-
lang. CouchDB can do full text indexing of the stored documents and supports ex-
pressing views over the data in JavaScript. CouchDB uses peer-based asynchronous
replication, which allows updating documents on any peer. When distributed edit con-
flicts occur, a deterministic method is used to decide on a winning revision. All other
revisions are marked as conflicting. The winning revision participates in views and fur-
ther provides the consistent view. However, every replica can still see the conflicting
revisions and has the opportunity to resolve the conflict. The transaction mechanism of
CouchDB can best be compared with snapshot isolation, where every transaction sees
a consistent snapshot. But in contrast to the traditional snapshot isolation, conflicts do
not result in aborts. Instead, the changes are accepted in different versions/branches
which are marked as conflicting.

HBase: HBase [The09a] is a column-oriented, distributed store modeled after Google’s
BigTable and is part of the of the Hadoop project [The09c], an open-source MapReduce
framework [DG08]. Like BigTable, HBase also relies on a distributed file system and a
locking service. The file system provided together with Hadoop is called HDFS and is
similar to Google’s FileSystem architecture. The locking service is called ZooKeeper
[Apa08] and makes use of the TCP connections to ensure consistency (in contrast to
Chubby from Google which uses Paxos). However, the whole architecture of HBase,
HDFS and ZooKeeper looks quite similar to Google’s software stack.

Redis: Redis [Red09] is a disk-backed, in-memory key-value store written in C. The
most interesting feature is the data model. Redis not only supports binary strings, inte-
gers etc., but also lists, queues and sets, as well as higher level atomic operations on
them (e.g., push/pop/replacement of values in list). Redis does a master-slave replica-
tion for redundancy but no sharding; thus, all data must fit in a single system’s RAM.2

Redis maintains the whole dataset in memory and checkpoints the data from time to

2It is noteworthy that with an appropriate client library sharding is possible but it is not automatically
provided by the system.

2.4. XQuery as the Programming Model 27

time to disk. Thus, the last updates may be lost in the case of bigger failures. The
master-slave replication is synchronous and every change done in the master is repli-
cated as soon as possible to the slaves. Every write has to go through the master and
no further concurrency or locking mechanism is provided.

Scalaris: Scalaris [BosG09] is an in-memory key-value store written in Erlang. It uses
a modified version of the Chord [SMK+01] algorithm to form a DHT, and stores the keys
in lexicographical order, thus enabling range queries. Data is replicated using a quorum
system. Furthermore, Scalaris supports transactions across multiple keys with ACID
guarantees by using an extended version of Paxos. In a way, Scalaris combines the
concept of Dynamo with Paxos and thus, offers strong consistency.

Project-Voldemort: Project-Voldemort [The09d] is yet another key-value store de-
signed along the lines of Dynamo written in Java. However, it applies a layered archi-
tecture, which makes it possible to exchange the different components of the system.
For example, it is easily possible to exchange the storage engine or the serialization
method. The system seems to be in a reliable state and is in production at LinkedIn
[Cor09].

2.4 XQuery as the Programming Model

This section provides an overview of existing programming models for database appli-
cations. As cloud applications are typically accessed over the internet, the standard
user frontend is web-based. Thus, for the following we will concentrate on web-based
database applications.

2.4.1 Programming Models Overview

The standard model for web-based applications is still a three-tier architecture, where
the user interface, functional process logic and data access are developed and main-
tained as independent modules as demonstrated in Figure 2.4 [Con02, CBF03]. On the
different layers, different languages and data representations are used. On the client-
tier the standard format is HTML or XML which are then interpreted by the browser. To
”program” the client the standard languages are JavaScript or Microsoft’s ActionScript.
The middle-tier renders the HTML or XML documents on request of the client. The

28 Chapter 2. State of the Art

Client tier
• JavaScript
• ActiveScript
• ...

• Java/JSP
• PHP
• Ruby on Rails
• ...

• SQL
• XQuery
• ...

• HTML
• XHTML
• XML
• ...

Logic tier

Data tier• Relations
• XML

Objects

Figure 2.4: Web application layers

prominent languages for the middle-tier are Java/JSP, PHP, Ruby on Rails and Python.
If the application is running inside the cloud, the middle-tier might be already a cloud
service (e.g., a Platform as a Service) or hosted on a virtualized machine. The client
typically interacts with the middle-tier by means of REST calls containing JSON or XML
data. This data is then transformed to data types of the host language such as ob-
jects. Furthermore, the middle-tier is often a layer consisting of several services which
communicate over XML/JSON as well. To persist and access data, the data tier is re-
sponsible for using a structured (e.g., relational) or a semi-structured (e.g., XML) data
model. To access the data declarative languages such as SQL or XQuery are used.
The communication between the middle-tier and the data tier is normally done either
with remote procedure calls (RPC) or by means of XML/JSON messages.

One of the biggest problems with the traditional architecture is the need to cope with
several languages and different data types (e.g., XML Schema vs. SQL types). Fur-
thermore, transforming data from one environment to another impacts performance and
adds unnecessary complexity. The approaches that have been proposed for eliminat-
ing the mismatch between the middle and data-tier fall into two general categories: (1)
Enhance a host language with declarative query operators so that it no longer needs
to call the data-tier; or (2) Enhance data-tier language with extensions to support ap-
plication logic without relying on a middle-tier language. The approach of enhancing
a programming language with a declarative language for data acces is exemplified by

2.4. XQuery as the Programming Model 29

languages such as Pascal/R [JS82], Microsoft LINQ [MBB06], or to a certain extent also
Ruby on Rails [Gee06]. Although these extensions reduce the languages the program-
mer has to deal with and make the data access more integrated, the approach tends to
limit opportunities for optimization, and does not address the basic mismatch between
the primitive types of XML Schema and the host language.

Extending the data-tier language to make it independent of a host language as done
with PL/SQL [Feu05] and IBM’s SQL PL [JLB+04] has been quite a successful ap-
proach. Today, programming extensions are supported by most SQL implementations.
SQL as a programming language has been used extensively in building many commer-
cial applications including salesforce.com [Sal09] and the Oracle application suite. In
general, industry experience suggests that it is easier to add a few carefully selected
control flow operations to a database query language than to embed a foreign type
system and persistence model into a procedural programming language.

Given the proliferation of XML data, XQuery [CR08] has recently been proposed as an
alternative language which is able to run on all layers [CCF+06, FPF+09]. XQuery is a
declarative language particularly developed for XML, although not restricted to XML. In
the following sub-section, XQuery is explained in more detail as a general programming
model for web-based database applications.

2.4.2 What is XQuery?

XQuery is a declarative programming language and builds on top of the XML Schema
data types. Hence, XQuery is well-suited for parallelization and avoids the impedance
mismatch between XML data types and the types of the hosting programming lan-
guage. Since 2007, XQuery 1.0 is recommended by the W3C [CR08]. So far, almost
fifty XQuery implementations are advertised on the W3C web pages, including imple-
mentations from all major database vendors and several open source offerings.

XQuery itself relies on several standards like XML Schema and XPath and has its own
data model, which is also shared with XPath and XSLT. In the XPath and XQuery Data
Model (XDM) [FMM+06], every value is an ordered sequence of zero or more items,
which can be either an atomic value or a node. An atomic value is one of the atomic
types defined by XML Schema or is derived from one of those. A node can be a
document, an element, an attribute, a text, a comment, a processing instruction or a
namespace node. So an instance of the data model may contain one or more XML
documents or fragments of documents, each represented by its own tree of nodes.
XQuery has several predefined functions and language constructs to define what and

30 Chapter 2. State of the Art

how to transform one instance to another. The most commonly known feature is the
FLWOR (pronounced ”flower”) expressions, which stands for the keywords ”For Let
Where Order Return” and is the equivalent to ”select from where order by” in SQL.

XQuery itself is defined as a transformation from one instance of the data model to
another instance, similar to a functional programming language. This also allows con-
necting several XQueries to each other, as every result is also a valid input. Input data
from outside the XQuery engine can be inserted applying functions such as document
or collection, or by referencing to the external context (prebound variables). Each of
these methods then returns an XDM instance that can be processed by the XQueries.

The main XQuery specification [CR08] defines the query language. The ”XQuery Up-
date Facilities” [CDF+09] and ”XQuery 1.0 and XPath 2.0 Full-Text” [AYBB+09] spec-
ifications add functionality for updates and full-text support to the language. Although
XQuery (as the query language) is turing complete [Kep04], the pure declarative con-
cept makes it hard to develop complete web-applications in XQuery. In [CCF+06,
GRS06, BCE+08], XQuery is extended to a programming language with imperative
concepts. With these extensions it becomes feasible to develop complete applications
with XQuery. As XQuery is well-suited to run in the application layer as well as in the
database layer, even the impedance mismatch between layers can be avoided. The
different proposals to extend XQuery are now under revision of the W3C XQuery Work-
ing Group. A public working draft is already available under the name XQuery Scripting
Extension 1.0 [CEF+08].

2.4.3 XQuery for Web-Based Applications

By now, XQuery is already present in all layers of a web-application. At the data-tier,
XQuery is supported by all mayor database vendors and several open-source imple-
mentations exist [eXi09, Dat09, Zor09]. Thus, web-applications are already able to
store data directly as XML and retrieve it using XQuery. In the middle-tier, XQuery
serves several purposes. One prominent example is the transformation and routing of
XML messages [DAF+03] between services. Another example is enterprise informa-
tion integration [BCLW06]. A third example involves the manipulation and processing of
configuration data represented in XML. At the client-tier XQuery is not so established
yet, but some initial projects are available to make XQuery also useable inside the
browser. For example, by default Firefox allows to execute XPath (a subset of XQuery)
inside JavaScript [Moz09] or the XQuery USE ME plug-in [Zam09] enables to execute
user defined XQueries to customize web-pages. However, in the middle-tier as well as

2.4. XQuery as the Programming Model 31

the client-tier XQuery is used inside a hosting language and therefore the impedance
mismatch still exists.

XQuery as a complete programming language for the middle-tier has first been investi-
gated inside the XL-platform in the context of web services [FGK03]. The XL platform
provides a virtualized machine for XQuery code, several language extensions and a
framework responsible for triggering XQuery programs based on events (i.e., a web-
service message). Today, the most successful XQuery-all solution is the MarkLogic
Server [Mar09]. MarkLogic Server combines an XML database with an XQuery appli-
cation server. Thus, the data- and middle-tier are combined in one server. MarkLogic
Server is particular well suited for document-centric applications because of its full-text
search and text analyzing capabilities but not restricted to those scenarios. Finally, the
XQuery in the browser project at ETH [FPF+09], investigates XQuery as an alternative
to JavaScript making it possible to use XQuery at all layers and completely avoid the
impedance mismatch.

Chapter 3

Building a Database on Top of Cloud
Infrastructure

3.1 Motivation

Cloud computing has lead to novel solutions for storing and processing data in the cloud
(as shown in Chapter 2.1). Examples are Amazon’s S3, Google’s BigTable, or Yahoo’s
PNUTS. Compared to traditional transactional database systems, the major advantage
of these novel storage services is their elasticity in the face of changing conditions.
For example, in order to adapt dynamically to the load, cloud providers automatically
allocate and deallocate resources (i.e., computing nodes) on the fly while offering a pay-
as-you-go computing model for billing. However, in terms of functionality these novel
storage services are far away from what database systems offer.

One of the most important differences between cloud storage services compared to
traditional transactional database systems are the provided consistency guarantees.
In order to offer fault tolerance and high availability, most providers replicate the data
within one or even across several data centers. Following the CAP theorem (see Sec-
tion 2.3.1.1), it is not possible to jointly provide availability and strong consistency (as
defined by the ACID properties) in the presence of network failures. Consequently, most
cloud providers sacrifice strong consistency for availability and offer only some weaker
forms of consistency (e.g., Amazons’s S3 guarantees only eventual consistency). If
a higher level of consistency is required it has to be built on top. Furthermore, the
query processing capabilities are far from a full SQL support. Most systems offer key
and key-range lookups (see Section 2.3.2). Few systems support more advanced filters
and even less support a simplified query language with the ability to order and/or count.

33

34 Chapter 3. Building a Database on Top of Cloud Infrastructure

Except for Azure SQL Data Services, no public available service offers joins or more
advanced aggregates. Again, any additional functionality has to be built on top.

Although it is possible to install traditional transactional database systems in the cloud
(e.g., MySQL, Oracle, IBM DB2), these solutions do not scale and adapt themselves
to the load the way storage services like S3 do (see also Section 2.2.2). Furthermore,
traditional database systems are not provided as a service and need to be installed,
configured and monitored, thus precluding the advantages of outsourcing the database
(see also Section 2.2.2). The purpose of this chapter is to explore how web-based
database applications (at any scale) can be implemented on top of storage services like
S3 similar to a shared-disk architecture. The chapter presents various protocols in order
to store, read, and update objects and indexes using a storage service. The ultimate
goal is to preserve the scalability and availability of a distributed system like S3 and
achieve the same level of consistency as a database system (i.e., ACID transactions).

3.1.1 Contributions

The first contribution of this chapter is to define an (abstract) API for utility services.
This API can be implemented effectively using AWS and other utility service offerings.
As today all these offerings vary significantly and standardization is just at the beginning
[CCI09], such a reference API is important as a basis for all further developments in this
area.

The second contribution of this chapter is the development of alternative protocols in
order to ensure the consistency of data stored using utility services such as S3. The
most common level of consistency that the services provide is eventual consistency
and has no support to coordinate and synchronize parallel access to the same data. To
rectify the poor level of consistency, this chapter presents a number of protocols that
orchestrate concurrent updates to an eventual consistent storage.

The third contribution is to study alternative client-server architectures in order to build
web-based applications on top of utility services. One big question is whether the ap-
plication logic should run on the client or on a server provided by the utility services
(e.g., EC2). A second question concerns the implementation and use of indexes; for
instance, is it beneficial to push query processing into the cloud and use services such
as SimpleDB or MS Azure as opposed to implementing indexing on the client-side.
Obviously, the experimental results depend strongly on the current prices and utility
service offerings. Nevertheless, there are fundamental trade-offs which are not likely to
change.

3.2. Amazon Web Services 35

Finally, a fourth contribution of this chapter is to discuss alternative ways to implement
the reference API for utility services based on Amazon Web Servces (AWS). Ideally, a
utility service provider would directly implement the API, but as mentioned above, such
standardization is not likely to happen in the foreseeable future.

3.1.2 Outline

This chapter is organized as follows: Section 3.2 describes AWS (i.e., S3, SQS, EC2
and SimpleDB) as the most prominent cloud provider in more detail and Section 3.3 de-
fines an (abstract) API for utility services which forms the basis for the remaining chap-
ter. Even though there are many utility service offerings today (see Section 2.3.2), AWS
has the most complete and mature suite of services and was thus used for the exper-
iments. Section 3.4 presents the proposed architecture to build web-based database
applications on top of utility services. Sections 3.5 and 3.6 present the protocols to
implement reads and writes on top of S3 at different levels of consistency. Section 3.7
gives implementation details of these protocols using AWS. Section 3.8 summarizes the
results of experiments conducted using the TPC-W benchmark. Section 3.9 discusses
related work. Section 3.10 contains conclusions and suggests possible avenues for
future work.

3.2 Amazon Web Services

Among the various providers appearing on the cloud computing market place (see
Chapter 2.1), Amazon with its Amazon Web Services (AWS) not only offers the most
complete stack of services, but makes it especially easy to integrate different services.
This section describes this most prominent representative for the wide range of today’s
offerings in more detail. The focus of this short survey is on Amazon’s infrastructure
services (e.g., storage and CPU cycles) because those form the foundation for building
web-based applications. More specialized services like Amazon’s payment service are
beyond the scope of this work.

36 Chapter 3. Building a Database on Top of Cloud Infrastructure

3.2.1 Storage Service

Amazon’s storage service is named S3, which stands for Simple Storage System. Con-
ceptually, it is an infinite store for objects of variable size (minimum 1 Byte, maximum
5 GB). An object is a byte container which is identified by a URI. Clients can read
and update S3 objects remotely using a SOAP- or REST-based interface, e.g., get(uri)
returns an object and put(uri, bytestream) writes a new version of the object. A spe-
cial getIfModifiedSince(uri, timestamp) method allows retrieving the new version of an
object only if the object has changed since the specified timestamp. Furthermore, user-
defined metadata (maximum 2 KB) can be associated to an object and can be read and
updated independent of the rest of the object.

In S3, each object is associated to a bucket. When a user creates a new object, he
specifies the bucket into which the new object should be placed. S3 provides several
ways to scan through objects of a bucket. For instance, a user can retrieve all objects of
a bucket or only those objects whose URIs match a specified prefix. Furthermore, the
bucket can be the unit of security; users can grant read and write authorization to other
users for entire buckets. Alternatively, access privileges can be given for an individual
objects.

S3 is not for free. It costs USD 0.15 to store 1 GB of data for one month if the data is
stored in the USA (see Table 3.1). Storing 1 GB in a data center in Europe costs USD
0.18. In comparison, a 160 GB disk drive from Seagate costs USD 70 today. Assuming
a two-year life time of a disk drive, the cost is about USD 0.02 per GB per month (power
consumption not included). Given that disk drives are never operated at 100 percent
capacity and considering mirroring, the storage cost of S3 is in the same ballpark as
that for regular disk drives. Therefore, using S3 as a backup device is natural. Users,
however, need to be more careful when using S3 for live data because every read and
write access to S3 comes with an additional cost of USD 0.01 (USD 0.012 for Europe)
per 10,000 get requests, USD 0.01 (USD 0.012 for Europe) per 1,000 put requests, and
USD 0.10 to USD 0.17 per GB of network bandwidth consumed (the exact rate depends
on the total monthly volume of a user). For this reason, services like SmugMug use S3
as a persistent store, yet operate their own servers in order to cache the data and avoid
interacting with S3 as much as possible [Mac07].

Another reason for making excessive use of caching is latency. Table 3.2 shows the
response time of get requests and the overall bandwidth of get requests depending
on the page size (defined below). These experiments were executed using a Mac
(2.16 GHz Intel Core Duo with 2 GB of RAM) connected to the Internet and S3 via

3.2. Amazon Web Services 37

E
la

st
ic

C
om

pu
tin

g
C

lo
ud

E
la

st
ic

B
lo

ck
S

to
re

S
im

pl
e

S
to

ra
ge

S
er

vi
ce

S
im

pl
e

Q
ue

ui
ng

S
er

vi
ce

U
sa

ge
U

S

S
ta

nd
ar

d
In

st
an

ce
:

$0
.0

1
pe

r1
0,

00
0

re
q.

$0
.1

0
pe

rh
ou

r(
sm

al
l)

$0
.0

1
pe

r1
,0

00
(s

in
ce

W
S

D
L

20
08

-0
1-

01
)

$0
.4

0
pe

rh
ou

r(
la

rg
e)

$0
.1

0
pe

r1
,0

00
,0

00
P

U
T/

LI
S

T/
C

O
P

Y
/P

O
S

T
re

qu
es

ts
$0

.8
0

pe
rh

ou
r(

ex
tra

la
rg

e)
I/O

re
qu

es
t

$0
.0

1
pe

r1
00

se
nd

re
q.

H
ig

h
C

P
U

In
st

an
ce

:
$0

.0
1

pe
r1

0,
00

0
G

E
T

an
d

ot
he

r
N

o
ch

ar
ge

s
fo

ra
ll

ot
he

rr
eq

.
$0

.2
0

pe
rh

ou
r(

m
ed

iu
m

)
re

qu
es

ts
(b

ef
or

e
W

S
D

L
20

08
-0

1-
01

)
$0

.8
0

pe
rh

ou
r(

ex
tra

la
rg

e)
N

o
ch

ar
ge

fo
rd

el
et

e
re

qu
es

ts

S
to

ra
ge

U
S

$0
.1

5
pe

rG
B

/m
on

th
fir

st
50

TB
$0

.1
0

pe
rG

B
/m

on
th

$0
.1

4
pe

rG
B

/m
on

th
ne

xt
50

TB
(p

ro
vi

si
on

ed
st

or
ag

e)
$0

.1
3

pe
rG

B
/m

on
th

ne
xt

40
0T

B
$0

.1
2

pe
rG

B
/m

on
th

ov
er

50
0T

B

U
sa

ge
E

U

S
ta

nd
ar

d
In

st
an

ce
:

$0
.1

1
pe

rh
ou

r(
sm

al
l)

$0
.0

12
pe

r1
,0

00
$0

.4
4

pe
rh

ou
r(

la
rg

e)
$0

.1
1

pe
r1

,0
00

,0
00

P
U

T/
LI

S
T/

C
O

P
Y

/P
O

S
T

re
qu

es
ts

sa
m

e
as

U
S

$0
.8

8
pe

rh
ou

r(
ex

tra
la

rg
e)

I/O
re

qu
es

t
H

ig
h

C
P

U
In

st
an

ce
:

$0
.0

12
pe

r1
0,

00
0

$0
.2

2
pe

rh
ou

r(
m

ed
iu

m
)

G
E

T
an

d
ot

he
rr

eq
ue

st
s

$0
.8

8
pe

rh
ou

r(
ex

tra
la

rg
e)

N
o

ch
ar

ge
fo

rd
el

et
e

re
qu

es
ts

S
to

ra
ge

E
U

$0
.1

8
pe

rG
B

/m
on

th
fir

st
50

TB
$0

.1
1

pe
rG

B
/m

on
th

$0
.1

7
pe

rG
B

/m
on

th
ne

xt
50

TB
(p

ro
vi

si
on

ed
st

or
ag

e)
$0

.1
6

pe
rG

B
/m

on
th

ne
xt

40
0T

B
$0

.1
5

pe
rG

B
/m

on
th

ov
er

50
0T

B
In

-T
ra

ns
fe

r
$0

.1
0

pe
rG

B

O
ut

-T
ra

ns
fe

r

$0
.1

7
pe

rG
B

fir
st

10
TB

$0
.1

3
pe

rG
B

ne
xt

40
TB

$0
.1

1
pe

rG
B

ne
xt

10
0T

B
$0

.1
0

pe
rG

B
ov

er
15

0T
B

Ta
bl

e
3.

1:
A

m
az

on
W

eb
S

er
vi

ce
In

fra
st

ru
ct

ur
e

P
ric

es
(a

s
of

20
O

ct
20

09
)

38 Chapter 3. Building a Database on Top of Cloud Infrastructure

Page Size [KB] Resp. Time [secs] Bandwidth [KB/secs]

10 0.14 71
100 0.45 222

1,000 2.87 348

Table 3.2: Read Response Time, Bandwidth of S3, Varying Page Size
External Client in Europe

a fast Internet connection. The results in Table 3.2 support the need for aggressive
caching of S3 data; reading data from S3 takes at least 100 msecs (Column 2 of Table
3.2), which is two to three orders of magnitude longer than reading data from a local
disk. Writing data to S3 (not shown in Table 3.2) takes not much more time as reading
data. The results of a more comprehensive performance study of S3 are reported in
[Gar07]. While latency is an issue, S3 is clearly superior to ordinary disk drives in
terms of throughput: Virtually an infinite number of clients can use S3 concurrently and
the response times shown in Table 3.2 are practically independent of the number of
concurrent clients.

Column 3 of Table 3.2 shows the bandwidth that a European client gets when reading
data from S3 (S3 servers located in the USA). It becomes clear that an acceptable
bandwidth can only be achieved if data are read in relatively large chunks of 100 KB
or more. Therefore, small objects should be clustered into pages with a whole page
of small objects being the unit of transfer. The same technique to cluster records into
pages on disk is common practice in all state-of-the-art database systems [GR94] and
we adopt this technique for this study.

Amazon’s service level agreement (SLA) defines an availability of the service of 99.9%.
In the event of Amazon S3 not meeting the SLA, the user is eligible to receive a service
credit. Amazon S3 ensures object durability by initially storing objects multiple times
across data centers and additional replications in the event of device unavailability or
detected bit-rot [Ama09b]. Each replica can be read and updated at any time and up-
dates are propagated to replicas asynchronously. If a data center fails, the data can
nevertheless be read and updated using a replica at a different data center; reconcil-
iation happens later on a last update wins basis. This approach guarantees full read
and write availability which is a crucial property for most web-based applications: No
client is blocked by system failures (as long as one machine is reachable and working)
or other concurrent clients and updates. To achieve this level of availability, S3 relaxes
the consistency guarantees. That is, it is possible to read stale data, in case of two
concurrent updates the latest wins and one might be lost.

3.2. Amazon Web Services 39

The purpose of this work is to show how additional consistency guarantees can be
provided on top of a storage service, which only guarantees eventual consistency such
as Amazon S3.

3.2.2 Servers

Amazon’s offering for renting computing hardware is named Elastic Computing Cloud,
short EC2. Technically, the client gets a VM which is hosted on one of the Amazon
servers. Like S3, EC2 is not for free. The cost varies from USD 0.10 to 0.80 per hour
depending on the configuration. For example, the cheapest machine costs USD 0.10,
the second cheapest machine costs USD 0.2 per hour, but this machine comes with 5
times the computing power of the cheapest machine. Independent of the configuration,
the fee must be paid for the time the machine is leased regardless of its usage.

One interesting aspect of EC2 is that the network bandwidth from an EC2 machine
to other Amazon Services is free. Nevertheless, the “per request” charges are appli-
cable in any case. For example, if a user makes a request from an EC2 machine to
S3, then the user must pay USD 0.01 per 10,000 get requests. As a result, it seems
advantageous to have large block sizes for transfers between EC2 and S3.

EC2 is built on top of XEN, an open source hypervisor [Xen08]. It allows operating
a variety of linux/unix images. Recently, Amazon also started to support Windows as
operating system (no details are known about the implementation). To the best of our
knowledge, EC2 does not support any kind of VM migrations in case of failures. If a
machine goes down, the state is lost unless it was stored somewhere else, e.g., on S3.
From a performance perspective, it is attractive to run applications on EC2 if the data is
hosted on S3 because the latency of the communication between EC2 and S3 is much
faster than between an external client and EC2. Table 3.3 shows the response times of
EC2/S3 communication, again varying the page size. Comparing Tables 3.3 and 3.2,
the performance difference becomes apparent. Nevertheless, even when used from an
EC2 machine S3 is still much slower than a local disk. In addition to the reduction of
latency, EC2 is also attractive to reduce the cost as internal network traffic inside the
same data center is for free.

Furthermore, EC2 allows to implement missing infrastructure services such as a global
transaction counter. The use of EC2 for this purpose is discussed in more detail in
Section 3.7.

40 Chapter 3. Building a Database on Top of Cloud Infrastructure

Page Size [KB] Resp. Time [secs] Bandwidth [KB/secs]

10 0.033 303
100 0.036 2778

1,000 0.111 9080

Table 3.3: Read Response Time, Bandwidth of S3, Varying Page Size
EC2 Client

3.2.3 Server Storage

Amazon designed an additional service in particular for persisting data from EC2 in-
stances, the Elastic Block Store (EBS). EBS requires to partition the data into so-called
volumes. A volume can then be mounted and accessed by exactly one EC2 instance at
a time. Other access methods than mounting it to EBS do not exist. In contrast to S3,
EBS is only replicated inside a single data center and provides session consistency.
Hence, Amazon recommends to periodically checkpoint/save the data to S3. The pric-
ing of EBS is significantly cheaper than S3: USD 0.10 per GB month and 0.10 per
1 million I/O requests. However, EBS requires provisioning the required storage per
volume upfront and does not automatically scale on demand.

EBS is particularly suited for installing a traditional database on top of EC2. With EBS,
the data is not lost in the event of a VM failure. However, as only one machine can
access EC2 at a given time, it makes it unusable for many other scenarios. All the
data access has to go through one EC2 instance, which might become a bottleneck.
Furthermore, the volume storage has to be provisioned, preventing easy scale-outs.

3.2.4 Queues

Amazon also provides a queue service named Simple Queueing Service, short SQS.
SQS allows users to manage a (virtually) infinite number of queues with (virtually) infi-
nite capacity. Each queue is referenced by a URI and supports sending and receiving
messages via an HTTP- or REST-based interface. The maximum size of a message
is 8 KB. Any bytestream can be put into a message; there is no pre-defined schema.
Each message is identified by a unique ID. Messages can only be deleted by a client
if the client first receives the message. Another important property of SQS is, that it
supports the locking of a message for up to 2 hours. Amazon changed the prices for
SQS recently to USD 0.01 per 10,000 requests. Furthermore, the network bandwidth
costs at least USD 0.10 per GB of data transferred, unless the requests originated from

3.2. Amazon Web Services 41

an EC2 machine. As for S3, the cost for the consumed network bandwidth decreases
the more data is transferred. USD 0.10 per GB is the minimum for heavy users.

Again, Amazon has not published any details on the implementation of SQS. It seems,
however, that SQS was designed along the lines of S3. The messages of a queue are
stored in a distributed and replicated way, possibly on many machines in different data
centers. Clients can initiate requests at any time; they are never blocked by failures or
other clients and will receive an answer (or acknowledgment) in nearly constant time.
For instance, if one client has locked all messages of a queue as part of a receive
call, then a concurrent client who initiates another receive call will simply get an empty
set of messages as a result. Since the queues are stored in a distributed way, SQS
only makes a best-effort when returning messages in a FIFO manner. So there is no
guarantee that SQS returns the first message of a queue as part of a receive call or
that SQS returns the messages in the right order. Although SQS is designed to be
extremely reliable, Amazon enforces deletions of messages after 4 days in the queue
and retains the right to delete unused queues.

3.2.5 Indexing Service

Amazon SimpleDB (short SDB) is a recent extension to the AWS family of services. At
the time of writing this chapter, SDB was still in beta and only available for a restricted
set of users. With SimpleDB, Amazon offers a service to run simple queries on struc-
tured data. In SimpleDB, each item is associated to a domain which has associated
attributes. SimpleDB automatically indexes an item as it is added to a domain. Each
item can have up to 256 attribute values and each attribute value can range from 1 to
1,024 bytes. SimpleDB does not require pre-defined schemas so that any item with any
kinds of attributes can be inserted and indexed.

Unfortunately, SimpleDB has a number of limitations. First, SimpleDB only supports
primitive bulk-loading: 25 items can be inserted at a time. Second, SimpleDB only sup-
ports text values (e.g., strings). If an application requires integers, dates, or floating
point numbers, those values must be encoded properly. Third, the size limit of 1,024
bytes per attribute turns out to be too restrictive for many applications. Amazon rec-
ommends the use of S3 for anything larger. Another restriction is the expressiveness
of the SimpleDB query language. The language allows for simple comparisons, nega-
tion, range expressions and queries on multiple attributes, but does not support joins
or any other complex operation. Compared to a traditional database system, SimpleDB

42 Chapter 3. Building a Database on Top of Cloud Infrastructure

only provides eventual consistency guarantees in the same way as S3: There are no
guarantees when committed updates are propagated to all copies of the data.

As all services of AWS, SimpleDB is not free of charge. Unlike S3 and EC2, the cost
is difficult to predict as it depends on the machine utilization of a request. Amazon
charges USD 0.14 per machine hour consumed, USD 1.5 per GB of structured data
stored per month, plus network bandwidth in the range of USD 0.10 to USD 0.17 per
GB for communication with external (non-EC2) clients, depending on the consumed
volume per month.

3.3 Reference Cloud API for Database Appli-
cations

This section describes an API that abstracts from the details of cloud services such as
those offered by Amazon, Google, Microsoft and the other service providers presented
in Chapter 2.1. All protocols and techniques presented for the development of web-
based database applications in the remainder of this chapter are based on calls to
this API. This API specifies not only the interfaces but also the guarantees which the
different services should provide. Section 3.7 illustrates by using AWS how this API can
be implemented.

3.3.1 Storage Services

The most important building block is a reliable store. The following is a list of methods
that can easily be implemented using today’s cloud services (e.g., AWS and Google),
thereby abstracting from vendor specifics. This list can be seen as the greatest common
divisor for all current cloud service providers and the minimum required in order to build
stateful applications:

• put(uri as string, payload as binary, metaData as key-value-pairs) as void: Stores
an item (or object) identified by the given URI. An item consists of the payload,
the meta-data, and a timestamp of the last update. If the URI already exists, the
item gets overwritten without warning; otherwise, a new item is created.

• get(uri as string) as item: Retrieves the item (payload, meta-data, and timestamp)
associated to the URI.

3.3. Reference Cloud API for Database Applications 43

• get-metadata(uri as string) as key-value-pairs: Returns the meta-data of an item.

• getIfModifiedSince(uri as string, timestamp as time) as item: Returns the item
associated to the URI only if the timestamp of the item is greater than the times-
tamp passed as a parameter of the call.

• listItems(uriPrefix as string) as items: Lists all items whose URIs match the given
URI prefix.

• delete(uri as string) as void: Deletes an item.

For brevity, we do not specify all error codes. Furthermore, we do not specify the
operations for granting and removing access rights, because implementing security on
cloud services is beyond the scope of this thesis.

In terms of consistency, we expect the cloud storage service to support eventual con-
sistency [TS06] with time-based consolidation. That is, every update has an attached
time-stamp to it and if two updates need to be consolidated, the highest time-stamp
wins. However, we do not assume a global clock and several writes within a very short
time-frame might be affected by clock-screws inside the system. Again, eventual con-
sistency (with latest-update-wins conflict resolution) seems to be the standard offered
by most cloud services today because it allows for scaling out and provides 100 percent
availability at low cost.

3.3.2 Machine Reservation

Deploying user applications in the cloud requires deploying and running custom appli-
cation code in the cloud. The current trend is to provide either a hosting platform for
a specific language like Google’s AppEngine [Goo08], or a facility to start a virtualized
machine as done in Amazon’s EC2. Hosting platforms are often restricted to a cer-
tain programming language and hide details about the way the code gets executed.
Since virtualized machines are more general, we propose the API to allow to start and
shutdown machines as follows:

• start(machineImage as string) as machineDescription: Starts a given image and
returns the virtual machine information such as its id and a public DNS name.

• stop(machineID as string) as void: Stops the VM with the machineID

For brevity, methods for creating own images are not described.

44 Chapter 3. Building a Database on Top of Cloud Infrastructure

3.3.3 Simple Queues

Queues are an important building block for creating web-based database applications
in the cloud (see Section 3.5) and offered by several cloud providers (e.g., Amazon and
Google) as part of their infrastructure. A queue should support the following operations
(again, error codes are not specified for brevity):

• createQueue(uri as string) as void: Creates a new queue with the given URI.

• deleteQueue(uri as string) as void: Deletes a queue.

• listQueues() as strings: Returns the URIs as string of all queues.

• sendMessage(uri as string, payload as binary) as integer: Sends a message with
the payload as content to the queue and returns the MessageID. The MessageID
is an integer (not necessarily ordered by time).

• receiveMessage(uri as string, N as integer) as message: Retrieves N messages
from the queue. If less than N messages are available, as many messages as
possible are returned. A message is returned with its MessageID and payload, of
course.

• deleteMessage(uri as string, messageID as integer) as void: Deletes a message
(identified by MessageID) from a queue (identified by its URI).

Queues should be reliable and never lose a message.1 Simple queues do not make
any FIFO guarantees. Hence, a receiveMessage call may return the second message
without the first message. Furthermore, Simple Queues do not make any guarantees
that all messages are available at all times; that is, if there are N messages in the
queue, then it is possible that a receiveMessage call asking for N messages returns
less than N messages. Thus, Simple Queues can even operate in the presence of net-
work partitioning and hence, can provide the highest availability (i.e., they sacrifice the
consistency property for availability). All protocols that are built on top of these Simple
Queues must respect possible inconsistencies. As will become clear in Sections 3.5
and 3.6, the performance of a protocol improves the better the queue conforms to the
FIFO principle and the more messages the queue returns as part of a receiveMessage
call. Some protocols require stricter guarantees; these protocols must be implemented
on top of Advanced Queues.

1Unfortunately, SQS does not fulfil this requirement because it deletes messages after four days.
Workarounds are described in Section 3.7.

3.3. Reference Cloud API for Database Applications 45

3.3.4 Advanced Queues

Compared to Simple Queues, Advanced Queues provide stronger guarantees. Specif-
ically, Advanced Queues are able to provide all successfully committed messages to a
user at any moment and always return the messages in the same order.2 That is, in the
moment a send request to the queue returns successfully, the message persists and
is retrievable by following receive requests. All messages are brought into a total order
but an increasing order between two messages m1 and m2 is only guaranteed if m2 is
sent after the successful return of the send request for m1. As a consequence of the ad-
ditional guarantees, requests to these queues are expected to be more expensive and
Advanced Queues may temporarily not be available because of the CAP theorem. An
additional difference between Advanced Queues and Simple Queues is the availability
of operators in the Advanced Queue which allows the filtering of messages. Advanced
Queues provide a way to attach a user-defined key (in addition to the MessageID) to
each message. This key allows further filtering of messages. Such a service is not only
required for more advanced protocols, but also useful in many other scenarios. For ex-
ample, Advanced Queues can be used to connect producers and consumers where the
order of messages can not be ignored (e.g., in event processing, monitoring, etc.) or it
can be used as reliable message framework between components. Again, the details
of our implementation of Advanced Queues on top of AWS are given in Section 3.7.
The API of Advanced Queues is as follows:

• createAdvancedQueue(uri as string) as void: Creates a new Advanced Queue
with the given URI.

• deleteAdvancedQueue(uri as string) as void: Deletes a queue.

• sendMessage(uri as string, payload as binary, key as integer) as integer: Sends
a message with the payload as the content to the queue and returns the Mes-
sageID. The MessageID is an integer that is ordered according to the arrival time
of the message in the queue (messages received earlier have lower MessageID).
Furthermore, Advanced Queues support the attachment of user-defined keys to
messages (represented as integers) in order to carry out further filtering.

• receiveMessage(uri as string, N as integer, messageIdGreaterThan as integer)
as message: Returns the top N messages whose MessageID is higher than the
“messageIdGreaterThan.” If less than N such messages exist, the Advanced

2The Advanced Queues allow to receive several messages without removing them from the queue.
Thus, the queues provide even more functionality than just simple FIFO queues.

46 Chapter 3. Building a Database on Top of Cloud Infrastructure

Queue returns all matching messages. Unlike Simple Queues, the receiveMes-
sage method of Advanced Queues respects the FIFO principle.

• receiveMessage(uri as string, N as integer, keyGreaterThan as integer, key-
LessThan as integer) as messages: Retrieves the top N messages whose key
matches the specified key value range. In terms of FIFO and completeness guar-
antees, this version of the receiveMessage operation behaves exactly like the
receiveMessage operation which filters on MessageID.

• receiveMessage(uri as string, N as integer, olderThan in seconds) as message:
Retrieves the top N messages in the queue which are older than olderThan sec-
onds. This feature is often required to recover from failure scenarios (e.g., mes-
sages were not processed in time).

• deleteMessage(uri as string, messageID as integer) as void: Deletes a message
(identified by MessageID) from a queue (identified by its URI).

• deleteMessages(uri as string, keyLessThan as integer, keyGreaterThan as inte-
ger) as void: Deletes all messages whose key is in the specified range.

3.3.5 Locking Service

The locking service implements a centralized service to keep track of read- and write-
locks. A client (identified by a ID) is able to acquire a shared lock on a resource speci-
fied by a URI. Furthermore, users can acquire exclusive locks. Following conventional
wisdom, several different clients can hold shared locks at the same time whereas exclu-
sive locks can only be held by a single client and preclude the granting of shared locks.
Locks are only granted for a certain timeframe. Expiring locks after a specified timeout,
ensures the liveliness of the system in case a client holding a lock crashes. If a lock
needs to be held longer, it can be re-acquired before the timeframe expires by using
the same ID. Fortunately, exclusive locks can easily be implemented on top of SQS as
shown in Section 3.7, but implementing it as a dedicated cloud service, as part of the
cloud infrastructure, may be more efficient than implementing it on top of basic cloud
services.

The Locking Service API has the following operations:

• setTimeOut(prefix as string, timeout as integer) as void: Sets the timeout of locks
for resources identified by a certain URI prefix.

3.3. Reference Cloud API for Database Applications 47

• acquireXLock(uri as string, Id as string, timeout as integer) as boolean: Acquires
an exclusive lock. Returns true if the lock was granted, and false otherwise.

• acquireSLock(uri as string, Id as string, timeout as integer) as boolean: Acquires
a shared lock. Returns true if the lock was granted, and false otherwise.

• releaseLock(uri as string, Id as string) as boolean: Releases a lock.

In terms of reliability, it is possible that the locking service fails. It is also possible that the
locking service looses its state as a consequence of such a failure. If a locking service
recovers after such a failure, it refuses all acquireXLock and acquireSLock requests for
the maximum timeout period, in order to guarantee that all clients who hold locks can
finish their work as long as they are holding the locks.

Thus, the availability of the locking service is reduced: it is neither accessible during
network partitioning and even not during fail-overs. Whereas the latter can be avoided,
the service must always provide strong consistency and thus cannot always be available
if network partitions are possible (Section 2.3.1.1). However, most of the protocols
presented in Sections 3.5 and 3.6 assume that unavailability of the locking service
corresponds to not being able to require the lock. This allows continuing the operation
depending on the protocol without further drawbacks.

3.3.6 Advanced Counters

The advanced counter service is a special service designed for implementing the Gen-
eralized Snapshot Isolation protocol (Section 3.6). As its name implies, the advanced
counter service implements counters which are incremented with every increment call.
Each counter is identified by a URI. As a special feature, the advanced counter service
allows validating counter values as well as getting the highest validated counter value.
If not explicitly validated, counter values are automatically validated after a specified
timeout period. As shown in Section 3.6.4, this validation feature is important in order
to implement the commit protocol of snapshot isolation. In summary, the API contains
the following operations:

• setTimeOut(prefix as string, timeout as integer) as void: Sets the timeout of all
counters for a certain URI prefix.

• increment(uri as string) as integer: Increments the counter, identified by the uri
parameter, and returns the current value of the counter (including a epic number).
If no counter with that URI exists, a new counter is created and initialized to 0.

48 Chapter 3. Building a Database on Top of Cloud Infrastructure

• validate(uri as string, value as integer) as void: Validates a counter value. If
not called explicitly, the counter value is validated automatically considering the
timeout interval after the increment call that created that counter value.

• getHighestValidatedValue(uri as string) as integer: Returns the highest vali-
dated counter value.

Like the locking service, all protocols must be designed keeping in mind that the ad-
vanced counter service can fail at any time. When the advanced counter service recov-
ers, it resets all counters to 0 with a new higher epic number. However, after restart the
advanced counter service refuses all requests (returns error) for the maximum time-
out period of all counters. The latest epic number and the maximum timeout period of
all counters must, therefore, be stored persistently, and in a recoverable way (e.g., in
services like S3).

Similar to the locking service, this service also has reduced availability. However, in
contrast to the locking service, unavailability can typically not be ignored and thus also
reduces the availability of all systems depending on it. Hence, implementations using
this service have to be aware of its availability.

3.3.7 Indexing

An indexing service is useful in situations where self-managed indexes stored on the
storage service are too expensive in terms of cost and performance. This is often the
case when the whole application stack should be hosted at the client level instead of
on an application server, or for rarely used applications with huge amounts of data
(Section 3.8 analyzes this trade-off).

Many cloud providers offer services which can be used as an index. Amazon’s Sim-
pleDB is designed as an index and supports point and range queries. Other providers
often offer restricted database services (Section 2.3.2.1). For example, Microsoft’s SQL
Azure provides a database service in the cloud, but only up to 10GB. Google’s DataS-
tore has no data-size restrictions but synchronizes every write request inside one entity
group. Although, due to their restrictions, it is often not desirable to use those services
directly as a database, those services can easily be used to provide an indexing service
where the restrictions do not play an important role (see Section 3.7.7).

The requirements of the indexing service are similar to the one of a storage service of
subsection 3.3.1. Keys should be stored together with a payload and be retrievable by

3.4. Database Architecture Revisited 49

a key. The biggest difference is, that a key does not have to be unique, that the payload
is rather small and that get requests with a key and key-range are possible.

• insert(key as string, payload as string) as void: Stores a payload identified by the
given key. The key is not required to be unique.

• get(key as string) as set(pair(key as string,payload as string)): Retrieves all key/value
pairs associated to the key.

• get(startkey as string, endkey as string) as set(pair(key as string, payload as
string)): Retrieves all key/value pairs for all keys in the range between startkey
and endkey (inclusive).

• delete(key as string, payload as string) as void: Deletes the first key/value pair
with matching key and payload.

In terms of consistency, we expect either eventual consistency or read committed, de-
pending on the desired overall consistency guarantee and thus, the applied protocol.
This service is optional for all protocols presented in this thesis. If the cloud provider
does not offer an indexing service or provides a lower level of consistency than required,
it is always possible to use the self-managed indexes described in Section 3.4.4.1.

3.4 Database Architecture Revisited

As mentioned in Section 3.2.1, cloud computing promises infinite scalability, availability,
and throughput - from the point of view of small and medium-size companies. This
section shows that many textbook techniques to implement tables, pages, B-Trees, and
logging can be applied to implement a database on top of the Cloud API of Section
3.3. The purpose of this section is to highlight the commonalities between a disk-based
and cloud-based database system. Sections 3.5 and 3.6 highlight the also existing
differences.

3.4.1 Client-Server Architecture

Figure 3.1 shows the proposed architecture of a database implemented on top of the
Cloud Storage API described in Section 3.3.1. This architecture has a great deal of

50 Chapter 3. Building a Database on Top of Cloud Infrastructure

Cloud Storage API

Page Manager

Record Manager

Application

Client 1

Page Manager

Record Manager

Application

Client N

. . .

pages

Figure 3.1: Shared-Disk Architecture

commonalities with a distributed shared-disk database system [Sto86]. The unit of
transfer and buffering is a page. The difference is that pages are persistently stored in
the cloud rather than on a disk that is directly controlled by the database system. In this
architecture, pages are implemented as items in the Storage Service API of Section
3.3.1. Consequently, pages are identified by a URI.

As in traditional database systems, a page contains a set of records or index entries.
Following the general DB terminology, we refer to records as a bytestream of variable
size which can not be bigger than the page size. Records can be relational tuples or
XML elements and documents. Blobs (for records bigger than the page size) can be
stored directly on the storage service or using the techniques devised in [Bil92]; all
these techniques are applicable in a straightforward way and that is why Blobs are not
further discusses in this chapter.

Within a client, there is a stack of components supporting the application. This work
focuses on the two lowest layers; i.e., the record and page managers. All other layers
(e.g., the query processor) are not affected by the use of cloud services and are, for
that reason, considered to be part of the application. The page manager coordinates

3.4. Database Architecture Revisited 51

read and write requests to the Storage Service and buffers pages in local main memory
or disk. The record manager provides a record-oriented interface, organizes records on
pages, and carries out free-space management for the creation of new records. Appli-
cations interact with the record manager only, thereby using the interface described in
the next subsection. Again, for the purpose of this study, a query processor (optimizer
and run-time) is part of the application.3

Throughout this work, we use the term client to refer to software artifacts that retrieve
pages from and write pages back to the Cloud Storage Service. It is an interesting ques-
tion which parts of the client application stack should run on machines provided by the
cloud service provider (e.g., EC2 machines), and which parts of the application stack
should run on machines provided by end users (e.g., PCs, laptops, mobile phones,
etc.). Indeed, it is possible to implement a web-based database architecture using this
architecture without using any machines from the cloud service provider. Section 3.8
explores the performance and cost trade-offs of different client-server configurations in
more detail.

A related question concerns the implementation of indexes: One option is to use Sim-
pleDB (or related services) in order to implement indexing. An alternative is to imple-
ment B-Trees on top of the cloud services in the same way as traditional database
systems implement B-Trees on top of disks. Again, the trade-offs are studied as part of
performance experiments presented in Section 3.8.

Independent of whether the client application stack runs on machines of users or on,
say, EC2 machines, the architecture of Figure 3.1 is designed to support thousands, if
not millions of clients. As a result, all protocols must be designed in such a way that
any client can fail at any time and possibly never recovers from the failure. As a result,
clients are stateless. They may cache data from the cloud, but the worst thing that can
happen if a client fails is that all the work of that client is lost.

In the remainder of this section, the record manager, page manager, implementation
of (B-Tree) indexes, and logging are described in more detail. Meta-data management
such as the management of a catalogue which registers all collections and indexes is
not discussed in this thesis. It is straightforward to implement as all the information is
stored in the database itself in the same way as traditional (relational) databases store
the catalogue inside some hidden tables.

3Obviously, the query processor’s cost model is affected by the use of a storage service, but address-
ing query optimization issues is beyond the scope of this thesis.

52 Chapter 3. Building a Database on Top of Cloud Infrastructure

3.4.2 Record Manager

The record manager manages records (e.g., relational tuples). Each record is associ-
ated to a collection (see below). A record is composed of a key and payload data. The
key uniquely identifies the record within its collection. Both key and payload data are
bytestreams of arbitrary length; the only constraint is that the size of the whole record
must be smaller than the page size. (As mentioned previously, the implementation of
Blobs is not addressed in this thesis.)

Physically, each record is stored in exactly one page which in turn is stored as a single
item using the Cloud Store API. Logically, each record is part of a collection (e.g., a
table). In our implementation, a collection is identified by a URI. All pages in the
collection use the collection’s URI as a prefix. The record manager provides functions
to create new records, read records, update records, and scan collections.

Create(key, payload, uri): Creates a new record into the collection identified by uri. If
the key is not unique, then create returns an error (if the error can be detected imme-
diately) or ignores the request (if the error cannot be detected within the boundaries of
the transaction, see Section 3.5.3). In order to implement keys which are guaranteed to
be unique in a distributed system, we use uuids generated by the client’s hardware in
our implementation. A uuid is a 128bit identifier composed of the user’s MAC address,
the time and some random number making a clash almost impossible [LMS05].

There are many alternative ways to implement free-space management [MCS96], and
they are all applicable in this context. In our current implementation, we use a free
space table which is stored together with the index information of the primary key index
on the storage service (see Section 3.4.4.1). This allows using the same type of free
space management for client-side B-Trees as well as for indexing services. With the
help of the free space table the best fitting page for a record is estimated. It is just an
estimation, as the information of the page size might be outdated by record updates
(see the checkpointing and commit protocol of Section 3.5). Ideally, an assignment for
a record to a page is only done once. However, as records can grow, due to variable
length fields, it might be necessary to move records between pages. To avoid these
moves, we reserve a certain percentage of the space for updates, similar to the PCT-
FREE parameter of Oracle’s DB. In contrast to a traditional database disk layout, pages
on a storage service are not required to be aligned on disk and thus, pages are not
required to all have the same size. Pages are not only of flexible size but even allowed
to grow beyond the page size limit. Hence, as long records grow insignificantly over
time records never need to be moved.

3.4. Database Architecture Revisited 53

In scenarios where records grow significantly over time, it is unavoidable to move
records. Splitting a data page has a lot in common with splitting pages for a client-
side B-Tree. Thus, an indexed organized table can be used, where the leaf pages are
the data pages, and all the algorithms of [Lom96] can be directly adapted. With in-
dexed organized tables, however, it is no longer possible to use an indexing service
for the primary index. For the rest of the thesis we assume that records do not grow
significantly as it allows to use the same presentation for a B-Tree index as well as an
indexing service. However, all algorithms also work, with small adjustments, with an
indexed organized table.4

Read(key as uuid, uri as string): Reads the payload data of a record given the key of
the record and the URI of the collection.

Update(key as uuid, payload as binary, uri as string): Updates the payload information
of a record. In this study, all keys are immutable. The only way to change a key of a
record is to delete and re-create the record.

Delete(key as uuid, uri as string): Deletes a record.

Scan(uri as string): Scans through all records of a collection. To support scans, the
record manager returns an iterator to the application.

In addition to the create, read, update, and scan methods, the API of the record man-
ager supports commit and abort methods. These two methods are implemented by
the page manager as described in the next section. Furthermore, the record manager
exposes an interface to probe indexes (e.g., range queries): Such requests are either
handled by services like SimpleDB (straightforward to implement) or by B-Tree indexes
which are also implemented on top of the cloud infrastructure (Section 3.4.4).

3.4.3 Page Manager

The page manager implements a buffer pool directly on top of the Cloud Storage API. It
supports reading pages from the service, pinning the pages in the buffer pool, updating
the pages in the buffer pool, and marking the pages as updated. The page manager
also provides a way to create new pages. All this functionality is straightforward and
can be implemented just as in any other database system. Furthermore, the page
manager implements the commit and abort methods. We use the term transaction

4In addition, it is also possible to adapt the tombstone technique of [Lom96] just for data pages. Thus,
it is still possible to use an indexing service. For simplicity, this solution is not presented in more detail in
this thesis.

54 Chapter 3. Building a Database on Top of Cloud Infrastructure

for a sequence of read, update, and create requests between two commit or abort
calls. It is assumed that the write set of a transaction (i.e., the set of updated and
newly created pages) fits into the client’s main memory or secondary storage (e.g.,
flash or disk). If an application commits, all the updates are propagated to the cloud
via the put method of the Cloud Storage Service (Section 3.3.1) and all the affected
pages are marked as unmodified in the buffer pool. How this propagation works is
described in Section 3.5. If the application aborts a transaction, all pages marked
modified or new are simply discarded from the buffer pool, without any interaction with
the cloud service. We use the term transaction liberally in this work: Not all the protocols
presented in this thesis give ACID guarantees in the DB sense. The assumption that the
write set of a transaction must fit in the client’s buffer pool can be relaxed by allocating
additional overflow pages for this purpose using the Cloud Storage Service; discussing
such protocols, however, is beyond the scope of this thesis.

The page manager keeps copies of pages from the Cloud Storage Service in the buffer
pool across transactions. That is, no pages are evicted from the buffer pool as part
of a commit. An abort only evicts modified and new pages.5 Pages are refreshed in
the buffer pool using a time to live (TTL) protocol: If an unmodified page is requested
from the buffer pool after its time to live has expired, the page manager issues a get-if-
modified-since request to the Cloud Storage API in order to get an up-to-date version,
if necessary (Section 3.3.1). Furthermore, the page manager supports to force get-if-
modified-since requests when retrieving a page which is useful for checkpointing the
pages.

3.4.4 Indexes

As already mentioned, there are two fundamentally different ways to implement indexes.
First, cloud services for indexing such as SimpleDB can be leveraged. Second, indexes
can be implemented on top of the page manager. The trade-offs of the two approaches
are studied in Section 3.8. This section describes the ways how both approaches can
be implemented.

5Optionally, undo-logging (Section 3.4.5) can be used to rollback modifications instead of evicting
modified pages.

3.4. Database Architecture Revisited 55

3.4.4.1 B-Tree Index

B-Trees can be implemented on top of the page manager in a fairly straightforward
manner. Again, the idea is to adopt existing textbook database technology as far as
possible. The root and intermediate nodes of the B-Tree are stored as pages on the
storage service (via the page manager) and contain (key, uri) pairs: uri refers to the ap-
propriate page at the next lower level. The leaf pages of a primary index contain entries
of the form (key, PageURI) and thus, refer to the pages of the according records (Sec-
tion 3.4.2).6 The leaf pages of a secondary index contain entries of the form (search
key, record key). So probing a secondary index involves navigating through the sec-
ondary index in order to retrieve the keys of the matching records and then navigating
through the primary index in order to retrieve the records with the payload data.

As mentioned in Section 3.4.1, holding locks must be avoided as long as possible in a
scalable distributed architecture. Therefore, we propose to use B-link trees [LY81] and
their use in a distributed system as proposed by [Lom96] in order to allow concurrent
reads and writes (in particular splits), rather than the more mainstream lock-coupling
protocol [BS77]. That is, each node of the B-Tree contains a pointer (i.e., URI) to its
right sibling at the same level. At the leaf level, this chaining can naturally be exploited
in order to implement scans through the whole collection or through large key ranges.

Every B-Tree is identified by the URI of its index information, which contains the URI
of the root page of the index. This guarantees that the root page is always accessible
through the same URI, even when the root page splits. A collection in our implemen-
tation is identified by the URI of its primary index information. All URIs to the index
information (primary or secondary) are stored persistently as meta-data in the system’s
catalogue on the cloud service (Section 3.4.1).

3.4.4.2 Cloud Index

Using the cloud API defined in Section 3.3.7 implementing an secondary index is
straightforward. Entries are the same as for the B-Tree implementation and have the
form of (search key, record key). However, as the API defines the search key as well
as the record key as string, numerical values have to be encoded. Possibilities on how
to encode numerical search keys are given in [Ama09e]. As the index is provided as

6In order to save space, we store only a page ID and not the complete page URI. The page ID together
with the collection URI forms the page URI. This optimization is done at several places, and not further
mentioned.

56 Chapter 3. Building a Database on Top of Cloud Infrastructure

a service, the index information is not required to find the root page of the tree. How-
ever, for primary indexes the index information is still required to store the free-space
table. Except for that, the entries have the same form as for the B-Tree and can be
implemented in the same manner as the secondary indexes.

3.4.5 Logging

The protocols described in Sections 3.5 and 3.6 make extensive use of redo log records.
In all these protocols, it is assumed that the log records are idempotent; that is, applying
a log record twice or more often has the same effect as applying the log record only
once. Again, there is no need to reinvent the wheel and textbook log records as well as
logging techniques are appropriate [GR94]. If not stated otherwise, we use the following
(simple) redo log records in our implementation:

• (insert, key, payload): An insert log record describes the creation of a new record;
such a log record is always associated to a collection (more precisely to the pri-
mary index which organizes the collection) or to a secondary index. If such an
insert log record is associated to a collection, then the key represents the key
value of the new record and the payload contains the other data of the record. If
the insert log record is associated to a secondary index, then the key is the value
of the search key of that secondary index (possibly composite) and the payload is
the primary key value of the referenced record.

• (delete, key): A delete log record is also associated either to a collection (i.e.,
primary index) or to a secondary index.

• (update, key, afterimage): An update log record must be associated to a data
page; i.e., a leaf node of a primary index of a collection. An update log record
contains the new state (i.e., after image) of the referenced record. Logical log-
ging is studied in the context of Consistency Rationing in Chapter 4.5.2. Other
optimized logging techniques are not studied in this work for simplicity; they can
be applied to cloud databases in the same way as to any other database sys-
tem. Entries in a secondary index are updated by deleting and re-inserting these
entries.

By nature, all these log records are idempotent: In all three cases, it can be deduced
from the database whether the updates described by the log record have already been
applied. However, with such simple update log records, it is possible that the same

3.4. Database Architecture Revisited 57

update is applied twice if another update overwrote the first update before the second
update. This property can result in indeterminisms as shown in Section 3.5.3. In order
to avoid these indeterminisms, more sophisticated logging can be used such as the log
records used in Section 3.6.2.

If an operation involves updates to a record and updates to one or several secondary in-
dexes, then separate log records are created by the record manager to log the updates
in the collection and at the secondary indexes. Again, implementing this functional-
ity in the record manager is straightforward and not different to any textbook database
system.

Most protocols studied in this work involve redo logging only. Only the protocol sketched
in Section 3.6.4 requires undo logging. Undo logging is also straightforward to imple-
ment by keeping the before image in addition to the after image in update log records,
and by keeping the last version of the record in delete log records.

3.4.6 Security

Several security concerns exist in the open architecture shown in Figure 3.1. The most
important ones are the access control to the data and the trust issue with the cloud
provider. In the following, we briefly describe possible solutions for both security con-
cerns. However, to cover the security aspect in more detail is beyond of the scope of
this thesis and remains future work.

Basic access control can be implemented using the access control functionality most
cloud services have already in place. For example, inside Amazon S3 users can give
other users read and/or write privileges on the level of buckets or individual objects in-
side the bucket. This coarse-grained access control can be used for the fundamental
protection of the data. More fine-grained security and flexible authorization using, e.g.,
SQL views have to be implemented on top of the storage provider. Depending on the
trust to the user and the application stack, several security scenarios are applicable
to implement more fine-grained control. If the protocols cannot be compromised, one
solution is to assign a curator for each collection. In this scenario, all updates must
be approved by the curator before they become visible to other clients. While the up-
dates wait for approval, clients continue to see the old version of the data. This allows
for a more central way of security control and is well-suited for the checkpointing pro-
tocol presented in the next section. Additionally, the curator can ensure the integrity
constraints inside the database. However, a curator only works for the simple proto-
cols which do not provide serializability guarantees. For more advanced protocols or in

58 Chapter 3. Building a Database on Top of Cloud Infrastructure

case protocols can be corrupted, the P2P literature already proposes various solutions
[PETCR06, BT04, BLP05], which are also adaptable to the here presented architecture.

The trust issue between the user or application and the service provider can be solved
by encrypting all the data. Furthermore, in order to give different sets of clients access
to different sets of pages, different encryption keys can be used. In this case, the header
of the page indicates which key must be used to decrypt and re-encrypt the page in the
event of updates, and this key must be shared by all the clients or application servers
who may access that page.

3.5 Basic Commit Protocols

The previous section showed that a database implemented on top of cloud computing
services can have a great deal of commonalities with a traditional textbook database
system implemented on top of disks. This section addresses one particular issue which
arises when concurrent clients commit updates to records stored on the same page. If
no care is taken, then the updates of one client are overwritten by the other client, even
if the two clients update different records. The reason is that the unit of transfer between
clients and the Cloud Storage Service in the architecture of Figure 3.1 is a page rather
than an individual record. This issue does not arise in a (shared-disk) database system
because the database system coordinates updates to the disk(s); however, this coor-
dination limits the scalability (number of nodes/clients) of a shared-disk database. It
also does not arise in today’s conventional use of cloud storage services: When storing
large objects (e.g., multi-media objects), the unit of transfer can be the object without
a problem; for small records, clustering several records into pages is mandatory in or-
der to get acceptable performance (Section 3.2.1). Obviously, if two concurrent clients
update the same record, then the last updater wins. Table 3.4 provides on overview of
the different protocols described in this and the next section together with the levels of
consistency and availability they provide.

The protocols devised in this section are applicable to all architectural variants de-
scribed in Section 3.4; i.e., independent of which parts of the client application stack are
executed on end-users’ machines (e.g., laptops) and which parts are executed on cloud
machines (e.g., EC2 machines). Again, the term client is used in order to abstract from
these different architectures. The protocols are also applicable to the two different ways
of implementing indexes (SimpleDB vs. client-side B-Trees). The protocols designed
in this section preserve the main features of cloud computing: clients can fail anytime,

3.5. Basic Commit Protocols 59

Protocol Guarantees1
Required
Services2

Availa-
bility

3.5 Basic
•Eventual consistent on record level
•Possible loss of updates in the case of failures
during the commit

•Storage Service
•Simple Queues

High

3.6.1
Atomicity

•Atomicity3 (either all or none of the updates will
persist)
•No guarantee on when a transaction becomes
fully visible

•Storage Service
•Simple Queues

High

3.6.2
Monotonicity

Various monotonicity guarantees (Monotonic
Reads, Monotonic Writes, Read your Writes,
Write follows Read, Session Consistency)

•Storage Service
•Simple Queues

For single
clients re-
duced

3.6.3
Advanced
Atomicity

•Atomicity3

•Guaranteed time until a transaction becomes
fully visible

•Storage Service
•Advanced Queues
•Locking Service

System
wide
reduced

3.6.4
Generalized
Snapshot
Isolation

•Snapshot Isolation Guarantees
•Depends on the advanced atomicity protocol

•Storage Service
•Advanced Queues
•Locking Service
•Advanced Counters

System
wide
reduced

3.6.5
2-Phase-
Locking

•Serializable
•Depends on the advanced atomicity protocol

•Storage Service
•Advanced Queues
•Locking Service

System
wide
reduced

1All transactions provide read-committed guarantees. That is, only the changes of committed
transactions are visible to other clients. Still, the guarantee does not correspond to the definition of the
ISO isolation levels, because of the missing or dissent atomicity guarantees. 2Lists only the services
which are required to execute a transaction, not to checkpoint updates. Further, the indexing service
and the machine reservation service are orthogonal to the protocol and also not listed. 3The guarantee
does not apply for the visibility of updates. Hence, it is possible for a concurrent transaction to observe
partially carried out transactions.

Table 3.4: Consistency Protocols

clients can read and write data at constant time, clients are never blocked by concurrent
clients, and distributed web-based applications can be built on top of the cloud without
the need to build or administrate any additional infrastructure. Again, the price to pay for
these features is reduced consistency: In theory, it might take an undetermined amount
of time before the updates of one client become visible to other clients. In practice, the
time can be controlled, thereby increasing the cost (in $) of running an application for
increased consistency (i.e., a reduced propagation time).

60 Chapter 3. Building a Database on Top of Cloud Infrastructure

Cloud Storage

log rec.
log rec.
log rec.

...

PU Queue

LOCK

log rec.
log rec.
log rec.

...

PU Queue

LOCK

...

Client Client Client

Step 1. Commit

Step 2. Checkpoint

SQS

Figure 3.2: Basic Commit Protocol

3.5.1 Overview

Figure 3.2 demonstrates the basic idea of how clients commit updates. The protocol is
carried out in two steps:

• In the first step, the client generates log records for all the updates that are com-
mitted as part of the transaction and sends them to the queues.

• In the second step, the log records are applied to the pages using our Store API.
We call this step checkpointing.7

This protocol is extremely simple, but it serves the purpose. Assuming that the queue
service is virtually always available and that sending messages to the queues never
blocks, the first step can be carried out in constant time (assuming a constant or
bounded number of messages which must be sent per commit). The second step,
checkpointing, involves synchronization (Section 3.5.3), but this step can be carried out
asynchronously and outside the execution of a client application. That is, end users
are never blocked by the checkpointing process. As a result, virtually 100 percent

7We use the word checkpointing for this activity because it applies updates from one storage me-
dia (queues) to the persistent storage. There are, however, important differences to traditional DBMS
checkpointing. Most importantly, checkpointing in traditional DBMSes is carried out in order to reduce
the recovery time after failure. Here, checkpointing is carried out in order to make updates visible.

3.5. Basic Commit Protocols 61

read, write, and commit availability is achieved, independent of the activity of concur-
rent clients and failures of other clients.

The protocol of Figure 3.2 is also resilient to failures. If a client crashes during commit,
then the client resends all log records when it restarts. In this case, it is possible that
the client sends some log records twice and as a result these log records may be
applied twice. However, applying log records twice is not a problem because the log
records are idempotent (Section 3.4.5). If a client crashes during a commit, it is also
possible that the client never comes back or loses uncommitted log records. In this
case, some log records of the commit have been applied (before the failure) and some
log records of the commit will never be applied, thereby violating atomicity. Indeed, the
basic commit protocol of Figure 3.2 does not guarantee atomicity. Atomicity, however,
can be implemented on top of this protocol as shown in Section 3.6.1.

In summary, the protocol of Figure 3.2 preserves all the features of cloud computing.
Unfortunately, it does not help with regard to consistency. That is, the time before
an update of one client becomes visible to other clients is unbounded in theory. The
only guarantee that can be given is that eventually all updates will become visible to
everybody and that all updates are durable. This property is known as eventual consis-
tency [TS06]. Thus, no serializability guarantees are provided for transactions and the
consistency level is best comparable to read committed without atomicity guarantees
(e.g., a transaction might be not completely applied due to failures). Protocols provid-
ing more guarantees are presented in the subsequent sections (see also Table 3.4). In
practice, the freshness of data seen by clients can be controlled by setting the check-
point interval (Section 3.5.7) and the TTL value at each client’s cache (Section 3.4.1).
Setting the checkpoint interval and TTL values to lower values will increase the fresh-
ness of data, but it will also increase the ($) cost per transaction (see experiments in
[BFG+08]). Another way to increase the freshness of data (at increased cost) is to allow
clients to receive log records directly from the queue, before they have been applied to
the persistent storage as part of a checkpoint.

The remainder of this section describes the details of the basic commit protocol of
Figure 3.2; i.e., committing log records to queues (Step 1) and checkpointing (Step 2).

3.5.2 PU Queues

Figure 3.2 shows that clients propagate their log records to so-called PU queues (i.e.,
Pending Update queues). These PU queues are implemented as Simple Queues using
the API defined in Section 3.3.3. In theory, it would be sufficient to have a single PU

62 Chapter 3. Building a Database on Top of Cloud Infrastructure

queue for the whole system. However, it is better to have several PU queues because
that allows multiple clients to carry out checkpoints concurrently: As shown in Sec-
tion 3.5.3, a PU queue can only be checkpointed by a single client at the same time.
Specifically, we propose to establish PU queues for the following structures:

• Each index (primary and secondary) has one PU queue associated to it. The PU
queue of a index is created when the index is created and its URI is derived from
the URI of the index. The URI of the primary index is the same as the collection
URI. All insert and delete log records are submitted to the PU queues of index.

• One PU queue is associated to each data page containing the records of a col-
lection. Update and delete log records are submitted to the PU queues of data
pages. The URIs of these PU queues are derived from the corresponding URIs
of the data pages.

The delete records are send to both as they require to update the primary index as well
as the page. Inserts cannot be sent to both queues immediately, as first a free page
needs to be determined for the insert. Hence, inserts are first send to the collection
queue. During the checkpointing of a collection, those new records get a page assigned
and are afterwards forwarded to the according page. Finally, the page checkpointing
applies then the records to the according pages (see Section 3.5.4).

Algorithm 1 Basic Commit Protocol
1: for all modified records R do
2: C ← collection of R
3: P ← page of R
4: if R.P 6= null then
5: sendMessage(P .Uri, R.Log)
6: end if
7: if R.P = null ∨ R is marked as deleted then
8: sendMessage(C.Uri, R.Log);
9: end if

10: for all C.SecondaryIndexes S do
11: if R has a modified value for S then
12: sendMessage(S.Uri, pair(R.Key, V));
13: end if
14: end for
15: end for

3.5. Basic Commit Protocols 63

The pseudo code of the commit routine is given in Algorithm 1. In that algorithm, R.Log
refers to the log record generated to capture all updates on Record R. C.Uri refers
to the URI of the collection to which Record R belongs to; this URI coincides with the
URI of the root page of the collections primary index. P.Uri is the URI of the page in
which a record resides. R.key is the key value of Record R. If a record comes without
any page assigned, it is a new record and hence an insert. For efficiency, it is possible
for the client to pack several log records into a single message, thereby exploiting the
maximum message size of the Cloud Queue Service. This trick is also applicable in all
the following algorithms and not further shown to facilitate the presentation.

3.5.3 Checkpoint Protocol for Data Pages

Checkpoints can be carried out at any time and by any node (or client) of the system. A
checkpoint strategy determines when and by whom a checkpoint is carried out (Section
3.5.7). This section describes how a checkpoint of log records is executed on data
pages. This applies updates to records which already have an assigned data page.
The next section describes how checkpoints of insert and delete log records on the
collection are carried out.

The input of a checkpoint is a PU queue. The most important challenge when carry-
ing out a checkpoint is to make sure that nobody else is concurrently carrying out a
checkpoint on the same PU queue. For instance, if two clients carry out a checkpoint
concurrently using the same PU queue, some updates (i.e., log records) might be lost
because it is unlikely that both clients will read exactly the same set of log records from
the PU queue (Section 3.3.3). In order to synchronize checkpoints, the Locking Service
(Section 3.3.5) is used. When a client (or any other authority) attempts to do a check-
point on a PU queue, it tries first to acquire an exclusive lock for the PU queue URI. If
that lock request is granted, then the client knows that nobody else is concurrently ap-
plying a checkpoint on that PU queue and proceeds to carry out the checkpoint. If it is
not granted (or if the service is unavailable), then the client assumes that a concurrent
client is carrying out a checkpoint and simply terminates the routine (no action required
for this client). It has to be noted, that the lock does not prevent concurrent transactions
to attach messages to the queue (see Algorithm 1). Thus, carrying out a checkpoint
does not block any transaction.

Per definition, the exclusive lock is only granted for a specific timeframe. During this
time period the client must have completed the checkpoint; if the client is not finished
within that timeout period, the client aborts checkpoint processing and propagates no

64 Chapter 3. Building a Database on Top of Cloud Infrastructure

changes. Setting the timeout for holding the exclusive lock during checkpointing a data
page is critical. Setting the value too low and the maximum number of log records
per checkpoint to high might result in starvation because no checkpoint will ever be
completed. Furthermore, the timeout must be set long enough to give the Cloud Stor-
age Service enough time to propagate all updates to a data page to all replicas of that
data page. On the other hand, a short timeout enables frequent checkpoints and, thus,
fresher data. For the experiments reported in Section 3.8, a timeout of 20 seconds was
used.

Algorithm 2 Page Checkpoint Protocol
Require: page P , PropPeriod , X ← maximum number of log records per checkpoint

1: if acquireXLock(P .Uri) then
2: StartT ime← CurrentTime()
3: V ← get-if-modified-since(P .Uri, P .Timestamp)
4: if V 6= Null then
5: P ← V

6: end if
7: M ← receiveMessage(P .Uri, X)
8: for all messages m in M do
9: apply m to P

10: end for
11: if CurrentTime() - StartT ime < LockT imeOut− PropPeriod then
12: put(P .Uri, P .Data)
13: if CurrentTime() - StartT ime < LockT imeOut− PropPeriod then
14: for all messages m in M do
15: deleteMessage(P .Uri, m.Id)
16: end for
17: end if
18: end if
19: end if

The complete checkpoint algorithm is given in Algorithm 2. The algorithm first gets an
exclusive lock (Line 1) and then re-reads the data page, if necessary (Lines 2-6). In or-
der to find out whether the current version of the data page in the client’s cache is fresh,
each data page contains the timestamp of the last checkpoint as part of its page header.
After that, X update log records are read from the PU Queue (Line 7). X is a parameter
of this algorithm and depends on the timeout period set for holding the exclusive lock
(the longer, the more log records can be applied) and the checkpoint interval (Section

3.5. Basic Commit Protocols 65

3.5.7, the longer, the more log records are available). In our experiments, X was set
to 1000 messages at the beginning. Afterwards X is automatically adjusted depend-
ing on the queue performance. After reading the log records from the PU queue, the
log records are applied to the local copy of the page in the client’s cache (Lines 8-10)
and the modified page is written back to the Cloud Storage Service (Line 12). Writing
back the page to the Cloud Storage Service involves propagating the new version of
the data page to all replicas of the data page inside the cloud. This propagation must
happen within the timeout period of the exclusive lock in order to avoid inconsistencies
created by concurrent checkpointing clients. Unfortunately, Cloud Storage providers do
not give any guarantees how long this propagation takes, but, for instance, Amazon
claims that five seconds is a safe value for S3 (less than one second is the norm).
To simplify the presentation we assume here, that this PropPeriod is always sufficient.
Accordingly, Line 11 considers a PropPeriod parameter which is set to five seconds in
all experiments reported in Section 3.8. Section 3.5.6 explains, how the protocols can
be extended if this assumption does not hold. The time is checked again after writing
the page before deleting the messages (Lines 13) to ensure that no second check-
point started before the page was written and propagated to S3. Finally, at the end of
Algorithm 2, the log records are deleted from the PU queue (Lines 14-16).

In Line 9 of Algorithm 2, it is possible that the data page must be split because the
records have grown. In the implementation with index-organized tables, splitting data
pages is the same as splitting index nodes and carried out along the lines of [Lom96]
so that clients which read a page are not blocked while the page is split. In Line 12,
the put method to the Cloud Storage Service is considered to be atomic. The exclusive
lock obtained in Line 1 need not be released explicitly because it becomes available
automatically after the timeout period.

This protocol to propagate updates from a PU queue to the Cloud Storage Service is
safe because the client can fail at any point in time without causing any damage. If the
client fails before Line 12, then no damage is done because neither the PU queue nor
the data page have changed. If the client fails after Line 12 and before the deletion
of all log records from the PU queue, then it is possible that some log records are
applied twice. Again, no damage is caused in this case because the log records are
idempotent (Section 3.4.5). In this case, indeterminisms can appear if the PU queue
contains several update log records that affect the same key. As part of a subsequent
checkpoint, these log records may be applied in a different order (i.e., Simple Queues
do not guarantee the order or availability of messages) so that two different versions
of the page may become visible to clients, even though no other updates have been
initiated in the meantime. These indeterminisms can be avoided by using the extended

66 Chapter 3. Building a Database on Top of Cloud Infrastructure

logging mechanism for monotonic writes described in Section 3.6.2 as opposed to the
simple log records described in Section 3.4.5.

3.5.4 Checkpoint Protocol for Collections

The previous section has shown, how updates to a data page are checkpointed. This
section describes how inserts and deletes to a collection are handled. The basic idea
of a collection checkpoint is to update the primary index with the deletion and inserts to
the collection and forward the request to the according pages. As mentioned earlier, our
implementation supports free-space management by using a simple table as well as an
index-organized table. Here, we only present the free-space table approach because it
does not restrict the primary index to a client-side index (see also Section 3.4.2).

Algorithm 3 sketches the collection checkpoint protocol. The algorithm first gets an
exclusive lock (Line 1) to prevent concurrent checkpoints. A collection checkpoint often
requires a longer and more variable time than a page checkpoint due to the updates of
the primary index. Thus, we use longer timeout periods (i.e., 60s in our experiments)
and actively release the locks because typically the required time is much shorter. After
acquiring the lock, the index information containing the free-space table is re-read from
the storage service (Line 3) and the primary index is outdated (Line 4). Outdating the
index pages forces get-if-modified-since requests for every index page and thus, brings
the index up-to-date. Afterwards, X update log records are read from the PU Queue
(Line 5). X again depends on the timeout period of the exclusive lock and can even be
adjusted during run-time. Line 7-19 iterates through all received messages and uses
the free-space table (Line 11) to find a page for inserts or informs the free-space table
about deletions (Line 17). All pages receiving inserts are stored in the Set P (Line 15).
Again, note that the free-space table just estimates free pages and is not 100% exact as
updates on records are not considered. Hence, the table has to be corrected from time-
to-time by scanning through all data tables (not shown here). The biggest advantage
of using a free-space table instead of an index-organized table is, that the likelihood
increases that all records are inserted into the same page (recall, RIDs are random
uuids and not continuously increasing) and thus, less data pages need to be updated.

If the lock has not expired yet, including same padding to propagate the changes
(Line 20), all changes are applied to the index (Line 21). In case an indexing service is
used, the request is simply forwarded. If a client-side index is used, updating the index
involves navigating through the tree and possibly merging and splitting pages. Again,
the PropPeriod is used to guarantee that there is enough time to update the index and

3.5. Basic Commit Protocols 67

Algorithm 3 Collection Checkpoint Protocol
Require: CollectionURI, PropPeriod , X ← maximum number of log records per checkpoint,

ClientID

1: if acquireXLock(CollectionURI, ClientID) then
2: StartT ime← currentTime()
3: IndexInfo← get(CollectionURI)
4: PageManager.outdate(IndexInfo, X)
5: M ← receiveMessage(CollectionURI, X)
6: UniqueMap P ← ∅
7: for all messages m in M do
8: if m.Type = INSERT then
9: m.PageURI← findKey(IndexInfo, m.RID)

10: if m.PageURI = Null then
11: m.PageURI← IndexInfo.getFreePage(size(m.log))
12: else
13: IndexInfo.correctFreePage(m.PageURI, size(m.log)
14: end if
15: P .add(m.PageURI)
16: else
17: IndexInfo.freePage(m.PageURI, size(m.log))
18: end if
19: end for
20: if CurrentTime() - StartT ime < LockT imeOut− PropPeriod then
21: updateIndex(IndexInfo, M)
22: put(IndexInfo)
23: CommitT ime← CurrentTime()
24: if CurrentTime() - StartT ime < LockT imeOut− PropPeriod then
25: for all messages m in M do
26: if m.Type = INSERT then
27: sendMessage(m.PageURI, M)
28: end if
29: deleteMessage(IndexURI, m.MessageID)
30: end for
31: for all Pages p in P do
32: do page-checkpoint for p

33: end for
34: wait(CommitT ime + PropPeriod - CurrentTime())
35: releaseLock(CollectionURI, ClientID)
36: end if
37: end if
38: end if

68 Chapter 3. Building a Database on Top of Cloud Infrastructure

propagate all changes (including the changes to the index). As several pages are in-
volved, this typically requires more time than a simple page propagation and was set
depending on the location of the client (e.g., EC2 or end-user machine). Afterwards,
the inserts are forwarded to the according pages (Line 25-27) and all messages are
deleted from the collection queue (Line 28). Finally, a checkpoint is tried on all affected
pages (Line 30-32) and the lock is released (Line 34) after the propagation time has
expired (Line 33).

The protocol is safe because the client can fail at any point in time without causing any
damage. If the client fails before Line 21 nothing has changed inside the queues or on
the storage service and the failure is safe. If the client fails after Line 21, no damage
is caused as the index has already been updated in Line 21 and the same inserts and
deletes will be re-read from the queue by another checkpoint. As every insert is checked
against the index (Line 9) before the free-space table is used, all inserts will be placed
on exactly the same page. If the client crashes during Line 21, the behaviour is similar
as again, all the updates which have already been made can be found. Failures after
Line 22 can however increase the coherence between the actual available free-space
and the information in the free-space table (i.e., deletes are applied more than once).
That does not harm, as the free-space table is only an estimation and corrected from
time-to-time.

Algorithm 2 is just a sketch of the protocol, and many optimizations are possible to
increase the performance and robustness. Most importantly, updateIndex can be a
time-consuming operation and is hard to predict. Thus, it is often useful to sort the
messages by their key, and process the checkpoint in several batches. It is even possi-
ble to use the index information to form the batches (similar to the algorithm sketch of
Section 3.5.5). Furthermore, the divergence of the free-space information can be de-
creased by additional free-space correction messages to the collection queue. Again,
batching of messages is an easy and effective optimization. Finally, checkpointing the
collection queue can be done in parallel. The simplest solution is, to have one or more
collection queues partitioned by the record key, each with its own set of pages and
a corresponding free-space table. Because keys are constructed by uuids it already
results in an almost uniform distribution. The index can still be shared or also be parti-
tioned. The simple parallelization scheme introduces additional overhead when higher
levels of consistency is required (e.g., for snapshot isolation, several queues have to be
checked simultaneously and messages additionally need to be sorted). Thus, index-
organized tables or Advanced Queues can also be explored to increase the level of
parallelism for inserts and deletes. To discuss those in detail is beyond the scope of
this thesis.

3.5. Basic Commit Protocols 69

3.5.5 Checkpoint Protocol for Client-Side B-Trees

As mentioned in Section 3.5.2, checkpointing is only needed for client-side (B-Tree)
indexes. No checkpointing is required if indexing is implemented using services like
SimpleDB. For client-side B-Tree indexes, there is one PU queue associated to each
B-Tree: This PU queue contains log records for the respective B-Tree. Primary and
secondary indexes are checkpointed in the same way. Only if the index is used for an
index-organized table, the leaf nodes (i.e., data pages) have to be treated separately.
Checkpointing a client-side B-Tree is more complicated than checkpointing a data page
because several (B-Tree) pages are involved in a checkpoint and because splitting and
deleting pages is a frequent procedure. To allow concurrent reads during updates we
adopted the techniques of [Lom96]. In contrast to [Lom96], the navigation to a leaf-page
always needs to be done by the client and cannot be forwarded to the server holding
the data page. Furthermore, as checkpointing enables increased batch-processing, we
try to update as many items as possible at once to the index. Hence, the basic protocol
for checkpointing B-Tree pages can be summarized in the following protocol sketch:

1. Obtain the token from the LOCK queue (same as Step 1, Section 3.5.3).

2. Receive log records from the PU queue (Step 2, Section 3.5.3).

3. Sort the log records by key.

4. Take the first (unprocessed) log record and navigate through the B-Tree to the leaf
node which is affected by this log record. Reread that leaf node from S3 using
S3’s get-if-modified method.

5. Apply all log records that are relevant to that leaf node.

6. If the timeout of the token received in Step 1 has not expired (with some padding
for the put), put the new version of the node to S3; otherwise, terminate (same as
Step 5, Section 3.5.3).

7. If the timeout has not expired, delete the log records which were applied in Step
5, from the PU queue.

8. If not all log records have been processed yet, goto Step 4; otherwise, terminate.

The details on how to navigate to a page, range scans, inserts, updates and deletes can
be found in [Lom96]. The only required modifications to [Lom96] concern the atomicity
of splits and deletions of nodes. The paper proposes to use a 2-phase commit protocol

70 Chapter 3. Building a Database on Top of Cloud Infrastructure

to coordinate the node split, which is not applicable in the here presented architec-
ture. Instead, we can achieve atomicity by either applying a recovery protocol similar
to the one presented in Section 3.6.1 or by allowing dead-pages and, thus, garbage
collections. The interested reader is referred to Appendix A.1 for more details.

3.5.6 Unsafe Propagation Time

All presented checkpoint protocols require setting a PropPeriod. The PropPeriod en-
sures that there is enough time to propagate changes inside the storage service. How-
ever, for many systems it is not possible to set this value as it might take an arbitrary
time until an update becomes visible. For example, a system like Dynamo [DHJ+07]
continues to accept updates even in the presence of network partitioning. In this situ-
ation, updates inside one partition become quickly visible but it might take an arbitrary
time until the updates become visible in the whole system.

To overcome this problem, it needs to be ensured that the latest version is received
before a checkpoint is applied.8 The easiest way to ensure this property is by making
use of the ordering of messages of the Advanced Queue Services (Section 3.3.4). That
is, every checkpoint to a page contains in the header the latest applied MessageID. In
addition, the latest MessageID is not deleted from the queue when applying a check-
point. It follows that, if a new checkpoint needs to be done, the latest applied message
has to be higher or equal to the first message in the queue. If this is the case, the page
has been propagated successfully and the next checkpoint can be done. Otherwise,
the checkpoint has to be postponed.

It is more complicated to ensure that the latest version of a client-side B-Tree is re-
ceived because it consists of several pages. Several possible solutions exist: One is
to introduce one queue per node inside the tree and to coordinate the node splitting,
inserts etc. over the queues. Hence, the same technique as for the data pages could
be used. Another possibility is to use an additional summarizing data structure similar
to Merkle-trees (Section 2.3.1.3) stored inside the index information. Thus, whenever
a change happens, this structure requires an update. This information, together with
the latest MessageID can then be used to determine if the index corresponds to the
latest version. Furthermore, this information can also be used to determine which data
pages have to be updated for a given set of inserts/updates/deletes. If required, this

8We assume that the system always propagates the latest written version. This assumption holds in
almost all systems, because even when using simple system timestamps, the time inside different nodes
normally does not diverge more than the time between two consecutive checkpoints (e.g., 30s).

3.5. Basic Commit Protocols 71

summarizing structure can even be split and stored in different files for space reasons
or to allow for concurrent changes to the tree.

However, Advanced Queues have the drawback that they are not as highly available
as Simple Queues and probably more expensive. Luckily, it is also possible to avoid
the PropPeriod with Simple Queues. The simplest solution is to use the counter ser-
vice. Every data page or index information stores an additional counter value, which
is increased before writing it. After writing the page, the counter service is called with
the URI of the page to increase the counter of the service to the same value. Only
afterwards, the applied messages can be deleted safely. Before applying a checkpoint,
the counter service is read to ensure that the counter of the page is equal to or higher
than the one of the counter service. Otherwise, the last checkpoint has not propagated
and the checkpoint has to be postponed. For the B-Tree itself the same summarizing
structure can be used.

In order to completely avoid additional services, client counter IDs can be used as
will be introduced for monotonicity guarantees in Section 3.6.2. These, together with
postponing the deletion of records, always allow for reconstructing the page, even when
a checkpoint has been done before the previous checkpoint was propagated. More
details on this technique are given in Section 3.6.2.

Unfortunately, all methods introduce different levels of overhead and influence the avail-
ability. The last method ensures the highest availability, as a Simple Queue Service can
even operate in the presence of network partitioning, but at the same time creates the
highest overhead, as it requires to keep on to (client, counter) pairs and hold on to
messages longer than otherwise required. In contrast, the use of Advanced Queues
reduces the overhead but decrease the availability because Advanced Queues are typ-
ically not resilient against network partitioning (else, the strong order of messages could
not be provided).

3.5.7 Checkpoint Strategies

The purpose of the previous two sections was to show how checkpoints are imple-
mented. The protocols were designed in such a way that anybody could apply a check-
point at any time. This section discusses alternative checkpoint strategies. A check-
point strategy determines when and by whom a checkpoint is carried out. Along both
dimensions, there are several alternatives.

72 Chapter 3. Building a Database on Top of Cloud Infrastructure

A checkpoint on a page (or an index) X can be carried out by the following authorities:

• Reader: A reader of X.

• Writer: A client who just committed updates to X.

• Watchdog: A process which periodically checks PU queues.

• Owner: X is assigned to a specific client which periodically checks the PU queue
of X.

In this work, we propose to have checkpoints carried out by readers and writers while
they work on the page (or index). Establishing watchdogs to periodically check PU
queues is a waste of resources and requires an additional infrastructure to run the
watchdogs. Likewise, assigning owners to PU queues involves wasting resources be-
cause the owners must poll the state of their PU queues. Furthermore, owners may
be offline for an undetermined amount of time in which case the updates might never
be propagated from the PU queue to S3. The advantage of using watchdogs and as-
signing owners to PU queues is that the protocols of Sections 3.5.3, 3.5.4 and 3.5.5
are simplified (no LOCK queues are needed) because no synchronization between po-
tentially concurrent clients is required. Nevertheless, we believe that the disadvantages
outweigh this advantage.

The discussion of whether checkpoints should be carried out by readers or writers is
more subtle and depends on the second question of when checkpoints should be car-
ried out. In this work, we propose to use writers in general and readers only in excep-
tional cases (see below). A writer initiates a checkpoint using the following condition:

• Each data page records the timestamp of the last checkpoint in its header. For
B-Trees, the timestamp is recorded in the meta-data (Section 3.2.1) associated to
the root page of the B-Tree. For B-Trees, the timestamp is not stored in the root
page because checkpointing a B-Tree typically does not involve modifying the
root and rewriting the whole root in this event would be wasteful. The timestamp
is taken from the machine that carries out the checkpoint. It is not important to
have synchronized clocks on all machines; out-of-sync clocks will result in more
or less frequent checkpoints, but they will not affect the correctness of the protocol
(i.e., eventual consistency at full availability).

• When a client commits a log record to a data page or B-Tree, the client computes
the difference between its current wallclock time and the timestamp recorded for

3.5. Basic Commit Protocols 73

the last checkpoint in the data page / B-Tree. If the absolute value of this difference
is bigger than a certain threshold (checkpoint interval), then the writer carries
out a checkpoint asynchronously (not blocking any other activity at the client).
The absolute value of the difference is used because out-of-sync clocks might
return outrageous timestamps that lie in the future; in this case, the difference is
negative.

The checkpoint interval is an application-dependent configuration parameter; the lower
it is set, the faster updates become visible, yet the higher the cost (in $) for carrying out
many checkpoints. The trade-offs of this parameter have been studied in [BFG+08].
Obviously, the checkpoint interval should be set to a significantly larger value than the
timeout on the LOCK for checkpoint processing used in the protocols. For a typical
web-based application, a checkpoint interval of 30 seconds with timeouts on locks of
20 second is typical sufficient. Clearly, none of the protocols devised in this work are
appropriate to execute transactions on hot-spot objects which are updated thousands
of times per second.

Unfortunately, the writer-only strategy has a flaw. It is possible that a page which is up-
dated only once is never checkpointed. As a result, the update never becomes visible.
In order to remedy this situation, it is important that readers also initiate checkpoints
if they see a page whose last checkpoint was a long time ago: A reader initiates a
checkpoint randomly with a probability proportional to 1/x if x is the time period since
the last checkpoint; x must be larger than the checkpoint interval. Thus, the longer the
page has not been checkpointed after the checkpoint interval expired, the less likely
a checkpoint is required in this approach. Initiating a checkpoint does not block the
reader; again, all checkpoints are carried out asynchronously outside any transaction.
Of course, it is still possible that an update from a PU queue is never checkpointed if the
data page or index is neither read nor updated; however, we do not need to worry about
this, because in this case the page or index is garbage. Further, the checkpoint interval
only influences the freshness of the data but it is no guarantee for it. Freshness is a
form of consistency and thus, can only be guaranteed if stronger consistency protocols
(as shown in 3.6.4 and 3.6.5) are used.9

The proposed checkpointing strategy makes decisions for each data page and each
index individually. There are no concerted checkpointing decisions. This design sim-
plifies the implementation, but it can be the source of additional inconsistencies. If a

9With the simple queuing service it is not possible to give any freshness guarantee. Simple queues
work even in the presence of network partitioning. Thus, per definition it might take an arbitrary time that
an update becomes visible.

74 Chapter 3. Building a Database on Top of Cloud Infrastructure

new record is inserted, for instance, the new record may become visible in a secondary
index on S3 before it becomes visible in the primary index. Likewise, the query select
count(*) from collection can return different results, depending on the index used to pro-
cess this query. How to avoid such phantoms and achieve serializability is discussed
in Sections 3.6.4 and 3.6.5. Unfortunately, serializability cannot be achieved without
sacrificing scalability and full availability of the system.

3.6 Transactional Properties

The previous section has shown how durability can be implemented on top of an even-
tual consistent store with the help of a queuing service. No update is ever lost, updates
are guaranteed to become visible to other clients (eventual consistency [TS06]), and
the states of records and indexes persist until they are overwritten by other transac-
tions. This section describes how additional transactional properties can be imple-
mented (see also Table 3.4). Again, the goal is to provide these added properties at
the lowest possible cost (monetary and latency) without sacrificing the basic principles
of utility computing: scalability and availability. It is shown that atomicity and all client-
side consistency levels described in [TS06] can be achieved under these constraints
whereas isolation and strict consistency can only be achieved if we tolerate reduced
availability. All protocols described in this section are layered on top of the basic proto-
cols described in the previous section.

3.6.1 Atomicity

Atomicity implies that all or none of the updates of a transaction become visible. Atom-
icity is not guaranteed using the basic commit protocol depicted in Figure 3.2. If a client
fails while processing a commit of a transaction, it is possible that the client already
submitted some updates to the corresponding PU queues whereas other updates of
the transaction would be lost due to the failure.

Fortunately, atomicity can be implemented using additional ATOMIC queues. An ATOMIC
queue is associated to each client and implemented using the Simple Queue Service
(Section 3.3.3). In fact, it is possible that a client maintains several ATOMIC queues
in order to execute several transactions concurrently. For ease of presentation, we
assume that each client has a single ATOMIC Queue and that a client executes trans-
actions one after the other (of course, several operations can be executed by a client
as part of the same transaction).

3.6. Transactional Properties 75

The commit protocol that ensures atomicity with the help of ATOMIC queues is shown
in Algorithm 4. The idea is simple. First, all log records are sent to the ATOMIC queue,
thereby remembering the message IDs of all messages sent to the ATOMIC queue in
the set of LogMessageIDs (lines 1-3). Again, it is possible to exploit the maximum mes-
sage size of the Queue Service by packing several log records into a single message in
order to reduce the cost and response time. Once the client has written all log records
of the transaction to its ATOMIC queue, the client sends a special commitLog record to
the ATOMIC queue (line 5). At this point, the transaction is successfully committed and
recoverable. Then, the client executes the basic commit protocol of Algorithm 4 (line 6);
that is, the client sends the log records to the corresponding PU queues so that they
can be propagated to the data and index pages in subsequent checkpoints. If the basic
commit protocol was carried out successfully, the client removes all messages from its
ATOMIC queue using the set of LogMessageIDs (lines 7-9).

Algorithm 4 Atomicity - Commit
Require: AtomicQueueUri← Atomic Queue URI for the Client

1: LogMessageIDs← ∅
2: for all modified records R do
3: LogMessageIDs.add(sendMessage(AtomicQueueUri, R.Log))
4: end for
5: LogMessageIDs.add(sendMessage(AtomicQueueUri, CommitLog));
6: execute basic commit protocol (Algorithm 1)
7: for all i in LogMessageIDs do
8: deleteMessage(AtomicQueueUri, i)
9: end for

When a client fails, the client executes the recovery protocol of Algorithm 5 after the
restart. First, the client reads all log messages from its ATOMIC queue (lines 1-6). Since
Simple Queues are used and these queues do not give any completeness guarantees,
probing the ATOMIC queue is carried out several times until the client is guaranteed to
have received all messages from its ATOMIC queue.10 If an Advanced Queue is used,

10This probing is a simplification. In the case the service does not provide any guarantee on the avail-
ability of messages, it is possible that log records are not propagated although the transaction submitted
the CommitLog. However, there are many ways to overcome that problem. The simplest is, to submit a
single message, the CommitLog, containing all log records. Thus, whenever the CommitLog message is
received, all messages are available. If the message size is not sufficient, all log records can be stored
inside an object on the storage service and the CommitLog contains a simple reference to the object.
As a consequence, unsuccessful transactions have to be garbage collected in the moment it is safe to
assume that the transaction failed (see also Section 3.5.6).

76 Chapter 3. Building a Database on Top of Cloud Infrastructure

Algorithm 5 Atomicitiy - Recovery
Require: AtomicQueueUri← Atomic Queue URI for the Client

1: LogMessages← ∅
2: M ← receiveMessage(AtomicQueueUri,∞)
3: while M.size() 6= 0 do
4: LogMessages.add(M)
5: M ← receiveMessage(AtomicQueueUri,∞)
6: end while
7: if CommitLog ∈ LogMesssages then
8: execute basic commit protocol (Algorithm 1)
9: end if

10: for all l in LogMessages do
11: deleteMessage(AtomicQueueUri, l.MessageID)
12: end for

this iterative probing process is simplified. Once the client has read all log records
from its ATOMIC queue, the client checks whether its last transaction was a winner;
i.e., whether a commitLog record was written before the crash (Line 7 of Algorithm 5).
If it was a winner, then the client re-applies all the log records according to the basic
commit protocol and deletes all log records from its ATOMIC queue (Lines 10-12). For
loser transactions, the client simply deletes all log records from its ATOMIC queue.

Naturally, clients can fail after restart and while scanning the ATOMIC queue. Such
failures cause no damage. If in such a situation log records are propagated to PU
queues twice or even more often, this is not an issue because applying log records is
idempotent. The protocol assumes that no client fails permanently. If this assumptions
does not hold, then a different client (or some other service) must periodically execute
the recovery protocol of Algorithm 5 for inactive ATOMIC queues. If the commitLog
record is deleted last in Lines 10-12 of Algorithm 5, then several recovery processes
on the same ATOMIC queue can be carried out concurrently (and fail at any moment)
without causing any damage. More details for concurrent recovery may be found in
Section 3.6.3.

The guarantee given by the protocol is, that either all or none of the updates eventually
become visible. Thus, no update is ever lost because of a failure. Still, the proto-
col provides relaxed atomicity guarantees according to some text-book definition as
transactions might become partially visible.11 The here-proposed protocol implies the

11For example, Raghu and Gehrke [RG02] define the atomicity property of transactions as ”Either
all actions are carried out or none are. Users should not have to worry about the effect of incomplete

3.6. Transactional Properties 77

existence of a transition phase because of the deferred and not synchronized check-
pointing. During this transition phase, some of the updates from a transaction might
be visible while some others might not. In this work, we see atomicity as a property
which guarantees that all or no updates are applied even in the presence of failures
and consider visibility as a problem of consistency and isolation. Thus, the consistency
is still relaxed and almost 100% availability can be guaranteed as the protocol, as well
as all the services it uses, can operate even during network partitioning.

3.6.2 Consistency Levels

Tanenbaum and van Steen describe different levels of consistency [TS06]. The highest
level of consistency is strict consistency, also referred to as strong consistency. Strict
consistency mandates that ”every read on a data item x returns a value corresponding
to the result of the most recent write on x” [TS06]. Strict consistency can only be
achieved by synchronizing the operations of concurrent clients; isolation protocols are
discussed subsequently in Sections 3.6.4 and 3.6.5). This section discusses how the
other (weaker) levels of consistency described in [TS06] can be achieved. The focus
is on so-called client-side consistency models [TS06, TDP+94] because they are the
basis for the design of most web-based services [Vog07]:

Monotonic Reads: “If a client [process]12 reads the value of a data item x, any suc-
cessive read operation on x by that client will always return the same value or a more
recent value” [TS06]. This property can be enforced by keeping a record of the high-
est commit timestamp for each page which a client has cached in the past. If a client
receives an old version of a page from the storage service (older than a version the
client has seen before), the client can detect this and re-read the page from the storage
service. As a consequence the availability might be reduced for single clients in cer-
tain failure scenarios (e.g., network partitioning) because re-reading the page from the
storage service, until the correct version is found, might take arbitrarily long.

Monotonic Writes: “A write operation by a client on data item x is completed before
any successive write operation on x by the same client” [TS06]. This level of consis-
tency can be implemented by establishing a counter for each page (or index) at a client

transactions (say, when a system crash occurs).” Whereas Conolly and Begg [CB04] define atomicity
of transactions as: ”A transaction is an indivisible unit that is either performed in its entirety or is not
performed at all.”

12[TS06] uses the term process. We interpret that term as client in our architecture. If we would
interpret this term as transaction, then all the consistency levels would be fulfilled trivially.

78 Chapter 3. Building a Database on Top of Cloud Infrastructure

(as for monotonic reads) and incrementing the counter whenever the client commits an
update to that page (or index). The pairs (client id, counter value) of the latest updates
of each client are stored in the header of each page and in the log records. As a result,
the log records can be ordered during checkpointing and out-of-order log records can
be detected in the event that SQS does not return all relevant records of a PU queue
(Section 3.3.3). If an out-of-order log record is found during checkpointing, this log
record is not applied and its application is deferred to the next checkpoint.

Furthermore, using the counter values also allows to use storage services which have
no guarantees on the propagation time together with Simple Queues (see discussion
in Section 3.5.6). To ensure that, the checkpoint protocol of the previous section copies
successful applied messages to an additional history queue before deleting them from
the PU queue. In the event that a new checkpoint is written before the old checkpoint
has propagated, the history queue can always be used to reconstruct the overwritten
checkpoint. Theoretically, the messages inside the history queue have to be kept for-
ever because the time that the storage service propagates the new change can take
infinitely long. In practice, long propagation times (e.g., more than 1-2 seconds) only
happen in the case of failures and those are usually quickly detected (e.g., by gossip-
ing) and reported online. Hence, the history only needs to be kept longer than a few
minutes if failures are encountered.

As a final problem of this protocol the header information can grow as more users up-
date the page. Thus, the counter values have to be garbage collected. This problem is
already known from vector-clocks (see Section 2.3.1.3) and can for example be solved
by using a last-recently-used truncation [DHJ+07].

Read your Writes: “The effect of a write operation by a client on data item x will
always be seen by a successive read operation on x by the same client” [TS06]. This
property is automatically fulfilled in the architecture of Figure 3.1 if monotonic reads
are supported.

Write follows Read: “A write operation by a client on data item x following a previous
read operation on x by the same client, is guaranteed to take place on the same or a
more recent value of x that was read” [TS06]. This property is fulfilled because writes
are not directly applied to data items; in particular, the posting a response problem
described in [TS06] cannot occur using the protocols of Section 3.5.

Session Consistency: A special and in practice quite popular form of monotonicity
is session consistency. Session consistency guarantees monotonicity as long the ses-
sion remains intact. For example, session consistency allows for easily implementing

3.6. Transactional Properties 79

monotonicity guarantees in a server-centric setup by using the monotonicity protocols
from above. When a user accesses the system, it implicitly creates a session with one
of the servers. All preceding requests from the same user are than forwarded to the
same server (e.g., by using a session-id in every request). The server uses the protocol
as described above and acts as one single client with monotonicity guarantees. The
biggest benefit of this setup is, that the server can cache the changes from the users
and thus, guarantees monotonicity almost without any additional overhead. However, if
the server crashes the session is lost and the monotonicity is no longer guaranteed. If
this is not acceptable and sessions are required to survive server crashes, the protocols
of [TDP+94] are applicable.

Similar to the client-centric protocols, several data-centric consistency levels defined
in [TS06] can be implemented on eventually consistent storage services (e.g., FIFO
consistency). Going through the details is beyond the scope of this thesis.

All client protocols increase the level of consistency. Those protocols ensure an order
of updates per single client which is a form of consistency. According to the CAP
theorem failures can decrease the availability of the system. However, the availability
only decreases for single clients at a time and not for the whole system. This is due to
the fact that only those clients which are not able to receive a missing message have to
wait until the message becomes available. All other clients can operate normally.

3.6.3 Atomicity for Strong Consistency

In Section 3.6.1 we presented how atomicity can be achieved. This protocol guaran-
tees that either all or none of the updates become visible as long as the client recovers
at some point. Unfortunately, this protocol gives no guarantees on how long such a
recovery will take and therefore how long an inconsistent state can exist. For building
protocols with stronger consistency guarantees we need to minimize the inconsistency
timeframe. As a solution clients could be allowed to recover for failures from other
clients. Another problem encountered in a highly distributed system with thousands of
clients is, that in the worst case a single client is able to block the whole system (Sec-
tions 3.6.4 and 3.6.5 will demonstrate this issue in more detail). Transaction timeouts
are one solution to this problem and are applied here. As the higher consistency levels
require Advanced Queues anyway, the atomicity protocol presented here also makes
use of Advanced Queue features.

The revisited code for Atomicity is shown in Algorithm 6 and Algorithm 7. The main
differences are:

80 Chapter 3. Building a Database on Top of Cloud Infrastructure

Algorithm 6 Advanced Atomicitiy - Commit
Require: AtomicQueueUri, AtomicCommitQueueUri, ClientID,

TransactionStartT ime, TransactionT imeout
1: LogMessageIDs← ∅
2: for all modified records R do
3: LogMessageIDs.add(sendMessage(AtomicQueueUri, R.Log, ClientID))
4: end for
5: if CurrentTime() −TransactionStartT ime < TransactionT imeout then
6: C ← sendMessage(AtomicCommitQueueUri, CommitLog, ClientID);
7: execute basic commit protocol (Algorithm 1)
8: deleteMessage(AtomicCommitQueueUri, C)
9: end if

10: for all i in LogMessageIDs do
11: deleteMessage(AtomicQueueUri, i)
12: end for

• The protocol only requires two ATOMIC queues for all clients: the ATOMIC COM-
MIT Queue and the ATOMIC queue. PU messages are sent to the ATOMIC queue
whereas commit messages are sent to the ATOMIC COMMIT Queue. We sepa-
rate those two queues for simplicity and performance reasons.

• The commit message is only sent if the transaction is faster than the transaction
timeout. Therefore, long-running transactions are aborted.

• All messages carry the ClientID as additional key.

The revised recovery algorithm is presented in Algorithm 7. In order to enable clients to
recover for failures from other clients, clients are required to check on commit messages
from others. This is typically done in the beginning of every strongly consistent trans-
action (e.g., described in the next subsection).13 If we find an old message, meaning
older than a timeframe called AtomicTimeout, it is assumed that recovery is required
(Line 1). Setting the AtomicTimeout in a sensible way is crucial. Considering too young
messages as old might result in false positives, setting the value too high holds the
database in an inconsistent state for too long. If a client determines it has to do re-
covery, it tries to receive the recovery lock. If the client is able to get the lock (Line 3),
the client is allowed to perform the recovery steps (Lines 4-11). If not, the transaction

13It is also possible to perform the check and recovery by using a watchdog which periodically checks
the ATOMIC queues. However, discussing such watchdogs is beyond the scope of this thesis.

3.6. Transactional Properties 81

Algorithm 7 Advanced Atomicitiy - Recovery
Require: AtomicQueueUri, AtomicCommitQueueUri, AtomicT imeout

1: M ← receiveMessage(AtomicCommitQueueUri,∞, AtomicT imeout)
2: if M .size() > 0 then
3: if acquireXLock(AtomicCommitQueueUri, ClientID) then
4: for all m in M do
5: LogMessages← receiveMessage(AtomicQueueUri,∞, m.Key-1, m.Key+1)
6: execute basic commit protocol for LogMessages (Algorithm 1)
7: for all l in LogMessages do
8: deleteMessage(AtomicQueueUri, L.MessageID))
9: end for

10: deleteMessage(AtomicCommitQueueUri, m.MessageID))
11: end for
12: releaseXLock(AtomicQueueUri, ClientID)
13: else
14: abort() //Database in recovery
15: end if
16: end if

is aborted as the database is in recovery (Line 15). To allow just one client to recover
is the easiest way of recovery but might also result in longer unavailability times of
the system. If those outages are unacceptable or/and clients are assumed to crash
more often, solutions include parallel recovery from several clients up to partitioning the
ATOMIC queues to consistency entities. For simplicity, we do not further discuss those
strategies. The actual recovery is similar to the recovery mechanism described before.
Unlike before, we now need to make sure to recover for a certain commit message only.
To do this kind of group by we use the feature of the Advanced Queues that allows
filtering the messages according to the user-defined key (Line 6).

Again, crashes during the recovery do not harm, as the logs are idempotent. Also, if the
lock-timeout for the recovery expires or a transaction simply takes longer for the atomic
commit, no damage is done for the same reason.

An optimization we apply in our implementation is to piggy back the log messages with
the commit message if the size of the log messages is not too big. Thus, only one
additional message has to be inserted and deleted for every atomic commit.

The use of the Advanced Queues decreases the availability of the system (see Sec-
tion 3.3.6) for all clients. However, the advanced commit protocol is only required to-

82 Chapter 3. Building a Database on Top of Cloud Infrastructure

gether with strong consistency protocols as snapshot isolation or two-phase-locking
presented in the next two subsection. As those protocols want to provide strong con-
sistency, it follows from the CAP theorem that the availability is reduced if network
partitions are possible. Hence, this protocol as well as all the following ones sacrifice
availability for consistency.

3.6.4 Generalized Snapshot Isolation

The idea of snapshot isolation is to serialize transactions in the order of the time they
started [BHG87]. When a transaction reads a record, it initiates a time travel and re-
trieves the version of the object as of the moment when the transaction started. For
this purpose, all log records must support undo-logging (Section 3.4.5) and log records
must be archived even beyond checkpointing. Hence, the checkpointing protocols of
the previous section have to be adapted to keep the applied messages (i.e., Line 15 in
Algorithm 2 and Line 29 in Algorithm 3). Generalized snapshot isolation relaxes snap-
shot isolation in the sense that it is not required to use the latest snapshot [EZP05]. This
allows higher concurrency in the system as several transactions are able to validate at
the same time. Also, in the case of read-only transactions a snapshot is more likely to
be handled by the cache.

We therefore propose a protocol applying generalized snapshot isolation (GSI). GSI
requires that every transaction is started by a call to BeginTransaction, presented in
Algorithm 8. To ensure that a consistent state exists, BeginTransaction first checks if
recovery is required. Afterwards, the protocol retrieves a valid SnapshotID from the
Advanced Counter Service. This ID represents the snapshot that the transaction will be
working on.

Algorithm 8 GSI - BeginTransaction
Require: DomainUri

1: execute advanced atomic recovery protocol
2: SnapshotID ← getHighestValidatedValue(DomainUri)

To ensure that every read/write is performed on the correct snapshot it is also required
to apply or rollback logs from the PU queues. Algorithm 9 shows the necessary modifi-
cations to the BufferManager for pages. If the BufferManager receives a get request for
a page, it also requires the SnapshotID. Depending on the fetched page being older or
younger than the SnapshotID, log records are rolled back or applied in the normal way.
The correctness of the protocol is only guaranteed if all messages inside a queue can

3.6. Transactional Properties 83

be received and related to a Snapshot. Hence, we again assume Advanced Queues
and use the SnapshotID as the MessageID. The interested reader might have noticed,
that this also requires a slight modification of the atomicity protocol: Log messages sent
to the ATOMIC queue are also required to hold on to the SnapshotID to be used in the
case of a recovery.14

Algorithm 9 GSI - BufferManager - Get Page
Require: SnapshotID, PageUri

1: P ← fetch(PageUri)
2: if SnapshotID < P .SnaptshotId then
3: M ← receiveMessage(P .Uri,∞, SnapshotID, P .SnaptshotId + 1)
4: rollback M from P

5: else if SnapshotID > P .SnaptshotId then
6: M ← receiveMessage(P .Uri,∞, P .SnaptshotId, SnapshotID + 1)
7: apply M to P
8: end if
9: P .SnaptshotId← SnapshotID

The commit shown in Algorithm 10 forms the last step of the GSI. It consists of two
steps, the validation phase and the actual commit phase. The validation phase ensures
that we do not have two conflicting writes for our snapshot whereas the commit phase
is the actual commit. To be able to successfully validate, the algorithm first checks
if the database needs to be recovered (Line 1). Furthermore, the validation requires
that no other transaction validates the same record at the same time. The protocol
ensures this by acquiring a lock for every record in the write set (Lines 5-10). If it is not
possible to acquire a lock for one of the records, the transaction aborts.15 Deadlocks are
avoided by sorting the records according to the page Uri and RecordID. Once all locks
are acquired, the protocol checks the PU queues for conflicting updates. Therefore, a
CommitID is received by incrementing the Advanced Counter. Then, every PU queue

14The presented protocol does not consider inserts which have been sent to the collection queue
but are not yet forwarded to the page queues. However, it is questionable if those inserts have to be
considered. Snapshot isolation (no matter if general or traditional) does not guarantee serializability. One
prime reason is, that inserts can never cause a transaction to fail during validation. Hence, considering
inserts can only reduce the likelihood of inconsistency caused by inserts but never completely prevent
it. Nevertheless, it is straightforward to extend the protocol to include all inserts from the collection PU
queues.

15This might lead to livelocks if after an abort the same transaction immediately tries to modify the same
data again. However, to avoid this situation, waiting for locks and other methods from traditional database
systems can be applied. In favor of simplicity those additional techniques are not further discussed.

84 Chapter 3. Building a Database on Top of Cloud Infrastructure

which might contain conflicting updates is checked by retrieving all messages from the
used SnapshotID up to the CommitID. If one of the received log records conflicts with
one of the records in the write set the transaction aborts. Else, the validation phase
has been successful and the actual commit phase starts. The commit is similar to the
one of the advanced atomicity protocol - as only difference, the message key is set to
the CommitID. Once the atomic commit finishes, some cleanup is performed: Locks are
released and the CommitID gets validated to become a new valid snapshot (Lines 20 -
26). The TransactionTimeout starts with the commit and not with the BeginTransaction.
This is an optimization applied to allow for long-running read requests.

Finally, to fully enable GSI the counter and lock timeout have to be chosen carefully. If
they are too small, to many write-transactions might be aborted (read-only transaction
are never aborted and always work on a consistent snapshot). The time spanned by
TransactionTimeout + AtomicityTimeout is the maximum time required to detect that
the database requires recovery and thus, effects the availability of the system in case
of failures. Assuming that one transaction starts shortly before the recovery would be
detected, then all locks and GSI are not allowed to timeout before the validation of the
transaction finished. This corresponds at most to the time spanned by another Trans-
actionTimeout period. As a consequence, the timeouts for the counter and lock service
should be set to a value bigger than 2 * TransactionTimeout + AtomicityTimeout.16 As
this might be quite a long period, higher concurrency in snapshot isolation is achieved
by explicitly releasing locks and validating the counter. Again, the TransactionTimeout
starts with the commit and not with the BeginTransaction. Thus, the protocols only
restricts the time required to commit a change, not the running time of the whole trans-
action.

Again, the algorithm can fail at any time and guarantees the consistency as defined
by snapshot isolation. If Algorithm 10 fails before Line 21, no updates have been sent
to the queues, all locks will time-out and the SnapshotID will automatically validate. If
the client fails during the atomic commit in Algorithm 6 before the commit message has
been written to the queue (Line 6), the same situation exists and no harm is done. If
the transaction fails after the CommitLog has been written but before all updates are
forwarded to the pages, two situations are possible: First, the AtomicityTimeout has
expired and the crash is detected in Line 1 of Algorithm 10 by concurrent clients and
corrected and hence, any possible conflict will be detected during the validation phase.
Second, the AtomicityTimeout has not expired and the crash cannot be detected at this

16For simplicity, we do not consider network latency at his point. To ensure correctness in all cases,
the network latency for sending the CommitLog in Algorithm 6 has to be included for the LockTimeouts
and the sendMessage request itself requires another timeout.

3.6. Transactional Properties 85

Algorithm 10 GSI - Commit
Require: DomainUri, SnapshotID, ClientID, WriteSet

1: execute advanced atomic recovery protocol
2: TransactionStartT ime← CurrentTime()
3: //Validation Phase
4: sort WriteSet according to the PageUri and RecordId
5: P ← ∅
6: for all records r in WriteSet do
7: P .add(r.Page)
8: RecordUri← concat(P .Uri, R.Id)
9: if NOT acquireXLock(RecordUri, ClientID) then

10: abort()
11: end if
12: end for
13: CommitId← increment(DomainUri)
14: for all pages p in P do
15: M ← receiveMessage(p.Uri,∞, SnapshotID, CommitId)
16: if M contains a log for a item in WriteSet then
17: abort()
18: end if
19: end for
20: //Commit Phase
21: execute advanced atomic commit protocol
22: validate(DomainUri, CommitId)
23: for all record r in WriteSet do
24: RecordUri← concat(P .Uri, R.Id)
25: releaseXLock(RecordUri, ClientID)
26: end for

stage (Algorithm 10, Line 1). In this case, the elapsed time after the commit of the first
transaction is not more than TransactionTimeout + AtomicityTimeout. The locks and
counters do not time out before 2 * TransactionTimeout + AtomicityTimeout. Thus, the
validation phase is correct because possible conflicts will result in an unsuccessful lock
request. Further, if the commit requires more time than TransactionTimeout no harm is
caused, as the transaction will fail before the commit-message is send. As a result, it is
always guaranteed that all messages for a snapshot received from the counter service
are accessible for the time-travel.

86 Chapter 3. Building a Database on Top of Cloud Infrastructure

For the purpose of snapshot isolation, log records can be garbage collected from the
archive of log records if all the transactions using the SnapshotID of the log record
or a younger id have either committed or aborted. Keeping track of those transactions
can be achieved by using an additional counter. Alternatively, garbage collection can be
done by enforcing the read and write time to be part of the transaction time. Log records
older than the TransactionTimeout can then automatically be garbage collected. The
garbage collection itself can in turn be integrated into the checkpointing protocol.

The presented protocol aborts if the database is in recovery. This is not really neces-
sary, as it is possible to include the atomic queues during time-travel and validation. The
system can continue to operate even in the presence of recovery. The required changes
to the protocol are rather simple. In the beginning of an transaction, the atomic queue
has to be read. If messages older than the AtomicityTimeout are found, they have to
be buffered and used with all the other messages to create the snapshot. During val-
idation, the ATOMIC queues have to be read again for timed-out messages. This is
required, as it is not guaranteed that locks hold until the validation phase of the transac-
tion starts. As the recovery protocol first forwards the messages to the corresponding
queues, and afterwards deletes them from the ATOMIC queues, it is guaranteed that
no message can be missed which has committed successfully.

Furthermore, our algorithms can be extended to reuse an existing snapshot if it is de-
terminable that a transaction is read-only. Doing so allows answering read-transaction
from the cache, hence reducing transaction time and cost.

3.6.5 2-Phase-Locking

Next to snapshot isolation we also implement 2-Phase-Locking (2PL) which allows se-
rializability. Our 2PL protocol is rather traditional: It uses the Lock Service to acquire
read- and write-locks and to propagate read- to write-locks. For simplicity, we abort
transactions if they are not able to receive a lock. This is only possible because we
do fine-grained locking on record-level and do not expect a lot of conflicts. For other
scenarios, waiting might be advisable together with deadlock detection on the Locking
Service. Atomicity for the 2PL works along the same lines as the GSI except that the
TransactionTimeout starts with the begin of the transaction and not with the commit. So
read heavy transactions also underlie a timeout, which can be an important drawback
for certain scenarios. Again, similar to GSI it is required to consider the messages from
the PU queues, this time to ensure that the latest state is read. As the protocol design
closely follows the text-book description, we do not discuss it any further.

3.7. Implementation on Amazon Web Services 87

3.7 Implementation on Amazon Web Services

This section describes the implementation of the API of Section 3.3 using services
available from Amazon. Although we restrict it to Amazon, other providers offer similar
features (see also Section 2.3.2) and allow for adopting the discussed methods.

3.7.1 Storage Service

The API for the reliable storage service has already been designed in the lines of stor-
age services from Google (BigTable), Amazon (S3) and others. It just requires a persis-
tent store with eventual consistency properties with latest time-stamp conflict resolution
or better for storing large objects. The mapping of the API to Amazon S3 is straightfor-
ward (compare Section 3.2.1) and not discussed in detail. However, note that Amazon
makes use of a concept called Bucket. Buckets can be seen as big folders for a collec-
tion of objects identified by the URI. We do not require buckets and assume the bucket
name to be some fixed value.

3.7.2 Machine Reservation

The Machine Reservation API consists of just two methods, start and stop of a virtu-
alized machine. Consequently, Amazon Elastic Compute Cloud (EC2) is a direct fit to
implement the API and additionally offers much more functionality. Furthermore, EC2
also enables us to experiment with alternative cloud service implementations and to
build services which are not offered directly in the cloud. This not only saves a lot of
money as transfer cost between Amazon machines is for free, but also makes interme-
diate service requests faster due to reduced network latency.

3.7.3 Simple Queues

Simple Queues do not make any FIFO guarantees and do not guarantee that all mes-
sages are available at all times. One way to implement Simple Queues is using Amazon
SQS although SQS is not reliable because it deletes messages after 4 days. If we as-
sume that for any page a checkpoint happens in less than 4 days, SQS is suitable for
implementing Simple Queues. Unfortunately, another overhead was introduced with

88 Chapter 3. Building a Database on Top of Cloud Infrastructure

the SQS version from 2008-01-01; that is, it is not possible to delete messages directly
with the MessageID. Instead, it is required to receive the message before deleting it.
Especially for the atomicity this change of SQS made the protocol to cause more over-
head and consequently to be more expensive. Alternatively, Simple Queues can be
implemented by S3 itself. Every message is written to S3 using the page URI, a times-
tamp and ClientID to guarantee a unique MessageID. By doing a prefix scan per page
URI, all messages can be retrieved. S3 guarantees reliability and has ”no” restriction
on the message size, which allows big chunks (especially useful for atomicity). It is
therefore also a good candidate for implementing Simple Queues. Last but not least,
Simple Queues can be achieved by the same mechanism as the Advanced Queues,
see next section.

3.7.4 Advanced Queues

Advanced Queues are most suited to be implemented on top of EC2. The range of
possible implementations is huge. A simple implementation is to build a simple in-
memory queue system with a recovery log stored on EBS (Section 3.2.3) and time-to-
time checkpointing to S3. Amazon claims an annual failure rate (AFR) for a 20 GB EBS
drive of 0.1% - 0.5%, which is 10 times more reliable than a typical commodity disk
drive. For log recovery with regular snapshots typically not more than 1 GB is required,
resulting in an even better AFR. If higher reliability and availability is desired (EBS is a
single data center solution), the queue service has to be replicated itself. Possibilities
include replication over data-center boundaries using Paxos protocols [Lam98, CGR07]
or multi-phase protocols [OV99].

Next to the reliability of the queuing service, load balancing is the biggest concern.
Usage frequencies of queues tend to differ substantially. We avoid complex load bal-
ancing by randomly assigning queues to servers. This simple load balancing strategy
works the best if none of the queues is a bottleneck and is better the bigger the overall
number of queues is. Unfortunately, the collection queues for inserts are natural bot-
tlenecks. However, small changes to the protocols allow for splitting those queues to
several queues and hence, avoid the bottleneck. Still, more advanced load balancing
strategies for the queuing service might be required. Solutions include queue handover
with Paxos or multi-phase protocols. However, building more reliable and autonome
queues is research for itself and we restrict our implementation to a simple in-memory
solution with EBS logging.

3.7. Implementation on Amazon Web Services 89

3.7.5 Locking Service

AWS does not directly provide a locking service. Instead, it refers to SQS to synchronize
processes. Indeed, SQS can be used as a locking service, as it allows to retrieve a
message exclusively. Thus, locks can be implemented on top of SQS by holding one
queue per lock with exactly one message. The timeout of the message is set to the
timeout of the lock. If a client is able to receive the lock message, the client was able
to receive the lock. Unfortunately, Amazon states that it deletes messages older than
4 days and even queues that have not been used for 30 consecutive days. Therefore,
it is required to renew lock messages within 4 days. This is especially problematic
as creating such a message is a critical task. A crash during deletion/creation can
either result in an empty queue or in a queue with two lock messages. We therefore
propose to use a locking service on EC2. Implementations for such a locking service
are wide-ranging: The easiest way is to have a simple fail-over lock service. Thus,
one server holds the state for all locks. If the server fails it gets replaced by another
server with a clean empty state. However, this server has to reject lock requests, until
all the lock timeouts since the failure have expired. Hence, all locks would have been
automatically returned anyway. The lock manager service does not guarantee 100
percent availability, but it guarantees failure resilience. Other possibilities include more
complex synchronization mechanisms like the ones implemented in Chubby [Bur06] or
ZooKeeper [Apa08]. Again, we implement the simplest solution and build our services
on top of EC2 using the described fail-over protocol. Developing our own locking service
on EC2 gives the additional advantage of easily implementing shared, exclusive locks
and the propagation from shared to exclusive without using an additional protocol. It
seems quite likely that such a locking service will be offered by many cloud providers in
the near future. Literature already states that Google, Yahoo already use such a service
internally.

3.7.6 Advanced Counters

As for the locking service, using EC2 is the best way to implement advanced counters.
If a server which hosts one (or several) counter(s) fails, then new counter(s) must be
established on a new server. To always ensure increasing counter values, counters
work with epoch numbers. This implies that if the counter fails, the epoch number
is increased. Every counter value is prefixed with this epoch number. If a machine
instance fails, a new machine replaces the service with a clean state, but with a higher
epoch number. In other words, the counter service is not reliable and when it fails it

90 Chapter 3. Building a Database on Top of Cloud Infrastructure

loses its state. Again, like for the lock service, the fail-over time has to be longer than
the counter-validation time. This ensures for GSI that requesting the highest validated
value does not reveal an inconsistent state.

3.7.7 Indexing

For hosted indexes we make use of Amazon’s SimpleDB service. Every primary and
secondary index is stored in one table inside SimpleDB. The translation of key searches
and range queries to SimpleDBs query language is straightforward and not further dis-
cussed. Results from SimpleDB are cached on the client-side to improve performance
and reduce the cost. SimpleDB is only eventual consistent. As a consequence, the
Atomicity and Snapshot protocol together with SimpleDB do not provide exactly the
specified consistency level. In the case of the primary index, the eventual consistency
property can be compensated by considering the messages in the collection queues
(assuming that a maximum propagation time exist). However, for secondary indexes it
is not possible without introducing additional overhead. Thus, the Atomicity and Snap-
shot protocol do not provide the specified level of consistency if an secondary index
access is made.17 This problem does not exists with client-side indexes, which are
implemented similar to [Lom96] as discussed several times before.

17This behavior is similar to Google’s MegaStore implementation [Ros09].

3.8. Performance Experiments and Results 91

3.8 Performance Experiments and Results

3.8.1 Software and Hardware Used

We have implemented the Cloud API of Section 3.3 on AWS (S3 and EC2) as discussed
in the previous section. Furthermore, we have implemented the protocols presented in
Sections 3.5 and 3.6 on top of this Cloud API and the alternative client-server architec-
ture variants described in Section 3.4. This section presents the results of experiments
conducted with this implementation and the TPC-W benchmark.

More specifically, we have implemented the following consistency protocols:

• Naı̈ve: As in [BFG+08], this approach is used as a baseline. With this protocol, a
client writes all dirty pages back to S3 at commit time, without using queues. This
protocol is subject to lost updates because two records located on the same page
may be updated by two concurrent clients. As a result, this protocol does not even
fulfil eventual consistency. It is used as a baseline because it corresponds to the
way that cloud services like S3 are used today.

• Basic: The basic protocol depicted in Figure 3.2. As explained in Section 3.5, this
protocol only supports eventual consistency.

• Atomicity: The atomicity protocol of Section 3.6.3 in addition to the monotonicity
protocols which are specified in detail in [BFG+08], all on top of the Basic protocol.

• Locking: The locking protocol as described in Section 3.6.5. This protocol imple-
ments strong consistency.

• Snapshot Isolation: The snapshot isolation protocol as described in Section 3.6.4.
This protocol fulfils the snapshot isolation level as defined in [EZP05].

3.8.1.1 TPC-W Benchmark

To study the trade-offs of the alternative consistency protocols and architecture variants,
we use a TPC-W-like benchmark [Cou02]. The TPC-W benchmark models an online
bookstore and a mix of different so-called Web Interactions (WI). Each WI corresponds
to a click of an online user; e.g., searching for products, browsing in the product catalog,
or shopping cart transactions. The TPC-W benchmark specifies three kinds of workload
mixes: (a) browsing, (b) shopping, and (c) ordering. A workload mix specifies the

92 Chapter 3. Building a Database on Top of Cloud Infrastructure

probability for each kind of request. In all the experiments, we use the Ordering Mix as
the most update-intensive mix: About one third of the requests involve an update of the
database.

The TPC-W benchmark applies two metrics. The first metric is a throughput metric and
measures the maximum number of valid WIs per second (i.e., requests per second).
The second metric defined by the TPC-W benchmark is Cost/WIPS with WIPS standing
for Web Interactions Per Second at the performance peak. This metric tries to relate
the performance (i.e., WIPS) with the total cost of ownership for a computer system. To
this end, the TPC-W benchmark gives exact guidance concerning the computation of a
system’s cost.

For our experiments, both metrics have been relaxed in order to apply to cloud sys-
tems. Ideally, there exists no maximum throughput and the cost is not a fixed value but
depends on the load. Therefore, we measure the average response time in secs for
each WI and the average cost in milli-$ per WI. In contrast to the WIPS measures of the
TPC-W benchmark these metrics allow for comparing the latency and cost trade-offs
of the different consistency protocols and architecture variants. For the scalability ex-
periments, however, we report WIPS to demonstrate the scalability. In all experiments,
response time refers to the end-to-end wallclock time from the moment a request has
been initiated at the end-user’s machine until the request has been fully processed and
the answer has been received by the end-user’s machine.

Throughout this section, we do not present error bars and the variance of response
times and cost. Since the TPC-W benchmark contains a mix of operations with varying
profile, such error bars would merely represent the artefacts of this mix. Instead, we
present separate results for read WIs (e.g., searching and browsing) and update WIs
(e.g., shopping cart transactions) whenever necessary. As shown in [BFG+08], the
variance of response times and cost for the same type of TPC-W operation is not high
using cloud computing. In this performance study, we have made the same observation.

As already mentioned, the TPC-W benchmark is not directly applicable to a cloud envi-
ronment (see also [BKKL09]). Thus, next to the metrics we apply the following changes:

• Benchmark Database: The TPC-W benchmark specifies that the size of the bench-
mark database grows linearly with the number of clients. Since we are specifically
interested in the scalability of the services with regard to the transactional work-
load and elasticity with changing workloads, all experiments are carried out with
a fixed benchmark database size and without pre-filling the order history.

• Consistency: The TPC-W benchmark requires strong consistency with ACID trans-

3.8. Performance Experiments and Results 93

actions. As shown before, not all protocols support this level of consistency.

• Queries: We change the bestseller query to randomly select products. Else, this
query is best solved by a materialized view which is currently not supported in our
implementation.

• We concentrate on measuring the transaction part and do not include the cost for
picture downloads or web-page generation. Pictures can be stored on S3, so that
they just add an additional fixed dollar cost for the transfer.

• Emulated Browsers: The TPC-W benchmark specifies that WIs are issued by
emulated browsers (EB). According to the TPC-W benchmark, emulated browsers
use a wait-time between requests. Here, we do not use a wait-time for the browser
emulation for simplicity and in order to scale more quickly to higher loads. Again,
this does not influence the relations between the results for the different configu-
rations.

• HTTP: The TPC-W benchmark requires the use of the HTTPS protocol for secure
client / server communication. As a simplification, we use the HTTP protocol (no
encryption).

3.8.2 Architectures and Benchmark Configuration

As discussed in Section 3.4, there are several alternative client-server architectures
and ways to implement indexing on top of cloud services like AWS. In this study, the
following configurations are applied:

• EU-BTree: The whole client application stack of Figure 3.1 is executed on “end-
user” machines; i.e., outside of the cloud. For the purpose of these experiments,
we use Linux boxes with two AMD 2.2 GHz processors located in Europe. In this
configuration, client-side B-Tree indexes are used for indexing; that is B-Tree index
pages are shipped between the EU machines and S3 as specified in Section 3.5.

• EU-SDB: The client application stack is executed on “end-user” machines. In-
dexing is done using SimpleDB (Section 3.2.5). Again, the consistency levels
for Atomicity and Snapshot are not directly comparable to the EC2-BTree con-
figuration as secondary indexes suffer from the eventual consistency property of
SimpleDB.

94 Chapter 3. Building a Database on Top of Cloud Infrastructure

• EC2-BTree: The client application stack is installed on EC2 servers. On the “end-
user” side, only TPC-W requests are initiated. Indexing is done using a “client-
side” B-Tree.

• EC2-SDB: The client application stack is installed on EC2 servers. Indexing is
carried out using SimpleDB.

All five studied consistency protocols (Naı̈ve, Basic, Atomicity, Locking, and Snap-
shot Isolation) support the same interface at the record manager as described in Sec-
tion 3.4.2. Furthermore, all four client-server and indexing configurations support the
same interfaces. As a result, the benchmark application code is identical for all variants.

All experiments on the EU side are initiated from a single machine located in Europe.
This machine, which simulats “end-user” clients, is a Linux box with two AMD proces-
sors and 6 GB RAM. For all EC2 variants, we use Medium-High-CPU EC2 instances.
A TPC-W application installed on EC2 acts as web server and application server at
the same time. Clients can connect to the server which in turn communicates with the
cloud services. For the scale-out experiment, we have experienced problems to gener-
ate the high load from our cluster in Europe.18 Hence, we have decided to simulate the
user requests, by running the client directly on the web server and application server
and add a fixed latency (0.1s) and cost (0.020752 milli-$) for each generated page to
simulate transfer cost ($) and latency (ms). These average latency times and network
cost have been calculated upfront in a separate experiment. As the network latency
and cost per page is independent of the used protocol or index, adding a fixed latency
and cost value per transaction does not impact the significance of the experiments.

The data-size for all basic and tuning experiments is set to 10,000 products and ac-
cessed by 10 concurrent emulated browser issuing permanent requests without any
wait-time. Unless stated otherwise, the page size in all experiments is set to 100 kb,
the checkpoint interval to 45 seconds and the time-to-live of data pages to 30 seconds.
For all our experiments we use a US Amazon data center and thus, cost refers to the
charges of Amazon for using EC2 and S3 inside a US location. Furthermore, for the
sake of uniformity, we use for all experiments our Advanced Queue Service implemen-
tation. Otherwise the response times for the different protocols would not have been
comparable. Requests to advanced services such as Advanced queues, counters, and
locks are priced at USD 0.01 per 1000 requests. The alternative would have been a
dynamic pricing based on the utilization of the system using the EC2 instance prices.

18Partly, the network latency has caused a problem. We received several mails from ETH system
administrators assuming intrusions inside the network. Furthermore, our cluster has not been exposed
to the internet and we would have been required to change the complete infrastructure.

3.8. Performance Experiments and Results 95

We decided for a fixed price to make the cost comparable to implementations on top
of SQS and to avoid effects of different concurrency degrees. However, the price is
rather high and compares to a not fully-utilized EC2 instance. A fully-utilized queue
implementation running on EC2 using EBS logging is able to lower the cost to less than
USD 0.01 per 10,000 requests.

If not stated otherwise, we run all experiments 10 times for 300 seconds. In two cases,
we have encounter outages from Amazon’s internal network. In such cases, the results
have been excluded and the experiments repeated.

3.8.3 Response Time Experiments

3.8.3.1 EU-BTree and EU-SDB

Figure 3.3 shows the average response times per WI of the TPC-W benchmark for the
EU-BTree and EU-SDB configurations.

Comparing the various protocols, the results are not surprising. The Basic, Atomic and
Snapshot Isolation protocols all make use of extensive caching. Only Locking always
requires the latest snapshot resulting in more service requests to bring the data up-to-
date. These differences become more obvious in Figure 3.4 which shows the average
response time for update WIs only (e.g., putting items into the shopping cart). Now all
protocols behave differently. Our baseline Naı̈ve shows the worst performance because
it writes all updated pages directly to S3, which is expensive. The Atomic protocol is

1.5

2

2.5

e
Ti
m
e
[s
ec
]

Naive

0

0.5

1

1.5

2

2.5

A
vg
. R

es
po

ns
e
Ti
m
e
[s
ec
]

Naive

Basic

Atomic

Locking

Snapshot
0

0.5

1

1.5

2

2.5

BTree SDB

A
vg
. R

es
po

ns
e
Ti
m
e
[s
ec
]

Used Index

Naive

Basic

Atomic

Locking

Snapshot

Figure 3.3: Avg. Response Time (secs), EU-BTree and EU-SDB

96 Chapter 3. Building a Database on Top of Cloud Infrastructure

faster than the Basic protocol. This is due to the fact that it is faster to send log records
to the ATOMIC queue using batching than to send each individual log record to the
various PU queues (Section 3.6.1). Furthermore, in the atomic protocol of Algorithm
4, sending the log records to the PU queues (Lines 6-9) is done in an asynchronous
way so that that is not part of the response time experienced by the end user, but only
adds to the cost as will be seen in Section 3.8.4. Obviously, Snapshot and Locking are
more expensive than the Basic and Atomic protocols. However, the difference between
Locking and Snapshot is not as significant as one might expect. That is mainly due
to the low concurrency. Both protocols require a lock for each record (either during
the transaction or during the validation) and almost the same amount of interactions
with the queues to update to a consistent snapshot. However, through better caching
generalized snapshot isolation is still slightly faster.

Comparing the client-side B-Tree and the SDB configuration in Figure 3.3, it can be
seen that for most protocols the ”SDB” configuration is about twice as fast as the ”BTree”
configuration. Using an indexing service saves the time to receive the pages of the
B-Tree because the search is done on the server. Furthermore, our implementation
packs as many search requests as possible into one request to ”SDB” and caches
the returned value to improve the performance. As a matter of course, the difference
depends heavily on the data size. The larger the data the more efficient the ”SDB”
solution, the smaller the more efficient the ”BTree” solution.

12
14
16
18
20

e
Ti
m
e
[s
ec
]

Naive

0
2
4
6
8

10
12
14
16
18
20

A
vg
. R

es
po

ns
e
Ti
m
e
[s
ec
]

Naive

Basic

Atomic

Locking

Snapshot
0
2
4
6
8

10
12
14
16
18
20

BTree SDB

A
vg
. R

es
po

ns
e
Ti
m
e
[s
ec
]

Used Index

Naive

Basic

Atomic

Locking

Snapshot

Figure 3.4: Avg. Write Response Time (secs), EU-BTree and EU-SDB, Update WIs
Only

3.8. Performance Experiments and Results 97

3.8.3.2 EC2-BTree and EC2-SDB

Figure 3.5 shows the average response time per WI for the different consistency proto-
cols on the EC2-BTree and EC2-SDB configurations. Among the protocols, the same
trends can be observed for the EC2 as for the EU configurations. For the same rea-
son as before the Naı̈ve protocol shows the worst performance and the Atomic one the
best. Here, Snapshot almost reaches the performance of Atomic. Generalized snap-
shot isolation uses cached snapshots for read-only transactions and hence, has almost
no additional overhead for read transactions; whereas Locking always requires bringing
the data to the current view. Again, the difference is bigger for read-only transactions
than for update interactions. Figure 3.6 again shows the average response times con-
sidering update interactions only. There is hardly any difference between Snapshot and
Locking because of the fine-grained locking and the low concurrency. As described be-
fore, for update transactions these two require a similar amount of work to ensure the
consistency requirement.

In general, the differences between the Basic, Atomic, Locking, and Snapshot protocols
are smaller for the EC2 configurations than for the EU ones. A major chunk of the
response times is caused by the communication between the end-user’s machine and
the EC2 server; the Amazon-internal communication between an EC2 server and S3 is
comparatively fast.

Comparing the B-Tree and SDB configurations in Figure 3.5, the B-Tree one is slightly
faster than SDB (except for Naı̈ve). Since the communication between EC2 and S3 is
fast compared to end-user machine to S3 communication, reading the B-Tree is gener-
ally faster. In addition, it provides better caching behavior. By reading the B-Tree, keys

0.7

0.8

0.9

1

Ti
m
e
[s
ec
]

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

. R
es
po

ns
e
Ti
m
e
[s
ec
]

Naive

Basic

Atomic

Locking

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

EC2‐BTree EC2‐SDB

A
vg
. R

es
po

ns
e
Ti
m
e
[s
ec
]

Used Index

Naive

Basic

Atomic

Locking

Snapshot

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

EC2‐BTree EC2‐SDB

A
vg
. R

es
po

ns
e
Ti
m
e
[s
ec
]

Used Index

Naive

Basic

Atomic

Locking

Snapshot

Figure 3.5: Avg. Response Time (secs), EC2-BTree and EC2-SDB

98 Chapter 3. Building a Database on Top of Cloud Infrastructure

0.5

1

1.5

2

2.5

vg
. R

es
po

ns
e
Ti
m
e
[s
ec
]

Naive

Basic

Atomic

Locking

S h t

4.24

0

0.5

1

1.5

2

2.5

EC2‐BTree EC2‐SDB

A
vg
. R

es
po

ns
e
Ti
m
e
[s
ec
]

Used Index

Naive

Basic

Atomic

Locking

Snapshot

4.24

Figure 3.6: Avg. Response Time (secs), EC2-BTree and EC2-SDB, Update WIs Only

other than the search-keys are cached at once when loading a page.

Comparing Figures 3.3 and 3.5, we see that significantly better response times can
be achieved with the EC2 than with the EU configurations. Again, this result is not
surprising and can easily be explained. Since the EC2 machines are much closer to the
data, the EC2 configurations achieve lower response times in the same way as stored
procedures are more efficient than regular client-server interactions in a traditional DB
application scenario. In other words, running the client application stack of Figure 3.1
on EC2 machines is a form of query shipping (i.e., moving the application logic to the
data).

3.8.4 Cost of Consistency Protocols

3.8.4.1 EU-BTree and EU-SDB

Figure 3.7 shows the average cost per WI for the various protocols in the two EU
configurations. Independent of the index, Basic is the cheapest protocol, because it
requires only a few requests for coordinating commits using cloud services such as
Simple queues, Advanced queues, counters, or locks. The Naı̈ve protocol is slower, as
it requires transferring entire pages between Amazon and the client leading to higher
network costs.

The other protocols are more expensive because of their extensive interaction with
cloud services in order to achieve higher levels of consistency. Furthermore, in terms
of cost, the SDB configuration outperforms the B-Tree configuration. The SDB config-

3.8. Performance Experiments and Results 99

0 02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

pe
r
tr
an

sa
ct
io
n
[$
/1
00
0]

Naive

Basic

Atomic

Locking

h

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

EU‐BTree EU‐SDB

Co
st
 p
er
 tr
an

sa
ct
io
n
[$
/1
00
0]

Used Index

Naive

Basic

Atomic

Locking

Snapshot

Figure 3.7: Cost per WI (milli-$), EU-BTree and EU-SDB

0 02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

pe
r t
ra
ns
ac
ti
on

 [$
/1
00
0]

Other Services

Queues

Storage

Network

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Naive Basic Atomic Locking SnapshotCo
st
 p
er
 tr
an

sa
ct
io
n
[$
/1
00
0]

Protocol

Other Services

Queues

Storage

Network

Figure 3.8: Cost per WI (milli-$), EU-BTree Cost factors

uration requires fewer interactions with queues, locks and S3 compared to the B-Tree
configuration. This not only reduces the cost for requests but also significantly lowers
the cost for the network traffic.

One of the most important findings of this work is that response time and cost are not
necessarily correlated when running a web-based database application in the cloud.
This becomes evident when comparing Figure 3.7 with Figure 3.3. The Atomic protocol
does very well in the response time experiments because most of its work (flushing
ATOMIC queues to PU queues and checkpointing) is carried out asynchronously so
that the extra work has no impact on the response times of WIs as experienced by
users. Nevertheless, this work must be paid for (independently of whether it is executed
asynchronously or not). Thus, it is in general not possible to predict cost (in USD) from
other performance metrics such as response time or throughput.

100 Chapter 3. Building a Database on Top of Cloud Infrastructure

Figure 3.8 shows the different cost factors for the client-side B-Tree. Not surprisingly,
the only significant cost factors for the Naı̈ve protocol are the storage service and the
network traffic. For the other protocols, the queue service and the locking service are
the main cost drivers. The high share of the locking service for the Basic protocol can
again be explained by the checkpointing protocol. Because of the low concurrency, few
transactions have to share the cost for one checkpoint. The freshness of the data is
again the reason for the high cost for Locking as compared to Snapshot and Atomic.
Guaranteeing serializability (instead of working mainly on cached data) requires more
interactions with the queues and the locking service. Obviously, the results depend
heavily on the pricing model. For example, lowering the cost per request for the queues
could significantly lower the transaction cost.

For brevity, the breakdown for read and write transactions is not shown. In terms of
overall cost, write transactions clearly dominate because of the high fees for all the
requests to cloud servers such as queues, counters, and locks, needed in order to
orchestrate the updates. Again, this observation contrasts the findings of Section 3.8.3:
The overall response times are dominated by the (much more frequent) read requests.

3.8.4.2 EC2-BTree and EC2-SDB

Figure 3.9 shows the cost per WI in milli-dollars for the various consistency protocols
in the EC2 configurations. Comparing the consistency protocols we observe a similar
pattern as in Figure 3.7. A more interesting observation can be made when comparing

0.04

0.06

0.08

0.1

0.12

0.14

0.16

pe
r t
ra
ns
ac
ti
on

 [$
/1
00
0]

Naive

Basic

Atomic

Locking

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

EC2‐BTree EC2‐SDB

Co
st
 p
er
 tr
an

sa
ct
io
n
[$
/1
00
0]

Used Index

Naive

Basic

Atomic

Locking

Snapshot

Figure 3.9: Cost per WI (milli-$), EC2-BTree and EC2-SDB

3.8. Performance Experiments and Results 101

the level of the cost in these two figures: It would be expected that pushing the client
application stack on to EC2 servers increases the cost because EC2 server must be
paid whereas the end-users’ machines are free resources. However, only for the SDB
configuration significant cost savings can be realized. A comparison of the different
cost factors for the EC2-BTree in Figure 3.10 and EU-BTree in Figure 3.8 reveals that
only the Naı̈ve protocol profits from the EC2 server. It has a significantly lower response
time and hence, also a lower throughput. As a consequence, fewer transactions have
to share the cost for EC2 than in the other protocols.

Overall, the cost difference between the EU and EC configuration can mainly be at-
tributed to the network, and not to the EC2 machines. Every WI requires generating
and transferring a web-page. This now becomes significantly more expensive than in
the client solution, where many WIs are directly answered from cache. Furthermore,
pure data transfer causes less traffic than the HTML pages that now need to be trans-
fered. Only Naı̈ve and Locking do not profit from the the reduced network traffic. The
Naı̈ve protocol requires the submission of the whole pages for updates, whereas Lock-
ing has an increased cost factor to keep the pages up-to-date and thus is better hosted
in the cloud than executed on the client.

Network traffic is also the reason why in the EC2 configuration the costs of using the
SDB index are no longer significantly lower than those for using the client-side BTree.
Mostly, the SDB index takes advantage of a reduced network traffic; but as traffic be-
tween EC2 and SDB is free, these savings no longer play an important role. On the
other hand, for the SDB version, the transfer cost for every web page has now also to
be paid.

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

pe
r
tr
an

sa
ct
io
n
[$
/1
00

0]

Other Services

Queues

Storage

EC2

Network
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Naive Basic Atomic Locking SnapshotCo
st
 p
er
 tr
an

sa
ct
io
n
[$
/1
00

0]

Protocol

Other Services

Queues

Storage

EC2

Network

Figure 3.10: Cost per WI (milli-$), EC2-BTree Cost Factors

102 Chapter 3. Building a Database on Top of Cloud Infrastructure

Except for the Naı̈ve protocol, in the here presented scenario, the cost to rent CPU
cycles on EC2 servers is not relevant. However, with a smaller number of users and
fewer WIs, the cost becomes increasingly important.

Subtracting the network expense from the transaction cost reveals that Basic and Atom-
icity are cheaper in the EC2 configuration, whereas Locking and Snapshot Isolation are
more expensive. Furthermore, for most protocols, the ratio between queue requests
and the other services shifted. This is an artefact of our particular experiments: As
mentioned in Section 3.5, checkpoints are carried out periodically given a specified
checkpoint interval. In all our experiments, the checkpoint interval was set to 45 sec-
onds. Since EC2 runs more TPC-W transactions per second than EU (Section 3.8.3),
EC2 runs more TPC-W transactions per checkpoint. In fact, we see this in the shift of
the cost factor. The Basic protocol in Figure 3.8 faces some non-ignorable cost for the
locking service (because of the checkpointing), whereas in the EC2 configuration in Fig-
ure 3.10 this factor does not play a significant role since more transactions are issued
inside a checkpoint interval. As a result, the cost for checkpointing is distributed over
more transactions, and lead to the reduced cost for the Basic and Atomicity protocols.
The reason why Locking and Snapshot Isolation are still more expensive, is again the
increased throughput. More pages are updated, and thus, more requests are necessi-
tated to ensure the freshness of the data and the stronger levels of consistency. This
effect overlays the savings gain through the better distribution of the checkpointing cost.
It would have been fair to have different checkpoint interval parameter settings and/or
to apply individual wait-times for the EC2 and EU configurations in order to reduce the
issued request, but, for the sake of uniformity, we have not done this.

In the EC2 configuration, cost in USD are even less predictability based on other per-
formance metrics such as response time or throughput. Here, Snapshot isolation is
significantly more expensive than Atomic although they have almost the same response
time. Again, this caused by the additional interactions with services in relation to the
checkpointing behavior.

3.8. Performance Experiments and Results 103

3.8.5 Scalability

To test the scalability of our implementation, we use the EC2 B-Tree configuration. This
configuration allows us using the Amazon cluster to increase the number of machines
and rely only on S3 and not on other external service, which might become a bottle-
neck.19. We test the scalability by increasing the number of EC2 instances from 4 to
20 servers and issuing as many requests against it as possible. Further, we ensure
that the queue, counter and lock service do not become a bottleneck preventing scal-
ability. Currently, our service implementation does not support automatic scaling and
load-balancing, so that we have to provision the service. A separate experiment indi-
cated that approximately one EC2 service server providing the locking, queuing and
counter service is required for two fully-utilized application servers. Thus, next to the
20 application servers we use 10 additional EC2 instances to provide the required ser-
vices. All queues, locks and counters are randomly distributed across those servers
(see also Section 3.7.4). The Naı̈ve approach was not considered in this experiment as
it does not provide the throughput of the other protocols.

The results of the scalability experiment are shown in Figure 3.11. All protocols scale al-
most linearly. Naturally, the Basic protocol has the highest throughput with 3000 WIPS.
The protocol only provides eventual consistency and has the lowest overhead. Atomic

19For example, another experiment has shown that a TPC-W implementation entirely built on top of
SimpleDB does not scale beyond 200 WIPS.

0

500

1000

1500

2000

2500

3000

3500

4 6 8 10 12 14 16 18 20

W
IP
S

EC2 Servers

Basic

Atomic

Locking

Snapshot

Figure 3.11: Web Interactions per Second (WIPS), Varying Number of EC2 Application
Servers

104 Chapter 3. Building a Database on Top of Cloud Infrastructure

also scales linearly but does not achieve the same throughput as the Basic protocol.
Locking and Snapshot Isolation scale almost linearly. The reason for this is that every
server only hosts a very limited number of database processes (10) which operate com-
pletely independent from each other including separate buffers. Each process executes
one transaction at a time, which together with the fine-grained record locking leads to
only a few aborts. This way, even the protocols providing stronger levels of consistency
are able to scale. However, as more inserts are done and more pages are updated,
Locking and Snapshot Isolation require more recent copies than the Atomic and the
Basic protocols, preventing 100% linear scalability for the strong consistent protocols.

In order to put the performance numbers in relation to other systems: MySQL Replica-
tion 5.0.51 with ROWA (read-once, write-all) replication installed on four EC2 Medium-
High-CPU instances and additional six Tomcat 6.0.18 application servers running the
TPC-W benchmark on the same type of EC2 instances are able to scale up to 450
WIPS before the master becomes the bottleneck. Further, MySQL 5.0.51 Cluster is
only able to handle around 250 WIPS with a similar setup. Although the comparison
is not completely fair, since our TPC-W implementation is different and we do not use
Tomcat, the numbers show the basic potential.20

3.8.6 Tuning Parameters

Reconsidering the discussions of Sections 3.5 to 3.7, there are three important tuning
parameters:

• Checkpoint Interval: Defines the interval in when the PU messages from the
queues are written to the page. The lower the value is set, the faster updates
become visible.

• Page Size: Page size as in traditional database systems.

• TTL: Time-to-live is another parameter to control the freshness of the data. It
determines the time period for which a page in the cache is valid.

The Checkpoint Interval parameter has already been studied in [BFG+08]. The results
of [BFG+08] are directly applicable to the experimental environment used in this work.
The Checkpoint Interval is an effective way to trade cost with freshness of data. The
remainder of this section studies alternative settings for the other two parameters.

20The complete performance study is currently under review for SIGMOD 2010.

3.8. Performance Experiments and Results 105

0 02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

pe
r t
ra
ns
ac
ti
on

 [$
/1
00
0]

Basic

Atomic

Locking

Snapshot

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 50 100 150 200 250 300 350 400 450 500Co
st
 p
er
 tr
an

sa
ct
io
n
[$
/1
00
0]

Page Size [kb]

Basic

Atomic

Locking

Snapshot

1

Figure 3.12: Cost per WI (milli-$), EC2-BTree, Varying Page Size

0.1

0.2

0.3

0.4

0.5

vg
. R

es
po

ns
e
Ti
m
e
[s
ec
]

Basic

Atomic

Locking

Snapshot

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200 250 300 350 400 450 500

A
vg
. R

es
po

ns
e
Ti
m
e
[s
ec
]

Page Size [kb]

Basic

Atomic

Locking

Snapshot

1

Figure 3.13: Avg. Response Time (secs), EC2-BTree, Varying Page Size

3.8.6.1 Page Size

Figure 3.12 shows the cost per WI for the different protocols in the EC2-BTree config-
uration with a varying page size (we excluded Naı̈ve to improve the presentation). The
cost decreases quickly and stabilizes between 50 and 100kb. An increasing page size
yields fewer interactions with S3. The higher network traffic does not play a role for the
EC2 configuration, as network bandwidth is for free inside AWS.

Figure 3.13 shows the average response time with a varying page size, again in the EC-
BTree configuration. The response time drops with increasing page size and eventually
stabilizes between 100kb and 500kb. The reasoning is the same as before: A larger
page size reduces the number of interactions with S3, but bigger page sizes require
longer transfer times. Clearly, the savings depend on the configuration. If SimpleDB

106 Chapter 3. Building a Database on Top of Cloud Infrastructure

is used as an index, the effect is less pronounced because SimpleDB is probed in
the granularity of individual entries. The page size parameter is only applicable to
data pages and, hence, less significant for SimpleDB. Further, if the application stack
is hosted on the client the difference is even more significant because of the larger
transfer times.

3.8.6.2 Time-to-Live

In order to complete the sensitivity analysis on alternative parameter settings, Figures
3.14 and 3.15 show the cost and response times of the various protocols in the EU-
BTree configuration with a varying TTL parameter. The TTL parameter controls how

0 12
0.14
0.16
0.18
0.2

n
[$
/1
00
0]

0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18
0.2

r
tr
an

sa
ct
io
n
[$
/1
00
0]

Basic

Atomic

Locking

Snapshot

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18
0.2

0 50 100 150 200Co
st
 p
er
 t
ra
ns
ac
ti
on

 [$
/1
00
0]

Time to live [secs]

Basic

Atomic

Locking

Snapshot

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18
0.2

0 50 100 150 200Co
st
 p
er
 t
ra
ns
ac
ti
on

 [$
/1
00
0]

Time to live [secs]

Basic

Atomic

Locking

Snapshot

Figure 3.14: Cost per WI (milli-$), EC2-BTree, Varying TTL

0.3

0.4

Ti
m
e
[s
ec
]

0

0.1

0.2

0.3

0.4

g.
 R
es
po

ns
e
Ti
m
e
[s
ec
]

Basic

Atomic

Locking

Snapshot
0

0.1

0.2

0.3

0.4

0 25 50 75 100 125 150 175 200A
vg
. R

es
po

ns
e
Ti
m
e
[s
ec
]

Time to live [secs]

Basic

Atomic

Locking

Snapshot
0

0.1

0.2

0.3

0.4

0 25 50 75 100 125 150 175 200A
vg
. R

es
po

ns
e
Ti
m
e
[s
ec
]

Time to live [secs]

Basic

Atomic

Locking

Snapshot

Figure 3.15: Avg. Response Time (secs), EC2-BTree, Varying TTL

3.9. Related Work 107

long a page can be cached in a client’s buffer pool before checking whether a new ver-
sion of the page is available on S3. While the influence on the cost is rather insignificant
(S3 read requests are cheap compared to put request), the response time can be sig-
nificantly improved by a higher TTL parameter. A higher TTL requires less interaction
with S3, which is one of the most performance-critical operations, even if the page is
just probed for a change. However, a high TTL parameter may lead to more staleness
and thus, also influences the user experience.

3.8.7 Bulk-Loading Times

Table 3.5 shows the different loading times performed by one process from EC2. Sim-
pleDB and the client-side BTree have comparable performance. In both solutions we
make use of the offered bulk-loading operation. However, in regard to the cost, the
BTree is an order of magnitude cheaper. That is due to the fact that SimpleDB has
relatively small bulk-loading chunks, which we need to call several times. Although the
latency for every chunk is small inside the Amazon infrastructure, it has an impact on
the cost as every request is charged.

Index Time [secs] Cost [milli-$]

EU-BTree 129 7.0
EU-SDB 137 54.5

Table 3.5: Cost (milli-$) and Time (secs) for Bulk-Loading 10000 Products from EC2

3.9 Related Work

This work has mainly been inspired by the recent development of Amazon’s Dynamo [DHJ+07]
and Google’s BigTable [CDG+06] towards ultra-scalable storage systems (see also
Section 2.3.2). Both systems provide just eventual consistency guarantees. Recently,
work has been published on storage services providing stronger guarantees. This in-
cludes Yahoo PNUTS [CRS+08] and Google’s Megastore [FKL+08]. Both systems are
able to work on certain snapshots of data and have some concurrency control mecha-
nism for a restricted group of objects. Unfortunately, both systems are not yet publicly
available (Megastore is most likely the service attached to Google’s AppEngine, but not
exposed as a single service) and therefore cannot be studied in detail here. Another

108 Chapter 3. Building a Database on Top of Cloud Infrastructure

restriction of those services is, that the consistency is only guaranteed for a smaller set
of objects. As this might be sufficient for some applications, for others it might not. The
protocols presented in this work do not rely on such assumptions. Nevertheless, study-
ing the possibilities to directly guarantee different consistency levels inside the cloud
storage is part of our future work.

In the distributed systems and database literature, many alternative protocols to co-
ordinate reads and writes to (replicated) data stored in a distributed way have been
devised. The authoritative references in the DB literature are [BHG87] and, more re-
cently, [WV02]. For distributed systems, [TS06] is the standard textbook which de-
scribes the alternative approaches and their trade-offs in terms of consistency and avail-
ability. This work is based on [TS06] and applies distributed systems techniques to data
management with utility computing and more specifically S3. To our best knowledge,
this is the first attempt to do so for S3. The only other work on S3 databases that we
are aware of makes S3 the storage module of a centralized MySQL database [Atw07].

Utility computing has been studied since the 90s; e.g., in the OceanStore project at
UC Berkeley. Probably, it has seen its biggest success in the scientific community
where it is known as grid computing [FK04]. Grid computing was designed for very
specific purposes; mostly, to run a large number of analysis processes on scientific
data. Amazon has brought the idea to the mass. Even S3, however, is only used
for specific purposes today: large multi-media objects and backups. The goal of this
chapter has been to broaden the scope and the applicability of utility computing to
general-purpose web-based applications.

Supporting scalability and churn (i.e., the possibility of failures of nodes at any time)
are core design principles of peer-to-peer systems [Hel04]. Peer-to-peer systems also
enjoy similar consistency vs. availability trade-offs. We believe that building databases
on utility computing such as S3 is more attractive for many applications because it is
easier to control security , to control different levels of consistency (e.g., atomicity and
monotonic writes), and provide latency guarantees (e.g., an upper bound for all read
and write requests). As shown in Figure 3.1, S3 serves as a centralized component
which makes it possible to provide all these guarantees. Having a centralized compo-
nent like S3 is considered to be a “no-no” in the P2P community, but in fact, S3 is a
distributed (P2P) system itself and has none of the technical drawbacks of a centralized
component. In some sense, this work proposes to establish data management overlays
on top of S3 in a similar way as the P2P community proposes creating network overlays
on top of the Internet.

Postponing updates is also not a new idea and was for the first time studied in the

3.10. Summary 109

context of databases systems in [SL76]. The idea between log queues and differential
files is quite similar, although we do not deal with a completely distributed environment.

3.10 Summary

Web-based applications need high scalability and availability at low and predictable
cost. No user must ever be blocked either by other users accessing the same data or
due to hardware failures at the service provider. Instead, users expect constant and pre-
dictable response times when interacting with a web-based service. Utility computing
(aka cloud computing) has the potential to meet all these requirements. Cloud comput-
ing was initially designed for specific workloads. This chapter showed the opportunities
and limitations to apply cloud computing to general-purpose workloads, using AWS and
in particular S3 for storage as an example. The chapter showed how the textbook ar-
chitecture to build database systems can be applied in order to build a cloud database
system. Furthermore, the chapter presented several alternative consistency protocols
which preserve the design philosophy of cloud computing and trade cost and availability
for a higher level of consistency. Finally, an important contribution of this chapter was
to study alternative client-server and indexing architectures to effect applications and
index look-ups.

The experimental results showed that cloud computing and in particular the current
offerings of providers such as Amazon are not attractive for high-performance transac-
tion processing if strong consistency is important; such application scenarios are still
best supported by conventional database systems. Furthermore, while indeed virtually
infinite scalability and throughputs can be achieved, the cost for performance (i.e., $
per WIPS in the TPC-W benchmark) is not competitive as traditional implementations
that are geared towards a certain workload. Cloud computing works best and is most
cost-effective if the workload is hard to predict and varies significantly because cloud
computing allows to provision hardware resources on demand in a fine-grained man-
ner. In traditional database architectures, the hardware resources must be provisioned
for the expected peak performance which is often orders of magnitudes higher than
the average performance requirements (and possibly even the real peak performance
requirements).

In summary, we believe that cloud computing is a viable candidate for many Web 2.0
and interactive applications. Given the current trends and increased competition on the
cloud computing provider market, we expect that cloud computing will become more
attractive in the future.

110 Chapter 3. Building a Database on Top of Cloud Infrastructure

From our point of view, this work is still the beginning towards the long-term vision to
implement full-fledged database systems on top of cloud computing services. Clearly,
there are many database-specific issues that still need to be addressed. There are
still a number of optimization techniques conceivable in order to reduce the latency
of applications (e.g., caching and scheduling techniques). Furthermore, query pro-
cessing techniques (e.g., join algorithms and query optimization techniques) and new
algorithms to, say, bulk-load a database, create indexes, and drop a whole collection
need to be devised. For instance, there is no way to carry out chained I/O in order
to scan through several pages on S3; this observation should impact the design of
new database algorithms for storage services. Furthermore, building the right security
infrastructure will be crucial for the success of an information system in the cloud.

Finally, the here presented architecture and protocols became part of the Sausalito
product developed by 28msec Inc. Sausalito is an XQuery application platform de-
ployed on top of the infrastructure services from Amazon. Sausalito combines the ap-
plication server with the database stack similar to the EC2 client-server configuration
presented in this chapter. The programming language for all layers is XQuery (compare
Section 2.4).

Chapter 4

Consistency Rationing

4.1 Introduction

The previous chapter has shown how stronger levels of consistency and transactions
can be implemented on top of a cloud storage service. However, choosing the right
level of consistency for an application is a complicated task. It can not only influence the
performance but also significantly impact the cost. This chapter proposes a framework
on how to set the consistency level for an application.

The key observation behind the work reported in this chapter is that not all data needs
to be treated at the same level of consistency. For instance, in a web shop, credit card
and account balance information naturally require higher consistency levels, whereas
user preferences (e.g., “users who bought this item also bought. . . ” data) can be han-
dled at lower consistency levels. The previous chapter has shown that the price of a
particular consistency level can be measured in terms of the number of service calls
needed to enforce it. Since increasing levels of consistency require more calls, higher
levels of consistency (significantly) increase the costs per operation.1 Similarly to the
cost of consistency, the price of inconsistency can be measured in terms of the per-
centage of incorrect operations that are caused by using lower levels of consistency.

1This observation also holds for more traditional architectures (e.g., a database clusters) in the ab-
sence of a perfect partitioning scheme. Again, perfect partitioning refers to a partitioning scheme where
all possible transactions can be executed on a single server of the system. As perfect partitioning is hard
if not impossible to find for the majority of web scenarios, strong consistency even with rather traditional
protocols (e.g., 2-Phase-Locking, or snapshot isolation with 2-phase-commit) requires more overhead
compared to relaxed consistency models (e.g., eventual consistency). As the overhead implies message
passing between physical machines, it can be assumed, that stronger levels of consistency significantly
increase the latency and the costs.

111

112 Chapter 4. Consistency Rationing

This percentage can often be mapped to an exact cost in monetary terms (e.g., the
penalty costs of compensating a booking error or of losing a customer). These figures
are typically well-known to the companies offering such services.

To find the right balance between cost, consistency, and availability is not a trivial task.
In large scale systems, high consistency implies high cost per transaction and reduced
availability (Section 3.6 and 3.8.4) but avoids penalty costs. Low consistency leads to
lower costs per operation but might result in higher penalty costs (e.g., overselling of
products in a web shop). To make matters more complicated, this balance depends
on several factors, including the application semantics. In this chapter, we propose
to bypass this dilemma by using a dynamic consistency strategy: reduce the consis-
tency requirements when possible (i.e., the penalty cost is low) and raise them when it
matters (i.e., the penalty costs would be too high). The adaptation is driven by a cost
model and different strategies that dictate how the system should behave. We call this
approach Consistency Rationing in analogy to Inventory Rationing [SPP98]. Inventory
rationing is a strategy for inventory control where inventories are monitored with varying
precision depending on the value of the items. Following this idea, we divide the data
into three categories (A, B, and C), and treat each category differently depending on
the consistency level provided.

The A category contains data for which a consistency violation would result in large
penalty costs. The C category contains data for which (temporary) inconsistency is
acceptable (i.e., no or low penalty cost exists; or no real inconsistencies occur). The
B category comprises all the data where the consistency requirements vary over time
depending on, for example, the actual availability of an item. This is typically data that
is modified concurrently by many users and that often is a bottleneck in the system. In
this chapter, we focus on the B category. It is in this category where we can make a
significant trade-off between the cost per operation and the consistency level provided.
We describe several use cases motivating such B category data. Then we develop a
cost model for the system and discuss different strategies for dynamically varying the
consistency levels depending on the potential penalty costs. The goal of these strate-
gies is to minimize the overall cost of operating over the cloud storage. Our experiments
on a cloud database service implemented on top Amazon’s S3 indicate that significant
cost benefits can be obtained from the dynamic policies we introduce here.

4.1. Introduction 113

4.1.1 Contributions

This chapter makes the following contributions:

• We introduce the concept of Consistency Rationing, which allows applications to
obtain the necessary levels of consistency at the lowest possible cost.

• We define and analyze a number of policies to switch consistency protocols at
run-time. Our experiments show that dynamically adapting the consistency out-
performs statically assigned consistency guarantees.

• We introduce the notion of probabilistic guarantees for consistency (i.e., a per-
centile) using temporal statistics for numerical and non-numerical values. Such
statistical guarantees are very important in terms of service level agreements al-
though, to our knowledge, this is the first time that probabilistic consistency guar-
antees are studied in detail.

• We present a complete implementation of Consistency Rationing on top of Ama-
zon’s S3. We report on the cost ($) and performance of running the TPC-W
benchmark [Cou02] at several consistency categories, mixes of categories, and
different policies of the B category. The results of the experiments provide impor-
tant insights on the cost of running such systems, on the cost structure of each
operation, and on how to optimize these costs using appropriate costs models.

4.1.2 Outline

The remainder of this chapter is organized as follows: Section 4.2 describes several
use cases for Consistency Rationing in the cloud. Section 4.3 describes Consistency
Rationing, the ABC analysis and how guarantees mix. Section 4.4 presents a set of
alternative strategies to handle B data. Section 4.5 covers the implementation of Con-
sistency Rationing in the cloud. Section 4.6 summarizes the results of our experiments
using the TPC-W benchmark. Section 4.7 discusses related work and Section 4.8 con-
cludes this chapter.

114 Chapter 4. Consistency Rationing

4.2 Use Cases

The need for different consistency levels is easily identifiable in a variety of applica-
tions and has already been studied in different contexts (e.g., in [CRS+08, YV00]). In
the following, we present potential use cases in which Consistency Rationing could be
applied.

Web Shop Assume a conventional web shop built on top of a cloud storage service.
A typical web shop stores different kinds of data [Vog07]. There is, for example, data of
customer profiles and credit card information, data about the products sold, and records
on user’s preferences (e.g., “users who bought this item also bought . . . ”) as well as log-
ging information. These examples already indicate that there are different categories of
data in terms of value and need for consistency. The customer’s credit card information
and the price of the items must be handled carefully. Buyer preferences and logging
information could even be lost without any serious damage (e.g., if the system crashes
and cached data had not been made persistent).

The designer of such a web shop application could use Consistency Rationing as fol-
lows: (1) account information is categorized as A data accessible under strong con-
sistency guarantees (i.e., serializability). (2) Product inventory data is categorized as
B data. As long as the available stock is high enough, the system tolerates some in-
consistencies. When the available inventory drops below a certain threshold, access
should be done only under strong consistency guarantees to avoid overselling. (3) Buy-
ing preferences and logging information is classified as C data. The system does not
need to see the most up-to-date state at all times and does not need to take any actions
to grant exclusive accesses in case of updates.

Since the cost of running such a web shop in the cloud is determined by the cost per
operation, applying Consistency Rationing will necessarily reduce the overall cost by
using cheaper operations when possible while at the same time minimizing the cost
caused by inconsistencies.

Ticket reservations for movie theaters or operas, as well as flight booking systems of
an airline company follow the same operational model as the web shop. The only
difference is that the cost of inconsistencies (i.e., overbooking or losing tickets) can
be significantly more expensive than in a web shop. The advantage of Consistency
Rationing is that it allows designers to adjust the cost function and adaptation strategies
to optimize the total operational costs. In our approach, transactions may span multiple
categories and are not restricted to operate within a single category (Section 4.3.4).

4.2. Use Cases 115

This allows to partition (ration) the data using any partitioning scheme to optimize the
total costs.

Auction System Typical for an online auction system is that an item to be auctioned
starts to become very popular in the final stages of its auction. The last minutes of an
auction are usually of the highest interest for a bidder. During this period of time, the
item’s current price should always be up-to-date and modified under strong consistency
guarantees. When the end of an item’s auction is several days ahead, bids can be
updated using lower consistency levels without any effect on the system.

An auction system may utilize this information to implement different strategies for bring-
ing an item up-to-date. If the end of the auction is in the near future (e.g., in one or two
hours), the item is treated with strong consistency. Conversely, if the end of the auction
lies further away, the item is treated with lower guarantees.

The difference between the auction system and the web shop use case is that the
selection of the consistency protocol is done on a time basis instead of on a value basis.
Here, the time is used as a threshold that determines which consistency guarantees
to select. In contrast, the web shop example used the value of a data item as the
threshold.

Collaborative Editing Collaborative Editing allows people to work simultaneously on
the same document or source base (e.g., Google Docs, Version control, Wiki’s). The
main functionality of such a system is to detect conflicts during editing and to track
the history of changes. Traditionally, such systems work with strong consistency. If
the system detects a conflict, the user is usually required to resolve the conflict. Only
after resolving the conflict the user is able to submit the change as long as no other
conflict has been generated in the meantime. Although in real deployments there might
be some parts of the document that are updated frequently by different parties (e.g.,
the citations of a paper), people tend to organize themselves upfront to avoid conflicts
from the beginning. Hence, conflicts are unlikely for most parts of the document and no
concurrency control is required. In contrast, those parts which are frequently updated
by several parties, would best be handled by strong consistency guarantees to avoid
conflicts all together.

Other than in the previous examples, the selection of the consistency protocol is based
on the likelihood of conflicts and not on the value or time. Our General policy described
in Section 4.4.1 addresses this use case by automatically adopting the strategy based
on the update frequency.

116 Chapter 4. Consistency Rationing

4.3 Consistency Rationing

The use cases in Section 4.2 indicate that not all data needs the same consistency
guarantees. This fact is well-known in standard database applications and addressed
by offering different consistency levels on a per-transaction basis. Although it is possible
to relax every ACID property, in this work we focus on Isolation and Consistency, and
assume that Atomicity and Durability are given.

There is a great deal of work on relaxing consistency guarantees, both in distributed
systems (e.g., eventual consistency, read-write monotonicity, or session consistency
[TS06]) and transactions (e.g., read committed, read uncommitted, serializability, or
(generalized) snapshot isolation [BBG+95]). The main lesson learned from all this
work is that the challenge in relaxed consistency models is to provide the best pos-
sible cost/benefit ratio while still providing understandable behavior to the developer.
With this in mind, we consider only two levels of consistency (session consistency, and
serializability) and divide the data into three categories.

4.3.1 Category C - Session Consistency

The C category encompasses data under session consistency. Session consistency
has been identified as the minimum consistency level in a distributed setting that does
not result in excessive complexity for the application developer [TS06]. Below session
consistency, the application does not see its own updates and may get inconsistent
data from consecutive accesses.

Clients connect to the system in the context of a session. As long as the session lasts,
the system guarantees read-your-own-writes monotonicity. The monotonicity guaran-
tees do not span sessions. If a session terminates, a new session may not immediately
see the writes of a previous session. Sessions of different clients will not always see
each other’s updates. After some time (and without failures), the system converges and
becomes consistent (see also Section 3.6.2). Further, we assume that inconsistencies
because of client crashes should always be avoided (e.g., half applied transactions)
and thus, always assume Atomicity properties.

Conflict resolution in the C category for concurrent updates depends on the type of
update. For non-commutative updates (e.g., overrides), the last update wins. For com-
mutative updates (numerical operations, e.g., add), the conflict is resolved by applying
the updates one after each other. Nevertheless, both approaches can lead to inconsis-
tencies if, for example, the update is dropped or an integrity constraint is violated.

4.3. Consistency Rationing 117

Session consistency is cheap with respect to both, transaction cost as well as response
time, because fewer messages are required than for strong consistency guarantees
such as serializability. It also permits extensive caching which lowers cost even further
and increases performance. Cloud databases should always place data in the C cat-
egory if inconsistencies cannot occur (e.g., data is never accessed by more than one
transaction at a time) or there is neither monetary nor administrative cost when tempo-
rary inconsistencies arise.

4.3.2 Category A - Serializable

The A category provides serializability in the traditional transactional sense. Data in this
category always stays consistent and all transactions that modify data in the A category
are isolated. In cloud storage, enforcing serializability is expensive both in monetary
costs as well as in terms of performance. These overheads in cost and performance
exist because of the more complex protocols needed to ensure serializability in a highly
distributed environment (see Section 3.6.4). These protocols require more interaction
with additional services (e.g., lock services, queueing services) which results in higher
cost and lower performance (response times) compared to ensuring session consis-
tency.

Data should be put in the A category if consistency as well as an up-to-date view is
a must. We provide serializability using a pessimistic concurrency protocol (2-Phase-
Locking). We choose serializability over, for example, snapshot isolation to ensure
transactions always see the up-to-date state of the database. Again, the protocol should
also provide Atomicity guarantees.

4.3.3 Category B - Adaptive

Between the data with session consistency (C) and the data with serializability (A) guar-
antees, there exists a wide spectrum of data types and applications for which the re-
quired level of consistency depends on the specific situation. Sometimes strong consis-
tency is needed, sometimes it can be relaxed. Given the double impact of transactional
consistency in cloud database settings (cost and performance), we introduce the B cat-
egory to capture all the data with variable consistency requirements.

It is also the case that for many of the applications that would run in a cloud database
setting, the price of inconsistencies can be quantified (see the use cases above). Ex-

118 Chapter 4. Consistency Rationing

amples include: refunds to customers for wrongly delivered items, overheads for over-
booking, costs of canceling orders, etc. Cost in this sense can refer to either cost in
actual money, or e.g., reduced user experience or the administrative overhead to re-
solve a conflict. Because not all the updates to B data automatically result in a conflict
(Section 4.2), a non-trivial trade-off exists between the penalty cost for inconsistencies
and the advantages of using relaxed consistency.

In our implementation, data in the B category switches between session consistency
and serializability at run-time. If it happens that one transaction operates at session
consistency and another transaction operates under serializability for the same B data
record, the overall result is session consistency.

In the remainder of this chapter we analyze in detail different policies to switch between
the two possible consistency guarantees. These policies are designed to switch auto-
matically and dynamically, thereby reducing costs for the user of the cloud infrastructure
both in terms of transaction costs as well as in terms of the costs of inconsistencies.

vspace*12pt

4.3.4 Category Mixes

Our cloud database infrastructure provides consistency guarantees on the data rather
than on transactions. The motivation is that data has different characteristics in terms
of cost. For example, bank accounts and product stocks require isolation; logging data
or customer profiles do not. Defining consistency on data, rather than on transactions,
allows handling the data according to its importance. A side effect of this approach,
however, is that transactions may see different consistency levels as they access differ-
ent data.

If a single transaction processes data from different categories, every record touched in
a transaction is handled according to the category guarantees of the record. Therefore,
operations on A data read from a consistent view and modifications will retain a consis-
tent state. Reads from A data will always be up-to-date. Reads from C data might be
outdated depending on caching effects. As a logical consequence, the result of joins,
unions, and any other operations between A and C data provide only C guarantees for
that operation. In most situations, this does no harm and is the expected/desirable be-
havior. For example, a join between account balances (A data) and customer profiles
(C data) will contain all up-to-date balance information but might contain old customer
addresses.

4.4. Adaptive Policies 119

If it is necessary from the application point of view, transactions are allowed to specify
which guarantees they need. This allows a transaction to see the most up-to-date state
of a record. However, it does not guarantee that the transaction has the exclusive right
to update the record. If one transaction writes under session consistency and another
under serializibility, inconsistency can still arise. Techniques to actively inform all clients
of a change in the consistency model (e.g. by setting a flag in the collection) are beyond
the scope of this work.

4.3.5 Development Model

Consistency Rationing introduces additional complexity into the development process
of applications running on cloud storage. First, the data must be rationed into consis-
tency categories. This process is driven by the operational costs of transactions and of
inconsistencies. Second, the required consistency must be specified at the collection
(i.e., relation) level together with the policy and all integrity constraints. This can be
done by annotating the schema similar to [YG09].

We envision that the development process of an application and Consistency Rationing
can be split into different processes. During the development process, strong consis-
tency guarantees are assumed. The programmer will follow the usual database pro-
gramming model of explicitly stating transactions. Independent of the categorization,
the programmer will always issue a start transaction command at the beginning of a
transaction and a commit transaction command at its end. When the application gets
deployed, the data is rationed according to cost. The rationing may be done by a per-
son from outside the development department. Of course, the assumption is that this
split of development and rationing does not affect the correctness of the system. Which
properties an application has to fulfil in order to split the development process is out of
the scope of this thesis and part of future work.

4.4 Adaptive Policies

In this section, we present five different policies to adapt the consistency guarantees
provided for individual data items in category B. The adaptation consists in all cases
of switching between serializability (category A) and session consistency (category C).
The policies differ on how they determine the necessity of a switch. The General policy
looks into the probability of conflict on a given data item and switches to serializability

120 Chapter 4. Consistency Rationing

if this probability is high enough. The Time policy switches between guarantee lev-
els based on time, typically running at session consistency until a given point in time
and then switching to serializability. These two first policies can be applied to any data
item, regardless of its type. For the very common case of numeric values (e.g., prices,
inventories, supply reserves), we consider three additional policies. The Fixed thresh-
old policy switches guarantee levels depending on the absolute value of the data item.
Since this policy depends on a fixed threshold that might be difficult to define, the re-
maining two policies use more flexible thresholds. The Demarcation policy considers
relative values with respect to a global threshold while the Dynamic policy adapts the
idea of the General policy for numerical data by both analyzing the update frequency
and the actual values of items.

4.4.1 General Policy

The General policy works on the basis of a conflict probability. By observing the ac-
cess frequency to data items, it is possible to calculate the probability that conflicting
accesses will occur. Higher consistency levels need to be provided only when the prob-
ability of conflict is high enough.

4.4.1.1 Model

We assume a distributed setup with n servers (i.e., threads are considered to be sep-
arate servers) implementing the different levels of consistency described in Chapter 3.
Servers cache data with a cache interval (i.e., time-to-live) CI. Within that interval,
C data is read from the cache without synchronizing. Furthermore, two updates to the
same data item are always considered as a conflict (we use no semantic information on
the operations). If we further assume that all servers behave similarly (i.e., updates are
equally distributed among the servers and independent from each other), the probability
of a conflicting update on a record is given by:

Pc(X) = P (X > 1)︸ ︷︷ ︸
(i)

−
∞∑
k=2

(
P (X = k)

(
1

n

)k−1
)

︸ ︷︷ ︸
(ii)

(4.1)

X is a stochastic variable corresponding to the number of updates to the same record
within the cache interval CI. P (X > 1) is the probability of more than one update of

4.4. Adaptive Policies 121

the same record in one cache interval CI. However, a conflict can only arise if the
updates are issued on different servers. Hence, the remaining part (ii) of the equation
calculates the probability that the concurrent updates happen on the same server and
subtracts this from the probability of more than one update. The equation does not con-
sider the probability of two simultaneous conflicts on the same record. This is because
we assume that conflicts can be detected and corrected (e.g., by simply dropping con-
flicting updates) and that the probability of two conflicts on the same record during the
time it takes to detect a conflict (e.g., the cache-interval) is negligible.

Similar to [TM96], we assume that the arrival of transactions is a Poisson process, so
that we can rewrite the equation (4.1) around a single variable with mean arrival rate λ.
Since the probability density function (PDF) of a Poisson distribution is given by:

Pλ (X = k) =
λk

k!
e−λ (4.2)

Equation (4.1) can be rewritten as:

Pc(X) =
(
1− e−λ (1 + λ)

)︸ ︷︷ ︸
(iii)

−
∞∑
k=2

(
λk

k!
e−λ

(
1

n

)k−1
)

︸ ︷︷ ︸
(iv)

(4.3)

If n > 1 and if the probability of a conflict is supposed to be rather small (e.g., 1% or
less), the second term (iv) can be ignored (simulations show that the terms for k > 3

are negligible). Hence, the following expression can be considered an upper bound for
the probability of a conflict:

PC(X) =
(
1− e−λ (1 + λ)

)
(4.4)

If more precision is needed, the first one or two summands of (iv) can also be taken
into account.

4.4.1.2 Temporal Statistics

To calculate the likelihood of a conflict at run-time without requiring a centralized ser-
vice, every server gathers temporal statistics about the requests. We use a sliding
window with size w and sliding factor δ. The window size defines how many intervals
a window contains. The sliding factor specifies the granularity at which the window
moves. For every time window, the number of updates to each B data item is collected.
All complete intervals of a window build a histogram of the updates. Hence, the window

122 Chapter 4. Consistency Rationing

size acts as a smoothing factor. The larger the window size, the better are the statistics
and the longer the time to adapt to changes in arrival rates. The sliding factor affects
the granularity of the histogram. For simplicity, the sliding factor δ is assumed to be a
multiple of the cache interval CI. To derive the arrival rate λ for the whole system from
the local statistics, it is sufficient to calculate the arithmetic mean x̄ of the number of
updates to a record and multiply it by the number of servers n (which is assumed to be
globally known) divided by the sliding factor δ:

λ =
x̄n

δ
(4.5)

As the statistics are gathered using a sliding window, the system is able to dynamically
adapt to changes in the access patterns.

As the update rate of an item has to be small for handling it as a category C item,
local statistics can easily mislead the statistics for small window sizes. To overcome the
problem, the local statistics can be combined into a centralized view. The simplest way
to achieve this would be to broadcast the statistics from time to time to all other servers.
Furthermore, if the record itself carries its statistical information (see Section 4.5), even
the broadcast is for free. Thus, by attaching the information to the record, the statistical
information can be collected when a data item is cached.

4.4.1.3 Setting the Adaptive Threshold

When to switch between consistency levels is a critical aspect of the approach as it
affects both costs and correctness.

Let Cx be the cost of an update to a record in category x. This cost reflects only the ad-
ditional cost per record in a running transaction without the setup cost of a transaction.
Let CO be the cost of consistency violations. A record should be handled with weak
consistency only if the expected savings of using weak consistency is higher than the
expected cost of inconsistency EO(X):

CA − CC > EO(X) (4.6)

If CA − CC > EO(X) then the record should be handled with session consistency
(C data). If CA − CC < EO(X), the record should be handled with strong consis-
tency (A data). Assuming EO(X) = PC(X) ∗CO, a record should be handled with weak
consistency if the probability of conflict is less then (CA − CC) /CO:

PC(X) <
CA − CC
CO

(4.7)

4.4. Adaptive Policies 123

The same equation can be used for optimizing parameters other than cost. For ex-
ample, if the throughput of a system is to be optimized and we assume that resolving
conflicts reduces performance, the same formula can be used by substituting the costs
with performance metrics.

A key aspect of the General policy is that a user can simply specify either a fixed prob-
ability of inconsistency or provide a cost function independently of what cost means in
the particular case. The rest is handled automatically by the system. Consistency, in
this sense, becomes a probabilistic guarantee. The probability of inconsistencies will
be adjusted depending on how valuable consistency is for a user.

4.4.2 Time Policies

The time policies are based on a timestamp that, when reached, indicates that the
consistency guarantees must change. All such use cases tend to follow an auction-like
pattern raising consistency levels when a deadline approaches.

The simplest of all time policies is to set a pre-defined value (e.g., 5 minutes). Up
to 5 minutes before the deadline, the data is handled with session consistency only.
Afterwards, the consistency level switches to strong consistency. Hence, this policy is
the same as the Fixed threshold policy below, except that the decision when to switch
consistency guarantees is time-based instead of value-based.

As before, defining this threshold is critical. Similar to the General policy, we can define
the likelihood of a conflict Pc(XT); only this time the stochastic variable XT changes
with respect to time t.

In this context, it is often not meaningful to gather statistics for a record. For example,
in the case of an auction, a record sees that the number of accesses increase as the
deadline approaches and then drops to zero once the deadline is reached. Based on
this, a simple method to set the threshold is to analyze a sample set of past auctions
and derive the likelihood of a conflict in minute t before the time expires. More advanced
methods can be adopted from inventory management or marketing, as similar methods
are used to predict the life-cycle of products. However, such methods are beyond the
scope of this thesis.

124 Chapter 4. Consistency Rationing

4.4.3 Policies for Numeric Types

In many use cases, most of the conflicting updates cluster around numerical values,
such as the stock of items in a store, the available tickets in a reservation system, or
the account balance in a banking system. These scenarios are often characterized by
an integrity constraint defined as a limit (e.g., the stock has to be equal or above 0)
and commutative updates to the data (e.g., add, subtract). These characteristics allow
us to further optimize the General policy by considering the actual update values to
decide which consistency level to enforce. This can be done with one of the following
three policies. The Fixed threshold policy looks at the actual value of an item and
compares it to a threshold. The Demarcation policy applies the idea of the Demarcation
protocol [BGM94] and considers a wider range of values to make a decision. Finally,
the Dynamic policy extends the conflict model of the General policy to numeric types.

4.4.3.1 Fixed Threshold Policy

The Fixed threshold policy defines that if the value of a record is below a certain thresh-
old, the record is handled under strong consistency guarantees. Thus, a transaction
that wants to subtract an amount ∆ from a record, applies strong consistency if the
current value v minus ∆ is less than or equal to the threshold T :

v −∆ ≤ T (4.8)

In comparison to the General policy, the Fixed threshold policy does not assume that
updates on different servers conflict. Updates are commutative and can, therefore, be
correctly resolved. Nevertheless, inconsistency can occur if the sum of all updates on
different servers lets the value under watch drop below the limit.

Similar to finding the optimal probability in the General policy, the threshold T can be
optimized. A simple way of finding the optimal threshold is to experimentally determine
it over time, i.e., by adjusting T until the balance between run-time cost and penalty cost
is achieved. To find a good starting point for T , one can always consider the statistics
from the sales department in the company. Normally, the sales department applies
similar methods to determine prices or to control the inventory.

The biggest drawback of the Fixed threshold policy is the static threshold. If the demand
for a product changes or if hot spot products are present, the Fixed threshold policy
behaves sub-optimally (see Experiment 2 in Section 4.6).

4.4. Adaptive Policies 125

4.4.3.2 Demarcation Policy

The Demarcation protocol [BGM94] was originally proposed for replicated systems.
The idea of the protocol is to assign a certain amount of the value (e.g., the stock) to
every server with the overall amount being distributed across the servers. Every server
is allowed to change its local value as long as it does not exceed a local bound. The
bound ensures global consistency without requiring the servers to communicate with
each other. If the bound is to be violated, a server must request additional shares from
other servers or synchronize with others to adjust the bound. This protocol ensures that
the overall value never drops below a threshold and that coordination occurs only when
needed.

We can adopt the basic idea behind the Demarcation protocol as follows. Every server
gets a certain share of the value to use without locking. In the following we assume,
without loss of generality, that the value of the limit for every record is zero. If n is the
number of servers and v the value (e.g., the stock of a product), we define the share
that a server can use without strong consistency as

⌊
v
n

⌋
. Hence, the threshold T is

defined as:

T = v −
⌊v
n

⌋
(4.9)

All servers are forced to use strong consistency only if they want to use more than their
assigned share. By applying strong consistency, a server sees the current up-to-date
value and inconsistencies are avoided. As long as all servers behave similarly and
decrease the value in a similar manner, this method will ensure that the threshold will
not fall below zero. In our context of cloud services, the Demarcation policy might not
always ensure proper consistency because it is assumed that servers cannot commu-
nicate between each other. Only after a certain time interval (i.e., the cache interval),
a record is brought up-to-date. It can happen that a server exceeds the threshold and
continues to, for example, sell items (now in locking mode) while another server sells
items up to its threshold without locking. In such situations, the value can drop below
the established bound. The idea behind the Demarcation protocol is nevertheless quite
appealing and we can assume that such scenarios occur only rarely.

An additional drawback of the Demarcation policy is, that for a large number of servers
n, the threshold tends towards v and the Demarcation policy will treat all B data as
A data. Thus, almost all transactions will require locking. Skewed distributions of data
accesses are also problematic: if an item is rarely or unevenly used, the threshold could
be lowered without increasing the penalty cost.

126 Chapter 4. Consistency Rationing

4.4.3.3 Dynamic Policy

The Dynamic policy implements probabilistic consistency guarantees by adjusting the
threshold.

Model As for the General policy we fix a cache interval CI and assume that updates
are equally distributed among servers. Hence, the probability of the value of a record
dropping below zero can be written as:

PC(Y) = P (T − Y < 0) (4.10)

Y is a stochastic variable corresponding to the sum of update values within the cache
interval CI. That is, Y differs from X of Equation 4.1 in that it does not reflect the
number of updates but the sum of the values of all updates inside a cache interval.
P (T − Y < 0) describes the probability that the consistency constraint is violated (e.g.,
by buying more items before the servers apply strong consistency).

Temporal Statistics To gather the statistics for Y we again use a window with size w
and sliding factor δ. Unlike for the General policy, we assume that the sliding factor δ is a
factor of the checkpoint interval CI rather than a multiple. This has two reasons: First,
the Dynamic policy requires the variance which can be more precisely derived with
smaller sliding factors. Second, the policy concentrates on hot spots and not on rarely
updated values. Events (i.e., updates) are not rare and hence, the required amount of
data can be collected in less time.

For every sliding interval, the values with regard to all updates to B data in that interval
are collected. In contrast to the General policy, this value contains the cumulated sum
of all updates instead of the number of updates. All complete intervals of a window build
a histogram of the updates. If a transaction wants to update a record, the histogram of
the moving window is used to calculate an empirical probability density function (PDF)
f using the standard formula. f is then convoluted CI/δ times to build the PDF for the
whole checkpoint interval fCI :

fCI = f ∗ f ∗ · · · ∗ f︸ ︷︷ ︸
CI/δ times

(4.11)

Convolution is needed, as it is important to preserve the variance.

To reason about the updates in the whole system, the number of servers n has to be
known. Convoluting fCI again n times leads to the PDF of the updates in the whole
system:

fCI∗n = fCI ∗ fCI ∗ · · · ∗ fCI︸ ︷︷ ︸
n times

(4.12)

4.5. Implementation 127

Given fCI∗n, the cumulative distribution function (CDF) FCI∗n can be built, which finally
can be used to determine the threshold for P (T −X < 0) by looking up the probability
that

FCI∗n(T) > PC(Y). (4.13)

To optimize PC(Y) we can use the same method as before:

FCI∗n(T) >
CA − CC
CO

. (4.14)

Note that the threshold T is defined in terms of when the probability is higher than
PC(Y), not smaller.

Although there exist efficient algorithms for convoluting functions, if n ∗ CI/δ is big
enough and/or the item is often updated, the central limit theorem allows us to approxi-
mate the CDF with a normal distribution. This permits a faster calculation of the thresh-
old to guarantee the percentile of consistency. The arithmetic mean x̄ and the sample
standard deviation s can be calculated using statistics of the histogram of the sliding
window. That is, one can approximate the CDF FCI∗n by using the normal distribution
with mean

µ = x̄ · CI/δ · n

and standard deviation

σ =
√
s2 · CI/δ · n.

We use statistics gathered at run-time to set the threshold for each individual record
depending on the update frequency of the item. As the experiments in Section 4.6
reveal, this Dynamic policy is able to outperform all other policies in terms of overall
performance and cost for the chosen setup. As the statistics are gathered at run-time,
the system is also able to react to changes on the update rate of records.

4.5 Implementation

This section describes the implementation of Consistency Rationing on top of of the
system presented in Chapter 3. Consistency Rationing, however, is a more general
concept and thus, at the end of this section, we also sketch ways to implement Consis-
tency Rationing on other platforms, such as Yahoo PNUTs.

128 Chapter 4. Consistency Rationing

4.5.1 Configuration of the Architecture

We leverage the architecture and protocols of Chapter 3 deployed on top of Amazon’s
infrastructure services. The client-server is configured as the combined application and
database server running on EC2 and using Amazon’s S3 as a persistent store. That
is, clients connect to one EC2 server, which in turn implements the set of protocols
presented in Chapter 3.5 and 3.6 to coordinate the writes to S3. The protocols already
follow a layered design in which every layer increases the level of consistency, and
thus, make it easy to use different layers for the different data categories. Consistency
Rationing so far only makes use of the protocols for session consistency and 2-Phase-
Locking (2PL). For session consistency with atomicity guarantees we use the protocol
of Section 3.6.3 together with the protocol of Section 3.6.2 without session recovery in
the event of server failures. Thus, the session is lost and monotonicity guarantee for
a user might be violated if the server crashes. For 2PL we leverage the protocol of
Section 3.6.5. For the sake of uniformity, both protocols use the Advanced Queuing
Service (Section 3.3.4 and 3.7).

In addition to the logging presented in the previous chapter we also implement logical
logging. In order to implement adaptive consistency guarantees, we extend the archi-
tecture with the necessary meta-data management, policies, and the statistical com-
ponent to gather the required temporal statistics, which are explained in the following
sub-sections in more detail.

4.5.2 Logical Logging

In order to allow higher rates of concurrency without inconsistencies, we implement
logical logging. A logical log message contains the ID of the modified record and the
operation Op performed to this record. To retrieve the newest state Rnew of a record
(e.g., when checkpointing the record), the operation Op from the PU queue is applied
to the item Rold:

Rnew ← Rold +Op.

In contrast to logical logging, the protocols presented in Section 3.4.5 use physical log-
ging. Logical updates are robust against concurrent updates as long as the operations
are commutative. That is, an update is never lost because it is overwritten and, in-
dependent of the order, all updates will become visible. However, also commutative
operations may still lead to inconsistent results, for example, by violating consistency
constraints like value > 0. To avoid problems with different classes of commutative

4.5. Implementation 129

operations (e.g., multiplication) we restrict our implementation to add and subtract for
numerical values. For non-numerical values (e.g., strings) logical logging behaves as
physical logging (i.e., the last update to the string wins). Our Consistency Rationing
approach supports both types of values (see Section 4.4).

4.5.3 Meta-data

Every collection in our system contains meta-data about its type. This information is
stored on the storage service along with the collection information. Given the collec-
tion that a record belongs to, the system checks which consistency guarantees should
be enforced. If a record is classified as A data, the system knows that it must apply
strong guarantees for this item. On the other hand, if an item is classified as C data,
the system operates at lower guarantees. For these two data categories (i.e., A and
C data), the type-checking operation is enough to decide on the consistency protocol.
For B data, the meta data contains further information: the name of the policy and
additional parameters for it.

4.5.4 Statistical Component and Policies

The statistical component is responsible for gathering statistics at run-time. The statis-
tics are collected locally. Based on the local information, the component reasons about
the global state (Section 4.4). Using this reasoning, a single server is able to decide
locally which protocol to use (i.e., session consistency or 2PL). Only if all servers make
the same decision to use A consistency, the stronger consistency level is ensured.
Thus, no centralized server is required to make qualified decisions as long as the win-
dow size is reasonably big and all requests are evenly distributed across the servers.
However, consolidating statistics and broadcasting certain decisions from time to time
would make the system more robust. We consider consolidating statistics and broad-
casting as part of our future work.

The probabilistic policies differ in the kind of statistics they require. The General policy
handles those records with C guarantees for which parallel updates on different servers
are unlikely. Therefore, the policy needs information on the update frequency and is
particularly suited for rarely updated items. On the other hand, the Dynamic policy is
especially interesting for hot spot items. The policy allows a high rate of parallel updates
with C guarantees until the likelihood of falling below a limit becomes too high.

130 Chapter 4. Consistency Rationing

For both policies, we store the statistical information directly with the record. For the
General policy we reduce the required space for the statistics by using a simple approx-
imation. If we aim for a conflict rate of less than 1%, simulations using Equation (4.3)
of Section 4.4.1.1 show that the arrival rate has to be less than ≈ 0.22 independent
of the number of servers. Having a sliding factor of δ, the average number of updates
inside a cache interval to qualify for session consistency is less than 0.22 ∗ δ. We use
this property by bounding the value space per slide accordingly and by introducing a
special value for update rates beyond the value space.

For example, if we assume a window size of 1 hour with a sliding factor of 5 minutes and
a cache interval of 1 minute, 12 window slides need to be stored. The average update
rate per slide has to be ≈ 1.1. By allowing some variance, we can use 4 bit per value,
reserving one value, here number 16, to stand for updates above 15 and to be further
treated as infinite. The window then requires 12 ∗ 4bits = 48bits per record, which is an
acceptable size.

The operations to gather the statistics are rather simple: per incoming update a simple
increment is needed to increase the number in the current slide. Slides are updated
in a round robin fashion and an additional number indicates the freshness of the data.
Special attention is given to new records: a special flag is set, to avoid misbehavior
before sufficient statistics for a new record are gathered.

Collecting statistics for the Dynamic policy works in a similar way. The main difference
is that the sum of update values is collected (instead of the number of updates). There-
fore, the space to gather the statistics cannot be optimized as before. For efficiency
reasons, we only gather the complete statistics for hot spot records. All other records
are treated using a default threshold value. The statistics gathered are rather small and
may be kept in main memory. For example, in a system with 10,000 hot spot records
within the B category, a window size of 100 values and 32 bits to maintain the number
of updates per entry and record, only 10, 000 ∗ 100 ∗ 32 ≈ 4 MB are needed.

The remaining calculations are described in Section 4.4.3.3. To reduce the estimation
error, we convolute the distributions exactly if less than 30 updates were performed in-
side the window for a specific record. Otherwise, the normal distribution approximation
is used to improve the calculation performance as described in Section 4.4.3.3. An-
other problem which occurs within the Dynamic policy is the start of the system, when
no statistics are available. We solve the problem by using the Demarcation policy at
the beginning and switching to the Dynamic policy as soon as sufficient statistics have
become available.

4.5. Implementation 131

4.5.5 Implementation Alternatives

The architecture of [BFG+08, 28m09] assumes a storage service which provides even-
tual consistency guarantees. Higher levels of consistency are achieved by using addi-
tional services and by means of protocols. Lately, several systems have appeared that
provide higher levels of consistency such as Yahoo PNUTS [CRS+08].

Yahoo PNUTS provides a more advanced API with operations such as: Read-any,
Read-latest, Test-and-set-write(required version) etc. Using these primitives, it is possi-
ble to implement session consistency directly on top of the cloud service without requir-
ing additional protocols and queues. Serializability cannot be implemented by the API,
but PNUTS offers Test-and-set-write (required version) which supports implementing
optimistic concurrency control for A data. The meta-data, statistical component, and
policies described above could be directly adapted. Unfortunately, Yahoo PNUTS is
not a public system. Hence, we could not further investigate the implementation nor
include it in our experiments. Nevertheless, the authors of PNUTS state that for ex-
ample, Read-any is a cheaper operation than Read-latest. Hence, the same trade-offs
between cost and consistency exist and Consistency Rationing could also be applied
to PNUTS to optimize for cost and performance.

Another recent system is the Microsoft SQL Data Services [Lee08]. This service uses
MS SQL Server as an underlying system, and builds replication and load balancing
schemes on top. By using MS SQL Server, the system is able to provide strong con-
sistency. However, a strong assumption underlies the system: data is not allowed to
span several servers and transactions cannot span over several machines. Hence, the
scalability of the system is limited.

Consistency Rationing could be also implemented inside MS SQL Data Services. In
particular, the A and C categories and the simple strategies such as the Demarcation
policy can help to improve performance. However, as achieving strong consistency is
much cheaper in this scenario because no messages between different servers are
required, the savings are most likely not as big as in a really distributed setup where
data can grow infinitely and gets distributed over several machines.

Finally, Consistency Rationing is also a good candidate for traditional distributed data-
bases such as cluster solutions. Even in a more traditional architecture, stronger lev-
els of consistency require more messages passing between physical machines than
weaker levels of consistency. For example, eventual consistency only requires sending
reliable messages to persist the data (e.g. on the replicas). Actually, without replication
or directly sending the request to all replicas, no additional messages are required at

132 Chapter 4. Consistency Rationing

all, as eventual consistency allows to postpone the consolidation of updates. In con-
trast, strong consistency, e.g. with a 2-Phase-Locking protocol, requires messages
for requesting locks in addition to the messages for persisting the changes. Similarly,
traditional snapshot isolation requires an extra round for the validation phase of a trans-
action. Even with piggy packing of messages and improved partitioning of the data
(see for example H-Store [SMA+07, KKN+08]), more messages and coordination work
is required, if strong consistency is desired. As message passing between physical
machines is typically expensive, Consistency Rationing might also help to reduce the
latency and the costs in traditional distributed databases. Again, most of the here-
presented components can be applied immediately. However, exploring this direction
further is beyond the scope of this thesis.

4.6 Experiments

This section describes the experiments we have performed to study the characteristics
and trade-offs of different consistency policies. Our experiments are based on the TPC-
W benchmark [Cou02]. The TPC-W benchmark models a web shop and aims to provide
a fair comparison in terms of system performance. In all our benchmarks we report on
response time and on cost per transaction. These numbers stand as one possible
scenario and show the potential of Consistency Rationing.

4.6.1 Experimental Setup

TPC-W benchmark The TPC-W benchmark models a web shop, linking back to our
first use case in Section 4.2. The TPC-W benchmark specifies that customers browse
through the website of a web shop and eventually buy products as explained in Sec-
tion 3.8.1.1. We used the same TPC-W implementation as described in Section 3.8.1.1
configured with the Ordering Mix to better reveal the characteristics and trade-offs of
our Consistency Rationing approach. Further, the TPC-W benchmark defines 8 differ-
ent data types (e.g., item data, containing the product information including the product
stock). In order to study the characteristics of Consistency Rationing, we assign differ-
ent consistency categories to the data types (see Table 4.1).

Data Categorization At the beginning of each experiment, the stock of each product
is set to a constant value. The TPC-W benchmark defines that the stock of a product

4.6. Experiments 133

Data Category

XACTS A (very valuable)
Item B (dependent on item’s stock)
Customer C (few parallel updates)
Address C (few parallel updates)
Country C (few parallel updates)
Author C (few parallel updates)
Orders C (append-only, no updates)
OrderLine C (append-only, no updates)

Table 4.1: Data categorization

should be refilled periodically. In this case, the benchmark can run forever without a
product’s stock dropping below a certain threshold. We are interested in inconsistent
states of the database in which - due to non-isolated, parallel transactions - the stock
of a product drops below zero. To be able to measure these inconsistencies, we do
not refill the product’s stock but stop the experiment after a given time and count the
oversells. All experiments are scheduled to run for 300 seconds and are repeated 10
times.

The Ordering Mix defines that 10% of all actions are purchase actions. One purchase
action might buy several different products at once. The total number of products in one
purchase is set to a random number between 1 and 6 (inclusively) so that at most six
products are bought at once. It is also possible to buy multiple copies of one product.
The amount of copies follows the 80-20 rule [GSE+94]. We implemented the 80-20 rule
using Gray’s self-similar distribution with the parameters h = 0.2 and N = 4. At most
four copies are bought of any single product.

In our experiments, we study the effects of different settings of categorizations. That
is, we assign consistency categories to the data types of the TPC-W benchmark: (1)
A data, (2) C data, and (3) mixed data.

(1) First, we categorize all data types as A data. That is, all database transactions are
isolated and preserve consistency. Categorizing all data types as A data complies with
the requirements of the TPC-W benchmark.

(2) Second, we categorize all data types as C data. Database transactions provide
atomicity but are are only session consistent. Thud, data might be stale and consistency
is not preserved. In particular, oversells of products might occur as product purchases
are not exclusive.

134 Chapter 4. Consistency Rationing

(3) Last, we define a mix of data type categorizations. This mix contains A data, C data,
and B data. Given the data types of the TPC-W benchmark, we categorize these data
types as shown in Table 4.1. Credit card information (XACTS) is defined as A data.
Under all circumstances the latest credit card information is used. Items (i.e., products)
are categorized as B data as they contain a numerical value that is used as threshold
(i.e., the stock). The rest of the data is categorized as C data.

Costs In all our experiments, the database is hosted on S3 and the clients connect to
the database via application servers running on EC2. The run-time cost is the cost in ($)
of running the EC2 application servers, hosting the data on S3, and connecting to our
additional services (i.e., the Advanced Queue Service and the Locking Service). The
cost of running EC2 and using S3 is provided by Amazon. The cost of connecting to
and using our additional services is the same as in Section 3.8.1 and priced with 0.01$
per 1000 requests. We measure the run-time cost in dollars per 1000 transactions. One
transaction relates to exactly one action defined by the TPC-W benchmark.

The penalty cost of inconsistencies is the cost that a company incurs when a promised
service cannot be established. Here, it is the cost of overselling products, which cannot
be shipped and result in disappointed customers. In larger companies the penalty
cost is usually well-known. Because we extremely stress our system (see below), the
penalty cost of one oversold product was set to $0.01 per oversold product. The overall
cost is the sum of the run-time cost and the penalty cost.

Parameters In our experiments we use 10 application servers hosted on EC2. These
application servers carry out transactions following the Ordering Mix defined by the
TPC-W benchmark. The system comprises 1000 products (that is less than in the
experiments of Section 3.8 to enforce more contention) with an inventory level set to
a uniformly distributed value between 10 and 100. The checkpointing interval is set
to 30 seconds. Thus, after at most 30 seconds, the up-to-date version of a page is
written to S3. The time-to-live of a page was set to 5 seconds. The window size of the
Dynamic policy was set to 80 seconds, the sliding factor to 5. That is, it normally takes
80 seconds to adapt to a distribution of updates in our database.

To clearly reveal the individual characteristics of the individual consistency categories
and the different adaptive strategies, we stress-test our system. In the 300 seconds of
benchmark time, up to 12,000 items are sold corresponding to more than a quarter of
the overall available products. This way, we are able to produce stable and repeatable
results. Of course, real world scenarios have a lower load by far (while at the same time
facing higher penalty costs for oversells). Producing stable results for such workloads

4.6. Experiments 135

requires running the system for extremely long times, thus making an extensive perfor-
mance study nearly impossible. For this reason, we only report on the numbers for our
stressed system.

4.6.2 Experiment 1: Cost per Transaction

Optimizing the cost of a transaction (in $) is one of the key motivations for Consistency
Rationing. This cost includes the cost of running the transactions as well as the penalty
cost for overselling. In our first experiment, shown in Figure 4.1, we compare the overall
cost per transaction for different consistency guarantees. The cost of A data is about
≈0.15$ per 1000 transactions. The cost of C data significantly varies with the distribu-
tion of updates. For the highly skewed 80-20 distribution, many oversells occur because
of the high contention of writes to only a few data records. For the adaptive guarantee,
we have chosen the Dynamic policy as this policy suits best the shopping scenario. The
cost is the least of all three policies. Thus, the Dynamic policy finds the right balance
between weak consistency (to save run-time money) and strong consistency (to avoid
overselling products).

0.1

0.15

0.2

0.25

er
 t
ra
ns
ac
ti
on

 [$
/1
00

0] Uniform
distribution
80‐20
distribution

2.38

0

0.05

0.1

0.15

0.2

0.25

A data C data Dynamic

Co
st
 p
er
 t
ra
ns
ac
ti
on

 [$
/1
00

0]

Policies of consistency

Uniform
distribution
80‐20
distribution

2.38

Figure 4.1: Cost (incl. the penalty cost) per trx [$/1000], Vary guarantees

Of course, the overall cost strongly depends on the actual value of the penalty cost.
Figure 4.2 shows this impact by varying the penalty cost. For A data, the overall cost
is constant because no inconsistencies occur and no penalty cost exists. With an in-
creasing penalty cost, the overall cost for the Dynamic policy converges to the cost

136 Chapter 4. Consistency Rationing

of A data. The Dynamic policy adapts itself to the penalty cost (see Section 4.4.3.3).
With increasing penalty cost, it enforces strong consistency for more and more trans-
actions. Eventually, the cost of C data gets amazingly high. At a penalty cost of $0.1,
the C data’s overall cost is $0.74 ($23) per 1000 transactions for the uniform distribution
(80-20 distribution). Therefore, the overall cost of C data is not shown in Figure 4.2.

0.16

00
]

0.12

0.16

[$
/1
00
0]

0.08

0.12

0.16

ac
ti
on

 [$
/1
00
0]

0.04

0.08

0.12

0.16

tr
an

sa
ct
io
n
[$
/1
00
0]

A data: 80‐20 distribution
A data: Uniform distribution
D i 80 20 di t ib ti

0 00

0.04

0.08

0.12

0.16

os
t p

er
 t
ra
ns
ac
ti
on

 [$
/1
00
0]

A data: 80‐20 distribution
A data: Uniform distribution
Dynamic: 80‐20 distribution
Dynamic: Uniform distribution

0.00

0.04

0.08

0.12

0.16

0.01 0.1 1

Co
st
 p
er
 t
ra
ns
ac
ti
on

 [$
/1
00
0]

A data: 80‐20 distribution
A data: Uniform distribution
Dynamic: 80‐20 distribution
Dynamic: Uniform distribution

0.00

0.04

0.08

0.12

0.16

0.01 0.1 1

Co
st
 p
er
 t
ra
ns
ac
ti
on

 [$
/1
00
0]

Penalty cost [$] per inconsistency

A data: 80‐20 distribution
A data: Uniform distribution
Dynamic: 80‐20 distribution
Dynamic: Uniform distribution

0.00

0.04

0.08

0.12

0.16

0.01 0.1 1

Co
st
 p
er
 t
ra
ns
ac
ti
on

 [$
/1
00
0]

Penalty cost [$] per inconsistency

A data: 80‐20 distribution
A data: Uniform distribution
Dynamic: 80‐20 distribution
Dynamic: Uniform distribution

Figure 4.2: Cost per trx [$/1000], Vary penalty cost

Extrapolating the savings of the Dynamic policy to real world applications (such as
Amazon or Ebay), the overall savings in IT costs can be rather significant.

4.6.3 Experiment 2: Response Time

To evaluate the performance of our system in more detail, we measure the response
times of single actions of the TPC-W benchmark. Figure 4.3 shows the main findings.
The numbers do not include the latency to the client, just the transaction time. The
response time of A data is the slowest of all policies. Each transaction of A data has
to get a lock before any reads or writes can be performed. In contrast, C data shows
the fastest response times, as no locks need to be gathered.2 The Dynamic policy is
24% slower than C data because it sometimes requires locks in order to not oversell
products. Thus, the Dynamic policy is able to compete with state of the art policies

2The protocols, in particular the Atomicity protocol, is faster than in Section 3.8.3.2 because of the
reduced data size. Furthermore, as a result of the higher concurrency and the smaller data-set significant
better caching behaviour is achieved. As a comparison see also the effect of caching in the time-to-live
experiment of Section 3.8.6.2.

4.6. Experiments 137

in terms of performance while enabling us to optimize for cost as well (see previous
experiment).

20

30

40

50

60

70

80

90

es
po

ns
e
ti
m
e
[m

s]

Uniform
distribution
80‐20
distribution

0

10

20

30

40

50

60

70

80

90

A data C data Dynamic

Re
sp
on

se
 ti
m
e
[m

s]

Policies of consistency

Uniform
distribution
80‐20
distribution

Figure 4.3: Response time [ms]

4.6.4 Experiment 3: Policies

Experiment 3 studies the differences between individual adaptive policies. We focus
on the numerical policies as those are the ones that apply for the book-shop scenario,
and compare the Fixed threshold policy (with thresholds T = 40 and T = 12) with the
Demarcation policy and the Dynamic policy. Now the Dynamic policy for numerical data
is just an advanced form of the General policy, and the Time policy is just a special
setting for the Fixed threshold policy, so that the results in this section can serve as
indications for the Time and General policy.

Figure 4.4 shows the cost per 1000 transactions in dollars. The fixed threshold of T = 12

has been optimized for the uniform distribution of updates to data records (see Exper-
iment 4), and the Fixed threshold policy with T = 12 proves to be the cheapest policy
for uniformly distributed updates. For skewed update distributions, the same threshold
leads to very high costs. Setting the threshold to T = 40 lowers the cost for skewed
updates but at the same time raises the cost for uniformly distributed updates. That
is, the Fixed threshold policy is highly dependent on the threshold and is outperformed
by more sophisticates policies. The Demarcation policy reduces the cost incurred for
both distributions of updates and the Dynamic policy is even able to outperform the
Demarcation policy.

138 Chapter 4. Consistency Rationing

0 05

0.1

0.15

0.2

0.25

er
 t
ra
ns
ac
ti
on

 [$
/1
00

0] Uniform distribution
80‐20 distribution

0

0.05

0.1

0.15

0.2

0.25

Fixed (T=40) Fixed (T=12) Demarc. Dynamic

Co
st
 p
er
 t
ra
ns
ac
ti
on

 [$
/1
00

0]

Policies of consistency

Uniform distribution
80‐20 distribution

Figure 4.4: Cost per trx [$/1000], Vary policies

In Figure 4.5 the response times of the different policies can be seen. The Dynamic
policy has the fastest response times of all policies. If the stock of a product in the
database falls below the fixed threshold, the Fixed threshold policy will operate in strong
consistency. The higher the threshold is set, the earlier this policy will start to require
strong consistency. Therefore, the Fixed threshold policy shows a slower response
time for the higher threshold. Even for T = 12, the Fixed threshold policy requires
unnecessarily many locks compared to the Dynamic policy and the Demarcation policy.

20

40

es
po

ns
e
ti
m
e
[m

s]

Uniform distribution
80‐20 distribution

0

20

40

Fixed (T=40) Fixed (T=12) Demarc. Dynamic

Re
sp
on

se
 ti
m
e
[m

s]

Policies of consistency

Uniform distribution
80‐20 distribution

Figure 4.5: Response time [ms], Vary policies

Hence, the Dynamic policy outperforms all other policies that have been described in
this chapter in terms of cost and response time. This is possible by utilizing statistics
gathered at run-time, a possibility ignored by the other, more static policies. Obviously,
the results depend on the use case and can be more or less significant depending on
the workload and cost factors.

4.6. Experiments 139

0.04

0.08

0.12

0.16

Ru
n‐
ti
m
e
co
st
 p
er

an
sa
ct
io
n
[$
/1
00
0]

A data

Fixed

C data

0

0.04

0.08

0.12

0.16

0 20 40 60 80 100

Ru
n‐
ti
m
e
co
st
 p
er

tr
an

sa
ct
io
n
[$
/1
00
0]

Threshold

A data

Fixed

C data

Figure 4.6: Runtime $, Vary threshold

2

3

4

5

6

7

8

rs
el
ls
 p
er
 t
ra
ns
ac
ti
on

[1
/1
00
0]

A data

Fixed

C data

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100

O
ve
rs
el
ls
 p
er
 t
ra
ns
ac
ti
on

[1
/1
00
0]

Threshold

A data

Fixed

C data

Figure 4.7: Oversells, Vary threshold

4.6.5 Experiment 4: Fixed Threshold

In our last experiment, we experimentally determine the optimal threshold for our bench-
mark setup assuming that updates are uniformly distributed among all products in the
database. With this experiment, we expect to gain further insight into this value-based
decision policy as well as the general Consistency Rationing approach.

Figure 4.6 shows the run-time cost of the Fixed threshold policy, A data, and C data
in dollars per 1000 transactions. We vary the threshold of the Fixed threshold policy.
As A data and C data are not affected by this threshold, the associated costs remain
constant. As already seen in Experiment 3, the run-time cost of the Fixed threshold
policy increases with an increase in the threshold. A higher threshold enforces an

140 Chapter 4. Consistency Rationing

0.04

0.08

0.12

0.16

co
st
 p
er
 t
ra
ns
ac
ti
on

[$
/1
00
0]

A data

Fixed

C data

0

0.04

0.08

0.12

0.16

0 20 40 60 80 100O
ve
ra
ll
co
st
 p
er
 t
ra
ns
ac
ti
on

[$
/1
00
0]

Threshold

A data

Fixed

C data

Figure 4.8: Overall $, Vary threshold

earlier switch to strong consistency, which is more expensive (e.g., because of requiring
locks and sending more messages).

Figure 4.7 shows the oversells per 1000 transactions. In our stressed benchmark situa-
tion, C data shows almost 7 oversells per 1000 transactions. A data, of course, has no
oversells at all because the data is always updated with strong consistency guarantees.
Due to the earlier switch to strong consistency, the amount of oversells decreases with
a higher threshold for the Fixed threshold policy. For a threshold of T = 14, no oversells
occur.

Given these two figures, Figure 4.8 shows the overall cost per transaction for A data,
C data, and the Fixed threshold policy. The overall cost is the sum of the run-time cost
and the total penalty costs equalling the number of oversells times the penalty cost per
oversell. This overall cost is minimized for T = 12. Both, A and C data, have a higher
cost per transaction as the optimal setting of the Fixed threshold policy.

These figures demonstrate well how adaptation at run-time lets the consistency vary
between the two extreme guarantees of session consistency and serializability.

4.7 Related Work

Many transaction and consistency models have been proposed in the distributed sys-
tems and database literature. Common references in the DB literature include [BHG87],
[WV02], and [OV99]. In distributed systems, [TS06] is the standard textbook that de-
scribes alternative consistency models as well as their trade-offs in terms of consistency

4.7. Related Work 141

and availability. Our work extends these established models by allowing levels of con-
sistency to be defined on a per-data basis and adapting the consistency guarantees at
run-time.

The closest approaches to what we propose in this chapter are [LLJ08], [YV00] and
[GDN+03]. [LLJ08] presents an Infrastructure for DEtection-based Adaptive consis-
tency guarantees (IDEA). Upon the detection of inconsistencies, IDEA resolves them if
the current consistency level does not satisfy certain requirements. In contrast, our ap-
proach tries to avoid inconsistencies from the beginning by using run-time information.
[YV00] proposes a set of metrics to cover the consistency spectrum (e.g., numerical er-
ror, order error) and a variety of protocols to ensure those spectrums. Those protocols
are similar to the Demarcation policy (Section 4.4.3.2). However, their work focuses
on ensuring a deviation threshold for a value from the up-to-date view. Our focus is on
ensuring a certain consistency constraint (e.g., a stock above 0). In [GDN+03] the au-
thors divide data into categories, for which they provide different replication strategies.
The proposed replication strategy for stock data is again similar to the Demarcation
policy but more conservative as it will never oversell a product and, under certain cir-
cumstances, not sell an item even if it is still on stock.

B data resembles to a certain extent IMS/FastPath and the Escrow transactional model
[GK85, O’N86]. Escrow reduces the duration of locks and allows more transactions
running in parallel by issuing predicates to a central system at the beginning of the
transaction. If the system accepts these predicates, the transaction is safe to assume
that these predicates will always hold in the future without keeping locks. In comparison
IMS/FastPath does not guarantee that the predicates will hold for the whole transaction.
Instead, the predicates are reevaluated at commit time. Both approaches guarantee
strong consistency. We extend the ideas of Escrow and Fast Path by means of prob-
abilistic guarantees and adaptive behavior. Furthermore, IMS/FastPath and Escrow
require global synchronization to bring all predicates in order, whereas our approach
avoids synchronization as long as possible.

Along the same lines, a great deal of work has been done on distributed consistency
constraints [CGMW94, GT93] and limited divergence of replicas [OLW01, SRS04]. Dis-
tributed consistency constraints either ensure strong consistency or weaken the consis-
tency in small intervals, which in turn can lead to inconsistencies. The work on limited
divergence relaxes the consistency criteria of replicas to increase performance, but at
the same time limits the divergence between the replicas (e.g, in value, or staleness).
We extend these works by means of probabilistic consistency guarantees and optimiza-
tion goals in both, performance and cost.

142 Chapter 4. Consistency Rationing

In [GLR05, LGZ04, GLRG04], the authors propose a technique to implement consis-
tency constraints for local, cached copies in SQL processing. That is, users read from
local outdated data snapshots if it is within the bounds of the consistency constraints.
All writes are redirected to the backend, requiring traditional transaction models. Our
work does not require a centralized backend and extends the ideas by the notion of
probabilistic guarantees.

The Mariposa system is a distributed data management system that supports high data
mobility [S+96]. In Mariposa, clients may hold cached copies of data items. All writes
to a data item must be performed on the primary copy. A cost model in Mariposa
determines where the primary copy is placed. This work is orthogonal to Mariposa as
we do not address data locality and concentrate on switching consistency at run-time.

The authors of [TM96] propose adaptive concurrency control based on a stochastic
model. However, their model does not consider inconsistency. Instead the implementa-
tion switches between optimistic and pessimistic control for the same level of guarantee.

H-Store [SMA+07, KKN+08] tries to completely avoid any kind of synchronization by
analyzing transactions and partitioning the data. H-Store provides strong consistency
guarantees but requires to know all the queries and transactions upfront. We do not
make such an assumption. Furthermore, it might be possible to combine the two ap-
proaches with the corresponding improvement in performance.

4.8 Conclusion

In cloud computing storage services, every service request has an associated cost. In
particular, it is possible to assign a very precise monetary cost to consistency protocols
(i.e., the number of service calls needed to ensure the consistency level times the cost
per call). Therefore, in cloud storage services, consistency not only influences the
performance and availability of the systems but also the overall operational cost. In
this chapter, we proposed a new concept called Consistency Rationing to optimize the
run-time cost of a database system in the cloud when inconsistencies incur a penalty
cost. The optimization is based on allowing the database to exhibit inconsistencies if it
helps to reduce the cost of a transaction but does not cause higher penalty costs.

In our approach, we divide (ration) the data into three consistency categories: A, B, and
C. The A category demands strong consistency guarantees and shows high cost per
transaction. The C category demands session consistency, shows low cost, but will re-
sult in inconsistencies. Data in the B category is handled with either strong or session

4.8. Conclusion 143

consistency depending on the specified policy. In this chapter, we present and com-
pare several of such policies to switch consistency guarantees including policies pro-
viding probabilistic guarantees. As shown in our experiments, Consistency Rationing
can significantly lower the overall cost and improve the performance of a cloud-based
database systems. Our experiments show further that adapting the consistency by
means of temporal statistics has the biggest potential to lower the overall cost while
maintaining acceptable performance.

Future work includes in particular extensions to the notion of probabilistic consistency
guarantees. Possible improvements include: better and faster statistical methods, au-
tomatic optimizations with regards to other parameters (e.g., energy consumption),
adding budget restrictions to the cost function, and relaxing other principles of the ACID
paradigm (e.g., durability). Further, the notion of probabilistic consistency guarantee
might also be applicable to deal with the CAP theorem, if availability instead of cost is
the main optimization factor. However, going into more detail is beyond the scope of
this thesis.

Chapter 5

Windowing for XQuery

5.1 Introduction

One of the main challenges of moving applications into the cloud is the need to master
multiple languages [Hay08] . Many applications rely on a backend running SQL or other
(simplified) languages. On the client side, JavaScript embedded within HTML is used
and the application server, standing between the backend and the client, implements
the logic using some kind of scripting language (such as PHP, Java or Python). XML
plays a fundamental role in this architecture. XML is used for communication between
the different layers. For instance, web and REST services exchange messages via
XML. Atom feeds or RSS are further examples. Meta-data is another area where XML
is used quite frequently. Examples for meta-data represented in XML are configuration
files, schemas (e.g., XML schemas, the Vista file system), design specifications (e.g.,
Eclipse’s XMI), interface descriptions (e.g., WSDL), or logs (e.g., Web logs). Further-
more, in the document world, big vendors such as Sun (OpenOffice) and Microsoft (MS
Office) have also moved towards representing their data in XML. XHTML and RSS
blogs are further examples that show the success of XML in this domain.

To overcome the variety of languages and the need to process XML in various places,
there has been an increased demand to find the right paradigms to process data with
a uniform language (see also Section 2.4. XQuery, XLinq or Ruby are examples for
that development. Arguably, XQuery is one of the most promising candidates for this
purpose [BCF+07]. XQuery has been particularly designed for XML and is already suc-
cessfully used as a programming language in several middle-tier application servers
such as XL [FGK03], MarkLogic [Mar09] or Oracle WebLogic [Ora09, BCLW06]. Fur-
thermore, XQuery is able to run on all layers of a typical web-application (i.e, database,

145

146 Chapter 5. Windowing for XQuery

application and client layer) as demonstrated in [FPF+09, CCF+06, 28m09]. Finally,
XQuery is also the choice of programming language for the Sausalito product of 28msec
Inc. [28m09], which incorporates the architecture of Chapter 3. Sausalito is an XQuery
application platform deployed on top of the infrastructure services from Amazon and
combines the application server together with the database stack similar to the EC2
client-server configuration presented in Chapter 3.

Even though XQuery 1.0 is extremely powerful (it is Turing-complete), it lacks important
functionality. In particular, XQuery 1.0 lacks support for window queries and contin-
uous queries. This omission is especially disappointing because exactly this support
is needed to process the main targets of XML: Communication data, meta-data, and
documents. Communication data is often represented as a stream of XML items. For
many applications, it is important to detect certain patterns in such a stream: A credit
card company, for instance, might be interested in detecting if a credit card is used par-
ticularly often during one week as compared to other weeks. Implementing this audit
involves a continuous window query. The analysis of a web log, as another example,
involves the identification and processing of user sessions, which again requires a win-
dow query. Document formatting needs operations such as pagination to enable users
to browse through the documents page by page; again, pagination is best implemented
using a window query.

Both window queries and continuous queries have been studied extensively in the SQL
world; proposals for SQL extensions are for instance described in [LS03, ABW06,
CCD+03, Str07]. For several reasons this work is not applicable in the XML world:
Obviously, SQL is not appropriate to process XML data. It can neither directly read
XML data, nor can SQL generate XML data if the output is required to be XML (e.g., an
RSS feed or a new paginated document). Also, the SQL extensions are not sufficiently
expressive to address all use cases mentioned above, even if all data were relational
(e.g., CSV). The SQL extensions have been specifically tuned for particular streaming
applications and support only simple window definitions based on time or window size.

In this chapter we will extend XQuery in order to support window queries and continuous
queries. The objective is to have a powerful extension that is appropriate for all use
cases, including the classic streaming applications for which the SQL extensions were
designed and the more progressive use cases of the XML world (i.e., RSS feeds and
document management). At the same time, the performance needs to compare to the
performance of continuous SQL queries: There should not be a performance penalty
for using XQuery.

Obviously, our work is based on several ideas and the experience gained in the SQL

5.1. Introduction 147

world from processing data streams. Nevertheless, there are important differences to
the SQL data stream approach. In fact, it is easier to extend XQuery because the
XQuery data model (XDM), which is based on sequences of items [FMM+06], is al-
ready a good match to represent data streams and windows. As a result, the proposed
extensions compose nicely with all existing XQuery constructs and all existing XQuery
optimization techniques remain relevant. In contrast, extending SQL for window queries
involves a more drastic extension of the relational data model and a great deal of effort
in the SQL world has been spent on defining the right mappings for these extensions.
As an example, CQL [ABW06] defines specific operators that map streams to relations.

In summary, this chapter makes the following contributions:

• Window Queries: The syntax and semantics of a new FORSEQ clause in order
to define and process complex windows using XQuery. Presently, the proposed
extension has been accepted for the upcoming XQuery 1.1 standard.

• Continuous Queries: A simple extension to the XQuery data model (XDM) in order
to process infinite data streams and use XQuery for continuous queries.

• Use Cases: A series of examples that demonstrate the expressiveness of the
proposed extensions.

• Implementation Design: Show that the extensions can be implemented and inte-
grated with little effort into existing XQuery engines and that simple optimization
techniques are applicable in order to get good performance.

• Linear Road Benchmark: The results of running the Linear Road benchmark
[ACG+04] on top of an open source XQuery engine which has been enhanced
with the proposed extensions. The benchmark results confirm that the proposed
XQuery extensions can be implemented efficiently.

The remainder of this chapter is organized as follows: Section 5.2 gives a motivating
example. Section 5.3 presents the proposed syntax and semantics of the new FORSEQ

clause used to define windows in XQuery. Section 5.4 proposes an extension to the
XQuery data model in order to define continuous XQuery expressions. Section 5.5
lists several examples that demonstrate the expressive power of the proposed exten-
sions. Section 5.6 explains how to extend an existing XQuery engine and optimize
XQuery window expressions. Section 5.7 presents the results of running the Linear
Road benchmark on an extended XQuery engine. Section 5.8 gives an overview of
related work. Section 5.9 contains conclusions and suggests avenues for future work.

148 Chapter 5. Windowing for XQuery

5.2 Usage Scenarios

5.2.1 Motivating Example

The following simple example illustrates the need for an XQuery extension. It involves
a blog with RSS items of the following form:

<rss:item>

... <rss:author>...</rss:author> ...

</rss:item>

Given such a blog, we want to find all annoying authors who have posted three con-
secutive items in the RSS feed. Using XQuery 1.0, this query can be formulated as
shown in Figure 5.1. The query involves a three-way self-join which is not only tedious
to specify but also difficult to optimize. In contrast, Figure 5.2 shows this query using the
proposed FORSEQ clause. This clause partitions the blog into sequences of postings of
the same author (i.e., windows) and iterates over these windows (Lines 1-4 of Figure
5.2). If a window contains three or more postings, then the author of this window of
postings is annoying and the query return this author (Lines 5 and 6). The syntax and
semantics of the FORSEQ clause are defined in detail in Section 5.3 and need not be
understood at this point. For the moment, it is only important to observe that this query
is straightforward to implement and can be executed in linear time or better, if the right
indexes are available. Furthermore, the definition of this query can easily be modified
if the definition of annoying author is changed from, say, three to five consecutive post-
ings. In comparison, additional self-joins must be implemented in XQuery 1.0 in order
to implement this change. 1

1In fact, the two queries of Figures 5.1 and 5.2 are not equivalent. If an author posts four consecutive
postings, this author is returned twice in the expression of Figure 5.1, whereas it is returned only once in
Figure 5.2.

for $first at $i in $rssfeed

let $second := $rssfeed[$i+1],

let $third := $rssfeed[$i+2]

where ($first/author eq $second/author) and

($first/author eq $third/author)

return $first/author

Figure 5.1: Annoying Authors: XQuery 1.0

5.2. Usage Scenarios 149

forseq $w in $rssfeed tumbling window

start curItem $first when fn:true()

end nextItem $lookAhead when

$first/author ne $lookAhead/author

where count($w) ge 3

return $w[1]/author

Figure 5.2: Annoying Authors: Extended XQuery

5.2.2 Other Applications

The management of RSS feeds is one application that drove the design of the proposed
XQuery extensions. There are several other areas; the following is a non-exhaustive
list of further application scenarios:

• Web Log Auditing: In this scenario, a window contains all the actions of a user in
a session (from login to logout). The analysis of a web log involves, for example,
the computation of the average number of clicks until a certain popular function
is found. Security audits and market-basket analyses can also be carried out on
user sessions.

• Financial Data Streams: Window queries can be used in order to carry out fraud
detection, algorithmic trading and finding opportunities for arbitrage deals by com-
puting call-put parities [FKKT06].

• Social Games / Gates: An RFID reader at a gate keeps track of the people that
enter and exit a building. People are informed if their friends are already in the
building when they themselves access it.

• Sensor Networks: Window queries are used in order to carry out data cleaning.
For instance, rather than reporting each individual measurement the average of
the last five measurements (possibly, disregarding the minimum and maximum) is
accounted for [JAF+06].

• Document Management: Different text elements (e.g., paragraphs, tables, figures)
are grouped into pages. In the index, page sequences such as 1, 2, 3, 4, 7 are
reformatted into 1-4, 7 [Kay06].

We compiled around sixty different use cases in these areas in a separate document
[FKKT06]. All these examples have in common that they cannot be implemented well
using the current Version 1.0 of XQuery without support for windows. Furthermore,

150 Chapter 5. Windowing for XQuery

many examples of [FKKT06] cannot be processed using SQL, even considering the lat-
est extensions proposed in [LS03, ABW06, CCD+03, Str07] because these examples
require powerful constructs in order to define window boundaries. Most of these use
cases involve other operators such as negation, existential and universal quantifica-
tion, aggregation, correlation, joins, and transformation in addition to window functions.
XQuery already supports all these operators which makes extending XQuery a nat-
ural candidate avoiding inventing a new language from scratch that addresses these
applications.

5.3 FORSEQ Clause

5.3.1 Basic Idea

Figure 5.2 gives an example of the FORSEQ clause. The FORSEQ clause is an extension
of the famous FLWOR expressions of XQuery. It is freely composable with other FOR,
LET, and FORSEQ clauses. Furthermore, FLWOR expressions that involve a FORSEQ

clause can have an optional WHERE and/or ORDER BY clause and must have a RETURN
clause, just as any other FLWOR expression. A complete grammar of the extended
FLWOR expression is given in Figure 5.3.

Like the FOR clause, the FORSEQ clause iterates over an input sequence and binds a
variable with every iteration. The difference is that the FORSEQ clause binds the vari-

FLWORExpr ::= (ForseqClause|ForClause|LetClause) + WhereClause?

OrderByClause? ”return” ExprSingle

ForseqClause ::= ”forseq” ”$”V arName TypeDeclaration? ”in” ExprSingle WindowType?

(”, ””$”V arName TypeDeclaration? ”in” ExprSingle WindowType?)∗
WindowType ::= (”tumbling window”|”sliding window”|”landmark window”) StartExpr EndExpr

StartExpr ::= ”start” WindowV ars? ”when” ExprSingle

EndExpr ::= ”force”? ”end” WindowV ars? ”when” (”newstart”|ExprSingle)

WindowV ars ::= (”position”|”curItem”|”prevItem”|”nextItem”) ”$”V arName TypeDeclaration?

(”,” (”position”|”curItem”|”prevItem”|”nextItem”) ”$”V arName TypeDeclaration?)∗

Figure 5.3: Grammar of Extended FLWOR Expression

5.3. FORSEQ Clause 151

able to a sub-sequence (aka window) of the input sequence in each iteration, whereas
the FOR clause binds the variable to an item of the input sequence. To which sub-
sequences the variable is bound is determined by additional clauses. The additional
TUMBLING WINDOW, START, and END clauses of Figure 5.2, for instance, specify that
$w is bound to each consecutive sub-sequence of postings by the same author. In
that example, the window boundaries are defined by the change of author in the WHEN

clause of the END clause (details of the semantics are given in the next subsection).

The running variable of the FORSEQ clause ($w in the example) can be used in any ex-
pression of the WHERE, ORDER BY, RETURN clauses or in expressions of nested FOR,
LET, and FORSEQ clauses. It is only required that those expressions must operate on
sequences (rather than individual items or atomic values) as input. In Figure 5.2, for
example, the count function is applied to $w in the WHERE clause in order to deter-
mine whether $w is bound to a series of postings of an annoying author (three or more
postings).

As shown in Figure 5.3, FLWOR expressions with a FORSEQ clause can involve an
ORDER BY clause, just like any other FLWOR expression. Such an ORDER BY clause
specifies in which order the sub-sequences (aka windows) are bound to the running
variable. By default, and in the absence of an ORDER BY clause, the windows are
bound in ascending order of the position of the last item of a window. If two (overlapping)
windows end in the same item, then their order is implementation-defined. For instance,
annoying authors in the example of Figure 5.2 are returned in the order in which they
have made annoying postings. This policy naturally extends the order in which the FOR

clause orders the bindings of its input variable in the absence of an ORDER BY clause.

The FORSEQ clause does not involve an extension or modification of the XQuery data
model (XDM) [FMM+06]. Binding variables to sequences is naturally supported by
XDM. As a result, the FORSEQ clause is fully composable with all other XQuery expres-

<d a=”start”/>

<e a=”end”/>

<c a=”end”/>

<b a=”start”/>

TumblingLet For Sliding Landmark

Figure 5.4: Window Types

152 Chapter 5. Windowing for XQuery

sions and no other language adjustments need to be made. There is no catch here.
In contrast, extending SQL with windows involves an extension to the relational data
model. As mentioned in the introduction, a great deal of effort has been invested into
defining the exact semantics of such window operations in such an extended relational
data model.

Furthermore, the XQuery type system does not need to be extended, and static typing
for the FORSEQ clause is straightforward. To give a simple example, if the static type
of the input is string*, then the static type of the running variable is string+. The “+”
quantifier is used because the running variable is never bound to the empty sequence.
To give a more complex example, if the static type of the input sequence is string*,
integer* (i.e., a sequence of strings followed by a sequence of integers), then the static
type of the running variable is: (string+,integer* | string*,integer+); i.e., a sequence of
strings, a sequence of integers, or a sequence of strings followed by integers. (Similarly,
simple rules apply to the other kinds of variables that can be bound by the FORSEQ

clause.)

5.3.2 Types of Windows

Previous work on extending SQL to support windows has identified different kinds of
windows; i.e., tumbling windows, sliding windows, and landmark windows [GO03]. Fig-
ure 5.4 shows examples of these three types of windows; for reference, Figure 5.4 also
shows how the traditional FOR and LET clauses of XQuery work. The three types of
windows differ in the way in which the windows overlap: tumbling windows do not over-
lap; sliding windows overlap, but have disjoint first items; and landmark windows can
overlap in any way. Following the experiences made with SQL, we propose to sup-
port these three kinds of windows in XQuery, too. This subsection describes how the
FORSEQ clause can be used to support these kinds of windows.

Furthermore, previous work on windows for SQL proposed alternative ways to define
the window boundaries (start and end of a window). Here, all published SQL exten-
sions [LS03, ABW06, CCD+03, Str07] propose to define windows based on size (i.e.,
number of items) or duration (time span between the arrival of the first and last item).
Our proposal for XQuery is more general and is based on using predicates in order to
define window boundaries. Size and time constraints can easily be expressed in such
a predicate-based approach (examples are given in subsequent parts of this chapter).
Furthermore, more complex conditions involving any property of an item (e.g., the au-
thor of a posting in a blog) can be expressed in our proposal. As one consequence of

5.3. FORSEQ Clause 153

having predicate-based window boundaries, the union of all windows does not neces-
sarily cover the whole input sequence; that is, it is possible that an input item is not part
of any window.

5.3.2.1 Tumbling Windows

The first kind of window supported by the FORSEQ clause is a so-called tumbling window
[PS06]. Tumbling windows partition the input sequence into disjoint sub-sequences, as
shown in Figure 5.4. An example of a query that involves a tumbling window is given
in Figure 5.2 in which each window is a consecutive sequence of blog postings of a
particular author. Tumbling windows are indicated by the TUMBLING WINDOW keyword
as part of the WindowType declaration in the FORSEQ clause (Figure 5.3).

The boundaries of a tumbling window are defined by (mandatory) START and END

clauses. These clauses involve a WHEN clause which specifies a predicate. Intuitively,
the WHEN condition of a START clause specifies when a window should start. For each
item in the sequence, this clause is checked for a match. Technically, a match exists if
the effective Boolean value (EBV) [DFF+07] of the WHEN condition evaluates to true. As
long as no item matches, no window is started and the input items are ignored. Thus,
it is possible that certain items are not part of any window. Once an item matches the
WHEN condition of the START clause, a new window is opened and the matching item
is the first item of that window. At this point, the WHEN condition of the END clause is
evaluated for each item, including the first item. Again, technically speaking, the EBV is
computed. If an item matches the END condition, it becomes the last item of the window.

Any XQuery expression can be used in a WHEN clause (Figure 5.3), including expres-
sions that involve existential quantification (on multiple sub-elements) or nested FLWOR
expressions (possibly with FORSEQ). The semantics of the START and END clauses for
tumbling windows can best be shown using the automaton depicted in Figure 5.5. The
condition of the START clause is not checked for an open window. A window is closed
either when its END condition is fulfilled or when the input sequence ends.

To give two simple examples, the FOR clause of XQuery can be simulated with a
FORSEQ clause as follows:

forseq $w in $seq tumbling window

start when fn:true()

end when fn:true() ...

That is, each item opens and immediately closes a new window (both START and END

154 Chapter 5. Windowing for XQuery

Figure 5.5: Window Automaton
conditions are set to true) so that each item represents a separate window. The LET

clause can be simulated with a FORSEQ clause as follows:

forseq $w in $seq tumbling window

start when fn:true()

end when fn:false() ...

The first item of the input sequence opens a new window (START condition is true) and
this window is closed at the end of the input sequence. In other words, the whole input
sequence is bound to the running variable as a single window.

In order to specify more complex predicates, both the START and the END clause allow
the binding of new variables. The first kind of variable identifies the position of a poten-
tial first (in the START clause) or last item (in the END clause), respectively. For instance,
the following FORSEQ clause partitions the input sequence ($seq) into windows of size
three with a potentially smaller last window:

forseq $x in $seq tumbling window

start position $i when fn:true()

end position $j when $j-$i eq 2 ...

5.3. FORSEQ Clause 155

For each window, $i is bound to the position of the first item of the window in the
input sequence; i.e., $i is 1 for the first window, 4 for the second window, and so on.
Correspondingly, $j is bound to the position of the last item of a window as soon as
that item has been identified; i.e., $j is 3 for the first window, 6 for the second window,
and so on. In this example, $j might be bound to an integer that is not a multiple of
three for the last window at the end of the input sequence.

Both $i and $j can be used in the WHEN expression of the END clause. Naturally, only
variables bound by the START clause can be used in the WHEN condition of the START

clause. Furthermore, in-scope variables (e.g., $seq in the examples above) can be
used in the conditions of the START and END clauses. The scope of the variables bound
by the START and END clauses is the whole remainder of the FLWOR expression. For
instance, $i and $j could be used in the WHERE, RETURN and ORDER BY clauses or
in any nested FOR, LET, or FORSEQ clauses in the previous example.

In addition to positional variables, variables that refer to the previous (prevItem), current
(currItem), and next item (nextItem) of the input sequence can be bound in the START

and END clause. In the expression of Figure 5.2, for instance, the END clause binds
variable $lookAhead to the item that comes after the last item of the current window
(i.e., the first item of the next window). These extensions are syntactic sugar because
these three kinds of variables can be simulated using positional variables; e.g., end
nextItem $lookAhead when $lookAhead ... is equivalent to end position

$j when $seq[$j+1] ... In both cases, an out-of-scope binding (at the end of the
input sequence) is bound to the empty sequence.

5.3.2.2 Sliding and Landmark Windows

In the SQL world, so-called sliding and landmark windows have additionally been identi-
fied as being useful and applicable to many real-world situations. In contrast to tumbling
windows, sliding and landmark windows can overlap. The difference between sliding
and landmark windows is that two sliding windows never have the first item in common,
whereas landmark windows do not have such a constraint (Figure 5.4). A more formal
definition of sliding and landmark windows is given in [PS06].

The FORSEQ clause also supports sliding and landmark windows. As shown in Figure
5.3, only the TUMBLING WINDOW keyword needs to be replaced in the syntax. Again,
(mandatory) START and END clauses specify the window boundaries. The semantics
are analogous to the semantics of the START and END clauses of a tumbling window
(Figure 5.5). The important difference is that each item potentially opens one (for slid-

156 Chapter 5. Windowing for XQuery

ing windows) or several new windows (for landmark windows) so that conceptually,
several automata need to be maintained at the same time. As the modifications to
Section 5.3.2.1 are straightforward, we do not provide further details.

5.3.3 General Sub-Sequences

In its most general form, the FORSEQ clause takes no additional clauses; i.e., no speci-
fication of the window type and no START and END clauses. In this case, the syntax is
as follows (Figure 5.3):

forseq $w in $seq ...

This general version of the FORSEQ clause iterates over all possible sub-sequences
of the input sequence. These sub-sequences are not necessarily consecutive. For
example, if the input sequence contains the items (a, b, c), then the general FORSEQ
carries out seven iterations (2n − 1, with n the size of the input sequence), thereby
binding the running variable to the following sub-sequences: (a), (a,b), (b), (a,b,c),
(a,c), (b,c), and (c). Again, the sequences are ordered by the position of their last item
(Section 5.3.1); i.e., the sequence (a) preceeds the sequences that end with a “b” which
in turn come before the sequences that end with a “c”. Again, the running variable is
never bound to the empty sequence.

This general FORSEQ clause is the most powerful variant. Landmark, sliding, and tum-
bling windows can be seen as special cases of this general FORSEQ. We propose to use
special syntax for these three kinds of windows because use cases that need the three
types of windows are frequent in practice [FKKT06]. Furthermore, the general FORSEQ
clause is difficult to optimize. Use cases for which landmark, sliding, and tumbling win-
dows are not sufficient, are given in [WDR06] for RFID data management. In those
use cases, regular expressions are needed in order to find patterns in the input stream.
Such queries can be implemented using the general FORSEQ clause by specifying the
relevant patterns (i.e., regular expressions) in the WHERE clause of the general FORSEQ
expression.

5.3. FORSEQ Clause 157

5.3.4 Syntactic Sugar

There are use cases which benefit from additional syntactic sugar. The following para-
graphs present such syntactic sugar.

5.3.4.1 End of Sequence

As mentioned in Section 5.3.2.1, by default the condition of the END clause is always
met at the end of a sequence. That is, the last window will be considered even if its last
item does not match the END condition. In order to specify that the last window should
only be considered if its last item indeed matches the END condition, the END clause
can be annotated with the special keyword FORCE (Figure 5.3). The FORCE keyword is
syntactic sugar because the last window could also be filtered out by repeating the END
condition in the WHERE clause.

5.3.4.2 NEWSTART

There are several use cases in which the START condition should implicitly define the
end of a window. For example, the day of a person starts every morning when the
person’s alarm clock rings. Implicitly, this event ends the previous day, even though it is
not possible to concretely identify a condition that ends the day. In order to implement
such use cases, the WHEN condition of the END clause can be defined as NEWSTART. As
a result, the START condition (rather than the END condition) is checked for each open
window in order to determine when a window should be closed. Again, the NEWSTART

option is syntactic sugar and avoids that the condition of the START clause is replicated
in the END clause.

5.3.5 Summary

Figure 5.3 gives the complete grammar for the proposed extension of XQuery’s FLWOR
expression with an additional FORSEQ clause. Since there are many corner cases, the
grammar looks complicated at a first glance. However, the basic idea of the FORSEQ

clause is simple. FORSEQ iterates over an input sequence, thereby binding a sub-
sequence of the input sequence to its running variable in each iteration. Additional
clauses specify the kind of window. Furthermore, predicates in the START and END

158 Chapter 5. Windowing for XQuery

clauses specify the window boundaries. This mechanism is powerful and sufficient for
a broad spectrum of use cases [FKKT06]. We are not aware of any use case that has
been addressed in the literature on window queries that cannot be implemented in this
way.

Obviously, there are many ways to extend XQuery in order to support window queries.
In addition to its expressive power and generality, the proposed FORSEQ clause has two
more advantages. First, it composes well with other FOR, LET, and FORSEQ clauses
as part of a FLWOR expression. Any kind of XQuery expression can be used in the
conditions of the START and END clauses, including nested FORSEQ clauses. Second,
the FORSEQ clause requires no extension of the XQuery data model (XDM). As a result,
the existing semantics of XQuery functions need not be modified. Furthermore, this
feature enables full composability and optimizability of expressions with FORSEQ.

5.4 Continuous XQuery

The second extension proposed in this chapter makes XQuery a candidate language
to specify continuous queries on potentially infinite data streams. In fact, this extension
is orthogonal to the first extension, the FORSEQ clause: Both extensions are useful
independently, although we believe that they will often be used together in practice.

The proposal is to extend the XQuery data model (XDM) [FMM+06] to support infinite
sequences as legal instances of XDM. As a result, XQuery expressions can take an infi-
nite sequence as input. Likewise, XQuery expressions can produce infinite sequences
as output. A simple example illustrates this extension. Every minute, the tempera-
ture sensor in an ice-cream warehouse produces measurements of the following form:
<temp>-8</temp>. Whenever a temperature of ten degrees or higher is measured,
an alarm should be raised. If the stream of temperature measurements is bound to
variable $s, this alarm can be implemented using the following (continuous) XQuery
expression:

declare variable $s as (temp)** external;

for $m in $s where $m ge 10

return <alarm> { $m } </alarm>

In this example, variable $s is declared to be an external variable that contains a poten-
tially infinite sequence of temperature measurements (indicated by the two asterisks).
Since $s is bound to a (potentially) infinite sequence, this expression is illegal in XQuery

5.4. Continuous XQuery 159

1.0 because the input is not a legal instance of the XQuery 1.0 data model. Intuitively,
however, it should be clear what this continuous query does: whenever a temperature
above 10 is encountered, an alarm is raised. The input sequence of the query is infinite
and so is the output sequence.

Extending the data model of a query language is a critical step because it involves refin-
ing the semantics of all constructs of the query language for the new kind of input data.
Fortunately, this particular extension of XDM for infinite sequences is straightforward to
implement in XQuery. The idea is to extend the semantics of non-blocking functions
(e.g., for, forseq, let, distinct-values, all path expressions) for infinite input sequences
and to specify that these non-blocking functions (potentially) produce infinite output.
Other non-blocking functions such as retrieving the ith element (for some integer i) are
also defined on infinite input sequences, but generate finite output sequences. Blocking
functions (e.g., order by, last, count, some) are not defined on infinite sequences; if they
are invoked on (potentially) infinite sequences, then an error is raised. Such violations
can always be detected statically (i.e., at compile-time). For instance, the following
XQuery expression would not compile because the fn:max() function is a blocking
function that cannot be applied to an infinite sequence:

declare variable $s as (temp)** external;

fn:max($s)

Extending the XDM does not involve an extension of the XQuery type system. (temp)**
is the same type as (temp)*. The two asterisks are just an annotation to indicate that the
input is potentially infinite. These annotations (and corresponding annotations of func-
tions in the XQuery function library) are used in the data flow analysis of the compiler
in order to statically detect the application of a blocking function on an infinite sequence
(Section 5.6).

A frequent example in which the FORSEQ clause and this extension for continuous que-
ries are combined, is the computation of moving averages. Moving averages are for
instance useful in sensor networks as described in Section 5.2.2: Rather than reporting
the current measurement, an average of the current and the last four measurements is
reported for every new measurement. Moving averages can be expressed as follows:

declare variable $seq as (xs:int)** external;

forseq $w in $seq sliding window

start position $s when fn:true()

end position $e when $e - $s eq 4

return fn:avg($w)

160 Chapter 5. Windowing for XQuery

5.5 Examples

This section contains four examples which demonstrate the expressive power of the
FORSEQ clause and continuous XQuery processing. These examples are inspired by
applications on web log auditing, financial data management, building / gate control,
and sensor networks (Section 5.2.2). A more comprehensive set of examples from
these application areas and from real customer use cases can be found in [FKKT06].

5.5.1 Web Log Analysis

The first example involves the analysis of a log of a (web-based) application. The log
is a sequence of entries. Among others, each entry contains a timestamp (tstamp
element) and the operation (op) carried out by the user. In order to determine the user
activity (number of login operations per hour), the following query can be used:

declare variable $weblog as (entry)* external;

forseq $w in $weblog tumbling window

start curItem $s when fn:true()

end nextItem $e when

$e/tstamp - $s/tstamp gt ’PT1H’

return fn:count($w[op eq "login"])

This query involves a time-based tumbling window. The XQuery 1.0 recommendation
supports the subtraction of timestamps, and ’PT1H’ is the ISO (and XQuery 1.0) way to
represent a time duration of one hour. This query also works on an infinite web log for
online monitoring of the log because the FORSEQ clause is non-blocking.

5.5.2 Stock Ticker

The second example shows how FORSEQ can be used in order to monitor an (infinite)
stock ticker. For this example, it is assumed that the input is an infinite sequence of
(stock) ticks; each stock tick contains the symbol of the stock (e.g., “YHOO”), the price
of that stock, and a timestamp. The stock ticks are ordered by time. The query detects
whenever a stock has gained more than ten percent in one hour.

declare variable $ticker as (tick)** external;

5.5. Examples 161

forseq $w in $ticker sliding window

start curItem $f when fn:true()

end curItem $l when $l/price ge $f/price * 1.1

and $l/symbol eq $f/symbol

where $f/tstamp - $l/tstamp le ’PT1H’

return $l

This query uses sliding windows in order to detect all possible sequences of ticks in
which the price of the last tick is at least ten percent higher than the price of the first
tick, for the same stock symbol. The WHERE clause checks whether this increase in
price was within one hour.

5.5.3 Time-Outs

A requirement in some monitoring applications concerns the definition of time-outs. For
example, a doctor should be notified if the blood pressure of a patient does not drop
significantly ten minutes after a certain medication has been given. As another exam-
ple, a supervisor should react when a firefighter enters a burning building and stays
longer than one hour. In order to implement the firefighter example, two data streams
are needed. The first stream records events of the following form: <event person

= ‘‘name’’ direction=’’in/out’’ tstamp=’’timestamp’’/>. The second
stream is a heartbeat of the form: <tick tstamp=’’timestamp’’/>. This heart-
beat could be generated by a system-defined function of the XQuery engine.

declare variable $evts as (event)** external;

declare variable $heartb as (tick)** external;

forseq $w in fn:union($evts, $heartb) sliding window

start $curItem $in when $in/direction eq ‘‘in’’

end $curItem $last

when $last/tstamp - $in/tstamp ge ’PT1H’

or ($last/direction = ‘‘out’’ and

$last/person = $in/person)

where $last/direction neq ‘‘out’’

return <alarm> { $in } </alarm>

In this query, a new window is started whenever a firefighter enters the building. A win-
dow is closed either when the firefighter exits the building or when an hour has passed.

162 Chapter 5. Windowing for XQuery

An alarm is raised only in the latter case. This example assumes that the fn:union()
function is implemented in a non-blocking way and consumes input continuously from
all of its inputs.

5.5.4 Sensor State Aggregation

A frequent query pattern in sensor networks involves computing the current state of all
sensors at every given point in time. If the input stream contains temperature measure-
ments of the following form:

<temp id=’’1’’>10</temp>

<temp id=’’2’’>15</temp>

<temp id=’’1’’>15</temp>

then the output stream should contain a summary of the last measurement of each
temperature sensor. That is, the output stream should look like this:

<values> <temp id=’’1’’>10</temp> </values>

<values> <temp id=’’1’’>10</temp>

<temp id=’’2’’>15</temp> </values>

<values> <temp id=’’1’’>15</temp>

<temp id=’’2’’>15</temp> </values>

This output stream can be generated using the following continuous query:

declare variable $sensors as (temp)** external;

forseq $w in $sensors landmark window

start position $s when $s eq 1

end when fn:true()

return <values> {

for $id in fn:distinct-values($w/@id)

return

$w[@id eq $id][last()]

} </values>

Technically, within each window, the measurements are grouped by id of the sensor
and the last measurement of each group is returned.

5.6. Implementation 163

5.6 Implementation

This section describes how we extend the MXQuery engine2, an existing Java-based
open-source XQuery engine, in order to implement the FORSEQ clause and continuous
XQuery processing. We use the extended MXQuery engine in order to validate all the
use cases of [FKKT06] and run the Linear Road benchmark (Section 5.7).

5.6.1 MXQuery

The MXQuery engine was developed as part of a collaboration between Siemens and
ETH Zurich. The main purpose of the MXQuery engine is to provide an XQuery imple-
mentation for small and embedded devices; in particular, in mobile phones and small
gateway computers. Within Siemens, for instance, the MXQuery engine has been used
as part of the Siemens Smart Home project in order to control lamps, blinds, and other
devices according to personal preferences and weather information via web services.
Recently, MXQuery has also been used as a reference implementation for the XQuery
Update language and XQueryP the XQuery scripting extensions.

Since MXQuery has been designed for embedded systems, it has a simple and flexi-
ble design. The parser is a straightforward XQuery parser and creates an expression
tree. In a functional programming language like XQuery, the expression tree plays the
same role as the relational algebra expression (or operator tree) in SQL. The expres-
sion tree is normalized using the rules of the XQuery formal semantics [DFF+07]. After
that, the expression tree is optimized using heuristics. (MXQuery does not include a
cost-based query optimizer.) For optimization, MXQuery only implements a dozen of
essential query rewrite rules such as the elimination of redundant sorts and duplicate
elimination. The final step of compilation is code generation during which each ex-
pression of the expression tree is translated into an iterator that can be interpreted at
run-time. As in SQL, iterators have an open(), next(), close() interface [Gra93]; that is,
each iterator processes its input an item at a time and only processes as much of its
input as necessary. The iterator tree is often also called plan, thereby adopting the SQL
query processing terminology. Figure 5.6 gives a sample plan for the FOR query that
raises an alarm when the temperature raises above ten degrees (first query of Section
5.4).

2The MXQuery engine can be downloaded via Sourceforge. MXQuery is short for MicroXQuery.

164 Chapter 5. Windowing for XQuery

Figure 5.6: Example Plan (First Query of Section 5.4)

Like Saxon [Kay09], BEA’s XQuery engine [FHK+04], and FluXQuery [KSSS04], MX-
Query has been designed as a streaming XQuery engine. As shown in Figure 5.7,
MXQuery can take input data from multiple sources; e.g., databases, the file system, or
streaming data sources such as RSS streams or message queues. In order to take in-
put from different sources, the data sources must implement the iterator API. That way,
data from data sources can be processed as part of a query plan at run-time. MXQuery
already has predefined iterator implementations in order to integrate SAX, DOM, StaX,
and plain XML from the file system. Furthermore, MXQuery has predefined iterator
implementations for CSV and relational databases. In order to access the data as part
of an XQuery expression, an external XQuery variable is declared for each data source
as shown in the examples of Section 5.5. A special Java API is used in order to bind
the iterator that feeds the data from the data source to the external variable.

As shown in Figure 5.7, MXQuery also has an internal, built-in store in order to ma-
terialize intermediate results (e.g., for sorting of windows). In the current release of
MXQuery, this store is fully implemented in main memory.

Figure 5.7: MXQuery Architecture

Although MXQuery has been particularly designed for embedded systems, its architec-
ture is representative. The following subsections describe how we extend the MXQuery
engine in order to implement the FORSEQ clause and work on infinite data streams. We
believe that the proposed extensions are applicable to a wide range of XQuery engines.

5.6. Implementation 165

5.6.2 Plan of Attack

In order to implement the FORSEQ clause, the following adaptations are made to the
MXQuery engine:

• The parser is extended according to the production rules of Figure 5.3. This
extension is straightforward and needs no further explanation.

• The optimizer is extended using heuristics to rewrite FORSEQ expressions. These
heuristics are described in Section 5.6.4.

• The run-time system is extended with four new iterators that implement the three
different kinds of windows and the general FORSEQ. Furthermore, the MXQuery
internal main-memory store (Figure 5.7) is extended in order to implement win-
dows. These extensions are described in Section 5.6.3.

To support continuous queries and infinite streams, the following extensions are made:

• The parser is extended in order to deal with the new ** annotation, which declares
infinite sequences.

• The data flow analyses of the compiler are extended in order to identify errors
such as the application of a blocking operator (e.g., count) to a potentially infinite
stream.

• The run-time system is extended in order to synchronize access to data streams
and merge/split streams.

The first two extensions (parser and type system) are straightforward and can be im-
plemented using standard techniques of compiler construction [ASU86] and database
query optimization [PHH92]. The third extension is significantly more complex, but not
specific to XQuery. For our prototype implementation, we follow the approach taken in
the Aurora project [ACC+03] as far as possible. Describing the details is beyond the
scope of this thesis; the interested reader is referred to the literature on data stream
management systems. Some features, such as persistent queues, recoverability, and
security have not been implemented in MXQuery yet.

166 Chapter 5. Windowing for XQuery

5.6.3 Run-Time System

5.6.3.1 Window Iterators

The implementation of the FORSEQ iterators for tumbling, sliding, and landmark win-
dows is similar to the implementation of a FOR iterator: All these iterators implement
second-order functions which bind variables and then execute a function on those vari-
able bindings. All XQuery engines have some sort of mechanics to implement such
second-order functions and these mechanics can be leveraged for the implementation
of the FORSEQ iterators. The MXQuery engine has similar mechanics as those de-
scribed in [FHK+04] to implement second-order functions: In each iteration, a FORSEQ

iterator binds a variable to a sequence (i.e., window) and then it executes a function
on this variable binding. The function to execute is implemented as an iterator tree
as shown in Figure 5.6 for a FOR iterator. This iterator tree encodes FOR, LET, and
FORSEQ clauses (if any) as well as WHERE (using an IfThenElse iterator) ORDER
BY and RETURN clauses. In general, the implementation of second-order functions in
XQuery is comparable to the implementation of nested queries in SQL.

The only difference between a FOR iterator and a FORSEQ iterator is the logic that com-
putes the variable bindings. Obviously, the FOR iterator is extremely simple in this re-
spect because it binds its running variable to every item of an input sequence individ-
ually. The FORSEQ iterator for tumbling windows is fairly simple, too. It scans its input
sequence from the beginning to the end (or infinitely for a continuous query), thereby
detecting windows as shown in Figure 5.5. Specifically, the effective Boolean value of
the conditions of the START or END clauses are computed for every new item in order
to implement the state transitions of the automaton of Figure 5.5. These conditions are
also implemented by iterator trees. The automata for sliding and landmark windows
are more complicated, but the basic mechanism is the same and straightforward to
implement.

5.6.3.2 Window Management

The most interesting aspects of the implementation of the FORSEQ iterators are the
main memory management and garbage collection. The items of the input sequence
are materialized in main memory. Figure 5.8 shows a (potentially infinite) input stream.
Items of the input stream that have been read and materialized in main memory are
represented as squares; items of the input stream which have not been read yet are

5.6. Implementation 167

represented as ovals. The materialization of items from the input stream is carried out
lazily, using the iterator model. Items are processed as they come in, thereby identifying
new windows, closing existing windows, and processing the windows (i.e., evaluating
the WHERE and RETURN clauses). This way, infinite streams can be processed. Full
materialization is only needed if the query involves blocking operations such as ORDER
BY, but such queries are illegal on infinite streams (Section 5.4).

According to the semantics of the different types of windows, an item can be marked in
the stream buffer as active or consumed. An active item is an item that is involved in at
least one open window. Correspondigly, consumed items are items that are not part of
any active window. An item is immediately marked as consumed if no window is open
and it does not match the START condition of the FORSEQ clause (Figure 5.5). Other-
wise, an item is marked as consumed if all windows that involve this item have been
fully processed; this condition can be checked easily by keeping a position pointer that
keeps track of the minimum first postion of all open windows. In Figure 5.8, consumed
items are indicated as white squares; active items are indicated as colored squares.
In Figure 5.8, Window 1 is closed whereas Window 2 is still open; as a result only the
items of Window 2 are marked as active in the stream buffer. (The postion pointer is
not shown in Figure 5.8; it marks the start of Window 2.)

Consumed items can be garbage collected. To efficiently implement memory allocation
and garbage collection in Java, the stream buffer is organized as a linked list of chunks.
(For readibility, chunking and chaining are not shown in Figure 5.8.) That is, memory is
allocated and de-allocated in chunks which can store several items. If all the items of a
chunk are marked consumed, the chunk is released by de-chaining it from the linked list
of chunks. Furthermore, all references to closed windows are removed. At this point,
there are no live references left that refer to this chunk, and the space is reclaimed by
the Java garbage collector.

…

Window 1

Window 2

Consumed, available for GC Active Not Read

Start

Start End

End
(not bound yet)

Figure 5.8: Stream Buffer

168 Chapter 5. Windowing for XQuery

Windows are represented by a pair of pointers that refer to the first and last item of
the window in the stream buffer. Open windows only have a pointer to the first item;
the last pointer is set to NULL (i.e., unknown). Obviously, there are no open windows
that refer to chunks in which all the items have been marked as consumed. As a result
of this organization, items need to be materialized only once, even though they can
be involved in many windows. Furthermore, other expressions that potentially require
materialization can re-use the stream buffer, thereby avoiding copying the data.

5.6.3.3 General FORSEQ

The implementation of the general FORSEQ varies significantly from that of the three
kinds of windows. In particular, representing a sub-sequence by its first and last item is
not sufficient because the general FORSEQ involves the processing of non-contiguous
sub-sequences. To enumerate all sub-sequences, our implementation uses the al-
gorithm of Vance/Maier [VM96], including the bitmap representation to encode sub-
sequences. This algorithm produces the sub-sequences in the right order so that no
sorting of the windows is needed in the absence of an ORDER BY clause. Furthermore,
this algorithm is applicable to infinite input streams. Additional optimizations are needed
in order to avoid memory overflow for a general FORSEQ on infinite streams; e.g., the
hopeless window detection, described in the next section.

5.6.4 Optimizations

This section lists several simple, but useful optimizations for our implementation. In par-
ticular, these optimizations are important in order to meet the requirements of the Linear
Road benchmark (Section 5.7). Each of these optimizations serves one or a combina-
tion of the following three purposes: a.) reducing the memory footprint (e.g., avoid
materialization); b.) reducing the CPU utilization (e.g., indexing); c.) improving stream-
ing (e.g., producing results early). Although we are not aware of any streaming SQL
engine which implements all these optimizations, we believe that most optimizations
are also applicable for streaming SQL. A condition for most optimizations is the use of
a predicate-based approach to define window boundaries. So far, no such streaming
SQL proposals have been published.

The proposed list of optimizations is not exhaustive and providing a comprehensive
study of the effectiveness of alternative optimization techniques is beyond the scope of
this thesis. The list is only supposed to give an impression of the kinds of optimizations

5.6. Implementation 169

that are possible. All these optimizations are applied in addition to the regular XQuery
optimizations on standard XQuery expressions (e.g., [CAO06]). For example, rewriting
reverse axes can be applied for FORSEQ queries and is then just as useful as it is for
any other query.

5.6.4.1 Predicate Move-Around

The first optimization is applied at compile-time and moves a predicate from the WHERE

clause into the START and/or END clauses of a FORSEQ query. The following example
illustrates this optimization:

forseq $w in $seq landmark window

start when fn:true()

end when fn:true()

where $w[1] eq ‘‘S’’ and $w[last] eq ‘‘E’’ return $w

This query can be rewritten as the following equivalent query, which computes sig-
nificantly fewer windows and can therefore be executed much faster and with lower
memory footprint:

forseq $w in $seq landmark window

start curItem $s when $s eq ‘‘S’’

force end curItem $e when $e eq ‘‘E’’

return $w

5.6.4.2 Cheaper Windows

In some situations, it is possible to rewrite a landmark window query as a sliding window
query or a sliding window query as a tumbling window query. This rewrite is useful
because tumbling windows are cheaper to compute than sliding windows, and sliding
windows are cheaper than landmark windows. This rewrite is frequently applicable if
schema information is available. If it is known (given the schema), for instance, that
the input sequence has the following structure “a, b, c, a, b, c, ...”, then the following
expression

170 Chapter 5. Windowing for XQuery

forseq $w in $seq sliding window

start curItem $s when $s eq ‘‘a’’

end curItem $e when $e eq ‘‘c’’

return $w

can be rewritten as the following equivalent expression:

forseq $w in $seq tumbling window

start curItem $s when $s eq ‘‘a’’

end curItem $e when $e eq ‘‘c’’

return $w

5.6.4.3 Indexing Windows

Using sliding and landmark windows, it is possible that several thousand windows are
open at the same time. In the Linear Road benchmark, for example, this situation is the
norm. As a result, with every new item (e.g., car position reading) the END condition
must be checked several thousand times (for each window separately). Obviously,
implementing such a check naı̈vely is a disaster. Therefore, it is advisable to use an
index on the predicate of the END clause. Again, this indexing is illustrated with the help
of an example:

forseq $w in $seq landmark window

start curItem $s when fn:true()

end curItem $e when $s/@id eq $e/@id

return $w

In this example, windows consist of all sequences in which the first and last items have
the same id. (This query pattern is frequent in the Linear Road benchmark which tracks
cars identified by their id on a highway.) The indexing idea is straightforward. An “@id”
index (e.g., a hash table) is built on all windows. When a new item (e.g., a car position
measurement with the id of a car) is processed, then that index is probed in order to
find all matching windows that must be closed. In other words, the set of open windows
can be indexed just like any other collection.

5.6. Implementation 171

5.6.4.4 Improved Pipelining

In some situations, it is not necessary to store items in the stream buffer (Figure 5.8).
Instead, the items can directly be processed by the WHERE clause, RETURN clause,
and/or nested FOR, LET, and FORSEQ clauses. That is, results can be produced even
though a window has not been closed yet. This optimization can always be applied
if there is no ORDER BY and no FORCE in the END clause. It is straightforward to im-
plement for tumbling windows. For sliding and landmark windows additional attention
is required in order to coordinate the concurrent processing of several windows. The
query of Section 5.5.1 is a good example for the usefulness of this optimization.

5.6.4.5 Hopeless Windows

Sometimes, it is possible to detect at run-time that the END clause or the predicate of the
WHERE clause of an open window cannot be fulfilled. We call such windows hopeless
windows. Such windows can be closed immediately, thereby saving CPU cost and main
memory. The query of Section 5.5.2 is a good example for which this optimization is
applicable: After an hour, an open window can be closed due to the WHERE condition
even though the END condition of the window has not yet been met.

5.6.4.6 Aggressive Garbage Collection

In some cases, only one or a few items of a window are needed in order to process the
window (e.g., the first or the last item). Such cases can be detected at compile-time
by analyzing the nested expressions of the FLWOR expression (e.g., the predicates
of the WHERE clause). In such situations, items in the stream buffer can be marked as
consumed even though they are part of an open window, resulting in a more aggressive
chunk-based garbage collection. A good example for this optimization is the query of
Section 5.5.3.

172 Chapter 5. Windowing for XQuery

5.7 Experiments and Results

5.7.1 Linear Road Benchmark

To validate our implementation of FORSEQ and continuous XQuery processing, we im-
plement the Linear Road benchmark [ACG+04] using the extended MXQuery engine.
The Linear Road benchmark is the only existing benchmark for data stream manage-
ment systems (DSMS). This benchmark is challenging. As of 2009, the results of only
three compliant implementations have been published: Aurora [ACG+04], an (unknown)
relational database system [ACG+04], and IBM Stream Core [J+06]. The Aurora and
IBM Stream Core implementations are low-level, based on a native (C) implementation
of operators or processing elements, respectively. The implementation of the bench-
mark on an RDBMS uses standard SQL and stored procedures, but no details of the
implementation have been published. There is also an implementation of the bench-
mark using CQL [ABW06]; however, no results of running the benchmark with that im-
plementation have been published. To the best of our knowledge, our implementation
is the first compliant XQuery implementation of the benchmark.

The benchmark exercises various aspects of a DSMS, requiring window-based aggre-
gations, stream correlations and joins, efficient storage and access to intermediate re-
sults and querying a large (millions of records) database of historical data. Furthermore,
the benchmark poses real-time requirements: all events must be processed within five
seconds.

The benchmark describes a traffic management scenario in which the toll for a road sys-
tem is computed based on the utilization of those roads and the presence of accidents.
Both toll and accident information are reported to cars; an accident is only reported to
cars which are potentially affected by the accident. Furthermore, the benchmark in-
volves a stream of historic queries on account balances and total expenditures per day.
As a result, the benchmark specifies four output streams: Toll notification, accident no-
tification, account balances, and daily expenditures. (The benchmark also specifies a
fifth output stream as part of a travel time planning query. No published implementation
has included this query, however. Neither have we.)

The benchmark specification contains a data generation program which produces a
stream of events composed of car positions and queries. The data format is CSV which
is natively supported by MXQuery. Three hours worth of data are generated. An imple-
mentation of the benchmark is compliant if it produces the correct results and fulfills the
five seconds real-time requirement. The correctness of the results are validated using

5.7. Experiments and Results 173

a validation tool so that load shedding or other load reduction techniques are not al-
lowed.3 Fulfilling the real-time requirements becomes more and more challenging over
time: With a scale factor of 1.0, the data generator produces 1,200 events per minute
at the beginning and 100,000 events per minute at the end.

The benchmark specifies different scale factors L, corresponding to the number of ex-
pressways in the road network. The smallest L is 0.5. The load increases linearly with
the scale factor.

5.7.2 Benchmark Implementation

As mentioned in the previous section, our benchmark implementation is fully in XQuery,
extended with FORSEQ and continuous queries. In a first attempt, we have implemented
the whole benchmark in a single XQuery expression; indeed, this is possible! How-
ever, MXQuery was not able to optimize this huge expression in order to achieve ac-
ceptable (i.e., compliant) performance. As a consequence, we now (manually) parti-
tion the implementation into eight continuous XQuery expressions and five (temporary)
stores; i.e., a total of 13 boxes. Figure 5.9 shows the corresponding workflow: The
input stream, produced by the Linear Road data generator, is fed into three continuous
XQuery expressions which in turn generate streams which are fed into other XQuery
expressions and intermediate stores. Binding an input stream to an XQuery expression
is done by external variable declarations as specified in the XQuery recommendation
[BCF+07] and demonstrated in the examples in Section 5.5. This approach is in line
with the approaches taken in [ACG+04, J+06], the only other published and compliant
benchmark implementations. Aurora, however, uses 60 boxes (!).

Seven threads are used in order to run the continuous XQuery expressions and move
data into and out of data stores. Tightly coupled XQuery expressions (with a direct
link in Figure 5.9) run in the same thread. The data stores are all main-memory based
(not persistent and not recoverable) using a synchronized version of the stream buffer
described in Section 5.6.

3In our experiments, we encounter the same bugs with the validation tool and data generator as
reported in [J+06]. Otherwise, all our results validated correctly.

174 Chapter 5. Windowing for XQuery

Car
positions

Car positions
to Respond

Accident
Segments

Accident
Events

Segment
Statistics for
every minute

Toll
Events

Result
Output

Result
Output

Balance

Accidents

Segment
Tolls

I
N
P
U
T

Balance
Query

Result
Output

Historical
Tolls

Daily
Expenditure

Query

Result
Output

Historical Queries Part

Continuous Queries Part

Toll
Calculation

Car
Position

Figure 5.9: Data Flow of LR Implementation

5.7.3 Results

The implementation of the benchmark is evaluated on a Linux machine with a 2.2 GHz
AMD Opteron processor and 4GB of main memory. Our hardware is comparable to the
machines used in [ACG+04] and [J+06]. A Sun JVM in Version 1.5.0 09 is used, the
maximum heap size is set to 2 GB which corresponds to the available RAM used in the
experiments reported in [ACG+04],[J+06]. The results can be summarized as follows
for the different scale factors L:

• L=0.5 - 2.5: MXQuery is fully compliant.
• L=3.0: MXQuery is not compliant. The response time exceeds the five seconds.

The best published results so far are compliant with an L of 2.5 [ACG+04, J+06]. These
implementations are low-level C implementations that do not use a declarative language
(such as SQL or XQuery). An L of 2.5 is still out of reach for our implementation. How-
ever, the differences are surprisingly small (less than a factor of 2) given that our focus
has been to extend a general-purpose XQuery engine whereas those implementations

5.8. Related Work 175

directly target the Linear Road benchmark. Also, MXQuery is written in Java which
comes with a performance penalty.

The only compliant SQL implementation of the benchmark [ACG+04] is at an L of 0.5
(contrasting an L of 1.5 of our XQuery implementation). The maximum response times
of the SQL implementation at L 1.0 and 1.5 are several orders of magnitude worse than
the benchmark allows (2031 and 16346 seconds, respectively). Details of that SQL
implementation of the benchmark are not given; however, it seems that the overhead
of materializing all incoming events in a relational database is prohibitive. As part of
the STREAM project, a series of CQL queries are published in order to implement the
benchmark. However, no performance numbers have ever been published using the
CQL implementation (as of September 2008). In summary, there does not seem to
be a SQL implementation of the benchmark that beats our XQuery implementation.
Fundamentally, there is no reason why either SQL or XQuery implementations would
perform better on this benchmark because essentially the same optimizations are ap-
plicable to both languages. Due to the impedance mismatch between streams and
relations, however, it might be more difficult to optimize streaming SQL because certain
optimizations must be implemented twice (once for operators on streams and once for
operators on tables).

5.8 Related Work

As mentioned in the introduction, window queries and data-stream management have
been studied extensively in the past; a survey is given in [GO03]. Furthermore, there
have been numerous proposals to extend SQL; the most prominent examples are
AQuery [LS03], CQL [ABW06], and StreaQuel [CCD+03]. StreamSQL [Str07] is a re-
cent activity (started in November 2006) that tries to standardize streaming extensions
for SQL. As part of all this work, different kinds of windows have been proposed. In
our design, we have take care that all queries that can be expressed in these SQL ex-
tensions can also be expressed in a straightforward way using the proposed XQuery
extensions. In addition, if desired, special kinds of streams such as the i-streams and
d-streams devised in [ABW06] can be implemented using the proposed XQuery ex-
tensions. Furthermore, we have adopted several important concepts of those SQL
extensions such as the window types. Nevertheless, the work on extending SQL to sup-
port windows is not directly applicable to XQuery because XQuery has a different data
model and supports different usage scenarios. Our use cases, for instance, involve cer-
tain patterns, e.g., the definition of window boundaries using general constraints (e.g.,

176 Chapter 5. Windowing for XQuery

on authors of RSS postings) that cannot be expressed in any of the existing SQL ex-
tensions. All SQL extensions published so far only enable specifying windows based
on size or time constraints; those SQL extensions are thus not expressive enough to
handle our use cases, even if the data is relational. Apparently, StreamSQL will adopt
the predicate-based approach, but nothing has been published so far. (The StreamSQL
documentation in [Str07] still uses size and time constraints only.)

Recently, there have also been proposals for new query languages in order to process
specific kinds of queries on data streams. One example is SASE [WDR06] which has
been proposed to detect patterns in RFID streams; these patterns can be expressed
using regular expressions. Another proposal is WaveScript [GMN+07], a functional
programming language in order to process signals in a highly scalable way. While such
languages and systems are useful for particular applications, the goal of this work is to
provide general-purpose extensions to an existing main-stream programming language.
Again, we have made sure in our design that all the SASE and WaveScript use cases
can be expressed using the proposed XQuery extensions; however, our implementation
does not scale as well for those particular use cases as the SASE and Wavescope
implementations.

There have been several prototype implementations of stream data management sys-
tems; e.g., Aurora [ACC+03], Borealis [AAB+05], Cayuga [DGH+06], STREAM [ABW06],
and Telegraph [CCD+03]. All that work is orthogonal to the main contribution of this
chapter. In fact, our implementation of the linear road benchmark makes extensive use
of the techniques proposed in those projects.

The closest related work is the work on positional grouping in XQuery described in
[Kay06]. This work proposes extensions to XQuery in order to layout XML documents,
one of the usage scenarios that also drove our design. The work in [Kay06] is inspired
by functionality provided by XSLT in order to carry out certain XML transformations.
However, many of our use cases on data streams cannot be expressed using the pro-
posed extensions in [Kay06]; our proposal is strictly more expressive. Furthermore, the
work of [Kay06] does not discuss any implementation issues. Another piece of related
XML work discusses the semantics of infinite XML (and other) streams [MLT+05]. That
work is orthogonal to our work.

5.9. Summary 177

5.9 Summary

This chapter presented two extensions for XQuery: Windows and continuous queries.
Due to their importance, similar extensions have been proposed recently for SQL, and
several ideas of those SQL extensions (in particular, the types of windows) have been
adopted in our design. Since SQL has been designed for different usage scenarios, it
is important that both SQL and XQuery are extended with this functionality: Window
queries are important for SQL; but they are even more important for XQuery! We have
implemented the proposed extensions in an open source XQuery engine and ran the
Linear Road benchmark. The benchmark results seem to indicate that XQuery stream
processing can be implemented as efficiently as SQL stream processing and that there
is no performance penalty for using XQuery.

Presently, the Windowing extension has been accepted for the upcoming XQuery 1.1
standard [CR08] with some syntactical changes. The semantics however remain the
same except for the landmark window and the general sub-sequences described in
Section 5.3.3. The concept of the landmark window and the general sub-sequences
have been excluded from the recommendation for simplicity. However, the working
group might include both in future revisions of XQuery if users demand for it. The
syntax as adopted by the W3C XQuery working group can be found in Appendix A.2

Chapter 6

Conclusion

Cloud computing has become one of the fastest growing fields in computer science. It
promises virtually infinite scalability and 100% availability at low cost. To achieve high
availability at low cost, most solutions are based on commodity hardware, are highly
distributed, and designed to be fault-tolerant against network and hardware failures.
However, the main success factor of cloud computing is not technology-driven but eco-
nomical. Cloud computing allows companies to outsource the IT infrastructure and
to acquire resources on demand. Thus, cloud computing not only allows companies to
profit from the economics of scale and the leverage effect of outsourcing but also avoids
the common over-provisioning of hardware [PBA+08].

Although the advantages for deploying web-based database applications in the cloud
are compelling, they come with certain limitations. Different providers offer different
functionality and interfaces, which makes it hard to port applications from one provider
to another. Systems sacrifice functionality and consistency to allow for better scaling
and availability. In the following, we summarize the main contributions of this thesis
towards the development of Database Management Systems on top of cloud infras-
tructure (Section 6.1). We then conclude this thesis by discussing ongoing and future
work in Section 6.2.

6.1 Summary of the Thesis

The main contributions of this dissertation are linked to the following three topics: How
to build a database on top of cloud infrastructure, consistency rationing, and an XQuery
extension in order to build applications with XQuery. In the following, we outline the
main contributions in each of those areas.

179

180 Chapter 6. Conclusion

1. Building a Database on Top of Cloud Infrastructure: The first part of the thesis
investigates how a transactional database system can be built on top of cloud in-
frastructure services while preserving the main characteristics of cloud computing
(i.e., scalability, availability and cost efficiency). We defined a set of basic services
and a corresponding (abstract) API as a generalization of existing cloud offerings.
Based on this API, we proposed a shared-disk architecture for building web-based
database applications on top of cloud infrastructure. Furthermore, we presented
several alternative consistency protocols which preserve the design philosophy of
cloud computing and trade cost/availability for a higher level of consistency.

The experimental results show that the shared-disk architecture preserves the
scalability even for strong consistency levels. Furthermore, the results demon-
strate that cloud computing and, in particular, the current offerings of providers
such as Amazon are not attractive for high-performance transaction processing
if strong consistency is important; such application scenarios are still best sup-
ported by conventional database systems. The proposed architecture works best
and most cost-efficiently for web-based applications where the workload is hard
to predict and varies significantly. Traditional database architectures require to
provision the hardware resources for the expected peak performance which is of-
ten orders of magnitudes higher than the average performance requirements (and
possibly even the real peak performance requirements). The here proposed ar-
chitecture enables scaling by simply adding new nodes, or in case the client runs
the database stack, no interaction at all.

2. Consistency Rationing: Consistency rationing constitutes a new transaction
paradigm, which not only defines the consistency guarantees on the data instead
of at transaction level, but also allows for switching consistency guarantees auto-
matically at run-time. A number of use cases and according policies for switching
the consistency level are presented. The basic policies switch the consistency
level based on fixed thresholds or time. The advanced policies force the system
to dynamically adapt the consistency level by monitoring the data and/or gath-
ering temporal statistics of the data. Thus, consistency becomes a probabilistic
guarantee which can be balanced against the cost of inconsistency. The pro-
posed methods have been implemented on top of the presented cloud database
architecture. The experimental results show that Consistency Rationing has the
potential not only to significantly lower the overall cost, but to improve the perfor-
mance of a cloud-based database system at the same time.

6.2. Ongoing and Future Work 181

3. Windowing for XQuery: Through the success of XML for communication, meta-
data, and documents inside web applications, XQuery/XScript has been proposed
as a unified programming languages for web-based application. XQuery is able
to run on all layers of the application stack [FPF+09, Mar09, FGK03, Ora09,
CCF+06], is highly optimizable and parallizable, and is able to work with struc-
tured and semi-structured data which is increasingly important with the growing
amount of user-generated content. Although XQuery is turing-complete and al-
ready used as a programming language in the database and middle-tier [Mar09,
FGK03, Ora09, 28m09], it lacks support for window queries and continuous que-
ries. Window queries and continuous queries, however, play an important role
for communication data, meta-data and documents. For example, the analysis
of a web logs, formatting and combining of RSS feeds, monitoring of services,
pagination of results, are all best solved by windowing and/or continuous queries.

In the last part of the thesis we address this missing feature and propose two ex-
tensions to XQuery 1.0: The syntax and semantics of a new window clause and a
simple extension to the XQuery data model in order to use XQuery for continuous
queries. We show that the extensions can be implemented and integrated into
existing XQuery engines. Additionally, we report the results of running the Lin-
ear Road benchmark on top of an open source XQuery engine which had been
enhanced with the proposed extensions. The benchmark results confirm that the
proposed XQuery extensions can be implemented efficiently. By now, the win-
dowing extension has been accepted from the W3C XQuery working group for
the upcoming XQuery 1.1 specification.

6.2 Ongoing and Future Work

Below, we outline several interesting topics of ongoing work and discuss possibilities
for future research.

XQuery as a Platform: The proposed architectures and protocols of Chapter 3 are
concerned with the lower levels of a database management system running on top
of cloud infrastructure. At the same time, the new characteristics of cloud storage
systems as a disk and the virtualization of machines also changes higher layers of
the database system. For instance, it is not possible to carry out chained I/O in order to
scan through several pages on S3 or to assume that the database stack is running on
a single dedicated machine. It follows that, the cost models of query optimizers and the

182 Chapter 6. Conclusion

query operators need to be revisited. In addition, there are still a number of optimization
techniques conceivable in order to reduce the latency of applications (e.g., caching and
scheduling techniques).

The use of XQuery as a programming language for the cloud also raises further chal-
lenges. Next to the query optimization techniques, the application framework, deploy-
ment or developing tools provide many new research questions.

Part of these research questions are now addressed in the 28msec’s Sausalito product.
The vision of 28msec is to provide a platform to easily develop, test, deploy, and host
web applications using XQuery. The architecture of Sausalito incorporates the work of
Chapter 3 and is deployed on Amazon’s Simple Storage Service (S3) and Elastic Cloud
Computing (EC2).

Cloudy: An additional research question which arises from the work of Chapters 3
and 4 concerns potential changes in the architecture when the infrastructure is owned
and the different (dynamically changing) consistency levels and query processing could
be integrated into the service. Although first systems start to provide more functional-
ity such as PNUTS [CRS+08], MegaStore [FKL+08], or MS SQL Azure [Mic09], they
either restrict the scalability (e.g., Azure) or provide restricted functionality and relaxed
consistency guarantees (e.g., MegaStore and PNUTS). Integrating the advanced func-
tionality into a cloud system is particularly interesting, as it allows to directly influence
and extend the underlying techniques. However, it would also change the role of the
user from a cloud consumer to a cloud provider, which might significantly increase the
numbers of required resources.1

Cloudy is an on-going research project which starts adressing these research questions
by building a new highly scalable cloud database service. With Cloudy, we are also
investigating how other guarantees of a cloud storage system, besides consistency, can
be relaxed. For instance, it might be beneficial to relax the durability property for certain
data types (e.g., the loss of logging data or a user recommendation might be tolerable,
whereas user accounts should never be lost). Furthermore, owning the infrastructure
as a cloud provider also makes room for other optimization such as data placement,
replication strategies or energy efficiency.

Benchmarking the Cloud: Section 3.8 already stated, that traditional benchmarks
(like the TPC benchmarks) have to be adjusted for analyzing the novel cloud service.
Traditional benchmarks report the maximum performance under a particular workload

1Even though it is possible for the user to host his own infrastructure inside Amazon, it still requires
more administration and resources than using existing reliable infrastructure services.

6.2. Ongoing and Future Work 183

for a fixed configuration. A cloud service should dynamically adapt to the load which
is not captured by a (static) maximum performance number used in traditional bench-
marks. A benchmark for the cloud should in particular test the new characteristics of
cloud computing (i.e., scalability, pay-per-use and fault tolerance). In [BKKL09] we did a
first step and proposed initial ideas for a new benchmark to test database applications
in the cloud.

Appendix A

Appendix

A.1 Node Splitting

A page split requires to store two pages in an atomic operation; the old and new page,
with half of the data each and the according new linking. [Lom96] proposes a 2 phase
commit protocol in order to achieve this split atomically, which can not directly applied
in our architecture. Algorithm 11 shows how to achieve a page split in the proposed
architecture with Advanced Queues. Without advanced queues, the check in Line 10
has to be adjusted.

185

186 Appendix A. Appendix

Algorithm 11 Page Checkpoint Protocol with Splitting
Require: page P , Collection C, PropPeriod , X ← max nb of log records

1: if acquireXLock(P .Uri) then
2: StartT ime← CurrentTime()
3: V ← get-if-modified-since(P .Uri, P .Timestamp)
4: if V 6= Null then
5: P ← V

6: end if
7: M ← receiveMessage(P .Uri, X)
8: for all messages m in M do
9: if m is a SPLIT message then

10: if m.Uri 6= P .nextUri ∧ m.SplitKey < P .MaxKey then
11: delete(m.Uri)
12: deleteQueue(m.Uri)
13: end if
14: else
15: if m.Key > P .Key then
16: sendMessage(P .Next, m)
17: else
18: apply m to P

19: end if
20: end if
21: end for
22: if size(P) > PAGESIZE then
23: (P2, SplitKey)← splitPage(P)
24: //Sending the split message is for recovery
25: sendMessage(P .Uri, pair(P2.Uri, SplitKey))
26: end if
27: if CurrentTime() - StartT ime < LockT imeOut− PropPeriod then
28: if SplitKey 6= Null then
29: createAdvancedQueue(P2.Uri)
30: put(P2.Uri, P .Data)
31: end if
32: put(P .Uri, P .Data)
33: if CurrentTime() - StartT ime < LockT imeOut− PropPeriod then
34: for all messages m in M do
35: deleteMessage(P .Uri, m.Id)
36: end for
37: end if
38: end if
39: end if

A.2. XQuery 1.1 Window BNF 187

A
.2

X
Q

ue
ry

1.
1

W
in

do
w

B
N

F

Th
e

w
in

do
w

in
g

B
N

F
as

ad
op

te
d

by
th

e
W

3C
fo

rX
Q

ue
ry

1.
1

[C
R

08
].

F
L
W
O
R
E
x
pr

::
=
I
n
it
ia
lC
la
u
se
I
n
te
rm

ed
ia
te
C
la
u
se
∗
R
et
u
rn
C
la
u
se

I
n
it
ia
lC
la
u
se

::
=
F
or
C
la
u
se
|L
et
C
la
u
se
|W

in
d
ow
C
la
u
se

I
n
te
rm

ed
ia
te
C
la
u
se

::
=
I
n
it
ia
lC
la
u
se
|W

h
er
eC
la
u
se
|G

ro
u
pB

y
C
la
u
se
|O

rd
er
B
y
C
la
u
se
|C

ou
n
tC
la
u
se

W
in
d
ow
C
la
u
se

::
=

”f
or

”(
T
u
m
bl
in
g
W
in
d
ow
C
la
u
se
|S
li
d
in
g
W
in
d
ow
C
la
u
se

)

T
u
m
bl
in
g
W
in
d
ow
C
la
u
se

::
=

”t
um

bl
in

g”
”w

in
do

w
”

”$
”V

a
rN

a
m
e
T
y
pe
D
ec
la
ra
ti
on

?
”i

n”
E
x
pr
S
in
g
le

W
in
d
ow
S
ta
rt
C
on
d
it
io
n
W
in
d
ow
E
n
d
C
on
d
it
io
n

?

S
li
d
in
g
W
in
d
ow
C
la
u
se

::
=

”s
lid

in
g”

”w
in

do
w

”
”$

”V
a
rN

a
m
eT
y
pe
D
ec
la
ra
ti
on

?
”i

n”
E
x
pr
S
in
g
le

W
in
d
ow
S
ta
rt
C
on
d
it
io
n
W
in
d
ow
E
n
d
C
on
d
it
io
n

W
in
d
ow
S
ta
rt
C
on
d
it
io
n

::
=

”s
ta

rt
”
W
in
d
ow
V
a
rs

”w
he

n”
E
x
pr
S
in
g
le

W
in
d
ow
E
n
d
C
on
d
it
io
n

::
=

”o
nl

y”
?

”e
nd

”
W
in
d
ow
V
a
rs

”w
he

n”
E
x
pr
S
in
g
le

W
in
d
ow
V
a
rs

::
=

(”
$”
C
u
rr
en
tI
te
m

)?
P
os
it
io
n
a
lV
a
r?

(”
pr

ev
io

us
”

”$
”P
re
v
io
u
sI
te
m

)?
(”

ne
xt

”
”$

”N
ex
tI
te
m

)?

C
u
rr
en
tI
te
m

::
=
Q
N
a
m
e

P
re
v
io
u
sI
te
m

::
=
Q
N
a
m
e

N
ex
tI
te
m

::
=
Q
N
a
m
e

Fi
gu

re
A

.1
:

X
Q

ue
ry

1.
1

-W
in

do
w

in
g

188 Appendix A. Appendix

List of Tables

2.1 Infrastructure as a Service Providers and Products 12

2.2 Platform as a Service Providers and Products 14

3.1 Amazon Web Service Infrastructure Prices (as of 20 Oct 2009) 37

3.2 Read Response Time, Bandwidth of S3, Varying Page Size 38

3.3 Read Response Time, Bandwidth of S3, Varying Page Size 40

3.4 Consistency Protocols . 59

3.5 Cost (milli-$) and Time (secs) for Bulk-Loading 10000 Products from EC2 107

4.1 Data categorization . 133

189

190 List of Tables

List of Figures

2.1 Cloud Continuum . 11

2.2 Canonical Web Architecture (modified from [Con02, CBF03]) 17

2.3 Cloud Web Architecture(modified from [Con02, CBF03]) 19

2.4 Web application layers . 28

3.1 Shared-Disk Architecture . 50

3.2 Basic Commit Protocol . 60

3.3 Avg. Response Time (secs), EU-BTree and EU-SDB 95

3.4 Avg. Write Response Time (secs), EU-BTree and EU-SDB, Update WIs
Only . 96

3.5 Avg. Response Time (secs), EC2-BTree and EC2-SDB 97

3.6 Avg. Response Time (secs), EC2-BTree and EC2-SDB, Update WIs Only 98

3.7 Cost per WI (milli-$), EU-BTree and EU-SDB 99

3.8 Cost per WI (milli-$), EU-BTree Cost factors 99

3.9 Cost per WI (milli-$), EC2-BTree and EC2-SDB 100

3.10 Cost per WI (milli-$), EC2-BTree Cost Factors 101

3.11 Web Interactions per Second (WIPS), Varying Number of EC2 Applica-
tion Servers . 103

3.12 Cost per WI (milli-$), EC2-BTree, Varying Page Size 105

3.13 Avg. Response Time (secs), EC2-BTree, Varying Page Size 105

3.14 Cost per WI (milli-$), EC2-BTree, Varying TTL 106

3.15 Avg. Response Time (secs), EC2-BTree, Varying TTL 106

191

192 List of Figures

4.1 Cost (incl. the penalty cost) per trx [$/1000], Vary guarantees 135

4.2 Cost per trx [$/1000], Vary penalty cost 136

4.3 Response time [ms] . 137

4.4 Cost per trx [$/1000], Vary policies . 138

4.5 Response time [ms], Vary policies . 138

4.6 Runtime $, Vary threshold . 139

4.7 Oversells, Vary threshold . 139

4.8 Overall $, Vary threshold . 140

5.1 Annoying Authors: XQuery 1.0 . 148

5.2 Annoying Authors: Extended XQuery . 149

5.3 Grammar of Extended FLWOR Expression 150

5.4 Window Types . 151

5.5 Window Automaton . 154

5.6 Example Plan (First Query of Section 5.4) 164

5.7 MXQuery Architecture . 164

5.8 Stream Buffer . 167

5.9 Data Flow of LR Implementation . 174

A.1 XQuery 1.1 - Windowing . 187

List of Algorithms

1 Basic Commit Protocol . 62
2 Page Checkpoint Protocol . 64
3 Collection Checkpoint Protocol . 67
4 Atomicity - Commit . 75
5 Atomicitiy - Recovery . 76
6 Advanced Atomicitiy - Commit . 80
7 Advanced Atomicitiy - Recovery . 81
8 GSI - BeginTransaction . 82
9 GSI - BufferManager - Get Page . 83
10 GSI - Commit . 85
11 Page Checkpoint Protocol with Splitting 186

193

194 LIST OF ALGORITHMS

Bibliography

[10g09] 10gen. MongoDB. http://www.mongodb.org, Nov. 2009.

[28m09] 28msec, Inc. Sausalito. http://sausalito.28msec.com, Feb. Feb. 2009.

[AAB+05] Daniel J Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Cetintemel,
Mitch Cherniack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag S
Maskey, Alexander Rasin, Esther Ryvkina, Nesime Tatbul, Ying Xing, and
Stan Zdonik. The Design of the Borealis Stream Processing Engine. In
Proc. of CIDR, 2005.

[Aba09] Daniel J. Abadi. Data Management in the Cloud: limitations and opportu-
nities. IEEE Data Engineering Bulletin, 32(1), 2009.

[ABW06] Arvind Arasu, Shivnath Babu, and Jennifer Widom. The CQL Continuous
Query Language: Semantic Foundations and Query Execution. VLDB
Journal, 15(2):121–142, 2006.

[ACC+03] Daniel Abadi, Donald Carney, Ugur Cetintemel, Mitch Cherniack, Christian
Convey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stanley
Zdonik. Aurora: A New Model and Architecture for Data Stream Manage-
ment. VLDB Journal, 12(2):120–139, 2003.

[ACG+04] Arvind Arasu, Mitch Cherniack, Eduardo F. Galvez, David Maier, Anurag
Maskey, Esther Ryvkina, Michael Stonebraker, and Richard Tibbetts. Lin-
ear Road: A Stream Data Management Benchmark. In Proc. of VLDB,
pages 480–491, 2004.

[AFG+09] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy
Katz, Andy Konwinski, Gunho Lee, David A. Patterson, Ariel Rabkin, Ion
Stoica, and Matei Zaharia. Above the Clouds: A Berkeley View of Cloud
Computing. Technical Report UCB/EECS-2009-28, EECS Department,
University of California, Berkeley, Feb. 2009.

195

196 Bibliography

[Ama09a] Amazon. Amazon Web Services. http://aws.amazon.com/, Sep. 2009.

[Ama09b] Amazon. Amazon Web Services: Overview of Security Processes.
http://awsmedia.s3.amazonaws.com/pdf/AWS Security Whitepaper.pdf,
Nov. 2009.

[Ama09c] Amazon. Elastic Block Store (EBS). http://aws.amazon.com/ebs/, Aug.
2009.

[Ama09d] Amazon. Simple Storage Service (S3). http://aws.amazon.com/s3/, Aug.
2009.

[Ama09e] Amazon. SimpleDB Developer Guide (API Version 2009-04-15).
http://docs.amazonwebservices.com/AmazonSimpleDB/2009-04-
15/DeveloperGuide/, Apr. 2009.

[Apa08] Apache Software Foundation. ZooKeeper.
http://hadoop.apache.org/zookeeper/, Aug. 2008.

[ASU86] Alfred Aho, Ravi Sethi, and Jeffrey Ullman. Compilers: Principles, Tech-
niques, and Tools. Addison-Wesley, 1986.

[Atw07] Mark Atwood. A Storage Engine for Amazon S3. MySQL Conference and
Expo, 2007. http://fallenpegasus.com/code/mysql-awss3.

[AYBB+09] Sihem Amer-Yahia, Chavdar Botev, Stephen Buxton, Pat Case, Jochen
Doerre, Michael Dyck, Mary Holstege, Jim Melton, Michael Rys,
and Jayavel Shanmugasundaram. XQuery and XPath Full Text 1.0.
http://www.w3.org/TR/xpath-full-text-10/, Jul. 2009.

[BBG+95] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and
Patrick O’Neil. A Critique of ANSI SQL Isolation Levels. In Proc. of ACM
SIGMOD, pages 1–10, 1995.

[BCE+08] Vinayak R. Borkar, Michael J. Carey, Daniel Engovatov, Dmitry Lychagin,
Till Westmann, and Warren Wong. XQSE: An XQuery Scripting Extension
for the AquaLogic Data Services Platform. In Proc. of ICDE, pages 1229–
1238, 2008.

[BCF+07] Scott Boag, Don Chamberlin, Mary F. Fernández, Daniela Florescu,
Jonathan Robie, and Jérôme Siméon. XQuery 1.0: An XML Query Lan-
guage. http://www.w3.org/TR/xquery/, Jan. 2007.

Bibliography 197

[BCLW06] Vinayak R. Borkar, Michael J. Carey, Dmitry Lychagin, and Till Westmann.
The BEA AquaLogic data services platform (demo). In Surajit Chaudhuri,
Vagelis Hristidis, and Neoklis Polyzotis, editors, Proc. of ACM SIGMOD,
pages 742–744. ACM, 2006.

[BFF+07] Irina Botan, Peter M. Fischer, Daniela Florescu, Donald Kossmann, Tim
Kraska, and Rokas Tamosevicius. Extending XQuery with Window Func-
tions. In Proc. of VLDB, pages 75–86, 2007.

[BFG+08] Matthias Brantner, Daniela Florescu, David A. Graf, Donald Kossmann,
and Tim Kraska. Building a database on S3. In Proc. of ACM SIGMOD,
pages 251–264, 2008.

[BGM94] Daniel Barbará and Hector Garcia-Molina. The Demarcation Protocol: A
Technique for Maintaining Constraints in Distributed Database Systems.
VLDB Journal, 3(3):325–353, 1994.

[BHG87] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concur-
rency Control and Recovery in Database Systems. Addison Wesley, 1987.

[Bil92] Alexandros Biliris. The Performance of Three Database Storage Struc-
tures for Managing Large Objects. In Proc. of ACM SIGMOD, pages 276–
285, 1992.

[Bje04] Havard K. F. Bjerke. Grid Survey. Technical Report, CERN, Aug. 2004.

[BKKL09] Carsten Binnig, Donald Kossmann, Tim Kraska, and Simon Loesing. How
is the Weather tomorrow? Towards a Benchmark for the Cloud. In Proc.
of DBTest Workshop (SIGMOD 2009), 2009.

[BLP05] Shane Balfe, Amit D. Lakhani, and Kenneth G. Paterson. Trusted Comput-
ing: Providing Security for Peer-to-Peer Networks. In Peer-to-Peer Com-
puting, pages 117–124, 2005.

[BosG09] Zuse Institute Berlin and onScale solutions GmbH. Scalaris: Distributed
Transactional Key-Value Store. http://code.google.com/p/scalaris/, Aug.
2009.

[Bre00] Eric A. Brewer. Towards Robust Distributed Systems. In Proc. of PODC,
page 7, 2000.

[BS77] Rudolf Bayer and Mario Schkolnick. Concurrency of Operations on B-
Trees. Acta Informatica, 9(1):1–21, 1977.

198 Bibliography

[BT04] Jason E. Bailes and Gary F. Templeton. Managing P2P security. ACM
Communication, 47(9):95–98, 2004.

[Bun09] Bungee Labs. Bungee Connect. http://www.bungeeconnect.com, Sept.
2009.

[Bur06] Michael Burrows. The Chubby Lock Service for Loosely-Coupled Dis-
tributed Systems. In Proc. of OSDI, pages 335–350, 2006.

[Cal08] Brad Calder. Windows Azure Storage - Essential Cloud Storage Services.
In Microsoft Professional Developers Conference (PDC), 2008.

[CAO06] Dunren Che, Karl Aberer, and Tamer Özsu. Query Optimization in XML
Structured-Document Databases. VLDB Journal, 15(3):263–289, 2006.

[CB04] Thomas Connolly and Carolyn Begg. Database Systems: A Practical Ap-
proach to Design, Implementation and Management (International Com-
puter Science Series). Addison Wesley, 4 edition, May 2004.

[CBF03] Stefano Ceri, Aldo Bongio, and Piero Fraternali. Designing Data-Intensive
Web Applications. Morgan Kaufman, 2003.

[CCD+03] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J.
Franklin, Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy,
Samuel Madden, Frederick Reiss, and Mehul A. Shah. TelegraphCQ:
Continuous Dataflow Processing. In Proc. of ACM SIGMOD, page 668,
2003.

[CCF+06] Jon Chamberlin, Michael J. Carey, Daniela Florescu, Donald Kossmann,
and Jonathan Robie. XQueryP: Programming with XQuery. In Proc. of
XIME-P, 2006.

[CCI09] CCIF. Cloud Computing Interoperability Forum (CCIF).
http://groups.google.com/group/cloudforum, Sep. 2009.

[CDF+09] Don Chamberlin, Center Michael Dyck, Daniela Florescu, Jim Melton,
Jonathan Robie, and Jérôme Siméon. XQuery Update Facility 1.0.
http://www.w3.org/TR/xquery-update-10/, Jun. 2009.

[CDG+06] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A.
Wallach, Michael Burrows, Tushar Chandra, Andrew Fikes, and Robert
Gruber. Bigtable: A Distributed Storage System for Structured Data. In
Proc. of OSDI, pages 205–218, 2006.

Bibliography 199

[CEF+08] Don Chamberlin, Daniel Engovatov, Dana Florescu, Giorgio Ghelli, Jim
Melton, Jerome Simeon, and John Snelson. XQuery Scripting Extension
1.0 - W3C Working Draft 3. http://www.w3.org/TR/xquery-sx-10/, Dec.
2008.

[CGMW94] Sudarshan S. Chawathe, Hector Garcia-Molina, and Jennifer Widom.
Flexible Constraint Management for Autonomous Distributed Databases.
IEEE Data Engineering Bulletin, 17(2):23–27, 1994.

[CGR07] Tushar Deepak Chandra, Robert Griesemer, and Joshua Redstone.
Paxos Made Live - An Engineering Perspective. In Proc. of PODC, pages
398–407, 2007.

[Con02] Jim Conallen. Building Web Applications with UML. Addison-Wesley, 2
edition, 2002.

[Cor09] LinkedIn Corporation. LinkedIn. http://www.linkedin.com/, Aug. 2009.

[Cou02] Transaction Processing Performance Council. TPC-W 1.8.
http://www.tpc.org/tpcw/, Feb. 2002.

[CR08] Don Chamberlin and Jonathan Robie. XQuery 1.1 - W3C Working Draft 3,
Dec. 2008.

[CRS+08] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silber-
stein, Philip Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver,
and Ramana Yerneni. PNUTS: Yahoo!’s hosted data serving platform.
PVLDB, 1(2):1277–1288, 2008.

[DAF+03] Yanlei Diao, Mehmet Altinel, Michael J. Franklin, Hao Zhang, and Peter
Fischer. Path Sharing and Predicate Evaluation for High-Performance
XML Filtering. ACM Transactions on Database Systems (TODS),
28(4):467–516, 2003.

[Dat09] Database Research Group, University of Mannheim. Natix: A na-
tive XML database management system. http://pi3.informatik.uni-
mannheim.de/natix.html, Sep. 2009.

[Dea09] Jeff Dean. Handling Large Datasets at Google: Current Systems and Fu-
ture Directions. http://research.yahoo.com/files/6DeanGoogle.pdf, 2009.

200 Bibliography

[DFF+07] Denise Draper, Peter Fankhauser, Mary Fernández, Ashok Malhotra,
Kristoffer Rose, Michael Rys, Jérôme Siméon, and Philip Wadler. XQuery
1.0 and XPath 2.0 Formal Semantics. http://www.w3.org/TR/xquery-
semantics/, Jan. 2007.

[DG08] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Pro-
cessing on Large Clusters. ACM Communication, 51(1):107–113, 2008.

[DGH+87] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott
Shenker, Howard Sturgis, Dan Swinehart, and Doug Terry. Epidemic Al-
gorithms for Replicated Database Maintenance. In Proc. of PODC, pages
1–12, 1987.

[DGH+06] Alan Demers, Johannes Gehrke, Mingsheng Hong, Mirek Riedewald, and
Walker White. Towards Expressive Publish/Subscribe Systems. In Proc.
of EDBT, pages 627–644, 2006.

[DHJ+07] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubrama-
nian, Peter Vosshall, and Werner Vogels. Dynamo: Amazon’s Highly Avail-
able Key-value Store. In Proc. of SOSP, pages 205–220, 2007.

[Eco08] The Economist. Let it rise: A special report on corporate IT. The
Economist, 2008.

[eXi09] eXist. eXist-db Open Source Native XML Database. http://exist-db.org/,
2009.

[EZP05] Sameh Elnikety, Willy Zwaenepoel, and Fernando Pedone. Database
Replication Using Generalized Snapshot Isolation. In Proc. of SRDS,
pages 73–84, 2005.

[Fac09] Facebook. Cassandra. http://incubator.apache.org/cassandra/, Aug.
2009.

[Feu05] Steven Feuerstein. Oracle PL/SQL Programming. O’Reilly & Associates,
4 edition, 2005.

[FGK03] Daniela Florescu, Andreas Grünhagen, and Donald Kossmann. XL: A
Platform for Web Services. In Proc. of CIDR, 2003.

Bibliography 201

[FHK+04] Daniela Florescu, Chris Hillery, Donald Kossmann, Paul Lucas, Fabio Ric-
cardi, Till Westmann, Michael J. Carey, and Arvind Sundararajan. The
BEA Streaming XQuery Processor. VLDB Journal, 13(3):294–315, 2004.

[FK04] Ian Foster and Carl Kesselman, editors. The Grid 2: Blueprint for a new
computing infrastructure. Elsevier, Amsterdam, 2004.

[FKKT06] Peter Fischer, Donald Kossmann, Tim Kraska, and Rokas Tamosevicius.
FORSEQ Use Cases. http://www.dbis.ethz.ch/research/publications,
2006. Technical Report, ETH Zurich, November.

[FKL+08] JJ Furman, Jonas S Karlsson, Jean-Michel Leon, Alex Lloyd, Steve New-
man, and Philip Zeyliger. Megastore: A Scalable Data System for User
Facing Applications. Presentation at SIGMOD Products Day, Vacouver,
Canada, 2008.

[FMM+06] Mary Fernandez, Ashok Malhotra, Jonathan Marsh, Marton Nagy, and
Norman Walsh. XQuery 1.0 and XPath 2.0 Data Model (XDM), Oct. 2006.

[FPF+09] Ghislain Fourny, Markus Pilman, Daniela Florescu, Donald Kossmann,
Tim Kraska, and Darin McBeath. XQuery in the Browser. In Proc. of
WWW, pages 1011–1020, 2009.

[FZRL09] Ian T. Foster, Yong Zhao, Ioan Raicu, and Shiyong Lu. Cloud Computing
and Grid Computing 360-Degree Compared. CoRR, 2009.

[Gar07] Simson Garfinkel. An Evaluation of Amazon’s Grid Computing Services:
EC2, S3, and SQS. Technical Report TR-08-07, Harvard University, 2007.

[Gar08] Gartner, Inc. Gartner Identifies Top Ten Disruptive Technologies for 2008
to 2012. http://www.gartner.com/it/page.jsp?id=681107, Mar. 2008.

[Gar09] Owen Garrett. Cloud Application Architectures.
http://blog.zeus.com/the zeus blog/2009/05/cloud-application-
architectures.html, May 2009.

[GDN+03] Lei Gao, Michael Dahlin, Amol Nayate, Jiandan Zheng, and Arun Iyengar.
Application Specific Data Replication for Edge Services. In Proc. of WWW,
pages 449–460, 2003.

[Gee06] David Geer. Will Software Developers Ride Ruby on Rails to Success?
IEEE Computer, 39(2):18–20, 2006.

202 Bibliography

[GGL03] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google file
system. In Proc. of SOSP, pages 29–43, 2003.

[GK85] Dieter Gawlick and David Kinkade. Varieties of Concurrency Control in
IMS/VS Fast Path. IEEE Database Engineering Bulletin, 8(2):3–10, 1985.

[GL] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility
of. consistent, available, partition-tolerant web. services. SIGACT News,
(2):51–59.

[GLR05] Hongfei Guo, Per-Åke Larson, and Raghu Ramakrishnan. Caching with
’Good Enough’ Currency, Consistency, and Completeness. In Proc. of
VLDB, pages 457–468, 2005.

[GLRG04] Hongfei Guo, Per-Åke Larson, Raghu Ramakrishnan, and Jonathan Gold-
stein. Relaxed Currency and Consistency: How to Say ”Good Enough” in
SQL. In Proc. of ACM SIGMOD, pages 815–826, 2004.

[GMN+07] Lewis Girod, Yuan Mei, Ryan Newton, Stanislav Rost, Arvind Thiagarajan,
Hari Balakrishnan, and Samuel Madden. The Case for a Signal-Oriented
Data Stream Management System. In Proc. of CIDR, pages 397–406,
2007.

[GO03] Lukasz Golab and Tamer Özsu. Issues in Data Stream Management.
SIGMOD Record, 32(2):5 –14, 2003.

[Goo08] Google. Google App Engine. http://code.google.com/appengine/, Dez.
2008.

[GR94] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and
Techniques. Morgan Kaufmann, San Mateo, CA, 1994.

[Gra93] Goetz Graefe. Query Evaluation Techniques for Large Databases. ACM
Computing Surveys, 25(2):73–170, 1993.

[GRS06] Giorgio Ghelli, Christopher Re, and Jérôme Siméon. XQuery!: An XML
Query Language with Side Effects. In EDBT Workshops, pages 178–191,
2006.

[GSE+94] Jim Gray, Prakash Sundaresan, Susanne Englert, Kenneth Baclawski, and
Peter J. Weinberger. Quickly Generating Billion-Record Synthetic Data-
bases. In Proc. of ACM SIGMOD, pages 243–252, 1994.

Bibliography 203

[GT93] Ashish Gupta and Sanjai Tiwari. Distributed Constraint Management for
Collaborative Engineering Databases. In Proc. of CIKM, pages 655–664,
1993.

[Hay08] Brian Hayes. Cloud Computing. ACM Communication, 51(7):9–11, 2008.

[Hel04] Joseph M. Hellerstein. Architectures and Algorithms for Interent-Scale
(P2P) Data Management. In Proc. of VLDB, page 1244, 2004.

[Her09] Heroku, Inc. Heroku. http://heroku.com/, Sept. 2009.

[Hir09] Mikio Hirabayashi. Tokyo Cabinet. http://sourceforge.net/projects/tokyocabinet/,
Sep. 2009.

[J+06] Navendu Jain et al. Design, Implementation, and Evaluation of the Lin-
ear Road Benchmark on the Stream Processing Core. In Proc. of ACM
SIGMOD, 2006.

[JAF+06] Shawn R. Jeffery, Gustavo Alonso, Michael J. Franklin, Wei Hong, and
Jennifer Widom. Declarative Support for Sensor Data Cleaning. In Proc.
of Pervasive Computing, pages 83–100, 2006.

[JLB+04] Zamil Janmohamed, Clara Liu, Drew Bradstock, Raul F. Chong, Michael
Gao, Fraser McArthur, and Paul Yip. DB2 SQL PL: Essential Guide for
DB2 UDB on Linux, UNIX, Windows, i5/OS, and z/OS. IBM Press, 2 edi-
tion, 2004.

[JS82] Matthias Jarke and Joachim W. Schmidt. Query Processing Strategies
in the PASCAL/R Relational Database Management System. In Proc. of
ACM SIGMOD, pages 256–264, 1982.

[Kay06] Michael Kay. Positional Grouping in XQuery. In Proc. of XIME-P, 2006.

[Kay09] Michael Kay. SAXON: The XSLT and XQuery processor.
http://saxon.sourceforge.net/, Jan. 2009.

[Kep04] Stephan Kepser. A Simple Proof for the Turing-Completeness of XSLT and
XQuery. In Proc. of Extreme Markup Languages, 2004.

[KHAK09] Tim Kraska, Martin Hentschel, Gustavo Alonso, and Donald Kossmann.
Consistency Rationing in the Cloud: Pay only when it matters. In Proc. of
VLDB, 2009.

204 Bibliography

[KKN+08] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo,
Alexander Rasin, Stanley Zdonik, Evan P. C. Jones, Samuel Madden,
Michael Stonebraker, Yang Zhang, John Hugg, and Daniel J. Abadi. H-
Store: A High-Performance, Distributed Main Memory. Transaction Pro-
cessing System. In Proc. VLDB Endowment, volume 1, pages 1496–1499,
2008.

[KLL+97] David R. Karger, Eric Lehman, Frank Thomson Leighton, Rina Panigrahy,
Matthew S. Levine, and Daniel Lewin. Consistent Hashing and Random
Trees: Distributed Caching Protocols for Relieving Hot Spots on the World
Wide Web. In Proc. of STOC, pages 654–663, 1997.

[Kos08] Donald Kossmann. Building Web Applications without a Database Sys-
tem. In Proc. of EDBT, page 3, 2008.

[Kra08] Tim Kraska. XQuery 1.1 Use Cases - W3C Working Draft 3 , Dec. 2008.

[KSSS04] Christoph Koch, Stefanie Scherzinger, Nicole Schweikardt, and Bernhard
Stegmaier. FluXQuery: An Optimizing XQuery Processor for Streaming
XML Data. In Proc. of VLDB, pages 1309–1312, 2004.

[Lab09] Morph Labs. Morph Application Platform (MAP). http://www.mor.ph/, Sep.
2009.

[Lam78] Leslie Lamport. Time, Clocks, and the Ordering of Events in a Distributed
System. ACM Communication, 21(7):558–565, 1978.

[Lam98] Leslie Lamport. The Part-Time Parliament. ACM Transactions on Com-
puter Systems (TOCS), 16(2):133–169, 1998.

[Lee08] Jason Lee. SQL Data Services - Developer Focus (Whitepaper).
http://www.microsoft.com/azure/data.mspx, Jun. 2008.

[LGZ04] Per-Åke Larson, Jonathan Goldstein, and Jingren Zhou. MTCache: Trans-
parent Mid-Tier Database Caching in SQL Server. In Proc. of ICDE, pages
177–189, 2004.

[LLJ08] Yijun Lu, Ying Lu, and Hong Jiang. Adaptive Consistency Guarantees for
Large-Scale Replicated Services. In Proc. of NAS, pages 89–96, 2008.

[LMS05] Paul J. Leach, Michael Mealling, and Rich Salz. A Universally Unique
IDentifier (UUID) URN Namespace. http://tools.ietf.org/html/rfc4122, Jul.
2005.

Bibliography 205

[Lom96] David B. Lomet. Replicated Indexes for Distributed Data. In Proc. of PDIS,
pages 108–119, 1996.

[LS03] Alberto Lerner and Dennis Shasha. AQuery: Query Language for Ordered
Data, Optimization Techniques, and Experiments. In Proc. of VLDB, pages
345–356, 2003.

[LY81] Philip L. Lehman and s. Bing Yao. Efficient Locking for Concurrent Op-
erations on B-Trees. ACM Transactions on Database Systems (TODS),
6(4):650–670, 1981.

[Mac07] Don MacAskill. Scalability: Set Amazon’s Servers on Fire, Not
Yours. Talk at ETech Conf, http://blogs.smugmug.com/don/files/ETech-
SmugMug-Amazon-2007.pdf, 2007.

[Mar09] MarkLogic. MarkLogic Server. http://www.marklogic.com, Nov. 2009.

[MBB06] Erik Meijer, Brian Beckman, and Gavin M. Bierman. LINQ: Reconciling
Object, Relations and XML in the .NET Framework. In Proc. of ACM SIG-
MOD, page 706, 2006.

[MCS96] Mark L. McAuliffe, Michael J. Carey, and Marvin H. Solomon. Towards
Effective and Efficient Free Space Management. SIGMOD Record, pages
389–400, Jun 1996.

[Mer88] Ralph C. Merkle. A Digital Signature Based on a Conventional Encryp-
tion Function. In Proc. of CRYPTO, pages 369–378, London, UK, 1988.
Springer-Verlag.

[MG09] Peter Mell and Tim Grance. Nist working definition of cloud computing.
http://csrc.nist.gov/groups/SNS/cloud-computing/index.html, Aug. 2009.

[Mic09] Microsoft. Azure Services. http://www.microsoft.com/azure/services.mspx,
Aug. 2009.

[MLT+05] David Maier, Jin Li, Peter Tucker, Kristin Tufte, and Vassilis Papadimos.
Semantics of Data Streams and Operators. In Proc. of ICDT, 2005.

[Moz09] Mozilla. Mozilla Developer Center - XPath.
https://developer.mozilla.org/en/XPath, Aug. 2009.

[Off09] ServePath Corporate Office. GoGrid. http://www.gogrid.com, Sep. 2009.

206 Bibliography

[OLW01] Chris Olston, Boon Thau Loo, and Jennifer Widom. Adaptive Precision
Setting for Cached Approximate Values. In Proc. of ACM SIGMOD, pages
355–366, 2001.

[O’N86] Patrick E. O’Neil. The Escrow Transactional Method. ACM Transactions
on Database Systems (TODS), 11(4):405–430, 1986.

[Ora09] Oracle. Oracle WebLogic integration. http://www.oracle.com/technology/
products/weblogic/, Aug. 2009.

[OV99] M. Tamer Özsu and Patrick Valduriez. Principles of Distributed Database
Systems. Prentice Hall, 1999.

[PBA+08] Daryl C. Plummer, Thomas J. Bittman, Tom Austin, David W. Cearley,
and David Mitchell Smith. Cloud Computing: Defining and describing an
emerging phenomenon. Gartner Special Reports, 2008.

[PETCR06] Esther Palomar, Juan M. Estévez-Tapiador, Julio César Hernández Castro,
and Arturo Ribagorda. Security in P2P Networks: Survey and Research
Directions. In EUC Workshops, pages 183–192, 2006.

[PHH92] Hamid Pirahesh, Joseph Hellerstein, and Waqar Hasan. Extensible/Rule
Based Query Rewrite Optimization in Starburst. In Proc. of ACM SIGMOD,
1992.

[PS06] Kostas Patroumpas and Timos Sellis. Window Specification over Data
Streams. In Proc. of ICSNW, 2006.

[Rac09] US Inc. Rackspace. The Rackspace Cloud Hosting Products.
http://www.rackspacecloud.com/cloud hosting products, Sep. 2009.

[RD01] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, Decentralized
Object Location, and Routing for Large-Scale Peer-to-Peer Systems. In
Proc. of Middleware, pages 329–350. Springer-Verlag, 2001.

[Red09] Redis. Redis: A persistent key-value database. http://code.google.com/
p/redis/, Aug. 2009.

[RG02] Raghu Ramakrishnan and Johannes Gehrke. Database Management
Systems. McGraw Hill Higher Education, 3rd edition, 2002.

Bibliography 207

[Rig08] RightScale LLC. Amazon’s Elastic Block Store explained.
http://blog.rightscale.com/2008/08/20/amazon-ebs-explained/, Aug.
2008.

[RMH96] Robbert Van Renesse, Yaron Minsky, and Mark Hayden. A Gossip-Style
Failure Detection Service. In Proc. of Middleware, pages 55–70, 1996.

[Ros09] Max Ross. Transaction Isolation in App Engine.
http://code.google.com/appengine/articles/transaction isolation.html,
Sep. 2009.

[RW04] Jeanne W. Ross and George Westerman. Preparing for utility computing:
The role of IT architecture and relationship management. IBM Systems
Journal, 43(1):5–19, 2004.

[S+96] Michael Stonebraker et al. Mariposa: A Wide-Area Distributed Database
System. VLDB Journal, 5(1):048–063, 1996.

[Sal09] Salesforce.com, Inc. Salesforce.com. http://www.salesforce.com, Sep.
2009.

[Sen08] Soumitra Sengupta. SQL Data Services: A lap around. In Microsoft Pro-
fessional Developers Conference (PDC), 2008.

[SL76] Dennis G. Severance and Guy M. Lohman. Differential Files: Their Ap-
plication to the Maintenance of Large Databases. ACM Transactions on
Database Systems, 1(3):256–267, 1976.

[SMA+07] Michael Stonebraker, Samuel Madden, Daniel J. Abadi, Stavros Hari-
zopoulos, Nabil Hachem, and Pat Helland. The End of an Architectural
Era (It’s Time for a Complete Rewrite). In Proc. of VLDB, pages 1150–
1160, 2007.

[SMK+01] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari
Balakrishnan. Chord: A Scalable Peer-to-Peer Lookup Service for Internet
Applications. In Proc. of SIGCOMM, pages 149–160. ACM, 2001.

[SPP98] Edward A. Silver, David F. Pyke, and Rein Peterson. Inventory Manage-
ment and Production Planning and Scheduling. Wiley, 3 edition, 1998.

208 Bibliography

[SRS04] Shetal Shah, Krithi Ramamritham, and Prashant J. Shenoy. Resilient
and Coherence Preserving Dissemination of Dynamic Data Using Coop-
erating Peers. IEEE Transactions on Knowledge and Data Engineering,
16(7):799–812, 2004.

[SS05] Yasushi Saito and Marc Shapiro. Optimistic Replication. ACM Comput.
Surv., 37(1):42–81, 2005.

[Sto86] Michael Stonebraker. The Case for Shared Nothing. IEEE Data Engineer-
ing Bulletin, 9(1):4–9, 1986.

[Str07] StreamSQL.org. StreamSQL documentation. http://streamsql.org/
pages/documentation.html, Jan. 2007.

[TDP+94] Douglas B. Terry, Alan J. Demers, Karin Petersen, Mike Spreitzer, Marvin
Theimer, and Brent B. Welch. Session Guarantees for Weakly Consistent
Replicated Data. In Proc. of PDIS, pages 140–149, 1994.

[The09a] The Apache Software Foundation. HBase.
http://hadoop.apache.org/hbase/, Aug. 2009.

[The09b] The Apache Software Foundation. The CouchDB Project.
http://couchdb.apache.org/, Aug. 2009.

[The09c] The Apache Software Foundation. The Apache Hadoop project .
http://hadoop.apache.org, Aug. 2009.

[The09d] The Voldemort Team. Voldemort - A distributed Database. http://project-
voldemort.com/, Sep. 2009.

[TM96] Ann T. Tai and John F. Meyer. Performability Management in Distributed
Database Systems: An Adaptive Concurrency Control Protocol. In Proc.
of MASCOTS, page 212, 1996.

[Tod09] Todd Hoff (ed). High Scalability: Building bigger, faster more reliable web-
sites. http://highscalability.com/, Aug. 2009.

[TS06] Andrew S. Tanenbaum and Maarten Van Steen. Distributed Systems:
Principles and Paradigms. Prentice Hall, 2 edition, 2006.

[Tuu09] Ville Tuulos. Ringo - Distributed Key/Value Storage for Immutable Data.
http://github.com/tuulos/ringo, Sep. 2009.

Bibliography 209

[UPvS09] Guido Urdaneta, Guillaume Pierre, and Maarten van Steen. A Survey of
DHT Security Techniques. ACM Computing Surveys, 2009.

[VM96] Bennet Vance and David Maier. Rapid Bushy Join-Order Optimization with
Cartesian Products. In Proc. of ACM SIGMOD, 1996.

[Vog07] Werner Vogels. Data Access Patterns in the Amazon.com Technology
Platform. In Proc. of VLDB, page 1, Sep 2007.

[VRMCL09] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner.
A Break in the Clouds: Towards a Cloud Definition. Proc. of SIGCOMM,
39(1):50–55, 2009.

[WB09] Craig D. Weissman and Steve Bobrowski. The Design of the Force.com
Multitenant Internet. Application Development Platform. . In Proc. of SIG-
MOD, pages 889–896, 2009.

[WDR06] Eugene Wu, Yanlei Diao, and Shariq Rizvi. High-Performance Complex
Event Processing over Streams. In Proc. of ACM SIGMOD, 2006.

[WV02] Gerhard Weikum and Gottfried Vossen. Transactional Information Sys-
tems. Morgan Kaufmann, 2002.

[Xen08] Xen. Xen Hypervisor. http://www.xen.org/, Dec. 2008.

[YBS08] L. Youseff, M. Butrico, and D. Da Silva. Towards a Unified Ontology of
Cloud Computing. In Grid Computing Environments Workshop (GCE08),
2008.

[YG09] Aravind Yalamanchi and Dieter Gawlick. Compensation-Aware Data types
in RDBMS. In Proc. of ACM SIGMOD, 2009.

[YSY09] Fan Yang, Jayavel Shanmugasundaram, and Ramana Yerneni. A Scalable
Data Platform for a Large Number of Small Applications. In Proc. of CIDR,
2009.

[YV00] Haifeng Yu and Amin Vahdat. Design and Evaluation of a Continuous
Consistency Model for Replicated Services. In Proc. of OSDI, pages 305–
318, 2000.

[Zam09] Brett Zamir. XQuery USE ME (XqUSEme) 1.5.
https://addons.mozilla.org/en-US/firefox/addon/5515, Sep. 2009.

210 Bibliography

[Zor09] Zorba. Zorba: The XQuery Processor. http://www.zorba-xquery.com/,
Sep. 2009.

Curriculum Vitae: Tim Kraska

Affiliation during Doctoral Studies

12/2006 - 03/2010 Research Assistant in Computer Science, Department of Com-
puter Science, Swiss Federal Institute of Technology Zurich (ETH),
Switzerland

Education

since 03/2007 PhD Student in Computer Science within the System Group, De-
partment of Computer Science, Swiss Federal Institute of Technol-
ogy Zurich (ETH), Switzerland

06/2004 - 10/2006 Master of Science in Information Systems (MScIS) from the
Westfälische Wilhelms-Universität Münster, Germany

03/2005 - 03/2006 Master in Information Technology (MIT) from the University of
Sydney, Australia

10/2001 - 05/2004 Bachelor of Science in Information Systems (BScIS) from the
Westfälische Wilhelms-Universität Münster, Germany

08/1991 - 06/2000 Abitur from the Leibniz-Gymnasium, Dortmund, Germany

Work Experience

04/2006 - 08/2006 Software developer, Fraunhofer Institute for Algorithms and Sci-
entific Computing SCAI, Bonn, Germany

08/2002 to 06/2004 Associated project manager and software developer, Institute
of Supply Chain Management, Westfälische Wilhelms-Universität
Münster, Germany, a joint project with McKinsey & Company, Düsseldorf,
Germany

03/1997 - 02/2003 Consultant and software developer, ICN GmbH & Co. KG, Dort-
mund, Germany

211

212 Curriculum Vitae: Tim Kraska

06/2001 - 01/2004 Private lecturer, Evangelisches Erwachsenenbildungswerk West-
falen und Lippe e.V. and Vereinigte Kirchenkreise Dortmund und
Lünen, Germany

09/2000 - 07/2001 Civilian service, Vereinigte Kirchenkreise Dortmund und Lünen,
Germany

Awards and Scholarships

07/2006 - 10/2006 DAAD short-term scholarship, Deutscher Akademischer Aus-
tauschdienst, Germany

07/2005 - 03/2006 School of Information Technology Scholarship for outstand-
ing achievements, University of Sydney, Australia,

10/2005 Siemens Prize for Solving an Industry Problem in Research
Project Work for the master thesis, University of Sydney, Australia,

Professional Affiliations

• Member of the W3C XQuery Working Group

• Member of the FLWOR Foundation and the Zorba XQuery Processor Team

• Member of ACM SIGMOD and the Gesellschaft für Informatik (GI), Germany

