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Abstract

Type safety plays a crucial role in the security enforcement of any typed programming language.
This thesis presents a formal proof of C]’s type safety. For this purpose, we develop an abstract
framework for C], comprising formal specifications of the language’s grammar, of the statically
correct programs, and of the static and operational semantics. Using this framework, we prove
that C] is type-safe, by showing that the execution of statically correct C] programs does not
lead to type errors.

The bytecode resulting from compiling C] programs is executed on the Common Language
Runtime (CLR), the managed execution environment of the .NET Framework. As the bytecode
may be transmitted over a network and get corrupted as a result, the bytecode execution may
perform malicious operations. Therefore, to guarantee type safety, the CLR employs a bytecode
verification, i.e., a static analysis that performs several consistency checks before the bytecode
is run. We show type safety of the bytecode language by proving the soundness of the bytecode
verification. The abstract framework developed for the proof encompasses formal specifications
of the bytecode language’s abstract syntax, of the well-typedness constraints ensured by the
bytecode verification, and of the bytecode language’s static and dynamic semantics. Finally, we
demonstrate that legal and well-typed bytecode programs do not lead to any type error when
executed.

This thesis reveals an important number of relevant ambiguities in the official specifications
of C] and CLR and, in certain cases, even the absence of a specification at all. Thus, we identify
and fill several gaps in the two official documents. We also point out a series of inconsistencies
between different implementations of C] and CLR and their official specifications.
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Zusammenfassung

Typsicherheit nimmt einen entscheidenden Platz in der Gewährleistung der Sicherheit einer
typisierten Programmiersprache ein. Diese Doktorarbeit bietet einen formalen Beweis der Typ-
sicherheit von C]. Hierfür erarbeiten wir ein abstraktes System für C], bestehend aus den for-
malen Spezifikationen der Grammatik der Sprache, der statischen Korrektheit von Programmen
und der statischen und operativen Semantik. Basierend auf diesem System beweisen wir die
Typsicherheit von C], indem wir aufzeigen, dass die Ausführung eines statisch korrekten C]

Programms nicht zu Typfehlern führt.

Das kompilierte Ergebnis eines C] Programms wird als Bytecode auf einer verwalteten Um-
gebung namens Common Language Runtime (CLR) ausgeführt. Da Bytecode über ein Netz-
werk übertragen werden und folglich korrumpiert werden kann, kann die Ausführung von By-
tecode zu böswilligen Operationen führen. Um die Typsicherheit zu garantieren, setzt CLR
folglich eine Bytecode-Verifikation ein, das heisst eine statische Analyse, welche mehrere Kon-
sistenzüberprüfungen vornimmt bevor der Bytecode ausgeführt wird. Wir zeigen, dass der By-
tecode typsicher ist, indem wir die Korrektheit der Bytecode-Verifikation beweisen. Das ab-
strakte System, welches wir für den Beweis entwickelt haben, umfasst die Spezifikationen der
abstrakten Syntax der Bytecode-Sprache, der Wohl-Typisiertheits-Bedingungen, welche durch
die Bytecode-Verifikation sichergestellt werden müssen, und der statischen und dynamischen
Semantik der Bytecode-Sprache. Abschliessend legen wir dar, dass legale, wohl-typisierte By-
tecode Programme während ihrer Ausführung zu keinerlei Typffehlern führen.

Diese Doktorarbeit zeigt eine bedeutende Anzahl von relevanten Zweideutigkeiten in der
offiziellen Spezifikationen von C] und CLR auf und in gewissen Fällen sogar das Fehlen einer
Spezifikation überhaupt. In diesem Sinne identifizieren wir und schliessen wir einige Lücken in
den zwei offiziellen Dokumenten. Des weiteren zeigen wir mehrere Inkonsistenzen zwischen
verschiedenen Implementationen von C] und CLR und deren offiziellen Spezifikationen auf.

v





Acknowledgments

This thesis would have not been possible without the support of many persons. First of all,
I am greatly indebted to my first advisor, Prof. Dr. Robert F. Stärk, not only for providing
the challenging and exciting topic of this thesis, but also for his advice and support. I want
to express my profound acknowledgement to Prof. Dr. Thomas R. Gross who supervised and
stimulated my work during my last two years. My gratitude to both supervisors cannot be
realistically expressed and extended in any form of words.

It is a pleasure to thank Prof. Dr. Egon Börger for his advice, valuable criticism, invaluable
time, and for sharing his profound knowledge in formal methods. Special thanks go also to
Nigel Perry, Peter Sestoft and Jon Jagger (members of the C] Standardization Committee) and
to the Microsoft Corporation employees Jonathan Keljo, Joe Duffy, Chris Brumme, Don Syme
and Matt Grice for providing invaluable insights into the design of C] and CLR.

I thank the students I supervised during their master and diploma thesis for their contribution
to the validation of the formal models in this thesis: Christian Marrocco, Horatiu Jula, and
Markus Frauenfelder. For a successful thesis, not only the scientific part was important but also
the ambient in the group. I thank my long-term group mate Stanislas Nanchen and all members
of the LST group for the nice atmosphere.

I want to express my sincere thanks to my mother and father, Dobrita and Marin Fruja, for
their unconditional support, absolute confidence in me, and for giving me all the opportunities
in the world to explore my potentials and pursue my dreams. Last but not least, Karin has
always been at my side and offered me strong support - I am deeply grateful for that and for her
infinite patience that accompanied me along this long journey.

vii





Contents

Abstract iii

Zusammenfassung v

Acknowledgments vii

Contents ix

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis Statement and Contributions . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Thesis Road Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 The ASM Method 5
2.1 A Mathematical Definition of ASMs . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Locations and Updates . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Transition Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.4 Importing New Elements . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Notational Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Type Safety of C] 13
3.1 An Overview of C]S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 A Formal Description of C]S . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 The Execution Environment . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.2 The Grammar of C]S . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 The Type Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 The Definite Assignment Analysis in C] . . . . . . . . . . . . . . . . . . . . . 26

3.4.1 The Data Flow Equations . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.2 The Maximal Fixed Point Solution . . . . . . . . . . . . . . . . . . . . 33
3.4.3 The Control Flow Graph . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4.4 The Correctness of the Analysis . . . . . . . . . . . . . . . . . . . . . 41

3.5 The Semantics of C]S Programs . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5.1 The Static Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.5.2 The Dynamic Semantics . . . . . . . . . . . . . . . . . . . . . . . . . 49

ix



x CONTENTS

3.5.2.1 The Evaluation of the C]S Expressions and Statements . . . 53
3.6 Type Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.7.1 Java’s Type Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.7.2 The Definite Assignment Analysis . . . . . . . . . . . . . . . . . . . . 69
3.7.3 The ASM Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.8 Summary and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4 Type Safety of CLR 73
4.1 The Lightweight CLR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.1.1 An Overview of the Lightweight CLR and its Type System . . . . . . . 75
4.1.1.1 Reference Types . . . . . . . . . . . . . . . . . . . . . . . . 75
4.1.1.2 Value Types . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1.2 The Static Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.1.3 The Dynamic Semantics . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.1.3.1 The Semantics of the Bytecode Instructions . . . . . . . . . 89
4.1.4 The Bytecode Verification . . . . . . . . . . . . . . . . . . . . . . . . 101

4.1.4.1 An Overview of the Bytecode Verification . . . . . . . . . . 101
4.1.4.2 The Verification Type System and Bytecode Structure . . . . 102
4.1.4.3 Verifying the Bytecode Instructions . . . . . . . . . . . . . . 106
4.1.4.4 Computing Successor Type States . . . . . . . . . . . . . . . 112

4.1.5 The Bytecode Verification Algorithm and Well-typed Methods . . . . . 114
4.1.6 Type Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.2 The Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.2.1 An Overview of the Exception Handling Mechanism . . . . . . . . . . 132
4.2.2 The Static Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.2.3 The Dynamic Semantics . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.2.3.1 The StackWalk Pass . . . . . . . . . . . . . . . . . . . . . . 138
4.2.3.2 The Unwind Pass . . . . . . . . . . . . . . . . . . . . . . . 142
4.2.3.3 The Leave Pass . . . . . . . . . . . . . . . . . . . . . . . . 146
4.2.3.4 The Semantics of the Exception Specific Instructions . . . . 148

4.2.4 The Bytecode Verification . . . . . . . . . . . . . . . . . . . . . . . . 152
4.2.4.1 The Bytecode Structure . . . . . . . . . . . . . . . . . . . . 152
4.2.4.2 Verifying the Bytecode Instructions . . . . . . . . . . . . . . 152
4.2.4.3 Computing Successor Type States . . . . . . . . . . . . . . . 154

4.2.5 Type Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
4.3 The Generics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

4.3.1 The Polymorphic Type System . . . . . . . . . . . . . . . . . . . . . . 163
4.3.2 The Bytecode Semantics . . . . . . . . . . . . . . . . . . . . . . . . . 167
4.3.3 The Bytecode Verification . . . . . . . . . . . . . . . . . . . . . . . . 174

4.3.3.1 The Verification Type System . . . . . . . . . . . . . . . . . 174
4.3.3.2 Verifying the Bytecode Instructions . . . . . . . . . . . . . . 178
4.3.3.3 Computing Successor Type States . . . . . . . . . . . . . . . 179

4.3.4 Type Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179



CONTENTS xi

4.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
4.4.1 The CIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
4.4.2 The JVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
4.4.3 The Variance on Generic Parameters . . . . . . . . . . . . . . . . . . . 192
4.4.4 The ASM Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

4.5 Summary and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

5 Conclusion 195

Bibliography 197

List of Figures 207

List of Tables 209

A Appendix 211
A.1 The C]S Operational Semantics Rules . . . . . . . . . . . . . . . . . . . . . . 211





1
Introduction

Well-typed programs never go wrong.
Robin Milner

1.1 Motivation

Type safety is a central theme in language-based security. Language type safety is relevant to the
security of a system since many attacks exploit vulnerabilities in language’s type system, design
and implementation, circumventing system security by hijacking the program execution model.
Type safety is a formal guarantee that the execution of any program is free of certain forms
of erroneous or undesirable program behavior, called type errors. The behaviors classified as
type errors by any given programming language are generally those that result from attempts to
perform on some value an operation that is not appropriate to its type: For example, a method
defined on integers is applied to an object.

The enforcement of type safety can be static, catching potential errors at compile-time, or
dynamic, associating type information with values at run-time and consulting them as needed to
detect imminent errors, or a combination of both approaches. Employing a conservative strong
static type analysis and dynamic checks, e.g., cast checking, is fundamental to modern program-
ming practice and is used in programming languages, like C] [74], Java [67], and OCaml [12].
This thesis studies C]’s type safety, primarily since, at the time of this writing, C] is, besides
Java, one of the most popular modern general-purpose programming languages.

C] is a class-based single-inheritance object-oriented programming language. It has been
developed by Microsoft Corporation specifically for the Common Language Runtime (CLR)
of the .NET Framework [2, 3], a managed execution environment with Common Intermedi-
ate Language (CIL), often referred to as CLR bytecode language. Approved as a standard by
ECMA International [44], C] has a procedural, object-oriented syntax based on C++ that in-
cludes several novel features, but also features of other programming languages, most notably
of Java, Visual Basic, and Delphi. Of particular interest are features like struct types as user
defined value types, call-by-reference parameter passing for methods, unified type system with
boxing and unboxing, and delegates – methods as values, also known as closures – for invoking
one or multiple methods. It must be emphasized that C] also provides the ability to write unsafe
code with C-style pointers, but only in clearly marked unsafe contexts. For obvious reasons
related to their unsafe nature, the C] language analyzed in this thesis does not include unsafe
features.

1



2 CHAPTER 1. INTRODUCTION

The C] language is intended for writing applications for both hosted and embedded systems,
ranging from the very large ones that use elaborated operating systems, down to the very small
ones having dedicated functions. It is aimed to be used, in particular, for developing desktop
and internet applications and software components suitable for deployment in distributed en-
vironments. Given the importance of security for these kinds of applications, an investigation
of C]’s type safety, a key ingredient for security, is justified and necessary.

C]’s type safety alone is, however, not sufficient to guarantee type-safe execution of byte-
code programs on the CLR. The reason for this is that the bytecode might be produced by an
illegal (buggy) C] compiler or might not even be related to a C] program. Therefore, this thesis
also analyzes type safety of the bytecode language executed on the CLR.

The CLR, approved as a standard by ECMA International [45], has been designed from
the ground up as a target for a wide variety of languages, called .NET compliant languages.
A non-comprehensive list of programming languages compiling to CIL ranges from object-
oriented languages, like C], Visual Basic, Managed C++, Eiffel [46], Smalltalk, Spec], and
Active Oberon, to functional programming languages, like Haskell [14], Scheme [43], Mer-
cury [11], and AsmL [49], and from pure procedural programming languages, like COBOL and
Modula 2, to scripting languages, like JScript, Perl, and Phyton. At the time of this writing,
there are 53 .NET compliant languages (see [17] for an up-to-date list), out of which C] is the
most popular. The CLR makes possible the cross-language compatibility, i.e., the .NET com-
ponents can interact with each other regardless of the languages they are written in. Due to the
wide spectrum of .NET compliant languages, the CLR is required to support various features,
such as, for example, tail method calls, pointers (including method pointers), typed references,
generics with F-bounded polymorphism, covariance, and contravariance, a structured excep-
tion handling model, and a unified type system with boxing and unboxing.

As programs have become more dynamic and distributed, operating systems and browsers
have been required more often to execute downloaded or mobile code. This execution can be
problematic as there exists malicious programs, intended to cause mischief when executed on
unsuspecting hosts. As the CLR has been designed to be suitable for the development of a va-
riety of applications, ranging from web services to web and Windows applications, CIL’s type
safety, central to the notion of safe code execution within the CLR, is crucial. Executing non
type-safe bytecode programs on the CLR, regardless whether the bytecode was accidentally or
maliciously created, can produce erroneous or destructive behavior within the execution sys-
tem. It is worth mentioning that CLR’s type safety also includes checks other than just type
constraints, such as, for example, prohibition of stack underflow / overflow, correct use of the
exception handling facilities, and object initialization.

To ensure type safety, the CLR employs a conservative static analysis, called bytecode verifi-
cation, that performs several consistency checks before the bytecode is executed. Bytecode ver-
ification rejects, for example, a bytecode program that performs operations on values of wrong
types, accesses an uninitialized object, calls a method with an incorrect number of parameters,
calls a method with a parameter of an incorrect type or executes a method which returns a value
of an incorrect type. The checks are not only limited to type checks: Bytecode verification
prohibits bytecode programs that jump to an invalid code index. Similarly to the C]’s type anal-
ysis, the bytecode verification is conservative, meaning that not only all the faulty programs are
rejected, but also programs that would never exhibit a run-time type error. The reasons this con-
servative analysis are the undecidability of the halting problem and efficiency considerations. It
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must be emphasized that, analogously to the C]’s type analysis, the CLR’s bytecode verification
by itself does not guarantee type-safe execution of the bytecode: Many crucial properties of the
code still need to be ensured dynamically, e.g., array bound checks and null pointer checks. The
purpose of bytecode verification is to shift as many dynamic checks as possible from run-time
to verification-time.

For the sake of clarity, this thesis only analyzes type safety of large, yet representative,
subsets of C] and CIL. Correspondingly, two formal proofs are developed, basically showing
the soundness of the C]’s type analysis and CLR’s bytecode verification defined accordingly
to [74] and [45], respectively. For that, we formally define the abstract syntax, type system, type
constraints guaranteed by the C]’s type analysis and by the CLR’s bytecode verification, and the
static and dynamic semantics of C] and CLR. Moreover, we provide a formal specification of
the definite assignment rules that must be satisfied by a C]method in order to be accepted by the
definite assignment analysis, i.e., a dataflow analysis performed by the C] compiler to guarantee
that all local variables are assigned to before their value is used. The two type safety proofs
basically establish that the run-time execution, according to the semantics models, of legal
C] and CIL programs satisfying the type constraints and, in case of C], the definite assignment
rules does not lead to any type error. The proved type safety properties attest that C]’s and CIL’s
type safety are strictly stronger than the memory safety property. In particular, this means that
memory is only ever accessed in a well-known and controlled manner through typed references.

1.2 Thesis Statement and Contributions

In this thesis, we establish the following results:

• A large and representative subset of C] is type-safe.

• A large and representative subset of CIL is type-safe.

Besides the formal proofs of the two statements, this thesis makes several other contribu-
tions:

• Two important by-products of this thesis are represented by the formal models developed
for CIL and its bytecode verification. The CIL model, including a fairly elaborate model
for the CLR exception handling mechanism, can serve, for example, as the basis for
building a robust interpreter for the CIL bytecode [92], whereas the bytecode verification
model can assist the implementation of a prototype of a CLR bytecode verifier. Note that
the C] model, on which the C]’s type safety proof relies, has been defined in [24] and
does not constitute a contribution of this thesis.

• This thesis reveals an important number of relevant ambiguities in the official specifica-
tions of C] [74] and CLR [45] and, in certain cases, even the absence of a specification at
all. Thus, we identify and fill several gaps in the two official documents. Annotations cor-
responding to some of these gaps have been included in the C] Annotated Standard [82],
a book for which this thesis’ author was an invited guest annotator. We also point out a
series of inconsistencies between different implementations of C] and CLR and the stan-
dards [74] and [45], respectively. Moreover, many explanations presented in this thesis,
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alongside the specifications [74] and [45], provide the rationale behind the design, that is
often missing from the official specifications.

• Last but not the least, the abstract frameworks defined in this thesis serve not only as
a basis for the type safety proofs, but also as starting point for reasoning about a wide
variety of aspects of C] and CLR. Thus, one can investigate, for example, stronger safety
guarantees for C] and CIL programs, or ways in which programs can be optimized in a
type-safe manner.

1.3 Thesis Road Map

The semantic models of C] and CLR, serving as the rigorous basis for the type safety proofs,
are defined in terms of abstract interpreters, using the framework of Abstract State Ma-
chines (ASMs). To allow the reader a correct understanding of the formal specifications and
proofs in Chapters 3 and 4, Chapter 2 includes a brief overview as well as a mathematical def-
inition of the ASMs, based on the definition presented in [115]. The formal specifications and
the corresponding type safety proofs of C] and CIL are presented in Chapter 3 and 4. The two
chapters may be read independently of each other, but each of them presupposes Chapter 2.
Chapter 5 concludes. For the reader’s convenience, the evaluation rules of the semantics model
for C] defined in [24] are included in the Appendix.



2
The ASM Method

So-called ”natural language” is wonderful
for the purposes it was created for, such as to be rude in, to tell jokes in, to cheat or
to make love in, but it is hopelessly inadequate when we have to deal unambiguously
with situations of great intricacy, situations which unavoidably arise in such activities
as legislation, arbitration, mathematics, or programming.

Edsgar W. Dijkstra

The Abstract State Machines (ASMs) [70, 27] are a mathematical formalism, widely used for
high-level design and analysis of computing systems, in particular for the formal definition of
programming language semantics. The notion of ASMs captures precisely some basic opera-
tional intuitions of computing. The ASMs describe a system by means of a particular syntax
and associated semantics and use classical, well-understood, mathematical structures (algebras)
to describe the states of a computation. This distinguishes ASMs from informal methodologies.
The ASM programs use a very simple and expressive syntax, whose semantics can be under-
stood without any further explanation, simply viewing the ASM programs as ”pseudo-code
over abstract data structures”. In contrast, other specification methods, notably denotational
semantics, use complicated syntax whose semantics is more difficult to read and write. This is
one of the reasons we used the ASM method for the formal specifications in Chapters 3 and 4.
Despite of their abstract nature, the ASM specifications are executable in the .NET ASM Lan-
guage (AsmL) [49]. Thereby, a way to validate and verify the ASM specifications is provided.

ASMs in a nutshell In the ASM framework, the systems are formalized in a state-based way,
by means of states and state transitions. An ASM state is represented by an algebra over a
given vocabulary, where data come as abstract objects, that is, as elements of universes (one
for each category of data) which are equipped with basic operations (functions) and predicates.
The state transitions are defined by transition rules which specify the possible state changes in
terms of updates. The notion of ASM run is the well-known notion of computation of transition
systems. In a given state, an ASM computation step consists in executing simultaneously all
updates prescribed by the applicable transition rules, i.e., the rules whose guard is true in the
given state, if there no clashing updates. Simultaneous execution is a convenient way to make
use of synchronous parallelism and to abstract from irrelevant sequentiality.

ASMs defining language semantics The semantics of programming languages is described
operationally using ASMs based on the abstract syntax trees. Part of the current state is the

5



6 CHAPTER 2. THE ASM METHOD

current task, a pointer to the currently to be executed node in the abstract syntax tree. During
program execution, states are transformed into new states, by that also updating the pointer to
the current task. During a state transition, the interpretation of some function symbols may
change. To specify the semantics of a language, the abstract syntax tree is assumed to contain
attributes defining all continuations, especially for the non-compositional changes of the control
flow. The ASM definition models the program counter during program execution, by that using
the continuation attributes which might be split up according to the truth value of guards. The
semantics of each program node is described by a finite number of transition rules. Typically,
the guard of such a transition rule specifies the nodes in the abstract syntax tree for which the
transition rule is applicable. The transition rules define updates, thereby employing child nodes
as well as statically computed continuations.

2.1 A Mathematical Definition of ASMs

In this section, we present a mathematical definition for the syntax and semantics of ASMs. An
interested reader can find two excellent formal definitions of ASMs in [115, §2] and [27, §2.4].
The definition included here follows very closely the definition in [115, §2].

2.1.1 States

The abstract states of the ASMs are given as algebras. An algebra is defined with respect to a
vocabulary (sometimes called signature), variables, and terms. Additionally, an interpretation
and a variable assignment are considered to allow evaluation of syntactical entities to semantical
values.

Definition 2.1.1 (Vocabulary) A vocabulary Σ is given by a finite set of function names, each
with a fixed arity. Every vocabulary should contain the nullary functions True, False, and undef.

Functions Classification As the states are mostly characterized in terms of functions, one
distinguishes different kinds of functions:

• Static functions never change during any run. The nullary functions True, False and undef
are considered static functions.

• Dynamic functions may change their interpretation during a run.

• External functions, also known as oracles, whose interpretation cannot be changed by the
system itself but by the outer environment.

• Derived functions are defined in terms of other functions, known as basic functions.

• Relational functions (also known as characteristic functions or predicates), with the
boolean universe as codomain.

The derived functions can be viewed as macros, applied to shorten expressions. The rela-
tional functions are typically used to describe sets. The nullary function names of a vocabulary
are called constants, though, as we have seen above, the interpretation of dynamic nullary func-
tions can change from one state to the next state.
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Definition 2.1.2 (State) Given a vocabulary Σ, a state A for Σ is given by a non-empty set X
and the interpretations of the function names of Σ:

• the interpretation cA of a constant c of Σ is an element of X.

• the interpretation fA of a n-ary function name f of Σ is a function from Xn into X.

The set X in Definition 2.1.2 is called the superuniverse of the stateA and is denoted by ‖A‖.
The interpretations of the nullary logic names True, False and undef are distinct elements of X.
The boolean operations behave in the usual way on the boolean values True and False and
produce undef if at least one of the arguments is not boolean.

Formally, all the basic functions are total. They may, however, return the special ele-
ment undef if they are not defined at an argument. Let us stress though that undef is an
ordinary element of the superuniverse. Often, a basic function returns undef if at least one
argument is undef .

The terms, typically denoted by t or s, are defined recursively, as in first-order logic.

Definition 2.1.3 (Term) The terms of a vocabulary Σ are syntactic expressions inductively pro-
duced as follows:

• The variables, x, y, z, . . . , elements of the set V , are terms.

• The constants c of Σ are terms.

• If f is an n-ary function name of Σ and t1, . . . , tn are terms, then f(t1, . . . , tn) is a term.

To provide terms with semantics, one needs first to assign values to variables. This is ac-
complished by a function called variable assignment.

Definition 2.1.4 (Variable assignment) A variable assignment over a state A is a function

ζ : Map(V , ‖A‖)

Given a variable assignment ζ , ζ[x 7→ a] denotes the variable assignment which coincides
with ζ except that it assigns the element a to the variable x.

The evaluation of terms is defined with respect to a variable assignment and a state:

Definition 2.1.5 (Term evaluation) Given a state A of Σ, a variable assignment ζ over A and
a term t of Σ, the value [[t]]Aζ is defined by induction on t’s length as follows:

• [[x]]Aζ = ζ(x)

• [[c]]Aζ = cA

• [[f(t1, . . . , tn)]]Aζ = fA([[t1]]Aζ , . . . , [[tn]]Aζ )
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Similarly to the terms, the formulas can be interpreted in a state, with respect to a variable
assignment. Note that the formulas cannot return undef : They are either True or False.

Definition 2.1.6 (Formula semantics) For a stateA of Σ, a variable assignment ζ overA and
a formula φ consisting of terms over Σ, the truth value [[φ]]Aζ is defined by induction on φ’s
length as follows:

[[s = t]]Aζ =

{
True, if [[s]]Aζ = [[t]]Aζ ;

False, otherwise.

[[¬φ]]Aζ =

{
True, if [[φ]]Aζ = False;
False, otherwise.

[[φ ∧ ψ]]Aζ =

{
True, if [[φ]]Aζ = True and [[ψ]]Aζ = True;
False, otherwise.

[[φ ∨ ψ]]Aζ =

{
True, if [[φ]]Aζ = True or [[ψ]]Aζ = True;
False, otherwise.

[[φ⇒ ψ]]Aζ =

{
True, if [[φ]]Aζ = False or [[ψ]]Aζ = True;
False, otherwise.

[[∀xφ]]Aζ =

{
True, if [[φ]]Aζ[x 7→a] = True for every a ∈ ‖A‖;
False, otherwise.

[[∃xφ]]Aζ =

{
True, if there exists a ∈ ‖A‖ with [[φ]]Aζ[x 7→a] = True;
False, otherwise.

2.1.2 Locations and Updates

As a state is described through functions and their current interpretation, the change of a state is
described in terms of changing its function values at particular points. To capture state changes,
the notions of locations and updates are introduced.

Definition 2.1.7 (Location) Given a state A of Σ, a location of A is a pair (f, (a1, . . . , an)),
where f is an n-ary function name of Σ and a1, . . . , an are elements of ‖A‖.

To change the value of a location, the notion of update is used:

Definition 2.1.8 (Update) Given a state A, an update of A is a pair (loc, val) where loc is a
location of the stateA and val is an element of ‖A‖. A set of updates is known as an update set.

Given the parallelism underlying several transition rules, a prescribed update set might be
inconsistent, i.e., it contains at least two clashing updates.
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Rule Meaning
skip do nothing
f (t1, . . . , tn) := s update f at the arguments t1, . . . , tn to s
P Q execute P and Q in parallel
if φ then P else Q if φ, then execute P, else execute Q
forall x with φ do P(x) execute P(x) in parallel for each x satisfying φ
choose x with φ do P(x) choose an arbitrary x satisfying φ and then execute P(x)
let x = t in P assign the value of t to x and then execute P
P seq Q execute P and then execute Q
r(t1, . . . , tn) call r with the values of t1, . . . , tn as parameters
P where Q execute P assuming the abbreviations implied by Q

Table 2.1: The ASM transition rules.

Definition 2.1.9 (Consistent update set) An update set U is consistent if the following condi-
tion is satisfied for any location loc and elements val, val ′:

(loc, val) ∈ U ∧ (loc, val ′) ∈ U ⇒ val = val ′

2.1.3 Transition Rules

A means of updating the abstract states of ASMs is given by transition rules, informally de-
scribed in Table 2.1. The syntax of ASM programs is defined by these rules (and a rule intro-
duced in Section 2.1.4), typically denoted by P or Q.

Definition 2.1.10 (ASM) An abstract state machine M is made of a vocabulary Σ, a set of initial
states for Σ, a set of rule declarations, and a special rule name of arity zero, named the main
rule of the machine.

In a given state, under a given variable assignment, a transition rule yields an update set.
Note that a transition rule can be recursive and consequently produce no update set at all. There-
fore, the semantics of transition rules is defined by the calculus in Table 2.2.

Definition 2.1.11 (Transition rule semantics) A transition rule P generates the update set U
in a state A under a variable assignment ζ if and only if [[P]]Aζ B U is derivable in the calculus
defined in Table 2.2.

Table 2.2 skips the semantics of the where rule, since this is easily reducible to the let construct.
In Definition 2.1.11, if [[P]]Aζ B U is derivable in the calculus, then the update set U is typically
identified with [[P]]Aζ .

To fire a consistent update set, all its members are fired simultaneously. The result is a new
state, with the same vocabulary and superuniverse, where the interpretations of the function
names are changed accordingly to the updates in the update set.
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[[skip]]Aζ B ∅

[[f (t1, . . . , tn) := s]]Aζ B {(loc, val)}
where loc = (f , ([[t1]]Aζ , . . . , [[tn]]Aζ ))

and val = [[s]]Aζ

[[P]]Aζ B U [[Q]]Aζ B V
[[P Q]]Aζ B U ∪ V

[[P]]Aζ B U
[[if φ then P else Q]]Aζ B U

if [[φ]]Aζ = True

[[Q]]Aζ B V

[[if φ then P else Q]]Aζ B V
if [[φ]]Aζ = False

[[P]]Aζ[x 7→a] B U

[[let x = t in P]]Aζ B U
where a = [[t]]Aζ

[[P]]Aζ[x 7→a] B Ua for each a ∈ I

[[forall x with φ do P]]Aζ B
⋃

a∈I Ua

where I = {a ∈ ‖A‖ | [[φ]]Aζ[x 7→a] = True}

[[P]]Aζ[x 7→a] B U

[[choose x with φ do P]]Aζ B U
if a ∈ {a ∈ ‖A‖ | [[φ]]Aζ[x 7→a] = True}

[[choose x with φ do P]]Aζ B ∅
if {a ∈ ‖A‖ | [[φ]]Aζ[x 7→a] = True} = ∅

[[P]]Aζ B U [[Q]]A+U
ζ B V

[[P seq Q]]Aζ B U ⊕ V
if U is consistent

[[P]]Aζ B U

[[P seq Q]]Aζ B U
if U is inconsistent

[[P]]Aζ[x 7→a] B U

[[r(t)]]Aζ B U
where r(x) = P is a rule declaration

and a = [[t]]Aζ

Table 2.2: The semantics of the ASM rules.

Definition 2.1.12 (Firing updates) Given a consistent update set U and a stateA, the result of
firing U in A, denoted by A+ U, is a state A′, where the following conditions are met for every
function name f of Σ:

• ‖A‖ = ‖A′‖;

• fA
′
(a1, . . . , an) = b for every update ((f, (a1, . . . , an)), b) ∈ U.

• if f is not an external function, then fA
′
(a1, . . . , an) = fA(a1, . . . , an), for every

(a1, . . . , an) ∈ ‖A‖n for which there exists no b ∈ ‖A‖ with ((f, (a1, . . . , an)), b) ∈ U.
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A run of an ASM consists of a sequence of states, each derived from the preceding state by
firing the updates yielded by the main rule. If the generated update set is inconsistent or not
defined, the ASM reached the final state in the respective run.

Definition 2.1.13 (ASM run) Given a variable assignment ζ and an ASM M with vocabu-
lary Σ, initial state A0 and main rule r, a run of M is a possibly infinite sequence A0,A1, . . . of
states for Σ such that:

• if [[P]]An
ζ is consistent and defined, then An+1 is the state obtained by firing the updates of

the set [[P]]An
ζ in the state An.

• if [[P]]An
ζ is not consistent or not defined, then An is the last state of the sequence.

2.1.4 Importing New Elements

The transition rules in Table 2.1 suffice for many purposes, but they do not suffice, for instance,
for systems that require to increase their working space. For this purpose, as a means to extend
the vocabulary of a state, an import construct is considered together with a possibly infinite
universe, called reserve, from which new (fresh) elements are imported.

The import construct, whose general form is given below, has the following meaning:
”Choose an element from the reserve, delete it from the reserve, and then execute P where
every occurrence of x is replaced by the reserve element”.

import x do P(x)

The precise semantics of this construct, defined in [27, §2.4], goes much beyond the scope of
this chapter and therefore is skipped. The different rules specified for the import construct
guarantee, as shown in [27, §2.4], that ”imports” executed in parallel generate fresh, pairwise
different, elements and that permutations of the reserve universe do not change the semantics of
ASM rules. Otherwise said, the semantic does not depend on the elements picked up from the
reserve universe by the import construct.

2.2 Notational Conventions

Before getting started, we should establish some notations. This section includes the most
frequently used ones, the majority of which are list operations. Many readers could just skip
this section and refer back to it as necessary.

We denote by N the set of natural numbers, including 0.

P(A) is used to denote the powerset of the set A, i.e., the set of all subsets of A.

We denote by Map(A,B) the set of all mappings (functions) from a domain A to
a codomain B.
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[x1, . . . , xn] is the list containing the elements x1, . . . , xn; [ ] is the empty list.

L(i) is the i-th element of the list L.

length(L) returns the length of the list L.

L · L′ is the concatenation of the lists L and L′.

sublist(L,L′) is true if the list L is a sublist of the list L′. More exactly, sublist(L,L′) holds
if there exist two lists L′′ and L′′′ such that L′′ · L · L′′′ = L′.

last(L,L′) is true if the last occurrence of the list L in the list L′ is at the beginning of L′.
More precisely, last(L,L′) holds if for every two lists L′′ and L′′′ such that L′′ · L · L′′′ = L′, it
holds L′′ = [ ].

prefix(L,L′) returns the sublist of the list L′ before the last occurrence of L in L′. More
exactly, prefix(L,L′) = L′′ if there exists a list L′′′ such that last(L,L · L′′′) and L′′ · L · L′′′ = L′.

suffix(L,L′) returns the sublist of the list L′ after the last occurrence of the list L in L′. More
precisely, suffix(L,L′) = L′′ if last(L,L · L′′) and there exists a list L′′′ such that L′′′ · L · L′′ = L′.

top(L) returns the last element of the list L.

pop(L) returns the list L without the last element.

push(L, x) is the result of pushing x to the right of the list L, i.e., the list L · [x].

take(L, n) returns the list consisting of the last n elements of the list L.

drop(L, n) returns the list resulting from dropping the last n elements from the list L.

split(L, n) splits off the last n elements of the list L. More exactly, split(L, n) is the
pair (L′,L′′), where L′ · L′′ = L and length(L′′) = n.

L[y/x] yields the list obtained by replacing all occurrences of x by y in the list L.

L vsuf L′ is true if the lists L and L′ of lengths m and n, respectively, and the relation v
satisfy the following conditions: m ≥ n and L(m− n + i) v L′(i), for every i = 0, n− 1.

L vlen L′ is true if the lists L and L′ of lengths m and n, respectively, and the relation v
satisfy the following conditions: m = n and L(i) v L′(i), for every i = 0,m− 1.

L ∈suf L is true if the list L and the set of lists L satisfy the following condition: There exists
a list L′ ∈ L such that L vsuf L′.

L ∈len L is true if the lists L and the set of lists L satisfy the following condition: There
exists a list L′ ∈ L such that L vlen L′.
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Type Safety of C]

Program testing can be used to show the presence of bugs, but never to show their
absence.

Edsgar W. Dijkstra

In this chapter, we formally prove type safety of a large and representative subset of C],
named C]S . First, the abstract syntax and the execution environment of C]S programs are
formally specified. We then define the type constraints and the definite assignment analysis
dataflow equations that are guaranteed to hold for C]S programs, upon their successful compi-
lation. The formal specifications of the static and dynamic semantics of C]S are further provided
through an abstract interpreter for C]S programs, defined as an ASM model. Finally, we prove
that C]S is type-safe, i.e., the execution on the ASM model (for the C]S semantics) of legal
C]S methods, accepted by the definite assignment analysis and satisfying the type constraints,
does not produce any run-time type violations. Moreover, we show that the execution leaves the
C]S programs in a good state, where certain structural constraints are satisfied.

Basis Our type safety proof is built on top of the ASM model for the C]’s semantics, defined
by Stärk et al. [24]. As this model is not a contribution of this thesis, to aid the reader, we
describe it separately in Section 3.5 and include its operational semantics rules in the Appendix.
We use this model, but with a few minor changes. It is about some differences, pointed out in
detail in Section 3.5, between the original model [24] and the C] Language Specifications [74],
which we were able to fix as a result of considering through our proof all language intricacies.

Challenges C]S is a large sequential sublanguage of C] which includes features that we
believe to be important for an investigation of C]’s type safety. Despite the simple and expres-
sive C] syntax, we had to consider a large number of proof cases, mainly due to the C]’s unified
type system including some special value types, called structs. Besides the lengthy proof, we
have encountered the following technical difficulties. A key ingredient of C]S’s type safety,
the soundness of the definite assignment analysis, performed by the C] compiler to guarantee
that every variable is initialized before its value is accessed, is pretty difficult to prove: Firstly,
because the data flow equations underlying the definite assignment analysis do not always have
a unique solution, and secondly, because the struct type variables are handled specially by the
analysis. The ”intuitive” invariants, i.e., the invariants apparently expressing C]S’s type safety,

13
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cannot be proved without considering and proving other ”less intuitive” (rather technical) in-
variants. Due to some circular dependencies, attempting to prove the latter (as separate lemmas)
before the type safety theorem is hopeless as they require the proof of the intuitive invariants.
Therefore, an important idea for the proof consists in identifying the (least) set of invariants
needed for the type safety result. Moreover, it was not trivial to relate analyzes performed by
the C] compiler, e.g., the definite assignment analysis, to run-time properties since the evalua-
tion of certain constructs, e.g, struct fields, might involve several intermediate steps. Further-
more, in the context of C]’s call-by-reference mechanism, it was tricky to track what locations
are initialized as, for example, several field locations of a struct value might be initialized though
the struct value location is considered uninitialized.

Features omitted from C] To give a flavor of the full C], we list here the main features
omitted:

• properties, indexers, and events: They are implemented in C] through syntactic sugar,
and therefore can easily be reduced to C]S constructs, as shown in [24].

• arrays and static members: Including them would only trigger the extension of some
definitions and a few more proof cases, but it would not increase the technical complexity
of the proof.

• multi-threading: The C] thread model has been formally specified by Stärk and
Börger [112]. The main invariants of this model have then been formally verified
by Stärk [111] in the AsmTP system, an interactive proof assistant implemented in Prolog
and based on LPTP [110].

• generics, anonymous methods, and iterators: The semantics of these features has been
formalized by Jula [83]. The anonymous methods and the iterators are implemented
through syntactic sugar, as shown in [83].

Chapter outline The rest of this chapter is organized as follows. Section 3.1 gives an overview
of the C]S language. A formal description of C]S consisting of definitions for the execution
environment and the grammar is provided in Section 3.2. Section 3.3 formalizes the type con-
straints that should be satisfied by every C]S program, upon successful compilation. Section 3.4
formally specifies the definite assignment analysis, which is then proved sound. The static and
dynamic semantics of C]S , as defined in [24], are included in Section 3.5. Finally, Section 3.6
presents a proof of C]S’s type safety. Section 3.8 summarizes and gives directions for future
work. For the reader’s convenience, the operational semantics rules of [24]’s model are included
in the Appendix.

3.1 An Overview of C]S

C]S is a large and representative sublanguage of C] that includes classes, interfaces, instance
members (fields, methods, and constructors), inheritance of members, dynamic method dis-
patch, local variables, and exceptions. Moreover, C]S has delegates, structs, call-by-reference
(ref/out parameters), boxing, and unboxing.
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Delegates The delegate types are reference types, built with the idea of being the type-safe
method pointers in C]. Informally, a delegate, i.e., an instance of a delegate type, is an object
that points towards an invocation list of pairs of target objects and target methods. Upon the
invocation of a delegate with a list of arguments, the methods in its invocation list are invoked
sequentially with the corresponding target object and the given arguments, returning to the
delegate caller the return value of the last method in the list.

Structs Besides primitive types, C] supports some special value types called structs. Every
struct has the library class System.ValueType [10] as the direct base class. In particular, a
struct is sealed, meaning that it is not possible for a struct to extend another struct. Additionally,
a struct can implement one or more interfaces. Similarly to a class, a struct can declare instance
fields. A struct value is a “self-contained” value. This is so because a struct instance can be
represented as a mapping assigning values to the instance fields of the struct. As the structs are
sealed, the instance methods in structs cannot be declared as virtual, since it is just not possible
to subtype them and consequently, the definitions of methods cannot be overridden.

Boxing and unboxing To fill the gap between value types and reference types, i.e., to have an
unified type system, C] supports two special operations called boxing and unboxing. Through
boxing, a copy of a value type instance can be ”packed” in an object on the heap, along with
the necessary internal data required to create a valid reference object. The inverse process, i.e.,
converting a reference type to a value type, is called unboxing. An unboxing ”back” to a value
type returns the value boxed in the object if the object is indeed a boxed value of the given value
type.

Although the structs cannot declare virtual methods, the virtual methods defined by
System.ValueType, object, and by the interfaces implemented by a struct (if any) can,
however, be called on the struct instances, but only if the instances are boxed. This makes sense
as the value types have identity only when boxed.

Call-by-reference In C] a ref parameter is used for ”by reference” parameter passing in
which the parameter acts as an alias for the caller-provided argument. An out parameter is
similar to a ref parameter except that the initial value (if any) of the caller-provided argument
is not important. This is because a variable is required to hold a value before it can be passed
as a ref parameter, whereas a variable need not hold a value before it can be passed as an out
parameter.

3.2 A Formal Description of C]S

In this section, we provide a formal description of C]S along the lines of the C] model [24].
Section 3.2.1 specifies the components of the execution environment. The grammar of C]S is
defined in Section 3.2.2.

3.2.1 The Execution Environment

Every C]S method runs in an execution environment that contains the type hierarchy and the
field and method declarations. The classification of the C]S types is given in Table 3.1. Thus, a
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Universe of types Typical use
Type = RefType ∪ ValueType T , T ′, T ′′

RefType = Class ∪ Interface –
ValueType = Struct ∪ PrimitiveType –
Class C, C′

Delegate ⊂ Class D
Interface I, I′

Struct S, S′

PrimitiveType = {bool,int,long,double} –

Table 3.1: C]S’s types.

Universe of values Typical use
Val = ObjRef ∪ SimpleVal ∪ StructVal val, val′, val′′

SimpleVal –
ObjRef ref , ref ′, d
StructVal = Map(Struct::Field,Val) –

Table 3.2: C]S’s values.

type is a reference type or a value type. Additionally, void can only be used as a method return
type. The reference types are the classes (including the delegate types1) and the interfaces. A
value type is either a struct or a primitive type.

Corresponding to the above types, there exists the following kinds of values, gathered in
Table 3.2: object references, simple values, i.e., values of primitive types, and struct values.

We assume that the execution environment organizes the classes, structs and interfaces into
an inheritance hierarchy. The subtype relation, introduced in Definition 3.2.1, depends on this
hierarchy.

Definition 3.2.1 (Compile-time compatibility) The subtype relation � is the least reflexive
and transitive relation such that

• if T = int and T ′ ∈ {long,double}, or

• if T = long and T ′ = double, or

• if T ∈ Type and T ′ = object, or

• if T ∈ Class extends T ′ ∈ Class, or

• if T ∈ Class ∪ Struct ∪ Interface implements T ′ ∈ Interface, or

• if T ∈ ValueType and T ′ = System.ValueType, or

1Due to a syntactic sugar defined and explained in Section 3.2.2, we treat the delegate types as special class
types. The official documentation [74] is ambiguous in that respect: It defines the delegate types as classes, but
treats them as distinct in most places.
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Universe Typical use Element name
Field F field name
MRef C::M, S::M, T::M, T ′::M, T ′::M′ method reference
Loc loc, loc′ local variable or parameter

Table 3.3: The environment specific universes.

Function definition Function name
instFields : Map(Class ∪ Struct,P(Type::Field)) class/struct instance fields
fieldType : Map(Class::Field ∪ Struct::Field,Type) field declared type
localVars : Map(MRef ,P(Loc)) method local variables
locType : Map(MRef × Loc,Type) local variable type
valueParams : Map(MRef ,P(Loc)) ”by value” parameters
refParams : Map(MRef ,P(Loc)) ref parameters
outParams : Map(MRef ,P(Loc)) out parameters
paramType : Map(MRef × Loc,Type) parameter declared type
paramIndex : Map(MRef × Loc,N) parameter index
retType : Map(MRef ,Type ∪ {void}) method return type
callKind : Map(MRef , {Virtual,NonVirtual}) method kind

Table 3.4: The components of the execution environment.

• if T ∈ Delegate and T ′ = System.Delegate,

then T � T ′.

Incomplete specifications There are two specification gaps in [74], and each of them would
imply the non-transitivity of �:

• Concerning the definition of interfaces implementation in [74, §13.4], there are only two
cases stated for a class C to implement an interface I: The base class list of C includes I
or an interface I′ which has I as a base interface (not necessarily direct). The following
case is missing: C implements I if C extends a class C′ and C′ implements I.

• In [74, §6.1.4], there should also be stated an implicit reference conversions from
any delegate type to the class System.Delegate and to the two interfaces im-
plemented by the class System.Delegate, namely, System.ICloneable and
System.ISerializable.

Definition 3.2.1 fills these gaps by defining � as a transitive closure.

Each class and struct declares types for a set of instance fields, and each class, struct or
interface specifies signatures and return types2 for a set of instance methods. Formally, we
consider the universes in Table 3.3 and the environment components in Table 3.4.

2Note that, following [74, §1.7.3], the signature of a method does not include its return type.
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For any class or struct T , instFields(T) is the set of instance fields of T , including the inher-
ited fields3. For any class or struct T and for any field T ′::F ∈ instFields(T), fieldType(T ′::F)
is the declared type of T ′::F. For any method T::M, localVars(T::M) returns the set of lo-
cal variables of T::M. The type of a local variable loc declared by a method T::M is main-
tained in locType(T::M, loc). The parameters passed ”by value” of a method T::M are given
by valueParams(T::M), whereas the parameters passed ”by reference”, i.e., the ref and out
parameters, are maintained in refParams(T::M) and outParams(T::M), respectively. The type
of a parameter loc of a method T::M is returned by paramType(T::M, loc), while the index
of loc in the parameter list of T::M is given by paramIndex(T::M, loc). Note that, the parameter
indexed with 0 is the this pointer.

The definition of paramType is subject to the following restriction concerning the type of
the this pointer:

[this parameter type] If T::M ∈ MRef , then paramType(T::M,this) = T .

For any method T::M, retType(T::M) returns the possibly void return type of T::M. De-
pending on whether a method T::M is virtual, callKind(T::M) is Virtual or NonVirtual,
respectively.

We define the (derived) function paramTypes : Map(MRef ,List(Type)), which, given a
method, returns the list of its parameter types.

Definition 3.2.2 For a method T::M and an index i = 0, n − 1, where n is the cardinal of the
set A = valueParams(T::M) ∪ refParams(T::M) ∪ outParams(T::M), we define:

paramTypes(T::M)(i) = paramType(T::M, loc), where

loc ∈ A such that paramIndex(T::M, loc) = i

The this variable of a class instance method or constructor behaves as a value pa-
rameter. The this variable of a struct instance method is regarded as a ref parame-
ter, whereas the this variable of a struct instance constructor behaves as an out parame-
ter. We express these conditions in terms of restrictions on the definitions of valueParams,
refParams, and outParams:

[this variable] Let T::M ∈ MRef .

1. If T ∈ RefType, then this ∈ valueParams(T::M).

2. If T ∈ Struct, then

(a) if T::M is an instance method, then this ∈ refParams(T::M).
(b) if T::M is an instance constructor, then this ∈ outParams(T::M).

The implementations of virtual methods declared by a class can be overridden in methods
(marked with the C] keyword override) of derived classes and structs4. Also, the (virtual)

3A struct can only inherit fields from System.ValueType and object. However, as these classes do not
declare any instance fields, the set instFields associated to a struct can only contain instance fields declared by the
struct itself.

4A struct can override the virtual methods declared by the classes System.ValueType and object.



3.2. A FORMAL DESCRIPTION OF C]S 19

methods declared by an interface have to be implemented in classes or structs that implement
the interface. The following conditions should be satisfied when a method overrides/implements
another method:

[override/implement] If T::M ∈ MRef overrides/implements T ′::M ∈ MRef , then:

1. length(paramTypes(T::M)) = length(paramTypes(T ′::M))

2. for every i = 1, length(paramTypes(T::M))− 1,

paramTypes(T::M)(i) = paramTypes(T ′::M)(i)

3. retType(T::M) = retType(T ′::M)

3.2.2 The Grammar of C]S

The grammar for the statements and expressions of C]S is defined in Figure 3.1. This grammar
can also be viewed as defining the corresponding ASM domains Exp and Stm. Lit denotes the
set of literals. To handle literals, we consider two functions valueOfLiteral : Map(Lit,Val)
and typeOfLiteral : Map(Lit,Type) which, given a literal, return its value and its type, respec-
tively. These functions are defined according to [74, §2.4.4].

The set of variable expressions, also known as ”lvalues”, is given by Vexp. The grammar
production RefExp . Field requires a compile-time check to ensure that the type of the expres-
sion RefExp is a reference type (see Section 3.3 for the compile-time type checks). If the type
of the expression is not a reference type, the resulting expression is not considered a variable
expression.

The set Sexp contains the statement expressions, i.e., the statements that return results.
The delegate creation expressions are represented in the grammar by the production rules
new Delegate ( Dexp ) and new Delegate ( Exp ), where Dexp stands for a special expres-
sion consisting of an expression (the value of which gives the target object pointed to by the
delegate) and a method (which, as a result of a method lookup, yields the target method pointed
to by the delegate) that should have no arguments specified. The delegate calls are defined in
the grammar through the production Exp ( [Args] ), where Exp is assumed to return the delegate
to be called with the list of arguments produced by Args.

Every try-catch-finally statement contains, besides a try block, at least one catch
clause, an optional general catch clause (i.e., a clause that can catch every exception), and
an optional finally block. We assume all the constraints, stipulated by [74], concerning the
structure of the try-catch-finally statements. In particular, we assume that:

• no return occurs in finally blocks;

• no break, continue, or goto statement jumps out of a finally block;

• the throw statements without expression can only occur in catch blocks;

• the exception classes in a Catch clause should derive (not necessarily directly) from
System.Exception [6] and should appear in a non-decreasing type order.
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Figure 3.1 The grammar of expressions and statements.

Exp ::= Lit | Vexp | Exp Bop Exp | Exp ? Exp : Exp
| ( Type ) Exp | Sexp | ( Exp ) | this | base | Exp is Type
| Exp as RefType | new Delegate ( Dexp ) | new Delegate ( Exp )

Vexp ::= Loc | Field | Vexp . Field | RefExp . Field

Sexp ::= Vexp = Exp | Vexp Aop Exp

| new Type ( [Args] ) | Exp . MRef ( [Args] ) | Exp ( [Args] )

Dexp ::= Exp . MRef

Bop ::= * | / | % | + | - | < | > | <= | >= | == | != | & | |
Aop ::= *= | /= | %= | += | -= | &= | |=
Exps ::= Exp {, Exp}
Stm ::= Sexp ; | break ; | continue ; | goto Lab ; | return Exp ;

| return ; | if ( Exp ) Stm else Stm | while ( Exp ) Stm
| try Block {Catch} [catch Block] [finally Block] | throw Exp ;
| throw ; | Block

Catch ::= catch ( Class [Loc] ) Block

Arg ::= Exp | ref Vexp | out Vexp

Args ::= Arg {, Arg}
Sexps ::= Sexp {, Sexp}
Block ::= { {Bstm} }
Bstm ::= Type Loc ; | Lab : Stm | Stm

C] construct Semantic equivalent C]S construct
exp && exp′ exp ? exp′ : false
exp || exp′ exp ? true : exp′

Table 3.5: Derived language constructs.

Table 3.5 shows how the conditional logical operators &&, || can be syntactically reduced
to C]S constructs. We still, however, include &&, || in our formal approach since the definite
assignment analysis (see Section 3.4) treats them specially.

To express the sequentiality of the execution of the delegate invocation list elements, [24,
§6] translates every delegate declaration to a special class. An inspection of the CIL bytecode to
which C] programs compile shows that this idea closely follows the Microsoft implementation.
Thus, the declaration of a delegate type is translated to a class declaration, as described in
Figure 3.2. The translation included in Figure 3.2 assumes that T is not void. If T is void,
the translation is similar, except that the local variable result is not ”needed” anymore, and
consequently, the assignment to result in the while loop is replaced by a call of invoke.
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Figure 3.2 The translation scheme of delegate classes.

delegate T D(T1 loc1, . . . , Tn locn);

⇓

sealed class D : System.Delegate
{
public T Invoke(T1 loc1, . . . , Tn locn)
{

T result = defVal(T);
int i = 0;
while ( i < this. length() )
{

result = this. invoke(i, loc1, . . . , locn);
i += 1;

}
return result;

}
private extern int length();
private extern T invoke(int i, T1 loc1, . . . , Tn locn);

}

Remark 3.2.1 It is worth mentioning that the translation in Figure 3.2 slightly differs than the
one defined in [24], which does not initialize the variable result upon its declaration. But, if this
is the case, the Invoke method would be rejected by the C] compiler, as a result of the definite
assignment analysis (Section 3.4). Therefore, our translation initializes the variable result (to
T’s default value).

To keep the formal description straightforward and more modular, we get rid of some syn-
tactic sugar in C]:

1. base is replaced by (T) this, where T is the direct base class of the enclosing type.

2. If F is a field name, then F is replaced by this.T::F, where F occurs in type T .

3. If C is a class (other than a delegate), then the instance creation new C::M ( args ) is
replaced by new C.C::M ( args ).

4. If S is a struct, then:

a) an assignment vexp = new S::M(args) is replaced by vexp.S::M(args), and

b) every other occurrence of new S::M(args) is replaced by loc.S::M(args), where
loc ∈ Loc is a new temporary local variable of type S.

5. Every general clause catch block is replaced by catch (object loc) block, with a
new local variable loc.

6. Every try-catch-finally statement is reduced to a try-finally statement, with
the try block made of the try block and catch clauses of the original statement and
the finally block consisting of the finally block of the original statement.
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Function definition Function name
label : Map(Pos,Label) node label
first : Map(Pos,Pos ∪ {undef}) first child node
up : Map(Pos,Pos ∪ {undef}) parent node
next : Map(Pos,Pos ∪ {undef}) next brother node

Table 3.6: Attributed syntax tree specific functions.

To guarantee that the splitting in the third transformation reflects the intended meaning of
new T::M(args), we assume that the class instance constructors return the value of this. The
transformation 4a) reflects that new applied to a struct triggers no object creation or memory
allocation since, anyway, the structs, as value types, get their memory allocated at declara-
tion time. The necessity of the transformation 4b) arises from the fact that the struct instance
constructors need a ”home”, i.e., an address, for this (see condition [this variable] in Sec-
tion 3.2.1). Also, we assume that the struct constructors return the value of this.

Whenever, instead of a direct formalization of a construct, [24] uses a syntactical translation
to C]S constructs, one should justify that the translation is correct with respect to the semantics
of the construct as intended by the standard [74]. The semantics model yields a basis to formally
state and prove the intended equivalence. Such a justification is skipped in [24] since it follows
well-known patterns.

We denote the positions in a program by small Greek letters α, β, γ, etc. One can think of
positions either as positions in the source code of the program or as positions in the attributed
syntax tree. Positions are displayed as prefixed superscripts, for example, as in αexp or in βstm.
We denote by Pos the universe of positions. We often refer to expressions and statements using
their positions only.

To specify the dynamic semantics in Section 3.5.2, we define the (compiler specific) func-
tions in Table 3.6, that are used during the traversal of the attributed syntax tree (AST). The
function label : Map(Pos,Label) decorates the tree nodes with labels, elements of the uni-
verse Label. A label is information – in the form of concrete C]S syntax – that identifies the
grammar rule associated to the node. Given the node at a position α:

• first(α) returns the position of the first AST ”child” node (if any) of the node at α;

• up(α) returns the position of the ”parent” AST node (if any) of the node at α;

• next(α) yields the position of the next AST ”brother” node (if any) of the node at α;

3.3 The Type Constraints

To enforce type safety, the C] compiler has to verify that a program is well-typed. Following
the parsing and elaboration, the evaluation tree of a program is annotated with type information,
used in the evaluation rules in Section 3.5.2.1. Thus, the compiler infers a static function ST :
Map(Pos,Type) – relative to an environment defined as in Section 3.2.1 – which assigns a type
to each position in an expression.
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We assume that, as a result of field and method resolution [74, §7.4.2] performed by the
compiler simultaneously with the type inference, the attributed syntax tree has exact informa-
tion. In particular, every field reference is of the form T::F, and every method reference has
the form T::M. Moreover, as a result of the delegate transformation in Section 3.2.2, we as-
sume that every delegate call αexp(args) (so, ST (α) ∈ Delegate) is replaced by the method
call exp.ST (α)::Invoke(args).

Tables 3.7 and 3.8 contain the type constraints, expressed in terms of conditions for ST ,
which should be satisfied after the type inference.

For example, for an operation exp bop exp′, it is ensured that the types of the operands exp
and exp′ are suitable for the binary operator bop. We assume that the set of types for which a
binary operator is defined is maintained in the function opTypes : Map(Bop,P(Type × Type))
(implicitly) defined in [74, §7]. Also, we consider that, given a binary operator and a pair of
types, the function opResType : Map(Bop× Type× Type,Type) (implicitly) defined in [74, §7]
returns the type of the result of applying bop to operands of the given types5.

For a conditional expression exp ? exp′ : exp′′, either the type of exp′ is a subtype of the
type of exp′′ or vice-versa. The type of the whole expression is determined as the supremum of
the operand types.

Definition 3.3.1 (Supremum) For two types T and T ′, sup(T,T ′) denotes the supremum of T
and T ′ with respect to the compile-time compatibility relation �.

In case of a boxing (T)exp, that is, if T is a reference type and the type of exp is a value
type, it is ensured that the value type is a subtype of T .

For a method call, the passing mode of each argument, i.e., ”by value”, ref or out, should
be identical to the passing mode of the corresponding parameter. Moreover, for a value param-
eter, the type of the argument should be a subtype of the declared type of the corresponding
parameter, whereas for a ref or out parameter, the type of the argument should be identical to
the declared type of the corresponding parameter. Due to our assumption in Section 3.2.2 that a
constructor returns the value of the this pointer, it is guaranteed that a constructor of a type T
returns the type T .

In a delegate creation expression of the form new D(exp.T::M), the type of exp should
be a subtype of T and the method T::M to which the newly created delegate is going to refer
should have a return type and a signature compatible with the delegate type D. This leads
to the definition of consistency6 in Definition 3.3.2 that allows covariance in return type and
contravariance in parameter types.

Definition 3.3.2 (Consistency) A method T::M and a delegate type D are consistent if the fol-
lowing conditions are met:

• for every loc ∈ valueParams(T::M), there exists loc′ ∈ valueParams(D::Invoke) such
that

5We suppose that a binary operator overload resolution [74, §7.2.4] has been previously applied to select a
specific operator to be invoked.

6Initially, the definition of consistency specified in [74] required that the return types and signatures of the
method and delegate, respectively, should coincide. However, as one can observe in our type safety proof, the
requirement is too strong, and therefore has been weakened in [82].
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Expression Constraints
αlit ST (α) = typeOfLiteral(lit)

αloc ST (α) = locType(T::M, loc), where T::M is the enclosing method

αthis ST (α) = T , where T is the enclosing type

α(βexp bop γexp′) (ST (β),ST (γ)) ∈ opTypes(bop),
ST (α) = opResType(bop,ST (β),ST (γ))

α(βexp ? γexp′ : δexp′′) ST (β) = bool, ST (γ) � ST (δ) ∨ ST (δ) � ST (γ),
ST (α) = sup(ST (γ),ST (δ))

α((T) βexp) if ST (β) ∈ ValueType and T ∈ RefType, then ST (β) � T , ST (α) = T

α(βvexp = γexp) ST (γ) � ST (β), tα = ST (β)

α(βvexp bop = γexp) opResType(bop,ST (β),ST (γ)) � ST (β) or
ST (β) � opResType(bop,ST (β),ST (γ)),
ST (α) = ST (β), (ST (β),ST (γ)) ∈ opTypes(bop)

α(ref βvexp) ST (α) = ST (β)

α(out βvexp) ST (α) = ST (β)

α(βexp is T) ST (α) = bool

α(βexp as T) ST (α) = T , if ST (β) ∈ ValueType, then ST (β) � T

α(βexp.T::F) ST (α) = fieldType(T::F), ST (β) � T

α(βexp.T::M(. . . ,γi expi, . . .)) ST (β) � T ,
if loc ∈ valueParams(T::M) such that paramIndex(T::M, loc) = i,
then ST (γi) � paramTypes(T::M)(i)
if loc ∈ refParams(T::M) ∪ outParams(T::M) such that
paramIndex(T::M, loc) = i,
then ST (γi) = paramTypes(T::M)(i)
ST (α) = retType(T::M) if T::M is not a constructor,
otherwise ST (α) = T

α(new T) ST (α) = T

α(new D(βexp.T::M)) D ∈ Delegate, ST (β) � T , T::M and D are consistent, ST (α) = D

α(new D(βexp)) D ∈ Delegate, ST (β) = ST (α) = D

Table 3.7: The type constraints for expressions.

paramIndex(T::M, loc) = paramIndex(D::Invoke, loc′) and
paramType(T::M, loc) � paramType(D::Invoke, loc′)

• for every loc ∈ refParams(T::M), there exists loc′ ∈ refParams(D::Invoke) such that
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Statement Constraint
if (αexp) stm else stm′ ST (α) = bool

while (αexp) stm ST (α) = bool

return; retType(T::M) = void, where T::M is the enclosing method

return αexp; ST (α) � retType(T::M), where T::M is the enclosing method

throw αexp; ST (α) � System.Exception

Table 3.8: The type constraints for statements.

paramIndex(T::M, loc′) = paramIndex(D::Invoke, loc′) and
paramType(T::M, loc) = paramType(D::Invoke, loc′)

• for every loc ∈ outParams(T::M), there exists loc′ ∈ outParams(D::Invoke) such that

paramIndex(T::M, loc) = paramIndex(D::Invoke, loc′) and
paramType(T::M, loc) = paramType(D::Invoke, loc′)

• retType(T::M) � retType(D::Invoke).

We say that a method is well-typed if it satisfies the type checks performed by the compiler.

Definition 3.3.3 (Well-typed) A method is well-typed if its body contains only expressions and
statements that satisfy the type constraints in Tables 3.7 and 3.8.

After the type constraints in Tables 3.7 and 3.8 are guaranteed, the program transformations
defined in Table 3.9 are performed, where necessary. The transformations are executed only if
the corresponding conditions in the second column of Table 3.9 (if any) hold.

For example, a conditional expression exp ? exp′ : exp′′ requires two type casts to be in-
serted. Thus, both exp′ and exp′′ are type casted to the supremum of the types of exp′ and exp′′.

A boxing is inserted in an assignment vexp = exp if the type of exp is a value type, whereas
the type of vexp is a reference type. This assignment is replaced by vexp = (T)exp, where T
is the type of vexp. A boxing is also added in a method call exp.T::M(args) if the type of exp
is a value type and T is a reference type. This is the case when the method is declared by the
classes System.ValueType or object or by an interface implemented by the value type.
However, if T is not a reference type, and moreover, exp is not a variable expression (so it could
not have an address), then a ”home” is created for the value of exp (since the this pointer
of T::M behaves as a reference parameter). Thus, a new temporary local variable, say loc, of
the same type as exp is inserted into the set of local variables of the enclosing method, and the
value of exp is assigned to loc. In [24], the temporary variable is created on the fly, during the
run-time execution. Our formal specifications follow the Microsoft implementation and creates
the variable upon the compilation.
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Old expression Condition for transformation New expression
βexp ? γexp′ : δexp′′ – exp ? (T) exp′ : (T) exp′′,

where T = sup(ST (γ),ST (δ))

βvexp = γexp either ST (β) ∈ PrimitiveType or vexp = (ST (β)) exp
ST (β) ∈ RefType and
ST (γ) ∈ ValueType

αexp.T::M(args) T ∈ RefType and ST (α) ∈ ValueType ((T)exp).T::M(args)

αexp.T::M(args) T ∈ Struct and ST (α) ∈ Struct (loc = exp).T::M(args), where loc
and exp 6∈ Vexp is a new temporary local variable

of the enclosing method T ′::M′ with
locType(T ′::M′, loc) = ST (α)

γiexpi in either ST (γi) ∈ PrimitiveType or (T ′) expi

exp.T::M(. . . ,γi expi, . . .) ST (γi) ∈ ValueType and T ′ ∈ RefType,
where T ′ = paramTypes(T::M)(i)

Table 3.9: Compile-time transformations.

3.4 The Definite Assignment Analysis in C]

In C], local variables are not initialized by default, unlike instance fields. Therefore, in order
to ensure type-safety, a C] compiler must guarantee that all local variables are assigned to
before their value is used. The C] compiler enforces this definite assignment rule by a static
flow analysis. Since the problem is undecidable in general, [74, §5.3] contains a definition of
a decidable subclass of the set of variables that get assigned at run-time. The static analysis
guarantees that there is an initialization to a local variable on every possible execution path
before the variable is read.

In this section, we provide a formal specification of the definite assignment analysis in C]

and prove its correctness. The formal specification emphasizes, in particular, the complications
caused by the goto and break statements (incompletely specified in [74]) and by method
calls with ref/out parameters. The correctness of the analysis is later used in Section 3.6 to
prove C]S’s type safety.

To formally define the definite assignment rules, we use data flow equations. For a method
body without goto statements, the equations that characterize the sets of definitely assigned
variables can be solved in a single pass. If goto statements are present, then the equations
defined in our formalization do not uniquely determine the sets of variables that have to be
considered definitely assigned. For this reason, a fixed-point computation is performed, and the
greatest sets of variables that satisfy the equations of the formalization are computed. Regarding
the correctness of the analysis, we prove that these sets of variables represent exactly the sets of
variables assigned on all possible execution paths, and in particular, they are a safe approxima-
tion. A number of bugs in the Rotor SSCLI (v1.0) [16]’s and Mono (v0.26) [15]’s C] compilers
were discovered during the attempts to build the formalization of the definite assignment. We
only present here three of them.

The rest of the section is organized as follows. Section 3.4.1 introduces the data flow equa-
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tions which formalize the C] definite assignment analysis, while Section 3.4.2 shows that there
always exists a maximal fixed point solution for the equations. In order to define the execution
paths in a method body, the control flow graph is introduced in Section 3.4.3. Section 3.4.4
concludes with the proof of the correctness of the analysis, Theorem 3.4.1.

3.4.1 The Data Flow Equations

In this section, we formalize the rules of definite assignment analysis from the [74, §5.3] by
data flow equations. Since the definite assignment analysis is an intraprocedural analysis, we
restrict our formalization only to a given method mref .

To precisely specify all the cases of definite assignment, the functions before, after, true,
false, and vars are computed at compile-time. Note that true and false are only defined for
boolean expressions. These functions assign sets of variables to each expression or statement α
and have the following meanings:

• before(α) contains the variables definitely assigned before the evaluation of α;

• after(α) contains the variables definitely assigned after the evaluation of α when α com-
pletes normally;

• true(α) consists of the variables (in the scope of which α is located) definitely assigned
after the evaluation of α when α evaluates to true;

• false(α) consists of the variables (in the scope of which α is located) definitely assigned
after the evaluation of α when α evaluates to false;

The sets true and false are needed because of the conditional operators && and ||, as we
show in Example 3.4.1. The set vars(α) contains the local variables in the scope of which α is
located, i.e., the universal set with respect to α.

For the sake of clarity, we skip those language constructs whose analysis is very similar
to the constructs dealt with explicitly in our framework7; examples are the pre- and postfix
operators (++, --).

Struct type variables To simplify the proofs, we will treat separately the struct type variables.
We point out in Section 3.4.2 how they affect the sets of definitely assigned variables the C]

compiler relies on in order to analyze programs. Also, we show in Section 3.4.4 that allowing
variables of struct types does not affect the correctness of the analysis. In the rest of Section 3.4,
we state explicitly whenever we include struct type variables.

We are now able to state all the data flow equations. A first equation is given by the method’s
initial conditions: For the method body mb of mref , we have before(mb) = ∅. Conceptually,
the set before(mb) contains the value and reference parameters of mref , since they are assumed
to be definitely assigned when mref is called [74, §5.1].

7Some of the features omitted by the definite assignment analysis presented in this section are investigated in
detail in [56, 57].
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Expression α Data flow equations
true true(α) = before(α), false(α) = vars(α)

false false(α) = before(α), true(α) = vars(α)

(βexp ? γexp′ : δexp′′) before(β) = before(α), before(γ) = true(β),
before(δ) = false(β), true(α) = true(γ) ∩ true(δ),
false(α) = false(γ) ∩ false(δ)

(βexp && γexp′) before(β) = before(α), before(γ) = true(β),
true(α) = true(γ), false(α) = false(β) ∩ false(γ)

(βexp || γexp′) before(β) = before(α), before(γ) = false(β),
false(α) = false(γ), true(α) = true(β) ∩ true(γ)

Table 3.10: Definite assignment for boolean expressions.

For the other expressions and statements in mb, instead of explaining how the functions are
computed, we simply state the equations they have to satisfy. Table 3.10 contains the equations
for boolean expressions (including for completeness the literals true and false). If α is the
constant true, then false(α) = vars(α) as a consequence of the definition of the false set and
of the fact that true cannot evaluate to false. Similar arguments hold for true(α) = vars(α)
when α is the constant false. We need the sets true and false since the evaluation of boolean
expressions involving the conditional operators && and || does not necessarily require the
evaluation of all their subexpressions.

Example 3.4.1 Consider the following expression:

α(b && (i = 1) >= 0) ? true : γ i > 0

If b evaluates to false, then the test (b && (i = 1) >= 0) immediately evaluates to false,
and its second operand, i.e., (i = 1) >= 0 is never evaluated. So, in this case i is not assigned;
on the other hand, a necessary condition for the test to be evaluated to true is that both
operands of α are evaluated. Therefore, the C] compiler is sure that i is assigned only if α
evaluates to true. Formally, this means i 6∈ false(α) and i ∈ true(α). Consequently, i is not
considered definitely assigned before evaluating γ, and the compiler should reject this example.
Surprisingly, the Mono (v0.26) [15]’s C] compiler incorrectly accepts it, as it also does for the
the other conditional operator, ||.

For all expressions in Table 3.10, we have the equation after(α) = true(α) ∩ false(α). For
any boolean expression α which is not an instance of one of the expressions in Table 3.10, we
have true(α) = after(α) and false(α) = after(α).

Table 3.11 lists the equations specific to arbitrary expressions, where loc stands for a local
variable and lit for a literal. Note that the table contains another equation for the conditional
expression when its value is not a boolean. The equation for the explicitly boolean expression
collects additional information. If the boolean conditional is treated as an arbitrary expression,
then the equation for after(α) would still be correct — it can be derived from the other equations
for the boolean expressions.
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Expression α Data flow equations
loc after(α) = before(α)

lit after(α) = before(α)

(loc = βe) before(β) = before(α),
after(α) = after(β) ∪ {loc}

(loc bop = βe) before(β) = before(α), after(α) = after(β)

(βexp ? γ exp′ : δ exp′′) before(β) = before(α), before(γ) = true(β),
before(δ) = false(β), after(α) = after(γ) ∩ after(δ)

T::F after(α) = before(α)

ref βexp before(β) = before(α), after(α) = after(β)

out βexp before(β) = before(α), after(α) = after(β)

T::M(β1arg1, . . . ,
βk argk) before(β1) = before(α),

before(βi+1) = after(βi), i = 1, k − 1,
after(α) = after(βk) ∪ OutParams(arg1, . . . , argk)

Table 3.11: Definite assignment for arbitrary expressions.

The ref arguments must be definitely assigned before the method call, while the out
arguments are not necessarily assigned before the method is called. However, the out argu-
ments must be definitely assigned when the method returns. Note the equation for after(α)
of a method call in Table 3.11: The variables passed as out arguments, elements of the
set OutParams(arg1, . . . , argk), get definitely assigned. It does not matter if the calls are re-
cursive, since the definite assignment analysis is an intraprocedural analysis.

For expressions that do not appear in Tables 3.10 and 3.11 (e.g., exp | exp′, exp + exp′),
if αexp is an expression with direct subexpressions β1exp1, . . . ,

βn expn, then the left-to-right
evaluation scheme yields the following general data flow equations:

before(β1) = before(α), before(βi+1) = after(βi), i = 1, n− 1, after(α) = after(βn)

The equations specific for statements can be found in Table 3.12. For a block of state-
ments α, we have the equation after(α) = after(βn) ∩ vars(α): The local variables definitely
assigned after the normal execution of the block are the variables which are definitely assigned
after the execution of the last statement of the block. However, the variables must still be in the
scope of a declaration.

Example 3.4.2 Consider the example:

{α{int i; i = 1; } {int i; i = 2 ∗ βi; }}

The variable i is not in after(α), since at the end of α, i is not in the scope of a declaration.
Thus, i 6∈ before(β), and the block is rejected.
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Statement α Data flow equations
; after(α) = before(α)

(βexp; ) before(β) = before(α), after(α) = after(β)

{β1stm1 . . . βnstmn} before(β1) = before(α),
after(α) = after(βn) ∩ vars(α),
before(βi+1) = after(βi) ∩ goto(βi+1),
i = 1, n− 1

if (βexp) γstm else δstm′ before(β) = before(α), before(γ) = true(β),
before(δ) = false(β),
after(α) = after(γ) ∩ after(δ)

while (βexp) γstm before(β) = before(α), before(γ) = true(β),
after(α) = false(β) ∩ break(α)

goto L; after(α) = vars(α)

break; after(α) = vars(α)

continue; after(α) = vars(α)

return; after(α) = vars(α)

return βexp; before(β) = before(α), after(α) = vars(α)

throw; after(α) = vars(α)

throw βexp; before(β) = before(α), after(α) = vars(α)

try βblock
catch (E1 x1) γ1block1 before(β) = before(α),
... before(γi) = before(α) ∪ {xi}, i = 1, n,
catch(En xn) γnblockn after(α) = after(β) ∩

⋂n
i=1 after(γi)

try βblock finally γblock′ before(β) = before(α), before(γ) = before(α),
after(α) = after(β) ∪ after(γ)

Table 3.12: Definite assignment for statements.

For the equation before(βi+1) = after(βi)∩goto(βi+1), special attention is given to the case
when βi+1 is a labelled statement. A key point is that if a goto embedded in a try block
(of a try-finally statement) points to a labelled statement which is not embedded in the
try block, then the finally block has to be executed (before the labelled statement). Thus,
the set of variables definitely assigned before executing a labelled statement consists of the
variables definitely assigned both after the previous statement and before each corresponding
goto statement, or after any of the finally blocks of try-finally statements in which
the goto is embedded (if any).

Definition 3.4.1 For two statements α and β, Fin(α, β) is defined as the list [γ1, . . . , γn] of
finally blocks of all try-finally statements in the innermost to outermost order from α
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to β.

Then we define the set JoinFin of variables definitely assigned after the execution of all the
finally blocks in the list Fin.

Definition 3.4.2 For two statements α and β, we define

JoinFin(α, β) =
⋃

γ∈Fin(α,β) after(γ)

Definition 3.4.3 Given a statement β, we define:

goto(β) =


⋂

αgoto L; in the scope of β(before(α) ∪ JoinFin(α, β)), if β is a labelled
statement βL : stm;

vars(β), otherwise.

We are now able to state the equation before(βi+1) = after(βi)∩goto(βi+1) from Table 3.12.
In the case of a labelled statement, the equation captures the idea stated above, while for a non-
labelled statement, this equations reduces simply to before(βi+1) = after(βi).

Example 3.4.3 The following example is a simplification of an example in [74, §5.3.3.15]:

int i;
δtry
{

α goto L;
}
finally
γ{

i = 3;
}
βL : Console.WriteLine(i);

[74] claims that the variable i is definitely assigned before β, i.e., i ∈ before(β). Our equation
before(β) = after(δ) ∩ goto(β) leads us to the same conclusion. To compute the set goto(β),
we need the list Fin(α, β) = [γ] and the set JoinFin(α, β) = after(γ). We have:

goto(β) = before(α) ∪ JoinFin(α, β) = before(α) ∪ after(γ)

and i ∈ after(γ) ⊆ after(δ) (see the equations for a try-finally in Table 3.12). This means
that i ∈ after(δ) ∩ goto(β) = before(β). Surprisingly, the example is rejected by .NET Frame-
work (v1.0) [2] and Rotor SSCLI (v1.0)’s C] compilers: We get the error that i is unassigned.
In the meantime, the problem has been fixed in .NET Framework (v1.1) [2].

Example 3.4.4 Although in the next method body i should be considered definitely assigned
before β, the example is rejected by the Mono (v0.26) [15]’s C] compiler.
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int i;
bool b = false;
if (b)
{

i = 1;
αgoto L;

}
δ return;
β L : Console.WriteLine(i);

We have i ∈ before(β), since the set before(β) is computed as follows:

before(β) = after(δ) ∩ goto(β) = vars(δ) ∩ before(α) = {i, b} ∩ {i} = {i}

The idea for the equation which computes after(α) of a while statement α is the same as
for a labelled statement. Similarly as for the set goto, we define the set break(α) needed for the
equation of after(α) to be the set of variables definitely assigned before all associated break
statements (and possibly after appropriate finally blocks).

Definition 3.4.4 For a while statement α, we define

break(α) =


⋂

βbreak; α is the nearest enclosing while for β(before(β) ∪ JoinFin(β, α)), if α has
break; s
associated;

vars(α), otherwise.

With this definition of break(α), we have the equation for after(α) as stated in Table 3.12.

Abnormal termination Finally, we consider the equations for abnormally terminating state-
ments. We now want to state the equation for after of a jump statement.

Example 3.4.5 Let α be the following statement:

if (b) γ{ i = 1; } else δreturn;

It is clear that the variables definitely assigned after α are the variables definitely assigned after
the then branch, and since our equation takes the intersection of after(γ) and after(δ), it is
obvious that one has to require the set-intersection identity for after(δ).

Considerations of the example above lead to the convention that after(α) should be consid-
ered the universal set vars(α) for any jump statement α.

Example 3.4.6 Consider the next method body:
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δint i = 1;
βL : ;
try
{

int j = 2;
try { αgoto L; }
finally γ1{ int k = 3; ωthrow new Exception(); }

} finally γ2 {}

In our formalization, we get:

before(β) = after(δ) ∩ goto(β)
= after(δ) ∩ (before(α) ∪ JoinFin(α, β))
= after(δ) ∩ (before(α) ∪ after(γ1) ∪ after(γ2))

Note that in the computation of JoinFin(α, β), it does not matter whether γ1 and γ2 complete
normally. In our case, γ1 does not complete normally, but we still perform our computations
with γ1 and γ2. The set after(γ1) is vars(ω) ∩ vars(γ1) = {i, j, k} ∩ {i, j} = {i, j}. Note also
that after(γ1) involved in the equation of before(β) also contains j, while β is not in the scope
of a declaration of j, i.e., j 6∈ vars(β). There is no worry since in the equation of before(β) all
the sets that might contain variables declared in “deeper” scopes (like j) are intersected with
after(δ), which is supposed to contain only variables from vars(δ) = vars(β) = {i} (β and δ
are at the same nesting level).

The details of Examples 3.4.5 and 3.4.6 become more clear in Lemmas 3.4.4 and 3.4.5 in
Section 3.4.4. Whenever a statement does not complete normally, the set of variables con-
sidered definitely assigned after its evaluation will be a universal set (see also the proofs of
Theorems 3.4.1 and 3.4.2 from Section 3.4.4).

3.4.2 The Maximal Fixed Point Solution

The computation of the sets of definitely assigned variables from the data flow equations de-
scribed in Section 3.4.1 is relatively straightforward. However, the goto statement brings more
complexity to the analysis. Since the goto statement allows to encode loops, the system of data
flow equations does not have always a unique solution.

Example 3.4.7 Consider a method (with no parameters) that has the following body:

{αint i = 1; βL: γgoto L; }

We have the following equations after(α) = {i}, before(β) = after(α) ∩ before(γ) and
before(γ) = before(β). After some simplification, we find that before(β) = {i} ∩ before(β).
Therefore, we get two solutions for before(β) (and also for before(γ)): ∅ and {i}. This is the
reason we perform a fixed point iteration. The set of variables definitely assigned after α is {i};
since β does not ”unassign” i, i is obviously assigned when we enter β.

The above example and the definition of definitely assigned indicate that the most informa-
tive solution is considered, and therefore the solution we require is the maximal fixed point MFP.
For computing this solution, various algorithms exist (see e.g., [97]).
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Remark 3.4.1 Although the statements L : goto L; and while (true); are behaviorally
similar, they are treated differently by the definite assignment analysis. If α denotes the la-
belled statement, then the equation for before(α) implies recursion (as noticed above). If α
is the while statement above, then no equation corresponding to α involves recursion. The
set after(α) of the above while statement can be computed according to the equations in a
single step (i.e., with no fixed point iteration) as follows after(α) = false(α) ∩ break(α) =
vars(α) ∩ vars(α) = vars(α). The set before(α) is determined as for any regular statement us-
ing only the after set of the previous statement. Even if a while statement α has an associated
continue statement γ, the equation for before(α) does not involve the continue, but only
the previous statement β. The reason is that, at the time the analysis is performed, the compiler
is sure that the continue is embedded in the while body, and therefore the set before(γ)
includes the variables in after(β) (if the continue is executed, then β should have already
been executed). This is not always the case for a labelled statement since the associated gotos
are not necessarily embedded in the labelled block (see the last example of Section 3.4.1). That
is why they are involved in the equation for before(α).

In the rest of this section, we show that there always exists a maximal fixed point for our data
flow equations. In order to prove its existence, we first define the function F, which encapsulates
the equations. For the domain and codomain of this function, we use the set localVars(mref )
of all local variables from the method body mb. A simple inspection of the equations shows
that they all have at the left side either a before, after, true or a false set and at the right side a
combination of these kinds of sets and vars sets. We define the function F : Map(D,D), with
D = P(localVars(mref ))r, such that F(X1, . . . ,Xr) = (Y1, . . . ,Yr), where r is the number of
equations and the sets Y i are defined by the data flow equations, with the vars sets interpreted
as constants. For example, in the case of an if-then-else statement, if the equation for
the after set of this statement is the i-th data flow equation, then the set of variables Y i is defined
by Y i = Xj ∩ Xk, where j and k are the indices of the equations for the after sets of the then
and the else branch, respectively.

We now define the relation � on D to be the pointwise set inclusion relation:

Definition 3.4.5 If (X1, . . . ,Xr) and (X
′

1, . . . ,X
′

r) are elements of the set D, then we have
(X1, . . . ,Xr) � (X

′

1, . . . ,X
′

r), if Xi ⊆ X
′

i for all i = 1, r.

We are now able to prove the following result:

Lemma 3.4.1 (D,�) is a finite lattice.

Proof. D is finite since for a given method body we have a finite number of equations and local
variables. D is a lattice since it is a product of lattices: (P(localVars(mref )),⊆) is a poset,
since the set inclusion is a partial order, and for every two sets X,Y ∈ P(localVars(mref )),
there exists a lower bound (e.g., X ∩ Y) and an upper bound (e.g., X ∪ Y). ut

The following result will help us conclude the existence of the maximal fixed point.

Lemma 3.4.2 The function F is monotonic on (D,�).
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Proof. To prove the monotonicity of F = (F1, . . . ,Fr), it suffices to observe that the compo-
nents Fi are monotonic functions. This holds since they only consist of set intersections and
unions, which are monotonic (see the form of the equations). ut

The next lemma guarantees the existence of the maximal fixed point solution for our data
flow equations.

Lemma 3.4.3 The function F has a unique maximal fixed point MFP ∈ D.

Proof. By Lemma 3.4.1, we know that (D,�) is a finite lattice, and therefore a com-
plete lattice. But in a complete lattice, every monotonic function has a unique maximal
fixed point, also known as the greatest fixed point). In our case, F is monotonic (by
Lemma 3.4.2), and the maximal fixed point MFP is given by

⋂
k F

(k)(1D). Here, 1D is the
r-tuple (localVars(mref ), . . . , localVars(mref )), i.e., the top element of the lattice D. ut

From now on, for an expression or statement α, we denote by MFPb(α), MFPa(α),
MFPt(α), and MFPf (α) the components of the maximal fixed point MFP corresponding to
before(α), after(α), true(α), and false(α), respectively.

Struct type variables So far, we have not considered struct type variables. However, our
analysis can easily be extended to struct type variables. Firstly, we observe that a struct type
variable is considered definitely assigned if and only if all its instance fields are definitely as-
signed [74, §5.3] (this is because a struct value can be seen as a tuple consisting of its instance
fields).

If a local variable loc, whose declared type is a struct, gets assigned, then all its instance
fields are considered definitely assigned, and if there are struct type instance fields, then their
instance fields get assigned as well, and so on.

Example 3.4.8 Let us consider an instance method C::M, which takes an out parameter of
type the struct S. The instance field y of p.x is definitely assigned before it is printed, since p
gets definitely assigned after the method call.

struct S { class Test {
public S′ x; static void Main( ) {

} S p;
new C( ).M(out p);

struct S′ { Console.WriteLine(p.x.y);
public int y; }

} }

According to our formalization, the C] compiler relies on the set MFPa(α) = after(α) = {p},
with α(new C().M(out p)), when checking the status of the variable p.x.y. But, as observed
above, after α is evaluated, p.x and p.x.y are considered definitely assigned as well. So, al-
lowing struct type variables requires the compiler to rely on “expanded” sets: The set {p} is
“expanded” to {p, p.x, p.x.y}, to also include the instance fields of p.
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Further, if a local variable loc′, which is an instance field of a struct type variable loc,
gets assigned, and each instance field of loc except loc′ either is already considered definitely
assigned or gets assigned at the same time as loc′ (this happens, for example, in case of the
out arguments following a method call), then the variable loc gets assigned as well, and this
“lookup” procedure is repeated with loc instead of loc′.

Example 3.4.9 In the following example, the struct type field p.y gets assigned when its in-
stance field v gets assigned. Next, the instance variable p gets assigned when its instance
field p.x gets assigned since p.y is already assigned.

struct S { class Test {
public int x; static void Main( ) {
public S′ y; S p;

} p.y.u = 1;
p.y.v = 1;

struct S′ { p.x = 1;
public int u; S r = p;
public int v; }

} }

According to the formalization, the compiler relies on the set MFPa(α) = after(α) =
{p.y.u, p.y.v, p.x} with α(p.x = 1) when verifying whether p is definitely assigned before eval-
uating the assignment to r. Considering also struct type variables makes the compiler rely on
the expanded set of {p.y.u, p.y.v, p.x}, i.e., {p.y.u, p.y.v, p.y, p.x, p}.

Hence, we conclude that after the C] compiler determines the MFP sets, it relies on the
expanded MFP sets in order to reject/accept programs. We will say that an “expansion” function
is applied to the MFP sets to propagate the definitely assigned status.

3.4.3 The Control Flow Graph

So far, we have seen the equations used for the analysis and we have proven that the fixed point
iteration for these equations is well-defined. The result we want to prove is that the outcome
of the analysis is correct: For an arbitrary expression or statement, the sets of local variables
MFPb, MFPa (and MFPt, MFPf for boolean expressions) correspond indeed to sets of definitely
assigned variables, i.e., variables which are assigned on every possible execution path to the
appropriate point.

The considered paths are based on the control flow graph CFG. The nodes of the graph
are actually points associated with every expression and statement. We suppose that every
expression or statement α is characterized by an entry point B(α) and an end pointA(α). Beside
these two points a boolean expression α has two more points: a true point T (α) (used when α
evaluates to true) and a false point F(α) (used when α evaluates to false). The edges of
the graph are given by the control transfer defined in [74, §8]. Tables 3.13 and 3.14 show the
edges specific to each boolean and arbitrary expression, respectively. If the expression α is not
an instance of one expression in these tables (e.g., exp | exp′) and has the direct subexpressions
β1, . . . , βn, then the left-to-right evaluation scheme also adds the following edges to the flow
graph:
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Expression α Edges
true (B(α), T (α))

false (B(α),F(α))

(βexp ? γexp′ : δexp′′) (B(α),B(β)), (T (β),B(γ)), (F(β),B(δ)),
(T (γ), T (α)), (T (δ), T (α)), (F(γ),F(α)),
(F(δ),F(α))

(βexp && γexp′) (B(α),B(β)), (T (β),B(γ)), (F(β),F(α)),
(T (γ), T (α)), (F(γ),F(α))

(βexp || γexp′) (B(α),B(β)), (T (β), T (α)), (F(β),B(γ)),
(T (γ), T (α)), (F(γ),F(α))

Table 3.13: Control flow for boolean expressions.

Expression α Edges
loc (B(α),A(α))

lit (B(α),A(α))

(loc = βe) (B(α),B(β)), (A(β),A(α))

(loc bop = βe) (B(α),B(β)), (A(β),A(α))

(βexp ? γexp′ : δexp′′) (B(α),B(β)), (T (β),B(γ)), (F(β),B(δ)),
(A(γ),A(α)), (A(δ),A(α))

T::F (B(α),A(α))

ref βexp (B(α),B(β)), (A(β),A(α))

out βexp (B(α),B(β)), (A(β),A(α))

T::M(β1arg1, . . . ,
βk argk) (B(α),B(β1)), (A(βk),A(α)),

(A(βi),B(βi+1)), i = 1, k − 1

Table 3.14: Control flow for arbitrary expressions.

(B(α),B(β1)), (A(βi),B(βi+1)), i = 1, n− 1, and (A(βn),A(α))

For every boolean expression α in Table 3.13, we define the supplementary edges
(T (α),A(α)) and (F(α),A(α)), which connect the boolean points of α to the end point of α.
These edges are necessary for control transfer in cases when it does not matter whether α eval-
uates to true or false.

Example 3.4.10 If β is the method call T::M(true) and α is the argument true, then control
is transferred from the end point of the last argument — that is, A(α) — to the end point of the
method call — that is, A(β). But, since in Table 3.13 we have no edge leading to A(α), we
need to define the supplementary edge (T (α),A(α)).
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For a boolean expression α which is not an instance of any expression from Table 3.13,
we add the edges (A(α), T (α)), (A(α),F(α)) to the graph. They are needed if control is
transferred from a boolean expression α to different points depending on whether α evaluates
to true or false.

Example 3.4.11 If α is of the form exp | exp′ and occurs in ((exp | exp′) ? βexp′′ : γexp′′′),
then control is transferred from F(α) to B(β) (if α evaluates to false) or from T (α) to B(γ)
(if α evaluates to true). The necessity of the edges (A(α), T (α)), (A(α),F(α)) arises since
so far we have defined for exp | exp′ only edges to A(α).

Table 3.15 introduces the edges of the control flow graph for each statement. We assume
that the boolean constant expressions are replaced by true or false in the abstract syntax
tree.

Example 3.4.12 Thus, we consider that true || b is replaced by true in the following if
statement:

αif β(true || b) δi = 1;
else γ{ int j = i;}

Although the new test, i.e., true, cannot evaluate to false, we still add to the graph the edge
(F(β),B(γ)): The false point of true is, however, never reachable (see Table 3.13).

In the presence of finally blocks, the jump statements goto, continue and break
bring more complexity to the graph. When a jump statement exits a try block, control is
transferred first to the innermost finally block. If control reaches the end point of that
finally block, then it is transferred to the next innermost finally block and so on. If
control reaches the end point of the outermost finally block, then it is transferred to the
target of the jump statement. For these control transfers, we have special edges in our graph.
But one needs to take care of some important details: These special edges cannot be used for
paths other than those which connect the jump statement with its target. In other words, if a
path uses such an edge, then the path necessarily contains the entry point of the jump statement.
For this reason, we say that an edge e is conditioned by a point i with the meaning that e can be
used only in paths that contain i.

Example 3.4.13 Let us assume that we do not institute the above restriction. Then the list
[B(mb)B(α1)B(α2)B(α3)B(α4)B(α5)A(α5)B(α6)] would be a possible execution path to the
labelled statement in the following method body

α1try α2 {
α3(α4 (i = 3 / j);)
αgoto L;

} finally α5 {}
α6 L : Console.WriteLine(i);

in case the evaluation of α4 would throw an exception. But, this does not match the control
transfer described in [74].
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Statement α Edges
; (B(α),A(α))

(βexp; ) (B(α),B(β)), (A(β),A(α))

{β1stm1 . . . βnstmn} (B(α),B(β1)), (A(βn),A(α)),
(A(βi),B(βi+1)), i = 1, n− 1

if (βexp) γstm else δstm′ (B(α),B(β)), (T (β),B(γ)), (F(β),B(δ)),
(A(γ),A(α)), (A(δ),A(α))

while (βexp) γstm (B(α),B(β)), (T (β),B(γ)), (F(β),A(α)),
(A(γ),A(α))

L : βstm (B(α),B(β)), (A(β),A(α))

goto L; ThroughFinb(α, β),
where βL : stm is the statement to which α points

break; ThroughFina(α, β),
where β is the nearest enclosing while
with respect to α

continue; ThroughFinb(α, β),
where β is the nearest enclosing while
with respect to α

return; –

return βexp; (B(α),B(β))

throw; –

throw βexp; (B(α),B(β))

try βblock
catch(E1 x1) γ1block1 (B(α),B(β)), (A(β),A(α))

... (B(α),B(γi)), (A(γi),A(α)), i = 1, n
catch(En xn) γnblockn

try βblock finally γblock′ (B(α),B(β)),(B(α),B(γ)), (A(β),B(γ))
and (A(γ),A(α)) conditioned by A(β)

Table 3.15: Control flow for statements.

The following sets introduce the above described edges. If α and β are two statements
and Fin(α, β) is the list [γ1, . . . , γn], then the set ThroughFinb(α, β) consists of the edges
(B(α),B(γ1)), (A(γn),B(β)), (A(γi),B(γi+1)), i = 1, n − 1, all conditioned by B(α), while
the set ThroughFina(α, β) contains the edges (B(α),B(γ1)), (A(γn),A(β)), (A(γi),B(γi+1)),
i = 1, n − 1, all conditioned by B(α). If Fin(α, β) is empty, then the set ThroughFinb(α, β)
contains only the edge (B(α),B(β)), while ThroughFina(α, β) refers to the edge (B(α),A(β)).

Example 3.4.14 Consider again the try-finally statement from Example 3.4.13. The list
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Fin(α, α6) is given by [α5], while the set ThroughFinb(α, α6) contains the edges (B(α),B(α5)),
(A(α5),B(α6)) conditioned by B(α).

Note that in Table 3.15, for goto and continue, the set of edges ThroughFinb is added
to the graph, since after executing the finally blocks control is transferred to the entry point
of the labelled statement and while statement, respectively. However, in case of break the
set ThroughFina is considered, since at the end, control is transferred to the end point of the
while statement.

There are two more remarks concerning the try statement. First of all, since a reason for
abruption (e.g., an exception) can occur anytime in a try block, we should have edges from
every point in a try block to: every associated catch block, every catch of enclosing try
statements (if the catch clause matches the type of the exception) and to every associated
finally block (if none of the catch clauses matches the type of the exception). We do not
consider all these edges since the definite assignment analysis is an “over all paths” analysis. It
is equivalent to consider only one edge to the entry points of the catch and finally blocks
— from the entry point of the try block (see Table 3.15).

The following remark concerns the end point A(α) of a try-finally statement α.
[74, §8.10] states that A(α) is reachable only if both end points of the try block β and
finally block γ are reachable. The only edge to A(α) is (A(γ),A(α)), and we know that
the finally block can be reached either through a jump or through a normal completion of
the try block. In the case of a jump, if control reaches the end point A(γ) of the finally,
then it is transferred further to the target of the statement which generated the jump and not
to A(α). This means that all paths to A(α) contain also the end point A(β) of the try block.
That is why we require that the edge (A(γ),A(α)) is conditioned by A(β) (see Table 3.15).

Example 3.4.15 If the edge (A(γ),A(α)) is not conditioned by A(β), then A(α) would be
reachable in our specifications in the following example (under the assumption that B(α) is
reachable):

α try β{goto L; } finally γ {}

We will not consider all the paths in the graph, but only the valid paths, i.e., the paths p for
which the following condition is fulfilled: If p uses a conditioned edge, then p also includes the
point which conditions the edge.

Definition 3.4.6 For a path [α1, . . . , αn], we define

valid([α1, . . . , αn]) :⇔
∀ conditioned edge (αi, αi+1)∃ j < i : (αi, αi+1) is conditioned by αj

If α is an expression or a statement, then pathb(α) is the set of all valid paths from the entry
point of the method body B(mb) to the entry point B(α) of α:

pathb(α) = {[α1, . . . , αn] | α1 = B(mb), αn = B(α), (αi, αi+1) ∈ CFG, i = 1, n− 1
and valid([α1, . . . , αn])}
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Similarly, patha(α) is defined to be the set of all valid paths from the entry point of the
method body B(mb) to the end point A(α) of α, while if α is a boolean expression, patht(α)
and pathf (α) are the sets of all valid paths from B(mb) to the true point T (α) and to the false
point F(α) of α, respectively.

In the proofs in the next section, we use the following two notations. If p is a path, then
p[i, j] is the subpath of p, which connects the point i with the point j. Over the set of all paths,
we consider the operation ⊕ to be the path concatenation (also defined for infinite paths).

3.4.4 The Correctness of the Analysis

We prove that when a C] compiler relies on the sets MFPb, MFPa, MFPt, and MFPf , derived
from the maximal fixed point of the data flow equations in Section 3.4.1 (or on their expanded
sets if we allow struct type variables), then all accesses to the value of a local variable occur after
the variable is initialized. In other words, the correctness of the analysis means that if a local
variable is in one of the four sets — that is the analysis infers the variable as definitely assigned
at a certain program point — then this variable will actually be assigned at that point during
every execution path of the program. A variable loc is assigned on a path if the path contains
an initialization of loc or a catch clause, whose exception variable is loc. We describe in the
following definition what we mean by initialization.

Definition 3.4.7 A path p contains an initialization of a local variable loc if at least one of the
following conditions is true:

• p contains a simple assignment (as opposed to a compound assignment) to loc, or

• p contains a method call, for which loc is an out argument.

Struct type variables The definition above has to be refined if we want to allow variables
of struct types. Thus, a path p contains an initialization of a variable loc also in one of the
following cases:

• loc is an instance field of a struct type variable loc′, and p contains an initialization of
loc′, or

• loc is of a struct type, and p contains initializations for each instance field of loc.

We actually prove more than the correctness. We show that the components of the maximal
fixed point MFP are exactly the sets of variables which are assigned on every possible execution
path to the appropriate point (and not only a safe-approximation). To specify this, we define
the following sets. If α is an arbitrary expression or statement, then APb(α) denotes the set of
local variables in vars(α) (the variables in the scope of which α is) assigned on every path in
pathb(α):
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APb(α) = {x ∈ vars(α) | x is assigned on every path p ∈ pathb(α)}

APa(α) is the set of variables in vars(α), which are assigned on every path in patha(α),
while for a boolean expression α, the sets APt(α) and APf (α) are defined similarly as above,
but with respect to paths in patht(α) and pathf (α), respectively.

Struct type variables If we also consider variables of struct types, the definition of “is
assigned on” is extended as pointed out above. The definitions of the sets APb, APa, APt and
APf are also adapted. But considering the new definition for “is assigned”, one can easily
observe that the definitions of the AP sets to include struct type variables are nothing else than
their expanded sets. So, the same “expansion” function mentioned in Section 3.4.2 is also
applied to the AP sets in order to include struct type variables.

The following result is used to prove Lemma 3.4.5.

Lemma 3.4.4 For every expression or statement α, if MFPb(α) ⊆ vars(α) holds, then we have
MFPa(α) ⊆ vars(α). Moreover, if α is a boolean expression, then we have also MFPt(α) ⊆
vars(α) and MFPf (α) ⊆ vars(α).

Proof. The proof proceeds by induction over the structure of expressions and statements. Thus,
we first prove the base cases of the induction, i.e., the above stated implications for all possible
leaves of the AST of our method body. The expressions which are leaves in the AST are the fol-
lowing: true, false, loc, lit, and T::F. Since MFP is in particular a solution of the data flow
equations, it is obvious that the implications stated in our lemma are satisfied. The statements
considered leaves in the AST are the empty-statement, goto L, break, continue, return,
and throw. For the last five, from the equations above we obviously have MFPa(α) ⊆ vars(α).
For the empty-statement, this is true as well since our hypothesis is MFPb(α) ⊆ vars(α).
In the induction step, the implications for each expression and statement are proved under the
assumption that their “children” (subexpressions/substatements) satisfy the implications. ut

The next lemma is used in the proof of the correctness theorem (Theorem 3.4.1). It claims
that the MFP sets of an expression or statement α consist of variables in the scope of which α
is located.

Lemma 3.4.5 For every expression or statement α, we have MFPb(α) ⊆ vars(α) and
MFPa(α) ⊆ vars(α). Moreover, if α is a boolean expression, then we have MFPt(α) ⊆ vars(α)
and MFPf (α) ⊆ vars(α).

Proof. We show the above inclusions for all expressions and statements by an induction over
the AST, starting at the root, i.e., the method body (the base case of the induction). Notice that
the induction schema is in the opposite direction compared to that in Lemma 3.4.4. Therefore,
the induction step is: Under the assumption that a node of the AST satisfies the inclusions, all
its “children” (subexpressions/substatements) satisfy the inclusions as well.
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According to Lemma 3.4.4, it is enough to prove for all labels α: MFPb(α) ⊆ vars(α). For
our method body, this is trivial: The relation MFPb(mb) ⊆ vars(mb) holds since MFPb(mb) =
vars(mb) = ∅. Lemma 3.4.4 is applied again in the next step of the proof, which consists in
showing for each expression and statement that under the assumption MFPb(α) ⊆ vars(α),
each of its direct subexpressions/substatements β satisfies MFPb(β) ⊆ vars(β). ut

The correctness of the definite assignment analysis in C] is proved in the following theorem,
which claims that the analysis is a safe approximation.

Theorem 3.4.1 (Definite assignment analysis correctness) If α is an expression or a state-
ment, then the following relations are true: MFPb(α) ⊆ APb(α) and MFPa(α) ⊆ APa(α).
Moreover, if α is a boolean expression, then MFPt(α) ⊆ APt(α) and MFPf (α) ⊆ APf (α).

Proof. We consider the following definitions. The set APn
b (α) is defined in the same way as

APb(α), except that we consider only paths of length less than n. Similarly, we also define the
sets APn

a(α), APn
t (α), APn

f (α) (analogously, we have definitions for the sets of paths pathn
b ,

pathn
a , pathn

t , pathn
f ). According to these definitions, the following set equalities hold for ev-

ery α:

APb(α) =
⋂
n

APn
b (α), APa(α) =

⋂
n

APn
a(α)

If α is a boolean expression, then similar equalities hold for APt(α) and APf (α).
Therefore, to complete the proof, it suffices to show for every n: If α is an expression or
statement, then MFPb(α) ⊆ APn

b (α) and MFPa(α) ⊆ APn
a(α). In addition, if α is a boolean

expression, then MFPt(α) ⊆ APn
t (α) and MFPf (α) ⊆ APn

f (α). This is done by induction on n.

Base case [B(mb)] is the only path of length 1 (the entry point of the method body). Ob-
viously, no local variable is assigned on this path and therefore we have AP1

b(mb) = ∅ which
satisfies MFPb(mb) ⊆ AP1

b(mb) since from the equations MFPb(mb) = ∅. From the defini-
tion of AP1

a, we get AP1
a(mb) = vars(mb) = ∅ and from the equations of a block, we de-

rive also MFPa(mb) ⊆ vars(mb) and implicitly MFPa(mb) ⊆ AP1
a(mb). If α 6= mb, then

AP1
b(α) = AP1

a(α) = vars(α) and if α is a boolean expression AP1
t (α) = AP1

f (α) = vars(α).
If we apply Lemma 3.4.5, then the basis of the induction is complete.

Induction step The proof has the following pattern: We show for every expression or
statement α from Tables 3.10, 3.11, and 3.12 the relation for MFPa(α), and where applica-
ble for MFPt(α) and MFPf (α) and, for every direct subexpression/substatement of α, the re-
lations for MFPb. In this way, all the relations for all expressions/statements are proved ex-
cept MFPb(mb) ⊆ APn+1

b (mb) (since mb has no “superstatement”) which holds anyway, since
MFPb(mb) = ∅.
We only consider two critical cases: the block of statements and the try-finally statement.

Case 1 α is {β1stm1 . . .
βnstmn}.

We prove MFPb(βi+1) ⊆ APn+1
b (βi+1) for an embedded statement βi+1. If we arbitrarily choose

a local variable loc in MFPb(βi+1), then we obtain loc ∈ MFPa(βi) and loc ∈ goto(βi+1) (MFP
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is a solution of the flow equations). Note that, at this point, goto(βi+1) depends only on MFP
sets and on the control flow graph. From the induction hypothesis, we get loc ∈ APn

a(βi). In
particular, this means loc ∈ vars(βi) = vars(βi+1), i.e., βi+1 is in the scope of a declaration of
loc.

Subcase 1.1 βi+1 is not a labelled statement.

In this case, we have goto(βi+1) = vars(βi+1) from the definition of the goto set.

Subcase 1.1.1 βi+1 is not a while statement.

There exists in the CFG only one edge to B(βi+1), namely (A(βi),B(βi+1)). This means that

pathn+1
b (βi+1) = pathn

a(βi)⊕ B(βi+1)

and implicitly loc ∈ APn+1
b (βi+1) since loc ∈ APn

a(βi) (induction hypothesis). Remember that
we derived earlier that βi+1 is in the scope of loc, i.e., loc ∈ vars(βi+1).

Subcase 1.1.2 βi+1 is a while statement.

There could be many edges to B(βi+1) in the CFG (if the while has associated continue
statements). If there are no continue statements corresponding to our while statement, then
the proof is as in Subcase 1.1.1.
If there are continue statements, we would like to show that loc is assigned on every path p
to B(βi+1) of length at most n + 1. If p contains no continue statements, then p has the
last edge (A(βi),B(βi+1)), i.e., p passes through A(βi). If p contains a continue statement
associated to our while and eventually passes through finally blocks associated to try
blocks that contain the continue statement, then p necessarily passes through A(βi) because
the CFG shows that it is not possible to “jump” into the while body (in which our continue
is embedded). On the other hand, since loc ∈ MFPa(βi), we get loc ∈ APn

a(βi) from the induc-
tion hypothesis, i.e., loc is assigned on every path to A(βi) of length at most n. Consequently,
p assigns loc since p passes through A(βi). We are now sure that loc is assigned on every path
to B(βi+1) of length at most n+ 1, and therefore we can conclude loc ∈ APn+1

b (βi+1).

Subcase 1.2 βi+1 is a labelled statement L : stm.

As in the case of a while statement, there could be many edges to B(βi+1) in the CFG (if
there are goto statements pointing to our labelled statement). If there are no associated goto
statements, then the proof is the same as in the case of a while statement with no associated
continue statements.
We want to show that loc is assigned on every path p to B(βi+1) of length at most n + 1. If
p contains no goto L statements, then p necessarily passes through A(βi). And since loc is
assigned on every path to A(βi) of length at most n (because of loc ∈ APn

a(βi)), we are sure
that p assigns loc.
Suppose that p passes through a γgoto L statement and eventually through finally blocks
associated to try blocks in which γ is embedded. Considering the definition of the goto set,
we can derive loc ∈ MFPb(γ) ∪ JoinFin(γ, βi+1) since loc ∈ goto(βi+1).
If there are no finally blocks in the list Fin(γ, βi+1), then JoinFin(γ, βi+1) = ∅ and implicitly
loc ∈ MFPb(γ). By the induction hypothesis, we obtain loc ∈ APn

b (γ). It means that p, which
is of length at most n+ 1 and contains B(γ), assigns loc.
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Let us now suppose that the list Fin(γ, βi+1) is non-empty: Fin = [γ1, . . . , γk]. By the definition
of the set JoinFin(γ, βi+1), we get

loc ∈ MFPb(γ) ∪
k⋃

j=1

MFPa(γj)

If loc ∈ MFPb(γ), then, by the induction hypothesis, we derive loc ∈ APn
b (γ), and we are sure

that p, which passes through B(γ), assigns loc.
If there is a finally block γj such that loc ∈ MFPa(γj), then the induction hypothesis implies
loc ∈ APn

a(γj). And since p necessarily passes through A(γj), we are sure that p assigns loc.
Thus, we have analyzed every possible path to B(βi+1) of length at most n+ 1 and we showed
that each such a path assigns loc, i.e., loc ∈ APn+1

b (βi+1).

Case 2 α is try βblock finally γblock′.

Here we do the proof for MFPb(γ) ⊆ APn+1
b (γ). Let loc be a local variable in the set MFPb(γ).

Following the data flow equations, we get loc ∈ MFPb(α). The induction hypothesis implies
then loc ∈ APn

b (α) and, in particular, loc ∈ vars(α).
It is important to notice that in the CFG there could be many edges to B(γ): from the en-
try point of the try-finally statement (B(α),B(γ)), from the end point of the try block
(A(β),B(γ)), from a goto, break or continue statement (B(δ),B(γ)) (within a condi-
tioned path), and from the end point of another finally block (A(ω),B(γ)) (within a condi-
tioned path). We claim that independent of the last edge of a path p to B(γ), p passes through
the entry point B(α) of the try-finally statement.

• If the last edge of p is (B(α),B(γ)), then there is nothing to prove.

• If the last edge is (A(β),B(γ)), then the claim holds since the end point A(β) can be
reached only through B(α) (according to the CFG, it is not possible to “jump” into the
try block).

• If the last edge is (B(δ),B(γ)), then the claim can be justified in the same way as above,
because the respective jump statements are supposed to be embedded in the try block.

• If the last edge of p is a conditioned edge (A(ω),B(γ)), then necessarily the finally
block ω (as well as the jump statement which triggered the conditioning) is embedded
in our try block. This means that in order to justify the claim, we can apply the same
argument as above.

So, all the paths to B(γ) should pass through B(α), and since loc ∈ APn
b (α), we can be sure

that loc ∈ vars(γ) = vars(α) is assigned on every path to B(γ) of length at most n + 1, i.e.,
loc ∈ APn+1

b (γ), and the proof of the considered relation is complete. ut

As explained above, we can actually prove more: The MFP solution is not only an approx-
imation of AP, but it is a perfect solution (Theorem 3.4.3). For this, we also use the following
theorem that states that the MFP solution contains the local variables which are initialized over
all possible paths.
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Theorem 3.4.2 If α is an expression or a statement, then the following relations are true:
APb(α) ⊆ MFPb(α) and APa(α) ⊆ MFPa(α). Moreover, if α is a boolean expression, then
APt(α) ⊆ MFPt(α) and APf (α) ⊆ MFPf (α).

Proof. Tarski’s fixed point theorem [119] states that MFP is the lowest upper bound (with
respect to �) of the set Ext(F) = {X ∈ D | X � F(X)}. It then suffices to show that the
r-tuple consisting of the AP sets is an element of Ext(F) since MFP is in particular an upper
bound of this set. Since � is the pointwise subset relation, the idea is to prove the left-to-right
subset relations for the data flow equations in Tables 3.10, 3.11, and 3.12, where instead of the
sets before, after, true and false, we have the sets APb, APa, APt, and APf , respectively.
We only consider here one critical case, namely the case of a block of statements: Assuming
that βi+1 is a labelled statement L : stm in a block α given by {β1stm1 . . .

βnstmn}, we want to
prove APb(βi+1) ⊆ APa(βi) ∩ goto(βi+1). Note that here, goto(βi+1) depends only on the AP
sets and on the control flow graph CFG.
Let loc be a variable in APb(βi+1), i.e., loc is assigned on every path to B(βi+1). An imme-
diate consequence is loc ∈ APa(βi), since all the paths to A(βi) are — “modulo” the edge
(A(βi),B(βi+1)) — also paths to B(βi+1), and no variable is assigned on this edge.
To show loc ∈ goto(βi+1), we need to prove that the variable loc is in the set APb(γ) ∪
JoinFin(γ, βi+1) for every γgoto L whose target is our labelled statement.
If there is no such goto statement, then we obviously have loc ∈ goto(βi+1) since in this case
goto(βi+1) = vars(βi+1) and loc ∈ APb(βi+1) ⊆ vars(βi+1). Let us now suppose that there
exists at least one goto statement γ pointing to βi+1.

Case 1 B(γ) is not reachable.

Then pathb(γ) is empty, and consequently, we get loc ∈ APb(γ) ∪ JoinFin(γ, βi+1) because
APb(γ) = vars(γ) ⊇ vars(βi+1) and loc ∈ vars(βi+1). The last subset relation holds because,
in C], a goto statement should be always in the scope of the corresponding labelled statement.

Case 2 B(γ) is reachable.

Let p be an arbitrary path to B(γ). Here we will only consider the case when there are finally
blocks from γ to βi+1, i.e., Fin(γ, βi+1) = [γ1, . . . , γk] (the proof of the case where there are no
finally blocks is much simpler). Accordingly, also the edges

(B(γ),B(γ1)), (A(γk),B(βi+1)), (A(γj),B(γj+1)), j = 1, k − 1

defined by the set ThroughFinb(γ, βi+1) are added to the CFG.
We prove loc ∈ APb(γ) ∪ JoinFin(γ, βi+1) by reductio ad absurdum. Let us assume that loc 6∈
APb(γ) ∪ JoinFin(γ, βi+1). This is equivalent to loc 6∈ APb(γ) and loc 6∈ APa(γj) for all
j = 1, k. This means that the paths p0 ∈ pathb(γ) and pj ∈ patha(γj) for j = 1, k exist, such
that loc is not assigned on any of these paths. A simple inspection of the CFG shows that the
point B(γj) necessarily occurs on the path pj for every j = 1, k since it is not possible to “jump”
into a finally block. We now want to prove that the following list

q := p0 ⊕ p1[B(γ1),A(γ1)]⊕ . . .⊕ pk[B(γk),A(γk)]⊕ B(βi+1)
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represents a valid path to B(βi+1). The only problem that could arise is concerning the condi-
tioned edges. Remember that the edges conditioned by a certain goto, break or continue
statement can only be used in paths (or subpaths) that contain the entry point of the respective
jump statement. The use of edges (B(γ),B(γ1)), . . . (A(γk),B(βi+1)) is correct as long as our
path q contains B(γ).

Let us consider one of the subpaths pj[B(γj),A(γj)] used in q. If this subpath contains a condi-
tioned edge, then since the conditioned edges connect jump statements with finally blocks
we would be sure that these finally blocks are embedded in our finally block γj . The
respective jump statement is embedded into the try blocks (associated to the conditioned “con-
nected” finally blocks) which necessarily should be in γj (this is an immediate consequence
of the C] grammar). So, the jump statement is necessarily embedded in the finally block
γj . Considering that the subpath pj[B(γj),A(γj)] contains conditioned edges, we get that also
pj uses the same conditioned edges and since we assumed that pj is a valid path, necessarily pj

should contain the entry point of the respective jump statement which, as we proved above, is
embedded in our finally block, and consequently appears in the subpath pj[B(γj),A(γj)].
It means that this subpath is valid. Obviously, this is true for all the considered subpaths in q.

The above defined path q is a valid path to B(βi+1) which does not assign loc. Obviously,
this contradicts loc ∈ APb(βi+1) and therefore our assumption is wrong. Hence, we obtain the
desired loc ∈ APb(γ) ∪ JoinFin(γ, βi+1). ut

The following result is then an obvious consequence of Theorems 3.4.1 and 3.4.2:

Theorem 3.4.3 The maximal fixed point solution of the data flow equations in Tables 3.10, 3.11,
and 3.12 represents the sets of local variables which are assigned over all possible execution
paths. More exactly, for every expression or statement α, the following are true: APb(α) =
MFPb(α) and APa(α) = MFPa(α). Moreover, if α is a boolean expression: APt(α) = MFPt(α)
and APf (α) = MFPf (α).

Struct type variables Suppose now that we include for the analysis also variables of struct
types. In this case, the C] compiler relies on the expanded MFP sets and the correctness of the
analysis would mean that the expanded MFP sets are a safe approximation of the expanded AP
sets. On the other hand, we proved in Theorem 3.4.3, that the MFP and AP sets coincide. Then,
also the expanded MFP sets will coincide with the expanded AP sets; so they are, in particular,
a safe approximation. This means that, allowing variables of struct types does not affect the
correctness of the definite assignment analysis. One can justify the correctness also by applying
Theorem 3.4.1 and by observing that the “expansion” function is monotonic.

3.5 The Semantics of C]S Programs

In this section, the static and dynamic semantics of C]S are formally specified, along the lines
of [24].
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Function definition Function name
opResVal : Map(Bop× Val× Val,Val) operation result value
convertVal : Map(PrimitiveType× SimpleVal, SimpleVal) conversion result value

Table 3.16: The basic static functions.

3.5.1 The Static Semantics

Besides the execution environment and the grammar defined in Section 3.2, the static semantics
of C]S also comprises the static functions in Table 3.16.

For any two values val and val′ and binary operator bop, opResVal(bop, val, val′) returns
the result of applying bop to operands val and val′ (assuming that the operation is valid). For
any primitive type T and simple value val, convertVal(T, val) yields the result of converting val
to T .

Given a type T , defVal(T) : Map(Type,Val) gives the default value, i.e., the ”zero”, of
type T . It is worth mentioning that the default value of a struct is the same as the value computed
by the struct’s default constructor, namely the tuple with all the components initialized to default
values.

Definition 3.5.1 (Default value) For a type T, we define

defVal(T) =



False, if T = bool;

0, if T = int;

0l, if T = long;

0d, if T = double;

null, if T ∈ RefType;
{T::F 7→ defVal(fieldType(T::F)) | T::F ∈ instFields(T)}, if T ∈ Struct.

Remark 3.5.1 The definition of defVal is indeed recursive, but it is well-founded in any case, in
the sense that there is no type T such that defVal(T) is defined in terms of defVal(T) itself. This
is justified in particular by the key fact that a struct cannot be recursive, i.e., the declaration of
a struct S is not allowed to use the name S in the types of its instance fields.

A virtual method call is resolved dynamically, i.e., at run-time. More exactly, the method
to be invoked at run-time is determined based on the type of the object the method is called on.
This is known as dynamic method binding [74, §10.5.3], and Definition 3.5.2 specifies it as a
derived function lookUp : Map(Type×MRef ,MRef ). Thus, given the run-time type T (see the
definition in Section 3.5.2) of an object and a virtual method T ′::M, lookUp(T,T ′::M) yields the
method T ′′::M, where T ′′::M is the first implementation of T ′::M declared by a supertype of T ,
starting with T itself.

Definition 3.5.2 (Method lookup) For a type T and a method T ′::M, we define:
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lookUp(T,T ′::M) =
if T declares a non-abstract method M ∧

((T = T ′) ∨ (T ′ ∈ Class ⇒ T ′::M overrides T::M)) ∧
(T ′ ∈ Interface ⇒ T::M implements T ′::M)

then T::M
elseif T = object then undef
else lookUp(T ′′,T ′::M) where T ′′ is the direct base class of T

3.5.2 The Dynamic Semantics

The dynamic semantics does not work directly on C]S syntax, but on the abstract terms pro-
duced by the grammar in Figure 3.1. The dynamic state of C]S programs is given by the dy-
namic functions in Table 3.18. Some operational semantics rules (that enable the transition
between states) are explained in Section 3.5.2.1.

The dynamic semantics specification assumes that the static semantics is correct. Its def-
inition proceeds by walking through the AST of the current method meth and determining at
each node the effect of the C]S construct corresponding to the node. This walk is formalized
by means of a cursor I, for example, as in Iexp or Istm, whose position in the tree – repre-
sented by an abstract program counter pos – is updated using the static tree functions defined
in Table 3.6. The counter pos points to the current expression or statement to be executed. The
moves of pos implicitly contain the C]S’s control flow graph.

The addresses of the local variables and parameters are maintained in the function locAdr.
Thus, for a local variable or parameter loc, locAdr(loc) is the address allocated for loc in the
current method (if loc is a local variable or a value parameter) or the address passed to the
current method for loc (if loc is a ref/out parameter). The function values is used to store
intermediate evaluation results, elements of the universe Result defined in Table 3.17. Thus,
given the node at a position α, values(α) is eventually assigned a value, an address, a reason
for abruption (element of the universe Abr defined in Table 3.17), undef , or the constant Norm
(used to denote the normal completion of statements). Unlike [24], we do not consider the
addresses to be values. For the clarity of the type safety proof, the universes Adr and Val are
regarded as disjoint in our semantics model.

A reason for abruption, as opposed to normal completion, represents an abruption of the
control flow, which can happen due to one of the statements break, continue, goto,
return, and throw.

Method invocations produce (activation) frames, elements of the universe Frame defined in
Table 3.17. The current frame is given by the 4-tuple (meth, pos, locAdr, values). The currently
still to be executed frames on the stack are maintained by the function frameStack.

For accessing/updating the values of (managed) memory locations, e.g., local variables,
parameters, fields, the function mem is considered. This function assigns a simple value or
object reference to every memory address8.

The function fieldAdr assigns to every instance field of an object reference or of a struct

8In our abstract memory model, we assume that a single address can hold either a simple value or an object
reference, whereas a struct value is held by a block of addresses.
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Universe Typical use
Adr adr, adr′, adr′′

Result = Val ∪ Adr ∪ Abr ∪ {undef ,Norm} res
Abr = {Break,Continue,Goto(Lab),Return, abr

Return(Val),Exc(ObjRef )}
Frame = MRef × Pos×Map(Loc,Adr)×Map(Pos,Result) fr, fr′, fr1, . . . , frn

Table 3.17: Semantics specific universes.

instance stored at a given address its allocated address. More exactly, the address of an instance
field C::F of an object pointed to by a reference ref is given by fieldAdr(ref ,C::F). Also, the ad-
dress of an instance field S::F of a struct instance stored at the address adr is fieldAdr(adr, S::F).
For a reference ref pointing to a boxed value, addressOf (ref ) returns the address of the value
being boxed.

Every object, i.e., class instance or boxed value type, has an initial part that represents its
type, usually called the run-time type, by opposition to the compile-time type ST . For every
object reference ref , actualTypeOf (ref ) returns the run-time type of ref . The run-time type of
an instance of a class C is set to C upon the instance creation, whereas the run-time type of
a boxed value of type T is set to T upon the boxing. Note that, although the boxing returns
objects, the dynamic type checks, e.g., triggered by the is/as operators, can directly reference
the value type T .

A throw statement without expression, allowed in a catch block only, is applied to
rethrow the exception handled in the corresponding catch block. To specify the semantics
of these statements, a stack excStack of exception references is required to record exceptions
which are to be re-thrown.

The invocation list of a delegate is maintained in invocationList. So, for a delegate refer-
ence d, invocationList(d) keeps the list of pairs consisting of a target object and a target method
pointed to by the delegate d.

Initial State The following conditions should be satisfied in the initial state of the operational
semantics model by the dynamic functions in Table 3.18:

meth = Main fieldAdr = ∅
pos = α, where α ∈ Pos with αbody(Main) addressOf = ∅
locAdr = ∅ actualTypeOf = ∅
values = ∅ excStack = [ ]
frameStack = [ ] invocationList = ∅
mem(adr) = undef , for every adr ∈ Adr

As mem is applied to ”read” from the memory only simple values and object references, it is
considered a (derived) function memVal : Map(Adr × Type,Val ∪ {undef}), which in addition
”reads” struct values. The definition below of memVal relies on the fact that the struct values
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Function definition Function name
meth : MRef current method
pos : Pos current position
locAdr : Map(Loc,Adr) local variable address
values : Map(Pos,Result) evaluation results
frameStack : List(Frame) stack of call frames
mem : Map(Adr, SimpleVal ∪ ObjRef ∪ {undef}) memory function
fieldAdr : Map((ObjRef ∪ Adr)× Type::Field,Adr) instance field addresses
addressOf : Map(ObjRef ,Adr) boxed value address
actualTypeOf : Map(ObjRef ,Class ∪ ValueType) reference run-time type
excStack : List(ObjRef ) exception stack
invocationList : Map(ObjRef ,List(ObjRef ×MRef )) delegate invocation list

Table 3.18: The basic dynamic functions.

are defined as mappings. Thus, for an address adr and a type T , memVal(adr,T) is the value
stored in the memory block at adr, sufficient to hold values of type T .

Definition 3.5.3 For an address adr and a type T, we define:

memVal(adr,T) =
if T ∈ PrimitiveType ∪ RefType then mem(adr)
elseif T ∈ Struct then
{T::F 7→ memVal(fieldAdr(adr,T::F), fieldType(T::F)) | T::F ∈ instFields(T)}

The ”write” in memory of values, including struct values, is accomplished with the be-
low defined macro WRITEMEM. Thus, given an address adr, a type T and a value val,
WRITEMEM(adr,T, val) stores val in the memory block at adr, sufficient to hold values of
type T .

Definition 3.5.4 Given an address adr, a type T and a value val, we define:

WRITEMEM(adr,T, val) ≡
if T ∈ PrimitiveType ∪ RefType then mem(adr) := val
elseif T ∈ Struct then

forall T::F ∈ instFields(T) do
WRITEMEM(fieldAdr(adr,T::F), fieldType(T::F), val(T::F))

Note that the definitions of memVal and WRITEMEM are well-founded since a struct cannot
be recursive, i.e., the declaration of a struct type is not allowed to use the struct name in the
types of its instance fields.

Example 3.5.1 In order to aid the reader’s understanding of the definitions of memVal and
WRITEMEM, we consider the following example. Let S and S ′ be two structs. We assume that S
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declares two instance fields S::F and S::F ′ of declared types S ′ and object, respectively.
Moreover, S ′ has two instance fields S ′::F ′′ and S ′::F ′′′ of declared types object and int,
respectively.

When a value val of type S is created (upon evaluating a new expression), a memory block
at an address adr, sufficient to hold values of type S, is allocated for val. As val is a com-
posite value, addresses adr ′ and adr ′′ are also allocated for the values which compose val,
i.e., for val’s instance fields S::F and S::F ′ (see the evaluation rule of the new expressions in
Section 3.5.2.1):

fieldAdr(adr, S::F) = adr ′ fieldAdr(adr, S::F ′) = adr ′′

Similarly, as the field S::F is of struct type S ′, addresses adr′′′ and adr(4) are allocated for the
instance fields S ′::F ′′ and S ′::F ′′′ of the struct instance stored at adr ′:

fieldAdr(adr ′, S ′::F ′′) = adr ′′′ fieldAdr(adr ′, S ′::F ′′′) = adr(4)

The value val can then be recursively computed as the value of type S stored at the address adr:

memVal(adr, S)
= {S::F 7→ memVal(fieldAdr(adr, S::F), S ′),

S::F ′ 7→ memVal(fieldAdr(adr, S::F ′),object)}
= {S::F 7→ memVal(adr ′, S ′), S::F ′ 7→ memVal(adr ′′,object)}
= {S::F 7→ {S ′::F ′′ 7→ memVal(fieldAdr(adr ′, S ′::F ′′),object),

S ′::F ′′′ 7→ memVal(fieldAdr(adr′, S ′::F ′′′),int)},
S::F ′ 7→ memVal(adr ′′,object)}

= {S::F 7→ {S ′::F ′′ 7→ memVal(adr ′′′,object), S ′::F ′′′ 7→ memVal(adr(4),int)},
S::F ′ 7→ memVal(adr ′′,object)}

= {S::F 7→ {S ′::F ′′ 7→ mem(adr ′′′), S ′::F ′′′ 7→ mem(adr(4))}, S::F ′ 7→ mem(adr ′′)}

If one has, for example, to update val’s instance field S::F with the value

val ′ = {S ′::F ′′ 7→ val ′′, S ′::F ′′′ 7→ val ′′′}

then val ′ is stored at adr ′. This is accomplished through WRITEMEM(adr ′, S ′, val ′). This
macro simply updates the instance fields S ′::F ′′ and S ′::F ′′′ with val ′′ and val ′′′, respectively.
Concerning type safety, the following question arises: Is the updated value val still of type S?

Not surprisingly, if a value val is stored in a memory block, sufficient to hold values of a
type T , then the value ”read” from that block is val.

Lemma 3.5.1 After WRITEMEM(adr,T, val) is executed, memVal(adr,T) = val.

Proof. By Definitions 3.5.3 and 3.5.4. ut
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Variable expressions vs. Address positions One key aspect in the modelling is repre-
sented by the ”indirection through memory addresses”. The idea of separately defining the uni-
verse Vexp of variable expressions is to isolate the expressions whose evaluation can produce
addresses. The addresses are needed for the call-by-reference mechanism with ref and out
parameters. Thus, as we will see in Section 3.5.2.1 and in the Appendix, if a variable expression
is passed ”by reference” in a method call, it is the address of the variable expression which is
passed as argument to the method. This means that, depending on the context, the evaluation of
a variable expression vexp is required to yield its address or its value. In other words, if vexp is at
an address position, then the address of vexp is needed, otherwise the value of vexp. An address
position (relative to a given attributed syntax tree) is the position in a ref/out argument, or
the position which is assigned to in a compound assignment, or the position of an access (other
than in a delegate creation) to a variable expression of a struct type. Definition 3.5.5 makes
precise what we mean by an address position.

Definition 3.5.5 For a position α ∈ Pos, we define:

isAddressPos(α) :⇔
first(up(α)) = α ∧
(label(up(α)) ∈ {ref,out} ∪ Aop ∨
(label(up(α)) = ’.’ ∧ up(α) 6∈ Dexp ∧ α ∈ Vexp ∧ ST (α) ∈ Struct))

Remark 3.5.2 The definition of isAddressPos in [24] considers an address position the position
of the target object expression in a delegate creation expression, i.e., when up(pos) ∈ Dexp,
though the target object cannot be an address – see also the description of delegate creations
in Section 3.5.2.1.

The following lemma says that only variable expressions can occur at address positions.

Lemma 3.5.2 If isAddressPos(α), then α ∈ Vexp.

Proof. By Definition 3.5.5 and C]S’s grammar in Figure 3.1. ut

3.5.2.1 The Evaluation of the C]S Expressions and Statements

In this section, we briefly describe the evaluation rules for a few expressions, whose formal
specifications are defined in [24]. For the reader’s convenience, we include these rules in
the Appendix. The evaluation rules extensively make use of the macros defined and informally
described in Table 3.19. The definitions of these macros assume an infinite memory space Adr,
assumption that is often made when specifying the semantics of programming languages.

Compound assignment In vexp bop = exp, vexp is evaluated before exp. Since vexp occurs
at an address position (see Definition 3.5.5), its evaluation should produce an address, say adr.
Let val be the value exp evaluates to. After vexp and exp are evaluated, the assignment is in the
form adr bop = val, and pos points to the position of val. The result val′′ of bop having as
operands the value stored at adr and val is stored with WRITEMEM at adr and yielded at the
parent position of pos. To yield a result at a given position, the macro YIELD is used:
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let ref = new(ObjRef ,C) in P ≡
import ref do

ObjRef (ref ) := True
ALLOCFIELDS(ref , instFields(C))

seq P

Returns a reference to a newly allocated object
of a given type.

let ref = new(ObjRef ) in P ≡
import ref do

ObjRef (ref ) := True
seq P

Returns a new object reference.

let adr = new(Adr,T) in P ≡
import adr do

ALLOCADR(adr,T)
seq P

Returns the address of a newly allocated memory
block, sufficient to hold values a given type.

ALLOCFIELDS(x,A) ≡
forall T::F ∈ A do

import adr do
fieldAdr(x,T::F) := adr
ALLOCADR(adr, fieldType(T::F))

Allocates the instance fields in a given set.

ALLOCADR(adr,T) ≡
Adr(adr) := True
if T ∈ Struct then

ALLOCFIELDS(adr, instFields(T))

Allocates the instance fields of a value of a given
type, stored at a given address.

Table 3.19: Allocating object references and addresses.

YIELD(res, α) ≡
values(α) := res
pos := α

This macro is applied in two forms:

YIELD(res) ≡ YIELD(res, pos) YIELDUP(res) ≡ YIELD(res, up(pos))

If the binary operation is a division by zero, then a DivideByZeroException is raised.
This case is omitted in [24]’s semantics model.

Boxing and unboxing The boxing occurs, for example, when evaluating a type cast (T) exp,
where T is a reference type and the compile-time type ST of exp is a value type. Note that
the type constraints in Table 3.7 guarantee that the compile-time type of exp is a subtype of T .
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For boxing, the macro NewBox is defined. Thus, for a type T , a value type val, NewBox(T, val)
returns a reference to a newly allocated object which embeds val:

let ref = NewBox(T, val) in P ≡
let ref = new(ObjRef ) and adr = new(Adr,T) in

actualTypeOf (ref ) := T
addressOf (ref ) := adr
WRITEMEM(adr,T, val)

seq P

The unboxing is triggered by the evaluation of an expression of the form (T) exp, where T
is a value type and the compile-time type of exp is a reference type. The value embedded into
the boxed object is yielded up if its type is T . Otherwise, an InvalidCastException is
raised.

Field access Assume that in exp.T::F, exp is evaluated to valadr9, possibly an address due
to the position of exp. If valadr is a struct value, as opposed to an address where a struct value
is stored, then its field T::F is computed as valadr(T::F) (remember that the struct values are
defined as mappings). If valadr is null, a NullReferenceException is thrown10. If
valadr is not a struct value or null, then valadr is either an address or an object reference.
In either case, the address of T::F is fieldAdr(valadr,T::F). Depending on whether up(pos)
is an address position, the address of T::F or the value stored at this address is yielded up,
respectively. For this purpose, the macro YIELDINDIRECT is defined:

YIELDINDIRECT(adr, α) ≡
if isAddressPos(α) then YIELD(adr, α)
else YIELD(memVal(adr,ST (α)), α)

Similarly to YIELD, we also have two forms for YIELDINDIRECT: YIELDINDIRECT(adr) and
YIELDUPINDIRECT(adr).

Method call In the expression exp.T::M(args), the expression exp is evaluated before
the list of arguments args. Let valadr and valadrs be the value/address and the list of val-
ues/addresses exp and args evaluate to, respectively. If valadr is a null reference, then
a NullReferenceException is raised. Otherwise, the method T::M is called with
the arguments valadr (as the this pointer) and valadrs. To call methods, we define the
macro VIRTCALL. Thus, for a method T::M called with the arguments valadr (as the this
pointer) and valadrs, VIRTCALL(T::M, valadr, valadrs) is defined as follows11:

9We typically use the name valadr for an evaluation result from Val∪ Adr, which, depending on the context, is
a value or an address.

10As observed in [55], the semantics (related to the timing of the null check) of field accesses involved in
assignments is violated by an optimization of the C] compiler of [3].

11The macro INVOKEMETHOD, defined in the Appendix, is used to invoke a method with a given list of argu-
ments.
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VIRTCALL(T::M, valadr, valadrs) ≡
if callKind(T::M) = Virtual then

let T ′′::M = lookUp(actualTypeOf (valadr),T::M) in
let this = if T ′′ ∈ Struct then addressOf (valadr) else valadr in

INVOKEMETHOD(T ′′::M, [this] · valadrs)
else INVOKEMETHOD(T::M, [valadr] · valadrs)

In VIRTCALL(T::M, valadr, valadrs), if T::M is virtual, the method to be invoked at run-time
is determined with lookUp. The type of valadr considered by lookUp is actualTypeOf (valadr).
Depending on whether the method to be invoked at run-time is declared by a class or by a struct,
the this pointer of the method to be called is valadr or the address addressOf (valadr) of the
value inside the boxed object (remember that the this pointer of a struct method call is passed
”by reference”), respectively.

Delegate creation We only describe here creations of the form new D(exp.T::M). Let val
be the value to which exp evaluates. If val is null, then a NullReferenceException is
thrown. Otherwise, it is proceeded according to the following case distinction.

If T::M is virtual, the target method to be inserted in invocationList(d), where d is the newly
allocated delegate, is determined via lookUp, exactly in the same way as the method to be
invoked in the case of a method call. The target object is set to val.

Remark 3.5.3 [24]’s semantics model does not perform a method lookup at the delegate cre-
ation time, but at the time when the delegate is called. This is, however, not according to [74].
Therefore, we changed the model to correctly reflect the Microsoft implementation.

If T::M is not virtual, T::M is inserted in invocationList(d). If T is a struct, then val (assumed
to be a struct value) is boxed and considered as the target object. Otherwise, val becomes the
target object.

Remark 3.5.4 The case when the target object is a boxed struct value is omitted by [24]’s
semantics model. Note that, this case is also possible if T::M is virtual.

3.6 Type Safety

In this section, we discuss our type safety theorem together with its crucial lemmas. The prop-
erties ensured for legal, well-typed methods accepted by the definite assignment analysis are
the following:

Type safety If an expression evaluates to a value, then the value is compatible with the compile-
time type of the expression’s position. The value parameters, local variables, instance
fields always contain values of the declared types. The values inside boxed objects are
compatible with the corresponding value types.
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Lvalue evaluation consistency If an expression evaluates to an address, then the address is
a valid address for the compile-time type of the expression’s position. The ref/out
parameters always point to valid addresses for the declared types. The addresses always
occur at address positions, and the expressions in address positions always evaluate to
addresses.

Statement execution consistency Run-time abruptions always occur in accordance with the
corresponding compile-time constraints for jumps, method returns, or exceptions.

Any address appearing in the evaluation tree should be a valid (managed) address, i.e., the
address of a managed memory block as opposite to the address of a random memory block. In
other words, the addresses occurring in the evaluation tree should only be memory locations
the program is authorized to access. To ensure that, we have to answer the question: ”If an
address adr appears in the evaluation tree at a position α, where it originates from?”. Intu-
itively, in general, there should be a variable expression vexp at α such that adr is ”the address”
of vexp, where ”the address” of vexp might have been previously allocated for a variable (not
necessarily vexp) to which vexp points (this is possible because of the call-by-reference mech-
anism). This natural answer is, however, not simple to formally reason about, since several
evaluation steps might be required to produce the address of a variable expression. Moreover,
it is not always the case that, if an address appears in the tree, then there exists an expression at
the same position whose evaluation produced the address. A counterexample for this is given
by the ref/out arguments: The argument ref loc at a position α is evaluated in two steps to
the address of loc.

Due to the call-by-reference mechanism, it is possible that updating a variable vexp in a
frame fr implies another variable vexp′ in another frame fr′ (below fr in the frame stack) to
be updated. One has to carefully analyze these updates since vexp′ does not necessarily point
directly to vexp, but it could also point to its ”interior”, e.g., vexp′ is a field of a field of vexp. In
both cases, one has to ensure that the update of vexp′ preserves the typing of vexp with respect
to fr. Otherwise, C]’s type safety would be violated when fr becomes (again) the current frame.

If a local variable loc is not defined in the local environment, then an access to loc yields
the constant undef . This constant is then propagated in the evaluation tree, and eventually the
operational semantics model stops, and the execution fails. Our type safety result ensures that
the constant undef never occurs in the evaluation tree. This is because in the real C] implemen-
tation, there is no constant undef . In the real implementation, if the uninitialized loc is accessed,
the execution proceeds with whatever value was in the memory at the address of loc. This value
could be of any type, and thus C]’s type safety would be violated. The fact that undef does not
show up in the evaluation tree implies, in particular, that there no dangling pointers. To ensure
that undef does not appear during the evaluation is not trivial. Not every address occurring in
the evaluation tree holds a value. For example, consider an argument α(out βloc), where the
local variable is not definitely assigned. The address of the uninitialized loc is produced at β and
then propagated to α. It is then crucial that the memory block pointed to by such an address is
not ”read”. Note that, a memory block might be regarded as uninitialized, i.e., the value ”read”
from the block is undef , though several memory blocks ”in” the given block are initialized.
Consider, for example, a local variable loc of type a struct S, where S has at least two instance
fields. Let S::F be one of them. If loc is not initialized, then the value ”read” from the memory
block pointed to by locAdr(loc), sufficient to hold values of type S, is undef . However, if there
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was an assignment to loc.S::F, then the memory block pointed to by the address of S::F holds a
value though loc is regarded as uninitialized.

When defining the typing of values, one key point is how to distinguish between values of
value types and boxed values of value types. Note that, when a value val of a value type T is
boxed, we considered the type T as the run-time type used in dynamic type-checks. For this
reason, we introduce boxed types, as reference types used only for the purpose of verifying type
safety:

BoxedType = {boxed(T) | T ∈ ValueType}

Thus, we consider a boxed value of a value type T to be typable with the type boxed(T).

To define the typing of values, we introduce the notion of run-time compatibility for C]S’s
types, boxed types, and Null (the type of the null references).

Definition 3.6.1 (Run-time compatibility) The run-time compatibility relation v is the least
reflexive and transitive relation such that:

• if T ′′ ∈ ValueType extends / implements T ′ and boxed(T ′′) = T, or

• T,T ′ ∈ RefType and T � T ′, or

• T = Null and T ′ ∈ RefType,

then T v T ′.

The following lemma is applied in the type safety proof:

Lemma 3.6.1 If T v T ′ and T ′ � T ′′, then T v T ′′.

Proof. By case distinction where Definitions 3.2.1 and 3.6.1 are applied. ut

The typing of values takes advantage of the fact that the values carry their type at run-time.
In other words, every value can be viewed as a tagged value. The tag types are the value types
and ref. The tag ref is used for object references independently of their actual type. The
values are constrained by the following well-formedness conditions:

[value well-formedness] For any tagged value 〈val,T〉, it holds:

(T ∈ PrimitiveType ⇒ val ∈ SimpleVal) ∧
(T ∈ Struct ⇒ val ∈ StructVal) ∧
(T = ref ⇒ val ∈ ObjRef )

To type values, we recursively define the function type : Map(Val,Type ∪ BoxedType),
which, given a value, returns the least type (with respect to the run-time type compatibility v)
the value can be typable with. One crucial point is how to define what it means that a struct
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value is of that struct type. The idea is that, since a struct value is a tuple consisting of the
values of its instance fields, every instance field should hold a value typed according to the
corresponding declaration type. Another point is that the function type should also distinguish
between a boxed object and the value inside a boxed object.

Definition 3.6.2 For a tagged value 〈val,T 〉, we define:

type(〈val,T〉) =



T, if T ∈ PrimitiveType;
T, if T ∈ Struct and

type(val(T::F)) v fieldType(T::F)

for every T::F ∈ instFields(T);

actualTypeOf(val), if T = ref and actualTypeOf(val) ∈ Class;
boxed(actualTypeOf(val)), if T = ref and

actualTypeOf(val) ∈ ValueType.

Note that Definition 3.6.2 is correct as the declared type of a struct instance field cannot be the
struct type itself [74].

We assume that the results returned by the static semantics functions are typed correctly:

[static functions’ correct typing]

1. for every lit ∈ Lit, type(valueOfLiteral(lit)) = typeOfLiteral(lit);

2. for every T ∈ Type, type(defVal(T)) = T;

3. for every T ∈ PrimitiveType and val ∈ SimpleVal, type(convertVal(T, val)) = T;

The following lemma determines the kind of each value depending on the types the value is
typable with.

Lemma 3.6.2 Assume type(val) v T.

1. If T ∈ PrimitiveType, then val ∈ SimpleVal.

2. If T ∈ Struct, then val ∈ StructVal.

3. If T ∈ RefType, then val ∈ ObjRef.

Proof. By the condition [value well-formedness] and Definitions 3.6.2 and 3.6.1. ut

Lemma 3.6.3 is used to show that the fields of a struct value (so, a defined value) are defined.

Lemma 3.6.3 If val 6= undef and type(val) v S where S ∈ Struct, then val(S::F) 6= undef for
every S::F ∈ instFields(S).
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Proof. By reductio ad absurdum and making use of Lemma 3.6.2 and Definition 3.6.2. ut

An interesting part consists in defining what addresses are valid addresses, i.e., addresses of
managed memory blocks. The key idea is that, if a memory block is allocated to store a struct
value, then it is considered that also the memory blocks for storing the instance fields of the
struct value are allocated. Therefore, we introduce the predicate isAddressIn with the following
meaning. For two addresses adr, adr′ and two types T , T ′, isAddressIn(adr,T, adr′,T ′) holds
if a value of type T is stored at the address adr which ”is an address in” the block of memory
pointed to by the address adr′ where a value of type T is stored.

Definition 3.6.3 (”is address in”) Given the addresses adr, adr′ and the types T, T ′, we define:

isAddressIn(adr,T, adr′,T ′) :⇔
(adr = adr′ ∧ T = T ′)∨
(T ′ ∈ Struct∧
∃T ′::F ∈ instFields(T ′) :

isAddressIn(adr,T, fieldAdr(adr′,T ′::F), fieldType(T ′::F)))

If the address of a struct value ”is an address in” a memory block, then also the address of
each instance field of the struct value ”is an address in” that memory block.

Lemma 3.6.4 If T ∈ Struct and isAddressIn(adr,T, adr′,T ′), then

isAddressIn(fieldAdr(adr,T::F), fieldType(T::F), adr′,T ′)

for every T::F ∈ instFields(T).

Proof. By case distinction, where Definition 3.6.3 is applied. ut

Lemma 3.6.5 There exists no types T, T ′, object reference ref, address adr and instance field
T ′′::F ∈ instFields(actualTypeOf(ref)) such that

isAdddressIn(fieldAdr(ref,T ′′::F),T, adr,T ′)

Proof. By applying Definition 3.6.3 and using the abstract memory allocation defined in Ta-
ble 3.19. ut

Definition 3.6.4 makes precise what we mean by a valid address. An address adr is valid
for a type T with respect to a stack of frames if adr is the address of a local variable or value
parameter of declared type T of a frame in the frame stack, or the address of a class instance
field of declared type T , or the address of a value of a value type T inside a boxed object, or it
”is an address in” a memory block pointed to by the addresses of one of the above locations.
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Definition 3.6.4 (Valid address) An address adr is valid for a type T with respect to a stack
of frames [fr1, . . . , frn], denoted [fr1, . . . , frn] ` validAddress(adr,T), if one of the following
conditions holds:

(va-loc) there exists i = 1, n and loc ∈ localVars(meth(fri)) such that
isAddressIn(adr,T, locAdr(fri)(loc), locType(meth(fri), loc)) holds;

(va-arg) there exists i = 1, n and loc ∈ valueParams(meth(fri)) such that
isAddressIn(adr,T, locAdr(fri)(loc), paramType(meth(fri), loc)) holds;

(va-field) there exists C ∈ Class, C ′::F ∈ instFields(C) and ref ∈ ObjRef such that
actualTypeOf(ref) = C and isAddressIn(adr,T, fieldAdr(ref,C ′::F), fieldType(C ′::F))
holds;

(va-box) there exists T ′ ∈ ValueType and ref ∈ ObjRef such that actualTypeOf(ref) = T ′ and
isAddressIn(adr,T, addressOf(ref),T ′) holds.

If an address is valid for a struct type, then the address of each of its instance fields is valid
for the declared type of the respective field.

Lemma 3.6.6 If [fr1, . . . , frn] ` validAddress(adr, S) and S ∈ Struct, then

[fr1, . . . , frn] ` validAddress(fieldAdr(adr, S::F), fieldType(S::F))

for every S::F ∈ instFields(S).

Proof. By Definition 3.6.4 and Lemma 3.6.4. ut

The following lemma states that each valid address with respect to a stack of frames remains
valid upon pushing a new frame onto the stack12.

Lemma 3.6.7 If [fr1, . . . , frn] ` validAddress(adr,T) and fr ∈ Frame, then

[fr1, . . . , frn, fr] ` validAddress(adr,T)

Proof. By Definition 3.6.4. ut

Lemma 3.6.8 says that if an address adr ”is an address in” the memory block pointed to
by an address adr′ where a value of a type T ′ is stored, and adr is the address of a memory
block sufficient to hold values of a type T , then the value read from the memory block pointed
to by adr is of type T . This lemma is used to prove that if the evaluation of a struct field
access Iexp.S::F in the case when isAddressPos(pos) holds is required to produce a value (as
opposite to an address), then this value is of the expected (compile-time) type.

12Note that, the converse implication is false. For example, the address of a local variable of a popped frame is
not valid anymore with respect to the new frame stack.
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Lemma 3.6.8 If isAddressIn(adr,T, adr′,T ′) and type(memVal(adr′,T ′)) v T ′, then

type(memVal(adr,T)) v T

Proof. By induction on the derivation of isAddressIn in Definition 3.6.3 and making use of Def-
inition 3.6.2. ut

Assume that adr′′ points to a memory block and in this block adr′ is an address where a
value of a type T ′ is stored. Lemma 3.6.9 claims that if the value ”read” at adr′′ is of a type T ′′,
then, after a value of type T ′ is stored at adr′, the value in the memory block pointed to by adr′′

is still of type T ′′. This lemma is applied, for example, to ensure that, following a ref/out
parameter update, the variable to which or to whose ”interior” the parameter points has still a
value of the expected type.

Lemma 3.6.9 If the types T, T ′, T ′′ satisfy T ′ v T, type(val) v T ′, type(memVal(adr′′,T ′′)) v
T ′′ and isAddressIn(adr′,T ′, adr′′,T ′′), then type(memVal(adr′′,T ′′)) v T ′′ also holds after the
macro WRITEMEM(adr′,T, val) is executed.

Proof. By induction on the definition of the isAddressIn predicate. The base case of the induc-
tion is proved by applying Lemmas 3.5.1 and 3.6.8. ut

To prove type safety of method calls, in particular of delegate calls, the following lemma
concerning the method lookup is required.

Lemma 3.6.10 If lookUp(T,T ′::M) = T ′′::M, then:

• T � T ′′ � T ′;

• length(paramTypes(T ′::M)) = length(paramTypes(T ′′::M)) and the following relation
holds for every i = 1, length(paramTypes(T ′::M))− 1

paramTypes(T ′′::M)(i) = paramTypes(T ′::M)(i)

• retType(T ′::M) = retType(T ′′::M).

Proof. By Definition 3.5.2 and the condition [override/implement]. ut

The soundness of the definite assignment analysis is crucial for proving that undef does not
show up during the evaluation of C] expressions. The following definition makes precise what
variables are guaranteed by the definite assignment analysis to hold a value.

Definition 3.6.5 The variables tracked by the definite assignment analysis are defined by the
following grammar:
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DefAssVar ::= Loc | StructDefAssVar.Field

where StructDefAssVar represents a DefAssVar of a struct type.

The following lemma states that every variable tracked by the definite assignment analysis
is in particular a Vexp.

Lemma 3.6.11 If exp ∈ DefAssVar, then exp ∈ Vexp.

Proof. By Definition 3.6.5 and the definition of Vexp in Figure 3.1. ut

The recursively defined function adrOfVexp : Map(Frame × DefAssVar,Adr) determines
the addresses of the variables tracked by definite assignment analysis.

Definition 3.6.6 Given vexp ∈ DefAssVar in the method executed in a frame fr, we define:

adrOfVexp (fr, vexp) =


locAdr(fr)(loc), if vexp is a local varia-

ble or parameter loc;
fieldAdr(adrOfVexp (fr, vexp′),ST (α)::F), if vexp is of the

form αvexp′.F.

As the definite assignment analysis is sound (Section 3.4), the methods accepted by this
analysis should satisfy the following condition:

[definite assignment analysis] If αvexp ∈ DefAssVar and α occurs in the method executed in
a frame fr, then

¬ isAddressPos(α) ∨ label(up(α)) ∈ {Aop,ref} ⇒
memVal(adrOfVexp(fr, vexp),ST (α)) 6= undef

So, a variable is definitely assigned unless the variable occurs at an address position, and it
is neither a variable which is assigned to in a compound assignment nor a ref argument. It
worths mentioning that, although a variable which is assigned to in a compound assignment or
is passed as a ref argument, is at an address position, the variable is required to have a value
according to the definite assignment rules [74, §5.3].

Finally, we state the type safety result in Theorem 3.6.1. The invariants of this theorem are
categorized into frame invariants, global invariants, and dynamic method chain invariants.

Frame invariants If an expression evaluates to a value, then the value is compatible with the
compile-time type associated to the expression position (val). If an expression evaluates to an
address, then the address is a valid address for the compile-time type of the expression position
with respect to the substack of frames under the current frame (adr). The constant undef never
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occurs in the evaluation tree (undef). Expressions and arguments (other than ref/out ar-
guments) not occurring in address positions are ensured to evaluate to values (as opposite to
addresses), whereas the ref/out arguments are guaranteed to evaluate to addresses (label1).
Expressions occurring in address positions evaluate to addresses (label1). If a statement is ex-
ecuted, then its execution can only complete normally or with an abruption reason (label2).
The ref/out parameters can only point to valid addresses for their declaration type with re-
spect to the substack of frames under the current frame (arg1). The value parameters are guaran-
teed to have values of their declared type (arg2). The local variables and the fields of struct type
local variables are either uninitialized, i.e., undef , or have values of their declared type (loc).
The catch parameters always hold values of types compatible with the type of exceptions
the catch clauses are handling. Every position where a Break or a Continue occurs is
within a while statement (abr1). A Goto(lab) can only occur in the scope of the statement
labelled with the label lab, i.e., in the block in which the labelled statement occurs (abr2). Every
position where Return or Return(val) occurs is within a method body, with a return value
of a type compatible with method return type (abr3), (abr4). The types of thrown exceptions
are subtypes of object.

Global invariants The instance fields of an object (other than a boxed object) have values
of their declared type (field). The value inside a boxed value type is compatible with the value
type (box). Every target object in the invocation list of a delegate is an object of an appropriate
type: (1) if it is a boxed object, then the value type being boxed is compatible with the type of the
corresponding target method; (2) if it is not a boxed object, then the run-time type is compatible
with the type that declares the corresponding target method. Every target method is consistent
with the delegate type (del). Every exception in the excStack is an object reference (excstack).

Dynamic method chain invariants The current position of a caller frame is either the position
of an instance creation or the position of a method call (framestack1). If the return type of the
method associated to a callee frame is not void, then the return type is compatible with the
compile-time type expected by the caller frame (framestack2). If a callee frame corresponds to
an instance constructor call, then its this pointer is the newly allocated address (in case of a
struct constructor) or the newly created reference (in case of a class constructor) (framestack3).

Theorem 3.6.1 (Type safety) Assume that frameStack is given by [fr1, . . . , frn−1] and the cur-
rent frame is a frame frn. Moreover, assume that meth(fri) is well-typed for every i = 1, n. Then
the following invariants hold for every frame fri = (meth∗, pos∗, locAdr∗, values∗), i = 1, n:

(val) If label(α) ∈ Exp and values∗(α) = val where val ∈ Val, then type(val) v ST (α).

(adr) If label(α) ∈ Exp and values∗(α) = adr where adr ∈ Adr, then

[fr1, . . . , fri] ` validAddress(adr,ST (α))

(undef) values∗(α) 6= undef for every α ∈ dom(values∗).



3.6. TYPE SAFETY 65

(label1) If label(α) ∈ Exp ∪ Arg and α ∈ dom(values∗), then

(¬isAddressPos(α) ⇒ (label(α) ∈ {ref,out} ⇒ values∗(α) ∈ Adr) ∧
(label(α) 6∈ {ref,out} ⇒ values∗(α) ∈ Val)) ∧

(isAddressPos(α) ⇒ values∗(α) ∈ Adr)

(label2) If label(α) ∈ Stm and α ∈ dom(values∗), then

values∗(α) ∈ {Norm} ∪ Abr

(arg1) If loc ∈ refParams(meth∗) ∪ outParams(meth∗), then

[fr1, . . . , fri] ` validAddress(locAdr∗(loc), paramType(meth∗, loc))

(arg2) If loc ∈ valueParams(meth∗), then

type(memVal(locAdr∗(loc), paramType(meth∗, loc))) v paramType(loc,meth∗)

(loc) If loc ∈ localVars(meth∗), then

memVal(adr,T) = undef or type(memVal(adr,T)) v T

for every (adr,T) ∈ Adr×Type with isAddressIn(adr,T, locAdr∗(loc), locType(meth∗, loc)).

(catch) If pos∗ is in the scope of a catch parameter loc of type T, then

type(memVal(locAdr∗(loc),T)) v T

(abr1) If values∗(α) ∈ {Break,Continue}, then α is in a while statement.

(abr2) If value∗(α) = Goto(lab), then α is in the scope of a statement labelled with lab.

(abr3) If values∗(α) = Return, then retType(meth∗) = void.

(abr4) If values∗(α) = Return(val), then val ∈ Val and type(val) v retType(meth∗).

(abr5) If values∗(α) = Exc(ref), then type(ref) v object.

The following global invariants are satisfied:



66 CHAPTER 3. TYPE SAFETY OF C]

(field) If ref ∈ ObjRef is such that actualTypeOf(ref) = C where C ∈ Class, then

type(memVal(fieldAdr(ref,C ′::F), fieldType(C ′::F))) v fieldType(C ′::F)

for every C ′::F ∈ instFields(C).

(box) If ref ∈ ObjRef is such that actualTypeOf(ref) = T where T ∈ ValueType, then

type(memVal(addressOf(ref),T)) v T

(del) If d ∈ ObjRef is such that actualTypeOf(d) = D where D ∈ Delegate, then the following
hold for every (ref,T::M) ∈ invocationList(d):

• ref ∈ ObjRef

• If there exists T ′ ∈ ValueType such that type(ref) = boxed(T ′), then T ′ v T.
Otherwise, type(ref) v T.

• T::M and D are consistent.

(excstack) If ref ∈ excStack, then type(ref) v object.

If ( , β, , values∗) is the parent frame of (T::M, , , locAdr∗), then the following dynamic
method chain invariants are satisfied:

(framestack1) β is the position of an instance creation or of a method call.

(framestack2) If retType(T::M) 6= void, then retType(T::M) v ST (β).

(framestack3) If T::M is an instance constructor and values∗(β) = valadr.T::M(valadrs),
then

• If T ∈ Struct, then locAdr∗(this) = valadr.

• If T ∈ Class, then memVal(locAdr∗(this),T) = valadr.

Proof. For the proof of several invariants, e.g., (val), (adr), (undef), the following (frame)
invariants corresponding to the frame fri are required:

(adr1) If values∗(α) = adr where adr ∈ Adr, then

memVal(adr,ST (α)) = undef or type(memVal(adr,ST (α))) v ST (α)

(vexp) If α ∈ Vexp and values∗(α) = adr where adr ∈ Adr satisfies (va-loc) for ST (α) with
respect to the stack [fr1, . . . , fri], then α ∈ DefAssVar and adrOfVexp(fri, vexp) = adr,
where vexp is the expression at α.
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The invariant (adr1) says that if an address appearing in the evaluation tree holds a value, then
the value is compatible with the static type associated to the position where the address occurs.
The invariant (vexp) establishes a correspondence between certain addresses from the evalua-
tion tree and variables tracked by the definite assignment analysis. Assume that an address adr
appearing at an address position of a variable expression vexp has been allocated as the address
of a local variable of a frame in the stack (not necessarily the current frame). Then vexp is a
variable tracked by the definite assignment analysis, whose address with respect to the current
frame is adr.
The proof of all invariants, including (adr1) and (vexp), proceeds by induction on the number
of steps in the run of the operational semantics model.

Base case In the initial state of the semantics model, the invariants are trivially satisfied.

Induction step There is a proof case for each of the rules of the operational semantics model.
We only do here one interesting proof case.

Case pos is pointing to valadr in valadr.T::F.

Of particular interest is the application of the soundness of the definite assignment analysis in
the proof. To illustrate that, we only study here the subcase characterized by

ST (pos) 6∈ ValueType ∨ valadr ∈ Adr
and ¬ isAddressPos(up(pos))
and valadr 6= null

(3.1)

In this case, the operational semantics model fires the updates described by the macro
YIELDUPINDIRECT(fieldAdr(valadr,T::F)). More exactly, values(up(pos)) is set to the value
memVal(fieldAdr(valadr,T::F), fieldType(T::F)) (note that the assumption (3.1) implies that
¬ isAddressPos(up(pos)), and so, a value – as opposed to an address – is required at up(pos))
and pos becomes up(pos). We distinguish the following cases:

Subcase 1 isAddressPos(pos) is false.

By ¬ isAddressPos(pos) and the induction hypothesis – that is, the invariant (label1) – we
get values(pos) ∈ Val. By this and the induction hypothesis (val), we have type(valadr) v
ST (pos).
As meth is well-typed, according to the type constraints in Table 3.7, we have ST (pos) � T . By
(3.1) and values(pos) 6∈ Adr, we know that ST (pos) 6∈ ValueType, that is ST (pos) 6∈ RefType.
This and Lemma 3.6.2 imply that valadr ∈ ObjRef .
That the invariant (val) holds in the next step of the semantics model follows from valadr ∈
ObjRef and the induction hypothesis (field). So, we have

type(memVal(fieldAdr(valadr,T::F), fieldType(T::F))) v fieldType(T::F)

By this and Lemma 3.6.2, we get values(up(pos)) 6∈ Adr. This implies that the invariant (la-
bel1) holds in the next step of the semantics model.
The other invariants are trivially satisfied.
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Subcase 2 isAddressPos(pos) is true.

By isAddressPos(pos) and the induction hypothesis (label1), we get valadr ∈ Adr. By
this, values(pos) = valadr and the induction hypothesis (adr), we know that [fr1, . . . , fri] `
validAddress(adr,ST (pos)) where [fr1, . . . , fri] is the current frameStack with the current frame
on top. According to Definition 3.6.4, this means that valadr satisfies one of the conditions (va-
loc), (va-arg), (va-field) or (va-box) with respect to ST (pos). If valadr fulfills (va-arg),
(va-field) or (va-box), then the fact that (val) holds in the next step of the model follows by
Lemma 3.6.8, the type constraints in Table 3.7 and the induction hypothesis, that is, the invari-
ants (arg2), (field), or (box), respectively. In turn, the invariant (val) for up(pos) also implies
that (label1) is satisfied in the next step of the semantics model.

Let us now assume that valadr satisfies (va-loc), that is, there exists j = 1, i and loc ∈
localVars(meth(frj)) such that

isAddressIn(valadr,ST (pos), locAdr(frj)(loc), locType(meth(frj), loc)) (3.2)

By isAddressPos(pos) and Lemma 3.5.2, we get pos ∈ Vexp. By this and the induction hy-
pothesis – that is, by the special invariant (vexp) – we determine that pos ∈ DefAssVar and
adrOfVexp(fri, vexp′) = valadr, where vexp′ is the expression at pos.

By isAddressPos(pos) and Definition 3.5.5, we have ST (pos) ∈ Struct. It then follows
ST (pos) = T by Definition 3.2.1, ST (pos) � T (by the type constraints), and the fact that
the ST (pos)’s supertypes that are reference types, i.e., System.ValueType, object and
possible interface types, do not declare instance fields.

By ST (pos) ∈ Struct and pos ∈ DefAssVar, we derive that up(pos) ∈ DefAssVar. We also
have up(pos) ∈ Vexp by Lemma 3.6.11. Let vexp be the variable expression at up(pos).

We can now apply the soundness of the definite assignment analysis. Thus, by [definite assign-
ment analysis] applied for up(pos) and (3.1), we have

memVal(adrOfVexp(fri, vexp),ST (up(pos))) 6= undef (3.3)

According to Definition 3.6.6, we have

adrOfVexp(fri, vexp) = fieldAdr(adrOfVexp(fri), vexp′,ST (pos)::F) = fieldAdr(valadr,T::F).

By this, ST (up(pos)) = fieldType(T::F) (see the type constraints in Table 3.7) and (3.3), we
derive

memVal(fieldAdr(valadr,T::F), fieldType(T::F)) 6= undef (3.4)

By (3.2) and Lemma 3.6.4, we get

isAddressIn(fieldAdr(valadr,T::F), fieldType(T::F), locAdr(frj)(loc), locType(meth(frj), loc))

By this, (3.4) and the induction hypothesis (loc), it follows that the invariant (val) is satisfied in
the next step of the operational semantics model. The proof of the other invariants is trivial. ut
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3.7 Related Work

The origin of type safety proofs goes back to the subject reduction theorem for typed λ-calculus
(for details, see [101]), but starts in earnest with Milner’s slogan ”Well-typed programs never
go wrong” [94] in the context of ML. The first statically typed language proved to have a type-
hole in its type system is Eiffel [37]. Since then, designers of object-oriented programming
languages aimed to prove type safety of their languages (see, for example, the papers [30, 31]).

To the best of our knowledge, our work is the first type safety proof for a fragment of C].
The most related to our proof are the Java’s type safety proofs, referred to in Section 3.7.1.
Section 3.7.2 reports on formal specifications of the definite assignment analysis performed by
the Java compiler. A brief evaluation of the ASMs applications in the area of programming
languages is included in Section 3.7.3.

3.7.1 Java’s Type Safety

Closely related to our work is the considerable research for proving Java’s type safety [40, 118,
98, 41, 121, 77, 115]. An interested reader can find in [73] an excellent and comprehensive
evaluation of this research topic. The most closely related, Stärk et al. [115]’s type safety proof
is the one that had the most impact on our work. Börger and Stärk [28] provide a concrete
comparison of the Java semantics model [115] and C] semantics model [24] and formulate in a
precise technical manner where and in which respect the two languages differ among each other
and from other programming languages – methodologically, semantically, and pragmatically.

C] introduces several new features with respect to Java, e.g., structs, call-by-reference, an
unified type system, delegates. Due to the rich and unified type system, the C]’s evaluation
rules use the type information, and concerning this aspect, C] contrasts with most of the Java
fragments analyzed so far, where the evaluation does not require any type information. Another
crucial modelling difference with respect to Java is the ”indirection through memory addresses”,
needed for the call-by-reference mechanism. This has significantly contributed to the complex-
ity of the C]S’s type safety proof: As one can see in Section 3.6, most of the definitions and
lemmas required for Theorem 3.6.1 are concerning the handling of addresses. Moreover, the
treatment of the addresses gets even trickier in the context of structs and the C]’s unified type
system, enabled by boxing and unboxing. On the other hand, as a noticeable difference between
Java’s and C]’s type safety proofs, dealing with the unified type system triggers introducing the
special ”boxed types”.

3.7.2 The Definite Assignment Analysis

A definite assignment analysis is also performed by the Java compiler. This analysis has been
formally specified in terms of data flow equations and type systems by Stärk et al. [115] and
Schirmer [105], respectively. The [115]’s data flow equations approach has inspired us the most.
Stärk et al. [115] have related the definite assignment analysis not only to the type safety proof,
but also to the problem of generating verifiable JVM bytecode from legal Java source code
programs. Schirmer [105] has carried out the formalization of the definite assignment analysis
and the proofs in the theorem prover Isabelle/HOL [100].

The C] definite assignment analysis differs from the one of Java in many respects. Due to
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the C] goto statement, the C]’s analysis gets tricky as it involves a fixed point iteration, which
is not the case in Java. Therefore, Schirmer [105]’s approach using type systems is not a fea-
sible way to prove the analysis’ soundness (Schirmer [105] himself recognizes this). Note that
Java has a break L; statement, which has no corresponding statement in C]. Its treatment is
similar to the C] continue statement, and so, introduces no complexity. Moreover, the han-
dling of the C] struct type variables represents another crucial difference with respect to Java’s
analysis. As we have seen, determining their definite assignment status requires considering the
so-called ”expansion” function, which takes into account the status of the fields of the struct
type variables. Another non trivial difference between C] and Java with respect to the definite
assignment analysis is given by the treatment of the C] ”by reference” arguments: While a Java
local variable can only get definitely assigned upon a direct assignment, a C] local variable can
also get definitely assigned following a method call with the variable as an out argument.

3.7.3 The ASM Method

An important advantage of using the ASM method is that the ASMs are appropriate to describe
operational features of languages. Thus, the ASM method was successfully applied to define
the dynamic semantics of many widely used languages. Among these are C (see [71]), C++
(see [122]), C] (see [24, 112, 55, 84]), Java (see [115]), Occam (see [72, 23]), Oberon (see [90]),
Prolog (see [25]), Smalltalk (see [95]).

For work centered around Java, [18] contains a collection of formal-method-approaches to
language specification and analysis. Hartel and Moreau make an evaluation of the ASM-based
Java investigations [73]. Given that a semantics model for C] has only been defined by [24], we
cannot perform here a similar evaluation.

If appropriately designed, the ASM models are flexible enough to be refined in order to
cover other language features. For example, the C] model [24] has been firstly extended by
Stärk and Börger with a thread and memory model [112], and then by Jula with the main new
features of C] (v2.0), in particular generics, anonymous methods, and iterators [83].

Another strength of the ASM models is that they can be validated and verified against the
real systems they model. A purely theoretical specification often contains subtle errors, which
are sometimes very hard to discover. An implementation of the theoretical specification can
reveal such errors, by showing a misbehavior during its execution. Thus, in [84], we have
refined the C] model to .NET executable AsmL code [49], somehow similarly to the AsmGofer
refinement developed by Schmid [106, 107] for the Java model [115].

3.8 Summary and Future Work

We proved type safety of a large fragment of C] which includes delegates, call-by-reference,
structs, boxing, and unboxing. To our knowledge, the treatment of these features seems to
be new. To prove type safety, we have specified the type constraints that should be satisfied
by a method accepted by the C] compiler. Further, we have formally defined and proved the
soundness of the definite assignment analysis, a crucial ingredient for C]’s type safety. We
have then identified and formalized the invariants expressing the type safety result. Finally, we
proved that the run-time execution, according to the operational semantics model [24], of legal
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C]S programs accepted by the definite assignment analysis and obeying the type constraints
preserves the invariants.

As future work, the language C]S can be extended with additional features of C], e.g.,
statics and class initialization, asynchronous exceptions13 (e.g., OutOfMemoryException,
StackOverflowException), generics, access modifiers, without major complications,
though this would trigger a substantial expansion in the length of the proof. Future work also
includes the specification and verification of our type safety result in the theorem prover Is-
abelle/HOL [100].

13So far, we have formally defined the semantics of the class initialization and of the asynchronous excep-
tions [58].





4
Type Safety of CLR

Better be despised for too anxious apprehensions, than ruined by too confident
security.

Edmund Burke

In this chapter, we present a formal proof of CLR’s type safety. For this, we begin with speci-
fying the static and dynamic semantics of the CLR bytecode language by providing an abstract
interpreter, in terms of an ASM model, which executes arbitrary bytecode programs. We then
formally define the structural and type consistency checks performed by the bytecode verifi-
cation. On top of the type checks, we provide a definition of well-typed methods and of the
bytecode verification algorithm. We then prove type safety of well-typed methods, i.e., the ex-
ecution according to the semantics models of legal and well-typed methods does not lead to
any run-time type violations and leaves the program in a good state, where certain structural
constraints hold. Finally, to prove CLR’s type safety, we show that the verification algorithm
is sound, i.e., the methods accepted by the verification are well-typed, and complete, i.e., the
well-typed methods are accepted by the verification.

Bytecode language decomposition To keep the size of the semantics model manageable and
thus to simplify the development and exposition of the type safety proof, we structure the CLR
into three layered modules of orthogonal language features, namely a lightweight CLR (with
object classes, value classes, pointers, typed references, inheritance, objects, delegates, dynamic
dispatched method calls, tail calls, boxing, unboxing), exception handling, and generics. This
decomposition yields a sequence of bytecode sublanguages, which altogether describe almost
the entire bytecode language. Each sublanguage extends its predecessor, and for each one’s
semantics, we define an ASM model which is a conservative (purely incremental) extension
of its predecessor. Thus, for the lightweight CLR, we build the model CLRL, which is then
refined (in the sense of ASM refinements [22]) by CLRE to cover the exception handling. In
turn, CLRE is refined through CLRG to deal with generic types and generic methods. The
verification type systems and type consistency checks performed by the bytecode verification
are defined by stepwise refinement, similarly to the layering of the semantics models. For each
sublanguage, we develop a type safety proof.

Features omitted from CLR The focus of this chapter is not a full model of the CLR that
conforms exactly to the CLR specifications [45] down to every technical detail. Such a model
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has obviously its merits, but as in every formal development, a balance between abstraction
and detail should be determined. As the goal of this thesis is CLR’s type safety, besides omit-
ting the unverifiable code, the analysis presented here also abstracts as far as possible from
everything that does not concern type safety. The bytecode language that we consider does not
include static members, arrays, and threads. However, we still consider four static methods:
entrypoint, i.e., the method that is executed when the code is first run, and, for handling
delegates, three static methods declared by the class System.Delegate [5]. The omitted
features only contribute to the complexity of the system through the number of additional cases
they introduce, but they do not introduce any challenging problems.

Chapter outline The rest of this chapter is organized as follows. Section 4.1 specifies the se-
mantics and bytecode verification of the lightweight CLR and proves its type safety. Section 4.2
extends the analysis of the lightweight CLR with exception handling. Finally, the generics are
added in Section 4.3, and the resulting bytecode language is showed to be type-safe. The related
work is discussed in Section 4.4. Section 4.5 concludes and gives directions for future work.
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4.1 The Lightweight CLR

This section analyzes the lightweight CLR and proves its type safety. An informal overview of
the lightweight CLR and its type system is provided in Section 4.1.1. Sections 4.1.2 and 4.1.3
define the static and dynamic semantics of the lightweight bytecode language. Bytecode verifi-
cation is described and formally defined in Section 4.1.4. The bytecode verification algorithm
and the definition of well-typed methods are given in Section 4.1.5. Section 4.1.6 introduces
the typing rules and proves type safety of the lightweight CLR.

4.1.1 An Overview of the Lightweight CLR and its Type System

The CLR is an abstract stack-based machine, with automatic memory management, for CIL
bytecode programs. It encompasses a managed heap, for storing objects, and a stack for method
calls, for capturing information, in the form of frames, about the still active methods.

A new frame is put on the frame stack every time a method is called. Such a frame comprises
a program counter, any local variables, a local memory pool (for dynamic allocations), the
arguments passed to the method (if any), and an evaluation stack (for intermediate results of the
method’s computations).

A method body is a list of bytecode instructions. The instructions manipulate the heap,
the local variables, the arguments, and the evaluation stack. Mainly, there are three kinds of
instructions: instructions that load values onto the evaluation stack, instructions that store values
from the evaluation stack into memory locations, and instructions for method calls.

In the rest of this section, we give a detailed informal description of the CLR type system.

4.1.1.1 Reference Types

The CLR supports reference types such as object classes, interfaces, pointers, and delegates. A
value of a reference type is always allocated on the managed heap.

Object classes An object class is a reference type of a “self-describing” value, i.e., a value
whose representation and applicable operations are unambiguously defined. The object classes,
supporting for example the C], J], or Smalltalk classes, can declare instance fields and instance
methods (virtual and non-virtual). A value of an object class, also known as an object class
instance, can be referred to by object references and can be created with a constructor. The
constructors are special methods, named .ctor.

Interfaces Unlike the object classes which fully describe their values, interfaces are reference
types that are only a partial description. For this reason, an interface cannot declare fields and
methods for the values of the interface, i.e., it cannot define instance fields and non-virtual
instance methods. However, an interface can declare (abstract) virtual methods.

As there are .NET compliant languages (e.g., Scheme [43], Haskell [14], Mercury [11, 38])
where recursion is the only way to express repetition, the CLR needs to support tail method
calls. When executing a tail call, the CLR discards the caller’s frame prior making the call. This
means, for example, that a method which calls itself tail can implement a desired repetition.
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Regarding type safety, the tail calls require attention because of two main reasons. Firstly,
because their execution results in situations when the method invoked tail does not return to the
(in the meantime discarded) frame that contained the tail call, but to another frame. Secondly,
because although a call is marked tail, it could happen that the tail prefix is ignored when
the bytecode is jitted, and consequently the call would be interpreted as a non-tail call. The
reason for that is because the JIT compiler views this prefix as an optional directive. However,
it should be ensured that the call is type safe, regardless of whether the call has been interpreted
as tail or not.

Pointers There exists two kinds of pointers: managed pointers and method pointers. The CLR
also supports unmanaged pointers. However, since their use is deemed unverifiable, this thesis
does not consider them.

A managed pointer is a reference to a managed memory block that has been allocated from
the CLR’s memory heap. Unlike a reference to an object class instance, a managed pointer
can point to the interior of the instance (e.g., to an instance field), rather than to point to the
”entry” of the instance. Usually, managed pointers are generated for method arguments that
are passed ”by-reference”, e.g., the C] ref/out parameters. The CLR provides two type-safe
operations on managed pointer types: loading a value from (operation known as “indirect load”)
and writing a value (operation known as “indirect store”) to the address referenced by a pointer.

A key ingredient in the type safety proof, identifying the typing rules for pointers is fairly
complex, somehow comparable with the notion of valid address in the C]’s type safety proof.
To type pointers, the notion of ”is an address in” introduced in Chapter 3 is reconsidered. Also,
ensuring type-safe tail calls can be problematic especially in the presence of pointers, as the tail
calls’ execution can easily generate dangling pointers.

A method pointer is a pointer to a method entry point. It reliably identifies the method
assigned to the pointer. Thus, if one knows the method entry point, one can determine, for
example, the method signature, the return type1, the local variable types. Therefore, one can see
a method pointer as a method identifier. This identifier can be regarded as pointing to an address
or directly to the corresponding method reference. The only operations on method pointers are
the call of a method via the corresponding method pointer and the creation of delegates. As
the bytecode verification does not track method pointer types, the first operation, also known as
indirect call, is regarded as unverifiable by [45] and therefore not considered for our analysis.

Delegate classes Similarly as in C], the delegates were built with the idea of being the verifi-
able method pointers. Informally, a delegate wraps a list of method pointers called invocation
list. Exactly as in C], the methods pointed to in the invocation list can be invoked sequentially,
in the order in which they appear through a delegate call. More formally, a delegate is simply an
instance of a delegate class. Figure 4.1 shows the general form of a delegate class. A delegate
class is an object class whose definition obeys certain conditions:

• It should be declared as a sealed subclass of System.Delegate.

• It should declare exactly two members: a .ctor and a method Invoke. As the imple-
mentations of these two methods are provided by the run-time environment, the methods
should have empty bodies.

1In CLR, the signature of a method reference does not include method return type.
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Figure 4.1 The general form of delegate classes.
.class private auto ansi sealed DC extends System.Delegate
{

.method public hidebysig specialname rtspecialname
instance void .ctor(object o, native int m) runtime managed

{
} // end of method DC::.ctor
.method public hidebysig

instance T Invoke(T1 x1,. . . ,Tn xn) runtime managed
{
} // end of method DC::Invoke

} // end of class DC

– The .ctor should have exactly two parameters: the first of type object and
the second of type native int (see Section 4.1.1.2 for details on this type).
When the constructor is invoked, the first argument – known as target object – is
an instance of the class or one of its subclasses that declares the target method,
and the second argument is a method pointer to the method – known as tar-
get method – to be invoked. The second parameter of the .ctor should be of
type native int. This is so since the method pointers are regarded as values of
the type native int.

– The Invoke method should have the signature compatible with the target method.

Similarly as in C], each call to an Invoke method of a delegate class is turned into a syn-
chronous call of the methods pointed to in the invocation list. The fact that Invoke and the
target method do not necessarily have the same signature might be problematic in ensuring type
safety, and therefore Definition 4.1.8 of compatible signatures requires attention. By only al-
lowing two methods, the delegates can, on one hand, be easier controlled. Because the target
object and the target method are passed to the delegate constructor, there exists the informa-
tion to ensure that run-time (type) errors caused by mismatched parameters and return types do
not occur. On the other hand, specifying the delegates semantics is not an easy task because
of their ”opaque” implementation: Both the creation and invocation of a delegate are accom-
plished through methods whose bodies, assumed to be empty, are automatically generated by
the run-time system. Concerning the creation of a delegate instance, there are also verification
rules which bound to a certain bytecode sequence.

4.1.1.2 Value Types

The value types supported by the CLR are the primitive types and the value classes. Unlike the
values of reference types, the values of a value type are usually allocated “in place”, i.e., on the
evaluation stack. A value type can also be allocated on the heap, but only within (e.g., as a field
of) an object class instance.

Primitive types We consider only the following primitive types: int32, int64, float64,
and native int. The type native int is mapped at run-time to the natural size of the
specific architecture: int32 on a 32-bits architecture and int64 on a 64-bits architecture. It
becomes efficient when the target machine architecture is not known until run-time.
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Figure 4.2 Example: typed references and methods with variable number of arguments.
// the arglist keyword represents
// a method with a variable number of arguments
public static void WriteAtConsole( arglist )
{

// an ArgIterator object is used to loop through the arguments
ArgIterator iterator = new ArgIterator( arglist );

// each item in the ArgIterator object is a typed reference,
// which can be converted to an object using the
// static method TypedReference.ToObject()
while ( iterator.GetRemainingCount() > 0 )
{
TypedReference tr = iterator.GetNextArg();
Console.WriteLine ( TypedReference.ToObject(tr) );

}
}

// the Main method calls the method with
// a variable number of arguments
public static void Main()
{

// define arguments of different types
double z = 2.5;
int x = 31;
string y = ”hello”;

// call the variable argument method, passing
// the arguments in, using the arglist keyword
WriteAtConsole( arglist( x, y, z ) );

}

Value classes The value classes are the CLR support not only for the C] structs, but also for
C++ structs, Pascal and Modula 2 record types. A value class is a value type whose values are
“self-contained” values. More exactly, these values – also known as instances of the value class
– are represented as mappings assigning values to the instance fields of the value class. Every
value class should have the library object class System.ValueType [10] as the direct base
class. In particular, it is not possible for a value class to extend another value class. Additionally,
a value class can implement one or more interfaces. Similarly to an object class, a value class
can declare instance fields. It can only declare non-virtual instance methods.

Just in the same manner as C], the CLR supports boxing to fill the gap between value types
and reference types.

A non-virtual method receives a this pointer that is a managed pointer (see below the
pointer types) to the (unboxed) value class. One fundamental difference between value classes
and object classes is that the formers do not inherit behavior, and therefore cannot declare virtual
methods. However, virtual methods defined by System.ValueType and by the interfaces
implemented by a value class (if any) can be called on that value class instances, but only if the
instances are boxed. This makes sense since the value types have identity only when boxed.

System.TypedReference [9] is a special value class in the .NET Base Class Library.
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Universe of types Typical use
Type = RefType ∪ ValueType T , T ′, T ′′, T ′′′

RefType = ObjClass ∪ Interface ∪ PointerType –
ValueType = ValueClass ∪ PrimitiveType –
ObjClass OC, OC′, OC′′

DelegateClass ⊆ ObjClass DC
Interface I
PointerType = {T& | T ∈ ReferentType} T&
ReferentType = ObjClass ∪ Interface ∪ ValueType –
ValueClass VC
PrimitiveType = {int32, int64, native int, float64} –

Table 4.1: CIL’s types.

This class instances are known as typed references. They enable the CLR to provide C++-
style support for methods that have a variable number of arguments. Thus, they can be used
to represent method arguments in variable argument lists. In general, the typed references
support languages that require “by-reference” passing of unboxed values to methods that are
not statically restricted as to the type of values they accept. Therefore, a typed reference is
regarded as an opaque descriptor of a pointer and a type.

Example 4.1.1 Figure 4.2 lists a C] example to illustrate the use of typed references. Each of
the arguments x, y, and z of the method WriteAtConsole is “packed” into a typed reference. As
the declaration of WriteAtConsole does not have a list of parameter types (so, it can have a
variable number of arguments), the types of its arguments are determined from the correspond-
ing typed references. For example, the value class System.TypedReference defines a
method GetTargetType that “extracts” the type information out of a typed reference.

4.1.2 The Static Semantics

The execution environment in which every method runs consists of the type hierarchy and the
field and method declarations. Table 4.1 defines the classification of the CIL’s types described
in Section 4.1.1. We also denote by Class the set of object classes and value classes:

Class = ObjClass ∪ ValueClass

We assume that the classes and interfaces are organized by the execution environment into
an inheritance hierarchy, on which the subtype relation � defined in Definition 4.1.1 depends.

Definition 4.1.1 (Subtype relation) The subtype relation � is the least reflexive and transitive
relation such that

• if T ∈ Class ∪ Interface and T ′ is object, or

• if T ∈ ValueType and T ′ is System.ValueType, or
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Universe of values Typical use
Val = SimpleVal ∪ ObjRef

∪ Map(FRef ,Val)
∪ Adr ∪ TypedRef ∪MethPtr val, val′

SimpleVal –
ObjRef ref , ref ′, ref ′′

Adr adr, adr′, adr′′

TypedRef tr
MethPtr mp

Table 4.2: CIL’s values.

Universe Typical use Element name
Meth M method names
MRef mref , T::M, C::M method references
Instr instr bytecode instructions
Local = N n local variables
Arg = N n arguments
FRef C::F, OC::F, OC::F′, VC::F field references

Table 4.3: Environment specific universes.

• if T ∈ ObjClass and T ′ is a base class of T or an interface implemented by T, or

• if T ∈ Interface and T ′ is an interface implemented by T, or

• if T ∈ ValueType and T ′ is an interface implemented by T,

then T � T ′.

The possible kinds of values corresponding to the CIL’s types are gathered in Table 4.2.
Thus, a value can be

• a simple value, element of the universe SimpleVal, i.e., a 32-bit integer2, a 64-bit integer,
a native size integer, or a 64-bit floating point number, or

• an object reference, element of the universe ObjRef , or

• a value class instance, element of Map(FRef ,Val), defined as a mapping assigning values
to the instance fields of the value class, or

• a pointer (referencing an address), element of the universe Adr, or

• a typed reference, element of TypedRef , or

2The type bool is omitted in our approach as booleans are treated as 32-bit integers: 0 is used for False, and
1 for True.
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• a method pointer, element of MethPtr3.

Each class declares types for a set of instance fields, and each class and interface specifies
signatures and return types for a set of instance methods. Every method consists of a list of
bytecode instructions. Formally, we consider the universes in Table 4.3 and the environment
components in Table 4.4 defined as basic static functions.

The list of instructions of a method body is stored in code. Thus, code(mref )(pos) gives the
instruction with the code index pos of the method mref . The abstract bytecode instructions of
the bytecode language that we consider are given in Table 4.8. They are constructors for real
CIL instructions: One abstract instruction models one or more real instructions.

If omitted in a static or dynamic function, the method reference is considered to be the
method of the currently executed frame. For example, code(pos) denotes the instruction with
code index pos in the current method.

The local variable types are declared and fixed. They are maintained in the local signa-
ture locTypes. In the verifiable code, the local variables are assumed to be initialized to default
values according to their type. The goal is to simplify the bytecode verification. Due to this
decision, the bytecode verification does not need to perform a definite assignment analysis as
the C] compiler does – see Chapter 3, Section 3.4).

For every method, the function paramTypes yields the list of parameter types given in the
method signature. The list returned by paramTypes does not include the type of the this
pointer used for instance methods. Therefore, we consider the derived function argTypes :
Map(MRef ,List(Type)) which also includes the type of the this pointer4. For a method de-
clared by an object class (or interface), the this pointer is of the class (or interface) type,
whereas if the class of the method is a value class, the this pointer is a pointer to an instance
of the value class.

Definition 4.1.2 For a method T::M, we define

argTypes(T::M) =

{
[T] · paramTypes(T::M), if T ∈ ObjClass ∪ Interface;
[T&] · paramTypes(T::M), if T ∈ ValueClass.

We denote by locNo : Map(MRef ,N) and argNo : Map(MRef ,N) the length of locTypes
and argTypes, respectively. The return type, the class name, and the name of a method reference
are selected by retType, classNm, and methNm, respectively. The set of the fields of a class
(including the inherited fields) is maintained in instFields. The declared type of any instance
field is recorded by fieldType.

Besides the execution environment, the static semantics also comprises the universes in
Table 4.5 and the basic static functions in Table 4.6.

3As the use of a method pointer is very limited, we see the method pointers as elements of the universe MethPtr
that point to the corresponding method references.

4Every time our model exceptionally considers a static method, we make an exception and consider argTypes
to coincide with paramTypes.
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Function definition Function name
code : Map(MRef ,List(Instr)) method code
locTypes : Map(MRef ,List(Type)) local variable types
paramTypes : Map(MRef ,List(Type)) parameter types
retType : Map(MRef ,Type ∪ {void}) method return type
classNm : Map(MRef ,Class) method class name
methNm : Map(MRef ,Meth) method name
instFields : Map(Class,P(FRef )) instance fields of a class
fieldType : Map(FRef ,Type) field declared type

Table 4.4: The components of the execution environment.

Universe Typical use Element name
TagType – tag type
Op op operator
Frame fr, fr′, fr1, . . . frk call frame
Pc pos, pos′, pos′′ program counter
InitState – object initialization status
Switch – execution mode

Table 4.5: Semantics specific universes.

The values carry their associated CLR types. Any value can be viewed as a pair consisting
of the value and a tag representing its CLR type (and not the type tracked by the bytecode
verification). The set of tags is denoted by TagType and is defined as follows:

TagType = PrimitiveType ∪ ValueClass ∪ {ref,&,typedref}

Given a value, the function tagType yields the tag type associated to the value.

The stack frames, also known as activation records, are defined as elements of the uni-
verse Frame. Every frame is given as a 6-tuple comprising a program counter, local variable
addresses, addresses allocated in the local memory pool, argument addresses, an evaluation
stack, and a method reference.

Frame =
Pc×Map(Local,Adr)× P(Adr × ValueClass)×Map(Arg,Adr)× List(Val)×MRef

Bytecode verification has to ensure that all objects are properly initialized before they are
used. To make object initialization accessible to the type safety proof, the semantics model
has to be designed in such a way that programs which do not properly initialize objects can be
identified. In other words, the run-time representation of partially initialized objects must be
distinguishable from that of (fully) initialized objects. For this purpose, we consider the uni-
verse InitState. The initialization status and the run-time type of object references are recorded
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Function definition Function name
tagType : Map(Val,TagType) value’s tag
opNo : Map(Op,N) operator’s arity
opResVal : Map(Op× List(Val),Val) result of an operation
opResType : Map(Op× List(Type),Type) result type of an operation
handleOf : Map(Type,Val) handle associated to a type

Table 4.6: The basic static functions.

as elements of InitState. An object reference whose run-time type is an object class can be ei-
ther partially initialized, i.e., its initialization is in progress, or initialized. An object reference
whose run-time is a value type can only be initialized.

InitState = InProgress(ObjClass) initialization in progress
| Init(ObjClass ∪ ValueType) initialization done

Given an operator, the function opNo returns the number of operands necessary to perform
the operation indicated by the operator. The resulting value of an operation and the resulting
verification type can be determined through the functions opResVal and opResType, respec-
tively. While opResVal is a “semantics” function, opResType is defined by [45, Partition III,
§1.5].

The RefAnyType instruction applied with a type token argument T requires a handle, i.e.,
an opaque descriptor, associated to T . For a type T , we assume that handleOf (T) returns
a handle, i.e., an instance of the special value class System.RuntimeTypeHandle [7],
corresponding to T .

The below defined universe Switch depicts the possible execution modes of the operational
semantics model CLRL defined in Section 4.1.3.

Switch = Noswitch normal execution mode
| Invoke(Bool, MRef , List(Val)) method invocation mode
| Result(List(Val)) method returning mode

The model is either in the normal execution mode, i.e., it executes an instruction, or in the
method invocation mode, i.e., it invokes a method with a given list of arguments, or in the
method returning mode, i.e., it returns from a method possibly with a return value.

Similarly as for the C]’s static semantics, we define two derived static functions defVal :
Map(RefType ∪ ValueType,Val) and lookUp : Map((ObjClass ∪ ValueType)×MRef ,MRef ).

Given a type T , defVal(T) is the default value, also known as ”zero”, associated to the
type T . Note that the default value of a value class is the result of initializing each instance field
of the class to its default value.

Definition 4.1.3 (Default value) For a type T ∈ RefType ∪ ValueType, we define
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defVal(T) =



0, if T ∈ PrimitiveType \ {float64};
0.0d, if T = float64;

null, if T ∈ RefType;
{T::F 7→ defVal(fieldType(T::F)) |

T::F ∈ instFields(T)}, if T ∈ ValueClass.

To resolve dynamic dispatched method calls, we consider the function lookUp, defined sim-
ilarly as for C]. We use the same terminology as in Chapter 3: The method argument of a
virtual call is called, whereas the method selected for the run-time execution is invoked. For
non-virtual call cases, we use the two notions interchangeably.

Definition 4.1.4 (Method lookup) For a type T and a method T ′::M, we define

lookUp(T,T ′::M) =
if T declares a non-abstract method M ∧

((T = T ′) ∨ (T ′ ∈ ObjClass ⇒ T::M overrides T ′::M)) ∧
(T ′ ∈ Interface ⇒ T::M implements T ′::M)

then T::M
elseif T = object then undef
else lookUp(T ′′,T ′::M) where T ′′ is the direct base class of T

The conditions [override/implement], defined for C] in Chapter 3, Section 3.5.1, should
also be satisfied in the CLR:

[override/implement] If T::M ∈ MRef overrides/implements T ′::M ∈ MRef , then:

(at) argNo(T::M) = argNo(T ′::M) and for every i = 1, argNo(T::M)− 1,

argTypes(T::M)(i) = argTypes(T ′::M)(i)

(rt) retType(T::M) = retType(T ′::M)

The instructions dealing directly with pointers, i.e., LoadInd and StoreInd, require the ad-
dresses referenced by the pointers to be valid. An address is a valid address if it not null,
it is in the range of Adr, and it is ”naturally aligned” for the target architecture. To distin-
guish between invalid addresses and valid addresses, we define the external function validAdr :
Map(Adr,Bool) which, given an address, indicates the validity of the address. This function
is external as its definition depends on the target architecture. However, the addresses of local
variables, arguments, fields and value type instances inside boxed objects are regarded as valid.

Delegate classes As the two methods declared by a delegate class are not allowed to have a
body, the semantics model should treat them specially. We proceed as follows. Every delegate
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.ctor is implemented via ASM rules. Similarly as for C], every delegate’s Invoke method
is provided with the body, resulted upon compiling the corresponding C] Invoke method, that
expresses the sequentiality of the execution of delegate invocation list elements. To implement
that body, we insert two more methods, implemented via ASM rules, in every delegate class.
The method length is supposed to return the length of the delegate invocation list, while the
method invoke is used to invoke a certain method in the delegate invocation list. Thus, every
delegate class is translated as shown in Figure 4.3 (for an Invoke method with a non-void
return type).

So, basically, our model considers the delegates implemented, in particular created, through
ASM rules because their CLR implementation is not transparent. This modelling decision has
an impact on the members declared by System.Delegate, whose implementation relies
on the delegates implementation. Therefore, the implementation of these members should be
accomplished via ASM rules, too. A full specification of the CLR would consist of ASM rules
for each member declared by System.Delegate. As such an approach would significantly
blow up the size of the exposition, we consider that System.Delegate declares only three
members, i.e., the static methods Combine, Remove, and op Equality.

4.1.3 The Dynamic Semantics

The dynamic state of the machine CLRL is given by the basic dynamic functions of Table 4.7.

The function mem is applied to read and to store values other than value class instances from
and into the memory, respectively. This function can return an undefined value. The stack of call
frames frameStack is defined as a list of frames. A call frame comprises a program counter pc,
local variable addresses locAdr, local memory pool locPool, argument addresses argAdr, an
evaluation stack evalStack, and a method reference meth.

The local memory pool locPool is a (possibly empty) set that consists of pairs of the form
(adr,T), where adr is the address of a memory block allocated for an instance of a value class T .
In the lightweight CLR, an address adr is considered in locPool in a single case5: if the address
is allocated for a value class instance created upon a constructor invocation (see the semantics of
the NewObj instruction in Section 4.1.3.1). The memory allocated in the local memory pool is
reclaimed upon method context termination. Modelling the local memory pool is an important
contribution of our formal specification. The reason behind modelling this pool concerns the
type safety proof, more precisely, the typing of pointers (see Remark 4.1.10 in Section 4.1.6).

The derived nullary function frame : Frame denotes the currently executed frame. It is
determined as a 6-tuple consisting of pc, locAdr, locPool, argAdr, evalStack, and meth.

frame = (pc, locAdr, locPool, argAdr, evalStack,meth)

Accordingly, pc gives the program counter of the current frame, locAdr the local variable ad-
dresses of the current frame, etc. To simplify the technical presentation, we separate the current
frame from the stack of call frames, i.e., frame is not contained in frameStack.

The function fieldAdr is defined analogously as for C]. It assigns to every instance field of
a reference or of a value class instance stored at a given address its allocated address. More

5Upon adding generics in Section 4.3, there will be another case.
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Figure 4.3 The translation scheme of delegate classes.
.class private auto ansi sealed DC extends System.Delegate
{

.method public hidebysig specialname rtspecialname
instance void .ctor(object o, native int m) runtime managed

{
} // end of method DC::.ctor
.method public hidebysig instance T Invoke(T1 x1,. . . ,Tn xn) runtime managed
{
} // end of method DC::Invoke

} // end of class DC

⇓

.class private auto ansi sealed DC extends System.Delegate
{

.method public hidebysig specialname rtspecialname
instance void .ctor(object o, native int m) runtime managed

{
} // end of method DC::.ctor
.method public hidebysig instance T Invoke(T1 x1, . . . , Tn xn) cil managed
{

.maxstack n+2

.locals init (T V 0, int32 V 1)
0: br n+9
1: ldarg 0 // load the delegate instance
2: ldloc 1 // load the current index in the invocation list
3: ldarg 1 // load the first argument of the delegate call
...
n+2 : ldarg n // load the n-th argument of the delegate call
n+3 : call instance T DC:: invoke(int32, T1, . . . , Tn)
n+4 : stloc 0
n+5 : ldloc 1
n+6 : ldc.i4 1
n+7 : add
n+8 : stloc 1
n+9 : ldloc 1
n+10 : ldarg 0
n+11 : call instance int32 DC:: length()
n+12 : clt
n+13 : brtrue 1
n+14 : ldloc 0
n+15 : ret

} // end of method DC::Invoke

.method private instance int32 length() runtime managed
{
} // end of method DC:: length

.method private instance T invoke(int32 i,T1 x1,. . . ,Tn xn) runtime managed
{
} // end of method DC:: invoke

}
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Function definition Function name
mem : Map(Adr,Val ∪ {undef}) memory function
frameStack : List(Frame) stack of call frames
pc : Pc current program counter
locAdr : Map(Local,Adr) local variable addresses
locPool : P(Adr × ValueClass) local memory pool
argAdr : Map(Arg,Adr) argument addresses
evalStack : List(Val) evaluation stack
meth : MRef current method
fieldAdr : Map((ObjRef ∪ Adr)× FRef ,Adr) instance field addresses
initState : Map(ObjRef , InitState) initialization status
addressOf : Map(ObjRef ,Adr) boxed value address
typedRefAdr : Map(TypedRef ,Adr) typed reference address
typedRefType : Map(TypedRef ,Type) typed reference type
methodOf : Map(MethPtr,MRef ) method pointer method
invocationList : List(ObjRef ×MRef ) invocation list of a delegate
switch : Switch current execution mode

Table 4.7: The basic dynamic functions.

precisely, the address of an instance field C::F of an object ref is given by fieldAdr(ref ,C::F).
Also, the address of an instance field C::F of a value class instance stored at an address adr
is fieldAdr(adr,C::F).

The function initState records the run-time type and the initialization status of the object
references. Given an object reference ref , if initState(ref ) is InProgress(T), where T is an
object class, the meaning is that the run-time type of ref is T , and the initialization of ref is in
progress. If initState(ref ) is Init(T), the run-time type of ref is T , and ref is initialized. The
values of value types can be “boxed” in the heap and then addressed by object references. Such
a reference is always considered initialized. Formally, if ref is a boxed value of a value type T ,
then it always holds initState(ref ) = Init(T).

InitState = InProgress(ObjClass) initialization in progress
| Init(ObjClass ∪ ValueType) initialization done

To simplify the exposition of the semantics rules, we define the derived (selector) func-
tion actualTypeOf : Map(ObjRef ,Type), which assigns to every object reference its run-time
type. Given a reference ref , actualTypeOf (ref ) = T if there exists T ∈ ObjClass ∪ ValueType
such that initState(ref ) = InProgress(T) or initState(ref ) = Init(T).

A boxed value on the heap embeds the value type and a list of instance field addresses. When
“unboxing” a “boxed” value, one needs its address on the heap. This address is maintained
in addressOf , and it is set when the value is boxed (see the semantics of the Box instruction in
Section 4.1.3.1).

The function typedRefAdr returns the address embedded in a typed reference, while the
type transmitted with a typed reference is recorded by the function typedRefType. For a
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method pointer, methodOf returns the method reference pointed to by the pointer. Exactly
as in the C] model, the invocation list each delegate instance is equipped with upon its cre-
ation is maintained by invocationList. As in C], each invocation list is a per delegate instance
immutable. The function methodOf is only accessed for initializing the invocationList upon
calling a delegate .ctor.

The current execution mode of the semantics model defined in Section 4.1.3.1 is maintained
by switch.

Initial Constraints For the initial state of CLRL, the following conditions are satisfied by
the basic dynamic functions:

mem(adr) = undef , for every adr ∈ Adr fieldAdr = ∅
frameStack = [ ] initState = ∅
pc = 0 addressOf = ∅
locAdr = ∅ typedRefAdr = ∅
locPool = ∅ typedRefType = ∅
argAdr = ∅ methodOf = ∅
evalStack = [ ] invocationList = ∅
meth = .entrypoint switch = Noswitch

Similarly as in the C] model, we consider memVal : Map(Adr × Type,Val ∪ {undef})
and WRITEMEM to ”read from” and to ”write in” memory, respectively. Apart from substituting
Struct by ValueClass, the definitions are the same.

Definition 4.1.5 For an address adr and a type T, we define

memVal(adr,T) =
if T ∈ ValueClass then
{T::F 7→ memVal(fieldAdr(adr,T::F), fieldType(T::F)) | T::F ∈ instFields(T)}

else mem(adr)

Definition 4.1.6 For an address adr, a type T and a type val, we define

WRITEMEM(adr,T, val) ≡
if T ∈ ValueClass then

forall T::F ∈ instFields(T) do
WRITEMEM(fieldAdr(adr,T::F), fieldType(T::F), val(T::F))

else mem(adr) := val

Obviously, after storing a value val at an address of a memory block, sufficient to hold
values of a type T , the value read from the memory block is val.

Lemma 4.1.1 After WRITEMEM(adr,T, val) is executed, memVal(adr,T) = val.
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Proof. By induction on the structure of the possibly value class type T . ut

To determine the local variable values and argument values of the current frame, we define
the derived functions locVal : Map(Local,Value) and argVal : Map(Arg,Value), respectively.
The value of a local variable is determined as the value stored in the memory block at the local
variable address, sufficient to hold values of the local variable declared type. Similarly, the
value of an argument is determined in terms of the argument address and argument declared
type.

locVal(n) = memVal(locAdr(n), locTypes(n)), for every n = 0, locNo(meth)− 1

argVal(n) = memVal(argAdr(n), argTypes(n)), for every n = 0, argNo(meth)− 1

4.1.3.1 The Semantics of the Bytecode Instructions

This section defines the effect of the instructions in Table 4.8 on the dynamic state of the
virtual machine. The operational semantics model – given in terms of the ASM intrepreter
named CLRL – executes the macro execScheme which is parameterized by the submachines
EXECCLR and SWITCHCLR. This macro gives control to these submachines depending on the
current execution mode switch of the machine CLRL.

The macro execScheme is defined as follows. If switch is Noswitch, i.e., the machine is in
the normal execution mode, then EXECCLR defined in Figures 4.4, 4.5, and 4.6 takes con-
trol and executes the current instruction code(pc). If switch is not Noswitch, i.e., the ma-
chine either invokes a method or returns from a method, execScheme gives control to the ma-
chine SWITCHCLR defined in Figure 4.7.

CLRL ≡ execScheme(EXECCLR, SWITCHCLR)

execScheme(EXECCLR, SWITCHCLR) ≡
if switch = Noswitch then EXECCLR(code(pc))
else SWITCHCLR

The Dup instruction duplicates the top element of the stack, while the Pop instruction re-
moves the top element from the stack. The instruction Const(T ,lit) pushes the constant (lit-
eral) lit, of type T , onto the evalStack.

The instruction LoadLoc(n) loads on the evalStack the value locVal(n) of the n-th local
variable of the current frame. The address locAdr(n) of the n-th local variable is pushed onto
the stack by the instruction LoadLocA(n). The instruction StoreLoc(n) stores with WRITEMEM

the topmost value of evalStack at the variable address locAdr(n).

The Execute instruction is a “constructor” (abstraction) of several real CLR instructions.
The instruction models, for example, the generic (read: with no specified data type) in-
structions add, div, mul, and sub, but also instructions performing conversions such as
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Instruction Informal description
Dup Duplicates the top value of the stack.
Pop Removes the top element of the stack.
Const(T ,lit) Loads the literal lit of type T onto the stack.
LoadLoc(n) Loads the n-th local variable onto the stack.
StoreLoc(n) Pops the top stack element, and stores it in the n-th local variable.
Execute(op) Executes the operation indicated by the operator op.
Cond(op,target) Executes op and transfers control to target if op returns true.
LoadArg(n) Loads the n-th argument onto the stack.
StoreArg(n) Pops the top stack element and stores it in the n-th argument.
Call(tail,T ,mref ) Invokes the method mref of return type T; the boolean tail indicates

whether the call is tail.
CallVirt(tail,T ,mref ) Calls the late bound method mref of return type T associated,

at run-time, with an object; tail indicates if the call is tail.
Return Returns from the current method.
NewObj(mref ) Creates a new object, and invokes the instance constructor mref

with the object.
LoadField(T ,C::F) Loads the field C::F, of declared type T , onto the stack.
StoreField(T ,C::F) Stores the top stack element into the field C::F, of declared type T .
LoadLocA(n) Loads the address of the n-th local variable onto the stack.
LoadArgA(n) Loads the address of the n-th argument onto the stack.
LoadFieldA(T ,C::F) Loads the address of the field C::F, of declared type T , onto the stack.
LoadInd(T) Loads value of type T indirect onto the stack.
StoreInd(T) Stores value of type T indirect from the stack.
Box(T) Converts value of type T to object reference (boxed value).
Unbox(T) Converts boxed value of value type T to a pointer to its unboxed form.
Unbox.Any(T) Converts boxed value to its unboxed form.
MkRefAny(T) Loads a typed reference pointing to type T onto the stack.
RefAnyType Loads the handle to the type embedded in a typed reference.
RefAnyVal(T) Loads the address out of a typed reference onto the stack.
CastClass(T) Attempts to cast the top stack element to object class or interface T .
IsInstance(T) Tests if the top stack element is an instance of the object class or interface T .
LoadFtn(mref ) Loads the (method) pointer associated to the method mref .
LoadVirtFtn(mref ) Loads the (method) pointer associated to the virtual method mref .

Table 4.8: The considered CIL instructions.

conv.i4, conv.i8, and conv.r8. The execution of the operation underlying a generic
instruction requires the operands’ types. This is one reason why the values are carrying their
types. Given an operator op, the instruction Execute(op) pops a number opNo(op) of operands
from the evalStack. If the operation does not throw an exception, the result of the operation is
pushed onto the stack . The resulting value is obtained with opResVal. The below defined pred-
icate exceptionCase captures the cases when an exception is thrown. These are the following:

• division by zero for operators of integral types;

• operations that perform an overflow check and whose results cannot be represented in the
result type;

• values that are not “normal” numbers are checked for finiteness or div ision/rem ainder
operations are executed for a minimal value of an integral type and −1.
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exceptionCase(op, vals) :⇔ divByZeroCase(op, vals) ∨ overflowCase(op, vals)
∨ invNrCase(op, vals)

divByZeroCase(op, vals) :⇔ op ∈ {div,rem} ∧ vals(1) = 0
∧ tagType(vals(0)) ∈ {int32,int64,native int}
∧ tagType(vals(1)) ∈ {int32,int64,native int}

overflowCase(op, vals) :⇔ op ∈ {add.ovf,conv.ovf,mul.ovf,sub.ovf}
∧ opResVal(op, vals) < MIN(opResType(op, [tagType(vals(0)), tagType(vals(1))]))
∧ opResVal(op, vals) > MAX(opResType(op, [tagType(vals(0)), tagType(vals(1))]))

invNrCase(op, vals) :⇔ (vals(0) ∈ {NaN,+infinity,-infinity}
∧ op = ckfinite) ∨ (op ∈ {div,rem}
∧ vals(0) = MIN(tagType(vals(0))) ∧ vals(1) = −1
∧ tagType(vals(0)) ∈ {int32,int64,native int}
∧ tagType(vals(1)) ∈ {int32,int64,native int})

Example 4.1.2 In the following bytecode fragment, the instruction Execute(div) (the abstract
instruction corresponding to the real CIL instruction div) computes the result of dividing the
first local variable by the second local variable.

0: ldloc 0
1: ldloc 1
2: div

The “type” of the division depends on the operands’ types: For example, the 32-bit integer
division by zero throws an exception, whereas the 64-bit floating division by zero returns the
special value NaN (read: ”not a number”). Therefore, every value has assigned a tag type. In
the above example, the types carried by the values of the first two local variables determine the
exact “type” of division.

Similarly as Execute, the Cond instruction is a constructor of several real CIL instructions,
e.g., conditional branch instructions such as beq, bge, and blt. Given an operator op and a
code index target, Cond(op, target) pops a number opNo(op) of operands from the evalStack.
The pc is set to target if opResVal yields true for the operator op and the popped operands, and
otherwise, the pc is incremented by 1.

The value argVal(n) of the n-th argument of the current frame is pushed onto the stack
by LoadArg(n). The instruction LoadArgA(n) loads the address argAdr(n). The instruction
StoreArg(n) writes at argAdr(n) with WRITEMEM the topmost value of the evalStack.

The Call instruction can be used to call one of the three methods declared by the class
System.Delegate, or one of the two methods added to every delegate class definition, or a
regular method.
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Figure 4.4 The operational semantics rules.
EXECCLR(instr) ≡ match instr

Dup → let (evalStack′, [val]) = split(evalStack, 1) in
evalStack := evalStack′ · [val, val]
pc := pc + 1

Pop → let evalStack′ = pop(evalStack) in
evalStack := evalStack′

pc := pc + 1

Const( , lit) → evalStack := evalStack · [lit]
pc := pc + 1

LoadLoc(n) → evalStack := evalStack · [locVal(n)]
pc := pc + 1

StoreLoc(n) → let (evalStack′, [val]) = split(evalStack, 1) in
WRITEMEM(locAdr(n), locTypes(n), val)
evalStack := evalStack′

pc := pc + 1

Execute(op) → let (evalStack′, vals) = split(evalStack, opNo(op)) in
if ¬exceptionCase(op, vals) then

let val = opResVal(op, vals) in
evalStack := evalStack′ · [val]
pc := pc + 1

Cond(op, target) → let (evalStack′, vals) = split(evalStack, opNo(op)) in
evalStack := evalStack′

pc := if opResVal(op, vals) then target else pc + 1

LoadArg(n) → evalStack := evalStack · [argVal(n)]
pc := pc + 1

StoreArg(n) → let (evalStack′, [val]) = split(evalStack, 1) in
WRITEMEM(argAdr(n), argTypes(n), val)
evalStack := evalStack′

pc := pc + 1

Call(tail, , T::M) → if T = System.Delegate then
let [ref , ref ′] = take(evalStack, argNo(T::M)) in

if M = Combine then DELEGATECOMBINE(T, ref , ref ′)
if M = Remove then DELEGATEREMOVE(T, ref , ref ′)
if M = op Equality then DELEGATEEQUAL(ref , ref ′)

else let (evalStack′, [ref ] · vals) = split(evalStack, argNo(T::M)) in
if ref 6= null then

if T ∈ DelegateClass then
if M = length then

evalStack := evalStack′ · [length(invocationList(ref ))]
if M = invoke then

DELEGATECALL(ref , vals)
else

evalStack := evalStack′

switch := Invoke(tail, T::M, [ref ] · vals)

CallVirt(tail, , T::M) → let (evalStack′, vals) = split(evalStack, argNo(T::M)) in
evalStack := evalStack′

VIRTCALL(tail, T::M, vals)
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Figure 4.5 The operational semantics rules (continued).
EXECCLR(instr) ≡ match instr

...
Return → if retType(meth) = void then switch := Result([ ])

else switch := Result(top(evalStack))

NewObj(C::.ctor) → let vals = take(evalStack, argNo(C::.ctor)− 1) in
if C ∈ DelegateClass then DELEGATECREATE(C, vals)
elseif C ∈ ObjClass then OBJECTCREATE(C::.ctor, vals)
else VALUECLASSCREATE(C::.ctor, vals)

LoadField(T, C::F) → let (evalStack′, [val]) = split(evalStack, 1) in
if val 6= null then

evalStack := evalStack′ · [memVal(fieldAdr(val, C::F), T)]
pc := pc + 1

StoreField(T, C::F) → let (evalStack′, [val, val′]) = split(evalStack, 2) in
if val 6= null then

WRITEMEM(fieldAdr(val, C::F), T, val′)
evalStack := evalStack′

pc := pc + 1

LoadLocA(n) → evalStack := evalStack · [locAdr(n)]
pc := pc + 1

LoadArgA(n) → evalStack := evalStack · [argAdr(n)]
pc := pc + 1

LoadFieldA( , C::F) → let (evalStack′, [val]) = split(evalStack, 1) in
if val 6= null then

evalStack := evalStack′ · [fieldAdr(val, C::F)]
pc := pc + 1

LoadInd(T) → let (evalStack′, [adr]) = split(evalStack, 1) in
if validAdr(adr) then

evalStack := evalStack′ · [memVal(adr, T)]
pc := pc + 1

StoreInd(T) → let (evalStack′, [adr, val]) = split(evalStack, 2) in
if validAdr(adr) then

WRITEMEM(adr, T, val)
evalStack := evalStack′

pc := pc + 1

Box(T) → let (evalStack′, [val]) = split(evalStack, 1) in
let ref = NewBox(val, T) in

evalStack := evalStack′ · [ref ]
pc := pc + 1

Unbox(T) → let (evalStack′, [ref ]) = split(evalStack, 1) in
if ref 6= null ∧ T = actualTypeOf (ref ) then

evalStack := evalStack′ · [addressOf (ref )]
pc := pc + 1

Unbox.Any(T) → let (evalStack′, [ref ]) = split(evalStack, 1) in
if T ∈ ValueType then

if ref 6= null ∧ actualTypeOf (ref ) = T then
evalStack := evalStack′ · [memVal(addressOf (ref ), T)]
pc := pc + 1

elseif ref = null ∨ actualTypeOf (ref ) � T then
pc := pc + 1
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System.Delegate’s method calls If the Call instruction’s method token argument
is System.Delegate::Combine, two delegate references are popped from the evalStack,
and their invocation lists are concatenated through the macro DELEGATECOMBINE (defined
similarly as in the C] model):

DELEGATECOMBINE(DC, ref , ref ′) ≡
if ref 6= null then

evalStack := drop(evalStack, 2) · [ref ′]
elseif ref ′ 6= null then

evalStack := drop(evalStack, 2) · [ref ]
else let ref ′′ = new(ObjRef ,DC) in

initState(ref ′′) := Init(DC)
invocationList(ref ′′) := invocationList(ref ) · invocationList(ref ′)
evalStack := drop(evalStack, 2) · [ref ′′]

If the called method is System.Delegate::Remove, two delegates are popped from
the evalStack, and the macro DELEGATEREMOVE (defined similarly as in the C] model) is
applied to remove the last occurrence of the invocation list of the second delegate from the
invocation list of the first delegate.

DELEGATEREMOVE(DC, ref , ref ′) ≡
if ref = null then

evalStack := drop(evalStack, 2) · [null]
elseif ref ′ = null then

evalStack := drop(evalStack, 2) · [ref ]
else let L = invocationList(ref ) and L′ = invocationList(ref ′) in

if L = L′ then
evalStack := drop(evalStack, 2) · [null]

elseif sublist(L′,L) then
let ref ′′ = new(ObjRef ,DC) in

initState(ref ′′) := Init(DC)
invocationList(ref ′′) := prefix(L′,L) · suffix(L′,L)
evalStack := drop(evalStack, 2) · [ref ′′]

else evalStack := drop(evalStack, 2) · [ref ]

Finally, if System.Delegate::op Equality is called, the macro DELEGATEEQUAL (de-
fined similarly as in the C]model) determines whether the two delegates on top of the evalStack
have identical invocation lists.

DELEGATEEQUAL(ref , ref ′) ≡
if ref = null ∨ ref ′ = null then

evalStack := drop(evalStack, 2) · [ref = ref ′]
else let L = invocationList(ref ) and L′ = invocationList(ref ′) in

let val = (length(L) = length(L′)) ∧ ∀i = 0, length(L)− 1 : L(i) = L′(i) in
evalStack := drop(evalStack, 2) · [val]
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Delegate class method calls If the method token argument of a Call instruction is the method
length of a delegate class, a delegate instance is popped from the evalStack, and the length

of its invocation list is loaded. If the called method is the invoke method of a delegate
class, then a delegate reference, an index in the invocation list of the delegate and a list of
arguments are popped from the evalStack. The macro DELEGATECALL (defined similarly as
in the C] model) calls the method in the invocation list pointed to by the index with the given
arguments.

DELEGATECALL(ref , [i] · vals) ≡
let (ref ′,T::M) = invocationList(ref )(i) in

let this = if T ∈ ValueClass then addressOf (ref ′) else ref ′ in
switch := Invoke(False,T::M, [this] · vals)

As a result of the delegate classes translation in Figure 4.3, the call of a delegate class Invoke
method is regarded as a regular call.

Regular method calls The instruction Call(tail,T ′,T::M) takes a number argNo(T::M) of
arguments from the evalStack, and if the target reference (denoting the instance whose method
is invoked) is not null, the method T::M, of return type T ′, is called with the arguments
popped from the evalStack by setting switch to the appropriate method invocation mode. Note
that although [3] performs a null check for the target reference, [45] omits to mention it.

In contrast with the Call instruction, the CallVirt instruction’s method token argument is late
bound, i.e., the method to be invoked is looked up dynamically by means of the lookUp function.
Furthermore, if the CallVirt instruction finds a boxed instance of a value type on the stack
and is applied to a virtual method inherited from System.ValueType or from an interface
implemented by the value type, and the value type overrides or implements that method, then
the boxed instance is “unboxed” and passed as the this pointer to the implementing method,
i.e., the method determined through the lookUp function. More exactly, the address of the
boxed instance is passed as the this pointer. Another difference between the Call and CallVirt
instructions is that the latter cannot have a .ctor as method token argument. However, this
detail is omitted by [45].

VIRTCALL(tail,T::M, [ref ] · vals) ≡
if ref 6= null then

let T ′::M = lookUp(actualTypeOf (ref ),T::M) in
if actualTypeOf (ref ) = T ′ ∈ ValueType then

switch := Invoke(tail,T ′::M, [addressOf (ref )] · vals)
else switch := Invoke(tail,T ′::M, [ref ] · vals)

The Return instruction takes from the evalStack no or one value, depending on the return
type of the current method. It then returns this value (if any) by setting switch to the appropriate
method returning mode.

The NewObj instruction can be used for three purposes: to construct an object (other than a
delegate), to construct a delegate, or a to create a value class instance.
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Object creation If OC is an object class (other than a delegate class), the instruc-
tion NewObj(OC::.ctor) first allocates6 an object on the heap for a fresh object reference ref .
It sets initState(ref ) to InProgress(OC) and pushes the reference ref onto the evalStack. The
reference gets fully initialized, i.e., initState(ref ) becomes Init(OC), upon invoking the instance
constructor object::.ctor (see the object initialization rules in Section 4.1.4.3). It then in-
vokes the constructor OC::.ctorwith ref and the arguments on the evalStack by setting switch
to the appropriate method invocation mode. Finally, the reference ref is pushed onto the stack.

OBJECTCREATE(OC::.ctor, vals) ≡
let ref = new(ObjRef ,OC) in

evalStack := drop(evalStack, argNo(OC::.ctor)− 1) · [ref ]
initState(ref ) := InProgress(OC)
forall OC ′::F ∈ instFields(OC) do

WRITEMEM(fieldAdr(ref ,OC ′::F), fieldType(OC ′::F), defVal(fieldType(OC ′::F)))
switch := Invoke(False,OC::.ctor, [ref ] · vals)

Delegate creation If the .ctor reference token argument of the NewObj instruction is
declared by a delegate class, an object and a method pointer are popped from the evalStack. A
new delegate is then created and loaded onto the evalStack. Its invocation list is initialized with
the object on the stack and the method reference referred to by the method pointer.

DELEGATECREATE(DC, [ref ,m]) ≡
let ref ′ = new(ObjRef ,DC) in

initState(ref ′) := Init(DC)
invocationList(ref ′) := [(ref ,methodOf (m))]
evalStack := drop(evalStack, 2) · [ref ′]

Value class instance creation If VC is a value class, the instruction NewObj(VC::.ctor)
first allocates a block of memory where the new value class instance is stored. The address of
the memory block is considered in the local memory pool locPool of the current frame. The
constructor is then invoked with the address of the allocated memory block and the necessary
arguments (assumed to be on the evalStack). Finally, the value class instance is pushed onto the
stack.

VALUECLASSCREATE(VC::.ctor, vals) ≡
let adr = new(Adr,VC) in

locPool := locPool ∪ {(adr,VC)}
evalStack := drop(evalStack, argNo(VC::.ctor)− 1) · [memVal(adr,VC)]
forall VC::F ∈ instFields(VC) do

WRITEMEM(fieldAdr(adr,VC::F), fieldType(VC::F), defVal(fieldType(VC::F)))
switch := Invoke(False,VC::.ctor, [adr] · vals)

6The macros new(ObjRef , C), new(ObjRef ) and new(Adr, T), defined in Chapter 3 Table 3.19 to allocate ob-
ject references and memory blocks, are also applied throughout the current chapter with a trivial change in the
definition: ValueClass instead of Struct.
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The instructions LoadField(T,C::F) and StoreField(T,C::F) loads and updates the value
of the field C::F of declared type T , respectively. The address of the field C::F, of de-
clared type T is addressable through the instruction LoadFieldA(T,C::F). Both instructions
LoadField(T,C::F) and LoadFieldA(T,C::F) pop the topmost value of the evalStack, which is
an object reference ref (if C is an object class) or a pointer adr to a value class instance (if C is a
value class). The LoadField instruction computes the field value with memVal: It is the value of
type fieldType(C::F) stored at fieldAdr(ref ,C::F) (if C is an object class) or fieldAdr(adr,C::F)
(if C is a value class). LoadFieldA loads on the evalStack the address fieldAdr(ref ,C::F) (if C is
an object class) or fieldAdr(adr,C::F) (if C is a value class). The instruction StoreField(T,C::F)
takes from the evalStack the two topmost values: The first is a reference ref (if C is an object
class) or a pointer adr to a value class instance (if C is a value class), and the second is a
value val. The instruction stores val at the address given by fieldAdr(ref ,C::F) (if C is an
object class) or fieldAdr(adr,C::F) (if C is a value class).

The instruction LoadInd(T) pops the topmost value of the evalStack. This is supposed to be
a pointer pointing to an address, say adr. If adr is a valid address, then the value of type T stored
at adr is computed. Finally, the value is loaded on the evalStack. The instruction StoreInd(T)
takes the two topmost values of the evalStack which are supposed to be a pointer pointing to
an address, say adr, and a value, say val. If kadr is a valid address, then val is stored at the
address adr.

According to [45], to load an object reference, the LoadInd instruction should be used in
the form LoadInd(object). Similarly, to store an object reference, the StoreInd instruction
should be used in the form StoreInd(object).

The Box instruction turns a value type instance into a heap-allocated object “by copying”,
while Unbox performs the inverse coercion. Applied to a value type, Box copies the data from
the value type instance into a newly allocated object, operation accomplished by means of the
macro NewBox, defined exactly as for C]. The Box instruction does nothing if it is applied to a
reference type7.

The macro NewBox(val,T) picks up an unallocated address adr from the heap and writes
the top stack value val (assumed to be of type T) at the memory block at adr sufficient to
hold values of type T . The run-time type, used, for example, by the instructions CastClass
and IsInstance, is set to T .

let ref = NewBox(val,T) in P ≡
let ref = new(ObjRef ) and adr = new(Adr,T) in

WRITEMEM(adr,T, val)
addressOf (ref ) := adr
initState(ref ) := Init(T)

seq P

The Unbox instruction takes from the evalStack an object reference to a boxed value and
extracts the value type instance out it, assuming that the value type coincides with the instruc-
tion’s type token argument. However, the value pushed onto the stack is a pointer representing
the address (given by addressOf ) of the value type instance embedded into the boxed value.

7In .NET Framework (v1.1) and (v1.0), the Box instruction was only applicable to value types. Upon introduc-
ing the generics in (v2.0), the applicability of Box has been extended to reference types.
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Figure 4.6 The operational semantics rules (continued).
EXECCLR(instr) ≡ match instr

...
MkRefAny(T) → let (evalStack′, [adr]) = split(evalStack, 1) in

let tr = new(TypedRef ) in
typedRefAdr(tr) := adr
typedRefType(tr) := T
evalStack := evalStack′ · [tr]
pc := pc + 1

RefAnyType → let (evalStack′, [tr]) = split(evalStack, 1) in
let T = typedRefType(tr) in

evalStack := evalStack′ · [handleOf (T)]
pc := pc + 1

RefAnyVal(T) → let (evalStack′, [tr]) = split(evalStack, 1) in
if T = typedRefType(tr) then

evalStack := evalStack′ · [typedRefAdr(tr)]
pc := pc + 1

CastClass(T) → let ref = top(evalStack) in
if ref = null ∨ actualTypeOf (ref ) � T then

pc := pc + 1

IsInstance(T) → let (evalStack′, [ref ]) = split(evalStack, 1) in
pc := pc + 1
if ref 6= null ∧ actualTypeOf (ref ) 6� T then

evalStack := evalStack′ · [null]

LoadFtn(T::M) → let mp = new(MethPtr, T::M) in
evalStack := evalStack · [mp]
pc := pc + 1

LoadVirtFtn(T::M) → let (evalStack′, [ref ]) = split(evalStack, 1) in
if ref 6= null then

let T ′ = actualTypeOf (ref ) in
let mp = new(MethPtr, lookUp(T ′, T::M)) in

evalStack := evalStack′ · [mp]
pc := pc + 1

For value types, the Unbox.Any instruction, unlike Unbox, leaves the value, not the address
of the value, on the evalStack. Moreover, while the Unbox’s type token argument can only
represent value types, the Unbox.Any instruction can also be applied to reference types, in
which case has the same effect as the CastClass instruction below, namely it casts the object
reference on top of the stack to the reference type.

A typed reference is created and loaded onto the stack using the MkRefAny instruction. The
new typed reference, imported from the universe TypedRef , embeds the pointer which is on top
of the evalStack and the instruction’s type token argument.

let tr = new(TypedRef ) in P ≡
import tr do

TypedRef (tr) := True
seq P
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The RefAnyType instruction takes a typed reference from the evalStack and loads not the
”type token” embedded in the typed reference (as wrongly specified by [45, Partition III, §4.21]),
but a handle, i.e., an instance of the value class System.RuntimeTypeHandle correspond-
ing to the type in the typed reference. The handle is obtained by means of the function handleOf .
The RefAnyVal instruction retrieves the address embedded in the typed reference on top of
the evalStack, assuming that the instruction’s type token argument is the same as the type stored
in the typed reference.

The instruction CastClass(T) tests whether the topmost value on the evalStack is of type T .
If not, an exception is thrown. The instruction IsInstance(T) pops a reference to an (possibly
boxed) object from the evalStack. If the actual type of the object is a subtype of T , then it is
cast to T , and the result is pushed on the stack, exactly as CastClass(T) had been called. If the
object is not an instance of T , null is pushed on the evalStack.

The LoadFtn instruction pushes onto the evalStack a pointer to the instruction’s method as
a native int value. The method pointer, imported from the universe MethPtr, is mapped
by methodOf to the instruction’s method token. A method pointer for a virtual method can
be obtained with the LoadVirtFtn instruction. This instruction pops an object reference from
the evalStack. It then loads on the evalStack a pointer to the virtual method determined based
on the run-time type of the object reference and the given method. It also sets the func-
tion methodOf to map the method pointer into the determined method reference.

let mp = new(MethPtr,T::M) in P ≡
import mp do

MethPtr(mp) := True
methodOf (mp) := T::M

seq P

We now define the submachine SWITCHCLR which is responsible for method transfers, i.e.,
for invoking methods and returning from methods. This submachine takes control whenever
switch is not Noswitch.

Method invocations If switch = Invoke(tail,mref , vals), the current frame is pushed onto
the frameStack, unless the boolean tail indicates a tail call, in which case the current frame is
discarded. The new current frame is set up trough the below defined macro SETFRAME.

The macro SETFRAME(T::M, vals) sets the frame for invoking the method T::M with the
arguments vals: pc is set to 0, locPool to ∅, evalStack to [ ], meth to T::M. Moreover, by
means of the below defined macro ALLOCARGLOC, the arguments vals are stored at the newly
allocated argument addresses argAdr, and ”zeros” of the appropriate types are stored at the
newly allocated local variable addresses locAdr. If the invoked method is a .ctor declared
by object, the target reference becomes fully initialized. This is according to the object
initialization rules: An object gets fully initialized when a .ctor of the inheritance tree’s root
is invoked.
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SETFRAME(T::M, vals) ≡
pc := 0
evalStack := [ ]
locPool := ∅
meth := T::M
let zeros = [ defVal(locTypes(T::M)(n)) | n = 0 , locNo(T::M)− 1 ] in

ALLOCARGLOC(argTypes(T::M), locTypes(T::M), vals · zeros)
if T = object ∧M = .ctor then

let ref = vals(0) in
let InProgress(T ′) = initState(ref ) in

initState(ref ) := Init(T ′)

The macro ALLOCARGLOC is defined as follows. For the current method, two lists of
types L, L′ and a list of values vals, ALLOCARGLOC(L,L′, vals) allocates addresses8 for argu-
ments of the types in L and for local variables of the types in L′ and then writes the values vals
at the allocated addresses. The definition of ALLOCARGLOC is well-founded, since the sum of
the lengths of L and L′ is equal with vals’s length.

ALLOCARGLOC(L,L′, vals) ≡
forall i ∈ 0, length(L)− 1 do

let adri = new(Adr,L(i)) in
argAdr(i) := adri

WRITEMEM(adri,L(i), vals(i))
forall j ∈ 0, length(L′)− 1 do

let adrj = new(Adr,L′(j)) in
locAdr(i) := adrj

WRITEMEM(adrj,L′(j), vals(j + length(L)))

Remark 4.1.1 [45] contradicts itself. On one hand, it states that the local variables whose
declared types are reference types (so, in particular, also those whose declared types are pointer
types) are initialized to null upon the method’s entry [45, Partition II, §15.4.1.3]. On the other
hand, it claims that pointers cannot be null [45, Partition III, §1.1.4.2]. The truth is that the
pointers can be assigned the value null, but only in a single case: when the local variables of
pointer types are automatically initialized upon the method’s entry.

Remark 4.1.2 It is worth noticing an important difference between the C] and CLR models.
The C] model does not allocate addresses for the ref/out arguments, whereas the CLR model
allocates addresses for pointer type arguments (the equivalent of the C] by-reference argu-
ments). The modelling for CLR is justified as long as the CLR, unlike C], can directly handle
pointers, in particular, pointers to pointers.

Method return If switch = Return(vals), then, by means of POPFRAME, the current frame
is discarded, and the new current frame is set to the topmost frame on the frameStack with the
possibly empty list of return values vals pushed onto the evalStack.

8All simultaneous allocations, i.e., calls of the macro new, are supposed to provide pairwise different fresh
elements from Adr; see [62] and for a justification of this assumption.
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Figure 4.7 The SWITCHCLR submachine.
SWITCHCLR ≡ match switch

Invoke(tail, T::M, vals) → if ¬tail then frameStack := push(frameStack, frame)
SETFRAME(T::M, vals)
switch := Noswitch

Result(vals) → POPFRAME(1, vals)
switch := Noswitch

The definition of the macro POPFRAME is as follows. POPFRAME(k, vals) discards the
current frame by returning to its caller frame the possibly empty list of values vals and by
incrementing the pc by k.

POPFRAME(k, vals) ≡
let (frameStack′, [(pc′, locAdr′, locPool′, argAdr′, evalStack′,meth′)]) =

split(frameStack, 1) in
pc := pc′ + k
locAdr := locAdr′

locPool := locPool′

argAdr := argAdr′

evalStack := evalStack′ · vals
meth := meth′

frameStack := frameStack′

4.1.4 The Bytecode Verification

A global view of the CLR bytecode verification is given in Section 4.1.4.1. Section 4.1.4.2
concentrates on the verification type system that we consider. It also states what conditions
should be satisfied by the bytecode structure to be verifiable. The type-consistency checks
performed by the bytecode verification are specified in Section 4.1.4.3. The function used
by the bytecode verification to simulate the execution paths through the bytecode is defined
in Section 4.1.4.4.

4.1.4.1 An Overview of the Bytecode Verification

The bytecode verification is performed on a per-method basis. The verification attempts to
associate a valid stack state with every instruction. The stack state specifies the number of
values on the evalStack at that point in the code and for each slot of the evalStack, a required
type that should be present in that slot. Also, in order to decide whether an object reference is
fully initialized, the verification tracks in a .ctor a special type for the this pointer (zeroth
argument). Given a method, we refer to the type of the zeroth argument9 and to the stack state
as a type state of the method.

9The type of the zeroth argument is relevant only when verifying a .ctor.
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Universe of verification types
VerificationType = Type ∪ BoxedType ∪ {UnInit,typedref,Null}
BoxedType = {boxed(T) | T ∈ ValueType}

Table 4.9: CIL’s verification types.

Bytecode verification should simulate all possible control flow paths through the bytecode
and ensure that a valid type state exists for every reachable instruction. By a valid type state,
we mean a type state that satisfies certain type-consistency checks (see Section 4.1.4.3). The
verification uses only type assignments and does not take advantage of any values during the
simulation. The verification terminates successfully if all the control paths have been simulated.
It finishes unsuccessfully when the verification cannot compute a valid type state for a particular
instruction.

At the beginning of the simulation, the stack state is empty and the zeroth argument type is
set appropriately (see Definition 4.1.9 in Section 4.1.5). For each instruction, the verification
checks that the stack before the instruction execution contains enough slots and these slots are
types compatible with the expected types for the instruction. It then simulates the effect of the
instruction on the evalStack and zeroth argument (in case of verifying a .ctor). Any type
mismatch on instruction arguments, evaluation stack overflow or underflow, or any violation
of other verification conditions causes the verification to fail. It then propagates the inferred
type state to all possible successors of the instruction. If an instruction is the target of several
branches, the verification has to “merge” the type states along these branches. The “merge” for
two zeroth argument types succeeds if the types are the same. The “merge” for two stack states
is executed slot-by-slot: The merged stack state contains for each entry the supremum, i.e.,
“least upper bound”, of the corresponding types in the stack states. The simulation algorithm
fails if it cannot compute a merged type state. This happens if the two stack states have different
lengths10 or one slot of a stack state has a type non-compatible with the type in the corresponding
slot of the other stack state.

While the verification is described above as both computing type states and checking them,
we will assume that the information stored in the type states has already been computed prior
to the type-consistency checks.

4.1.4.2 The Verification Type System and Bytecode Structure

The verification types are depicted by VerificationType in Table 4.9. A verification type is a
CIL type as described in Table 4.1, a boxed type described by BoxedType, the type UnInit, the
type typedref, the special type Null (used as the type of the null reference).

For every value type T , there exists a reference type boxed(T), called boxed type. The value
of a type boxed(T) is a location where a value of type T can be stored. Only the bytecode
verification has knowledge of the boxed types. In the bytecode, they can only be referred to
as object, System.ValueType, or as interfaces implemented by the underlying value

10The situation when two stack states have different lengths corresponds to a program point where the run-time
stack can have different heights depending on the path by which the point is reached; such bytecode cannot be
proved correct in the framework described in this section, and must be rejected according to [45, Partition III,
§1.8.1.1].
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type. The type UnInit is a special type used by the verification (only) to track the type of the
zeroth argument of a .ctor.

We define the compatibility relation v for verification types.

Definition 4.1.7 (Compatible verification types) The relation v, for verification types, is the
least reflexive and transitive relation such that

• if T is Null and T ′ ∈ ObjClass ∪ Interface ∪ BoxedType, or

• if T ∈ ObjClass ∪ Interface ∪ BoxedType and T ′ is object, or

• if T ∈ BoxedType and T ′ is System.ValueType, or

• if T ∈ ObjClass and T ′ is a base class of T or an interface implemented by T, or

• if T ∈ Interface and T ′ is an interface implemented by T, or

• if T is boxed(T ′′), T ′′ ∈ ValueType, and T ′ is an interface implemented by T ′′,

then T v T ′.

The following lemma, required for the type safety proof, claims that a pointer type is only
compatible with itself.

Lemma 4.1.2 If T& v T ′ or T ′ v T&, then T ′ = T&.

Proof. Follows immediately from Definition 4.1.7. ut

There are a number of restrictions imposed by [45] in using pointer types in verifiable
code. Since the typed references embed pointers, there are also restrictions in using the
type typedref. The restrictions are sufficient conditions for the type safety result.

Address Of The declared type of a local variable and argument used with
the instruction LoadLocA and LoadArgA, respectively, should
not be a pointer type or typedref.

Field Type The declared type of a field should not be a pointer type
or typedref.

Return Type The return type of a method should not be a pointer type
or typedref.

Tail Call Argument Types The argument types of a method called tail should not be
pointer types or typedref.

Box Type The Box instruction should not be applied to typedref.

MkRefAny Type The MkRefAny instruction should not be applied to
typedref.
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Basically, all these constraints aim to prevent the existence of dangling pointers, i.e., point-
ers which outlive their targets. Consider, for example, Tail Call Argument Types. As the tail
prefix shortens the lifetime of the caller frame, passing a pointer to the caller frame as an argu-
ment produces a dangling pointer. This would happen since the caller frame is discarded just
before the tail call.

Remark 4.1.3 Upon entering a method, the macro ALLOCARGLOC allocates memory blocks
for all local variables and arguments independent of their declared type, in particular, also for
those whose declared type is a pointer type. We took this modelling decision to simplify the
exposition. The restriction Address Of helps us, in particular, to guarantee that the decision
is ”safe” in the sense that the address of a pointer type local variable or argument cannot be
addressed.

Remark 4.1.4 As pointed out in [66], Field Type can be relaxed to allow fields of value classes
to hold pointers, and yet the type safety result holds. However, this has a downside: the pos-
sibility that every value class may be boxed is lost. If a value class has at least one pointer
type field, then one should not be allowed to box this value class. Otherwise, dangling pointers
could be created, e.g., a pointer in a frame could be stored on the heap in the pointer type field
of the boxed value class.

Also Return Type could be relaxed to allow methods to return a special kind of pointers. It
is about the pointers that point to a permanent ”home” that still exists after the method returns,
e.g., locations on the heap. When being tracked by the verification, these pointers should,
however, be marked distinctly.

There are also constraints on the bytecode structure. [45] states that the following conditions
should hold or the bytecode verification will fail. To provide the reader with a complete view of
the bytecode verification, we list here all the conditions required by the verification, regardless
of whether they are relevant in the type safety proof or aimed to simplify the JIT compilation.

“This” of .ctor There should be no instruction StoreArg(0) in the body of
a .ctor.

Tail Call Return Type If the method mref ′ calls tail the method mref , then either both
mref and mref ′ have the return type void or retType(mref ) v
retType(mref ′).

Tail Call Pattern The instruction following a tail call should be Return.

The first condition guarantees that the this pointer of a .ctor is always pointing to the
same location in the heap. This matters, for example, when checking whether the .ctor is
called on the same this pointer (and not on another object reference) of a .ctor of the same
class or the base class (see the object initialization rules in Section 4.1.4.3).

The restriction Tail Call Return Type insures that the frame of the method called tail re-
turns a value of the type expected by the caller frame of the discarded frame (the frame which
contained the tail call).



4.1. THE LIGHTWEIGHT CLR 105

The reader might ask what is the reason for requiring Tail Call Pattern. Recall that the tail
prefix is an optional directive, which might be ignored when the bytecode is jitted. If the prefix
is ignored, the caller frame would continue to execute after the callee’s frame returns. However,
because of Tail Call Pattern, the caller frame would immediately (read: in the next step of
the operational semantics model) terminate if the callee’s frame returned normally. Thus, the
program will execute properly even if the caller’s frame was not discarded before performing
the tail call.

While “This” of .ctor and Tail Call Return Type are relevant in the type safety proof,
Tail Call Pattern serves to simplify the JIT compilation and is included here for completeness
only.

In order to guarantee the type-safe execution of delegates, the verification imposes for a del-
egate creation the below specified constraint Delegate Pattern. For this, we need first to define
the compatibility relation for delegate classes and methods. A delegate class is compatible with
a target method if the arguments that can be passed to the delegate’s Invoke method can also
be passed to the target method and every value that can be returned by the target method can
also be returned by (read: is of the return type of) the delegate’s Invoke method.

Definition 4.1.8 A delegate class DC is compatible with a method mref if the following condi-
tions are satisfied:

• argTypes(DC::Invoke)(i) v argTypes(mref)(i), for every i = 1, argNo(mref)− 1

• retType(mref) v retType(DC::Invoke) or retType(DC::Invoke) = retType(mref) =
void.

Delegate Pattern A delegate creation, i.e., an instruction NewObj(DC::.ctor) with
DC ∈ DelegateClass, should occur immediately after an instruction
LoadFtn(mref ) or after an instruction LoadVirtFtn(mref ) immediately
preceded by the Dup instruction. Moreover, DC should be compati-
ble with mref . Furthermore, no branch target should be within these
instruction sequences (other than at the beginning of the sequences).

As the .NET Framework (v2.0) [3]’s bytecode verification does not track method pointer types,
requiring Delegate Pattern makes the verification’s job possible. It assures that the NewObj
instruction used to construct a delegate always finds a method pointer on the stack. The rationale
for the Dup instruction is provided in [45, Partition III, §1.8.1.5.1]: It guarantees that the same
object is used as the target object (embedded in the delegate) and to determine the target virtual
method (embedded in the delegate).

Example 4.1.3 To understand why the target object should be the same as the object used to
determine the target method, we consider the following bytecode fragment which does not obey
Delegate Pattern. We assume that the object class OC ′ is a subclass of the object class OC,
OC ′ contains an implementation of the method OC::M, and DC is a delegate class.
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1: newobj instance void OC::.ctor()
2: newobj instance void OC ′::.ctor()
3: ldvirtftn instance void OC::M(int32)
4: newobj instance void DC::.ctor(object, native int)

Provided that OC ′ implements OC::M, the LoadVirtFtn instruction loads a method pointer
to OC ′::M on the stack. Consequently, the last NewObj instruction creates a delegate with a
target object of run-time type OC and the target method OC ′::M. When calling this delegate,
OC ′::M gets invoked on an object of type OC. Therefore, in the body of OC ′::M, the this
pointer is of run-time type OC, but it is used as being of type OC ′. However, this could lead to
memory violations if, for example, OC ′::M accesses an instance field declared by OC ′.

4.1.4.3 Verifying the Bytecode Instructions

Before simulating the execution of an instruction, the bytecode verification checks whether
certain conditions are satisfied. In this section, we formally specify these conditions by means
of the predicate check defined in Figure 4.8. The checks for a single instruction operate on the
stack state evalStackT : List(VerificationType) and, in case of verifying a .ctor11, on the type
of the this pointer argZeroT : VerificationType. Some of the specified checks do not matter
for the type safety proof. They are required to simplify the JIT compilation. However, for the
sake of completeness, we specify all the conditions imposed by the bytecode verification.

Several instructions, e.g., Dup, Const, LoadLoc, push a value onto the stack, but do not
pop off any values. In their case, one has to avoid an overflow of the evaluation stack. More
exactly, the number of values on the evaluation stack should not exceed an upper bound com-
puted by every .NET compliant language’s compiler. For this purpose, we consider the func-
tion maxEvalStack (see Table 4.10) which assigns to every method an upper bound for the
number of elements on the stack.

A few instructions, e.g., Dup, LoadField, StoreField, require a minimum number of values
on the stack. For them, there is an underflow check.

overflow(evalStackT, n) :⇔ length(evalStackT) + n > maxEvalStack(meth)

underflow(evalStackT, n) :⇔ length(evalStackT) < n

The instructions Dup and Pop require the stack to have at least one value. Additionally, in
case of Dup, the duplicated value should not overflow the stack.

Since the local variables in the verifiable CLR bytecode are zeroed upon the method’s entry,
the bytecode verification does not need to check for a LoadLoc instruction that the correspond-
ing variable has been previously assigned. The StoreLoc instruction requires that the topmost
value on the stack is of the corresponding variable’s declared type.

The Execute instruction expects on the stack values of the types for which the opera-
tion indicated by the given operator is verifiable. These types are maintained in the func-
tion verifOpTypes in Table 4.10, which given an operator, returns the set of lists of types for

11For technical reasons, we consider the argZeroT component for every method.



4.1. THE LIGHTWEIGHT CLR 107

Function definition Function name
maxEvalStack : Map(MRef ,N) the maximum number of elements

on the stack
verifOpTypes : Map(Op,P(List(Type))) the operands’ types for which

an operation is verifiable

Table 4.10: The verification specific functions.

which the corresponding operation is verifiable. The definition of verifOpTypes can be found
in [45, Partition III, §1.5].

Example 4.1.4 Consider the addition operator add. According to [45, Partition III, §1.5], this
operator is verifiable for several pairs of types. For example, add is verifiable for operands of
type int32, but also for operands of type int64. The complete set of type pairs for which add
is verifiable is defined through the function verifOpTypes:

verifOpTypes(add) = { [int32,int32], [int64,int64], [int32,native int],
[native int,int32], [native int,native int], [float64,float64] }

The result type for each possible combination of operand types is defined through the func-
tion opResType defined in Section 4.1.2. For example, opResType(add, [int32,int32]) =
int32 and opResType(add, [int32,native int]) = native int.

We will call the elements of the set UncondBranchInstr = {Return} unconditional branch
instructions12. The evaluation stack before executing an instruction instr immediately fol-
lowing an unconditional branch instruction should be empty, unless instr is the target of a
forward branch instruction13. Therefore, the verification fails if a later branch instruction
Cond(op, target) – whose target points to instr – were to have on the evaluation stack more
values than needed for executing op.

When executing op, the instruction Cond(op, target) expects on the stack operands of types
given by verifOpTypes(op).

backBranch(pos, target, evalStackT,L) :⇔
if target < pos ∧ code(target − 1) ∈ UncondBranchInstr∧
¬∃ pos ∈ Pc : (0 ≤ pos ∧ pos < target ∧ code(pos) = Cond( , target)) then
evalStackT ∈len L

else evalStackT ∈suf L

Example 4.1.5 Consider the following bytecode fragment:
12The set UncondBranchInstr consists now of a single element, but it will be extended with exceptions specific

instructions in Section 4.2.4.2.
13This condition is required to ensure that it is possible to infer the state of the evaluation stack at the beginning

of each instruction even through a single forward-pass analysis. The constraint guarantees, in particular, that the
bytecode can be processed by a simple CIL-to-native-code compiler; see [48] for details.
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Figure 4.8 Verifying the bytecode instructions.
check(meth, pos, argZeroT, evalStackT) :⇔

match code(pos)
Dup → ¬underflow(evalStackT, 1) ∧ ¬overflow(evalStackT, 1)
Pop → ¬underflow(evalStackT, 1)
Const( , ) → ¬overflow(evalStackT, 1)
LoadLoc( ) → ¬overflow(evalStackT, 1)
StoreLoc(n) → evalStackT vsuf [locTypes(n)]
Execute(op) → evalStackT ∈suf verifOpTypes(op)
Cond(op, target) → backBranch(pos, target, evalStackT, verifOpTypes(op))
LoadArg( ) → ¬overflow(evalStackT, 1)
StoreArg(n) → evalStackT vsuf [argTypes(n)]
Call(tail, , T::M) → (if tail then length(evalStackT) = argNo(T::M)

else ¬underflow(evalStackT, argNo(T::M)))∧
let [T ′] · types = take(evalStackT, argNo(T::M)) in

types vsuf paramTypes(T::M)∧
if T ∈ ObjClass ∧M = .ctor then initCtorCompat(meth, T ′, T)
else argZeroCompat(T ′, T)

CallVirt(tail, , T::M) → if tail then evalStackT vlen argTypes(T::M)
else evalStackT vsuf argTypes(T::M)

Return → evalStackT vlen void(retType(meth))∧
if methNm(meth) = .ctor ∧ classNm(meth) 6= object then

argZeroT 6= UnInit
NewObj(C::.ctor) → evalStackT vsuf paramTypes(C::.ctor)∧

¬overflow(evalStackT, 2− argNo(C::.ctor))∧
if C ∈ DelegateClass then

let [T, ] = take(evalStackT, 2) in delegateTargetObj(pos, T)
LoadField( , C::F) → ¬underflow(evalStackT, 1)∧

let T = top(evalStackT) in initFldCompat(T, classNm(meth), C::F)
StoreField(T, C::F) → ¬underflow(evalStackT, 2)∧

let [T ′′, T ′] = take(evalStackT, 2) in
initFldCompat(T ′′, classNm(meth), C::F) ∧ T ′ v T

LoadLocA( ) → ¬overflow(evalStackT, 1)
LoadArgA( ) → ¬overflow(evalStackT, 1)
LoadFieldA( , C::F) → ¬underflow(evalStackT, 1)∧

let T = top(evalStackT) in initFldCompat(T, classNm(meth), C::F)
LoadInd(T) → ¬underflow(evalStackT, 1)∧

let T ′ = top(evalStackT) in
∃T ′′ ∈ ReferentType : (T ′ = T ′′& ∧ T ′′ v T)

StoreInd(T) → ¬underflow(evalStackT, 2)∧
let [T ′′, T ′] = take(evalStackT, 2) in
∃T ′′′ ∈ ReferentType : (T ′′ = T ′′′& ∧ T ′ v T ′′′ v T)

Box(T) → evalStackT vsuf [T]
Unbox( ) → evalStackT vsuf [object]
Unbox.Any( ) → evalStackT vsuf [object]
MkRefAny(T) → evalStackT vsuf [T&]
RefAnyType → evalStackT vsuf [typedref]
RefAnyVal( ) → evalStackT vsuf [typedref]
CastClass( ) → evalStackT vsuf [object]
IsInstance( ) → evalStackT vsuf [object]
LoadFtn( ) → True
LoadVirtFtn(T::M) → evalStackT vsuf [T]
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0: ret
1: ldloc 1
2: ldloc 2
3: beq 1

The instruction LoadLoc(1) is immediately following the unconditional branch instruction
Return, and it is not the target of a forward branch instruction. Hence, the stack state before the
instruction LoadLoc(1) cannot be determined from the already derived information. Therefore,
the bytecode verification considers an empty stack state before LoadLoc(1). To ensure that a
single forward-pass suffices for the bytecode simulation, one has to guarantee that the condi-
tional instruction Cond(eq, 1) (corresponding to the real instruction beq 1) has a stack state
with only the two values, required by the equality operator eq.

Bytecode verification ensures for the LoadArg instruction that the loaded argument’s value
does not overflow the stack. The StoreArg instruction needs the top stack value to be of the
corresponding argument’s type.

A Call instruction requires that the argument types, except the type of the this pointer,
are compatible with types given in the signature of the invoked method. A tail call requires the
stack to be empty except for the arguments necessary to perform the call. Concerning the check
for the type of the this pointer, we do a case distinction. If the invoked method T::M is not
a .ctor, the type of the this pointer should be compatible with T if T is an object class or
an interface, or with T& if T is a value class.

argZeroCompat(T ′,T) :⇔
(T ∈ ObjClass ∪ Interface ∧ T ′ v T)∨
(T ∈ ValueClass ∧ T ′ v T&)

For the this pointer of an object class .ctor, there are two special verification rules
called object initialization rules:

• A .ctor should not return unless the this pointer is initialized.

• The this pointer is initialized after calling a .ctor of the same class or a base .ctor.

Remark 4.1.5 The object initialization rules are not necessary for type safety of the bytecode
language. The fields initialization with default values is sufficient for that purpose. The rules are
important because significantly large parts of CLR’s security assume consistent object states.
Such a state relies, in particular, on constructors being invoked before objects are used and on
base class constructors being invoked before initialization begins.

We now describe the specification of the object initialization rules. For a .ctor, the bytecode
verification also tracks the type of the zeroth argument. This is initially set to the special verifi-
cation type UnInit. An important contribution of our framework consists in adding this type to
the verification type system though this is not mentioned in [45]. The only allowed operations
on an uninitialized this pointer are loading/storing of and into the corresponding instance
fields.
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If the Call instruction invokes a .ctor of an object class, the type of the this pointer
needs to be either UnInit or a subtype of the .ctor’s class, and the .ctor is either of the
same class as the caller’s method (which is also assumed to be a .ctor) or of its base class.

initCtorCompat(T::M,T ′,T ′′) :⇔
(T ′ v T ′′ ∨ T ′ = UnInit) ∧
(T ′′ = T ∨ T ′′ is the base class of T)

We illustrate the object initialization rules in Example 4.1.6 and Example 4.1.7.

Example 4.1.6 We consider the following body of a method declared by an object class OC.
We assume that OC declares the fields OC::F and OC::F′, both of type int32, and the instance
method OC::M.

0: ldarg 0
1: dup
2: ldfld int32 OC::F
3: stfld int32 OC::F′

4: ldarg 0
5: dup
5: ldc.i4 2
6: call instance void OC::.ctor(int32)
7: call instance void OC::M()
8: ret

If this method is a not a .ctor, then the instruction Call(void, OC::.ctor(int32)) on
line 6 would not be allowed since this instruction expects the type of the this pointer to
be UnInit. However, this type can only occur in a .ctor. Consequently, a .ctor can be
invoked explicitly, i.e., with a Call instruction, only from another .ctor.

Let us now assume that this method is a .ctor. Initially, the type of the zeroth argu-
ment argZeroT is UnInit. This type is loaded on the evalStackT by the instruction LoadArg(0)
at code index 0. Although the this pointer is uninitialized, the loading of the field OC::F and
then the storing into the field OC::F′ are verifiable. Also, the constructor call on an uninitialized
this pointer at the code index 6 is verifiable. After this call, the this pointer is considered
initialized (see Section 4.1.4.4 for the setting of argZeroT), and therefore, the method return in
line 8 is verifiable.

See Example 4.1.7 for a justification why the call at code index 7 is verifiable.

Note that the object initialization rules are not crucial for type safety. This would be any-
way ensured since all fields of the this pointer are zeroed before the .ctor is run. The
initialization rules are important to guarantee certain invariants (established by the execution of
the .ctor) between the instance fields of the same class objects.

For the CallVirt instruction, one has to guarantee that the types of the arguments on the stack
are compatible with the types expected by the method call. In case of a tail call, the evaluation
stack should contain no other values than the arguments of the call.

The Return instruction expects the stack to be empty except for the value being returned (if
any). To shorten the specification of the underlying check, we use the following notation:
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void(T) =

{
[ ], if T is void;

[T], otherwise.

The Return of a .ctor ensures that the type of the this pointer, tracked by means
of argZeroT , is not UnInit.

Within a .ctor, the instructions LoadField, StoreField and LoadFieldA can also be used
with an uninitialized this pointer.

initFldCompat(T,T ′,C::F) :⇔
(C ∈ ObjClass ⇒ (T v C ∨ T = UnInit ∧ T ′ v C)) ∧
(C ∈ ValueClass ⇒ T v C&)

Remark 4.1.6 In earlier versions of .NET Framework, the object initialization rules for value
classes ensured that each value class instance needed to be initialized by calling the .ctor
which was supposed to initialize every instance field. Bytecode verification of .NET Frame-
work (v2.0) [3] does not check this anymore.

Since the NewObj instruction invokes a .ctor after creating a fresh reference, one has to
ensure that the types of the arguments on the stack are compatible with the .ctor’s parameter
types. The pushed object reference should not overflow the stack from which the .ctor’s
parameters have been dropped.

We now consider the case when the NewObj instruction creates a delegate, that is NewObj
is considered with a delegate class’s .ctor. In this case, besides a native int value,
the instruction also expects an object reference of a type compatible with the class of the
method whose pointer has been loaded by the preceding instruction. Remember that the con-
straint Delegate Pattern given in Section 4.1.4.2 guarantees that the preceding instruction is
either a LoadFtn or LoadVirtFtn. As the value class methods require a ”home” for the this
pointer, the value class instances should be boxed before being encapsulated into the delegate.

delegateTargetObj(pos,T) :⇔
if classNm(mref ) ∈ ValueClass then

T v boxed(classNm(mref ))
else T v classNm(mref )
where mref is such that code(pos− 1) = LoadFtn(mref ) or

code(pos− 1) = LoadVirtFtn(mref )

The delegate’s .ctor invoked through a NewObj instruction also expects on the stack a
value of type native int. This is used to represent the method pointer which is going to
be embedded in the delegate. Bytecode verification of .NET Framework (v2.0) [3] does not
track method pointer types. Knowing this, the reader might ask how it is ensured that the
native int value represents indeed a method pointer and not an arbitrary native int
value. The answer is to be found in the constraint Delegate Pattern (defined in Section 4.1.4.2)
which guarantees that a method pointer is on top of the stack.
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The LoadInd instruction ensures that the top stack value is of a pointer type whose referent
type is compatible with the instruction’s type token argument. The StoreInd instruction expects
on the stack a pointer and a value to be stored at the address referenced by the pointer. The
value should be of a type compatible with the referent type of the pointer type. Moreover, the
referent type has to be compatible with the instruction’s type token argument.

The Box instruction expects on the stack an instance of the instruction’s value type token.
An object reference is required on the stack by the Unbox and Unbox.Any instructions.

Remark 4.1.7 [45, Partition III, §4.30] says that for the Unbox instruction, the bytecode ver-
ification checks whether the object reference on the stack represents a boxed instance of the
instruction’s value type token argument. However, in .NET Framework (v2.0) [3], this is not
checked by the bytecode verification, but it is the subject of a run-time check.

The MkRefAny instruction expects a pointer to the instruction’s type token argument, while
the instructions RefAnyType and RefAnyVal require a typed reference on the stack. The instruc-
tions CastClass and IsInstance require an object reference on the stack. No check is required
for LoadFtn. The LoadVirtFtn instruction expects on the stack an object of a type compatible
with the class of the method given in the instruction.

4.1.4.4 Computing Successor Type States

The type state for an instruction at index pos is constrained by referring to the type states of all
instructions that are control-flow successors of pos. In Figure 4.9, we define the function succ
which, given an instruction and a type state, computes the type states and the code indices of
the instruction’s successors.

For the instructions LoadLoc and LoadLocA, the function succ uses the variable’s declared
type maintained in locTypes. For the Execute instruction, the result type of the correspond-
ing operation is determined by means of opResType, based on the given operator and on the
operands’ types.

The Cond instruction has two successors. One successor is given by the target instruction
to which control is transferred if the operator given in the instruction returns true. The other
successor is given by the instruction following the Cond instruction. The stack state of both
successors is given by the stack state of the Cond instruction from which the operands of Cond’s
operator have been dropped.

If the instructions LoadArg and LoadArgA are applied to the zeroth argument of a .ctor,
the succ function uses the type argZeroT tracked for the this pointer. Otherwise, succ uses
the argument’s declared type recorded in argTypes.

If the Call instruction is applied to a .ctor, the type tracked for the zeroth argument
(assumed to be UnInit) becomes the type denoted by the class of the current method. Also, all
occurrences of UnInit in evalStackT are replaced by the fully initialized type, i.e., the class of
the current method.

Example 4.1.7 Consider again the method body given in Example 4.1.6. Before the constructor
call at code index 6, argZeroT is UnInit, and the stack state evalStackT is [UnInit,UnInit]. After
the constructor call,
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Figure 4.9 The type state successors.
succ(meth, pos, argZeroT, evalStackT) =

match code(pos)
Dup → {(pos + 1, argZeroT, evalStackT · top(evalStackT))}
Pop → {(pos + 1, argZeroT, pop(evalStackT))}
Const(T, ) → {(pos + 1, argZeroT, evalStackT · [T])}
LoadLoc(n) → {(pos + 1, argZeroT, evalStackT · [locTypes(n)])}
StoreLoc( ) → {(pos + 1, argZeroT, pop(evalStackT))}
Execute(op) → let (evalStackT ′, types) = split(evalStackT, opNo(op)) in

{(pos + 1, argZeroT, evalStackT ′ · [opResType(op, types)])}
Cond(op, target) → let evalStackT ′ = drop(evalStackT, opNo(op)) in

{(target, argZeroT, evalStackT ′), (pos + 1, argZeroT, evalStackT ′)}
LoadArg(n) → if n = 0 ∧ methNm(meth) = .ctor then

{(pos + 1, argZeroT, evalStackT · [argZeroT])}
else {(pos + 1, argZeroT, evalStackT · [argTypes(n)])}

StoreArg( ) → {(pos + 1, argZeroT, pop(evalStackT))}
Call(tail, T ′, T::M) → if tail then ∅

else let evalStackT ′ = drop(evalStackT, argNo(T::M)) · void(T ′) in
if M = .ctor then

let evalStackT ′′ = evalStackT ′ [classNm(meth)/UnInit] in
{(pos + 1, classNm(meth), evalStackT ′′)}

else {(pos + 1, argZeroT, evalStackT ′)}
CallVirt(tail, T ′, T::M) → if tail then ∅

else let evalStackT ′ = drop(evalStackT, argNo(T::M)) · void(T ′) in
{(pos + 1, argZeroT, evalStackT ′)}

Return → ∅
NewObj(C::.ctor) → {(pos + 1, argZeroT, drop(evalStackT, argNo(C::.ctor)− 1) · [C])}
LoadField(T, ) → {(pos + 1, argZeroT, pop(evalStackT) · [T])}
StoreField( , ) → {(pos + 1, argZeroT, drop(evalStackT, 2))}
LoadLocA(n) → {(pos + 1, argZeroT, evalStackT · [locTypes(n)&])}
LoadArgA(n) → if n = 0 ∧ methNm(meth) = .ctor then

{(pos + 1, argZeroT, evalStackT · [argZeroT&])}
else {(pos + 1, argZeroT, evalStackT · [argTypes(n)&])}

LoadFieldA(T, ) → {(pos + 1, argZeroT, pop(evalStackT) · [T&])}
LoadInd(T) → if T = object then

let T ′& = top(evalStackT) in
{(pos + 1, argZeroT, pop(evalStackT) · [T ′])}

else {(pos + 1, argZeroT, pop(evalStackT) · [T])}
StoreInd( ) → {(pos + 1, argZeroT, drop(evalStackT, 2))}
Box(T) → if T ∈ RefType then {(pos + 1, argZeroT, pop(evalStackT) · [T])}

else {(pos + 1, argZeroT, pop(evalStackT) · [boxed(T))]}
Unbox(T) → {(pos + 1, argZeroT, pop(evalStackT) · [T&])}
Unbox.Any(T) → {(pos + 1, argZeroT, pop(evalStackT) · [T])}
MkRefAny( ) → {(pos + 1, argZeroT, pop(evalStackT) · [typedref])}
RefAnyType → {(pos + 1, argZeroT, pop(evalStackT) · [System.RuntimeTypeHandle])}
RefAnyVal(T) → {(pos + 1, argZeroT, pop(evalStackT) · [T&])}
CastClass(T) → {(pos + 1, argZeroT, pop(evalStackT) · [T])}
IsInstance(T) → {(pos + 1, argZeroT, pop(evalStackT) · [T]),

(pos + 1, argZeroT, pop(evalStackT) · [Null])}
LoadFtn( ) → {(pos + 1, argZeroT, evalStackT · [native int])}
LoadVirtFtn( ) → {(pos + 1, argZeroT, pop(evalStackT) · [native int])}
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• evalStackT is set to [OC] since UnInit is replaced by OC (therefore, the call at code index 7
is verifiable) and

• argZeroT is set to OC (this guarantees that the return at code index 8 is verifiable)

The successor of a CallVirt instruction is defined similarly to the successor of a Call instruc-
tion for the case of a non-constructor method (we mentioned in Section 4.1.3.1 that the .ctors
cannot be called with CallVirt).

If the Call instruction is used in a tail call, the function succ contains no successors since the
current frame gets immediately discarded. Similarly, the Return instruction has no successors
since its effect is to leave the current method.

The type on top of the stack state in the successor of the NewObj instruction is the class
of the .ctor given in the instruction. The successors of the instructions LoadField and
LoadFieldA use the declared type of the field given in the instructions. In our abstract in-
structions, the declared type is stored as the first parameter in the above instructions.

For the LoadInd instruction, we make a case distinction. If the instruction is used in the form
LoadInd(object), i.e., for loading an object reference, the type added to the stack state of the
successor is the referent type of the topmost type14 of the current stack state. If the instruction
is applied with a primitive type, this type is added to the stack state of the successor.

The successor of the instruction Box has on top of the stack state the boxed type corre-
sponding to the instruction’s type token argument. The successors of the Unbox.Any and Unbox
instructions have on top of the stack state the type referred to by the instruction’s type token and
a pointer type whose referent type is the instruction’s type token, respectively.

A typedref is pushed onto the stack by the MkRefAny instruction. The instruc-
tion RefAnyType pushes onto the stack a System.RuntimeTypeHandle. The successor
of the RefAnyVal instruction has on top of the stack state the pointer type whose referent type
is the instruction’s type token. If the RefAnyVal instruction did not have a type token argument,
the type placed on the stack by this instruction would have been unknown. In this case, the
instruction would not have been verifiable. In contrast, the RefAnyType instruction does not
require a type token argument as it always loads a type handle on the stack. On the other hand,
the RefAnyVal instruction has to perform a run-time check.

The instruction CastClass(T) leaves on the stack an object of type T . The instruction
IsInstance(T) has two possible successors: Depending if the class of the object on the stack
is a subtype of T , T or the type Null are added to the stack state.

The instructions LoadFtn and LoadVirtFtn load onto the stack a native int representing
a method pointer.

4.1.5 The Bytecode Verification Algorithm and Well-typed Methods

The bytecode verification algorithm, vaguely specified in [45], is described in [65]. Its formal
specification, inspired by [115], is given in Figure 4.10. The verifier attempts to determine a
valid type state for every instruction of a method. For that, the algorithm uses the dynamic
functions described in Table 4.11. The set V of code indices visited by the algorithm, i.e., the

14For LoadInd, the topmost type of the stack state is assumed to be a pointer type.
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Function definition Function name
isVisited : Map(Pc,Bool) visited positions
isPending : Map(Pc,Bool) not-yet-verified positions
argZeroV : Map(Pc, VerificationType) this’ inferred type
evalStackV : Map(Pc, List(VerificationType)) stack slots’ inferred types

Table 4.11: The dynamic functions of the bytecode verification algorithm.

indices that have already a type state assigned, is defined in terms of the function isVisited. The
set P of code indices that are still to be explored is defined through the function isPending. The
indices in P may be revisited with refined type states.

V = {i ∈ Pc | isVisited(i) = True}
P = {i ∈ Pc | isPending(i) = True}

Initial Constraints The following conditions should be satisfied in the initial state of the
bytecode verification algorithm run for a method mref :

V = {0}

P = {0}

argZeroV0 =


UnInit, if classNm(mref ) ∈ ObjClass \ {object} and

methNm(mref ) = .ctor;

argTypes(mref )(0), otherwise.

evalStackV0 = [ ]

Initially, the type tracked for the zeroth argument of an object class .ctor (other than
object::.ctor) is UnInit. The stack state is empty upon the method entry.

When propagated, the type states are merged as described in Section 4.1.4.1: The types
tracked for the zeroth arguments are merged to the least common supertype, while the stack
states are similarly merged, but component-wise (see also Remark 4.1.8). We assume that as
soon as halt is set, the verification algorithm stops and consequently, the verified method is
rejected by the algorithm.

Remark 4.1.8 The least common supertype is not always unique, since an object class or an
interface may implement multiple interfaces. Surprisingly, this aspect is not clarified in [45]. An
elegant solution, described in detail by Stärk et al. [115, §16.1.2], is to allow finite sets of object
types in the bytecode verification process. This approach requires extending the compatibility
relation v to such sets. Two sets are related through the new relation if for every type in
the first set, there exists in the second set a supertype of the type in the first set. This relation
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Figure 4.10 The bytecode verification algorithm.

ONESTEPVERIFICATION ≡
choose pos ∈ P do

if check(mref , pos, argZeroVpos, evalStackVpos) then
PROPAGATE(pos)
isPending(pos) := undef

else halt := ”Check failed”

PROPAGATE(pos) ≡
forall (i, argZeroT ′, evalStackT ′) ∈ succ(mref , pos, argZeroVpos, evalStackVpos) do

PROPAGATESUCC(i, argZeroT ′, evalStackT ′)

PROPAGATESUCC(i, argZeroT ′, evalStackT ′) ≡
if ¬ isVisited(i) then

if 0 ≤ i ∧ i < length(code(mref )) then
argZeroV i := argZeroT ′

evalStackV i := evalStackT ′

isVisited(i) := True
isPending(i) := True

else halt := ”Invalid code index”
elseif argZeroT ′ v argZeroV i ∧ evalStackT ′ vlen evalStackV i then

skip
elseif argZeroT ′ and argZeroV i have a common supertype∧

length(evalStackT ′) = length(evalStackV i)∧
evalStackT ′(k) and evalStackV i(k) have a common supertype,
for every k = 0, length(evalStackT ′)− 1

then
argZeroV i := sup(argZeroT ′, argZeroV i)
evalStackV i := [sup(evalStackT ′(k), evalStackV i(k)) | k = 0, length(evalStackT ′)− 1]
isPending(i) := True

else halt := ”Propagation not possible”

could be introduced without harm into our approach. To keep the presentation simple, we do not
consider it here explicitly though the bytecode verification ”merge” operations mutually assume
it. It must, however, be emphasized that the verifier’s soundness and completeness proofs would
follow absolutely the same lines if sets of object types were introduced in the verification type
system.

Remark 4.1.9 The bytecode verification algorithm terminates. This can be easily shown by
taking into account that the number of elements in the state of the algorithm cannot exceed the
total number of bytecode instructions, and with each algorithm iteration the type state of at
least one instruction is ”increased” according to the ordering v (upon ”merging”), and this
ordering is finite.

Example 4.1.8 To illustrate the merging of stack states, we consider the example in Fig-
ure 4.11: a bytecode fragment on the left and stack states on the right. Let us assume that
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Figure 4.11 Example: merging stack states.
.method public hidebysig specialname rtspecialname

instance void .ctor() cil managed
{
.maxstack 4 evalStackT
.locals init (class OC′ V 0, class OC V 1, int32 V 2)
0: ldarg 0 [ ]
1: ldloc 1 [UnInit]
2: ldloc 2 [OC, UnInit]
3: ldc.i40 [int32, OC, UnInit]
4: bgt 9 [int32, int32, OC, UnInit]
5: pop [OC,UnInit]
6: dup [UnInit]
7: call instance void System.Object::.ctor() [UnInit,UnInit]
8: ldloc 0 [OC′′]
9: stfld OC OC′′::F ?
10: ret ?

} // end of method OC′′::.ctor

this fragment is the body of a constructor OC ′′::.ctor of an object class OC ′′, derived from
object, which declares a field OC ′′::F of type the object class OC. Moreover, we assume that
OC ′ is an object class that extends OC.

The instruction at 9 is a merge point. More precisely, the instruction stfld OC OC ′′::F
is the successor of two instructions, namely bgt 9 and ldloc 0. The stack state after the
instruction bgt 9 is [OC,UnInit], whereas the stack state following the instruction ldloc 0 is
[OC ′,OC ′′]. The two stack states cannot be merged since the verification types OC ′′ and UnInit
have no common supertype15. So, this constructor violates the object initialization rules, and
therefore, it is not considered well-typed. Basically, as the this pointer is not initialized on a
flow path to 9, the bytecode verification cannot determine the initialization status at the merge
point 9.

If the this pointer were initialized before the branch instruction, the stack states would
have been [OC,OC ′′] and [OC ′,OC ′′]. As OC ′ v OC, the two stack states can be merged
into [OC,OC ′′], and thus, the constructor would be regarded as well-typed.

We need a characterization of the type properties satisfied by the methods accepted by the
bytecode verification. For this purpose, we introduce the notion of well-typed methods in Def-
inition 4.1.9. We say that a method is well-typed if it is possible to assign a valid type state to
every instruction of the method. More precisely, a method is well-typed if there exists a type
state family that satisfies certain initial conditions, the type-consistency checks defined in Sec-
tion 4.1.4.3 for all instructions as well as the relations dictated by execution simulation of the
bytecode (see the function succ defined in Section 4.1.4.4) and by the rules for merging type
states specified in [45, Partition III, §1.8.1.3].

Definition 4.1.9 (Well-typed) A method mref is well-typed if there exists a family of type states
(argZeroTi, evalStackTi)i∈D over the domain D which satisfies the following conditions:

15The ”supertype” is defined in terms of the compatibility relation v for verification types.



118 CHAPTER 4. TYPE SAFETY OF CLR

(wt1) The elements of D are valid code indices of mref.

(wt2) 0 ∈ D.

(wt3) If classNm(mref) ∈ ObjClass \ {object} and methNm(mref) = .ctor, then
argZeroT0 = UnInit. Otherwise, argZeroT0 = argTypes(mref)(0).

(wt4) evalStackT0 = [ ].

(wt5) If i ∈ D, then check(mref, i, argZeroTi, evalStackTi) is true.

(wt6) If i ∈ D and (j, argZeroT ′, evalStackT ′) ∈ succ(mref, i, argZeroTi, evalStackTi), then
j ∈ D, argZeroT ′ v argZeroTj and evalStackT ′ vlen evalStackTj .

The domainD of the family denotes the code indices which are reachable from the code index 0.
(wt1) states that D consists of valid code indices only and (wt2) says that the code index 0 is in
the domain. (wt3) and (wt4) mention conditions for the type state of the code index 0. Thus, the
type tracked for the zeroth argument of an object class .ctor (other than object::.ctor) is
initially considered UnInit. The evaluation stack has to be empty upon the method entry. (wt5)
ensures that the type states satisfy all type-consistency checks. (wt6) says that a successor
type state has to be more specific than the type state corresponding to the successor index. In
particular, this means that the stack state asserted in the successor should me more specific, but
of the same length as the stack state associated in the type state. The reasons for these conditions
are to be found in the definition of the stack state “merging” described in Section 4.1.4.1.

Given a method, the bytecode verification algorithm should decide whether it is possible to
assign a type state to every instruction of the method. In the positive case, the algorithm com-
putes a most specific family of type states the method is well-typable with. Definition 4.1.10,
inspired by [115], specifies what we mean by ”more specific”:

Definition 4.1.10 (More specific type states) A type state family (argZeroVi, evalStackVi)i∈V
is more specific than a family of type states (argZeroTi, evalStackTi)i∈D if the following condi-
tions are met:

• V ⊆ D,

• argZeroVi v argZeroTi, for every i ∈ V ,

• evalStackVi vlen evalStackTi, for every i ∈ V .

4.1.6 Type Safety

If a method is legal, well-typed and, in addition, the bytecode structure satisfies the restric-
tions stipulated in Section 4.1.4.2, then several properties are guaranteed to hold at its run-time
execution:
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Type safety: Every instruction executes with arguments of expected types. The
evaluation stack has values of the types assigned in the stack state and the same
length as the stack state. The values stored in the local variables and arguments are
of the types given in the “local signature” and method signature, respectively. The
objects on the heap, including the boxed objects, are of the expected static types.
The fields of the objects on the heap have values of the corresponding declared
types.

Object initialization: Every object on the heap is fully initialized before is used
properly.

Bounded evaluation stack: The evaluation stack does not exceed the upper bound
specified by the method. No instruction attempts to pop a value from an empty
evaluation stack.

Code containment: The program counter never leaves the code array of the method.
In particular, it must not fall off the end of the method’s code.

To reason if a value is typable with a type, we introduce a typing judgment. As pointed
out in Section 4.1.2, the values are tagged. The type of a value that is neither a pointer nor
a value class nor a typed reference, i.e., a value that is not tagged with & or a value class or
typedref, is given by the function type. For a primitive type, type simply returns the tag
type tagType. For an object reference, type is given by the function verifType, which, based on
the values of initState, assigns to every object reference its verification type.

type(val) = tagType(val), if tagType(val) 6∈ {ref,&} ∪ ValueClass

type(val) = verifType(val), if tagType(val) = ref

verifType(ref ) = if ref = null then Null
else match initState(ref )

InProgress(T) → UnInit
Init(T) → T

The most interesting part of the typing judgment concerns the pointer types and the
type typedref: When is a pointer of type T&? when is a typed reference of type typedref?
To answer these questions, we need the predicate isAddressIn, defined similarly as in the C]’s
type safety proof (see Definition 3.6.3 in Chapter 3). Thus, given two types T , T ′ and two
addresses adr and adr′, isAddressIn(adr,T, adr′,T ′) holds if a value of type T is stored at adr,
which “is an address in” the memory block pointed to by adr′, where a value of type T ′ is stored.

Definition 4.1.11 For the types T, T ′ and the addresses adr, adr′, we define

isAddressIn(adr,T, adr′,T ′) :⇔
(adr = adr′ ∧ T = T ′)∨
(T ′ ∈ ValueClass∧
∃T ′::F ∈ instFields(T ′) :

isAddressIn(adr,T, fieldAdr(adr′,T ′::F), fieldType(T ′::F)))



120 CHAPTER 4. TYPE SAFETY OF CLR

The next definition introduces the typing rules. The typing is with respect to the
heap actualTypeOf , the current frame, and the frameStack.

Definition 4.1.12 (Typing judgment) Let val be a value, T a verification type and [fr1, . . . , frk]
a list of frames. The typing [fr1, . . . , frk] ` val : T holds if at least one of the following conditions
is met:

• T ∈ PrimitiveType ∪ RefType ∪ {UnInit,Null} and type(val) v T, or

• T ∈ ValueClass, val ∈ Map(instFields(T),Val), and for every T::F ∈ instFields(T),
[fr1, . . . , frk] ` val(T::F) : fieldType(T::F), or

• val ∈ ObjRef and there exists T ′ ∈ ValueType such that actualTypeOf(val) = T ′ and
boxed(T ′) v T, or

• T is typedref and [fr1, . . . , frk] ` typedRefAdr(val) : typedRefType(val)&, or

• T is a pointer type T ′& and at least one of the following conditions is satisfied:

(tj-null) val is null, or

(tj-loc) there exists i = 1, k and n = 0, locNo(meth(fri))− 1 such that
isAddressIn(val,T ′, locAdr(fri)(n), locTypes(meth(fri))(n)) holds, or

(tj-pool) there exists i = 1, k and (val′,T ′′) ∈ locPool(meth(fri)) such that
isAddressIn(val,T ′, val′,T ′′) holds, or

(tj-arg) there exists i = 1, k and n = 0, argNo(meth(fri))− 1 such that
isAddressIn(val,T ′, argAdr(fri)(n), argTypes(meth(fri))(n)) holds, or

(tj-field) there exists OC ∈ ObjClass, OC ′::F ∈ instFields(OC) and ref ∈ ObjRef
such that isAddressIn(val,T ′, fieldAdr(ref,OC ′::F), fieldType(OC ′::F)) holds
and actualTypeOf(ref) = OC, or

(tj-box) there exists T ′′ ∈ ValueType and ref ∈ ObjRef such that actualTypeOf(ref) =
T ′′ and isAddressIn(val,T ′, addressOf(ref),T ′′) holds.

A value is typable with a value class if is a mapping of the value class instance fields into values
of the field declared types. A typed reference is typable with typedref if the pointer embed-
ded in the typed reference is typable with the pointer type whose referent type is embedded in
the typed reference. A pointer adr is typable with T = T ′& if adr is: null16, the address of a
local variable or argument of a frame (the current frame or a frame on the frameStack), or the
address of an object class instance field of declared type T ′, or the address of a value type in a
boxed value on the heap, or an address typable with T in a memory block pointed to by one of
the addresses of the above locations.

The method pointers are not treated specially by Definition 4.1.12 since they are re-
garded as values tagged with native int. It is then immediate that they are typable
with native int.

16A null pointer can only occur when a local variable, whose declared type is a pointer type, is accessed in its
default state, resulted upon the method’s entry. Given the issue pointed out in Remark 4.1.1, this typing ensures
the typing of such a local variable.
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Remark 4.1.10 Through the definition of the typing judgment, it should become clear why do
we have to consider the local memory pool in our framework: Without locPool, the obviously
correct typing of the managed pointers to the value class instances (constructed with NewObj)
would have got ”lost”. It would then have been impossible to prove the correct typing of
the this pointer in a value class .ctor, invoked through a NewObj instruction.

For the type safety proof, we need several lemmas. The next lemma claims that after storing
a value of type T at an address adr of a memory block, sufficient to hold values of a T ′’s
supertype, the value read at adr is of type T .

Lemma 4.1.3 Let T and T ′ be types such that T v T ′. We assume that [fr1, . . . , frk] ` val : T
and [fr1, . . . , frk] ` adr : T&. Then, after the macro WRITEMEM(adr,T ′, val) is executed, we
have [fr1, . . . , frk] ` memVal(adr,T) : T.

Proof. By induction on the structure of the possibly value class T , using Lemma 4.1.1. ut

Let adr′′ be an address of a memory block, sufficient to hold values of a type T ′′. Assume
that, in this block, adr′ is an address where a value of type T ′ is stored. Storing a value of type T ′

at adr′ raises the following concern: Is the value stored at adr′′ still of type T ′′? The following
lemma addresses this issue.

Lemma 4.1.4 If [fr1, . . . , frk] ` val : T ′, [fr1, . . . , frk] ` memVal(adr′′,T ′′) : T ′′, T ′ v T
and isAddressIn(adr′,T ′, adr′′,T ′′), then the execution of WRITEMEM(adr′,T, val) preserves
[fr1, . . . , frk] ` memVal(adr′′,T ′′) : T ′′.

Proof. By induction on the definition of the isAddressIn predicate. The base case of the induc-
tion is proved by applying Lemma 4.1.3. ut

Definition 4.1.12 does not contain a subsumption rule. However, this can be easily derived:
If val is typable with T and T is compatible with T ′, then val can also be typable with T ′.

Lemma 4.1.5 If [fr1, . . . , frk] ` val : T and T v T ′, then [fr1, . . . , frk] ` val : T ′.

Proof. By induction on the definition of `. ut

The following lemma establishes that if the address of a value class instance ”is an address
in” a memory block, then also the address of each instance field of the value class instance ”is
an address in” that memory block.

Lemma 4.1.6 If VC ∈ ValueClass and isAddressIn(adr,VC, adr′,T ′), then

isAddressIn(fieldAdr(adr,VC::F), fieldType(VC::F), adr′,T ′)

for every VC::F ∈ instFields(VC).

Proof. By case distinction, applying Definition 4.1.11. ut
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The next lemma says that the typing is preserved upon pushing new frames. The typing with
a non-pointer type other than typedref is also preserved upon popping frames.

Lemma 4.1.7 Assume that [fr1, . . . , frk] ` val : T. If fr is a frame, then [fr1, . . . , frk, fr] ` val :
T. If T is neither a pointer type nor typedref, then [ ] ` val : T and [fr1, . . . , fri] ` val : T for
every i = 1, k.

Proof. In Definition 4.1.12, the list of frames is relevant only for (tj-loc), (tj-arg), and the
typing of a typed reference. However, in these cases, T is a pointer type or typedref. ut

The following two lemmas are required to ensure type safety of dynamically dispatched
method calls. Lemma 4.1.8 relates the argument types (including the type of the this pointer)
of the called method and the invoked one. Similarly, Lemma 4.1.9 establishes the relation
between return types.

Lemma 4.1.8 If T ′′::M = lookUp(T,T ′::M) holds for a type T, then

• If T ∈ ValueType, then

– if T ′′ 6= T, then boxed(T) v argTypes(T ′′::M)(0) v argTypes(T ′::M)(0)

– if T ′′ = T, then argTypes(T ′′::M)(0) = T& and boxed(T) v argTypes(T ′::M)(0)

If T ∈ RefType, then T v argTypes(T ′′::M)(0) v argTypes(T ′::M)(0)

• argNo(T ′::M) = argNo(T ′′::M) and for every i = 1, argNo(T ′::M)− 1

argTypes(T ′::M)(i) = argTypes(T ′′::M)(i)

Proof. By Definition 4.1.4 and (at) in the group of constraints [override/implement]. ut

Lemma 4.1.9 If T ′′::M = lookUp(T,T ′::M) holds for a type T, then retType(T ′′::M) =
retType(T ′::M).

Proof. By Definition 4.1.4 and (at) in the group of constraints [override/implement]. ut

We say that a frame contains an object reference ref with the assigned type UnInit if ref
is the this pointer for which the bytecode verification expects the type UnInit or ref is in an
evaluation stack slot, where the verification expects UnInit.

Definition 4.1.13 Let fr = (pc∗, locAdr∗, locPool∗, argAdr∗, evalStack∗,meth∗) be a frame and
(argZeroTj, evalStackTj)j∈D be a family of type states meth∗ is well-typable with. Let argVal∗

be the function argVal determined based on argAdr∗. The frame fr contains a reference ref with
the assigned type UnInit if one of the following conditions is fulfilled:

• argVal∗(0) = ref and argZeroTpc∗ = UnInit, or
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• there exists i = 0, length(evalStack∗)− 1 with evalStack∗(i) = ref and evalStackTpc∗(i) =
UnInit.

In the theorem asserting type safety of well-typed methods, we prove invariants for frame
as well as for the frames on the frameStack. However, an invariant for a frame fr in
the frameStack has to be considered as fr would be the current frame. But, when fr becomes the
current frame, the initialization status of certain object references as well as the evalStack of fr
might have been changed. This remark triggers the next definitions, inspired by [115].

Definition 4.1.14 (Succession of a frame) Let the list [fr1, . . . , frk] be the frameStack and fri =
(pc∗, locAdr∗, locPool∗, argAdr∗, evalStack∗,meth∗) be an arbitrary frame in the frameStack. If
mref is method reference of fri’s callee frame (for frk, the callee frame is frame), the succession
of fri is defined as follows:

• If mref returns a value, say val, with [fr1, . . . , fri] ` val : retType(mref), then
(pc∗+1, locAdr∗, locPool∗, argAdr∗, evalStack∗·[val],meth∗) is called the succession of fri

in frameStack.

• If retType(mref) is void, then the succession of fri in frameStack is given by (pc∗ +
1, locAdr∗, locPool∗, argAdr∗, evalStack∗,meth∗).

Definition 4.1.15 (Succession of the initialization status) A function initState∗ is the succes-
sion of initState for a frame fr in the frameStack if initState∗ is defined as follows.

• If fr is immediately followed in the frameStack by an object class .ctor with the
this pointer ref, then initState∗(ref′) = initState(ref′) for every reference ref′ 6= ref,
and initState∗(ref) = Init(OC), where OC is the object class given by initState(ref) =
InProgress(OC).

• If fr is not followed by an object class .ctor, then initState∗ coincides with initState.

Theorem 4.1.1 proves type safety of legal and well-typed methods. Thus, the following in-
variants are guaranteed to hold at run-time. The invariant (pc) implies that the program counter
is always a valid code index. By (stack1), we know that the evalStack has the same length as
the assigned stack state and will never overflow. That the values on the evalStack are of the
types assigned in the stack state is ensured by (stack2). By (loc) and (arg), we have that the
local variables and arguments contain values of the declared types. In case of a .ctor, the
value of the this pointer is of the type assigned in the type state. The invariant (init) makes
precise when a value has the type UnInit assigned in the type state. The invariant (field) ensures
that the fields of an object class instance are of the declared types. That the value type instance
embedded in a boxed value is of the expected value type is guaranteed by the invariant (box).
The invariant (del) is similar with corresponding invariant for C] in Theorem 3.6.1. It claims
that every target object in the invocation list of a delegate is an object of an appropriate type,
i.e., a subtype of the type that declares the corresponding target method. It also guarantees that
the delegate class is compatible, according to Definition 4.1.8, with the target method.
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Theorem 4.1.1 (Type safety of well-typed methods) Let [fr′1, . . . , fr
′
k−1] be the frameStack

and frk be the current frame. For every i = 1, k− 1, we denote by fri the succession of fr′i.

We assume that the type system and the bytecode structure of the methods in (fri)i satisfy
the conditions stated in Section 4.1.4.2. Moreover, we assume that all methods of (fri)

k
i=1 are

well-typed.

Let fri = (pc∗, locAdr∗, , argAdr∗, evalStack∗,meth∗) be one of the frames (fri)
k
i=1. We

denote by locVal∗ and argVal∗ the functions locVal and argVal derived based on locAdr∗ and
argAdr∗, respectively. If fri is the current frame, we consider initState∗ to be the current ini-
tialization status initState. If fri is not the current frame, we denote by initState∗ the succession
of initState for fri. Let (argZeroTj, evalStackTj)j∈D be a family of type states meth∗ is well-
typable with.

The following invariants are satisfied at run-time for every frame fri (for the current frame,
frk, the invariants (stack1) and (stack2) should only hold if switch = Noswitch):

(pc) pc∗ ∈ D.

(stack1) length(evalStack∗) = length(evalStackTpc∗) ≤ maxEvalStack(meth∗).

(stack2) [fr1, . . . , fri] ` evalStack∗(j) : evalStackTpc∗(j),
for every j = 0, length(evalStack∗)− 1.

(loc) [fr1, . . . , fri] ` locVal∗(n) : locTypes(meth∗)(n),
for every n = 0, locNo(meth∗)− 1.

(arg) If classNm(meth∗) ∈ ObjClass and methNm(meth∗) = .ctor, then it holds
[fr1, . . . , fri] ` argVal∗(0) : argZeroTpc∗; otherwise, [fr1, . . . , fri] ` argVal∗(0) :
argTypes(meth∗)(0).

If argNo(meth∗) ≥ 2, then [fr1, . . . , fri] ` argVal∗(n) : argTypes(meth∗)(n), for
every n = 1, argNo(meth∗)− 1.

(init) If fri contains ref ∈ ObjRef with the assigned type UnInit, then meth∗ is an ob-
ject class .ctor (not of class object), ref = argVal∗(0), and initState∗(ref) =
InProgress(OC), where OC is an object class such that OC � classNm(meth∗).

(field) If ref ∈ ObjRef is such that actualTypeOf(ref) = OC, where OC ∈ ObjClass, and
OC ′::F ∈ instFields(OC) has the declared type T, then

[ ] ` memVal(fieldAdr(ref,OC ′::F),T)) : T

(box) If ref ∈ ObjRef is such that actualTypeOf(ref) = T, where T ∈ ValueType, then
[ ] ` memVal(addressOf(ref),T)) : T.

(del) If ref ∈ ObjRef is such that actualTypeOf(ref) = DC, where DC ∈ DelegateClass,
then the following hold for every (ref′,T::M) ∈ invocationList(ref):
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• ref ′ ∈ ObjRef

• actualTypeOf(ref ′) � T.

• DC is compatible with T::M.

Proof. The invariants are proved by induction on the run of the operational semantics model
defined in Section 4.1.3.1.

Base case In the initial state of the machine CLRL, the invariants for the single existing frame
(of the .entrypoint method) are satisfied as follows. (pc) holds since pc = 0 and 0 ∈ D
(from Definition 4.1.9 (wt2)). The invariants (stack1) and (stack2) follow from evalStack = [ ]
and Definition 4.1.9 (wt4). Upon the method’s entry, the virtual machine stores, by means
of WRITEMEM, ”zeros” of the appropriate types at the local variable addresses locAdr. By this
and Lemma 4.1.3, we derive the invariant (loc). The other invariants obviously hold.

Induction step We assume that all invariants are satisfied in the current state of CLRL, and
we prove that invariants are preserved after CLRL executes a step. Different cases have to be
considered depending on code(pc). For brevity, we only consider here a few cases.

Case 1 code(pc) = StoreInd(T)

By (pc) and Definition 4.1.9 (wt5), there exists evalStackT ′, T ′ and T ′′ such that

evalStackT ′ · [T ′&,T ′′] = evalStackTpc (4.1)

and

T ′′ v T ′ v T (4.2)

By (4.1), (4.2), (stack1) and (stack2), we get that the evalStack is of the form evalStack′ ·
[adr, val], where [fr1, . . . , frk] ` adr : T ′&, [fr1, . . . , frk] ` val : T ′′ and

[fr1, . . . , frk] ` evalStack′(j) : evalStackT ′(j), for every j = 0, length(evalStack′)− 1 (4.3)

Definition 4.1.9 (wt6) implies

evalStackT ′ vlen evalStackTpc + 1 (4.4)

When the instruction StoreInd(T) is executed, the new evaluation stack is evalStack′ and
WRITEMEM(adr,T, val) is fired. The invariants (stack1) and (stack2) are implied by (4.3)
and (4.4).
None of the real CIL stind instructions defined in [45, Partition III, §3.62] has a pointer type
or typedref as a type token argument. Therefore, T is neither a pointer type nor typedref.
By this and Lemma 4.1.2, we get that T ′′ is neither a pointer type nor typedref. Concern-
ing the typing of adr, by Definition 4.1.12, we have that adr is null (tj-null), or “is an ad-
dress in” the memory block pointed to by the address of a local variable (tj-loc), or of an
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argument (tj-arg), or of an instance field of an object reference (tj-field) or of a value em-
bedded in a boxed value (tj-box), or “is an address in” the memory block pointed to by an
address allocated in the local memory pool (tj-pool). Since all cases are similar, we only
treat here one. Let this be (tj-loc). It means that there exists a frame fri and a local vari-
able n in the frame fri such that isAddressIn(adr,T ′, locAdr(fri)(n), locTypes(meth(fri))(n))
holds. Except for (loc) corresponding to the frame fri, no invariant is affected by WRITEMEM.
Therefore, by the induction hypothesis, all invariants except (loc) hold in the next execution
step of CLRL. For (loc), we prove [fr1, . . . , fri] ` locVal(fri)(n) : locTypes(meth(fri))(n). By
Lemma 4.1.7, we have [fr1, . . . , fri] ` val : T ′′ since T ′′ is neither a pointer type nor typedref.
By (4.2) and Lemma 4.1.5, we get [fr1, . . . , fri] ` val : T ′. Lemma 4.1.4 says that the
execution of WRITEMEM(adr,T, val) preserves the typing [fr1, . . . , fri] ` locVal(fri)(n) :
locTypes(meth(fri))(n), and this concludes the proof of this case.

Case 2 code(pc) = Call(tail,T ′,T::M)

Subcase 2.1 Let us first assume that the call is tail, i.e., tail = True, and T::M
is not a .ctor. From the invariant (pc) and Definition 4.1.9 (wt5), we obtain that
check(meth, pc, argZeroTpc, evalStackTpc) holds. Therefore, we have

length(evalStackTpc) = argNo(meth) (4.5)

and

evalStackTpc vsuf argTypes(T::M) (4.6)

The relation (4.6) follows from the definition of argZeroCompat and the definition of argTypes
in terms of paramTypes.
Let [T0, . . . ,Tn−1] be the list of argument types argTypes(T::M). Since the call is tail, we know
that none of (Tj)

n−1
j=0 is a pointer type or typedref (see the constraints in Section 4.1.4.2).

The relation (4.5) implies that evalStackTpc should have the length n. We then derive that
evalStackTpc(j) v Tj , for j = 0, n − 1. The invariants (stack1) and (stack2) ensure
that the evalStack contains the values [val0, . . . , valn−1] such that [fr1, . . . , frk] ` valj :
evalStackTpc(j), for j = 0, n − 1. By Lemma 4.1.5, we get [fr1, . . . , frk] ` valj : Tj , for
j = 0, n− 1. By this and Lemma 4.1.7, we have

[fr1, . . . , frk−1] ` valj : Tj for every j = 0, n− 1 (4.7)

since no (Tj)
n−1
j=0 is a pointer type or typedref.

When the Call instruction is executed, the current frame frk is discarded and not pushed onto
the frameStack. The semantics model CLRL does one intermediate step between the time
the Call instruction is encountered and the set up of the new current frame. This step consists
in updating evalStack to [ ] and switch to Invoke(True,T::M, (valj)n−1

j=0 ). After these updates
are fired, (stack1) and (stack2) do not hold anymore since evalStackTpc remained unchanged,
whereas evalStack became [ ]. However, as switch is not Noswitch, one does not have to prove
these invariants. Actually, the theorem does not claim that these invariants hold when switch 6=
Noswitch since the above intermediate step is a model specific step, which cannot be observed
in the runs of the real CLR (note that switch is a model specific global variable).



4.1. THE LIGHTWEIGHT CLR 127

After the intermediate step, the new current frame, maintained in frame, is defined as follows:
the pc is 0, the evalStack is [ ], the local variables hold “zeros” of the appropriate types, and the
arguments are (valj)n−1

j=0 .
The invariants (pc), (stack1) and (stack2) trivially hold for the new current frame. Upon the
method’s entry, a WRITEMEM is executed (by means of the macro ALLOCARGLOC) to write
the values (valj)n−1

j=0 to argAdr. By (4.7) and Lemma 4.1.7, we have [fr1, . . . , frk−1, frame] `
valj : Tj , for j = 0, n− 1. It then follows from Lemma 4.1.3 that (arg) holds for frame.
After setting the new current frame, the callee’s frame of fr′k−1 is the frame for executing T::M
and not the previously discarded frame. Therefore, we also have to show the invariant (stack2)
for the new succession of fr′k−1. If the return type T ′ of T::M is void, (stack2) follows from
the induction hypothesis. If T ′ is not void, let val be the return value assumed to satisfy
[fr1, . . . , frk−1] ` val : retType(T::M). From Section 4.1.4.2, we know that retType(T::M) v
retType(meth). By this and Lemma 4.1.5, we get [fr1, . . . , frk−1] ` val : retType(meth).
The invariant (stack2) follows then from the induction hypothesis, Definition 4.1.9 (wt6), and
Lemma 4.1.5.

Subcase 2.2 Let us suppose that the call is not tail, T is an object class, and M is a
.ctor. In this case, the return type T ′ is void. By the induction hypothesis (pc) and
Definition 4.1.9 (wt5), there exists evalStackT ′, T ′′, and L such that evalStackT ′ · [T ′′] · L =
evalStackTpc, L vsuf paramTypes(T::.ctor), and initCtorCompat(meth,T ′′,T). By the defini-
tion of initCtorCompat, we obtain that T ′′ = UnInit or T ′′ v T and either classNm(meth) = T
or T is the base class of classNm(meth). We will only treat here the case T ′′ = UnInit.
The invariant (arg) ensures that there exists on the evalStack a reference ref typable with
UnInit. By (init), we get that meth is a .ctor (not of class object), ref = argVal(0), and
initState(ref ) = InProgress(OC), where OC is an object class such that OC � classNm(meth).
For the current frame, it only remains to prove (init) since the other invariants can be proved
with the same arguments as in case of a tail call (Subcase 2.1). The invariant (init) is preserved
since initState(ref ) = InProgress(OC) and OC � T .

We also need to show the invariants for every succession of the topmost frame frk, i.e., the
current frame before doing the call, and every succession of the initialization status initState. In
the succession of frk, the pc is incremented by 1. In the succession of the initialization status
for frk, initState(ref ) is set to Init(OC), where the reference ref is given by ref = argVal(frk)(0).
By (pc) and the definition of succ in Figure 4.9, we get that

(pc + 1, classNm(meth), evalStackT ′′ ◦ [classNm(meth)/UnInit])

is in the set succ(meth, pc, argZeroTpc, evalStackTpc), where the list evalStackT ′′ is given
by drop(evalStackTpc, argNo(T::.ctor)). By Definition 4.1.9 (wt6), we can deduce that
classNm(meth) v argZeroTpc+1 and

evalStackT ′′ ◦ [classNm(meth)/UnInit] vlen evalStackTpc+1 (4.8)

We have to show the invariant (stack2) for the succession of frk. By the induction hypothesis,
from (init) we know that if there is on the evaluation stack a value val typable with UnInit, then
val = argVal(frk)(0) = ref . Furthermore, in the succession, initState(val) = Init(OC), where
OC � classNm(meth). The invariant (stack2) follows then from the induction hypothesis, (4.8),
Definition 4.1.12, and Lemma 4.1.5.
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Case 3 code(pc) = Return

From (pc) and Definition 4.1.9 (wt5), we obtain evalStackTpc vlen void(retType(meth)) and
argZeroTpc 6= UnInit if the method meth is a .ctor other than object::.ctor. Upon
executing the Return instruction, the current frame is discarded, and the topmost frame on
the frameStack becomes the new current frame. The pc of the current frame is incremented by 1.
If meth returns a value, say val, this value is pushed onto the new evalStack. By (stack2) and
Lemma 4.1.5, [fr1, . . . , frk] ` val : retType(meth). By the constraints stated in Section 4.1.4.2,
retType(meth) is neither a pointer type nor typedref. By Lemma 4.1.7, we get

[fr1, . . . , frk−1] ` val : retType(meth) (4.9)

So, after executing Return, the new current frame is exactly frk−1, i.e., the succession of fr′k−1

according to Definition 4.1.14. The current initState does not change after executing Return.
If Return does not correspond to a .ctor, then initState is obviously the succession of itself
for the frame frk−1 according to Definition 4.1.15. If Return corresponds to a .ctor, then, by
argZeroTpc 6= UnInit and (arg), we get that initState(argVal(0)) cannot be an InProgress( )
value. Therefore, initState is the succession of itself for fr′k−1 according to Definition 4.1.15.
Therefore, the induction hypothesis and (4.9) imply that the invariants also hold after execut-
ing Return.

Case 4 code(pc) = MkRefAny(T)

We get evalStackT vsuf [T&] from the invariant (pc) and Definition 4.1.9 (wt5). The instruction
pops the top value of the evalStack. Since this value is supposed to be a pointer, let us denote it
by adr. By evalStackT vsuf [T&], (stack1), and (stack2), we have that adr is a pointer typed
with T&. Formally,

[fr1, . . . , frk] ` adr : T& (4.10)

The instruction then pushes a typed reference, say tr, onto the evalStack. It also sets the func-
tions typedRefAdr and typedRefType as follows: typedRefAdr(tr) = adr and typedRefType(tr) =
T . We need to show that the invariant (stack2) is preserved.
From the definition of succ in Figure 4.9, we have that

(pc + 1, argZeroTpc, pop(evalStackTpc) · [typedref])

is in the set succ(pc, argZeroTpc, evalStackTpc). From Definition 4.1.9 (wt6), we obtain pc +
1 ∈ D (where D is the domain of the family of type states for the current frame frk) and
pop(evalStackTpc) · [typedref] vlen evalStackTpc+1. The first condition ensures that the
invariant (pc) is preserved. Based on the second condition and on Definition 4.1.7, we know
that in order to prove (stack2), it suffices to show [fr1, . . . , frk] ` tr : typedref. This typing
follows from (4.10) and Definition 4.1.12. ut

Remark 4.1.11 CLRL follows strictly the ECMA Standard [45] and consequently considers
that the tail prefix cannot be ignored. The semantics model, bytecode verification and the
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proof could be, however, easily adapted to take into account the aspect that the prefix can be
ignored (when jitting). Thus, in the definition of succ, the tail calls would be treated as regular
calls. More precisely, the tail call would be considered as having a successor (namely a Return
instruction – see Tail Call Pattern), as opposed to the actual definition of succ which does not
define any successors. That the invariants are preserved upon performing a tail call with the
tail prefix ignored would be proved as in the case of a regular call.

It is worth mentioning that the restriction Tail Call Return Type would become redundant
upon redefining the function succ for tail calls. Given that we only deal with well-typed methods,
the above restriction would follow from Tail Call Pattern.

Bytecode verification’s soundness and completeness Well-typed methods’ type safety alone
is, however, not sufficient. We also need to show that (1) the methods accepted by the verifi-
cation algorithm are well-typed, and (2) if a method is well-typed, then it is accepted by the
verification algorithm and the algorithm computes a most specific family of type states. In
other words, we have to prove the soundness and the completeness of the verification algorithm.
These proofs, similar to the corresponding proofs developed in [115], require the following
lemmas17: Lemmas 4.1.10 and 4.1.11 claim that the type checks and successors are monotonic,
respectively.

Lemma 4.1.10 (Monotonicity of checks) Let mref be a method and pos a code index of a
bytecode instruction of mref. If argZeroT ′ v argZeroT, evalStackT ′ vlen evalStackT and
check(mref, pos, argZeroT, evalStackT) is true, then check(mref, pos, argZeroT ′, evalStackT ′) is
true.

Proof. By a case distinction on the instruction code(mref )(pos). The transitivity of the rela-
tion v and Lemma 4.1.2 are applied. ut

Lemma 4.1.11 (Monotonicity of successors) Let mref be a method and pos a code index
of a bytecode instruction of mref. Let us assume that we have argZeroT ′ v argZeroT,
evalStackT ′ vlen evalStackT and check(mref, pos, argZeroT, evalStackT) is true. Then for
every (j, argZeroT ′′′, evalStackT ′′′) ∈ succ(mref, pos, argZeroT ′, evalStackT ′), there exists
(j, argZeroT ′′, evalStackT ′′) ∈ succ(mref, pos, argZeroT, evalStackT) such that

argZeroT′′′ v argZeroT′′ and evalStackT′′′ vlen evalStackT′′

Proof. By a case distinction on the instruction code(mref )(pos). The transitivity of the rela-
tion v is used. ut

Theorem 4.1.2 (Soundness of the verification algorithm) During the bytecode verification
of a method mref, the following conditions are met:

(bv1) P ⊆ V and the elements of V are valid code indices of mref.

17The proofs of these lemmas and of the theorems asserting the soundness and completeness of the verification
algorithm can also be easily extended for CLRE and CLRG , and therefore we will not reconsider them explicitly.
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(bv2) 0 ∈ V .

(bv3) If classNm(mref) ∈ ObjClass \ {object} and methNm(mref) = .ctor, then
argZeroV0 = UnInit. Otherwise, argZeroV0 = argTypes(mref)(0).

(bv4) evalStackV0 = [ ].

(bv5) If i ∈ V \ P , then check(mref, i, argZeroVi, evalStackVi) is true.

(bv6) If i ∈ V \ P and (j, argZeroV ′, evalStackV ′) ∈ succ(mref, i, argZeroVi, evalStackVi),
then j ∈ V , argZeroV ′ v argZeroVj and evalStackV ′ vlen evalStackVj .

Proof. By induction on the run of the bytecode verification algorithm in Figure 4.10. ut

One can easily notice that, for P = ∅, the conditions (bv1)-(bv6) correspond to the well-
typedness constraints (wt1)-(wt6) in Definition 4.1.9. So, if a method is accepted by the verifi-
cation (in particular, this means that the verification algorithm terminated, i.e., P = ∅), then the
method is well-typed.

Theorem 4.1.3 (Completeness of the verification algorithm) If mref is well-typable with a
type state family (argZeroTi, evalStackTi)i∈D, then during the verification of mref ’s bytecode
(argZeroT ′

i, evalStackT ′
i)i∈V is always more specific than (argZeroTi, evalStackTi)i∈D and halt

is not set (to a verification error).

Proof. By induction on the run of the verification algorithm in Figure 4.10, where Lem-
mas 4.1.10 and 4.1.11 and Definition 4.1.10 are applied. ut
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4.2 The Exceptions

This section extends the bytecode language introduced in Section 4.1 by exceptions18. The
ECMA Standard [45] contains only a few yet incomplete paragraphs about the exception han-
dling mechanism. A more detailed description of the mechanism can be found in one of the
few existing documents on the CLR exception handling mechanism [32]. The mechanism has
its origins in the Windows NT Structured Exception Handling (SEH), described in [102].

We use three different methods to check the faithfulness (with respect to CLR) of the mod-
elling decisions we had to take where [45] exhibits gaps. First of all, we did a series of exper-
iments with CLR, some of which are made available in [54]. They show border cases which
have to be considered to get a full understanding and definition of exception handling in CLR.
Secondly, some authoritative evidence for the correctness of the modelling ideas we were led
to by our experiments has been provided by Jonathan Keljo [86], the CLR Exception System
Manager, who essentially confirmed our ideas about the exception mechanism issues left open
in [45]. Last but not least, a way is provided to test the internal correctness of the model
presented in this section and its conformance to the experiments with CLR, namely by an exe-
cutable version [92] of the CLR model.

Challenges The mechanism handling the exceptions is spectacularly complex, especially due
to the handling of exceptions in two passes, but also due to certain exception constructs, known
as filter handlers, whose treatment, loosely specified by [45], is clarified in this thesis. The
meaning of exception filters is not trivial: A filter allows disregarding some exceptions
depending on the result of executing filter code in the context of some caller on the stack.
As the handling of an exception is performed in two passes, an important challenge in the study
of filters is to deal with exceptions thrown by the filter codes. It turns out that the
exception mechanism needs to maintain a stack of passes. On the other hand, an exception
specific instruction (leave) may trigger the execution of several exception handlers which in
turn may throw exceptions. Consequently, besides the two kinds of exception passes, vaguely
specified by [45], we consider a third kind of pass, i.e., Leave passes.

Once the semantics of the exception handling mechanism has been defined, the type safety
proof is pretty straightforward. And yet, there are several non-obvious properties concerning
the structural correctness of the exception mechanism that have to be proved. Moreover, the
complex control flow graph underlying the execution of the exception mechanism complicates
the bytecode verification the type safety proof significantly depends on.

Plan of the section An overall view of the exception mechanism is provided in Section 4.2.1.
Sections 4.2.2 and 4.2.3 define the static and dynamic semantics of the mechanism, respec-
tively. The specification of the bytecode verification is extended in Section 4.2.4 to cover the
handling of the exceptions. The bytecode language with exceptions is then proved type-safe in
Section 4.2.5.

18For the sake of clarity, the special System.ThreadAbortException [8] is not treated here as its han-
dling goes much beyond the scope of this thesis. The refinements that should be applied to our formal model in
order to also treat the handling of this exception are defined in [61].
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4.2.1 An Overview of the Exception Handling Mechanism

Exception handling is supported in CIL through exception objects and exception handlers. The
exception handlers are maintained in an exception handling array associated with every method.
There are four kinds of exception handlers: catch, filter, finally, and fault. To aid
the reader, Figure 4.12 contains an example for each type of exception handlers. We briefly
describe below each kind:

• A catch handler consists of a try block and a catch handler region. The handler
region handles any exception of the handler specified type or any of its subtypes which
occurs in the try block.

• A filter handler is made of a try block, a filter region, and a filter han-
dler region. The filter region is executed to decide if the handler region handles an
exception raised in the try block.

Visual Basic and Managed C++ have special catch blocks which can “filter” the excep-
tions based on the exception type and / or any conditional expression. These are compiled
into filter handlers in the CIL bytecode. Figure 4.13 presents an example of a Vi-
sual Basic filter.

• A finally handler consists of a try block and a finally handler region. The
handler region is executed whenever the try block exits, regardless of whether the try
block exits normally or through an unhandled exception.

• A fault handler embodies a try block and a fault handler region. The handler re-
gion is executed if the try block is exited by an unhandled exception. Unlike a finally
handler region, it should not be executed if the try block is exited normally. Currently,
no language (other than CIL) exposes fault handlers directly.

Exit from the blocks and regions of the exception handlers is restricted to be accomplished only
through certain bytecode instructions. Thus, every normal execution path of a try block or
a catch or filter handler region must end with a leave instruction. Similarly, every nor-
mal execution path of a finally or fault handler region must end with the endfinally
instruction. Alternatively, every execution path of a try block or a handler region can also
terminate with a throw instruction. The last instruction of a filter region should be
the endfilter instruction.

We now describe the CLR exception handling mechanism. Every time an exception occurs,
control is transferred from “normal” execution to the exception handling mechanism. This
mechanism proceeds in two passes. In the first pass, the run-time system runs a “stack walk”
searching, in the possibly empty exception handling array associated to the current method, for
the first handler that might want to handle the exception:

• a catch handler whose type typeExc is a supertype of the type of the exception, or

• a filter handler – to see whether a filter wants to handle the exception, one has
first to execute (in the first pass) the code of the filter region in a separate frame pushed
onto the stack of call frames (detail skipped by [45]): If it returns 1, then it is chosen to
handle the exception; if it returns 0, this handler is not good to handle the exception.
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Figure 4.12 Example: exception handlers.

.try
{

2: newobj instance void C::.ctor()
3: call instance void C::M()
4: leave 30

} // end try block
...
catch NullReferenceException
{

20: stloc 0
21: newobj instance void C′::.ctor()
22: ldloc 0
23: call instance void C′::M(Exception)
24: leave 30

} // end handler region
...
30: . . .

.try
{

2: newobj instance void C::.ctor()
3: call instance void C::M()
4: leave 30

} // end try block
...
filter // decide if handle exception
{

10: stloc 0
11: ldc.i4 1
12: newobj instance void C′′::.ctor()
13: ldloc 0
14: call instance int32 C′′::M(object)
15: ldc.i4 2
16: beq 19
17: pop
18: ldc.i4 0
19: endfilter

} // end filter region
{

20: stloc 0
21: newobj instance void C′′′::.ctor()
22: ldloc 0
23: call instance void C′′′::M(object)
24: leave 30

} // end handler region
...
30: . . .

.try
{

2: newobj instance void C::.ctor()
3: call instance void C::M()
4: leave 30

} // end try block
...
finally
{

7: newobj instance void C′::.ctor()
8: call instance void C′::M()
9: endfinally

} // end handler region
...
30: . . .

.try
{
2: newobj instance void C::.ctor()
3: call instance void C::M()
4: leave 30
} // end try block
...
fault
{
7: newobj instance void C′::.ctor()
8: call instance void C′::M()
9: endfinally
} // end handler region
...
30: . . .
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Figure 4.13 Example: Visual Basic Catch with When clause.
Try

x = M(y)
Catch exc As Exception When M′(y) < 3

z = M′(4)
End Try

If a match is not found in the faulting frame, i.e., the frame where the exception has been
raised, the calling method is searched, and so on. This search eventually terminates since the
exception handling array of the entrypoint method has as last entry a so-called backstop
entry placed there by the operating system.

When a match is found, the first pass terminates, and in the second pass, called “unwinding of
the stack”, the exception mechanism walks once more through the stack of call frames to the
handler determined in the first pass, but this time executing the finally and fault handlers
and popping their frames. It then starts the corresponding exception handler region.

Wrapping non-Exceptions There are .NET compliant languages, for instance Man-
aged C++, where one can throw exceptions of any non-pointer type, as opposed to most
of the .NET languages that require that every thrown exception is derived from the class
System.Exception [6], the base class of all exception types. To maintain compati-
bility between languages, the CLR wraps objects that do not derive from Exception in
a RuntimeWrappedException [4] object. One can use a special boolean attribute,
called RuntimeCompatibilityAttribute, to specify whether exceptions should appear
wrapped inside catch and filter handler regions. The CLR still wraps exceptions even if
the attribute RuntimeCompatibilityAttribute is used to specify that one does not
want them wrapped. In this case, exceptions are unwrapped only inside catch and filter
handlers. Independent of the attribute’s value, the new RuntimeWrappedException ob-
ject, with the originally thrown object as an instance field WrappedException of declared
type object, is propagated. Surprisingly, the ECMA Standard [45] does not mention anything
about this special semantics.

4.2.2 The Static Semantics

To model the exception handling, the universe Switch of execution modes is extended with the
value ExcMech.

Switch = . . .
| ExcMech exceptional mode

If switch is ExcMech, the semantics model is in the exceptional mode. This means that the
exception mechanism defined in Section 4.2.3 has control either to handle an exception or to
normally exit an exception block.

The exception specific universes are gathered in Table 4.12, while the basic static (exception
specific) function are defined in Table 4.13. Thus, every method has assigned a possibly empty
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Universe Typical use Element name
Exc h, h′ exception handlers
ExcRec rec exception records
LeaveRec rec leave records
ClauseKind – exception handler kinds

Table 4.12: Semantics exception specific universes.

Function definition Function name
excHA : Map(MRef ,List(Exc)) the exception handling array
wrapNonExc : Bool non-Exception wrapping

Table 4.13: The basic static exception specific functions.

exception handling array maintained in excHA, and every bytecode program has assigned a
flag wrapNonExc, representing the RuntimeCompatibilityAttribute.

The elements of excHA are known as handlers and are defined as elements of the uni-
verse Exc.

Exc = Exc ( clauseKind : ClauseKind
tryStart : Pc
tryLength : N
handlerStart : Pc
handlerLength : N
typeExc : ObjClass ∪ Interface ∪ ValueType
filterStart : Pc )

ClauseKind = catch | filter | finally | fault

Any 7-tuple of the above form describes an exception handler of kind clauseKind which “pro-
tects” the region that starts at tryStart and has the length tryLength, handles the exception in
the handler region that starts at handlerStart and has the length handlerLength; if the handler is
a catch, then the type typeExc of exceptions it handles is provided, whereas if the handler is
a filter, then the first instruction of the filter region is at filterStart. In case of a filter
handler, the handler region starting at handlerStart should immediately follow the filter re-
gion (this is the reason there is no filter region length provided).

Example 4.2.1 Consider the exception handlers from Figure 4.12. They are represented in the
exception handling array through the following entries:

(catch, 2, 3, 20, 5, NullReferenceException, undef )
(filter, 2, 3, 20, 5, undef, 10 )
(finally, 2, 3, 7, 3, undef, undef )
(fault, 2, 3, 7, 3, undef, undef )
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The predicates isInTry, isInHandler and isInFilter are used to identify those code indices
that belong to a try block, handler region, and filter region, respectively.

isInTry(pos, h) :⇔ tryStart(h) ≤ pos < tryStart(h) + tryLength(h)

isInHandler(pos, h) :⇔ handlerStart(h) ≤ pos < handlerStart(h) + handlerLength(h)

isInFilter(pos, h) :⇔ filterStart(h) ≤ pos < handlerStart(h)

Lemma 4.2.1 The predicates isInTry, isInHandler and isInFilter are pairwise disjoint.

Proof. Based on the lexical nesting constraints of protected blocks specified in [45, Partition I,
§12.4.2.7] and the definitions of the predicates. ut

We assume all the constraints concerning the lexical nesting of handlers specified in [45,
Partition I, §12.4.2.7]. The ordering assumption on handlers given in [45, Partition I, §12.4.2.5]
is the following:

Ordering Assumption If handlers are nested, the most deeply nested handlers should come in
the exception handling array before the handlers that enclose them.

We also assume all the syntactic constraints stated in [45, Partition I, §12.4.2.8] concerning
the Leave instructions:

• it is not legal to exit with a Leave instruction a filter region, a finally/fault
handler region;

• it is not legal to branch with a Leave instruction into a handler region from outside the
region;

• it is legal to exit with a Leave a catch handler region and branch to any instruction
within the associated try block, so long as that branch target is not protected by yet
another try block;

• a Leave instruction is executed only upon the normal exit from a try block or a
catch/filter handler region;

• the target of any branch instruction, in particular of Leave(target), points to an instruction
within the same method as the branch instruction;

Moreover, we assume that the entrypoint has a backstop entry:

Backstop entry The excHA of the entrypoint method has as last entry a handler called
backstop entry which can handle any exception.

In order to determine the non-Exception object wrapped as an instance field in a
RuntimeWrappedException object, we define the (derived) function wrappedExc :
Map(ObjRef ,Val ∪ {undef}).
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Function definition Function name
exc : ObjRef ∪ {undef} the current exception
pass : {StackWalk,Unwind,Leave} the current pass
stackCursor : Frame× N the current stack cursor
handler : Frame× N the suitable handler
target : Pc the target of current Leave pass
passRecStack : List(ExcRec ∪ LeaveRec) the pass record stack

Table 4.14: The basic dynamic exception specific functions.

wrappedExc(ref ) =
mem(fieldAdr(ref ,RuntimeWrappedException::WrappedException))

4.2.3 The Dynamic Semantics

The dynamic state of the exception mechanism is defined by the basic dynamic functions listed
in Table 4.14. Thus, to handle an exception, the exception mechanism needs to record:

• the exception reference exc,

• the handling pass,

• a stackCursor, i.e., the position currently reached in the stack of call frames (a frame) and
in the exception handling array (an index in excHA),

• the suitable handler (also known as the target handler) determined at the end of the
StackWalk pass (if any) is the handler that is going to handle the exception in the pass
Unwind – until the end of the StackWalk pass, handler is undef .

Every normal execution of a try block or catch/filter handler region must end with
an instruction Leave(target). When doing this, every finally code up to the target has to be
executed. Since finally code can throw exceptions, and implicitly determine the exception
mechanism to execute exception passes, one needs to record for the Leave instruction the cur-
rently reached finally code as well as the target. This triggers one significant contribution
of our framework: the introduction of Leave passes although they are not mentioned in [45].
A Leave pass records the stackCursor together with the target of the Leave instruction that
triggered the pass.

ExcRec = ExcRec ( exc : ObjRef
pass : {StackWalk,Unwind}
stackCursor : Frame× N
handler : Frame× N )

LeaveRec = LeaveRec ( pass : {Leave}
stackCursor : Frame× N
target : Pc )
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The nesting of passes determines the exception handling mechanism to maintain a stack
passRecStack of exception or leave records for the passes that are still to be performed. The need
for introducing the passRecStack is not revealed, and constitutes another important contribution
of our framework. Analogously to frameStack, the passRecStack does not contain the currently
handled pass record.

Initial Constraints The stipulations defined in Section 4.1.3 on the initial state of the virtual
machine are now extended to also include the basic dynamic exception specific functions:

passRecStack = [ ] stackCursor = undef
exc = undef handler = undef
pass = undef target = undef

We can now summarize the overall behavior of the exception mechanism, which is analyzed
in detail in the following sections, by saying that if there is a handler in the frame defined by
stackCursor, then the exception mechanism will try to find (when StackWalking) or to execute
(when Unwinding) or to leave (when Leaveing) the corresponding handler; otherwise it will
continue its work in the caller’s frame, or it ends its Leave pass at the target.

4.2.3.1 The StackWalk Pass

During a StackWalk pass, the exception mechanism EXCCLR starts in the current frame to
search for a suitable handler of the current exception in this frame. Such a handler exists if
the search position n in the current frame has not yet reached the last element of the handlers
array excHA of frame’s method mref . Formally, there are no more handlers to inspect in a frame
pointed to by a stackCursor of the form (( , , , , ,mref ), n) if the below defined predicate
evaluates to false.

existsHanWithinFrame(( , , , , ,mref ), n) :⇔ n < length(excHA(mref ))

If there are no (more) handlers in the frame pointed to by stackCursor, then the search has
to be continued at the caller frame. This means to reset the stackCursor to point to the caller
frame and the index 0 in its exception handling array.

SEARCHINVFRAME(fr) ≡
let · [fr′, fr] · = frameStack · [frame] in

RESET(stackCursor, fr′)

There are three groups of possible handlers h the exception mechanism is looking for in a
given frame during its StackWalk:
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• a catch handler whose try block protects the program counter pc of the frame pointed
at by stackCursor and whose type typeExc is a supertype of the exception type (if the
”wrapping” is turned on) or of the wrapped exception type (if the ”wrapping” is turned
off). The handlers of this type are identified through the predicate matchCatch.

matchCatch(pos,T, h) :⇔ isInTry(pos, h) ∧ clauseKind(h) = catch ∧ T � typeExc(h)

• a filter handler whose try block protects the pc of the frame pointed at by
the stackCursor. Such handlers are determined with the predicate matchFilter.

matchFilter(pos, h) :⇔ isInTry(pos, h) ∧ clauseKind(h) = filter

• a filter handler whose filter region contains the pc of the frame pointed at by
the stackCursor (these handlers are selected through the predicate isInFilter defined in
Section 4.2.2). This corresponds to an outer exception and will be described in more
detail below.

The order of the if clauses in the let statement from the rule StackWalk in Figure 4.2.3.1 is not
important. This is justified by the fact that no handler can be of all the above types.

Lemma 4.2.2 Let T be a type. The predicates matchCatchT, matchFilter, and isInFilter are
pairwise disjoint19.

Proof. Using the definitions of the three predicates and Lemma 4.2.1. ut

The handler pointed to by a stackCursor of the form (( , , , , ,mref ), n), is defined
to be excHA(mref )(n). If this handler is not of any of the above types, then the stackCursor is
incremented to point to the next handler in the excHA of the method mref .

The Ordering Assumption in Section 4.2.2 and the lexical nesting constraints stated in [45,
Partition I, §12.4.2.7] ensure that if stackCursor points to a handler of one of the above types,
then this handler is the first handler in the exception handling array (starting at the position
indicated in the stackCursor) of any of the above types.

Handler Case 1 If the handler pointed to by the stackCursor is a matching catch, then this
handler becomes the handler to handle the exception in the pass Unwind. The stackCursor is
reset to be reused for the Unwind pass: It should point to the faulting frame, i.e., the current
frame. Note that during StackWalk, frame always points to the faulting frame except in case a
filter region is executed. However, the frame built to execute a filter is never searched
for a handler corresponding to the current exception.

FOUNDHANDLER ≡
pass := Unwind
handler := stackCursor

19By matchCatchT we understand the predicate defined by the set {(pos, h) | matchCatch(pos,T,h)}.
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Figure 4.14 The exception handling mechanism EXCCLR.
EXCCLR ≡ match pass

StackWalk → if existsHanWithinFrame(stackCursor) then
let h = hanWithinFrame(stackCursor) in

let T = if wrapNonExc then actualTypeOf (exc)
else actualTypeOf (wrappedExc(exc)) in

if matchCatch(pos, T, h) then
FOUNDHANDLER
RESET(stackCursor, frame)

elseif matchFilter(pos, h) then EXECFILTER(h)
elseif isInFilter(pos, h) then EXITINNEREXC
else GOTONXTHAN

else SEARCHINVFRAME(fr)
where stackCursor = (fr, ) and fr = (pos, , , , , )

Unwind → if existsHanWithinFrame(stackCursor) then
let h = hanWithinFrame(stackCursor) in

if matchTargetHan(handler, stackCursor) then
EXECHAN(h)

elseif matchFinFault(pc, h) then
EXECHAN(h)
GOTONXTHAN

elseif isInHandler(pc, h) then
ABORTPREVPASSREC
GOTONXTHAN

elseif isInFilter(pc, h) then
CONTINUEOUTEREXC

else GOTONXTHAN
else

POPFRAME(0, [ ])
SEARCHINVFRAME(frame)

Leave → if existsHanWithinFrame(stackCursor) then
let h = hanWithinFrame(stackCursor) in

if isFinFromTo(h, pc, target) then
EXECHAN(h)

if isRealHanFromTo(h, pc, target) then
ABORTPREVPASSREC

GOTONXTHAN
else

pc := target
evalStack := [ ]
POPREC
switch := Noswitch

RESET(s, fr) ≡
s := (fr, 0)

Handler Case 2 If the handler is a filter, then its filter region is executed. The exe-
cution is performed in a separate frame constructed especially for this purpose (detail omitted
by [45]). The current frame becomes the frame for executing the filter region. The fault-
ing frame is pushed onto the frameStack. The current frame points now to the method, local
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variables, local memory pool, and arguments of the frame in which stackCursor is, it has the
exception reference on the evalStack (if the ”wrapping” is turned on) or the wrapped excep-
tion wrappedExc(exc) (if the ”wrapping” is turned off), and the program counter pc set to the
beginning filterStart of the filter region. Control is switched to normal execution mode by
setting switch to Noswitch.

EXECFILTER(h) ≡
pc := filterStart(h)
evalStack := if wrapNonExc then [exc] else wrappedExc(exc)
locAdr := locAdr′

locPool := locPool′

argAdr := argAdr′

meth := meth′

frameStack := frameStack · [frame]
switch := Noswitch
where stackCursor = (( , locAdr′, locPool′, argAdr′, ,meth′), )

Handler Case 3 The stackCursor points to a filter handler whose filter region contains
the pc of the frame pointed at by stackCursor.

Exceptions in filter region? It is not clearly documented in [45] what happens if an (inner)
exception is thrown while executing the filter region during the StackWalk pass of an outer
exception. The following cases are to be considered:

• if the exception is taken care of in the filter region, i.e., it is successfully handled by
a catch/filter handler or it is aborted because it occurred in yet another filter
region of a nested handler (see the second case below), then the given filter region
continues executing normally (after the exception has been taken care of);

• if the exception is not taken care of in the filter region, then the exception will be
discarded (via the CONTINUEOUTEREXC macro defined in Section 4.2.3.2) after its
finally and fault handlers have been executed. Therefore, in this case EXCCLR
exits via the macro EXITINNEREXC the StackWalk pass and starts an Unwind pass, dur-
ing which all the finally/fault handlers for the inner exception are executed until
the filter region where the inner exception occurred is reached.

EXITINNEREXC ≡
pass := Unwind
RESET(stackCursor, frame)

Example 4.2.2 Consider that the entrypoint has the body in Figure 4.15. Accord-
ing to the Ordering Assumption stated in Section 4.2.2, the stackCursor points initially
to the filter handler. To decide whether this handler is appropriate to handle the
NullReferenceException thrown at 1, the filter region is executed in a sep-
arate frame. So, when the instruction 2 is executed, the frameStack is consisting of
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Figure 4.15 Example: discarding exception and leave records in the entrypoint method.
.try
{
.try
{
.try
{

0: newobj instance void NullReferenceException::.ctor()
1: throw

}
filter
{

2: newobj instance void InvalidCastException::.ctor()
3: throw
4: ldc.i4 1
5: endfilter

}
{

6: pop
7: leave 12

}
}
catch NullReferenceException
{

8: pop
9: leave 12

}
}
finally
{

10: newobj instance void DivideByZeroException::.ctor()
11: throw

}
12: ret

the frame associated to the entrypoint. The filter region throws another excep-
tion. The context of the just handled outer exception is saved in the passRecStack, and
the InvalidCastException raised at 3 becomes the current (inner) exception. However,
the StackWalk pass of the inner exception is immediately exited since the inner exception can-
not be propagated out of the filter region. The Unwind pass for the inner exception is then
started.

4.2.3.2 The Unwind Pass

As soon as the pass StackWalk terminates, the exception mechanism starts the Unwind pass
with the stackCursor pointing to the faulting frame. Starting there, one has to walk down to
the handler determined in the StackWalk pass, executing on the way every finally/fault
handler region. This also happens in case handler is undef . The handlers of interest for the
exception mechanism in the Unwind pass are:
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• the matching target handler, i.e., the handler determined at the end of the StackWalk pass
(if any20). For that to happen, the two handler and stackCursor frames in question have
to coincide. The predicate matchTargetHan decides whether the handler pointed to by
the stackCursor is handler. We say that two frames are the same if the address arrays
of their local variables and arguments as well as their method names coincide. This is
defined by means of the predicate sameFrame.

matchTargetHan((fr, n), (fr′, n′)) :⇔ sameFrame(fr, fr′) ∧ n = n′

sameFrame(( , locAdr′, , argAdr′, ,meth′), ( , locAdr′′, , argAdr′′, ,meth′′)) :⇔
locAdr′ = locAdr′′ ∧ argAdr′ = argAdr′′ ∧ meth′ = meth′′

• a matching finally/fault handler whose associated try block protects the pc. The
predicate matchFinFault selects the finally/fault handlers whose try blocks pro-
tect a given code index.

matchFinFault(pos, h) :⇔ isInTry(pos, h) ∧ clauseKind(h) ∈ {finally,fault}

• a handler whose handler region contains pc: Such handlers are selected with the predi-
cate isInHandler defined in Section 4.2.2;

• a filter handler whose filter region contains pc: These handlers are identified
through the predicate isInFilter defined in Section 4.2.2;

The order of the last three if clauses in the let statement of the rule Unwind in Figure 4.2.3.1 is
not important since no handler can be of all of the above last three types. It only matters that
the first clause is guarded by matchTargetHan.

Lemma 4.2.3 The predicates matchFinFault, isInHandler and isInFilter are pairwise disjoint.

Proof. Using the definitions of the predicates and Lemma 4.2.1. ut

The Ordering Assumption in Section 4.2.2 and the lexical nesting constraints given in [45,
Partition I, §12.4.2.7] ensure that if the stackCursor points to a handler of one of the above types,
then this handler is the first handler in the exception handling array (starting at the position
indicated in the stackCursor) of any of the above types.

Handler Case 1 If the handler pointed to by stackCursor is the handler found in the StackWalk,
its handler region is executed through EXECHAN: The pc is set to the beginning of the handler
region, the exception reference exc (if the ”wrapping” is turned on) or the wrapped exception
wrappedExc(exc) (if the ”wrapping” is turned off) is loaded on the evalStack (when EXECHAN

is applied for executing finally/fault handler regions, nothing is pushed onto evalStack),
and control switches to normal execution mode, i.e., switch is set to Noswitch.

20Note that handler can be undef if the search in the StackWalk has been exited because the exception was
thrown in a filter region.
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EXECHAN(h) ≡
pc := handlerStart(h)
evalStack := if clauseKind(h) ∈ {catch,filter} then

if wrapNonExc then [exc] else wrappedExc(exc)
else [ ]

switch := Noswitch

Handler Case 2 If the handler pointed to by the stackCursor is a matching finally/fault
handler, its handler region is executed with an initially empty evalStack. At the same time, the
stackCursor is incremented through GOTONXTHAN to point to the next handler in excHA.

Handler Case 3 Let us assume that the handler pointed to by stackCursor is an arbitrary
handler whose handler region contains pc.

Exceptions in handler region? The ECMA standard [45] does not specify what should happen
if an exception is raised in a handler region. The experimentation in [54] led to the following
rules of thumb for exceptions thrown in a handler region, in a way similar to the case of nested
exceptions in filter code:

• If the exception is taken care of in the handler region, i.e., it is successfully handled by a
catch/filter handler or it is discarded (because it occurred in a filter region of a
nested handler), then the handler region continues executing normally (after the exception
is taken care of).

• If the exception is not taken care of in the handler region, i.e, it escapes the handler
region, then

– the previous pass of the exception mechanism is aborted through the macro
ABORTPREVPASSREC by popping its record from the passRecStack

ABORTPREVPASSREC ≡
passRecStack := pop(passRecStack)

– the exception is propagated further via GOTONXTHAN, i.e., the Unwind pass con-
tinues by setting the stackCursor to the next handler in excHA.

Remark 4.2.1 An exception can go “unhandled” without taking down the process, namely if
an outer exception goes unhandled, but an inner exception is successfully handled. In fact, the
execution of a handler region can only occur when the exception mechanism EXCCLR runs in
the Unwind and Leave passes: In Unwind, handler regions of any kind are executed, whereas
in Leave, only finally handler regions are executed. If the raised exception occurred while
EXCCLR runs an Unwind pass for handling an outer exception, the Unwind pass of the outer
exception is stopped, and the corresponding pass record is popped from the passRecStack. If
the exception has been thrown while the exception mechanism runs a Leave pass for execut-
ing finally handlers “on the way” from a Leave instruction to its target, then this pass is
stopped, and its associated pass record is popped from the passRecStack.
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Handler Case 4 The handler pointed to by the stackCursor is a filter handler whose
filter region contains pc. Then the execution of this filter region must have triggered
an inner exception whose StackWalk led to a call of EXITINNEREXC. In this case, the cur-
rent (inner) exception is aborted, and the filter considered as not providing a handler for
the outer exception. Formally, CONTINUEOUTEREXC pops the frame built for executing the
filter region, pops from the passRecStack the pass record corresponding to the inner excep-
tion and reestablishes the pass context of the outer exception, but with the stackCursor pointing
to the handler following the just inspected filter handler. The updates of the stackCursor in
POPREC and GOTONXTHAN are done sequentially such that the update in GOTONXTHAN

overwrites the update in the macro POPREC. Note that by these stipulations, there is no way to
exit a filter region with an exception. This ensures that the frame built by EXECFILTER for
executing a filter region is used only for this purpose.

CONTINUEOUTEREXC ≡
POPFRAME(0, [ ])
POPREC seq GOTONXTHAN

POPREC ≡
if passRecStack = [ ] then

SETRECUNDEF

switch := Noswitch
else let (passRecStack′, [rec]) = split(passRecStack, 1) in

if rec ∈ ExcRec then
let (exc′, pass′, stackCursor′, handler′) = rec in

exc := exc′

pass := pass′

stackCursor := stackCursor′

handler := handler′

if rec ∈ LeaveRec then
let (pass′, stackCursor′, target′) = rec in

pass := pass′

stackCursor := stackCursor′

target := target′

passRecStack := passRecStack′

SETRECUNDEF ≡
exc := undef
pass := undef
stackCursor := undef
target := undef
handler := undef

Remark 4.2.2 The execution of POPFRAME is safe since the frameStack cannot be empty at the
time when CONTINUEOUTEREXC is fired. [45, Partition II, §12.4.2.8.1] states that the control



146 CHAPTER 4. TYPE SAFETY OF CLR

can be transferred to a filter region only through EXCCLR. Since pc is in a filter region,
an EXECFILTER should have been already executed. But in this case, a new frame is pushed on
the frameStack. Hence, frameStack is not empty when CONTINUEOUTEREXC is executed.

Example 4.2.3 Consider again the entrypoint body listed in Figure 4.15. Since the
InvalidCastException raised in the filter region is not taken care of in the filter
region, the exception, its Unwind pass, and the frame built to run the filter region are dis-
carded. The NullReferenceException becomes again the current exception, and its
StackWalk pass is continued by incrementing its stackCursor. This will point to the catch
handler which turns out to be suitable for handling the exception. The StackWalk pass ends by
setting handler to point to the catch handler. The Unwind pass starts, and the stackCursor is
reset to point to the most deeply nested handler, i.e., the filter handler. The stackCursor is
then incremented until it points to a handler of interest for the Unwind pass. The first such
handler is exactly handler whose handler region is then executed.

If the handler pointed to by the stackCursor is not of interest for the Unwind pass, the
stackCursor is incremented to point to the next handler in excHA.

If the Unwind pass terminated the inspection of all the handlers in the frame indicated by the
stackCursor given in the form (frame, n), i.e., the predicate existsHanWithinFrame((frame, n))
evaluates to false, then the current frame is popped from the frameStack, and the Unwind pass
continues in the caller frame of the current frame. This continuation is accomplished by setting
the stackCursor to point to the new current frame and the index 0 in the excHA of this frame.

Remark 4.2.3 As long as the exception mechanism is running an Unwind pass, the cur-
rent stackCursor is always pointing to the current frame. This contrasts with the StackWalk
pass where the current stackCursor is usually pointing to a different frame in the frameStack.
This remark is proved in Lemma 4.2.4.

Lemma 4.2.4 Let stackCursor = (fr, ) be the current stackCursor. If pass = Unwind, then
fr is the current frame.

Proof. By a simple induction on the run of the exception handling mechanism. ut

Remark 4.2.4 The execution of the macros POPFRAME and SEARCHINVFRAME in the else
clause is safe since the current frame has a caller frame, i.e., the current frame cannot be the
frame of the entrypoint. This is because Backstop entry guarantees that the else clause is
not reachable if the current frame is the frame of the entrypoint. The same argument can
also be invoked in case of SEARCHINVFRAME in the StackWalk pass.

4.2.3.3 The Leave Pass

The exception mechanism gets into the Leave pass when, in the normal execution mode, the vir-
tual machine executes a Leave instruction, which by the Leave constraints (see Section 4.2.2)
can only happen upon the normal termination of a try block or of a catch/filter handler
region. One has to execute the handler regions of all finally handlers “on the way” from
the Leave instruction to the instruction whose program counter is given by the Leave target pa-
rameter. The stackCursor used in the Leave pass is initialized by the Leave instruction (see
Figure 4.16). In the Leave pass, the exception mechanism EXCCLR searches for
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• finally handlers that are “on the way” from the pc to the target, and

• real handlers, i.e., catch/filter handlers whose handler regions are “exited on the
way” from the pc to the target – more details are given below.

Handler Case 1 If the handler pointed to by stackCursor is a finally handler h on the way
from pc to the target of the current Leave pass record, then the handler region of h is executed
(see the first clause of the Leave rule in Figure 4.16): pc is set to handlerStart(h), evalStack to [ ],
and control switches to normal execution mode, i.e., switch is set to Noswitch. We define the
predicate isFinFromTo to identify the finally handlers which are “on the way” from a code
index to another code index.

isFinFromTo(h, pos, pos′) :⇔ clauseKind(h) = finally∧
isInTry(pos, h)∧

¬ isInTry(pos′, h) ∧ ¬ isInHandler(pos′, h)

Handler Case 2 If the stackCursor points to a catch/filter handler whose handler region
is “exited on the way” from pc to the target, then the previous pass record, i.e., the top pass
record on passRecStack, is popped off (see the second clause of the Leave rule). The discarded
record can only be referring to an Unwind pass for handling an exception. By discarding this
record, the mechanism terminates the handling of the corresponding exception. The below
defined predicate isRealHanFromTo is used to determine the catch/filter handlers whose
handler regions are “exited on the way” from a code index to another code index.

isRealHanFromTo(h, pos, pos′) :⇔ clauseKind(h) ∈ {catch,filter}∧
isInHandler(pos, h) ∧ ¬ isInHandler(pos′, h)

That the discarded record can only be referring to an Unwind pass is proved in the following
lemma:

Lemma 4.2.5 If pass = Leave and the current stackCursor points to a catch/filter han-
dler, then top(passRecStack) = ( ,Unwind, , h) such that matchTarget(stackCursor, h).

Proof. The proof proceeds by induction on the run of the exception mechanism and takes
advantage of the fact that a catch/filter handler region can only be entered for handling
an exception, i.e., in an Unwind pass. ut

Although the two if clauses in the let statement of the Leave pass in Figure 4.16 are executed
in parallel, it is never the case that the embedded macros EXECHAN and ABORTPREVPASSREC

are simultaneously executed. The reason is that no exception handler can be of both of the above
types.

Lemma 4.2.6 The predicates isFinFromTo and isRealHanFromTo are disjoint.
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Instruction Informal description
Throw Pops the top stack element, and throws it as an exception.
EndFilter Terminates the execution of a filter region.
EndFinally Terminates the execution of a finally/fault handler region.
Leave(target) Exits a try block or a catch/filter handler region.

Table 4.15: The considered exception specific CIL instructions.

Proof. Using the definitions of the predicates. ut

For each kind of handler, the exception mechanism EXCCLR also inspects the next handler
in excHA. When the handlers in the current method are exhausted, by the Leave constraints this
round of EXCCLR is terminated, and the execution proceeds at target: pc is set to target, the
context of the previous pass record, i.e., the top pass record on passRecStack, is reestablished,
and control is passed to normal execution mode by setting switch to Noswitch (see Figure 4.16).

Example 4.2.4 Consider again the entrypoint body in Figure 4.15. Upon executing
the leave instruction at 9, the mechanism enters into a Leave pass with target = 12
and stackCursor initially pointing to the filter handler. The stackCursor is successively
incremented until it points to the catch handler whose handler region is “exited on the way”
from pc = 9 to target = 12. Therefore, the top pass record of the passRecStack, i.e., the
record associated to the NullReferenceException in its Unwind pass, is popped off.
The stackCursor is then incremented and points to the finally handler. As the finally
handler region raises an exception, the Leave pass is aborted.

4.2.3.4 The Semantics of the Exception Specific Instructions

This section defines the operational semantics model CLRE which refines CLRL (given in
Section 4.1.3.1) to cover the changes that are needed to model exception handling. In particu-
lar, this section defines the operational semantics rules for the exception specific instructions.
Table 4.15 contains the informal definitions of these instructions whose precise semantics is
defined in terms of the semantics rules in Figure 4.16.

The execution scheme for CLRE is the one for CLRL extended with the exception mecha-
nism EXCCLR.

CLRE ≡ execScheme(EXECCLR, SWITCHCLR, EXCCLR)

execScheme ≡
if switch = ExcMech then

EXCCLR
elseif switch = Noswitch then

EXECCLR(code(pc))
else SWITCHCLR
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Figure 4.16 The operational semantics rules for the exception specific instructions.
EXECCLR(instr) ≡ match instr

...
Throw → let ref = top(evalStack) in

if ref 6= null then
let ref ′ = if actualTypeOf (ref ) � Exception then ref

else NewWrapExc(ref ) in
LOADREC((ref ′, StackWalk, (frame, 0), undef ))
switch := ExcMech

else RAISE(NullReferenceException)

EndFilter → let val = top(evalStack) in
if val = 1 then

FOUNDHANDLER
RESET(stackCursor, top(frameStack))

else GOTONXTHAN
POPFRAME(0, [ ])
switch := ExcMech

EndFinally → switch := ExcMech

Leave(target) → LOADREC((Leave, (frame, 0), target))
switch := ExcMech

Each of the instructions gives control to the exception mechanism EXCCLR by appropri-
ately setting switch to ExcMech.

The Throw instruction pops the topmost evalStack element (see Remark 4.2.6 below), which
is supposed to be an exception reference. It loads with the macro LOADREC to the exception
mechanism the pass record associated to the given exception: exc is set to the exception ref-
erence (if exc’s type is derived from Exception) or to a RuntimeWrappedException
reference pointing to exc (if exc’s type is not derived from Exception), pass to StackWalk,
the stackCursor is initialized with (frame, 0), and handler is set to undef .

In order to create a new reference to a RuntimeWrappedException object pointing to
a given object reference, we define the macro NewWrapExc. Thus, given an exception refer-
ence ref , the macro NewWrapExc(ref ) creates a new RuntimeWrappedException object,
with the non-Exception as an instance field, and returns a reference to the object.

let ref ′ = NewWrapExc(ref ) in P ≡
let ref ′ = new(ObjRef ,RuntimeWrappedException) in

initState(ref ′) := Init(RuntimeWrappedException)
mem(fieldAdr(ref ′,RuntimeWrappedException::WrappedException)) := ref

seq P

If the exception mechanism is already working in a pass, i.e., pass is not undef , then the
current pass record is pushed with PUSHREC onto passRecStack.
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LOADREC(rec) ≡
if rec ∈ ExcRec then

let (exc′, pass′, stackCursor′, handler′) = rec in
exc := exc′

pass := pass′

stackCursor := stackCursor′

handler := handler′

else let (pass′, stackCursor′, target′) = rec in
pass := pass′

stackCursor := stackCursor′

target := target′

if pass 6= undef then PUSHREC

PUSHREC ≡
if pass = Leave then

passRecStack := push(passRecStack, (pass, stackCursor, target))
else passRecStack := push(passRecStack, (exc, pass, stackCursor, handler))

If the exception reference found on top of the evalStack by the Throw instruction is null, a
NullReferenceException is thrown. Given a class C, the macro RAISE(C) is defined by
the following code template:

RAISE(C) ≡
NewObj(C::.ctor)
Throw

This macro can be viewed as a static method defined in class object. Calling the macro is
then like invoking the corresponding method.

In a filter region, exactly one EndFilter is allowed, namely its last instruction, which is
supposed to be the only one used to normally exit the filter region. The EndFilter instruction
takes an integer val from the stack that is supposed to be either 0 or 1.

Remark 4.2.5 In [45], 0 and 1 are assimilated with “continue search” and “execute handler”,
respectively. There is a discrepancy between [45, Partition I, §12.4.2.5], which states Execu-
tion cannot be resumed at the location of the exception, except with a user-filtered handler
– therefore a “resume exception” value in addition to 0 and 1 is foreseen allowing CLR to
resume the execution at the point where the handled exception has been raised— and [45,
Partition III, §3.34] which states that the only possible return values from the filter are “excep-
tion continue search”(0) and “exception execute handler”(1).

If val is 1, then the filter handler to which EndFilter corresponds becomes the handler to
handle the current exception in the pass Unwind. Remember that the filter handler is the
handler pointed to by the stackCursor. The stackCursor is reset to be used for the pass Unwind:
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It will point to the topmost frame on frameStack which is actually the faulting frame. If val
is 0, the stackCursor is incremented to point to the handler following our filter handler.
Independently of val, the current frame is discarded to reestablish the context of the faulting
frame. Note that we do not explicitly pop val from the evalStack since the global dynamic
function evalStack is updated anyway in the next step (through POPFRAME) to the evalStack′

of the faulting frame.

The EndFinally instruction terminates (normally) the execution of the handler region of
a finally or of a fault handler. It simply transfers control to the exception mecha-
nism EXCCLR. A Leave instruction loads to the exception mechanism a pass record corre-
sponding to a Leave pass which has the target set to the instruction’s code index token argument
and the stackCursor to (frame, 0).

Remark 4.2.6 The reader might ask why the instructions Throw and EndFilter do not set the
evalStack. The reason is that this set up, i.e., the emptying of evalStack, is supposed to be
either a side-effect (the case of the Throw instruction) or ensured for a correct CIL (the case
of the EndFilter instruction). Thus, the Throw instruction passes control to EXCCLR which, in
a next step, will execute21 a catch/finally/fault handler region or a filter code or
will propagate the exception in another frame. All these “events” will “clear” the evalStack.
In case of EndFilter, the evalStack must contain exactly one item (an int32 which is popped
off by EndFilter). Note that this has to be checked by the bytecode verification (see Figure 4.18)
and not ensured by the exception handling mechanism.

CLRE also extends the rules where the instructions considered for CLRL might throw ex-
ceptions. The extension is defined through the semantics rules in Figure 4.17.

The rule for the Execute instruction is extended with the three cases when the instruc-
tion raises one of the exceptions DivideByZeroException, OverflowException,
and ArithmeticException. A NullReferenceException is raised if the tar-
get reference of a Call, LoadField, StoreField, CallVirt, LoadFieldA22. Accordingly, the
macro VIRTCALL defined in Section 4.1.3.1 should be refined.

VIRTCALL(tail,T::M, [ref ] · vals) ≡
if ref 6= null then

let T ′::M = lookUp(actualTypeOf (ref ),T::M) in
if actualTypeOf (ref ) = T ′ ∈ ValueType then

switch := Invoke(tail,T ′::M, [addressOf (ref )] · vals)
else switch := Invoke(tail,T ′::M, [ref ] · vals)

else RAISE(NullReferenceException)

A NullReferenceException is raised also if the pointer popped from the evalStack
by a LoadInd or StoreInd instruction points to an invalid address, or if the to be un-
boxed object of an Unbox instruction is the null reference. The Unbox instruction throws

21One can formally prove that there is such a “step” in the further run of the EXCCLR.
22Some versions of the CLR implementation, e.g., Microsoft .NET Framework (v2.0) [3], are lazy and do not

throw a NullReferenceException if one of the instructions LoadFieldA, Call or CallVirt receives null
as the target reference, when expecting a managed pointer, as opposed to an object reference. The exception is
only raised at the first attempt to dereference the managed pointer. However, being defined according to [45], our
semantics model contrasts with these lazy implementations.
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an InvalidCastException if the object on the evalStack is not a boxed object of the
instruction’s value type token argument. An Unbox.Any instruction with a value type to-
ken argument throws a NullReferenceException if the boxed object is null23 and
an InvalidCastException if the boxed object is not a boxed instance of the instruction’s
type token argument. An exception of the same class is also thrown by a RefAnyVal instruction if
the instruction’s type token argument is not the type stored in the typed reference. If the top stack
element cannot be cast to CastClass’ type token argument, an InvalidCastException is
thrown.

4.2.4 The Bytecode Verification

This section is about how the exception handling influences the bytecode verification. The
exception specific conditions that should be ensured by the bytecode in order to achieve type
safety are depicted in Section 4.2.4.1. The type consistency checks performed for the exception
specific instructions are defined in Section 4.2.4.2. The simulation of the execution paths is
extended in Section 4.2.4.3 to include the exception handling.

4.2.4.1 The Bytecode Structure

In addition to the constraints stated in Section 4.1.4.2, the bytecode verification requires also
that following condition holds:

Tail Call in Handlers A tail method call should not be used to transfer control out of a
try block, filter region, catch/finally/filter/fault
handler region.

The reason for requiring Tail Call in Handlers is the same as that for Tail Call Pattern in
Section 4.1.4.2. If the prefix tail is ignored when the bytecode is jitted, the caller frame
would continue to execute after the callee’s frame returns. Because of Tail Call in Handlers,
the caller frame would not matter for the exception mechanism if the callee’s frame returned
with an exception. Although Tail Call in Handlers is not relevant in the type safety proof, we
mention it here for completeness only.

4.2.4.2 Verifying the Bytecode Instructions

As mentioned in Section 4.1.4.3, the evaluation stack before an instruction instr following
an unconditional branch instruction should be empty, unless instr is the target of a forward
branch instruction. As most of the exception specific instructions are regarded as unconditional
branch instruction, the set UncondBranchInstr is extended accordingly: UncondBranchInstr =
{Return,Throw,EndFinally,Leave( )}.

Bytecode verification also checks that the stack is empty upon entering a try block. This
check can be expressed as a constraint on the first instruction of any try block. For this

23The ECMA Standard [45, Partition III, §4.33] states that a NullReferenceException is raised, regard-
less of the instruction’s type token argument. This is, however, not true as the instruction with reference type token
arguments acts as a CastClass instruction, and consequently it throws no exception.
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Figure 4.17 The operational semantics rules for the exception-prone cases.
EXECCLR(instr) ≡ match instr

...
Execute(op) → let vals = take(evalStack, opNo(op)) in

if divByZeroCase(op, vals) then
RAISE(DivideByZeroException)

elseif overflowCase(op, vals) then
RAISE(OverflowException)

elseif invalidNrCase(op, vals)
RAISE(ArithmeticException)

Call( , , T::M) → if T 6= System.Delegate then
let [ref ] · = take(evalStack, argNo(T::M)) in

if ref = null then RAISE(NullReferenceException)

LoadField( , ) → let ref = top(evalStack) in
if ref = null then RAISE(NullReferenceException)

StoreField( , ) → let [ref ] · = take(evalStack, 2) in
if ref = null then RAISE(NullReferenceException)

CallVirt( , , T::M) → let [ref ] · = take(evalStack, argNo(T::M)) in
if ref = null then RAISE(NullReferenceException)

LoadFieldA( , ) → let val = top(evalStack) in
if val = null then RAISE(NullReferenceException)

LoadInd( ) → let adr = top(evalStack) in
if ¬validAdr(adr) then RAISE(NullReferenceException)

StoreInd( ) → let [adr] · = take(evalStack, 2) in
if ¬validAdr(adr) then RAISE(NullReferenceException)

Unbox(T) → let ref = top(evalStack) in
if ref = null then

RAISE(NullReferenceException)
elseif T 6= actualTypeOf (ref ) then

RAISE(InvalidCastException)

Unbox.Any(T) → if T ∈ ValueType then
let ref = top(evalStack) in

if ref = null then RAISE(NullReferenceException)
elseif T 6= actualTypeOf (ref ) then

RAISE(InvalidCastException)

RefAnyVal(T) → let tr = top(evalStack) in
if T 6= typedRefType(tr) then

RAISE(InvalidCastException)

CastClass(T) → let ref = top(evalStack) in
if ref 6= null ∧ actualTypeOf (ref ) 6� T then

RAISE(InvalidCastException)

LoadVirtFtn( ) → let ref = top(evalStack) in
if ref = null then RAISE(NullReferenceException)
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Figure 4.18 Verifying the exception specific instructions.
check(meth, pos, argZeroT, evalStackT) :⇔ enterTry(meth, pos, evalStackT) ∧

match code(pos)
...

Throw → evalStackT vsuf [object]
EndFilter → evalStackT vsuf [int32]
EndFinally → True
Leave( ) → True

purpose, we define the predicate enterTry. Given a method mref , a code index pos and a stack
state evalStackT , enterTry(mref , pos, evalStackT) is true if evalStackT is empty should exist at
least one exception handler in the exception handling array of mref whose try block has the
first instruction at pos.

enterTry(mref , pos, evalStackT) :⇔
∃ h ∈ excHA(mref ) : (pos = tryStart(h)) ⇒ evalStackT = [ ]

This constraint is not relevant in the type safety proof. Its goal is to simplify the JIT compilation
scheme. It could happen that the evaluation of an expression is compiled into a sequence of
bytecode instructions which is further jitted into a single CPU instruction. If a try block
is allowed to be placed in the middle of an expression, the JIT compilation scheme would
get complicated, as it would have to break up the expression into protected and non-protected
regions. By requiring the stack to be empty upon entering every try block, the bytecode
verification does not allow a try block to be placed in the execution of an expression.

The check predicate expressing the type consistency checks is defined in Figure 4.18 also for
the exception specific instructions. Moreover, its definition also specifies the above constraint
on the first instruction of any try block. The Throw instruction expects an object reference
on the stack. The EndFilter instruction which terminates the execution of a filter region
expects an integer on the stack. For the instructions EndFinally and Leave, nothing has to be
checked.

4.2.4.3 Computing Successor Type States

All the instructions can throw exceptions. Although this assumption does not match the seman-
tics rules defined so far, we assume so, since the special ExecutionEngineException
may be thrown at any time during the execution of a program. Therefore, for an instruction
at pos, the exception handlers h that protect pos, i.e., for which isInTry(pos,h) holds, are added
by the function excHandlers to the set of successor type states defined through the succ function.
Upon entering a catch handler h, the stack state contains the type typeExc(h) of exceptions
h is handling (if typeExc(h) is a reference type) or the type boxed(typeExc(h)) (if typeExc(h)
is a value type24), whereas upon entering a filter, the stack state is [object]. Upon en-
tering a finally or a fault handler, the stack state is [ ]. By entering the filter region

24The ECMA Standard [45] does not mention anything concerning the fact that exceptions of value types are
considered boxed inside catch handler regions.
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Figure 4.19 The type state successors of the exception specific instructions.
succ(meth, pos, argZeroT, evalStackT) = excHandlers(meth, pos, argZeroT) ∪

match code(pos)
...

Throw → ∅
EndFilter → ∅
EndFinally → {(target, argZeroT, [ ]) | target ∈ LeaveThroughFin(meth, pos)}
Leave(target) → if {h ∈ excHA(meth) | isFinFromTo(h, pos, target)} = ∅ then

{(target, argZeroT, [ ])}
else ∅

of a filter handler h, the successor code index is the index of the first instruction of the
filter region, i.e., filterStart(h). Otherwise, the successor code index is the index of the first
instruction of the handler region of h, i.e., handlerStart(h).

excHandlers(mref , pos, argZeroT) =
{ (handlerStart(h), argZeroT, [typeExc(h)]) | h ∈ excHA(mref ), isInTry(pos, h),
clauseKind(h) = catch, typeExc(h) ∈ RefType} ∪

{ (handlerStart(h), argZeroT, [boxed(typeExc(h))]) | h ∈ excHA(mref ),
isInTry(pos, h), clauseKind(h) = catch, typeExc(h) ∈ ValueType} ∪

{ (filterStart(h), argZeroT, [object]), (handlerStart(h), argZeroT, [object])
| h ∈ excHA(mref ) such that isInTry(pos, h), clauseKind(h) = filter} ∪

{ (handlerStart(h), argZeroT, [ ]) | h ∈ excHA(mref ), isInTry(pos, h), clauseKind(h) ∈
{finally,fault} }

Example 4.2.5 Consider the skeleton bytecode of Figure 4.20. To understand the definition
of excHandlers, let us look in detail at the successors via the exception handling array of the
instruction at the code index 6. The possible successors are:

• the instruction at 9, i.e., the first instruction of the catch handler region: At run-time,
this handler region might be executed in the Unwind pass if an exception of the type
NullReferenceException is thrown in the associated try block;

• the instruction at 17, i.e., the first instruction of the fault handler region: At run-time,
this handler region might be executed in the Unwind pass if the exception is not of the
type NullReferenceException;

• the instruction at 24, i.e., the first instruction of the filter region: At run-time,
this region might be executed in the StackWalk pass if the exception is not of the
type NullReferenceException;

• the instruction at 27, i.e., the first instruction of the filter handler region: At run-
time, this handler region might be executed in the Unwind pass if this filter handler
is suitable to handle the exception;
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• the instruction at 31, i.e., the first instruction of the finally handler region: At run-
time, this handler region might be executed in the Unwind pass if the exception is not
of the type NullReferenceException and the filter handler is not suitable for
handling the exception;

Note that the code indices 27 and 31 cannot be reached at run-time directly from 6. The reason
is that, the exception handling mechanism has to execute the fault handler region before 27
and 31 are reached. However, to simplify the definition of excHandlers, we consider a con-
servative definition by including more successors than possibly reachable at run-time. This
conservative approach does not affect the set of verifiable methods.

Apart from the successors defined by the function excHandlers, the instructions Throw
and EndFilter have no other successors. The EndFinally instruction terminates the ex-
ecution of a finally/fault handler region. If the associated try block was exited
with a Leave(target) instruction, control is transferred to target if the EndFinally instruc-
tion is the last “on the way” from the Leave instruction to its target. The possible tar-
gets are defined by the set LeaveThroughFin. A code index target is an element of the set
LeaveThroughFin(meth, pos) if the instruction code(pos) is an EndFinally instruction of the
last finally handler “on the way” from an instruction Leave(target) embedded into the try
block associated to the EndFinally instruction to the instruction code(target). By this definition,
the set LeaveThroughFin is empty for an EndFinally instruction which corresponds to a fault
handler. This means that the EndFinally instruction which terminates the execution of a fault
handler region has no successors (apart from those defined in excHandlers).

LeaveThroughFin(meth, pos) =
{ target ∈ Pc | ∃ pos′ ∈ Pc such that code(pos′) = Leave(target) and
[h′ ∈ excHA(meth) | isFinFromTo(h′, pos′, target)] = [. . . , h],
where h is defined by [h′ ∈ excHA(meth) | isInHandler(pos, h′)] = [h, . . .] }

As the EndFinally instruction empties the evaluation stack, the stack state of the successors
of EndFinally is the empty list.

We reason below for the definition of succ in case of the Leave instruction. If there is
no finally handler from the Leave instruction to its target, the successor is given by the
target instruction with an empty stack state (this is because the Leave instruction empties the
evaluation stack). If there is a finally handler in between, say h, the successor given by the
instruction at handlerStart(h) is already considered in excHandlers.

Example 4.2.6 Consider again the skeleton example from Figure 4.20. We look here in detail
at the successors – others than those defined via the exception handling array – of some of the
Leave and EndFinally instructions.

The Leave instruction at the code index 2 has no successor (except the successors defined
via the exception handling array) since the finally handler region is “on the way” from 2 to
the target 40. The successor of the Leave instruction at the code index 15 is the instruction at
the code index 16 since there is no finally block “on the way” from 15 to the target 16.
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Figure 4.20 Example: successors of Leave and EndFinally instructions.
.try
{
.try
{
.try
{
.try
{

2: leave 40
...
8: leave 23

} // end try block
catch NullReferenceException
{

9: . . .
...
15: leave 16

} // end handler region
16: . . .

} // end try block
fault
{

17: . . .
...
22: endfinally

} // end handler region
} // end try block
23: . . .
filter
{

24: . . .
...
26: endfilter

} // end filter region
{

27: . . .
...
30: leave 41

} // end handler region
} // end try block
finally
{

31: . . .
...
39: endfinally

} // end handler region
40: . . .
41: . . .
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The successors of the EndFinally instruction at the code index 39 are defined via the
set LeaveThroughFin(meth, 39). This set consists of the targets 40 and 41 since the EndFinally
instruction at 39 is the last EndFinally instruction “on the way” from the Leave instructions
at 2 and 30 to their targets.

4.2.5 Type Safety

This section extends the type safety proof in Section 4.1.6 to include the exception handling. We
show that the properties guaranteed by Theorem 4.1.1 are preserved upon adding exceptions.
However, besides those properties, we consider one more type safety property:

Type safety: Every handled exception is an object reference, whose type is derived
from Exception.

The definition of well-typed methods in Section 4.1.5 Definition 4.1.9, which serves as the
basis for the type safety proof, remains unchanged. The theorem asserting type safety of well-
typed methods requires the following lemmas.

Lemma 4.2.7 claims that, after the stackCursor reaches in the Unwind pass the frame con-
taining the suitable handler, pc is in the try block of handler.

Lemma 4.2.7 Let stackCursor = (fr, n) and handler = (fr′, n′) be the stack cursor and the
target handler, respectively, where fr′ = ( , , , , ,mref′). If pass = Unwind and
sameFrame(fr, fr′), then isInTry(pc, h) where h is the handler pointed to by handler, i.e.,
excHA(mref′)(n′).

Proof. By the definitions of matchCatch and matchFilter, we have that isInTry(pc, h) holds if
sameFrame(fr, fr′), pass = Unwind, and n = 0. That the property is preserved can be easily
proved by induction on the run of the exception mechanism EXCCLR. ut

The following lemma states that if the current program counter is in a filter region while
the exception mechanism is running in an Unwind pass, then there exists at least one more
exception whose handling has not been completed yet.

Lemma 4.2.8 If pass = Unwind and there exists h ∈ excHA(meth) such that isInFilter(pc, h),
then passRecStack 6= [ ].

Proof. By pass = Unwind, we derive that exc is defined, i.e., the mechanism is han-
dling an (inner) exception. According to [45, Partition I, §12.4], control is never permit-
ted to enter a filter region except through the exception mechanism. This can only hap-
pen in the StackWalk pass of an (outer) exception whose associated record has been saved
in passRecStack. It then remains to show that this record has not been discarded in the mean-
time. But a record associated to an exception can only be discarded while the exception is
handled in the corresponding suitable handler region. However, this could not have occurred
since the (outer) exception is still in the StackWalk pass. ut

Lemma 4.2.9 shows that if there are no more handlers to be inspected in a Leave pass, then
there cannot be any finally handlers “on the way” from pc to the target of the Leave pass.
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Lemma 4.2.9 If pass = Leave and existsHanWithinFrame(stackCursor) is false, then

{h ∈ excHA(meth) | isFinFromTo(h, pc, target)} = ∅

Proof. Let A be the set {h ∈ excHA(meth) | isFinFromTo(h, pc, target)}. Let us assume that at
the beginning of the Leave pass, i.e., when the stackCursor is pointing to the index 0 in excHA,
the set A is non-empty. However, for every handler in A, say h, there will eventually be a step
in the run of the exception mechanism which examines h for the current Leave pass. When h is
going to be inspected, it is actually removed fromA. The reason is that when h’s handler region
is executed, pc is not anymore in the try block of h. ut

We are now ready to state the theorem asserting type safety of well-typed methods. In
addition to the invariants considered in Section 4.1.6, an exception specific invariant (exc) is
added. This ensures that if the exception mechanism is handling an exception, the exception
type is a subtype of Exception, regardless of the flag wrapNonExc.

Theorem 4.2.1 (Type safety of well-typed methods) Let [fr′1, . . . , fr
′
k−1] be the frameStack

and frk be the current frame. For every i = 1, k− 1, we denote by fri the succession of fr′i.

We assume that the type system and the bytecode structure of the methods in (fri)i satisfy the
conditions stated in Section 4.1.4.2 and Section 4.2.4.1. Moreover, we assume that all methods
of (fri)

k
i=1 are well-typed.

Let fri = (pc∗, locAdr∗, , argAdr∗, evalStack∗,meth∗) be one of the frames (fri)
k
i=1. We

denote by locVal∗ and argVal∗ the functions locVal and argVal derived based on locAdr∗ and
argAdr∗, respectively. If fri is the current frame, we consider initState∗ to be the current ini-
tialization status initState. If fri is not the current frame, we denote by initState∗ the succession
of initState for fri. Let (argZeroTj, evalStackTj)j∈D be a family of type states meth∗ is well-
typable with.

The invariants in Theorem 4.1.1 and (exc) are satisfied at run-time for every frame fri (for
the current frame frk, the invariants (stack1) and (stack2) should hold if switch = Noswitch):

(exc) If ref is an exception reference in passRecStack, then [ ] ` ref : Exception. If exc is
defined, then [ ] ` exc : Exception.

Proof. The proof proceeds similarly with the proof of Theorem 4.1.1, i.e., by induction on the
run of the semantics model CLRE including exception handling. To extend the proof of Theo-
rem 4.1.1, we consider here that the exception mechanism has control, i.e., switch = ExcMech.
Different cases have to be considered depending on pass. We only analyze here the cases when
pass = Unwind and pass = Leave.

Case 1 Assume that the exception mechanism is currently executing an Unwind pass of an
exception, i.e., pass = Unwind.
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Subcase 1.1 If there are still handlers to be inspected in the current frame, let h be the handler
pointed to by the stackCursor.

Subcase 1.1.1 Assume that handler is defined and h matches handler. By the definition
of matchTargetHan, we have that handler and stackCursor are pointing to the same frame, i.e.,
sameFrame(pr1(stackCursor), pr1(handler)). By Lemma 4.2.7, we get isInTry(pc, h). This and
the definitions of succ and excHandlers imply:

• If h is a filter handler, then (handlerStart(h), argZeroTpc, [object]) is an element of
the set succ(meth, pc, argZeroTpc, evalStackTpc);

• If h is a catch handler, then (handlerStart(h), argZeroTpc, [typeExc(h)]) is in the set
succ(meth, pc, argZeroTpc, evalStackTpc).

The exception mechanism runs h’s handler region by switching to normal execution mode: The
new pc is handlerStart(h) (so, (pc) is preserved), the new evalStack is [exc] (if wrapNonExc is
True) or [wrappedExc(exc)] (if wrapNonExc is False), and switch becomes Noswitch. Defini-
tion 4.1.9 (wt5) and (pc) ensure handlerStart(h) ∈ D independent of h’s kind,

[object] vlen evalStackThandlerStart(h) (4.11)

if h is a filter, and

[typeExc(h)] vlen evalStackThandlerStart(h) (4.12)

if h is a catch and typeExc(h) ∈ RefType, and

[boxed(typeExc(h))] vlen evalStackThandlerStart(h) (4.13)

if h is a catch and typeExc(h) ∈ ValueType.
By the induction hypothesis – that is, by (exc) – we have [ ] ` exc : Exception. So, exc is
an object reference and, by Definition 4.1.12, type(exc) � Exception. By this, (4.11) and
Lemma 4.1.5, we get that (stack1) and (stack2) are preserved if h is a filter handler.

If h is a catch handler, by the definition of matchCatch, we have

(wrapNonExc ⇒ actualTypeOf (exc) � typeExc(h))∧
(¬wrapNonExc ⇒ actualTypeOf (wrappedExc(exc)) � typeExc(h))

(4.14)

The invariants (stack1) and (stack2) follow from Lemma 4.1.5, (4.12), (4.13), and (4.14).
Hence, (stack1) and (stack2) are preserved, regardless of h’s kind.

Subcase 1.1.2 The case when h is a matching finally is treated similarly to Subcase 2.1.1.1
except that the new evalStack is empty, and therefore the invariants (stack1) and (stack2) are
obviously preserved.

Subcase 1.1.3 Assume that h is a filter whose filter region contains pc. By
Lemma 4.2.8, passRecStack cannot be empty. This means that switch is still ExcMech after
the exception mechanism executes a step. Consequently, nothing has to be proved for the cur-
rent frame for (stack1) and (stack2). The invariant (pc) simply follows from the induction
hypothesis.
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Subcase 1.1.4 If h is not of any of the above types, then stackCursor is incremented to point
to the next handler. The invariants are simply preserved.

Subcase 1.2 If there are no more handlers to be examined in the current frame, frame is
discarded, and the stackCursor is reset to point to the frame’s caller frame. The execution
model switch is still ExcMech, and therefore the invariants (stack1) and (stack2) are not sup-
posed to hold. The induction hypothesis implies (pc).

Case 2 Consider now that the exception mechanism is in a Leave pass, i.e., pass = Leave.

Subcase 2.1 Assume that there are still handlers to be examined in the current frame. Let h
be the handler pointed to by the stackCursor.

Subcase 2.1.1 If h is a finally handler “on the way” from the pc to target, i.e.,
isFinFromTo(h, pc, target), then the exception mechanism runs h’s handler region by switch-
ing to the normal execution mode: The new pc is handlerStart(h), the new evalStack is
[ ], and switch is Noswitch. From the definitions of succ and excHandlers, we know that
(handlerStart(h), argZeroTpc, [ ]) is an element of succ(meth, pc, argZeroTpc, evalStackTpc). By
this, (pc), and Definition 4.1.9 (wt6), we derive handlerStart(h) ∈ D and also [ ] vlen

evalStackThandlerStart(h). This means that (pc), (stack1), and (stack2) are preserved for the cur-
rent frame (the last two invariants hold since evalStackThandlerStart(h) is necessarily [ ]).

Subcase 2.1.2 If h is real handler whose handler region is “exited on the way” from
the pc to target, then a pass record is popped from passRecStack. So, no invariant is affected.

Subcase 2.2.2 Let us assume that there are no more handlers to be inspected in the cur-
rent frame. The exception mechanism switches to normal execution mode: pc is set to target,
evalStack to [ ], switch to Noswitch, and the current Leave record is popped from passRecStack.
The only invariants that have to be proved are (pc), (stack1), and (stack2). By Lemma 4.2.9,
{h ∈ excHA(meth) | isFinFromTo(h, pc, target)} is empty. From the definition of succ, we have
that (target, argZeroTpc, [ ]) is in succ(meth, pc, argZeroTpc, evalStackTpc). From this, (pc), and
Definition 4.1.9 (wt6), we obtain target ∈ D and [ ] vlen evalStackT target. Therefore, (pc),
(stack1), and (stack2) are preserved for the current frame (the last two invariants hold since
evalStackT target is [ ]). ut

Remark 4.2.7 As pointed out in the proof of Theorem 4.1.1, Subcase 2.1, the invariants
(stack1) and (stack2) are only guaranteed to hold if switch = Noswitch. The semantics of
the exception handling confirms once again this aspect. If, for instance, a method call receives
a null as a this pointer, null is popped from the evaluation stack and a ”null” check
is done. Consequently, a NullReferenceException is then raised. So, while the stack
state corresponding to the call instruction remains unchanged, the evaluation stack has one
less value. Obviously, (stack1) and (stack2) are not satisfied. However, this is alright since the
evaluation stack is not accessed as long as switch = ExcMech.
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4.3 The Generics

Kennedy and Syme proposed adding support for generics in the CLR [88]. Their proposal was
at the basis of the generics implementation in the .NET Framework (v2.0) [3]. Generics are an
extension to the CLR that allows to define types and methods parameterized in terms of types.
That means, for example, that the same method implementation might be able to deal with
both int32 and object, without knowing in advance which type it is working with. Some
strengths of the CLR generics are verification-time type safety, efficiency, and clarity.

A class or an interface whose declaration is parameterized by one or more generic param-
eters is called generic type. A method declared within a type, whose signature includes one or
more generic parameters (not present in the type declaration itself) is called generic method.
When the generic code is referenced by consumer code, the generic types and methods are
instantiated by replacing every generic parameter with a generic argument.

To be useful, generic code needs to be able to call methods other than those defined
by object. As the generic code is only valid if it works for every possible constructed generic
instantiation, CLR supports a special feature called constraints (also known as F-bounded poly-
morphism [33]). The constraints are an optional component of a generic type or method def-
inition. A generic type may define any number of constraints, and each constraint applies an
arbitrary limitation on the types that can be used as generic arguments. By restricting the types
that can be used in the construction of a generic type, the restrictions on the code that references
the constrained type parameter are relaxed.

To allow conversions between related (but distinct) instances of the same generic type, the
CLR supports variance on generic parameters, in the form of covariant generic arguments and
contravariant generic arguments. For simplicity, variance is only permitted on generic inter-
faces. Covariance means that the subtype relationship of the generic type varies directly with
the relationship of the generic argument, whereas the contravariance means that the subtype
relationship of the generic type varies inversely with the relationship of the generic argument.
An example of a language that provides support for covariance is Eiffel [46]. The contravari-
ance is supported, for instance, by Java (v5.0) [67], Sather [80], Scala [13], and OCaml [12].
The .NET compliant languages not willing to support variance can ignore this feature and treat
all generic parameters as non-variant.

Challenges Several versions of Eiffel turned out to be unsafe also due to the variance on
generic parameters [37, 75]. Thus, in the context of generic parameter variance, virtual method
calls are problematic in ensuring type safety. Let us assume, for example, that the bytecode
contains a virtual call of the method T::M. Let T ′::M be the method that will be invoked at
run-time. The following aspects are critical for type safety:

• due to the variance, the signature of T ′::M may not match the signature of T::M; Conse-
quently, the following potential risks for type safety may arise: (1) the arguments of T::M
ensured to be of T::M’s argument types might be treated in T ′::M as being of another
types, namely of T ′::M’s argument types; (2) the return value of T ′::M guaranteed to be
of T ′::M’s return type might be handled in the frame containing the virtual call of T::M
as being of another type, namely of T::M’s return type.
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• if T::M is a generic method, T ′::M should also be generic, but its constraint types may
not match the corresponding constraint types of T::M. This is a potential risk for type
safety as T::M’s generic arguments, restricted by T::M’s constraints, might be treated in
T ′::M as being bounded by other constraints, namely by T ′::M’s constraint types. As the
latter constraints might not be satisfied by T::M’s generic arguments, type safety would
be violated.

Another critical issue concerns the validity of the run-time instantiation of generic types
and methods. Let us assume, for example, that the types (Ui)

n−1
i=0 satisfy at verification time

the constraints associated to the type C〈U0, . . . ,Un−1〉. As any Ui can involve generic pa-
rameters, one has to make sure that after (Ui)

n−1
i=0 get instantiated at run-time with the generic

arguments (V i)
n−1
i=0 , also (V i)

n−1
i=0 satisfy the constraints.

Of high risk for type safety turns out to be the boxing of nullable types. Through nullable
types, CLR provides support for nullable forms of all value types. A nullable type is a generic
value type (that implements no interface) of the form Nullable〈T〉, where T can only be
instantiated with value types, other than nullable types. Let NullableType denote the (recursively
defined) set of nullable types {Nullable〈T〉 | T ∈ ValueType \ NullableType}.

A nullable type Nullable〈T〉 combines a value of the underlying type T with a boolean
null indicator. More precisely, an instance of a type Nullable〈T〉 has two instance fields:
HasValue, of type bool (however, remember that the booleans are treated as int32 val-
ues), indicating whether the underlying value is defined, and Value, of type T , carrying the
defined value (if any). Boxing nullable types results always in situations when the dynamic
(run-time) types of the boxed values do not match the static (verification) types predicted by
the bytecode verification. Surprisingly, the cause of this problem, i.e., the special semantics of
boxing nullable types, is not documented in the ECMA Standard [45]. The only information
we have originates from [109, 42].

Section plan The remainder of this section is organized as follows. Section 4.3.1 gives a for-
malization of the extension with generics of the CLR type system. Section 4.3.2 defines CLRG

by refining the operational semantics model CLRE . Section 4.3.3 deals with the changes to
the bytecode verification. Finally, Section 4.3.4 relates the type system with generics and the
operational semantics model CLRG in theorem asserting type safety of well-typed methods.

4.3.1 The Polymorphic Type System

This section extends the type system defined in Section 4.1.2 by formally introducing the
generic types and methods described above. The universe Type is extended with generic pa-
rameters, elements of GenericParam, as shown in Table 4.16. Table 4.17 gathers the selector
functions which we define to deal with generics25.

In the bytecode, the generic parameters are referred to as !i, whereas the method generic
parameters are addressed as !!i. Thus, !i denotes the i-th type generic parameter (numbered
from left-to-right in the relevant type declaration). Similarly, !!i designates the i-th method
generic parameter (numbered from left-to-right in the relevant method declaration). The uni-
verse GenericParam is defined relative to a given (possibly generic) type or method26.
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Universe of types Typical use
Type = RefType ∪ ValueType ∪ GenericParam T , T ′, T ′′

GenericParam !i, !!i, X, X1, . . . ,Xn

Table 4.16: Type system extension with generics.

Function definition Function name
genParamNo : Map(GenericType ∪MRef ,N) generic type/method’s arity
genArg : Map(GenericType ∪MRef ,List(Type \ PointerType)) generic argument list
constrT

i : Type \ PointerType T’s i-th constraint
constrmref

i : Type \ PointerType mref ’s i-th constraint
(varI ′n

i )n−1
i=0 : List({+,-, ∅}) I ′n’s variances array

Table 4.17: Generics specific selector functions.

Let GenericType stand for the universe of generic types. Only the classes and interfaces can
be generic: GenericType ⊆ Class ∪ Interface . Typically, T ′n represents the (raw) name of a
generic type T with n generic parameters. As a convention, we assume that GenericType has
only instantiated generic types and not generic types’ raw names.

Every generic parameter can have an optional constraint consisting of a type27. Every
generic argument which replaces a generic parameter should be compatible when boxed with
the type given in the corresponding constraint (see Definition 4.3.4 for the compatibility relation
for verification types). This means, for instance, that every value type can be used as generic
argument for a generic parameter constrained by object.

A covariant generic parameter is marked with “+” in the interface declaration, whereas “-”
is used to denote a contravariant generic parameter. For the sake of notation, we mark with “∅”
the non-variant parameters.

The subtype relation � of Definition 4.1.1 is extended to generic types. The relation is
defined for both open generic types, i.e., instantiations of generic types that have not been
supplied all generic arguments for their generic parameters (because they are open to accepting
more generic arguments), and closed generic types, i.e., instantiations of generic types which
have been supplied all of their generic arguments. The definition captures the intuitive notion
of generic parameters variance. In this definition, T ◦ [Ui/Xi]

n−1
i=0 designates the type T , where

each generic parameter Xi is substituted by the type Ui.

Definition 4.3.1 (Subtype relation) The subtype relation � is the least reflexive and transitive
relation such that

• if T ∈ Class ∪ Interface and T ′ is object, or
25Several examples illustrating the definitions of the selector functions are included in [59, 60].
26As a matter of fact, GenericParam should be defined as a map assigning to every (possibly generic)

type/method the set of its generic parameters. However, as the parameters’ reference is bounded to the rele-
vant generic type/method bodies, we take the liberty to define GenericParam as a universe, making sure that no
confusion can occur.

27This differs slightly from [45], which allows a constraint to have more than one type. The restriction does not
reduce the complexity, but simplifies the exposition.
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• if T ∈ ValueType and T ′ is System.ValueType, or

• if T ∈ ObjClass \ GenericType and T ′ is a base class of T or an interface implemented
by T, or

• if T ∈ Interface \ GenericType and T ′ is an interface implemented by T, or

• if T ∈ ValueClass \ GenericType and T ′ is an interface implemented by T, or

• if T is C〈U0, . . . ,Un−1〉, where C ′n is a generic object class with the generic parameters
(Xi)

n−1
i=0 , T ′′ is a base class of C ′n or an interface implemented by C ′n, and T ′ is T ′′ ◦

[Ui/Xi]
n−1
i=0 , or

• if T is I〈U0, . . . ,Un−1〉, where I ′n is a generic interface with the generic parameters
(Xi)

n−1
i=0 , T ′′ is an interface implemented by I ′n, and T ′ is T ′′ ◦ [Ui/Xi]

n−1
i=0 , or

• if T is C〈U0, . . . ,Un−1〉, where C ′n is a generic value class with the generic parameters
(Xi)

n−1
i=0 , T ′′ is an interface implemented by C ′n, and T ′ is T ′′ ◦ [Ui/Xi]

n−1
i=0 , or

• if T is I〈U0, . . . ,Un−1〉 and T ′ is I〈V0, . . . ,Vn−1〉, and for every i = 0, n− 1 the following
conditions hold:

– if varI ′n
i = ∅ or Vi ∈ ValueType or Vi ∈ GenericParam, then Ui = Vi;

– if varI ′n
i = +, then Ui � Vi;

– if varI ′n
i = -, then Vi � Ui;

then T � T ′.

Since it is possible for different methods to have identical signatures when the declaring
types are instantiated and consequently ambiguous references, the method references have the
return type and parameter types uninstantiated.

Example 4.3.1 Let us consider the skeleton of the generic class C′2 in Figure 4.21. One
can easily notice that the generic instantiation C〈string,string〉 contains two generic
methods, which can only be distinguished through their uninstantiated signatures, namely
!0C〈string,string〉 :: M〈Z〉(!0,!!0) and !1C〈string,string〉 :: M〈Z〉(!1,!!0).
To simplify a few aspects of our formal development, we assume that the environment specific
functions retType and paramTypes are defined with respect to these uninstantiated signatures.
This means, for instance, that it holds:

retType(!0C〈string,string〉 :: M〈Z〉(!0,!!0)) = !0

paramTypes(!0C〈string,string〉 :: M〈Z〉(!0,!!0)) = [!0,!!0]

To get the instantiated return type and parameter types of a generic method reference, we
define inst : Map(MRef , {[Ui/Xi]

n
i=0 | (Ui,Xi) ∈ Type × GenericParam for every i = 0, n}),

which assigns to every generic method the type substitution (or simply substitution when it is
obvious that we are talking about types) that should be applied to the method return type and
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Figure 4.21 Example: uninstantiated method return type and parameter types.
.class public auto ansi C′2〈 X, Y 〉 extends System.Object
{

.field public !0 F

.method instance !0 M 〈 ( I〈 !0 〉 ) Z〉 (!0 i, !!0 j)
{

. . .
}
.method instance !1 M〈Z〉 (!1 i, !!0 j)
{

. . .
5: box !!0
. . .

}
. . .

}

.class interface private abstract auto ansi I′1〈X〉
{

. . .
}

signature. However, due to technical considerations, the ”instantiation” function inst is also
defined for non-generic methods defined by both generic and non-generic types. If the method
is not generic and is declared by a non-generic type, inst returns the empty substitution ε. If
the method is not generic, but is declared by a generic type, then inst yields the generic type’s
underlying instantiation. Similarly, if the method is generic and declared by a non-generic
type, then inst generates the generic method’s underlying instantiation. Finally, if the method is
generic and declared by a generic type, then inst returns the substitution formed by composing
the generic type’s and method’s underlying instantiations. Note that the same generic parameter
may occur in both the range and domain of a type substitution.

Definition 4.3.2 Given a method T::M, we define

inst(T::M) =



ε, if T 6∈ GenericType and
T::M is not generic;

[genArg(T)(i)/!i]genParamNo(T)−1
i=0 , if T ∈ GenericType and

T::M is not generic;
[genArg(T::M)(i)/!!i]genParamNo(T ::M)−1

i=0 , if T 6∈ GenericType and
T::M is generic;

[genArg(T)(i)/!i]genParamNo(T)−1
i=0 · if T ∈ GenericType and

[genArg(T::M)(i)/!!i]genParamNo(T ::M)−1
i=0 , T::M is generic.

Example 4.3.2 To illustrate the intuition behind the definition of inst, consider again the
generic class C′2 defined in Figure 4.21. As C〈string,string〉 :: M〈object〉 is generic
and declared by a generic type, we have:
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inst(!1C〈string,string〉 :: M〈object〉(!1,!!0))
= [string/!0,string/!1] ◦ [object/!!0]
= [string/!0,string/!1,object/!!0]

Technical Conventions Similarly as the return type retType and parameter types paramTypes
(and implicitly also argTypes), the local signature locTypes is considered uninstantiated in our
approach. In contrast, constr and fieldType are considered to return results instantiated accord-
ing to the underlying context, unless explicitly stated otherwise.

Example 4.3.3 Let us consider again the generic class C′2 in Figure 4.21. Following the
above technical conventions, the constraint type of the generic parameter !!0 associated
to !0C〈string,string〉 :: M〈object〉(!0,!!0) is I〈string〉, as opposed to I〈!0〉.
Also, the declared type of the field C〈string,string〉::F is string, as opposed to !0.

4.3.2 The Bytecode Semantics

In this section, we refine the semantics of the bytecode language with generics. Besides the
polymorphic type system and technical conventions stipulated in Section 4.3.1, there is one
more extension concerning the static semantics. We consider that the function code yields
instructions which are not instantiated relative to the underlying context. This is for purely
technical reasons. When an instruction is executed at run-time, the possible open generic types
referenced by the instruction are priory instantiated. As we would like to keep the correspon-
dence between the uninstantiated instructions on which the bytecode verification is performed
and the instantiated instructions being executed, we consider that code returns uninstantiated
instructions.

Example 4.3.4 To illustrate the above assumption, let us have another look at the class C′2 in
Figure 4.21. In the second method, the instruction corresponding to the index 5 returned by
the function code is Box(!!0), regardless of the instantiation which is applied to the method.
Formally,

code(C〈string,string〉 :: M〈object〉(!0,!!0))(5) = Box(!!0)

The operational semantics model CLRE for the bytecode language with exceptions is refined
by CLRG for the bytecode language with generics. The above convention on the function code
is reflected in the refinement of the execution scheme execScheme:

execScheme ≡
if switch = ExcMech then

EXCCLR
elseif switch = Noswitch then

EXECCLR(code(pc) ◦ inst(meth))
else SWITCHCLR



168 CHAPTER 4. TYPE SAFETY OF CLR

The set of bytecode instructions is extended with the prefix Constrained, informally de-
scribed in Table 4.18, which is permitted only on CallVirt instructions. The operational se-
mantics rules for the CallVirt instruction prefixed by Constrained and the operational semantics
rules, defined in Sections 4.1.3.1 and 4.2.3.4, affected by the run-time specialization of generic
types/methods are defined, respectively, refined in Figures 4.3.2, 4.3.2, and 4.3.2.

Every instruction is executed under the assumption that the current method meth is instan-
tiated (specialized), i.e., every generic parameter of the enclosing type or method is replaced
by the corresponding generic argument. Consequently, the substitution given by inst(meth) is
applied to every instruction. If neither the enclosing class classNm(meth) nor meth is generic,
then inst(meth) is, according to Definition 4.3.2, the empty substitution ε. It then turns out that
the semantics rules defined in this section (except of that for the prefixed CallVirt instruction)
are refinements for the rules defined in Section 4.1.3.1 and 4.2.3.4.

There are some non-obvious refinements triggered by the extension with generics: the box-
ing of nullable types, the unboxing to nullable types, and the dynamic method dispatch.

Boxing nullable types It occurs when the Box instruction’s type token argument is a
type Nullable〈T〉 or a generic parameter which is instantiated (by means of inst(meth)) with
a type Nullable〈T〉. When an instance val of a nullable type Nullable〈T〉 is boxed, the
below defined macro BOXNULLABLE is executed. If val is not defined, i.e., val(HasValue)
is False, then the result of boxing is a null reference. If val is defined, i.e., val(HasValue)
is True, then val’s underlying value val(Value) is boxed (through the NewBox macro) and not
the Nullable instance val itself28. In particular, this means that “Nullable” is suppressed in
the run-time type of the newly created object. As we will point out in Section 4.3.3, this makes
type safety a concern.

BOXNULLABLE(val,Nullable〈T〉) ≡
let ref = if val(HasValue) then NewBox(val(Value),T)

else null in
evalStack := pop(evalStack) · [ref ]

Unboxing back to nullable types If the type token argument of an Unbox or Unbox.Any
instruction is a nullable type Nullable〈T〉 or a generic parameter instantiated with a
type Nullable〈T〉, then CLRG allocates and initializes a new Nullable〈T〉 instance:

• if the top stack element, say ref , is not null, then Value is set to whatever T value has
been boxed inside ref , and HasValue becomes True.

• if ref is the null reference, then HasValue is set to False and Value becomes the
default value of type T .

If the value ref is not a boxed object of type T , as opposed to the type Nullable〈T〉, then
an InvalidCastException is thrown.

28The reason behind this design is to avoid have a non-null box containing a null, along the same lines as
one cannot construct types of the form Nullable〈Nullable〈T〉〉.
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Instruction Informal description
Constrained(T ′′).CallVirt(T ′, T::M) Call the virtual method T::M, of return type T ′,

on a generic parameter T ′′.

Table 4.18: The generic specific instructions.

As usually, the Unbox instruction pushes a pointer to the newly created Nullable〈T〉
instance onto the stack, whereas the Unbox.Any instruction loads the instance.

To unbox back to nullable types, we define the macro UNBOXNULLABLE. This takes as
arguments the to-be-unboxed object, the nullable type, and a boolean indicating whether an
address is required to be pushed on the stack (the case of the Unbox instruction) or a value (the
case of the Unbox.Any instruction).

Remark 4.3.1 Note that the creation of the nullable instance represents, besides the value class
instance creation with NewObj, a new case when the allocated address is considered for the
local memory pool locPool. The reason behind this modelling decision is the one pointed out in
Remark 4.1.10, namely the risk of ”loosing” the typing of the allocated address.

UNBOXNULLABLE(ref ,Nullable〈T〉, reqAdr) ≡
if ref = null ∨ actualTypeOf (ref ) � T then

let adr = new(Adr,Nullable〈T〉) in
locPool := locPool ∪ {(adr,Nullable〈T〉)}
if reqAdr then evalStack := pop(evalStack) · [adr]
else evalStack := pop(evalStack) · [memVal(adr,Nullable〈T〉)]
let (val, val′) = if ref = null then (0, defVal(T))

else (1,memVal(addressOf (ref ),T)) in
WRITEMEM(fieldAdr(adr,Nullable〈T〉::HasValue),bool, val)
WRITEMEM(fieldAdr(adr,Nullable〈T〉::Value),T, val′)

else RAISE(InvalidCastException)

Dynamic method dispatch The ECMA Standard [45] does not specify what is the effect of
the generic parameter variance on the dynamical method lookup. The definition of lookUp in
Section 4.1.2 is refined to take the variance into account.

Definition 4.3.3 (Method lookup) For a possibly generic29 method T ′::M〈T0, . . . ,Tn−1〉 and
a type T, we define:

29If the method is not generic, the generic arguments (Ti)i should simply be omitted.
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Figure 4.22 The refined operational semantics rules.
EXECCLR(instr) ≡ match instr

...
LoadLoc(n) ◦ inst(meth) → let T = locTypes(n) ◦ inst(meth) in

evalStack := evalStack · [memVal(locAdr(n), T)]
pc := pc + 1

StoreLoc(n) ◦ inst(meth) → let (evalStack′, [val]) = split(evalStack, 1) in
WRITEMEM(locAdr(n), locTypes(n) ◦ inst(meth), val)
evalStack := evalStack′

pc := pc + 1

LoadArg(n) ◦ inst(meth) → let T = argTypes(n) ◦ inst(meth) in
evalStack := evalStack · [memVal(argAdr(n), T)]
pc := pc + 1

StoreArg(n) ◦ inst(meth) → let (evalStack′, [val]) = split(evalStack, 1) in
WRITEMEM(argAdr(n), argTypes(n) ◦ inst(meth), val)
evalStack := evalStack′

pc := pc + 1

Call(tail, , T::M) ◦ inst(meth) → if T ◦ inst(meth) = System.Delegate then
let [ref , ref ′] = take(evalStack, argNo(T::M)) in

if M = Combine then
DELEGATECOMBINE(T ◦ inst(meth), ref , ref ′)

if M = Remove then
DELEGATEREMOVE(T ◦ inst(meth), ref , ref ′)

if M = op Equality then
DELEGATEEQUAL(ref , ref ′)

else let (evalStack′, [ref ] · vals) = split(evalStack, argNo(T::M)) in
if ref 6= null then

if T ◦ inst(meth) ∈ DelegateClass then
if M = length then

evalStack := evalStack′ · [length(invocationList(ref ))]
if M = invoke then

DELEGATECALL(ref , vals)
else evalStack := evalStack′

switch := Invoke(tail, T::M ◦ inst(meth), [ref ] · vals)
else RAISE(NullReferenceException)

CallVirt(tail, , T::M) ◦ inst(meth) → let (evalStack′, vals) = split(evalStack, argNo(T::M)) in
evalStack := evalStack′

VIRTCALL(tail, T::M ◦ inst(meth), vals)
Constrained(T ′′).
CallVirt( , T::M) ◦ inst(meth) → let (evalStack′, [adr] · vals) = split(evalStack, argNo(T::M)) in

evalStack := evalStack′

if T ′′ ◦ inst(meth) ∈ RefType then
let ref = memVal(adr, T ′′ ◦ inst(meth)) in

VIRTCALL(False, T::M ◦ inst(meth), [ref ] · vals)
elseif T ′′ ◦ inst(meth) ∈ ValueClass ∧
T ′′::M ◦ inst(meth) implements T::M ◦ inst(meth) then

switch := Invoke(False, T ′′::M ◦ inst(meth), [adr] · vals)
else let ref = NewBox(memVal(adr, T ′′ ◦ inst(meth)), T ′′ ◦ inst(meth)) in

VIRTCALL(False, T::M ◦ inst(meth), [ref ] · vals)

Return ◦ inst(meth) → if retType(meth) ◦ inst(meth) = void then RESULT([ ])
else RESULT([top(evalStack)])
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Figure 4.23 The refined operational semantics rules (continued).
EXECCLR(instr) ≡ match instr

...
NewObj(C::.ctor) ◦ inst(meth) → let vals = take(evalStack, argNo(C::.ctor)− 1) in

if C ◦ inst(meth) ∈ DelegateClass then
DELEGATECREATE(C ◦ inst(meth), vals)

elseif C ◦ inst(meth) ∈ ObjClass then
OBJECTCREATE(C::.ctor ◦ inst(meth), vals)

else VALUECLASSCREATE(C::.ctor ◦ inst(meth), vals)

LoadField(T, C::F) ◦ inst(meth) → let (evalStack′, [val]) = split(evalStack, 1) in
if val 6= null then

let val′ = memVal(fieldAdr(val, C::F ◦ inst(meth)), T ◦ inst(meth)) in
evalStack := evalStack′ · [val′]
pc := pc + 1

else RAISE(NullReferenceException)

StoreField(T, C::F) ◦ inst(meth) → let (evalStack′, [val, val′]) = split(evalStack, 2) in
if val 6= null then

WRITEMEM(fieldAdr(val, C::F ◦ inst(meth)), T, val′)
evalStack := evalStack′

pc := pc + 1
else RAISE(NullReferenceException)

LoadFieldA( , C::F) ◦ inst(meth) → let (evalStack′, [val]) = split(evalStack, 1) in
if val 6= null then

evalStack := evalStack′ · [fieldAdr(val, C::F ◦ inst(meth))]
pc := pc + 1

else RAISE(NullReferenceException)

MkRefAny(T) ◦ inst(meth) → let (evalStack′, [adr]) = split(evalStack, 1) in
let tr = new(TypedRef ) in

typedRefAdr(tr) := adr
typedRefType(tr) := T ◦ inst(meth)
evalStack := evalStack′ · [tr]
pc := pc + 1

Box(T) ◦ inst(meth) → pc := pc + 1
if T ◦ inst(meth) ∈ ValueType then

let (evalStack′, [val]) = split(evalStack, 1) in
if T ◦ inst(meth) ∈ NullableType then

BOXNULLABLE(val, T ◦ inst(meth))
else let ref = NewBox(val, T ◦ inst(meth)) in

evalStack := evalStack′ · [ref ]

Unbox(T) ◦ inst(meth) → let (evalStack′, [ref ]) = split(evalStack, 1) in
if T ◦ inst(meth) ∈ NullableType then

UNBOXNULLABLE(ref , T ◦ inst(meth), True)
elseif ref 6= null ∧ actualTypeOf (ref ) � T ◦ inst(meth) then

evalStack := evalStack′ · [addressOf (ref )]
pc := pc + 1

elseif ref = null then RAISE(NullReferenceException)
else RAISE(InvalidCastException)
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lookUp(T,T ′::M〈T0, . . . ,Tn−1〉) =
if T declares a non-abstract method M ∧

((T = T ′) ∨ (T ′ ∈ ObjClass ⇒ T::M overrides T ′::M))∧
(T ′ ∈ Interface \ GenericType ⇒ T::M implements T ′::M)∧
(T ′ = I〈U0, . . . ,Um−1〉 ∈ Interface ∩ GenericType ⇒

T::M implements I〈V0, . . . ,Vm−1〉::M ∧
∀ j = 0,m− 1 : (varI ′m

j = +⇒ Vj � Uj)∧
(varI ′m

j = -⇒ Uj � Vj)∧
(varI ′m

j = ∅ ⇒ Uj = Vj))
then T::M〈T0, . . . ,Tn−1〉
elseif T = object then undef
else lookUp(T ′′,T ′::M〈T0, . . . ,Tn−1〉) where T ′′ is the direct base class of T

The most significant change occurs when lookUp is applied to a method declared by a generic
interface. In such a case, the method selected by lookUp may not override or implement the
original method. As one can see in Example 4.3.6, this aspect makes type safety a concern.

As stated at the end of Section 4.3.1, the generic method references have the signatures
uninstantiated. Therefore, for example, the return type (included in the signature) of a method
which overrides/implements another method may not match the return type (included in the
signature) of the overridden/implemented method. To cover this aspect, the conditions [over-
ride/implement], defined in Section 4.1.2, are refined below. Moreover, [override/implement]
now also includes the conditions that should be satisfied by the constraint types of the overrid-
ing/implementing method and overridden/implemented method.

[override/implement] If T::M ∈ MRef overrides/implements T ′::M ∈ MRef , then:

(at) argNo(T::M) = argNo(T ′::M) and for every i = 1, argNo(T::M)− 1,

argTypes(T::M)(i) ◦ inst(T::M) = argTypes(T ′::M)(i) ◦ inst(T ′::M)

(rt) retType(T::M) ◦ inst(T::M) = retType(T ′::M) ◦ inst(T ′::M)

(ct) genParamNo(T::M) = genParamNo(T ′::M) and for every j = 0, genParamNo(T ′::M)−1,

constrT ::M
j is not defined or constrT ′::M

j � constrT ::M
j

Remark 4.3.2 Concerning (ct), [45, Partition II, §9.9] states that any constraint type specified
by the overriding/implementing method should be “no more restrictive” than the corresponding
constraint type specified in the overridden/implemented method. However, this does not match
the .NET Framework (v2.0) implementation [3], where the bytecode verification checks whether
one of the following conditions is satisfied: either the constraint type in the overriding method
is not defined, i.e., as it would have been object, or the (assumably instantiated) constraint
types coincide.
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Figure 4.24 The refined operational semantics rules (continued).
EXECCLR(instr) ≡ match instr

...
Unbox.Any(T) ◦ inst(meth) → let (evalStack′, [ref ]) = split(evalStack, 1) in

if T ◦ inst(meth) ∈ ValueType then
if T ◦ inst(meth) ∈ NullableType then

UNBOXNULLABLE(ref , T ◦ inst(meth), False)
elseif ref 6= null ∧ actualTypeOf (ref ) = T ◦ inst(meth) then

evalStack := evalStack′ · [memVal(addressOf (ref ), T ◦ inst(meth))]
pc := pc + 1

elseif ref = null then RAISE(NullReferenceException)
elseif actualTypeOf (ref ) 6= T ◦ inst(meth) then

RAISE(InvalidCastException)
elseif ref = null ∨ actualTypeOf (ref ) � T ◦ inst(meth) then

pc := pc + 1
elseif RAISE(InvalidCastException)

RefAnyVal(T) ◦ inst(meth) → let (evalStack′, [tr]) = split(evalStack, 1) in
if T ◦ inst(meth) = typedRefType(tr) then

evalStack := evalStack′ · [typedRefAdr(tr)]
pc := pc + 1

else RAISE(InvalidCastException)
CastClass(T) ◦ inst(meth) → let ref = top(evalStack) in

if ref = null ∨ actualTypeOf (ref ) � T ◦ inst(meth) then
pc := pc + 1

else RAISE(InvalidCastException)

IsInstance(T) ◦ inst(meth) → let (evalStack′, [ref ]) = split(evalStack, 1) in
pc := pc + 1
if ref 6= null ∧ actualTypeOf (ref ) 6� T ◦ inst(meth) then

evalStack := evalStack′ · [null]

LoadFtn(T::M) ◦ inst(meth) → let mp = new(MethPtr, T::M ◦ inst(meth)) in
evalStack := evalStack · [mp]
pc := pc + 1

LoadVirtFtn(T::M) ◦ inst(meth) → let (evalStack′, [ref ]) = split(evalStack, 1) in
if ref 6= null then

let T ′ = actualTypeOf (ref ) in
let mp = new(MethPtr, lookUp(T ′, T::M ◦ inst(meth))) in

evalStack := evalStack′ · [mp]
pc := pc + 1

else RAISE(NullReferenceException)

Let us now look in detail at the Constrained prefix, permitted only on a CallVirt instruction.
The Constrained(T ′′).CallVirt(T ′,T::M) instruction30 calls the virtual method T::M, of return
type T ′, on a value of a generic parameter T ′′. It pops the necessary number of arguments from
the evalStack. The first value is expected to be a pointer, evaluated to an address, say adr. There
are three cases that can occur. If T ′′ is instantiated with a reference type, then adr is dereferenced
and passed as the this pointer. If T ′′ is instantiated with a value class that implements T::M,
then adr is passed as the this pointer to the invocation of the method implemented by the

30A Constrained call cannot be tail as at most one prefix is allowed on the CallVirt instructions.
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Figure 4.25 Example: constrained call.
class C〈T〉 .method public hidebysig instance void M() cil managed
{ {

public T F; 0: ldarg 0
public void M() 1: ldflda !0 class C ’1〈!0〉::F
{ 2: constrained.!0

F.ToString(); 3: callvirt instance string System.Object::ToString()
} 4: pop

} 5: ret
}

value class. If T ′′ is instantiated with a value class which does not implement T::M31, then
adr is dereferenced, boxed, and passed as the this pointer to the virtual call of T::M. Note
that, in the macro VIRTCALL, the function lookUp is applied to T::M ◦ inst(meth), i.e., to the
method T::M where only the generic parameters occurring in T and possibly in the generic
argument list of M are replaced by the generic arguments indicated in inst(meth).

The Constrained prefix has been introduced to support the compilers generating generic
code. As the CallVirt instruction is not allowed on value classes, the compilers should effec-
tively perform the this pointer transformation outlined above at compile time, depending on
the type of the pointer and the method being called. One cannot do this transformation at com-
pile time, however, when the pointer is a generic type (which is obviously unknown at compile
time). The Constrained prefix is needed to get rid of this inconvenience: It allows compilers to
make a virtual call in an uniform way, i.e., regardless of whether the pointer is a value type or
reference type.

Example 4.3.5 Figure 4.25 contains a C] generic class and the bytecode for its method, where
the virtual call F.ToString() is compiled into a CallVirt instruction prefixed by Constrained.

4.3.3 The Bytecode Verification

In this section, we refine the bytecode verification specification to accommodate the generics.
Section 4.3.3.1 specifies the restrictions on the verification type system, required to guarantee
type safety. The verification specific functions check and succ are refined in Sections 4.3.3.2
and 4.3.3.3, respectively.

4.3.3.1 The Verification Type System

The verification types are described by the same universe VerificationType in Table 4.9, where
the universe Type has been refined as shown in Table 4.16. The compatibility relation for veri-
fication types is refined as follows:

Definition 4.3.4 (Compatible verification types) The relation v, for verification types, is the
least reflexive and transitive relation such that

31This is the case when the method to be invoked is declared by the base class of the value class, i.e.,
System.ValueType, or object, and not overridden by the value class.
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• if T is Null and T ′ ∈ ObjClass ∪ Interface ∪ BoxedType, or

• if T ∈ ObjClass ∪ Interface ∪ BoxedType and T ′ is object, or

• if T ∈ BoxedType and T ′ is System.ValueType, or

• if T ∈ ObjClass \ GenericType and T ′ is a base class of T or an interface implemented
by T, or

• if T ∈ Interface \ GenericType and T ′ is an interface implemented by T, or

• if T is boxed(T ′′), where T ′′ ∈ ValueType\GenericType and T ′ an interface implemented
by T ′′, or

• if T is boxed(X), where X is a generic parameter constrained by T ′, or

• if T is C〈U0, . . . ,Un−1〉, where C ′n is a generic object class with the generic parameters
(Xi)

n−1
i=0 , T ′′ is a base class of C ′n or an interface implemented by C ′n, and T ′ is T ′′ ◦

[Ui/Xi]
n−1
i=0 , or

• if T is I〈U0, . . . ,Un−1〉, where I ′n is a generic interface with the generic parameters
(Xi)

n−1
i=0 , T ′′ is an interface implemented by I ′n, and T ′ is T ′′ ◦ [Ui/Xi]

n−1
i=0 , or

• if T is boxed(C〈U0, . . . ,Un−1〉), where C ′n is a generic value class with the generic pa-
rameters (Xi)

n−1
i=0 , T ′′ is an interface implemented by C ′n, and T ′ is T ′′ ◦ [Ui/Xi]

n−1
i=0 ,

or

• if T is I〈U0, . . . ,Un−1〉 and T ′ is I〈V0, . . . ,Vn−1〉, and for every i = 0, n− 1 the following
conditions hold:

– if varI ′n
i = ∅ or Vi ∈ ValueType or Vi ∈ GenericParam, then Ui = Vi;

– if varI ′n
i = +, then Ui � Vi;

– if varI ′n
i = -, then Vi � Ui;

then T v T ′.

Definition 4.1.8 of compatible delegate classes and method references is refined as a result
of the convention that argTypes and retType are uninstantiated.

Definition 4.3.5 A delegate class DC is compatible with a method mref if the following condi-
tions are matched:

• argTypes(DC::Invoke)(i) v argTypes(mref)(i) ◦ inst(mref),
for every i = 1, argNo(mref)− 1

• retType(DC::Invoke) = retType(mref) = void or
retType(mref) ◦ inst(mref) v retType(DC::Invoke).



176 CHAPTER 4. TYPE SAFETY OF CLR

It is generally believed that one has to use contravariance when (static) type safety is re-
quired, but that covariance is more natural, flexible and reflects the program designer’s natural
wish to model the specialization of the classes. Although it is loosing some expressiveness, the
CLR manages to combine the two approaches in a way that, as we will prove in Section 4.3.4,
guarantees type safety. Thus, [45] imposes several requirements on the instance methods de-
clared by a generic interface which is co-/contra-variant in at least one generic parameter. The
requirements should ensure that an overriding method follows the substitution principle, i.e., it
has a ”covariant” return type, ”contravariant” parameter and constraint types. The usage of a
”covariant” parameter type, as opposed to a ”contravariant” one, cannot be statically verified
(see Example 4.3.6) and run-time checks should have been inserted. This is, however, among
the issues the generics design was supposed to get rid of.

The above requirements are captured in Definition 4.3.9. This definition necessitates Defi-
nitions 4.3.7 and 4.3.8, which in turn require the notion of negation of a variances array (vari)i:

Definition 4.3.6 (Negated variances array) The negation −(vari)i of an array (vari)i of vari-
ances is defined by

−vari =


+ , if vari = -
- , if vari = +
∅ , if vari = ∅

The notion of a valid type with respect to a variances array is specified as follows.

Definition 4.3.7 (Valid type) The predicate validType checks the validity of a type T ′ with re-
spect to an array (vari) of variances.

validType(T ′, (vari)) :⇔
T ′ 6∈ GenericType ∩ GenericParam ∨
T ′ is a generic parameter !!j of the enclosing method ∨
T ′ is a generic parameter !j of the enclosing type ∧ varj ∈ {+, ∅} ∨
T ′ = T〈U0, . . . ,Un−1〉 ∈ GenericType ∧
∀k = 0, n− 1 :

(varT ′n
k = +⇒ validType(Uk, (vari)))∧

(varT ′n
k = -⇒ validType(Uk,−(vari)))∧

(varT ′n
k = ∅ ⇒ validType(Uk, (vari)) ∧ validType(Uk,−(vari)))

Remark 4.3.3 [45, Partition II, §9.7] states that T ′ = T〈U0, . . . ,Un−1〉 in the above definition
should refer to a “closed” generic type. This does not make a lot of sense, since in this case the
definition has nothing to do with the array of variances. This remark and the experiments we
have run with CLR indicate that T ′ should not necessarily be a closed type.
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Definition 4.3.8 stipulates when a method is valid with respect to a variances array. A
method is valid if its return type “behaves covariantly”, whereas its argument types and possibly
constraint types “behave contravariantly”. In other words, the covariant generic parameters can
only appear in ”getter” positions in the type definition, i.e., in return types of methods, the
contravariant generic parameters can only appear in ”setter” positions in the type definition,
i.e., in argument and constraint types of methods, and non-variant generic parameters can appear
anywhere.

Definition 4.3.8 (Valid method) The predicate validMeth checks the validity of the declaration
of the method mref with respect to the array (vari) of variances.

validMeth(mref, (vari)) :⇔
validType(retType(mref), (vari)) ∧
∀j = 1, argNo(mref)− 1 : validType(argTypes(j),−(vari)) ∧
∀j = 0, genParamNo(mref)− 1 : validType(constrmref

j ,−(vari))

Finally, the declaration of a generic interface is valid if all the instance methods declared
by the interface and all the implemented interface types are valid with respect to the variances
array of the given interface.

Definition 4.3.9 (Valid interface declaration) The predicate validDecl checks the validity of
the generic interface I ′n declaration.

validDecl (I ′n) :⇔
∀I ′n::M ∈ MRef : validMeth(I ′n::M, (varI ′n

i ))∧
∀J implemented by I ′n : validType(J, (varI ′n

i ))

Remark 4.3.4 [45, Partition II, §9.7] is unclear about the definition of valid interface declara-
tions. It requires that “every inherited interface declaration” should be valid with respect to the
variances array. Firstly, the interfaces are not “inherited”, but implemented. Secondly, it is not
about the interface “declaration”, but about the interface type present in the extends clause
of the given interface.

Example 4.3.6 Consider the bytecode skeleton in Figure 4.26. The generic interface I ′1 is
covariant on its generic parameter: varI ′1 = [+]. By this and OC ′ � OC, we have I〈OC ′〉 �
I〈OC〉 according to Definition 4.3.1. On the other hand, by the same definition, we get OC ′′ �
I〈OC ′〉.

Let us now assume that I〈OC〉::M is called with the this pointer of type OC ′′ (allowed
since OC ′′ � I〈OC ′〉 � I〈OC〉) and the argument of type OC. The method invoked at run-
time is OC ′′::M since lookUp(OC ′′, I〈OC〉::M) = OC ′′::M. This means that, the argument of
type OC is used in OC ′′::M as an object of type OC ′: see, for example, the access at index 5
of the field OC ′::F. This is definitely unsafe. Fortunately, such an example is rejected by the
bytecode verification as the declaration of I ′1::M is not valid according to Definition 4.3.8: The
parameter type !0 is not a valid type with respect to varI ′1 = [+].
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Figure 4.26 Example: unsafe example rejected by the verification.
.class interface private abstract auto ansi I ’1〈+X〉
{

.method public hidebysig newslot abstract virtual
instance void M(!0 k) cil managed

{
}

}

.class private auto ansi OC extends System.Object
{

. . .
}

.class private auto ansi OC′ extends class OC
{

.field public int32 F

. . .
}

.class private auto ansi OC′′ implements class I ’1〈 class OC′〉
{

.method virtual instance void M (class OC′ i)
{

. . .
4 : ldarg 1
5 : ldfld int32 OC′::F
. . .

}
}

4.3.3.2 Verifying the Bytecode Instructions

The specification by means of check of the type-consistency checks is refined in Figure 4.27.
Note that the check predicate is applied to instructions that might involve open generic types, in
particular generic parameters, as the verification obviously occurs before the run-time special-
ization of generics.

Following the technical convention regarding the definition of paramTypes (and implicitly
affecting also argTypes), stipulated in Section 4.3.2, the definition of check for the instruc-
tions Call and CallVirt is refined accordingly. Concerning the definition of check for an instruc-
tion CallVirt( ,T::M) prefixed by Constrained(T ′′), the following checks are performed. The
stack must contain a managed pointer to a value of type T ′′. Additionally, all the verification
rules of the CallVirt instruction apply after the this pointer transformation as described above.
That is equivalent to demanding that boxed(T ′′) must be a subtype of T .
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Figure 4.27 The refined instruction verification.
check(meth, pos, argZeroT, evalStackT) :⇔

match code(pos)
...
Call(tail, , T::M) → (if tail then length(evalStackT) = argNo(T::M)

else ¬underflow(evalStackT, argNo(T::M)))∧
let [T ′] · types = take(evalStackT, argNo(T::M)) in

types vsuf paramTypes(T::M) ◦ inst(T::M)∧
if T ∈ ObjClass ∧M = .ctor then initCtorCompat(meth, T ′, T)
else argZeroCompat(T ′, T)

CallVirt(tail, , T::M) → if tail then evalStackT vlen argTypes(T::M) ◦ inst(T::M)
else evalStackT vsuf argTypes(T::M) ◦ inst(T::M)

Constrained(T ′′).
CallVirt( , T::M) → boxed(T ′′) v T ∧

evalStackT vsuf [T ′′&] · [argTypes(T::M)(i) ◦ inst(T::M)]argNo(T ::M)−1
i=1

Figure 4.28 The refined computation of type state successors.
succ(meth, pos, argZeroT, evalStackT) =

match code(pos)
...
Call(tail, T ′, T::M) → if tail then ∅

else let evalStackT ′ = drop(evalStackT, argNo(T::M)) · void(T ′ ◦ inst(T::M)) in
if M = .ctor then

let evalStackT ′′ = evalStackT ′ ◦ [classNm(meth)/UnInit] in
{(pos + 1, classNm(meth), evalStackT ′′)}

else {(pos + 1, argZeroT, evalStackT ′)}
CallVirt(tail, T ′, T::M) → if tail then ∅

else
{(pos + 1, argZeroT, drop(evalStackT, argNo(T::M)) · void(T ′ ◦ inst(T::M)))}

Constrained( ).
CallVirt(T ′, T::M) → {(pos + 1, argZeroT, drop(evalStackT, argNo(T::M)) · void(T ′ ◦ inst(T::M)))}

4.3.3.3 Computing Successor Type States

Figure 4.28 contains the refinement of the function succ. Similarly as the check function, succ
is refined for the instructions Call and CallVirt. The definition of succ for a CallVirt instruction
prefixed by Constrained is the same as that for a CallVirt instruction with no prefix, i.e., with
neither Tail nor Constrained.

4.3.4 Type Safety

In this section, we prove that the bytecode language with generics is type safe. Besides the
properties guaranteed so far for well-typed methods, we also consider and prove two generic
specific type safety properties:

Type safety: The generic arguments of any generic type or method satisfy the cor-
responding declared constraints.
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The definition of well-typed methods in Section 4.1.5 Definition 4.1.9 remains unmodi-
fied, assuming that the functions check and succ are refined, as indicated in Sections 4.3.3.2
and 4.3.3.3, respectively.

In the sequel, we assume that, besides the conditions on the type system and bytecode
structure stipulated in Sections 4.1.4.2 and 4.2.4.1, the following are required to hold:

• every method should be well-typed in the sense of Definition 4.1.9;

• every generic interface declaration should be valid in the sense of Definition 4.3.9;

• the generic arguments of all the generic types and method references should satisfy at ver-
ification time the corresponding constraints. In particular, this means that every generic
argument used in the inst functions satisfies the corresponding constraints.

Let us now revisit the potential risks for type safety, informally described at the beginning
of Section 4.3, involved with the support for generics. Thus, although the signature and con-
straint types of a virtual called method may not match the signature and constrained types of
the invoked method, respectively, type safety is preserved through a conservative assumption,
namely by restricting the set of interfaces to those with valid declarations. The validity of the
run-time specialization of generic types/methods, in the sense that the generic arguments sat-
isfy the correspond constraints, is proved in Proposition 4.3.1, based on the definition of the
verification type compatibility v.

Of particular interest is the mismatch between the run-time type and the verification type
which occurs upon boxing a nullable value. Consider that a Box instruction has a generic
parameter !0 in the scope as a type token argument. So, the value being boxed should be of
some type !0 (perhaps declared by the enclosing method) that cannot be known at verification
time. The verification rules state that the result of Box(!0) should be of type boxed(!0) (see the
definition of succ for the Box instruction). But, as noticed in Section 4.3.2, if !0 is instantiated
with a nullable type Nullable〈T〉 as the generic argument for the generic parameter !0, this
would not be true. The run-time type actualTypeOf would indicate a boxed object of type T ,
yet the verification type indicates (indirectly) a boxed object of type Nullable〈T〉. Although
this looks as a type hole, type safety is maintained, in particular through the design of nullable
types as value classes that do not implement interfaces. The key points are that the boxed types
are abstract types (used by the bytecode verification) that cannot be referred to by name in the
bytecode, and the supertypes of a boxed nullable type are supertypes of any boxed nullable type.
Therefore, there is no instance member of the boxed nullable type representing the verification
type predicted by the bytecode verification, which is not an instance member of the run-time
type.

The type safety proof takes advantage of the following lemmas. Lemma 4.3.1 shows that
the subtype relationship of a given type varies directly with the relationship of the covariant
generic parameters and inversely with the relationship of the contravariant generic parameters.

Lemma 4.3.1 If the types T , (Ui)
n−1
i=0 , (Vi)

n−1
i=0 and the array (vari)

n−1
i=0 of variances are such

that validType(T, (vari)
n−1
i=0 ) and

∀i = 0, n− 1 : (vari = +⇒ Vi v Ui) ∧ (vari = -⇒ Ui v Vi) ∧ (vari = ∅ ⇒ Vi = Ui)
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then T ◦ [Vi/!i ]n−1
i=0 v T ◦ [Ui/!i ]n−1

i=0 .

Proof. By induction on the structure of the possibly generic type T . Definition 4.3.7 is also
applied. ut

Lemma 4.3.2 proves that, if T ′ v T ′′, then the instantiation of the generic parameters (cor-
responding to an enclosing generic class and/or method) occurring in T ′ and T ′′ with generic
arguments satisfying the corresponding constraints preserves the subtype relation between T ′

and T ′′.

Lemma 4.3.2 Let T ′ and T ′′ be two types such that T ′ v T ′′. Assume that they occur in
the declaration of a generic type T ′n, possibly in the declaration of a generic method T ′n::M
with m generic parameters. Let (Ui)

n−1
i=0 and (Vj)

m−1
j=0 be generic arguments for T ′n and T ′n::M,

respectively, assumed to satisfy the constraints:

boxed(Ui) v constrT ′n
i ◦ [Ui/!i ]

n−1
i=0 , for every i = 0, n− 1

boxed(Vj) v constrT ′n::M
j ◦ ([Ui/!i ]

n−1
i=0 · [Vj/!!j ]m−1

j=0 ), for every j = 0,m− 1

It then holds T ′ ◦ [Ui/!i ]
n−1
i=0 · [Vj/!!j ]m−1

j=0 v T ′′ ◦ [Ui/!i ]
n−1
i=0 · [Vj/!!j ]m−1

j=0 .

Proof. By induction on the structure of the (possibly generic) type T ′. Definition 4.3.4 is also
applied. ut

The following two lemmas relate the argument types, respectively the return type of the
method of a virtual call, and the argument types, respectively the return type of the method
determined through a lookup and invoked at run-time.

Lemma 4.3.3 If T ′′::M = lookUp(T,T ′::M) holds for a type T, then

• If T ∈ ValueType, then

– if T ′′ 6= T, then boxed(T) v argTypes(T ′′::M)(0) v argTypes(T ′::M)(0)

– if T ′′ = T, then argTypes(T ′′::M)(0) = T& and boxed(T) v argTypes(T ′::M)(0)

If T ∈ RefType, then T v argTypes(T ′′::M)(0) v argTypes(T ′::M)(0)

• argNo(T ′::M) = argNo(T ′′::M) and for every i = 1, argNo(T ′::M)− 1

argTypes(T ′::M)(i) ◦ inst(T ′::M) v argTypes(T ′′::M)(i) ◦ inst(T ′′::M)

Proof. By Definitions 4.3.8, 4.3.9, and 4.3.3, Lemmas 4.3.1 and 4.3.2, and (at). ut

Lemma 4.3.4 If T ′′::M = lookUp(T,T ′::M) holds for a type T, then

retType(T ′′::M) ◦ inst(T ′′::M) v retType(T ′::M) ◦ inst(T ′::M)
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Proof. By Definitions 4.3.8, 4.3.9, and 4.3.3, Lemmas 4.3.1 and 4.3.2, and (rt). ut

Lemma 4.3.5 shows that a generic method determined through a lookup has the same generic
arguments as the original method and the generic arguments satisfy the corresponding con-
straints.

Lemma 4.3.5 If T ′′::M and T ′::M are some generic methods and T is some type such that
T ′′::M = lookUp(T,T ′::M) and boxed(genArg(T ′::M)(i)) v constrT ′::M

i holds for every i =
0, genParamNo(T ′::M)− 1, then genParamNo(T ′′::M) = genParamNo(T ′::M), and for every
i = 0, genParamNo(T ′::M)− 1

boxed(genArg(T ′::M)(i)) = boxed(genArg(T ′′::M)(i)) v constrT ′′::M
i

Proof. By Definitions 4.3.8, 4.3.9, and 4.3.3, Lemmas 4.3.1 and 4.3.2, and (ct). ut

We assume that, if a generic type or method occurs instantiated or referenced, respectively,
the generic arguments satisfy at verification time the corresponding constraints. As the generic
arguments might be open generic types, the following question arise: Do they satisfy the con-
straints also after the run-time instantiation? The following proposition answers positively to
this question.

Proposition 4.3.1 (Preservation of constraints under type substitution) We assume that the
(not necessarily closed) type T〈T0, . . . ,Tn−1〉 occurs in the declaration of a generic type S ′m,
possibly in the declaration of a generic method S ′m::M with p generic parameters. Moreover,
assume that (Ti)

n−1
i=0 satisfy T ′n’s constraints.

If S ′m and S ′m::M are instantiated at run-time with the generic arguments (Uj)
m−1
j=0 and

(Vk)
p−1
k=0, assumed to satisfy the constraints of S ′m and S ′m::M, respectively, then (Ti ◦ ρ)n−1

i=0

satisfy T ′n’s constraints, where ρ is the substitution ρ = [Uj/!j ]m−1
j=0 · [Vk/!!k ]p−1

k=0 defined in
the scopes of S ′m and S ′m::M.

A similar result also holds for a referenced generic method, i.e., T::M〈T0, . . . ,Tn−1〉 instead
of T〈T0, . . . ,Tn−1〉.

Proof. For this proof, we assume that constrT ′n denotes the uninstantiated (raw) constraints,
exactly as given in the declaration of T ′n. The following relations hold for every i = 0, n− 1:

boxed(T i ◦ ρ) = boxed(T i) ◦ ρ
v (constrT ′n

i ◦ [T i/Xi]
n−1
i=0 ) ◦ ρ

= constrT ′n
i ◦ ([T i/Xi]

n−1
i=0 ◦ ρ)

= constrT ′n
i ◦ [T i ◦ ρ/Xi]

n−1
i=0

The relation v in the second row above follows from Lemma 4.3.2 and the fact that (T i)
n−1
i=0

satisfy T ′n’s constraints. Finally, (T i ◦ ρ)n−1
i=0 satisfy the constraints of T ′n.

The proof for the case of a referenced generic method is similar. ut
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The definition of the typing judgment `, given in Definition 4.1.12, remains unchanged.
However, in the context of boxing nullable types, ` does not suffice anymore. Therefore, we
introduce a slightly different judgment |= which, unlike `, also considers the special cases when
the dynamic and static types disagree.

Definition 4.3.10 Let val be a value, T a verification type and [fr1, . . . , frn] a list of frames. The
typing [fr1, . . . , frn] |= val : T holds if one of the following conditions is satisfied:

• [fr1, . . . , frn] ` val : T;

• there exists T ′ ∈ ValueType such that

actualTypeOf (val) = T ′ and boxed(Nullable〈T ′〉) v T

Although Definition 4.3.10 does not explicitly include a subsumption rule for |=, this is
implied and can be easily proved:

Lemma 4.3.6 Let T and T ′ be two types such that T v T ′. If [fr1, . . . , frn] |= val : T, then
[fr1, . . . , frn] |= val : T ′.

Proof. By Definition 4.3.10 and Lemma 4.1.5. ut

The next lemma claims that ` and |= coincide for each type other than boxed nullable types.

Lemma 4.3.7 If T is a type such that [fr1, . . . , frn] |= val : T and there exists no T ′ ∈ ValueType
such that T = boxed(Nullable〈T ′〉), then [fr1, . . . , frn] ` val : T.

Proof. By reductio ad absurdum: Let us assume that [fr1, . . . , frn] 6` val : T . From Defini-
tion 4.3.10, we derive that there exists T ′′ ∈ ValueType such that

actualTypeOf (val) = T ′′ and boxed(Nullable〈T ′〉) v T (4.15)

As the nullable types are value classes that do not implement interfaces, by Definition 4.3.4,
we know that one of the following conditions should hold: T = boxed(Nullable〈T ′′〉) or
T = object or T = System.ValueType. The first conditions cannot be satisfied as, by the
hypothesis, we know that there exists no T ′ ∈ ValueType such that T = boxed(Nullable〈T ′〉).
If the second or the third condition holds, then, by (4.15), we have [fr1, . . . , frn] ` val : T
according to Definition 4.1.12. Finally, the initial assumption is contradicted. ut

As the generic methods have the return types uninstantiated, the notion succession of a
frame, given in Definition 4.1.14, should be refined.

Definition 4.3.11 (Succession of a frame) Let the list [fr1, . . . , frk] be the frameStack and fri =
(pc∗, locAdr∗, locPool∗, argAdr∗, evalStack∗,meth∗) be an arbitrary frame in the frameStack.
We denote by pos and mref the program counter and the method of the callee frame of fri

(for frk, the callee frame is frame). The succession of fri is defined as follows:
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• If mref returns a value, say val, satisfying [fr1, . . . , fri] ` val : retType(mref) ◦ inst(mref),
then (pc∗+1, locAdr∗, locPool∗, argAdr∗, evalStack∗ ·[val],meth∗) is called the succession
of fri in frameStack.

• If retType(mref) is void, then the succession of fri in frameStack is given by (pc∗ +
1, locAdr∗, locPool∗, argAdr∗, evalStack∗,meth∗).

The type safety proof for well-typed methods is now extended to generics. We redefine
the invariants which are affected by generics, and, additionally, we consider a generics specific
invariant (constr). The invariant (stack2) ensures that the values on the evalStack are of the
types assigned in the stack state, unless the values are boxed values corresponding to appropriate
boxed nullable types. Following the conventions that locTypes and argTypes are uninstantiated,
the invariants (loc) and (arg) are reconsidered. The invariant (constr) ensures that the generic
arguments of any generic method satisfy the declared constraints.

Theorem 4.3.1 (Type safety of well-typed methods) Let [fr′1, . . . , fr
′
k−1] be the frameStack

and frk be the current frame. For every i = 1, k− 1, we denote by fri the succession of fr′i.

We assume that the type system and the bytecode structure of the methods of (fri)i satisfy
the conditions stated in Section 4.1.4.2 and Section 4.2.4.1. Moreover, we assume that every
generic interface declaration is valid and the generic arguments of all the generic types and
method references satisfy at verification time the corresponding constraints. Furthermore, we
assume that all methods of (fri)

k
i=1 are well-typed.

Let fri = (pc∗, locAdr∗, , argAdr∗, evalStack∗,meth∗) be one of the frames (fri)
k
i=1. We

denote by locVal∗ and argVal∗ the functions locVal and argVal derived based on locAdr∗ and
argAdr∗, respectively. If fri is the current frame, we consider initState∗ to be the current ini-
tialization status initState. If fri is not the current frame, we denote by initState∗ the succession
of initState for fri. Let (argZeroTj, evalStackTj)j∈D be the family of type states meth∗ is typable
with.

The invariants (pc), (stack1), (init), (field) (box) and (del) of Theorem 4.1.1 and the fol-
lowing invariants are satisfied at run-time for every frame fri (for the current frame, frk, the
invariants (stack1) and (stack2) should only hold if switch = Noswitch):

(stack2) [fr1, . . . , fri] |= evalStack∗(j) : evalStackTpc∗(j) ◦ inst(meth∗), for every
j = 0, length(evalStack∗)− 1.

(loc) [fr1, . . . , fri] ` locVal∗(n) : locTypes(meth∗)(n) ◦ inst(meth∗), for every
n = 0, locNo(meth∗)− 1.

(arg) If classNm(meth∗) ∈ ObjClass and methNm(meth∗) = .ctor, then it holds
[fr1, . . . , fri] ` argVal∗(0) : argZeroTpc∗; otherwise, [fr1, . . . , fri] ` argVal∗(0) :
argTypes(meth∗)(0).

If argNo(meth∗) ≥ 2, then [fr1, . . . , fri] ` argVal∗(n) : argTypes(meth∗)(n) ◦
inst(meth∗), for every n = 1, argNo(meth∗)− 1.
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(constr) If meth∗ is a generic method, boxed(genArg(meth∗)(n)) v constrmeth∗
n , for every

n = 0, genParamNo(meth∗)− 1.

Proof. The proof proceeds by induction on the run of the operational semantics model CLRG .
We only prove here the case of virtual method calls.

Case code(meth)(pc) = CallVirt(T ′,T::M) ◦ inst(meth).

Since meth is well-typed, we get check(meth, pc, evalStackTpc) from Definition 4.1.9 (wt5). Ac-
cording to the definition of check in Figure 4.27, evalStackTpc vsuf argTypes(T::M)◦inst(T::M).
By (constr) and Lemma 4.3.2, we have 32

evalStackTpc ◦ inst(meth) vsuf (argTypes(T::M) ◦ inst(T::M)) ◦ inst(meth) (4.16)

By (4.16) and by the induction hypothesis – that is, by the invariants (stack1) and (stack2) –
there exists a list of values L, two lists of types L′ and L′′ and the values (valj)

argNo(T ::M)−1
j=0 such

that: evalStack = L · [valj]
argNo(T ::M)−1
j=0 ,

evalStackTpc = L′ · L′′, length(L′′) = argNo(T::M),
for every j = 0, length(evalStack)− argNo(T::M)− 1
[fr1, . . . , frk] |= L(j) : L′(j) ◦ inst(meth)

(4.17)

and

for every j = 0, argNo(T::M)− 1 [fr1, . . . , frk] |= valj : L′′(j) ◦ inst(meth) (4.18)

By (4.16), (4.17), (4.18) and Lemma 4.3.6, [fr1, . . . , frk] |= valj : (argTypes(T::M)(j) ◦
inst(T::M)) ◦ inst(meth) for every j = 0, argNo(T::M) − 1. By this and Lemma 4.3.7, we
get for every j = 0, argNo(T::M)− 1:

[fr1, . . . , frk] ` valj : (argTypes(T::M)(j) ◦ inst(T::M)) ◦ inst(meth) (4.19)

When the bytecode instruction CallVirt(tail,T ′,T::M) ◦ inst(meth) is executed, the macro
VIRTCALL(tail,T::M ◦ inst(meth), [valj]

argNo(T::M)−1
j=0 ) is invoked. According to [45, Partition

I, §12.1.6.2.4], the CallVirt instruction is not valid with value class method token arguments.
This implies T 6∈ ValueClass. By this and (4.19), we have that val0 is an object reference.
We only analyze here the case when val0 is not null and tail is False. If that is the case,
in the frame of new current method T ′′::M = lookUp(T ′′′,T::M ◦ inst(meth)), where T ′′′ =

actualTypeOf (val0), the arguments (argVal(j))argNo(T ′′::M)−1
j=0 are set to (valj)

argNo(T::M)−1
j=0 . Note

that, by Lemma 4.3.3, we have argNo(T::M) = argNo(T ′′::M).
Regarding T ′′::M, we only focus here on proving the invariants (arg) and (constr) as the proof
of the others goes along the lines of the proof Case 2 in Theorem 4.1.1. Taking into ac-
count Lemma 4.3.3, we make the following case distinction.
Let us first assume that T ′′′ ∈ ValueType.

32Note that evalStackTpc might involve generic parameters.
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• If T ′′ 6= T ′′′, then boxed(T ′′′) v argTypes(T ′′::M)(0). According to the definition
of VIRTCALL, the this pointer of T ′′::M is val0. By the definition of `, we have
[fr1, . . . , frk] ` val0 : argTypes(T ′′::M)(0). This and the relation argTypes(T ′′::M)(0) =
argTypes(T ′′::M)(0) ◦ inst(T ′′::M) (the type of the this pointer is instantiated, as op-
posed to the other argument types) imply the invariant (arg) for the first argument
of T ′′::M.

• If T ′′ = T ′′′, then argTypes(T ′′::M)(0) = T ′′′&. Conforming with the definition
of VIRTCALL, the first argument of T ′′::M is addressOf (val0). By the definition
of ` and argTypes(T ′′::M)(0) = T ′′′&, we get [fr1, . . . , frk] ` addressOf (val0) :
argTypes(T ′′::M)(0). Similarly as above, this ensures the invariant (arg) for the this
pointer of T ′′::M.

If T ′′′ ∈ RefType, then T ′′′ v argTypes(T ′′::M)(0). The first argument of T ′′::M is val0. By
the definition of `, we have [fr1, . . . , frk] ` val0 : argTypes(T ′′::M)(0). This implies the invari-
ant (arg) for the this pointer of T ′′::M.
So, in all the cases, the invariant (arg) for the this pointer of T ′′::M is ensured.
By Lemma 4.3.3, the following relations hold for every j = 1, argNo(T::M)− 1:

(argTypes(T::M)(j) ◦ inst(T::M)) ◦ inst(meth)
= argTypes(T::M ◦ inst(meth))(j) ◦ inst(T::M ◦ inst(meth))
v argTypes(T ′′::M)(j) ◦ inst(T ′′::M)

(4.20)

The invariant (arg) for the other arguments follows from (4.19), (4.20), and Lemma 4.3.6.
Let us now prove (constr). We assume that T ′′::M is a generic method (otherwise (constr) is
obviously satisfied). This implies that also the method T::M is generic. By Lemma 4.3.5, we
get genParamNo(T ′′::M) = genParamNo(T::M) and for every j = 0, genParamNo(T::M)− 1:

boxed(genArg(T::M ◦ inst(meth))(j)) = boxed(genArg(T ′′::M)(i)) v constrT ′′::M
j

Proposition 4.3.1 applied for the generic method T::M and the above relations imply (constr).
We also want to show (stack2) for the succession, defined according to Definition 4.3.11, of
the new current frame in [fr′1, . . . , fr

′
k]. If retType(T ′′::M) = void, then, by Lemma 4.3.4,

retType(T::M) = void, and therefore (stack2) for the succession follows from the induction
hypothesis, i.e., (stack2) for frk.
Let us now assume that retType(T ′′::M) is not void. Let val be the value returned by T ′′::M,
assumed to satisfy

[fr′1, . . . , fr
′
k, frk, frame] ` val : retType(T ′′::M) ◦ inst(T ′′::M) (4.21)

Lemma 4.1.7, the constraint Return Type and (4.21) imply

[fr′1, . . . , fr
′
k, frk] ` val : retType(T ′′::M) ◦ inst(T ′′::M) (4.22)

To prove (stack2) for the succession of frame, it suffices to show

[fr′1, . . . , fr
′
k, frk] |= val : retType(T::M) ◦ inst(T::M) (4.23)
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By Lemma 4.3.4, it follows that

retType(T ′′::M) ◦ inst(T ′′::M) v retType(T::M) ◦ inst(T::M) (4.24)

Finally, (4.23), and implicitly also (stack2) for the succession of frame, follows from (4.22),
(4.24), Lemma 4.1.5, and Definition 4.3.10. ut
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4.4 Related Work

Sections 4.4.1 and 4.4.2 survey the literature on CIL’s formal studies, in particular type safety
proofs, and the closely related Java Virtual Machine (JVM) [91]’s type safety, respectively.
The application of the ASM method for the specification of programming languages and their
implementation is reviewed in Section 4.4.4.

4.4.1 The CIL

Regarding CIL’s type safety, there are only two publications we are aware of. Gordon and Syme
have developed a type system for a small fragment of CIL, named Baby IL (BIL) [66]. Their
work has been partially extended with generics by Yu, Kennedy and Syme for an even smaller
CIL subset, called BILG [123]. We provide below a detailed comparison between these papers
and our work.

BIL’s type safety The main theorem proved by Gordon and Syme [66], based upon Syme’s
method [117] for writing functional specifications (subject to theorem proving in HOL), asserts
soundness of the BIL’s type system and not the soundness of the bytecode verification. Being
focused on the type system, they develop simple evaluation rules, in a big-step style of opera-
tional semantics [85]. This approach has, however, some downsides. For example, it seems to
be impossible to determine in their framework if and when a location (e.g., a field or argument)
is initialized.

Unlike [66], our framework involves a complete (with respect to the considered bytecode
language) semantics model, which represents an important by-product of this thesis. To the
best of our knowledge, our work is the first that defines a semantics model for the verifiable
CIL bytecode.

We briefly mention here the most important aspects omitted in their formal specifications:

• local variables: As Gordon and Syme do not provide a formal description for a
method frame, leaving out local variables simplifies considerably their approach. As
we have seen in Definition 4.1.12, considering local variables increases the complexity of
the typing judgment the type safety proof highly relies on.

• arithmetic operations: For the semantics of the arithmetic operations, our framework
reflects the implementation of the real CLR, where the evaluation stack is strongly typed.
Accordingly, we consider the values to be tagged (see Section 4.1.2). As Gordon and
Syme abstract away from any details concerning the evaluation stack, the importance of
a typed evaluation stack cannot be spotted in their framework.

• typed references: Since typed references embed pointers, the verification has to treat them
prudently in order to avoid dangling pointers. It is not immediately obvious whether the
restrictions imposed in Section 4.1.4.2 guarantee the type-safe execution of programs
with typed references.

• tail method calls: Tail calls require care, because the verification has to prevent pointers
to the current frame being passed as arguments. It is not straightforward at all whether the
constraints on the bytecode structure defined Sections 4.1.4.2 and 4.2.4.1 ensure type-safe
tail calls.
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• exceptions: BIL is exception-free. One of our main contributions is the investigation
of the fairly elaborate exception handling mechanism, which significantly increased the
complexity of our work through the complicated control flow graph underlying the runs of
the mechanism and through the nesting of the pass records. The analysis of the exception
mechanism’s runs necessitates attention since, as we have seen in Theorem 4.2.1, there are
certain runs of the mechanism, characterized by switch 6= Noswitch, which include steps
where the invariants (stack1) and (stack2) are not satisfied. However, these (hidden) steps
do not affect CLR’s type safety since the evalStack, involved in (stack1) and (stack2), is
not accessed as long as switch is not Noswitch.

• delegates: BIL does not include method pointers. Therefore, the delegates, i.e., the feature
that allows for type-safe method pointers, are not treated either. As [66] does not specify
the program counter pc, it is not clear whether [66]’s approach can be easily adjusted
to specify, for example, the constraint Delegate Pattern in Section 4.1.4.2. Moreover,
BIL would need to be considerably extended (e.g., Dup, LoadFtn, LoadVirtFtn, branch
instructions) to cover the delegate handling.

• boxed types and interfaces: Although BIL includes instructions for boxing and unboxing,
[66], contrary to [45], does not include boxed types. Moreover, without considering boxed
types, [66]’s approach is not flexible enough to include interfaces.

The subtleties of the local memory pool are avoided by [66]’s framework. Actually, they
cannot be spotted as long as the typing of the this pointer of a .ctor is not an issue in [66].
This is the case since the .ctors considered in [66] are oversimplified and do not have a this
pointer.

Gordon and Syme do not take into account details concerning the methods’ evaluation stack.
That means, on one hand, that (stack1) and (stack2) cannot be analyzed, and therefore cannot
be ensured with their framework. On the other hand, as the exception mechanism deals exten-
sively with evaluation stacks, it is imperatively necessary to specify the evalStack if one wants
to include exceptions.

Another important drawback of [66]’s type system is that it does not analyze the special
initialization rules for objects. In this sense, one of our merits is the extension of the verifica-
tion type system by the type UnInit, though [45, Partition III, §1.8.1.2.1] does not mention it.
Another important contribution of our framework is augmenting the bytecode verification with
the argZeroT component to track type information concerning the initialization status of object
references. As BIL does not include the Return instruction and assumes, as originally suggested
by [76], that each class has exactly one .ctor (which does not even have a this pointer),
it would just not be possible to implement the object initialization rules in [66]’s framework
according to [45]. Recall that a this pointer of an object class .ctor is fully initialized if a
constructor of the same class or of the base class has been invoked.

As the theorem proved by Gordon and Syme applies only to a small bytecode language,
they write [66, §1, pag. 3]:

A soundness proof for the whole of CIL would be an impressive achievement.

Given that we have only omitted a very few, yet non-critical, CIL features, we can certainly
claim that this thesis has attained the respective achievement.
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BILG’s type safety Yu, Kennedy and Syme use judgment forms, in a big-step style opera-
tional semantics, to define the generics semantics, in a fashion similar to Featherweight GJ [78].
They focus on aspects of the generics implementation, e.g., specialization of generic code up
to data representation, efficient support for run-time types. As the exceptions are not part of
BILG, [123] has to specify for certain constructs a different semantics than [45], e.g., the [123]’s
IsInstance instruction does not return – as it was supposed to – the null pointer if the run-time
test fails. Moreover, as their main goal was not BILG’s type safety, the formal specifications
do not include the main sources for potential type safety violations: variance on generic pa-
rameters and constraint types. The critical issue concerning the mismatch between the static
and dynamic types in case of boxing nullable types cannot be uncovered in [123]’s approach
as long as the Box and Unbox instructions are not included. That means, in particular, that the
boxed types are not considered either. Consequently, the constraint types cannot be added to
their approach.

Bannwart and Müller [20] present a Hoare-style logic (axiomatic semantics) for a sequential
kernel bytecode language, similar to CIL. The logic is part of a larger project that aims at
developing a proof-transforming compiler (somehow similar to certifying compilers [36] in
Proof-Carrying Code [96]), that translates a source program together with a proof of some
of its properties to the bytecode level. Their logic considers that the bytecode programs are
accepted by the bytecode verification. The logic is sound with respect to the defined operational
semantics. They apply the logic in a weakest precondition style and show how source proofs
can be translated to the bytecode logic. The bytecode language they consider does not include
managed pointers, delegates, value classes, tail calls, typed references, and generics.

4.4.2 The JVM

The JVM is the run-time environment designed to execute compiled Java programs. Consid-
erable research effort has been devoted to formally specify the JVM bytecode semantics, ver-
ification, and type safety; see, for example, [116, 52, 115, 114, 53, 51, 89, 103, 104, 99, 39].
A detailed review of the huge literature can been found in [73]. Of all these publications, the
work by Stärk et al. [115] is the most closely related and had the most impact on this thesis.
Besides proving Java’s and JVM’s type safety, [115] (following [113]) also points out a serious
problem of the JVM bytecode verification: There are legal Java programs which are correctly
compiled (with at that time Sun’s JDK (v1.2) and (v1.3) compilers) into a JVM bytecode that
is rejected by the bytecode verification (of JDK (v1.2) and (v1.3)). To fix this problem, [115]
(following [114]) propose to restrict the definite assignment analysis rules of the Java compiler
such that these programs are no longer allowed. Further, [115] (following [114]) specifies a
compilation scheme and proves that the bytecode programs the Java compiler generates, ac-
cording to the compilation scheme, from the restricted subset of valid Java programs pass the
bytecode verification.

As the CLR is designed to support a large diversity of languages, it is understandable that it
deals with many constructs that do not have an equivalent in JVM, which, despite of several at-
tempts [93, 69, 1] to be used as target for languages other than Java, has been designed precisely
with the Java language in mind. The most important CLR features that are lacking in JVM are
the tail method calls, the constructs supporting pointers (including method pointers in the form
of delegates), value classes, boxing, unboxing, and typed references. As detailed comparisons
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of the two virtual machines already exist [68, 108], we limit ourselves to point out here only
a few important aspects concerning the semantics and bytecode verification that differ in JVM
and CLR.

The main challenge of the JVM bytecode verification, i.e., the subroutine verification, is not
an issue in the CLR. Moreover, in the JVM, the object initialization verification is performed
differently than in the CLR.

Subroutine verification A JVM subroutine can be viewed as a procedure at the bytecode
level. If a sequence of bytecode instructions occurs more than once in a method body, the Java
compiler can build a subroutine with this sequence and call it at the convenient positions. The
main application of the subroutines is for the Java finally blocks. Every such a block is com-
piled to a subroutine. At each exit point inside a try block and its associated catch handler
region, the subroutine corresponding to the finally handler is called. After the finally
block completes – as long as it completes by executing past the last statement in the finally,
not by throwing an exception or executing a return, continue, or break – the subroutine itself
returns. The execution continues just past the point where the subroutine has been called in the
first place, so the try block can be exited in the appropriate manner. One problem faced by
the JVM bytecode verification when checking subroutines is concerning the polymorphism on
local variables. The subroutines may have multiple call points, whose local variables may each
hold values of different types. One should expect that the local variables not used inside the
subroutine have the same type before and after the execution of the subroutine.

The CLR does not use subroutines to implement the finally handlers. The CLR’s solu-
tion seems to be more efficient: As we have seen in Section 4.2.2, the CLR explicitly supports
finally handlers in CIL. Moreover, the CLR, unlike JVM, has typed local variables. This
approach does not have any downside, except for carrying around some metadata. However,
as observed in Section 4.2, the CLR exception handling mechanism becomes very complex by
supporting filter handlers. Another construct that has no equivalent in JVM is the CLR
fault handler. A semantics model for the JVM exception handling mechanism has been de-
fined in [26, 115].

Object initialization verification The JVM object creation process is accomplished in two
steps as follows. A new reference is created by a new instruction (which does not have a
constructor token argument), duplicated, and passed explicitly to a constructor invocation. One
reference (to an uninitialized object) remains on the stack, and one reference is ”consumed”
as the this pointer by the constructor invocation. After the constructor has been invoked,
the reference left on the stack points to a properly initialized object. Bytecode verification is
difficult since the constructors operate by side-effect: Instead of taking an uninitialized object
and returning an initialized object, they simply take an uninitialized object, leave a reference to
uninitialized object on the stack, and return nothing. To find out what references in the current
state are ensured to point to the same uninitialized object that is passed as this pointer to a
constructor, the JVM verification identifies every uninitialized object by the program counter of
the new instruction that created it.

The CLR gets rid of this problem by adding a constructor token argument to the newobj
instruction. Thus, in CLR, the same instruction creates a new object reference and initializes
it by invoking the constructor pointed to by the token argument. However, in the constructor,
the this pointer is considered uninitialized and the CLR verification has to track its initializa-
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tion status.

Another important verification issue, the local variable initialization, is treated differently
by JVM and CLR. While the CLR requires that the verifiable methods automatically zeroes the
local variables, the JVM bytecode verification performs a definite assignment analysis, in the
sense of the one presented in Chapter 3 Section 3.4, and tracks type information for every local
variable.

Unlike CLR, the JVM does not have generic instructions. To encode the kind of the per-
formed operation, prefixes are added to the JVM instructions. For example, the JVM instruc-
tion iadd performs the addition of two integers, whereas dadd adds two doubles. It is then
not necessary for any JVM semantics model to consider tagged values.

The JVM does not provide support for generic types and generic methods though Java (v5.0)
supports them. The design of the generics in Java, initially proposed in [29], takes a different
approach than the CLR. More precisely, the generics feature is compiled ”away” by the Java
compiler. This design has some drawbacks. For instance, generic types can only be instantiated
with reference types and not with primitive types, and type information is not preserved at
run-time as in the CLR.

4.4.3 The Variance on Generic Parameters

The variance on generic parameters has its origins in the POOL-I language presented by Amer-
ica and van der Linden [19]. It has produced a lot of research into the nature of the inheritance
relationship and subtyping. Two excellent overviews of the corresponding literature can be
found in [35, 79].

There have been proposals to add variance for Java. One of the first designs for generics
in Java, the work of Cartwright and Steele Jr. [34] include definition-site variance annotations.
Igarashi and Viroli formally specified a system of use-site variance [79]. The latter has been
adopted in Java (v5.0) through the wildcard mechanism [120].

As the C]’s generic parameters are currently non-variant, Emir et al. [47] propose a system
of type-safe variance for C] that supports the declaration of covariant and contravariant param-
eters. They also introduce type constraints that generalize the F-bounded polymorphism [33]
of Java [78, 76] and the bounded method generic parameters of Scala and include work on
equational constraints [87].

A controversial feature of the Eiffel type system, the variance is in depth analyzed in [63],
which also reports on a comprehensive comparison of generics in six programming languages
(C++, Standard ML, Haskell, Eiffel, Java, C]). Cook [37] identifies some problems in Eiffel, in
particular the mismatch of the called and invoked methods’ signatures caused by the variance.
Cook also proposes solutions to fix these problems. The solution the above problem is approx-
imately the one that [45] adopted, namely methods are required to have return types behaving
”covariantly” and argument types behaving ”contravariantly”. Howard et al. [75] propose a so-
lution which enables compilers to spot all potential run-time type violations caused by variance
and forces programmer to resolve them. The resulting language rules statically guarantee type
safety and only require local analysis. However, in the absence of a full semantics model for
Eiffel, [75] cannot provide a formal proof that the proposed policy guarantees type safety.
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4.4.4 The ASM Method

This section gives a short critical assessment of the ASM method and provides pointers to
publications for further comparisons to alternative approaches. Besides reviewing the work on
JVM’s type safety, [73] also includes an evaluation of the ASM based investigations. As a broad
comparison of the ASM method with respect to other system design and analysis frameworks
has already been done in [21, 64], we only point here some advantages of the ASM method over
[66]’s approach.

With Gordon and Syme [66]’s evaluation rules, it is not convenient at all to model irregular
control flows, in particular exception handling33. To simplify the evaluation and typing rules,
[66] decides to create two instructions which assemble certain branch instructions. As a result,
a syntax for these two constructs is chosen. This technique is, however, not suitable when con-
sidering the whole CIL. As Gordon and Syme [66] mention, ”the technique may not scale well
to express control flow such as arbitrary branching within a method and exception handling”.
In particular, the code containment, i.e., the invariant that pc will always point to a valid code
index, cannot be analyzed, and therefore cannot be ensured in [66]’s framework. As demon-
strated by this thesis, the ASM method can be successfully applied to model irregular control
flows.

Another advantage of using the ASM method is the possibility of validating the correspond-
ing ASM model. Thus, the model can be refined, made executable by means of an implementa-
tion in AsmL [49], and then validated by its simulation. To validate our operational semantics
model, i.e., to test its internal correctness and its conformance to the Microsoft implementa-
tion (v2.0) [3], we have developed an AsmL implementation [92] of our ASM specifications.
Furthermore, we have also validated our specifications for the bytecode verification [50].

4.5 Summary and Future Work

Except for static members, arrays and multi-threading – features that do not raise any challeng-
ing problems – we have proved type safety of the whole CIL.

We have structured the CIL bytecode language into three bytecode sublanguages, by isolat-
ing orthogonal parts of CIL, namely lightweight CIL, exception handling, and generics. Each
sublanguage in the sequence extends its predecessor. We proved type safety for each sub-
language as follows. To specify the static and dynamic semantics, for each sublanguage, we
defined an ASM interpreter, which is a conservative (purely incremental) extension of its pre-
decessor. We have then provided a formal specification of the static and dynamic consistency
checks performed by the bytecode verification. The dynamic checks have been defined by step-
wise refinement, analogously to the layering of the semantics models. On top of these checks,
we developed precise specifications of the bytecode verification algorithm and of the well-typed
methods. We then proved type safety of each sublanguage as follows. We first showed that the
well-typed methods are type-safe, i.e., the execution, according to the semantics models, of le-
gal and well-typed methods does not yield any run-time type errors and maintains the program
in a good state, where certain structural constraints are satisfied. Finally, we demonstrated that
the bytecode verification is sound, i.e., the accepted methods are well-typed, and complete, i.e.,

33Note that denotational semantics is not suitable either to model irregular control flows (see [81] for a solution
to cope with this issue).
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it accepts every well-typed method and computes a most specific family of type states.

Potential future work includes a few extensions of the bytecode verification. As the bytecode
verification is conservative, it might reject non-well-typed programs though their execution is
type safe, regardless any input values. To limit the number of these cases, we would like to refine
the bytecode verification. One refinement could be, for example, to extend the verification such
that it also verifies methods whose local variables are not automatically initialized. For that, the
verification should perform a definite assignment analysis similar to the one performed by the
JVM verification. Another possible refinement is concerning the method pointers. Thank to the
strong constraint Delegate Pattern, the bytecode verification can check the NewObj instructions
which create delegates. This restriction can be weakened by inheriting the verification type
system VerificationType with an abstract type. This special type would actually be defined as
a pair consisting of the following components: a verification type (as defined before) and a
method signature. The type component of the pair would be essential when verifying a delegate
creation. Thus, for the NewObj instructions applied with delegate .ctors, one would need
check that the type of the target object on the stack is compatible with the type component and
the delegate class is compatible with the signature component. This extension of the verification
type system would also make possible the verification of the currently non-verifiable indirect
calls, i.e., calls via method pointers.

Future work might also encompass a formal study of the .NET security model and its prop-
erties, but also a correctness proof of a compilation scheme C]–CIL, similar to the Java–JVM
scheme developed in [115]. Also, the automatic verification of our type safety result remains
an important challenge for future research.
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Conclusion

Work for something because it is good, not just because it stands a chance to succeed.
Václav Havel

Until a while ago, C and C++ programming were the real standard in industry, and the types,
if present, were not much more than ways to name memory offsets. For instance, a C structure
is really just a big sequence of bits with names to access precise offsets, i.e., fields, from the
base address. References to structures could be used to point at incompatible instances, data
could be indexed into and used freely. Although C++ was already an important step in the
right direction, there generally was not any run-time system enforcing that memory access
follows the type system rules at run-time. In unmanaged languages, like C and C++, one can
easily violate type safety, with direct security implications, through the possibility to easily
access memory unimpeded. As this programming approach has proven to be error prone by
leading to hard bugs, a trend toward type-safe languages has been started. Thus, over time,
type-safe languages, like C] and Java, employing a static type analysis and dynamic detections
of operations that could lead to type errors, gained popularity. Given the areas of applications
these languages are designed for, it is crucial to guarantee that they meet the safety-related
expectations, i.e., they are indeed type-safe.

In this thesis, we have formally proved type safety of large and representative subsets
of C] and of the CIL language to which any .NET compliant language, in particular C], com-
piles. The analyzed subsets are reasonably rich and contain all the features which separately or
together might have led to violations of type safety. It must be emphasized that all the formal
models the proofs rely on are not only executable in theory: They have been validated through
AsmL prototypes [84, 92, 50] generated from the formal specifications.

The abstract frameworks in this thesis have made it possible to clarify a number of impor-
tant aspects which are ambiguously specified or not handled at all by the official specifications
of C] and CLR. In this sense, we pointed out and filled several gaps in the two official doc-
uments, and we indicated a number of inconsistencies between different implementations of
C] and CLR and their official specifications. It is important to notice that most of the conditions
inherited from the language specifications, in particular even the well-formedness conditions,
are actually needed somewhere in the proofs. This inspires, in particular, confidence in the
appropriateness of the developed abstract frameworks.

The formal specifications defined in this thesis serve not only as a basis for the type safety
proofs, but also as an excellent starting point for further investigations of various aspects
of C] and CLR. Thus, one can analyze, for instance, stronger safety guarantees for C] and CIL
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programs, or ways in which one can optimize programs in a type-safe manner. Moreover, the
abstract and modular structure of the framework developed for CLR makes it possible to inte-
grate new algorithms as well as new type systems into the existing formalization.

For formal proofs related to other languages, the experience achieved through the type safety
proofs in this thesis, especially from the one developed in Chapter 4 for CIL, can be of help.
One can learn, for instance:

• how to ”divide and conquer” the type system, static and dynamic semantics of a lan-
guage;

• how to separate the description of conceptually orthogonal constructs by dividing them
into sublanguages; modularity is a key issue, since, unless the language changes exces-
sively, the modifications in the formal specifications and proofs tend to be of local nature;

• how to unify and integrate the formal specifications of similar constructs by appropriate
parameterizations (e.g., smart grouping of bytecode instructions makes possible factoring
out common properties and implicitly reduce the work load significantly);

• how to specify and evaluate variations of specific features (e.g., expression evaluation,
boxing and unboxing) by varying macros, rules and/or domains together with their oper-
ations.

The research underlying this thesis suggests, in particular, that, for the development of a
programming language, the ASM method can be successfully applied for:

• defining an model as executable specification of critical language constructs or layers;

• generating test cases for the implementing code from the abstract model;

• using the abstract model as oracle for test evaluations and for comparing model test runs
with code test runs;

• using the abstract model as internal documentation for future language extensions.
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A
Appendix

A.1 The C]S Operational Semantics Rules

The operational semantics model is defined in terms of an ASM interpreter (for C]S programs),
named EXECCSHARP:

EXECCSHARP ≡
EXECCSHARPEXP

EXECCSHARPSTM

The main transition rule consists of two subrules executed in parallel: EXECCSHARPEXP de-
fines one execution step in the evaluation of expressions, and EXECCSHARPSTM specifies one
execution step in the execution of statements. Upon executing one of the subrules, the updates
implied by the first evaluation rule matching the current context are fired.

The macro context(pos) is used to define the context of the currently to be handled ex-
pression or statement or intermediate result, which has to be matched against the syntactically
possible cases, in the textual order of the rules, to select the appropriate computation step.

Figure A.1 The operational semantics rules for the C]S’s expressions.
EXECCSHARPEXP ≡ match context(pos)

lit → YIELD(valueOfLiteral(lit))
loc → YIELDINDIRECT(locAdr(loc))
αexp bop βexp′ → pos := α
Ival bop βexp′ → pos := β
αval bop Ival′ → if ST (pos) 6∈ Delegate then

if divisionByZero(bop, val′) then FAILUP(DivideByZeroException)
else YIELDUP(opResVal(bop, val, val′))

elseif bop = + then DELEGATECOMBINE(ST (pos), val, val′)
elseif bop = − then DELEGATEREMOVE(ST (pos), val, val′)
elseif bop = == then DELEGATEEQUAL(ST (pos), val, val′)

αexp ? βexp′ : γexp′′ → pos := α
Ival ? βexp′ : γexp′′ → if val then pos := β else pos := γ
αtrue ? Ival : γexp′′ → YIELDUP(val)
αfalse ? βexp′ : Ival → YIELDUP(val)
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Figure A.2 The operational semantics rules for the C]S’s expressions (continued).
loc = αexp → pos := α
loc = Ival → WRITEMEM(locAdr(loc), locType(loc), val)

YIELDUP(val)
αvexp bop = βexp → pos := α
Iadr bop = βexp → pos := β
αadr bop = Ival → if ST (α) 6∈ Delegate then

let val′ = memVal(adr,ST (α)) in
if divisionByZero(bop, val) then

FAILUP(DivideByZeroException)
else let val′′ = convertVal(ST (α), opResVal(bop, val′, val)) in

WRITEMEM(adr,ST (α), val′′)
YIELDUP(val′′)

elseif bop = + then DELEGATECOMBINE(ST (α), val′, val)
elseif bop = − then DELEGATEREMOVE(ST (α), val′, val)

ref αvexp → pos := α
ref Iadr → YIELDUP(adr)
out αvexp → pos := α
out Iadr → YIELDUP(adr)

() → YIELD([ ])
(α1arg1, . . . ,

αn argn) → pos := α1

(α1valadr1, . . . ,
Ivaladrn) → YIELDUP([valadr1, . . . , valadrn])

(. . . Ivaladri,
αi+1 argi+1 . . .) → pos := αi+1

αexp is T → pos := α
Ival is T → if ST (pos) ∈ ValueType then YIELDUP(ST (pos) � T)

else YIELDUP(val 6= null ∧ actualTypeOf (val) � T)
αexp as T → pos := α
Ival as T → if ST (pos) ∈ ValueType then

elseif (val 6= null ∧ actualTypeOf (val) � T) then YIELDUP(val)
else YIELDUP(null)

(T) αexp → pos := α
(T) Ival → if ST (pos) ∈ ValueType then

if ST (pos) ∈ PrimitiveType ∧ T ∈ PrimitiveType then
YIELDUP(convertVal(T, val))

elseif T = ST (pos) then YIELDUP(val)
if T ∈ RefType then YIELDUPBOX(ST (pos), val)

elseif T ∈ RefType then
if val = null ∨ actualTypeOf (val) � T then YIELDUP(val)
else FAILUP(InvalidCastException)

elseif val 6= null ∧ T = actualTypeOf (val) then
YIELDUP(memVal(valueAdr(val), T))

elseif val = null then FAILUP(NullReferenceException)
else FAILUP(InvalidCastException)

αexp.T::F → pos := α
Ivaladr.T::F → if ST (pos) ∈ ValueType ∧ valadr /∈ Adr then YIELDUP(valadr(T::F))

elseif valadr 6= null then YIELDUPINDIRECT(fieldAdr(valadr, T::F))
else FAILUP(NullReferenceException)

αexp.T::F = βexp′ → pos := α
Ivaladr.T::F = βexp′ → pos := β
αvaladr.T::F = Ival′ → if valadr 6= null then

WRITEMEM(fieldAdr(valadr, T::F), fieldType(T::F), val′)
YIELDUP(val′)

else FAILUP(NullReferenceException)
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Figure A.3 The operational semantics rules for the C]S’s expressions (continued).
new C → let ref = new(ObjRef , C) in

actualTypeOf (ref ) := C
forall C′::F ∈ instFields(C) do

let adr = fieldAdr(ref , C′::F) and T = fieldType(C′::F) in
WRITEMEM(adr, T, defVal(T))

YIELD(ref )
αexp.T::M β(args) → pos := α
Ivaladr.T::M β(args) → pos := β
αvaladr.T::M I(valadrs) → if valadr 6= null then VIRTCALL(T::M, valadr, valadrs)

else FAILUP(NullReferenceException)

new D(αexp.T::M) → pos := α
new D(Ival.T::M) → if val = null then FAILUP(NullReferenceException)

else let d = new(ObjRef , D) in
actualTypeOf (d) := D
if callKind(T::M) = Virtual then

let T ′′::M = lookUp(actualTypeOf (val), T::M) in
invocationList(d) := [val, T ′′::M ]

else let ref ′ = if T ∈ Struct then NewBox(ST (pos), val) else val in
invocationList(d) := [ref ′, T::M]

YIELDUP(d)

new D(αexp) → pos := α
new D(Iref ) → if ref = null then FAILUP(NullReferenceException)

else let d = new(ObjRef , D) in
actualTypeOf (d) := D
invocationList(d) := invocationList(ref )
YIELDUP(d)

Figure A.4 The operational semantics rules for the C]S’s statements.
EXECCSHARPSTM ≡ match context(pos)

αexp; → pos := α
Ival; → YIELDUP(Norm)
break; → YIELD(Break)
continue; → YIELD(Continue)
goto lab; → YIELD(Goto(lab))

if (αexp) βstm else γstm′ → pos := α
if (Ival) βstm else γstm′ → if val then pos := β else pos := γ
if (αtrue) INorm else γstm′ → YIELDUP(Norm)
if (αfalse) βstm else INorm→ YIELDUP(Norm)

while (αexp) βstm → pos := α
while (Ival) βstm → if val then pos := β

else YIELDUP(Norm)
while (αtrue) INorm → pos := up(pos)

CLEARVALUES(up(pos))
while (αtrue) IBreak → YIELDUP(Norm)
while (αtrue) IContinue → pos := up(pos)

CLEARVALUES(up(pos))
while (αtrue) Iabr → YIELDUP(abr)
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Figure A.5 The operational semantics rules for the C]S’s statements (continued).
T loc; → YIELD(Norm)

lab : αstm → pos := α
lab : INorm → YIELDUP(Norm)

{ } → YIELD(Norm)
{αstm . . .} → pos := α
{. . . INorm} → YIELDUP(Norm)
{. . . INorm αstm . . .} → pos := α
{. . . IGoto(L) . . .} → let α = GOTOTARGET(first(up(pos)), L)

if α 6= undef then
pos := α
CLEARVALUES(up(pos))

else YIELDUP(Goto(L))

return αexp; → pos := α
return Ival; → YIELDUP(Return(val))
return; → YIELD(Return)

Return → if (pos is the position of meth’s body) ∧ frameStack 6= [ ] then
EXITMETHOD(Norm)

Return(val) → if (pos is the position of meth’s body) ∧ frameStack 6= [ ] then
EXITMETHOD(val)

INorm; → YIELDUP(Norm)

throw αexp; → pos := α
throw Iref ; → if ref = null then FAILUP(NullReferenceException)

else YIELDUP(Exc(ref ))
throw; → YIELD(Exc(top(excStack)))

try αblock catch (E x) stm → pos := α
try INorm catch (E x) stm → YIELDUP(Norm)
try IExc(ref ) → if ∃ i = 1, n : actualTypeOf (ref ) � Ei then
catch(E1 x1) α1stm1 let j = min {i = 1, n | actualTypeOf (ref ) � Ei} in
. . . pos := αj

catch(En xn) αnstmn excStack := push(excStack, ref )
WRITEMEM(locAdr(xj),object, ref )

else YIELDUP(Exc(ref ))
try Iabr → YIELDUP(abr)
catch(E1 x1) stm1

. . .
catch(En xn) stmn

try Exc(ref ) catch(E x) Ires → excStack := pop(excStack)
YIELDUP(res)

try αblock finally βblock′ → pos := α
try Ires finally βblock′ → pos := β
try res finally INorm → YIELDUP(res)
try res finally IExc(ref ) → YIELDUP(Exc(ref ))

Exc(ref ) → if (pos is the position of meth’s body) ∧ frameStack 6= [ ] then
EXITMETHOD(Exc(ref ))

{. . . Iabr . . .} → YIELDUP(abr)
. . . Iabr . . . → if up(pos) 6= undef ∧ propagatesAbr(up(pos)) then

YIELDUP(abr)
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The macro FAILUP is applied to throw exceptions. Given an exception class E, it executes
the statement throw new E(); at the parent position. It accomplishes this by invoking an inter-
nal method, named ThrowE (whose body is assumed to contain only the above throw state-
ment), with that effect for each E.

FAILUP(E) ≡ INVOKEMETHOD(ExcSupport::ThrowE, [ ])

DELEGATECOMBINE(D, ref , ref ′) ≡
if ref = null then YIELDUP(ref ′)
elseif ref ′ = null then YIELDUP(ref )
else let d = new(ObjRef , D) in

actualTypeOf (d) := D
invocationList(d) := invocationList(ref ) · invocationList(ref ′)
YIELDUP(d)

DELEGATEREMOVE(D, ref , ref ′) ≡
if ref = null then YIELDUP(null)
elseif ref ′ = null then YIELDUP(ref )
else let L = invocationList(ref ) and L′ = invocationList(ref ′) in

if L = L′ then YIELDUP(null)
elseif sublist(L′, L) then

let d = new(ObjRef , D) in
actualTypeOf (d) := D
invocationList(d) := prefix(L′, L) · suffix(L′, L)
YIELDUP(d)

else YIELDUP(ref )

DELEGATEEQUAL(ref , ref ′) ≡
if ref = null ∨ ref ′ = null then YIELDUP(ref = ref ′)
else let L = invocationList(ref ) and L′ = invocationList(ref ′) in

YIELDUP(length(L) = length(L′) ∧ ∀i = 0, length(L)− 1 : (L(i) = L′(i)))

YIELDUPBOX(T, val) ≡
let ref = newBox(T, val) in

YIELDUP(ref )

INVOKEMETHOD(T::M, valadrs) ≡
if T ∈ Delegate then

if M = length then YIELDUP(length(invocationList(valadrs(0))))
if M = invoke then CALLDELEGATE(valadrs(0), valadrs(1), drop(valadrs, 2))

else
frameStack := push(frameStack, (meth, up(pos), locAdr, values))
meth := T::M
pos := α, where αbody(T::M)
values := ∅
INITLOCALS(T::M, valadrs)

CALLDELEGATE(ref , i, valadrs) ≡
let (ref ′, T::M) = invocationList(ref )(i) in

let this = if T ∈ Struct then valueAdr(ref ′) else ref ′ in
INVOKEMETHOD(T::M, [this] · valadrs)
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INITLOCALS(T::M, valadrs) ≡
forall loc ∈ localVars(T::M) do

let adr = new(Adr, locType(T::M, loc)) in
locAdr(loc) := adr

forall loc ∈ valueParams(T::M) do
let adr = new(Adr, paramType(T::M, loc)) in

locAdr(loc) := adr
WRITEMEM(adr, paramType(T::M, loc), valadrs(paramIndex(T::M, loc)))

forall loc ∈ refParams(T::M) ∪ outParams(T::M) do
locAdr(loc) := valadrs(paramIndex(T::M, loc))

CLEARVALUES(α) ≡
values(α) := undef
if first(α) 6= undef then CLEARVALUESSEQ(first(α))

CLEARVALUESSEQ(α) ≡
CLEARVALUES(α)
if next(α) 6= undef then CLEARVALUESSEQ(next(α))

propagatesAbr(α) :⇔ label(α) /∈ {Block,while}

GOTOTARGET(α, lab) =
if label(α) = Lab(lab) then α
elseif next(α) = undef then undef
else GOTOTARGET(next(α), lab)

EXITMETHOD(res) ≡
let (oldMeth, oldPos, oldLocals, oldValues) = top(frameStack) in

meth := oldMeth
pos := oldPos
locAdr := oldLocals
frameStack := pop(frameStack)
values := oldValues⊕ {oldPos 7→ res}
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