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Abstract

We study the solution quality for min-cut problems on graphs when restricting the
shapes of the allowed cuts. In particular we are interested in min-cut problems
with additional size constraints on the parts being cut out from the graph. Such
problems include the bisection problem, separator problem, or the sparsest cut
problem. We therefore aim at cutting out a given number m of vertices from
a graph using as few edges as possible. We consider this problem on solid grid
graphs, which are finite, connected subgraphs of the infinite two-dimensional grid
that do not have holes. Our interest is in the tradeoff between the simplicity of
the cut shapes and their solution quality: we study corner cuts in which each
cut has at most one right-angled bend. We prove that optimum corner cuts get
us arbitrarily close to a cut-out part of size m, and that this limitation makes
us lose only a constant factor in the quality of the solution. We obtain our
result by a thorough study of cuts in polygons and the effect of limiting these to
corner cuts.
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1. Comparing Optimal with Simple Shaped Cuts

Many problems consider cutting a graph into two parts with an additional
constraint on the sizes of the resulting parts. We study the minimisation version
of these types of problems in which as few edges as possible are to be used to cut
the graph. More formally, we wish to partition the n vertices of a graph into two
parts of sizes m and n−m while minimising the cut length, i.e. the number of
edges connecting vertices from different parts. The constraint on the sizes of the
parts is realised by giving a bound on m that needs to be fulfilled. Alternatively
the optimisation function may also depend on m. Some examples of these types
of problems include the bisection problem in which bn/2c ≤ m ≤ dn/2e, the
edge separator problem in which n/3 ≤ m ≤ 2n/3, or the sparsest cut problem
in which the function C

m(n−m) is to be optimised. In the latter C denotes the cut

length of the solution. Note that in any of these problems the respective optimal
solution cuts out m vertices using a minimum number of edges for this particular
value of m. Our interest is in solid grid graphs : a grid graph is a finite, connected
subgraph of the infinite two-dimensional grid. An interior face surrounded by
more than four edges is called a hole. If a grid graph does not contain holes
it is solid. Solid grid graphs appear in finite element simulations [2] for which
also the considered types of problems are relevant in devising data distribution
algorithms for parallel computations [2, 3]. The graphs and problems are also
relevant to VLSI circuit design [4].

We aim at understanding the intricacies of optimally cutting out a fixed
number m of vertices in a graph from a novel point of view: we study simple cut
shapes, for which it can be shown that they compare well to optimal unrestricted
ones. In related problems on polygons similar ideas have led to interesting insights.
For instance guillotine cuts have been considered, which are orthogonal straight
line cuts. When an orthogonal polygon is to be partitioned into rectangles these
cuts lead to good approximations [5]. Also if a rectangular polygon is to be
partitioned into rectangles fulfilling given size constraints, good solutions can be
achieved by using guillotine cuts [6].

For the graphs considered in this article it will be convenient to determine
the cut shapes in relation to their embedding in the plane. We therefore assume
that a grid graph is given together with its natural embedding. That is, the
grid is a plane graph in which the vertices are coordinates in N2 and all edges
have unit length. It is well-known that any cut in a planar graph G = (V,E)
corresponds to a set of cycles in its dual graph (i.e. the (multi-)graph whose
vertices are the faces of G and whose edges represent a shared boundary between
faces). We call a set of edges in a planar graph a segment if it corresponds to
a simple cycle in the dual graph. Hence a cut can be defined as a set S ⊆ 2E

of segments (Figure 1). In this view the segments are the building blocks of a
cut. In our setting a guillotine cut in a solid grid graph corresponds to a set of
straight lined segments without bends. However these kinds of cuts do not yield
satisfactory solutions since they can be far away from optimum (Figure 2). On
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Figure 1: An optimal (left) and a corner cut (right) in a solid grid, each cutting out
m = 110 vertices. The bold edges indicate the elements of the segments.

the other hand, it was observed [7] that there always exists an optimum solution
to cut out m vertices in which almost all segments have a simple shape. More
precisely, at most one segment in an optimal solution has more than one bend.

The above two observations on the shapes of segments and their relation to
optimal solutions naturally lead to the question of how well so-called corner cuts
perform. These contain only segments having at most one bend (Figure 1). In
this article we prove that optimum corner cuts do not need a lot more cut-edges
than arbitrary cuts. We achieve our result by proving a number of theorems for
polygons that we relate to the case of solid grid graphs. The reason for choosing
this approach is that polygons are continuous objects, which is in contrast to
the discrete nature of graphs. This fact makes certain tools available for our
proofs that otherwise would not be applicable. The main part of this paper will
therefore be concerned with thoroughly analysing corner cuts in polygons.

Figure 2: A grid in which the op-
timum cut length for m = n/2 is
constant (bold edges) but any cut
containing only straight segments
has cut length Ω(

√
n).

We measure the quality of a cut S us-
ing the cut length which is the number of
edges

∑
s∈S |s| in S. Notice that some edges

may be counted several times in this sum.
However (if the cut shapes are not restricted)
edges that appear more than once can be
removed. In particular the number of cut out
vertices stays the same while the cut length
decreases when eliminating redundant edges.
Hence this generalisation of measuring the
quality of a cut does not change the solution
which minimises the cut length among those
cuts cutting out m vertices. More formally,
consider the set of connected components left
after removing the edges belonging to a cut.
If there exists a subset of these components whose sizes add up to exactly m,
then we call the cut an m-cut. An m-cut minimising the cut length among all
m-cuts is optimal. We distinguish between the set containing m vertices, the
A-part, from the other set, the B-part, of the m-cut. As mentioned before, we
propose to use only segments that correspond to orthogonal curves in the dual
graph with at most one right-angled bend, when disregarding the part of the
cycle that connects to the exterior face (Figure 1). If the corresponding curve of
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Figure 3: Converting a grid to a polygon.

a segment contains no bend we call it a straight segment and if it contains exactly
one right-angled bend a corner segment. An m-cut containing only straight
and corner segments is called a corner m-cut. The main result of this article is
summarised in the following theorem.

Theorem 1. Let l be the cut length of an optimal m-cut in G and ε ∈ ]0, 1].
Then there exists a corner m′-cut, for some m′ ∈ [(1− ε)m, (1 + ε)m], which has
a cut length that is at most a factor of O(1/

√
ε) larger than l.

This theorem was used [2] in order to compute constant approximations to
sparsest cuts in solid grid graphs in linear time, using a method developed by
Leighton and Rao [8]. Subsequently these approximate sparsest cuts can be put
to work [2] via known techniques [3, 8] in order to speed up the computation of
approximate separators and bisections.

We will prove Theorem 1 by going through several steps, each of which is an
interesting problem in itself. We start by comparing cuts in grid graphs to cuts
in polygons in order to be able to use the continuous nature of the polygons in
our proofs. For this we convert a given solid grid graph into a simple orthogonal
polygon, and hence all polygons considered in this article are orthogonal and
simple. We also assume that any polygon has a fixed orientation in the plane
towards which the used cuts are oriented, as the grids are given together with
their embedding. In this article, we define a polygon using its interior point set.

Definition 2 (polygon). A polygon1 P ⊂ R2 is an open bounded set of points
in the plane. Let β be the boundary of P. If β only contains orthogonal line
segments, we refer to P as orthogonal. We call P simple if any closed curve in
P can be shrunk to a point without leaving P.

Given a solid grid graph G, the conversion is done by replacing each vertex
(x, y) ∈ V by a unit square that has its centre at the coordinate (x, y) ∈ N
(Figure 3). Notice that the squares of two neighbouring vertices of V will share
a boundary, but the converse is not necessarily true. Ignoring those boundaries
that correspond to an edge in G leaves a connected curve that is the boundary of
the polygon. It may happen that this boundary is degenerate in the sense that
it can have overlapping edges (Figure 3). The region enclosed by the boundary

1We use calligraphic capital letters to denote areas in the plane such as polygons or areas
inside polygons, and we use lower case Greek letters to denote curves such as boundaries or
segment curves.
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Figure 4: A straight, corner, staircase, and rectangular line in a polygon denoted by
λ1 through λ4 respectively.

is the polygon PG and has area exactly n, equal to the number of vertices in G.
We will refer to the area covered by a polygon, or any open set of points, as
its size.

All the notions used for cuts in grids carry over naturally to the case of
polygons. Intuitively, the building blocks of a cut in a polygon P are curves that
can be drawn between points on the boundary of P (Figure 4). In accordance
with the grid case, we call them segment curves and a cut is a set of segment
curves. Formally these curves are defined as follows.

Definition 3 (curve, boundary point, segment curve). Given a polygon P, a
curve λ ⊂ P is the image of a continuous map from the open unit interval to P .
The length of a curve is measured using the l1-norm. Unless otherwise stated,
all considered curves have finite length. If β denotes the boundary of P , we call
a point p ∈ β a boundary point of a curve λ in P if the distance from p to λ is 0.
If λ has two boundary points we call it a segment curve.

Note that a segment curve has exactly two boundary points since a polygon
is an open set of points. Consider the connected areas left after removing the
segment curves from a polygon. An m-cut is a set L of such curves that leaves a
subset of these areas with total size m. The cut length of L is the sum of the
lengths of the curves in L, which are measured using the Manhattan distance.
This ensures that an m-cut in a grid graph G has a corresponding m-cut in the
polygon PG with the same cut length. The curves in the latter cut reside on
the boundaries of the unit squares used to construct PG. Note that the m-cut
in PG that corresponds to the optimal m-cut in G obviously has a cut length
that is at least the cut length of the optimal m-cut in PG. The latter is defined
as an m-cut having the smallest cut length among all m-cuts. Those segment
curves that we will use to cut out areas from polygons are rectilinear and we
therefore call them lines. A corner m-cut in a polygon is an m-cut containing
only straight and corner lines. Analogous to the case of grids, the former are
orthogonal segment curves without bends, and the latter are orthogonal and
have exactly one right-angled bend, as seen in the following definition.

Definition 4 (bar, straight, corner line). We call a curve λ a bar line if all
points in λ share either the same x- or the same y-coordinate. In the former
case we say that the orientation of the bar line is vertical and it is horizontal in
the latter case. A bar line that is also a segment curve is called a straight line,
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and a segment curve that consists of a horizontal and a vertical bar line is called
a corner line. We refer to these bar lines as the horizontal, respectively vertical,
bar line of the straight or corner line. Analogous to the corner segments, we
call the point at which the two bar lines of a corner line meet its corner, and say
that it points in two of the directions up, down, left, and right, depending on
whether its horizontal and vertical bar lines go up, down, left, or right from its
corner, respectively.

We will first show the existence of corner cuts in simple polygons that cut
out almost the required area and have small cut length (close to optimal). We
will then convert such a cut in a polygon PG derived from a grid graph G to
a corresponding cut in G having the properties described in Theorem 1. More
precisely we prove the following results for polygons which together imply the
theorem:

1. We show that there is an optimal m-cut in a polygon that is almost a
corner cut, in the sense that the cut consists of only straight and corner
lines except at most one other curve (Section 2). This curve may be
shaped like a staircase (a so-called staircase line; cf. Definition 5), or it
may be a rectangular line (cf. Definition 6), which is a contiguous part
of the boundary of an orthogonal rectangle (Figure 4). We call a cut a
1-rectangular, respectively a 1-staircase cut if it contains one rectangular,
respectively staircase line, and only straight and corner lines otherwise.

2. We show how to remove a rectangular line from an optimal 1-rectangular
m-cut (Section 3). We replace the rectangular line by a set of straight and
corner lines, and at most one staircase line. Together these cut out the
same area as the rectangular line. While doing this we need to take other
curves from the cut into consideration so that the newly introduced curves
do not interfere with these. The new cut will also be a m-cut but its cut
length may not be optimal. However, we show that the cut length of the
new cut is only a constant factor away from the optimal.

3. Given a (not necessarily optimal) 1-staircase m-cut of the polygon we next
show how to replace the staircase line with a set of corner and straight
lines, such that the new area that is cut out is close to m (Section 4). To
be more precise, the new cut is an m′-cut where m′ ∈ [(1− ε)m, (1 + ε)m]
for any desired constant ε ∈ ]0, 1]. Furthermore, the cut length of the new
cut is only a constant factor (depending on ε) times the cut length of the
original cut.

4. At last we show how to convert a cut containing only straight and corner
lines in a polygon PG corresponding to a grid graph G into a cut in G
(Section 5). Note that this step would be straightforward if all the curves
in the cut were passing through exactly the midpoints of the edges of the
grid. We call such curves grid lines. We show that all curves in the cut
obtained in the previous steps can be moved to grid lines in such a way
that the cut length remains the same, but we lose a small area a from the
cut out area. Since a is small we can cut this area from the polygon using
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a recursive method using only grid lines so that the cut length grows by
only a small factor.

The following sections explain these techniques in more detail.

2. Cuts in Polygons

We will now show that for any polygon there is an optimal m-cut for which
all but at most one curve are corner and straight lines. Curves with more bends
include staircase lines and rectangular lines. The former have at least two bends
and are monotone in x- and in y-direction. The latter have two or three bends
and form part of the boundary of an orthogonal rectangle (Figure 4).

Definition 5 (staircase line). For any polygon P a staircase line λ ⊆ P is a
segment curve that consists of a sequence of bar lines such that of two adjacent
bar lines one is horizontal and the other vertical. This sequence has length
at least three and the resulting curve is monotonic in x- and y-direction. The
orientation of λ is up if its left boundary point also is lower than the other, and
down otherwise.

Definition 6 (rectangular line). Let R ⊂ R2 be an axis-parallel rectangle in the
plane and let γ be its boundary. Any segment curve λ ⊆ γ ∩ P which contains
either two or three corners of R is called a rectangular line. These corners are
called the corners of λ. We call R the defining rectangle of λ if R is the rectangle
of smallest size among those from which λ can be constructed in this way.

Notice that a rectangular line contains either three or four bar lines between
its corners and boundary points since P is an open set. Notice also that a corner
line and a staircase line that have the same boundary points have the same
length.

In a first step, we convince ourselves that in any simple polygon there is an
optimal m-cut that contains only straight, corner, staircase, and rectangular
lines. Furthermore, none of these lines cross or overlap, which is defined as
follows.

Definition 7 (A- and B-part, crossing, overlapping). Let A(L) ⊆ P \ {p ∈ λ |
λ ∈ L} be the open set of size m that is cut out by the m-cut L in P and let
B(L) = P \ (A(L)∪ {p ∈ λ | λ ∈ L}) be the other cut out open set of size n−m.
That is, the areas A(L) and B(L) do not include points that are contained in
curves of L or the boundary of P.

Let λ1 and λ2 be two segment curves in P. We say that λ1 and λ2 cross
if λ2 contains points from both A({λ1}) and B({λ1}). A cut L is said to be
non-crossing if no pair of curves in L cross. Two segment curves in P overlap if
they do not cross but share a curve of length greater than zero (i.e. the shared
part is not just a point).

The following results are analogous to those obtained in [4] for grid graphs.
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Figure 5: A rectangular line λ1 with its defining rectangle R1 is replaced with the
rectangular line λ′1 (left). To compensate for the area a (shaded in grey), another curve
λ2 is replaced by λ′2 (right). It can be a corner, staircase, or a rectangular line (with
defining rectangle R2).

Lemma 8. In any polygon P there is an optimal m-cut L that is non-crossing
and contains only straight, corner, staircase, and rectangular lines. Furthermore
no curves in L overlap.

Proof. Note that any pair of crossing segment curves can be seen as a (different)
pair of segment curves that do not cross. Hence there always exists an optimal
non-crossing m-cut. Additionally, removing overlapping parts of curves results
in an m-cut of smaller cut length and thus no curves in L overlap. Also, as in
the case of grids, it is easy to see that for any m-cut with cut length l there is
an m-cut for which every curve is a segment curve and has a cut length of at
most l. Thus, let λ be a curve from L and let R ⊂ R2 be the smallest rectangle
containing λ. Due to the well-known isoperimetric problem, using the l1-norm
(see e.g. [9]) it follows that λ is a rectangular line if the boundary points of λ
do not coincide with two of the opposing corners of R. If λ’s boundary points
coincide with two opposing corners of R, it is easy to see that λ can be replaced
with a straight, corner, or staircase line since these lines have minimum length
between the boundary points using the l1-norm.

In a next step, we show that if an optimal m-cut contains a rectangular line,
then all other curves are straight or corner lines. Generally speaking, the reason
is that cuts can be modified so that the cut out area remains the same. This is
easy to see for two rectangular lines where the A-part of the cut out area is on
the inside of one of the rectangles and on the outside of the other: we can simply
make both rectangular lines smaller by the same area, thereby decreasing the
length of the cut (Figure 5)—a contradiction to optimality. More generally, we
call a corner line convex w.r.t. the area next to its 90 degree angle and concave
w.r.t. the area next to its 270 degree angle (Figure 6). Similarly, a rectangular
line is convex w.r.t. the area next to its 90 degree angles, and concave w.r.t. the
area on its other side. Similar area exchange arguments as above show that for
an optimal 1-rectangular m-cut, the area on the concave side of the rectangular
line will belong to the same part of the cut as the area on the concave sides of
all corner lines. This fact will become important later when a rectangular line is
replaced with a staircase line.
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Definition 9 (convex, concave). For any segment curve λ ∈ L let C ⊆ P be an
open set of points such that λ is part of the boundary of C. We define Z(C) ⊆ C
as the set of points p ∈ C such that there exist a horizontal and a vertical bar
line which both are contained in C, and end in p and a point on λ. We call
a corner or rectangular line convex w.r.t. C if Z(C) 6= ∅ and concave w.r.t. C
otherwise.

Since in an optimal m-cut L no curves overlap, each set A(L) and B(L) can
only lie to one side of a corner or rectangular line. Hence any such line in L is
either concave or convex w.r.t. exactly one of the cut-out areas from P.

For staircase lines, area exchange works by changing the staircase line while
still keeping it monotonic between its end points. The potential area exchanged
is the deficit or the surplus, which are areas with monotone boundaries contained
in the B- and A-part respectively (Figure 7). These areas are used to prove that
an optimal cut requires at most one staircase line: for more than one staircase
line we trade the smaller deficit or surplus of one staircase with the larger of
another one, turning the former into only straight and corner lines (Figure 9).

More formally, consider the simple case of an m-cut that contains only one
curve λ which is a staircase line. In this case the set Z(C) ∪ λ is referred to as
the surplus if C = A({λ}) and as the deficit if C = B({λ}). We are interested in
the segment curves that are part of the boundary of the deficit and surplus. We
need to add the points in λ to Z(C) so that the boundary of both the deficit and
the surplus is made up of segment curves. (For instance the boundary of the
surplus shown in Figure 7 would otherwise only contain λ as a segment curve.)
If λ is the only curve in an m-cut, then the segment curves apart from λ in the
surplus and deficit are all straight and corner lines by definition of Z(C). The
surplus can be seen as the area that λ cuts out from the A-part in addition to
what these lines in the boundary of the surplus cut out. The deficit on the other
hand can be seen as the area that λ does not cut out compared to the lines in
the boundary of the deficit. If there are other curves apart from λ in an m-cut,
then the definition has to be modified in the following way, in order to capture a
similar notion. If there is a curve λ′ that overlaps with λ (as shown in Figure 7),
then it can happen that the intersection between Z(C) and a part cut out by λ′

is non-empty. This would mean that a curve in Z(C) ∪ λ might cross λ′. Such a
curve will later be used when transforming λ. Hence all the parts cut out by
other curves that include λ are removed in the surplus and deficit.

Definition 10 (surplus, deficit). Let λ ∈ L be a staircase line from a non-
crossing m-cut L, C ∈ {A(L),B(L)}, and L′ = L \ {λ}. For any curve λ′ ∈ L′
let Dλ′ ∈ {A({λ′}),B({λ′})} such that λ ∩ Dλ′ = ∅. We call the set

(Z(C) ∪ λ) \
⋃
λ′∈L′

Dλ′

the surplus of λ if C = A(L) and we call it the deficit of λ if C = B(L).

Using the above notions we are able to prove that if there is a rectangular
line in an optimal m-cut it is the only curve that is not a corner or straight line.
We proceed in two steps of which the following lemma is the first.
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Figure 6: A corner, and rectangular line in a
polygon denoted by λ1, λ2, respectively. Both are
concave with respect to the A-part and convex
with respect to the B-part.

Figure 7: A staircase line λ to-
gether with its surplus (in light
grey shading) and its deficit (in
dark grey shading).

Lemma 11. For any polygon P, if an optimal m-cut L contains a rectangular
line that is concave with respect to the area C ∈ {A(L),B(L)}, then it contains
no staircase line and also no corner line that is convex with respect to C.

Proof. Let λ1 ∈ L be the rectangular line that w.l.o.g. is concave with respect to
C = A(L) (by Lemma 8 no curves overlap and hence any rectangular or corner
line is either concave or convex w.r.t. C). Let λ2 ∈ L be a staircase line. As
we will show, there is a sufficiently small area of size a > 0 that can be locally
“transferred” from λ1 to λ2 by making λ1 shorter while transforming λ2 such
that the cut length is decreasing. Hence we get a contradiction to the optimality
of L.

Any rectangular line has at least two adjacent corners, i.e. there is a bar
line connecting them. For any rectangular line under consideration we can
assume w.l.o.g. that these corners coincide with the lower right and upper right
corners of its defining rectangle. Let R1 be the defining rectangle of λ1, let
Q1(x) = {(x′, y′) ∈ R1 | x′ > x}, and let a1(x) be the size of Q1(x). For
sufficiently small a > 0 there is a value xa such that a1(xa) = a and the rectangle
R1 \ Q1(xa) defines a rectangular line λ′1 which has the same boundary points
as λ1 and does not cross any curve in L. Observe that λ′1 is shorter than λ1 by
twice the width of the area Q1(xa). When replacing λ1 with λ′1 in L we need to
compensate for the area Q1(xa) in order to cut out an area of size m, by also
replacing the staircase line λ2 with some appropriate curve λ′2 (see Figure 5).
We show next how this is done.

Since λ2 is a staircase line, for sufficiently small a we can find a staircase
line λ′2 that cuts out an area of size a from the surplus of λ2 (remember that
C = A(L)), such that λ2 and λ′2 have the same boundary points, and replacing
λ2 with λ′2 will make the cut out area have size m (remember that λ1 is concave
w.r.t. C). Notice that, by the definition of the surplus, λ′2 does not cross any
curve and therefore the new m-cut is non-crossing. The length of λ′2 is equal
to the length of λ2 in the l1-norm and hence the cut length is decreasing when
replacing λ1 and λ2. This is a contradiction to the optimality of L and therefore
λ2 cannot be a staircase line.

A similar argument can be made when λ2 is a corner line that is concave
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w.r.t. C. For sufficiently small a we can find a staircase line λ′2 which has a deficit
of size a in the m-cut that results from replacing λ1 and λ2, and the boundary
of the deficit is λ2 ∪ λ′2. Also if a is small enough, λ′2 does not cross any other
curve since no curve overlaps with λ2 by Lemma 8. Since this means that the
boundary points of λ2 and λ′2 are the same, the length of these two lines are the
same in the l1-norm, and therefore the cut length decreases when replacing λ1
and λ2. This is a contradiction to the optimality of L and hence λ2 cannot be a
corner line that is concave w.r.t. C.

Using the above lemma we can prove that if an optimal m-cut contains a
rectangular line, then no other curve is a rectangular or staircase line, as the
following lemma shows.

Lemma 12. For any polygon P, if an optimal m-cut L contains a rectangular
line that is concave with respect to the area C ∈ {A(L),B(L)}, then all other
curves are straight and corner lines, where the latter all are concave with respect
to C.

Proof. By Lemma 8 we can assume that all curves in L are straight, corner,
staircase, or rectangular lines. Additionally Lemma 11 shows that apart from
the rectangular line λ1 ∈ L, the only lines left that might violate the statement
in this lemma are other rectangular lines. Let λ2 ∈ L be such a rectangular
line. We first consider the case when λ2 is convex w.r.t. C. As in the proof
of Lemma 11 let λ′1 be the rectangular line that is defined by the rectangle
R1 \ Q1(xa). Analogous to the definition of λ′1 we can define a rectangular
line λ′2 such that the corresponding function a2(·) equals a for an appropriate
value x′a if a is sufficiently small. The line λ′2 is shorter than λ2 by twice the
width of the corresponding area Q2(x′a). But this means that replacing λ1 with
λ′1 and λ2 with λ′2 results in an m-cut with smaller cut length than L. This
contradicts the optimality of L and hence λ2 cannot be a rectangular line that
is convex w.r.t. C.

Thus consider the case when λ2 is a rectangular line that also is concave
w.r.t. C. For i ∈ {1, 2} let hi and wi be the height and width of the defining
rectangle Ri of λi, respectively. Assume w.l.o.g. that w2 ≥ h2 ≥ h1 (otherwise
we can switch the identity of the width and height of R2 for the former, and the
identity of λ1 and λ2 for the latter inequality). As noted before, the length l′1 of
λ′1 is shorter than the length l1 of λ1 by twice the width of Q1(xa). Since the
height of the latter equals the height of R1 this means that l′1 = l1 − 2a/h1. If
λ2 has three corners, then let (x, y) be the corner that is adjacent to both the
other two corners. In case λ2 has two corners we can decompose it into three
bar lines of which two are incident to exactly one corner. Let in this case (x, y)
be the corner that is incident to the longer of these two bar lines. In all of these
cases we can assume w.l.o.g. that (x, y) is the top right corner of R2.

For sufficiently small a we can find a rectangular line λ′2 that has the following
properties (Figure 8). It is defined by a rectangle R′2 that has the same lower
left corner as R2 and the top right corner (x+ z, y + z), for some z > 0, such
that the area (R′2 \ R2) ∩ P that is cut out between λ′2 and λ2 has size a. It
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Figure 8: Constructing the line λ′2 (dotted) when λ2 (dashed) is a rectangular line
that is concave w.r.t. C. Both lines share the boundary point p since (x, y) is the upper
right corner of λ2. For sufficiently small z the area R′2 \ R2 is entirely included in P.
If λ2 has two corners, as depicted here, this is due to P’s orthogonal boundary (solid
black line).

also does not cross any other curve, and λ′2 shares at least one boundary point p
with λ2. By the assumption that (x, y) is the top right corner of R2 and the
construction of R′2, the boundary point p is the one that is incident to the lower
horizontal bar lines of λ2 and λ′2. Since by Lemma 8 no curves overlap in L, such
that for sufficiently small a the constructed line does not cross any other curve,
this means that λ′2 always exists. Notice however that the two lines might differ
in the other boundary point if λ2 has two corners since the boundary of P may
overlap with the boundary of R′2. Under the assumption that P is orthogonal
we can however always find some sufficiently small z > 0 such that the area
R′2 \ R2 is entirely included in P.

The area R′2 \ R2 can be decomposed into three rectangles of which one
extends R2 to the right by z, one extends R2 to the top by z, and one which lies
between these two extensions and has height and width z. By the assumption
that w2 ≥ h2 we can therefore conclude that a = zw2 + zh2 + z2 > 2zh2. It is
easy to see that the length l′2 of λ′2 is at most l2 + 4z. Solving the lower bound
on a for z we can conclude that l′2 < l2 + 4 a

2h2
= l2 + 2a/h2. Replacing λ1 and

λ2 by λ′1 and λ′2 yields an m-cut that has a shorter cut length than L since we
assumed that h2 ≥ h1. But this contradicts the optimality of L which means
that λ2 cannot be a rectangular line that is concave w.r.t. C.

After considering optimal m-cuts containing rectangular lines we turn to the
case where they contain staircase lines. In this case we can show that there
always exists an optimal m-cut in which at most one curve is a staircase line
while all others are corner and straight lines.

Lemma 13. For any polygon P, if there is an optimal m-cut L that contains
a staircase line, then there also is an optimal m-cut that contains at most one
staircase line while all other curves are straight or corner lines.
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Figure 9: Two staircase lines λ1 and λ2 together with their respective surplus (or
deficit) shaded in grey. The dotted lines indicate that the boundary of the surplus (or
deficit) together with some parts of λi, i ∈ {1, 2}, form only corner and straight lines
which are contained in Li.

Proof. By Lemma 12 it can not happen that there is a rectangular line in L.
Hence, by Lemma 8, the only case we have to consider is when there are two
staircase lines λ1 and λ2 in L. It can happen that the boundary of the deficit
of λ2 contains parts of λ1, or that the boundary of the surplus of λ1 contains
parts of λ2. It is easy to see though that it can not happen that both boundaries
contain parts of the respective other staircase line. Hence we can assume w.l.o.g.
that the boundary of the surplus of λ1 does not contain any parts of λ2. Let
a1 denote the size of the surplus of λ1. For any a ∈ [0, a1] we can find a set of
curves L1(a) that cut out an area of size a from the surplus of λ1, such that
removing λ1 yields a (m− a)-cut. If a < a1 we can choose a single staircase line
having the same boundary points as λ1 for the set L1(a). If a = a1 the curves
in L1(a) are part of the boundary of λ1’s surplus together with some parts of λ1
(Figure 9).

If the boundary of the deficit of λ2 contains parts of λ1, the deficit of λ2
can grow when replacing λ1 with L1(a). Hence let d2(a) denote the size of λ2’s
deficit in the constructed (m−a)-cut. Similar as for the surplus of λ1, for a fixed
a we can find a set of curves L2(d) for any d ∈ [0, d2(a)] cutting out an area of
size d from the deficit of λ2. It either contains a single staircase line or curves
that are part of the boundary of λ2’s deficit. Let b = min{a1, d2(a1)}. Observe
that it is possible to replace the line λ2 with the set L2(b) after replacing λ1 with
L1(b). This yields a (m− b+ b)-cut, i.e. an m-cut which has a cut length that is
at most the cut length of the original m-cut since distances are measured using
the l1-norm. Assume that some curve in L1(b) or in L2(b) overlaps with some
other curve in the m-cut (including those in L2(b) and L1(b) respectively). The
overlapping part can be removed, again yielding an m-cut which now however
has a shorter cut length. Since this is a contradiction to the optimality of L,
we can conclude that no curve in L1(b) or L2(b) overlaps with any other curve.
By the definition of b, at least one (both if a1 = d2(a1)) of the sets L1(b) and
L2(b) consists of curves that are part of the boundary of the surplus or deficit,
respectively, together with some parts of the respective staircase line. Since
these curves do not overlap with any other curves they must either be straight
or corner lines, by the definition of the surplus and deficit (cf. Figure 9).

Hence if L contains several staircase lines, then there is an optimal m-cut
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Figure 10: A rectangular line ρ
(dashed) together with the set of curves
Ξ (dotted) with which it is replaced.
The area of size a is shaded in grey.

Figure 11: A virtual corner line (black
dashed) at (x, y). The cut out area is
shaded in grey.

which contains one staircase line less. By applying the argument repeatedly we
can conclude that there is an optimal m-cut with at most one staircase line while
all other curves are straight or corner lines.

To summarise the above results, the following observation immediately follows
from Lemmas 8, 12, and 13.

Corollary 14. For any simple polygon P there is an optimal m-cut L such that
all curves in L are corner or straight lines except at most one, which is either
a staircase line or a rectangular line. If there is a rectangular line in L that is
concave with respect to the cut out area C ∈ {A(L),B(L)}, then all corner lines
in L are concave with respect to the same area C.

Because our interest is in cuts with only straight and corner lines, we need to
study how to cope with a rectangular line, and how to cope with a staircase line.
For a rectangular line we show how to convert the m-cut into a cut in which
there is at most one staircase line while the cut length grows at most by some
constant factor. With our observations on staircase lines we are then able to
convert any optimal m-cut into one containing only straight and corner lines.

3. Removing Rectangular Lines

We now show how to convert an optimal 1-rectangular m-cut into an m-cut
containing only straight and corner lines except at most one which is a staircase
line. Consider the area inside the defining rectangle of the rectangular line
(Figure 10). This region may contain a part of the boundary of the polygon (and
possibly some other curves of the cut). We can replace the rectangular line with
a set Ξ of straight and corner lines lying within the defining rectangle such that
these curves have total length less than the length of the rectangular line. By
doing this, we do not increase the length of our cut, but we now have to cut out
an additional area of size a equal to the difference in sizes of the part cut out by
the original cut and the part cut out by the new cut. We show how to find a set
of curves that cut out the required area of size a and has total length not too
large (compared to the cut length l of the optimal m-cut). Note that the length
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of the rectangular line (and thus l) is at least
√
a. So, it is sufficient to show

that the area of size a can be cut out using a set of curves of total length not
much larger than

√
a.

In order to find this set of curves we need to abstract from the actual
topology of the polygon. We achieve this by introducing the following notions
(cf. Figure 11). In the proofs of this section we will restrict ourselves to the case
of one specific orientation of the involved curves. Notice that in Definition 3 a
segment curve can be defined for the plane by seeing R2 as the polygon with a
boundary that lies infinitely far away. Hence we may define corner lines of infinite
length in the plane due to Definition 4, and leverage the following definition.

Definition 15 (virtual corner line). Let µ be a corner line in the plane R2. For
any (open or closed) finite area P ⊂ R2 the set Λ of corner and straight lines in
P for which λ ∈ Λ if and only if λ ⊂ µ ∩ P is called a virtual corner line2 The
corner of µ is also referred to as the corner of Λ. The length of Λ is the sum of
the lengths of the included straight and corner lines. The horizontal length of
Λ is the total length of all horizontal bar lines covered by Λ, while the vertical
length of Λ is the total length of all vertical bar lines covered by Λ. If Λ cuts out
an area of size a on the upper right side of its corner, we say that it is a virtual
corner line for a.

For a fixed value a let Λ(x), if it exists, be a virtual corner line for a with
corner (x, y) such that its underlying corner line in the plane points up and
right. If there are several virtual corner lines that match the definition then
Λ(x) denotes the one having the largest y value for its corner. Let lh(x) be the
horizontal, lv(x) the vertical, and l(x) = lh(x) + lv(x) the total length of Λ(x).
Also let P(x) ⊂ P be the cut out area of size a, i.e. Λ(x) is the lower and left
boundary of P(x).

Notice that if P has size n, for any a ∈ [0, n] there is a value x′ such that
Λ(x) = Λ(x′) for all x ≤ x′ while Λ(x) 6= Λ(x′) for all x > x′. Also there is
a value x′′ such that Λ(x) is defined for all x ≤ x′′ while Λ(x) is not defined
whenever x > x′′. In this sense the points x′ and x′′ are extreme points for
these virtual corner lines beyond which the function Λ(x) is irrelevant for our
purposes. Let Ia = [x′, x′′] be the interval of relevant x values for the virtual
corner lines for a. Note that the y values of the corners of these virtual corner
lines are non-increasing with x in Ia.

The easy case is when the required area a can be cut out from the polygon
using a single virtual corner line of short length (say, of length at most c

√
a

for some fixed constant c). However, depending on the shape of the polygon,
it is not always possible to find such a virtual corner line. For example, in the
polygon shown in Figure 12, any virtual corner line cutting out the required area
has a long vertical or a long horizontal length.

Given any polygon we can search along the x-axis between the two extremities
of the polygon, and for each value of x find a y such that the virtual corner line

2We use capital Greek letters to denote virtual lines.
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Figure 12: A polygon in which every virtual corner line that cuts out an area of fixed
size on the upper right side of its corner, is too long. At p1 the vertical length switches
from short to long and at p2 the horizontal length switches from long to short.

Figure 13: The interval [x1, x2] in a polygon and a virtual corner line (dashed black)
for a whose horizontal and vertical lengths are both large. The diagonally shaded areas
are P(x) and P(x1), and the grey shaded area is Qy.

at (x, y) cuts out exactly an area of size a (Figure 13). We can show that if there
does not exist any single virtual corner line for a having sufficiently small length,
then there exist virtual corner lines for a at two points (x1, y1) and (x2, y2) such
that the former has short (i.e. at most c

√
a) vertical length, the latter has short

horizontal length, and for all virtual corner lines in between both lengths are
large.

Lemma 16. Let P ⊂ R2 be an open set of points in the plane of size n, a ∈ [0, n],
and c be a constant. Suppose there is no virtual corner line for a with a length
of at most 2c

√
a. Then there is an interval [x1, x2] ⊆ Ia such that

• lv(x1) ≤ c
√
a,

• lv(x) > c
√
a for all x ∈ ]x1, x2],
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• lh(x2) ≤ c
√
a, and

• lh(x) > c
√
a for all x ∈ [x1, x2[.

Proof. Let

x2 = inf
{
x ∈ Ia | lh(x) ≤ c

√
a
}

and

x1 = sup
{
x ∈ Ia | lv(x) ≤ c

√
a ∧ x ≤ x2

}
.

We need to show that if the premise holds, i.e. if there is no x ∈ Ia such that
l(x) ≤ 2c

√
a, then the interval [x1, x2] fulfils the above listed properties. It is

easy to see that lv(x
′) = 0 and lh(x′′) = 0, where Ia = [x′, x′′], and from the

premise it then follows that lh(x′) > 2c
√
a and lv(x′′) > 2c

√
a. Hence the points

x1 and x2 must exist in Ia since the vertical length must switch from short to
long and the horizontal length from long to short when traversing the interval.
Assume that lv(x1) > c

√
a. Since P is an open set of points there must then

be some z > 0 such that lv(x) > c
√
a for all x ∈ [x1 − z, x1]. However this

contradicts the definition of x1 and we can hence conclude that lv(x1) ≤ c
√
a.

A similar argument can be given for lh(x2) and thus also lh(x2) ≤ c
√
a.

The premise states that lh(x) + lv(x) > 2c
√
a for all x ∈ Ia. Thus we can

conclude that lh(x) > c
√
a or lv(x) > c

√
a for any such x. By the definition of

x1 and x2 it therefore holds that x1 < x2 and for all points x ∈ ]x1, x2[ it holds
that lv(x) > c

√
a and lh(x) > c

√
a. Hence the properties on the horizontal and

vertical lengths listed above are true.

Further we can show that the interval [x1, x2] of the above lemma is also
short.

Lemma 17. Let P be a polygon of size n, a ∈ [0, n], and c ≥ 2 be a constant. If
(x1, y1) and (x2, y2), where x1 < x2, are the corners of two virtual corner lines
for a in P such that the interval [x1, x2] has the properties listed in Lemma 16,
then

x2 − x1 <
2
√
a

c
and y1 − y2 <

2
√
a

c
.

Proof. Fix some x ∈ ]x1, x2] and let (x, y) be the corner of the virtual corner line
Λ(x) for a (see Figure 13). Let Qy be the area cut out by the virtual corner line
(for some a+ b where b > 0) with corner (x1, y), i.e. both sets P(x1) and P(x)
are included in Qy. We can derive an upper bound on the size of Qy \ P(x) by
observing that this area can be split into two parts. Of these, one is contained
in the area P(x1) while the other is contained in the rectangle below this area.
Hence we can conclude that the size of Qy \ P(x) is at most a + h(y) · w(x),
where h(y) = y1−y and w(x) = x−x1 are the height and width of the rectangle,
respectively.

We can derive a lower bound on the size of Qy \ P(x) by integrating along
the vertical lengths of the virtual corner lines between x1 and x, yielding

lim
z→x1

∫ x

z

lv(t) dt > w(x) · c
√
a.
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The area Qy \ P(x1) is split into the part that is entirely contained in P(x) and
the part that is contained in the rectangle to the left of that area. Note that the
latter rectangle is the same as for the area Qy \P(x). Since Λ(x1) and Λ(x) both
cut out an area of size a, we can conclude that the sizes of the areas P(x)\P(x1)
and P(x1) \ P(x) are equal. Therefore also the areas Qy \ P(x) and Qy \ P(x1)
have the same size. Hence we can derive a second lower bound of h(x) · c

√
a on

the size of Qy \ P(x) by integrating along the horizontal lengths of the virtual
corner lines in a similar way as before. By defining l(x) = max{w(x), h(x)} we
can thus conclude that the size of Qy \ P(x) is greater than l(x) · c

√
a. By using

l(x) as an estimate of h(x) and w(x) in the upper bound derived above, we get
the following inequality:

a+ l(x)2 > l(x) · c
√
a

This inequality is an invariant that is true for any x ∈ ]x1, x2]. Using standard
methods we can derive that the two terms in the invariant are equal if

l(x) =

√
a

2

(
c±

√
c2 − 4

)
.

Since c ≥ 2 this means that the invariant amounts to one of the following terms:

l(x) <

√
a

2

(
c−

√
c2 − 4

)
or (1)

l(x) >

√
a

2

(
c+

√
c2 − 4

)
. (2)

Note that this means that there is an interval between these two bounds from
which l(x) cannot take a value. However, since the vertical and horizontal lengths
of Λ(x) are always greater than zero for x ∈ ]x1, x2[ , both w(x) and h(x) are
continuous functions in the interval ]x1, x2]. Therefore also l(x) is a continuous
function. Since l(x) can be arbitrarily close to zero this means that Inequality (2)
can never be fulfilled.

It is easily verifiable that the right-hand side of Inequality (1) can be upper-
bounded by 2

c

√
a since c ≥ 2. The proof is concluded by noticing that an upper

bound on l(x2) is also one for w(x2) and h(x2).

Analogous to a virtual corner line we can define a virtual staircase line by
considering any staircase line of infinite length in the plane and taking the parts
of the line that lie inside some specific polygon.

Definition 18 (virtual staircase line). Let µ be a staircase line in the plane R2

of orientation down. For any finite area P ⊂ R2 the set Λ of staircase, corner,
and straight lines in P for which λ ∈ Λ if and only if λ ⊂ µ∩P is called a virtual
staircase line. The length of Λ is the sum of the lengths of the included straight,
corner, and staircase lines. If Λ cuts out an area of size a on its upper right side
we say that it is a virtual corner line for a.

Notice that a virtual corner line is also a virtual staircase line. Using the
above results we find a virtual staircase line which cuts out exactly the required
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area a and has a short total length (Figure 14). The corresponding staircase line
goes along the vertical section of the first virtual corner line, to some y∗ and
then turns to the right and goes to some x∗, turns again and then finally follows
the horizontal part of the second virtual corner line.

Lemma 19. Given a polygon P of size n, for any a ∈ [0, n] there is a virtual
staircase line Λ for a that has a length of at most 7

√
a.

Proof. We attempt to cut out an area of size a from P using a virtual corner
line. Due to Lemmas 16 and 17 we can either find one with length at most 4

√
a

(throughout this proof we set c = 2) or there is an interval [x1, x2] with the
properties listed in the lemmas. In the former case let Λ contain this set of lines.
In the latter case we can find the desired set of curves as follows (Figure 14).
We will use the same notation as in the proof of Lemma 17.

For any x ≥ x2 let Λ′(x) be the virtual corner line with corner (x, y2) and let
l′v(x) be its vertical length. We attempt to find x∗ = min{x ≥ x2 | l′v(x) ≤

√
a}

(which is well defined since P is an open set). Notice that the vertical lines
that are part of Λ′(x) are contained in P(x2), which has size a. Hence by the
definition of x∗ we can conclude that

a ≥ lim
z→x∗

∫ z

x2

l′v(x) dx > (x∗ − x2)
√
a,

which means that x∗ − x2 <
√
a.

Let P ′(x∗) ⊂ P(x2) be the area that is cut out by Λ′(x∗). We define y∗ to
be the coordinate where the virtual corner line with corner (x1, y

∗) cuts out an
area Q such that Q∪ P ′(x∗) has size a. Observe that y∗ ≥ y1 since P(x1) has
size a and hence Q ⊆ P(x1). The desired set of curves Λ contains all curves λ

Figure 14: A virtual staircase line (black dotted) cutting out the area of size a shaded
in grey. It is constructed using the two virtual corner lines at (x∗, y2) and (x1, y

∗).
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that are segment curves and

λ ⊆{(x, y2) ∈ P | x ≥ x∗} ∪ (3)

{(x∗, y) ∈ P | y ∈ [y2, y
∗]} ∪ (4)

{(x, y∗) ∈ P | x ∈ [x1, x
∗]} ∪ (5)

{(x1, y) ∈ P | y ≥ y∗}. (6)

The points in the first set (in Row (3)) are contained in the horizontal parts of
Λ(x2) and the points in the last set (in Row (6)) are contained in the vertical
parts of Λ(x1), which each have a length of at most 2

√
a by Lemma 16. The

points in the second set (in Row (4)) are contained in the vertical parts of Λ′(x∗)
which by definition has a length of at most

√
a. The length of the parts from

the third set (in Row (5)) are at most the distance between x1 and x∗. By
Lemma 17 the distance between x1 and x2 is at most

√
a. By the observations

above the distance from x2 to x∗ is also at most
√
a. In total this gives a length

of at most 7
√
a for the curves in Λ.

After replacing the rectangular line we will see that we are left with a set L of
straight and corner lines cutting out an area m− a or m+ a. We now know that
there exists a virtual staircase line Λ that can be used to cut out the remaining
area of size a from the A- or B-part. Notice that the underlying staircase line
(of infinite length in the plane) may be intersecting with other curves in the cut
(Figure 15). So the parts of the line included in Λ may not have endpoints on the
boundary of the polygon. Thus, we need to convert Λ into a set M of staircase,
corner, and straight lines, none of which ends at any other curve in L (however,
the curves may partially overlap). This is done by adding those parts of curves
in L to the curves in Λ that are monotonic extensions of the latter in x- and in
y-direction. This is possible since the corner lines in L are all concave w.r.t. the
same cut-out part, as shown in the previous section (Corollary 14). Thus the set
M may contain several staircase lines, but its total length is at most that of L.

Lemma 20. For any polygon P, let L be a non-crossing corner m-cut with
cut length l, such that all corner lines in L are concave with respect to A(L).
For any a ∈ [0,m] there is a set of segment curves M in P that cuts out an
area of size a from A(L) and has the following properties. The set M ∪ L is
non-crossing, M contains only straight, corner, and staircase lines, and the cut
length of M is at most 7

√
a+ l. Furthermore any staircase line in M is oriented

down and its surplus, w.r.t. the (m− a)-cut M ∪ L, lies on its lower left side.

Proof. By Lemma 19 we can find a virtual staircase line Λ in A(L) that cuts out
an area of size a and has a length of at most 7

√
a. The boundary points of a line

λ ∈ Λ with respect to A(L) are either boundary points with respect to P or they
are points on curves in L. If there is a λ′ ∈ L and a point (x, y) ∈ λ′ such that
(x, y) is a boundary point of λ w.r.t. A(L), the assumption that all corner lines
in L are concave w.r.t. A(L) lets us conclude that λ′ lies on the opposite side of
(x, y) than λ does. More formally, there is a relation ≶ ∈ {≤,≥} such that for
all (x′, y′) ∈ λ′ and all (x′′, y′′) ∈ λ it either holds that x′ ≶ x while x ≶ x′′ or
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Figure 15: A virtual staircase line (dashed) that is converted to a set of staircase,
corner, and straight lines (dashed and dotted). For this, parts of the corner lines
(dotted) from the original cut are used. These are all concave w.r.t. the same part of
the cut shaded in grey.

that y′ ≶ y while y ≶ y′′. Let in the former case µ(x,y) = {(x′, y′) ∈ λ′ | y ≶ y′}
and in the latter case µ(x,y) = {(x′, y′) ∈ λ′ | x ≶ x′}. That is, if λ lies to the
right or to the left of (x, y) the set µ(x,y) contains the parts of λ′ above or below
(x, y), respectively, and if λ lies above or below (x, y) the set µ(x,y) contains the
parts of λ′ to the right or to the left of (x, y), respectively.

To construct the desired a-cut M in P we initially set M = Λ. If γ denotes
the boundary of the area of size a that Λ cuts out, we add to M any curve in L
that is contained in γ. Let P denote the set of boundary points of the curves in
M w.r.t. A(L) which are contained in some curve from L. Since Λ, and hence
initially also M , is a virtual staircase line in A(L), for any straight line λ′ ∈ L
there can be at most one curve in M that has a boundary point on λ′. For any
corner line λ′ ∈ L there can be at most two lines λ1, λ2 ∈M that have boundary
points p and q on λ′. Of these points one must be on the vertical and one on
the horizontal part of λ′. Hence the sets µp and µq intersect. In this case we
replace the lines λ1 and λ2 by the line λ1 ∪ λ2 ∪ (µp ∩ µq) in M . At the same
time we remove the points p and q from the set P . We repeat this process until
no pair of points in P remain that both are part of some single line λ′ ∈ L. For
any remaining point in P we now know that if it is contained in some curve
λ′ ∈ L then it is the only one. For any such point p we replace the line λ ∈M ,
for which p is a boundary point, with the line λ ∪ µp in M and remove p from
P . This is repeated until no points remain in the set P .

Since the curves in L are straight lines or corner lines that are concave w.r.t.
A(L), the added parts of the curves in L connect the curves in the original
set Λ with the boundary of the polygon P in such a way that in the end M
contains only straight, corner, or staircase lines. Notice that the latter lines are
all oriented down by the fact that Λ is oriented down and by the definition of
the sets µp for p ∈ P . Furthermore the area B(M ∪L) of the (m− a)-cut M ∪L
contains the parts of A(L) that were cut out by the virtual staircase line Λ on
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Figure 16: A staircase line λ with its surplus shaded in grey. The curves on the
boundary of the surplus can be replaced by a set of straight and corner lines (dotted).
The corner line µ is also removed.

its upper right side. Hence the surplus, defined w.r.t. the (m− a)-cut M ∪ L,
of a staircase line in M must lie on its lower left side. Finally each added part
from a curve in L was only added once to a staircase line while constructing M .
This means that the total length of the curves in M is at most 7

√
a+ l.

The next step is to convert the staircase lines from the set M ∪ L so that at
most one of them remains but the cut length does not increase. Similar to the
techniques seen before, we will use the curves contained in the boundary of the
surplus or deficit of a staircase line for the transformation. Unfortunately some
of the previous arguments can not be used here since M ∪ L is not an optimal
cut. Instead we need some observations on the nature of the boundary of the
deficit and surplus of a staircase line λ ∈ M : it turns out that any staircase
line λ′ different from λ at the boundary of the deficit or surplus of λ overlaps
with exactly one corner line µ ∈ L (Figure 16). This corner line µ together with
the staircase line λ′ can be used to construct a pair of corner lines. These can
be replaced with µ and λ′ so that the same region is cut out by the new set of
curves. The cut length decreases during this process.

Lemma 21. For a polygon P, let L be a set of non-crossing straight and corner
lines and λ be a staircase line that does not cross any curve in L. Let Λ denote
the set of segment curves in P that are contained in the boundary of λ’s surplus
(deficit), apart from λ itself, where the surplus (deficit) is defined w.r.t. the cut
L ∪ {λ}. If the set L ∪ Λ cuts out an area of size m, then there exists an m-cut
that has a cut length at most that of L∪Λ and contains only straight and corner
lines.

Proof. We will prove the statement for the case when the curves in Λ are
contained in the boundary of λ’s surplus. The other case is analogous. If Λ only
contains straight and corner lines the lemma obviously holds. By the definition
of the surplus the only problem that can arise is when Λ contains a staircase
line λ′. Assume w.l.o.g. that λ is oriented down, which means that also λ′ is.
Assume furthermore that the surplus of λ lies on the lower left side of λ. If we
partition λ′ into a succession of bar lines that are alternating horizontally and
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vertically oriented, λ′ consists of at least three successive bar lines since it is a
staircase line. Hence there must be a horizontal bar line σh that, to its right,
is followed by a vertical bar line σv. Let (x, y) denote the point at which these
two bar lines meet. This means that σh lies to the left of (x, y) and σv below
(x, y). In this sense (x, y) is a concave corner of the boundary of λ’s surplus.
We want to argue that there can be at most one such point and it is the corner
of a corner line from L. These facts can then be used to convert λ′ into a set of
appropriate corner lines.

Since (x, y) is part of the boundary of λ’s surplus, we know that for any z > 0
the point (x− z, y− z) to the lower left of (x, y) is not part of the surplus. Since
the point (x, y) is a concave corner of the surplus, for any sufficiently small z
and zx, zy ≥ 0 there must be two points (x− z, y+ zy) and (x+ zx, y− z), i.e. to
the top left and the lower right of (x, y), that are part of the surplus. (It holds
that zx = 0 or zy = 0 if the respective point lies on λ. This may happen since λ
is part of the surplus.) If z is small enough then there is no point (x− z, y′) or
(x′, y − z), for any y′ ∈ [y − z, y + zy] and x′ ∈ [x− z, x+ zx], that lies on the
boundary of the polygon P . Hence the only reason why (x− z, y− z) is not part
of the surplus can be that the point lies in B(L ∪ {λ}) and not in A(L ∪ {λ}).
Letting z tend to zero it follows that (x, y) must be part of some curve µ ∈ L
that cuts out the area to which the point (x− z, y − z) belongs. Obviously µ is
a corner line with corner (x, y) which includes the horizontal and vertical bar
lines σh and σv.

Suppose there are more than one concave corner of λ′. Then there must be
at least two of these that are adjacent in the sense that the vertical bar line σpv of
one of the corners p shares a point r with the horizontal bar line σqh of the other
corner q. By the arguments given above there must be two corner lines µp and
µq in L such that σpv ⊂ µp and σqh ⊂ µq. But since r is not part of the boundary
of P this means that µp and µq cross at this point, which is a contradiction.
Hence there can only be one concave corner of λ′. In particular this means that
σh is the only horizontal bar line of λ′ that has an adjacent vertical bar line to
its right while σv is the only vertical bar line that has an adjacent horizontal
bar line to its left.

Consider the case when there is a horizontal bar line σ′h to the right of the
vertical bar line σv. As noted above, σ′h must have a boundary point. Removing
σv from the corner line µ that overlaps with λ′ leaves the horizontal bar line of
µ and some vertical bar line σ′v that is the lower extension of σv in µ. Obviously
σ′v has a boundary point. Hence by removing σv from both µ and λ′ we can
construct a corner line σ′h ∪ σ′v. Similarly the horizontal bar line σh can be
removed from λ′ and µ, leaving a corner line if there is a vertical bar line above
σh in λ′. If λ′ and µ share a boundary point then removing σv or σh as described
above obviously leaves nothing to be taken care of. Hence any staircase line in
the set Λ can, together with some corner line from L, be replaced with one or two
corner lines. In a cut that includes the curves from Λ and L this transformation
will not change the size of the cut out area and will decrease the cut length.

The above observations can now be used to convert the staircase lines
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constructed in Lemma 20 in such a way that only one staircase line remains, as
the next lemma shows.

Lemma 22. In a polygon P let L be a non-crossing corner m-cut with cut
length l such that all corner lines in L are concave with respect to A(L). Then
for any a ∈ [0,m] there exists a (m − a)-cut M in P with cut length at most
7
√
a+ 2l that contains only straight and corner lines except at most one which

is a staircase line.

Proof. By Lemma 20 we can find a set of curves M ′ such that L ∪M ′ is a
(m− a)-cut that fulfils all properties of the statement except for the fact that
L∪M ′ may contain more than one staircase line. Due to the additional properties
that any staircase line is oriented down and its surplus lies on the lower left
side, we can conclude that the boundaries of the surplus and the deficit can
not contain any other staircase line. Hence we may use Lemma 21 to convert a
staircase line into a set of straight and corner lines as follows.

We initially set M = L ∪M ′. Let λ1 and λ2 be two distinct staircase lines
from M ′, and let b1 be the size of the surplus of λ1 and b2 be the size of the
deficit of λ2. Without loss of generality we can assume that b1 ≤ b2. Similar to
the proof of Lemma 13 we can find two sets of curves L1 and L2 that cut out an
area of size b1 from the surplus of λ1 and the deficit of λ2, respectively, such that
removing λi and adding Li, for both i ∈ {1, 2}, in M ′ again yields a (m− a)-cut
M . The set L2 can be chosen to consist of a single staircase line if b2 > b1 and
it contains only curves that are part of the boundary of λ2’s deficit if b2 = b1.
The set L1 always contains curves that are part of the boundary of λ1’s surplus.
The new (m − a)-cut in which λ1 and λ2 were replaced has a cut length that
is at most the cut length of the old m-cut since distances are measured in the
l1-norm (it is decreasing if there are more than one curve in L1 or L2 since then
parts of the boundary of P act as a short cut for the curves).

Using Lemma 21 the staircase lines in L1 can all be converted to corner and
straight lines. If there are more than one staircase line in L2, i.e. L2 is part of
the boundary of λ2’s deficit, using the same lemma all of them can be converted
to straight and corner lines. Otherwise L2 consists of only one staircase line.
Hence repeating this procedure with any remaining pair of staircase lines in M
will eventually yield a (m− a)-cut in which there is at most one staircase line
left. Since the cut length is non-increasing during each transformation step, the
cut length of the final set M is at most 7

√
a + 2l, which concludes the proof.

Using the above techniques we can find an m-cut containing at most one
staircase line for any optimal m-cut containing a rectangular line, such that the
cut length of the former m-cut is at most a constant times the cut length of the
latter. The following theorem summarises these results.

Theorem 23. For any polygon P with an optimal m-cut L of P containing a
rectangular line, there exists a non-crossing m-cut M which contains only corner
and straight lines except at most one which is a staircase line. Moreover M has
a cut length of at most 9l, where l is the cut length of L.
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Proof. Let ρ ∈ L be a rectangular line in L which w.l.o.g. is concave w.r.t. A(L).
Let R be the defining rectangle of ρ and let p1 = (x1, y1) and p2 = (x2, y2) be
the boundary points of ρ. We consider R to be a closed set, i.e. R contains
its boundary. Assume w.l.o.g. that ρ is oriented in a way such that p1 is part
of the left boundary of R while p2 is part of the lower boundary of R. This
in particular means that x1 ≤ x2 and y1 ≥ y2. Let β be the boundary of the
polygon P and

xmax = max{x ∈ R | (x, y) ∈ β ∩R} and

ymax = max{y ∈ R | (x, y) ∈ β ∩R}

be the extreme points of the boundary β in R. Notice that xmax ≥ x2 and
ymax ≥ y1 since p1 and p2 are boundary points and hence belong to β and (the
boundary of) R. We define the set of curves Ξ (Figure 10) such that λ ∈ Ξ if
and only if λ is a segment curve and

λ ⊆ {(xmax, y) ∈ P | y ∈ [y2, ymax]}∪
{(x1, y) ∈ P | y ∈ [y1, ymax]}∪

{(x, ymax) ∈ P | x ∈ [x1, xmax]}∪
{(x, y2) ∈ P | x ∈ [x2, xmax]}.

The set Ξ can be seen as a virtual rectangular line.
Let R′ be the “defining rectangle” of Ξ, i.e. the rectangle that is defined

by the two opposing corners (x1, y2) and (xmax, ymax). There are three corners
of R′ that some curve in Ξ might include, namely (x1, ymax), (xmax, y2), and
(xmax, ymax). If (x1, ymax) is included in some curve λ ∈ Ξ then this point cannot
be a boundary point. Hence it must be the case that ymax > y1 and thus, by
the definition of ymax, there is some part of β that intersects with the upper
boundary of R′. But then there can be no single curve in Ξ that contains both
(x1, ymax) and (xmax, ymax) since these are the endpoints of the upper boundary
of R′. A similar argument holds for (xmax, y2) and (xmax, ymax). Therefore no
curve in Ξ contains more than one corner, i.e. Ξ includes only straight and corner
lines.

Let D ⊆ R be the area that is cut out between ρ and Ξ in the a-cut Ξ ∪ {ρ},
where a is the size of D. (Remember that this means that D is an open set.)
Due to Lemma 12 and the fact that L is an optimal m-cut, apart from ρ the
set L contains only straight and corner lines. Hence, since no curve crosses ρ
and because by the construction of Ξ the set D does not intersect with the
boundary β, no curve from L crosses a curve in Ξ. Thus we can replace ρ with Ξ
in L and yield a non-crossing (m + a)-cut M ′. By the construction of Ξ the
corner lines in Ξ are concave w.r.t. A(M ′) = A(M) ∪ D, and by Lemma 12
the corner lines in L are concave w.r.t. A(M). Hence all corner lines in M ′ are
concave w.r.t. A(M ′). By Lemma 22 we can thus find an m-cut M that has a
cut length of at most 7

√
a+ 2l′, where l′ is the cut length of M ′, such that M

contains only straight and corner lines except for at most one which is a staircase
line.
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By the construction of Ξ the total length of the curves in Ξ is at most the
length of ρ and hence the cut length of M ′ is at most the cut length of L, i.e.
l ≥ l′. At the same time, since the size a of D ⊆ R is smaller than the size of R,
and since the length lρ of ρ is greater than the height of R plus the width of R,
it follows that l ≥ lρ ≥

√
a. Hence we can upper bound the cut length of M by

7
√
a+ 2l′ ≤ 9l, which proves the claim.

4. Removing Staircase Lines

We now turn to the task of converting a (not necessarily optimal) 1-staircase
cut L into a cut containing only straight and corner lines. Similar to the case
of rectangular lines we will replace the staircase line with a set of appropriate
corner and straight lines along the boundary of the deficit (or surplus). It is
easy to see that if the deficit (or surplus) area of the staircase line λ has size
a, then

√
a < l, where l is the cut length of L. Thus, if we can cut out the

excess area a using straight and corner lines of total length in O(
√
a), then our

cut length will still be close to optimal. Given any simple polygon P of area
n, a ∈ [0, n], and ε ∈ ]0, 1] we can find a set of at most three virtual corner
lines that cut out an area whose size is in the interval [(1− ε)a, (1 + ε)a] with
a cut length that is a constant (depending on ε) times

√
a. Furthermore the

corners of these virtual corner lines all have either the same x-coordinate or the
same y-coordinate. They can be found using the short interval [x1, x2] that was
identified before (Figure 13). We use the virtual corner line with corner (x1, y2)
which has short length but cuts out an area that is too large. To correct for the
area we additionally find two virtual corner lines (of short length) with corners
at either points (x′, y2) and (x′′, y2), for some x′, x′′ ≥ x2, or points (x1, y

′) and
(x1, y

′′), for some y′, y′′ ≥ y1.

Lemma 24. For any polygon P of total area n, any a ∈ [0, n], and any ε ∈ ]0, 1]
there is a set L of straight and corner lines with the following properties. The
lines in L cut out an area which has a size in the interval [(1 − ε)a, (1 + ε)a],
and the cut length of L is at most (6

√
7/ε+ 2) ·

√
a. Furthermore L is the union

of at most three virtual corner lines with corners that either have the same x- or
y-coordinate.

Proof. If ε and a are chosen such that (1 + ε)a ≥ n the lemma trivially holds
since L can be empty. Hence assume that (1 + ε)a < n throughout this proof.
Let c =

√
7/ε. If there is a virtual corner line for a that has a length of at

most 2c
√
a the lemma obviously holds. Since

√
7/ε > 2 for ε ∈ ]0, 1], if there

is no such virtual corner line then by Lemmas 16 and 17 there is an interval
[x1, x2] ⊆ Ia with the properties listed therein. We use the same notation as in
the proof of Lemma 17, but for better readability let Q = Qy2 , w = w(x2), and
h = h(y2). The size of the area Q is a + d for some d > 0, i.e. the size of the
area Q \ P(x2) is d (see Figure 17).

Our first goal in this proof is to establish an upper bound on the size b of
the area P(x1) ∩ P(x2) depending on d. For this we establish a lower bound
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Figure 17: The interval [x1, x2] of width w together with the virtual corner lines
Λ(x1) and Λ(x2) (grey dashed lines). The dark grey area is P(x1) \ P(x2) of size b′,
while the light grey area is P(x1) ∩ P(x2) of size b. The right-most point of P(x2) is
x3, and x and ϕ(x) define points at which the virtual corner lines Λ′(x) and Λ′(ϕ(x))
(black dotted lines) enclose an area of size d′ between them (striped pattern).

on the size b′ of P(x1) \ P(x2) which we can then subtract from a, the size of
P(x1). One simple bound can be derived by subtracting from d the size of the
area not in P(x1) \ P(x2) but in Q \ P(x2). Since the size of this area can be
upper-bounded by h · w, we get b′ ≥ d− hw. We can derive an upper bound for
w depending on d by integrating along the vertical lengths of the virtual corner
lines for a between x1 and x2. By Lemma 16 this gives

d ≥ lim
z→x1

∫ x2

z

lv(t) dt > w · c
√
a.

Hence w < d
c
√
a
, and using the upper bound on h given by Lemma 17 we can

conclude that b′ > d
(
1− 2

c2

)
. This directly translates into the upper bound on

the size of the area P(x1) ∩ P(x2) which is

b = a− b′ < a− d
(

1− 2

c2

)
. (7)

The next step is to find a lower bound on b (which also depends on c) under
the assumption that no appropriate set L exists. We will show that for c =

√
7/ε

the upper and lower bounds contradict each other. Let ∆ denote the virtual
corner line for a + d with corner (x1, y2), i.e. ∆ cuts out Q. If d ≤ εa we
can cut out an area which has a size in the interval [a, (1 + ε)a] by letting
L = ∆. By Lemmas 16 and 17 the virtual corner line ∆ has a length of at most
2(c
√
a+ 2

√
a/c) ≤ (2

√
7/ε+ 2)

√
a and hence in this case L satisfies the lemma.

Therefore let d > εa in the remainder of the proof. We will attempt to find L by
either including ∆ in L and cutting out an area of size approximately d from Q,
or by cutting out an area of size approximately a from Q directly. The decision
on whether to include ∆ in L is determined by distinguishing between small and
big values for d. In case d < a we include ∆ in L and otherwise not.
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Since we have the freedom to choose the size of the area that we cut out
from the interval [(1− ε)a, (1 + ε)a], we attempt to cut out the smallest possible
area from Q. Hence if d′ denotes the size of this area, let d′ = min{d, a} − εa.
Notice that d′ is well-defined since d > εa, and that the size of the cut out area
is a− εa if ∆ is not included in L and it is a+ d− (d− εa) = a+ εa otherwise.
Hence the size of the cut out area lies in the given interval.

To cut out the area of size d′ from Q we use a pair of virtual corner lines
such that for both lines either the horizontal parts overlap with Λ(x2) or the
vertical parts overlap with Λ(x1). Notice that such a pair always exists, since
d′ < a and the lines Λ(x1) and Λ(x2) each cut out an area of size a. Since by
Lemma 16 both the horizontal length of Λ(x2) and the vertical length of Λ(x1)
is short, we only have to guarantee that either the vertical or the horizontal
lengths of the two desired virtual corner lines are short, respectively. We will
concentrate on the case where we pick the virtual corner lines from those that
overlap with Λ(x2), since the other case is analogous. Therefore, if x3 is defined
such that x3 − x2 is the width of P(x2), let Λ′(x) denote the virtual corner line
with corner (x, y2) for any x ∈ ]x2, x3] and let l′v(x) be its vertical length.

Let ϕ(x) be a function that, for a given virtual corner line Λ′(x), gives the
x-coordinate of Λ′(ϕ(x)), such that Λ′(x) and Λ′(ϕ(x)) enclose an area of size d′

between them and ϕ(x) > x. This means that
∫ ϕ(x)
x

l′v(t) dt = d′ and that the
domain of ϕ is upper-bounded by ϕ−1(x3) where ϕ−1 is the inverse function of ϕ
(notice that the function ϕ is bijective). Assume that there is no pair of virtual
corner lines Λ′(x) and Λ′(ϕ(x)) for which both vertical lengths are shorter than
c
√
a. From this assumption it follows that for all x ∈ [x2, ϕ

−1(x3)] it holds that
l′v(x) > c

√
a or l′v(ϕ(x)) > c

√
a.

Let for any interval I ⊆ [x2, x3] the function f be equal to the size of the
area {(x′, y′) ∈ Q | x′ ∈ I} in the vertical stripes in Q defined by I, i.e.

f(I) =

∫
I

l′v(t) dt.

Let J = {x ∈ [x2, ϕ
−1(x3)] | l′v(x) > c

√
a} be the subset of the domain of ϕ

for which the vertical lengths of the virtual corner lines Λ′(x) are long. Let J
be the set for which the vertical lengths are short, i.e. J = [x2, ϕ

−1(x3)] \ J .
Also let K = {x ∈ [ϕ(x2), x3] | l′v(x) > c

√
a} and K = [ϕ(x2), x3] \K be the

corresponding subsets from the domain of ϕ−1. To establish the connection
between the assumption on the lengths of the vertical lines and the lower bound
on b we investigate f(J ∪K) (see Figure 18).

Let [l, r] ⊆ J be a connected subset of J . By the definitions of f and ϕ we
get

f([l, r]) = f([l, ϕ(l)]) + f([ϕ(l), ϕ(r)])− f([r, ϕ(r)])

= f([ϕ(l), ϕ(r)]).

Since J is a union of connected subsets and ϕ is bijective we can conclude that
f(J) = f(ϕ(J)), where ϕ(J) is the image of J . By the assumption that for all
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Figure 18: The interval [x1, x2] together with the virtual corner lines Λ(x1) and Λ(x2)
(dashed lines). To estimate the size b of P(x1) ∩ P(x2) we determine the size f(J ∪K)
of X and the size of Y.

x ∈ [x2, ϕ
−1(x3)] the vertical length of Λ′(x) or of Λ′(ϕ(x)) is long, ϕ(J) must

be a subset of K and hence f(J) ≤ f(K). A similar observation can be made
for K, ϕ−1(K), and J so that f(K) ≤ f(J).

By the definition of ϕ we know that f([ϕ−1(x3), x3]) = d′ and f([x2, ϕ(x2)]) =
d′, while the total area of P(x2) has size a. Hence f(J ∪J) = f(K ∪K) = a−d′.
From the bounds above and the fact that J and J but also K and K are disjoint
we can conclude that

f(J) + f(K) ≥ f(K) + f(J) = 2(a− d′)− f(K)− f(J).

The sets J and K might not be disjoint but from the above inequality we get

f(J ∪K) + f(J ∩K) = f(J) + f(K) ≥ a− d′.

By the pigeonhole principle and the fact that (J ∩K) ⊆ (J ∪K) we can thus
conclude that

f(J ∪K) ≥ a− d′

2
.

Let X = {(x, y) ∈ P(x2) | x ∈ J ∪ K} and let fX be the size of X , i.e.
fX = f(J ∪K). We now want to also consider the assumption that there is no
pair of virtual corner lines amongst those overlapping with Λ(x1) such that both
their horizontal lengths are short while cutting out an area of d′ between them.
Let Y ⊆ P(x1) denote the area such that (x, y) ∈ Y if and only if there is a
virtual corner line with corner (x1, y) which has a horizontal length greater than
c
√
a, analogous to the definition of X . Using a similar argumentation as for the

set X , we can conclude that the size fY of Y must also be at least a−d′
2 if no

pair of virtual corner lines exists that cuts out an area of size d′ such that both
horizontal lengths are short.

To yield a lower bound on b we want to consider those parts of X and Y
that are contained in P(x1) ∩ P(x2) and determine their size. For this we need
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to find an appropriate bound on the parts of X and Y that are not contained
in P(x1) ∩ P(x2), but also a bound on the size of the intersection of X and
Y. Therefore let wX be the total width of X , i.e. wX is the total length of the
interval J ∪K. Since X is contained in P(x2) and the latter has a size of a we
can conclude that

a ≥
∫
J∪K

l′v(t) dt > wX · c
√
a,

and hence wX <
√
a
c . If hY denotes the total height of Y, a similar argument

yields that also hY <
√
a
c .

Those parts of X that are not contained in P(x1) are confined to the area
below P(x1) in Q which has height h. Hence the area X \ P(x1) has a size of
at most h · wX . Similarly the area Y \ P(x2) has a size of at most w · hY , since
the area to the left of P(x2) in Q has width w. The size of the intersection of
X and Y can be at most wX · hY . Thus, using the bounds on w and h given in
Lemma 17 we can conclude that

b ≥ fX − h · wX + fY − w · hY − wX · hY > a− d′ − 5

c2
a. (8)

We make a case distinction on the value of d to compare the lower and upper
bounds on b. If d < a then d′ = d− εa so that setting c =

√
7/ε in Bounds (7)

and (8) gives

b < a− d
(

1− 2

7
ε

)
< a− d+

2

7
εa and

b > a− (d− εa)− 5

7
εa = a− d+

2

7
εa,

which is a contradiction. In the case when d ≥ a it holds that d′ = (1− ε)a so
that, using the fact that ε ∈ ]0, 1], Bounds (7) and (8) give

b < a− d
(

1− 2

7
ε

)
≤ a− a

(
1− 2

7
ε

)
=

2

7
εa and

b > a− (1− ε)a− 5

7
εa =

2

7
εa,

which again is a contradiction.
We can thus conclude that one of our assumptions must be wrong. Therefore

there always exists a pair of virtual corner lines which cuts out an area of
size d′ and has a short total length. These can be found either amongst those
overlapping with Λ(x1) or those overlapping with Λ(x2). Hence we can find
the set L which is the union of these virtual corner lines and, depending on
the value of d, also ∆ in case we need it. The cut length of L is at most the
length of the two corner lines cutting out the area d′ between them, plus the
length of ∆. Together these three virtual corner lines have a length of at most

4c
√
a+ 2(c+ 2/c)

√
a <

(
6
√

7/ε+ 2
)√

a, which concludes the proof.
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Figure 19: A tail defined by the dotted line. Three (dashed) virtual corner lines cut
out the area shaded in grey (the lines overlap on the bottom right).

Note that in the above proof the existence of ε > 0 guarantees that the
intervals J and K have lengths greater than zero: it may happen that d = a
so that the size of Q \ P(x1) is a. In this case, whether ∆ is included in L or
not, ϕ(x2) = x3 if ε = 0. Thus for the proof technique used above we need to
allow a deviation from cutting out an exact area size as given by the interval
[(1− ε)a, (1 + ε)a].

To apply the above result, we need to find a region of the polygon of size
larger than a that does not contain any curves of the cut, so that we can cut
out the excess area without interfering with the other curves. For this we define
the concept of a tail of a polygon with respect to a cut: for any cut in a polygon
P, consider all the connected pieces of the polygon cut out by it. If there a
connected piece T that is defined by a single curve τ then we call T a tail of the
polygon.

Definition 25 (tail). For an m-cut L in a polygon P, let T ⊆ P \
⋃
µ∈L µ be

a connected area that is cut out by L. We call T a tail if there exists a single
curve τ ∈ L that cuts out T . We refer to τ as the curve of T . In case L contains
a staircase line λ, we call a tail T ⊆ A(L) respectively T ⊆ B(L) small if its
area is strictly smaller than λ’s deficit respectively surplus.

Notice that there always exists a tail if P is a simple polygon. Notice also
that apart from the curve of a tail T there might be other subsets of L that cut
out T if curves in L overlap.

To convert a cut containing a staircase line λ into one containing only straight
and corner lines, we can shift λ in either direction, i.e. going into either the
A- or the B-part. However all the tails in the polygon may belong to only one
part. We need to consider two cases, one of which is when L contains only λ.
This means that there are exactly two tails, one on each side of λ. If we assume
w.l.o.g. that the size a of λ’s deficit is at most that of its surplus, we can replace
the staircase line by the set of straight and corner lines on the boundary of its
deficit. We then cut out the area a′ ∈ [(1−ε)a, (1 +ε)a] from the original A-part
(containing the surplus) using the at most three virtual corner lines which were
shown to exist above (Figure 19). The other case is when there is a tail contained
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in, say, the A-part whose curve µ is not λ. We can safely assume that the size of
the tail is larger than the size a of the deficit of λ. If this was not the case then
we could remove µ from the cut by using an area exchange with the staircase
line λ, without increasing the cut length, as the next lemma shows.

Lemma 26. Let L be a 1-staircase m-cut in P with cut length l. There exists
a 1-staircase m-cut L′ in P, has cut length of at most l, and the curve of any
small tail cut out by L′ equals the staircase line.

Proof. If the curve of every small tail cut out by L is the staircase line λ ∈ L
there is nothing to prove. Hence let T be a small tail cut out by L such that
its curve is λ′ 6= λ. Assume w.l.o.g. that T ⊆ A(L), i.e. T is strictly smaller
than λ’s deficit. This means that we can find a staircase line λ′′ that cuts out
an area that has the same size as T from λ’s deficit, such that removing λ′ and
replacing λ with λ′′ in L yields an m-cut that has a cut length that is less than l
by the length of λ′. The new cut has one straight or corner line less than the old
one and it contains one staircase line. We repeat this process for any small tail
cut out by the new set that does not conform with the desired property. This
will eventually terminate in a state in which the resulting m-cut L′ fulfils the
property.

As this lemma shows we can replace the staircase line λ by the corner and
straight lines on the boundary of its deficit and cut out an area a′ from the tail,
using the virtual corner lines of short length. It may be that some of the virtual
corner lines end at the curve µ of the tail. If this happens we can find a set
of straight and corner lines that overlap with parts of the virtual corner lines
and µ, with which to replace the latter lines (in the same way as suggested by
Figure 16). The cut out area is the same while the cut length only grows by a
constant factor since there are at most three virtual corner lines. The result of
the above described method is summarised in the following theorem.

Theorem 27. Given a 1-staircase m-cut L of a polygon P with cut length l, for
any ε ∈ ]0, 1] there exists a corner m′-cut L′, where m′ ∈ [(1− ε)m, (1 + ε)m],
having a cut length of at most (6

√
7/ε+ 7) · l.

Proof. Due to Lemma 26 we can assume that any tail cut out by L is not small
or its curve is the staircase line λ ∈ L. Consider the case when there is a tail T
and its curve is λ′ ∈ L such that λ′ 6= λ, i.e. T is not small. In case T ⊆ A(L)
let a denote the size of λ’s deficit and in case T ⊆ B(L) let a denote the size of
λ’s surplus.

The curve λ′ is either a straight or a corner line. We assume w.l.o.g. that
the horizontal bar line σ′h of λ′ (if any) lies below T and the vertical bar line
σ′v of λ′ (if any) lies to the left of T . That is, for all sufficiently small z > 0,
(xh, yh) ∈ σ′h, and (xv, yv) ∈ σ′v it holds that (xh, yh + z) ∈ T , (xh, yh − z) /∈ T ,
(xh + z, yh) ∈ T , and (xh − z, yh) /∈ T . Notice that this in particular means
that if λ′ is a corner line then it points up and right if λ′ is convex w.r.t. T ,
and it points down and left if λ′ is concave w.r.t. T . According to Lemma 24
there is an a′-cut L′, for some a′ ∈ [(1 − ε)a, (1 + ε)a], in T such that L′ is
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the union of at most three virtual corner lines, i.e. L′ contains only straight or
corner lines where the latter point up and right. Let λ′′ ∈ L′ be a curve that
has a boundary point p with respect to T such that p ∈ λ′. Assume that λ′′ is a
corner line. If p ∈ σ′v, the corner of λ′′ must lie to the right of p since λ′′ ⊂ T
and the assumption made on the location of T with respect to λ′. However this
contradicts the orientation of λ′′ since its corner must lie to the left of or below
its boundary point. A similar contradiction can be derived if p ∈ σ′h. Hence it
must be the case that λ′′ is a straight line. If p ∈ σ′v then let σ ⊆ σ′v be the part
of σ′v that lies above p if λ′ is a vertical straight line or λ′ is a convex corner line
w.r.t. T , and let σ ⊆ σ′v be the part of σ′v that lies below p if λ′ is a concave
corner line w.r.t. T . If p ∈ σ′h then let σ ⊆ σ′h be the part of σ′h that lies to the
right of p if λ′ is a horizontal straight line or λ′ is a convex corner line w.r.t. T ,
and let σ ⊆ σ′h be the part of σ′h that lies to the left of p if λ′ is a concave corner
line w.r.t. T . Notice that in all cases σ is a bar line between p and a boundary
point of λ′. Hence we can convert λ′′ into a corner line in P by adding the point
p and the line σ to it.

If there are at most two virtual corner lines that make up the set L′ then
there can be at most four straight lines that have to be converted to corner
lines in P: one for each horizontal and vertical part of the virtual corner lines.
Lemma 24 states that the virtual corner lines in L′ have corners that either have
the same x- or y-coordinate. This means that the straight lines on either the
vertical parts or the horizontal parts overlap. Hence if there are three virtual
corner lines then two of each overlapping triple can be removed so that the
resulting set of curves still is an a′-cut and the cut length decreases. Thus also
in this case there are at most four straight lines in L′ that have to be converted
to corner lines in P: three in either the horizontal or the vertical parts of the
virtual corner lines and one in the other part. Therefore after converting L′ and
adding these curves to L, the resulting set of curves M ′ has a cut length of at
most 5l + (6

√
7/ε+ 2)

√
a.

Notice that M ′, apart from λ, only contains straight and corner lines. Hence
using Lemma 21 we can replace the staircase line λ with a set of corner and
straight lines, yielding the set M . It only contains straight and corner lines and
has a cut length of at most that of M ′. What remains to be shown, in case the
boundary of T does not contain λ, is that M cuts out an area of the desired
size and that its cut length is of the desired length. The set M cuts out an
area of size m′ where m′ ∈ [m− εa,m+ εa]. Since T is a tail that is not small,
if T ⊆ A(L) we can conclude that the size of T is greater or equal to a and
hence m ≥ a. If T ⊆ B(L), since the surplus is part of A(L) obviously m ≥ a
also holds in this case. Thus m′ ∈ [(1 − ε)m, (1 + ε)m], which establishes the
desired size for the area. Concerning the cut length, let R be the rectangle that
is defined by the boundary points of λ, let h be its height, w be its width, and
let w.l.o.g. h ≥ w. The length lλ of λ is lλ = h+ w > h. Since both the deficit
and the surplus of λ are contained in R we know that a < hw ≤ h2. Hence we
can conclude that l ≥ lλ >

√
a. This means that the cut length of M is at most

(6
√

7/ε+ 7)l, as claimed.
Now consider the case when there is no tail cut out by L such that its curve is
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different from λ. This means that the only curve in L is λ. In this case we need
to proceed differently than in the case before by reversing the transformation
of the m-cut: we first remove λ and instead add the curves that, apart from
λ, are contained in the boundary of λ’s deficit. This yields a (m + a)-cut M ′

which contains only straight and corner lines, where a is the size of the deficit.
Furthermore, if we assume w.l.o.g. that λ is oriented down and its deficit lies to
the lower left side of λ, the corner lines all point up and right and are convex
w.r.t. A(M ′). Since the deficit of λ is part of A(M ′), we can use Lemma 24 to
find a set of straight and corner lines L′ in A(M ′) that cuts out an area of size
a′ ∈ [(1− ε)a, (1 + ε)a]. Again we need to convert those curves in L′ that have a
boundary point on one of the curves in M ′ into feasible curves in P. Since the
corner lines in both L′ and M ′ point up and right, any curve in L′ that has a
boundary point in A(M ′) on one of the curves in M ′ can only have one such
boundary point. Hence the same arguments as given above for the other case
also apply for each such case here. We can thus make the necessary conversions
of the curves in L′, add the curves in M ′, and thereby yield the set of curves M
which only contains straight and corner lines. As above it cuts out an area of
size m′ ∈ [(1 − ε)m, (1 + ε)m], and has a cut length of at most (6

√
7/ε + 7)l,

which concludes the proof.

5. Converting Curves in Polygons to Segments in Grids

We have learned that, for any desired area m to be cut out from a simple
polygon, there exists a cut of only straight and corner lines that (1) cuts out
at most a small amount ε ·m more (or less) than the desired area, and (2) has
a cut length that is close to the optimum (of arbitrary shape for area m). We
summarise these results in the following corollary.

Corollary 28. Let l be the cut length of an optimal m-cut L in some polygon P.
For any ε ∈ ]0, 1] there exists a non-crossing corner m′-cut for some m′ ∈
[(1− ε)m, (1 + ε)m], which has a cut length of at most (54

√
7/ε+ 63) · l.

Proof. According to Corollary 14 we can assume that L only contains straight
and corner lines except at most one curve which can either be a staircase or
a rectangular line. In case L only contains straight and corner lines there is
nothing to prove. In case it contains a staircase line the claim holds according
to Theorem 27. In case L contains a rectangular line we can use Theorem 23 to
convert L into an m-cut L′. It has a cut length of at most 9l and contains only
straight and corner lines except at most one staircase line. If L′ does not contain a
staircase line, the claim obviously holds. Otherwise, using Theorem 27 on L′, we
can convert L into a non-crossing corner m′-cut, for some m′ ∈ [(1−ε)m, (1+ε)m],
having a cut length of at most (6

√
7/ε+ 7) · 9l, which concludes the proof.

Because our real interest is in cuts in grids, we now face the task to find
a cut in the grid G given a cut in the polygon PG constructed from G. Our
transformation from a grid to a polygon implies that an optimal m-cut in G
transforms into an m-cut in PG. But not necessarily into an optimal one, since
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Figure 20: A grid line λ1 and a non-grid line λ2. The corridor of λ2 is shaded in grey.
The boundary of the polygon is divided into lines of unit length.

the cut curves in the polygon are not limited to integer positions (these are
integer positions in the dual of the grid, and thus halfway positions between
grid points). In other words, a cut in the polygon does not generally translate
directly into a cut in the grid (note that if we would just cut grid edges with
polygon cut curves, that is, not cut them in the middle, this would not translate
the cut out area into the same number of grid vertices). Whenever a curve in
the cut of PG happens to lie in integer position however, we will just take the
corresponding segment to cut the grid G (Figure 20).

Definition 29 (corridor, grid line). Given a grid G = (V,E) let Sv be the axis-
parallel unit square that has v ∈ V as its centre and let γv be the boundary of Sv.
We consider a unit square to be an open set, i.e. γv∩Sv = ∅ for all v ∈ V . For any
curve λ in PG we refer to the set Kλ = {p ∈ PG | ∃v ∈ V : λ∩Sv 6= ∅∧p ∈ Sv∪γv}
as the corridor of λ. It is the union over the unit squares that intersect with
λ together with their boundaries that are not part of the boundary of PG. A
curve λ in PG is called a grid line if Kλ = ∅, i.e. λ lies on the boundaries of the
unit squares.

For non-grid lines, we start with a clean-up phase that modifies a pair of these
curves so that one of them becomes a grid line, and the other compensates for the
area difference that this creates. We start the clean-up phase by first focussing
on unit length open intervals on the polygon boundary between adjacent integer
positions, as defined next.

Definition 30 (UG). Given a grid G let β be the boundary of PG. We define
H =

{
x− 1

2 | x ∈ N
}

so that H2 denotes the points between integer positions in
the plane. Let the set UG contain all unit length curves in β \H2.

Because a grid line λ does not hit any such open unit interval δ ∈ UG we
are only concerned with cut curves that do. For any open unit interval hit by
more than one cut curve, we can shift one of these curves to the boundary and
compensate for the area difference by also shifting one other of these curves
accordingly. Repeating this leaves us with at most one cut curve per open unit
interval in UG on the boundary of PG (and ultimately G).
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Figure 21: The considered curve δ and the lines λ1 to λ|K| from left to right (dashed).
The area shaded in grey is D(λ2). The black contiguous lines in the picture are curves
from UG.

Lemma 31. For any grid G and any non-crossing corner m-cut L of cut length l
in PG, there is a non-crossing corner m-cut M of cut length at most l in PG
such that there is no curve in UG which includes more than one boundary point
of curves in M .

Proof. Consider the case when there is a curve δ ∈ UG such that at least two
curves in L have boundary points on δ. Without loss of generality let δ be the
lower side of a unit square Sv, i.e. the curves having a boundary point on δ lie
above it. This means that any corner line having a boundary point on δ points
down, while any such straight line is vertical. Let K ⊆ L be the set of curves
that have a boundary point on δ (Figure 21). We define (xδ, yδ) to be the lower
left corner of the unit square Sv to which δ is the lower side. Let for any curve
λ ∈ K the point (xλ, yλ) be either the corner of λ, if it is a corner line, or the
boundary point of λ that does not lie on δ, if λ is a straight line. We define

D(λ) = {(x, y) ∈ Kλ | x ∈ ]xδ, xλ[ ∧ y ∈ ]yδ, yλ[ }

to be the open set of points in λ’s corridor that lie to the left of λ.
Since the curves in L are non-crossing, observe that if λ ∈ K is a corner line

pointing down and left any curve λ′ ∈ L that intersects D(λ), i.e. λ′ ∩D(λ) 6= ∅,
must be a corner line and it must have the same orientation as λ. Thus λ′ must
also have a boundary point on δ since the lower boundary of D(λ) is part of δ.
From this we can conclude that for a boundary point p on δ that belongs to a
corner line pointing down and left, the boundary points to the left of p on δ all
belong to corner lines of the same orientation. Furthermore they must all be of
smaller vertical length since the height of D(λ) equals the vertical length of λ.
An analogous observation can be made for a corner line λ ∈ K pointing down
and right, if we consider the open set of points in its corridor that lie to the right
of λ. Hence we can order the curves in K by traversing their boundary points
on δ from left to right such that we first encounter corner lines pointing down
and left with increasing vertical length, then straight lines, and finally corner
lines pointing down and right with decreasing vertical length. Obviously this
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Figure 22: The line λ1 (dashed), a point (x, y) on the boundary of PG, and the
corresponding set of curves Λ1(x, y) (dotted). The black contiguous lines in the picture
are curves from UG.

is also possible if some of the curves in K share the same boundary point on δ.
Let the indices of the curves in K = {λ1, ..., λ|K|} denote their position in this
order (cf. Figure 21).

We will consider the curves λ1 and λ2 from K and in each case attempt to
move the vertical part of λ1 to the left until it intersects with the boundary of
the unit squares, i.e. until the vertical line is a grid line. Thereafter we will find
one or several curves that substitute λ2 such that the resulting set of curves
is an m-cut again. Towards this end, for any point (x, y) on the boundary of
PG such that x ≤ xλ1

and y ∈ [yδ, yλ1
], we define the set of curves Λ1(x, y) as

those straight and corner lines between (x, y) and (xδ, yδ) (Figure 22). That is
µ ∈ Λ1(x, y) if and only if µ is a segment curve and

µ ⊆ {(x′, y′) ∈ PG | (x′ = xδ ∧ y′ ∈ [yδ, y]) ∨ (y′ = y ∧ x′ ∈ [x, xδ])}.

Note that Λ1(x, y) contains more than one curve if D(λ1) touches the boundary
of PG to its left.

Consider the case when λ1 and λ2 are corner lines pointing down and left
(Figure 23). Let (x, y) /∈ δ be the boundary point of λ1 that does not lie on δ.
We know that no curve from L intersects D(λ1) by the observations made above.
This means that removing λ1 and adding the curves in Λ1(x, y) yields a non-
crossing m′-cut for some m′. The difference between m and m′ is equal to the
size of D(λ1) and is hence less than the size of D(λ2). Also the only curve in L
that intersects D(λ2) is λ1. Hence, after replacing λ1, we can find a corner line µ
pointing down and left that has its corner on λ2’s horizontal bar line and a
boundary point on δ, such that removing λ2 and introducing µ will again result
in a non-crossing m-cut. Notice that the total length of the curves in Λ1(x, y) is
shorter than the length of λ1 and also the length of µ is shorter than the length
of λ2. Hence we obtain an m-cut of smaller cut length than l. Also the number
of boundary points on δ is reduced by one.

In case the curves λ|K| and λ|K|−1 are corner lines pointing down and right
we can use an analogous argumentation as the one given above to obtain an
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−→

Figure 23: The case when λ1 and λ2 are corner lines (left). They are substituted with
Λ1(x, y) and µ (right). The area shaded in dark grey is D(λ1), and the area shaded in
both light and dark grey is D(λ2). The size of the cut out area (diagonally striped)
remains the same. The black contiguous lines in the pictures are curves from UG.

−→

Figure 24: The case when λ1 is a corner line and λ2 is a straight line that overlap
(left). They are substituted by the line pointing up and left that has the same corner q
as λ1 (right). The size of the cut out area (diagonally striped) remains the same. The
black contiguous lines in the pictures are curves from UG.

m-cut of cut length smaller than l. In the new cut the number of boundary
points on δ is reduced by one. By repeating this procedure, we can transform L
into an m-cut of smaller cut length. This can be done until there are at most
two corner lines with boundary points on δ, such that they point down and left,
and down and right, respectively. We thus assume in the remainder of the proof
that K contains at most one such corner line each, while all others are straight
lines.

Consider the case when λ1 is a corner line pointing down and left and λ2 is a
straight line. In case the boundary points of λ1 and λ2 are the same on δ these
two curves overlap (Figure 24). Let q denote the corner of λ1. In this case we can
introduce the corner line pointing up and left that has q as its corner. Clearly
then removing λ1 and λ2, we obtain an m-cut of smaller cut length than l. The
number of boundary points on δ will be reduced by two. In case λ1 and λ2 do
not share the same boundary point on δ (Figure 25), we can again replace λ1
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−→

Figure 25: The case when λ1 is a corner line and λ2 is a straight line that do not
overlap (left). Together with λ′ (dotted) they are substituted with Λ1(x, y) and µ
(right). The area shaded in grey is L. The size of the cut out area (diagonally striped)
remains the same. The black contiguous lines in the pictures are curves from UG.

with the curves in Λ1(x, y), exactly as above, yielding a non-crossing m′-cut L′.
Let C ∈ {A(L′),B(L′)} be the part of the m′-cut for which D(λ1) ⊆ C. We
define L ⊆ D(λ2) ∩ C to be the connected area for which D(λ1) ⊆ L. That is, L
lies to the left of λ2 in L′. Since λ1 and λ2 do not overlap, the size of D(λ1) is
smaller than the size of L, i.e. D(λ1) ⊂ L. Hence we can find a vertical straight
line σ in L that cuts out an area the size of D(λ1) on its right-hand side. One of
the boundary points of σ (w.r.t. L) lies on δ and the other boundary point can
either lie on the boundary of PG or on a curve λ′ ∈ L \ {λ1, λ2}. In the former
case we can replace λ2 with σ and again yield an m-cut which has a smaller
cut length and one boundary point less on δ. Otherwise, note that λ′ lies in
D(λ2) and hence must be a corner line pointing up and left, since any other
straight or corner line would either cross λ1 or λ2, or would have a boundary
point on δ. This is not possible due to the choice of λ2 in the ordering of K.
This means that we can extend σ by a horizontal bar line σ′ to a corner line
µ = σ ∪ σ′ pointing down and left that has a corner on the horizontal bar line
of λ′. Removing λ2 and λ′ and introducing µ instead will yield an m-cut with a
smaller cut length and one boundary point less on δ.

Since we assumed that there is at most one corner line pointing down and
right in K, if λ1 is a straight line and λ2 is such a corner line then |K| = 2.
Hence this case is analogous to the case just covered.

Now consider the case when both λ1 and λ2 are straight lines (Figure 26).
In case they overlap we can simply remove both lines. Otherwise it holds that
D(λ1) ⊂ D(λ2). As above, any curve from L that intersects D(λ1) must be a
corner line pointing up and left. Let L′ ⊆ L be the curves that intersect D(λ1),
and if L′ 6= ∅ let λ′ ∈ L′ be the one with the lowest and right-most corner among
these. Notice that λ′ is well-defined since the curves in L′ are non-crossing. In
this case we replace both λ1 and λ′ with Λ1(x, y), where (x, y) is the boundary
point of the horizontal bar line of λ′. In case L′ is empty we replace λ1 with
Λ1(xδ, yλ1

). In both cases we obtain an m′-cut for some m′. Analogous to the
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−→

Figure 26: The case when λ1 and λ2 are straight lines (left). Together with some
curves in L′ (dotted) they are substituted with Λ1(x, y) and µ (right). The size of the
cut out area (diagonally striped) remains the same. The black contiguous lines in the
pictures are curves from UG.

case when λ1 is a corner line pointing down and left, and λ2 is a straight line,
we can find a curve with which to replace λ2. As above we possibly also need to
remove some other curve in L′ to yield an m-cut of smaller cut length than l,
and in which there is one boundary point less on δ.

The only case left is the one where both λ1 and λ2 are corner lines, i.e. the
former points down and left, the latter down and right, and |K| = 2. We assume
w.l.o.g. that the vertical length of λ1 is at most that of λ2. If λ1 and λ2 have
the same boundary point on δ and they have the same vertical length, obviously
we can remove these two curves and introduce a straight line that consists of the
horizontal bars of λ1 and λ2 instead, and thereby obtain an m-cut with smaller
cut length than l and with two boundary points less on δ. Consider the case
when the two curves share the same boundary point on δ, they have different
vertical lengths, and there is a corner line λ′ ∈ L pointing up and left having the
same corner as λ1. Then we can remove λ1, λ2, and λ′ and introduce the corner
line pointing up and right that has the same corner as λ2. We thereby yield an
m-cut of smaller cut length in which two boundary points on δ are removed. All
remaining cases are handled in the following.

Let (x, y) /∈ δ be the boundary point of λ1 that does not lie on δ. Replacing
λ1 with Λ1(x, y) results in an m′-cut for some m′, as in the case when λ2 is
a straight line (Figure 27). We define L ⊆ D(λ2) analogous to that case, i.e.
L is the connected area to the left of λ2 in the m′-cut. Furthermore let σ be
the vertical straight line in L that cuts out an area the size of D(λ1) on its
right-hand side. Notice that σ ⊂ L is well-defined since above we excluded all
cases where D(λ1) = L. In case there is a corner line µ pointing down and right
that has σ as its vertical bar line and overlaps with λ2, we can replace λ2 with µ
and obtain an m-cut that has a cut length of at most l since the vertical length
of λ1 is at most that of λ2. Also the number of boundary points on δ is reduced
by one. Otherwise, similar to the case when λ2 is a straight line, the boundary
point of σ (w.r.t. L) that does not lie on δ is either part of the boundary of
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−→

Figure 27: The case when λ1 and λ2 are corner lines pointing in different directions
(left). The area shaded in grey is L. If σ (dashed and dotted) is the vertical bar
line of µ, λ1 and λ2 can be substituted with Λ1(x, y) and µ (top). If σ ends at a
line λ′ (dotted), the lines λ1, λ2, and λ′ can be substituted with Λ1(x, y), µ1, and µ2

(bottom). The size of the cut out area (diagonally striped) remains the same. The
black contiguous lines in the pictures are curves from UG.
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PG, or it lies on a curve λ′ ∈ L that must be a corner line pointing up and left.
In the former case we replace λ2 with σ and yield an m-cut with the desired
properties. In the latter case there are two corner lines µ1 and µ2 with the
following properties. The first line points down and left, it has σ as its vertical
bar line, and its horizontal bar line overlaps with λ′. The second line points up
and right, has a vertical bar line that is part of λ′, and a horizontal bar line that
includes the horizontal bar line of λ2. We can then replace λ2 and λ′ with µ1

and µ2 and yield an m-cut with cut length at most l, since the vertical length of
λ1 is at most that of λ2. Also the number of boundary points on δ is reduced by
one.

Notice that in all transformations above the number of boundary points on δ
is reduced and at the same time the number of boundary points on other curves
in UG is never increased. We can hence repeat the above procedure for the
curves in K and then in the same manner for all curves in UG that include more
than one boundary point of curves in the resulting m-cut. We yield an m-cut
that has a smaller cut length than l, and for which any curve in UG includes at
most one boundary point of a curve in the m-cut.

As long as there is more than one non-grid line (now in different open unit
intervals on the boundary), we can shift one of them to become a grid line,
and shift the other one accordingly to compensate for the area difference. This
results in a situation with at most one non-grid line in the cut. During the whole
process, the cut length does not increase, as the next lemma shows.

Lemma 32. For any grid G and any non-crossing corner m-cut L of cut length l
in PG, there is a non-crossing corner m-cut M of cut length at most l in PG
such that all curves in M except at most one are grid lines.

Proof. According to Lemma 31 we can assume that L contains no two curves that
have boundary points that lie on the same curve from UG. Let K ⊆ L be the set of
curves that are not grid lines and assume that |K| ≥ 2. For a straight line λ ∈ K,
any curve from K that intersects the corridor Kλ must have a boundary point on
the same curve from UG as λ. Hence no set of curves in L that have intersecting
corridors include straight lines. For a corner line λ ∈ K, let C ∈ {A({λ}),B({λ})}
be the area to which λ is convex and let C = {A({λ}),B({λ})} \ {C} be the area
to which λ is concave. We define X (λ) = Kλ ∩ C to be the part of λ’s corridor
to which λ is convex and X (λ) = Kλ ∩ C to be the part to which λ is concave.
Any curve in K that intersects X (λ) must have a boundary point on the same
curve in UG as λ. Therefore no curve in L intersects with X (λ).

We can thus conclude that if λ1, λ2 ∈ K is a pair of curves with intersecting
corridors, then λ1 and λ2 must be corner lines and λi, for i ∈ {1, 2}, must
intersect X (λj), where j ∈ {1, 2} \ {i}. Assume w.l.o.g. that λ1 points down and
left. Observe that this means that λ2 points up and right and no other curve in
K can intersect the corridors of λ1 or λ2, since otherwise there would be curves
in L that have boundary points on the same curve from UG. Notice that the
corridors of λ1 and λ2 intersecting means that the corridors of the horizontal
bar lines of λ1 and λ2 or the corridors of the corresponding vertical bar lines
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Figure 28: A virtual pseudo-corner line with its corner at (x, y) and its unit sized
step at x̃.

intersect. Assume w.l.o.g. that the vertical bar lines σ1 and σ2 of λ1 and λ2,
respectively, are not grid lines and that the length l1 of σ1 is at most the length
l2 of σ2. As in the proof of Lemma 31 we define D(λi), for both i ∈ {1, 2}, to
be the open set of points to the left of λi, i.e. the height of D(λi) equals li and
D(λ1) ⊆ X (λ1) but D(λ2) ⊆ X (λ2). In this setting we assume w.l.o.g. that the
size of D(λ1) is at most the size of D(λ2). We thus replace λ1 with Λ1(x, y), as
defined in Lemma 31, where (x, y) is the boundary point of the horizontal bar
line of λ1, and yield a non-crossing m′-cut for some m′. If l1 < l2 there exists
a corner line λ′2 pointing up and right that contains the horizontal bar line of
λ2 and intersects D(λ2), such that replacing λ2 with λ′2 yields a non-crossing
m-cut. If l1 = l2 we can find an according virtual corner line that contains the
horizontal bar line of λ2 and intersects the boundary of D(λ2). Notice that the
new m-cut has a cut length of at most l since l1 ≤ l2 and hence σ1 was “moved”
farther to the left than (or equally far as) σ2. Also note that the new cut has
at least one curve less in UG containing a boundary point since the vertical bar
lines in Λ1(x, y) are grid lines.

For any two curves in K with non-intersecting corridors we can use an
analogous transformation as above. Since each transformation yields an m-cut in
which there is at least one curve less in UG with a boundary point, by repeating
the above procedure we can transform L into the m-cut M with the desired
properties.

From now on, we can limit ourselves to the situation with only one non-
grid line in the polygon cut. We shift this line to the nearest integer position
(Figure 20), creating the need to compensate for the area difference. We do this
by introducing more grid lines. But since this increases the cut length, we need
to prove that the extra grid lines we introduce are short. In the end, this will
preserve the property that the cut out area lies in the interval defined by m and
ε, but will increase the cut length only by a small factor. Next, we will look at
a way to cut out for compensation, and then argue that there is a place from
which to cut out in this way.

We manage to compensate in a recursive manner. We compensate for an area
difference a by first finding a particular way to cut out an area guaranteed to
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be between a and 3a/2, with the exact value not under our control. This leaves
us with the problem to compensate for at most half the previous area (since we
are at most a/2 away from a). A recursive repetition of this compensation step
ends after at most log(a) steps. The particular way to cut out the area between
a and 3a/2 makes use of a staircase grid line of three consecutive bends, with
a step of unit height at the middle bend (Figure 28). Furthermore, the middle
bend is guaranteed to lie outside or on the boundary of the polygon, so that
the intersection of the staircase with the polygon results in a set of corner and
straight lines in the cut. We call this a virtual pseudo-corner line. The analysis
of the recursion reveals that the total length of the additional curves to cut out
area a is limited to 3a.

Definition 33 (virtual pseudo-corner line). For any polygon PG of a grid G a
virtual pseudo-corner line is a set of grid lines Λ in PG containing only straight
and corner lines for which there are two points (x, y) and (x̃, y− 1), where x̃ ≥ x
and (x̃, y) /∈ PG, such that λ ∈ Λ if and only if

λ ⊆{(x, y′) ∈ PG | y′ ≥ y}∪
{(x′, y) ∈ PG | x′ ∈ [x, x̃]} ∪
{(x̃, y′) ∈ PG | y′ ∈ [y − 1, y]}∪
{(x′, y − 1) ∈ PG | x′ ≥ x̃}.

We call the unit step {(x̃, y′) ∈ R2 | y′ ∈ [y − 1, y]} the break, and (x, y) the
corner of Λ. The length of Λ is the sum of the lengths of the included straight
and corner lines. If Λ cuts out an area of size a on the upper right side of its
corner, we say that it is a virtual pseudo-corner line for a.

A virtual pseudo-corner line is a special kind of virtual staircase line containing
only grid lines. Notice that a virtual corner line containing only grid lines is a
virtual pseudo-corner line. This is because the break of a virtual pseudo-corner
line can entirely lie outside of the polygon.

We first convince ourselves that the needed virtual pseudo-corner line exists.
In case there is a virtual corner line that cuts out the required area and contains
only grid lines we are done. In the other case a suitable set of curves can
be constructed using three virtual corner lines at some integer points (x∗, y∗),
(x∗ + 1, y∗), and (x∗, y∗ + 1) (Figure 29). These three virtual corner lines are
chosen such that the first one cuts out an area larger than 3a/2, while the other
two each cut out at most a− 1. Using these properties it is then possible to show
that there must be a unit sized step, i.e. a break, between the virtual corner
lines at (x∗, y∗) and (x∗, y∗ + 1) with which a suitable virtual pseudo corner line
can be constructed. That is, the corresponding set of curves cuts out an area
between a and 3a/2, and the upper most point of the break is on the boundary
or outside of the polygon.

Lemma 34. For any grid G with n vertices and any b ∈ {0, ..., n}, there is
a value a ∈

[
b, 32b

]
for which there exists a virtual pseudo-corner line Λ for a

in PG.
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Figure 29: The virtual corner line at (x∗, y∗) cuts out an area of size more than
3
2
b while those at (x∗ + 1, y∗) and (x∗, y∗ + 1) cut out at most b − 1. If all points

(x∗ + i, y∗ + 1), where i ∈ {l, ..., r}, are inside the polygon, then all unit squares from
A are also inside. Since there are r − l + 1 > b/2 of them, the area P(x∗ + 1, y∗ + 1)
has size greater than b/2.

Proof. Since the vertices of the grid G are points with integer coordinates, i.e.
V ⊂ N2, a virtual corner line contains only grid lines if its corner is a point in
the set H2. If there is a virtual corner line for some a ∈

[
b, 32b

]
with a corner

in H2 then the lemma holds. Assume no such virtual corner line exists. Since
any set of grid lines cuts out an area of integer size, this means that any virtual
corner line with a corner from H2 either cuts out an area of size at least d 32eb or
at most b− 1.

Let Λ(p) denote the virtual corner line with corner p ∈ H2 and let P(p)
denote the area cut out by Λ(p) on the upper right side of p. Under the above
assumption, clearly there must be a point (x, y) ∈ H2 such that the size of P(x, y)
is greater than 3

2b since b ≤ n, and obviously there is a point (x′, y′) ∈ H2 with
x′ ≥ x and y′ ≥ y such that P(x′, y′) = ∅. Because the area P(p) for any p ∈ H2

includes any area P(q) of a corner q above or to the right of p, the size of P(p)
is monotonically decreasing in both coordinates of p. Hence we can find a point
(x∗, y∗) ∈ H2 with x∗ ∈ [x, x′] and y∗ ∈ [y, y′] such that the size of P(x∗, y∗)
is at least d 32eb while the size of both P(x∗ + 1, y∗) and P(x∗, y∗ + 1) are at
most b− 1.

Let Pij = P(x∗ + i, y∗ + j) and Λij = Λ(x∗ + i, y∗ + j) for i, j ∈ N0. The
area P00 \ P01 has height 1 and contains a series of unit squares. For any x ∈ N
the difference between the area P00 and P01 ∪ Px0 includes only unit squares
from P00 \ P01. Hence the above bounds on the sizes of P00 and P01 mean that
we can find two integers l, r ∈ N such that l ≤ r and the size of P01 ∪ Pl0 equals⌊
3
2b
⌋

and the size of P01 ∪Pr0 equals b. If for a value i ∈ {l, ..., r} there is a pair
of crossing curves in Λ01 ∪ Λi0, their crossing point is pi1 = (x∗ + i, y∗ + 1). If
however there exists a corresponding value for i such that there are no curves
in Λ01 ∪ Λi0 that cross, then let Λ include the curves to the left of pi1 from the
first set together with the curves below pi1 from the second set, i.e.

Λ = {λ ∈ Λ01 | ∀(x, y) ∈ λ : x < x∗ + i} ∪ {λ ∈ Λi0 | ∀(x, y) ∈ λ : y < y∗ + 1}.

Clearly the set Λ fulfils the lemma. Hence it remains to show that we can always
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find a corresponding value i such that pi1 is not in PG.
Assume this is not the case, i.e. for any value i ∈ {l, ..., r} it holds that

pi1 ∈ PG. This means that any unit square that has one of these points as a
corner must be included in PG. Let A be the set of unit squares in P11 that have
such a point pi1 as their lower left corner. There are r− l+1 ≥

⌊
3
2b
⌋
− b+1 > 1

2b
many points pi1. We can conclude that there are at least 1

2b many unit squares
in A. Since the squares have unit size and are included in P11 the size of P11 is
at least 1

2b.
Let us derive an upper bound on the size of the area P11 = P10 ∩ P01. Since

P10 ⊆ P00 the size of P00 \ P10 is at least 1
2b + 1. The difference between the

area P00 \ P10 and P01 \ P10 can at most include the unit square Sv where
v = (x∗ + 1

2 , y
∗ + 1

2 ). Whether v ∈ V or not, this means that the size of the area
P01 \ P10 is at least 1

2b. Since P01 ∩ P10 = P01 \ (P01 \ P10), we can conclude
that that the size of P11 is at most 1

2b− 1. However this contradicts the lower
bound derived above and hence the lemma holds.

Using the above lemma we can show that an area of arbitrary size can be
cut out recursively as described before.

Lemma 35. For a grid G let Λ be a virtual corner line for b in PG that contains
only grid lines. If P denotes the area cut out by Λ on the upper right side of its
corner, then for any a ∈ {0, ..., b} there exists a set of non-crossing corner grid
lines L in PG cutting out an area of size a from P. Furthermore, the curves in
Λ ∪ L are non-crossing and the cut length of L is at most 3a.

Proof. Let a1 = a and G1 be the grid corresponding to the area P. Consider
the following recursive procedure. In each step i ≥ 1 we attempt to cut out
an area of size ai from PGi

using only grid lines. According to Lemma 34 we
can find a virtual pseudo-corner line Λ′i in PGi

for some a′i ∈ [ai,
3
2ai] with the

properties listed therein. We need to transform the curves in Λ′i into a valid
virtual pseudo-corner line Λi in PG that cuts out the same area as Λ′i. Assume
for now that this can be done. We will describe the transformation later. If
a′i = ai the recursion terminates. Otherwise let ai+1 = a′i − ai and let Gi+1 be
the grid that corresponds to the area A(Λi) of the a′i-cut Λi, i.e. PGi+1

= A(Λi).
From a′i+1 ≤ 3

2ai+1 = 3
2 (a′i − ai) and ai ≥ 2

3a
′
i we can conclude that a′i+1 ≤ 1

2a
′
i,

i.e. the area A(Λi) that is cut out from PGi
is smaller than PGi

. If this procedure
terminates the set L =

⋃
i≥1 Λi clearly cuts out an area of size exactly a. Since

any set Λi contains only grid lines, the size a′i of the cut out area must be integer.
By the fact that the cut out area in step i+ 1 has a size at most half the size
of the cut out area in step i, this means that the procedure terminates after at
most blog2(a)c steps.

Since Λi contains only grid lines, the area PGi
that is cut out by Λi can

be decomposed into a′i unit squares. The set Λi contains at most two corner
lines and therefore each, except at most two of the a′i unit squares, has at most
one side of its boundary coinciding with a curve in Λi. There may be two unit
squares that each have two sides of their boundaries coincide with a corner line
in Λi. Hence the length li of Λi is at most a′i + 2. From a′i+1 ≤ 1

2a
′
i we can
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Figure 30: A tail with its corner line at p (black dotted). The excess area in grey is
cut out using the four virtual corner lines at p (thin dashed) together with the recursive
method that uses virtual pseudo-corner lines (dashed and dotted).

conclude that a′i ≤ a/2i which means that li ≤ a/2i + 2. Therefore the cut
length l of L is

l =
∑
i≥0

li ≤
blog2(a)c∑
i=1

( a
2i

+ 2
)
≤ a

(
2− 2

a

)
+ 2 log2(a) ≤ 3a,

where the last inequality holds since 2 log2(a) − 2 < a for any a > 0. If a = 0
then l = 0 and the claimed bound still holds.

What remains to be shown is that we can convert the curve sets Λ′i into valid
virtual pseudo-corner lines Λi in PG. Since Λ is a virtual corner line containing
only grid lines, it is also a virtual pseudo-corner line. We let Λ0 = Λ and then
show by induction that each Λ′i can be transformed into an appropriate Λi for
i ≥ 1. Assume that Λi is a virtual pseudo-corner line that cuts out the same area
A(Λi) in PG as Λ′i does in PGi . The set Λ′i+1 is an a′i+1-cut in PGi+1 = A(Λi)
that cuts out the area A(Λ′i+1) ⊆ PGi+1 . If β denotes the boundary of PG and γ
denotes the boundary of A(Λ′i+1), then we include all segment curves λ ⊆ γ \ β
in Λi+1 and claim that it is a virtual pseudo-corner line. If it is then it clearly
cuts out the same area as Λ′i+1. The point set γ \ β may contain parts of curves
from Λi and Λ′i+1. However, since these sets contain only grid lines and the
length of a break is 1, γ \ β can contain at most one break from Λi and Λ′i+1. It
is easy to see that this means that Λi+1 is a virtual pseudo-corner line.

It remains to be shown that there is a place in the polygon to cut out from
using the recursive method above. For this we use a tail of the cut (Figure 30),
similar to the staircase line argument in the previous section. We have to make
sure that there is a tail that is big enough to support an area of size a. For a
non-crossing corner cut L containing only one curve λ that is not a grid line
we call a tail T ⊆ A(L) (respectively T ⊆ B(L)) tiny if the size of T is strictly
smaller than the size of Kλ ∩ B(L) (respectively Kλ ∩ A(L)). In the following
we give a similar observation on such tails as was given for the case when they
are small.

Lemma 36. For a grid G, let L be a non-crossing corner m-cut in PG with cut
length l containing exactly one curve λ that is not a grid line. There exists a
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non-crossing corner m-cut M in PG which contains exactly one curve that is
not a grid line, has cut length of at most l+ 1, and the curve of any tiny tail cut
out by M equals the curve that is not a grid line.

Proof. The proof of this lemma is analogous to the proof of Lemma 26. However
the non-grid line λ may get longer when the area of a tail is transferred to the
corridor of λ. This can only happen if λ is a corner line an then its length grows
by at most 2. Since the curve of any tail is a grid line it has a length of at least
1. Hence the total cut length grows by at most 1.

We need to make sure that no additional curves are produced while cutting
out the area of size a from a tail which would increase the cut length by some
non-constant factor. For this we break the tail into four sectors using four virtual
corner lines having the same corner as the curve of the tail. We then greedily
assign these virtual corner lines to the cut as long as the cut out area does not
exceed a. The remaining difference to reach the desired area a is finally cut out
using the recursive method presented above from one of the four sectors that
was not yet used.

Lemma 37. For a grid G, let L be a set of grid lines in the polygon PG and let
T be a tail cut out by L. If b denotes the size of T , then for any a ∈ {0, ..., b}
there exists a set of non-crossing corner grid lines M in PG cutting out an area
of size a from T such that the curves in M ∪ L are non-crossing. Furthermore,
the cut length of M is at most 3a.

Proof. Let λ ∈ L be the curve of T . If λ is a straight line then let p be one
of its boundary points, and if λ is a corner line let p be its corner. There are
four virtual corner lines in T having p as their corner, one for each possible
orientation. These virtual corner lines Λ1 to Λ4 partition T into four (possibly
empty) areas T1 to T4 such that Ti is cut out by Λi, where i ∈ {1, 2, 3, 4}, on the
“convex side” of its corner. Let I ⊆ {1, 2, 3, 4} be the set for which i ∈ I if and
only if Ti 6= ∅. If a equals 0 or b then the lemma obviously holds. Assume that
0 < a < b. There exists a (possibly empty) subset J ⊂ I such that the size bJ of
the union area TJ =

⋃
i∈J Ti is at most a while for any j ∈ I \ J the size of the

area TJ ∪ Tj is greater than a. For each i ∈ J the set M contains the curves in
Λi. Notice that λ can not be included in any of the sets Λi since the latter are
virtual corner lines in the open set of points T . Hence, in case the boundary of
TJ includes λ we also include λ in M . So far these curves cut out an area of size
bJ from PG.

Since all involved curves are grid lines, if bi, for some i ∈ I, denotes the
size of the area Ti, we can decompose Ti into bi many unit squares. The set Λi
contains at most one corner line and therefore each except at most one of the bi
unit squares has at most one side of its boundary coinciding with a curve in Λi.
There may be one unit square that has two coinciding sides of its boundary with
the corner line in Λi. Hence the length li of Λi is at most bi + 1 and therefore
the cut length of

⋃
i∈J Λi is at most bJ + |J |. Note that the same bound holds

for the curves included in M so far, even if λ ∈M .
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Let j ∈ I \ J . According to Lemmas 35 and 34 we can find a set M ′ of
non-crossing corner grid lines in PG that cut out an area of size a− bJ from Tj
such that the cut length of M ′ is at most 3(a− bJ ). If we also include M ′ in M ,
we cut out an area of size a from T without crossing a curve in L. Furthermore
the cut length of M is at most

bJ + |J |+ 3(a− bJ) = 3a+ |J | − 2bJ ≤ 3a,

where the inequality holds since Ti 6= ∅ and hence bi ≥ 1 for each i ∈ J . Thus
the set M fulfils the required properties.

The main result as stated in Theorem 1, follows from the next theorem which
summarises the results of this section.

Theorem 38. Let l be the cut length of an optimal m-cut L, for some m ∈ N,
in the polygon PG of a grid G. For any ε ∈ ]0, 1] there exists a non-crossing
corner m′-cut L′ for some m′ ∈ [(1− ε)m, (1 + ε)m], such that all curves in L′

are grid lines and the cut length is at most (216
√

7/ε+ 261) · l.

Proof. We can apply Corollary 28 and Lemma 32 to L, i.e. we know that there
exists a non-crossing corner m′-cut M , for some m′ ∈ [(1− ε)m, (1 + ε)m], with
cut length at most (54

√
7/ε+ 63) · l in PG such that M contains at most one

curve that is not a grid line. If all curves in M are grid lines, we are done. If not
then let λ ∈M be the curve that is not a grid line. In case there exists a tail cut
out by M such that λ is not its curve, let T be this tail and assume w.l.o.g. that
T ⊆ A(M). By Lemma 36 we can assume that the size of T is at least the size
of Kλ ∩B(M) if we allow the cut length of M to be at most (54

√
7/ε+ 63) · l+ 1.

Notice that, if a denotes the size of Kλ ∩ B(M), a is not necessarily an integer
since m′ might not be a natural number. However we can conclude that the size
of T is at least dae since the curve of T is a grid line and hence T is of integer
size. Let β denote the boundary of PG and γ the boundary of Kλ ∩ B(M). In
case λ is a corner line and contains a bar line σ that is a grid line, let Λ contain
all straight and corner lines that are contained in the set (γ \ (β ∪ λ)) ∪ σ. In
any other case let Λ contain the straight and corner lines in the set γ \ (β ∪ λ).
By replacing the curve λ with the curves in Λ we yield an m′′-cut M ′ where
m′′ = m′ + a.

We attempt to cut out the excess area of size a in T using only grid lines.
Notice that m′′ must be an integer since M ′ contains only grid lines. If we
assume w.l.o.g. that m′ ≥ m, since m is also an integer this means that m′′−dae
is a natural number in the interval [m,m′]. The latter is contained in [(1 −
ε)m, (1 + ε)m]. Using Lemma 37 we can find a set of grid lines M ′′ that cut
out an area of size dae from T . The union M ′ ∪M ′′ forms a non-crossing set of
grid lines cutting out an area from the interval [(1− ε)m, (1 + ε)m]. Hence it
remains to show (for the case when λ is not the curve of T ) that the cut length
of L′ = M ′ ∪M ′′ is bounded from above as claimed in the theorem.

Since λ is a straight or corner line, the size of the corridor of λ is at most
the length of λ plus 1. Since the length of λ is upper-bounded by the cut length

49



l′ of M we can conclude that dae ≤ a + 1 ≤ l′ + 2. By Lemma 37 this means
that the cut length of M ′′ is upper-bounded by 3(l′ + 2). Clearly the length
of Λ can be at most the length of λ plus 2. Hence also the cut length of M ′ is
at most the cut length of M plus 2. Therefore the cut length of L′ is at most
l′ + 2 + 3(l′ + 2) ≤ (216

√
7/ε+ 252) · l + 9. Cutting out an integer sized area

greater than zero (and smaller than n) from the polygon PG, i.e. a polygon
constructed from unit squares, will need a cut length l of at least 1. In this case
the latter bound on the cut length of L′ can be upper-bounded by the claimed
bound of the theorem. If none (or all) of the area is to be cut out from PG, the
trivial empty cut obviously also fulfils the requirements of this theorem.

Now consider the case when there is no tail such that λ is not its curve.
This can only mean that there are two tails which both have λ as their curve
and λ is the only curve in M . Let T be the tail that corresponds to the area
A(M). Replacing λ with Λ as before, we obtain an m′′-cut M ′ for which
A(M ′) = A(M) ∪ (Kλ ∩ B(M)). Hence the size of A(M ′) is at least a. Since
Λ may contain more than one curve, A(M ′) might not be a tail. Nevertheless,
proving an analogous statement as Lemma 37 for this case we can come to the
same conclusions as above. This is due to the fact that Λ is a virtual corner line,
which conclude the proof.

6. Conclusions

We have seen that when restricting ourselves to simple shaped cuts in solid
grid graphs, it is possible to cut out a number of vertices close to the desired
number m, while not loosing a lot in terms of the quality of the cut length. We
proved this fact by considering polygons for which a similar result is true. The
corresponding result for polygons (Corollary 28) is of independent interest and
might be considered for further research on polygons in the future. For solid grid
graphs it was already possible to use the obtained results [2] in order to speed up
an algorithm computing sparsest cuts [8]. The latter insight can subsequently be
put to work [2] in order to gain faster approximation algorithms for separators
and bisections for solid grid graphs, using known techniques [3, 8].

One remaining question is whether the approximation guarantee given in
Theorem 38 for the corner cuts can be improved. In particular it is not clear
whether the factor ε, by which the size of the cut-out part deviates from the
given value m, is necessary. Also the final constant given by Theorem 38, which
has a value of at least 832, seems very large. The reason for this large value is
that in many of the lemmas leading to the theorem, the cut length of the involved
curves grow by a constant factor. This means that the resulting constant grows
exponentially with the number of intermediate steps used by the proof. Hence
an improvement on the guaranteed approximation ratio may be achievable with
a more direct approach than the one chosen here. In particular the best lower
bound we can provide to compare optimal corner cuts with optimum m-cuts is
1 + 1/

√
2 (Figure 31). Interestingly the lower bound example is a very simple

one. There also exist more complicated examples based on the insights gained in
this article. For instance it is possible to construct examples where the optimum
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Figure 31: A polygon in which the optimum corner n/2-cut (dotted lines) has a cut
length that is a factor of 1 + 1/

√
2 larger than the optimum n/2-cut (dashed line).

Obviously this gives a lower bound for the corresponding grid graph.

corner m-cut needs three segments. For this, topologies such as the one shown
in Figure 12 can be used. However in all found examples the corner m-cut with
minimum cut length was also at most a factor 1 + 1/

√
2 away from optimum.
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