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Abstract
A security protocol is a distributed program that might be executed on a network controlled
by an adversary. Even in such a setting, the protocol should satisfy the desired security
property. Since it is hard to consider all possible executions when designing a protocol,
formal methods are often used to ensure the correctness of a protocol with respect to
a model of the protocol and the adversary. Many such formal models use a symbolic
abstraction of cryptographic operators by terms in a term algebra. The properties of these
operators can then be modeled by equations. In this setting, we make the following con-
tributions:

1. We present a general approach for the automated symbolic analysis of security proto-
cols that use Diffie-Hellman exponentiation and bilinear pairings to achieve advanced
security properties. We model protocols as multiset rewriting systems and security
properties as first-order formulas. We analyze them using a novel constraint-solving
algorithm that supports both falsification and verification, even in the presence of an
unbounded number of protocol sessions. The algorithm exploits the finite variant prop-
erty and builds on ideas from strand spaces and proof normal forms. We demonstrate
the scope and the effectiveness of our algorithm on non-trivial case studies. For example,
the algorithm successfully verifies the NAXOS protocol with respect to a symbolic
version of the eCK security model.

2. We examine the general question of when two agents can create a shared secret. Namely,
given an equational theory describing the cryptographic operators available, is there a
protocol that allows the agents to establish a shared secret? We examine this question
in several settings. First, we provide necessary and sufficient conditions for secret estab-
lishment using subterm-convergent theories. This yields a decision procedure for this
problem. As a consequence, we obtain impossibility results for symmetric encryption.
Second, we use algebraic methods to prove impossibility results for monoidal theories
including XOR and abelian groups. Third, we develop a general combination result that
enables modular impossibility proofs. For example, the results for symmetric encryption
and XOR can be combined to obtain impossibility for the joint theory.

3. We develop a framework for the interactive analysis of protocols that establish and
rely on properties of the physical world. Our model extends standard, inductive, trace-
based, symbolic approaches with location, time, and communication. In particular,
communication is subject to physical constraints, for example, message transmission
takes time determined by the communication medium used and the distance between
nodes. All agents, including intruders, are subject to these constraints and this results
in a distributed intruder with restricted, but more realistic, communication capabilities
than those of the standard Dolev-Yao intruder. Building on our message theory that
includes XOR, we also account for the possibility of overshadowing of message parts.
We have formalized our model in Isabelle/HOL and have used it to verify protocols
for authenticated ranging, secure time synchronization, and distance bounding. The
analysis of distance bounding attacks accounts for overshadowing and distance hijacking
attacks.
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Zusammenfassung

Sicherheitsprotokolle sind verteilte Algorithmen die in einem Netzwerk ausgeführt
werden können, das von einem Angreifer kontrolliert wird. Dabei sollen die gewün-
schten Sicherheitseigenschaften des Protokolls in allen solchen Szenarien gewährleistet
sein. Da es schwierig ist während des Protokoll-Entwurfs alle möglichen Ausführungen
zu berücksichtigen werden oft formale Methoden eingesetzt, um die Korrektheit eines Pro-
tokolls sicherzustellen. Dabei wird ein formales Modell des Protokols und aller möglichen
Angreifer genutzt, in dem die kryptographischen Operationen mit Hilfe von Term-Algebren
symbolisch modelliert werden. In diesem Zusammenhang präsentieren wir drei Beiträge.

1. Wir präsentieren eine allgemeine Methode für die automatische symbolische Analyse
von Sicherheitsprotokollen die Diffie-Hellman Exponentiation und bilineare Pairings
benutzen um Sicherheitseigenschaften zu erreichen. Wir modellieren Protokolle als
Multiset Rewriting Systeme und Sicherheitseigenschaften als First-Order Formeln.
Unser Algorithmus zur automatischen Analyse solcher Protokolle basiert auf Con-
straint Solving und nutzt Ideen aus der Beweistheorie und von Strand Spaces. Wir
demonstrieren die Anwendbarkeit unseres Algorithmus anhand von nicht-trivialen Fall-
studien.

2. Wir betrachten die allgemeine Fragestellung ob zwei Agenten ein gemeinsames
Geheimnis erzeugen können. Dabei gehen wir davon aus, dass die verfügbaren
Operationen durch eine Term-Algebra und Gleichungen beschrieben werden. Wir
beweisen mehrere Unmöglichkeitsresultate. Unter anderem beweisen wir Resultate
für symmetrische Verschlüsselung, für XOR und ein Kombinationsresultat, mit dem
Unmöglichkeitsresultate modular bewiesen werden können.

3. Wir entwickeln ein System zur interaktiven Analyse von Protokollen, die physikalische
Eigenschaften der Umgebung in der sie ausgeführt werden nutzen und sicherstellen.
Unser zugrundeliegendes Modell erweitert Standard-Modelle mit den Konzepten von
Ort, Zeit, und Netzwerk-Kommunikation. Dabei ist die Netzwerk-Kommunikation
eingeschänkt, so dass physikalische Gesetze nicht verletzt werden. Wir haben unser
Modell in dem interaktiven Beweis-Assistenten Isabelle/HOL formalisiert und die
Formalisierung benutzt um die Sicherheit von Authenticated Ranging, Secure Time-
Synchronization, und Distance Bounding Protokollen zu analysieren.
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Chapter 1

Introduction

In the last decade, our reliance on security protocols has increased significantly. The main
reasons are the increased usage of the Internet and the ubiquity of wireless networks and
devices. On the Internet, security protocols are often used to ensure privacy of personal data
or to secure transactions, e.g., in electronic commerce or electronic banking. While wireless
devices are also used for similar purposes, new application areas for wireless devices have
emerged which require new types of security protocols. For example, car manufacturers
have started to replace physical keys with contactless car entry systems. Here, the car door
unlocks automatically if the electronic key for the car is sufficiently close.

While these electronic versions of services or processes are often much more convenient
than their traditional counterparts, obtaining comparable security is often a challenge. The
main problem is that the employed security protocols must achieve their goals even in the
presence of adversaries that interfere with their execution. For example, the security of
protocols that use the Internet to communicate should not rely on the trustworthiness of
the service provider who controls the network infrastructure. Hence, most security protocols
employ cryptographic primitives such as hash functions, digital signatures, and encryption
to remove the need to trust the communication medium. The remaining challenge for the
security protocol designer consists of choosing the right primitives and using the primitives
correctly in the protocol. This is a hard problem since the designer has to balance efficiency,
simplicity, and different security goals. Therefore, a large number of security protocols
is proposed each year and many of them contain flaws. This includes newly published
protocols [57], standardized protocols [42, 23], and protocols with large-scale deployment
[82, 12, 167]. In practice, protocol design is therefore often an iterative process where new
attacks are discovered and the protocol is then modified to resist these attacks.

As shown by Lowe [115] who discovered an attack on the Needham-Schroeder pro-
tocol [134] that was unknown for 10 years, it is often unclear if all possible attacks have
been considered. It is therefore desirable to perform the following steps:

1. Make all assumptions about the capabilities of the adversary explicit and give a com-
plete specification of the protocol and the desired security property.

2. Prove that the specified protocol achieves the specified security property as long as the
assumptions on the adversary hold.

This allows the protocol designer to obtain a guarantee that the protocol is correct with
respect to the given specification and assumptions . Following this idea, two branches of
research, adopted by the cryptographic community and the formal methods community,
have emerged.
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The computational (or cryptographic) model represents messages by bitstrings and for-
malizes the protocol as a probabilistic polynomial-time Turing machine. The security of the
protocol is then defined in terms of a game, where an arbitrary probabilistic polynomial-
time Turing machine, which models the adversary, interacts with the protocol. The protocol
is secure if the probability of winning this game is negligible for all such adversaries.
Usually, the proof is performed by reduction to a problem that is assumed to be hard such
as factoring large composite integers. If there is an adversary that attacks the protocol with
non-negligible probability, then the adversary can be used to construct an efficient solver for
the hard problem, which was assumed to be infeasible. These proofs are usually long and
intricate and many published proofs are incomplete or do not make all assumptions explicit
[113, 103, 127, 98]. Recently, machine-support for performing proofs in the computational
model has been developed [19, 29], but the fully automated construction of such proofs for
security protocols is still out of reach.

The symbolic (or formal) model introduced by Dolev and Yao [69] models messages by
terms in a term algebra and the possible operations on messages by message deduction
rules. For example, enc(m, k) represents the encryption of the message represented by
the term m with the key represented by the term k. This term can then be used as
follows to deduce new messages. It can be paired with other known messages, encrypted
with known keys, or, if the key k is known, m can be extracted. The assumption that an
encryption cannot be used in any other way is called the perfect cryptography assumption.
In symbolic models, different formalisms are used to specify protocols and to define their
possible executions. Usually, these formalisms use terms to denote the messages that a
protocol receives and sends on the network. Given a protocol, its executions are defined
as the possible interactions with an adversary that controls the network and deduces new
messages by applying message deduction rules. A protocol satisfies a security property,
such as secrecy of a certain message, if all its executions satisfy the property.

Compared to the computational model, the symbolic model abstracts away from many
details. On the one hand, this means that the symbolic model may miss attacks captured
by the computational model. On the other hand, the symbolic model is considerably simpler
and many practically relevant attacks are still captured by the symbolic model. Because of
the relative simplicity of the model, there are several tools [28, 62, 77] that perform fully
automated security proofs for a wide range of security protocols. Some of them also provide
counterexamples when the proof fails. The symbolic model is also a good fit for obtaining
meta-theoretical results about security protocols. Finally, it is also considerably simpler
to mechanize symbolic security proofs in a theorem prover to obtain machine-checked
proofs since no reasoning about bitstrings, computational complexity, and probabilities is
required.

1.1 Problems

Even though symbolic models models have been successfully applied to many different
application areas, there are still several types of security protocols that are outside the
scope of existing approaches. In this thesis, we focus on two such types of protocols. First,
there is no method that supports the fully automated, unbounded analysis of many recent
authenticated key exchange protocols with respect to their intended adversary models.
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Second, there is no general formal model (computational or symbolic) that supports rea-
soning about protocols that utilize and establish physical properties of nodes and their
environment. As an example of such a protocol, consider the protocol executed between an
electronic key and a car to establish the distance between the two. Moreover, we investigate
a third question in the symbolic setting: Which operations are required to allow two agents
to establish a key using an authentic (but not secret) channel?

1.1.1 Key Exchange Protocols and Compromising Adversaries

Authenticated key exchange (AKE) protocols are widely used components in modern net-
work infrastructures. They are often based on public-key infrastructures and their goal is to
authenticate the communication partners and to establish a shared symmetric session key
that can be used to secure further communication. Recent protocols are designed to achieve
these goals even in the presence of strong adversaries who can, under certain conditions,
reveal session keys, long-term private keys, and the randomness used by the participants.
For example, the NAXOS protocol [111] is designed to be secure in the extended Canetti-
Krawzyk (eCK) model [111] where only those combinations of reveals are forbidden that
directly lead to an attack on this protocol.

The main building block for most AKE protocols is Diffie-Hellman (DH) exponentiation
in a cyclic groupG of prime order p generated by a group element g, i.e.,G={gn|n∈N} and
gp=1. AKE protocols exploit equalities such as (gn)m=(gm)n that hold in all such groups
and that allow the participants to compute the same key in different ways. For instance,
in the Diffie-Hellman protocol [68], the participant A knows his private exponent a and
the public group element gb of the other participant B. Similarly, B knows b and ga. Then
both can compute gab as (gb)a and (ga)b. Attacks on AKE protocols also exploit equalities
that hold in such DH groups. Interestingly, many attacks are generic in the following sense.
They only use operations and equalities that hold in all DH groups and therefore work
independently of the concrete group used by the protocol.

AKE protocols and their adversary models are an active area of research [42, 59, 43,
58, 166]. Many protocols are proposed together with a pen and paper proof in the com-
putational model with respect to an adversary model adapted for the protocol under
consideration. The proofs are either just proof sketches or long and complicated and it
is hard to check if such a proof is correct or can be adapted to a modified adversary
model. Hence, it would be useful to have a tool that takes a specification of a protocol
and an adversary model and performs a fully automated search for a proof or a coun-
terexample in the symbolic model. Of course, the existence of a symbolic proof does not
rule out all attacks captured by the computational model. But with the right symbolic
model, a symbolic proof is still meaningful since it rules out a well-defined and relevant
class of attacks. Furthermore, a symbolic attack is also a computational attack and might
help to discover flawed computational proofs or help to fix the protocol or adversary model
before attempting a computational proof.

To perform automated symbolic analysis of such AKE protocols, we identify the following
requirements on the employed method:

1. The message theory must capture the required operations in DH groups and their
algebraic properties. This means at least exponentiation and the previously mentioned
equalities required to establish the shared key in the DH protocol must be captured.
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Additionally, it would be nice to handle inverses of exponents, which are used by some
protocols such as MTI/C0 [119]. Support for the addition of exponents and multiplica-
tion of DH group elements would further extend the scope to more protocols [113, 103].
Note that if more operations and equations are modeled, then more attacks are cap-
tured. This might be relevant even if the protocol under consideration does not employ
these operations directly.

2. To support the analysis of modern tripartite and identity-based AKE protocols, the
message theory should also support bilinear pairings.

3. Since the adversary models are defined by stateful queries such as
“SessionKeyReveal(s): If the session is completed, but unexpired, thenM obtains
the corresponding session key” [42],

it would be desirable if the method directly supports the modeling of state and reasoning
about state such as the status of a session.

4. Since the winning conditions for the adversary that capture the adversary model often
contain logical formulas with temporal statements such as

“[there must be a] Long-Term Key Reveal(B) before completion of the session” [110],
it would be desirable for the specification language to support such (temporal) formulas.

5. The method should support attack finding and proofs with respect to an unbounded
number of protocol sessions.

Requirements 1.–4. apply to the specification languages for protocol and property and to
the execution model. The usual way to support 1. and 2. is to represent cryptographic
messages by terms modulo an equational theory E that captures the required algebraic
properties. Requirement 5. applies to the method that is used to analyze protocols with
respect to an execution model that satisfies the other requirements. Since secrecy for an
unbounded number of sessions is already undecidable for simpler execution models [72],
the best we can hope for is to find proofs or attacks for many relevant examples. Given
requirement 5., we evaluate existing approaches for the automated unbounded analysis
of security protocols with respect to these requirements. The approaches can be roughly
assigned to three different groups which we consider separately.

The Horn-theory based approach [168] implemented in ProVerif [28] was originally
restricted to secrecy and similar properties that can be encoded as derivability in Horn
theories. Blanchet [30] extends the approach to support correspondence properties, which
can be used to formalize authentication properties such as injective agreement. Blanchet
et al. [31] also show how to support a restricted set of equational theories that does
not include associative and commutative operators. For DH, this approach supports a
model that captures exactly the equality (gx)y = (gy)x, but does not account for inverses
of exponents. Together, these extensions have been used in [1] to analyze AKE protocols
with respect to adversary models that account for session key compromise and long-term
key compromise. This work combines correspondence properties with ProVerif’s support for
phases and distinguishing between compromised and uncompromised sessions. It is unclear
how well this approach generalizes to more advanced adversary models such as eCK (with
perfect forward secrecy) because of the limited support for temporal statements in corre-
spondence properties and the limited support for non-monotonic state in ProVerif. Küsters
and Truderung [108, 109] later lift the previously described restriction on equational theo-
ries and show how ProVerif can be used to verify protocols with respect to XOR and a model
of Diffie-Hellman exponentiation with inverses. Pankova and Laud [138] have recently
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extended this approach with support for bilinear pairings. Unfortunately, these exten-
sions are not compatible with the support for correspondence properties and are therefore
restricted to authentication properties that can be encoded as derivability in Horn theories.

Maude-NPA [77] is based on backwards narrowing modulo an equational theory. Proto-
cols can be specified by linear role scripts and properties can be specified by characterizing
the attack states by symbolic terms. The backwards narrowing approach is very general
with respect to the supported equational theories and only requires an implementation
of equational unification to work. To achieve termination in bounded and unbounded
scenarios, the tool employs various state-space reduction techniques [78] that have to be
adapted for different equational theories. In [76], the Diffie-Hellman protocol is analyzed
with respect to the standard Dolev-Yao adversary and an equational theory that does not
account for inverses. We are not aware of any case studies that consider an equational
theory with inverses or advanced adversary models.

The Athena [162], Scyther [62], and CPSA [150] tools are all based on similar ideas. They
perform a complete search for attacks by representing attack states symbolically by the set
of events that must have occurred and the causal dependencies between these events. The
causal dependencies capture, for example, that a message must be known by the adversary
before it is received by the protocol. The search can terminate for two different reasons.
First, if all causal dependencies are satisfied, a ground attack trace (or bundle) can be
extracted from the symbolic state. Second, if some dependency cannot be satisfied, then
the attack state is not reachable and the security of the protocol has been proved. All three
tools only support linear role scripts and do not support equational theories. The tools all
support security properties of the form ∀xR .ϕ� ∃yR .ψ where ϕ is a conjunction of events
and ψ is a disjunction of events. Scyther has been extended [22] with support for numerous
compromising adversary models, but these are hardcoded and cannot be specified by the
user. We refer to Chapter 6 for a detailed discussion of existing approaches.

1.1.2 Impossibility of Key Establishment

Consider a pair (or more generally a group) of honest agents who have no shared secret,
but who can communicate over a public channel in the presence of a passive adversary.
Furthermore, assume that each agent can generate unguessable nonces, has access to public
information, and may use different cryptographic operators. Is it possible for these agents
to establish a shared secret?

There are of course many ways to answers this question positively. For example, if the
cryptographic operators include a public-key cryptosystem, an agent may simply send his
public key over the public channel. Any other agent could then encrypt a secret with the
public key that can be decrypted only by the agent holding the corresponding private key.
Similarly, if a multiplicative group is given for which the so called Diffie-Hellman problem
is hard, agents can use the Diffie-Hellman protocol to establish a shared secret. There
are also negative answers if the set of cryptographic operators is sufficiently restricted. In
particular, there is a folk theorem that no protocol exists if only symmetric encryption can
be used. However, to the best of our knowledge, no formal proof of this folk theorem has
previously been given.

Establishing impossibility results and developing related proof methods are of funda-
mental theoretical importance as they explain what cannot be achieved using cryptographic
operators, specified equationally. Practically, impossibility results delineate the solution
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space in protocol design and enable a more systematic approach to protocol development
by guiding the choice of cryptographic operators. This is especially relevant in resource
constrained scenarios, like with smartcards or sensor networks, where operations like public-
key cryptography are sometimes considered too expensive and should be avoided, where
possible.

1.1.3 Physical Protocols

The shrinking size of microprocessors combined with the ubiquity of wireless networks
and devices has led to new application areas for networked systems with novel security
requirements for the employed protocols. Whereas traditional security protocols are mainly
concerned with message secrecy or variants of authentication, new application areas often
call for new protocols that securely establish properties of the network environment. Exam-
ples include:

Physical Proximity. One node must prove to another node that a given value is a reliable
upper bound on the physical distance between them. Such protocols may use authenti-
cation patterns along with assumptions about the underlying communication medium
[34, 38, 92, 123, 151]. An important use-case for such protocols are contactless car entry
systems.

Secure Localization. A node must determine its true location in an adversarial setting
or make verifiable statements about its location by executing protocols with other nodes
[40, 105, 114, 156]. Secure localization and physical proximity verification protocols,
and attacks on them, have been implemented on RFID, smart cards, and Ultra-Wide
Band platforms [71, 153, 151].

Secure Time Synchronization. A node must securely synchronize its clock to the clock
of another trusted node in an adversarial setting [84, 164].

Secure Neighbor Discovery or Verification. A node must determine or verify its
direct communication partners within a communication network [139]. Reliable infor-
mation about the topology of a network is essential for all routing protocols.

What these examples have in common is that they all concern physical properties of the
communication medium or the environment in which the nodes live. Furthermore, standard
symbolic protocol models based on the Dolev-Yao intruder lack the required features to
formalize these protocols:

1. They do not model global time and local clocks that can be accessed by nodes and
deviate from the global time.

2. They do not reflect the location of nodes and the distance between nodes induced by
their locations.

3. They do not reflect the network topology which characterizes possible communication
between nodes and lower bounds on message transmission times.

4. They do not support a distributed intruder. If location and communication abilities
of individual nodes are reflected in a model, then this implies certain bounds on the
exchange of information between nodes. Since these bounds should also apply to the
intruder, e.g., the intruder cannot transfer knowledge instantaneously from one location
to another, we cannot collapse all intruders into one intruder.
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There are some models that account for one of these aspects, but none that capture all of
them. Again, we refer to Chapter 6 for a detailed discussion of existing approaches.

1.2 Contributions

To address the three problems described in the previous section this thesis presents the
following contributions.

1.2.1 Automated Protocol Analysis

Starting with an expressive and general security protocol model where protocol and adver-
sary are specified as multiset rewriting rules, security properties are specified as first-order
trace-formulas, and executions are defined by multiset rewriting modulo an equational
theory, we present four contributions. First, we demonstrate that such a model is well-
suited for the formalization of AKE protocols and their adversary models. Second, we give
a verification theory based on an alternative representation of executions that reduces the
search space and allows for a compact symbolic representation of executions by constraints.
Third, we give a sound and complete constraint solving algorithm for the falsification and
unbounded verification of protocols with respect to our model. Fourth, we implemented our
algorithm in a tool, the Tamarin prover [126], and validated its effectiveness on a number
of case studies.

Our security protocol model uses an equational theory E to specify the considered crypto-
graphic operators, their properties, and the message deduction capabilities of the adversary.
We support the disjoint combination of a subterm-convergent theory and a theory that
models DH exponentiation with inverses, and bilinear pairings. To specify the protocol
and adversary capabilities, we use a labeled multiset rewriting system S with support for
fresh name generation and persistent facts. The traces are then defined by labeled multiset
rewriting modulo E with S. In our setting, a trace is a sequence of sets of facts. Traces
that satisfy a given security property are then characterized by first-order formulas built
over the predicate symbols f@ i (fact f occurs in the trace at position i), i≺ j (timepoint
i is smaller than timepoint j), and t≈ s ( t=E s for terms t and s). We support arbitrary
nesting of quantifiers and quantification over messages and timepoints, but all quantified
variables must be guarded by atoms [7].

We show that our model allows for a natural formalization of a wide range of protocols
and adversary models. For example, we present models for NAXOS [111] security in the
eCK model [111], perfect forward secrecy of the Joux tripartite key exchange protocol [97],
and security of the RYY protocol [155] under session key reveals and long-term key reveals.

The main result of our verification theory is that instead of defining executions via
multiset rewriting modulo E with S, we can use an alternative definition based on E
and S that reduces the search space and simplifies the symbolic representation of our
search-state by constraints. To arrive at this alternative definition, we perform a series of
reduction steps which preserves the set of traces. First, we switch from multiset rewriting
derivations to dependency graphs, a representation that uses sequences of multiset rewriting
rule instances and causal dependencies between generated and consumed facts, similar to
strand spaces [83]. Second, we decompose E into a rewrite system R and an equational
theoryAX (that contains no cancellation rules) such thatR,AX has the finite variant prop-
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erty. This allows us to replace S by its set of R,AX -variants and use dependency graphs
modulo AX . Third, we partition the message deduction rules into deconstruction and
construction rules, which is possible since we now use R,AX -variants, to apply the notion
of normal proofs [146, 48] to message deduction in dependency graphs. After extending
this notion from proof trees to proof graphs and from the standard Dolev-Yao operators to
DH exponentiation and bilinear pairings, we show that we can restrict ourselves to normal
dependency graphs in our search since normal message deduction is complete.

Our constraint solving algorithm takes a security property ϕ and a protocol P and per-
forms a complete search for counterexamples to ϕ that are also traces of P . Our algorithm
exploits the results from our verification theory and searches for normal dependency graphs
modulo AX . We give a full proof of soundness and completeness of the constraint solving
rules and also show that we can extract an attack if we reach a solved constraint system.

We show that despite the undecidability of the problem, Tamarin performs well: For
non-trivial AKE protocols and adversary models from the literature, it terminates in the
vast majority of cases. For most 2-round AKE protocols and their intended adversary
models, the times for falsification and unbounded verification are in the range of a few
seconds. For more complicated models including multi-protocol scenarios, tripartite AKE
protocols, and identity-based AKE protocols, Tamarin terminates in under two minutes.

1.2.2 Impossibility Results for Key Establishment

We present a formal framework to prove impossibility results for secret establishment
for arbitrary cryptographic operators in the symbolic setting. We model messages and
operations by equational theories and communication by traces of events as is standard in
symbolic protocol analysis. The initial question of whether it is possible for two agents to
establish a shared secret therefore reduces to the question: Is there a valid trace where two
agents end up sharing a message that cannot be deduced from the exchanged messages?

We start by applying our framework to the equational theory that models symmetric
encryption and prove the folk theorem that secret establishment is impossible in this set-
ting. It turns out that symmetric encryption is actually an instance of the more general case
where the properties of the involved operators can be described by a subterm-convergent
theory. For this general class of equational theories, we present a necessary and sufficient
condition for the possibility of secret establishment based on labelings of the equations.
This directly yields a decision procedure that either returns a labeling that corresponds to
a trace where two agents establish a shared secret or returns “impossible” if there is none.
For an equational theory that models a public-key cryptosystem, the labeling returned
corresponds to the message exchange previously mentioned where the secret is encrypted
using the public key previously exchanged. Afterwards, we consider monoidal theories.
First, we show that secret establishment is impossible for the subset of group theories
which includes theories that model XOR and abelian groups. For the remaining monoidal
theories that are usually considered in the setting of security protocol analysis, we either
exhibit a protocol from the literature that can be used to establish a shared secret or give
a separate proof that secret establishment is impossible. This includes theories that model
multisets and sets. Monoidal theories are not subterm-convergent since they define asso-
ciative and commutative operators. Therefore, we use algebraic methods that exploit the
isomorphisms between the term algebras modulo the equational theory and the standard
algebraic structure of a (semi)ring.
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The above results are for theories in isolation. We also investigate the problem of com-
bining theories and prove a combination result for disjoint theories: Secret establishment
in the combination of the theories is possible if and only if it is already possible for one
of the individual theories alone. This allows for modular proofs where separate results
are combined. For example, we prove this way that secret establishment is impossible for
symmetric encryption together with XOR.

1.2.3 Interactive Analysis of Physical Protocols

We present a formal model for reasoning about security guarantees of physical protocols
like those listed earlier. Our model builds on standard symbolic approaches and accounts
for physical properties like time, the location of network nodes, and properties of the
communication medium. Honest agents and the intruder are modeled as network nodes.
The intruder, in particular, is not modeled as a single entity but rather as a distributed one
and therefore corresponds to a set of nodes. The ability of the nodes to communicate and
the speed of communication are determined by nodes’ locations and by the propagation
delays of the communication technologies they use. As a consequence, nodes (both honest
and those controlled by the intruder) require time to share their knowledge and information
that they exchange cannot travel between nodes at speeds faster than the speed of light.
The intruder and honest agents are therefore subject to physical restrictions. This results
in a distributed intruder with communication abilities that are restricted, but more realistic
than those of the classical Dolev-Yao intruder.

Our model bridges the gap between informal approaches used to analyze physical proto-
cols for wireless networks and the formal approaches taken for security protocol analysis.
Informal approaches typically demonstrate the absence of a given set of attacks, rather
than proving that the protocol works correctly in the presence of an active adversary
taking arbitrary actions. In contrast, existing formal approaches fail to capture the details
necessary to model physical protocols and their intended properties. To bridge this gap, our
model formalizes an operational, trace-based semantics of security protocols that accounts
for time, location, network topology, and distributed intruders. To model cryptographic
operators and message derivability, we reuse Paulson’s [140] message theory based on the
perfect cryptography assumption and extend it with XOR.

In what follows, we explain our contributions in more detail. First, we give a novel
operational semantics that captures the essential physical properties of space and time and
thereby supports natural formalizations of many physical protocols and their corresponding
security properties. For example, properties may be stated in terms of the relative distance
between nodes, the locations of nodes, and the times associated with the occurrence of
events. Moreover, protocols can compute with, and base decisions upon, these quantities.
To obtain a realistic model of the communication technology used, for example, by distance
bounding protocols, our operational semantics accounts for the modification of messages
that are in transmission. More precisely, we account for the following concrete scenarios.
We allow the intruder to overshadow individual components of a concatenation by known
messages. Additionally, we account for the non-negligible probability of flipping a low
number of bits in an unknown message m by randomly sending data. This allows the
adversary to modify the original message m into a close message m′, with respect to the
Hamming-distance.
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Second, despite its expressiveness, our operational semantics is still simple and abstract
enough to allow its complete formalization. We have formalized our model in Isabelle/HOL
and used it to formally derive both protocol-independent and protocol-specific properties,
directly from the semantics. Protocol-independent properties formalize properties of com-
munication and cryptography, independent of any given protocol. For example, it follows
from our operational semantics that there are no collisions for randomly chosen nonces and
that communication cannot travel faster than the speed of light. This allows us to prove in
a protocol-independent way a lower bound on the time until an adversary learns a nonce
depending on his distance to the node generating the nonce. We use these properties, in
turn, to prove protocols correct or to uncover weaknesses or missing assumptions through
unprovable subgoals.

Third, we show that our approach is viable for the mechanized analysis of a range
of wireless protocols. We demonstrate this by providing four case studies that highlight
different features of the model:

• Our formalization of an authenticated ranging protocol shows how time-of-flight mea-
surements of signals relate to physical distances between nodes. Additionally, the model
has to account for local computation times which are included in protocol messages.

• Our formalization of an ultrasound distance bounding protocol demonstrates how the
model accounts for transceivers that employ different communication technologies and
their interaction. Furthermore, the example shows how our notion of location can be
used to formalize private space assumptions.

• Our formalization of a secure time synchronization protocol illustrates how we can
model relations between local clock offsets of different nodes. It also shows how bounds
on the message transmission time can be specified.

• Our formalization of the Brands-Chaum distance bounding protocol [34] demonstrates
the usage of XOR and why the model accounts for overshadowing. We present an attack
on the protocol and various flawed and successful fixes.

Finally, we discuss how our security property for distance bounding protocols captures
a new class of attacks that is relevant in practical scenarios, but has previously been
overlooked by informal approaches. Consequently, we were the first to discover such an
attack on a distance bounding protocol by Meadows et al. [123].
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1.3 Outline

Chapter 2. Presents background on security protocols, some mathematical preliminaries,
and background on term rewriting.
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Automated analysis of Diffie-Hellman protocols and advanced security properties.
With Simon Meier, Cas Cremers and David A. Basin.
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Chapter 4. Describes the impossibility results for key establishment. The chapter is based
on joint work and generalizes the impossibility results for XOR and abelian groups to
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Impossibility results for secret establishment.
With Patrick Schaller and David Basin.
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2010 , pages 261–273. IEEE Computer Society, 2010.

Chapter 5. Describes the framework for physical protocols and the case studies. This is
joint work that has been published in:

Modeling and verifying physical properties of security protocols for wireless networks.
With Patrick Schaller, David Basin, and Srdjan Capkun.
In Proceedings of the 22nd IEEE Computer Security Foundations Symposium, CSF
2009 , pages 109–123. IEEE Computer Society, 2009.

Let’s get physical: models and methods for real-world security protocols.
With David Basin, Srdjan Capkun, and Patrick Schaller.
In Theorem Proving in Higher Order Logics (TPHOLs), pages 1–22. 2009 (invited
paper).

Formal reasoning about physical properties of security protocols.
With David Basin, Srdjan Capkun, and Patrick Schaller.
In ACM Transactions on Information and System Security (TISSEC), 14(2):16, 2011.

Distance Hijacking Attacks on distance bounding protocols.
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Chapter 6. Summarizes the related work and compares it to the contributions of this
thesis.
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Chapter 2

Background

In this chapter, we present background on security protocols and technical background. For
security protocols, we focus on authenticated key exchange protocols and physical proto-
cols. The technical background consists of the mathematical preliminaries, a short introduc-
tion to term rewriting, and a short introduction to Isabelle/HOL [136] and Paulson’s
inductive approach to protocol verification [140].

2.1 Security Protocols

In this section, we first introduce the classical Dolev-Yao model for security protocols. Then
we present key exchange protocols based on Diffie-Hellman exponentiation and bilinear
pairings and their desired security properties. Finally, we introduce physical protocols such
as authenticated ranging and distance bounding protocols.

2.1.1 Classical Security Protocols and the Dolev-Yao Adversary

A security protocol is a distributed program that is executed by different entities called
agents that exchange messages. The goal of a security protocol is to achieve a certain
objective, even in the presence of external or internal attackers that do not follow the
rules of the protocol. For example, the goal of a security protocol could be to enable
the participants to agree on a secret without revealing it to non-participants. A security
protocol is usually split into multiple roles such as initiator and responder. Each role
specifies the actions of the agent executing the role. The set of possible actions usually
includes sampling random values, applying cryptographic operators, sending messages, and
receiving messages.

As an example, consider the simple challenge-response protocol given in Figure 2.1. The
protocol consists of two roles A and B whose actions are given on the left and right side
of the figure. The arrows in the middle depict the exchanged messages. Note that we use
the roles A and B as placeholders for the agents executing the roles in the specification of
the messages. An agent A executing an instance of the role A that intends to execute the
protocol with an agent B executing role B proceeds as follows. First, he chooses a fresh
nonce na and encrypts the nonce with B’s public key sending the result to B. Then, he
waits for a response by B. If the response is equal to the hash of na, he successfully finishes
the protocol. Otherwise, the protocol execution fails. An agent B executing an instance
of the role B receives a message from A and tries to decrypt the message with his secret
key skB. If the decryption succeeds, he applies a hash function to the resulting cleartext
and sends this message back to A. We call an instance of a protocol role executed by some
agent a session . We call the intended communication partner of a session the peer .
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Figure 2.1. A simple challenge-response protocol.

Even though the figure suggests that the message exchange betweenA and B is authentic,
protocols are often analyzed in an open network where this is not the case. For example,
many symbolic approaches analyze security protocols with respect to the so called Dolev-
Yao model [69] which is based on the following three assumptions:

1. Each agent can simultaneously execute an arbitrary number of sessions of the protocol
under consideration, possibly executing different roles with different parameters at the
same time.

2. The perfect cryptography assumption is employed. This means that cryptographic oper-
ators are modeled by a term algebra and only a fixed set of operations can be used to
deduce new messages from known messages. For example, given a ciphertext, the only
way to recover the plaintext is to perform decryption with the right key. Furthermore,
the set of agents is partitioned into honest agents and dishonest agents. The long-term
keys of honest agents are assumed to be secret and the long-term keys of dishonest
agents are known to the adversary.

3. With respect to the network, the strongest possible adversary is assumed. The Dolev-
Yao model identifies the network and the adversary. This means the adversary receives
all messages sent by other agents and agents can only receive messages from the adver-
sary. Here, the adversary is allowed to send any message that is deducible from received
messages and from his initial knowledge.

Session 1 (R1)
actor C1

peer D1

Session 2 (R2)
actor C2

peer D2




Session k (Rk)
actor Ck
peer Dk

↑↓ ↑↓ ↑↓

Adversary

Figure 2.2. Protocol execution in the Dolev-Yao model.

Figure 2.2 depicts a protocol execution in the Dolev-Yao model. Different protocol ses-
sions receive messages from the adversary and send messages to the adversary. There is
no guarantee that the sessions match up, i.e., that the communication patterns correspond
to the desired ones. The adversary can delete, modify, replay, and forward messages from
different sessions. The goal of a security protocol is often to prevent such undesired behav-
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iors. An authentication property ensures that if a protocol session finishes successfully under
certain conditions, then there is another session that agrees on certain parameters such
as the participants and the exchanged messages. Authentication properties are often used
together with secrecy properties that guarantee that the adversary cannot learn certain
protocol data.

Consider the simple challenge-response protocol from Figure 2.1. Here, an honest agent A
executing role A with an honest peer B obtains two guarantees after successfully finishing
the protocol. First, B executes a session of the role B that sends the response after A sent
the challenge and before A receives the response. Second, the nonce na is known to B and
not known to any other agents. From the perspective of B, there are no useful guarantees
since the adversary can always fake the message encpkB

(na).

2.1.2 Key Exchange Protocols and Compromising Adversaries

In this section, we discuss the mathematical primitives employed by most authenticated
key exchange (AKE) protocols, the signed Diffie-Hellman protocol, the Unified Model (UM)
protocol, and the extended Canetti-Krawczyk adversary model for AKE protocols.

2.1.2.1 Diffie-Hellman Exponentiation

In the following, we consider a cyclic group G = 〈g〉 of prime order p. For n ∈ N, gn

denotes the n-fold product
∏

i=1

n
g of g. Since gp = 1, we can consider the exponents as

elements of Zp, the integers modulo p. We are interested in such groups, where, given gn

and gm for randomly chosen n and m, it is hard to compute gnm. This problem is called
the computational Diffie-Hellman (CDH) problem . The hardness of the CDH problem
implies the hardness of the discrete logarithm (DL) problem, which states that it is hard
to compute n from gn for a random n. In the following, we call a group as described above
a Diffie-Hellman (DH) group. It is easy to see that the equality (gn)m= gnm=(gm)n holds
in all DH groups. This equality states that exponentiation with n and exponentiation with
m commute and it is the basis of the Diffie-Hellman Key Exchange protocol.

2.1.2.2 Diffie-Hellman Key Exchange Protocol

The basic DH protocol proposed by Diffie and Hellman [68] in 1976 is the first realistic pro-
tocol that allows two agents to establish a shared secret over an authentic (not confidential)
channel without sharing any information beforehand. In Figure 2.3, we show a variant of
the DH protocol that establishes a shared key between two agents. The SIGDH protocol
uses signatures to support insecure channels. We assume that before starting the protocol,
A knows his own signing key skA and B’s signature verification key pkB and we have
analogous assumptions on B’s knowledge. To initiate the protocol, A chooses the responder
B and a random exponent x ∈ Zp. This exponent is often called the ephemeral private
key of the given session. The group element gx which is sent to B is the corresponding
ephemeral public key . To proceed, A signs the concatenation of B’s identity and gx with his
signing key and sends the resulting message to B. When B receives the message from A,
he verifies the signature and stores the received ephemeral public key X. Then, he chooses
a random exponent y ∈ Zp and replies with the concatenation of gy and a signature on
the concatenation of A’s identity and gy. A verifies the signature and stores the received
group element as Y . Now, both can compute the shared key h(gxy) as h(Y x) and h(X y).
The value gxy is often called ephemeral DH key .
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A B
signature keys: (skA, pkA) signature keys: (skB, pkB)
choose random exponent x

X7 gx, σA: =sigskA
(〈B ,X 〉)�

〈X,σA〉
check signature σA
choose random exponent y
Y 7 gy, σB7 sigskB

(〈A, Y 〉)

check signature σB �

〈Y ,σB〉

compute key h(Y x) compute key h(X y)

Figure 2.3. The SIGDH protocol.

In the classical Dolev-Yao model, the protocol satisfies the following security property:
If both the actor and the peer are honest and successfully execute the protocol, then they
agree on the participants and the key. Additionally, the key is secret. We can also include
the roles in the signatures to enforce agreement on the roles.

In many settings, it makes sense to consider a stronger adversary. For example, an
adversary may learn the long-term secrets of one or both participants after the session is
finished. It may also be possible for an adversary to learn the ephemeral secret keys of some
sessions, e.g., by performing side-channel attacks during the computation of the ephemeral
public key or because the random generator of a participant is broken. It is also important
to consider the loss of unrelated session keys. These considerations have led to several
additional security requirements. The main objective in the design of AKE protocols is to
obtain protocols that are resilient to such threats while achieving good performance and
remaining simple to understand and analyze.

At first, the following additional attacks and requirements have been considered in addi-
tion to the security property described above.

Unknown Key Share (UKS) Attack. An agent A establishes a key with an honest
agent B, but B thinks that he shares this key with a (possibly dishonest) C � A.

Key Compromise Impersonation (KCI) Resilience. Even if the long-term key of A
has leaked, the adversary cannot impersonate an honest agent B to A.

Perfect Forward Secrecy (PFS). If the long-term keys of both participants leak after
the session key is established, the session key still remains secret.

The SIGDH protocol is resilient against UKS and KCI attacks and also provides PFS.
But if one ephemeral private key x of A leaks, the adversary can reuse the signature and
establish a key with an arbitrary B impersonating A repeatedly. In Section 2.1.2.4, we will
present a game-based security definition that unifies all these scenarios and also implies
resistance against other types of attacks.

2.1.2.3 The UM protocol

The Unified Model (UM ) protocol [93] has been designed as an improved version of the
original Diffie-Hellman protocol. The protocol does not use signatures and provides implicit
key authentication. This means that if A assumes that he shares a key k with B and the
adversary did not learn any forbidden secrets, then B is the only agent who can compute
the key k.
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Before starting the UM protocol, the agents A and B know their own long-term private

key a (respectively b) and the other agent’s long-term public key B̂ = gb (respectively
Â= ga). In the first step, A chooses his ephemeral private key x and sends gx to B. Then,
B receives the message from A as X and chooses his own ephemeral private key y. He
then sends gy to A and computes his key. A receives the message from B as Y and also
computes the key. The shared key is h(gab, gxy ,A,B,X , Y ), i.e., the hash of the static DH
key, the ephemeral DH key, the identities of both participants, and the exchanged messages.

A B

long-term key pair:
(

a, Â = ga
)

long-term key pair:
(

b, B̂ = gb
)

choose random exponent x

X7 gx �

X

choose random exponent y
Y 7 gy

�

Y

compute key h
(

B̂
a
, Y x,A,B ,X , Y

)

compute key h
(

Âb
, X y ,A,B ,X , Y

)

Figure 2.4. The UM protocol.

Note that the UM protocol provides resilience against leakage of ephemeral keys in
certain scenarios where the SIGDH protocol does not. For example, even if x and y are
revealed, the adversary cannot compute gab which is required as input to the hash function.
As the SIGDH protocol, the UM protocol is resilient against UKS attacks. This is ensured
by including the identities as inputs to the hash function. Unlike the SIGDH protocol, the
UM protocol is not resilient against KCI attacks and does not provide PFS. To attack KCI,
an adversary can use a to compute gab from B’s public key and impersonate B to A. To
attack PFS, the adversary can send gz to B and reveal b after B has accepted the session
key h(gab, gyz ,A,B,X ,Y ). Then, the adversary can compute the session key using Â, Y , b,
and z. A similar generic attack which works for all two-round protocols that do not use the
long-term private keys in the computation of the ephemeral public keys has been described
in [103]. This attack can be prevented for UM by key confirmation messages where both
participants prove that they can compute the session key and agree on it. The resulting
protocol has three rounds instead of two. Note that the original UM protocol does not
include the exchanged messages and identities in the key derivation function. But adding
these is a common protocol transformation to achieve resistance against certain types of
attacks, see [26, 95, 96, 128]. We use a one-pass version of the UM protocol as a running
example in Chapter 3 and analyze the security properties achieved by the UM protocol in
its different versions with our Tamarin tool in Section 3.5.

2.1.2.4 The eCK Model

The eCK security model [111] is defined in terms of a game played between the adversary
and a challenger. The adversary is given access to a finite number of protocol oracles Πt

indexed by integers t which we call the (external) session identifiers. We assume that each
oracle Πt models a protocol execution by an actor A chosen from a fixed set of agents A.
We denote the actor of the session t with tactor. We use trole∈{A,B,⊥} to denote t’s role,

2.1 Security Protocols

29



tpeer ∈ A ∪ {⊥} to denote t’s peer, and tsent, treceived ∈ ({0, 1}∗)∗ to denote t’s exchanged
messages. The ⊥ is used to denote that the corresponding value is not determined yet. In
addition to the protocol oracles, the challenger also maintains a mapping from identities
to long-term keys that is used by the protocol oracles.

Queries. The adversary can perform the following queries on the challenger:

− Start(t, R, B): The oracle Πt starts role R with peer B. The execution proceeds until
Πt waits for a message, fails, or accepts a session key. This query returns all messages
sent by the session in the activation and a value that denotes if the session waits for
another message, failed, or accepted a session key.

− Send(t,m): If Πt waits for the reception of a message, then the message m is delivered
to Πt. The execution then proceeds until Πt waits for a message, fails, or accepts a
session key. This query returns all messages sent by the session in the activation and a
value that denotes if the session waits for another message, failed, or accepted a session
key.

− RevealEphk(t): This query returns the ephemeral private key of Πt.

− RevealSessk(t): If t has accepted a session key k, this query returns k. Otherwise, it fails.

− RevealLtk(A): This query returns the long-term private key of agent A.

− Test(t): This query designates the session t as the test session. If t has accepted a
session key k, then the challenger flips a bit bC and returns k if bC = 0 and a random
bitstring of the right length otherwise. If t has not accepted or there is already a test
session, the query fails.

We also assume that the adversary can query the challenger for the public keys of agents.

Clean sessions. For a given test session t, certain queries are forbidden to the adversary.
To define the forbidden queries, we first define matching sessions. A session t matches a
session t

′

if {trole, trole
′ }= {A, B} and (tactor, tpeer, tsent, treceived) = (tpeer

′ , tactor
′ , treceived

′ , tsent
′ ).

A session t is clean if none of the following happened.

1. The adversary has performed RevealSessk(t).

2. The adversary has performed RevealLtk(tactor) and RevealEphk(t).

3. There is a matching session t′ and

a) the adversary has performed RevealSessk(t′), or

b) the adversary has performed RevealLtk(tactor
′ ) and RevealEphk(t′).

4. There is no matching session and the adversary has performed RevealLtk(tpeer).

Game and Advantage. The eCK game is defined such that the adversary interacts with
the challenger and outputs a bit bA. The adversary wins if he successfully issued the query
Test(t), the test session t is clean, and bC = bA. The advantage for a given adversaryM is

defined as Adv eCK
Π (M) =

∣

∣Pr [M wins the game]− 1

2

∣

∣ where the probability is taken over

the random choices of the challenger and M. The advantage denotes how much better
M is than an adversary that simply guesses bC. A protocol Π is defined as eCK-secure if
matching sessions compute the same key and the advantage for all adversaries is negligible
in the security parameter k. The first condition ensures that if the adversary is passive,
then the participants compute the same key. The second condition formalizes the secrecy
of the session key. There is no way for the adversary to distinguish the real session key
from a random session key.
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Discussion. The eCK model captures UKS attacks, i.e., all protocols that are secure in
the eCK model are resilient against UKS attacks as defined earlier. To see why this holds,
consider the case where A thinks he is sharing a key k with B and B thinks he shares the
same key k with C � A. Then these sessions are not matching and the adversary can choose
A’s session as the test session and reveal the session key of B’s session to win the game.
KCI attacks are also captured since the long-term key of the test session’s actor can be
revealed as long as the ephemeral key is not revealed. The eCK model does not capture PFS
since secrecy of the test session’s key in the case where both long-term keys are revealed is
only guaranteed for the case captured by (3.), but not for case captured by (4.). If there is
no matching session, i.e., if the adversary was not passive with respect to the test session,
the long-term key of the peer can never be revealed. This notion is often called weak PFS
(wPFS). If PFS is desired, the strengthened variant eCKPFS [110] of the eCK model can
be obtained by replacing (4.) with the following condition.

4. There is no matching session and the adversary has performed RevealLtk(tpeer) before
the session t has accepted.

Here, PFS is captured since in both cases (3.) and (4.), the long-term keys of the test
session’s actor and peer can be revealed after the test session has accepted the session key.

The first protocol proved secure in the eCK model was the NAXOS protocol [111]. We
formalize NAXOS security in a symbolic version of the eCK model in Section 3.5.2 and use
Tamarin to obtain an unbounded security proof. We also use Tamarin to find an attack
on NAXOS in the eCKPFS model.

2.1.3 Tripartite and Identity-Based Key Exchange Protocols

In this section, we first present the mathematical primitives employed by many tripartite
and identity-based key exchange protocols. Then, we consider the Joux protocol and the
RYY protocol as examples of such protocols.

2.1.3.1 Bilinear Pairings

We assume given two DH groupsG1=〈P 〉 andG2= 〈g〉 of the same prime order p. We write
G1 as an additive group andG2 as a multiplicative group. All elements ofG1 can be written
as [n]P and all elements ofG2 can be written as gn where n∈Zp in both cases. Here, [n]P
denotes the n-fold sum Σi=1

n P of P . The additive groupG1 is usually an elliptic curve group
and [n]P is also called multiplication of the point P with the scalar n. The multiplicative
group G2 is usually a subgroup of the multiplicative group of a finite field Fql for a prime q.

We assume that there is a map ê :G1×G1→G2 such that ê([n]P , [m]P ) = ê(P , P )nm,
i.e., it is bilinear. Note that this implies that ê(R, S) = ê(S, R) for all R, S ∈ G1.
We also assume that the map is non-degenerate, i.e., ê(P , P ) is a generator of G2. We
call such a map a bilinear pairing. Such maps have proved very useful in the design of
cryptographic primitives and key exchange protocols. For example, the first identity-based
encryption scheme was based on bilinear pairings. In the design of key agreement protocols,
bilinear pairings are mostly used for tripartite key exchange protocols and identity-based
key exchange protocols.

2.1.3.2 Tripartite Key Agreement and the Joux Protocol

The goal of a tripartite key exchange protocol is to establish a key that is shared between
three agents. There have been several protocols based on DH groups as shown before, but
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all of them require more than one round. The Joux protocol was the first single-round
protocol and uses bilinear pairings.

The Joux protocol with signatures shown in Figure 2.5 can be seen as a generalization
of the Diffie-Hellman protocol to three parties. Each party signs the concatenation of the
intended partners and his ephemeral public key [u]P for u∈{x, y, z}. Then, the ephemeral
public keys from the peers are received and combined using ê . The result is exponentiated
with the ephemeral private key to obtain the shared group element ê(P , P )xyz ∈ G2.
Finally, this group element is hashed together with the concatenation of the participating
agents (in the right order).

choose random scalar x

〈X,σ
A 〉 〈Y, σ

B
〉

〈Z, σC〉

A B

C

choose random scalar y
X7 [x]P Y 7 [y]P

σA: =sigskA
(〈B, C ,X 〉) σB: =sigskB

(〈A, C ,X 〉)
check σB and σC check σA and σC

key h(ê(Y ,Z)x,A,B, C) key h(ê(X,Z)y,A,B , C)

choose random scalar z
Z7 [z]P

σC: =sigskC
(〈A,B ,X 〉)

check σA and σC
key h(ê(X,Y )z,A,B , C)

Figure 2.5. The SIGJOUX protocol.

We formalize perfect forward secrecy of the SIGJOUX protocol in Section 3.4.2 and
perform an automated analysis with Tamarin in Section 3.5.

2.1.3.3 Identity-based Key Exchange and the RYY Protocol

The RYY protocol is an identity-based key exchange protocol that uses bilinear pair-
ings as described in the previous section. Additionally, we assume given a hash function
H : {0, 1}k→G1. The setting for this protocol is as follows. There is a key generation center
(KGC) that knows a master key s∈Zp. The public key for an arbitrary identity ID is just
H(ID). Hence, knowledge of the hash function H and the group G1 is sufficient to encrypt
messages for an arbitrary identity. The owner of the identity ID can obtain his private
key dID = [s]H(ID) from the KGC after proving that he is ID . Note that A and B can
compute a common key ê(H(A), dB) = ê(H(A), H(B))s = ê(dA, H(B)). To compute this
key, it is sufficient to know one of dA, dB, and s. This means that even when there is no
active attacker, the KGC can later decrypt all encrypted messages between A and B. To
achieve resilience against such attacks, the RYY protocol as shown in Figure 2.6 combines
the identity-based key computation with a standard Diffie-Hellman key exchange. The
resulting key is the hash of the identity-based key ê(H(B),H(A))s, the ephemeral DH key
gxy, the identities, and the exchanged messages.
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A B
long-term secret: dA = [s]H(A) long-term secret: dB = [s]H(B)
choose random exponent x

X7 gx �

X

choose random exponent y

�

Y
Y 7 gy

key h(Y x, ê(dA, H(B)),A,B ,X , Y ) key h(X y , ê(H(A), dB),A,B ,X , Y )

Figure 2.6. The RYY protocol with key derivation.

The RYY protocol can be considered an identity-based version of the UM protocol. We
formalize weak perfect forward secrecy of RYY and perform an automated analysis with
Tamarin in Section 3.5.

2.1.4 Physical Protocols

In this section, we describe two scenarios where physical properties of the environment
must be established securely. We then describe protocols to achieve these desired goals.

2.1.4.1 Scenario: Contactless Car Entry Systems

Modern cars commonly use contactless entry systems. The car doors are unlocked whenever
the corresponding key is sufficiently close to the car. The protocol executed between the
car and key establishes two facts. First, the protocol ensures that the car communicates
with the right key. This is a classical authentication property, which is usually ensured
by executing a protocol that uses a shared secret or public key cryptography. Second, the
protocol ensures that the key is sufficiently close to the car. Here, car manufacturers relied
on the limited communication range of the keys. The car can only communicate with the
key if it is sufficiently close. As shown in [82], such a protocol can be attacked by employing
a fake key that is close to the car and a leech that is close to the real key. The fake key
can initiate the protocol and relay all challenges from the car to the leech who queries the
real key for the responses.

Relay with cable and antennas.

Distance from 10 to 100 meters.

fake key

leech

Figure 2.7. Relay attack on contactless car entry system.
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This type of attack was first considered in [66] under the name Mafia fraud. In [34], an
attack scenario with fake ATMs is described. Here, a man-in-the-middle attack is employed
to forward the messages back and forth between the real ATM and the real card that is
inserted into the fake ATM.

2.1.4.2 Authenticated Ranging Protocols

To establish the required facts for a contactless car entry system, an authenticated ranging
protocol can be used. An authenticated ranging protocol is executed between a verifier V
and a prover P . The goal of the protocol is for the verifier V to establish an upper bound
on the distance to an honest prover P . Most protocols that achieve authenticated ranging
are based on roundtrip-time measurements by the verifier. In the previous example, the car
would be the verifier and the key would be the prover. After establishing an upper bound
on the distance to the key, the car would decide if the key is close enough to unlock the
door. Figure 2.8 shows an example protocol. Here, V send a fresh nonce nv as a challenge

at time tS
V. The prover P notes the time tR

P when he received the challenge and decides on
a time tS

P when to send the response, based on the required computation time. Then, P
computes a signature on the challenge nv and the computation delay tS

P− tR
P, which he sends

back to V at time tS
P. V notes the reception time tR

V , checks the signature, and computes
the upper bound on the distance as (tR

V − tS
V− δ)∗ c

2
, where c is the speed of light. Since the

adversary can delay the transmissions, but not speed up the transmissions with respect to
the assumed line-of-sight transmission with speed of light, the computed value is an upper
bound on the distance.

V (Verifier) P (Prover)

choose fresh nonce nv

tS
V
7 readClock() �

nv
tR
P
7 readClock()

set δ7 tS
P− tR

P

compute sig(〈nv , δ〉, skP)

tR
V
7 readClock() �

sig(〈nv ,δ〉,skP)
send at tS

P

check signature

Conclude that |locV− locP| ≤ (tR
V − tS

V− δ)∗ c
2

Figure 2.8. Authenticated Ranging Protocol.

2.1.4.3 Scenario: Location-Based Access Control

Consider now a slightly different scenario where wireless access to sensitive data is con-
trolled by the following access control policy. First, the user, identified by a shared secret or
as the holder of a certain private key, must be allowed to access the data. Second, the user
must be located in a certain building to access the data. Access to the building is secured
by guards who check the identity of the user. In contrast to an access control policy that
only takes the first condition into account, this policy also tolerates the loss of key material
to outsiders that cannot gain access to the building. This is the main difference to the
previous scenario where the owner of the real key (material) is always assumed to be honest.
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Access allowed

Access denied

Entry to building

physically secured

Figure 2.9. Location based access control to sensitive data.

2.1.4.4 Distance Bounding Protocols

For the location-based access control scenario, an authenticated ranging protocol is not the
right choice. For example, consider the protocol from Figure 2.8. An outsider who knows
the signing key of an authorized user can simply increase δ to appear closer to the verifier
than he really is. To handle this additional scenario, distance bounding protocols have been
introduced in [34]. Usually, the following two types of attacks have been considered in
addition to Mafia fraud. In a distance fraud , a lone dishonest prover claims to be closer to
the verifier than he really is. Later on, resistance against terrorist fraud [67] has also been
stated as a desirable goal. Here a dishonest prover P helps another dishonest prover P ′

to appear closer than he really is. Since P ′ does not trust P , P ′ is not allowed to give up
his long-term keys to P or even help P in future fraud attempts, depending on the exact
definition of terrorist fraud. A formal computational definition of terrorist fraud is given
in [81] and several protocols are investigated with respect to this notion in [74]. Since no
published protocol is secure with respect to this definition, it is still an open question if
this computational definition is the right one.

2.2 Notational Preliminaries

In the following, we use the following mathematical notation. We use S∗ to denote the set
of sequences over S. For a sequence s, we write si for the i-th element, |s| for the length
of s, and idx (s) = {1,	 , |s|} for the set of indices of s. We write sR to emphasize that s is
a sequence. We use [ ] to denote the empty sequence, [s1, 	 , sk] to denote the sequence s
where |s|= k, and s · s′ to denote the concatenation of the sequences s and s′. S ♯ denotes
the set of finite multisets with elements from S. We annotate the usual set operations with
♯ to denote the corresponding multiset operations, e.g., we use ∪♯ to denote multiset-union.
For a sequence s, mset(s) denotes the corresponding multiset and set(s) the corresponding
set. For a function f , we write f [a� b] to denote the function that maps a to b and c to
f(c), for all c � a. For a relation → with →⊆S × S, we use →+ to denote the transitive
closure and →∗ to denote the transitive-reflexive closure.
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2.3 Term Rewriting

As previously stated, we abstract cryptographic messages and operations on them by terms
and the properties of these operations by equations. This naturally allows us to use variables
to reason symbolically about sets of messages. Most methods for this approach come from
the area of term rewriting. We therefore recall some standard notions from term rewriting
following [65], [86], and [79].

2.3.1 Standard Notions

Order sorted term algebras. An order-sorted signature Σ=(S,≤,Σ) consists of a set
of sorts S, a partial order ≤ on S, and a set Σ of function symbols associated with sorts
with the following two properties. First, for every s∈S, the connected component C of s
in (S,≤) has a top sort denoted top(s) such that c≤ top(s) for all c∈C . Second, for every
f : s1×	 × sk→ s in Σ with k ≥ 1, there is an f : top(s1)×	 × top(sk)→ s in Σ called the
top sort overloading of f . If the sort hierarchy is clear from the context, we often use Σ
instead of Σ.

If there is only one sort, we say the corresponding signature is unsorted and we write Σk

to denote all k-ary function symbols in Σ. We assume that there are countably infinite sets
of variables Vs for all sorts s ∈ S and define V =

⊎

s∈S
Vs. We use x:s to denote variables

from Vs. For a signature Σ and an arbitrary subset V ′⊆V, TΣ(V ′)s denotes the set of well-
sorted terms of sort s constructed over Σ∪V ′. We use TΣ(V ′) to denote the set of all well-
sorted terms. For a set of constants C, we also use TΣ(V ′∪C) to denote TΣ∪C(V ′).

Positions, subterms, vars, and contexts. A position is a sequence of natural numbers.
For a term t and a position p, we denote the subterm of t at position p with t|p. Formally,
t|p is defined as (a) t if p=[ ], (b) ti|p′ if p= [i] · p′ and t= f(t1,	 , tk) for 1≤ i≤ k, and (c)
undefined otherwise. We say p is a valid position in t if t|p is defined. For two positions p
and p′, p is above p′ if p is a proper prefix of p′. In this case, p′ is below p. If p is unequal
to p′ and neither above nor below p ′, then both positions are incomparable . We say p and
p′ are siblings if |p|= |p′|, pi= pi

′ for 1≤ i < |p|, and p|p|� p|p|
′ .

Furthermore, we use t[s]p to denote the term t where the occurrence of the subterm t|p
at position p has been replaced by s. We use root(t) to denote f if t= f(t1,	 , tk) for some
f ∈ Σ and t itself otherwise. The set St(t) of syntactic subterms of a term t is defined in
the usual way as {t|p |p valid position in t}. For a term t, we define vars(t) = St(t) ∩ V.
A term t is ground if vars(t)=∅. We use fvars(ϕ) to denote the free variables in a formula ϕ.

A context C is a term with holes. Holes are distinct variables xi that occur exactly
once in C. We use the notation C[x1,	 , xn] to indicate that C has the holes x1,	 , xn and
C[t1,	 , tn] to denote the term where the holes have been replaced by the terms ti.

Substitutions and replacements. A substitution σ is a well-sorted function from V to
TΣ(V) that corresponds to the identity function except on a finite set of variables which we
denote with dom(σ). We use range(σ) to denote the image of dom(σ) under σ and define
vrange(σ) = vars(range(σ)). We identify σ with its usual extension to an endomorphism
on TΣ(V) and use the notation tσ for the application of σ to the term t. Furthermore, we
denote the substitution σ with dom(σ)= {x1,	 , xk} and xiσ= ti by {t1/x1,	 , tk/xk}. We
use id to denote the identity substitution.
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A replacement ρ is a function from a finite set of terms to TΣ(V) such that dom(ρ) ∩
St(range(ρ)) = ∅. For a term t, we define tρ as the unique term where all occurrences of
subterms s= t|p of t, with s ∈ dom(ρ) such that there is no position p ′ above p with t|p′
in dom(ρ) are replaced by ρ(s).

Equations and equational theories. An equation over a signature Σ is an unordered
pair {s, t} of terms t, s∈TΣ(V) denoted s≃ t. An equational presentation is a tuple (Σ,E)
where Σ is a signature and E is a set of equations. Given an equational presentation
E = (Σ, E), we define the equational theory =E as the smallest Σ-congruence containing
all instances of equations of E. We often identify the equational presentation E and the
corresponding equational theory =E. An equation s≃ t is regular if vars(s) = vars(t) and
sort-preserving if for all substitutions σ, it holds that sσ∈TΣ(V)s if and only if tσ∈TΣ(V)s.
An equational presentation is regular (respectively sort-preserving) if all its equations are.

Unification and matching. An E-unifier of two terms s and t is a substitution σ such

that sσ =E tσ. For W ⊆ V, we use unif E
W(s, t) to denote an E-unification algorithm that

returns a set of unifiers of s and t such that for all σ∈unif E
W(s, t), vrange(σ)∩W =∅. The

unification algorithm is complete if for all E-unifiers σ of s and t, there is a τ ∈unif E
W(s, t)

and a substitution θ such that for all x∈ vars(s, t), (xτ )θ=E xσ. The unification algorithm
is finitary if for all s and t, it terminates and returns a finite set of unifiers.

An E-matcher of two terms t and p is a substitution σ such that t=E pσ. The notions of
complete and finitary coincide with those for E-unification. We use matchE(t, p) to denote
a finitary and complete E-matching algorithm.

Rewriting. A rewrite rule over a signature Σ is an ordered pair of terms (l, r) with
l, r ∈TΣ(V) denoted l→ r. A rewrite system R is a set of rewrite rules. R defines a rewrite
relation →R with s→R t if there is a position p in s, a rule l→ r ∈R , and a substitution
σ such that s|p=lσ and s[rσ]p= t. A rewrite system R is terminating if there is no infinite
sequence (ti )i∈N of terms with ti→R ti+1. A rewrite system R is confluent if for all terms t,
s1, s2 with t→R

∗ s1 and t→R
∗ s2, there is a term t′ such that s1→R

∗ t ′ and s2→R
∗ t′. A rewrite

system R is convergent if it is terminating and confluent. In this case, we use t↓R to denote
the unique normal form of t, i.e., t↓R is the unique term t ′ such that t→R

∗ t ′ and there is
no term t′′ with t′→R t

′′. A rewriting rule l→ r is sort-decreasing if for all substitutions σ,
rσ ∈TΣ(C)s implies lσ ∈TΣ(C)s. A rewrite system is sort-decreasing if all its rules are.

A rewrite system R is subterm-convergent if it is convergent and for each rule l→ r∈R,
r is either a proper subterm of l or r is ground and in normal form with respect to R. We
say a function symbol f is irreducible with respect to such a rewriting system R if there
is no l→ r ∈R with root(l) = f . We use R≃ to denote the set of equations obtained from
a rewrite system by replacing → with ≃ in the rewrite rules.

2.3.2 Rewriting Modulo and Finite Variants

Rewriting modulo. Rewriting is often used to reason about equality modulo an equa-
tional theory E . If the equations in E can be oriented to obtain a convergent rewriting
system R, then R can be used to check equality since t=E s if and only if t↓R = s↓R. To
cope with equational theories containing equations that cannot be oriented such as commu-
tativity, the notion of R,AX-rewriting for a rewrite systemR and an equational theory AX
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has been introduced in [142]. The rewriting relation→R,AX is defined as s→R,AX t if there
is a position p in s, a rewriting rule l→ r ∈R, and a substitution σ such that s|p =AX lσ

and s[rσ]p= t. If AX -matching is decidable, then the relation→R,AX is also decidable. To
use rewriting to reason about equality modulo E , the following properties are required.

Coherence and decomposition. We say R,AX is convergent if the relation →R,AX is
convergent. In this case, we denote the unique normal form of t with respect to R,AX -
rewriting by t↓R,AX . We sayR,AX is coherent if for all t1, t2, and t3, it holds that t1→R,AX t2
and t1=AX t3 implies that there are t4 and t5 such that t2→R,AX

∗ t4, t3→R,AX
+ t5, and t4=AX t5.

If (Σ,R∪AX ) is an equational presentation of =E and R,AX is convergent and coherent,
then t=E s if and only if t↓R,AX = s↓R,AX . See [142, 94] for details.

We call (Σ,R,AX ) a decomposition of E if the following holds:

1. (Σ,R≃∪AX ) is an equational presentation of =E.

2. AX is regular, sort-preserving and all equations contain only variables of top-sort.

3.R is sort-decreasing and R,AX is convergent and coherent.

4. There is a complete and finitary AX -unification algorithm.

Example 2.1. Consider the unsorted equational theory ACUN that models Xor with
ΣACUN = {0, + } and EACUN =AC ∪{x + 0≃x, x + x≃ 0} for AC = {(x + y) + z≃x + (y + z),
x+ y≃ y +x}. The last two equations in EACUN can be oriented to obtain RACUN ={x+0→
x, x + x→ 0} and RACUN,AC is convergent. It is easy to see that x + (x + y)=ACUN y, but

(x + (x + y))↓RACUN ,AC = (x + (x + y))�AC y= y↓RACUN ,AC .

The problem is that RACUN,AC is not coherent and the relation ↔RACUN ,AC
∗ is therefore

strictly smaller than =ACUN . It is possible to complete RACUN with the missing rewrite rule
x + (x + y)→ y to obtain RACUN

′ . Then (Σ,RACUN
′ ,AC ) is a decomposition of ACUN .

Finite variants. For an equational theory E , we define the E-instances of a term t as
instsE(t)= {t′|∃σ.tσ=E t

′}. We use ginstsE(t) to denote the set of ground E-instances of t.
To reason about E-instances using a decomposition (Σ, R, AX ) of E , the finite variant
property is often useful.

A decomposition (Σ,R,AX ) of an equational theory E has the finite variant property if
for all terms t, there is a finite set of substitutions {τ1,	 , τk} with dom(τi)⊆ vars(t) such
that for all substitutions σ, there is a substitution θ and i∈{1,	 , k} with

1. (tσ)↓R,AX =AX (tτi)↓R,AXθ and

2. xσ↓R,AX =AX (xτi)↓R,AXθ for all x∈ vars(t).

We call such a set of substitutions a complete set of R,AX-variants of t. For a decomposi-
tion with the finite variant property, we can use folding variant narrowing [79] to compute
a complete and minimal set of R,AX -variants of a term.

Example 2.2. Consider the equational theory E = (Σ, E) with Σ = {g/2, a/0} and
E = {g(x, a)≃ a}. Then (Σ,R, ∅) is a decomposition with the finite variant property for
R = {g(x, a)→ a}. Consider the term t = g(x, y). The set {id , {a/y}} is a complete set
of R,∅-variants of t. Let t ′ and σ arbitrary such that t ′ = t′↓R and t′ =E tσ, i.e., t

′ is an
irreducible E-instance of t. Since {id , {a/y}} is a complete set of R,∅-variants of t, t ′ is
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either an instance of t (i.e. t′∈ insts∅((t)id)) or an instance of t{a/y}↓R= a, i.e., equal to a.
This is already ensured by requirement (1) for a complete set of variants. Requirement (2)
additionally ensures that σ factorizes through id in the first case and through {a/y} in
the second case. If we would drop requirement (2), then {id , {a/x, a/y}} would also be a
complete set of variants, even though σ = {a/y} would not factorize through {a/x, a/y}.
If complete sets of variants are used to perform E-unification [79], both requirements are
necessary.

2.3.3 Ordered Completion

We use ordered completion [65] to define the normalization of ground terms with respect to
an arbitrary equational theory E . In Chapter 4, we use this notion in our combination proof
for impossibility. This technique has been used in similar contexts to prove the correctness
of combination results for unification [15] and deducibility [46, 56]. In the following, we
assumed an unsorted signature Σ and a set of constant symbols N different from Σ0

called names. Let ≻ be a total simplification order on ground terms, i.e., for ground terms
s1 and s2 and a nonempty context C, we have that (i) s1 ≻ s2 or s2 ≻ s1, (ii) C[s1] ≻ s1,
and (iii) s1≻ s2 implies C[s1]≻ C[s2]. Additionally, we assume for all n ∈N , c ∈ Σ0, and
t ∈ TΣ(N ) \ (N ∪ Σ0) that c≻ n and t≻ c. We then use nmin to denote the minimum for
≻, which is a name. The lexicographic path ordering constructed from a total ordering on
N ∪ Σ , where names are smaller than constants from Σ0 and constants are smaller than
non-constant function symbols, always has these properties (see [65]).

For a given equational theory E and a total simplification ordering on ground terms ≻,
we define the ordered rewrite relation→(≻,E) as follows: t→(≻,E) t

′ if there is a position p of

t, an equation l≃ r in E , and a substitution σ such that t|p=lσ, t′ = t[rσ]p, and t≻ t′. We
use ordered completion for a given equational theory E to obtain a (possibly infinite) set
of equations OE such that =OE

equals =E and →(≻,OE) is convergent on ground terms. For
a ground term t, we use t↓E

≻ to denote the normal form of t with respect to →(≻,OE).

2.4 Isabelle/HOL and the Inductive Approach

In Chapter 5, we use the theorem prover Isabelle [136]. Moreover, we build on the inductive
approach to protocol verification by Paulson [140] to reason about physical protocols. The
following paragraphs provide a small summary of Isabelle/HOL and the inductive approach.

Isabelle/HOL. Isabelle is a generic theorem prover with a specialization for higher-order
logic (HOL). We will avoid Isabelle-specific details as much as possible or explain them
in context as needed. Here we limit ourselves to few comments on typing. A function f

from type α to β is denoted f :α→ β and fx≡ t defines the function f with parameter x
as the term t. We write α× β for the product type of α and β. We use the predefined list
type α list where xs.x denotes the list xs extended by the element x. Algebraic data types
are defined using the datatype declaration. Central to our work is the ability to define
(parameterized) inductively defined sets. These sets are defined by sets of rules and denote
the least set closed under the rules. Given an inductive definition, Isabelle generates a rule
for proof by induction.

2.4 Isabelle/HOL and the Inductive Approach
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Inductive Approach. Paulson has introduced an inductive approach to security protocol
verification. The approach is based on a trace-based interleaving semantics, which gives
a semantics to distributed systems as the set of traces describing all possible interleaved
events executed by the involved agents. In particular, protocols are modeled by rules
describing the protocol steps executed by honest agents and possible intruder actions.
The rules constitute an inductive definition that defines the protocol’s semantics as an
infinite set of communication traces, each trace being a finite list of communication events.
Security properties are specified as predicates on traces. Protocol security is then proved by
induction on traces using an induction principle derived from the protocol rules. Paulson
formalized his approach within higher-order logic in the Isabelle/HOL system and used it
to prove security properties for a wide range of security protocols.
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Chapter 3

Automated Protocol Analysis

In this chapter, we present a method to analyze security protocols that use DH exponen-
tiation and bilinear pairings without bounding the number of protocol sessions. We have
implemented the method in a tool, called the Tamarin prover, and demonstrated its effec-
tiveness in numerous case studies from the area of key exchange protocols, tripartite group
key exchange protocols, and identity-based key exchange protocols. Given a specification
of the protocol and the adversary model, Tamarin automatically searches for a proof that
the protocol is secure in the given model with respect to an unbounded number of sessions.
If Tamarin terminates without succeeding in the proof, it provides a counterexample, i.e.,
an attack on the protocol with respect to the given adversary model.

In the following, we first define our security protocol model based on multiset rewriting
and many-sorted first-order logic. Then, we present our verification theory, which simplifies
reasoning about the security protocol model. Next, we present the constraint solving rules
that we use to analyze protocols. Then, we extend the previously introduced approach
from DH exponentiation to bilinear pairings and AC operators. Finally, we describe the
Tamarin tool and the case studies.

3.1 Security Protocol Model

We model the execution of a security protocol in the context of an adversary as a labeled
transition system, whose state consists of the adversary’s knowledge, the messages on the
network, information about freshly generated values, and the protocol’s state. The adver-
sary and the protocol interact by updating network messages and freshness information.
Adversary capabilities and protocols are specified jointly as a (labeled) multiset rewriting
system. Security properties are modeled as trace properties of the transition system. In
the following, we first describe cryptographic messages. Then, we define how protocols are
specified and executed. Finally, we define our property specification language and illustrate
our protocol model with an example.

3.1.1 Cryptographic Messages

To model cryptographic messages, we use an order-sorted term algebra and an equational
theory. The function symbols in the signature model the algorithms that can be applied to
messages such as encryption or decryption and the equational theory models the properties
of the algorithms. We use the set of sorts consisting of the top sort msg and two incompa-
rable subsorts fr and pub for fresh and public names. We assume there are two countably
infinite sets FN and PN of fresh and public names . We use fresh names to model random
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messages such as keys or nonces and public names to model known constants such as agent
identities. To model DH exponentiation, we define the unsorted signature

ΣDH = {_ˆ_ ,_∗_ , 1,_−1 }

where all function symbols are of sort msg ×	 ×msg→msg . Here, gˆa denotes exponen-
tiation of the message g with the exponent a. The remaining function symbols model the
exponents as an abelian group. The algebraic properties of DH exponentiation are modeled
by the equations

EDH =











(xˆy)ˆz≃xˆ(y∗z) xˆ1≃x x∗y≃ y∗x

x∗(y∗z)≃ (x∗y)∗z x∗1≃x x∗x−1≃ 1











which capture that repeated exponentiation in a DH group corresponds to multiplication
of the exponents, exponentiation with 1 is the identity, and the exponents form an abelian
group. We define the equational theory for DH as DH=(ΣDH, EDH).

For additional cryptographic operators, we assume given an unsorted signature ΣST

disjoint from ΣDH and a subterm-convergent rewrite system RST over ΣST . We define the
combined signature ΣDHe

= ΣST ∪ ΣDH and use T to denote TΣDHe∪FN∪PN(V) and M to
denote the ground terms in T which we call messages . We define the combined equational
theory as DHe = (ΣDH ∪ ΣST , EDH ∪RST

≃ ). In the remainder of this chapter, we use g to
denote a public name that is used as a fixed generator of a DH group and a, b, c, and k to
denote fresh names.

Example 3.1. Consider the term ((gˆa)ˆb)ˆa−1, which results from exponentiating g

with a, followed by b, followed by a inverse. This is equal to gˆ((a∗b)∗a−1) and can be
further simplified to gˆb.

Note that our equational theory does not support protocols that perform multiplication
in the DH group G. To define such protocols, an additional function symbol · denoting
multiplication in G is required. The function symbol ∗ denotes multiplication in the group
of exponents, which is a different operation. For example, the equality (gˆa · gˆb)ˆc =
(gˆa)ˆc · (gˆb)ˆc holds in all DH groups, but does usually not hold if we replace · by ∗. We
further discuss our choice of the equational theory DH in Section 6.1.1.

Example 3.2. As an example of a subterm-convergent theory that can be used, consider
DY = (ΣDY,RDY) defined by

ΣDY =







〈_,_〉 fst(_) snd(_)
pk(_) enc(_,_) dec(_,_)
true sig(_,_) verify(_,_) h(_)







and

RDY =







fst(〈x, y〉)→ x snd(〈x, y〉)→ y

dec(enc(x, pk(y)), y)→ x

verify(sig(x, y), x, pk(y))→ true







.

This theory models pairing and projection, public key encryption, message-hiding signa-
tures, and a hash function. Note that we often use 〈t1, t2	 , tk−1, tk〉 as an abbreviation for
〈t1, 〈t2,	 〈tk−1, tk〉	 〉〉 and h(t1,	 , tk) as an abbreviation for h(〈t1,	 , tk〉).
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3.1.2 Labeled Multiset Rewriting with Fresh Names

We use multiset rewriting to specify the concurrent execution of protocol and adversary.
Multiset rewriting is commonly used to model concurrent systems since it naturally sup-
ports independent transitions. If two rewriting steps rewrite the state at positions that do
not overlap, then they can be applied in parallel. Multiset rewriting has been used in the
context of security protocol verification by Cervesato et al. [41] and in Maude-NPA [77].
Like these two approaches, we extend standard multiset rewriting with support for creating
fresh names. Additionally, we introduce persistent facts and enrich rewriting rules with
actions to obtain labeled transition systems. Note that it is possible to give a translation
from processes in the applied pi calculus as, for example, used in ProVerif [28] into our
dialect of multiset rewriting.

State

We model the states of our transition system as finite multisets of facts. Facts are built
from terms over a fact signature. Formally, we assume given an unsorted signature ΣF

partitioned into linear and persistent fact symbols. We define the set of facts as the set F
consisting of all facts F (t1,	 , tk) such that ti∈T and F ∈ΣF

k . We denote the set of ground
facts by G. We say that a fact F (t1, 	 , tk) is linear if F is linear and persistent if F is
persistent. Linear facts model resources that can only be consumed once, whereas persistent
facts model inexhaustible resources that can be consumed arbitrarily often. We assume
that the linear fact symbol Fr is included in ΣF

1 . The semantics of Fr is fixed and the fact
Fr(n) denotes that the fresh name n is freshly generated. The semantics of the remaining
fact symbols are defined by the multiset rewriting rules that generate and consume them.
In our examples, we prefix all persistent protocol fact symbols with !.

Rules

We use labeled multiset rewriting to define the possible transitions of our transition system.
A labeled multiset rewriting rule is a triple (l, a, r) with l, a, r ∈F∗, denoted l−[a]→ r. We
often use inference rule notation for rules, i.e., we use

l1 	 lk
r1 	 rn

[a1 	 am] or
l1 	 lk
r1 	 rn

if a is empty.

For ru = l−[a]→ r, we define the premises as prems(ru)= l, the actions as acts(ru) = a, and
the conclusions as concs(ru)= r. We call a set of labeled multiset rewriting rules a labeled
multiset rewriting system . In the following, we often drop the “labeled” qualifier.

To deal with fresh name generation, we define the rule

Fresh= []−[]→ [Fr(x:fr)],

which is the only rule that produces Fr facts. In the operational semantics, we ensure that
applications of this rule are unique and that the same fresh name is never generated twice.

Labeled Operational Semantics

To define the labeled operational semantics of a multiset rewrite system R, we first define
the labeled transition relation steps(R)⊆ G ♯× (ginstsDHe

(R∪{Fresh}))× G ♯ as

l−[a]→ r ∈ ginstsDHe
(R∪{Fresh}) S ′ =(S \♯ lfacts(l))∪♯mset(r)

lfacts(l)⊆♯S set(pfacts(l))⊆ set(S)

(S, l−[a]→ r, S ′)∈ steps(R)
,

3.1 Security Protocol Model
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where lfacts(l) and pfacts(l) denote the multisets of linear and persistent facts in l, respec-
tively, and each transition is labeled with the applied rule instance.

A transition rewrites the state S with a ground instance of Fresh or a rule from R.
Since we perform multiset rewriting modulo DHe, any applicable ground DHe-instance of
a rule in R∪{Fresh} can be used. An instance l−[a]→ r is applicable to S if the multiset
of linear facts in l is included in S with respect to multiset inclusion (⊆♯) and the set of
persistent facts in l is included in S with respect to set inclusion. To obtain the successor
state S ′, the consumed linear facts are removed and the generated facts are added.

Definition 3.3. An execution of R is an alternating sequence

e= [S0, (l1−[a1]→ r1), S1,	 , Sk−1, (lk−[ak]→ rk), Sk]

of states and multiset rewriting rule instances such that the following conditions hold:

E1. S0 = ∅♯

E2. For all i∈{1,	 , k}, (Si−1, (li−[ai]→ ri), Si)∈ steps(R).

E3. For all i, j ∈{1,	 , k} and n∈FN where (li−[ai]→ ri)= (lj−[aj]→ rj)= ([ ]−[ ]→ Fr(n)),
it holds that i= j.

We denote the set of executions of R with execs(R). We define the trace of such an
execution e as trace(e)= [set(a1),	 , set(ak)], i.e., the trace is the sequence of sets of actions
of the multiset rewriting rule instances. We define the observable trace tr of a trace tr as
the subsequence of all actions in tr that are not equal to ∅.

The Conditions E1 and E2 ensure that an execution starts with the empty multiset and
each step is valid. The Condition E3 ensures that the same fresh name is never generated
twice. To ensure that fresh name generation works as intended, we will restrict ourselves
to multiset rewriting systems R where rules do not introduce Fr-facts or create fresh names
themselves. To formally define what it means to “create a fresh name”, we define the stable
fresh names of a term t as

fnamesst(t)=
⋂

t=DHe t
′

(St(t ′)∩FN )

The definition of fnamesst accounts for the fact that a term can contain spurious fresh
names if it is not reduced with respect to the cancellation equations in DHe. For example,
the term a∗b∗b−1 contains the name b, but fnamesst(a∗b∗b−1)={a} since b does not occur
in all terms that are equal to a∗b∗b−1 modulo DHe. We say a multiset rewriting system R

does not create fresh names if for all (S, ri ,S ′)∈ steps(R), either ri is an instance of Fresh
or fnamesst(S

′)⊆ fnamesst(S) considering states as terms.

3.1.3 Protocol and Adversary Specification

To define the protocol and message deduction rules, we assume that ΣF consists of Fr, an
arbitrary number of protocol-specific fact symbols to describe the protocol state, and the
following special fact symbols. A persistent fact K(m) denotes that m is known to the
adversary. A linear fact Out(m) denotes that the protocol has sent the message m, which
can be received by the adversary. A linear fact In(m) denotes that the adversary has sent
the message m, which can be received by the protocol.
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Protocol Rules

We now define our formal notion of a protocol which encompasses both the rules executed
by the honest participants and the adversary’s capabilities, like revealing long-term keys.

Definition 3.4. A protocol rule is a multiset rewriting rule l−[a]→ r such that

P1. l, a, and r do not contain fresh names,

P2. l does not contain K and Out facts,

P3. r does not contain K, In, and Fr facts,

P4. the argument of an Fr-fact is always of sort fr ,

P5. r does not contain the function symbol ∗, and

P6. l −[a]→ r satisfies (a) vars(r) ⊆ vars(l) ∪ Vpub and (b) l only contains irreducible
function symbols from ΣST or it is an instance of a rule that satisfies (a) and (b).

A protocol is a finite set of protocol rules.

ConditionP1 prevents protocol rules from directly using fresh names. ConditionsP2 and
P3 prevent protocol rules from using the special facts in unintended ways. Condition P4
simplifies later definitions and is not a restriction since Fr-facts in reachable states always
have a fresh name as argument. Condition P5 ensures that multiplication is not directly
used and simplifies reasoning about products since protocol rules introduce new products
only as exponents. Condition P6 is a syntactic criterion ensuring together with P1 that
protocols do not create fresh names, i.e., all fresh names originate from instances of the
Fresh rule. Note that condition P5 is similar to those of previous work such as [108]
and [45] and is not a restriction in practice. Protocols that use multiplication in the group of
exponents such as MTI/C0 [119] can usually be specified by using repeated exponentiation.
Moreover, protocols that use multiplication in the DH group, such as MQV [113], cannot be
specified anyway since ∗ denotes multiplication in the group of exponents.

Example 3.5. There are several kinds of rules that are forbidden by P1–P6. For example,
[In(x)] −[]→ [Out(y)] is forbidden since y is neither of sort pub nor does it occur in the
premises. We do not allow this rule since it can send arbitrary terms. This is problematic
since those terms can contain fresh names that are identical to fresh names chosen later
on. The rule [In(fst(〈z, y〉))]−[]→ [Out(y)] is equivalent to this rule and demonstrates the
problem with allowing reducible function symbols in the premises.

Another forbidden rule is [In(x), Fr(y:fr)] −[]→ [Out(x∗(y:fr))] which contains ∗. We do
not allow this rules since it violates P5. The rule [In(x), Fr(y:fr)] −[]→ [Out(gˆ(x∗(y:fr)))]
is also forbidden, but the equivalent rule [In(x),Fr(y:fr)]−[]→ [Out((gˆx)ˆ(y:fr))] is allowed.
Finally, the rule [In(gˆ(y:fr)), St(y:fr, x)] −[]→ [Out((gˆ(y:fr))ˆx)] is allowed since it is an
instance of [In(z),St(y:fr, x)]−[]→ [Out(zˆx)].

Message Deduction Rules

The set of messages deduction rules is defined as

MD =



















Out(x)

K(x)

K(x)

In(x)
[K(x)]

Fr(x:fr)

K(x:fr) K(x:pub)

K(x1) 	 K(xk)

K(f(x1,	 xk))
for all f ∈ΣDHe

k



















.
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The rules in the first line allow the adversary to receive messages from the protocol and
send messages to the protocol. The K(x) action in the second rule makes the messages
sent by the adversary observable in a protocol’s trace. We exploit this to specify secrecy
properties. The rules in the second line allow the adversary to learn public names and
freshly generated names. The remaining rules allow the adversary to apply functions from
ΣDHe

to known messages. Note that MD does not create fresh names.

Example 3.6. Consider the protocol

PMsg =

{

Fr(x:fr) Fr(y:fr)

St(x) Out(〈(gˆx)ˆy, y−1〉)
[Start()],

St(x) In(gˆx)
[Fin()]

}

.

which encodes the message deducibility problem “is gˆx deducible from 〈(gˆx)ˆy, y−1〉 for
fresh names x and y “. This problem has a solution if and only if the protocol has the trace
[{Start()}, {K(m)}, {Fin()}] for some message m. In this and the following examples, we
never use the same variable name for variables of different sorts in a rule and therefore
include the sort annotation only for the first occurrence of a variable.

The protocol has the execution shown in Figure 3.1 with the observable trace [{Start()},
{K(gˆa)},{Fin()}]. We show the states on the right and the DHe-instances of the rules used
to rewrite the state on the left. The first rule applications add fresh facts which are con-
sumed by the first protocol rule instance ru3. This is the first observable step. Rule instance
ru4 models the reception of the message sent by the protocol and ru5, ru6, and ru7 denote
message deduction steps. Here, we chose those DHe-instances of the rules that simplify
the terms in the conclusion. For instance, ru5 is a DHe-instance of K(x)−[]→K(fst(x)) and
ru7 is a DHe-instance of [K(x1), K(x2)] −[]→ K(x1ˆx2). The last two rule instances model
the sending of the deduced message gˆa by the adversary and the execution of the second
protocol step.

Note that the sequence of rule instances is already sufficient to characterize the execution
since the trace and the sequence of states can be reconstructed from it. To denote the
causal dependencies between transitions, the figure contains grey arrows from conclusions to
premises of rule instances. Such an arrow denotes that the corresponding fact is generated
by the conclusion that is the source of the arrow and consumed by the premise that is
the target of the arrow. The causal dependencies allow us to find permutations of the
sequence of rule instances that correspond to valid executions of PMsg. More precisely, any
permutation of the rule instances that respects the causal dependencies corresponds to a
valid execution of PMsg. We can therefore represent a set of executions by a sequence of
rule instances and their causal dependencies. We take advantage of these observations in
the next section when we define dependency graphs as sequences of rule instances together
with their causal dependencies.

3.1.4 Trace Formulas

We use many-sorted first-order logic with a sort for timepoints [47] to specify security
properties. This logic supports quantification over both messages and timepoints. We thus
introduce the sort temp for timepoints and write Vtemp for the set of temporal variables.
In the following, we use i and j for temporal variables, f for facts, and t1, t2 for terms.

A trace atom is either a term equality t1 ≈ t2, a timepoint ordering i ≺ j, a timepoint
equality i≈ j, or an action f@ i. A trace formula is a first-order formula over trace atoms.
In the following, we also use a fact f as a formula to abbreviate the formula ∃i.f@ i.
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ru1 :
Fr(a)

ru2 :
Fr(b)

ru4 :
Out(〈g ˆ (a ∗ b), b−1〉)

K(〈g ˆ (a ∗ b), b−1〉)

ru3 :
Fr(a) Fr(b)

St(a) Out(〈g ˆ (a ∗ b), b−1〉)
[Start()]

ru5 :
K(〈g ˆ (a ∗ b), b−1〉)

K(g ˆ (a ∗ b))

ru6 :
K(〈g ˆ (a ∗ b), b−1〉)

K(b−1)

ru7 :
K(g ˆ (a ∗ b)) K(b−1)

K(g ˆ a)

ru8 :
K(g ˆ a)

In(g ˆ a)
[K(g ˆ a)]

ru9 :
St(a) In(g ˆ a)

[Fin()]

S1 : {Fr(a)}

S0 : ∅

S2 : {Fr(a),Fr(b)}

S3 : {St(a),Out(〈g ˆ (a ∗ b), b−1〉)}

S5 : {St(a),K(〈g ˆ (a ∗ b), b−1〉),K(g ˆ (a ∗ b))}

S4 : {St(a),K(〈g ˆ (a ∗ b), b−1〉)}

S6 : {St(a),K(〈g ˆ (a ∗ b), b−1〉),K(g ˆ (a ∗ b)),K(b−1)}

S7 : {St(a),K(〈g ˆ (a ∗ b), b−1〉),K(g ˆ (a ∗ b)),K(b−1),K(g ˆ a)}

S8 : {St(a),K(〈g ˆ (a ∗ b), b−1〉),K(g ˆ (a ∗ b)),K(b−1),K(g ˆ a),

In(g ˆ a)}

S9 : {K(〈g ˆ (a ∗ b), b−1〉),K(g ˆ (a ∗ b)),K(b−1),K(g ˆ a)}

StatesRule instances Trace

Figure 3.1. Execution of the protocol PMsg. The grey arrows denote causal dependencies.

To define the semantics of trace formulas, we associate a domain DOMs with each
sort s. The domain for timepoints is DOMtemp = Q and the domains for messages are
DOMmsg =M, DOMfr = FN, and DOMpub = PN. We say a function θ from V to Q ∪
M is a valuation if it respects sorts, i.e., θ(Vs) ⊆ DOMs for all sorts s. For a term t,
we write tθ for the application of the homomorphic extension of θ to t.

For an equational theory E , the satisfaction relation (tr , θ) �E ϕ between traces tr ,
valuations θ, and trace formulas ϕ is defined inductively by the following rules:

(tr , θ)�E f@ i if θ(i)∈ idx (tr) and fθ ∈E tr θ(i)
(tr , θ)�E i≺ j if θ(i)<θ(j)
(tr , θ)�E i≈j if θ(i) = θ(j) and i, j of sort temp
(tr , θ)�E t1≈ t2 if t1θ=E t2θ and t1, t2 of sort msg
(tr , θ)�E ¬ϕ if not (tr , θ)�E ϕ
(tr , θ)�E ϕ∧ ψ if (tr , θ)�E ϕ and (tr , θ)�E ψ
(tr , θ)�E ∃x:s.ϕ if there is u∈DOMs such that (tr , θ[x� u])�E ϕ

The semantics of the remaining logical connectives and quantifiers are defined by transla-
tion to the given fragment as usual. For closed formulas ϕ, we overload notation as follows.
We write tr �Eϕ if (tr , θ)�E ϕ for some θ. We call such a trace tr a model of ϕ. For a set
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of traces Tr , we write Tr �E ϕ if tr �E ϕ for all tr ∈Tr . We say that ϕ is P,E-valid , written
P �E ϕ, if trace(execs(P ∪MD))�E ϕ. We say that a formula ϕ is P,E-satisfiable if there is
tr ∈ trace(execs(P ∪MD)) such that tr �E ϕ. Note that a closed formula ϕ is P ,E-valid if
and only if ¬ϕ is not P ,E-satisfiable.

We use the rationals instead of the natural numbers as the domain for temporal variables
to achieve the following property for the satisfaction of formulas by traces.

Lemma 3.7. For all trace formulas ϕ and all traces tr 1 and tr 2 with tr 1 = tr 2 , it holds
that tr 1�E ϕ if and only if tr 2�E ϕ.

The lemma holds because Q is dense which makes it impossible to formalize the next-
operator in our logic. Therefore, a formula cannot distinguish between traces that only
differ in the number of silent steps between two observable steps. We give a full proof of
this Lemma in [157].

3.1.5 Formalization of the one-pass UM Protocol

As a running example, we use the one-pass UM protocol and an adversary model with long-
term and ephemeral key reveals, but no session key reveals. In Section 3.5.2, we will present
a formalization of NAXOS with respect to the full eCK model. The rules for the protocol
are given in Figure 3.2. The protocol can be obtained from the two-pass UM protocol given
in Figure 2.4 by leaving out the message from the responder to the initiator and using the
responder’s long-term public key as his ephemeral public key.

Key Generation:
Fr(a:fr)

!Ltk(A:pub, a) !Pk(A:pub, gˆa) Out(gˆa)

Initiator:
Fr(x:fr) !Ltk(A:pub, a:fr) !Pk(B:pub, B̄ )

Out(X) !Ephk(sid , x)
[Accept(sid , key) ]

where B̄ = gˆ(b:fr)
X = gˆx
sid = 〈A,B,X, I〉
key = h(B̄ ˆx, B̄ ˆa, A,B,X)

Responder:
In(X) !Pk(A:pub , Ā) !Ltk(B:pub, b:fr)

[Accept(sid , key) ]

where Ā = gˆ(a:fr)
sid = 〈B,A,X,R〉
key = h(Xˆb, Ā ˆb, A,B,X)

Long-Term reveal:
!Ltk(A, a)

Out(a)
[RevealLtk(A) ]

Ephemeral reveal:
!Ephk(sid , x)

Out(x)
[RevealEphk(sid) ]

Figure 3.2. Rules PUM defining the one-pass UM protocol.
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To model the protocol, we use the subterm-convergent theory DY as ST . We use the
public name g to denote the generator of the DH group and the public names I and R to
denote the two roles in the session identifier.

The first rule models the generation of keys. A fresh name a is chosen and used as the
long-term private key of an agent A. The corresponding public long-term key is gˆa. The
rule generates !Ltk and !Pk facts that can be used to look up the private and the public key
of an agent. Additionally, the public key is sent on the network and can be received by the
adversary. We do not model key registration by the adversary in this example; all keys are
honestly generated. Note that an agent can have more than one key pair. The second rule
models the initiator’s actions. He generates a fresh name x that is used as his ephemeral
private key, he looks up his own long-term private key a, and B’s public key B̄ . Then he
computes his public ephemeral key X and sends it. He also provides his ephemeral key
for reveals. Finally, he accepts the session key key with the session id sid . Note that the
pattern matching on the !Ltk and !Pk facts exploits that if such a fact is included in the
state, then the arguments always have a certain form. For example, the second argument
of !Ltk is always of sort fr . The third rule models the responder’s actions. The responder
receives a message X , looks up the required keys, and computes the session key. The last
two rules model key reveals by the adversary. These reveals can be executed whenever
the corresponding long-term or ephemeral private key exists, but they are observable. The
security property can therefore restrict reveals for certain agents and sessions.

ϕ
UM-exec

=

∃A B X key .
// An initiator session and a matching responder session accept key ,
Accept(〈A,B,X, I〉, key)∧Accept(〈B,A,X,R〉, key)∧
// the initiator accepts before the responder, and
i≺ j ∧
// the adversary did not perform any reveals.
¬(∃C.RevealLtk(C))∧¬(∃ sid .RevealEphk(sid))

ϕ
UM-sec

=

∀ABX key msid .
// If the key of a responder test session with matching sessionmsid isknown,
Accept(〈B,A,X,R〉, key)∧K(key)∧msid ≈〈A,B,X,I〉
// then the session is not clean, i.e., one of the following happened:
� (// 1. B’s long-term key was revealed.

RevealLtk(B)

// 2. There is a long-term key reveal for the peer of the test session
// and an ephemeral key reveal for a matching session.
∨ (RevealLtk(A)∧RevealEphk(msid))

// 3. There is no matching session and a long-term key reveal for the
// peer of the responder session.
∨ (¬(∃key ′.Accept(msid , key ′))∧RevealLtk(A)))

Figure 3.3. Properties for the PUM protocol.
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Figure 3.3 shows two properties for our formalization of the UM one-pass protocol.
The first property characterizes traces where two matching sessions compute the same
key and the adversary does not perform any reveals. This property is satisfiable for the
protocol PUM, i.e., there are traces of PUM that satisfy this property and hence key agree-
ment for matching sessions is reachable. We will later show how our constraint solving
algorithm can prove the satisfiability of this property. The second property formalizes the
desired security property for the responder. Whenever a responder session accepts a key
that is known to the adversary, then the session is not clean, i.e., the adversary performed
a forbidden key reveal. We will later show how our constraint solving algorithm can prove
the validity of this property for PUM, i.e., that all traces of PUM satisfy this property.

3.2 Verification Theory

For symbolic attack-search algorithms, there are several drawbacks to the multiset rewriting
semantics given in the previous section. First, incrementally constructing attacks is diffi-
cult with executions, as they do not contain causal dependencies between steps. Second,
symbolic reasoning modulo DHe is difficult because DHe contains cancellation equations.
For example, if the adversary knows t=na∗x for a fresh name na, we cannot conclude that
na has been used in the construction of t, as x could be equal to na−1. Third, the message
deduction rules allow for redundant steps such as first encrypting a cleartext and then
decrypting the resulting ciphertext. For search algorithms, it is useful to impose normal-
form conditions on message deduction to avoid exploring such redundant steps.

We take the following approach. First, we define dependency graphs. They consist of the
sequence of rewriting rule instances corresponding to a protocol execution and their causal
dependencies, similar to strand spaces [83]. Afterwards, we show that we can use depen-
dency graphs modulo AC , an equational theory without cancellation equations, instead
of dependency graphs modulo DHe. Next, we define normal message deductions and the
corresponding normal dependency graphs. We also show that normal dependency graphs
are weakly trace equivalent to the multiset rewriting semantics. Finally, we define the
fragment of guarded trace properties, which ensures that variables in formulas refer to terms
in the considered traces.

3.2.1 Dependency Graphs

We use dependency graphs to represent protocol executions together with their causal
dependencies. A dependency graph consists of nodes labeled with ground rule instances
and dependencies between the nodes. We first present an example of a dependency graph
and then give its formal definition.

Example 3.8. The dependency graph for the execution of protocol PMsg from Figure 3.1
is shown in Figure 3.4. The edges denote causal dependencies: an edge from a conclusion
of node i to a premise of node j denotes that the corresponding fact is generated by i and
consumed by j. Persistent conclusions can be consumed multiple times and can therefore
have multiple outgoing edges. For example, the conclusion of node 4 is consumed by nodes
5 and 6. Since this is a dependency graph modulo DHe, the nodes are labeled with ground
DHe-instances of rules from PMsg∪MD ∪{Fresh}.
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3 :
Fr(a) Fr(b)

St(a) Out(〈g ˆ (a ∗ b), b−1〉)
[Start()]

1 :
Fr(a)

2 :
Fr(b)

9 :
St(a) In(g ˆ a)

[Fin]

4 :
Out(〈g ˆ (a ∗ b), b−1〉)

K(〈g ˆ (a ∗ b), b−1〉)

5 :
K(〈g ˆ (a ∗ b), b−1〉)

K(g ˆ (a ∗ b))
6 :

K(〈g ˆ (a ∗ b), b−1〉)

K(b−1)

7 :
K(g ˆ (a ∗ b)) K(b−1)

K(g ˆ a)

8 :
K(g ˆ a)

In(g ˆ a)
[K(g ˆ a)]

Figure 3.4. Dependency graph for the execution from Example 3.6.

Definition 3.9. Let E be an equational theory and R be a set of labeled multiset
rewriting rules. We say that the pair dg = (I , D) is a dependency graph modulo E for R
if I ∈ ginstsE(R∪{Fresh})∗, D ∈N2×N2, and dg satisfies the Conditions DG1–4 listed
below. To state these conditions, we introduce the following definitions. We call idx (I)
the nodes of dg and D the edges of dg . We write (i, u) (j , v) for the edge ((i, u), (j , v)).
A conclusion of dg is a pair (i, u) such that i is a node of dg and u∈ idx (concs(Ii)).
The corresponding conclusion fact is (concs(Ii))u. A premise of dg is a pair (i, u) such that
i is a node of dg and u∈ idx (prems(Ii)). The corresponding premise fact is (prems(Ii))u.
A conclusion or premise is linear if its fact is linear.

DG1. For every edge (i, u) (j , v)∈D, it holds that i< j and the conclusion fact of (i, u)
is syntactically equal to the premise fact of (j , v).

DG2. Every premise of dg has exactly one incoming edge.

DG3. Every linear conclusion of dg has at most one outgoing edge.

DG4. The Fresh instances are unique.

We denote the set of all dependency graphs modulo E for R by dgraphsE(R).

Let dg = (I ,D) and I = [l1−[a1]→ r1,	 , lk−[ak]→ rk], overloading notation, we define the
trace of dg as trace(dg) = [set(a1), 	 , set(ak)]. We can show that the multiset rewriting
semantics given in Section 3.1 and the dependency graphs are trace equivalent in the
following sense

Lemma 3.10. For all protocols P, trace(execs(P ∪MD))= trace(dgraphsDHe
(P ∪MD)).

Proof. We prove by induction that the sequences of rule instances of executions and
dependency graphs coincide. Since the traces are determined by the sequences of rule
instances, this completes the proof. �
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3.2.2 Dependency Graphs Modulo AC

We now switch to a semantics based on dependency graphs modulo associativity and
commutativity. To achieve this, we define the set of equations AC as

AC = {x∗(y∗z)≃ (x∗y)∗z, x∗y≃ y∗x}

and the rewriting system RDH as

RDH=



































(xˆy)ˆz→ xˆ(y∗z) xˆ1→ x

(x−1∗y)−1→x∗y−1 1−1→ 1 x−1∗y−1→ (x∗y)−1

x∗(x∗y)−1→ y−1 x∗1→x (x−1)−1→x

x−1∗(y−1∗z)→ (x∗y)−1∗z x∗(x−1∗y)→ y x∗x−1→ 1
(x∗y)−1∗(y∗z)→x−1∗z



































.

We define RDHe=RDH∪RST . Then (ΣDHe
,RDHe,AC ) is a decomposition of DHe with

the finite variant property for the following reasons. First, (ΣDHe
, RDHe

≃ ∪ AC ) is an
equational presentation of =DHe

. Second, AC is regular, sort-preserving, and all variables
are of sort msg . Third, RDHe is sort-decreasing and RDHe,AC -rewriting is convergent
and coherent. SinceRDH and ST have disjoint signatures and neither contains duplicating
rules [35], it suffices to consider both rewrite systems individually. Since ST is a subterm-
convergent theory, both properties easily follow. For RDH,AC -rewriting, we have used the
AProVE termination tool [85] and the Maude Church-Rosser and Coherence Checker [73]
to verify both properties. Fourth, there is a complete and finitary AC -unification algorithm.
Finally, the finite variant property can be established individually for RDH,AC and ST ,
which has been done in [51].

Given a term t, we therefore have a unique normal form with respect to RDHe,AC -
rewriting, which we denote with t↓RDHe

. We use folding variant narrowing to compute a
complete set of RDHe,AC -variants, which we denote by ⌈t⌉substs

RDHe. We use ⌈t⌉insts
RDHe to denote

the set {(tτ)↓RDHe
|τ ∈ ⌈t⌉substs

RDHe} of normalized instances corresponding to the variants.
We say that t is ↓RDHe

-normal if t =AC t↓RDHe
. We say a dependency graph dg = (I , D)

is ↓RDHe
-normal if all rule instances in I are. It is straightforward to extend the notion

of RDHe,AC -variants to multiset rewriting rules by considering rules as terms and the
required new function symbols as free. We can then show that we can take the RDHe,AC -
variants of the multiset rewriting rules and use dependency graphs modulo AC .

Lemma 3.11. For all sets of multiset rewriting rules R,

dgraphsDHe
(R)↓RDHe

=AC {dg | dg ∈ dgraphsAC(⌈R⌉insts
RDHe)∧ dg ↓RDHe

-normal }.

Proof. The lemma is a consequence of the fact that all ↓RDHe
-normal DHe-instances of

rules in R are ↓RDHe
-normal AC -instances of rules in ⌈R⌉insts

RDHe. �

Example 3.12. The dependency graph from Figure 3.4 is already an element of

dgraphsAC(⌈PMsg∪MD ⌉insts
RDHe) and ↓RDHe

-normal. For example, the label of node 5 is ↓RDHe
-

normal and an AC -instance of the second rule in the set

⌈K(x)−[]→K(fst(x))⌉insts
RDHe = {K(x)−[]→K(fst(x)),K(〈y, z 〉)−[]→K(y)}.
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As another example, consider the label of node 7 which is ↓RDHe
-normal and an AC -instance

of the third rule rule in the set

⌈K(x),K(y)−[]→K(xˆy)⌉insts
RDHe =



















K(x),K(y)−[]→K(xˆy)
K(uˆv),K(v−1)−[]→K(u)
K(uˆ(v∗w)),K(w−1)−[]→K(uˆv)
	 44 other variants 	



















.

The rule for exponentiation has 47 RDHe,AC -variants that cover all ↓RDHe
-normal-forms

of xˆy for instantiations of x and y with arbitrary terms. To compute the set of variants,
we have used Tamarin, which implements folding variant narrowing.

Note that the rewriting system resulting from orienting the non-AC equations in EDH

from left to right is not coherent for similar reasons as the rewrite system from Example 2.1.
After completion, the equations containing the inverse operator are usually oriented such
that the inverse operator is pushed inwards, e.g., (x∗y)−1→ x−1∗y−1. The problem with
this orientation is that there is no finite set of variants for the term x−1 since for all k, the
normal form of (a1∗	 ∗ak)

−1 is a1
−1∗	 ∗ak

−1. In RDH, we therefore use an orientation due
to Lankford which solves this problem by pushing the inverse operator outwards.

3.2.3 Normal Message Deduction Rules

In dependency graphs modulo AC , we use K-facts and ground AC -instances of ⌈MD ⌉insts
RDHe

to model message deduction by the adversary. In the following, we introduce new fact
symbols and a new set of rules to model normal message deduction. The new rules are
sound and complete with respect to the old rules and enforce restrictions that are similar
to those for normal natural deduction proofs [146]. In the setting of message deduction,
there are several works that take a similar approach such as [48], [165], and [52]. We first
focus on the deduction of products, then we show the rules for communication and ΣDH,
and finally, we show how to handle the rules for ΣST .

Multiplication

Conditions P1–P6 from Definition 3.4 ensure that protocol rules do not build new products
in extractable positions. More precisely, we define the non-inverse factors of a term t as

nifactors(t)=







nifactors(a)∪ nifactors(b) if t= a∗b
nifactors(s) if t= s−1

{t} otherwise

and prove in Lemma A.4 in the Appendix that for all products t that can be extracted from
messages sent by the protocol, the adversary can already deduce nifactors(t) before the
message is sent. Intuitively, this means that all extractable products are simple variations
of products constructed by the adversary himself. For example, the adversary can send
a−1∗b to a protocol that inverts received messages. The protocol replies with a∗b−1, which
is a different product, but has the same non-inverse factors.
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Rules for Communication and DH

Let us first assume that ΣST = ∅. Then we can partition the rules in ⌈MD ⌉insts
RDHe into five

subsets: communication rules for sending and receiving messages, deconstruction rules that
extract a subterm from an argument, exponentiation rules that modify an exponentiation
by adding and removing (some, but not all) exponents, construction rules that apply a func-
tion symbol from ΣDH to arguments, and multiplication rules consisting of all RDHe,AC -
variants of the rule for multiplication. Note that the set of exponentiation rules consists of
all RDHe,AC -variants of the rule [K(x),K(y)]−[]→K(xˆy) that are neither deconstruction
nor construction rules.

We want to enforce normal message deductions , which satisfy the following normal-
form condition. All messages are deduced by extracting subterms from messages sent by
the protocol, optionally modifying the exponent of extracted exponentiations, and finally
applying function symbols to these messages. This allows us to search for message deduc-
tions by applying deconstruction and exponentiation rules to messages sent by the protocol
top-down and applying construction rules to messages received by the protocol bottom-up
until both meet in the middle.

To achieve this, we introduce three new fact symbols. K⇓d(m) denotes that m has been

extracted from a message sent by the protocol. K⇓e(m) denotes that m has been deduced
by modifying the exponent of an extracted message. We call a rule instance with conclusion

K⇓d(m) or K⇓e(m) a deconstruction of m. Finally, K⇑(m) denotes that m has been deduced
using a normal message deduction. We call a rule instance with conclusion K⇑(m) a normal
deduction of m.

Figure 3.5 shows the normal message deduction rules ND that have been obtained by
replacing each K-fact in the previously defined sets of rules with the appropriate new fact

symbol. The Recv rule generates a K⇓d-fact, which captures that a message sent by the
protocol can be extracted. The Send rule allows the adversary to send a message that has
a normal deduction to the protocol. The deconstruction rules allow to extract a subterm
from a message that has been extracted itself. This extraction might require an additional
message. For example, the second deconstruction rule requires the inverse of the exponent

to extract the base of an exponentiation. For these additional premises, we use K⇑-facts.
The exponentiation rules allow us to modify the exponent of an extracted message and

use a K⇓e-fact for the conclusion. The Coerce rule reflects that both extracted subterms
themselves and extracted subterms with modified exponent have a normal deduction. The
resulting K⇑-fact of this rule can then be used by construction rules or Send. The con-
struction rules use K⇑ for both premises and conclusions. There are construction rules
for all function symbols, for fresh names, and for public names. Note that we replace
all multiplication rules with n,l-ary construction rules for multiplication. This is possible
because we can construct all deducible products from their non-inverse factors.

Example 3.13. Figure 3.6 shows three message deduction subgraphs for exponentiation.
Subfigure (a) shows a message deduction where aˆb is first constructed from a and b,
and immediately afterwards, a is extracted. This is not a normal deduction because, as

Subfigure (b) shows, a deconstruction rule for exponentiation cannot be applied to K⇑(aˆb).
Subfigure (c) shows that the ND rules also forbid repeated exponentiations. The deduction

in (c) can be replaced by the single rule instance K⇓d(aˆb),K⇑(b−1∗d)−[]→K⇓e(aˆd). Note
that the deduction in (c) includes the term c which occurs neither in the conclusion of i2
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Communication rules: Recv
Out(x)

K⇓d(x)
Send

K⇑(x)

In(x)

Deconstruction rules:

K⇓d(x−1)

K⇓d(x)

K⇓d(xˆy) K⇑(y−1)

K⇓d(x)

K⇓d(xˆ(y−1)) K⇑(y)

K⇓d(x)

K⇓d(xˆ(y∗z−1)) K⇑(y−1∗z)

K⇓d(x)

Exponentiation rules:

K⇓d(xˆy) K⇑(z)

K⇓e(xˆ(y∗z))

K⇓d(xˆy) K⇑(y−1∗z)

K⇓e(xˆz)
	

K⇓d(xˆ(y1∗y2
−1)) K⇑(z1∗z2

−1)

K⇓e(xˆ(y1∗z1∗(y2∗z2)−1))

Coerce rule : Coerce
K⇓y

(x)

K⇑(x)

Construction rules:

K⇑(x)

K⇑(x−1)

K⇑(x) K⇑(y)

K⇑(xˆy) K⇑(1)

K⇑(x1) 	 K⇑(xn) K⇑(xn+1) 	 K⇑(xl)

K⇑((x1∗	 ∗xn)∗(xn+1∗	 xl)−1)

Fr(x:fr)

K⇑(x:fr) K⇑(x:pub)

Figure 3.5. The normal message deduction rules ND . We use y in the Coerce to denote that
either K

⇓d(x) or K
⇓e(x) can be used as premise. There are construction rules for multiplication

for all n and l such that n> 0 and l > 1. There are 42 exponentiation rules computed from the 47
RDHe,AC -variants of the exponentiation rule in MD . The remaining 5 variants correspond to the
construction rule for exponentiation, the 3 deconstruction rules for exponentiation, and the variant
where the exponent is 1 for which no message deduction rule is required.

nor in the first premise of i1. Also note that it is possible to extend the deduction in (c)
by adding an unbounded number of additional steps that remove the previously added
exponent and add a new exponent. Since our search algorithm exploits locality of message
deductions [121], it is important to exclude this redundancy.

i1 :
K(a) K(b)

K(a ˆ b)

i2 :
K(a ˆ b) K(b−1)

K(a)

i1 :
K⇑(a) K⇑(b)

K⇑(a ˆ b)

i2 :
K⇓d

(a ˆ b) K⇑(b)

K⇓e

(a)

(a) (b) (c)
i1 :

K⇓d

(a ˆ b) K⇑(b−1 ∗ c)

K⇓e

(a ˆ c)

i2 :
K⇓d

(a ˆ c) K
⇑(c−1 ∗ d)

K
⇓e

(a ˆ d)

Figure 3.6. Message deduction subgraphs for exponentiation. The crossed edges are not allowed
since source and target are not equal.

Rules for ST

To explain how the normal message deduction rules for ΣST are computed, we first show
the rules for a simple theory. Then we explain the general case.
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Example 3.14. Consider the subterm theory DY defined in Example 3.2. This theory has
the construction rules

K⇑(x) K⇑(y)

K⇑(〈x, y〉)

K⇑(x)

K⇑(fst(x))

K⇑(x)

K⇑(snd(x))

K⇑(x)

K⇑(pk(x))

K⇑(x) K⇑(y)

K⇑(enc(x, y))

K⇑(x) K⇑(y)

K⇑(dec(x, y)) K⇑(true)

K⇑(x) K⇑(y)

K⇑(sig(x, y))

K⇑(x) K⇑(y)

K⇑(verify(x, y))

K⇑(x)

K⇑(h(x))

and the deconstruction rules

K⇓d(〈x, y〉)

K⇓d(x)

K⇓d(〈x, y〉)

K⇓d(y)

K⇓d(enc(x, pk(y))) K⇑(y)

K⇓d(x)
.

For this theory, the deconstruction rules can be computed by taking the non-trivial
RDHe,AC -variants of the message deduction rules and replacing the K-facts such that
the conclusion and the premise that contains the conclusion-message as a subterm use
K⇓d-facts and the remaining premises use K⇑-facts. For example, the only non-trivial
RDHe,AC -variant of the rule for dec is [K(enc(x, pk(y))), K(y)] −[]→ K(x) and replacing
the fact symbols as described above yields the given destruction rule.

For arbitrary rewrite rules, the set of deconstruction rules computed as described above
is unfortunately not complete. For example, consider the rewrite theory

ST =({f(_,_), g(_), e(_,_)}, {f(g(e(x1, x2)), x2)→x1}).

Note that given e(a, b) and b, the fresh name a is deducible for this theory since we can
first apply g to e(a,b) and then apply f to the result and b to obtain f(g(e(a, b)), b), which
reduces to a. Using the method described above to compute the normal message deduction

rules ND , we obtain the single deconstruction rule
[

K⇓d(g(e(x1, x2))),K
⇑(x2)

]

−[]→K⇓d(x1)

for f and construction rules for f , g, and e. These rules are not sufficient to deduce K⇑(a)

from K⇓d(e(a, b)) and K⇓d(b). To apply the deconstruction rule, the fact K⇓d(g(e(a, b)))
is required. Using the construction rule for g and Coerce, it is only possible to deduce

K⇑(g(e(a,b))), which cannot be used with the deconstruction rule for f . We therefore need
another deconstruction rule K⇓d(e(x1, x2)),K

⇑(x2)−[]→K⇓d(x1) which performs the required
construction and deconstruction in one step.

We therefore compute the normal message deduction rules for ST as follows. For each
n-ary function symbol f ∈ΣST , the construction rule is

[K⇑(x1),	 ,K
⇑(xn)]−[]→K⇑(f(x1,	 , xn)).

We compute the destruction rules from the rewriting system RST . For each rewriting rule
l→r∈RST , we distinguish two cases. If r is ground, then we do not require a deconstruction
rule for this rewriting rule since r can be directly deduced using only construction rules.
If there is a position p with l |p =r, then we use the function drules to compute the
corresponding deconstruction rules

drules(l, p)=
{([

K⇓d(l|p′)
]

· cprems(l, p′)
)

−[]→
[

K⇓d(l|p)
]

|p′ strictly above p and p′� [ ]
}

.

Intuitively, drules returns one deconstruction rule for each subterm of l that contains
the position p except for l|p and l itself. The drules function uses the function cprems to
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compute the required K⇑-premises. We use the function seq that converts sets into sequences
to define cprems as

cprems(l, p)= seq({K⇑(l |p′) |p′� [ ]∧ p′ has sibling that is above or equal to p}).

The rules returned by drules(l, p) express that the adversary can deduce an instance m of
l to extract the corresponding subterm m|p.

Example 3.15. To see how the computation of the deconstruction rules works, consider
drules(l, [1, 1]) for l= dec(enc(x, pk(y)), y). The only position p′ � [ ] strictly above [1, 1]

is [1]. We therefore obtain the only rule
[

K⇓d(enc(x, pk(y)))
]

· [K⇑(y)] −[]→ K⇓d(y). The
second premise is equal to cprems(l, [1]) since l |[2]=y and the position [2] is the only sibling
of the position [1] or of a position above [1] that is not equal to [ ].

Example 3.16. We can now turn to the problematic case described earlier. The right-hand
side of the rewrite rule f(g(e(x1, x2)), x2)→x1 occurs at position [1, 1, 1]. We compute the
deconstruction rule for this rewrite rule with drules(l, [1, 1, 1]) for l= f(g(e(x1, x2)), x2).
There are two positions p′ � [ ] strictly above [1, 1, 1], namely [1, 1] and [1]. We therefore
obtain the two deconstruction rules

([

K⇓d(g(e(x1, x2)))
]

· cprems(l, [1])
)

−[]→
[

K⇓d(x1)
]

and
([

K⇓d(e(x1, x2))
]

· cprems(l, [1, 1])
)

−[]→
[

K⇓d(x1)
]

where the remaining K⇑-premises are computed by cprems(l, [1]) and cprems(l, [1, 1]). The
first case captures that the adversary extracts x1 by applying f to g(e(x1, x2)) and the
remaining arguments computed by cprems . The second case captures that the adversary
extracts x1 by applying g to e(x1, x2) and f to the result. Here, cprems computes the
required arguments for both the application of g and the application of f . For the first

rule, cprems(l, [1]) returns the sequence [K⇑(x2)] since l|[2]=x2 and [2] is the position of the
the required second argument for the application of f . For the second rule, cprems(l, [1, 1])

also returns the sequence [K⇑(x2)] since [1, 1] has no siblings in l. This reflects that the
application of g performed by this rule does not require any arguments except for e(x1, x2).
Intuitively, cprems(l, p) starts at the position p and traverses l upwards and collects all sib-
lings, which correspond to the required arguments for the performed function applications.

Example 3.17. Figure 3.7 shows four message deduction subgraphs. In (a), the adversary
decrypts a message that he earlier encrypted himself. Instead of performing these deduc-
tions, the adversary can directly use the conclusion K(a) that is used by i1. The deduction
from (a) is not possible with the normal message deduction rules ND as depicted in (b).

Subfigures (c) and (d) show two different ways to deduce K⇑(〈a, b〉) from K⇓d(〈a, b〉). We
will later introduce an additional normal form condition that forbids deduction (c).

3.2.4 Normal Dependency Graphs

We now define normal dependency graphs. They use normal message deduction
rules and enforce further normal-form conditions. To state the normal-form condi-
tions, we first define the subset of invertible function symbols. An n-ary function
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i2 :
K(enc(a, pk(b))) K(b)

K(a)

i1 :
K(a) K(pk(b))

K(enc(a, pk(b)))

i2 :
K⇓d

(enc(a, pk(b))) K⇑(b)

K⇓d

(a)

i1 :
K⇑(a) K⇑(pk(b))

K⇑(enc(a, pk(b)))

(a)

(b)

(c) (d)
i1 :

Out(〈a, b〉)

K⇓d

(〈a, b〉)

i1 :
Out(〈a, b〉)

K⇓d

(〈a, b〉)

i4 :
K⇓d

(a)

K⇑(a)
i5 :

K⇓d

(b)

K⇑(b)

i2 :
K⇓d

(〈a, b〉)

K⇓d

(a)
i3 :

K⇓d

(〈a, b〉)

K⇓d

(b)

i6 :
K⇑(a) K⇑(b)

K⇑(〈a, b〉)

i2 :
K⇓d

(〈a, b〉)

K⇑(〈a, b〉)

Figure 3.7. Message deduction subgraphs for DY . The crossed edge is not allowed since source
and target are not equal.

symbol f ∈ΣST ∪ΣDH is invertible if for arbitrary terms ti and for all 1 ≤ i ≤ n,

K⇓d(f(t1,	 , tn))−[]→K⇓d(ti)∈ ginstsAC(ND), i.e., there is an AC -instance of a deconstruc-
tion rule that extracts ti. For DH, the function symbol _−1 is the only invertible function
symbol and for the DY theory, 〈_, _〉 is the only invertible function symbol. A mes-
sage where the outermost function symbol is invertible can always be deduced by applying
the corresponding construction rule.

Definition 3.18. A normal dependency graph for a protocol P is a dependency graph dg

such that dg ∈ dgraphsAC(⌈P ⌉insts
RDHe∪ND) and the following conditions are satisfied.

N1. The dependency graph dg is ↓RDHe
-normal.

N2. There is no multiplication rule that has a premise fact of the form K⇑(s∗t) and all
conclusion facts of the form Kd(s∗t) are conclusions of a multiplication rule.

N3. If there are two conclusions c and c′ with conclusion facts Kd(m) and Kd
′

(m′) such
that m=AC m

′ and either d= d′=⇑ or d=⇓y and d′=⇓y
′

for y, y ′∈{d, e}, then c= c′.

N4. All conclusion facts K⇑(f(t1, 	 , tn)) where f is an invertible function symbol are
conclusions of the construction rule for f .

N5. If a node i has a conclusion K⇓y
(m) for y∈{d,e} and a node j has a conclusion K⇑(m′)

with m=AC m
′, then i< j and either root(m) is invertible or the node j is an instance

of Coerce.

N6. There is no node
[

K⇓d(a), K⇑(b)
]

−[]→ K⇓e(cˆd) where c does not contain any fresh

names and nifactors(d)⊆AC nifactors(b).

We denote the set of all normal dependency graphs for P with ndgraphs(P ).

Condition N1 ensures that all rule instances are ↓RDHe
-normal. Condition N2 formalizes

that the adversary constructs all products directly by multiplying their components. Con-

dition N3 ensures that the same message never has multiple K⇓d, K⇓e, or K⇑ deductions.
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Condition N4 ensures that terms m where root(m) is invertible are never deduced by
Coerce. Condition N5 forbids two types of redundancies. First, if there is already a
normal deduction for a message, then there is no need for a later deconstruction of the
same message. Second, if there is already a deconstruction of a message, then the Coerce
rule should be used to create a normal deduction unless it is forbidden by condition N4.
Condition N6 forbids instances of exponentiation rules that can be directly replaced by
the construction rule for exponentiation.

Note that normal dependency graphs have the same observable traces as dependency
graphs modulo AC using the message deduction rules MD .

Lemma 3.19. For all protocols P,

{trace(dg) | dg ∈ dgraphsAC(⌈P ∪MD ⌉insts
RDHe)∧ dg ↓RDHe

-normal }= trace(ndgraphs(P )).

In Appendix A, we prove Lemma A.12, which is an extended version of this lemma for
bilinear pairings and AC operators, which we will introduce later on. Combining this result
with Lemma 3.10 and Lemma 3.11, we conclude that normal dependency graphs have the
same observable traces as our multiset rewriting semantics.

Corollary 3.20. For all protocols P, trace(execs(P ∪MD))↓RDHe
=AC trace(ndgraphs(P )) .

Example 3.21. The dependency graph from Figure 3.4 can be converted into the normal
dependency graph depicted in Figure 3.8 as follows. First, the rules for message deduction
are replaced by the corresponding rules from ND where possible. This requires a a Coerce
node between Node 10 and 12 in the normal dependency graph. Between the conclusion
of Node 6 and the second premise of Node 10 in the normal dependency graph, we cannot
simply add a Coerce node because of condition N4. We therefore add the deconstruction
rule for the inverse followed byCoerce and the construction rule for inverse. This is similar
to the deductions (c) and (d) in Figure 3.7 where only deduction (d) is allowed.

Properties of Normal Dependency Graphs

We prove a property of normal dependency graphs that is crucial for our constraint solving

algorithm. It states that every K⇓y
(t)-premise is deduced using a chain of deconstruction

rules from a received message. We use here the extended set of deconstruction rules NDdecon

that consists of the deconstruction and exponentiation rules from Figure 3.5 and the decon-
struction rules for ST .

Definition 3.22. Let dg =(I ,D) be a normal dependency graph for P . Its deconstruction
chain relation ։dg is the smallest relation such that i։dg p if (i, 1) is a K⇓y

-conclusion
in dg for y ∈ {d, e} and (a) (i, 1)  p ∈ D or (b) there is a premise (j , 1) such that
(i, 1) (j , 1)∈D and j։dg p.

Our algorithm exploits the following lemma to reason about the possible origins of K⇓y
-

premises.
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13 :
St(a) In(g ˆ a)

[Fin()]

3 :
Fr(a) Fr(b)

St(a) Out(〈g ˆ (a ∗ b), b−1〉)
[Start()]

4 :
Out(〈g ˆ (a ∗ b), b−1〉)

K⇓d

(〈g ˆ (a ∗ b), b−1〉)

5 :
K⇓d

(〈g ˆ (a ∗ b), b−1〉)

K⇓d

(g ˆ (a ∗ b))
6 :

K⇓d

(〈g ˆ (a ∗ b), b−1〉)

K⇓d

(b−1)

10 :
K⇓d

(g ˆ (a ∗ b)) K⇑(b−1)

K⇓e

(g ˆ a)

12 :
K⇑(g ˆ a)

In(g ˆ a)
[K(g ˆ a)]

11 :

K⇓e

(g ˆ a)

K⇑(g ˆ a)

8 :
K⇓d

(b)

K⇑(b)

9 :
K⇑(b)

K⇑(b−1)

7 :
K⇓d

(b−1)

K⇓d

(b)

1 :
Fr(a)

2 :
Fr(b)

Figure 3.8. Normal dependency graph for PMsg.

Lemma 3.23. Let dg be a normal dependency graph. For every premise p of dg with
fact K⇓y

(m) for y∈{d,e}, there is a node i in dg such that Ii∈ ginstsAC(Recv) and i։dg p.

The lemma follows from the structure of the rules in ND . The only rule in ND that has a
K⇓y

-conclusion, but no K⇓y
-premise is Recv.

Example 3.24. For example, in the dependency graph dg from Figure 3.8, 4։dg (11, 1),

5։dg (11, 1), and 5։dg (10, 1), but not 6։dg (11, 1) since conclusion (8, 1) is a K⇑-fact.

3.2.5 Guarded Trace Formulas

In the following, let f range over facts and i, j over temporal variables. A trace formula ϕ
is in negation normal form if it is built such that negation is only applied to trace atoms
and ⊥ and all other logical operators are ∧, ∨, ∀, and ∃.
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Definition 3.25. A trace formula ϕ in negation normal form is a guarded trace formula
if all its quantifiers are of the form ∃xR .g ∧ ψ or ∀xR .¬g∨ ψ such that

G1. xR ⊆Vmsg∪V temp and

G2. either

a) g is an action f@i and xR ⊆ vars(f@ i) or

b) g is an equality s≈ t, vars(s)∩xR = ∅ and xR ⊆ vars(t).

A guarded trace formula ϕ is a guarded trace property if it is closed and for all subterms t
of ϕ, root(t) is a variable, a public name, or an irreducible function symbol from ΣST .

Intuitively, the guarding of quantified variables by actions ensures that for checking if
a trace tr satisfies a guarded trace property ϕ, we only have to consider assignments of
subterms of the trace to these variables. For variables guarded by equalities s≈ t, we only
have to consider assignments of subterms of s to these variables. Note that we restrict both
universal and existential quantification and, as a result, the set of guarded trace properties
is closed under negation. This, together with the support for quantifier alternations and the
explicit comparison of timepoints, makes guarded trace properties well-suited for specifying
security properties.

In our case studies, it was possible to automatically convert the specified security proper-
ties, including the properties of the UM model from Figure 3.3, to guarded trace properties.
The conversion first rewrites the given formula to negation normal form and pushes quan-
tifiers inward. Then, it replaces each body ϕ of an existential quantifier that is not a
conjunction with ϕ∧¬⊥. The rewriting for universal quantifiers is analogous.

Terms in guarded trace properties cannot use reducible function symbols. This is not a
limitation in practice since the terms required to express a security property can be added
to the actions of a protocol’s rewriting rules. Together with the requirement of guarding
all quantified variables, this ensures that satisfaction of guarded trace properties modulo
AC and satisfaction modulo DHe coincide for ↓RDHe

-normal traces.

Lemma 3.26. For all ↓RDHe
-normal traces tr and guarded trace properties ϕ, tr �DHe

ϕ if
and only if tr �AC ϕ.

In Appendix A, we prove Lemma A.20, which is an extended version of this lemma for
bilinear pairings and AC operators that can be used in formulas. The following theorem
allows us to switch from verification in a multiset rewriting semantics modulo DHe to
verification in a dependency graph semantics modulo AC .

Theorem 3.27. For all protocols P and guarded trace properties ϕ,

trace(execs(P ∪MD))�DHe
ϕ if and only if trace(ndgraphs(P ))�AC ϕ.

Proof. The proofs proceeds as follows.

trace(execs(P ∪MD))�DHe
ϕ

iff trace(execs(P ∪MD))�DHe
ϕ [by Lemma 3.7 ]

iff trace(execs(P ∪MD))↓RDHe
�DHe

ϕ [Definition of �DHe
]
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iff trace(ndgraphs(P ))�DHe
ϕ [by Corollary 3.20 ]

iff trace(ndgraphs(P ))�AC ϕ [by Lemma 3.7 and 3.26 ]

Note that the last step exploits that ϕ is a guarded trace property. �

3.3 Constraint Solving

In this section, we give an algorithm that determines for a guarded trace property ϕ and
a protocol P if ϕ is P ,DHe-satisfiable. Our algorithm uses constraint solving to search for
traces of P that are models of ϕ. If it terminates, it has either found such a trace or, since
the search is complete, it has proved that ϕ is unsatisfiable by traces of P . To analyze if all
traces of a protocol satisfy a property ϕ, we must check for validity instead of satisfiability.
Since these notions are dual, we can determine if ϕ is P ,DHe-valid by using our algorithm
to check if ¬ϕ is P ,DHe-satisfiable. If we find a trace, then this a counterexample to the
validity of ϕ, i.e., there is an attack. Both problems are undecidable and our algorithm
does not always terminate. Nevertheless, it terminates for many relevant protocols and
properties. In the following, we define the syntax and semantics of constraints. Afterwards,
we give our constraint solving algorithm and rules, explain two optimizations, and present
several examples.

3.3.1 Syntax and Semantics of Constraints

In the remainder of this section, let ri and ru range over multiset rewriting rules, u and
v and w over natural numbers, and ϕ over guarded trace formulas. A graph constraint is
either a node i: ri , an edge (i, u) (j , v), a deconstruction chain i։ (j , v), or a provides
i ⊲ f which denotes that f is the first conclusion of the node i. A constraint is a graph
constraint or a guarded trace formula.

A structure is a tuple (dg , θ) of a dependency graph dg = (I , D) and a valuation θ.
We denote the application of the homomorphic extension of θ to a rule ru by ruθ. The
satisfaction relation  between structures and constraints is inductively defined by the
following rules:

(dg , θ) i: ri if θ(i)∈ idx (I) and ri θ=AC Iθ(i)

(dg , θ) (i, u) (j , v) if (θ(i), u) (θ(j), v)∈D

(dg , θ) i։ (j , v) if θ(i)։dg (θ(j), v)

(dg , θ) i⊲ f if θ(i)∈ idx (I) and (concs(Iθ(i)))1 =AC fθ

(dg , θ) ϕ if (trace(dg), θ)�AC ϕ

A constraint system Γ is a finite set of constraints. The structure (dg , θ) satisfies Γ, written
(dg , θ)Γ, if (dg , θ) satisfies each constraint in Γ. We say that (dg , θ) is a P -solution of Γ,
if dg is a normal dependency graph for P and (dg , θ)  Γ. A P -model of Γ is a normal
dependency graph dg for P such that there is a valuation θ with (dg , θ)Γ. Note that the
free variables of a constraint system are therefore considered as existentially quantified. We
use modelsP(Γ) to denote the set of all P -models of Γ.
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Example 3.28. The dependency graph from Figure 3.8 satisfies the constraints

• i:K⇓d(x),K⇑(b−1)−[]→K⇓e(gˆa) for all valuations θ with θ(i)= 10 and θ(x)=AC gˆ(a∗b),

• (j , 1) (k, 2) for θ with θ(j)= 2 and θ(k)= 3,

• i։ (l, 1) for θ with θ(i)= 10 and θ(l) = 11,

• i⊲K⇑(b) for θ with θ(i)= 8, and

• ∀i y.¬K(h(y))@ i∨⊥ since there is no K-action whose argument is a hash.

3.3.2 Constraint Solving Algorithm

As mentioned before, validity can be reduced to satisfiability. Moreover, Theorem 3.27
allows us to use normal dependency graphs and satisfaction modulo AC . Given a guarded
trace property ϕ and a protocol P , we can therefore focus on the problem of finding normal
dependency graphs dg ∈ ndgraphs(P ) such that trace(dg)�AC ϕ. This is equivalent to the
problem of finding P -models for the constraint system {ϕ}. To achieve this, we define a
constraint solving relation P that reduces a constraint system to a finite set of constraint
systems by inferring new constraints and performing case splits. The relation P is sound
and complete in the following sense: whenever Γ P {Γ1,	 ,Γk}, then the set of P -models
of Γ is equal to the union of the sets of P -models of the Γi. We overload notation and
define the reflexive-transitive closure  P

∗ of  P as the least relation such that Γ P
∗ ∆

if (a) ∆ = {Γ} or (b) Γ P {Γ1,	 , Γk}, Γi P
∗ ∆i, and ∆ =

⋃

i=1

k
∆i. We call Γ P

∗ ∆ a
constraint reduction .

The relation  P
∗ can be used to check P ,DHe-satisfiability of ϕ as follows. We search

for a constraint reduction {ϕ} P
∗ ∅ or a constraint reduction {ϕ} P

∗ ∆ such that there
is a constraint system Γ∈∆ for which we can directly confirm that it has a P -model. In
the first case, we have proved that ϕ is not satisfiable. In the second case, we can extract
a P -model dg of ϕ from Γ. We call such a constraint system solved and will later formally
define this notion.

To check P ,DHe-validity of ϕ, we first rewrite ¬ϕ into a guarded trace property ϕ̂,
which is always possible since ϕ is a guarded trace property. Then, a constraint reduction
{ϕ̂} P

∗ ∅ proves the validity of ϕ and a constraint reduction {ϕ̂} P
∗ ∆, where at least

one constraint system in ∆ is solved, provides a counterexample to ϕ.
An algorithm based on  P can therefore use the following approach. To check satisfi-

ability of the constraint system Γ= {ϕ}, it maintains a set ∆ of constraint systems as its
state. The algorithm starts with the initial state ∆ 7 {Γ} and maintains the invariant
that Γ P

∗ ∆. In each step, it checks first if ∆ = ∅ and otherwise checks if ∆ contains a
solved constraint system. If the first check succeeds, the algorithm has proved that ϕ is
not satisfiable for P . If the second check succeeds, the algorithm has proved that ϕ is
satisfiable for P and can construct a P -model of ϕ. If both checks fail, the algorithm can
choose a ∆ ∈∆ and a constraint solving step ∆ P ∆′. Then, it can update its state to
∆7 (∆ \∆)∪∆′ and proceed with the next step. This is a standard approach to obtain
a constraint solving algorithm from a constraint solving relation by providing a specific
control that chooses one of many possible steps. We will provide intuition for devising a
sensible control strategy in the examples in this section. In Section 3.5.1, we will sketch
the control strategy used in our implementation of the algorithm in the Tamarin prover
and explain the interactive mode where the user can provide the control strategy.
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3.3.3 Constraint Solving Rules

We will now define the constraint solving relation  P in three steps. First, we introduce
notation and definitions required to formalize the constraint solving rules. Then, we present
all the constraint solving rules except those for handling message deduction and show an
example constraint reduction to provide intuition. Finally, we present the constraint solving
rules for message deduction, properties of the constraint solving relation, and an example.

We first define auxiliary functions on constraint systems. The actions of a constraint
system Γ are defined as

as(Γ)= {f@ i|∃i ri .i: ri ∈Γ∧ f ∈ acts(ri)}.

The implicit ordering of a constraint system Γ is defined as

≺Γ = {(i, j)|(∃uv.( i, u) (j , v)∈Γ)∨ (∃v.i։ (j , v)∈Γ)∨ (i≺ j ∈Γ)}+.

We define P as the least relation closed under the rules given in Figures 3.9, 3.10, 3.15, and
3.16. In our presentation of the constraint solving relation, we use the following notation.
For constraints c and constraint systems Γ, we write c,Γ to denote {c}∪Γ. We distinguish
between two types of rules, Insertion rules where

c1,	 , cl
∆1|	 |∆k

I denotes that Γ P {Γ∪∆1,	 ,Γ∪∆k} if {c1,	 , c}⊆AC Γ

and modification rules where

Γ

Γ1
′ |	 |Γk

′ M denotes that Γ P {Γ1
′ ,	 ,Γk

′ }.

We assume that all sets of multiset rewriting rules that are used in the side conditions of
rules are renamed away from Γ and freshly chosen variables. For some of the rules, we use
the overloaded notation a ≈ b for facts, natural numbers, or rule instances a and b. This
denotes the equality constraint resulting from encoding a and b as terms. In our constraints,

we also use a binary fact symbol K⇓_(_) instead of K⇓e(_) and K⇓d(_). This allows us to
encode e and d as terms and use a variable of sort msg to represent both alternatives.

Basic Constraint Solving Rules

The first set of rules given in Figure 3.9 deals with guarded formulas. Note that the insertion
rules can be applied repeatedly without yielding any new constraints and we will later define
a notion of redundancy. The rule S@ solves a constraint f@ i by performing a case split over
all rules and their actions that might be equal to f . In each case, a node constraint j: ru i
for a freshly chosen temporal variable j and a freshly renamed instance ru i of a variant
of a protocol rule or Send is added. Additionally, an equality constraint between f and
one of the actions of ru i is added. The rule S≈ solves equality constraints by performing
unification. Since AC -unification is not unitary, this might result in case splits. Note that
the rule can also be used to solve timepoint equalities. The rule S∃ insert the body of an
existential quantification and replaces the bound variables with freshly chosen variables.
The rule S∀,@ solves a ∀-quantification that is guarded by an action. The bound variables in
ϕ and f@ i are instantiated by σ such that (f@i)σ holds in Γ and ϕσ is then added to the
constraint system. The rule S∀,≈ solves a ∀-quantification that is guarded by an equality.
The bound variables in t and ϕ are instantiated by σ such that the equality holds and ϕσ
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S@:
f@ i

i: ru1, g1≈ f |	 |i: ru l, gl≈ f
I

if {(ru1, g1),	 , (ru l, gl)}=

{(ru , g) | ru ∈⌈P ⌉insts
RDHe∪{Send}∧ g ∈ acts(ru)}

S≈:
s≈ t,Γ

Γσ1 |	 |Γσl
M if {σ1,	 , σl}= unif AC

fvars(Γ)
(s, t)

S∃:
∃xR .ϕ
ϕ{yR /xR }

I
if yR freshly chosen variables such that
|xR |= |yR | and xi and yi have the same sort.

S∀,@:
∀xR .¬(f@i)∨ ϕ

ϕσ
I

if g@ j ∈ as(Γ), σ ∈matchAC(g@ j , f@ i),
and dom(σ)⊆ xR

S∀,≈:
∀xR .¬(s≈ t)∨ ϕ

ϕσ
I if σ ∈matchAC(s, t) and dom(σ)⊆xR

S∨:
ϕ

1
∨ ϕ

2

ϕ
1
|ϕ

2

I S∧:
ϕ

1
∧ ϕ

2

ϕ
1
, ϕ

2

I

S≈:
¬(t≈ t)
⊥

I S⊥:
⊥,Γ

M
(the result is the empty
set of constraint systems)

S¬@:
¬(f@i),Γ

⊥
M if f@i∈AC as(Γ)

Figure 3.9. Constraint solving rules for guarded formulas.

is then added to the constraint system. The rule S∨ performs a case distinctions on which
disjunct is true. The rule S∧ adds both conjuncts to the constraint system. The rule S⊥
replaces ⊥ with the empty case distinction. The remaining rules deal with negated atoms
that cannot be false such as ¬(t≈ t).

The second set of rules given in Figure 3.10 enforces several properties of normal depen-
dency graphs by adding the corresponding constraints. The constraint solving rule SPrem

solves a non-Kd and non-Fr premise of a node constraint by performing a case distinction
over all rules and their conclusion indices that can provide such a conclusion. It adds a node
constraint with a fresh temporal variable, a fresh instance of the rule, and an edge from
the conclusion to the premise. S can then be used to enforce that the target and source
of the edge are equal by adding the corresponding equality. Usually, S≈ is then directly
used to solve this equality. In this case, all cases where the premise fact and the conclusion
fact have no unifier disappear and a most general unifier of the two facts is applied to the
constraint system in the other cases. SUSrc ensures that each premise has at most one
incoming edge. SUTgt ensures that there is only one outgoing edge for linear conclusions.
SULabel ensures that each node has a unique rule instance as its label. SAcyc ensures that
the nodes can be linearly ordered without violating any constraints. SUFresh exploits the
uniqueness of Fresh rules and ensures that the same Fr-premises is only used once. S↓
ensures that the rule instances are ↓RDHe

-normal. So far, we have not shown the rules that
deal with message deduction and the remaining conditions on normal dependency graphs.
Before showing these, we will present an example constraint solving sequence where message
deduction is not required.

3.3 Constraint Solving

65



SPrem:
i: ri

j: ru1, (j , v1) (i, u)
| 	
| j: ru l, (j , vl) (i, u)

I if u∈ idx (prems(ri)),

(prems(ri))u not Kd or Fr-fact, and
{(ru1, v1),	 , (ru l, vl)}=

{(ru , v) |ru ∈⌈P ⌉insts
RDHe∪{Send}

∧v ∈ idx (concs(ru)},
and j freshly chosen

S:
i: ri , j: ru , (i, u) (j , v)

(concs(ri))u≈ (prems(ru))v
I SUSrc:

(i, u) p, (j , v) p

i≈ j , u≈ v
I

SUTgt:
(i, u) (j , v), (i, u) (k,w), i: ri

j≈ k, v≈w
I if (concs(ri))u linear

SULabel:
i: ri , i: ru

ri ≈ ru
I SAcyc:

Γ

⊥
M if i≺Γ i for some i

SUFresh:
i: ri , j: ru

i≈ j , u≈ v
I if (prem(ri))u= (prem(ru))v=Fr(m)

S↓:
i: ri

⊥
I if ri not ↓RDHe

-normal

Figure 3.10. Constraint solving rules that ensure DG1–4 and N1.

Note that most rules do not remove constraints and it is easy to see that rules such as
S@ can be applied a second time without yielding any useful new constraints. We therefore
define the following notion of redundancy.

Definition 3.29. An application of a constraint solving rule is redundant if it does not add
any new constraints except for trivial equalities t≈ t′ where t=AC t

′ or one of the following
holds:

• The rule is S@ and f@ i∈AC as(Γ).

• The rule is S∃ and there are terms tR such that ϕ
{

tR /xR
}

∈AC Γ.

• The rule is S∨ and ϕ
1
∈AC Γ or ϕ

2
∈AC Γ.

• The rule is SPrem and there is an edge c (i, u) for some c.

A constraint system is solved if all rule applications are redundant. We also call a constraint
solved if all rule applications using the constraint are redundant.

Example 3.30. We will analyze a modified version of the protocol PUM from Figure 3.2
that uses a private channel between participants. The modified version PUM ′ can be
obtained by replacing the Out(X) fact in the initiator rule and the In(X) fact in the
responder rule with PChan(X). We analyze if

ϕ
UM-exec ′

=∃i j A B X key . Accept(〈A,B,X, I〉, key)@i∧Accept(〈B,A,X,R〉, key)@ j

is satisfiable for PUM′. We first compute ⌈ru ⌉insts
RDHe for all ru ∈ PUM′. The responder rule

has the six variants shown in Figure 3.11. For all other rules, ⌈ru ⌉insts
RDHe = {ru↓RDHe

}. To
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1. τ1 = id 2. τ2 = {uˆv/X}

PChan(X)
!Pk(A:pub, gˆ(a:fr))
!Ltk(B:pub, b:fr)

[Accept(sid , key)]

PChan(uˆv)
!Pk(A:pub, gˆ(a:fr))
!Ltk(B:pub, b:fr)

[Accept(sid , key)]

where sid = 〈B,A,X,R〉 where sid = 〈B,A, uˆv,R〉
key = h(Xˆb, gˆ(a∗b), A,B,X) key =h(uˆ(v∗b), gˆ(a∗b), A,B,X)

3. τ3 = {uˆ(b−1)/X} 4. τ4 = {uˆ(b−1∗v)/X}

PChan(uˆ(b−1))
	

[Accept(sid , key)]

PChan(uˆ(b−1∗v))
	

[Accept(sid , key)]

where sid = 〈B,A, uˆ(b−1),R〉 where sid = 〈B,A, uˆ(b−1∗v),R〉
key = h(u, gˆ(a∗b), A, B,X) key =h(uˆv, gˆ(a∗b), A, B,X)

5. τ5 = {uˆ((b∗v)−1)/X} 6. τ6 = {uˆ((b ∗v)−1∗w)/X}

PChan(uˆ((b∗v)−1))
	

[Accept(sid , key)]

PChan(uˆ((b∗v)−1∗w))
	

[Accept(sid , key)]

where sid = 〈B,A, uˆ((b ∗v)−1),R〉 where sid = 〈B,A, uˆ((b∗v)−1∗w),R〉
key = h(uˆv−1, gˆ(a∗b), A, B,X) key =h(uˆ(v−1∗w), gˆ(a∗b), A,B,X)

Figure 3.11. Variant substitutions and normalized instances for the responder rule of PUM ′. We
suppress the second and third premise in Variants 3–6 since they remain unchanged from Variant 1.

define the initial constraint system, we convert ϕ
UM-exec ′

into the guarded trace property

ϕ= ∃ i A B X key .Accept(〈A,B,X, I〉, key)@i∧ (∃ j.Accept(〈B,A,X,R〉, key)@ j ∧¬⊥).

We start with the constraint system Γ0 = {ϕ} and apply S∃ and S∧ to obtain

Γ1 =







ϕ Accept(〈A,B,X, I〉, key)@ i∧ (∃ j.Accept(〈B,A,X,R〉, key)@ j ∧¬⊥)
Accept(〈A,B,X, I〉, key)@i ∃ j. Accept(〈B,A,X,R〉, key)@ j ∧¬⊥

Accept(〈B,A,X,R〉, key)@ j ¬⊥







.

Figure 3.12 shows the constraint reduction Γ1  P
∗ {Γ1.1.1.1.1.1.1} resulting in the single

solved constraint system Γ1.1.1.1.1.1.1. We use grey arrows labeled with constraint solving
rules to denote the successor(s) of a constraint system after applying the given rules,
possibly multiple times. If such a grey arrow points to ⋄, this means that applying the
constraint solving rule results in the empty set of constraint systems. We use edges between
conclusions and premises of node constraints to denote edge constraints. We use a grey
background to emphasize constraints that have been added or modified in the last step and
a light-blue background as a hint that the next constraint solving step applies a rule to the
given constraint. In some cases, we suppress solved constraints such as f ≈ f or ϕ in Γ1.

Applying S@ to the first Accept-fact yields nine constraint systems of the form

Γ1, i: ru , (act(ru))1≈Accept(〈A,B,X, I〉, key)@i,
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one for each non-silent rule. We only show the complete constraint system Γ1.1 for the
initiator rule since the other constraint systems for the long-term reveal rule, the ephemeral
reveal rule, and the variants of the responder rule can be shown to be contradictory
by applying S≈ to the added fact-equality. For Γ1.1, there is only one unifier for the
fact-equality and the result of applying S≈ is the constraint system Γ1.1.1. Note that the
equality has been removed and the constraint Accept(SI ,K)@ i is solved since it is already
in as(Γ1.1.1).

Next, we solve the second and the third premise of the node i in three steps each. First,
we use SPrem to add the node that provides the conclusion and the edge between conclusion
and premise. Then we use S to introduce the equality between source and target of
the edge. Finally, we use S≈ to solve the equality. This results in the only constraint
system Γ1.1.1.1.

We now solve Accept(SR ,K)@ j with S@ followed by S≈. This results in two intermediate
constraint systems which we do not show. One where the first variant of the responder
rule is added and one where the second variant is added. In both cases, the X in the rule
is instantiated with gˆ(x:fr). In the first case, the node constraint contains the term

key =h((gˆ(x:fr))ˆb, gˆ(a∗b), A,B, gˆ(x:fr)),

which is not ↓RDHe
-normal. This case is therefore contradictory by S↓. This reflects that the

first variant is reserved for the case whereX is not an exponentiation. In the second case, we
continue by solving the third premise of the newly added responder node to obtain Γ1.1.1.1.1.

In this constraint system, the nodes m and l have the same Fr-premise. We therefore use
SUFresh to obtain l≈m followed by S≈ and SULabel to obtain Γ1.1.1.1.1.1. Finally, we solve
the remaining open premises and merge the new key generation nodes with the existing
ones using SUFresh to obtain the solved constraint system Γ1.1.1.1.1.1.1.

It is straightforward to obtain a P -model from this constraint system. For example,
Figure 3.13 depicts one such model. We instantiate the fresh variables with distinct fresh
names and the public variables with distinct public names. Then, we order the existing
nodes such that the resulting sequence is compatible with ≺ Γ1.1.1.1.1.1.1. This is possible since
SAcyc is not applicable and the ordering relation is acyclic. Then, only Fr-premises do not
have incoming edges. We therefore add the required Fresh instances immediately before
the respective consumers. Finally, we instantiate node variables with the position in the
sequence.

2 :

Fr(a)

!Ltk(A, a) !Pk(A, g ˆ a) Out(g ˆ a)

6 :
Fr(x) !Ltk(A, a) !Pk(B, g ˆ b)

PChan(g ˆ x) !Ephk(SI, x)
[Accept(SI,K )]

1 :
Fr(a)

4 :
Fr(b)

!Ltk(A, b) !Pk(A, g ˆ b) Out(g ˆ b)

3 :
Fr(b)

5 :
Fr(x)

7 :
PChan(g ˆ x) !Pk(A, g ˆ a) !Ltk(B, b)

[Accept(SR,K)]

Abbreviations: K := h(gˆ(b∗x), gˆ(b∗a),A,B, gˆx),SI := 〈A,B, gˆx, I〉,SR := 〈B,A, gˆx,R〉

Figure 3.13. Extracted model from Γ1.1.1.1.1.1.1 for a, b, x∈FN and A,B, g, I ,R∈PN.
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m :
Fr(b)

!Ltk(B, b) !Pk(B, g ˆ b) Out(g ˆ b)

i :
Fr(x : fr) !Ltk(Ã : pub, a : fr) !Pk(B̃ : pub, g ˆ b : fr)

PChan(g ˆ x) !Ephk(SI ′, x : fr)
[Accept(SI ′,K ′)]

Γ1.1

Accept(SI ′,K ′) ≈ Accept(〈A,B,X, I〉, key)

Γ1.2 Γ1.3 Γ1.4

RevealLtk(..) ≈ Accept(..) RevealEphk(..) ≈ Accept(..) Accept(〈..,R〉, ..) ≈ Accept(〈.., I〉, ..)

S@

S≈

S≈

K
′ := h(g ˆ (b ∗ x), g ˆ (b ∗ a), Ã, B̃, g ˆ x)

K := h(g ˆ (b ∗ x), g ˆ (b ∗ a), A,B, g ˆ x)

Γ1.1.1

SPrem,S,S≈

Γ1.1.1.1

Γ1

. . .

k :
Fr(a)

!Ltk(A, a) !Pk(A, g ˆ a) Out(g ˆ a)
m :

Fr(b)

!Ltk(B, b) !Pk(B, g ˆ b) Out(g ˆ b)

i :
Fr(x : fr) !Ltk(A : pub, a : fr) !Pk(B : pub, g ˆ b : fr)

PChan(g ˆ x) !Ephk(SI, x : fr)
[Accept(SI,K )]

SI
′ := 〈Ã, B̃, g ˆ x, I〉

SI := 〈A,B, g ˆ x, I〉

j :
PChan(g ˆ x) !Pk(A, g ˆ a) !Ltk(B, b)

[Accept(SR,K)]

k :
Fr(a)

!Ltk(A, a) !Pk(A, g ˆ a) Out(g ˆ a)

i :
Fr(x : fr) !Ltk(A : pub, a : fr) !Pk(B : pub, g ˆ b : fr)

PChan(g ˆ x) !Ephk(SI, x : fr)
[Accept(SI,K )]

l :
Fr(b)

!Ltk(B, b) !Pk(B, g ˆ b) Out(g ˆ b)

i :
Fr(x : fr) !Ltk(A : pub, a : fr) !Pk(B : pub, g ˆ b : fr)

PChan(g ˆ x) !Ephk(SI, x : fr)
[Accept(SI,K )]

k :
Fr(a)

!Ltk(A, a) !Pk(A, g ˆ a) Out(g ˆ a)
m :

Fr(b)

!Ltk(B, b) !Pk(B, g ˆ b) Out(g ˆ b)

j :
PChan(g ˆ x) !Pk(A, g ˆ a) !Ltk(B, b)

[Accept(SR,K)]

SR := 〈B,A, g ˆ x,R〉

Γ1.1.1.1.1

Γ1.1.1.1.1.1

Γ1.1.1.1.1.1.1

Abbreviations for Γ1.1:

Abbreviations for Γ1.1.1–Γ1.1.1.1.1.1.1:

j :
PChan(g ˆ x) !Pk(A, g ˆ a) !Ltk(B, b)

[Accept(SR,K)]

i :
Fr(x : fr) !Ltk(A : pub, a : fr) !Pk(B : pub, g ˆ b : fr)

PChan(g ˆ x) !Ephk(SI, x : fr)
[Accept(SI,K )]

k :
Fr(a)

!Ltk(A, a) !Pk(A, g ˆ a) Out(g ˆ a)
m :

Fr(b)

!Ltk(B, b) !Pk(B, g ˆ b) Out(g ˆ b)

Accept(〈A,B,X, I〉, key)@i Accept(〈B,A,X,R〉, key)@j ϕ ¬⊥

Accept(SR,K)@j

S@,S≈,S↓,SPrem,S

SUFresh,S≈,SULabel

SPrem,S,S≈,SUFresh,SULabel

Accept(SR,K)@j

. . .. . .. . .

S≈ S≈

Accept(〈A,B,X, I〉, key)@i Accept(〈B,A,X,R〉, key)@j

⋄ ⋄ ⋄

i :
Fr(x : fr) !Ltk(A : pub, a : fr) !Pk(B : pub, g ˆ b : fr)

PChan(g ˆ x) !Ephk(SI, x : fr)
[Accept(SI,K )]

Figure 3.12. Constraint reduction for PUM ’.
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Constraint Solving Rules for Message Deduction

To handle message deduction, we require specialized rules to solve K⇑-premises and
K⇓y

-premises. Using SPrem for these would often result in nontermination, even for simple
cases. We illustrate this in the following example.

Example 3.31. Consider the protocol

PMsgSimp =

{

Fr(x:fr)

Out(h(x))
[Secret(x)]

}

.

For ST = DY , we want to show that ∀ix.Secret(x)@ i�¬(∃j.K(x)@ j) is valid for
PMsgSimp. This is equivalent to showing that ∃i jx.Secret(x)@ i∧K(x)@ j is not satisfiable
for PMsgSimp. After some constraint solving steps where we use SPrem also for K⇑-premises,

we obtain the constraint system Γ1.1.1 depicted in Figure 3.14. If we solve the K⇓y
-premise of

j with SPrem, one of the resulting cases is shown in Γ1.1.1.1. Again, we solve the K
⇓d-premise

of l with SPrem and get a constraint system with another unsolved K⇓d-premise with a
larger pair. We can proceed indefinitely this way without obtaining a contradiction. The
problem is that using only a backwards/bottom-up search, we do not take the messages
sent by the protocol into account. Here, we can see that the protocol never sends a pair
and we can therefore never deduce a fact of the form K⇓d(〈s, t〉).

Γ1.1.1

j :
K⇑(x : fr)

In(x : fr)
[K(x : fr)]

i :
Fr(x : fr)

Out(h(x : fr))
[Secret(x : fr)]

k :
K⇓y

(x : fr)

K⇑(x : fr)

l :
K⇓d

(〈x, z1〉)

K⇓d

(x)

m :
K⇓d

(〈〈x, z1〉, z2〉)

K⇓d

(〈x, z1〉)

j :
K⇑(x : fr)

In(x : fr)
[K(x : fr)]

i :
Fr(x : fr)

Out(h(x : fr))
[Secret(x : fr)] i :

Fr(x : fr)

Out(h(x : fr))
[Secret(x : fr)]

Γ1.1.1.1
Γ1.1.1.1.1

l :
K⇓d

(〈x, z1〉)

K⇓d

(x)

j :
K⇑(x : fr)

In(x : fr)
[K(x : fr)]

. . .

. . . . . .

. . .

. . .

k :
K⇓d

(x : fr)

K⇑(x : fr)
k :

K⇓d

(x : fr)

K⇑(x : fr). . . . . .

Figure 3.14. Looping constraint solving for message deduction.

To prevent the problem explained in Example 3.31, we exploit the properties of normal
message deduction. We solve bottom-up from messages received by the protocol with
construction rules and top-down from messages sent by the protocol with deconstruction
rules until the two meet in the middle with Coerce.

This strategy is formalized by the constraint solving rules given in Figure 3.15. First,
note that message deduction usually arises from solving an action K(t)@i or a premise
fact In(t). Both are solved by adding the corresponding instance of Recv. Then, the

message deduction starts by solving the premise K⇑(t) of Recv. The corresponding rule

is SPrem,K
⇑, which adds the provides constraint j⊲K⇑(t) and the ordering constraint j≺ i
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SPrem,K
⇑:

i: ri

j⊲K⇑(m), j≺ i
I if (prems(ri))u=K⇑(m) for

some u and j freshly chosen

S
⊲,K

⇑:

i⊲K⇑(m)

i: [K⇑(t1),	 ,K
⇑(tk)]−[]→K⇑(m)

| i:K⇓y
(m)−[]→K⇑(m)

I if m= f(t1,	 , tk),
f not invertible, f � ∗,
and y freshly chosen

S⊲,fr:

i⊲K⇑(m)

i:Fr(m)−[]→K⇑(m)

| i:K⇓y
(m)−[]→K⇑(m)

I if m of sort fr
and y freshly chosen

S⊲,inv:
i⊲K⇑(m)

i: [K⇑(t1),	 ,K
⇑(tk)]−[]→K⇑(m)

I
if m= f(t1,	 , tk)
and f invertible

S⊲,∗:
i⊲K⇑(m)

j⊲K⇑(t), j≺ i
I

if root(m) = ∗,
t∈nifactors(m) \Vmsg,
and j freshly chosen

SPrem,K
⇓y:

i: ri

j։ (i, u), j:Out(z)−[]→K⇓d(z)
I

if (prems(ri))u=K⇓y
(m)

for some u and y and
j, z freshly chosen

S։:

i։ (k, w), i: ri ,Γ

i: ri ,(i, 1) (k, w),Γ
| i: ri ,(i, 1) (j , 1), j: ru1, j։ (k, w),Γ
|	
|i: ri ,(i, 1) (j , 1), j: ru l, j։ (k,w),Γ

M if {ru1,	 , ru l}=NDdecon,

(concs(ri))1� K⇓d(x) for all
x∈Vmsg, and j freshly
chosen

Figure 3.15. Constraint solving rules for message deduction.

for a fresh temporal variable j, i.e., there must be an earlier node j that provides K⇑(t).
We use provides constraints since we do not represent all construction rules explicitly with
a node constraint. For example, we never introduce node constraints for multiplication
rules. Then, we have four rules to solve constraints of the form i⊲K⇑(m) for different types
of messages m. First, S

⊲,K
⇑ handles the case where m is a function application such that

the outermost function symbol f is neither invertible nor equal to ∗. The rule performs a
case distinction, K⇑(m) is either the conclusion of the construction rule for f or it is the
conclusion of Coerce. In the second case, we use the variable y to represent both e and d.
Second, S⊲,fr handles the case where m is of sort fr with a similar case distinction. Third,
S⊲,inv handles the case where the outermost function symbol is invertible. Here, we exploit
that m must be the conclusion of the construction rule for f because of N4. Finally, S⊲,∗

handles products. We know that i must be a multiplication construction rule because
of N2. Hence, the premises of i are the non-inverse factors of a ground instance of m in
all models. We therefore add new provides constraints for all non-inverse factors of m that
cannot be instantiated with products or inverses. Note that if m ∈ Vmsg, then no rule is
applicable. These constraints can be delayed until m is further instantiated, and they are
delayed indefinitely if this never happens.
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SN3,⇓:
i: ps −[]→K⇓y

(m), j: ps ′−[]→K⇓y ′

(m)

i≈ j
I SN3,⇑:

i⊲K⇑(m), j⊲K⇑(m)

i≈ j
I

SN5,1:
i: ps −[]→K⇓y

(m), j⊲K⇑(m)

i≺ j
I

SN5,2:
i: ps −[]→K⇓y

(m), j⊲K⇑(m)

j:K⇓y
(m)−[]→K⇑(m)

I
if root(m) not invertible
and m � Vmsg

SN6:
i:
[

K⇓d(a),K⇑(b)
]

−[]→K⇓e(cˆd)

⊥
I

if nifactors(d)⊆ nifactors(b),
vars(c)⊆Vpub, and St(c)∩FN= ∅

Figure 3.16. Constraint solving rules that ensure N3–6.

The remaining two rules handle the top-down reasoning from sent messages. The rule

SPrem,K
⇓y introduces a chain constraint to solve a K⇓y

(m) premise. The rule S։ solves

chain constraints by performing a case distinction: (a) there is an edge from the source of
the chain to the target of the chain or (b) there is an edge from the source of the chain to
the first premise of some deconstruction rule and a chain from the deconstruction rule to
the target of the original chain.

The rules in Figure 3.16 enforce conditions N3–6. The first two rules ensure uniqueness

of K⇓y
-facts and K⇑-facts. The next two rules ensure condition N5 by adding the required

ordering constraint and ensuring that i is an instance of Coerce if the outermost function
symbol is not invertible. The last rule enforces N6, i.e., exponentiation rules are only
allowed if they cannot be directly replaced by the construction rule for exponentiation.

It is not hard to see that all constraint solving rules reduce a constraint system to a
finite number of constraint systems because all case distinctions are finite. Consider for
example S≈, then there is one case for each unifier and the set of AC -unifiers of two terms is
always finite. Additionally, given a constraint system Γ, there is a finite number of possible
constraint solving steps Γ P {Γ1,	 ,Γk} modulo renaming of freshly introduced variables.

Example 3.32. We can now prove that ∀ix.Secret(x)@ i�¬(∃j.K(x)@ j) is valid for
PMsgSimp from Example 3.31. We prove that the guarded trace property

ϕ=∃ix.Secret(x)@i∧ (∃j.K(x)@ j ∧¬⊥)

is not satisfiable for PMsgSimp. We start with the constraint system Γ0 = {ϕ} and obtain Γ1

as shown in Figure 3.17 after simplifying the formula. Note that we overload notation and

use edges between K⇑-conclusions and premises to denote ordering constraints i≺ j between
the corresponding nodes. To obtain Γ1.1 from Γ1, we solve the two actions. Next, we solve

the premise K⇑(x:fr) which results in two cases. The first case is depicted in Γ1.1.1 where the
premise is provided by an instance of the construction rule for fresh names. Here, i and k
have the same Fr-premise and we can therefore obtain i≈ k using SUFresh which we solve
with S≈. Then we use SULabel to obtain a contradiction since the two rule instances have no
unifier. The second case is depicted in Γ1.1.2 where K

⇑(x:fr) is the conclusion of a Coerce

instance with premise K⇓y
(x:fr). We proceed by solving this premise with SPrem,K

⇓y which

adds a fresh instance l:Out(z)−[]→K⇓d(z) of Recv and a chain constraint from l to (k, 1).
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Γ1 . . . Secret(x)@i K (x)@j

Γ1.1

i :
Fr(x : fr)

Out(h(x : fr))
[Secret(x : fr)]

j :
K⇑(x : fr)

In(x : fr)
[K(x : fr)]

Γ1.1.1

i :
Fr(x : fr)

Out(h(x : fr))
[Secret(x : fr)]

j :
K⇑(x : fr)

In(x : fr)
[K(x : fr)]

i :
Fr(x : fr)

Out(h(x : fr))
[Secret(x : fr)]

Γ1.1.2.1

n :
Fr(y : fr)

Out(h(y : fr))
[Secret(y : fr)]

Γ1.1.2.1.1

k :
Fr(x : fr)

K
⇑(x : fr)

k :
K⇓y

(x : fr)

K⇑(x : fr)

i :
Fr(x : fr)

Out(h(x : fr))
[Secret(x : fr)]

j :
K⇑(x : fr)

In(x : fr)
[K(x : fr)]

Γ1.1.2

S@,S≈

SPrem,K⇑ ,S⊲,fr

SUFresh,S≈,SULabel

S

,S

≈

S
P
r
e
m

,K
⇓
y
,S

P
r
e
m
,S


,S

≈

S
։

j :
K⇑(x : fr)

In(x : fr)
[K(x : fr)]

k :
K⇓y

(x : fr)

K⇑(x : fr)

l :
Out(h(y))

K⇓d

(h(y))

i :
Fr(x : fr)

Out(h(x : fr))
[Secret(x : fr)]

n :
Fr(y : fr)

Out(h(y : fr))
[Secret(y : fr)]

j :
K⇑(x : fr)

In(x : fr)
[K(x : fr)]

k :
K⇓y

(x : fr)

K⇑(x : fr)

l :
Out(h(y))

K⇓d

(h(y))

i :
Fr(x : fr)

Out(h(x : fr))
[Secret(x : fr)]

n :
Fr(y : fr)

Out(h(y : fr))
[Secret(y : fr)]

j :
K⇑(x : fr)

In(x : fr)
[K(x : fr)]

k :
K⇓y

(x : fr)

K⇑(x : fr)

m :
K

⇓d

(〈z1, z2〉)

K
⇓d

(z1)

S
P
r
e
m

,K
⇑
,S

⊲
,fr

S

,S

≈

. . .

Γ1.1.2.1.2

l :
Out(h(y))

K⇓d

(h(y))
⋄

⋄

⋄

Analogous cases to Γ1.1.2.1.2 where

m is a different deconstruction rule.

a
. . .

⋄ ⋄

S,S≈

Figure 3.17. Constraint reduction that proves the validity of ∀ix.Secret(x)@ i�¬(∃j.K(x)@ j)
for PMsgSimp.

Solving the Out-premise of l yields the one case shown in Γ1.1.2.1. Next, we solve the chain
constraint. This results in the constraint system Γ1.1.2.1.1 for the case where there is an edge
between (l, 1) and (k, 1), constraint system Γ1.1.2.1.2 for the case where the deconstruction

rule for fst is applied to K⇓d(h(y)), and additional cases for the other deconstruction rules.
In all cases, we can use S and S≈ to show that these constraint systems are contradictory.
For Γ1.1.2.1.1, there is no unifier for h(y) and x:fr. For Γ1.1.2.1.2, there is no unifier for h(y)
and 〈z1, z2〉. For the remaining constraint systems, there is no unifier for h(y) and the
message of the first premise of the added deconstruction rule. By reducing {ϕ} to the
empty set of constraint systems, we have proved that ϕ is not satisfiable for PMsgSimp.

Properties of the Constraint Solving Relation

We now formally state and prove two important properties of  P . First, the relation is
sound and complete, which means that the set of P -models does not change when we solve
constraints. Second, under certain well-formedness conditions, we can extract a P -model
from a solved constraint system. Note that all constraint systems that occur during analysis
are well-formed.

Theorem 3.33. The constraint solving relation  P is sound and complete, i.e., for every

Γ P {Γ1,	 ,Γk}, modelsP(Γ) =
⋃

i=1

k
modelsP(Γi).
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The proof of this theorem can be found in Appendix A.2. We extend the notion of
redundant to the constraint solving rules from Figure 3.15 and 3.16 as follows.

Definition 3.34. An application of a constraint solving rule is redundant if it satisfies
Definition 3.29 or one of the following holds:

• The rule is S
⊲,K

⇑, S⊲,fr, or S⊲,inv and there is a node constraint i: ps −[]→K⇑(m).

• The rule is SN5,2 and the conclusion is already in Γ for y= e or y= d.

We now define well-formed constraint systems. Well-formedness is required for the
extraction of models. For a guarded trace property ϕ, the constraint system {ϕ} is well-
formed and all constraint solving steps preserve well-formedness.

Definition 3.35. A constraint system is well-formed for a protocol P if the following
conditions hold.

WF1. All node constraints are AC -instances of rules from ⌈P ⌉insts
RDHe or rules from ND

except for the multiplication rules.

WF2. For all node constraints of the form i: ps −[]→ K⇑(m), there is also a provides
constraint i⊲K⇑(m′) with m=AC m

′.

WF3. All provides constraints are of the form i⊲K⇑(m).

WF4. For all edge constraints (i, u) (j , v), there are node constraints i: ri and j: ru such
that u and v are valid conclusion and premise indices, respectively.

WF5. For all chain constraints i։ (j , v), there are node constraints i: ri and j: ru such
that (concs(ri))1 and (prems(ru))v are of the form K⇓y

(t) for some y and t.

WF6. There are no fresh names in Γ.

Theorem 3.36. Every well-formed constraint system Γ for P that is solved with respect
to  P has at least one P-model.

Proof. (Sketch) The model extraction follows the method described in Example 3.30.
Note that for message deduction, there are constraints i ⊲ K⇑(x) for x ∈ Vmsg such that
there is no node constraint for i. We solve these by instantiating message variables with
distinct fresh names and adding the corresponding instances of the construction rule for
fresh names. A full proof for the model extraction for a slightly modified set of rules can
be found in [157]. �

3.3.4 Optimizations for Constraint Solving

There are two cases where directly using the constraint solving rules leads to unnecessary
case distinctions. First, the SPrem rule introduces one case for each variant of a protocol
rule. In many proofs, these case distinctions are not required at all or can be delayed
since the variants are similar enough to jointly deal with all cases. To prevent these case
distinctions, we encode the variants of a rule as a pair of a single rule and a disjunction of
equalities. This allows us to delay the case distinctions stemming from the different variants.
Second, the constraint solving rules are not specialized for the protocol that is analyzed.
This often leads to situations where the same constraint solving sequence is repeatedly used.
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As an example, consider the protocol PMsgSimp which sends only terms of the form h(t).
Solving constraints i⊲ K⇑(x:fr) with S⊲,fr results in two cases. One where the conclusion
is provided by the construction rule for fresh names and another where it is provided by
Coerce. It is easy to see that the Coerce case always leads to a contradiction since
it is impossible to extract a name from a hash. For PMsgSimp, the rule S⊲,fr can therefore
be specialized by removing the Coerce case. To achieve this, we use constraint solving
to compute derived constraint rewriting rules for a protocol P . When analyzing P , we
can then use these derived constraint rewriting rules to save work. We explain these two
optimizations in the following subsections.

Lazy Case Distinctions for Variants

We use the following technique to delay the case distinctions stemming from different
variants of the same protocol rule. We say a pair (ru ′, ψ) of a rule ru ′ and a formula ψ is
a complete RDHe,AC-variant-formula of a rule ru if

ginstsDHe
(ru)↓RDHe

=AC {ri |∃θ.ri =AC ru ′θ∧ ([ ], θ)�AC ψ ∧ ri ↓RDHe
-normal}.

This means that the rule ru ′ and the formula ψ characterize all ↓RDHe
-normal

DHe-instances of ru. We can compute a complete variant-formula (ru ′, ψ) of a rule ru as fol-
lows. Let {t1,	 , tk} denote the set of terms that occur as direct subterms of facts in ru and

⌈〈t1,	 , tk〉⌉insts
RDHe = {〈s1

1,	 sk
1〉,	 , 〈s1

n,	 sk
n〉}.

Then, we obtain ru ′ from ru by replacing all terms ti with distinct variables xi and define
the formula as

ψ=
∨

j=1

n

(∃ yjR .x1≈ s1
j ∧	 ∧xk≈ sk

j) ,

where yjR = vars(s1
j ,	 sk

j). Afterwards, we can simplify ru ′ and ψ. For example, if xi≈ t is
included in all disjuncts, we can instantiate xi with t in ru ′ and remove the equality.

To take advantage of variant-formulas, we define a modified constraint solving rule SPrem′

that uses variant-formulas instead of variants. To define this rule, we assume given an
algorithm cvf that computes a complete RDHe,AC -variant-formula of a rule ru. The
modified rule SPrem′ and a similarly modified rule S@ ′ are then defined as follows.

SPrem′:

i: ri

j: ru1, ψ1, (j , v1) (i, u)
| 	
| j: ru l, ψl, (j , vl) (i, u)

I

if u∈ idx (prems(ri)),

(prems(ri))u not Kd or Fr fact,
{(ru1, ψ1, v1),	 , (ru l, ψl, vl)}=
{(ru ′, ψ, v) |ru ∈P ∪{Send}

∧(ru ′, ψ) = cvf (ru)
∧v ∈ idx (concs(ru ′)},

and j freshly chosen

S@ ′:
f@ i

i: ru1, g1≈ f , ψ1|	 |i: ru l, gl≈ f , ψl
I

if {(ru1, g1, ψi),	 , (ru l, gl, ψl)}=
{(ru ′, g, ψ) | ru ∈P ∪{Send}

∧(ru ′, ψ) = cvf (ru)
∧g ∈ acts(ru ′)}
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Note that the formula ψ is not always a guarded trace formula since it can contain quan-
tification over variables of sorts other than msg . We introduced the restriction to support
model extraction, but it is only required for universally quantified variables and can be
dropped for existentially quantified variables. The second issue is that si

j can contain arbi-
trary function symbols. This is not a problem since the restriction is only required for
switching from satisfaction with respect to �DHe

to satisfaction with respect to �AC . It is
irrelevant for formulas that occur in constraint systems since  already uses �AC to define
formula semantics.

Example 3.37. As an example, consider the rule In(z)−[]→Out(h(fst(z))). Then

(In(x1)−[]→Out(x2), ((∃z.x1≈ z ∧x2≈ h(fst(z)))∨ (∃uv.x1≈ 〈u, v〉 ∧x2≈h(u))))

is a complete RDHe,AC -variant-formula of the original rule. Since x2≈ h(t1) in the first
disjunct and x2≈ h(t2) in the second disjunct, we can simplify the rule and formula to

(In(x1)−[]→Out(h(x2)), ((∃z.x1≈ z ∧x2≈ fst(z))∨ (∃uv.x1≈〈u, v〉 ∧x2≈u))).

It is easy to see that using SPrem is equivalent to using SPrem′ followed by S∨, S∃, and S≈.
Since the node constraint added by SPrem′ often contains enough information to continue
without solving the added disjunction, the additional control offered by SPrem′ often allows
to delay the use of S∨.

Example 3.38. For PUM, cvf (ru) = (ru↓RDHe
, ¬⊥) for all rules except for the responder

rule. For the responder rule, we obtain (ru ′, ψ) for

ru ′=
In(X) !Pk(A:pub, gˆ(a:fr)) !Ltk(B:pub, b:fr)

[Accept(sid , key)]

where sid = 〈B,A,X,R〉
key = h(z, gˆ(a∗b), A, B,X)

and

ψ= (z≈Xˆb)

∨(∃ uv.X ≈uˆv∧ z≈uˆ(v∗b))

∨(∃ u.X ≈uˆ(b−1)∧ z≈ u)

∨(∃u v.X ≈uˆ(b−1∗v)∧ z≈ uˆv)

∨(∃ uv.X ≈uˆ(b∗v)−1∧ z≈uˆ(v−1))

∨(∃ uvw.X ≈uˆ((b∗v)−1∗w)∧ z≈uˆ(v−1∗w)).

In Example 3.30, solving Γ1 with S@ ′ results in one case for the responder instead of six
cases, and this case can be shown to be contradictory with S≈ without applying S∨ to the
variant-formula.

Derived Constraint Rewriting Rules

A constraint rewriting rule is a pair (Ω, ∆) written Ω � ∆ where Ω is a constraint
system and ∆ is a set of constraint systems. We say a constraint rewriting rule
Ω � ∆ is context-sound and context-complete for the protocol P if for all Γ such that
vars(Γ)∩ (vars(∆) \ vars(Ω)) = ∅, it holds that modelsP(Ω∪Γ)=

⋃

∆∈∆
modelsP(∆∪Γ).

Informally, this means that the constraint rewriting rule is sound and complete for all
contexts Γ whose variables do not clash with freshly chosen variables in the rule.
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A constraint rewriting rule Ω�∆ can be applied to a constraint system Γ by performing
the following steps.

1. Rename Ω� ∆ away from Γ to obtain Ω′
� ∆′.

2. Find a substitution σ with dom(σ)⊆ vars(Ω′) such that Γ =AC (Ω′σ ∪ Γ′) for some Γ′,
e.g., using matching modulo AC and the equational theory for sets.

3. Compute the result of the rule application as {∆σ∪Γ′|∆∈∆′}.

We call the pair (Γ, {∆σ ∪ Γ ′|∆ ∈ ∆′}) an application of Ω� ∆ to Γ. Intuitively, we
perform set rewriting of Γ with the rule Ω�∆ and ensure that the freshly chosen variables
in ∆ do not clash with the variables in Γ.

Lemma 3.39. Let Ω� ∆ be an arbitrary constraint rewriting rule that is context-sound
and context-complete for P and (Γ,Θ) an application of this rule to Γ. Then

modelsP(Γ)=
⋃

Θ∈Θ

modelsP(Θ).

Example 3.40. The constraint rewriting rule

{i⊲K⇑(x:fr)}� {{i⊲K⇑(x:fr), i: Fr(x:fr)−[]→K⇑(x:fr)}}

is context-sound and context-complete for PMsgSimp and can be applied to the constraint
system

Γ= {k⊲K⇑(y:fr), j: Fr(y:fr)−[Secret(y:fr)]→Out(h(y:fr))}

as follows. First note that the constraint rewriting rule is already renamed away from Γ.
For the substitution σ= {y:fr/x:fr, k/i} and Γ′= {j:Fr(y:fr)−[Secret(y:fr)]→Out(h(y:fr))},

Γ =AC ({i⊲K⇑(x:fr)}σ ∪Γ′). The result of the rule application is therefore

{k⊲K⇑(y:fr), k:Fr(y:fr)−[]→K⇑(y:fr), j:Fr(y:fr)−[Secret(y:fr)]→Out(h(y:fr))}.

By using the constraint rewriting rule for i ⊲ K⇑(x:fr), we have replaced most of the
reasoning from Figure 3.17 with one step. This shows that derived constraint rewriting
rules simplify constraint solving considerably. This is similar to using lemmas in proofs.

We have now seen how to use a context-sound and context-complete constraint rewriting
rule. The remaining question is how to compute such a rule for a given constraint system Ω.
We know P is sound and complete for P . But what about context-soundness and context-
completeness for P ? For all constraint solving rules except for S≈, it not hard to see that
Ω P ∆ implies that Ω�∆ is a context-sound and context-complete constraint rewriting
rule for P . This also holds for  P

∗ if the constraint reduction does not use applications
of S≈. To see why S≈ does not have this property, consider the following example.

Example 3.41. Let a be a fresh name and x ∈ Vmsg. Then {x ≈ a}  P {a ≈ a}, but
{x≈ a}� {a≈ a} is not context-sound for P . Consider the context {x≈ b} where b is a
public name different from a. Then

∅=modelsP({x≈ a, x≈ b})� modelsP({a≈ a, x≈ b}).
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The problem is that the link between the variable x in the initial constraint system and its
instantiation a gets lost when applying S≈.

We obtain a constraint solving relation  P
ctx such that Ω P

ctx∗ ∆ implies that Ω� ∆
is context-sound and context-complete for P in two steps.

First, we define the constraint solving rule S≈′ which keeps track of all substitution
applications by adding the corresponding equalities. To define this rule, we use eqs(σ) to
denote the set {x1≈σ(x1),	 , xk≈σ(xk)} where {x1,	 , xk}= dom(σ).

S≈′:
s≈ t,Γ

Γσ1, eqs(σ1) |	 |Γσl, eqs(σl)
M if {σ1,	 , σl}= unif AC

vars(Γ)
(s, t)

The added equalities keep track of the instantiations of variables that occur in the initial
constraint system Ω and prevent the described problem.

Second, we define P
ctx as the result of replacing S≈ by S≈′ in  P . Note that constraint

rewriting rules resulting from  P
ctx∗ also maintain the well-formedness of constraint sys-

tems.

Example 3.42. For the protocol PUM, we use P
ctx∗ to compute constraint rewriting rules

for the initial constraint systems {i⊲K⇑(h(u))}, {i⊲K⇑(x:fr)}, and {i⊲K⇑(uˆv)}, where

u, v ∈ Vmsg. For {i⊲K⇑(h(u))}, we first apply S
⊲,K

⇑ to i⊲K⇑(h(u)), which results in two

cases: K⇑(h(u)) is the conclusion of the construction rule for h or the conclusion of Coerce.
In the first case, the resulting constraint system is already solved. In the second case, we

proceed by solving the K⇓y
(h(u)) premise of Coerce. This introduces a chain constraint

starting at a fresh instance of the Recv rule. By solving the Out-premise of Recv and
repeatedly solving the chain constraint, we can show that this case is contradictory. This
was expected since no protocol rule sends a term that contains a hash and it is therefore
impossible to extract a hash from a sent message. The result of the computation is hence

Rhash= {i⊲K⇑(h(u))}� {{i⊲K⇑(h(u)), i:K⇑(u)−[]→K⇑(h(u))}}.

In this case, it was possible to obtain only solved or contradictory constraint systems.
In general, we often stop the computation when the initial constraint and all introduced
chain constraints are solved. Continuing further might lead to nontermination or constraint
rewriting rules with too many cases. Note that it might not always be possible to get rid
of all chain constraints, e.g., for protocols that act like decryption oracles. We discuss this
issue in Section 3.5.5.

For exponentiations, we compute the rule

Rexp= {i⊲K⇑(uˆv)}� {∆1,∆2,∆3,∆4,∆5}

depicted in Figure 3.18. This rule states that there are five ways to deduce an expo-
nentiation for the adversary. First, he can learn the ephemeral public key of a protocol
session. Second, he can learn the long-term public key of an agent. Third, he can add
additional exponents to the ephemeral public key of a protocol session. Fourth, he can add
additional exponents to the long-term public key of an agent. Finally, he can construct
an exponentiation uˆv himself. Here, u cannot be instantiated with an exponentiation
since the resulting term would not be ↓RDHe

-normal and S↓ would be applicable. Repeated
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∆5

∆1

∆3

∆2

∆4

Γ3

Γ1 Γ2

i :
K⇑(u) K⇑(v)

K⇑(u ˆ v)

i :
K⇓d

(g ˆ x)

K⇑(g ˆ x)
u ≈ g

j :
Out(g ˆ x)

K⇓d

(g ˆ x)

v ≈ x : fr

k :
Fr(x : fr) !Ltk(a : fr, A : pub) !Pk(g ˆ b : fr, B : pub)

Out(g ˆ x : fr) !Ephk(S, x : fr)
[Accept(S,K)]

i :
K⇓d

(g ˆ a)

K⇑(g ˆ a)

j :
Out(g ˆ a)

K⇓d

(g ˆ a)

k :
Fr(a : fr)

!Ltk(A : pub, a) !Pk(A, g ˆ a) Out(g ˆ a)

v ≈ a : fr
u ≈ g

i :
K⇓e

(g ˆ (x : fr ∗ z))

K⇑(g ˆ (x : fr ∗ z))

k :
Fr(x : fr) !Ltk(a : fr, A : pub) !Pk(g ˆ b : fr, B : pub)

Out(g ˆ x : fr) !Ephk(S, x : fr)
[Accept(S,K)]

j :
Out(g ˆ x)

K⇓d

(g ˆ x)

l :
K⇓d

(g ˆ x) K⇑(z)

K⇓e

(g ˆ (x ∗ z))
l :
K⇓d

(g ˆ a) K⇑(z)

K⇓e

(g ˆ (a ∗ z))

j :
Out(g ˆ a)

K⇓d

(g ˆ a)

k :
Fr(a : fr)

!Ltk(A : pub, a) !Pk(A, g ˆ a) Out(g ˆ a)

i :
K⇓e

(g ˆ (a : fr ∗ z))

K⇑(g ˆ (a : fr ∗ z))

i :
Fr(x : fr)

K
⇑(x : fr)

i :
K⇓d

(x : fr)

K⇑(x : fr)

k :
Fr(a : fr)

!Ltk(A : pub, a) !Pk(A, g ˆ a) Out(g ˆ a)
k :

Fr(x : fr) !Ltk(a : fr, A : pub) !Pk(g ˆ b : fr, B : pub)

Out(g ˆ x : fr) !Ephk(S, x : fr)
[Accept(S,K)]

i :
!Ltk(A, a)

Out(a)
[RevealLtk(A)]

x : fr ≈ a : fr

k :
!Ephk(S, x)

Out(x)
[RevealEphk(S)]

Abbreviations:

K := h(g ˆ (b ∗ x), g ˆ (b ∗ a), A,B, g ˆ x)
S = 〈A,B, g ˆ x, I〉

j :
Out(x)

K⇓d

(x)
j :

Out(a)

K⇓d

(a)

u ≈ gu ≈ g
v ≈ a : fr ∗ zv ≈ x : fr ∗ z

i :
K⇓d

(a : fr)

K⇑(a : fr)

i ⊲ K⇑(u ˆ v)→֒
→֒i ⊲ K⇑(x : fr)

Figure 3.18. Constraint rewriting rules from Example 3.42.

exponentiation by the adversary is modeled by instantiating v with a product. In this case,
the adversary knows all (non-inverse) factors of the exponent, which can exploited by S⊲,∗
during constraint solving.

For fresh names, we compute the rule

Rfresh= {i⊲K⇑(x:fr)}� {Γ1,Γ2,Γ3}

depicted in Figure 3.18. This rule states that the adversary can deduce a fresh name by
using ephemeral key reveal, long-term key reveal, or constructing a fresh name himself.
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3.3.5 One-pass UM: Security proof

We now demonstrate how the constraint solving relation and the optimizations can be
used to prove the security of UM. We want to verify that ϕ

UM-sec
from Figure 3.3 is valid

for PUM from Figure 3.2. To achieve this, we check whether ¬ϕ
UM-sec

is satisfiable using
constraint solving. We therefore start with the constraint system Γ0 = {ϕ̂} where ϕ̂ is the
result of rewriting ¬ϕ

UM-sec
into a guarded trace property, i.e.,

ϕ̂ = ∃iABX key .

Accept(〈B,A,X,R〉, key)@i∧ (∃j.K(key)@ j ∧¬⊥)

∧(∀k.¬RevealLtk(B)@k ∨⊥)

∧(∀k.¬RevealLtk(A)@k ∨ (∀l.¬RevealEphk(〈A,B,X, I〉)@ l∨⊥))

∧((∃kkey ′.Accept(〈A,B,X,I 〉, key ′)@k ∧¬⊥)∨ (∀k.¬RevealLtk(A)@k∨⊥)) .

After simplifying the formula and ignoring solved formulas, we obtain the constraint system

Γ1 =















Accept(〈B,A,X,R〉, key)@i K(key)@ j
∀k.¬RevealLtk(B)@k ∨⊥
(∀k.¬RevealLtk(A)@k)∨ (∀l.¬RevealEphk(〈A,B,X,I〉)@ l∨⊥)
(∃kkey ′.Accept(〈A,B,X, I〉, key ′)@k ∧¬⊥)∨ (∀k.¬RevealLtk(A)@k ∨⊥)















.

In the first step, we apply S∨ to the last formula, simplify the result, and obtain

Γ1.1=Γ1∪{Accept(〈A,B,X,I〉, key ′)@k} and

Γ1.2= Γ1∪{∀k.¬RevealLtk(A)@k∨⊥}.

The constraint system Γ1.1 captures the case where the test session 〈B, A, X, R〉 has
a matching initiator session and Γ1.2 captures the case where such a session might not
exist. Then, a long-term key reveal for A, the peer of the test session, is forbidden. In the
following, we show how to reduce Γ1.1 and Γ1.2 to the empty set of constraint systems.

To obtain Γ1.1.1 shown in Figure 3.19, we solve both Accept-actions, the K-action, and
the premises of the added responder rule. We also solve the variant formula ψvariants (see
Figure 3.21) which has been added with the responder rule. To achieve this, we use S∨,
S∃, S≈, and S↓. All disjuncts except for the second one are contradictory since X has been
instantiated with gˆ(x:fr) by the initiator rule. Note that since we allow an agent to register
more than one long-term key, the key KEY of the test session might differ from the key
KEY ′ of its matching session.

In the next step, we solve the premise K⇑(KEY ) using SPrem,K
⇑, the previously computed

constraint rewriting rule Rhash, and S≈. Afterwards, we solve the resulting K⇑-premises for
pairs using SPrem,K

⇑ and S⊲,inv to obtain Γ1.1.1.1. To save space, we use “	 ” to denote the

unchanged constraints from the previous constraint system without new edges.
Γ1.1.1.1 contains the two unsolved constraints j3⊲ gˆ(b∗x) and j5⊲ gˆ(b∗a). Intuitively,

the adversary cannot deduce these messages since this would require either b or x and a. To
prove this formally, we solve j5⊲ gˆ(b∗a) using the constraint rewriting rule Rexp and S≈,
which results in three cases. In the case Γ1.1.1.1.2, which results from ∆5 in Rexp, j5 is a
construction rule for exponentiation with the unsolved premise K⇑(b∗a). We use SPrem,K

⇑

and S⊲,∗ to obtain constraints denoting that b and a are known to the adversary. Since
the constraint system contains a formula denoting that RevealLtk(B) is not allowed in the
trace, we obtain a contradiction by solving j7⊲ b.
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Γ1.1.1

Γ1.1.1.1

Γ1.1.1.1.2 Γ1.1.1.1.3

i1 :
Fr(a : fr)

!Ltk(A : pub, a) !Pk(A, g ˆ a) Out(g ˆ a)
i2 :

Fr(b : fr)

!Ltk(B : pub, b) !Pk(B, g ˆ b) Out(g ˆ b)

j :
K⇑(KEY )

In(KEY )
[K(KEY )]

k :
Fr(x : fr) !Ltk(A, a′) !Pk(B, g ˆ b′)

Out(g ˆ x) !Ephk(〈A,B, g ˆ x, I〉, x)
[Accept(〈A,B, g ˆ x, I〉,KEY

′)]

i :
In(g ˆ x) !Pk(A, g ˆ a) !Ltk(B, b)

[Accept(〈B,A, g ˆ x,R,KEY )]

j :
K⇑(KEY )

In(KEY )
[K(KEY )]

j1 :
K⇑(〈g ˆ (b ∗ x), g ˆ (b ∗ a), A,B, g ˆ x〉)

K⇑(KEY )

j2 :
K⇑(g ˆ (b ∗ x)) K⇑(〈g ˆ (b ∗ a), A,B, g ˆ x〉)

K⇑(. . .)

j4 :
K⇑(g ˆ (b ∗ a)) K⇑(〈A,B, g ˆ x〉)

K⇑(. . .)

j5 ⊲ g ˆ (b ∗ a)

j3 ⊲ g ˆ (b ∗ x)

SPrem,K⇑ ,Rhash,S≈,S⊲,inv

j4 :
K⇑(g ˆ (b ∗ a)) K⇑(〈A,B, g ˆ x〉)

K⇑(. . .)

j5 :
K⇑(g) K⇑(b ∗ a)

K⇑(. . .)

j7 ⊲ b j8 ⊲ a

Rexp,S≈,SUFresh,SULabel,SPrem,K⇑

j4 :
K⇑(g ˆ (b ∗ a)) K⇑(〈A,B, g ˆ x〉)

K⇑(. . .)

j5 :
K⇓e

(. . .)

K⇑(. . .)

j6 :
K

⇓d

(g ˆ a) K
⇑(b)

K
⇓e

(g ˆ (b ∗ a))

j8 ⊲ b
j7 :

Out(g ˆ a)

K⇓d

(g ˆ a)

j4 :
K⇑(g ˆ (b ∗ a)) K⇑(〈A,B, g ˆ x〉)

K⇑(. . .)

j5 :
K⇓e

(. . .)

K⇑(. . .)

j6 :
K⇓d

(g ˆ b) K⇑(a)

K⇓e

(g ˆ (b ∗ a))

j8 ⊲ a
j7 :

Out(g ˆ b)

K⇓d

(g ˆ b)

Γ1.1.1.1.1

∀k.¬(RevealLtk(B)@k) ∨ ⊥

∀k.¬(RevealLtk(A)@k) ∨ ∀l.¬(RevealEphk(〈A,B, g ˆ x, I〉) ∨ ⊥

Abbreviations:

KEY = h(g ˆ (b ∗ x), g ˆ (b ∗ a), A,B, g ˆ x)
KEY

′ = h(g ˆ (b′ ∗ x), g ˆ (b′ ∗ a′), A,B, g ˆ x)

Rfresh,S≈,SULabel,SUFresh,S∀,@,S⊥Rfresh,S≈,SULabel,SUFresh,S∀,@,S⊥ Rfresh,S≈,SULabel,SUFresh,S∀,@

Γ1.1.1.1.3.1 (see next page)

Rexp,S≈,SPrem,K⇑ ,S⊲,∗ Rexp,S≈,SUFresh,SULabel,SPrem,K⇑

i2 :
Fr(b : fr)

!Ltk(B, b) !Pk(B, g ˆ b) Out(g ˆ b)
i1 :

Fr(a : fr)

!Ltk(A, a) !Pk(A, g ˆ a) Out(g ˆ a)

j6 ⊲ b ∗ a

. . .

. . .. . . . . .

⋄ ⋄

Figure 3.19. Constraint reduction for Γ1.1.

In Γ1.1.1.1.2, which results from ∆4 in Rexp, j6 is an exponentiation rule applied to the
public key gˆ(a:fr) of A. Again, b is known to the adversary and we can derive a contra-
diction in a similar way. In Γ1.1.1.1.3, which also results from ∆4 in Rexp for another AC -
unifier, j6 is an exponentiation rule applied to the public key gˆ(b:fr) of B. Here, a must
be be known to the adversary. After solving a, we obtain the new case Γ1.1.1.1.3.1 shown in
Figure 3.20 where the adversary learns a by performing a long-term key reveal on A. Since
this is allowed if there is no ephemeral key reveal for the matching session, applying S∀,@
does not directly yield a contradiction. Instead, we obtain a new constraint denoting that
ephemeral key reveals for the session 〈A,B, gˆ(x:fr), I〉 are forbidden.
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Γ1.1.1.1.3.1.1

Γ1.1.1.1.3.1.3

Γ1.1.1.1.3.1.2

i1 :
Fr(a : fr)

!Ltk(A : pub, a) !Pk(A, g ˆ a) Out(g ˆ a)
i2 :

Fr(b : fr)

!Ltk(B : pub, b) !Pk(B, g ˆ b) Out(g ˆ b)

j :
K⇑(KEY )

In(KEY )
[K(KEY )]

i :
In(g ˆ x) !Pk(A, g ˆ a) !Ltk(B, b)

[Accept(〈B,A, g ˆ x,R,KEY )]

∀k.¬(RevealLtk(B)@k) ∨ ⊥

∀k.¬(RevealLtk(A)@k) ∨ ∀l.¬(RevealEphk(〈A,B, g ˆ x, I〉) ∨ ⊥

Γ1.1.1.1.3.1

∀l.¬(RevealEphk(〈A,B, g ˆ x, I〉) ∨ ⊥

j4 :
K⇑(g ˆ (b ∗ a)) K⇑(〈A,B, g ˆ x〉)

K⇑(. . .)

j5 :
K⇓e

(. . .)

K⇑(. . .)

j6 :
K⇓d

(g ˆ b) K⇑(a)

K⇓e

(g ˆ (b ∗ a))

j7 :
Out(g ˆ b)

K⇓d

(g ˆ b)

j1 :
K⇑(〈g ˆ (b ∗ x), g ˆ (b ∗ a), A,B, g ˆ x〉)

K⇑(KEY )

j2 :
K⇑(g ˆ (b ∗ x)) K⇑(〈g ˆ (b ∗ a), A,B, g ˆ x〉)

K⇑(. . .)

j3 ⊲ g ˆ (b ∗ x)

j10 :
!Ltk(A, a)

Out(a)
[RevealLtk(A)]

j9 :
Out(a)

K⇓d

(a)

j8 :
K⇓d

(a)

K⇑(a)

j2 :
K⇑(g ˆ (b ∗ x)) K⇑(〈g ˆ (b ∗ a), A,B, g ˆ x〉)

K⇑(. . .)

j11 :
K⇓d

(g ˆ b) K⇑(x)

K⇓e

(g ˆ (b ∗ x))

j12 :
Out(g ˆ b)

K⇓d

(g ˆ b)

i2 :
Fr(b : fr)

!Ltk(B : pub, b) !Pk(B, g ˆ b) Out(g ˆ b)

j2 :
K⇑(g ˆ (b ∗ x)) K⇑(〈g ˆ (b ∗ a), A,B, g ˆ x〉)

K⇑(. . .)

j13 ⊲ x

j3 :
K⇑(g) K⇑(b ∗ x)

K⇑(g ˆ ∗b ∗ x))

j12 ⊲ b j13 ⊲ x

j2 :
K⇑(g ˆ (b ∗ x)) K⇑(〈g ˆ (b ∗ a), A,B, g ˆ x〉)

K⇑(. . .)

j11 :
K⇓d

(g ˆ x) K⇑(b)

K⇓e

(g ˆ (b ∗ x))

j12 :
Out(g ˆ x)

K⇓d

(g ˆ x)

k :
Fr(x : fr) !Ltk(A, a′) !Pk(B, g ˆ b′)

Out(g ˆ x) !Ephk(〈A,B, g ˆ x, I〉, x)
[Accept(〈A,B, g ˆ x, I〉,KEY

′)]

k :
Fr(x : fr) !Ltk(A, a′) !Pk(B, g ˆ b′)

Out(g ˆ x) !Ephk(〈A,B, g ˆ x, I〉, x)
[Accept(〈A,B, g ˆ x, I〉,KEY

′)]

j13 ⊲ b

Abbreviations:

KEY = h(g ˆ (b ∗ x), g ˆ (b ∗ a), A,B, g ˆ x)
KEY

′ = h(g ˆ (b′ ∗ x), g ˆ (b′ ∗ a′), A,B, g ˆ x)

Rfresh,S≈,SULabel,SUFresh,S∀,@,S⊥ Rfresh,S≈,SULabel,SUFresh,S∀,@,S⊥

R
fr
e
s
h ,S

≈
,S

U
L
a
b
e
l ,S

U
F
r
e
s
h
,S

∀
,@
,S

⊥

Rexp,S≈,SULabel,SUFresh,SPrem,K⇑

j3 :
K⇓e

(. . .)

K⇑(. . .)j3 :
K⇓e

(. . .)

K⇑(. . .)

Rexp,S≈,SULabel,SUFresh,SPrem,K⇑

R
e
x
p ,S

≈
,S

P
r
e
m

,K
⇑
S
⊲
,∗

j11 ⊲ b ∗ x . . .

. . .. . .

⋄ ⋄

⋄

Figure 3.20. Constraint reduction for Γ1.1 continued.

In Γ1.1.1.1.3.1, we can now solve j3⊲gˆ(b∗x) similarly to how we solved j5⊲gˆ(b∗a) earlier.
In all of the cases, b or x must be known. Since the adversary can learn b only after a long-
term key reveal for B, which is forbidden, the corresponding cases are contradictory. The
same holds for the remaining cases since the adversary can learn x only after an ephemeral
key reveal for the matching session 〈A,B, gˆx,I〉, which is also forbidden.
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i1 :
Fr(a : fr)

!Ltk(A : pub, a) !Pk(A, g ˆ a) Out(g ˆ a)
i2 :

Fr(b : fr)

!Ltk(B : pub, b) !Pk(B, g ˆ b) Out(g ˆ b)

j :
K⇑(KEY )

In(KEY )
[K(KEY )]

∀k.¬(RevealLtk(B)@k) ∨ ⊥

∀k.¬(RevealLtk(A)@k ∨ ⊥

Γ1.2.1

Abbreviations:

KEY = h(z, g ˆ (b ∗ a), A,B,X)

i :
In(X) !Pk(A, g ˆ a) !Ltk(B, b)

[Accept(〈B,A,X,R,KEY )]

j :
K⇑(KEY )

In(KEY )
[K(KEY )]

∀k.¬(RevealLtk(B)@k) ∨ ⊥

∀k.¬(RevealLtk(A)@k ∨ ⊥

Γ1.2.1.1

ψvariants = (z ≈ X ˆ b)

∨(∃uv.X ≈ u ˆ v ∧ z ≈ u ˆ (b ∗ v))

∨(∃u.X ≈ u ˆ b−1 ∧ z ≈ u)

∨(∃u v .X ≈ u ˆ b−1 ∗ v ∧ z ≈ u ˆ v)

∨(∃u v .X ≈ u ˆ (b ∗ v)−1 ∧ z ≈ u ˆ (v−1))

∨(∃u v w.X ≈ u ˆ (b ∗ v)−1 ∗ w ∧ z ≈ u ˆ (v−1 ∗ w))

j3 :
K⇑(g ˆ (b ∗ a)) K⇑(〈A,B, g ˆ x〉)

K⇑(. . .)

j2 :
K⇑(z) K⇑(〈g ˆ (b ∗ a), A,B, Y 〉)

K⇑(. . .)

j1 :
K⇑(〈z, g ˆ (b ∗ a), A,B, Y 〉)

K⇑(KEY )

j4 ⊲ g ˆ (b ∗ a)

j4 :
K⇑(g ˆ (b ∗ a)) K⇑(〈A,B, g ˆ x〉)

K⇑(. . .)
j4 :

K⇑(g ˆ (b ∗ a)) K⇑(〈A,B, g ˆ x〉)

K⇑(. . .)
j4 :

K⇑(g ˆ (b ∗ a)) K⇑(〈A,B, g ˆ x〉)

K⇑(. . .)

j7 :
Out(g ˆ b)

K⇓d

(g ˆ b)

j6 :
K⇓d

(g ˆ b) K⇑(a)

K⇓e

(g ˆ (b ∗ a))

j8 ⊲ a j7 :
Out(g ˆ b)

K⇓d

(g ˆ b)
j8 ⊲ b

j6 :
K⇓d

(g ˆ b) K⇑(a)

K⇓e

(g ˆ (b ∗ a))

j5 :
K⇓e

(. . .)

K⇑(. . .)
j5 :

K⇓e

(. . .)

K⇑(. . .)

Γ1.2.1.1.1 Γ1.2.1.1.2 Γ1.2.1.1.3

j7 ⊲ b j8 ⊲ a

j5 :
K⇑(g) K⇑(b ∗ a)

K⇑(g ˆ (b ∗ a))

i2 :
Fr(b : fr)

!Ltk(B, b) !Pk(B, g ˆ b) Out(g ˆ b)
i1 :

Fr(a : fr)

!Ltk(A, a) !Pk(A, g ˆ a) Out(g ˆ a)

i1 :
Fr(a : fr)

!Ltk(A : pub, a) !Pk(A, g ˆ a) Out(g ˆ a)
i2 :

Fr(b : fr)

!Ltk(B : pub, b) !Pk(B, g ˆ b) Out(g ˆ b)

i :
In(X) !Pk(A, g ˆ a) !Ltk(B, b)

[Accept(〈B,A,X,R,KEY )]

ψvariants

ψvariants

SPrem,K⇑ ,S≈,Rhash,S⊲,inv

Rexp,S≈,SULabel,SUFresh,SPrem,K⇑ Rexp,S≈,SULabel,SUFresh,SPrem,K⇑ Rexp,S≈,SPrem,K⇑ ,S⊲,∗

Rfresh,S≈,SULabel,SUFresh,S∀,@,S⊥ Rfresh,S≈,SULabel,SUFresh,S∀,@,S⊥ Rfresh,S≈,SULabel,SUFresh,S∀,@,S⊥

j6 ⊲ b ∗ a
. . . . . . . . .

⋄ ⋄ ⋄

Figure 3.21. Constraint reduction for Γ1.2.

The constraint reduction for Γ1.2 shown in Figure 3.21 is similar to the one for Γ1.1. The
constraint system Γ1.2.1 shows the result of solving the K-action, the Accept-action for the
responder, and the resulting unsolved premises of the responder rule. In contrast to Γ1.1.1,
we know that there is no long-term key reveal for A. We delay solving ψvariants since we do
not know the structure of the received message X. Nevertheless, we know that KEY is a
hash and the only unknown component is the first input to the hash function, the variable
z constrained by ψvariants. We therefore continue as previously until we obtain Γ1.2.1.1 where
gˆ(b∗a) is known to the adversary. Solving the corresponding constraint j4⊲gˆ(b∗a) results
in three contradictory cases where either a or b is known, even though long-term key reveals
for both A and B are forbidden.
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Note that both optimizations helped to decrease the size of the proof considerably.
Without lazy case distinctions for variants, we would have to repeat the constraint reduc-
tion sequence for Γ1.2 for each of the six variants of the responder rule, even though the
steps are independent of the concrete instantiation of z. The precomputed constraint
rewriting rules allow us to perform the reasoning about extractable messages once and for
all before starting with the actual proof. In the actual proof, there is no need to use the
rules SPrem,K

⇓y and S։. Still, working out the constraint reductions manually is tedious

and error-prone. That is why we implemented the Tamarin prover.

3.4 Extension with Bilinear Pairings and AC operators

In this section, we show how to extend the method presented in the previous sections with
support for bilinear pairings and an AC operator. This allows us to analyze tripartite and
identity-based key exchange protocols as described in Section 2.1.3.2. The support for an
AC operator, which we also allow in guarded trace properties, considerably simplifies the
specification of tripartite key exchange protocols since we can directly model the multiset
of participants. The structure of this section mirrors that of the previous sections since we
list the modifications and additions required for the extension.

3.4.1 Security Protocol Model

First, we adapt the definition of cryptographic messages and protocols. Afterwards, we
extend the set of message deduction rules.

Cryptographic Messages. To support the new cryptographic operators, we use the
equational theory BP = (ΣBP, EBP) instead of DH. We define the signature as

ΣBP = {ê(_,_), [_]_,_♯_}∪ΣDH

and the equations as

EBP =















[z]([y]x)≃ [z∗y]x [1]x≃x

ê(x, y)≃ ê(y, x) ê([z]x, y)≃ ê(x, y)ˆz

x♯(y♯z)≃ (x♯y)♯z x♯y≃ y♯x















∪EDH.

As for DH, we use BPe to denote the combined equational theory of BP and ST and
ΣBPe

to denote the combined signature. To model the setup described in Section 2.1.3.1,
we can use a fixed public name P and use terms [s]P to model elements of the group G1.
The bilinear map then sends two terms [s]P and [t]P to ê([s]P, [t]P)=BP ê(P,P)ˆ(s∗t). The
elements of the group G2 are therefore modeled as terms ê(P,P)ˆu. We use the ♯ operator
to model non-empty multisets. For example, A♯B♯C models the multiset that consists of
the three given agents. To encode such a message as a bitstring, a sorted list could be used.

Protocol Rules. We modify P6 from Definition 3.4 on page ? such that ♯ can be used
in the premises l of a protocol rule. The other conditions remain unchanged.
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Message Deduction Rules. Note that the extended signature ΣBP yields additional
message deduction rules for constructing multisets and performing scalar multiplication
and bilinear pairings. To allow the adversary to extract elements from multisets, we extend
the set of message deduction rules MD defined on page ? with the rule K(x♯y)−[]→K(x).

3.4.2 Formalization of the Joux Protocol

We can now formalize the signed Joux protocol from Section 2.1.3.2. The multiset rewriting
rules formalizing the protocol, and the security property, are given in Figures 3.22 and 3.23.

In the first step, an agent A chooses his private ephemeral key x and two peers B and C .
Then, he uses his signing key a to sign his own identity, the multiset of peers, and his public
ephemeral key [x]P. The protocol state fact St(x,A,B ♯C) denotes that a session with the
given protocol parameters has executed the first step. In the second step, A waits for the
signed messages from the peers, checks their signatures, extracts their ephemeral public
keys Y and Z, and computes the shared key as ê(Y , Z)ˆx. The Accept-fact denotes that
A has accepted the given key as shared with the given multiset of peers.

The property captures perfect forward secrecy of the session key under long-term key
reveals. If the key was accepted by A with peers B and C at timepoint i and is known to the
adversary, then there must be a long-term key reveal for one of the involved agents before i.

Note that we use pattern matching for the signature check for convenience. We can
also check if verify(s , 〈B, A♯C, Y 〉, pk(b)) =BPe

true for the signature s by extending the
second step with the action Eq(verify(s , 〈B, A♯C, Y 〉, pk(b)), true) and modifying the
security property to (∀kxy. Eq(x, y)@k� x ≈ y) � ϕSigJoux. This reflects that we
verify the property under the additional assumption that all equality checks performed by
the protocol, encoded as Eq-actions, are successful. The same technique can be used to
model inequality checks and uniqueness of events. For example, we could enforce that the
participating agents are distinct or that each agent has only one registered key. For the
first example, we can use InEq-actions and the assumption ¬(∃kx.InEq(x, x)@k). For the
second example, we can use actions of the form Once(〈keyreg, A〉) and the assumption
∀ijx.Once(x)@ i∧Once(x)@ j� i≈ j.

∀iABC key .
// If the key key has been accepted and is known to the adversary,

Accept(A,B♯C, key)@ i∧K(key)

// then the long-term signing key of one of the participants must have
// been revealed before the session key was accepted.
� (∃l.RevealLtk(A)@ l∧ l≺ i)∨ (∃l.RevealLtk(B)@ l∧ l≺ i)
∨ (∃l.RevealLtk(C)@ l∧ l≺ i)

Figure 3.23. Security property for the SIGJOUX protocol.

3.4.3 Verification Theory

We extend parts of the verification theory as follows. First, we adapt the switch to depen-
dency graphs modulo AC to account for the new equations in BPe. Then, we extend the
set of normal messages deduction rules to account for the new cryptographic operators.
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Key Registration:
Fr(a:fr)

!Ltk(A:pub, a) !Pk(A:pub, pk(a)) Out(pk(a))

First Step:
Fr(x:fr) !Ltk(A:pub, a:fr)

Out(〈[x]P, sig(〈A, (B:pub)♯(C:pub), [x]P〉, a)〉)
St(x,A,B ♯C)

Second Step:

St(x,A,B ♯C)
In(〈Y , sig(〈B,A♯C, Y 〉, b)〉)
In(〈Z, sig(〈C,A♯B,Z 〉, c)〉)
!Pk(B, pk(b)) !Pk(C, pk(c))

[Accept(A,B♯C, ê(Y , Z)ˆx) ]

Long-term
key reveal:

!Ltk(A, a)

Out(a)
[RevealLtk(A)]

Figure 3.22. Rules defining the SIGJOUX protocol.

Finally, we introduce new normal-form conditions to account for the new normal message
deduction rules and relax the definition of guarded trace properties

Dependency Graphs modulo ACC

We first define the set of equations ACC as

ACC = {x♯(y♯z)≃ (x♯y)♯z x♯y≃ y♯x ê(x, y)≃ ê(y, x) }∪AC

and the rewriting system RBP as

RBP = { [z]([y]x)→ [z∗y]x [1]x→x ê([y]x, z)→ ê(x, z)ˆy }∪RDH.

We define RBPe=RBP ∪ST . Then (ΣBPe
,RBPe,ACC ) is a decomposition of BPe with

the finite variant property. The arguments are similar to the ones for RDHe and we have
again used the AProVE termination tool [85] and the Maude Church-Rosser and Coherence
Checker [73] to verify termination, confluence, and coherence.

Normal Message deduction

To define the new message deduction rules, we extend the meaning of K⇓d-facts as follows.
K⇓d(m) means that m is an extracted subterm or the result of applying ê to at least one
extracted subterm. We also extend the meaning of K⇓e to include that the corresponding
message can be the result of changing the scalar in an extracted scalar multiplication.

The normal message deduction rules NDBP for bilinear pairing and ♯ are given in
Figure 3.24. They extend the originally defined set ND . Scalar multiplication is treated
similarly to exponentiation, i.e., there is a construction rule, there are deconstruction rules,

and scalar multiplication rules which use the fact symbol K⇓e in the conclusion. For the
bilinear pairing, there is a construction rule and there are bilinear pairing rules corre-
sponding to the non-trivial variants of ê(x, y). They cover all the different possibilities
how to normalize the product of the scalars from the two scalar multiplications given
as arguments to ê . The message in the conclusion of a bilinear pairing rule is always
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Construction rules:

K⇑(x) K⇑(y)

K⇑([y]x)

K⇑(x) K⇑(y)

K⇑(ê(x, y))

K⇑(x1) 	 K⇑(xk)

K⇑(x1♯	 ♯xk)

Deconstruction rules:

K⇓d([y]x) K⇑(y−1)

K⇓d(x)

K⇓d([y−1]x) K⇑(y)

K⇓d(x)

K⇓d([(y∗z−1)]x) K⇑(y−1∗z)

K⇓d(x)

K⇓d(x♯y)

K⇓d(x)

Scalar multiplication rules:

K⇓d([y]x) K⇑(z)

K⇓e([y∗z]x)

K⇓d([y]x) K⇑(y−1∗z)

K⇓e([z]x)
	

K⇓d([y1∗y2]x) K⇑(z1∗z2
−1)

K⇓e([y1∗z1∗(y2∗z2)−1)]x)

Bilinear pairing rules:

K⇓d([z]x) K⇑(y)

K⇓d(ê(x, y)ˆz)

K⇓d([z1]x) K⇓d([z2]y)

K⇓d(ê(x, y)ˆ(z1∗z2))
	

K⇓d([y1∗y2
−1]x1) K⇓d([z1∗z2

−1]x2)

K⇓d(ê(x1, x2)ˆ(y1∗z1∗(y2∗z2)−1))

Figure 3.24. The normal message deduction rules NDBP for bilinear pairing. There are construc-
tion rules for ♯ for all k > 1. There are 42 scalar multiplication rules and 28 bilinear pairing rules
computed from the RBPe,ACC -variants of the corresponding rules.

an exponentiation and can therefore only be used by Coerce, an exponentiation rule,
or a deconstruction rule for exponentiation. Note that for the first bilinear pairing rule,
the first premise is a scalar multiplication and uses K⇓d and the second premises uses
K⇑ and cannot be a scalar multiplication if the instance is in normal form. For all remaining
bilinear pairing rules, both premises are scalar multiplications and use K⇓d-facts. Figure 3.25
shows the main idea why this choice does not make the rules incomplete.

i2:
K ([a]P) K ([b]P)

K (ê(P,P) ˆ (a ∗ b))

i1:
K(P) K(b)

K([b]P)

i2:
K⇓d

([a]P) K
⇑(P)

K
⇓d

(ê(P,P) ˆ a)

i2:
K⇓d

([a]P) K
⇓d

([b]P)

K
⇓d

(ê(P,P) ˆ (a ∗ b))

i1:
K⇑(P) K⇑(b)

K⇑([b]P)

i3:
K⇓d

(ê(P,P) ˆ a) K⇑(b)

K⇓e

(ê(P,P) ˆ (a ∗ b))

(c)(a) (b)

Figure 3.25. Message deduction (a) is not possible using the normal message deduction rules
because the crossed edge shown in (b) is not allowed. It can be replaced by the normal message
deduction (c).

Normal Dependency Graphs

We introduce five new normal-form conditions. To state the conditions, we require the
following definitions. A node i labeled with an instance of a protocol rule is the send-node
of the premise (j , u) in dg if there is a node k labeled with an instance of Recv such that
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there is an edge (i, v) (k, 1) for some v and a chain k։ (j , u). Intuitively, the send-node

of a premise K⇓y
(m) is the protocol rule that sends the message from which m is extracted.

We denote the sequence of fact symbols occurring in a multiset rewriting rule ru with
fsyms(ru). We also assume given a total order <fs on sequences of fact symbols.

N7. There is no construction rule for ♯ that has a premise of the form K⇑(s♯t) and all
conclusion facts of the form K⇑(s♯t) are conclusions of a construction rule for ♯.

N8. The conclusion of a deconstruction rule for ♯ is never of the form K⇓d(s♯t).

N9. There is no node
[

K⇓d(a),K⇑(b)
]

−[]→K⇓e([d]c) such that c does not contain any fresh

names and nifactors(d)⊆ACC nifactors(b).

N10. There is no node i labeled with
[

K⇓d([t1]p),K
⇓d([t2]q)

]

−[]→K⇓d(ê(p, q)ˆc) such

that there is a node j labeled with
[

K⇓d(ê(p, q)ˆc),K⇑(d)
]

−[]→K⇓d(ê(p, q)ˆe), an edge

(i, 1) (j , 1), nifactors(ti) ⊆ACC nifactors(d) for i = 1 or i = 2, and ê(p, q) does
not contain any fresh names.

N11. There is no node
[

K⇓d([a]p),K⇓d([b]q)
]

−[]→K⇓d(ê(p, q)ˆ(a∗b)) such that the

send-nodes of the first and second premise are labeled with ru1 and ru2 and
fsyms(ru2)<fs fsyms(ru1).

The condition N7 is similar to condition N2 for multiplication, but deals with ♯ instead.
The condition N8 ensures that the deconstruction rule for ♯ never extracts a multiset.
Together with N7, this enforces that multisets are completely deconstructed and then
constructed from scratch. The condition N9 directly corresponds to condition N6 for
exponentiation and forbids unnecessary uses of scalar multiplication rules.
The condition N10 prevents deductions where an exponentiation rule is applied to the
result of a bilinear pairing rule such that the deduction can be replaced by a simpler one.
Figure 3.26 (a) shows one case prevented by this condition and (b) shows a simpler alter-
native to deduce the same message that is allowed. The condition N11 prevents redundant
cases resulting from the commutativity of ê where two dependency graphs only differ in the
order of premises of a bilinear pairing rule. This is especially problematic for the second
bilinear pairing rule in Figure 3.24 which is symmetric and used very often. We therefore
enforce that the send-node of the second premise cannot be smaller than the send-node of
the first premise. Since we want to evaluate this condition on constraint systems, which are
symbolic, we choose a very simple partial order on rule instances that considers only the
fact symbols. Figure 3.26 (c) shows a violation of N11, swapping the premises of i5 yields
a node that is allowed and has the same conclusion (modulo ACC ).

i1:
Fr(b)

Out([b]P) B(b)
i2:

Fr(a)

Out([a]P) A(a)

i5:
K⇓d

([b]P) K
⇓d

([a]P)

K
⇓d

(ê(P,P) ˆ (b ∗ a))

i3:
Out([b]P)

K
⇓d

([b]P)
i4:

Out([a]P)

K
⇓d

([a]P)

i2:
K⇓d

([a]P) K
⇓d

([b]P)

K
⇓d

(ê(P,P) ˆ (a ∗ b))

i3:
K⇓d

(ê(P,P) ˆ (a ∗ b)) K⇑(b−1 ∗ c)

K⇓e

(ê(P,P) ˆ (a ∗ c))
i3:

K⇓d

(ê(P,P) ˆ a) K⇑(c)

K⇓e

(ê(P,P) ˆ (a ∗ c))

i2:
K⇓d

([a]P) K
⇑(P)

K
⇓d

(ê(P,P) ˆ a)

(a) (b) (c)

Figure 3.26. Message deduction (a) is forbidden by Condition N10, (b) can be used instead.
(c) is forbidden by Condition N11 if [Fr,Out, B]>fs [Fr,Out, A].
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S⊲,♯:
i⊲K⇑(m)

j⊲K⇑(t), j≺ i
I

if root(m) = ♯, j freshly chosen,
and t∈ elems(m) \ Vmsg

S։,♯:

i։ (k, w), i: ru ,Γ

i: ru , (i, 1) (j , 1), j: ru1, j։ (k,w),Γ
|	
|i: ru , (i, 1) (j , 1), j: ru l, j։ (k,w),Γ

M

if (concs(ri))1 =K⇓d(t)

and t= a♯b for some a and b,
elems(t)∩Vmsg⊆ knownΓ

≺ (i),
{ru1,	 , ru l}=
{

K⇓d(t)−[]→K⇓d(m)

|m∈ elems(t) \Vmsg},
and j freshly chosen

Figure 3.27. Constraint solving rules for message deduction with respect to ♯.

Guarded Trace Properties

We relax the definition of guarded trace property to allow for subterms t with root(t) = ♯

in addition to variables, public names, and irreducible function symbols from ΣST . This
enables the usage of ♯ in security properties as already demonstrated for the Joux protocol.

3.4.4 Constraint Solving

In this section, we first present five new constraint solving rules required for ♯ and bilinear
pairing. Then, we discuss constraint solving for the signed Joux protocol.

Constraint solving rules for message deduction

Before showing the new constraint solving rules, we present the required definitions. The
messages known before i in Γ are defined as

knownΓ
≺ (i)= {m|∃j.j≺Γ i∧ j⊲K⇑(m)}.

The set of elements of a term t is defined as

elems(t) =

{

elems(a)∪ elems(b) if t= a♯b

elems(t) otherwise
.

The new constraint solving rules for ♯ are shown in Figure 3.27. The rule S⊲,♯ is analogous
to S⊲,∗ and directly introduces provides constraint for the premises of the construction rule
for ♯ instead of introducing a node constraint for the rule itself. The rule S։,♯ solves chains

that start at conclusions K⇓d(a♯b). We therefore modify S։ by adding the additional side

condition that (concs(ri))1 � K⇓d(a♯b) for all terms a and b. The new rule S։,♯ handles
this case by adding one case for every element of a♯b that is not a message variable. The
rule is only applicable if all elements of a♯b that are message variables are known before.
The rule exploits three normal form conditions. Condition N5 allows us to ignore all cases
where a message that is already K⇑-known is extracted. Condition N7 allows us to ignore

the Coerce case since K⇑(a♯b) is never the conclusion of Coerce. Finally, condition N8
allows us to ignore all cases where a term of the form a♯b is extracted. The constraint solving
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SN9:
i:
[

K⇓d(a),K⇑(b)
]

−[]→K⇓e([d]c)

⊥
I

if vars(c)⊆Vpub,
St(c)∩FN= ∅, and
nifactors(d)⊆ nifactors(b)

SN10:

(j , 1) (i, 1),

i:
[

K⇓d([t1]p),K
⇓d([t2]q)

]

−[]→K⇓e(ê(p, q)ˆc),

j:
[

K⇓d(ê(p, q)ˆc),K⇑(d)
]

−[]→K⇓e(ê(p, q)ˆe)

⊥
I

if vars(p, q)⊆Vpub,
St(p, q)∩FN= ∅, and
nifactors(ti)⊆ nifactors(d)
for i=1 or i= 2.

SN11:

j:
[

K⇓d([a]p),K⇓d([b]q)
]

−[]→K⇓e(ê(p, q)ˆ(a∗b)),
k1: ri1, k2: ri2,
i1: ru1, (i1, u1) (k1, 1), k1։ (j , 1),
i2: ru2, (i2, u2) (k2, 1), k2։ (j , 2)

⊥
I

if ri1 and ri2 are
instances of Recv and
fsyms(ru2)>fs fsyms(ru2)

Figure 3.28. Constraint solving rules that ensure N9–11.

rules ensuring the new normal form conditions are shown in Figure 3.28. The other normal
form conditions are maintained as invariants. The resulting constraint solving relation is
sound and complete, which we prove in Appendix A.2, and we can still obtain P -models
from solved constraint systems.

Analyzing the Joux protocol

The key computation in our Joux model applies ê to two message variables and exponen-
tiates the result. Since the rewriting system RBPe is also more complicated than RDHe,
it is not surprising that the rules for Joux have more variants than the rules for UM. More
precisely, the responder rule of the UM protocol has 6 variants while the second step of
the Joux protocol has 160 variants. Nevertheless, the derived constraint rewriting rule for
exponentiation given in Figure 3.29 is comparable to the one for UM. The rule states that
there are five ways to deduce an exponentiation for the adversary captured by the cases ∆i.

1. He can construct the exponentiation himself if he knows the base u, which cannot be
an exponentiation itself, and all non-inverse factors of the exponent v.

2. He can apply the bilinear map ê to a scalar multiplication [x:fr]P, extracted from the
message sent in the first protocol step, and an arbitrary message q that is not a scalar
multiplication. If q is a scalar multiplication [a]b, then the result ê(P, [a]b)ˆ(x:fr) of
applying ê is not ↓RBPe

-normal.

3. He can extract the scalar multiplications [x:fr]P and [y:fr]P from two protocol sends
and apply the bilinear map ê to both.

4. He can perform the same steps as in 2 and then use an exponentiation rule to multiply
the exponent of the message deduced in 2 with z.

5. He can perform the same steps as in 3 and then use an exponentiation rule to multiply
the exponent of the message deduced in 3 with z.
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∆1

∆2

∆3

∆4

∆5

j1 :
Fr(x : fr) !Ltk(A : pub, a : fr)

Out(〈[x]P,SIG〉) S(x,A, (B : pub)♯(C : pub))

j2 :
Fr(y : fr) !Ltk(D : pub, d : fr)

Out(〈[y]P,SIG〉) S(y,D, (E : pub)♯(F : pub))

j1 :
Fr(x : fr) !Ltk(A : pub, a : fr)

Out(〈[x]P,SIG〉) S(x,A, (B : pub)♯(C : pub))i :
K⇑(u) K⇑(v)

K⇑(u ˆ v)

j4 :
K⇓d

([x]P) K⇑(q)

K⇓d

(ê(P, q) ˆ x)

j2 :
Out(〈[x]P,SIG〉)

K⇓d

(〈[x]P,SIG〉)

i :
K⇓y

(ê(P, q) ˆ (x : fr))

K⇑(ê(P, q) ˆ (x : fr))

j3 :
K⇓d

(〈[x]P,SIG〉)

K⇓d

([x]P)

j3 :
Out(〈[x]P,SIG〉)

K⇓d

(〈[x]P,SIG〉)
j4 :

Out(〈[y]P,SIG ′〉)

K⇓d

(〈[y]P,SIG ′〉)

j5 :
K⇓d

(〈[x]P,SIG〉)

K⇓d

([x]P)
j6 :

K⇓d

(〈[y]P,SIG ′〉)

K⇓d

([y]P)

j7 :
K⇓d

([x]P) K⇓d

([y]P)

K⇓d

(ê(P,P) ˆ (x ∗ y))

i :
K⇓y

(ê(P,P) ˆ ((x : fr) ∗ (y : fr)))

K⇑(ê(P,P) ˆ ((x : fr) ∗ (y : fr)))

j1 :
Fr(x : fr) !Ltk(A : pub, a : fr)

Out(〈[x]P,SIG〉) S(x,A, (B : pub)♯(C : pub))

j4 :
K⇓d

([x]P) K⇑(q)

K⇓d

(ê(P, q) ˆ x)

j2 :
Out(〈[x]P,SIG〉)

K⇓d

(〈[x]P,SIG〉)

j3 :
K⇓d

(〈[x]P,SIG〉)

K⇓d

([x]P)

j5 :
K⇓d

(ê(P, q) ˆ x) K⇑(z)

K⇓e

(ê(P, q) ˆ (x ∗ z))

i :
K⇓y

(ê(P, q) ˆ ((x : fr) ∗ z))

K⇑(ê(P, q) ˆ ((x : fr) ∗ z))

j2 :
Fr(y : fr) !Ltk(D : pub, d : fr)

Out(〈[y]P,SIG〉) S(y,D, (E : pub)♯(F : pub))

j1 :
Fr(x : fr) !Ltk(A : pub, a : fr)

Out(〈[x]P,SIG〉) S(x,A, (B : pub)♯(C : pub))

j3 :
Out(〈[x]P,SIG〉)

K⇓d

(〈[x]P,SIG〉)
j4 :

Out(〈[y]P,SIG ′〉)

K⇓d

(〈[y]P,SIG ′〉)

j5 :
K⇓d

(〈[x]P,SIG〉)

K⇓d

([x]P)
j6 :

K⇓d

(〈[y]P,SIG ′〉)

K⇓d

([y]P)

j7 :
K⇓d

([x]P) K⇓d

([y]P)

K⇓d

(ê(P,P) ˆ (x ∗ y))

i :
K⇓y

(ê(P,P) ˆ ((x : fr) ∗ (y : fr) ∗ z))

K⇑(ê(P,P) ˆ ((x : fr) ∗ (y : fr) ∗ z))

j8 :
K⇓d

(ê(P, q) ˆ (x ∗ y)) K⇑(z)

K⇓e

(ê(P, q) ˆ (x ∗ y ∗ z))

Abbreviations:

SIG = sig(〈A,B♯C, g ˆ x〉, a)
SIG ′ = sig(〈D,E♯F, g ˆ y〉, d)

u ≈ ê(P, q)
v ≈ x : fr

u ≈ ê(P, q)
v ≈ ((x : fr) ∗ z)

u ≈ ê(P,P)
v ≈ ((x : fr) ∗ (y : fr))

u ≈ ê(P,P)
v ≈ ((x : fr) ∗ (y : fr) ∗ z)

i ⊲ K⇑(u ˆ v)→֒

Figure 3.29. Constraint rewriting rules for SIGJOUX .

We will present the results and runtimes for the automated verification with the
Tamarin prover in the next section. The automated analysis roughly proceeds as follows.
First, the signatures are used to deduce that the session key of the test session has the form

ê(P,P)ˆ((x:fr)∗(y:fr)∗(z:fr)).

Then, the above constraint rewriting rule is used to reason about all possible ways to deduce
this exponentiation. To finish the proof, all resulting cases are shown to be contradictory.
For example, in the first case corresponding to ∆1, the adversary performs an exponentia-
tion with base ê(P,P) and exponent (x:fr)∗(y:fr)∗(z:fr). Hence, he must know x, y, and z,
which is shown to be impossible.
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3.5 Implementation and Case Studies

In this section, we first describe our implementation of the constraint solving algorithm in
a tool called the Tamarin prover. Then, we describe two additional case studies in detail:
the security of NAXOS with respect to the eCK model and the security of the RYY protocol
with respect to a model of wPFS with session key reveals and long-term key reveals. Finally,
we present an evaluation of the Tamarin prover on numerous protocols.

3.5.1 The Tamarin prover

The Tamarin prover implements a constraint solving algorithm based on  P to analyze
security protocols. Figure 3.30 depicts Tamarin’s workflow for proving the validity of
security properties. The octagons denote computations and the rectangles denote inputs,
outputs, and intermediate values of the algorithm. We use edges to denote the arguments
and results of computations, but leave some arguments implicit, e.g., the equational theory
is used by all computations.

Tamarin takes the following inputs:

1. An equational theory E that is specified by giving (a) function symbols and subterm-
convergent equations for ST and (b) boolean flags to denote whether the (built-in)
function symbols and equations for Diffie-Hellman exponentiation, bilinear pairing, and
multiset union should be included

2. A protocol P specified as a set of multiset rewriting rules.

3. A sequence ψR of axioms specified as guarded trace properties.

4. A sequence ϕR of security properties that the user wants to prove specified as guarded
trace properties.

Then Tamarin checks whether

trace(execsE(P ∪MDE))�E





∧

i=1

∣

∣ψR
∣

∣

ψi





�

(

∧

j=1

|ϕR |

ϕj

)

holds, where MDE denotes the message deduction rules for E , execsE(P ∪ MDE) denotes
the executions for P ∪MDE defined via multiset rewriting modulo E , and �E denotes the
semantics of trace formulas modulo E . If Tamarin terminates, it either returns a proof or
a counterexample.

To achieve this, Tamarin performs the following steps:

1. It computes a finite variant decomposition R,AX from the given specification of E .
Then, it uses folding variant narrowing to compute the complete R,AX -variant-for-
mulas for the protocol rules in P . It also computes the normal message deduction
rules NDE from E . The normal message deduction rules for Diffie-Hellman and bilinear
pairing are usually precomputed and loaded from disk.

2. It uses constraint solving with  P
ctx to precompute constraint rewriting rules for pro-

tocol facts, the provides constraint i⊲ (x:fr), and provides constraints i⊲ g(x1,	 , xk)

for all function symbols g. Here, the axioms ψR are already taken into account and the
previously computed variant-formulas for P are used. This precomputation of constraint
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Equational theory   :
builtins: bilinear-pairing, multiset

functions: h/1, pair/2, fst/1, snd/1

equations: fst(pair(x,y)) = x, snd(pair(x,y)) = y

Protocol    : 
rule Register_pk:

  [ Fr(ltk:fr) ] --[ ]->

  [ !Ltk(A:pub,ltk:fr), !Pk(A:pub,pk(ltk:fr)) ]

...

Folding variant

narrowing

Constraint Solving:
reduction steps chosen 

by heuristic (terminating)

Constraint Solving:
reduction steps chosen by 

heuristic or interactively in GUI
(heuristics might not terminate)

Proof:
solve (Accept(<A,B,X>,key)@i)

  case Init_1

    ...
qed

Attack:
displays solved constraint system 
and visualizes the dependency 
graph for attack

Axioms    :
axiom InEq: "not (Ex i x. InEq(x,x)@i)" 

...

Security Properties    :
lemma SessionKeySecret:

  "All A B C key i j.

     Accept(A, B#C, key)@i &

...

Variant formulas 

for Protocol

Derived constraint 

rewriting rules

E

P

!ψ

!ϕ

Figure 3.30. Tamarin workflow for proving validity of security properties.

rewriting rules is carefully designed to prevent nontermination or an explosion of cases,
while still yielding useful constraint rewriting rules.

3. For each ϕj, it uses constraint solving with  P and the precomputed constraint
rewriting rules to search for a P -model of the constraint system

Γ07











∧

i=1

∣

∣ψR
∣

∣

ψi



∧ gf (¬ϕj)







,

where gf denotes a function that rewrites a given formula into a guarded trace formula.
If the search fails, the tree of constraint solving steps constitutes a proof of ϕj. To
search for P -models, it uses the approach described in Section 3.3.2 extended with some
additional bookkeeping. In the following, we call applications of both the constraint
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solving rules from P and the precomputed constraint rewriting rules constraint solving
steps. If the state of the algorithm is the set of constraint systems {Γ1,	 ,Γk} where
none of the constraint systems is solved, then it must make two choices to determine
the next step.

a) It must choose the constraint system Γi which will be reduced next. This choice is
mostly relevant if ϕj is not valid since it is possible to stop when the first solved
constraint system is encountered. To obtain a proof of ϕj, the algorithm must reduce
all constraint system to the empty set of constraint systems.

b) Given a constraint system Γi, the algorithm must choose one of the applicable con-
straint solving steps. Here, the main goal is to make progress and to add constraints
that eventually lead to a contradiction. Another goal is to prevent duplicated work
by delaying case distinctions if possible .

Tamarin provides an automated mode where this choice is performed by a heuristic and
an interactive mode where a GUI (depicted in Figure 3.31) presents the possible choices to
the user. For both modes, trivial constraint solving steps that directly lead to contradictions
or simplify constraint systems without leading to multiple cases are applied eagerly.

For choosing between non-trivial steps, our heuristic takes both previously described
goals into account. For example, provides constraints i⊲K⇑(m) are delayed if the message
m is earlier sent by the protocol since solving such constraints rarely leads to contradictions.

On the other hand, provides constraints i⊲K⇑(k) for secret keys k are usually solved early
on since they often lead to contradictions.

Even though we will demonstrate in Section 3.5.4 that the heuristics usually performs
well and we could, ignoring efficiency, use iterative deepening to explore all constraint
reductions up to a given size, the GUI is still very useful. First, we can perform automated
proof search in the GUI and explore the resulting constraint reduction tree, including
attacks, if there are any. Second, if the automated proof search takes too long or does not
terminate, we can use the GUI to investigate the reason or to override the heuristics.

For more details about Tamarin, we refer to its documentation, the included case
studies, and Meier’s thesis [124], which describes the computation of constraint rewriting
rules and the heuristics employed by Tamarin in more detail. Note that the initial version
of the GUI was developed by Staub and is described in his Bachelor thesis [163]. In Sec-
tion 3.5.5, we will discuss limitations of the method. In this context, we will describe two
extensions developed by Meier [124] that allow Tamarin to handle protocols with loops
and protocols that perform blind forwarding of messages received in encryptions.

3.5.2 Security of NAXOS in the eCK Model

The NAXOS protocol [111] depicted in Figure 3.32 has been designed to be secure in the
eCK [111] model. Before starting the NAXOS protocol, the agents A and B know their
own private long-term key a and b and the other agent’s long-term public key B̂ = gb and
Â = ga, respectively. Then, they generate ephemeral private keys x and y and combine
them with their long-term private keys to compute the ephemeral public keys gh1(x,a)

and gh1(y,b). After exchanging these ephemeral public keys, both agents can compute the

shared secret h2(g
ah1(y,b), gbh1(x,a), gh1(y,b)h1(x,a), A, B). The basic idea for the security is

that if the adversary was passive and the key is computed as expected, then either x and a
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Figure 3.31. Tamarin visualizes a proof attempt of the security of PUM . The visited constraint
systems and applied constraint solving steps are shown in the tree on the left which can also be
used for navigation. The currently considered constraint system which corresponds to Γ1.1.1.1 in
Figure 3.19 is shown on the right. On top, the applicable constraint solving steps are displayed.
In this case, we can choose method 3 to show that the current constraint system is contradictory.
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or y and b are required to compute the key. If the adversary was active and A receives a
message Y that was not created by the (honest) intended partner, then either b or x and a

must be known to compute B̂h1(x,a) = gbh1(x,a).
We formalize NAXOS security in the eCK model with the protocol rules and guarded

trace property given in Figures 3.33 and 3.34. Intuitively, the adversary queries are modeled
by the rules and the winning condition, including clean, is formalized by the property.

Key
Generation:

Fr(a:fr)

!Ltk(A:pub, a) !Pk(A:pub, gˆa) Out(gˆa)

Initiator 1:
Fr(x:fr) !Ltk(A, a:fr)

Out(gˆh1(x, a)) Init(x,A:pub, B:pub, a) !Ephk(x)

Initiator 2:

Init(x:fr, A:pub, B:pub, a:fr)

In(Y ) !Pk(B, B̄ )

!Sessk(x, key)

[

Accept(x, key)
Sid(x, 〈A,B, gˆh1(x, a), Y ,I〉)

]

where B̄ = gˆ(b:fr)

key = h2(Y ˆa, B̄ ˆh1(x, a), Y ˆh1(x, a), A, B)

Responder 1:

Fr(y:fr) !Ltk(B:pub, b:fr)

In(X) !Pk(A:pub, Ā )

Out(gˆh1(y, b)) !Ephk(y)
!Sessk(y, key)

[

Accept(y, key)
Sid(y, 〈B,A,X, gˆh1(y, b),R〉)

]

where Ā = gˆ(a:fr)

key = h2(Ā ˆh1(y, b), Xˆb,Xˆh1(y, b), A, B)

Long-term
key reveal:

!Ltk(A, a)

Out(a)
[RevealLtk(A) ]

Session
key reveal:

!Sessk(s, k)

Out(k)
[RevealSessk(s) ]

Ephemeral
key reveal:

!Ephk(x)

Out(x)
[RevealEphk(x) ]

Figure 3.33. Rules defining the NAXOS protocol in the eCK model.

To model the hash functions, we use free function symbols h1 and h2. We model key
generation with a key generation rule like in the UM example. Note that some case studies
presented in the next section also allow for key registration by the adversary. The first step
of an initiator A generates a fresh ephemeral private key x, which is also used to identify the
session, and looks up A’s long-term private key a. Then, the ephemeral public key is sent
and the session’s state is stored using an Init-fact. Additionally, a fact !Ephk(x) is created
to allow the adversary to reveal the ephemeral private key x of the session identified by x.
The second initiator step consumes an Init-fact to obtain the session’s ephemeral private
key x, the actor’s identity A, the peer’s identity B, and the actor’s long-term private key a.
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A B

long-term key pair:
(

a, Â = ga
)

long-term key pair:
(

b, B̂ = gb
)

choose random exponent x

X7 gh1(x,a)
�

X
choose random exponent y

�

Y
Y 7 gh1(y,b)

compute h2

(

Y a, B̂h1(x,a), Y h1(x,a),A,B
)

compute h2

(

Âh1(y,b),Xb, Xh1(y,b),A,B
)

Figure 3.32. The NAXOS protocol.

Additionally, it receives the message Y and looks up B’s long-term public key B̄ . Using
these, the session computes the session key, creates a !Sessk-fact for session key reveals,
denotes that it accepted a key using an Accept-action, and associates the session identifier x
with the given session string using an Sid-action. The responder rule is defined analogously.
The remaining three rules model long-term key reveal, session key reveal, and ephemeral
key reveal.

∀ key test A B X Y R.

// If there is a test session test whose session key is known to the adversary,
Accept(test , key)∧K(key)∧ Sid(test , 〈A,B,X, Y , R〉)

// then one of the followingmust have happened:
� ( // 1. The adversary revealed test ’s session key.

RevealSessk(test)

// 2. The adversary revealed the long-term key of test ’s actor and
// test ’s ephemeral key.
∨ (RevealLtk(A)∧RevealEphk(test))

// 3. There is a matching session match and the adversary revealed
∨ (∃match R ′.Sid(match , 〈B,A, Y ,X ,R ′〉)∧¬(R≈R ′)
∧ (// (a) match ’s session key, or

RevealSessk(match)

// (b) the long-term key of test ’s peer and match’s ephemeral key.
∨RevealLtk(B)∧RevealEphk(match)))

// 4. There is no matching session and the adversary revealed
∨ (¬(∃match R ′.Sid(match , 〈B,A, Y ,X,R ′〉)∧¬(R≈R ′))

// the long-term key of test ’s peer.
∧RevealLtk(B)))

Figure 3.34. eCK security property for the NAXOS protocol.

The security property states that whenever the adversary knows the key of a session test ,
then the session is not clean. The definition of clean is a direct translation of the definition
in Section 2.1.2.4. Note that in contrast to the computational definition, our symbolic model
captures computability of the session key instead of indistinguishability.
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3.5.3 wPFS Security of RYY

The formalization of RYY given in Figures 3.35 and 3.36 follows the description in Sec-
tion 2.1.3.3. We use the free function symbol H to model the hash function that hashes into
G1 and the free function symbol h to model the hash function used as the key derivation
function. The rules in the first line model a key generation center that first creates a fresh
master secret key msk and then allows owners of identities to obtain their long-term private
keys. Since the public key for an identity A is just H(A), there is no need for public key
distribution. The first step of the initiator sends the ephemeral public key gˆx. The second
step of the initiator receives the ephemeral public key of the responder and computes the
session key by combining the ephemeral DH key and the static identity-based key. We also
include the exchanged messages and the identities of the participants in the input to the
hash function. We use Accept-actions and Sid-actions to denote the accepted key and the
session string. The responder rule is defined analogously. The remaining rules handle long-
term key reveal, session key reveal, and master key reveal.

Key Generation Center:
Fr(msk :fr)

!Msk(msk)

!Msk(msk)

!Ltk(ID : pub , [msk ]H(ID))

Initiator step 1:
Fr(x:fr)

Out(gˆx) Init(x,A:pub, B:pub)

Initiator step 2:

Init(x,A:pub, B:pub)
In(Y ) !Ltk(A, skA)

!Sessk(x, key)

[

Accept(x, key)
Sid(x, 〈A,B, gˆx, Y ,A〉)

]

where key =h(Y ˆx, ê(H(B), skA), A,B, gˆx, Y )

Responder step 1:

Fr(y:fr) In(X)
!Ltk(B:pub, skB)

Out(gˆy) !Sessk(y, key)

[

Accept(y, key)
Sid(y, 〈B,A,X, gˆy,B〉)

]

where key =h(Xˆy, ê(H(A), skB), A,B,X, gˆy)

Long-Term key reveal:
!Ltk(A, a)

Out(a)
[RevealLtk(A) ]

Session key reveal:
!Ltk(s, k)

Out(k)
[RevealSessk(s) ]

Master key reveal:
!Ltk(A, a)

Out(a)
[RevealMsk() ]

Figure 3.35. Rules defining the RYY protocol.

The adversary model formalized by the security property allows the adversary to reveal
session keys of unrelated sessions, to reveal long-term keys of the participants (or the
master-key) after the test session has accepted the key if he was passive, and to reveal long-
term keys of other agents. As we will demonstrate in the next section, Tamarin finds an
attack if we add ephemeral key reveals to this model.
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∀i key test A B X Y R.

// If there is a test session test whose session key is known to the adversary,
Accept(test , key)@i∧K(key)∧ Sid(test , 〈A,B,X, Y , R〉)

// then one of the followingmust have happened.
� // 1. The adversary revealed test ’s session key.

RevealSessk(test)

// 2. There is a matching session match and the adversary revealed
∨ (∃match R ′.Sid(match , 〈B,A, Y ,X ,R ′〉)∧¬(R≈R ′)
∧ ( // (a) match ’s session key, or

RevealSessk(match)

// (b) the long-term key of test ’s peer before i, or
∨ (∃m.RevealLtk(B)@m∧m≺ i)

// (c) the long-term key of test ’s actor before i, or
∨ (∃m.RevealLtk(A)@m∧m≺ i)

// (d) the master key before i.
∨ (∃m.RevealMsk()@m∧m≺ i)))

// 3. There is no matching session and the adversary revealed
∨ (¬(∃l match R ′.Sid(match , 〈B,A, Y ,X ,R ′〉)@ l∧¬(R≈R ′))
∧ // the long-term key of test ’s peer, of test ’s actor, or the master key.

(RevealLtk(B)∨RevealLtk(A)∨RevealMsk() ))

Figure 3.36. Security property for the RYY protocol

3.5.4 Experimental Results

We applied Tamarin to three type of case studies. First, we analyzed a number of two-
pass AKE protocols with respect to different adversary models. The results, obtained on a
laptop with a 2.9 Ghz Intel Core i7 processor, are listed in Table 3.1. For each protocol, we
formalized its intended and related adversary models and analyzed them using Tamarin.
We analyzed NAXOS with respect to the formalization in Section 3.5.2. For a modified
adversary model that accounts for Perfect Forward Secrecy (PFS), Tamarin discovered
an attack. We modeled NIST’s KAS1 and KAS2 protocols [102] and the related DH2
protocol by Chatterjee et al. [43] which uses inverses. For these protocols, our analysis
confirms the security proofs and the informal statements made in [43]. We also analyzed
the SIGDH protocol from Section 2.1.2 and the KEA+ protocol [112] and obtained the
expected results. To verify Key Independence (KI) for KEA+ and STS, we model that the
adversary can reveal certain keys. For STS, we additionally allow the adversary to register
arbitrary public keys for corrupted agents. In this setting, we find the UKS attack reported
in [27]. We model and successfully verify both fixes from [27]. The first fix is to require a
Proof-of-Possession of the private key for key registration and the second fix is to include
the identities of the participants in the signatures. We also analyzed the TS1, TS2, and
TS3 protocols from [95] and their updated versions [96].
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Protocol Adversary Model Result Time [s]

1. NAXOS eCK proof 4.1

2. NAXOS eCKPFS attack 3.4

3. KAS1 KI+KCI proof 0.7

4. KAS2 weakened eCK proof 5.5

5. KAS2 eCK attack 3.6

6. DH2 weakened eCK proof 21.7

7. SIGDH PFS proof 0.6

8. SIGDH eCK attack 9.4

9. KEA+ KI+KCI proof 0.7

10. KEA+ KI+KCI+wPFS attack 1.0

11. STS-MAC KI, reg-PK UKS-attack 4.1

12. STS-MAC-fix1 KI, reg-PK (with PoP) proof 9.2

13. STS-MAC-fix2 KI, reg-PK proof 2

14. TS1-2004 KI UKS-attack 0.3

15. TS1-2008 KI proof 0.3

16. TS2-2004 KI+wPFS attack 0.5

17. TS2-2008 KI+wPFS proof 1.2

18. TS3-2004/2008 KI+wPFS non-termination -

Table 3.1. Verification Results for two-pass Diffie-Hellman protocols.

Second, we analyzed the one-pass and three-pass versions of the UM protocol with respect
to different adversary models. We also analyzed these and other protocols in combined
models where multiple protocols are executed jointly sharing static key material. The
results are shown in Table 3.2. We analyzed our formalization of the one-pass UM pro-
tocol [137] from Figures 3.2 and 3.3 which models a weakened version of the eCK model.
Since we obtained the description of the one-pass UM protocol from [42], we then modeled
one-pass UM in their adversary model, which is based on the CK-model [37], and Tamarin
automatically discovered the attack depicted in Figure 3.37.

In the attack, the test session is a responder session with actor B and peer A that
receives g1. After a long-term key reveal for A, the adversary can compute the session key
h(gb, gba, A, B) of the test session. There is also a second responder session with peer A and
actor B that receives g1. In our model, this is not an attack since a long-term key reveal
for the test session’s peer is only allowed if there is a matching session for the test session.
Since two responder sessions are never matching sessions in our model, this is not the case
for this execution.

In the model from [42], the adversary is only allowed to reveal the long-term key of the
test session’s peer if there is a matching session, like in our model. Unlike our model, their
model does not include the role in the session identifier and the second responder session
is a matching session of the test session in their model. They define the session identifier
of the test session as (A, B, g1), the session identifier of the second session as (B, A, g1),
and the two are matching in their model since the actor of the first session is the peer
of the second session, the actor of the second session is the peer of the first session, and
the messages are equal. We checked the security proof in [42] and discovered that a case
corresponding to our attack is missing. The proof assumes that the matching session of
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a responder is always an initiator session. We then modified our formalization to include
the role in the matching session definition and successfully verified this fix with Tamarin.
Following the analysis in [42] and [129] we also modeled the three-pass UM protocol and
analyzed the one-pass and the three-pass versions of UM in a joint model where agents
use the same long-term keys for both protocols. Our results confirm the attack and the
fix from [129]. Finally, we verify three-pass variants of the KEA+ and NAXOS protocols
from [129] in a joint eCKPFS [110] model with partially matching sessions [129] where the
adversary can register arbitrary public keys for corrupted agents.

Protocol Adversary Model Result Time [s]

19. UM-one-pass weakened eCK proof 0.4

20. UM-one-pass CK-like attack* 3.4

21. UM-one-pass CK-likea proof 2.6

22. UM-C+UM-one-pass CK-likea attack 27.4

23. UM-Ca+UM-one-passb CK-likea proof 41

24. NAXOS-C+DHKEA eCKPFSc,reg-PK proof 107

a added role to session identifier

b added protocol identifier to key string

c with partially matching sessions

Table 3.2. Verification Results for one-pass and three-pass Diffie-Hellman protocols. We use * to
denote attacks that contradict result proved in the respective papers.

Third, we analyzed tripartite group key exchange protocols and identity-based AKE
protocols that employ bilinear pairings. The results are listed in Table 3.3. For the signed
Joux protocol [97], we confirmed that it provides PFS. If we add ephemeral key reveals,
then Tamarin discovers an attack. For this protocol, it takes 76 seconds to compute the
160 variants of the second protocol step, which is a substantial amount of the total analysis
time. For the TAK1 protocol [5], our adversary model distinguishes between two cases. If
the adversary was passive with respect to the test session test , then he can reveal either
the long-term keys of test ’s actor and test ’s peers or the ephemeral keys of test and the
matching sessions, but not both. If the adversary was active, then revealing long-term
keys of test ’s actor or test ’s peers is forbidden. Next, we verify the security of the RYY
protocol [155] with respect to wPFS and confirm an attack after adding ephemeral key
reveals. For the Scott protocol [159], we obtain a similar result. Finally, we model the
Chen-Kudla protocol [44], which uses point addition. We do not support this operation and
the required equalities like [c]([a]P + [b]Q) = ([c a]P + [c b]Q) in our model and therefore
approximate the point addition with the associative and commutative operator ♯. Since the
Chen-Kudla protocol still works if point addition is replaced by sorted concatenation, our
model includes the required equalities to execute the protocol. We verify the security of
the Chen-Kudla protocol in an eCK-like model where, in addition to the usual restrictions,
the adversary is not allowed to reveal the ephemeral keys of the test session and the
matching session, even if the adversary performs no long-term key reveals. If we remove
this restriction, then Tamarin discovers an attack.
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Protocol Adversary Model Result Time [s]

25. SIGJOUX (tripartite) PFS proof 90.7

26. SIGJOUX (tripartite) PFS,eph-reveal attack 99.8

27. TAK1 (tripartite) weakened eCK-like proof 56.8

28. TAK1 (tripartite) eCK-like attack 77.2

29. RYY (ID-based) wPFS proof 8.3

30. RYY (ID-based) wPFS,eph-reveal attack 7.9

31. Scott (ID-based) wPFS proof 19.3

32. Scott (ID-based) wPFS+eph-reveal attack 26.2

33. Chen-Kudlad (ID-based) eCK-like proof 61

34. Chen-Kudlad (ID-based) eCK attack 45.3

d we use sorted concatenation instead of point addition

Table 3.3. Verification Results for protocols that use bilinear pairing.

3.5.5 Limitations and Extensions

There are two main causes for non-termination. First, non-termination occurs when the
protocol contains loops and the search has to explore the loops to analyze the desired
property. For example, it is impossible to prove that ϕ=∀i x.St(x)@i� x≈ 1 holds for

PLoop=

{

St(1)
[ St(1) ]

St(x)

St(x)
[ St(x) ]

}

using our constraint solving algorithm. To solve this problem, Meier [124] extends the
approach with induction. First, he checks if ϕ is valid for the empty trace, which is always
possible. Then, he encodes the induction hypothesis “ϕ is valid for all prefixes of tr ” in a
formula ϕIH. Since this formula is also a guarded trace property, constraint solving can
then be used to check if ϕIH� ϕ is valid. This is equivalent to checking if ϕIH ∧¬ϕ is
satisfiable, i.e., is there a trace that violates ϕ such that all prefixes satisfy ϕ.

Second, we have seen that enforcing normal message deductions and using a search
strategy based on the chain property is critical to achieve termination in many cases. Since
we apply these techniques only to message deduction rules, protocol rules that provide very
general message deduction steps are still problematic. For example, the described constraint
solving algorithm does not handle protocols that provide decryption rules such as

In(enc(x, pk(k))) !Ltk(A, k)

Out(x)

where x is a message variable well. The problem is that if we do not know anything about
the possible instantiations for x, then any message can be extracted from the sent message.
To deal with such protocols, Meier [124] proposes type assertions which are invariants
similar to “the variable x in the protocol step i is either instantiated with a nonce or already
known to the adversary before i”. Given this invariant, it suffices to consider the case where
the extracted message is a nonce since the adversary is not allowed to extract a message
that is already known in the other cases. To prove such invariants, induction is used.
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Figure 3.37. Tamarin visualizes the attack on the UM-one-pass protocol in the CK-like model
from [42] after automatically finding it. The test session is displayed on the left and its matching
session, which is also a responder session, is shown on the right. On the far right below the matching
session, a long-term key reveal for its actor is displayed. In the bottom half, the message deductions
for computing the session key are displayed. Note that A’s long-term key is ∼x and B’s long-term
key is ∼eb where ∼ is used to denote the sort annotation :fr.
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Meier [124] and Künnemann and Steel [107] have successfully applied the two exten-
sions described above to verify protocols with loops and unbounded mutable state such as
TESLA [145], the envelope protocol [63], and the Yubikey security token [170].
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Chapter 4

Impossibility Results for Key Establish-
ment

In Chapter 2, we presented the Diffie-Hellman protocol, which was the first protocol
to “enable private communication without ever relying on private channels“ (Katz and
Lindell [106]). The main insight in the development of the protocol was the usage of
DH groups where exponentiation is efficient, repeated exponentiation commutes, and taking
the discrete logarithm is hard. In this chapter, we investigate if it is possible to achieve
the above goal also with operations that are simpler than exponentiation in a DH group.
More precisely, we model cryptographic operators and their algebraic properties abstractly
by equational theories, as we did in Chapter 3. Then, we consider the question if a given
equational theory, modeling for example XOR, symmetric encryption, or hashing, allows
the establishment of a secret using only public (but authentic) channels.

In the following, we first state some preliminaries and define our formal model of secret
establishment. Then, we consider symmetric encryption and subterm-convergent theories.
Next, we consider monoidal theories such as XOR and abelian groups. Finally, we consider
the disjoint combination of equational theories and summarize our results.

4.1 Preliminaries

In this chapter, we use unsorted term algebras and a single set of names N . We also
assume that all considered equational theories are consistent, i.e., for two different names n
and n ′, it never holds that n=E n

′. For a sequence a= [a1,	 , ak], we use σ[a] to denote the
substitution

⋃

i=1

k {ai/xi}. Note that all equational theories are stable under replacement
of names by terms, i.e., if ρ is a replacement of names by terms and s=E t, then s

ρ=E t
ρ.

4.2 Traces and Deducibility

In this section, we define formally what it means to establish a shared secret. We first
define messages, frames, and deducibility. Then, we define the set of derivation traces that
denotes the possible executions where agents construct messages and exchange messages
over a public channel. Afterwards, we define the notion of shared secret for such a trace
and relate derivation traces and protocols.
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4.2.1 Messages, Frames, and Deducibility

As is common practice in symbolic protocol analysis, we abstract away from concrete
implementations where messages are encoded and manipulated as bitstrings. Given an
equational theory E = (Σ, E), we define the set of messages asMΣ = TΣ(N ). We use the
set of names N to model atomic messages such as nonces and agent names. The function
symbols in Σ model cryptographic operations on abstract messages, where the operations’
semantics is given by the set of equations E.

We next define a notion of deducibility on a set of messages. Consider, for example, the
case where an adversary has overheard communication between honest agents and has seen
the messages m1, 	 , mk. Given these messages, we are interested in the set of messages
that the adversary can deduce by applying cryptographic operations. Here, we have to
account for nonces, keys, and other randomly chosen messages, which the adversary cannot
construct. We therefore define the notion of a frame, as it has been introduced in the
applied pi calculus [3]. A frame is a pair (ñ , σ) written as ν ñ.σ such that:

• ñ is a finite set of restricted names. Intuitively, this is a set of fresh names and models
unguessable messages created by honest agents. Although it might be possible for the
adversary to deduce restricted names, the adversary cannot create them directly.

• σ is a substitution {m1/x1,	 , mk/xk}. This allows the adversary to use the observed
messages m1,	 ,mk when constructing new ones.

Const
n∈N \ ñ
ν ñ.σ ⊢E n

Know
x∈ dom(σ)

ν ñ.σ ⊢E xσ

Apply
ν ñ.σ ⊢Em1 	 ν ñ.σ ⊢Emk f ∈Σk

ν ñ.σ ⊢E f(m1,	 , mk)
Equal

ν ñ.σ ⊢Em m=Em′

ν ñ.σ ⊢Em′

Figure 4.1. The deducibility relation ⊢E is inductively defined by these rules.

Based on the notion of a frame, we define the deducibility relation ⊢E between frames and
messages for an equational theory E . The corresponding rules are presented in Figure 4.1
and model that the adversary can take any of the following actions.

• Const: The adversary can deduce any name, except the restricted ones in the set ñ.

• Know: The adversary can deduce all message in the range of σ.

• Apply: The adversary can apply function symbols in Σ to deducible messages.

• Equal: The adversary can deduce messages that are equivalent to deducible messages
modulo the equational theory E .

The relation ⊢E can be equivalently defined as follows.

Lemma 4.1. For all finite sets of names ñ, substitutions σ, and terms m, ν ñ.σ ⊢E m if
and only if there is a term ζ ∈ TΣ(dom(σ)∪ (N \ ñ)) such that ζσ =E m. We call such a
term ζ a recipe for m.

For theories that contain a nullary function symbol, we can always find a recipe that
does not contain unrelated names.

Lemma 4.2. If E is a theory with a nullary function symbol c, names(range(σ)∪{m})⊆ ñ,
then ν ñ.σ ⊢Em if and only if there is recipe ζ ∈TΣ(dom(σ)).

Impossibility Results for Key Establishment
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Proof. We can just take an arbitrary recipe and replace all names n∈names(ζ)with c. The
result is still a recipe since all names in m and range(σ) are restricted and cannot occur
in ζ. Since E is stable under replacement of names by terms, we have ζ ρσ=E (ζσ)ρ=Em

ρ=m

for a replacement ρ that maps all n∈ names(ζ) to c. �

Note that the notion of frames and the deducibility relation ⊢E can also be used for terms
that are not ground, which we exploit in Section 4.3.2.

4.2.2 Derivation Traces

In the following, let A be the set of agents and let E = (Σ, E) describe the cryptographic
operators under consideration and their relevant properties. An event either denotes that
an agent sends a message or learns a message. Events are therefore associated with the
corresponding agent’s identity. A learn event is additionally tagged with the rule R that
describes how the agent learned the message.

Event< =Send(A,MΣ)|LearnR(A,MΣ)

The steps taken to construct and communicate messages are modeled by traces, where a
trace is a list of events. The set of valid traces TRE is inductively defined by the rules in
Figure 4.2. We use restricted(tr)={n|∃A.LearnFresh(A,n)} to denote the restricted names
in the trace and LearnR to denote Learn-events with arbitrary rule-tags. The rules model
the following actions.

• Send: An agent A sends a previously learned message m on the public channel.

• Recv: An agent A receives a message m that has been previously sent by B.

• Fresh: An agent A creates a fresh name n. Note that the minimal name nmin under
the ordering ≻ used for ordered completion cannot be used here or in the Public rule.

• Public: An agent A uses a public value p.

• App: An agent A applies a k-ary function symbol f to the previously learned messages
m1,	 ,mk. Here we use the fact that every message has a unique normal form modulo
E with respect to →(≻,OE).

4.2.3 Shared Secrets and Deducibility

Clearly, we must restrict the initial knowledge of agents to prove impossibility results for
secret establishment. Some restrictions are necessary to prevent initial knowledge distribu-
tions that allow the creation of a shared secret, but require the previous existence of secret
channels, e.g., shared secret keys distributed by a third party. We enforce this restriction by
requiring that every derivation starts with the empty trace, which corresponds to the empty
initial knowledge for the involved agents. However, in our model, we do not distinguish
between the setup phase and the execution phase. Therefore, any prefix of a derivation trace
can be interpreted as a setup phase where agents establish private and public knowledge in
the presence of the attacker. This covers precisely the initial knowledge distributions that do
not require secret channels and include all messages involved in establishing the knowledge.

4.2 Traces and Deducibility
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Empty
[ ]∈TRE

Send
tr ∈TRE LearnR(A,m)∈ tr

tr ·Send(A,m)∈TRE

Recv
tr ∈TRE Send(B,m)∈ tr
tr ·LearnRecv(A,m)∈TRE

Fresh
tr ∈TRE n∈N \ (names(tr)∪{nmin})

tr ·LearnFresh(A,n)∈TRE

Public
tr ∈TRE p∈N \ (restricted(tr)∪{nmin})

tr ·LearnPublic(A, p)∈TRE

App

tr ∈TRE f ∈Σk

LearnR1
(A,m1)∈ tr 	 LearnRk

(A,mk)∈ tr

tr ·LearnApp(f(m1,	 ,mk))(A, f(m1,	 ,mk)↓E
≻)∈TRE

Figure 4.2. The set TRE is inductively defined by these rules.

We are interested in impossibility results. An impossibility result for a class of adver-
saries implies impossibility for any larger class. As a consequence, we reason about weak
adversaries, namely passive adversaries who are restricted to eavesdropping communication
on the public channel. This models an adversary who is not involved in the derivation
process. For a given trace tr , we therefore define the corresponding frame φtr as follows.
Let sent(tr) denote the list of messages [m1,	 , mk] that have been sent in tr , then φtr is
defined as φtr = ν restricted(tr).σ[sent(tr)].

Note that we combine the deduction rules for honest agents with the rules for exchanging
messages in the definition of TRE. However, the deduction rules formalize deduction capa-
bilities that are equivalent to the relation ⊢E. The only difference is that the messages in
derivation traces are always in normal form and we therefore do not need an Equal rule.

We now define what it means to share a secret.

Definition 4.3. A term s is a shared secret between A and B in a trace tr if A � B,
LearnR1

(A, s)∈ tr, LearnR2
(B, s)∈ tr, and φtr ⊢Es.

To simplify subsequent proofs, we first show that we can restrict ourselves to a pair of
agents.

Lemma 4.4. If there is a trace that establishes a secret between the distinct agents A and
B involving an arbitrary number of agents, then there is also a trace where only A and B
participate.

Impossibility Results for Key Establishment
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Proof. We translate the trace with an arbitrary number of agents to a trace with only
A and B. The translation maps all events executed by an agent C � {A, B} to the
corresponding event executed by A. It is easy to check that this translation yields a valid
trace. �

In the following, we therefore fix A = {A, B}, where A and B are distinct agents. To
define the notion of minimal traces, we require the following definition.

Definition 4.5. We say that an agent A constructs a message m in tr, if A first learns
m in a LearnR-event for R � Recv. We say A freely constructs m in tr if no reduction
of the message occurs in the event where A first learns m, i.e., R= Fresh, R= Public, or
R=App(m).

We now introduce the notion of minimal trace.

Definition 4.6. A trace tr ∈TRE is a minimal trace if each of the following conditions hold.

1. There is at most one shared secret s. This shared secret is learned by B in the last event,
which is a LearnApp-event.

2. There are no LearnPublic-events in the trace, i.e., all names are restricted.

3. There are no duplicate events and every message except for s is constructed only once.

4. The secret s is freely constructed at most once.

We denote the subset of minimal traces by TRE
min.

We can now prove that the conditions on minimal traces do not prohibit secret estab-
lishment if it is otherwise possible.

Lemma 4.7. If there is a trace tr ∈TRE that establishes a shared secret, then there is also

a minimal trace tr̂ ∈TRE
min that establishes a shared secret.

Proof. We first prove by induction that a trace tr ∈TRE without a shared secret can be
transformed into a minimal trace without changing names(tr), the deducible messages for
the adversary, and the messages known byA andB. The empty trace [ ] is already minimal.

Assume that the trace tr can be transformed into the minimal trace tr̂ . If tr is extended
with a Send -event by the Send rule, then we extend tr̂ with the same Send -event, provided
it is not a duplicate event. If tr is extended with an event LearnRecv(A,m) by the Recv

rule, then we extend tr̂ with the same event, provided m is not already known to A. If tr is

extended by the Fresh rule, then we extend tr̂ with the same event, which is allowed since
names(tr)=names(tr̂ ). If tr is extended with an event LearnPublic(A, p) by Public, then
p is deducible by the adversary and we distinguish three cases. If p is already known to A,

we do not extend tr̂ . If p is not known to A, but to some other agent B, we extend tr̂ with
the events Send(B, p) (if required) and LearnRecv(A, p). If p is not known to any agent,

then p� names(tr̂ ) and we extend tr̂ with LearnFresh(A, p) and Send(A, p). Finally, if tr is
extended with an event ev =LearnApp(f(m1,	 ,mk))(A,m) by App, we again distinguish three

cases. If m is already known to A, then we do not extend tr̂ . If m is only known to another

agent B, we extend tr̂ with the required Send and LearnRecv events. This is possible because
we only consider traces tr ·ev which contain no shared secrets. Sincem is shared knowledge,

it cannot be secret. Finally, if m is not known to any agent in tr̂ , then we extend tr̂ with ev .

4.2 Traces and Deducibility
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To transform a trace tr ∈TRE with shared secrets into a minimal trace that establishes
exactly one shared secret, we first take the shortest prefix trp · ev of tr that establishes a
shared secret. Since an agent cannot establish a secret with a Send or LearnR event for
R ∈ {Recv , Public , Fresh}, the last event ev must be a LearnApp-event, where an agent
C learns some secret s. Without loss of generality, we assume C = B. We can transform
trp into a minimal trace trp using the previously described transformation since it does

not contain a shared secret. Then trp · ev ∈ TRE
min since ev can be added to trp without

violating properties 1.–4. Properties 1.–3. are obvious. To see that 4. holds, assume that s
is freely constructed by bothA and B. Then s= f(m1,	 ,mk) for some f ∈Σk and messages
mi and there are LearnApp(s)(C, s) events for C = A and C = B. Then all mi are shared
knowledge and since s is the only secret, all mi are deducible by the adversary. Hence,
s= f(m1,	 , mk) is also deducible by applying f . �

4.2.4 Relating Protocols and Derivation Traces

Above we have reduced the question whether it is possible to establish a shared secret
using an equational theory E to the question of whether there is a derivation trace tr ∈TRE

that establishes a shared secret. This is closely related to the question of whether there is
a protocol that establishes a shared secret in a given symbolic protocol model.

The existence of a protocol implies that there is a successful protocol execution where
the involved agents establish a shared secret. For all reasonable protocol models that use
the same notion of deducibility as we do, a successful protocol execution directly yields a
corresponding derivation trace that establishes a shared secret. An impossibility result for
some equational theory E in our model thus directly implies the corresponding impossibility
result for protocols in such a symbolic model. A concrete example of a protocol model where
this relationship holds is the applied pi calculus with equational theory E where agents are
only allowed to communicate over public channels.

4.3 Symmetric Encryption and Subterm-Convergent
Theories

In this section, we prove the folk theorem that it is impossible to establish a shared secret
using only symmetric encryption and public channels. We then present a necessary and
sufficient condition for impossibility for the more general case of subterm-convergent the-
ories. This condition can be used to automatically decide wether it is possible to create a
shared secret for a given subterm-convergent theory. We have implemented a decision pro-
cedure that checks this condition and illustrate its application to the theory of symmetric
encryption. Afterwards, we show how our procedure finds a derivation trace that establishes
a shared secret for the theory of public-key encryption.

4.3.1 Symmetric Encryption

We use the equational theory Sym =(ΣSym,ESym) to model symmetric encryption, pairing,
a hash function, decryption, and projections on pairs.

ΣSym = {enc(_,_), 〈_,_〉, h(_), dec(_,_), π1(_), π2(_)}

ESym = {dec(enc(m,k), k)≃m, π1(〈m1,m2〉)≃m1, π2(〈m1, m2〉)≃m2}

Impossibility Results for Key Establishment
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Since the rewriting system RSym obtained from ESym by orienting the equations from left
to right is subterm-convergent, we directly use →RSym

to normalize terms in the App rule
and do not require ordered completion. In the following, we say an equational theory is
subterm-convergent if the equations can be oriented such that the corresponding rewrite
system is subterm-convergent and we denote the normal form with respect to this rewrite
system with t↓E. The following lemma holds for all subterm-convergent theories and will
be used in Section 4.3.2 as well.

Lemma 4.8. Let E = (Σ, E) be a subterm-convergent theory and tr ∈ TRE. For every
event LearnR(A, m) ∈ tr and m′ ∈ St(m) such that names(m′) � ∅, m′ has been freely
constructed by some agent C. More precisely, if m′ is a name, then LearnFresh(C,m

′)∈ tr
or LearnPublic(C, m

′) ∈ tr. Otherwise, there exist m1, 	 , mk and an f ∈ Σk, such that
m′= f(m1,	 , mk) and LearnApp(m ′)(C,m

′)∈tr.

Proof. The proof is straightforward using rule induction on TRE. The rules Empty
and Send are trivial since they do not add any Learn-events. The Fresh and Public
rules are also trivial since they only add (atomic) names. The Recv rule adds an
event LearnRecv(A,m), but there must be a corresponding LearnR(B, m) by the
sender B. We can therefore apply the induction hypothesis. The App-rule adds an event
LearnApp(f(m1,	 ,mk))(A, m), where m = f(m1, 	 , mk)↓E. We must show that the lemma’s
statement holds for all subterms of m that contain names. Since the equational theory
is subterm-convergent, we have either m = g for some g ∈ TΣ(∅), m = f(m1, 	 , mk),
or m is a proper subterm of f(m1, 	 , mk). In the first case, the statement follows triv-
ially, since no term in St(g) contains names. In the second case, a subterm of m is either m
itself and the statement trivially holds or a subterm of some mi and the statement holds
by the induction hypothesis since there is an event LearnR(A,mi) in the trace. The same
reasoning applies to the final case since m and all its subterms are subterms of some mi. �

Theorem 4.9. There is no derivation trace for Sym that establishes a shared secret.
Namely, if tr ∈TRSym , LearnR1

(A, s)∈ tr, and LearnR2
(B, s)∈ tr, then φtr ⊢Sym s.

Proof. We prove the theorem by contradiction. Assume that there is a trace in TRSym

that establishes a shared secret. Then, there is also a trace tr ∈TRSym
min that establishes a

shared secret s and the last event of tr is of the form ev = LearnApp(f(m1,	 ,ml))(B, s) for
s = f(m1, 	 , ml)↓Sym. Thus LearnR(A, s) ∈ tr and we show that φtr ⊢Sym s to obtain a
contradiction. We distinguish two cases.

1. If s= f(m1, 	 , ml) then Lemma 4.8 can be applied to LearnR(A, s) and the prefix of
the trace up to this event. Thus there are two free construction events for s which
contradicts minimality of tr .

2. If f(m1,	 ,ml) is not in normal form, then we must consider two more cases.

a) Assume that f(m1,	 ,ml)=πi(〈t1, t2〉) for some messages ti. Then s= ti and 〈t1, t2〉
has been freely constructed by A by Lemma 4.8. Since the pair is known to both
A and B and s is the only secret in tr , the pair is deducible by the adversary and
therefore s is also deducible.

b) Assume that f(m1,	 ,ml)= enc(m,k) for some messages m and k. Then s=m and
enc(m, k) has been freely constructed by A by Lemma 4.8. Then k and enc(m, k)
are known to both A and B and are therefore deducible by the adversary. Hence,
s is also deducible. �

4.3 Symmetric Encryption and Subterm-Convergent Theories
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Note that the only parts in the proof that are specific to Sym and do not hold for all
subterm-convergent theories are the cases 2.a) and 2.b) for the different rules in RSym. Here,
a rule l→ r is applied to the result of the function application in the App-rule and we prove
impossibility by showing that there is no way for A and B to build an instance of l such
that the corresponding instance of r is not deducible by the adversary. We will show in
the next section that this proof method works with arbitrary subterm-convergent theories.

4.3.2 Subterm-Convergent Theories

We now generalize the previous proof method to a necessary and sufficient condition for
the possibility of secret establishment for a subterm-convergent theory E = (Σ, E). Since
the condition can be automatically checked, we thereby obtain a decision procedure. The
main idea is that if there is a derivation trace where a secret is established, then there
is also a minimal trace with exactly one reduction step that establishes a secret, i.e., all
constructions except for one are free. We can decide if such a minimal trace exists by
considering all equations in E individually and enumerating all possible ways to jointly
construct a reducible term. Finally, we check if this construction leads to a shared secret.

In the rest of this section, we assume that E is a subterm-convergent equational theory.
Note that we can assume without loss of generality that the right-hand sides of the rules in
the corresponding rewrite system are normalized. To prove our main result of this section,
we require the following lemma about deducibility in subterm-convergent theories.

Lemma 4.10. For all substitutions σ with range(σ)⊆TΣ(V), s∈TΣ(V), and τ an arbitrary
substitution, if ν ∅.σ ⊢E s, then ν ñ. (σ ◦ τ)⊢E sτ for ñ= names(range(τ)).

Proof. Let σ, s, τ , and ñ as defined above. If ν ∅.σ ⊢E s then there is a recipe ζ such that
names(ζ)∩ ñ= ∅ and ζσ=E s. Thus ζ(σ ◦ τ) = (ζσ)τ =E sτ and hence ν ñ. (σ ◦ τ)⊢E sτ . �

We also require the notion of reduction events.

Definition 4.11. A reduction event is an event of the form LearnApp(f(m1,	 ,mk))(C, m)

where f(m1,	 ,mk) is not ↓E-normal, i.e., f(m1,	 , mk)� f(m1,	 ,mk)↓E =m.

We now show that we can restrict ourselves to a subset of the minimal traces in the case
of subterm-convergent theories.

Lemma 4.12. If there is a trace tr ∈TRE that establishes a shared secret between A and B,
then there is also a minimal trace tr̂ ∈TRE

min that establishes a shared secret s between A

and B such that s is freely constructed by A and the last event is the only reduction event
in tr̂.

Proof. Assume that there is a trace that establishes a shared secret. Then there is a
minimal trace tr ∈ TRE

min that establishes the shared secret s, where the last event is of
the form LearnApp(f(m1,	 ,mk))(B, s). This event must be a reduction event. Otherwise,

s= f(m1,	 ,mk) and Lemma 4.8 can be applied to LearnR(A, s). Then there must be two
events LearnApp(s)(C, s), for C = A and C = B, which contradicts the minimality of tr .
Note also that A must have freely constructed s by Lemma 4.8, since it is new to B.
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We now show that all other reduction events in tr can be replaced by non-reduction-
events. A reduction event has the form LearnApp(f(m1,	 ,mk))(C, m) such that m ∈ TΣ(∅)
and ↓E-normal or m is a subterm of some mi. In the first case, the reduction-events can
be replaced by LearnApp-events to construct m where subterms that are already known
by the other agent are transmitted. Since all these subterms do not contain any names,
they are deducible by the adversary. In the second case, the other agent must have freely
constructed m by Lemma 4.8. Hence, m is constructed twice which contradicts minimality
of tr since m is not a shared secret. �

Lemma 4.12 implies that we can consider the equations in E separately, since we only
have to consider traces with a single reduction step. To enumerate all different ways of
building a reducible term that establishes a shared secret, we introduce labelings of terms.
A labeling of a term t is a function from St(t) to {A, B} and captures which agent has
constructed which subterm. For such a labeling lt of a term t, the minsent function returns
the minimal set of exchanged terms that corresponds to lt. It captures that if A uses a
term created by B or vice versa, it must have been sent.

Definition 4.13. We define the minimal set of sent terms of as term t with labeling lt as
minsent(t, lt)=
{

(∪1≤i≤kminsent(ti, lt))∪{ti|1≤ i≤ k ∧ lt(t)� lt(ti)} if t= f(t1,	 , tk)
∅ otherwise

.

Using the notion of labeling and the function minsent , we obtain the following condition
to decide impossibility.

Theorem 4.14. There is a derivation trace tr ∈TRE that establishes a shared secret if and
only if there is an equation t≃ s in E where s is a proper subterm of t and a labeling lt of
t such that

1. lt(t) =B,

2. lt(c)=A for all c∈ St(t)∩Σ0,

3. lt(s)=A, and

4. ν ∅.σ[minsent(t,lt)]⊢E s.

Proof. ⇒: Assume there is a trace that establishes a shared secret. Then there is also a
minimal trace tr ∈TRE

min where B learns the secret s in the last event, which is the only
reduction event by Lemma 4.12. Consider the term t= f(m1,	 , mk) where s is extracted
using the rule t′ → s′ in the last step. Then s′ is a proper subterm of t′ and there is a
substitution τ such that t ′τ = t and s′τ = s.

We can extract a labeling lt from the trace by labeling t with B, all constants in t

with A and all proper subterms of t that are not constants with the agent who freely
constructed the term. Note that every subterm of t that is not a constant must have been
freely constructed by exactly one of the agents because of Lemma 4.8 and minimality
of tr . The labeling lt can be translated to a labeling lt ′ of t

′ by defining lt′(u)7 lt(uτ) for
u ∈ St(t ′). Then lt ′ obviously has properties 1.–2. It has property 3. because s′τ = s and
A freely constructs s in tr . We know that minsent(t′, lt′)τ ⊆minsent(t, lt)⊆ sent(tr) and

φtr ⊢Es. Thus we have ν restricted(tr). (σ[minsent(t ′,lt′)] · τ)⊢E s
′τ . By Lemma 4.12, we obtain

ν ∅.σ[minsent(t′,lt′)]⊢E s
′.
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⇐: Given a term t ∈ TΣ(V), we show that for all substitutions τ that instantiate the
variables in t with distinct names, and for all labelings lt of t, we can obtain a trace
tr ∈TRE such that: (1) all names are restricted, (2) sent(tr)=(minsent(t, lt)τ)↓, and (3) for
all u ∈ St(t), the agent lt(u) learns uτ in tr . We prove this by induction over the term t.
First, if t=x for a variable x and τ and lt as stated above, then tr =[LearnFresh(lt(x), xτ)]

is in TRE and satisfies (1)–(3). Next, if t = f(t1, 	 , tk) for f ∈ Σk and terms ti, τ and lt
as stated above, then there are traces tr i for ti, τ , and lt with the expected properties
by the induction hypothesis. Let tr̂ denote the concatenation of the tr i, where duplicate

events are removed, keeping only the first occurrence of an event. Then tr̂ ∈TRE and we
can extend tr̂ with events Send(lt(ti), (tiτ)↓E) and LearnRecv(lt(t), (tiτ )↓E) for all i where
lt(t)� lt(ti). Then, we add the event LearnApp(m ′)(lt(t),m) with m′= f((t1τ )↓E,	 , (tkτ )↓E)
and m= f(t1τ ,	 , tkτ )↓E to obtain the trace tr ∈TRE with the desired properties. If there
is an equation t ≃ s where s is a proper subterm of t in E and 1.–4. hold for the given
labeling, then this trace establishes the shared secret sτ between A and B. �

Based on this theorem, we define a decision procedure Find-Derivation-Traces that
checks the theorem’s conditions for a given theory. Our procedure takes a subterm-con-
vergent theory E =(ΣE, EE) as input and either returns Impossible if there is no labeling
that allows secret establishment for a rule in EE or a list of derivation traces if there is a
labeling of a rule in EE that satisfies the conditions of Theorem 4.14.

Find-Derivation-Traces(E)
1 traces ← [ ]
2 for (t≃ s) in EE

3 for lt in Labelings(t)
4 if ¬ (Minsent(t, lt)⊢E s) ∧ s∈ St(t) then
5 traces ← traces·LabelToTrace(t, lt, s)
6 if (traces = [ ]) then return Impossible
7 else return traces

Figure 4.3. The pseudocode for the decision procedure Find-Derivation-Traces.

The procedure uses four subroutines. The subroutine Labelings returns all labelings
for a rule that satisfy conditions (1)–(3). Minsent returns the minimal set of sent terms
for a labeling. The subroutine for ⊢E implements the procedure described in [2] to check
deducibility. Finally, LabelToTrace converts a labeling to a trace. Note that by The-
orem 4.14 we can consider all rules individually. However, we must check deducibility for
the whole equational theory E .

We have implemented our decision procedure in Haskell. Although the number of label-
ings grows exponentially in the size of the equations, the procedure returns the result
immediately for the examples we considered. Typically, the rules are small and most
labels are already predetermined by the conditions of Theorem 4.14. We can further opti-
mize Labelings by taking into account that properties (3) and (4) imply lt(u) = A

for all u ∈ St(t) that have s as immediate subterm. This is because s would otherwise
be in minsent(t, lt) and therefore be trivially deducible. We have applied our implemen-
tation of the decision procedure to the theory Sym from the previous section. We have
thereby obtained an automated confirmation of the pen-and-paper proof of Theorem 4.9.
We use Sym and a theory that models public-key encryption below to illustrate our deci-
sion procedure.
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Example 4.15. The procedure considers the three following reduction rules individually.

1. π1(〈x, y〉)→ x: The only possible labelings are π1(〈xA, yC 〉A)B for C = A and C = B.
For both labelings, 〈x, y〉 is in the minimal set of sent terms and x is therefore deducible.

2. π2(〈x, y〉)→ y: Analogous to previous rule.

3. dec(enc(m, k), k) → m: The only possible labelings are dec(enc(mA, kC)A, kC)B for
C = A and C = B. For both choices of C, k is used by both A and B and thus must
have been sent. Similarly, enc(m, k) must have been sent in both case. Therefore, m
is deducible by the intruder.

Thus Minsent(t, lt)⊢Sym s for all labelings and the procedure returns Impossible.

Example 4.16. Consider the theory ASym =(ΣSym, ESym) with

ΣASym = {aenc(_,_), pk(_), adec(_,_)} and

EASym = {adec(aenc(m, pk(k)))≃m}.

For this theory, our procedure returns the labeling adec(aenc(mB,pk(kA)A)B, kA)A and
the following derivation trace that establishes the secret s.

[ LearnFresh(A, k),LearnApp(pk(k))(A, pk(k)),Send(A, pk(k)),LearnRecv(B, pk(k)),

LearnFresh(B, s),LearnApp(aenc(s,pk(k)))(B, aenc(s, pk(k))),Send(B, aenc(s, pk(k))),

LearnRecv(A, aenc(s, pk(k))),LearnApp(adec(aenc(s,pk(k)),k))(A, s) ]

Note that Theorem 4.14 uses the notion of secret establishment introduced in Definition 4.3.
Therefore, the existence of a trace that establishes a shared secret according to Theorem
4.14 does not guarantee that secret establishment is possible in the presence of active
adversaries.

We also use our implementation to obtain new impossibility results. For example, our
implementation returns Impossible for the theory describing pairing, signatures, and sym-
metric cryptography and thereby proves the following theorem.

Theorem 4.17. Secret establishment is impossible for the combined equational theory
(ΣSym∪ΣSig, ESym∪ESig), where the theory for signatures is defined as

ΣSig = {sig(_,_), extr(_), verify(_,_), pk(_)}

ESig = {extr(sig(m,k))≃m, verify(sig(m,k), pk(k)))≃m}.

We will later prove a combination result that allows us to consider the two theories
separately.

4.4 Monoidal Theories

In this section we will investigate impossibility of secret establishment for monoidal the-
ories. We will exploit that each monoidal theory E has an associated semiring SE and
deducibility can be reduced to equation-solving in this algebraic structure. We mostly follow
the presentation of [56] and [135] for basic facts about monoidal theories and deducibility
in such theories.
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Definition 4.18. An equational theory is monoidal if it has an equational presentation
E =(Σ, E) such that the following holds.

1. Σ consists of the binary function symbol +, the constant 0, and an arbitrary number of
unary function symbols.

2. The function symbol + is associative and commutative and the constant 0 is a unit
for + . Formally, this means the equations (x+ y)+ z≃x + (y + z) (A), x + y≃ y + z (C),
and x + 0= x (U) are in E.

3. All unary function symbols h are homomorphisms with respect to + and 0, i.e., the
equations h(x + y)≃h(x) +h(y) and h(0)≃ 0 are in E.

If for all terms t, there is a term s such that t + s=E 0, then the theory is a group theory .

Example 4.19. The following theories are monoidal:

• ACU : The signature Σ is {0, + } and E consists of A, C, and U . This theory can be
used to model multisets with the empty multiset and multiset union.

• ACUI : The signature Σ is {0, + } and E consists of A, C , U , and x + x≃ x (I). This
theory can be be used to model sets with the empty set and set union, which is idem-
potent.

• ACUN : The signature Σ is {0, + } and E consists of A, C, U , and x + x≃ 0 (N). This
theory can be be used to model the XOR operation, which is nilpotent.

• AG : The signature Σ is {0, + ,-} and E consists of A, C , U , and x + (-x)≃0. This theory
can be be used to model abelian groups. The unary homomorphism -models the inverse
operation and the equations characterizing that - is homomorphic are consequences of
the other equations.

• ACUh, ACUIh , ACUNh , AGh : These theories can be obtained by extending the corre-
sponding above theories with a homomorphism h and the required equations h(0) = 0

and h(x + y)≃h(x) + h(y).

Except for ACU , ACUh, ACUI , and ACUIh , all of these are group theories.

Definition 4.20. A semiring S is a tuple (S,+, 0, ·, 1) such that S is a set, +:S ×S→S,
0∈S, · :S ×S→S, 1∈S, and the following holds:

1. (S,+, 0) is a commutative monoid, i.e., + is associative and commutative and 0 is a
unit for +.

2. (S, ·, 1) is a monoid, i.e., · is associative and 1 is a unit for ·.

3. For all a, b, c∈S, (a+ b) · c= a · c+ b · c and a · (b+ c) = a · b+ a · c.

For each monoidal theory E , there is an associated semiring SE.

Definition 4.21. Given a monoidal theory E = (Σ, E), the semiring S
E
is defined as

(SE,+, 0, ·, 1) where SE=TΣ({1})/=E for a variable 1, and +, 0, ·, and 1 are defined as
follows.

1. [s]E +[t]E =[s + t]E , i.e., given a, b∈SE , first choose s, t∈TΣ({1}) such that a=[s]E and
b= [t]E. Then take the equivalence class of the term s + t.

2. 0= [0]E , i.e., the equivalence class of the constant 0.

3. 1= [1]E , i.e., the equivalence class of the variable 1.

Impossibility Results for Key Establishment

116



4. [s]E · [t]E =[s{t/1}]E , i.e., the equivalence class of the term that results from replacing
every occurrence of 1 in s with t.

If E is a group theory, then SE is a ring because (SE, +, 0) is a abelian group. If E
has commuting homomorphisms, then (SE, ·, 1) is a commutative monoid. We use ψb to
denote the function that maps a term t∈TΣ({b}) to [t[b�1]]E ∈SE, i.e., ψb first replaces all
occurrences of b in t by 1 and then takes the equivalence class with respect to E .

Example 4.22. The semirings for ACU , ACUI , ACUN , and AG are isomorphic to the
natural numbers N, the semiring ({∅,A},∪, ∅,∩,A) where A is a nonempty set, the ring
Z/2Z (which is a finite field), and the integers Z. Note that the semiring ({∅,A},∪,∅,∩,A)
is isomorphic to the boolean semiringB=({T ,F },∨,F ,∧,T ). For ACUh, ACUIh , ACUNh ,
and AGh , the corresponding semirings are the polynomials N[h], the polynomials B[h], the
polynomials (Z/2Z)[h], and the polynomials Z[h].

For a fixed base B = [b1,	 , bk] of names or variables bi, we define the function ψB that
maps a term t∈TΣ({b1,	 , bn}) to a vector v∈ (S

E
)n as follows. Write the term t as a sum

t1 +	 + tk such that ti∈TΣ({bi}). This is always possible and the ti are unique modulo E .
Then, ψB(t) = (ψb1(t1), 	 , ψbk(tk)). It is not hard to verify that ψB is an isomorphism
between TΣ(B)/=E and (S

E
)n. We use ψB

−1(a) to denote t with ψB(t) = a, which is unique
modulo E . We now define the required operations to obtain a left SE-module, an algebraic
structure which is similar to a vector-space, but over a semiring instead of a field.

Theorem 4.23. The structure
(

(S
E
)n,+, 0R , ·

)

is a left SE-module for +: (SE)
n× (SE)

n→
(SE)

n defined as component-wise addition, · :SE × (SE)
n→ (SE)

n defined as s · (t1,	 , tk) =

(s · t1,	 , s · tk), and 0R = (0,	 , 0). For a, b ∈SE and cR , eR ∈ (SE)
n, these operations satisfy

the following equations required for left SE-modules:

1. (a · b) · cR = a · (b · cR ) 2. (a+ b) · cR = a · cR + b · cR a

3. a · (cR + eR )= a · cR + a · eR 4. a · 0R =0R

5. 1 · cR = cR 6. 0 · cR = 0R

We will now give an algebraic characterization of deducibility for monoidal theories.

Theorem 4.24. Let E = (Σ, E) be a monoidal theory, ñ = {n1, 	 , nk} ⊆ N, m ∈ TΣ(ñ),

and ν ñ.σ a frame such that names(range(σ))⊆ ñ. Let B = [n1, 	 , nk], dR = ψB(m), and
ciR = ψB(xiσ) for dom(σ)= {x1,	 , xl}. Then ν ñ.σ ⊢Em if and only if there are ai∈SE for

1≤ i≤ l such that a1 · c1R +	 + al · clR = dR.

Proof. ⇒: Let ν ñ.σ ⊢E m, then there is a recipe ζ ∈ TΣ(dom(σ)) such that ζσ =E m by
Lemma 4.1 and Lemma 4.2. We can write ζ= ζ1+	 + ζl with ζi∈TΣ({xi}). For ai=ψxi

(ζ),
we have a1 · c1R +	 + al · clR = dR .

a1 · c1R +	 + al · clR =ψx1
(ζ1) · ψB(xiσ)+	 + ψx1

(ζ1) · ψB(xiσ)

=ψB(ζ1σ)+	 + ψB(ζlσ)

=ψB(ζ1σ +	 + ζlσ)

=ψB(ζσ)

=ψB(m)

= dR
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(⇐): Let a1 · c1R +	 + al · clR = d, then for ζi= ψxi

−1(ai) and ζ = ζ1 +	 + ζl ∈TΣ(dom(σ)), we
have ζσ=Em.

ζσ =E ζ1(σ |{x1}) +	 + ζl(σ |{xl})

=E ψx1

−1(a1)(σ |{x1}) +	 + ψxl

−1(al)(σ |{x1l})

=E ψB
−1(a1 · c1R ) +	 + ψB

−1(al · clR )

=E ψB
−1(a1 · c1R +	 + al · clR )

=E ψB
−1
(

dR
)

=Em

�

It is not hard to see that the side conditions m ∈ TΣ(ñ) and names(range(σ)) ⊆ ñ are
always satisfied for ν ñ.σ ⊢E m if ν ñ.σ = φtr for some minimal trace tr and m has been
learned in tr .

We will first prove impossibility for group theories, then consider the remaining theories
from Example 4.19 separately. We will provide an example protocol for ACU and show
impossibility for ACUI and ACUIh .

4.4.1 Impossibility for Group Theories

We now consider group theories. Let E =(Σ, E) be a monoidal theory such that for every
term t, there is a term s with t + s=E 0. For example, s= t is such a term for the theory
ACUN and s=−t is such a term for the theory AG . For such theories E , the associated
semiring SE is a ring and (SE, +, 0) is an abelian group. For each a ∈ SE, we denote the
unique element b with a+b=0 with −a. We also use −vR to denote the inverse of a vector vR .

Theorem 4.25. There is no derivation trace using the equational theory E that establishes
a shared secret. If tr ∈TRE , Learn(A, m)∈ tr, and Learn(B, m)∈ tr, then φtr ⊢Em.

Proof. Let m1,	 ,mk be the sequence of transmitted messages, NA={na1,	 ,na |NA|} and
NB = {nb1, 	 , nb |NB|} the set of names created by A and B, and m a shared secret. We
assume that this sequence is of minimal length, i.e., it is not possible to establish a shared
secret with fewer exchanged messages. We also assume that A sends the last message.

We fix the base B = [na1,	 , na |NA|, nb1,	 , nb |NB|] and let eR = ψB(m), and ciR = ψB(mi).

Since m is known by A and B, there are ai, bi ∈ SE for 1≤ i ≤ k and uR , vR ∈ (SE)
|B | such

that (uR )j is 0 for all j > |NA|, (vR )j is 0 for all j ≤ |NA| and

a1 · c1R +	 + ak · ckR +uR = eR (1)

b1 · c1R +	 + bk · ckR + vR = eR (2) .

Since eR is a (shared) secret, eR − bk · ckR must also be a shared secret: It is deducible by A

since we can replace ak by ak− bk in (1), it is deducible by B since we can replace bk by 0
in (2), and eR − bk · ckR is secret since eR is secret. If the adversary can deduce eR − bk · ckR ,
then he can also deduce eR by adding bk · ckR which is deducible. But this contradicts our
assumption that it is impossible to establish a shared secret with fewer than k exchanged
messages. A can learn eR − bk · ckR without ck since this message is sent by A himself. B does
not use ck to learn eR − bk · ckR since eR − bk · ckR =b1 · cR1 +	 + bk−1 · cRk−1 + vR . �
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4.4.2 Protocol for ACU

In this section, we present a protocol proposed by Rabi and Sherman [148] which uses an
associative hash function. We will show that the protocol is also secure in the symbolic
model with the equational theory ACU , i.e., with an associative and commutative function.
As mentioned before, the semiring SACU is isomorphic to N. For a base B=[n1,	 , nk], the
S

ACU
-module ((S

ACU
)k, +, 0, ·) is therefore isomorphic to (B ♯, ∪♯, ∅♯, ·), where B ♯ denotes

the set of multisets over B and · is defined as the n-fold multiset union.

Example 4.26. For the base B = [n1, n2, n3], the term n1 + n2 + n1 corresponds to the
vector (2, 1,0)∈N3 and the operations in the associated N-module are vector addition and
scalar multiplication. Alternatively, we can interpret each vector (a1, a2, a3) as the multiset
where ni occurs ai times, e.g., (2,1,0) corresponds to {n1,n1,n2}♯. Then, the vector addition
corresponds to multiset union and the scalar multiplication s ·m corresponds to the s-fold
multiset union m∪♯

	 ∪♯m.

In the following, we use multiset notation for ACU and the associated semiring and
module.

A B

choose fresh names na and nb

�

{na,nb}♯

�

{nb}♯

choose fresh name nc

�

{nb,nc}♯

compute secret {na ,nb , nc}♯ compute secret {na ,nb , nc}♯

Figure 4.4. Protocol from [148] for ACU .

It is not hard to see that

ν {na , nb ,nc}. {{na , nb}♯/x1, {nb}♯/x2, {nb ,nc}♯/x3}⊢ACU{na , nb ,nc}♯

using Theorem 4.24. If not, there are a1, a2, a3∈N such that

a1 · {na ,nb}♯ + a2 · {nb}♯ + a3 · {nb ,nc}♯ = {na , nb ,nc}♯ .

Since na and nc are included in the multiset on the right-hand-side, a1≥ 1 and a2≥1. But
then, nb occurs twice on the left-hand-side. Note that the protocol can also be used with
the theories A (an associative hash function as originally proposed), AC , and ACUh.

4.4.3 Impossibility for ACUI and ACUIh

The semiring SACUI is isomorphic to the boolean semiring ({F , T },∨, F ,∧, T ). For a base
B = [n1,	 , nk], the SACUI-module ((S

ACU
)k,+, 0, ·) is isomorphic to (P(B), ∪, ∅, ·) where

P(B) denotes the set of subsets of B and · is defined such that T ·S=S and F ·S = ∅.

Theorem 4.27. There is no derivation trace using the equational theory ACUI that estab-
lishes a shared secret. If tr ∈ TRACUI , Learn(A, m) ∈ tr, and Learn(B, m) ∈ tr, then
φtr ⊢ACUI m.
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Proof. Let m1, 	 , mk be the sequence of exchanged messages and NA and NB the set of
names created by A and B. Then all messages m known by A can be written as

m=mi1∪	 ∪mil∪nA

such that iv is a subsequence of 1,	 , k and nA⊆NA. Analogously, all messages m known
by B can be written as

m=mj1∪	 ∪mju∪nB

such that jv is a subsequence of 1, 	 , k and nB ⊆ NB. Hence, we have m ∩ NA =
mi1∪	 ∪mil∪mj1∪	 ∪mju, m∩NB=mi1∪	 ∪mil∪mj1∪	 ∪mju, and therefore

m= (m∩NA)∪ (m∩NB)=mi1∪	 ∪mil∪mj1∪	 ∪mju .

Therefore, m is deducible from the exchanged messages. �

Theorem 4.28. There is no derivation trace using the equational theory ACUIh that
establishes a shared secret. If tr ∈TRACUIh , Learn(A, m)∈ tr, and Learn(B, m)∈ tr, then
φtr ⊢ACUIhm.

Proof. The proof for ACUI can be generalized to ACUIh. For a base B = [n1, 	 , nk],
the S

ACUIh
-module is isomorphic to the set P({hk(n)|k ∈ N, n ∈ B}). In addition to the

operations from the ACUI theory, the homomorphism h can be applied to a set {m1,	 ,mk}
to deduce hk({m1, 	 , mk}) = {hk(m1), 	 , h

k(mk)}. Let m1, 	 , mk be the sequence of
exchanged messages and NA and NB the set of names created by A and B. All messages
m known by A can written as

m=he1(mi1)∪	 ∪h
el(mil)∪nA

such that iv is a subsequence of 1,	 k, ev∈N, and nA⊆{hk(n)|k∈N, n∈NA}. Analogously,
all messages m known by B can be written as

m= hf1(mj1)∪	 ∪h
fu(mju)∪nB

such that jv is a subsequence of 1,	 k, fv ∈N, and nB⊆ {hk(n)|k ∈N, n∈NB}. Then by
the same argument as in the previous proof, m is deducible from the exchanged messages
since m=he1(mi1)∪	 ∪h

el(mil)∪h
f1(mj1)∪	 ∪h

fu(mju). �

4.5 Combination Results for Impossibility

In Section 4.3.2, we have presented an automated method for deciding impossibility for
subterm-convergent theories. Unfortunately, not all theories in cryptography are subterm-
convergent. However, many relevant theories can be presented as the disjoint union of a
subterm-convergent theory, such as Sym or ASym, and another theory that is not subterm-
convergent, such as ACUN .

In this section, we consider an equational theory E =(Σ, E) that is the disjoint union of
two equational theories E1 =(Σ1, E1) and E2 = (Σ2, E2), i.e., E=E1⊎E2 and Σ = Σ1⊎Σ2,
where Ei only contains equations over Σi. We prove that secret establishment for such
a theory E is possible if and only if it is possible in either E1 or E2. This allows us,
for example, to combine our automatic method for a subterm-convergent subtheory with
algebraic methods for the other subtheories.
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4.5.1 Factors, Interface Subterms, Normalization

We now define the notions of sign , alien subterm, factor , and interface subterm for such
a theory. These definitions are adopted from earlier work [56] and [46] on combination
results for deducibility. Let t∈TΣ(V ∪N ), then sign(t)= i if t= f(t1,	 , tk) for f ∈Σi and
sign(t)= 0 if t∈V ∪N . A subterm u of t is alien if sign(u)� sign(t).

If we say a term is in normal-from, then we mean with respect to ↓E
≻.

Definition 4.29. The factors of a term are its maximal alien subterms. We denote the
set of factors of the term t with Fct(t). The interface subterms of a term are the subterms
where a sign change occurs, i.e.,

ISt(t) = {t}∪
⋃

s∈Fct(t)

ISt(s)

Note that the ordered completion OE of E corresponds to the disjoint union of the
ordered completions OE1

and OE2
. See [15] for details. We adopt the following three lemmas

from [56] without providing our own proofs. These lemmas characterize the interaction
between normalization, replacements, and deducibility.

Lemma 4.30. If all factors of a message m are in normal form, then either sign(m) =
sign(m↓E

≻) and Fct(m↓E
≻)⊆Fct(m)∪{nmin} or m↓E

≻∈Fct(m)∪{nmin}

The intuition behind this lemma is that if all factors of a term are normalized, then the
normalization of the term does not affect its factors, i.e., either the factors of the normalized
term are a subset of the original factors or the normalized term is a factor. Note that in
both cases we must account for the case where free variables in the equations introduce nmin.

Lemma 4.31. Let m = ζ[f1, 	 , fk] be a message with factors fi such that fi = fi↓E
≻.

Let ρ be a bijective replacement that replaces the factors in m with fresh names. Then
(m↓E

≻)ρ=(ζ[f1
ρ,	 , fk

ρ])↓E
≻.

This lemma states that normalization commutes with the replacement of normalized
factors by fresh names. The proof is based on Lemma 4.30 and the fact that we consider
consistent theories where names are in normal form. The next lemma states that deduction
in the theory E1 is not affected by replacing interface subterms whose sign is 2 by fresh
names. Of course, the lemma is also valid for swapped theory indices 1 and 2.

Lemma 4.32. Let ν ñ1.σ be a frame and m in TΣ(N ) such that m and all terms in range(σ)
are in normal-form. Let F2 = {u|u ∈ ISt(range(σ) ∪ {m}) ∧ sign(u) = 2}. Let n2̃ be a set
of names not occurring in ν ñ1.σ and m such that |F2|= |n2̃|. Let ρ:F2→n2̃ be a bijective
replacement. Then ν ñ1.σ ⊢E1

m if and only if ν (ñ1∪ ñ2 ).σρ⊢E1
mρ.

To illustrate theses definitions and results, consider the equational theory E=(Σ, E) for
Σ = ΣACUN ∪ΣSym and E =EACUN ∪ESym.

Example 4.33. The factors of m = enc(〈n1, n2〉 + n2, n3) are 〈n1, n2〉 + n2 and n3. The
set of interface subterms of ISt(m) is {m, 〈n1, n2〉+n2, n3, 〈n1, n2〉, n1, n2}. An example of
the first case in Lemma 4.30 is enc(dec(enc(n1 + n2, k), k), k

′)↓E
≻ = enc(n1 + n2, k) and an

example of the second case is dec(enc(n1 +n2, k), k)↓E
≻=n1 +n2.

4.5 Combination Results for Impossibility
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4.5.2 Combination Result

We first prove two lemmas that are required for our main result. The first lemma is similar
to Lemma 4.8 and states that all interface subterms of learned messages that are not equal
to nmin must have been learned by one of the agents.

Lemma 4.34. Let tr ∈ TRE , A ∈ A, and m, u ∈ MΣ such that Learn(A, m) ∈ tr and
u∈ ISt(m) \ {nmin}. Then there is a B ∈A that constructs u in tr.

Proof. We prove the lemma by induction over TRE. For every rule except App, the
statement of the lemma directly follows from the induction hypothesis. So let tr ∈ TRE

such that for all Learn(A,m)∈ tr and u∈ ISt(m) \nmin, there is a B ∈A that constructs
u in tr . Now consider the trace tr · LearnApp(f(m1,	 ,mk))(A, m) with f(m1,	 ,mk)↓E

≻=m.

Then we consider two cases separately. First, if sign(m)= sign(f), then

Fct(m)⊆Fct(f(m1,	 , mk))∪{nmin}

by Lemma 4.30. Hence ISt(m) ⊆ {m, nmin} ∪ ISt({m1, 	 , mk}). For u = m, there is a
construction event. For u ∈ ISt(mi), we can apply the induction hypothesis since there is
an event Learn(A,mi) in tr . Second, if sign(m)� sign(f), then

m∈Fct(f(m1,	 , mk))∪{nmin}⊆{m1,	 , mk, nmin}∪Fct({m1,	 , mk}).

Hence, ISt(m) ⊆ {m1, 	 , mk, nmin} ∪ ISt({m1, 	 , mk}) and we can therefore apply the
induction hypothesis. �

Lemma 4.35. Let tr ∈TRE , then nmin is not learned in tr.

Proof. If there is a trace tr where one of the agents learns nmin, then there must be a
term t ∈ TΣ(N \{nmin}) with t =E nmin. The term t can be obtained from the trace tr
by considering the LearnFresh-events and LearnApp-events that are used to construct t.
Since E is stable under replacement of names by terms, we obtain t =E n for some name
n � names(t)∪{nmin}. But this implies n =E nmin by transitivity which contradicts our
assumption that E is consistent. �

Using these lemmas, we now prove our combination result for impossibility.

Theorem 4.36. Let E=(E,Σ) be the disjoint union of the equational theories E1=(Σ1,E1)
and E2 =(Σ2, E2). If there is tr ∈TRE that establishes a secret, then there is either a trace
tr ∈TRE1

or a trace tr ∈TRE2
that establishes a secret.

Proof. If there is a trace in TRE that establishes a shared secret, then there is also
a minimal trace tr ∈ TRE

min that establishes a shared secret s. The last event in tr is
LearnApp(f(m1,	 ,mk))(B, s) for f ∈ Σ and mi ∈MΣ. We assume without loss of generality
that f ∈Σ1. We show that there is a trace tr ρ∈TRE1

min that establishes a translated secret sρ.

We first prove for a given minimal trace tr ∈ TRE
min , we can find an injective replace-

ment ρ from {a|a ∈ ISt(tr) ∧ sign(a) = 2} to N \ (names(tr) ∪ {nmin}) and a translated
trace tr ρ ∈ TRE1

min such that tr ρ can be obtained from tr by replacing every event

LearnApp(f(m1,	 ,mk))(A, m) where sign(m) = 2 with LearnFresh(A, m
ρ) and every other

event Ev(A,m) with Ev(A,mρ).

Impossibility Results for Key Establishment
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We prove this by induction on TRE
min . The statement obviously holds for the empty trace.

Assume that for a given minimal trace tr , there are ρ and tr ρ with the desired properties.
We now consider the rules to extend tr .

Public. A minimal trace does not contain LearnPublic-events.

Recv. The event LearnRecv(A,m) is added to tr . tr ρ ·LearnRecv(A,m
ρ)∈TRE1

min since the
required Send -event must be in tr and the translated Send -event in tr ρ.

Send. The event Send(A,m) is added to tr . tr ρ ·Send(A,mρ)∈TRE1

min since the required
Learn-event must be in tr and the translated Learn-event in tr ρ.

Fresh. The event LearnFresh(A, n) is added to the trace tr . If n � range(ρ), then
tr ρ · LearnFresh(A,n) ∈ TRE1

min has the desired properties since dom(ρ) ∩ N = ∅.
If there is m with ρ(m) = n, then we have to modify ρ. Let n′ ∈ N \ (names(tr ρ) ∪
{nmin} ∪ range(ρ)) and ρ′ = ρ[m � n ′]. Then ρ′ and tr ρ′ have the desired prop-
erties and tr ρ′ ·LearnFresh(A,n)∈TRE1

min .

App. The event LearnApp(f(m1,	 ,mk))(A,m) is added to tr . We distinguish two case. First,
if sign(f)= 1, then tr ρ ·LearnApp(f(m

1

ρ
,	 ,mk

ρ))(A,m
ρ)∈TRE1

min since

mρ= (f(m1,	 ,mk)↓E
≻)ρ= f(m1,

ρ
	 ,mk

ρ)↓E
≻

by Lemma 4.31. Second, if sign(f) = 2, then sign(m) = 2. Otherwise, it holds
that m∈Fct(f(m1,	 , mk))∪{nmin}. Since m = nmin is impossible by Lemma 4.35,
m ∈ ISt(m1, 	 , mk) and there must be already a construction event for m in tr
by Lemma 4.34. Hence, there are two construction events for m in the extended trace.
This is only possible if m is the shared secret. But this contradicts our assumption
that the shared secret is learned by applying f with sign(f) = 1. We therefore choose
a fresh name n � (names(tr) ∪ range(ρ)) and define ρ′ = p[m � n]. Then ρ′ and

tr ρ′ ·LearnFresh(A,m
ρ ′)∈TRE1

min have the desired properties.

This implies that for for every tr ∈ TRE
min where the shared secret s is established using

f ∈ Σ1 in the last event, we can find a replacement ρ such that tr ρ ∈ TRE1

min and tr ρ
establishes the shared secret sρ. Since tr ρ has been obtained from tr by applying ρ to
all messages, sent(tr ρ) = sent(tr)ρ and the same holds the knowledge of A and B in

the two traces. Hence, both know sρ. Since, ν restricted(tr).σ[sent(tr)] ⊢E s which implies

ν restricted(tr).σ[sent(tr)]⊢E1
s and restricted(tr) ∪ range(ρ) = restricted(tr ρ), we can use

Lemma 4.32 to obtain ν restricted(tr ρ).σ[sent(trρ)]⊢E1
sρ. �

4.6 Summary

We have collected all impossibility results from this paper in Table 4.1. Moreover, we
have augmented the table with possibility results from the literature, thereby providing
an overview of existing results. Note that there are theories where, to the best of our
knowledge, the problem is still open. For example, there are no such results for the theory
of (nonabelian) groups, blind signatures, and homomorphic encryption.

4.6 Summary
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The results presented are for minimal disjoint theories, in the sense that they cannot
sensibly be further decomposed. For disjoint equational theories where secret establishment
is impossible, we can apply Theorem 4.36 to obtain an impossibility result for the union
of the two theories. For example, secret establishment using the equational theory Sym
that models symmetric encryption, pairing, and a hash function combined with the theory
ACUN for XOR is impossible. Here, our combination result allows us to use different proof
methods for the subtheories. Namely, our decision procedure for the subterm-convergent
theory Sym and the proof for group theories for ACUN . Note that neither of these methods
can be used for the union of the two theories. Another application of our combination result
is that we can further optimize the decision procedure from Section 4.3.2. Namely, we can
split a subterm-convergent theory into disjoint subtheories that can be checked separately.
For example, as presented in the table, the theory Sym can be split into the theories for
E1 for pairing, E2 for symmetric encryption, and E3 for the theory for the free function
symbol h. We can then call Find-Derivation-Traces for each of the subtheories and
need only check deducibility for ⊢Ei

in the given call.

Theory Possible? Protocols/Proof technique

Free function symbols No Subterm-convergent
(e.g. a hash function h)
Pairing No Subterm-convergent
Symmetric encryption No Subterm-convergent
Signatures No Subterm-convergent
Public-key encryption Yes Key transport in [154]
A, AC , ACU , ACUh Yes Key agreement in [148]
ACUN ,ACUNh , AG , AGh No Group theories
ACUI , ACUIh No Proof for these monoidal theories
DH-exponentiation Yes Key agreement [68] and

Key transport [143]

Table 4.1. Impossibility Results and Protocols.
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Chapter 5

Analysis of Physical Protocols
In this chapter, we describe our framework for the interactive analysis of physical proto-
cols. The underlying Isabelle/HOL formalization, which contains proofs for all lemmas
and theorems in this chapter, can be found at [158]. We first motivate and describe our
formal model excluding XOR and overshadowing. Then, we present three case studies.
Afterwards, we present our extension with XOR and overshadowing. Finally, we apply
the extended framework to the Brands-Chaum distance bounding protocol, modeling the
rapid bit-exchange phase by single challenge and response messages.

5.1 Formal Model

In this section, we present our formal model for analyzing physical protocols. First, we
list the modeled concepts and our modeling assumptions. Then, we present our model
and sketch its formalization in Isabelle/HOL. We start by formalizing agents and trans-
mitters. Then we formalize physical and communication distance, messages, and events
and traces. Next, we formalize the network, intruders, and the protocol. Finally, we prove
some protocol-independent properties of our formalization. Some technical details of our
formalization are described in Section 5.5 and the remaining details can be found in the
Isabelle/HOL theory files.

5.1.1 Modeled Concepts

Agents. We consider a set of communicating agents, consisting of honest and dishonest
agents. Honest agents follow the protocol rules, whereas dishonest agents (also called
intruders) can deviate arbitrarily from the protocol. Each agent has a fixed location and
a set of transmitters and receivers. Agents possess initial knowledge, such as their own
private keys and the public keys of other agents, which they can use to construct new
messages or to analyze received messages.

Network. We model an unreliable network connecting agents’ transmitters and receivers
as a communication matrix. The matrix describes the connectivity between transmitters
and receivers. An agent Alice can send messages directly to an agent Bob if and only if there
is a corresponding entry in the communication matrix. The matrix entries express the lower
bounds on the signal propagation time from a transmitter to a receiver. They therefore
capture not only whether direct communication is possible, but also the different commu-
nication technologies with different signal propagation speeds, e.g., radio and ultrasound
technologies. Modeling an unreliable network allows us to capture message deletion (jam-
ming) and transmission failures. Our model distinguishes between the topology associated
with the agents’ locations and the topology associated with the network. Whereas the phys-
ical distance corresponds to the Euclidean distance, the network topology describes signal
paths not necessarily corresponding to the line-of-sight paths between senders and receivers.
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For example, consider network cable rolls or signal reflections. However, to accurately model
reality, the communication model must be consistent with basic physical laws. In particular,
the smallest transmission time possible between transmitters and receivers corresponds to
the time required for line-of-sight transmission. Since these laws are universal, our model
applies to any kind of network where the network topology can be described by a fixed
communication matrix.

Time. Protocols, such as the authenticated ranging example from Section 2.1.4.2, measure
time to make statements about distances. As a result, our model must correctly describe
temporal dependencies between related events, such as a send event preceding a receive
event and agents must be able to access clocks to associate events with time. We achieve
this by tagging every event with a corresponding timestamp. We use rules that account for
arbitrary offsets of local clocks to model temporal dependencies and clock access by agents

Intruder Model. In order to reason formally about properties of security protocols,
we must precisely define the capabilities of the intruder. We therefore need to specify the
intruder’s capabilities in terms of network control and cryptographic capabilities. The most
prominent and most widely used intruder model is the so called Dolev-Yao model [69]. In
this model, an intruder completely controls the communication network in the sense that he
can overhear, remove, and delay any message sent by honest agents. Additionally, he can
insert any message that he is able to construct according to his cryptographic capabilities.
In terms of cryptographic capabilities, the Dolev-Yao intruder implements the so called
perfect cryptography assumption.

In our model, the intruder’s cryptographic capabilities correspond to those of the Dolev-
Yao intruder. However, in terms of network control, our communication model is subject
to physical restrictions, such as transmission time and network topology. These constraints
on communication apply both to honest agents and intruders. An individual intruder can
therefore only intercept messages at his location. Moreover, colluding intruders cannot
instantaneously exchange known messages. The message exchange between intruders is
also subject to limitations incurred by the network topology which is formalized by the
communication matrix. This models reality, where the attackers’ ability to observe and
communicate messages is determined by their locations, mutual distances, and by their
transmitters and receivers. Note that these extensions are essential for modeling protocols
that involve physical properties of the environment such as time and location. Such pro-
tocols fall outside the scope of standard symbolic protocol models based on the Dolev-Yao
intruder. This is understandable: the Dolev-Yao model was developed for classical security
protocols which do not rely on properties of the physical environment. In Section 5.3, we
will extend this model to account for partial overshadowing of messages.

5.1.2 Agents and Transmitters

Agents are either honest or intruders. We model infinitely many agents of each kind by
using the set of natural numbers N as agent identifiers.

datatype agent =Honest N | Intruder N

We refer to agents using capital letters like A and B. We also write HA and HB for honest
agents and IA and IB for intruders, when we require this distinction. Each agent has a set
of transmitters and receivers.

datatype transmitter =Tx agent N

Analysis of Physical Protocols

126



Given an agent A and an index i, the constructor Tx returns a transmitter denoted TxA
i .

The number of usable transmitters can be restricted by specifying that some transmitters
cannot communicate with any receivers. Receivers are formalized analogously.

datatype receiver =Rx agent N

We use RxA
i to denote A’s receiver with index i.

5.1.3 Physical and Communication Distance

The function loc assigns to each agent A a location locA∈R3. Using the euclidian metric
on R3, we define the physical distance between two agents A and B as |locA− locB|.

The line-of-sight distance between two agents A and B is the shortest path, taken, for
example, by electromagnetic waves when there are no obstacles. We define the line-of-sight
communication distance as the time it takes for a radio signal to travel this path using
speed of light c, i.e.,

cdistLoS(A,B)=
|locA− locB|

c
.

The value cdistLoS(A,B) only depends on A and B’s locations and is independent of the net-
work topology. We model the network topology using the function cdistNet : transmitter ×
receiver → R≥0 ∪ {⊥}. Its value reflects the communication medium used by the
given transceivers, obstacles between the transceivers, and other environmental factors.

cdistNet(TxA
i , RxB

j ) = ⊥ denotes that RxB
j cannot receive transmissions from TxA

i . In

contrast, cdistNet(TxA
i , Rx B

j ) = t, where t ∈ R≥0, denotes that RxB
j can receive trans-

missions from TxA
i after a minimum delay of t time units. Since we assume that information

cannot propagate faster than with the speed of light, we require that for all A, B, i, and j,

cdistLoS(A,B)≤ cdistNet(TxA
i ,RxB

j ) .

In Isabelle/HOL, we model loc as an uninterpreted function. That is, we give loc a type, but
do not provide a concrete interpretation. Similarly, cdistNet is uninterpreted, but we restrict
the class of possible interpretations by additionally requiring the previously mentioned
property: faster-than-light communication is impossible. Further assumptions about the
agents’ locations and the network topology required for analyzing protocols can be added
as local assumptions in security proofs. As an example of such an additional assumption,
consider the ultrasound distance bounding protocol and its security properties described
in Section 5.2.2. For the protocol to have the expected security property, we must assume
that there is no adversary in a given area (the so called private space) around an honest
agent. This is therefore modeled as an additional assumption in the corresponding security
proof. Hence, our results apply to all possible locations of agents and network topologies
that fulfill the corresponding assumptions.

Example 5.1. The following example relates the communication distance and the physical
distance. The left side of Figure 5.1 illustrates the nodes and their environment. Here, edges
denote line-of-sight connections which correspond to shortest paths in Euclidean space and
are labeled with the corresponding values of the cdistLoS function. Note that cdistLoS is
defined in terms of the physical location of nodes and neither depends on communication
obstacles nor physical properties of the communication medium. Also note that cdistLoS is
symmetric.

5.1 Formal Model
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Figure 5.1. Physical (left) and network topology (right).

The right side of Figure 5.1 illustrates the communication distance associated with the
network topology, where A possesses only a radio transmitter, B possesses a radio receiver
and an ultrasound transmitter, and C possesses a radio receiver and an ultrasound receiver.
The dashed line represents the ultrasonic link, where signals travel at the speed of sound s.
The diagonal wall in the middle prevents line-of-sight communication from A to C. How-
ever, reflections off the wall in the upper left corner enable C to receive the signal. So the
two notions of distance only coincide for the link from A to B, which uses line-of-sight
communication at the speed of light c.

5.1.4 Messages

Amessage is either atomic or composed. Atomic messages are agent names, times, numbers,
nonces, and keys represented by natural numbers. Composed messages are hashes, pairs,
and encrypted messages.

datatype msg =Agent agent |Time R |Number N |Nonce agent N

| Key key |Hash msg |Pair msg msg |Crypt key msg

Nonces model random unguessable bitstrings and are tagged with the name of the agent
who created them and a unique index. Tagging nonces with the creator’s name ensures
that nonces created by different agents never collide. Indeed, even colluding intruders
must communicate to share a nonce. To ensure that nonces created by the same agent
do not collide, the used function introduced below is used. Similar to nonces, keys are
tagged with a unique value of type key , which is a type synonym for N. The set of keys is
partitioned into those used for signing, asymmetric encryption, and symmetric encryption.
An inverse operator (_)−1 is defined for the three key types. It is the identity function
on symmetric keys. The constructor Crypt denotes signing, asymmetric encryption, or
symmetric encryption, depending on the key used. We write {m}k for Crypt k m, 〈m,n〉 for
Pair m n and mack(m) for 〈m,Hash 〈k,m〉〉. If sk is a signing key, we also write sig(m, sk)
instead of {m}sk.

Given a set of messages, an agent can deduce new messages by decomposing and com-
posing given messages. We formalize this message deduction capability with the inductively
defined operator DM : agent → msg set → msg set . The rules defining DM are given in
Figure 5.2 and specify hashing, projection on pairs, pairing, encryption, message decryp-
tion, and the generation of agent names, nonces, times, and numbers. For example, the
Dec-rule states that if an agent A can deduce the ciphertext {m}k and the decryption key
(Key k)−1, then he can also deduce the cleartext m.
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Inj
m∈M

m∈DMA(M )
Hash

m∈DMA(M)

Hash m∈DM A(M)
Fst

〈m1,m2〉 ∈DM A(M)

m1∈DM A(M)

Pair
m1∈DMA(M ) m2∈DMA(M)

〈

m1, m2

〉

∈DMA(M)
Snd

〈m1, m2〉 ∈DMA(M)

m2∈DMA(M)

Enc
m∈DMA(M ) Key k ∈DM A(M)

{m}k∈DMA(M)
Agent

Agent a∈DM A(M)

Dec
{m}k∈DMA(M) (Key k)−1∈DM A(M)

m∈DM A(M)
Nonce

Nonce A n∈DMA(M)

Time
Time t∈DMA(M)

Number
Number n∈DMA(M)

Figure 5.2. Rules defining DMA(M).

5.1.5 Events and Traces

An event corresponds to an agent sending or receiving a message or making a claim.

datatype event = Send transmitter msg (msg list) |Recv receiver msg |Claim agent msg

A trace is a list of timed events, where a timed event (t, e)∈R× event pairs a timestamp
with an event. Events are associated to agents and thereby to the agent’s location. This
association is either direct for Claim-events or indirect via the association of transceivers to
agents for Send-events and Recv-events. The timed event (tS ,Send TxA

i m L), for example,
denotes that the agent A sent a message m using his transmitter with index i at time-
point tS and has associated the protocol state L with the event. The list of messages L
models protocol state information and can contain messages used to construct m and
times of preceding events. Such a Send-event may induce multiple Recv-events of the form

(tR, Recv RxB
j m), where the timepoints tR and receivers Rx

B

j must be consistent with
the network topology. A Claim-event models a belief or a conclusion made by a protocol
participant, formalized as a message. For example, after successfully completing a run of
the authenticated ranging protocol from Section 2.1.4.2 with Bob, Alice concludes at some
time tC that dAB is an upper bound on her distance to Bob. We model this by adding the
event (tc,Claim A 〈B,dAB〉) to the trace. The protocol is therefore secure if the claim about
the upper bound on the mutual distance is valid for all traces containing such a Claim-event.

Note that the timestamps used in traces use the notion of absolute time. However, agents’
clocks may deviate arbitrarily from absolute time. We therefore translate the absolute
timestamps to model the agent’s local view. We describe this translation in Section 5.1.6.

Knowledge and Used Messages. Each agent A holds some some initial knowledge,
denoted by initKnowsA, which depends on the executed protocol. In a system run with
trace tr , the knowledge of an agent A is defined as the union of the initial knowledge and
all received messages, i.e.,

knowsA(tr) = {m|∃k t. (t,Recv RxA
k m)∈ tr }∪ initKnowsA .

5.1 Formal Model
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From the known messages, A can deduce all messages in DMA(knowsA(tr)). For a given
term m, the set of (extractable) parts and the set of (syntactic) subterms are defined
inductively by the rules in Figure 5.3.

m∈ subterms(m)

〈m1,m2〉 ∈ subterms(m)

mi∈ subterms(m)

Hash c∈ subterms(m)

c∈ subterms(m)

{c}k∈ subterms(m)

c∈ subterms(m)

{c}k∈ subterms(m)

k ∈ subterms(m)

m∈ parts(m)

〈m1, m2〉 ∈ parts(m)

mi∈ parts(m)

{c}k∈ parts(m)

c∈ parts(m)

Figure 5.3. Rules defining subterms and parts .

We use subterms to define the set of messages appearing in a trace tr .

used(tr)= {n|∃A k t m. (t, Send Tx
A

k m)∈ tr ∧n∈ subterms(m)}

5.1.6 Network, Intruder, and Protocols

We now describe our rules that inductively define the set of traces Tr(proto) for the
execution of a protocol proto together with arbitrary intruders sharing a network. The base
case, modeled by the Nil-rule in Figure 5.4 states that the empty trace is a valid trace for
all protocols. The other rules describe how valid traces can be extended. The rules model
the network behavior, the possible actions of the intruder, and the actions taken by honest
agents executing the protocol.

Net

tr ∈Tr(proto) tR≥maxtime(tr)

(tS ,Send TxA
i m L)∈ tr

cdistNet

(

TxA
i ,RxB

j
)

= tAB

tAB� ⊥ tR≥ tS + tAB

tr · (tR,Recv Rx B
j m)∈Tr(proto)

Nil
[ ]∈Tr(proto)

Fake

tr ∈Tr(proto) t≥maxtime(tr)
m∈DM IA(knowsIA(tr))

tr · (t,Send Tx IA
i m [ ])

Proto

tr ∈Tr(proto) t≥maxtime(tr) step ∈ proto
(act , m)∈ step(view(HA, tr), HA, ctime(HA, t)) m∈DMHA(knowsHA(tr))

tr · (t, translateEv(HA, act , m))

Figure 5.4. Rules defining Tr(proto).

Network Rule. The Net-rule models message transmission from transmitters to
receivers, constrained by the network topology. A Send-event from a transmitter may
induce a Recv-event at a receiver only if the receiver can receive messages from the trans-
mitter. The time between these events is bounded below by the communication distance
between the transmitter and the receiver. If there is a Send-event in the trace tr and the
Net-rule’s premises are fulfilled, a corresponding Recv-event is appended to the trace. The
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restriction on connectivity and transmission delay are ensured by tAB� ⊥ and tR≥ tS + tAB.
Here, tAB is the communication distance between the receiver and transmitter, tS is the
sending time, and tR is the receiving time.

Note that one Send-event can result in multiple Recv-events at the same receiver at
different times. This is allowed because cdistNet models the minimal communication dis-
tance and messages may also arrive later, for example due to the reflection of the signal
carrying the message. Moreover, a Send-event can result in multiple Recv-events at different
receivers, modeling for example broadcast communication. Finally, note that transmission
failures and jamming by an intruder, resulting in message loss, are modeled by traces where
the Net-rule is not applied for a given Send-event and receiver, even though all premises
are fulfilled.

The timestamps associated with Send-events and Recv-events denote the starting times
of message transmission and reception. Thus, our network rule captures the latency of
links, but not the message-transmission-time, which also depends on the message’s size and
the transmission speed of the transmitter and the receiver. Some implementation-specific
attacks, such as those described in [156] and [49] are therefore not captured in our model.
Also note that we do not capture partial overshadowing of messages by the adversary. In
Section 5.3, we will adapt the Net-rule to account for this.

The premise t ≥ maxtime(tr), where t denotes the timestamp associated with the new
event and maxtime(tr) denotes the latest timestamp in the trace tr , is included in every
rule except Nil. It ensures that timestamps increase monotonically within each trace
and thereby guarantees that the partial order on events induced by their timestamps is
consistent with the order of events in the trace. However, events can happen at the same
time.

Intruder Rule. The Fake-rule in Figure 5.4 captures the intruders’ behavior. An
intruder can send any message m deducible from his knowledge. We are not required to
model the internal state of the intruders since they behave arbitrarily. We use explicit Send-
events and Recv-events to model the exchange of information between colluding intruders.
With an appropriate cdistNet function, it is possible to model an environment where the
intruders are connected by high-speed links, allowing them to carry out wormhole attacks.
Restrictions on the degree of cooperation between intruders can be modeled as predi-
cates on traces. Internal and external attackers are both captured since they differ only
in their initial knowledge or associated transceivers.

Protocols. In contrast to intruders who can send arbitrary deducible messages, honest
agents follow the protocol. A protocol is defined by a set of protocol step functions. Each
step function takes the local view and time of an agent as input and returns all possible
actions consistent with the protocol specification.

There are two types of possible actions. An agent can either send a message using a
transmitter with a given id and store the associated protocol data or make a claim.

datatype action =SendA N (msg list) |ClaimA

An action associated with an agent A and a message m can be translated into the corre-
sponding event with the translateEv function.

translateEv(A,SendA k L,m)= Send TxA
k m L

translateEv(A,ClaimA, m) =Claim A m
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Note that there is no Recv-action since message reception by honest agents is already
modeled by the Net-rule. A protocol step function is therefore of type agent × trace×R→
(action×msg) set . Since the actions of an agent A only depend on his own previous actions
and observations, we define A’s view of a trace tr as the projection of tr on those events
involving A.

view(A, tr)= [(ctime(A, t), ev)| (t, ev)← tr ∧ occursAt(ev) =A]

The view function uses the function occursAt , which maps events to associated agents.
For instance, occursAt(Send TxA

i m L) = A. Since the timestamps of trace events refer
to absolute time, the view function accounts for the offset of A’s clock by translating
times using the ctime function. Given an agent and a global timestamp, the uninterpreted
function ctime : agent ×R→R returns the corresponding local timestamp for the agent’s
clock. The clock offset of A at global time t is given by ctime(A, t)− t. Using the above
definitions, we define the Proto-rule in in Figure 5.4. For a given protocol, specified as a set
of the step functions, the Proto-rule describes all possible actions of honest agents, given
their local views of a valid trace tr at a given time t. If all premises are met, the Proto-
rule appends the translated event to the trace. Note that agents’ behavior, modeled by
the function step, is based only on the local clocks of the agents, i.e., agents cannot access
the global time. Moreover, the restriction that all messages must be in DMHA

(knowsA(tr))
ensures that agents only send messages deducible from their knowledge.

5.1.7 Protocol-Independent Results

Since the set of traces Tr(proto) is parameterized by the protocol description proto, our
framework allows us to establish protocol-independent results that hold for all protocols
or certain classes of protocols. In this section, we present four lemmas about the origin of
messages that we will use later when we analyze concrete protocols. The proofs presented
in this section follow the formal proofs of the corresponding lemmas as they can be found
in our Isabelle/HOL formalization.

Our first lemma specifies a lower bound on the time between when an agent first uses a
nonce and another agent later uses the same nonce. The lemma holds whenever the initial
knowledge of all agents does not contain any nonces. Note that according to the Nonce-
rule in Figure 5.2, agents can only derive nonces tagged with their own identity and all
other nonces must be received over the network.

Lemma 5.2. Let A be an arbitrary (honest or dishonest) agent and let the event
(tS
A, Send TxA

i mA LA) ∈ tr be the first event in the trace tr with n ∈ subterms(mA) for
the nonce n. If there is another event (tS

B , Send TxB
j mB LB) ∈ tr with A � B such

that n∈ subterms(mB), then tS
B− tS

A≥ cdistLoS(A,B).

Proof. We prove this by induction on Tr(proto). The statement obviously holds for Nil
and Net since these rules do not add Send-events. We now consider the two remaining
rules. Let tr ∈ Tr(proto) and (tS

A, Send TxA
i mA LA) ∈ tr be the first event that contains

the nonce n as a subterm.

Fake. The event (tS
I , Send Tx I

k mI [ ]) is appended to tr . The only interesting cases
occur when A� I and n∈ subterms(mI). From the premises of the rule, we know that
mI ∈DM I(knowsI(tr)). Since I cannot guess a nonce created by another agent A, the
intruder I must have received a message m containing n at some time tR

I with receiver
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Rx I
h, where tR

I ≤ tS
I . Every Recv-event in tr is preceded by a corresponding Send-event. So

there must be
(

tS
C ,Send TxC

u mLC
)

∈ tr such that tR
I − tS

C≥cdistNet(TxC
u ,Rx I

h). If C=A,

then tS
C ≥ tS

A since n is first used at time tA
S and we have tS

I − tS
A≥ cdistLoS(A, I) since

faster-than-light communication is impossible and cdistNet(TxA
i ,Rx I

h)≥ cdistLoS(A, I).

If C � A, we can apply the induction hypothesis to the event
(

tS
C ,Send TxC

u m LC
)

and

obtain tS
C − tS

A≥ cdistLoS(A,C). Together with tR
I − tS

C ≥ cdistLoS(C, I) and tR
I ≤ tS

I , we
obtain tS

I − tS
A≥ cdistLoS(A, I) using the triangle inequality for physical distances.

Proto. The event (tS
B, translateEv(B, act , mB)) is appended to tr . Only the case where

translateEv(B, act , mB) = SendA i LB, B � A, and n ∈ subterms(mB) is interesting.
From the premises of the Proto-rule, we have mB ∈ DM B(knowsB(tr)) like in the
Fake-case. We can therefore proceed analogously. �

The next lemma is similar to Lemma 5.2 and concerns the earliest time when an agent
can receive a nonce.

Lemma 5.3. Let A be an arbitrary (honest or dishonest) agent and let (tS
A,Send TxA

i mA

LA) ∈ tr be the first event in the trace tr with n ∈ subterms(mA) for the nonce n. If there
is another event (tR

B, Recv RxB
j mB) ∈ tr with A � B such that n ∈ subterms(mB), then

tR
B− tS

A≥ cdistLoS(A,B).

Proof. We prove this lemma by induction over Tr(proto). Except for the Net-case, the
statement trivially follows from the induction hypothesis since no Recv-events are added.
For Net, assume that (tS

A,Send TxA
i mA LA)∈ tr is the first event that contains the nonce n

and tr is extended with (tR
B , Recv RxB

j mB) ∈ tr such that A � B and n ∈ subterms(mB).

Then there must be an earlier Send-event (tS
C , Send TxC

k mB LC) such that tR
B − tS

C ≥
cdistNet(TxC

k ,Rx B
j ). From Lemma 5.2, we know that tS

C− tS
A≥ cdistLoS(C,A). Since faster-

than-light communication is impossible, we obtain cdistLoS(C, B) ≤ cdistNet(TxC
k , Rx B

j ).
Combining the inequalities, we obtain tR

B − tS
C + tS

C − tS
A≥ cdistLoS(B,C) + cdistLoS(A, C).

We can now apply the triangle inequality for physical distances to obtain the inequality
tR
B− tS

A≥ cdistLoS(A,B). �

The next lemma concerns signatures and their creation time.

Lemma 5.4. Let A be an honest agent and let (tS
B, Send TxB

i mB LB) ∈ tr such that
sig(m, skA)∈ subterms(mB), where skA denotes the signing key of A and m is an arbitrary

message. Then there is (tS
A, Send TxA

j mA LA) ∈ tr such that sig(m, skA) ∈ subterms(mA)
and tS

B− tS
A≥ cdistLoS(A,B).

This lemma only holds if the initial knowledge of every agent does not contain signing
keys of other agents or signatures created by using the signing keys of other agents. Addi-
tionally we must assume that protocol messages never contain signing keys of agents as
extractable subterms. We formalize such assumptions as predicates on protocols and the
initial knowledge.

Proof. (Sketch) The proof is analogous to the proof of Lemma 5.2, but additionally uses
the fact that agents other than A cannot sign messages on behalf of A if the signing key
never leaks. �

A similar lemma also holds for MACs.
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Lemma 5.5. Let A and B be honest agents and C a different, possibly dishonest, agent.
Furthermore, let (tS

C , Send TxC
i mC LC)∈ tr such that mac

kAB
(m)∈ subterms(mC), where

kAB denotes the shared key of A and B and m is an arbitrary message. Then there is
(tS
E , Send TxE

j mE LE) ∈ tr such that E ∈ {A, B}, mackAB
(m) ∈ subterms(mE) and

tS
C − tS

E ≥ cdistLoS(E,C).

5.2 Case Studies
In this section, we use our model to analyze the security properties of three protocols: an
authenticated ranging protocol, an ultrasonic distance-bounding protocol, and a secure
time synchronization protocol. Each protocol uses cryptographic primitives as well as phys-
ical characteristics of the communication technology, environment, or network topology, to
provide security guarantees. Since the first two protocols estimate distance based on round-
trip measurements and bounds on the propagation speed of signals, variable clock offsets
can trivially lead to wrong results. Therefore, we only consider those ctime functions that
model a constant clock error. In the third example, we also restrict ourselves to constant
clock errors.

5.2.1 Authenticated Ranging

To define the set of traces for the authenticated ranging protocol from Figure 5.5 explained
in Section 2.1.4.2, we formalize the set of protocol steps protoAR = {ar 1, ar 2, ar 3}. Each
step function ar i(tr , A, t) yields the possible actions of the agent A executing the protocol
step i for his view of the trace tr at time t. We have formalized the steps in Isabelle/HOL
using set comprehension, but present the steps here using rule notation for readability. For a
fixed tr , A, and t, ar i(tr ,A, t) is defined as the least set closed under the corresponding rule.

1. An honest verifier V can start a protocol run by sending a fresh nonce as a challenge.
We use the index r to denote radio transmitters and receivers of honest agents.

(Nonce V i) � used(tr)

(SendA r [ ],Nonce V i)∈ ar 1(tr , V , tS
V )

2. An honest prover P that receives a challenge may send the corresponding response.
Note that we use a typed receive for the nonce, but we do not restrict the creator V ′

of the nonce in any way

(tR
P ,Recv RxP

r (Nonce V ′ i))∈ tr

(SendA r [ ], sig(〈Nonce V ′ i, tS
P − tR

P 〉, skP))∈ ar 2(tr , P , tS
P)

3. The last step introduces a Claim-event. It models the conclusion of a verifier V who
received a response to his initial challenge.

(tS
V ,Send TxV

r (Nonce V i) [ ])∈ tr

(tR
V ,Recv RxV

r sig(〈Nonce V i, δ〉, skP))∈ tr
(

ClaimA,
〈

P , (tR
V − tS

V − δ)∗ c
2

〉)

∈ ar 3(tr , V , tC
V )

The premises state that V has initiated a protocol run and received a response from P .
V therefore believes that (tR

V − tS
V − δ)∗ c

2
is an upper bound on his distance to P .

For this protocol, we define the initial knowledge of each agent A to be her own signing
key skA and the public keys pkB of all other agents B.
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V (Verifier) P (Prover)

choose fresh nonce nv

tS
V
7 readClock() �

nv
tR
P
7 readClock()

set δ7 tS
P− tR

P

compute sig(〈nv , δ〉, skP)

tR
V
7 readClock() �

sig(〈nv ,δ〉,skP)
send at tS

P

check signature

Conclude that |locV− locP| ≤ (tR
V − tS

V− δ)∗ c
2

Figure 5.5. Authenticated Ranging Protocol.

Security Analysis. As explained in Section 2.1.4.2, the protocol should compute a reli-
able upper on the physical distance between prover and verifier whenever the intended
prover is honest. We therefore state the following theorem.

Theorem 5.6. Let V and P be honest agents, tr ∈Tr(protoAR) and (t,Claim V 〈P ,d〉)∈ tr,
then d≥ |locV − locP |.

The theorem states that whenever the authenticated ranging protocol successfully ter-
minates for an honest prover and verifier, then the computed distance is an upper bound
on the physical distance between the two. Remember that a dishonest prover can shorten
the computed distance by lying about δ and considering a dishonest verifier does not make
sense since the prover does not obtain any guarantees.

For our proof, we use three of the protocol-independent lemmas about message origina-
tion and the fact that the δ sent in the second protocol message is always equal to tS

P − tR
P ,

the delay between the Recv-event and the Send-event, provided that P is honest. This
follows directly from the definition of ar 2.

Proof. Since only the step ar 3 adds events of the form (tC
V ,Claim V 〈P ,d〉), we do not have

to consider the other protocol steps and rules defining Tr(protoAR). From the premises
of ar 3 and the definitions of ar 2 and ar 3, we know (tS

V , Send TxV
r (Nonce V i) [ ]) is the

first event where this nonce is used in tr , (tR
V ,Recv RxV

r sig(〈Nonce V i, δ〉, skP))∈ tr , and
d= (tR

V − tS
V − δ)∗ c

2
. Even though we use global timestamps tR

V and tS
V in contrast to ar 3

where local times for V are used, the equation for d still holds since we assume constant
clock offsets.

We know there must be a Send-event (tS
C , Send Tx C

j sig(〈Nonce V i, δ〉, skP)) by some

(possibly dishonest) agent C with tR
V − tS

C≥ cdistLoS(C,V ). We can now apply Lemma 5.4,
to obtain a Send-event (tS

P ,Send TxP
r sig(〈Nonce V i, δ〉, skP)) where P sends the signature

with tS
C − tS

P ≥ cdistLoS(P , C). From the definition of ar 2, we know that there must a
Recv-event (tR

P , Recv RxP
r Nonce V i) such that δ = tS

P − tR
P . For this event, we can apply

Lemma 5.3 to obtain tR
P − tS

V ≥ cdistLoS(V , P ). Combining the (in)equalities and using the
triangle inequality, we obtain the following.

tR
V − tS

V − δ= tR
V − tS

V − tS
P + tR

P

= tR
V − tS

C + tS
C − tS

P + tR
P − tS

V

≥ cdistLoS(C, V )+ cdistLoS(P ,C)+ cdistLoS(V , P )
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= cdistLoS(V , P ) + cdistLoS(P ,C)+ cdistLoS(C, V )

≥ cdistLoS(V , P ) + cdistLoS(P , V )

= |locV − locP |∗
2

c

Hence, we conclude d= (tR
V − tS

V − δ)∗ c
2
≥ |locV − locP |. �

The specification and verification of this protocol was relatively straightforward since the
protocol-independent lemmas could be directly used to obtain the desired inequalities on
the times.

5.2.2 Ultrasound Distance Bounding

In our second example, we consider a protocol for distance bounding that uses radio signals
as well as ultrasound signals to exchange messages between the communicating parties.
The goal of the protocol presented in Figure 5.6 is for the verifier V to determine an upper
bound on the distance to a possibly dishonest prover P. V sends an unpredictable challenge
using radio signals and waits for the corresponding response on his ultrasound receiver.
Then he measures the round-trip time and computes an upper bound (tR

V − tS
V)∗s on the

distance, where s denotes the speed of sound. Using ultrasound, which is several orders
of magnitude slower than radio, she can safely neglect the transmission time of the first
message and the time required for signing the response. Furthermore, by using ultrasound,
the protocol can be implemented on off-the-shelf devices because time measurements with
nanosecond precision are not required. This type of protocol has been proposed in [156] to
enable V to verify a location claim of P .

V (Verifier) P (Prover)

choose fresh nonce nv

tS
V
7 readClock() nv

compute sig(nv , skP)

tR
V
7 readClock() sig(nv , skP)

check signature

Conclude that |locV− locP| ≤ (tR
V − tS

V)∗s

Figure 5.6. Ultrasound distance bounding protocol. Dashed lines denote ultrasound.

We assume that all agents A are equipped with ultrasound transmitters TxA
us and

receivers RxA
us. Additionally, every agent has a radio transmitter and receiver, TxA

r

and RxA
r . If an ultrasound receiver RxA

us is able to receive messages from a transmitter TxA
i ,

then the communication distance should reflect that the message cannot be transmitted
faster than s. We therefore add the following properties of cdistNet as local assumptions
for the security proof.

cdistNet(TxA
i ,RxB

us)� ⊥⇒ cdistNet(TxA
i ,RxB

us)≥
|locA− locB|

s
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The same applies to messages transmitted by ultrasound transmitters TxA
us and received

by receivers RxB
i .

cdistNet(TxA
us,RxB

i )� ⊥⇒ cdistNet(TxA
us,RxB

i )≥
|locA− locB|

s

Note that it has recently been shown in [152] that radio signals may induce a current in
audio receiver circuits. More precisely, the authors of that paper demonstrated that this
technique allows to successfully trigger receive events on ultrasound receivers using radio
signals. This would enable trivial attacks against the protocol under consideration. The
fact that we need this explicit additional assumption in our model to successfully prove the
security of the protocol shows that our model accounts for subtle problems of this kind.
However, we shall assume from now on that the countermeasures described in [152] have
been implemented and we can keep the assumption.

We now give the set of step functions protoUDB = {udb1, udb2, udb3} that defines the
ultrasound distance bounding protocol.

1. In the start step udb1, the verifier initiates a protocol run.

(Nonce V i) � used(tr)

(SendA r [ ],Nonce V i)∈ udb1(V , tr , tS
V )

2. The reply step udb2 formalizes the behavior of a prover that responds to an initial
challenge. Note that the ultrasound transmitter TxB

us is used for the response.

(tR
P ,Recv RxP

r (Nonce V ′ i))∈ tr
(SendA us [ ], sig(Nonce V ′ i, skP))∈ udb2(P , tr , tS

P)

3. The final step udb3 introduces a Claim-event when a verifier V receives a response to
his initial challenge on his ultrasound receiver RxA

us.

(tS
V ,Send TxV

r (Nonce V i))∈ tr

(tR
V ,Recv RxV

us sig(Nonce V i, skP))∈ tr

(ClaimA, 〈P , (tR
V − tS

V )∗s〉)∈ udb3(V , tr , tC
V )

This models what V concludes from a signal that apparently traveled from P to V

using the speed of sound s in fewer than tR
V − tS

V time units. Namely, V concludes that

(tR
V − tS

V ) ∗s is a reliable upper bound on the distance to P .

Security Analysis. The desired security property of the distance bounding protocol is
similar to the property of the authenticated ranging protocol proved in Theorem 5.6. Since
the prover’s computation time is not used for computing the distance, the protocol does not
require the prover to be honest. We would therefore expect a statement like the following
to hold.

Proposition 5.7. Let V be an honest agent and P an arbitrary agent. Furthermore, con-
sider a valid trace tr ∈ Tr(protoUDB), where (t, Claim V 〈P , d〉) ∈ tr. Then it holds
that d≥ |locV − locP |, i.e., the distance computed by the verifier is an upper bound on the
physical distance between the involved agents.
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However, as shown in [160], this proposition is false without any further assumptions. An
attack involving two colluding intruders is shown in Figure 5.7. We use PS (V ) to denote
the private space of V , which is defined as the largest circle centered at V such that V
can ensure that no intruder is inside. To mount the attack, ID is placed close to P and
receives P ’s reply over ultrasound. ID then uses a fast radio link to forward it to the second
intruder IC who is close to V . IC finally delivers the message to V using ultrasound. We
have proven in our Isabelle/HOL formalization that this attack is captured in our model
by showing that the corresponding attack trace is a valid trace. The inequality involving
the communication distances necessary for such an attack to work is

|locV − locP |
s

> cdistNet(TxV
r ,RxP

r )+ cdistNet(TxP
us,Rx ID

us )+

cdistNet(Tx ID
r ,Rx IC

r )+ cdistNet(Tx IC
us,RxV

us) .

If the inequality holds, intruders connected by a fast radio link can speed up ultrasound
communication between V and P using their radio link, such that the computed distance
is smaller than the real distance between V and P . This attack has been discovered and
implemented in [160].

V

PS(V )

P

IC
ID

nv

sig(nv , skP )

sig(nv , skP )

sig(nv , skP )

Figure 5.7. Attack on the ultrasound distance bounding protocol.

In light of the above, we prove Proposition 5.7 under an additional assumption: The
verifier V can ensure that the prover P is in his private space. The same assumption is used
in other protocols, e.g., [156] and [39] for location-based access control and device pairing.
It holds, for example, in environments where V can visually verify the absence of nearby
intruders. The following inequality ensures that no intruder is closer to the verifier V than
the possibly dishonest prover P :

∀D. |locV − locID| ≥ |locV − locP |.

Note that this assumption thwarts Mafia frauds as well as Terrorist frauds (as defined
in [34]). Remember that a mafia fraud is an attack where an intruder plays man-in-the-
middle between a verifier and an honest prover. Since there is no intruder closer to the
prover V than the verifier P , this kind of attack is impossible in our setting. Similarly, a
terrorist fraud is an attack where an attacker plays man-in-the-middle between a verifier
and a dishonest prover. This would require a second attacker being located closer to the
verifier than the dishonest prover P . This setup also trivially violates the private space
assumption of the verifier V . Note that Proposition 5.7 also allows for another attack
where a dishonest prover IC hands over all key material to another dishonest prover ID
that is closer to V . Then IC can execute the protocol claiming to be ID which results in an
invalid upper bound. We will present an adapted definition that accounts for this problem
in Section 5.4.

Analysis of Physical Protocols

138



We now restate Proposition 5.7, adding the additional private space assumption, and
prove the result.

Theorem 5.8. Let V be an honest agent and P an arbitrary agent such that ∀D. |locV −
locID| ≥ |locV − locP |. Furthermore, consider a valid trace tr ∈ Tr(protoUDB), where
(t,Claim V 〈P , d〉)∈ tr. Then d≥ |locV − locP |.

Proof. We prove this by induction over Tr(protoUDB). Since only the step udb3 adds

events of the form (tC
V ,Claim V 〈P ,d〉), we do not have to consider the other protocol steps

and rules defining Tr(protoUDB). From the premises of udb3 and the definitions of udb2

and udb3, we conclude that (tS
V ,Send TxV

r (Nonce V i) [ ]) is the first event where this nonce
is used in tr , (tR

V ,Recv RxV
us sig(Nonce V i, skP))∈ tr , and d=(tR

V − tS
V )∗s. Even though we

use global timestamps tR
V and tS

V in contrast to udb3 where local times for V are used, the
equation for d still holds since we assume constant clock offsets.

We know there must be a Send-event (tS
C ,Send Tx C

j sig(Nonce A i, skB)) by some possibly
dishonest agent C with tR

V − tS
C ≥ cdistNet(TxC

i ,RxV
us)≥ |locV − locC|/s. We also know that

tS
C ≥ tS

V by Lemma 5.2. We therefore have d= (tR
V − tS

V )∗s≥ (tR
V − tS

C)∗s≥ |locA− locC|. If
C =P , then this concludes the proof. If C � P , then C must be dishonest and we are also
done because |locV − locC| ≥ |locV − locP | since P is assumed to be located in PS (V ). �

Note that our proof does not use the fact that the second protocol message is authen-
ticated by P . Correctness is guaranteed because V ensures that P is in his private space.
Therefore even a simplified version of the protocol, where the second message is replaced
with Hash 〈Nonce V i, P 〉, would be secure under the private-space assumption.

5.2.3 Secure Time Synchronization

As a final example, we formalize a secure time synchronization protocol presented in [84].
The Enhanced Secure Pairwise Synchronization (E-SPS) protocol achieves pairwise clock
synchronization between two honest nodes in the presence of external attackers by com-
puting the relative clock offset between the two nodes. We analyze this protocol under the
following assumptions.

Constant clock offset. We assume constant clock offsets for each agent’s clock during
the execution of the protocol. Namely, for each agent A there is a offset δA such that
ctime(A, t) = t+ δA.

Lower bound on message transmission time. We assume a maximal bandwidth for
the connecting network. As a consequence, there is a lower bound dmin on the message
transmission time for any message that contains a nonce. Even in the case of a mali-
cious sender, it is impossible for honest agents to complete reception of a nonce before
tstart + dmin, where tstart is the start time of the reception.

Upper bound on end-to-end delay. Finally, we assume that there is a maximal end-
to-end delay when receiving a message expected by the protocol. The maximal delay
dmax consists of (1) the time for media access, (2) the time-of-flight, and (3) the message
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transmission time. In terms of media access, we assume that the hardware is capable of
obtaining and inserting timestamps of reception and send events. Therefore we do not
have to account for (1) since it does not affect the measurements. We obtain a bound
for (2) by assuming a maximal distance between nodes. However, in most cases (2) is
negligible compared to (3). For (3), it is possible to define a minimal transmission rate
and to use the corresponding maximal delay. A detailed breakdown of the times can
be found in [84].

Figure 5.8 depicts the E-SPS protocol as an Alice-and-Bob style sequence diagram,
where time passes from left to right. The protocol securely computes an approxi-
mation δAB of the relative clock offset δA − δB. To prove that dmax − dmin is upper
bound of the approximation, we formalize the protocol as the set of step functions
protoESPS ={esps1, esps2, esps3, esps4}. Recall that step functions involve only local times
of agents, i.e., timestamps associated with trace events are translated to the local time
of the corresponding agent.

Alice

Bob

global time

〈A,B,NA〉

〈A,B,NA〉 NB

NB

mac

mac

t1 t2 t3 t4

d1 d2

clock Alice

clock Bob
t1 + δA t4 + δA

t3 + δBt2 + δB

If d≤ dmax, Alice accepts the last message and concludes that δAB is an approxima-
tion of the relative clock offset such that |δAB− (δA− δB)| ≤ dmax − dmin, where

ti
C = ti+ δC

mac = mackAB
(B,A,NA, NB , t2

B, t3
B)

d=
((t2

B− t1
A) + (t4

A− t3
B))

2

δAB =
((t2

B− t1
A)− (t4

A− t3
B))

2
.

Figure 5.8. Enhanced secure time synchronization (E-SPS) protocol.

1. The first step esps1 models an initiator A sending a challenge. Here t1
A denotes the local

time measured by A, corresponding to the global time t1
A− δA.

(Nonce A i) � used(tr)

(SendA r [ ], 〈A,B,Nonce A i〉)∈ esps1(A, tr , t1
A)
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2. The second step esps2 models an agent B responding to an initial challenge.

(Nonce B k) � used(tr)

t3
B≥ t2

B t2
B≥ t2,start

B + dmin

(t2,start
B ,Recv B 〈A,B,Nonce A ′ i′〉)

(SendA r [A,Nonce A ′ i′, t2
B],Nonce B k)∈ esps2(B, tr , t3

B)

Reception of the challenge starts at t2,start
B and ends at t2

B, which is least dmin time units

later. B associates the protocol data [A,Nonce A′ i′,t2
B] with the resulting Send-event.

3. The third step esps3 models B sending the MAC.

(t3
B ,Send TxB

r (Nonce B k) [A,Nonce A ′ i′, t2
B])∈ tr

(SendA r [ ],mackAB
(B,A,Nonce A ′ i′,Nonce B k, t2

B , t3
B))∈ esps3(B, tr , tB)

Besides the exchanged nonces, B includes the times t2
B and t3

B, which denote when the
reception of A’s challenge ended and when B started sending his response.

4. Finally, step esps4 models A’s reception of the responses.

(t1
A,Send TxA

r 〈A,B,Nonce A i〉 [ ])∈ tr

(t4,start
A ,Recv RxA

r (Nonce B ′ j ′))∈ tr

(t5
A,Recv RxA

r mackAB(B,A,Nonce A i,Nonce B ′ j ′, t2
B , t3

B))∈ tr

t4
A≥ t4,start

A + dmin d≤ dmax tA≥ t4
A

d= ((t2
B− t1

A)+ (t4
A− t3

B))∗1

2

δAB =((t2
B− t1

A)− (t4
A− t3

B))∗1

2

(ClaimA, 〈B, δAB〉)∈ esps4(A, tr , tA)

If A concludes a clock-offset δAB, A must have received the first response and the
corresponding MAC according to the protocol specification. A then computes the delay
d and the offset δAB using his own time measurements and the timestamps received in
the messages from B (see Figure 5.8). Finally, A completes the protocol only if d≤dmax .
Otherwise, the end-to-end delay for the relevant transmissions took too long, which
would result in an unreliable estimation of the clock offset.

First note that if neither the challenge nor the response is delayed by an intruder or by the
environment, then d1≈ d2 for the two transmission delays (see Figure 5.8) and

d=
((d1 + δB− δA)+ (d2 + δA− δB))

2
=
d1 + d2

2
≤ dmax .

In this case, Alice computes the relative clock offset

δAB =
((d1− d2)+ 2∗δB− 2∗δA)

2
≈ δB− δA .

The upper bound dmax bounds the error that the adversary can introduce by delaying either
the challenge or the response. We first show that if there is a Claim-event, then there are
four corresponding times that satisfy the following (in)equalities.
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Lemma 5.9. Let A and B be different honest agents, let tr ∈Tr(protoESPS ) arbitrary, and
(t,Claim A 〈B, δAB〉)∈ tr. Then there are times t1, t2, t3, and t4 such that the following
holds:

1. t2− t1≥ dmin

2. t3≥ t2
3. t4− t3≥ dmin

4. δAB =(((t2− δB)− (t1 + δA))− ((t4 + δA)− (t3 + δB)))∗1

2

5. ((t2− t1)+ (t4− t3))∗
1

2
≤ dmax

Proof. From the existence of the Claim-event in the trace, we can conclude that all the
premises of esps4 hold. There is a Send-event for a fresh nonce na at time t1

A. There is a
Recv-event for a nonce nb that starts at time t4,start

A and is completed at time t4
A. Finally,

there is a Recv-event of mackAB
(B, A, na , nb , t2

B , t3
B). For the global times t1 = t1

A − δA,

t4= t4
A− δA, t4,start = t4,start

A −δA, t2= t2
B− δB, and t3= t3

B− δB we can conclude that 4. and 5.
hold and t4− t4,start≥ dmin.

The mac must originate from B by Lemma 5.5 because the key kAB is assumed to be
a shared secret between A and B and esps3 is the only protocol step that uses the key.
Then esps2 must have been executed by B and the reception of the nonce na must have
started at a global time t2,start and finished at t2, where t2− t2,start≥ dmin. By Lemma 5.3,
we known that t1 ≥ t2,start and hence t2 − t1 ≥ dmin. We also know that t3 ≥ t2 from the
premises of esps2. To see that 2. holds, note that the nonce nb is first used at time t3 and
reception of nb starts at t4,start. Using Lemma 5.3 again, we obtain t4,start ≥ t3. Together
with t4− t4,start≥ dmin, this proves t4− t3≥ dmin. �

Using these inequalities, it is easy to prove the following security property already stated
in Figure 5.8.

Theorem 5.10. Let A and B be honest agents, tr ∈ Tr(protoESPS ) and (t, Claim A

〈B, δAB〉)∈ tr, then |δAB− (δB− δA)| ≤ dmax − dmin.

Proof. From Lemma 5.9, we know that there are times t1, t2, t3, and t4 such that conditions
1.–5. are satisfied. We can first use 4. to obtain the new goal

|((t2− t1)− (t4− t3))/2| ≤ dmax − dmin.

Using 5. we conclude that (t2− t1)≤2∗dmax− (t4− t3) and (t4− t3)≤2∗dmax− (t2− t1). We
can therefore use 1. and 3. to obtain (t2− t1)≤2∗dmax−dmin and (t4− t3)≤2∗dmax−dmin.
We now perform a case distinction. If (t2− t1)≥ (t4− t3), then

|((t2− t1)− (t4− t3))/2|=((t2− t1)− (t4− t3))/2

≤ ((2∗ dmax − dmin)− (t4− t3))/2

≤dmax − dmin

because t4− t3≥ dmin. If (t2− t1)< (t4− t3), then

|((t2− t1)− (t4− t3))/2|=((t4− t3)− (t2− t1))/2

≤ ((2∗ dmax − dmin)− (t2− t1))/2

≤dmax − dmin
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because t2− t1≥ dmin. �

Note that this is a tighter bound on the error than we proved in [21], where the bound
was 2∗(dmax − dmin). Aside from the reasoning about the creation of MACs, which is
covered by our protocol independent lemmas, most of the theorem-proving work concerns
establishing the desired inequalities between the times of the different events. Most of these
inequalities stem from the relation between the different clock offsets of the two nodes.

5.3 Extended Model with Xor and Overshadowing

So far, we have analyzed an authenticated ranging protocol and an ultrasound distance
bounding protocol. For both protocols, the time required by the prover to compute the
response is not critical. For the authenticated ranging protocol, the prover is assumed to
be honest and the computation time is subtracted to obtain the time-of-flight. For the
ultrasound distance bounding protocol, the computation time is included in the time-of-
flight measured by the verifier, but since the reply travels with the speed of sound, it is
negligible. In this section, we analyze distance bounding protocols that exclusively use
radio transmission. In this case, the computation time is included in the measured time-of-
flight and can cause a significant enlargement of the computed distance. To minimize this
error, the computation of the response from the challenge must be fast. For this reason,
many distance bounding protocols use XOR. Another advantage of using XOR is that the
challenge-response phase can be performed bitwise, i.e., the verifier sends the i-th bit of
the challenge and waits for the i-th bit of the response before sending the next bit. This
can be used as a countermeasure against some implementation specific attacks as described
by [156, 49].

To support such protocols, we extend our framework with support for Xor . To capture
practically relevant attacks, we also extend our model to account for (partial) over-
shadowing of messages that are in transmission. We do not model all the details of overshad-
owing in our symbolic model, but enough to discover new attacks and rule out a large
class of attack for fixed version of the considered protocols.

5.3.1 Message Theory for Xor

We now extend the framework presented in the previous sections with support for Xor . To
achieve this, we continue as follows. First, we define the type fmsg of free messages. The
inhabitants of this type are elements of the free term algebra built over atomic messages and
the cryptographic operators including Xor . Second, we define the equivalence relation =Xor

on fmsg that models the equalities that hold for Xor . Third, we define a normal-form with
respect to =Xor using a normalization function. Fourth, we define a new (abstract) typemsg
that is represented by the normal-form messages in fmsg . This type is bijective to the
quotient type fmsg/=Xor

. We then lift the functions for message construction and message
deduction from fmsg to msg . Finally, we define the notions of parts and subterms on msg .
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Free Messages and =Xor . The type fmsg of free messages is defined as

datatype fmsg =AGENT agent |TIME R |NUMBER N |NONCE agent N

|KEY key |HASH fmsg |PAIR fmsg fmsg |CRYPT key fmsg

| fmsg ⊞ fmsg |ZERO .

We use uppercase constructors and ⊞ because we want to use the usual operator names
for msg . The equivalence relation =Xor: fmsg × fmsg → bool is defined as the equational
theory generated by the following equations.

(x⊞ y)⊞ z≃x⊞ (y⊞ z) (A) x⊞ y≃ y⊞x (C)

x⊞ZERO≃x (U) x⊞x≃ZERO (N)

Normal-form and normalization function. We define the function (_)↓: fmsg→ fmsg
that returns the normal-form of the given term. Our normal-form is defined such that nei-
ther (U) nor (N) are applicable from left to right and all applications of ⊞ are nested to the
right and sorted with respect to a total order on fmsg . To define the normalization function,
we first define two helper functions. The helper function _⊕?_: fmsg × fmsg→ fmsg is
defined as a⊕?b=(if b=ZERO then a else a⊞ b). It applies the ⊞ operator, but ensures that
the message a⊞ZERO, which is not in normal-form, is never created. The helper function
_⊕↓_: fmsg × fmsg→ fmsg is defined in Figure 5.9 and also applies ⊞ to its arguments. It
ensures that the resulting message is in normal-form whenever its arguments are already
in normal-form.

x⊕↓ZERO=x

ZERO⊕↓x=x

(a1⊞ a2)⊕↓ (b1⊞ b2)= if a1 = b1 then a2⊕↓ b2

else if a1<b1 then a1⊕? (a2⊕↓ (b1⊞ b2))

else b1⊕? ((a1⊞ a2)⊕↓ b2)

(a1⊞ a2)⊕↓ b= if a1 = b then a2

else if a1<b then a1⊕? (a2⊕↓ b)
else b⊞ (a1⊞ a2)

a⊕↓ (b1⊞ b2)=(b1⊞ b2)⊕↓ a

a⊕↓ b= if a= b then ZERO else if a< b then a⊞ b else b⊞ a

Figure 5.9. The ⊕↓ function.

Using these definitions, we can now define ↓ as follows.

(HASH m)↓= HASH (m↓)

(PAIR m1 m2)↓= PAIR (m1↓) (m2↓)

(CRYPT k m)↓= CRYPT k (m↓)

(a⊞ b)↓= (a↓)⊕↓ (b↓)

x↓= x

We have proved that ↓ is sound and complete with respect to =Xor in the following sense.

Lemma 5.11. For all s, t∈ fmsg, s=Xor t if and only if s↓= t↓.
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Since we define the normalization function ↓ directly, we can use Isabelle’s automatic
termination prover and the message m↓ is obviously unique. The direction s↓= t↓ implies
s=Xor t of Lemma 5.11 follows from the intermediate result s=Xor s↓ and is not that hard
to prove. The other direction is much harder to prove and requires several intermediate
definitions and lemmas. For example, it was useful to inductively define a predicate nf
that characterizes normal-form messages and show that nf (a) if and only if a= a↓. This
allowed us to use the automatically derived induction principle for nf for all messages a↓.

An alternative approach would be to to use ordered rewriting or rewriting modulo AC
and to define ↓ as the fixpoint of the one-step rewriting relation. This would require
manual confluence and termination proofs for the rewriting relation. On the other hand, the
direction s=Xor t implies s↓= t↓ in Lemma 5.11 would follow immediately from confluence.

The msg Type, DM , parts, and subterms. We use the declaration

typedef msg = {m∈ fmsg |m↓=m}

to define the abstract type msg that is represented by the subset of normal-form messages
in fmsg . The typedef declaration also defines two functions Absmsg: fmsg → msg and
Repmsg :msg→ fmsg and axioms that state that Absmsg is a bijection from the representing
set {m|m↓=m} to msg and Repmsg is a bijection from msg to {m|m↓=m}. For m with
m↓� m, Absmsg(m) is unspecified. Using these functions, we can lift the constructors from
fmsg to msg as follows.

Nonce a i=Absmsg(NONCE a i)

Pair m1 m2 =Absmsg(PAIR (Repmsg(m1)) (Repmsg(m2)))

Hash m=Absmsg(HASH (Repmsg(m)))

Xor a b=Absmsg((Repmsg(a)⊞Repmsg(b))↓)

Zero=Absmsg(ZERO)

Note that except for the definition of Xor , the argument to Absmsg is already in normal
form since all constructors except for ⊞ are free with respect to =Xor. For Xor , we use
↓ to ensure that the argument to Absmsg is in normal-form because the result would be
unspecified otherwise. The definitions for Agent, Int, Real, and Key are analogous to Nonce.
In the following, we write a⊕ b for (Xor a b) and 0 for Zero.

We can now define the message deduction function DM : agent→msg set→msg set . As
can be seen in Figure 5.10, the definition is analogous to the definition for the free message
algebra without Xor . Note that the Xor-rule uses the Xor constructor for the type msg
of normal-form messages.

Inj
m∈M

m∈DMA(M)
	

	 Number
Number n∈DMA(M)

Xor
a∈DM A(M) b∈DMA(M )

a⊕ b∈DM A(M)
Zero

0∈DM A(M)

Figure 5.10. Message deduction function DM for Xor . The missing rules are equal to Figure 5.2.

5.3 Extended Model with Xor and Overshadowing

145



To define the subterms and parts functions on msg , we first extend the definitions from
Figure 5.3 to account for ⊞ to obtain the functions fsubterms and fparts on fmsg . For
example, (NONCE A i)∈ fparts((NONCE A i)⊞ (NONCE A i)). Then, we define parts as

parts(m) = {Absmsg(a)|a∈ fparts(Repmsg(m))}.

The function subterms is defined analogously. To illustrate these definitions, we consider
the message m=(Nonce A i)⊕ (Nonce A i). Unfolding the definition of ⊕, which is an
abbreviation for Xor , we see that

m=Absmsg((Repmsg(Nonce A i)⊞Repmsg(Nonce A i))↓) =Absmsg(ZERO)= 0.

Hence, parts(m) = parts(0) = {0}. This is exactly the definition that we want because we
are only interested in the parts of the normal form of a message. For non-Xor messages,
we know that those must have been used in the construction of the message.

5.3.2 Network Rule with Overshadowing

Our Fake and Net rules allow the intruder to receive, delete, and send messages. Ignoring
the aspects of timing and network connectivity, giving the intruder the additional capability
to modify messages that are in transmission is not necessary since he can always receive
and delete such a message m, deduce a new message m′ using m and other known mes-
sages, and finally send the message m′. Since our model captures both timing and network
connectivity, this reasoning does not apply. We therefore extend our model in this section
to account for various modifications of messages in transmission.

Message Manipulations on the Wireless Channel. As shown in [147], if no crypto-
graphic integrity protection is employed, it is possible for an adversary to perform symbol
flipping and partial overshadowing of messages sent by honest agents. To perform these
modifications, it is not necessary for the adversary to known the original messagem. He just
has to send the right modification signal at the right time. Then the receiver receives the
superposition of the modification signal and the original signal that encodes the messagem,
which results in the reception of a message m′. We will consider two types of message
modification. First, the intruder can completely overshadow the component of a pair with a
known message, even if the remaining components are not known. For example, if an honest
agent sends 〈nv , P 〉, then the adversary can overshadow the P and cause the reception
of 〈nv , I 〉, even if he does not know nv . Second, the intruder can modify an unknown
message m into an unknown message m′ such that the Hamming-distance between m and
m′ is low. For example, if the identities P and I differ only in a few positions, then the
adversary can use symbol flipping or overshadowing to modify nv ⊕P to nv ⊕ I, even if he
does not know nv . To achieve this, he computes the positions i where P and P ′ differ, then
he guesses nv i for these positions, and finally overshadows these positions with nv i ⊕ Pi

′.
We will later show in Figure 5.15 how this can capability can lead to attacks.

Formalization of Message Manipulations. To formalize these message manipulation
capabilities, we require two definitions. We define the components of a message m as

components(m) =

{

components(m1)∪ components(m2) ifm= 〈m1,m2〉
{m} otherwise

.

We define the set LHW of messages that might have have a low Hamming-weight as the
least set closed under the rules in Figure 5.11.
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Agent A∈LHW Number n∈LHW Time t∈LHW

m1∈LHW m2∈LHW
m1⊕m2∈LHW 0∈LHW

Figure 5.11. The set LHW is the least set closed under these rules.

This definition captures that constants and the Xor of constants might have a low
Hamming-weight. For nonces, hashes, encryptions, or the Xor of such messages where they
do not cancel out, we assume the probability of a low Hamming-weight is negligible. Note
that two messages m1 and m2 have a small Hamming-distance if m1⊕m2∈ LHW . Using
these definitions, we define the extended network rule ExtNet in Figure 5.12.

∀u∈ components(m).
∃tS A L m′ v.

v ∈ components(m′)

tr ∈Tr(proto) ∧
(

tS, Send TxA
j
m′ L

)

∈ tr
∧u⊕ v ∈LHW

∧ cdistNet

(

TxA
j
,RxB

i
)

� ⊥

∧tR− tS ≥ cdistNet

(

TxA
j
,RxB

i
)

tr ·
(

tR,Recv RxB
i

m
)

∈Tr(proto)

Figure 5.12. The extended network rule that allows for partial overshadowing of messages.

The timing constraints are similar to the original Net rule, but we do not require that
there is one corresponding Send-event for the received message m. We require that for each
component u of m, there is a corresponding Send-event for a message m′ with component v
such that the Hamming-distance between u and v is small. This reflects that a message that
contains v can be received as u if both messages are close with respect to the Hamming-
distance. Note that we do not require any intruder sends for such low Hamming-distance
modifications. An alternative viewpoint is that we allow for a small number of bit-errors
in the transmission.

5.4 Case Study: The Brands-Chaum Protocol

In this section, we apply our framework with Xor and the network rule that accounts for
overshadowing to the Brands-Chaum distance bounding protocol. We first formalize the
protocol and define the desired security notion. Then we show that there is an attack,
discuss various fixes, and prove the security of the fixed variants.

The Brands-Chaum protocol was the first proposed distance bounding protocol. Its
goal is to prevent Mafia fraud and distance fraud as defined in Section 2.1.4.3. The pro-
tocol is given in Figure 5.13 and proceeds as follows. First, the prover commits to a fresh
nonce np. After receiving the commitment, the verifier starts a rapid bit-exchange phase
where he sends a single challenge bit nv i of his freshly chosen nonce nv . The prover responds
with nv i ⊕ npi and the verifier measures the roundtrip time. Since only a single bit is
transmitted and the computation on the prover’s side is cheap, delays that do not stem from
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the traveling times of the two signals are minimized. After the rapid bit-exchange phase
is completed, the prover sends an authentication message that consists of the opening of
the commitment and a signature on nv and the response nv ⊕ np. Finally, after receiving
the authentication messages, the verifier computes the upper bound on the distance as the
maximal roundtrip time from the rapid bit-exchange multiplied by c divided by 2.

V (Verifier) P (Prover)

choose fresh nonce np

�

c
(c, o)7 commit(np)

choose fresh nonce nv

Rapid bit exchange for i7 1 to |nv |

tS,i
V
7 readClock() �

nvi

mi7 nv i⊕ npi

tR,i
V
7 readClock() �

mi

verify signature �
(o,sig(〈nv ,m〉,skP))

np7 open(c, o)
check m=nv ⊕ np

conclude that |locV− locP| ≤
c

2
∗max{(tR,i

V − tS,i
V )|1≤ i≤ |nv |}

Figure 5.13. The Brands-Chaum distance bounding protocol.

Since our non-probabilistic model cannot deal with the exchange of single random bits,
we abstract away from the rapid bit-exchange and formalize this phase as the exchange
of a single challenge and a single response. Note that for this protocol, the k-th bit of the
challenge and response is completely independent of the earlier bits exchanged in the rapid
bit-exchange phase. Hence, it seems reasonable to assume that we do not miss attacks by
forcing the adversary to come up with the whole challenge or response at once if he wants
to interfere with the challenge-response phase.

We formalize the protocol as the set protoBS = {bs1, bs2, bs3, bs4, bs5} of protocol steps.

1. The first step bs1 formalizes the commitment by the prover. We use a hash function
h(m) to model the bit commitment scheme, i.e., commit(m) = (h(m),m).

(Nonce P i) � used(tr)

(SendA r [P1,Nonce P i],Hash (Nonce P i))∈ bs1(P , tr , t)

The step sends the hash of a fresh nonce and stores the protocol state [P1,Nonce P i],
which denotes that the first step of the prover was executed with the given nonce.

2. The second step bs2 formalizes the reception of the commitment and the sending of the
challenge by the verifier.

(tR
V ,Recv RxV

r com)∈ tr
(Nonce V j) � used(tr)

(SendA r [V1,Nonce V j, com],Nonce V j)∈ bs2(V , tr , t)

Similarly to the first step, the new event is associated with the protocol state denoting
that the first step of the verifier was executed with the given nonce and commitment.
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3. The third step bs3 formalizes the response to the challenge by the prover.

(tR
P ,Recv RxP

r nv)∈ tr

(tS
P ,Send TxP

r com [P1, np])∈ tr

(SendA r [P2, np ,nv ],nv ⊕ np)∈ bs3(P , tr , t)

Note that in contrast to the earlier protocol formalizations without Xor , we use an
untyped receive of the nonce nv . This captures more attacks and is also a more realistic
assumption with Xor . Even if type tags are used to distinguish messages of different
types, the Xor of a nonce and two identities usually has the same type tag as a nonce.

4. The fourth step bs4 formalizes the delayed authentication of the response by the prover.

(tS
P ,Send TxP

r resp [P2, np ,nv ])∈ tr

(SendA r [P3,np , nv ], sig(〈nv , nv ⊕ np 〉, skP))∈ bs4(P , tr , t)

5. The fifth step bs5 formalizes the claim by the receiver after receiving both the response
to the challenge and the authentication message.

(tS
V ,Send TxV

r nv [V1, nv , com])∈ tr

(tResp
V ,Recv RxV

r m)∈ tr

(tAuth
V ,Recv RxV

r sig(〈nv ,m〉, skP))∈ tr
np =m⊕ nv com =Hash np

(

ClaimA,
〈

P , (tResp
V − tS

V )∗ c
2

〉)

∈ bs5(V , tr , t)

Given the responsem and his own nonce nv , the verifier can compute the prover’s nonce
np as m⊕ nv and check the correctness of the commitment com.

We now define the desired security property of distance bounding protocols.

Definition 5.12. Let proto be a distance bounding protocol, V an honest agent, and
P an arbitrary agent. Furthermore, consider a valid trace tr ∈ Tr(proto), where
(t,Claim V 〈P , d〉)∈ tr. The protocol proto is honest-prover-secure (hp-secure) if P honest
implies d ≥ |locV − locP |. It is dishonest-honest-prover-secure (dp-secure) if P dishonest
implies that there is a dishonest agent P ′ with d≥ |locV − loc

P
′|.

If P is honest, the theorem guarantees that the distance computed by the verifier is an
upper bound on the physical distance between the involved agents. If P is dishonest, we
obtain only the weaker guarantee that the computed distance is an upper bound on the
distance between the verifier and some dishonest prover.

By adapting the definition in the dishonest prover case, we account for the possibility
that a dishonest agent P provides another dishonest agent P ′ with his key material and
thereby allows P ′ to execute the distance bounding protocol posing as P . This allows P
to claim the distance between P ′ and V .

We do not consider a scenario where collusion between dishonest agents is limited, e.g.,
provers that cooperate once, but do not want to give away long-term key material or help
other provers with future attacks. In such a scenario, it might be possible to achieve a
stronger security property where a dishonest prover cannot claim the distance of another
dishonest prover. The security of a protocol in such a setting is called resistance against
Terrorist fraud. See Section 2.1.4.4 for a discussion of this issue.
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5.4.1 Security Analysis

We now analyze the security of the Brands-Chaum distance bounding protocol. Note that
leaving out the commitment allows for a simple distance fraud attack where a dishonest
prover jumps the gun and sends some reply m before receiving nv . The nonce np can
be later computed as m ⊕ nv . Also note that if the verifier can receive a reflection of his
own challenge nv as a response, there is another distance fraud attack where a dishonest
prover P commits to 0 and the verifier accepts his own challenge nv =nv ⊕0 as a response
from P . More generally, the prover P can commit on a message l with low Hamming-weight
and use message modification to cause the reception of nv ⊕ l at the verifier. To prevent
these attacks, we assume from now on that no radio transceiver can receive its own signal,
i.e., for all A, cdistNet(TxA

r ,RxA
r ) =⊥.

Theorem 5.13. The protocol protoBS is hp-secure, but not dp-secure.

Proof. (Sketch) If there is a an event Claim V 〈P ,d〉 for an honest prover P , then V must

have sent the challenge Nonce V j at some time tS
V and received a response (Nonce V j)⊕np

at time tR
V . Since V also receives a signature on the challenge and response by P , we know

that np=Nonce P k for some k. From the protocol rules, we know that P must have received
Nonce V j at some time tR

P and sent the response m=(Nonce V j)⊕ (Nonce P k) at some

later time tS
P . Using Lemma 5.3, we obtain tR

P − tS
V ≥ cdistLoS(V , P ) since Nonce V j is not

used before tS
V . We also know that the response m is the first message with Nonce P k ∈

parts(m) since the nonce is only used in the commitment earlier on, where it is protected
by the hash. We have proved a lemma similar to Lemma 5.3, but with parts instead
of subterms . Using this lemma, we obtain tR

V − tS
P ≥ cdistLoS(P , V ). Combining the two

inequalities and tS
P ≥ tR

P , we obtain the desired result. �

To see that the protocol is not dp-secure, consider the attack shown in Figure 5.14. Here,
a dishonest prover hijacks the RBE phase of an honest prover. We coin such an attack a
distance hijacking attack [60]. This type of attack is not covered by the three classes of
attacks usually considered, but it is not hard to see that in scenarios such as the location-
based access control system described in Section 2.1.4.3, it is a valid threat that a distance
bounding protocol should prevent.

V (Verifier) P (Prover) I (Intruder)

�

c

Rapid bit exchange for i7 1 to |nv |

�

nvi

�

mi

�

(o,sig(〈nv ,m〉,skI))

Figure 5.14. Distance Hijacking attack on Brands-Chaum protocol.
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For the attack to work, we assume that the intruder I can either compute the opening o
from the commit c and the messages exchanged in the rapid bit-exchange phase or overhears
the authentication message from P , but ensures that it does not arrive at V.

Assuming that the distances between V and P , V and I, and P and I are 5, 6, and 1
respectively, the attack is captured by the following trace in Tr(protoBS ).

[ (0, Send TxP
r (Hash (Nonce P 0)) [P1,Nonce P 0]),

(5,Recv RxV
r (Hash (Nonce P 0))),

(6, Send TxV
r (Nonce V 0) [V1,Nonce V 0,Hash (Nonce P 0)]),

(11,Recv RxP
r (Nonce V 0)),

(11, Send TxP
r ((Nonce P 0)⊕ (Nonce V 0)) [P2,Nonce P 0,Nonce V 0]),

(12,Recv Rx I
r (Nonce V 0)),

(12,Recv Rx I
r ((Nonce P 0)⊕ (Nonce V 0))),

(16,Recv RxV
r ((Nonce P 0)⊕ (Nonce V 0))),

(17, Send Tx I
r sig(〈Nonce V 0, (Nonce P 0)⊕ (Nonce V 0)〉, skI) [ ]),

(23,Recv RxV
r sig(〈Nonce V 0, (Nonce P 0)⊕ (Nonce V 0)〉, skI)),

(

0,Claim V
〈

I , (16− 6)∗ c
2

〉)

]

The security property for distance bounding protocols that we use here and that captures
distance hijacking, Mafia fraud, and distance fraud was introduced in [20]. The first distance
hijacking attacks where independently published by the author together with Schaller,
Capkun, and Basin in [20] and Malladi in [118]. In [20], the attack on a distance bounding
protocol proposed by Meadows et al. in [123] was called an impersonation attack. It was
jointly discovered with Cas Cremers while the author was working on formalizing the
protocol in this framework. Cremers then discovered later on [60] that similar attacks
also apply to the CRCS protocol and the Brands-Chaum protocol. The class of distance
hijacking attacks was defined and explored in [60].

5.4.2 Distance Hijacking Attack on Wrongly Fixed Version

One possible way to prevent the distance hijacking attack on the Brands-Chaum protocol
is to incorporate the prover’s identity P into the rapid bit-exchange phase. A cheap way
to achieve this is to modify the response to nv ⊕ np ⊕ P . Since V knows nv and receives
a commitment to np beforehand, he can compare the identities in the response and the
signature.

The described changes yield the protocol protoBSwf =
{

bs1, bs2, bs3
wf , bs4

wf , bs5
wf
}

where

the first two steps remain unchanged and the final three steps are defined as follows.

3. In the fast response of the prover, we use ⊕ to combine the identity with the two nonces.

(tR
P ,Recv RxP

r nv)∈ tr

(tS
P ,Send TxP

r com [P1, np])∈ tr

(SendA r [P2,np , nv ],nv ⊕ np ⊕P )∈ bswf 3(P , tr , t)

4. In the authenticated response of the prover, we have to account for the modified fast-
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response.

(tS
P ,Send TxP

r resp [P2,np , nv ])∈ tr

(SendA r [P3,np , nv ], sig(〈nv , nv ⊕ np ⊕P 〉, skP))∈ bs4
wf (P , tr , t)

5. In the final step of the verifier, we also account for the modified fast-response.

(tS
V , Send TxV

r nv [V1,nv , com])∈ tr

(tResp
V ,Recv RxV

r m)∈ tr

(tAuth
V ,Recv RxV

r sig(〈nv , m〉, skP))∈ tr
np =m⊕ nv ⊕P com =Hash np

(

ClaimA,
〈

P , (tResp
V − tS

V )∗ c
2

〉)

∈ bs5
wf (V , tr , t)

The protocol is still hp-secure and the changes prevent the concrete attack from
Figure 5.14. Nevertheless, the protocol does not provide dp-security. Assume that the
identities of P and a dishonest prover I only differ in the k-th bit. Then the distance
hijacking attack given in Figure 5.15 is possible. It is clear that the attack works when-
ever the Hamming-distance between P and I is small enough such that it is possible
to guess the required number of bits.

V (Verifier) P (Prover) I (Intruder)

�

c

Rapid bit exchange for i7 1 to k− 1

�

nvi

�

mi

�

nvk

�

nvk⊕npk⊕Ik
guess nv k⊕ npk

|�
mk

Rapid bit exchange for i7 k+ 1 to |nv |

�

nvi

�

mi

�

(o,sig(〈nv ,m〉,skI))

Figure 5.15. Distance Hijacking attack on wrongly fixed version of Brands-Chaum.

Assuming that the distances between V and P , V and I, and P and I are 5, 6, and 1
respectively, the attack is captured by the following trace in Tr(protoBS ).

Analysis of Physical Protocols

152



[ (0, Send TxP
r (Hash (Nonce P 0)) [P1,Nonce P 0]),

(5,Recv RxV
r (Hash (Nonce P 0))),

(6, Send TxV
r (Nonce V 0) [V1,Nonce V 0,Hash (Nonce P 0)]),

(11,Recv RxP
r (Nonce V 0)),

(11, Send TxP
r ((Nonce P 0)⊕ (Nonce V 0)⊕P) [P2,Nonce P 0,Nonce V 0]),

(12,Recv Rx I
r (Nonce V 0)),

(12,Recv Rx I
r ((Nonce P 0)⊕ (Nonce V 0))),

(16,Recv RxV
r ((Nonce P 0)⊕ (Nonce V 0)⊕I)),

(17, Send Tx I
r sig(〈Nonce V 0, (Nonce P 0)⊕ (Nonce V 0)⊕I〉, skI) [ ]),

(23,Recv RxV
r sig(〈Nonce V 0, (Nonce P 0)⊕ (Nonce V 0)⊕I〉, skI)),

(

0,Claim V
〈

I , (16− 6)∗ c
2

〉)

]

Note that even though the message nv ⊕np⊕P is transmitted by the prover at time 11,
the verifier receives the different message nv ⊕np⊕I at time 16. This is possible since the
Hamming-distance between the two messages might be small, i.e.,

nv ⊕ np ⊕P ⊕nv ⊕ np ⊕I =P ⊕I ∈LHW.

5.4.3 Security of Version with Explicit Binding

The approach to bind the rapid bit-exchange phase to the prover’s identity is valid. The
problem with the previous fix is the use of Xor to achieve this binding. We therefore use a
hash function and replace the response nv ⊕np from the original protocol by nv ⊕h(np ,P).
The previous attack is not possible anymore since even if the Hamming-distance between
P and I is small, the Hamming-distance between h(np , P) and h(np , I) is not small in
general. Note that we can now drop the commitment without becoming susceptible to the
distance fraud attack described earlier. If I jumps the gun and sends some response m
before receiving nv , then he has to find some np such that m=nv ⊕h(np ,I). This is not
possible for a non-invertible hash function.

We therefore define the protocol as protoBS expl =
{

bs1
expl, bs2

expl, bs3
expl, bs4

expl
}

.

1. There is no commitment, the first step bs1 formalizes the sending of the challenge by
the verifier.

(Nonce V j) � used(tr)

(SendA r [V1,Nonce V j],Nonce V j)∈ bs1
expl(V , tr , t)

The new event is associated with the protocol state denoting that the first step of the
verifier has been executed with the given nonce.

2. The second step bs2 formalizes the response to the challenge by the prover.

(Nonce P i) � used(tr)

(tR
P ,Recv RxP

r nv)∈ tr

(SendA r [P1,Nonce P i, nv ],nv ⊕Hash 〈Nonce P i, P 〉)∈ bs2
expl(P , tr , t)

Instead of sending the Xor of the verifier and prover nonces, the prover sends the Xor
of the verifier’s nonce and the hash of the prover’s nonce and the prover’s identity.
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3. The third step bs3 formalizes the delayed authentication of the response by the prover.

(tS
P ,Send TxP

r resp [P1,np , nv ])∈ tr

(SendA r [P2, np ,nv ], sig(〈nv ,np 〉, skP))∈ bs3
expl(P , tr , t)

The prover signs np instead of the response for this variant of the protocol since there
is no way to compute np from nv ⊕ h(np , P ).

4. The fourth step bs4 formalizes the claim by the receiver after receiving both the response
to the challenge and the authentication message.

(tS
V , Send TxV

r nv [V1,nv ])∈ tr

(tResp
V ,Recv RxV

r m)∈ tr

(tAuth
V ,Recv RxV

r sig(〈nv ,np 〉, skP))∈ tr
m= nv⊕Hash 〈np , P 〉

(

ClaimA,
〈

P , (tResp
V − tS

V )∗ c
2

〉)

∈ bs4
expl(V , tr , t)

The commitment check is replaced by a check that the fast response is the Xor of nv
and the hash.

Theorem 5.14. The protocol protoBS impl is hp-secure and dp-secure.

Proof. (Sketch) The proof of hp-security is similar to the proof for the original Brands-
Chaum protocol. For dp-security we proceed as follows. If there is a an event Claim V 〈I , d〉
for a dishonest prover I, then V must have sent the challenge Nonce V j at some time
tS
V and received a response (Nonce V j) ⊕ (Hash 〈np , I 〉) at time tR

V . There must be
some agent C who performs the corresponding send of a message containing the com-
ponent m′ = (Nonce V j) ⊕ (Hash 〈np , I 〉) ⊕ l with l ∈ LHW at time tS

C such that

tR
V − tS

C ≥ cdistLoS(C, V ). By Lemma 5.2, we also know that tS
C − tS

V ≥ cdistLoS(V , C) and

hence tR
V − tS

V ≥ cdistLoS(C, V )∗2. We now perform a case distinction on C . If C is honest,

then only step bs2
expl send a message nv ⊕ (Hash 〈Nonce C j, C 〉) that might match this

message. Since Hash 〈Nonce C j,C 〉 can not appear in nv since the nonce is fresh, we have
Hash 〈Nonce C j,C 〉∈ parts(m′) which is impossible. C must therefore be a dishonest agent

and we can conclude from tR
V − tS

V ≥ cdistLoS(C, V )∗2 that (tR
V − tS

V )∗ c
2
≥ |locV − locC|. �

Note that for this variant, we did not require the assumption that a radio transceiver
can never receive its own transmitted signal since h(x, y) never has low Hamming-weight.

5.4.4 Security of Version with Implicit Binding

Instead of including P ’s identity in the rapid bit-exchange phase, it is also possible to
include the identity in the commitment message. Instead of commit(np), the prover sends
commit(np , P). Since the commitment is hiding, nobody else can commit on np and a
different identity before the rapid bit-exchange starts. The resulting protocol protoBS impl=
{

bs1
impl, bs2, bs3, bs4, bs5

impl
}

is identical to the original protocol except for the first and last
step.

1. In the commit step of the prover, we include the identity P in the hash.

(Nonce P i) � used(tr)

(SendA r [P1,Nonce P i],Hash 〈Nonce P i, P 〉)∈ bs1
impl(P , tr , t)
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5. In the final step of the verifier, we adapt the check of the commitment.

(tS
V ,Send TxV

r nv [V1, nv , com])∈ tr

(tResp
V ,Recv RxV

r m)∈ tr

(tAuth
V ,Recv RxV

r sig(〈nv ,m〉, skP))∈ tr
np =m⊕ nv com =Hash 〈np , P 〉

(

ClaimA,
〈

P , (tResp
V − tS

V )∗ c
2

〉)

∈ bs5
impl(V , tr , t)

Theorem 5.15. The protocol protoBS impl is hp-secure and dp-secure.

Proof. (Sketch) The proof of hp-security is similar to the proof for the original Brands-
Chaum protocol. For dp-security we proceed as follows. If there is a an event Claim V 〈I , d〉
for a dishonest prover I, then V must have sent the challenge Nonce V j at some time
tS
V and received a response m = (Nonce V j) ⊕ np at time tR

V . V must also have received
a commitment Hash 〈np , I 〉 before tR

V . Since the commitment on np is received before
Nonce V j is first used, we know that Nonce V j∈parts(m). There must be some agent
C who performs the corresponding send of a message containing the component m′ =
(Nonce V j) ⊕ np ⊕ l with l ∈ LHW at time tS

C such that tR
V − tS

C ≥ cdistLoS(C, V ). If C
is dishonest, then we can finish the proof analogously to the proof for the version with
explicit binding. If C is honest, then m′ can be either sent in the challenge step or in
the response step. If it is sent in the challenge step and C = V , then this contradicts
our assumption that no agent can receive a radio signal that he transmitted himself. If
C � V , then m′ =Nonce C k cannot contain Nonce V j. If m′ is sent in the response step,
then it is of the form nv ⊕ (Nonce C k) and (Nonce C k) ∈ parts(m′) since nv cannot
contain this nonce such that it cancels out. Since m=m′⊕ l and the nonce is not of low
Hamming-weight, we know that (Nonce C k) ∈ parts(np) and (Nonce V j) ∈ parts(nv).

Hence tS
C ≥ tS

V and I must have committed to np before tC
S where Nonce C k was first

used outside of Hash 〈Nonce C k, C 〉. Since it is impossible to obtain Hash 〈np , I 〉 from
Hash 〈Nonce C k,C 〉 such that Nonce C k ∈ parts(np), this is a contradiction. �

5.5 Isabelle Formalization

We briefly survey our Isabelle/HOL formalization [158]. Our framework consists of the
following theories, depicted in Figure 5.16 along with their dependencies.

Message Theory. Our message theory models a free term algebra and is based on
Paulson’s work [140]. For the analysis of distance bounding protocols, we have extended
the theory with support for XOR.

Geometric Properties of R3. Since agent’s locations are vectors in R3, we use the for-
malization of real numbers provided in Isabelle’s standard library.

Parameterized Communication Systems. Rules describe the network properties,
possible intruder actions, and the protocol steps. Together, these inductively define
the possible set of traces.
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Protocol Formalizations. These are given by sets of step functions, formalizing the
actions taken by agents running the protocol. For a given protocol, we instantiate the
inductive rules with the corresponding step functions to obtain all possible execution
traces. Security properties of the protocol are then proved by induction or using the
inherited protocol-independent properties, where possible.

Protocol Independent Properties. Parameterizing the set of possible traces by pro-
tocol step functions allows us to prove protocol independent system properties.

Message 
Theory

Extension 
with XOR

Parameterized 
Communication 

Systems

Protocol 
Independent 
PropertiesAuthenticated 

Ranging

Ultrasound 
Distance 
Bounding

Secure Time 
Synchronization

Geometric 
Properties

of    F R
3

Brands Chaum 
(Attack)

Brands Chaum 
Fix-XOR 
(Attack)

Brands Chaum 
Fix-Explicit

Brands Chaum 
Fix-Implicit

Figure 5.16. Theories and Dependencies of our Isabelle Formalization.

Most of our formalization consists of general results applicable to arbitrary protocols. For
the basic version without XOR, the security proofs of the concrete protocols are therefore
comparably small. For the case studies with XOR, we could not reuse so many protocol
independent results and reasoning about message deduction for XOR was considerably
harder than for the free algebra. Table 5.1 compares the sizes of the different parts of the
formalization.
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Theory Lines of Code Lemmas Definitions Pages

Message Theory 2221 229 18 43
(Extension with XOR) 3668 238 21 137
Geometric Properties of R3 272 13 6 6
Parameterized Communication Systems 633 51 4 12
Protocol Independent Properties 2342 57 4 39

Authenticated Ranging 489 57 6 11
Ultrasound Distance Bounding 681 15 6 15
Secure Time Synchronization 961 20 10 22

Brands Chaum (Attack) 635 7 10 6
Brands Chaum Fix-XOR (Attack) 662 7 10 6
Brands Chaum Fix-Explicit 1389 16 9 30
Brands Chaum Fix-Implicit 2407 35 9 41

Total 16360 745 113 368

Table 5.1. Statistics about our Isabelle Formalization.
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Chapter 6

Related Work

In this chapter, we discuss related work. First, we discuss related work for Chapter 3 and
compare our approach to existing approaches for security protocol analysis. Then, we
discuss related work for our impossibility results from Chapter 4. Finally, we discuss related
work to our framework for the analysis of physical protocols from Chapter 5.

6.1 Security Protocol Analysis

In the following we compare existing approaches to security protocol analysis with respect
to three different aspects. First, we compare the different formalisms to define crypto-
graphic operators, their properties, and the message deduction capabilities of the adversary.
We focus on the equational theories used to model DH exponentiation and bilinear pairings.
Second, we compare the different formalisms to specify protocols and define their execu-
tions. Third, we compare the different formalism to specify security properties. Afterwards
we compare three existing approaches for the unbounded analysis of security protocols in
more detail: ProVerif [28], Maude-NPA [77], and approaches based on backwards search
such as Athena [162], CPSA [150], and Scyther [62].

6.1.1 Cryptographic Messages

Existing models for cryptographic messages can be roughly partitioned into those with and
without explicit destructors . In models without explicit destructors, there are no function
symbols for decryption and projection and these operations are captured by message deduc-
tion rules. Protocol steps use pattern matching to denote that a message is decrypted or a
signature is checked. Since there are no function symbols for destructors, these approaches
can use the free algebra. Models with explicit destructors represent operations that decon-
struct messages by function symbols and equations. These approaches use terms modulo
the equational theory generated by the equations for the destructors. The message deduc-
tion capabilities of the adversary correspond to applying function symbols modulo this
equational theory. In Chapter 5, we use a model without explicit destructors. In Chapter 3
and Chapter 4, we use explicit destructors. We also show that by computing the variants
of protocol and message deduction rules, we can get rid of the equational theory induced
by a subterm-convergent rewriting system.
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Equational Theories for Diffie-Hellman

Existing symbolic approaches that support Diffie-Hellman exponentiation differ in the sup-
ported operations and the equations that are taken into account. The simplest equational
theory uses a fixed base g and is generated by the equation (gˆx)ˆy≃ (gˆy)ˆx. This theory
is used by Goubault-Larrecq [90] who uses resolution modulo theories such as this one to
verify DH protocols. The theory is also used by Blanchet et al. [31] in ProVerif. As a next
step, the restriction to a fixed base can be lifted by replacing g with a variable:

(gˆx)ˆy≃ (gˆy)ˆx (DH1).

This theory accounts for arbitrary nestings of exponentiations, for instance, it holds
that ((gˆa)ˆb)ˆc≈ ((gˆc)ˆa)ˆb. This theory is used in Maude-NPA [76] and in the reduc-
tion results by Meadows and Lynch [117] and Mödersheim [132] who show that reasoning
modulo this theory can be reduced to syntactic reasoning for restricted classes of protocols.

By adding the function symbol _−1 for inverses of exponents and the equations

(xˆy)ˆ(y−1)≃x (DH2) and (x−1)−1≃x (DH3),

we obtain the equational theory used by Küsters and Truderung [108]. An alternative
approach is to model the exponents as an abelian group with the operations (∗,_−1, 1) and
to combine the equational theory AG for abelian groups with

(gˆx)ˆy≃ gˆ(x∗y) (DH1’) and gˆ1≃ g (DH2’).

This is the equational theory that we use in Chapter 3 and the same equational theory is
also used in the decidability results for secrecy with respect to a bounded number of pro-
tocol sessions by Shmatikov [131] and Chevalier et al. [45]. In their works, Shmatikov does
not allow the adversary to multiply exponentiations and Chevalier et al. allow products
only in exponents. With the restriction of Chevalier et al., Küsters and Truderung [108]
show that the adversary for the equational theory generated by AG , DH1’, and DH2’ is
equally powerful to the adversary for the equational theory generated by DH1–3. For all
of the theories mentioned so far, unification is decidable, see for example Meadows and
Narendran [122].

For theories that go beyond the previously mentioned ones, for example by modeling
multiplication of DH group elements and the equation

(g1∗g2)ˆx≃(g1ˆx)∗(g2ˆx) (M1),

the situation is different. For many theories that includeM1 andDH1 orDH1’, it has been
shown by Kapur et al. [100, 99, 101] that unification is undecidable. Furthermore, there is
is no such theory for which a unification algorithm is known to exist. To circumvent the
problems with unification, Dougherty and Guttman [70] propose an alternative approach
to perform manual security proofs. Their proof technique abstracts away from concrete
exponentiations and reasons about vectors of integers that characterize how many times
secret values occur in exponents. Their approach uses an order-sorted term algebra and
models the exponents as a field.

Equational Theories for Bilinear Pairings

Intuitively an equational theory for bilinear pairings models two DH groups G1 and G2

and a bilinear map ê : G1 × G1→ G2. If the equational theory does not fix the bases of
the DH groups, then multiple generators of the same group G1 can be used. This is, for
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example, used by identity-based key exchange protocols, which use hashes of identities as
generators. Symbolic approaches where the base is not fixed usually also allow to model
families ê i:G1

i ×G1
i→G2

i of bilinear maps and DH groups. The main difference between
the symbolic models of bilinear pairings used in existing approaches is the model of the
DH groups. The equational theory used by Pankova and Laud [138] extends the equational
theory for DH exponentiation used by Küsters and Truderung [108] and is generated by

DH1–3 for the groups G2
i , similar equations for the groups G1

i , and the two equations

ê(x, y)≃ ê(y, x) and ê([z]x, y)≃ ê(y, x)ˆz

to model the properties of the bilinear map ê . They do not fix the base and support both
multiple generators and families of bilinear pairings. Our treatment of bilinear pairings is
similar to theirs. The main difference is that we use a representation of DH exponentiation
where products of exponents are represented as terms. This is useful in our search since the
symbolic term gˆx, where x can be instantiated with a product of arbitrary size, cannot be
represented as a term in their term algebra. Kremer et al. [104] consider static equivalence
for bilinear pairings and use a theory with fixed bases for G1 and G2, but model addition
of exponents and multiplication in G1 and G2. Note that their method does not rely on
unification.

6.1.2 Protocol Specification and Execution

Most classical security protocols have a simple control flow and can be specified by finite
sequences of receive-steps and send-steps. Even though many approaches use such a pro-
tocol specification language, there are many different ways to define the corresponding
protocol executions. For example, Cremers [61] defines a trace-based operational semantics,
Maude-NPA [77] uses multiset rewriting modulo E to define the underlying semantics, and
strand spaces [83] use a partially ordered semantics.

To support protocols that have a more complicated control flow or utilize mutable global
state, there are three popular approaches. First, set rewriting or multiset rewriting focuses
on the state changes performed by protocol steps. This approach is used, for example, by
Avispa [10] and Cervesato et al. [41]. Guttman [91] proposes an extension of the strand
space model with multiset rewriting to model state that is shared between different protocol
sessions. Second, process calculi such as the applied pi calculus [3] focus on processes and
their communication. Although there are encodings of mutable global state for such process
calculi, direct support is more convenient in some settings. Hence, extensions of the applied
pi calculus with mutable state have been proposed by Arapinis et al. [9]. Third, protocol
implementations in C or F# can be used directly as specifications. This approach has been
followed for example by Goubault-Larrecq and Parrennes [89] and Bhargavan et al. [25].

6.1.3 Property Specification Languages

The standard properties considered in security protocol analysis often fall into the class of
secrecy properties or authentication properties [116]. There are different ways to specify
these. For example, bad states can specified by symbolic terms [77, 10, 150] or by for-
mulas [30, 162]. To handle authentication properties, support for inequalities or negation is
usually required. Additionally, some methods provide support for temporal operators. For
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example, Corin et al. [54] and Armado et al. [11] propose methods that support proposi-
tional, linear temporal logics with past operators for analyzing protocols with respect to a
bounded number of sessions.

6.1.4 ProVerif

Horn theory based approaches [168] such as ProVerif [28] were originally designed to reason
about secrecy and similar properties that can be encoded as derivability in Horn theories.
The approach is based on the following idea. Given a Horn theory T that encodes the initial
knowledge of the adversary, the message deduction rules, and the protocol, the message s
is secret if the fact K(s) denoting that the message s is known to the adversary is not
derivable in T . To obtain such a theory T , the following steps are performed. First, the
initial knowledge of the adversary is encoded by facts K(m). Second, the message deduction
rules available to the adversary are encoded by clauses of the form

K(m1),	 ,K(mk)→K(m),

which model that m is deducible from m1, 	 , mk. Third, the protocol is modeled by
additional message deduction clauses, abstracting away from the protocol state. For
example, the clause K(enc(x, kAB))→K(h(x)) models a protocol step that receives a mes-
sage encrypted with the fixed symmetric key kAB and replies with the hash of the plaintext.
The abstraction employed for protocols is sound for secrecy, but can introduce false attacks
since the protocol clause can be applied multiple times, even if the corresponding step
can be only executed once. Based on this approach and various extensions [30, 31], ProVerif
can analyze protocols specified in the applied pi calculus, authentication properties spec-
ified as correspondence properties, and also supports some equational theories that do
not include associative and commutative operators.

Küsters and Truderung lifted this restriction and developed support for XOR [109] and a
theory of DH exponentiation [108] that includes inverses (see Section 6.1.1). Their approach
is based on the transformation of Horn theories. More precisely, they reduce derivability of
a fact F in a Horn theory T modulo an equational theory for XOR (respectively DH) to
syntactic derivability of a fact F ′ in a Horn theory T ′. To analyze syntactic derivability,
they can then use ProVerif. For DH exponentiation, their reduction is restricted to expo-
nent-ground Horn theories. A Horn theory is exponent-ground, if (roughly) no variables
occur in exponents. Because of this restriction, only authentication properties that can be
stated as reachability properties can be analyzed. Using standard (sound) techniques for
Horn theory based protocol analysis like nonce-abstraction and considering only a fixed
number of agents [50], they analyze a wide range of AKE protocols with respect to secrecy
and Unknown Key Share (UKS) Attacks. Pankova and Laud [138] have recently extended
this approach with support for bilinear pairings. Their approach inherits the restriction to
exponent-ground theories and authentication properties that can be stated as reachability
properties. The reduction from derivability modulo a theory modeling DH to syntactic
derivability roughly corresponds to our usage of the finite variant property to switch from
reasoning modulo DH to reasoning modulo AC .

Proverif has also been extended [31] to support the verification of properties that cannot
be formalized as trace properties such as voting privacy, security against offline guessing,
and strong secrecy. For these, reasoning about observational equivalence between different
processes is required.
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6.1.5 Maude-NPA

The Maude-NPA tool [77] is based on backwards narrowing modulo an equational theory E .
In contrast to our search, which is based on causal dependencies and allows us to represent
different interleavings with a single constraint system, backwards narrowing represents
executions by (sequences of) symbolic states. Since considering all interleavings would
be too expensive, Maude-NPA employs various state space reduction techniques [78] to
ignore some interleavings. The backwards narrowing employed by Maude-NPA supports
all equational theories E with a finite variant decomposition (Σ,R,AX ) where AX is one
of AC , ACI , or C. For backwards narrowing, Maude-NPA uses folding variant narrowing to
perform equational unification modulo E . While the backwards narrowing is very general,
some of the state space reduction techniques, such as grammar generation, have to be
adapted for new equational theories E . This is roughly similar to our approach, where
support for new theories E that have a finite variant decomposition still requires the devel-
opment of normal message deduction rules and normal-form conditions. Erbatur et al. [75]
present a variation of backwards narrowing modulo E where certain parts of the symbolic
state have to remain irreducible. This is similar to our usage of R,AX -variants of rules
and our pruning of constraint systems that contain reducible node constraints with N1.

6.1.6 Athena, CPSA, Scyther

Athena [162], CPSA [150], Scyther [62], and its proof-generating version scyther-proof [125]
are closest to our approach. The main difference is that our property specification language
is more expressive and they are restricted to linear role scripts and the free algebra. In our
terminology, they all start with an initial constraint system that characterizes all possible
attacks and search for models of the constraint system that are also executions of the
considered protocol. In the search, they exploit causal dependencies and add protocol steps
that must have been executed and messages that must have been deduced. The reasoning
about protocol steps and their ordering is similar to ours. The main difference here is
that in Scyther and Athena, different protocol threads can never be identified later on in
the search, which is possible in CPSA, scyther-proof, and Tamarin. For reasoning about
message deduction, the differences between these approaches are more pronounced. CPSA
uses authentication tests, which focus on the origination of nonces and encryptions included
in messages. Like Tamarin, Athena, Scyther, and scyther-proof use a mixed forward
and backward search and enforce that the same message is never learned twice. The main
difference between these approaches and Tamarin is that Tamarin represents the proof
tree for message deduction explicitly because the restriction that the same message is never
learned twice is not sufficient for equational theories such as DH. Note that Scyther has been
extended with support for a large [22], but fixed number of compromising adversary models.

6.2 Impossibility Results

We first summarize impossibility results for protocols. Then, we list some impossibility
results for cryptography. Finally, we discuss related work on security relations.
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6.2.1 Impossibility Results and Bounds for Protocols

There are few existing impossibility results for security protocols. Pereira and
Quisquater [141] prove the generic insecurity for a class of authenticated group key agree-
ment protocols. Micciancio and Panjwani [130] consider the related question of lower
bounds on the communication complexity of security protocols. They establish a lower
bound on the communication complexity for a class of multicast key distribution pro-
tocols. Closest to our work is the result by Muniz and Laud [87] that proves that it is
impossible to devise perennial message recognition protocols using XOR and hashing alone.

6.2.2 Impossibility Results in Cryptography

Canetti and Fischlin [36] prove the impossibility of constructing two party bit commitment
protocols in the (plain) UC model. Backes et al. [17] show that it is impossible to obtain
cryptographic soundness results in the sense of Blackbox Reactive Simulatability (RSIM)
or Universal Composability (UC) for standard symbolic models of hash functions as free
function symbols. Backes and Pfitzmann [16] also show a similar result for modeling XOR.

6.2.3 Formal Models of Security Relations

Several authors have investigated sufficient conditions for establishing security relations
between agents based on knowledge and properties of cryptographic operators. Maurer
and Schmid [120] present a channel calculus that describes how an insecure channel can
be transformed into a channel providing security guarantees. The transformations rely
on other channels with given properties that are used in combination with cryptographic
operators. Boyd [33] presents a formal model using the language Z. His model builds on
the abstract types users and keys , where communication channels are modeled as relations
on the set of users and security properties of channels are predicates on the distribution of
keys. Boyd then defines a similar set of secure channel transformations to those presented
by Maurer and Schmid [120]. In terms of impossibility, both papers propose that any secure
channel transformation must be based on a previously existing security relation, i.e., you
cannot get security from nothing. Whereas Maurer and Schmid [120] propose this as an
axiom, Boyd [33] proves that it is a property of his abstract model.

6.3 Protocol Analysis with Time, Network Topology,
and Location

We now summarize formal approaches that address aspects of time, network topology, and
location. Whereas the related works are restricted to specific types of protocols and address
at most one or two of these aspects, our model combines all three aspects and is therefore
applicable to a wider range of protocols. For example, there has been, to the best of our
knowledge, no formal analysis of an ultrasound distance bounding protocol before. Such
an analysis obviously requires a model that takes into account time, nodes’ locations, and
a network topology that reflects properties of different communication media.
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Time

Most approaches formalizing time like Delzanno and Ganty [64] or Evans and Schneider [80]
focus on timestamps, which are used to reason about key-expiration, e.g., in protocols
like Kerberos. These models are based on discrete time, whereas Sharp and Hansen [161]
use dense time in their extension of Strand Spaces with time. Corin et al. [53] use timed
automata [6] to model timing attacks and timing issues like timeouts and retransmissions
in security protocols. Gorrieri et al. [88] use a real-time process algebra to model and
analyze µ-TESLA. The protocol is proved to achieve a time-dependent form of integrity
for the messages sent by the broadcast source, abstracting away from the network and the
topology.

Network Topology

Network topology has been considered in formal approaches for analyzing routing protocols
in ad-hoc networks. In Acs et al. [4], a mathematical framework for the analysis of routing
protocols is proposed. Nanz and Hankin [133] present a process calculus with broadcast
communication that accounts for network connectivity and analyze route consistency for
ad-hoc routing protocols. Arnaud and Cortier [13] use a related process calculus and devise
a decision procedure for analyzing routing protocols with respect to a bounded number
of sessions and a fixed network topology. Cortier et al. [55] prove that it is sufficient to
consider four node topologies for certain types of properties. Yang and Baras [169] present
a semi-decision procedure that is used to find attacks on route stability.

Closely related is the notion of secure neighbor discovery (see for example [139]). In this
setting, a node must detect its direct communication partners, for example, as a basis for
topology information used for routing. It has been shown by Poturalski et al. [144] that
under certain assumptions, there is no protocol that can achieve this objective.

Location and Distance

Node location has, to our knowledge, only been used in informal proofs. For example, Sastry
et al. [156] propose a protocol for verifying location claims based on ultrasonic communica-
tion and provide an informal proof of its security and reliability. Avoine et al. [14] present
a framework for classifying different attack scenarios for distance bounding protocols. Other
approaches only formalize the related notion of relative distance. In Meadows et al. [123],
an authentication logic is extended to handle relative distance and is used to prove the
security of a newly proposed distance bounding protocol. Here, the distance between two
nodes is axiomatically defined as the minimal time-of-flight of a message from the verifier
to the prover and back. Different signal propagation speeds are not captured in the model.
Dürholz et al. [74] have developed a computational model to analyze RFID distance-
bounding protocols in the single-prover single-verifier setting. Malladi [118] extends existing
constraint solving techniques to discover attacks on distance bounding protocols consid-
ering a fixed number of sessions.
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Chapter 7

Conclusion

This thesis consists of three parts and we discuss conclusions and possible future work for
each part separately.

Automated Protocol Analysis

For our approach, we have used a security protocol model based on multiset rewriting
modulo an equational theory E and two-sorted first-order logic [47] as a starting point. To
develop our constraint solving algorithm for falsification and unbounded verification, the
following ingredients where key. The switch to dependency graphs allowed us to obtain
a joint representation of protocol steps and proof trees for message deduction. In our
search, this allowed us to represent sets of dependency graphs symbolically by constraints.
In the search, we use temporal variables and ordering constraints to represent multiple
interleavings at once. For message deduction, the dependency graphs contain proof graphs
where sharing of subproofs is explicit and message deduction for all deduced messages is
considered jointly. This, and the switch from DH-instances to AC -instances of message
deduction rules using a finite variant decomposition of E , allowed us to develop a proof
theory for message deduction in our setting. The proof theory allows us to ignore non-
normal proofs in the search.

We have implemented our algorithm and demonstrated that it works well for AKE
protocols, tripartite group key exchange protocols, and identity-based AKE protocols. Else-
where [124, 107], it has been shown that it works well for classical security protocols
and protocols with loops and global mutable state. In the future, we plan to evaluate
our approach with additional case studies from different areas such as website authoriza-
tion [18].

Unfortunately, we do not have any formal results about the termination behavior of the
algorithm yet. It would be worthwhile to investigate two questions. First, we believe the
algorithm can be used to decide secrecy for a bounded number of sessions with respect to
the equational theories considered in this thesis. Using formulas that ensure the uniqueness
of protocol steps, it is straightforward to encode bounded session scenarios in our approach.
Second, it might be possible to prove termination with respect to an unbounded number of
protocol sessions for restricted classes of protocols such as [149, 8, 32]. This might require
adapting the search strategy employed for message deduction.

An obvious next step is adding support for more equational theories E . Here, we can
distinguish two different types of theories.

1. Equational theories E that have a finite variant decomposition R,AX , e.g., the theory
for XOR or a theory that models blind signatures.
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2. Equational theories E that do not have a finite variant decomposition. Since we have to
reason about symbolic equality, this would still require an E-unification algorithm or at
least an algorithm that works for those unification problems that occur during protocol
analysis. As an example for such theories, consider a theory modeling homomorphic
encryption or a theory that models DH exponentiation with multiplication of group
elements.

For 1., we can investigate the R,AX -variants of the message deduction rules and define
normal forms for message deduction proofs. For 2., we must use E-unification instead of
AX -unification and we have to investigate the E-instances of message deduction rules to
define normal forms. To use E-unification, it might be necessary to identify unification
problems that occur in protocol analysis and develop special purpose unification algorithms
for these cases if E-unification is undecidable in general.

We think multiset rewriting is a good way to reason about security protocols in our
approach, similar to how ProVerif uses Horn clauses during protocol analysis. It is also con-
venient to specify access to global mutable state and (asynchronous) communication using
multiset rewriting. For sequential computations with local state, the multiset rewriting
approach can be cumbersome. Two alternatives would be to add support for a process
calculus as an input language or to provide translators from source-code, e.g., in C or a
functional language, to our dialect of multiset rewriting.

Our approach is currently limited to trace properties. To widen the scope to privacy-
type properties, it would be interesting to investigate if our techniques can be applied to
equivalences such as observational equivalence or trace equivalence.

Impossibility Results

We have initiated the systematic study of impossibility results for secret establishment
protocols. We have presented three different kinds of results. First, we gave a formal
model for proving impossibility results for secret establishment for cryptographic operations
described by equational theories. We used this model to give the first formal impossibility
proof for symmetric encryption in the symbolic setting. Afterwards, we generalized this
result to necessary and sufficient conditions for the impossibility of secret establishment for
any subterm-convergent theory. This directly yields a decision procedure and constitutes
a first step towards machine assisted analysis of impossibility. Second, we adapt algebraic
methods to prove the impossibility of secret establishment for group theories including
XOR and abelian groups. Finally, we proved a combination result that enables modular
impossibility proofs.

As future work, we plan to investigate other equational theories where the impossibility
question is still open. We would also like to investigate other security properties, such as
authentication and perfect forward secrecy, as well as different adversary models. Another
interesting question is whether our labeling technique and decision procedure could be used
for protocol synthesis. Finally, we would like to investigate interpretations of our results
in a computational setting. Here, the cryptographic faithfulness [24] of equational theories
with respect to computational algebras seems like a good starting point.

Physical Protocols

We have presented a formal approach to modeling and verifying security protocols involving
physical properties. Our model captures dense time, agent locations, and physical proper-
ties of the communication network. To our knowledge, this is the first formal model that
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combines these aspects. This model has enabled us to formalize protocols, security proper-
ties, and environmental assumptions that are not amenable to formal analysis using other
existing approaches. We have used our model to verify security properties of four different
protocols and showed that our model captures relay attacks by distributed intruders and
distance hijacking attacks.

There are several directions for future work. First, we could specialize our model to the
analysis of distance bounding protocols and prove that attacks in our model imply the
existence of attacks in simpler models with fewer details. Given such a simplified model,
it might be possible to perform automated analysis of distance bounding protocols, for
example withTamarin. Second, to extend the scope to distance bounding protocols similar
to the Hancke-Kuhn [92] protocol, where the rapid bit-exchange phase uses precomputed
answer-bits for the possible challenge-bits instead of XOR, we could search for equational
theories that would allow us to model this. Third, we could extend our model to handle
Terrorist fraud. Finally, it would be worthwhile to investigate if and how our model could
be adapted to the computational setting.

6.3 Protocol Analysis with Time, Network Topology, and Location
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Appendix A

Proofs for Chapter 3

In this appendix, we present the missing proofs from Chapter 3. Note that we perform the
proofs with respect to the extension with bilinear pairings and AC operators.

A.1 Proofs for Verification Theory

We present proofs for properties of multiplication, of normal dependency graphs, and for-
mulas.

A.1.1 Proofs for Multiplication

Conditions P1–P6 from Definition 3.4 were introduced to restrict protocols from creating
new products that can be extracted by the adversary. We will now precisely define the
notion of “creating new products” and prove that protocol rules satisfy this requirement.
To achieve this, we define the following notion of factors.

factors(t)=











factors(a)∪ factors(b) if t= a∗b
factors(s) if t= s−1

{t, t−1} otherwise

Since we cannot forbid all occurrences of products in rules, we first define a set of positions
where no term can be extracted from. In the following, we use exp , smult , and inv to
denote (infix versions of) the function symbols _ˆ_, [_]_, and _−1 for exponentiation,
scalar multiplication, and inversion.

Definition A.1. A position p is an inaccesssible in t if there is p ′ such that either
root(t|p′) = exp and p′ · [2] is above or equal to p or root(t|p′) = smult and p′ · [1]
is above or equal to p. We extend this definition to facts, sequences of facts, and multiset
rewriting rules in the expected way. We say a position is accessible if it is not inaccessible.

Definition A.2. An accessible product position in a term t is an accessible position p in
t such that t|p is a product. We use app(t) to denote this set of positions. The accessible
factors of a term t are then defined as afactors(t) =

⋃

p∈app(t)
factors(t|p). Analogously,

we define the accessible variable positions p in t such that t|p∈Vmsg and denote them with
avp(t). The accessible variables of a term t are then defined as avars(t)=

⋃

p∈avp(t)
{t|p}. We

extend these notions to facts, sequences of facts, and multiset rewrite rules in the expected
way.
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We can now define the required condition on multiset rewriting rules that do not “con-
struct accessible products”. Note that since we want to allow unrestricted usage of exponen-
tiation, scalar multiplication, bilinear maps, and inversion, the condition is slightly weaker
and only ensures that such rules do not create accessible products with new factors. This
is exactly the property we require to simplify the message deduction.

Definition A.3. A multiset rewriting rule l −[a]→ r is factor-restricted if for all ↓RBPe
-

normal substitutions σ,

afactors((rσ)↓RBPe
)⊆ACC afactors((lσ)↓RBPe

).

A protocol P is factor-restricted if all l−[a]→ r ∈P are factor-restricted.

Since the definition of factor-restricted contains an universal quantification over all sub-
stitutions, it is hard to check in practice. We therefore prove that our syntactic restrictions
on protocols imply factor-restricted.

Lemma A.4. All protocols P are factor-restricted.

Before we can prove this lemma, we have to prove some auxiliary results about the
interaction of avars , factors , and afactors with normalization and instantiation.

Definition A.5. We define the set of products as

Prod = {inv k(a∗b)|k ∈N∧ a, b∈T }.

Lemma A.6. For all terms t, either t∈Prod and factors(t)↓RBPe
⊆ACC afactors(t)↓RBPe

or

t� Prod and factors(t)↓RBPe
⊆ACC {t, t−1}↓RBPe

. Hence factors(t)↓RBPe
⊆ACC {t, t−1}↓RBPe

∪
afactors(t)↓RBPe

.

Proof. Let t′ such that t = inv k(t′) and root(t ′) � inv . We perform a case distinction on
root(t ′). If t= a∗b, then t∈Prod and

factors(t)= factors(a)∪ factors(b)⊆ afactors(t).

If root(t′) � {∗, inv }, then t � Prod and

factors(t)↓RBPe
=ACC

{

t′, t′
−1}↓RBPe

=ACC {t, t−1}↓RBPe
. �

The next lemma charaterizes the new factors that can be introduced by a rewrite step.

Lemma A.7. For all terms t and t′ such that t→RBPe,ACC t
′, it holds that

factors(t ′)↓RBPe
⊆ACC factors(t)↓RBPe

∪ afactors(t)↓RBPe
∪{1}.

Proof. We prove this by induction over terms. First, note that the base cases for variables
and names hold since no rewrite rule is applicable.

• t = inv(s): If t is rewritten below the root position, then t′ = inv(s′) for some s ′ such
that s→RBPe,ACC s

′ and we can conclude the case as follows.

factors(t′)↓RBPe

=ACC factors(s′)↓RBPe
[ since t ′= inv(s′) ]

⊆ACC factors(s)↓RBPe
∪ afactors(s)↓RBPe

∪{1} [ by IH ]

=ACC factors(t)↓RBPe
∪ afactors(t)↓RBPe

∪{1} [ since t= inv(s) ]

Proofs for Chapter 3
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If t is rewritten at the root position, then we have to consider the applicable rules from
RBPe, which are all included in RDH. For all rewriting steps t→RBPe,ACC t

′ that apply
one of these rules at the root position, it is easy to see that factors(t′)=ACC factors(t).

• t= g(s1, 	 sk) for g � {inv , ∗, ♯, exp , smult }: If t is rewritten below the root position,
then root(t ′)= g, t, t′ � Prod and therefore

factors(t′)↓RBPe

=ACC

{

t′, t′
−1}↓RBPe

=ACC {t, t−1}↓RBPe

=ACC factors(t)↓RBPe
.

If t is rewritten at the root position, then there is a substitution σ and a rewriting
rule l → r from ST such that t =ACC lσ and t ′ =ACC rσ. We have to consider two
cases. First, r is a ground term built over ΣST . Then t, t′ � Prod and the same
reasoning as in the previous case applies. Second, r is a proper subterm of l and
t′ = t|p for some accessible position p. To see that p is accessible, first note that no
position strictly above p is a variable position in l, l does not contain ∗ or ♯, and p is
a valid position in l. Hence, all positions p̃ strictly above p are valid positions in l and
root(t|p̃) = root(l |p̃) � {exp , smult } for all such positions and therefore p accessible.
If t ∈ Prod , then factors(t′)↓RBPe

⊆ACC afactors(t ′)↓RBPe
⊆ACC afactors(t)↓RBPe

by
Lemma A.6. If t � Prod, then

factors(t′)↓RBPe
=ACC

{

t′, t′
−1}↓RBPe

=ACC {t, t−1}↓RBPe
=ACC factors(t)↓RBPe

.

• t= a♯b: Since there is no rewriting rule applicable at the root position, we can assume
without loss of generality that t ′ = a′♯b such that a→RBPe,ACC a

′. Then, the reasoning
is analogous to the previous case where t is rewritten below the root position.

• t= ê(a, b): If t is rewritten below the root position, then the reasoning is analogous to
the previous cases. Otherwise, a= [u]v and t′ = ê(v, b)ˆu. Then

factors(t′)↓RBPe

=ACC

{

t′, t′
−1}↓RBPe

=ACC {t, t−1}↓RBPe

=ACC factors(t)↓RBPe
.

• t = aˆb: There are three possibilities, either t is rewritten below the root position, at
the root position with the rule (xˆy)ˆz→xˆ(y∗z), or at the root position with the rule
xˆ1→x. For the the first two cases and the third case with a not a product, t′� Prod and

factors(t′)↓RBPe

=ACC

{

t′, t′
−1}↓RBPe

=ACC {t, t−1}↓RBPe

=ACC factors(t)↓RBPe
.

For the third case with a∈Prod , we have t′ = a and

factors(a)↓RBPe
⊆ACC afactors(a)↓RBPe

⊆ACC afactors(t)↓RBPe

since a accessible in t.

A.1 Proofs for Verification Theory
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• t= [b]a: Analogous to the previous case.

• t = s1∗s2: If t is rewritten below the root position, then we assume without loss of
generality that t′ =ACC s1

′∗s2 for some s1
′ with s1→RBPe,ACC s1

′ . Then we can conclude
the case as follows.

factors(t′)↓RBPe

=ACC factors(s1
′)↓RBPe

∪ factors(s2)↓RBPe
[ t′ = s1

′∗s2 ]

⊆ACC factors(s1)↓RBPe
∪ afactors(s1)↓RBPe

∪{1}∪ factors(s2)↓RBPe
[ by IH ]

⊆ACC factors(t)↓RBPe
∪ afactors(t)↓RBPe

∪{1} [ t= s1∗s2 ]

If t is rewritten at the root position, then we have to consider the applicable rules in
RDH. For all rewriting steps t→RBPe,ACC t

′ that apply one of these rules at the root
position, it is easy to see that factors(t′)⊆ACC factors(t)∪{1}. �

Lemma A.8. For all terms t and t′ such that t→RBPe,ACC t
′, it holds that

afactors(t′)↓RBPe
⊆ACC afactors(t)↓RBPe

∪{1}.

Proof. We prove this by induction over terms. First, note that the base cases for variables
and names hold since no rewrite rule is applicable.

• t = inv(s): If t is rewritten below the root position, then t′ = inv(s′) for some s ′ such
that s→RBPe,ACC s

′ and we can conclude the case as follows.

afactors(t ′)↓RBPe

=ACC afactors(s′)↓RBPe
[ since t′ = inv(s′) ]

⊆ACC afactors(s)↓RBPe
∪{1} [by IH ]

=ACC afactors(t)↓RBPe
∪{1} [ since t= inv(s) ]

If t is rewritten at the root position, then we have to consider the applicable rules from
RBPe, which are all included in RDH. For all rewriting steps t→RBPe,ACC t

′ that apply
one of these rules at the root position, it is easy to see that afactors(t′)=ACC afactors(t).

• t= g(s1, 	 sk) for g � {inv , ∗, ♯, exp , smult }: If t is rewritten below the root position,
then t ′= g(s1

′ ,	 , sk
′ ) such that there is i with si→RBPe,ACC si

′ and sj=ACC sj
′ for all i� j.

We can prove this case as follows.

afactors(t ′)↓RBPe

=ACC

⋃

i=1

k

afactors(si
′)↓RBPe

[ since t ′= g(s1
′ ,	 , sk

′ ) ]

=ACC

⋃

i=1

k

afactors(si)↓RBPe
∪{1} [ by IH ]

=ACC afactors(t)↓RDHe
∪{1} [ since t= g(s1,	 , sk) ]

If t is rewritten at the root position, then then there is a substitution σ and a rewriting
rule l→ r from ST such that t=ACC lσ and t′=ACC rσ. We distinguish two cases. If r is
ground, then afactors(t ′) = ∅. Otherwise, r is a proper subterm of l and t′ = t|p for an
accessible position p in t such that no position strictly above p has the root symbol ∗
in t. Hence afactors(t′)↓RBPe

⊆ACC afactors(t)↓RBPe
∪{1}.
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• t= a♯b: Since there is no rewriting rule applicable at the root position, we can assume
without loss of generality that t ′ = a′♯b such that a→RBPe,ACC a

′. Then, the reasoning
is analogous to the previous case where t is rewritten below the root position.

• t= ê(a, b): If t is rewritten below the root position, then the reasoning is analogous to
the previous cases. Otherwise, a= [u]v and t′ = ê(v, b)ˆu. Then

afactors(t ′)↓RBPe

=ACC afactors(v)↓RBPe
∪ afactors(b)↓RBPe

[ since t′= ê(v, b)ˆu and u not accessible ]

=ACC afactors(t)↓RDHe
. [ since t= ê([u]v, b) and u not accessible ]

• t=aˆb: If t is rewritten below the root position, then we distinguish two cases. First, if
b is rewritten, then afactors(t)=afactors(a)=afactors(t ′) implies the desired inclusion.
Second, if t′= a′ˆb, then we can apply the induction hypothesis similar to the previous
cases.

If it is rewritten at the root position, then it is either rewritten with the rule xˆ1→x

or the rule (xˆy)ˆz→xˆ(y∗z). In the first case, afactors(t)= afactors(a)= afactors(t′)
since t′ = a. In the second case, a = gˆc for some g and c and t ′ = gˆ(c∗b). We can
conclude this case as follows.

afactors(t′)↓RBPe

=ACC afactors(g)↓RBPe
[ since c∗b not accessible in gˆ(c∗b) ]

=ACC afactors(t)↓RDHe
. [ since c and b not accessible in (gˆc)ˆb ]

• t= [b]a: Analogous to the previous case.

• t = s1∗s2: If t is rewritten below the root position, then we assume without loss of
generality that t′ =ACC s1

′∗s2 for some s1
′ with s1→RBPe,ACC s1

′ . Then we can conclude
the case as follows.

afactors(t ′)↓RBPe

=ACC afactors(s1
′ )↓RBPe

∪ afactors(s2)↓RBPe
∪ [ t′ = s1

′∗s2 ]

factors(s1
′ )↓RBPe

∪ factors(s2)↓RBPe

⊆ACC afactors(s1)↓RBPe
∪ afactors(s2)↓RBPe

∪ [ by IH ]

factors(s1
′ )↓RBPe

∪ factors(s2)↓RBPe
∪{1}

⊆ACC afactors(s1)↓RBPe
∪ afactors(s2)↓RBPe

∪ [ by Lemma A.7 ]

factors(s1)↓RBPe
∪ factors(s2)↓RBPe

∪{1}

⊆ACC afactors(t)↓RBPe
∪{1} [ t= s1∗s2 ]

If t is rewritten at the root position, then we have to consider the applicable rules in
RDH. For all rewriting steps t→RBPe,ACC t

′ that apply one of these rules at the root
position. It is easy to see that afactors(t′)⊆ACC afactors(t)∪{1}. �

Lemma A.9. For all terms t, it holds that

afactors(t↓RBPe
)⊆ACC afactors(t)↓RBPe

.

Proof. Directly follows from t ↓RBPe
-normal or t→RBPe,ACC

+ t↓RBPe
using Lemma A.8 and

the fact that for a product s that is ↓RBPe
-normal 1 � factors(s). �
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Lemma A.10. For all terms t, it holds that

factors(t↓RBPe
)⊆ACC factors(t)↓RBPe

∪ afactors(t)↓RBPe
∪{1}.

Proof. We prove this by induction over the length of the rewriting sequence

t1→RBPe,ACC 	 →RBPe,ACC tk

where tk ↓RBPe
-normal.

The base case clearly holds and assuming the hypothesis for k− 1, we conclude with

factors(tk)

⊆ACC factors(t2)↓RBPe
∪ afactors(t2)↓RBPe

∪{1} [ by IH ]

⊆ACC factors(t1)↓RBPe
∪ afactors(t1)↓RBPe

∪{1}. [Lemma A.7 andLemmaA.8 ]

�

Lemma A.11. For all terms t and ↓RBPe
–normal substitutions σ, it holds that

afactors(tσ)↓RBPe
=ACC (afactors(t)σ \Prod)↓RBPe

∪

(

⋃

x∈avars(t)

afactors(xσ)↓RBPe

)

.

Proof. Let σ arbitrary and

Ft= (afactors(t)σ \Prod)↓RBPe
∪

(

⋃

x∈avars(t)

afactors(xσ)↓RBPe

)

.

Note that

⋃

i=1

k

afactors(si) =ACC afactors(t) and

⋃

i=1

k

avars(si) =ACC avars(t)

implies
⋃

i=1

k

Fsi =ACC Ft (1)

We prove afactors(tσ)↓RBPe
=ACC Ft by induction on t.

• t = x for x ∈ Vmsg: Since afactors(x) = ∅ and avars(x) = {x}, we have Fx =
afactors(xσ)↓RBPe

.

• t=x for x∈Vpub∪V fr: Both sides are equal to the empty set since σ well-sorted.

• t∈PN∪FN: Both sides are equal to the empty set.

• t= inv(s):

afactors(tσ)↓RBPe
=ACC afactors(sσ)↓RBPe

=ACC Fs [ IH ]

=ACC Ft . [ (1) ]
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• t= g(s1,	 , sk) for g � {∗, exp , inv , smult }:

afactors(tσ)↓RBPe
=ACC

(

⋃

i=1

k

afactors(siσ)↓RBPe

)

=ACC

(

⋃

i=1

k

Fsi

)

[ IH ]

=ACC Ft. [ (1) ]

• t= aˆb:

afactors(tσ)↓RBPe
=ACC afactors(aσ)↓RBPe

=ACC Fa [ IH ]

=ACC Ft. [ (1) ]

• t= [b]a: Analogous to previous case.

• t= s1∗s2: Let J ⊆{1, 2} such that j ∈ J iff siσ � Prod . We first show that

Fs1∪Fs2∪

(

⋃

j∈J

{sjσ, (sjσ)−1}↓RBPe

)

=ACC Ft (2)

◦ ”⊆”: If J = ∅, then we are done since avars(s1)∪avars(s2)⊆avars(t), afactors(s1)∪
afactors(s2) ⊆ afactors(t) and therefore Fs1 ∪ Fs2 ⊆ Ft. Now let j ∈ J arbitrary.
Then sjσ � Prod and hence sj � Prod . Then there are k and u such that sj =

inv k(u) and root(u) � {inv , ∗}. Note that uσ � Prod and u−1σ � Prod . Therefore
{u, u−1}= factors(sj)⊆ afactors(t) and

{sjσ, (sjσ)−1}↓RBPe
=ACC {uσ, u−1σ}↓RBPe

⊆ACC (afactors(t)σ \Prod)↓RBPe

⊆ACC Ft .

◦ ”⊇”: Since

Ft=ACC (afactors(t)σ \Prod)↓RBPe
∪

(

⋃

x∈avars(t)

afactors(xσ)↓RBPe

)

=ACC

(

⋃

i=1

2

(afactors(si)σ \Prod)↓RBPe

)

∪

(

⋃

i=1

2

(factors(si)σ \Prod)↓RBPe

)

∪





⋃

i=1

2 (
⋃

x∈avars(si)

afactors(xσ)↓RBPe

)



,

we have to show that for i∈{1, 2}

(factors(si)σ \Prod)↓RBPe
⊆ACC Fs1∪Fs2∪

(

⋃

j∈J

{sjσ, (sjσ)−1}↓RBPe

)

.
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Let i ∈ {1, 2} arbitrary. We distinguish two cases. First, if si ∈ Prod , then
factors(si)⊆ afactors(si) and hence (factors(si)σ \Prod)↓RBPe

⊆ACC Fsi.
Second, if si � Prod , then there are k and u such that si = inv k(u) and

root(u) � {∗, inv }. Hence factors(si) = {u, u−1} and either uσ ∈ Prod or not. If

uσ ∈ Prod , then u−1σ ∈ Prod and hence (factors(si)σ \ Prod)↓RBPe
= ∅. If uσ �

Prod , then siσ � Prod and hence i∈ J . Then we can conclude the case with

(factors(si)σ \Prod)↓RBPe
=ACC {uσ, u−1σ}↓RDHe

=ACC {siσ, (siσ)−1}↓RDHe

=ACC Fs1∪Fs2∪

(

⋃

j∈J

{sjσ, (sjσ)−1}↓RBPe

)

.

Using the previous result, we can now concluded the proof as follows.

afactors(tσ)↓RBPe

=ACC

⋃

i=1

2

(afactors(siσ)↓RBPe
∪ factors(siσ)↓RBPe

) [ t= s1∗s2 ]

⊆ACC

⋃

i=1

2

(afactors(siσ)↓RBPe
)∪

(

⋃

j∈J

{sjσ, (sjσ)−1}↓RBPe

)

[ by Lemma A.6 ]

⊆ACC Fs1∪Fs2∪

(

⋃

j∈J

{sjσ, (sjσ)−1}↓RBPe

)

[by IH ]

⊆ACC Ft [ (2) ]

�

Proof. (of Lemma A.4) Let l−[a]→ r be an arbitrary protocol rule and σ an arbi-
trary ↓RBPe

-normal substitution. Then, the following holds and l−[a]→ r is therefore factor-
restricted.

afactors((rσ)↓RBPe
)

⊆ACC afactors(rσ)↓RBPe
[by Lemma A.9 ]

=ACC (afactors(r)σ \Prod)↓RBPe
∪

(

⋃

x∈avars(r)

afactors(xσ)↓RBPe

)

[by Lemma A.11 ]

⊆ACC (afactors(l)σ \Prod)↓RBPe
∪

(

⋃

x∈avars(r)

afactors(xσ)↓RBPe

)

[no ∗ in l−[a]→ r ]

⊆ACC (afactors(l)σ \Prod)↓RBPe
∪

(

⋃

x∈avars(l)

afactors(xσ)↓RBPe

)

[ (∗) ]

=ACC afactors(lσ)↓RBPe
[by Lemma A.11 ]

=ACC afactors((lσ)↓RBPe
) [ since (lσ)↓RBPe

=

lσ ]

(*) Since l−[a]→ r is a protocol rule, it holds that vars(r) ⊆ vars(l) ∪ Vpub and l does
not contain smult or exp , or l−[a]→ r is an instance of such a rule. Then, avars(r) ⊆
vars(l)∩Vmsg = avars(l) since l does not contain smult or exp . �
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A.1.2 Proofs for Normal Dependency Graphs

In this section we prove an extended version of Lemma 3.19 for bilinear pairing and AC
operators.

Lemma A.12. For all protocols P,

{trace(dg) | dg ∈ dgraphsAC(⌈P ∪MD ⌉insts
RBPe)∧ dg ↓RBPe

-normal }= trace(ndgraphs(P )).

Definition A.13. We define the known messages of a dependency graph dg as

known(dg) = {m| exists conclusion fact K(m) in dg }.

We define the d-known messages of a normal dependency graph ndg as

knownd(ndg)= {m| exists conclusion fact Kd(m) in ndg }

for d∈{⇑,⇓d,⇓e}.
We define the known messages for a normal dependency graph ndg as

knownm(ndg) = known⇑(ndg)∪ known⇓d

(ndg)∪ known⇓e

(ndg).

We define the available state-conclusions of a dependency graph dg as

stfacts(dg)= {f ∈ cfacts(dg)|∀md.f � K(m)∧ f � Kd(m)}

where cfacts(dg) denotes the consumable facts in dg . We define the created messages of a
dependency graph dg as

created(dg) = {n| exists conclusion fact Fr(n) in dg }.

A normal dependency graph ndg ′ = (I ′, D ′) is a deduction extension of ndg = (I , D) if
I is a prefix of I ′, D ⊆ D ′, trace(ndg) = trace(ndg ′), stfacts(ndg) = stfacts(ndg ′), and
created(ndg) = created(ndg ′). If there is a deduction extension such that a message m is
known, we write m is deducible.

In the following, we use F⇓ and F⇑ to denote the construction and deconstruction
rules for the corresponding function symbols. For example, we use Fst⇓ to denote the
deconstruction rule for fst .

Lemma A.14. For all ndg ∈ndgraphs(P ), conclusions (i, u) in ndg with conclusion fact f
and terms t ∈ afactors(f), there is a conclusion (j , v) in ndg with j < i and conclusion
fact Kd(m) such that m∈ACC {t, (t−1)↓RBPe

}

Proof. We prove by induction on normal dependency graphs that the property holds. The
property obviously holds for ([ ], ∅). Let ndg = (I , D) ∈ ndgraphs(P ) arbitrary, l −[a]→ r

↓RBPe
-normal, and D ′ such that ndg ′=(I · l−[a]→ r,D⊎D ′)∈ndgraphs(P ). We perform a

case distinction on l−[a]→ r.

• If l−[a]→ r∈ ginstsACC(Fresh), then there is nothing to show since f =Fr(n) for a fresh
name n and factors(n)= ∅.
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• If l −[a]→ r ∈ ginstsACC(⌈P ⌉insts
RBPe), then there is a substitution σ that is grounding for

some l ′−[a ′]→ r ′ in P such that l−[ a ]→ r=ACC ((l ′−[a′]→ r ′)σ)↓RBPe
. Since P is factor-

restricted,

afactors(r) =ACC afactors((r ′σ)↓RBPe
)

⊆ACC afactors((l ′σ)↓RBPe
)=ACC afactors(l).

Hence, for all j∈ idx (r) and t∈afactors(rj), there is k∈ idx (l) such that t∈afactors(lk).
Because the dependency must be satisfied by some conclusion in ndg , there is a con-
clusion c with a conclusion fact that is equal to lk. We can therefore use the induction
hypothesis

• If l −[a]→ r ∈ ginstsACC(ND), then all rules except for the multiplication rule, Send,
Recv, Coerce, the construction rules for fresh and public names, and the multiplica-
tion rules are of the form [F1(m1),	 , Fk(mk)]−[]→ [F (f(m1, 	 , mk)↓RBPe

)] with f � ∗
and mi ↓RBPe

-normal. We can use Lemma A.9 to obtain

afactors(f(m1,	 ,mk)↓RBPe
)⊆ACC afactors(f(m1,	 , mk))↓RBPe

⊆ACC

⋃

i=1

k

afactors(mi)

and use the induction hypothesis. For the multiplication case, note that the only
new afactors are the inputs and their inverses and we can therefore use the induc-
tion hypothesis too. For the remaining rules, either afactors(l) =ACC afactors(r) or
afactors(r)= ∅. �

Lemma A.15. For all ndg ∈ ndgraphs(P ) and conclusion facts K⇓y
(m), there is a deduc-

tion extension ndg ′ that contains a conclusion fact K⇑(m′) with m=ACC m
′.

Proof. We have to consider two cases. First, if there is a conclusion fact K⇑(m′) with
m=ACC m

′ in ndg , then we do not have to extend ndg . If there is no such conclusion c′ in
ndg , we use induction on m.

• If root(m) is not invertible and not equal to ♯, we can use Coerce directly. Note that
because of N2, m is not a product.

• If root(m) = ♯, then we can extract all s ∈ elems(m) using the deconstruction rule for
♯, convert the s by the induction hypothesis, and then use the construction rule ♯ to
build m.

• If root(m) invertible, we can proceed as in the previous case. �

Lemma A.16. Let ndg ∈ndgraphs(P ), m∈knownm(ndg), m ↓RBPe
-normal, and m� Prod,

then there is a deduction extension ndg ′ of ndg with (m)−1↓RBPe
∈ACC knownm(ndg ′).

Proof. We distinguish wetherm is an inverse or not. If m is an inverse, then there is t such
that m= t−1 and t is not a product. Hence, (m−1)↓RBPe

=ACC t and t
−1∈ACC known⇓(ndg)

or t−1 ∈ACC known⇑(ndg). In the first case, we can use Inv⇓ to deduce t since t is not a
product. In the second case, t−1 must be the conclusion of an Inv⇑ rule, which implies that
t∈ knownm(ndg).

Proofs for Chapter 3

180



If m is no inverse, then (m−1)↓RBPe
=ACC m

−1, as m is no product. Due to Lemma A.15,
there is an extension ndg ′ of ndg such that m∈ known⇑(ndg ′). Hence, we can use Inv⇑ to
deduce m−1 �

Lemma A.17. Let ndg ∈ ndgraphs(P ), t ↓RBPe
-normal, and for all m ∈ factors(t),

m∈ACC knownm(ndg ′) or (m−1)↓RBPe
∈ACC knownm(ndg ′), then there is a deduction exten-

sion ndg ′ of ndg with t∈ACC knownm(ndg ′).

Proof. We prove the lemma by induction over t.

• t∈FN∪PN: Since factors(t)= {t, t−1}, we can use Lemma A.16 to obtain ndg ′.

• t= f(u1,	 , uk) for f � {inv , ∗}: The reasoning is the same as in the previous case.

• t=u−1: Since factors(t)= factors(u), we can use the induction hypothesis to obtain ndg ′

such that u is known. We can therefore use Lemma A.15 to deduce K⇑(u) (if required)
and then deduce u−1 by applying Inv⇑.

• t=(u1∗	 ∗uk)∗(uk+1∗	 ∗uk+l)
−1: Since factors(t)={ui|1≤ i≤k+ l}, either ui or ui

−1 is

known in ndg for all i. If only ui
−1 is known, we can deduce ui by Lemma A.16. Hence,

we can apply the corresponding multiplication rule to the ui to deduce t.

�

Lemma A.18. For all ndg ∈ ndgraphs(P ) and s, t ∈ knownm(ndg), there is a deduction
extension ndg ′ of ndg with (s∗t)↓RBPe

∈ACC knownm(ndg ′).

Proof. By Lemma A.17, it is sufficient to show that for allm∈ factors((s∗t)↓RBPe
), there is

a deduction extension of ndg where m or (m−1)↓RBPe
known. First, note that the following

holds for factors((s∗t)↓RBPe
).

factors((s∗t)↓RBPe
)

⊆ACC {1}∪ factors(s∗t)↓RBPe
∪ afactors(s∗t)↓RBPe

[ by Lemma A.10 ]

⊆ACC {1}∪ factors(s)∪ factors(t)∪ afactors(s)∪ afactors(t) [ simplify ]

⊆ACC {1}∪ {s, (s−1)↓RBPe
}∪ {t, (t−1)↓RBPe

} [ by Lemma A.6 ]

∪ afactors(s)∪ afactors(t)

Since 1, s, (s−1)↓RBPe
, t, (t−1)↓RBPe

, afactors(s), and afactors(t) are already known or
deducible, this means all elements of factors((s∗t)↓RBPe

) are deducible. �

We will now prove a lemma that will be used to show that drules includes all required
deconstruction rules for the rewrite rules in ST .

Lemma A.19. For all ndg ∈ndgraphs(P ), t∈knownm(ndg) and valid positions p in t such
that root(t|p′)� ∗ for all p′ above or equal to p, either

a) there is a position p̃ � [] strictly above p such that t|p̃∈ACC known⇓(ndg) and
t|p′∈ACC knownm(ndg) for all valid positions p′ in t that have a sibling above or equal
to p̃, or

b) t|p∈ACC knownm(ndg) and t|p′∈ACCknownm(ndg) for all valid positions p′ in t that have
a sibling above or equal to p.
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Proof. Let ndg and t arbitrary. We prove the statement by induction over positions p
such that root(t|p′)� ∗ for all positions p′. For the empty position [], b) clearly holds since
t|[] =t and [] has no siblings. For the induction step, we first assume that a) holds for the
position p. Then a) also holds for all valid positions p′= p · [i] in t. Now assume that b) holds
for p. If t|p is ⇑-known and not ⇓-known, then it cannot be the conclusion of the Coerce
rule and must be the conclusion of a construction rule. Then t|p is either the conclusion of

a multiplication or a construction rule of the form [K⇑(s1),	 ,K
⇑(sk)]−[]→ [K⇑(f(s1,	 , sk))].

In the first case, root(t|p) = ∗, which contradicts our assumptions. In the second case, b)
also holds for all p′= p · [i] with 1≤ i≤k because t|p·[i]=si∈ACC knownm(ndg) and the terms

at sibling positions of p′ are also known. If t|p is ⇓-known and p satisifies b), then for all
valid positions p′ = p · [i] in t, p′ satisifies a). �

Proof. (Proof of Lemma A.12) We prove both inclusions separately.
⊆ACC : We show by induction over dependency graphs that for all dg ∈

dgraphsACC(⌈P ∪MD ⌉insts
RBPe) with dg ↓RBPe

-normal, there is ndg ∈ndgraphs(P ) such that

known(dg)⊆ACC knownm(ndg) (1)

stfacts(dg)⊆ACC
♯ stfacts(ndg) (2)

created(dg)=ACC created(ndg) (3)

trace(dg)=ACC trace(ndg). (4)

This clearly holds for dg = ([], ∅). Let dg = (I , D) ∈ dgraphsACC(⌈P ∪ MD ⌉insts
RBPe)

with dg ↓RBPe
-normal, and ndg =

(

Ĩ , D̃
)

∈ ndgraphs(P ) such that (1)–(4) hold. Let

ri ∈ ginstsACC(⌈P ∪MD ⌉insts
RBPe∪{Fresh}) arbitrary such that dg ′ = (I · ri , D ⊎ D ′) ∈

dgraphsACC(⌈P ∪ MD ⌉insts
RBPe). Then we have to show that there is an ndg ′ ∈ ndgraphs(P )

that satisfies (1)–(4) with respect to dg ′. We perform a case distinction on ri .

• ri ∈ ginstsACC(Fresh): Condition (3) for dg and ndg ensures that we can extend Ĩ with
ri to obtain ndg ′ without violating unique Fresh instances (DG4).

• ri ∈ ginstsACC(⌈P ⌉insts
RBPe): We append ri to Ĩ and extend D̃ with the required depen-

dencies to obtain ndg ′, which is possible because of condition (2) for dg and ndg .

• ri ∈ ginstsACC(⌈MD ⌉insts
RBPe): Let ri = l−[a]→ r. For all rules except for the adversary

receive, send, fresh name, and public name rules, we have l= [K(m1),	 ,K(mn)], a=[],
and r=[K(m)]. If m= f(m1,	 ,mn), then we say the instance is a trivial variant of the
rule. Otherwise it is nontrivial. We must show that there is a deduction extension ndg ′

of ndg such that m∈ACC knownm(ndg ′). We can assume that m� ACC knownm(ndg) and
mi ∈ACC known⇑(ndg) for 1≤ i ≤ n because of Lemma A.15. If m is a product, then
we just have to show that m is accessible in one of the premise facts. Then, we can use
Lemma A.14 to show that all factors or their inverses are known. Hence m is deducible
by Lemma A.17.

− Out(m)−[]→K(m): We can use Recv if m is not a product. If m is a product, then
we can deduce m since it is accessible in Out(m).

− K(m)−[K(m)]→ In(m): We can use Send.

− Fr(n)−[]→K(m): We can use the construction rule for fresh names.

− −[]→K(c) for c∈PN∪{1}: We can use the corresponding construction rules.

− Trivial variants [K(m1),	 ,K(mn)]−[]→ [K(f(m1,	 , mn))] for f ∈ΣST ∪ {inv }: We
can use the the corresponding construction rule since mi∈ACC known⇑(ndg ′).
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− K(m−1)−[]→K(m): We can deduce m by Lemma A.16.

− [K(m1), 	 , K(mk)] −[]→ [K(m)] for f ∈ ΣST , m = f(m1, 	 , mk)↓RBPe
, such that

m �ACC f(m1, 	 , mk). Then, there is l→ r in ST such that f(m1, 	 , mk) is an
instance of l and either m = r ∈ TΣST

(∅) and in normal form or there are p and j

such that m = mj |p. In the first case, we can use construction rules to build m.
In the second case, mi ∈ACC knownm(ndg) and p satisfies all the conditions from
Lemma A.19. Since we assume that m � ACC knownm(ndg), case a) must hold and
we can use the corresponding rule from drules(l, p) to deduce m.

− [K(m1), K(m2)] −[]→ [K((m1∗m2)↓RBPe
)]: Since m1 and m2 are known, we can use

Lemma A.18.

− trivial variant of exp : First note that the base cannot be an exponentiation since
the result would not be in normal-form otherwise. We can therefore just use the
construction rule for exponentiation.

− nontrivial variant of exp : The rule must be equal to [K(aˆc),K(d)]−[]→ [K(m)] for
m= ((aˆc)ˆd)↓RBPe

. Since a cannot be an exponentiation and must be in normal-
form, m= aˆ((c∗d)↓RBPe

). The term aˆc must be known and d must be ⇑-known.
If aˆc is only ⇑-known in ndg , then it must be the result of an exponentiation
construction rule. Then a and c are also ⇑-known and we can deduce (c∗d)↓RBPe

by

Lemma A.18. Therefore, we deduce m with [K⇑(a),K⇑((c∗d)↓RBPe
)]−[]→ [K⇑(m)].

If aˆc is ⇓d-known in ndg , then we can use the corresponding exponentiation rule
unless this would violate N6 or N10.

If this would violate N6, then a does not contain any fresh names and
nifactors((c∗d)↓RBPe

)⊆ACC nifactors(d). Hence factors((c∗d)↓RBPe
)⊆ACC factors(d)

and therefore factors((c∗d)↓RBPe
) (or their inverses) known by Lemma A.14 and

(c∗d)↓RBPe
deducible by Lemma A.17. Since a also deducible because it does not

contain fresh names, we can use the construction rule for exponentiation as before.
If the exponentiation rule would violate N10, then aˆc= ê(p, q)ˆc for some

terms p and q that do not contain any fresh names, ê(p, q)ˆc is the result

of a deconstruction rule for ê with input K⇓d([t1]p) and K⇓d([t2]q) such that
nifactors(ti) ⊆ACC nifactors(d) for i = 1 or i = 2. Note that this implies that
c = (t1∗t2)↓RBPe

and m = ê(p, q)ˆ((t1∗t2∗d)↓RBPe
). We assume without loss of

generality that i = 2. Then, we can replace the deconstruction rule for ê with
[

K⇓d([t1]p), K
⇑(q)

]

−[]→
[

K⇓d(ê(p, q)ˆt1)
]

since q does not contain fresh names.

Since nifactors(t2)⊆ACC nifactors(d) and d known, we can deduce (t2∗d)↓RBPe
and

then deduce m with the exponentiation rule
[

K⇓d(ê(p, q)ˆt1),K
⇑((t2∗d)↓RBPe

)
]

−[]→ [K⇓e(m)].

If aˆc is only ⇓e-known, it must be the conclusion of an exponentiation
rule and there must be e and f such that aˆc = aˆ((e∗f)↓RBPe

), aˆe is
⇓-known, and f is known. Then m = aˆ((e∗f∗c)↓RBPe

) and we can use
[

K⇓d(aˆe),K⇑((f∗c)↓RBPe
)
]

−[]→ [K⇓e(m)] unless this violates N6 or N10 which can
be handled like in the previous cases.

− variants of smult : These case are analogous to exp

− trivial variant of ê : We can use the construction rule for ê . The restriction N11 is
only concerned with deconstruction rules for ê .
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− non-trivial variant of ê : The rule must be equal to [K([a]p),K([b]q)]−[]→ [K(m)] for
m= ê(p, q)ˆ((a∗b)↓RBPe

) or equal to [K([a]p),K(q)]−[]→ [K(ê(p, q)ˆa)]. We begin by
considering the first case. Note that if the variant used matches the one in N11,
then the premises have to be ordered in the right way. The bilinear pairing rules
require both messages to be ⇓-known. If one of the messages is not ⇓-known, e.g.,
[a]p, then it must be the result of the construction rule for scalar multiplication and
both a and p must be known. We can then use a bilinear pairing rule with input
p and modify the exponent to include a by applying an exponentiation rule to the
result. If the rule is equal to [K([a]p),K(q)]−[]→ [K(ê(p, q)ˆa)], where q is not a scalar
multiplication, and [a]p is not ⇓-known, we can apply the construction rule for ê to p
and q followed by applying the construction rule for exponentiation to ê(p, q) and a.

− [K(u1♯	 ♯uk),K(w1♯	 ♯wl)]−[]→ [K(u1♯	 ♯uk♯w1♯	 ♯wl)]: We can deduce ui and wi using
the deconstruction rule for ♯ (if required) and use the following rule to deduce the

desired term: [K⇑(u1),	 ,K
⇑(ul),K

⇑(wl),	 ,K
⇑(wl)]−[]→ [K(u1♯	 ♯uk♯w1♯	 ♯wl)].

− [K(u1♯	 ♯uk)]−[]→ [K(ui1♯	 ♯uil)]: We can first deduce the uij and then use the con-
struction rule for ♯ to deduce the desired term.

⊇ACC : We show by induction over dependency graphs that for all ndg ∈ ndgraphs(P ),
there is dg ∈ dgraphsACC(⌈P ∪MD ⌉insts

RBPe) with dg ↓RBPe
-normal such that

knownm(ndg)⊆ACC known(dg) (1)

stfacts(ndg)⊆ACC
♯ stfacts(dg) (2)

created(ndg) =ACC created(dg) (3)

trace(ndg) =ACC trace(dg). (4)

This clearly holds for ndg = ([], ∅). Let ndg = (I , D) ∈ ndgraphs(P ) and dg =
(

Ĩ ,

D̃
)

∈ dgraphsACC(⌈P ∪ MD ⌉insts
RBPe) with dg ↓RBPe

-normal such that (1)–(4) hold. Let

ri ∈ ginstsACC(⌈P ⌉insts
RBPe∪{Fresh}∪ND) arbitrary such that ndg ′ = (I · ri , D ⊎ D ′) ∈

ndgraphs(P ). Then we have to show that there is an dg ′ ∈ dgraphsACC(⌈P ∪ MD ⌉insts
RBPe)

that satisfies (1)–(4) with respect to ndg ′. We perform a case distinction on ri .

• ri ∈ ginstsACC(Fresh): Analogous to other inclusion.

• ri ∈ ginstsACC(⌈P ⌉insts
RBPe): Analogous to other inclusion.

• ri ∈ ginstsACC(ND): Except for some deconstruction rules for ΣST and the n-ary rules
for multiplication and ♯, there is a corresponding rule in ⌈MD⌉insts

RBPe. For a rewriting rule
f(t1,	 , tk)−[]→ ti|p from ST , all corresponding deconstruction rules can be simulated
with trivial variants of rules for function symbols that occur in ti and the variant
[K(t1),	 ,K(tk)]−[]→ [K(ti|p)]. The n-ary rules for multiplication and ♯ can be simulated
by the variants of the binary rules for ∗ and ♯.

�

A.1.3 Proofs for Formulas

We prove Lemma 3.26 directly for the equational theory with bilinear pairings and AC
operators. Remember that we have adapted the definition of guarded trace property as
follows. A guarded trace formula ϕ is a guarded trace property if it is closed and for all
subterms t of ϕ, root(t) is a variable, a public name, equal to ♯, or an irreducible function
symbol from ΣST . We adapt Lemma 3.26 as follows.
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Lemma A.20. For all ↓RBPe
-normal traces tr and guarded trace properties ϕ,

tr �BPe
ϕ if and only if tr �ACC ϕ.

For the following proofs, we define the allowed function symbols as

Σallowed = {f ∈ΣST |f irreducible}∪ {♯}∪PN.

We first prove the following lemma.

Lemma A.21. For all formulas ϕ, traces tr , tr ′ with tr =E tr
′, and valuations θ, θ ′ with

θ(x) =E θ
′(x) for all x∈ fvars(φ),

(tr , θ)�E ϕ if and only if (tr ′, θ ′)�E ϕ.

Proof. The proof proceeds by structural induction over formulas. �

To prove Lemma A.20, we require the following definition.

Definition A.22. Let tr be an arbitrary trace and X a set of variables. Two valuations
θ1 and θ2 are equivalent for tr and X ⊆ Vmsg ∪ Vtemp, written θ1 ≡tr ,X θ2 if the following
conditions hold:

1. There is a substitution σ such that θ1|X and θ2|X are instances of σ, dom(σ)=X, and
range(σ)⊆TΣallowed

(vrange(σ)).

2. For the unique substitutions τ1 and τ2 with θi(x)=x(σ ◦ ξi) for i∈{1, 2} and all x∈X,
the following holds for all y ′, y ∈ vrange(σ) and i∈{1, 2}.

a) root(ξi(y))∈ (ΣBPe
\Σallowed)∪FN .

b) ξi(y)�ACC ξi(y
′) for y � y ′.

c) ξ1(y)∈ACC St(tr) if and only if ξ2(y)∈ACC St(tr).

d) ξ1(y)∈ACC St(tr) implies ξ1(y)= ξ2(y).

3. Both valuations agree on temporal variables, i.e., it holds that θ1|Vtemp
=θ2|Vtemp

.

Note that the previous definition allows us to modify valuations by consistently replacing
subterms that do not occur in the trace and whose root symbols are not in Σallowed.

Lemma A.23. Let ϕ be an arbitrary formula such that all subterms only contain root
symbols from Vmsg ∪ Vtemp ∪ Σallowed. Then, for all traces tr and all valuations θ1, θ2 such
that θ1≡tr ,fvars(ϕ) θ2, it holds that (tr , θ1)�ACC ϕ if and only if (tr , θ2)�ACC ϕ.

Proof. We prove this by induction over formulas where, without loss of generality,
all actions are of the form F (x1, 	 , xk)@ i. This can be achieved by replacing actions
F (t1,	 , tk)@ i with the formula ∃x1	 xk.F (x1, 	 , xk)@ i ∧ x1 ≈ t1 ∧ 	 ∧ xk ≈ tk. Let
tr be arbitrary and θ1, θ2 arbitrary such that θ1 ≡tr ,fvars(ϕ) θ2. Let σ and ξ1, ξ2 denote
the substitutions that witness that θ1 and θ2 are equivalent.

i≺ j, i≈ j. Holds because of 3.

F (x1,	 , xk)@i. (tr , θ1) �ACC F (x1, 	 , xk)@ i implies that F (x1, 	 , xk)θ1 ∈ACC tr θ1(i).
Hence xiθ1 ∈ACC St(tr) and by 2 c) and d), we have xiθ1 = xiθ2. Together with 3., we
therefore have F (x1,	 , xk)θ2∈ACC tr θ2(i) and (tr , θ2)�ACC F (x1,	 , xk)@i.
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¬ψ. By the induction hypothesis, we have that (tr , θ1)�ACC ψ if and only if (tr , θ2)�ACC ψ

since θ1 ≡tr ,fvars(ψ) θ2 because fvars(ψ) = fvars(¬ψ) = fvars(ϕ). We therefore have

(tr , θ1)�ACC ¬ψ if and only if (tr , θ2)�ACC ¬ψ.

ψ1 ∧ ψ2. We can use the induction hypothesis on ψ1 and ψ2 and combine the results.

s≈ t. We must show that

sθ1 =(sσ)ξ1 =ACC (tσ)ξ1 = tθ1 (1)

if and only if

sθ2 = (sσ)ξ2 =ACC (tσ)ξ2 = tθ2. (2)

To achieve this, we prove that (1) implies that sσ=ACC tσ, which implies (2). The other
direction can then be proved analogously. More precisely, we prove that for all terms
u,w ∈TΣallowed

(V), it holds that uξ1 =ACC wξ1 implies u=ACC w. The proof proceeds by
induction over u.

For the base case of the induction, let u = y for a variable y. Then root(ξ1(y)) =
root(wξ1) and w must therefore also be a variable z because of 2 a). Furthermore,
ξ1(y) =ACC ξ1(z) implies y = z because of 2 b), i.e., u =ACC w. In the first step case,
we assume that u = f(r1, 	 , rk) for f ∈ Σallowed. Hence t = f(q1, 	 , qk) for some
terms qi because of 2 a). Therefore, it holds that riξ1 =ACC qiξ1 and by the induction
hypothesis, it holds that ri =ACC qi and therefore u =ACC w. In the next step case,
we assume that u= r1♯	 ♯rk and root(ri) � ♯. Then w = q1♯	 ♯qk for some qi such that
root(qi)� ♯ and riξ1 =ACC qiξ1 by 2 a). We can use the induction hypothesis on the ri
to obtain ri=ACC qi, which yields u=ACC w.

∃x:s.ψ. From (tr , θ1) �ACC ∃x:s. ψ, it follows that there is u of sort s such that
(tr , θ1[x� u])�ACC ψ. To use the induction hypothesis, we have to find u′ such
that θ1[x� u]≡tr ,fvars(ϕ)∪{x} θ2[x� u′]. Then, (tr , θ2[x� u′])�ACC ψ, which implies

(tr , θ2)�ACC ∃x:s.ψ. If x is a temporal variable, then we can set u′ = u and it is
not hard to see that θ1[x� u]≡tr ,fvars(ϕ)∪{x} θ2[x� u].

Otherwise, we proceed as follows. Let θ1
′
7 θ1[x � u] and σ ′ and ξ1

′ such that
dom(σ ′) = fvars(ϕ) ∪ {x}, range(σ ′) ⊆ TΣallowed

(vrange(σ ′)), θ1
′(z) = z(σ ′ ◦ ξ1

′) for all
z∈dom(σ ′), and ξ1

′ satisfies 2. a) and 2. b). We can choose σ ′ such that σ ′ =σ ∪{w/x}
and we can choose ξ1

′ such that ξ1
′ = ξ1∪{qR /yR } for yR =vars(w)\vrange(σ) and terms qR .

To complete the proof, we have to choose rR such that σ ′, ξ1
′ and ξ2

′: =ξ2∪{rR /yR } witness
that θ1

′ ≡tr ,fvars(ϕ)∪{x} θ2[x� wξ2
′], i.e., we set u′ = wξ2

′. Note that conditions 1. and 3.
are satisfied independently of the choice of rR . To satisfy 2. a)–d), we distinguish two
cases for each 1≤ i≤ |qR |. If qi∈St(tr), we set ri= qi because of c) and d). Otherwise,
we set qi to a new fresh name because of a) and b).

�

Proof. (of Lemma A.20) We prove for all trace formulas ϕ such that all subterms only
contain root symbols from Vtemp∪Vmsg∪Σallowed and for all for all ↓RBPe

-normal traces tr
and valuations θ, it holds that (tr , θ)�BPe

ϕ if and only if (tr , θ)�ACC ϕ. Our proof proceeds
by induction over formulas. Let tr be an arbitrary ↓RBPe

-normal trace and θ be an arbitrary
↓RBPe

-normal valuation.

i≺ j, i≈ j. Same semantics in �BPe
and �ACC .
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F (t1,	 , tk)@i. F (t1, 	 , tk)θ ∈BPe
tr θ(i) iff F (t1, 	 , tk)θ ∈ACC tr θ(i) since tr and

F (t1,	 , tk)θ are ↓RBPe
-normal because ti only contains allowed function symbols and

θ is ↓RBPe
-normal.

¬ψ. Follows immediately from induction hypothesis.

ψ1 ∧ ψ2. Follows immediately from induction hypothesis.

t1 ≈ t2. t1θ=BPe
t2θ iff t1θ=ACC t2θ since tiθ is ↓RBPe

–normal for i= 1 and i= 2 because ti
only contains allowed function symbols and θ is ↓RBPe

-normal.

∃x.ψ. We prove both directions separately.

(tr , θ)�BPe
∃x.ψ

implies existsu such that (tr , θ[x� u])�BPe
ψ

implies exists u′ such that (tr , θ[x� u′])�BPe
ψ and u′ ↓RBPe

-normal [u′=u↓RBPe
]

implies exists u′ such that (tr , θ[x� u′])�ACC ψ and u′ ↓RBPe
-normal [ IH ]

implies (tr , θ)�ACC ∃x.ψ

(tr , θ)�ACC ∃x.ψ

implies existsu such that (tr , θ[x� u])�ACC ψ

implies exists u′ such that (tr , θ[x� u′])�ACC ψ and u′ ↓RBPe
-normal [ (∗) ]

implies exists u′ such that (tr , θ[x� u])�BPe
ψ and u′ ↓RBPe

-normal [ IH ]

implies (tr , θ)�BPe
∃x.ψ

(∗): Here, we use Lemma A.23 and show that there is a term u′ such that
θ[x� u]≡tr ,fvars(ψ) θ[x� u′] and u′ is ↓RBPe

-normal. The proof that such an u′ exists
that is also ↓RBPe

-normal is analogous to the last case in the proof of Lemma A.23.

�

A.2 Proofs for Constraint Solving

We prove the soundness and completeness of all constraint solving rules including those for
bilinear pairings and AC operators.

Proof. (of Theorem 3.33) We first consider the completeness of rules. If Γ P {Γ1,	 ,Γk}
for the given rule and (dg , θ)  Γ for an arbitrary dependency graph dg and valuation θ,
then there must be θ ′ and i such that (dg , θ ′)Γi.

S@. Since (dg , θ) f@ i, it holds that fθ∈ACC trace(dg)θ(i). Therefore, θ(i) must be labeled
with some non-silent rule ri and fθ must be equal to one of the actions of ri . Hence
θ(i) must be an instance of a variant of a rule in P or an instance of the Recv rule.
Hence for one of the cases i:ru j , gj≈ f , where ru j contains only freshly chosen variables,
θ can be extended to θ ′ such that (dg , θ ′) i: ru j , gj≈ f ,Γ.

S≈. Since (dg , θ)  s ≈ t, it holds that sθ =ACC tθ. Hence, the valuation θ (restricted to

vars(s, t)) is an AC -unifier of s and t and therefore an instance of a σ ∈ unif ACC
fvars(Γ)(s, t),

i.e., there is a valuation θ ′ such that θ |fvars(Γ)=(θ ′ ◦ σ)|fvars(Γ). We therefore have
(dg , θ ′)Γσ.
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S∃. By the �ACC-semantics of ∃, there is a sequence of terms and timepoints uR such
that (trace(dg), θ[yR � uR ])�ACC ϕ{yR /x}. Since we use freshly chosen variables yR ,
(dg , θ[yR � uR ]) still satisfies the other constraints.

S∀,@. Since (dg , θ)  ∀xR .¬(f@ i) ∨ ϕ and (dg , θ)  (f@i)σ, where σ instantiates all
variables from xR with terms built using variables from fvars(Γ), (dg , θ)  ϕσ since
(¬(f@i)∨ ϕ)σ ∧ (f@ i)σ is logically equivalent to ϕσ.

S∀,≈. This case is analogous to the previous one.

S∨, S∧, S⊥. Directly follow from �ACC-semantics of ∨, ∧, and ⊥.

S≈. Since (dg , θ)¬(t≈ t), it holds that tθ�ACC tθ, which is a contradiction. This means
modelsP(Γ)= ∅=modelsP(⊥).

S¬@. Since (dg , θ)¬(f@ i), it holds that fθ∈
ACC

trace(dg)θ(i). But some other constraint

(from as(Γ)) implies that fθ ∈ACC trace(dg)θ(i), which is a contradiction. This means
modelsP(Γ)= ∅=modelsP(⊥).

SPrem. The node θ(i) is labeled with riθ in dg . It has a non-Kd and non-Fr premise with
index u. Hence, there must be an edge starting at some node and some conclusion
index vj of this node because of DG2. This node must be labeled with an instance of
a variant of a protocol rule or an instance of Send since all other rules only have Kd

and Fr conclusions.

S. The source and targets must be syntactically equal by DG1. Since constraints are
understood modulo ACC , we can use ≈ here.

SUSrc. There is exactly one incoming edge for each premise by DG2. Hence, the source
of both edge constraints with the same target must be equal.

SUTgt. There is at most one outgoing edge for each linear conclusion because of DG3.
Hence, the target of both edge constraints with the same source must be equal.

SULabel. The label of each node must be unique.

SAcyc. For each i≺ Γj, it must hold that θ(i)≺ θ(j). Hence, it cannot hold that i≺ Γ i and
θ(i)≺ θ(i).

SUFresh. By DG4, Fresh instances are unique in a dependency graph. Note that Fr-facts
are only provided by Fresh instances and Fr-facts are linear and can therefore have at
most one outgoing edge. Hence, Fr-premises are also unique.

S↓. In a normal dependency graph, labels ri must be ↓RBPe
-normal. Since ri not ↓RBPe

-
normal implies that riθ not ↓RBPe

-normal for all valuations θ, there is no normal depen-
dency graph that can satisfy a node constraint i: ri for an ri that is not ↓RBPe

-normal.

SPrem,K
⇑. If θ(i) has a K⇑-premise, then there must be some earlier node that provides this

premise.

S
⊲,K

⇑. If a node θ(i) provides a premise K⇑(mθ) such that root(mθ) is a function symbol

that is not equal to ∗ or invertible, then θ(i) must be an instance of Coerce or the
construction rule for f .

S⊲,fr . If a node θ(i) provides a premise K⇑(mθ) such that mθ ∈FN, then θ(i) must be an
instance of Coerce or the construction rule for fresh names.

S⊲,inv . If a node θ(i) provides a premise K⇑(mθ) such that root(mθ) is an invertible
function symbol, then θ(i) must be an instance of the construction rule for f by N4.
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S⊲,∗. If a node θ(i) provides a premise K⇑(mθ) such that root(mθ) = ∗ and a ∈

nifactors(mθ), then there must be an earlier rule that provides K⇑(a) because θ(i)
is an instance of a multiplication rule whose premises are nifactors(mθ). We know
that if t∈ nifactors(m) and t is not a message variable, then tθ ∈ nifactors(mθ).

SPrem,K
⇓y. If θ(i) has a K⇓y

-premise, then there must be a chain that starts at an instance

of a Recv node that provides this premises by Lemma 3.23.

S։. If there is a chain from θ(i) to (θ(k),w), then there is either a direct edge (first case) or
there is an intermediate deconstruction node, an edge from (θ(i), 1) to the first premise
of this node, and a chain from this node to (θ(k), w) (remaining cases).

SN3,⇓, SN3,⇑. These rules enforce N3 by identifying nodes with the same knowledge con-
clusion.

SN5,1, SN5,2. These rules enforce N3.

SN6. This rule detects exponentiation rule instance that are forbidden by N6.

S⊲,♯. The reasoning for this rule is similar to the one for S⊲,∗.

S։,♯. This rule specializes the solving of ։-constraint to chains that end in multisets.
Because of N8, we do not have to consider cases where a message that is already K⇑-
known is extracted or where the extracted message has the form a♯b.

SN9. This rule detects scalar multiplication rule instance that are forbidden by N9.

SN10. This rule detects exponentation rule instances that are forbidden by N10.

SN11. This rule detects ê rule instances where the order of premises is wrong according
to N11.

We now consider the soundness of rules. For all I-rules, the soundness is immediate since
we only add new constraints without modifying or removing any old constraints. For the
remaining rules, we have to show the following. If Γ P {Γ1,	 ,Γk} for the given rule and
(dg , θ)Γi for an arbitrary dependency graph dg and valuation θ and index 1≤ i≤k, then
there must be θ ′ such that (dg , θ ′)Γ.

S≈. The constraints Γ are instantiated by σ and the equality (t ≈ s)σ =ACC (tσ ≈ tσ) is
remove. Therefore, θ ′7 θ ◦σ is a valuation such that (dg , θ ′)Γ.

S⊥. For this rule, k is always equal to 0 and there is nothing to show.

S¬@. There is no (dg , θ) that satisfies ⊥.

S։, S։,♯. Both rules only remove the chain constraint, which is implied by the newly
added constraints in all cases. �
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