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Robust Prediction of Auditory Step Feedback for Forward Walking
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Abstract

Virtual reality systems supporting real walking as a navigation in-
terface usually lack auditory step feedback, although this could give
additional information to the user e.g. about the ground he is walk-
ing on. In order to add matching auditory step feedback to virtual
environments, we propose a calibration-free and easy to use system
that can predict the occurrence time of stepping sounds based on
human gait data.

Our system is based on the timing of reliably occurring character-
istic events in the gait cycle which are detected using foot mounted
accelerometers and gyroscopes. This approach not only allows us
to detect but to predict the time of an upcoming step sound in real-
time. Based on data gathered in an experiment, we compare dif-
ferent suitable events that allow a tradeoff between the maximum
precision of the prediction and the maximum time by which the
sound can be predicted.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Virtual reality H.1.2 [Models and Princi-
ples]: User/Machine Systems—Human factors;

Keywords: step prediction, gait, human walking, virtual reality,
auditory feedback, step sound

1 Introduction

One of the goals in virtual reality (VR) is to present an immersive
environment that resembles reality in every possible way. Previ-
ously, it has been shown that a user’s feeling of presence in the
virtual environment is much higher in VR systems that offer real
walking based navigation instead of joystick or keyboard as a nav-
igation method [Usoh et al. 1999; Ruddle and Lessels 2009]. In
such systems, the user can see a virtual environment through a head
mounted display and move around in the environment by walking
in the real world. Since the user is tracked (head position and ori-
entation), the experienced self motion matches the motion seen by
the user in the virtual environment.

However, there is also an auditory component to walking that de-
pends on the virtual ground and the surroundings. If, for exam-
ple, the user is walking on virtual gravel, the system should play
a matching sound for his steps, or if he is moving in a large open
space like a cathedral, an appropriate reverb effect should be added.
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To realize this, the real auditory step feedback has to be replaced
by a synthetic one, necessitating the following three requirements:
First, the user has to wear headphones to block out the real step
sound and to provide the synthetic one. Second, the correct time
for the step sound has to be found, and third, a sound matching the
step and the virtual surroundings has to be generated.

There are certain latencies in such a system, especially a delay be-
tween the triggering of the sound playback and the actual playback.
We therefore need a system that is not only capable of detecting
the right time for an auditory step feedback, but one that can pre-
dict it early enough and with sufficient precision that the timing of
the synthetic step sound matches the real one. Also such a system
should work for different users without calibration and therefore
must be adaptive to differences in walking patterns between these
people.

2 Related Work

Generating such a synthetic auditory step feedback for a user in
a virtual environment basically consists of two separate problems:
step detection and sound synthesis. Physically-based sound synthe-
sis is an independent topic and a number of models were already
presented, for example in [Avanzini et al. 2005] where a model has
been presented which has previously been used to create synthetic
step sounds [Turchet et al. 2010]. Step detection is closely related
to medical research and gait analysis, where for example Pappas et
al. designed a step phase detection system for functional electri-
cal stimulation [Pappas et al. 2001]. In [Turchet et al. 2010], the
viability of auditory step feedback systems using shoes equipped
with force sensitive resistors has been demonstrated and in [Nor-
dahl et al. 2011], a system based on an array of microphones located
on the floor around the user was used.

Menzer et al. investigated the feeling of agency over step sounds
in relation to an artificially introduced delay [Menzer et al. 2010].
The results show that the acceptance of the sound decreases with
increasing delay between the step and its auditory feedback. For a
delay of 100 ms the acceptance is still around 90%. Nordahl stated
in a different study that users started to notice a time difference be-
tween haptic and auditory step feedback once the delay was bigger
than 60.9 ms [Nordahl 2005]. Occelli et al. summarized different
results of studies on temporal order judgement and found values
ranging from 20 to 75 ms for the audio-tactile condition [Occelli
et al. 2011]. However, in constrast to Nordahl’s and Merzer’s work,
these values are not from experiments with walking but with vari-
ous other tactile stimuli.

Altough there are systems for generating auditory feedback for
walking in virtual environments, none of the previously available
systems is capable of predicting the occurrence of the auditory step
feedback because of the use of force or acoustic measurements.
Furthermore, they employ ground based equipment, like a micro-
phone array or force sensor plates, or custom-built shoes which
limits the ease of use and portability. Therefore, we propose an
accelerometer and gyroscope based system together with suitable
prediction algorithms that allow for a synthetic auditory feedback
to be played at the time at which the real auditiory feedback would



Time

 D
et

ec
t G

ai
t E

ve
nt

 1

D
et

ec
t G

ai
t E

ve
nt

 2

=>
 C

al
cu

la
te

 P
re

di
ct

io
n

Pr
ed

ic
te

d 
Fe

ed
ba

ck

Remaining Time to Feedback
=RTF=function(ΔT)

Time between Events
=ΔT

Tr
ig

ge
r 

Fe
ed

ba
ck

Audio Latency

Figure 1: For predicting the feedback based on the time difference
between events, the triggering time has to be earlier due to the au-
dio system’s latency.

occur in human gait. The system does not need any user calibration
and is low cost.

3 Gait Event Predictor

3.1 Sensors and Hardware

Since we want a wearable system that is able to predict the time of
the auditory step feedback, it is not possible to use a setup based
on force sensitive resistors like [Nordahl et al. 2011] did. Instead,
an inertial measurement unit equipped with a 3D accelerometer,
gyroscope and magnetometer is used. It is attached to the top of
the user’s shoe (see Figure 2b and see [Foxlin 2005; Stirling et al.
2003]). The sensor is connected to a backpack worn laptop which
runs the necessary software and provides the auditory feedback to
the user wearing headphones.

Figure 2 shows the current setup of our VR system in which this
auditory step feedback will be used.

(a) VR system (b) Used sensor setup

Figure 2: VR system, consisting of backpack carried laptop, head
mounted display, headphones and head tracking system (a) and the
used sensor setup (b).

3.2 Gait Pattern

The topic of human locomotion has been researched for a long
time. Essentially, it is a cyclic process with the same basic pat-
tern repeated every step. In [Pappas et al. 2001] and [Willemsen
et al. 1990], the step was divided into four phases: Stance, heel-off,
swing, and heel-strike.

Figure 3 shows a typical step measured using the sensor setup de-
scribed above as well as the corresponding step phases and foot
movements. On the one hand, there are differences in the gait cycle
that are characteristic for the person. On the other hand, there is a

Table 1: Possible choices for ci. One or more ci together model
the relation between the time of the gait events a and b and the RTF

ci Description

1 constant offset
Ta − Tb time difference of events a and b

(Ta − Tb)
2 squared time difference of events a and b

clear structure in the gait cycle that is independent of the person.

3.3 Predictor

Wendt et al. showed that the duration of the swing phase scales lin-
early with the step duration [Wendt et al. 2010]. Based on this, we
try to find points within the common structure of the step that show
a similar behaviour. Using the occurrence time of those events, we
have to find a relation to the time the auditory step feedback begins
at (Figure 1). If we succeed in finding such events, we will be able
to calculate the remaining time to the auditory step feedback (RTF)
based on those events. By this means, we are able to predict the
time of the auditory feedback independent of the user and without
any calibration.

In order to achieve a reliable prediction for any user, the events
used for the prediction have to be user invariant. This makes events
based on thresholds unsuited, because, due to the differences in gait
between people, thresholds must either be user dependent or very
low and therefore prone to noise and misdetections. Instead, we
use the zero crossings in following measurements: Forward accel-
eration, upwards acceleration, and the roll rate around the medio-
lateral axis. The zero crossings are easy to detect by the change in
the sign and appear reliably in every step.

Since the used zero crossings are part of a transition between two
peaks, the data does not oscillate around zero. Only for the foot roll
rate, three individual zero crossings within a few milliseconds can
occur (up to approximately 15 ms), in which case only the first one
is used and the others are rejected. Figure 3 shows a typical step,
the corresponding foot movements and the following four events
based on zero crossings:

1© Foot roll rate downwards zero crossing
2© Forward acceleration zero crossing
3© Up acceleration zero crossing
4© Foot roll rate upwards zero crossing

Based on the time between two or more of those events, we predict
the RTF after the latest event (1).

RTF = a1 · c1 + a2 · c2 + ...aN · cN (1)

ci can be the time difference between two of the above events, a
function of a time difference, or a constant (see Table 1). The con-
stant factors ai are determined using a standard linear least squares
approach based on training data with known feedback times (2),
where the columns in matrix C correspond to different ci of the
same step and every row to a different step (3).

−−−→
RTFTraining is a

vector containing the corresponding true time to feedback.

A = [a1, a2, ...an]T = (CT · C)−1 · CT ·
−−−→
RTFTraining (2)

C = [−→c1 ,−→c2 , ...,−→cN ] (3)
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Figure 3: The plot shows the upward acceleration (green), forward acceleration (blue) and roll rate (red) of a single step together with the
step phases. The upper part shows the corresponding foot movements. 1©- 4© mark the locations of the person invariant gait events and the
beginning of the auditory step feedback (cyan, dashed).

4 Experiment

To gather data for training and evaluating the predictors, an experi-
ment was conducted. 10 participants (2 female, 8 male) took part in
this experiment. No participant wore shoes that have caused diffi-
culties in attaching the sensor or an unusual auditory feedback. The
VR setup described in section 3 was used. However, for this exper-
iment the head mounted display, headphones and tracking system
were omitted. Additionally, a microphone was attached to the right
foot to record the real step sound for determining the true time of
the feedback.
The participants were asked to walk to the other side of the room
and back in normal speed on a straight line, while their movements
and sounds were recorded. They were informed that there was an
audio recording running and that they should not talk during the
walking. For every participant the walking was conducted twice.

5 Results

The audio data from the experiment was filtered using a bandpass
filter to remove noise and low frequency distortions caused by the
movement. In the resulting signal, the auditory step feedback was
tagged manually at the beginning of the sound and only steps that
had an unambiguous sound feedback and a clear beginning were
included. The turn steps at the far end of the room were excluded.
This provided a total of 154 steps for the analysis, in which every
participant has at least 11 steps.

5.1 Predictor Performance

Using the approach presented in section 3, different combinations
of the proposed gait events are evaluated. Constant, linear and
quadratic terms are included for ci and the factors ai are calcu-
lated. Then, the deviation of the RTF from the actual remaining
time is evaluated and the overall standard deviation σ of this pre-
diction error is calculated as well as the mean RTF. Since the mean
error is zero due to the least squares approach, σ2 is also the mean
squared error of the predictor. This provides a measure for the ro-
bustness and the prediction capability of the predictor.
Since there are a lot of possible event combinations, Table 2 shows
a selection of the best predictors. The table also states the error be-
tween the RTF and the actual remaining time until feedback. This

is evaluated using a leave-one-out cross validation where the pre-
dictor is applied to one participant after the other, using the other 9
to train the factors A.

6 Discussion

The most precise predictors (I and IV) reach a σ of around 16 ms.
If we compare this result to the limits stated in section 2, those
predictors fulfil our robustness requirements very well. In constrast
to σ, the mean RTF depends only on the used events. Predictors
using event 4© have an average RTF of 23.8 ms. Depending on the
used hard- and software, this may or may not offer enough time
to generate and trigger a playback in time. However, since σ is so
small, even if the feedback is delayed, it should not be noticeable
by the user, if the overall system latency is small enough. In our
case with a audio latency (AL) of 30 to 40 ms, this should still be
acceptable. For more than 98% of the steps, the prediction error is
within ±3 · σ. The error can therefore be expected to be between
-35.7 and 58.5 ms (4).

AL−RTF ± 3 · σ = 35− 23.6± 3 · 15.7 (4)

The predictor II uses event 3© as last event and therefore has a much
higher expected RTF of around 87 ms, but it also has a higher σ.
This means that, compared to the predictor including event 4©, we
have to accept a higher σ in order to get a higher RTF. When look-
ing at the predictor only using events 1© and 2©, this behaviour is
confirmed, at an expected RTF of 220 ms, σ is 31 ms (predictor III
in Table 2). With this standard deviation, the users might notice a
delay in the auditory feedback for their steps, but the upper limits
of the acceptance range stated above can still be met.
Moreover, such a high RTF will usually not be necessary for an
auditory step feedback and even if this is the case, it could be con-
sidered to use this only as a rough estimate for the initial feedback
preparations and use a later event for the actual triggering of the
feedback.
The user independance and calibrationlessness requirements are
also fulfilled, since even for the cross validation condition, where
the user is unknown to the predictor, the prediction error was below
the maximal acceptable value for every participant.



Table 2: Predictor comparison. The table shows the used events, the formula for the RTF, the mean RTF and the standard deviation σ of the
RTF from the true remaining time until the auditory feedback with Ti = time of event i. The last column shows the error mean and standard
deviation from the cross validation.

Predictor events used RTF = AT · C [ms] mean RTF [ms] σ [ms] mean(error)
±σ(error)

I ∆T = T4 − T2 RTF = −0.0025 ·∆T 2 − 1.0187 ·∆T − 78.1424 23.6 15.7 0.4± 16.8
II ∆T = T3 − T1 RTF = −0.1581 ·∆T + 66.3783 88.0 21.3 0.9± 23.8
III ∆T = T2 − T1 RTF = −0.0049 ·∆T 2 − 1.0656 ·∆T + 207.9707 218.8 31.1 2.5± 34.3
IV ∆T = T4 − T1 RTF = −0.0018 ·∆T 2 − 1.4747 ·∆T − 279.3835 23.6 16.0 0.0± 17.7

7 Conclusion and Future Work

The presented approach for the prediction of auditory step feedback
based on accelerometers and gyroscopes is calibration-free, needs
no stationary equipment or custom made shoes. It is capable of
predicting the time of the step feedback which allows reducing the
overall system latency.

The prediction is based on the time difference between character-
istic gait events and works well for healthy forward walking. It is
possible to achieve a prediction error that is below the value that
is noticeable by the user (see section 2). This shows that choosing
zero crossings of measurement values as gait events is a reliable and
robust approach. One of the best predictors has the additional ad-
vantage of only using measurements of the foot roll rate and there-
fore requires only one single-axis gyroscope per foot, although the
time by which the step sound can be predicted is short. However, if
the prediction is required earlier, it is possible to use events based
on the upward and forward acceleration. Those predictors are less
precise, but still within the required limits. But since they are based
on the upward and forward acceleration, it is necessary to have ad-
ditional sensors.

By design, the predicted time corresponds to the beginning of the
acoustic step feedback on a flat, rigid surface. For those surfaces,
only the chosen sound file has to be replaced. For surfaces that can
generate sound before the foot hits the floor, like tall grass or snow,
it would be necessary the adapt and retrain the predictor.

In future work, the number of different detectable step types can
be improved, including e.g. backwards walking, stomping, sneak-
ing, or turning on the spot. Also more parameters of the step could
be estimated with the goal of using them as input for a physically-
based synthetic sound generation. Furthermore, the user acceptance
of the auditory step feedback should be analysed in detail. Espe-
cially the maximum acceptable time difference between real and
synthetic sound as well as the effects of early feedback compared
to late feedback.
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