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Abstract We review variable selection and variable screening in high-dimensional
linear models. Thereby, a major focus is an empirical comparison of various estimation
methods with respect to true and false positive selection rates based on 128 different
sparse scenarios from semi-real data (real data covariables but synthetic regression
coefficients and noise). Furthermore, we present some theoretical bounds for the bias
in subsequent least squares estimation, using the selected variables from the first stage,
which have direct implications for construction of p-values for regression coefficients.

Keywords Elastic net · Lasso · Linear model · Ridge · Sparsity · Sure independence
screening · Variable selection

1 Introduction

Many applications nowadays involve high-dimensional data where the number of
(co-)variables p may be much larger than sample size n. In such p � n settings,
classical statistical methods cannot be applied directly. There are essentially two alter-
native approaches which can be used: either some regularization is employed, includ-
ing complexity penalization or Bayesian inference; or one can reduce dimensionality
first and then work with reduced dimension subsequently. We focus here on the latter
with dimension reduction in the original variables, e.g., excluding techniques such as
principal component analysis or sufficient dimension reduction (Adragni and Cook
2009). The motivation to do dimensionality reduction in terms of original variables
is often given by the context of the application: for example, we typically want to
work with a reduced set of genes or proteins in bio-molecular applications rather than
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408 P. Bühlmann, J. Mandozzi

linear combinations of such entities which typically do not have a concrete biological
interpretation.

We consider the simplest, yet often useful high-dimensional setting of a linear
model

Y = Xβ0 + ε, (1)

with n × p design matrix X, true underlying p × 1 regression vector β0 and n × 1
response and noise vector Y and ε, respectively. We denote the active set of variables
by

S0 = { j; β0
j �= 0, j = 1, . . . p}. (2)

The idealistic goal is to do dimensionality reduction with an estimated set of variables
Ŝ ⊆ {1, . . . , p} such that

P[Ŝ ⊇ S0] is very large,

|Ŝ| < n.
(3)

Of course, these properties can only hold if S0 is sparse in the sense that |S0| is smaller
than n: this is a natural requirement since high-dimensional statistical inference is
typically only possible if |S0| < n. If (3) holds, one can do a subsequent analysis
using the data with variables from Ŝ only: since this is not high-dimensional anymore,
one can rely on more classical techniques such as least squares estimation. Such a route
of data analysis is then rather straightforward and often very useful. As an example,
discussed in more details in Sect. 4.3, the lower-dimensional estimation is equipped
with measures of uncertainty including p-values, except for the issue that Ŝ is random.
To make proper use of these uncertainty measures, the issue of randomness of Ŝ can
be addressed using (repeated) sampling splitting where the first half of the data is used
for screening the relevant variables, and p-values can then be inferred using classical
low-dimensional methods based on the second half which is independent from the first
half (Meinshausen et al. 2009), see also Sect. 4. The success of such a strategy hinges
on the variable screening property in (3).

Various theoretical results are known which ensure the variable screening property
in (3), see also Sect. 2.3. While they are certainly useful to describe a method’s ability,
these results are not revealing more fine details whether a method works well or better
than a competitor for a given finite-sample dataset. We complement here the available
mathematical results by an empirical analysis comparing five popular methods for
variable selection or screening in a linear model. We measure performance on several
semi-real data where the design matrix X is from real high-dimensional datasets and
the regression and noise vectors are synthetic (so that we can validate the methods
by knowing the true active set S0). We believe that such an empirical comparison is
closest to real data, and our results should provide an unbiased evaluation of methods
and shed light about usefulness and absolute and comparative performance of variable
screening for high-dimensional real data analysis. Although our study is for linear
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High-dimensional variable screening 409

models only, we believe that the empirical results also indicate how such methods
would work for high-dimensional generalized linear models.

The organization of the article is as follows. In Sect. 2 we present a short review
on high-dimensional inference, including the Lasso and other methods. Section 3 is
devoted to the empirical analysis of five different methods for variable screening; the
methods are described in Sect. 3.1, while the empirical qualitative and quantitative
results are presented in Sect. 3.2. Finally, in Sect. 4 we investigate the consequences
of failure of variable screening. We give a bound for the post-model selection bias
of ordinary least squares estimation based on sample splitting, we propose zonal
assumptions for the regression coefficients and show how they imply (asymptotically)
correct p-values in high dimensional linear models.

2 A brief review of high-dimensional inference

We briefly review in this section some of the main issues for high-dimensional statis-
tical inference. For simplicity, we focus on linear models as in (1) while extensions
to generalized linear and other models are “roughly” following the same conceptual
ideas and facts.

Consider first prediction of the response Y by Ŷ (x) = xT β̂: the mean squared
prediction error, averaged over the observed deterministic Xi ’s is

E

[
n−1

n∑
i=1

(Ŷ (Xi ) − Yi )
2

]
= σ 2 + n−1

n∑
i=1

E

[(
X T

i (β̂ − β0)
)2

]

= σ 2 + E[n−1‖X(β̂ − β0)‖2
2]

= σ 2 + E[(β̂ − β0)T �̂(β̂ − β0)],

where �̂ = n−1XT X. For prediction, we only need good performance of Xβ̂ − Xβ0,
averaged over all components: and this is often relatively easy to achieve as we do not
necessarily need some assumptions on the design matrix X.

In contrast, estimation of the parameter vector β0 and hence also estimation of the
active set S0 require identifiability assumptions on the design matrix X. This is related
to the basic fact that for fixed design X with rank(X) < p:

Xβ = X(β + ξ)

for all β ∈ R
p any ξ in the null-space of X, and the null-space is non-empty due to

non-full rank of X which is necessarily true if p > n.

2.1 The Lasso

Consider the Lasso (Tibshirani 1996) as a prime example to discuss some potential
and limitations that can be achieved.
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410 P. Bühlmann, J. Mandozzi

The parameter vector β0 in model (1) is estimated using a regularization with the
�1-norm penalty:

β̂Lasso(λ) = argminβ

(
‖Y − Xβ‖2

2/n + λ‖β‖1

)
, (4)

where λ ≥ 0 is a regularization parameter. The Lasso is consistent for prediction
without any conditions on the (fixed) design X but assuming sparsity of β0 with
respect to the �1-norm: with high probability,

‖X(β̂Lasso(λ) − β0)‖2
2/n ≤ 3

2
λ‖β0‖1,

λ 
 σ

√
log(p)

n
,

(5)

see Bühlmann and van de Geer (2011, Cor. 6.1). Thereby, we assume Gaussian errors
but such an assumption can be relaxed (Bühlmann and van de Geer 2011, formula
(6.5)). A version of this result has been first derived by Greenshtein and Ritov (2004).
The convergence rate in (5) is at best OP (σ

√
log(p)/n), assuming 1/‖β0‖1 = O(1).

Such a slow rate of convergence can be improved under additional assumptions on
the design matrix X. The ill-posedness of the design matrix can be quantified using
the concept of “restricted” eigenvalues, see Sect. 2.4. Assuming that the smallest
“restricted” eigenvalue is larger than zero, one can derive an oracle inequality of the
following prototype: with high probability:

‖X(β̂Lasso(λ) − β0)‖2
2/n + λ‖β̂Lasso(λ) − β0‖1 ≤ 4λ2s0/φ

2
X, (6)

where φX is the compatibility constant (smallest “restricted” eigenvalue) of the fixed
design matrix X (Bühlmann and van de Geer 2011, Cor. 6.2). Again, this holds by
assuming Gaussian errors but the result can be extended to non-Gaussian distributions.
From (6), we have two immediate implications:

‖X(β̂Lasso(λ) − β0)‖2
2/n = OP (σ 2s0 log(p)/(nφ2

X)), (7)

‖β̂Lasso(λ) − β0‖1 = OP (σ s0
√

log(p)/n/φ2
X), (8)

i.e., a fast convergence rate for prediction as in (7) and an �1-norm bound for the
estimation error. We note that the oracle convergence rate, where an oracle would
know the active set S0, is OP (σ 2s0/n): the log(p)-factor is the price to pay by not
knowing the active set S0. An �2-norm bound can be derived as well:

‖β̂Lasso(λ) − β0‖2 = OP (σ
√

s0 log(p)/n/κ2
X) (9)

assuming a slightly stronger restricted eigenvalue condition with corresponding value
κ2

X, see Sect. 2.4. Results along these lines have been established by Bunea et al.
(2007), van de Geer (2008) who covers generalized linear models as well, Zhang and
Huang (2008), Meinshausen and Yu (2009), Bickel et al. (2009), Ye and Zhang (2010)
and Sun and Zhang (2012) among others.
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High-dimensional variable screening 411

2.2 Other methods

We will consider in our empirical study in Sect. 3 other methods, namely the Elastic
Net (Zou and Hastie 2005), Ridge regression and sure independence screening (SIS)
(Fan and Lv 2008). A description of these estimators is given in Sect. 3.1.

An oracle inequality as in (6), of analogous form, has been derived for the Elas-
tic Net by Hebiri and van de Geer (2011). From their analysis, one cannot easily
draw a general conclusion under what circumstances Elastic Net is better or worse
than the Lasso. For Sure Independence Screening, a crucial condition to ensure the
screening property, see (12), is a beta-min condition and an assumption saying that
min j∈S0 |Cov(Y, X ( j))|/|β0

j | is larger than a constant (Fan and Lv 2008, Cond. 3).
The latter says that the signal is in the marginal correlation between the variables and
the response, a condition which is in line with the marginal nature of the method.
For Ridge regression, recent results in high-dimensional inference for prediction and
variable selection after thresholding are given in Shao and Deng (2012), and for assign-
ing statistical significance for regression coefficients (and hence variable selection) in
Bühlmann (2012).

Of course, there are many other methods for variable selection and screening in
high-dimensional setting, including the adaptive Lasso (Zou 2006), penalization with
SCAD (Fan and Li 2001) or the Dantzig selector (Candès and Tao 2007).

2.3 Variable screening

Consider here an estimator which is sparse in the sense that some of the components
are exactly zero, i.e., β̂ j = 0 for some j . A prime example is the Lasso, and other
examples include the Elastic Net (see Sect. 3.1) or any estimator combined with
hard-thresholding where some of the components are thresholded to zero. A simple
estimator of the active set S0 is Ŝ = { j; β̂ j �= 0}.

Any estimator which has a reasonable accuracy in terms of

‖β̂ − β0‖q (1 ≤ q ≤ ∞)

implies a variable screening property as in (12). Clearly,

‖β̂ − β0‖q ≥ ‖β̂ − β0‖∞ (1 ≤ q < ∞). (10)

We only have a chance to correctly infer the active set S0 if the corresponding regression
coefficients are sufficiently large. We make a “beta-min” assumption of the following
type:

min
j∈S0

|β0
j | > a(n, p, s0, X, σ ). (11)

The value of a(n, p, s0, X, σ ) is chosen as a(n, p, s0, X, σ ) = ‖β̂ − β0‖∞ for the
estimator under consideration. We then have the following trivial implication.
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412 P. Bühlmann, J. Mandozzi

Proposition 1 Consider an estimator β̂ with ‖β̂ − β0‖∞ ≤ a(n, p, s0, X, σ ) on an
event T , and assume that (11) holds. Then, on T ,

Ŝ ⊇ S0. (12)

Proof Suppose that there is a j ∈ S0 with j /∈ Ŝ. Then |β̂ j − β0
j | = |β0

j | >

a(n, p, s0, X, σ ), using the beta-min assumption. On the other hand |β̂ j − β0
j | ≤

‖β̂ − β0‖∞ ≤ a(n, p, s0, X, σ ) which leads to a contradiction. �
Typically, the event T has large probability (by choosing a(n, p, s0, X, σ ) appro-

priately), see the example below. The beta-min assumption is unavoidable: vari-
ables in S0 with corresponding β0

j being too small in absolute value cannot be
detected.

Example Lasso. For the Lasso, when choosing the regularization parameter λ 

σ
√

log(p)/n, with either choice of

a(n, p, s0, X, σ ) = Cσ min(s0
√

log(p)/n/φ2
X,

√
s0 log(p)/n/κ2

X), (13)

where C = C(λ) > 0 is sufficiently large, leads to the fact that the event T in
Proposition 1 has large probability. This follows by invoking either the �1 or �2-norm
result in (8) or (9), respectively, and using the norm property in (10). It is a-priori not
clear which of the two terms in (13) leads to the minimum because φ2

X ≥ κ2
X (van

de Geer and Bühlmann 2009), and hence, there is a trade-off between sparsity and
ill-posedness of the design. We note that Ye and Zhang (2010) give another bound for
‖β̂−β0‖2 with a different type of compatibility factor (sign-restricted cone invertibility
factor), see also Sun and Zhang (2012). Applying Proposition 1 with the beta-min
condition in (13) then yields: with high probability,

ŜLasso(λ) ⊇ S0,

where λ is as above.

Exact recovery of the active set S0 typically requires more restrictive assump-
tions. For the Lasso, when making in addition to a beta-min condition (with
a(n, p, s0, X, σ ) ≥ Cσ

√
s0 log(p)/n) a restrictive assumption on the design X (called

neighborhood stability or assuming the equivalent irrepresentable condition), we have
when choosing a suitable regularization parameter λ � √

log(p)/n: with high prob-
ability,

ŜLasso(λ) = S0,

see Meinshausen and Bühlmann (2006), Zhao and Yu (2006), and Wainwright (2009)
establishes exact scaling results. The “beta-min” assumption in (11) as well as the
irrepresentable condition are essentially necessary (Meinshausen and Bühlmann 2006;
Zhao and Yu 2006) for exact recovery of S0 with the Lasso. In view of this restrictive
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High-dimensional variable screening 413

design condition, variable selection might be a too ambitious goal with the Lasso. That
is why the original translation of least absolute shrinkage and selection operator (Lasso)
may be better re-translated as Least Absolute Shrinkage and Screening Operator. We
refer to Bühlmann and van de Geer (2011) for an extensive treatment of the properties
of the Lasso.

2.4 Conditions on the design

The ill-posedness of the design matrix can be quantified using the concept of
“restricted” eigenvalues. Consider the matrix �̂ = n−1XT X. The smallest eigenvalue
of �̂ is

λmin(�̂) = min
β

βT �̂β.

Of course, λmin(�̂) equals zero if p > n. Instead of taking the minimum on the right-
hand-side over all p × 1 vectors β, we replace it by a constrained minimum, typically
over a cone. This leads to the concept of restricted eigenvalues (Bickel et al. 2009;
Koltchinskii 2009a,b; Raskutti et al. 2010) or weaker forms such as the compatibility
constants (van de Geer 2007) or further slight weakening of the latter (Sun and Zhang
2012).

We give here the definition of the compatibility constant φ2
X and of the restricted

eigenvalue κ2
X. We use the following notation: for a subset S ⊆ {1, . . . , p}, denote

by βS the p × 1 vector with (βS) j = β j I ( j ∈ S) + 0I ( j /∈ S). Regarding the
compatibility constant:

φ2
X = max

{
φ2 ≥ 0;
‖βS0‖2

1 ≤
(
βT �̂β

)
s0/φ

2 for all β such that ‖βSc
0
‖1 ≤ 3‖βS0‖1

}
.

If φ2
X > 0, we say that the compatibility condition holds. The restricted eigenvalue is

defined by replacing ‖βS0‖2
1 by the larger quantity ‖βS0‖2

2s0 ≥ ‖βS0‖2
1 and requiring

the restriction for all ‖βSc‖1 ≤ 3‖βS‖1 for all sets S ⊂ {1, . . . , p} with |S| ≤ s0. We
then get to the following:

κ2
X = max

{
κ2 ≥ 0;
‖βS‖2

2 ≤
(
βT �̂β

)
/κ2 for all β such that ‖βSc‖1 ≤ 3‖βS‖1

and for all S with |S| ≤ s0

}
.

By definition, φ2
X ≥ κ2

X, and if κ2
X > 0, we say that the restricted eigenvalue condition

holds. Relations among the different conditions and “restricted” eigenvalues are dis-
cussed in van de Geer and Bühlmann (2009) and Bühlmann and van de Geer (2011,
Ch. 6.13).
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414 P. Bühlmann, J. Mandozzi

3 An empirical analysis for variable screening

We consider five different methods where each of them yields an estimated set of
active variables Ŝ ⊆ {1, . . . , p}. We assess in Sect. 3.2 the true positive and false
positive rates of such Ŝ in terms of full and partial ROC curves. This will enable us to
draw some conclusions about variable selection and variable screening performance
of the methods.

3.1 Description of the methods

One method is the Lasso, defined in (4), yielding the parameter estimator β̂Lasso(λ).
We denote by

ŜLasso = ŜLasso(λ) = { j; β̂Lasso, j (λ) �= 0, j = 1, . . . , p}

the estimated active set of relevant variables when using the Lasso. We study empir-
ically in Sect. 3.2 the true positive and false positive rate of ŜLasso(λ) as a function
of λ.

When two or more covariables are strongly correlated, the Lasso typically selects
one and not all of them. Although we often aim for sparsity, this is a problem in terms
of interpretation since we might miss a true variable from S0 and select instead a false
variable from Sc

0 which is highly correlated with the true one. This is the motivation for
the Elastic Net (Zou and Hastie 2005). It uses uses a combination of �1- and �2-norm
penalties:

β̂naiveEN(λ1, λ2) = argminβ

(
‖Y − Xβ‖2

2/n + λ1‖β‖1 + λ2‖β‖2
2

)
.

The Elastic Net estimator is then given by a rescaling of the naive Elastic Net:

β̂EN(λ1, λ2) = (1 + λ2)β̂naiveEN(λ1, λ2).

We consider two versions of the Elastic Net, which we call “light” Elastic Net (short
LENet) and “heavy elastic net” (short HENet). In theR-packageglmnet implemented
by Friedman et al. (2010) the Elastic Net estimator is given by

β̂ = argminβ

{
‖Y − Xβ‖

2n
+ λ

(
(1 − α)‖β‖2

2

2
+ α‖β‖1

)}
.

We note that for variable selection, there is no need for rescaling (if the regularization
parameters are varied over a large range; a cross-validation choice of these parameters
would depend on whether rescaling is done or not). The parameter 0 ≤ α ≤ 1 is a
weight between the �1- and the �2-penalties, with α = 1 being the Lasso estimator
and α = 0 being the Ridge regression estimator. The methods we apply in this paper
are given by α = 1 (Lasso), α = 0.6 (LENet) and α = 0.3 (HENet). The estimated
active sets are given by
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High-dimensional variable screening 415

ŜEN(λ) = { j; β̂EN, j (λ) �= 0, j = 1, . . . , p},

where β̂EN(λ) is the corresponding estimator from LENet or HENet, respectively. The
true positive and false positive rates of ŜEN(λ) are empirically analyzed in Sect. 3.2
for varying parameter λ.

As briefly mentioned above, the Ridge regression estimator is using a quadratic
�2-norm penalty:

β̂Ridge(λ) = argminβ

(
‖Y − Xβ‖2

2/n + λ‖β‖2
2

)
.

Ridge regression does not perform variable selection in the sense that estimated compo-
nents are nonzero. Nevertheless, we can easily do variable selection by thresholding,
namely choosing the m variables with biggest absolute value of the corresponding
regression estimate and setting all others zero. The value m is then a tuning parame-
ter of the method while we propose to choose λ fixed, equal to the smallest nonzero
eigenvalue of XT X/n which seems to give reasonable empirical performance. We
call this method “Minimal (non-zero) Eigenvalue Ridge estimator”, shortly MER. In
summary, we order

|β̂Ridge,(1)(λ
∗)| ≥ |β̂Ridge,(2)(λ

∗)| ≥ · · · ≥ |β̂Ridge,(p)(λ
∗)|,

where λ∗ is the smallest non-zero eigenvalue of XT X/n. Then,

ŜMER(m) = { j; |β̂Ridge, j (λ
∗)| ≥ |β̂Ridge,(m)(λ

∗)|}.

The true and false positive rates of MER are given in Sect. 3.2 when varying the
parameter m.

Finally, we consider the Sure Independence Screening method (shortly SIS) pro-
posed by Fan and Lv (2008). It selects the m variables which have largest absolute
correlation with the response Y . We order

|ρ̂(1)| ≥ |ρ̂(2)| ≥ · · · ≥ |ρ̂(p)|,

where ρ̂ j denotes the sample (marginal) correlation between Y and X ( j). Then,

ŜSIS(m) = { j; |ρ̂ j | ≥ |ρ̂(m)|}.

As for MER, we consider in Sect. 3.2 for each m the number of false positives and false
negatives. One evident advantage of SIS is its simplicity and its fast computational
implementation.

We refer to Sect. 2 for different mathematical properties of some of the methods.
As discussed in Sect. 2.3, the variable screening property Ŝ ⊇ S0, which is closest
to our performance measure in the empirical study, is mainly driven by the beta-min
condition (11):
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416 P. Bühlmann, J. Mandozzi

min
j∈S0

|β0
j | ≥ a(n, p, s0, X),

for some expression a(n, p, s0, X) depending on the quantities in parentheses. As
indicated in Sect. 2.2, the Lasso and Elastic Net are not easily comparable in terms of
a smaller (weaker) quantity a(n, p, s0, X).

3.2 Empirical results

3.2.1 Datasets and settings

For the comparison of the five methods we consider 8 different semi-real datasets and
16 different settings (hence a total of 128 scenarios). We analyze partial ROC curves
for each scenario, with each curve being determined by averaging true positives and
false positives over 200 runs. We show 16 plots for one representative semi-real dataset
and summarize all other results in Tables 3 and 4.

The semi-real data are generated as

Y = Xβ0 + ε

where X is a n × p matrix from real data, β0 is a p ×1 synthetic regression vector and
ε ∼ Nn(0, σ 2 In) is a synthetic noise term. The real data are standardized such that X
has columns with mean zero and variance one. A list of the datasets used is given in
Table 1.

For each dataset, we consider 16 settings by varying four parameters as illustrated in
Table 2. The dimension, or number of variables in the model, is denoted by p. In each

Table 1 The datasets. The
sources the data can be found in
Sect. 7

Dataset n No. of
variables

Riboflavin 71 4,088

Breast 49 7,129

Leukemia 72 3,571

Colon 62 2,000

Prostate 102 6,033

Lymphoma 62 4,026

SRBCT 63 2,308

Brain 42 5,597

Table 2 The setting parameters
Setting parameter

Number p of variables 250 1,000

Signal to noise ratio (SNR) 2 8

Sparsity s0 5 20

Correlation among active predictors Normal High
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High-dimensional variable screening 417

simulation run, p covariables are chosen randomly from the totality of all covariables
in the given dataset. The signal to noise ratio (SNR) is defined as

SNR =
√

(β0)T XT Xβ0

nσ 2 .

Furthermore, the sparsity is s0 = | supp(β0)| which equals the number of non-zero
components of β0, and these non-zero components are set randomly as β0

j = 1 or

β0
j = −1 for j ∈ supp(β0). Finally, the active variables (the non-zero components

of β0) are either defined according to a “normal” or “high correlation” scenario. For
“normal”, the active variables are chosen randomly among the p covariables, while
when it is set as “high”, one predictor is chosen randomly and then the s0 −1 variables
with the highest absolute correlation to the first one are chosen as active predictors.

3.2.2 Qualitative results

For a description of the qualitative results we use the 16 graphs corresponding to all
settings of the representative Leukemia dataset (see Figs. 1, 2, 3 and 4). The choice of
the dataset is not really relevant since all of them exhibit similar results (which will
be confirmed by the quantitative results in Sect. 3.2.3).

We note that each method has at least one setting where it performs best. Thus,
there is no overall best method.

The Lasso benefits from sparsity s0 being small and has in all settings with s0 = 5
the best performance among the five methods. It is also remarkable that in all settings
where all true positive variables are selected within false positive ratio (FPR) of 0.1
for p = 250 or 0.025 for p = 1,000, respectively, the Lasso is the method reaching
selection of all true positives first. In short, the Lasso performs best for “easy” settings.
There are scenarios where the Lasso has the worst performance, although often the
difference to the other methods is then rather small.

The LENet shows, as one could expect, results close to the Lasso. It benefits less
than the Lasso from sparsity s0 being small but is less harmed from s0 being large. In
general, the LENet seems to be able to reach a larger true positive ratio (TPR) than the
Lasso only for FPR bigger than 0.2 for p = 250 and 0.05 for p = 1,000, respectively.

These characteristics of the LENet are confirmed by the performance of the HENet
where the same features present themselves in a more evident way. Inspired by Zou and
Hastie (2005), we expected the LENet and HENet to benefit from the high correlation
among the active predictor. We find evidence of this in our plots for sparsity s0 = 20: for
example in the p = 1,000, s0 = 20 settings, under high correlation among the active
variables the LENet and HENet dominate the Lasso while under normal correlation
among the active variables, the Lasso performs better than LENet and HENet in the
low FPR range. For small sparsity, the change from normal to high correlation has no
particular qualitative effect on the performance of LENet and HENet.

The best settings for the MER are those with sparsity s0 = 20 and large SNR = 8:
there the MER has the best performance in the low FPR range, with the difference
to the other methods being considerable, in particular for p = 250. In general it can
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Fig. 1 Partial ROC-curves for Leukemia dataset with p = 250, SNR = 2: Lasso (solid), LENet (dotted),
HENet (dashed), MER (longdashed) and SIS (dotdashed). The oblique black lines represent the points in
the TPR to FPR graphs where 0.5n (left line) and 0.9n (right line) variables are selected

be seen that the MER performs very well in the low FPR range, however for s0 = 5
the FPR range where the MER is best is very small. When one is looking for variable
screening and ready to accept high FPR, then it is not advisable to use the MER.
The MER performs slightly worse when the correlation among the active predictors
is taken from normal to high.

The SIS is the simplest and computationally fastest method. Although it benefits
from high correlation among the active predictors, and even dominates in the settings
with p = 1,000, s0 = 20 and high correlation, it performs poorly in almost all other
cases compared to the other methods.

3.2.3 Quantitative results

In order to make a quantitative comparison of the five methods, we translate the
graphical information of the plots into numerical results. First, we consider the oblique
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Fig. 2 Partial ROC-curves for Leukemia dataset with p = 250, SNR = 8: Lasso (solid), LENet (dotted),
HENet (dashed), MER (longdashed) and SIS (dotdashed). The oblique black lines represent the points in
the TPR to FPR graphs where 0.5n (left line) and 0.9n (right line) variables are selected

black lines in the plots: they represent the points in the TPR to FPR graphs where
exactly 0.5n (line left) and 0.9n (line right) variables are selected, respectively. These
seem to be reasonable boundaries as one usually does not want to have too many
variables selected. We then consider the area of the surface enclosed by the x-axis,
the curve of the given method and its 0.5n (0.9n, respectively) boundary; we call this
the 0.5-area (0.9-area, respectively) of the method. Consider moreover the area of the
surface enclosed by the x-axis, the line TPR = 1 and the 0.5n (0.9n, respectively)
boundary; we call this the 0.5-maximal-area (0.9-maximal-area, respectively). Finally,
the 0.5-performance is defined as the ratio of the 0.5-area of the method over the
0.5-maximal-area. The 0.9-performance is defined analogously.

The 0.5- and 0.9-performances of the methods, averaged over the 8 datasets for
each setting are reported in Table 3, while in Table 4 the 0.5- and 0.9-performances of
the methods, averaged over the 16 settings for each dataset are considered. The best
and second best methods are marked in bold and italicized values.
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Fig. 3 Partial ROC-curves for Leukemia dataset with p = 1,000, SNR = 2: Lasso (solid), LENet (dotted),
HENet (dashed), MER (longdashed) and SIS (dotdashed). The oblique black lines represent the points in
the TPR to FPR graphs where 0.5n (left line) and 0.9n (right line) variables are selected

Inspecting the 0.5- and 0.9-performances, it is possible to quantify how much the
LENet and the HENet benefit from the high correlation among the active predictors.
Averaging over the settings with normal or high correlation among the active predic-
tors, we can see that the 0.5-performance of the Lasso lowers a bit, namely from 54.8 %
to 52.6 % when the correlation gets high, while the one from the LENet improves from
51.6 % to 54.3 % and the one from the HENet improves even more from 45.8 % to
54.8 %. Similar results can be found for the 0.9-performance.

With the averaged performances over the 8 datasets for each setting we refine the
qualitative results as follows. The Lasso has the largest number of settings where
the 0.5- and 0.9-performances are best (in both cases six). Moreover in all settings
where a high performance is reached (80 % or more) the Lasso exhibits the highest
performance. The MER has in five settings the best 0.5- and the best 0.9-performance,
i.e., the second largest number of best performances (while the Lasso is best). All of the
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Fig. 4 Partial ROC-curves for Leukemia dataset with p = 1,000, SNR = 8: Lasso (solid), LENet (dotted),
HENet (dashed), MER (longdashed) and SIS (dotdashed). The oblique black lines represent the points in
the TPR to FPR graphs where 0.5n (left line) and 0.9n (right line) variables are selected

best performances of the MER are given by settings with sparsity s0 = 20. Moreover
the MER does well in the s0 = 5, SNR = 8, normal correlation settings, where it has
the second best 0.5-performance (after the Lasso) and even reaches a 0.5-performance
of 90 % for p = 250. The performance of the MER lowers when the correlation
among the active predictors is increased. The SIS is the method which benefits most
from high correlation among the active predictors. In four of these setting it has the
best 0.5- and the best 0.9-performance. However the SIS has difficulties reaching
high performances of 70 % or above and in the majority of the settings has the worst
0.5- and the worst 0.9-performance.

Regarding analysis of the averaged performances over the 16 settings for each
dataset, the first remarkable result is that the performances of Lasso, LENet, HENet
and MER are very close: the maximal 0.5- or 0.9-performance gap between these four
methods is 5 % for the colon dataset and 2.4 % for the breast dataset. The Lasso has
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Table 3 0.5- and 0.9-performances of the methods, averaged over the 8 datasets for each setting

Setting 0.5-Performance in % 0.9-Performance in %

p, SNR, s, corr Lasso LENet HENet MER SIS Lasso LENet HENet MER SIS

250, 2, 5, norm 81.8 79.1 73.5 75.7 55.1 86.7 85.9 83.1 81.8 63.1

250, 2, 5, high 73.0 73.8 72.6 66.8 68.5 77.3 78.6 78.6 73.4 72.0

250, 2, 20, norm 36.8 35.9 33.4 39.6 25.2 42.9 43.2 42.6 45.0 30.3

250, 2, 20, high 35.4 38.4 41.3 34.8 45.1 37.7 40.5 43.7 40.3 49.7

250, 8, 5, norm 91.3 87.1 79.1 90.4 58.2 95.2 93.0 88.5 93.3 66.0

250, 8, 5, high 87.8 85.0 78.9 81.3 70.3 92.2 90.6 86.5 85.0 73.2

250, 8, 20, norm 44.7 42.1 37.3 55.9 26.6 56.2 54.6 50.7 60.5 31.8

250, 8, 20, high 44.1 45.6 46.5 51.8 47.3 50.6 51.9 52.3 56.2 51.5

1,000, 2, 5, norm 62.4 58.4 51.3 56.6 37.5 69.7 68.4 64.4 63.6 44.0

1,000, 2, 5, high 56.0 60.3 62.5 48.9 64.2 56.9 61.7 65.1 54.7 67.3

1,000, 2, 20, norm 18.0 17.2 15.3 20.3 11.3 21.5 21.7 20.8 23.5 13.7

1,000, 2, 20, high 22.3 26.9 31.6 19.4 36.0 20.9 25.2 30.5 22.4 39.2

1,000, 8, 5, norm 80.4 72.0 59.4 73.7 41.9 88.3 83.5 74.7 79.0 48.3

1,000, 8, 5, high 72.2 70.8 67.9 64.4 67.2 77.4 76.4 73.3 68.3 69.7

1,000, 8, 20, norm 23.2 20.8 17.1 30.6 12.4 30.1 28.8 25.3 33.8 14.7

1,000, 8, 20, high 29.8 33.8 36.7 32.2 39.4 30.1 33.9 37.5 35.0 42.1

Average 53.7 52.9 50.3 52.6 44.2 58.4 58.6 57.3 57.2 48.5

The best and second best methods are marked in bold and italicized values

Table 4 0.5- and 0.9-performances of the methods, averaged over the 16 settings for each dataset

Dataset 0.5-Performance in % 0.9-Performance in %

Lasso LENet HENet MER SIS Lasso LENet HENet MER SIS

Riboflavin 49.3 48.2 45.0 48.6 39.1 54.8 54.9 53.5 54.1 44.1

Breast 48.7 49.5 47.4 48.8 44.6 52.0 54.4 53.6 52.6 48.2

Leukemia 63.5 62.4 59.6 62.2 50.5 68.5 68.1 66.5 66.7 55.0

Colon 52.6 51.3 48.1 53.1 42.6 58.1 57.9 56.3 57.8 47.2

Prostate 60.0 59.3 56.5 56.9 46.7 64.6 64.7 63.7 62.4 52.5

Lymphoma 54.6 53.6 50.5 52.7 43.5 59.4 59.4 57.8 57.5 47.9

SRBCT 55.7 54.5 51.7 54.1 45.2 61.0 60.7 59.2 59.0 49.8

Brain 45.3 44.9 43.5 44.8 40.9 48.6 48.8 48.1 47.9 43.5

Average 53.7 52.9 50.3 52.6 44.2 58.4 58.6 57.3 57.2 48.5

The best and second best methods are marked in bold and italicized values

the best 0.5-performance in six of the eight datasets, the best 0.9-performance in four
datasets and the best overall 0.5-performance. The LENet and HENet perform better in
the range of high FPR and this is confirmed in particular by the fact that the LENet has
the best overall 0.9-performance. The LENet has in each dataset better performances
than the HENet. The MER has the best 0.5-performance for the colon dataset and its
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overall performance is close to the one of Lasso and LENet. Furthermore, in compar-
ison to other methods, the MER performs better in the range of low FPR. Finally, the
SIS has lower performance in each dataset.

3.3 Conclusions of the empirical analysis

We have studied the screening property of five methods over 128 sparse scenarios
based on semi-real high-dimensional data settings. The difference of the performances
among the four best methods (Lasso, LENet, MER and HENet) is small with the
Lasso being slightly preferable; SIS is generally worse. We should emphasize that our
analysis and findings are exclusively for (various) sparse settings with many regression
coefficients being exactly equal to zero.

4 Failure of variable screening

In view of the empirical results from Sect. 3.2, it seems not so unlikely that for a real
application, the variable screening does not hold in good approximation. Assuming
that the data is from the model (1) with Gaussian errors, the cause for failure is that
‖β̂ − β0‖∞ is larger than what we hope it is for the bound in (11).

For example with the Lasso, we use the bound in (13):

‖β̂Lasso(λ) − β0‖∞ ≤ Cσ min(s0
√

log(p)/n/φ2
X,

√
s0 log(p)/n/κ2

X)

for some C = C(λ) > 0. The right-hand side can be large if the design is very
ill-posed with very small values of φ2

X ≥ κ2
X, and the constant C = C(λ) is also

substantial, depending on the choice of λ (C(λ) is increasing with λ, and a small λ

does not guarantee a large probability for the event T on which the inequality above
holds); in our empirical study, the true s0 was chosen as rather small. Of course, the
Lasso would perform well when enforcing (11) with (13) in a simulation model: the
issue is, that this results in a large signal to noise ratio which is typically believed to
be unrealistic in an application.

On the positive side, we can immediately adapt Proposition 1 to the situation where
we have substantial active variables from a set S0,subst(a) = { j; |β0

j | > a} with a

“large” and other active variables in S0\S0,subst(a) = { j; 0 < |β0
j | ≤ a}. Using

the same proof as for Proposition 1 we obtain: on an event T (whose probability is
typically large) we have: for a = a(n, p, s0, X, σ ) = ‖β̂ − β0‖∞:

Ŝ ⊇ S0,subst(a). (14)

This means in practice, that even when a = ‖β̂ − β0‖∞ is large, we will at least
detect the substantial variables (if they exist, i.e., S0,subst(a) �= ∅), while many other
active variables in S0 \ S0,subst(a) will not be consistently selected. As long as one
simply tries to screen for substantial variables as in (14), no further complications
arise. Often though, one continues with a subsequent analysis using only the variables
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from Ŝ: when the variable screening property as in (12) fails to hold, we face a bias
problem as discussed next.

4.1 Sample splitting and analysis of bias

Consider the case where we pursue ordinary least squares estimation with the variables
from Ŝ in a subsequent analysis. To have a valid inference in the second stage, say in
terms of p-values or confidence intervals, we need to address the post-model selection
bias. One plausible solution is based on sample splitting (Wasserman and Roeder
2009) or repeated sample splitting (Meinshausen et al. 2009).

Consider the former, where we use one half of the sample I1 ⊂ {1, . . . , n} with
|I1| = �n/2� to estimate Ŝ = Ŝ(I1), and then the other half I2 = {1, . . . , n} \ I1 for
the subsequent ordinary least squares estimation β̂OLS,Ŝ(I2) based on the variables

from Ŝ. In the following, Ŝ = Ŝ(I1) is always depending on I1 only. We introduce the
following notation: X(S)

I is the |I |×|S| design sub-matrix of X with rows corresponding
to I ⊆ {1, . . . , n} and columns corresponding to S ⊆ {1, . . . , p}. We assume in the
sequel that

rank((X(Ŝ)
I2

)T X(Ŝ)
I2

) = |Ŝ| ≤ |I2| = n − �n/2�. (15)

The condition (15) holds if the minimal eigenvalues of all s×s sub-matrices of XT
I2

XI2

are positive, for all s ≤ n−�n/2�; the condition that |Ŝ| ≤ |I2| = n−�n/2� is fulfilled
for many estimators Ŝ, including e.g., the Lasso, or it can be enforced by using it in
the definition of an estimator Ŝ.

For a linear model in (1) with fixed design, assuming (15), the bias of β̂OLS,Ŝ(I2)

can be immediately calculated: for the components in Ŝ we have,

EI2 [β̂OLS,Ŝ(I2)] = β0
Ŝ

+
(
(X(Ŝ)

I2
)T X(Ŝ)

I2

)−1
(X(Ŝ)

I2
)T X(Ŝc)

I2
β0

Ŝc . (16)

The expectation is only taken over the sample I2 used for the second-stage analysis.
Clearly, if Ŝ ⊇ S0, then β0

Ŝc = 0 and we have an unbiased estimator for the variables

in Ŝ; but we want to analyze here the situation where the screening property fails to
hold. Unbiasedness would also be true when all variables from Ŝ would be pairwise
orthogonal to all variables from Ŝc, which is a rather unrealistic scenario. In general,
the bias can be quantified as follows.

Proposition 2 Consider model (1) with fixed design and an estimator β̂ with ‖β̂(I1)−
β0‖∞ ≤ a(�n/2�, p, s0, XI1 , σ ) on an event T (where the probability of T , with
respect to I1 is large). Here, I1 and I2 are split samples with |I1| = �n/2�, |I2| =
n − �n/2�, and β̂(I1) with its corresponding Ŝ = Ŝ(I1) depends on I1 only. Assume
that (15) holds. Then, on T :
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max
j∈Ŝ

|EI2 [β̂OLS,Ŝ(I1); j (I2)] − β0
j |

≤ max
j∈Ŝ(I1)

∑
k∈Ŝc∩C;|C|≤s0−s0,subst

|A jk |a(�n/2�, p, s0, XI1 , σ ),

A =
(
(X(Ŝ)

I2
)T X(Ŝ)

I2

)−1
(X(Ŝ)

I2
)T X(Ŝc)

I2
,

s0,subst = |{ j; |β0
j | > a(�n/2�, p, s0, XI1 , σ )}|.

A proof is given in Sect. 6. We discuss now the bound of the bias. Proposition 2
implies the following: on T ,

max
j∈Ŝ

|EI2 [β̂OLS,Ŝ(I1); j (I2)] − β0
j |

≤ max
j,k

|A jk |(s0 − s0,subst)a(�n/2�, p, s0, XI1 , σ ). (17)

Assuming

(|I2|−1XT
I2

XI2) j j ≤ C < ∞ for all j = 1, . . . , p (18)

and

|I2| max
j,k

(
(X(Ŝ)

I2
)T X(Ŝ)

I2

)−1

jk
≤ C < ∞ (19)

we have max j,k |A jk | ≤ C2|Ŝ(I1)|.
Example Lasso. For the Lasso, with regularization parameter λ 
 σ

√
log(p)/n,

assuming the restricted eigenvalue condition (see Sect. 2.4), we can invoke the bound
in (9) leading to the value a(n, p, s0, X, σ ) 
 σ

√
s0 log(p)/n/κ2

X.

Assuming that (18) and (19) hold, which implies max j,k |A jk | ≤ C2|Ŝ(I1)|, and
a more restrictive sparse eigenvalue condition (instead of the restricted eigenvalue
condition) on the design X, we have that |Ŝ(I1)| ≤ Ds0 for some constant 0 < D < ∞
(Zhang and Huang 2008; van de Geer et al. 2011). Thus, max j,k |A jk | ≤ C2 Ds0 and
using (17), the bias can be bounded by: with high probability (with respect to I1),

max
j∈ŜLasso(I1)

|EI2 [β̂OLS,ŜLasso; j (I2)] − β0
j |

≤ O(σ s0(s0 − s0,subst)
√

s0 log(p)/�n/2�/κ2
XI1

). (20)

Here, s0,subst = |{ j; |β0
j | > a(n, p, s0, X, σ )}| with a(n, p, s0, X, σ ) 
 σ ×√

s0 log(p)/n/κ2
X.

The upper bound from Proposition 2, or from (17), or also the one in (20) for the
Lasso may be too crude. But the bias can be easily (with positive probability) of the
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order n−1/2, already for low-dimensional settings, and hence it can have a disturbing
effect. To see this, consider p = 2 covariables where |β0

1 | is large and β0
2 = C/

√
n,

and thus S0 = {1, 2}. Clearly, for C > 0 sufficiently small, P[2 /∈ Ŝ(I1)] ≥ 1 − δ for
some 0 < δ < 1. Assuming scaled variables with ‖X(1)

I2
‖2

2 = ‖X(2)
I2

‖2
2 = |I2|, the bias

is [see (16)]:

EI2 [β̂OLS,1(I2)] = β0
1 + |I2|−1(X(1)

I2
)T X(2)

I2
Cn−1/2.

Thus, with probability at least 1 − δ (w.r.t. I1), the bias is ρ̂1,2Cn−1/2, where ρ̂1,2 is
the inner product, based on I2, between the first and the second covariable.

Having a bias of at least the order n−1/2 is too large when it comes to construction
of p-values or confidence intervals based on β̂OLS,Ŝ(I2). Assuming Gaussian errors in
the model (1), we have for the normalized version:

(
(X(Ŝ)

I2
)T (X(Ŝ)

I2
)
)1/2

β̂OLS,Ŝ(I2) ∼ N|Ŝ|(
(
(X(Ŝ)

I2
)T (X(Ŝ)

I2
)
)1/2

β0
Ŝ

+ B, σ 2 I ),

B =
(
(X(Ŝ)

I2
)T (X(Ŝ)

I2
)
)1/2

(EI2 [β̂OLS,Ŝ(I2)] − β0
Ŝ
). (21)

With the argument above, the bias B can be of the order |I2|1/2n−1/2 
 1 which does
not converge to zero. We can ensure a negligible bias by making additional “zonal”
assumptions about the non-zero coefficients of β0, as discussed next.

4.2 Zonal assumptions for regression coefficients

We consider the scenario where S0 is structured into two zones as follows:

S0 = S0,subst(a) ∪ S0,small(u),

S0,subst(a) = { j; |β0
j | > a}, S0,small(u) = { j; 0 < |β0

j | ≤ u}, (22)

where 0 < u < a, and we will exclusively focus on the value a = a(n, p, s0, X, σ ) =
‖β̂ − β0‖∞ for an estimator β̂ under consideration. We can then improve the bias
bound in Proposition 2.

Proposition 3 Consider model (1) with fixed design and an estimator β̂ with ‖β̂(I1)−
β0‖∞ ≤ a(�n/2�, p, s0, XI1 , σ ) on an event T (where the probability of T , with
respect to I1, is large). Assume that (22) holds for a = a(�n/2�, p, s0, XI1 , σ ), and
suppose that (15) is true. Then, on T :

max
j∈Ŝ(I1)

|EI2 [β̂OLS,Ŝ; j (I2)] − β0
j | ≤ max

j

∑
k∈Ŝc∩C;|C|≤s0;small

|A jk |u,

where A is as in Proposition 2 and s0,small(u) = |S0,small(u)|.
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Proof We follow exactly the proof of Proposition 2, invoking that

|β0
k | ≤ u for k ∈ Ŝc = Ŝc(I1),

instead of (26), and

‖β0
Ŝc‖0 ≤ s0 − s0,subst = s0,small(u),

instead of (27). �
Example Lasso. For the Lasso, we can obtain the analogue of (20) but invoking zonal
assumptions [and assuming a sparse eigenvalue condition for the design X, as in the
derivation of (20)]. Assuming (22) with a = Cσ

√
s0 log(p)/n for some sufficiently

large 0 < C < ∞, a sparse eigenvalue condition for the design X, (15), (18) and (19),
the Lasso with λ 
 σ

√
log(p)/n satisfies: with high probability (with respect to I1),

max
j∈ŜLasso(I1)

|EI2

[
β̂OLS,ŜLasso; j (I2)

]
− β0

j | ≤ O(s0s0,small(u)u) (23)

with u as in (22). Hence, the bias B in (21) is negligible if u satisfies

u = o
(

s−1
0 s−1

0,small(u)n−1/2
)

. (24)

This is an implicit relation since u appears also on the right-hand side via the term
s0,small(u).

4.3 Revisiting multi sample splitting for p-values in high-dimensional linear models

P-values in high-dimensional linear models have been proposed using sample splitting
(Wasserman and Roeder 2009) or with a more reliable multi (or repeated) sample
splitting scheme (Meinshausen et al. 2009). Both approaches use the distributional
property given in (21), and they assume the screening property that Ŝ ⊇ S0 with
probability converging to one (as sample size n and dimension p = pn � n → ∞).

We focus now on the methodology in Meinshausen et al. (2009). There, among
other issues, a Bonferroni-style p-value correction is made with the factor

|Ŝ(I1)| · Pj ( j ∈ Ŝ(I1))

where Pj = Pj (I2) is an ordinary p-value for H0, j : β0
j = 0 versus HA, j : β0

j �= 0

based on the t-test from the second sample using the variables in Ŝ(I1). When relaxing
the screening property and using the zonal assumption in (22), we need to make sure
that the incurred bias is negligible.

Example Lasso. For the Lasso, we have |Ŝ(I1)| = O(s0) assuming a sparse
eigenvalue condition, and thus, using (23) the bias in |Ŝ(I1)| · Pj is of the order
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O(n1/2s2
0 s0,small(u)u). This bias is negligible if u satisfies u � n−1/2s−2

0 s0,small(u)−1;
since s0,small(u) ≤ s0, this is fulfilled if u = o(n−1/2s−3

0 ). Using this leads to the fol-
lowing: the multi sample splitting method of Meinshausen et al. (2009), using the
Lasso as estimator Ŝ, leads to asymptotic strong error control of the familywise error
rate in multiple testing, assuming the conditions stated in Meinshausen et al. (2009),
assuming a sparse eigenvalue condition on the design X and replacing the screening
property by the zonal assumption:

S0,subst =
{

j; |β0
j | > Cσ

√
s0 log(p)/n/κ2

X

}
for C > 0 sufficiently large,

S0,small =
{

j; 0 < |β0
j | ≤ Dn−1/2s−2

0 s−1
0,small

}
for D > 0 sufficiently small.

(Note that the definition for S0,small is implicit since its cardinality s0,small = |S0,small|
appears on the right-hand side). Thus, even if the screening property does not hold,
the p-value method of Meinshausen et al. (2009) is justified when making sufficiently
strong zonal assumptions as above.

5 Conclusions

We have reviewed some of the aspects of variable selection and variable screening
in high-dimensional linear models. The main novelty of our exposition is an empiri-
cal comparison of estimation methods with respect to true and false positive selection
rates: the methods we consider are Lasso, two versions of Elastic Net, Ridge estimation
(with thresholding coefficients) and Sure Independence Screening. To make the empir-
ical comparison as fair and realistic as possible, we consider 128 different scenarios
where the covariables are from real data (eight different datasets) and the response is
constructed using synthetic sparse regression coefficients and Gaussian noise. Overall,
for the sparse settings we considered, the Lasso was found to be slightly better than
the other methods, but the differences between methods seem rather small except for
SIS which overall is found to perform worse.

Our empirical results also indicate that we cannot realistically expect to have exact
recovery of the active variables or the exact screening property saying that all active
variables are selected by the estimator (unless the estimator selects a much too large
set of variables). In view of this, we also discuss the issue of bias when doing subse-
quent least squares estimation using the selected variables only. Our analysis justifies
previous approaches for constructing p-values (Wasserman and Roeder 2009; Mein-
shausen et al. 2009) under weaker “zonal assumptions” which require that the non-zero
regression coefficients are either sufficiently large or sufficiently small.

6 Proof of proposition 2

We use formula (16): for j ∈ Ŝ we have

|EI2 [β̂OLS,Ŝ; j (I2)] − β0
j | =

∣∣∣∣∣∣
∑
k∈Ŝc

A jkβ
0
k

∣∣∣∣∣∣ . (25)
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Observe that on T :

|β0
k | ≤ a(�n/2�, p, s0, XI1 , σ ) for k ∈ Ŝc (26)

since the variables corresponding to coefficients with larger value are necessarily in
Ŝ. Furthermore, on T ,

‖β0
Ŝc‖0 ≤ s0 − s0,subst (27)

because ‖β0‖0 = s0 and |Ŝ| ≥ s0,subst (since on T , variables with large coefficients
must be in Ŝ). Using (25)–(27) completes the proof. �

7 Sources of the data

The Riboflavin data will be made publicly available in Bühlmann et al. (2013), the
Breast data (West et al. 2001) come from the Duke Breast Cancer SPORE frozen tissue
bank and all other data are used in Dettling (2004) and can be downloaded from http://
stat.ethz.ch/~dettling/bagboost.html.
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