
ETH Library

A fully-functional Cache Control
Coprocessor for Enzian

Master Thesis

Author(s):
Hässig, Manuel

Publication date:
2024

Permanent link:
https://doi.org/10.3929/ethz-b-000708595

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000708595
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Master’s Thesis Nr. 487

Systems Group, Department of Computer Science, ETH Zurich

A fully-functional Cache Control Coprocessor for Enzian

by

Manuel Hässig

Supervised by

Ben Fiedler
Prof. Dr. Timothy Roscoe

October 2023 – May 2024

Abstract

The Enzian research computer offers a unique platform for testing novel cache coherence
protocols in hardware with its 48-core ThunderX CPU and FPGA connected over a
coherent interconnect with the Enzian Coherent Interface (ECI). The C3 system is a
toolkit for experimenting with novel features of cache coherence protocols on Enzian.
It consists of a Cache Control Coprocessor (C3) on an isolated CPU core to fetch
instructions from the C3 envoy on the FPGA to execute. Applications on the FPGA can
issue C3 instructions to the C3 envoy which will then be executed by the C3 on the CPU.
This namely enables injecting an FPGA-homed cache line into the CPU L2 cache and
expressing prefetching patterns for CPU memory by the FPGA when it has knowledge of
the CPU’s execution, e.g. when the FPGA transfers data which needs to be handled by
the CPU. Further, the C3 enables the FPGA to interrupt CPU cores using C3 instructions
which result in software generated interrupts when executed by the C3. The C3 system
is designed to be extensible such that it can be used to implement other features not
implemented by the native cache coherence protocol to allow prototyping novel coherence
features in hardware. The interface of C3 on the FPGA is designed to be similar to
the interface of ECI to imitate a cache coherence protocol. The C3 is implemented as
an out-of-tree Linux kernel module and provides notifications as an interface to CPU
applications to let them know when an FPGA applications sent notification instructions
the let them know that data has arrived for the application to consume.

Acknowledgements

First of all, I would like to thank my advisor Ben Fiedler for his support and guidance
and many fruitful discussions which improved this thesis considerably. I would also like
to thank Prof. Timothy Roscoe for the opportunity to work on this interesting but
nonetheless challenging subject. Further, I would like to thank Pencheng Xu for being a
more or less willing rubber duck and a very competent help in all things FPGA; Jasmin
Schult for sharing her wealth of knowledge on the hidden secrets of the ThunderX caches
and making sure that I do not sprint the marathon distance; Roman Meier for all his
IT-support and thoughtful reviews; David Cock for the clarity provided by his insights;
Adam Turowski for his support with puzzling FPGA problems; and Nicolas Tischler for
his help with figuring out how to allocate more SGIs. I would also like to thank the
Systems Groups as whole for being such a collaborative environment and for facilitating
many interesting lunchtime discussions.

Lastly, I would like to thank Ibuprofen for getting me through the last three days before
my deadline in spite of fevers and headaches.

Contents

Acronyms 5

1 Introduction 7
1.1 Goals . 9
1.2 Related Work . 9
1.3 Following Along . 11

2 Background 13
2.1 CPU Caches . 13

2.1.1 Cache Hierarchies . 15
2.1.2 Cache Coherence . 15

2.2 Enzian . 16
2.2.1 ThunderX . 17
2.2.2 FPGA and Shell . 20
2.2.3 Enzian Coherent Interface . 21

2.3 Enzian Coherent Interconnect . 21
2.3.1 Directory Controller . 22

3 System Design 24
3.1 Design Requirements . 24
3.2 C3 Design . 24

3.2.1 Control Path . 25
3.2.2 Data Path . 28

3.3 Key Mechanisms . 29
3.3.1 Direct Cache Injection . 29
3.3.2 Cache Allocation . 39
3.3.3 Core Isolation . 40

3.4 C3 Instructions . 42
3.4.1 Encoding . 42
3.4.2 Instruction Descriptions . 44

3.5 Application Interface . 49
3.5.1 Application Registration . 49
3.5.2 Notifications . 50

3.6 Synchronization . 54
3.6.1 Provided Guarantees . 54
3.6.2 Synchronization Contract between CPU and FPGA applications . 54

3

3.7 Summary . 55

4 Implementation 57
4.1 Infrastructure . 57

4.1.1 Getting as suitable Linux Kernel 57
4.1.2 Enzian FPGA Driver . 59
4.1.3 Enzian ThunderX Driver . 59
4.1.4 Enzian Memory Explorer . 63

4.2 Cache Control Coprocessor . 65
4.2.1 Setup & Core Isolation . 65
4.2.2 C3 Loop . 66
4.2.3 Notifications & Interface to User 67

4.3 C3 FPGA Envoy . 70
4.4 FPGA Test Applications . 71

4.4.1 No Instruction Test . 71
4.4.2 Fixed Instruction Test . 71
4.4.3 Dynamic Instruction Test . 72
4.4.4 Copy Word Test . 73
4.4.5 DCS Copy Word Test . 75

5 Evaluation 80
5.1 The Influence of Stalling Instruction Fetches on the Rest of the System . 80
5.2 Future Tests . 83

6 Conclusion 85
6.1 Discussion . 85

6.1.1 Is C3 a convincing Cache Coherence Protocol Extension? 85
6.1.2 Viability as a Platform for Experimentation 86

6.2 Future Work . 87
6.3 Summary . 88

A Enzian Memory Explorer Help Page 97

4

Acronyms

ATF ARM Trusted Firmware 60, 62

AXI Advanced eXtensible Interface 22, 70–72, 75, 76, 78

BRAM block random access memory 28, 75, 76, 78

C3 Cache Control Coprocessor 8–12, 24–29, 34, 35, 38–58, 62, 65–74, 76, 78, 80–89

CCPI Cavium Coherent Processor Interconnect 17, 18, 21

CMI Coherent Memory Interconnect 17

DC directory controller 7, 21–23, 61

DCS directory controller slice 22, 28, 29, 33, 34, 46, 74–79, 83, 85, 86

DDIO Data Direct I/O 8, 10

DMA direct memory access 10, 24

DRAM dynamic random access memory 18, 19, 21, 22, 28, 30, 34, 35, 41, 43, 58, 59, 63,
65, 76

ECI Enzian Coherent Interconnect 7–10, 17, 20–26, 28, 63, 70, 72, 78, 85, 86, 88

FIFO first-in, first-out 26, 27, 70, 78

FPGA field programmable gate array 7–11, 16, 17, 20–22, 24–29, 33–38, 40–49, 52–56,
59, 61, 63, 65, 70–74, 76, 80, 83, 85–89

GIC generic interrupt controller 25, 48, 62

GPIO general purpose input/output 25

HDL hardware description language 76

I/O input/output 8, 10, 11, 18–20, 25, 26, 39–42, 59, 63, 70, 72, 87

ILA integrated logic analyzer 70, 78

IOB I/O-bridge 17, 19, 47

5

IP intellectual property 70, 76

IPC interprocess communication 41

IPI inter-processor interrupt 62

IRQ interrupt request 40, 62, 63, 65

ISA instruction set architecture 29, 33, 42

LCI local clean invalidate 22, 75, 76, 78

LCIA local clean invalidate acknowledgement 22, 75, 78

LLC last level cache 8, 10, 17

MUX multiplexer 27

NIC network interface card 8, 10, 11, 25, 55, 87

NOP no operation 19, 32, 34, 44, 66, 67, 71

NUMA non-uniform memory access 16, 59

RCU Read, Copy, Update 40, 58

REPL read-evaluate-print-loop 63, 64

RPC remote procedure call 8

SGI software generated interrupt 8, 27, 41, 47–49, 53, 55, 62, 63, 65, 66, 69, 89

SMP simultaneous multiprocessing 40, 62

TLB translation lookaside buffer 18, 30, 31, 34–38, 41, 61

UL unlock 22, 75, 85

UMP user-level message passing 10, 27, 41, 51–53

UND UMP-like Notification Delivery 51–53, 55, 68

URPC user-level RPC 10, 51

VC virtual channel 22, 23, 78, 85, 86

VM virtual machine 11

WNS worst negative slack 78

6

1 Introduction

Workloads on CPUs had enjoyed “free” speedups from the exponential increase of
transistor count predicted by Moore’s law [46] and the increase of processor frequencies
and reduction of transistor with the same power consumption from Dennard scaling
[18]. Consequently, chip manufacturers were able to deliver better performance by only
optimizing CPUs. As Moore’s law and Dennard scaling have ended [21] the overheads of
general purpose CPUs [16] become less tolerable and the remaining way to get better
performance is via domain specific hardware [28]. This drives an increasing heterogeneity
in hardware [60]. However, memory dominates these accelerators [15]. In a sense, they
move the memory transfer from inside the CPU to the interconnect between all processing
elements. Unsurprisingly, these interconnects become the bottleneck for performance of
accelerated systems [67, 27, 42].

The pressure for performance and features lead to the development of the more general
proposals OpenCAPI [57], GenZ [30], and CCIX [9], which have merged into CXL [11], as
well as the GPU specific NVIDIA NVLink [24], and AMD Infinity Fabric [7] and RISC-V
TileLink [55]. All of these new interconnects offer coherent memory access in some shape
or form. The ongoing specialization seems to also have moved coherent memory as an
essential guarantee for multiprocessing out of the CPU.

In order to enable relevant systems research on heterogeneous systems in light of this
paradigm shift the Systems Group developed the Enzian research computer [10]. Enzian
is a two-socket asymmetric NUMA system with a 48-core ThunderX ARMv8 CPU on
one socket and a Xilinx UltraScale+ field programmable gate array (FPGA) on the
other. The two are connected with a coherent interconnect running Enzian Coherent
Interconnect (ECI) [52], which implements the CPUs native cache coherence protocol.
Additionally, CCKit [51] provides an implementation of a directory controller (DC) on the
FPGA such that it participates as a home agent, making it a symmetric cache coherence
protocol. Further, CCKit provides a low level interface with the cache coherence protocol
to applications on the FPGA.

This makes Enzian an ideal platform for evaluating future cache coherence protocols on
real hardware as it provides introspection down to the transport protocol of coherence
messages. However, while being representative of the current state of the art in coherent
interconnects ECI does not have all features which might be desirable in a coherence
protocol, such as pushing a cache line from the FPGA in to the CPU L2 cache. The goal

7

of this work is thus to provide a comprehensive toolkit to enable additional features of a
coherence protocol on Enzian.

Managing caches effectively is essential for getting good performance on modern computer
systems. If we want to write a fast matrix-matrix-multiplication for instance, we need to
take into account the dimensions, associativity, and replacement policy of each level of
the CPUs cache hierarchy and block our data accordingly. Despite this need, caches on
CPUs are intentionally transparent to software. As caches effectively hide most memory
latency, leveraging them to the fullest for transferring data to and from accelerators could
yield significant benefits.

Caches work best, when we know which memory will be accessed next and prefetch that
memory into the cache ahead of the access so we can evade the not so compulsory miss.
Applying this idea to the data transfer from accelerators, we notice that when transferring
data back to the CPU the accelerator knows that the CPU will access the memory it
transfers in the near future. Therefore, it would ideally transfer the data directly into
the CPU’s cache in a form of push-prefetching or direct cache injection. Because data
movement is among the most expensive and energy-consuming tasks in a data center
[14] and the latency sensitivity of short-lived workloads like serverless functions and
remote procedure calls (RPCs), these workloads should benefit from push-prefetching as a
feature in a coherence protocol. Further, some input/output (I/O) bound workloads using
accelerated devices like a smart network interface card (NIC) profit from the reduced
latency due to direct cache access, as demonstrated previously using Intel’s Data Direct
I/O (DDIO) technology [22]. Thus, the main additional feature we provide is direct cache
access for the FPGA on Enzian.

We introduce the Cache Control Coprocessor (C3) which gets around the issue that ECI
can only pull cache lines from a different node and not push them to another node. Thus,
we need to send a message from the FPGA to the CPU to pull a cache line into its last
level cache (LLC). For this, we create an instruction queue on the FPGA and have the
CPU poll that queue continuously. In order to minimize latency, we isolate a CPU core
to only poll the instruction queue and execute the instructions.

Now that we have a side channel for the FPGA to make the CPU execute things on its
behalf, we can also implement other useful things. For instance, the FPGA can direct
the CPU to issue a software generated interrupt (SGI). This is useful on Enzian as, at
the time of writing, the workings of the interrupt lines between the FPGA and the CPU
have not been deciphered yet. Hence, until these interrupt lines between the two nodes
are brought up, C3 can be used as a workaround.

In this work, we design C3 as a flexible system other work can use to easily add features
to Enzian not possible to implement properly or as a way to prototype new mechanisms.
To that end C3 is extensible by design and makes few assumptions about applications
using it. We apply the Enzianeering credo “if in doubt, overengineer” [10]. For the core

8

features direct cache access and interrupts, we investigate how these are accomplished
best on Enzian. After implementing C3, we use simple applications to characterize the
latency and throughput of direct cache access and draw conclusions as to how the system
is best used in applications. Based on these conclusions, we devise a handful of different
usages of our system for different application needs and show possible improvements.

1.1 Goals

Our main goal in this work is to create a reusable system component to enable new
operations in communication from the FPGA to the CPU on Enzian in the form of the
C3 system. The overarching goal is to be able to prototype coherent interconnects with
a superset of the features of ECI on Enzian and enable experimentation with those novel
features.

Initially, C3 should support push-prefetching of cache lines from the FPGA to the CPU
L2 cache, some form of notification that data has been transferred, and the ability to
interrupt CPU cores from the FPGA. In order to make push-prefetching over C3 useful,
we aim to make the implementation of C3 have as low latency as possible.

To facilitate easy usage in the future, we provide guidelines and examples for applications.

1.2 Related Work

Coherence interconnect prototyping In recent years many new coherent interconnects
have been introduced with CXL [11], NVIDIA NVLink [24], and AMD InfinityFabric
[7], illustrating the considerable interest in coherent inter-chip data movement. However,
these technologies are neither built for experimentation, extensibility, or introspection.
While they are useful points in the design space, they do not allow exploring the
design space of coherent interconnects. Much closer to that goal comes BlackParrot
[49] with its BedRock cache coherence system [63]. BlackParrot can be implemented
as a soft core on an FPGA based on the source code available on GitHub, which
allows for experimentation, extensibility, and introspection. Even when taped out, the
BedRock protocol in BlackParrot can be reconfigured with a firmware update as it is
microprogrammed. For instance, it can be configured to use different subsets of the
MOESIF states as protocol states of the coherence protocol. RISC-V TileLink [55] is also
an open standard for a coherent interconnect which could lend itself to being extended
due to its relative simplicity. If implemented on an FPGA, one could then also get
introspection.

9

The Enzian research computer [10] with its implementation of ECI on the FPGA is
designed for introspection to the lowest levels. However, the coherence protocol is
constrained to that of the CPU, which is why this work is needed for Enzian to be
extensible.

Hiding memory latency using cache prefetching is an old idea now commonly implemented
in chips as hardware prefetchers and generally available on CPUs [36, 45, 8]. However,
hiding latency by having a core push cache lines into another cores cache with push-
prefetching or cache injection [35, 44] is much less common. Both ideas are similar in
nature, but cache injection is producer-driven and fails if data is fetched to early evicting
the applications working set, while prefetching is consumer-driven and fails if data is
transferred too late [38]. Different approaches for push-prefetching in CPUs as surveyed
by Byna et al. [8] include run-ahead execution, helper-thread-based prefetching, memory-
side prefetching using near memory computation [66], and server-based prefetching [64]
which is close in spirit to C3 as dedicates compute to the task of push-prefetching. The
Stanford DASH multiprocessor [37] featured the deliver and update-write operations for
applications that cannot issue a prefetch early enough and thus need push-prefetching.
Update-write sends data to all cores that have the updated cache line cached and deliver
sends data to a specified set of cores.

Push-prefetching seems to be more prevalent for accelerated computing where knowledge
of future data transfers from one to the other node are leveraged, which is the realm
where C3 will be used. In this context, the goal of using push-prefetching is to achieve
lower data transfer latencies than using direct memory access (DMA) by avoiding reading
data from main memory. For instance in proactively pushing data from the CPU to
the GPU, so the GPU will mostly hit when it starts processing data [68]. There has
also been considerable work on direct cache access for NICs [31, 33, 58]. The study by
Farshin et al. [22] based on Intel’s DDIO technology on Xeon server CPUs [32] shows
that not all applications benefit equally from direct cache access and it has to be tuned
specifically to each application. In particular, they showed experimentally that contention
in the LLC between code/data and I/O is a problem and therefore the two need to be
separated, which has been shown previously in simulation by Tang et al. [59]. Wang
et al. [62] reverse-engineered and modelled DDIO in detail and found that the increasing
complexity of the memory subsystem and I/O stacks make leveraging direct cache access
to the fullest difficult. Further, they found that the increasing complexity of coherence
protocols and the overhead of on-chip networks blur the distinction between a cache hit
and a cache miss leading to diminishing returns. C3 aims to get around this penalty by
using existing mechanisms in ThunderX.

Polling memory for achieving low-latency I/O in the same way as C3 is polling the
FPGA for instructions is a well-known technique. However, many times the benefit
comes from bypassing the kernel. Barrelfish [3] uses polling shared memory for user-level
message passing (UMP), its user-level RPC (URPC) [5] based cross-core communication
mechanism which achieves a latency in the order of hundreds of cycles for communication

10

across different NUMA systems. For Barrelfish, polling for a long time is unreasonable as it
would block progress for the rest of the core, so it blocks after some time. However, systems
for accelerating I/O to the CPU dedicate an entire core to polling. The Virtualization
Polling Engine [41] uses dedicated polling threads on dedicated CPU cores to access
devices and provide virtual access points over cache-coherent memory to virtual machines
(VMs) instead of using interrupts, which significantly reduces the virtualization overhead.
In networking DPDK [50] uses poll mode drivers to bypass the kernel network stacks to
reduce latency. DPDK is used by Azure with its SmartNICs [23]. Andromeda [17] achieves
its lowest TCP roundtrip latency using dedicated busy-polling CPUs, but achieves higher
throughput at slightly lower latency using Intel’s QuickData DMA Engines, which enable
larger data copies. Shenango [48] dedicates a core to kernel-bypassing I/O with NICs
which exposes packet queues to applications that are reallocated to cores on very short
time frames in order to increase CPU efficiency. As an alternative to userspace polling
on dedicated cores, Basu et al. propose compiler interrupts [2]. A compiler interrupt is a
call to an interrupt handler inserted into a binary at compile time based on a configured
interrupt interval. As a case-study, they replaced Shenango’s dedicated I/O core with
compiler interrupts and showed that they could increase CPU efficiency with comparable
throughput and latency.

In most offloading scenarios, the CPU instructs the accelerator what it should execute
and the accelerator tells the CPU when it is done. C3 inverts this relationship and has
the FPGA issue instructions to execute on the CPU. This is not unique as Elis et al. [20]
recently proposed a similar notification mechanism between GPUs and CPUs to achieve
higher parallelism between the two. However, this is mainly focussed on synchronization.
Closer to C3 are GPU-to-CPU callbacks [56] where the CPU polls pinned memory where
the GPU writes a callback. A callback can be a system call, a memory transfer or some
CPU compute. There are synchronous callbacks, where the issuing GPU thread spins
until the request completes, and asynchronous callbacks where synchronization needs to
happen some time after the request.

1.3 Following Along

Throughout this thesis, if you, dear reader, have access to an Enzian you can follow along
and execute the experiments. Whenever this is the case you will find a box with the
information needed to run the experiment. While the readme in each project should be
self-explanatory, we will go through some general setup steps here.

First, all projects in this thesis need a newer Linux kernel than provided in the Enzian
golden images. Everything was built using an image on a custom debug configuration
based on Linux 6.7.1, but any 6.x kernel should work. You can obtain a copy of the
image with the custom debug kernel using the following command on enzian-gateway:

11

emg copy-image mhaessig-6.7.1-enzian-debug $IMAGE_NAME

For general information on how to boot an Enzian, please refer to the Enzian Quickstart
Guide. For the experiments, we boot an Enzian with core 47 isolated, which is where the
C3 will be placed. Use the following command on enzian-gateway to boot an Enzian
with core 47 isolated and the debug build of Linux 6.7.1:

emg acquire -n $IMAGE_NAME -k mhaessig/vmlinuz-6.7.1-enzian-debug \
-i mhaessig/initrd.img-6.7.1-enzian-debug \
-a "isolcpus=nohz,domain,managed_irq,47 nohz_full=47 rcu_nocbs=47 \
rcu_nocb_poll" zuestoll$NR

Most experiments will need some specific bitstream programmed on the FPGA. Every
experiment will specify the bitstream needed. All FPGA projects can be found in the
Gitlab group for this thesis.

Once you have yourself a running Enzian, you need to build the C3 Kernel Modules.
This ”monorepo” contains all needed kernel modules, libraries and scripts. Build all its
contents with make. All scripts you run to start an experiment must be run in the root
directory of this repository.

With all this preparation, you should be ready for your first experiment.

Following along: Experiment 1.1: Welcome

Required bitstream: None
Script: experiments/welcome.sh

What you will see: A welcoming text and some information about the core you
are running on.

12

https://gitlab.inf.ethz.ch/project-openenzian/documentation/userguide/-/jobs/artifacts/main/raw/enzian_quickstart.pdf?job=build
https://gitlab.inf.ethz.ch/project-openenzian/documentation/userguide/-/jobs/artifacts/main/raw/enzian_quickstart.pdf?job=build
https://gitlab.inf.ethz.ch/OU-ROSCOE/Students/2023-msc-mhaessig
https://gitlab.inf.ethz.ch/OU-ROSCOE/Students/2023-msc-mhaessig/c3-kernel-module

2 Background

This chapter will cover a range of topics used later in this thesis. The content covered in
each topic is limited to what is relevant for this work.

2.1 CPU Caches

As the performance improvements of CPUs outpaced the memory subsystem, designers
were forced to come up with a solution to the higher relative cost of memory access.
The solution was to introduce a smaller but faster memory close to the CPU that stores
blocks of memory the CPU accessed recently. This solution worked to increase the speed
of memory accesses as the approach exploits the temporal and spatial locality inherent
in programs, i.e. in loops accessing an array.

The simplest form of a cache is a direct-mapped cache which is basically an array of n
blocks, called sets, of m bytes, which is the line size. To access the cache one takes the
index of log2(n) bits starting at bit log2(m) of the address into the cache. If valid data is
present in the specified cache set, the cache has to check if it is the same line as requested.
It does this by comparing the cache tag stored in the cache and the most significant
64− log2(n)− log2(m) bits of the address. If the tags match, the cache access is a hit.
Otherwise, it is a miss and the cache replaces the line by evicting the cached line and
fetching the requested line from main memory. To facilitate this functionality each cache
line must store the tag, a valid bit, and the actual data. The hardware to check if the
access into the cache is a hit in a direct-mapped cache is a comparator to compare the
tag cached at the address-provided index with the tag of the address and an AND-gate
to check if the valid bit is set if the tags match. This makes access incredibly easy and
fast, but this simplicity comes at a cost. Direct-mapped caches encounter many conflict
misses, where a cache line is evicted from the cache because a different cache line for the
same set is requested.

When evicting a cache line, the cache has to decide which line to evict. This is also
straightforward in a direct-mapped cache as there is only one option. Then the hardware
must make sure that the contents of the cache line are written back to memory if the line
is dirty, i.e. it has been modified since it was fetched. However, there are two ways of
ensuring that changes in the cache are reflected in memory. A write-through cache writes
changes to memory immediately, while a write-back cache waits until the line is evicted

13

to write the changes to memory. The trade-off between these two policies is that the
former makes writes to the cache as slow as writing to memory but simplifies eviction,
whereas the latter makes writes to the cache much faster but increases the miss penalty
when a line has to be evicted.

In order to further exploit temporal locality and increase the size of a continuous working
set, designers introduced set-associative caches where each set has a number of ways so
multiple cache lines per set can be cached. For example a 2-way set-associative cache
can store two cache lines of the same set before the request for a third cache line has
to evict one of the two lines. On the opposite side on the set-associativity spectrum of
a direct-mapped cache is a fully-associative cache which has one set and n ways, so an
arbitrary memory location might be cached in any of the cache lines. The multitude of
ways, however, makes the access much more complicated as the address-tag has to be
compared with all tags in the cache set. This requires more hardware and more time and
neatly demonstrates the trade-off for the set-associativity of a cache between hit rate
and access time.

With multiple cache lines per set, the cache must pick a line to evict when all ways in a
set are filled and a conflict miss occurs using a replacement policy. There are a host of
different policies with varying levels of complexity. For instance, random replacement is
quite simple as it needs no additional state stored in the cache line. There are simple
queue-based policies with FIFO and LIFO. The least-recently-used policy and related
policies evict the oldest line in the cache and needs to track the age of cache lines, which
needs at least log2 bits for the number of ways for each cache line and logic to update the
age bits. The family of frequency based policies uses the least-frequently used heuristic
that needs to track the number of accesses per line and compare them on replacement.

The performance of replacement policies is analyzed by comparing them with the optimal
replacement algorithm with perfect foresight, the clairvoyant Bélády’s algorithm [4]. This
policy replaces the line which will not be accessed again for the longest time in the future.

Since caches performance can be significantly improved by having foresight into what
accesses will be made in the future, most caches implement some sort of prefetching.
Some CPUs have hardware prefetchers that make predictions on future accesses and
proactively fetch lines into the cache. CPUs also feature prefetching instructions which
allow the programmer to inform the cache that some cache line will be needed in the
future. However, in most architectures these prefetching instructions are implemented as
performance hints and the CPU may ignore them entirely. For a comprehensive survey
of prefetching techniques for CPU caches, see Mittal [45]. Further, Lee, Kim, and Vuduc
[36] provide an analysis when prefetching is beneficial.

14

2.1.1 Cache Hierarchies

With time memories grew ever larger and with them the working sets of programs.
Therefore, caches also had to grow. While a cache with low associativity will scale
without too much increase in access latency, highly associative caches will not due to their
need to compare cache tags in order to determine whether an access indeed hit. Faced
with this dilemma, engineers determined that there will not be one cache to rule them
all and introduced multilevel cache hierarchies. The first level (L1) cache closest to the
CPU is rather small with access latencies in the order of three cycles. They often feature
higher associativities to increase hit rates, which is acceptable due to their small size.
The next higher level (L2) is bigger with access latencies in the order of tens of cycles.
While there could theoretically be many more levels of caching, most cache hierarchies
feature no more than three levels.

In von Neumann architectures, data and instructions are stored in one unified memory.
Therefore, caches store both data and instructions. However, access patterns for the
two are quite different. Instructions have quite good spatial locality as in code sections
without jumps the next instruction is just executed (jumps can also relatively easily
be prefetched using various lookahead techniques). Code with loops also has excellent
temporal locality. Further, code size is bounded as it relates to the complexity of a
program [19] These characteristics make code much easier to cache than code. For this
reason designers introduced separate instruction and data caches in the lowest level of
the cache hierarchy.

With more than one cache between the CPU and the backing memory not every cache
line that is present in the L1 cache has to be present in the higher levels as well. This
is a so-called exclusive cache. Inclusive caches, on the other hand, back all lines in the
L1 cache with a line in the higher cache levels. While eviction is cheaper with inclusive
caches as a line may still have room in a higher level, writing to a cache line in L1 can
be faster in exclusive caches as they do not have to be propagated to the higher levels
right away. Many caches implement a mixture between these two policies.

2.1.2 Cache Coherence

With the advent of multiprocessors the lower levels of the cache hierarchy were dedicated
to a single core and thus replicated for every core and higher levels were shared between
cores and connected using an interconnect. Now, every core may have different copies
of the same cache line and read different values. To prevent such a scenario all cache
controllers and memory controllers in the system cooperate using a cache coherence
protocol. In short, a coherence protocol maintains two invariants [47]: for any memory
location there exists exactly one core that may write to said location or there are a

15

number of cores reading said location at any given time; and after a write to some memory
location, the value of that location will remain the same until another write occurs.

The cache controllers maintain a state machine for each cache line to uphold these
invariants. Consider the MOESI variant of such a state machine. In the Modified state
a core has modified the cache line and must thus be the only core holding a valid copy
of the cache line. If a core holds a cache line in the Owned state, other cores may hold
the line in shared state, but the owning core may invalidate their copies by writing to
the cache line and transitioning to modified state. A cache line in Exclusive state is
guaranteed to be the only valid and clean copy of that cache line in the system. The
core holding it may read and write to the cache line as it pleases. A cache line in Shared
state is a read only copy of some cache line owned by some other core. A cache line in
Invalid state may be neither read from or written to.

To move between those states, the cache coherence protocol specifies a set of transactions
which are initiated by coherence requests, e.g. a request to get a particular cache line in
shared state. In snooping coherence protocols, all cache controllers observe coherence
requests initiating transactions in the same order (per cache line) and then collectively
take the correct action [47]. For this coherence request are broadcast to all cache
controllers which causes a lot of traffic on the coherence interconnect. Directory based
coherence protocols, however, keep track of the state of all cache lines in a global directory.
This way, a coherence request needs to be sent only to the directory which decides on the
coherence transaction [47]. This reduces the traffic on the bus dramatically, especially
for large numbers of cores and thus cache controllers.

The concept of a coherence protocol can be extended to multi-node non-uniform memory
access (NUMA) systems. However, this introduces a much more expensive inter-node
interconnect into the system. In a symmetric distributed directory coherence protocol
all nodes are equal partners and maintain a directory for the cache lines located in the
memory of their own node, i.e. cache lines homed on the particular node. This is a
common situation for multi-socket CPU systems [51]. For coherent heterogeneous systems
however, not all non-CPU compute can maintain a directory for cache lines homed on
its node. Thus, the CPU maintains a global directory across all nodes, making this
an asymmetric directory coherence protocol. In such a system, the cache controllers
of the node without a directory must send all coherence request across the coherence
interconnect to the CPU on the other node.

2.2 Enzian

Enzian is an open CPU/FPGA platform for systems software research developed by the
Systems group at ETH Zürich [10]. It consists of the powerful ARM CPU ThunderX-1
[43] on node 0 and a Xilinx XCVU9P UltraScale+ FPGA [65] on node 1 (see figure 2.1).

16

50 - 60
GiB/s

48x ARMv8-A
ThunderX-1
Processor

4x DDR

128 GiB @ 2133

2x 40 Gb/s

I/O Shield

QSFP+

QSFP+

50 - 60
GiB/s

30 GiB/s
ECI

Xilinx XVU9P
UltraScale+

FPGA

4x DDR

512 GiB @ 2133

64GiB @ 2400

4x 100 Gb/s

QSFP+

QSFP+

16x 25 Gb/s

I/O Shield

QSFP+

QSFP+

Figure 2.1: Enzian block diagram

The CPU and FPGA are both connected to their own set of DRAM. The main memory on
both nodes is coherently connected by a high bandwidth interconnect running the Enzian
Coherent Interconnect (ECI) protocol [52] which is based on the ThunderX Cavium
Coherent Processor Interconnect (CCPI) protocol. This lets the FPGA participate in
the cache coherence protocol of the CPU, which is one of the defining features of Enzian.
Further, both nodes have ample network bandwidth — especially the FPGA.

2.2.1 ThunderX

The Cavium ThunderX-1 (see figure 2.2) is a 48-core server grade CPU which implements
the ARMv8-A architecture and is clocked at 2.0 GHz [43]. It is itself a system on a
chip (SoC) with a number of coprocessors for applications ranging from compression to
finite automata. Each core features a 32KiB, 32-way set-associative write-through L1
data (L1d) cache and a 78KiB L1 instruction (L1i) cache. The ThunderX has a shared
on chip L2 cache, which is also the LLC. The L1d cache and the L2 cache are both
physically indexed and physically tagged while the L1i cache is virtually indexed and
physically tagged. The cores, the L2 cache, the I/O-bridges (IOBs), and the CCPI are
all connected coherently through the Coherent Memory Interconnect (CMI). It ensures
coherent memory for all connected components by implementing a set of CMI transactions
(see [43]) that uphold the coherence protocol. Some of these transactions are only initiated
by prefetch instructions or the ThunderX specific Cavium cache management instructions
(CvmCache) [43].

Each ThunderX core features 24 write buffers which perform aggressive write-combining
to accumulate writes such that in the best case they can always write a full cache line
into the L2 cache. The write buffers may stall the instruction pipeline if the no write
buffer entries are available or when barrier instructions execute. The write buffers are
flushed, among other events, when a barrier instruction that “must order prior stores
to subsequent instructions executes” [43], the write buffer entry times out, or a load
instruction to the same cache line as is being accumulated in that write buffer misses in

17

the L1d cache. Making sure that the write buffers are flushed to make writes visible to
the rest of the CPU is critical for the correctness of some code.

16 MiB, 16-way set associative
128 B blocks, writeback

L2 Cache Controller

Write Buffer: 3 KiB
ICache: 78 KiB
DCache: 32 KiB

48x ARMv8-A
Cores

4x DDR

128 GiB @ 2133

ECICCPI

I/O Bridge

CMI

QSFP+

QSFP+
NCB

ThunderX

Figure 2.2: ThunderX block diagram

The ThunderX implements ARMv8 49-bit virtual addresses which are translated into
48-bit physical addresses using a two stage translation process over intermediate physical
addresses. The physical address space is partitioned into dynamic random access memory
(DRAM) and I/O address spaces. Only the DRAM address space is cached if caches are
enabled. Bit 47 in the physical address distinguishes between the two: if address bit 47
is 1, then the address is in I/O space and in DRAM space otherwise. The DRAM and
I/O spaces are further partitioned in to subspaces for each CCPI node (see [43] figure
4-1). Each CCPI node has a DRAM address space of 1TiB.

Each ThunderX core features a hierarchy of three translation lookaside buffers (TLBs) to
cache address translations. The 32-entry, fully-associative µTLB caches collapsed address
mappings of both stages and is the TLB equivalent of an L1 cache. The MTLB is a larger,
fully-associative, 256-entry TLB caching both stage 1 and stage 2 translations. It is the
equivalent of an L2 cache. The last TLB in the hierarchy is the 128-entry, fully-associative
page walker cache which caches translations for all page table levels except the last.
Thus, it is a way to shorten page table walks for the page table walker. All TLBs on the
ThunderX can be read out entry for entry using a corresponding CvmCache instruction.
Further, the PREFu CvmCache instruction allows prefetching mappings into the µTLB.

Two ThunderX CPUs can be connected to a symmetric directory based cache coherent
NUMA system thanks to the CCPI. It implements a reliable link layer protocol and
three logical layer protocols. The CCPI logical coherent-memory protocol is a write-
back, write-invalidate, home-based sparse-directory protocol that implements a MOESI

18

coherence protocol [52] for DRAM space. This protocol allows for out-of-order message
transmission over the interconnect to minimize transmission latency and maximize usage
of the interconnect. The other two logical protocols are used for I/O communication.

L2 Cache

The ThunderX L2 cache is 16MiB large with 128 byte cache lines. It is 16-way set-
associative write-back cache with 8192 sets. It can contain both cache lines from the
home node and blocks from the remote node.

The replacement policy is implemented with a USED bit per cache way in each set.
Generally, cache lines with an unset USED bit are considered for replacement. The USED
bit is set to 1 when the L2 cache controller references a cache line. The L2 controller
clears all USED bits but the bit in the last referenced block in all available ways in a set
if all those USED bits where 1. If during a replacement operation all USED bits in all
available ways of a set are 1, the first available cache line will be replaced [43].

L2 cache ways can be partitioned such that certain devices do not pollute the L2
cache. Way partitioning only affects cache replacement as it removes cache ways from
consideration when performing replacement originating from specified cores or IOBs.

On the ThunderX individual L2 cache lines can be locked and are thus not replaced until
they are unlocked. Cache lines can be locked using the CvmCache instruction fetch and
lock which does what it says on the tin if there is an available way. Otherwise, it is a no
operation (NOP). Cache lines can be unlocked with any explicit invalidation of the cache
line, be it through an invalidation due to the coherence protocol or explicit invalidation
using a CvmCache instruction.

CvmCache instructions implement address and index based variants to invalidate L2
cache lines. These instructions come in the Invalidate, Writeback, and Writeback and
Invalidate flavors. Address based instructions identify cache blocks by physical address
and index based instructions identify blocks by index and way. The latter are useful
when flushing large portions of the L2 cache [43]. However, it is important to ensure that
the cache index is calculated using the correct algorithm, i.e. mostly aliased.

The ARM architecture also features cache maintenance instructions (dc instructions) [39].
However, on the ThunderX all cache maintenance instructions except dc zva have no
effect except that the core write buffer is flushed.

19

Local Interface

Channels

Directory

Controller

(DCS)

Shell

Application

ECI Gateway

ECI Toolkit
ECI Physical

Links

I/O Bridge
Application

Component

ECI Channels

Muxer/Demuxer

ECI Toolkit

ECI Frames

ECI Channels

VCs 0, 1, 13

ECI Frames

VCs 2 – 12

ECI Channels

AXI Lite

Master

ECI Low-Level

Protocols

ECI Transport

ECI Platform

AXI Lite

Slave

DRAM

Figure 2.3: Block diagram of the Enzian Shell with a directory controller

2.2.2 FPGA and Shell

The Xilinx XVU9P UltraScale+ FPGA installed on node 1 in Enzian must be configured
properly with an initial bitstream before it is able to communicate with the CPU on
node 0. To that end Enzian uses an FPGA shell as shown in figure 2.3 akin to Coyote
[34]. The Enzian shell1 provides the basic ECI functionality such as link handling and
ECI I/O message handling. Thus, the boot process of CPU must be paused using the
Board Development Kit2 until FPGA is configured properly. This is because the CPU
attempts to bring up the ECI links during in the first steps of the boot process which
will fail if the FPGA is not able to supply proper protocol replies [10].

Building an FPGA application for Enzian using the shell is a somewhat involved process.
First, we need to build the shell with a stub application. The shell is configured such
that it is placed in the static part of the FPGA the stub application is placed in the
dynamically reconfigurable part. Then we can synthesize the application we actually
want to build and link the synthesized shell with the synthesized application. This linked
synthesized checkpoint can then be routed, placed and written to a bitstream, which can
be programmed onto the FPGA.

1While there is no default shell at the time of writing, the static-shell seems to have established itself as
the de-facto default.

2It is highly recommended to first get the CPU out of reset and then stopping the boot process using
the BDK. The CPU sometimes exhibits problems when it is brought out of reset as there seems to
be some reset timing issue between it and the FPGA. This exhibits as an exception during the boot
process. To have a higher chance of not encountering an exception on the second boot attempt, the
CPU should not be powered off, but rather be reset from the BMC console and its boot process again
stopped using the BDK. After reprogramming the FPGA then, most of these boot exceptions go away
(given the bitstream is fine).

20

https://gitlab.inf.ethz.ch/project-openenzian/fpga-stack/static-shell

The stub application3 is interesting in its own right. It is pretty much the simplest
application with which the CPU can communicate over ECI. As the “main feature”, the
stub provides two coherent cache lines in the DRAM address space. Whenever the CPU
writes to the first cache line, the written value is copied to the second cache line and
can subsequently be read there. This is the cache line copy often referred to later in
this work. Both of these cache lines are controlled using a relatively simple single cache
line controller. It implements the ECI transactions for reading and writing and exposes
an interface to FPGA applications to perform coherent reads and writes to this cache
line. For a full implementation of a directory, however, one needs to add the DC to an
application.

2.2.3 Enzian Coherent Interface

2.3 Enzian Coherent Interconnect

The Enzian Coherent Interconnect (ECI) is an implementation of a cache coherence
protocol in two-socket hybrid FPGA-CPU architectures. It is designed such that it
implements the native ThunderX CCPI protocol and for implementation on an FPGA
[52].

ECI, unlike CCPI, does not implement a full MOESI protocol. Instead, it implements
an enhanced MESI protocol because it includes a transition (labeled 10 in figure 2.4 c)
where the FPGA holds a dirty cache line in modified state and the CPU requests an
upgrade of its copy of the cache line (currently in the invalid state) to shared, which is
not included in plain MESI. But the inclusion of this transition in the protocol improves
performance considerably as it avoids unnecessary writes to main memory and instead
forwards the cache line [52].

ECI is an entirely pull based protocol. Meaning that a home node may not transfer data
to a remote node without the latter first requesting said data. Therefore, the FPGA is
not able to write data into the CPU’s cache on its own initiative. Looking at all possible
state transitions in ECI, there is no transition from a state where only one node has valid
data to another state where either both nodes will have the same data or only the other
node will have the same data. Moving data to another node is only possible via state
transitions through the invalid state (see figure 2.4 c).

With coherence messages exposed to FPGA applications, these are able to participate
in the coherence protocol and act like cache controllers making and serving coherence
requests. This allows for some customization withing the bounds of the native cache
coherence protocol and for manipulation of cache lines usually not possible with normal
cache controllers.

3Link to repository: https://gitlab.inf.ethz.ch/project-openenzian/fpga-stack/dynamic-stub

21

https://gitlab.inf.ethz.ch/project-openenzian/fpga-stack/dynamic-stub

Figure 2.4: ECI protocol states and transitions as drawn by Ramdas et al. [52]

2.3.1 Directory Controller

The Enzian directory controller (DC) uses the coherence messages exposed by ECI to
implement a symmetric directory coherence platform on Enzian [51]. The DC exposes
38 bits of coherent but uncached (on the FPGA) DRAM address space. It uses two
parallel directory controller slices (DCSs), an odd directory controller slice (DCS) for
handling ECI messages from odd numbered virtual channels (VCs) and managing even
indexed cache lines and vice-versa. A DCS exposes an Advanced eXtensible Interface
(AXI) interface to perform the reads and writes from and to some memory. The AXI
interface is addressed using cache line indices shifted to the right by one bit, because
this bit is the same for all indices of a slice. Further, a DCS exposes local VCs for local
coherence requests.

Among the local coherence requests are the local clean invalidate (LCI) and unlock
(UL) requests. The LCI request starts a coherence transaction which causes a writeback
and subsequent invalidation of a specified cache line. Further, this locks the cache line
such that the CPU cannot access it until it is unlocked. Once the LCI local coherence
transaction is complete the DCS send a local clean invalidate acknowledgement (LCIA)
message to acknowledge the completion. The UL coherence request simply unlocks the
specified cache line. It does not have an acknowledgement and is assumed to complete
immediately.

22

To use the DC in an application, we can include it as a submodule and add its sources in
the project creation TCL script. We can then use the provided interfaces for coherent
memory accesses after connecting the ECI VCs.

23

3 System Design

In this chapter we design the C3 system based on a select set of requirements. We design
incrementally, taking fundamental design decisions which inform the further design.
Based on a high-level design we investigate a few key mechanisms to inform the detailed
design or the implementation or use of the system.

3.1 Design Requirements

The overarching goal of C3 is to provide additional features for ECI as a base for
experimentation with future cache coherence protocols. To enable experimentation, we
want C3 to be modular for easy use and extensible as we might not have foreseen all the
needs of future research. Further, C3 should have as small of an impact on the rest of
the system as possible.

However, we assume that applications on the CPU and their offloaded counterpart on the
FPGA are co-designed and somehow have shared knowledge of some values. Further, we
assume that the user controls the entire system. Therefore, C3 will not handle conflicting
address spaces or identifiers between components.

Initially, C3 should implement the injection of cache lines from the FPGA to the CPU
L2 cache, interrupts of CPU cores from the FPGA and cache allocation. In order to
provide a good basis for research, cache injection should ideally be faster than DMA.
Therefore, we require that C3 exhibits low latency so cache injection over C3 might have
a benefit over plain old DMA.

3.2 C3 Design

The main challenge for C3 is that the operations the FPGA should be able to perform
require actions on the CPU. Cache injection from the FPGA is not possible due to ECI
only allowing nodes to pull data which therefor requires the CPU to request data when
the FPGA pushes data. Interrupting CPU cores from the FPGA is currently mainly not
possible on Enzian due to the interrupt lines in the serial link between the two sockets not

24

being reverse engineered yet, which is out of scope for this thesis1. Therefore, we need
a communication channel between the FPGA and the CPU where the FPGA instructs
the CPU to execute something. Further, this implies that we need a component on the
FPGA to gather instructions and send them to the CPU and a component on the CPU
to execute instructions.

In general, workloads on the FPGA are using it as an accelerator for some application
managed from the CPU. The CPU might dispatch work to the FPGA and subsequently
receive results or the FPGA might be doing some offloading on the I/O-path (e.g. a
smart NIC) and the CPU will receive data without asking for it. With its initial feature
set, C3 is only involved when the CPU is receiving data.

In order to get a prictoral overview over the design discussed in the following section,
refer to figure ??.

3.2.1 Control Path

Since we want to provide features additional to ECI the interface should not be too
different. The interface to ECI is a ready/valid interface to submit packets on virtual
channels. ECI needs to transfer packets that oftentimes contain data as it manages the
transfer of data between nodes. The C3 does not directly transfer data, but only 64-bit
instructions from the FPGA to the CPU, which may initiate a data transfer on the CPU.
Thus, the interface for an application on the FPGA is a ready/valid interface to submit
an instruction.

Design Decision 1. Applications on the FPGA use 64-bit instructions to delegate tasks
to the CPU.

To transfer the instructions from the FPGA to the CPU we expose a register location in
the I/O address space of the FPGA which the CPU can read to get an instruction. This
leads to the question when the CPU should read from that instruction register. One
option is for the FPGA to interrupt the CPU when a new instruction is ready. This
is impractical as the only interrupts we can issue from the FPGA before this work are
general purpose input/output (GPIO) interrupts and if two instructions arrive shortly
after one another, the processing of the first instruction might be interrupted by the first.
Another option is for the CPU to continuously poll for new instructions and execute
them immediately upon receiving them, which naturally serializes the execution of C3
instructions on the CPU. Further, polled I/O is a known tool for reducing latency on
data transfers [3] as data can be used immediately when it becomes available.

1Integrating the FPGA with the ThunderX’s generic interrupt controller (GIC) is investigated by Nicolas
Tischler at the time of writing.

25

However, polling continuously can severely detract from the performance of the entire
systems as it consumes lots of CPU time spinning and it can also stress the memory
bus with lots of read transactions. Since the ThunderX CPU on Enzian has 48 cores,
we dedicate one of those cores to be the dedicated Cache Control Coprocessor to limit
the adverse effects of polling to that core. Dedicating cores to polling I/O is also a
well-known technique used by for instance by Andromeda [17], Shenango [48], and the
DPDK [50]. To reduce the memory bus traffic from polling, the FPGA can stall the
read while no instruction is available for at most the ECI timeout. Another advantage of
isolating a core for the C3 is that it will be the only load on the core and thus have the
L1 caches to itself. This should allow for less delay between subsequent fetches and thus
lower latencies when multiple instructions are ready on the FPGA.

Design Decision 2. The Cache Control Coprocessor is implemented on an isolated
CPU core to enable continuous polling for C3 instructions with reduced impact on the
rest of the system and to enable a very tight fetch loop.

Because the C3 reads instructions from the FPGA at its own pace, we need some buffering
between the application and the instruction read register. The C3 envoy provides the
ready valid interface for applications to submit C3 instructions and the register for the C3
to read the submitted instructions. It provides buffering for instructions by implementing
a first-in, first-out (FIFO) instruction queue, where the head of the queue is removed
and returned when the C3 fetches an instruction. Further, it stalls the C3’s read if the
instruction queue is empty, as described above. If an instruction arrives during the stall,
it returns that instruction immediately. However, if no instruction arrives before a set
timeout, it returns a value signifying that no instruction was ready. Without this stalling
mechanism the C3 would continuously fetch instructions in a very tight fetch loop which
would generate loads read transactions and bus traffic. The aim of the read stalling is to
reduce this traffic when it is not needed.

Design Decision 3. C3 instructions submitted by FPGA application are buffered by
the C3 envoy which exposes a register location for the C3 to fetch the instructions from
the queue. The C3 envoy stalls reads from the C3 when the instruction queue is empty
to reduce bus traffic.

Note that the control path as described thus far decouples the submission of an instruction
by a FPGA application from the instruction’s execution on the C3. In other words, the
application on the FPGA does not know at which point in time a C3 instruction it has
issued is done executing. This makes it impossible for the application on the FPGA to
notify its counterpart on the CPU that data is ready with “traditional” methods like
ring buffers as this will race with the execution of a data transfer instruction. ECI is
similar that the application cannot be sure when the transaction completes, but it knows
when it issued the transaction. However, there is still a chance that packets might be
reordered on the bus.

26

With C3, there are two straight forward ways to get around this. The first possibility is
for the C3 envoy to signal the application when a particular instruction has completed,
i.e. the CPU requested the next instruction after executing said instruction. This can
be achieved by having the FPGA application execute in lock-step with the CPU or
the submitted instructions get IDs which will be acknowledged by the C3 envoy after
the C3 has executed them, which leads to some bookkeeping in the FPGA application
to keep track of already executed instructions. The application can then ensure that
“traditional” notification methods will be consistent. The second possibility is to make
the notifications that data is ready for the CPU application to consume a C3 instruction
themselves. Because instructions are submitted to a FIFO queue the C3 will execute them
in order and one after another, so the data transfer and the accompanying notification
are serialized and will not race anymore. For this work, we choose the second option due
to its relative simplicity of piggybacking on the serialized execution.

Since we are executing notification instructions on the C3, we need to perform some cross
core action to notify the application running on some different core. There are several
ways to accomplish this: we could issue an SGI to the core running the application, we
could implement some operating system primitives like read() or poll() which return
when a new notification arrived, or we could implement some UMP-like transfer from
the C3 to the application core.

Design Decision 4. The only explicit synchronization in the C3 system is the serialized
execution of C3 instructions and notification instructions for FPGA applications to notify
CPU applications. Since most applications need more synchronization, the design for
C3-aware applications must include a synchronization contract between the CPU and
FPGA applications.

Up to this point, we have only talked about a single application on the CPU and a single
application on the FPGA working cooperatively. The design above can easily be adapted
to multiple applications on both nodes. The C3 envoy only needs a multiplexer (MUX)
on its ready/valid interface to accommodate multiple applications on the FPGA. The C3
itself needs a bit more work due to notification instructions. It needs to be able to map
notifications to an app on the CPU. We enable this by having applications register with
the C3 using an application id. The offloaded part of the application on the FPGA then
needs to use this application id in its notification instructions. This setup theoretically
allows for mapping many FPGA applications to one CPU application, but we disallow
mapping one application id to multiple CPU applications. Sharing transferred data must
be organized on the application level.

Design Decision 5. To enable multiple applications to use the C3, all CPU applications
must register with the C3 using an application ID.

27

The C3 the CPU applications reside in different virtual address spaces and the FPGA
does not have any address translation. However, the application on the FPGA must
specify where the C3 needs to fetch data or which data is ready when notifying an CPU
application. While it would be possible in principle to specify virtual addresses, it is much
simpler and less error-prone to only deal in physical addresses. Since C3 instructions will
mostly fetch from FPGA-homed memory, dealing in physical addresses is easier programs
on the CPU will map the FPGA address space using mmap(2) and then compute addresses
based on offsets from the base address. Further, it is also possible to identity map chunks
of FPGA address space or even the entire address space, if needed.

To express more complex prefetching patterns, e.g. prefetch data needed for processing
transferred data, the FPGA application needs to specify a CPU-homed address. In this
case, the FPGA application needs to be informed of the locations of interest somehow
(e.g. co-design with fixed locations, registers) and therefore it does not matter what kind
of addresses it specifies as long as the CPU application knows how to interpret them
correctly.

Design Decision 6. In general, addresses specified in C3 instructions are physical
addresses. Deviations from this rule must be designed explicitly and require coordination
between the CPU and FPGA application.

3.2.2 Data Path

One goal of the C3 is to offer data transfer from the FPGA to the CPU via direct cache
injection. The only way to move data into the ThunderX’s L2 cache is to have the
ThunderX request it through a prefetch or a normal load as ECI only allows data to
be pulled by a node. For the C3 to be able to fetch a cache line, the application on
the FPGA needs to make it available over the interconnect. Uniquely on Enzian, this
can be achieved by listening to cache coherence requests over ECI and respond to read
requests on the cache line the application wanted to fetch directly with a response packet
containing the data. The other way is to coherently write the data to be transferred to
FPGA memory in the DRAM address space using the DCS. Interacting with ECI directly
has the advantage that the application can issue a fetch C3 instruction as soon as the
data is ready without having to write to memory beforehand. On the other hand it is
much harder to implement correctly as we would have to deal with arbitrary coherence
requests instead of interacting with the DCS to coherently write to memory. Further, we
can reduce the latency of writing to memory by not writing to DRAM but using a smaller
and much faster block random access memory (BRAM) dedicated solely to transferring
data. Using crossbars, we can still use the rest of the address space for DRAM.

Design Decision 7. C3-aware applications use coherent writes to FPGA-homed memory
to provide data that should be fetched by the C3.

28

In order to increase throughput and reduce the amount of instructions an application has
to issue to transfer multiple cache lines, we want to be able to fetch multiple consecutive
cache lines with one simple instruction. The largest transfer we want to allow, however,
is 1MiB, which corresponds to one way of the ThunderX’s L2 cache. This is to limit the
impact of C3 on the other users of the shared cache. With 1MiB of data to transfer our
approach of interacting directly with ECI will also need a sizable buffer, so we might
as well write coherently to some scratch memory and be relieved of tracking cache line
states. Thus and due to its relative simplicity, we choose the latter approach of coherently
writing data to memory using the DCS before a data transfer.

Design Decision 8. To reduce the number of instructions needed and increase througput
C3 instructions operating on cache lines should be ranged such that the same operation
on multiple consecutive cache lines can be executed using a single instruction. The range
in C3 instructions is limited to 1 MiB.

Once the C3 receives an instruction to fetch cache lines it can load the data from the
scratch memory in the FPGA’s address space as indicated in the instruction. We will
investigate what the best method is for transferring a cache line into the ThunderX L2
cache in section 3.3.1.

An application can use data once it gets a notification from the C3 that some range of
cache lines is now ready to be consumed. At this point the application can normally
access memory at the specified location.

3.3 Key Mechanisms

In this section, we investigate some key mechanisms in detail to inform the detailed
design of C3.

3.3.1 Direct Cache Injection

The C3 needs some way to transfer cache lines from the FPGA into its L2 cache.
Performing a load on a word in a FPGA-homed cache line from the CPU will always
fetch the line into the CPUs L2 cache. But this will also pollute the L1d cache of the core
performing the load. Since we want the fetch loop of the C3 to be as quick as possible,
we want to avoid polluting its L1 caches and thus avoid conflict misses.

To avoid polluting the L1 caches, we can use some form of prefetching into the L2 cache.
The ARMv8 instruction set architecture (ISA) offers the prfm p{ld,st}l2{keep,strm}

instructions. Further, the ThunderX offers a CvmCache system instruction L2 Fetch &
Lock.

29

Prefetching on the ThunderX

In the ARMv8 microarchitecture prefetch instructions are considered performance hints
and may be ignored by the processor [39]. On the ThunderX, testing by Jasmin Schult
during her master thesis [54] suggests that prefetching will only occur if the prefetch
would not incur a page fault. However, it is not clear exactly if this ”page fault” is a
TLB miss or some other fault in the address translation system.

To find out when exactly a ThunderX will indeed issue a prefetch, we have to get a closer
look at the contents of its TLB just before a prefetch is issued. Luckily, the ThunderX
provides system instructions for reading the contents of its TLBs [43] which we can utilize
using the infrastructure described in section 4.1. We use the Enzian memory explorer
described in section 4.1.4 to script different experiments to determine the prefetching
behavior of the ThunderX.

To investigate prefetching on the CPU, we need to control a cache line in the L2 cache
and write it back to DRAM so we can actually prefetch it. This does not sound too hard
as we could simply write to some cache line and write it back. But doing so would only
modify the cache line in the L1d cache of the core that wrote it and not immediately
write through to L2 cache. The ThunderX implements an aggressive write-buffer that
combines writes until a full cache line can be written to the L2 cache [43]. Before the
write-buffer is flushed other cores can already access the modified cache line as the point
of coherence on the ThunderX is in the L1d cache of every core. For our purpose of
testing however, we want to ensure that all prefetches come from main memory and not
from a write-buffer. On the ThunderX the write-buffer is flushed before a full cache
line has been gathered when dmb or dsb barriers enforce ordering of stores, a load or
prefetch instruction to the same cache line misses in the L1d cache, but hits in the
write-buffer (i.e. another core accesses the modified subcacheline), and on architectural
events such as a write-buffer entry timeout, more than a threshold of write-buffer entries
are filled or a GlobalSync from outside the core arrives. In experiment 3.1 we see that
the write-buffer entry timeout is at 213 cycles. Thus, every write will be written to the
L2 cache after at most 213 · 2GHz = 2−14 s ≈ 61µs. The ThunderX also implements all
data cache maintenance instructions except dc zva2 only as a write-buffer flush, since
they are performance hints. Thus, the easiest way to ensure that a write ends up in the
L2 cache for testing is to put a barrier after modifying cache lines.

2Zero out a cache line

30

Following along: Experiment 3.1: Memory Configuration

Required bitstream: None
Script: experiments/mem-conf.sh

What you will see: The script shows the contents of the system register
CVMMEMCTL0_EL1. Towards the bottom you can find the values regarding the write-
buffer.

Writing back a cache line in the L2 cache to main memory is easy on the ThunderX as it
implements special instructions for very specific cache management (see section 2.2.1).
In this case we need CvmCache L2 Hit Writeback Invalidate, which writes back and
invalidates a cache line based on a physical address if that address hits in the L2 cache.

Armed with the knowledge how we can control a cache line, we show that the ThunderX
does execute a prefetching instruction when the mapping of virtual address of the cache
line we want to prefetch is cached in the TLB and no page table walk is necessary.

As seen in section 2.2.1, the ThunderX has a translation hierarchy of multiple TLBs: the
32-entry µTLB and the 256-entry MTLB both caching virtual address mappings, and the
128-entry walker cache, which caches address translations for each level of the page table
except the last. Hence, if a virtual address hits in the µTLB or the MTLB, no page table
walk is required whereas if the address hits in the walker cache, the page table walker
must still perform the page table lookup for the last level of translation.

On the ThunderX we can also inspect the contents of the three TLBs. Using the respective
CvmCache instructions, we can read a single entry from one of the three TLBs into the
memory mapped registers. By reading each entry of a TLB and comparing with a given
virtual address, we can thus determine if this virtual address hits in the given TLB. For
the implementation details refer to section 4.1.3. However, this introspection overhead of
iterating over all entries actually makes it difficult to observe if a virtual address hits
in the µTLB. Due to its small size and the large overhead, a virtual address often gets
evicted from the µTLBby merely trying to observe it. Experiment 4.1 demonstrates this
phenomenon.

With experiment 3.2 we see that the ThunderX only prefetches when the access does
not need a page table walk. To show this we use a writing core c1 and a reading core c2.
c1 prepares two adjacent cache lines l1, l2 on the same page p and one cache line l3 on
the next page q such that they are flushed from the write-buffer and subsequently writes
back and invalidates all of them. By accessing l1, c2 ensures that the mapping for p is
valid in at least the MTLB which in turn ensures that prefetching l2 succeeds. Since the
reading core has not accessed a virtual address on page q, its mapping is not present in
any of the core’s TLBs. When c2 prefetches l3, the ThunderX will not execute it because
a page table walk is necessary.

31

Following along: Experiment 3.2: Prefetching CPU-homed addresses

Required bitstream: None
Script: experiment/prefetch-homed.sh

What you will see: Two tmux panes will open. Each with processes pinned to a
different core. The core in the left pane writes to cache lines and the core in the
right pane accesses cache lines. All addresses are physical addresses in the CPU
DRAM address space.
First, prefetching a cache line on a page with its mapping in the MTLB or uTLB
will succeed. Then, prefetching a cache line on a page without a cached mapping
will fail.

While we cannot inspect the contents of the walker cache because we do not know how
to interpret its contents, experiment 3.2 was set up such that the walker cache should
contain the translation for the second to last level for l3. We set up l3 on page q that
shares its second to last level translation table entry with page p, which contains l2.
Because we accessed l2 right before we try to prefetch l3 and the mapping for l2 was
cached in the MTLB, the shared second to last level translation table is most likely
cached in the walker cache at the time of accessing l3. This suggests that the ThunderX
will not execute a prefetch if this access would cause a page walk for a single level.

Until now, we have used a load in an adjacent cache line to make sure that the address
mapping is cached in the TLB. The ThunderX, however, implements a specific CvmCache
instruction to prefetch an address mapping into the µTLB. According to the manual,
the PREFu instruction prefetches the translation for the provided virtual address from
the MTLB into the µTLB or be a NOP if the translation is not cached in the MTLB.
Experiment 3.3, though, shows that PREFu will prefetch address translations which are
not cached in the MTLB and that a prefetch will succeed afterwards. This suggests that
we can use a PREFu-prefetch idiom to reliably prefetch cache lines using the usual ARM
prefetch instructions without having to incurr an access on the same page beforehand. An
alternative (unconfirmed) possibility is that the MTLB still has the stage 2 translation
from intermediate physical address to the physical address store and the prefetch of the
mapping succeeds because of this.

Following along: Experiment 3.3: Prefetching with PREFu

Required bitstream: None
Script: experiment/prefetch-prefu.sh

What you will see: Two tmux panes with a writing core on the left side and a
reading core on the right will open. First, the writing core writes to a cache line
and writes it back to memory and invalidates the cache line. The reading core
then uses PREFu to prefetch the address translation for the cache line and makes
the prefetch succeed.

32

ARMv8 offers four flavors of prefetching instructions [39]. So far we have used a load
keep prefetch which prefetches a line in shared state for a load. There is also a streaming
variant for cases where the data does not need to stay in the cache for extended periods
of time and may be replaced shortly after the access. Further, the ISA offers a store
prefetch in keep and streaming flavor which prefetches a line in exclusive state. The
ThunderX implements streaming or transient accesses by not setting the used bit in the
cache line which makes it much more likely to be replaced. Experiment 3.4 shows that
the load prefetches for both variants work as expected. Store prefetches, however, seem
to be ignored and can also not be used to upgrade an L2 cache line in shared state to
exclusive state.

Following along: Experiment 3.4: Prefetching Variants

Required bitstream: None
Scirpt: experiments/prefetch-variants.sh

What you will see: Two tmux panes with a writing core on the left side and a
reading core on the right will open. First, the writing core writes to five cache
lines and writes them back to memory invalidates them. The reading core then
tries to prefetch each cache line with a different variant of prefetch instruction.

The behavior of the ThunderX to ignore store prefetches for CPU-homed L2 cache lines
makes sense when we remind ourselves that the L2 cache is shared. Therefore, if a CPU
core wants to modify a cache line, this core will hold the cache line in exclusive state and
the corresponding cache line in the L2 cache will be invalidated to maintain coherence.
Thus, CPU-homed cache line in exclusive state does not really make sense. For remote
cache lines however, a store prefetch should work as expected because the exclusive state
in the L2 state signifies that the remote node has invalidated its copy of the cache line.
This is indeed confirmed below by experiment 3.5.

Now that we know how to make the ThunderX reliably prefetch a CPU-homed cache line,
we need to see if this also applies to FPGA-homed cache lines, which is what experiment
3.5 does. Due to the difficulties in meeting timing on a bitstream with the fully fledged
DCS (cf. section 4.4.5), we use the single cache line copy from the dynamic stub (see
section 2.2.2). This cache line controller copies the data from cache line 0x1800000080 to
the next cache line 0x18000000100 when the former is modified by a write from the CPU.
This causes the second cache line to be invalidated in the CPU cache.

Experiment 3.5 also shows that the ThunderX does not ignore store prefetches when
the prefetched cache line is on a remote node. While we do not have concrete proof, a
plausible explanation for this behavior might be that the ThunderXs write-buffers are
more effective when prefetches are not interfering in their operation as a prefetch would
flush the buffer in any case while a write to a different subcacheline might allow for more
write-combining.

33

Following along: Experiment 3.5: Prefetching FPA-homed addresses

Required bitstream: C3 no instruction test or shell stub
Script: experiments/prefetch-remote.sh

What you will see: The test will write two cache lines in the FPGA DRAM address
space. A write to the first cache line causes the FPGA to copy the cache line
to the second cache line, thereby invalidating the second cache line in the cache
of the CPU. The test then demonstrates that prefetching that second cache line
works. After writing another value, the reading core demonstrates, that exclusive
prefetches are not ignored on remote addresses.

In experiment 3.5 we see that the FPGA returns the prefetched cache line in exclusive
state even though we requested the shared state. Tests with the DCS showed, that it
returns cache lines in shared state. This discrepancy heads from some freedom in the
coherence protocol where directory controllers may return a cache line in exclusive state.
However, this is completely unrelated to store prefetches not being ignored, because the
ThunderX does not know in what state it will get a cache line when it decides whether
to effectively issue a prefetch.

In summary, we have seen that to reliably prefetch a cache line using ARM’s prfm

instructions, we need to ensure that the address mapping for the access is cached in the
TLB for the ThunderX does not ignore the prefetch. For the C3 this will require to add
a PREFu CvmCache instruction before every prefetch.

Fetch and Lock

In addition to the ARMv8 prfm/prfum prefetching instructions the ThunderX offers the
L2 Cache Fetch and Lock CvmCache system instruction. This fetch and lock instruction
takes a physical address as an argument and fetches the cache line at this address into
the L2 cache, performing cache replacement if nessecary [43]. Additionally, the fetch
and lock instruction sets the used and lock bits in the specified cache line3. Crucially
though, if all cache lines in all available ways (i.e. all ways the issuing core is allowed to
access according to way partitioning) of the specified cache set are locked, then the fetch
and lock instruction becomes a NOP. Experiment 3.6 demonstrates that the ThunderX
executes a fetch and lock instruction even if the mapping for the affected cache line is not
cached in any TLB. Cache lines which are locked need to be unlocked using an explicit
invalidation, e.g. from an L2 Cache Hit Invalidate CvmCache instruction [43].

3If the specified cache line was already in the L2 cache, the fetch and lock instruction will still set the
used and locked bits. In that case, it operates akin to a lock L2 cache line instruction

34

https://gitlab.inf.ethz.ch/OU-ROSCOE/Students/2023-msc-mhaessig/c3-fpga-no-instruction-test

Following along: Experiment 3.6: Fetch & Lock homed addresses

Required bitsream: None
Script: experiments/fetch-lock-homed.sh

What you will see: Two tmux panes with a writing core on the left side and a
reading core on the right will open. First, the writing core writes to a cache line
and writes it back to memory and invalidates the cache line. The reading core then
uses L2 Fetch and Lock to fetch the prepared cache line in spite of the uncached
address mapping. Then it will demonstrate unlocking the cache line using an L2
Hit Invalidate instruction.

The fetch and lock instruction is an attractive instruction for cache injection, because it
operates on physical addresses and is thus not dependent on the paging or TLB state
on the core. Further, locking a cache line will prevent the ThunderX from replacing it
which ensures that the application is able to access the cache line as prefetched by the
C3. But we need to be careful with locked cache lines as they may clog the L2 cache
with cache lines that cannot be replaced which is bad for the entire system, but also for
C3 if it cannot inject any more cache lines.

In experiment 3.7 we use the FPGA with its cache line copy mechanism to demonstrate
that fetch and lock works for FPGA-homed addresses and that a locked cache line is
unlocked by the invalidation resulting from a write to the same cache line from another
node. We do this by writing to the first cache a second time which causes a write to the
second cache line on the FPGA, which in turn invalidates and unlockes the locked cache
line in the L2 cache on the CPU.

Following along: Experiment 3.7: Fetch & Lock remote addresses

Required bitstream: C3 no instruction test or shell stub
Scirpt: experiments/fetch-lock-remote.sh

What you will see: The test will write two cache lines in the FPGA DRAM address
space. A write to the first cache line causes the FPGA to copy the cache line to
the second cache line, thereby invalidating the second cache line in the cache of the
CPU. The test demonstrates that the L2 Fetch and Lock instruction successfully
fetches a remote cache line into the CPU L2 cache and, by writing to the first
cache line again, that locked cache lines can be unlocked by the invalidation caused
by the write on another cache line.

If an application on the FPGA issues direct cache injection C3 instructions and is
subsequently turned off or going idle, the union of cache lines injected into the L2 cache
over its runtime will remain locked and can thus never be replaced unless invalidated
explicitly. Thus, if a C3-aware application uses the fetch and lock instruction and wants
to support graceful shutdown, it must take care to invalidate all locked cache lines during
its shutdown procedure. Therefore, the fetch and lock instruction should also only be

35

https://gitlab.inf.ethz.ch/OU-ROSCOE/Students/2023-msc-mhaessig/c3-fpga-no-instruction-test

utilized for prefetching CPU-homed cache lines in more involved prefetching patterns, if
these cache lines are invalidated at one point.

Performance Comparison

Since we are interested in low latency data transfers, we measure the latency of a cache
injection using a load, a prefetch enabled by a PREFu, and a fetch and lock. Because
these instructions exhibit different behavior based on the state of the TLBs, we perform
a measurement where the cache injection happens after a TLB flush.

To test the cache injection, we use a bitstream with the cache line copy on the FPGA,
write a fresh value to cache line l1, the FPGA copies the data written to l1 over to the
next cache line l2. Then we time the cache injection of l2 into the CPU L2 cache using
one of our three instructions. For the test cases with a TLB flush, we add a tlbi all

instruction before the timed cache injection. We run this procedure in a loop for 10’000
iterations and record the measurements. We can see the result of experiment 3.8 in figure
3.1.

Since we are measuring the latency of one or two instructions, we must be careful to place
appropriate barriers to measure the whole effect of the fetch. As a counter we use the
cntvct_el0 system counter running at a fixed frequency, also readable in the cntfrq_el0.
We use an instruction synchronization barrier (isb) and a data synchronization barrier
(dsb sy) before reading the counter and an instruction barrier after reading the counter as
suggested by the ARM ARM [39]. This is to ensure that all the counter read cannot be
reordered and that all loads and stores complete before the counter is read. Additionally,
we have to place barriers to ensure that the previous iteration of the loop has completed
and its effect are visible, and that l2 is invalidated before the instruction under test
fetches it.

Following along: Experiment 3.8: L2 Cache Fetch Latency

Required bitstream: C3 no instruction test or shell stub
Script: experiments/fetch-latency.sh

What you will see: First, the measurements as described above are run on the
isolated core 47 to avoid interference from other processes and reduce OS jitter.
Then, the results get plotted and written to data/fetch-latency.{csv,png}.

Figure 3.1 shows the violin plot of the measurements from experiment 3.8. The plot shows
the latency in nanoseconds on the y-axis and the respective instruction that performed
the fetch on the x-axis. For each instruction we have the results for the measurements
without TLB invalidation on the left and with TLB invalidation on the right. Experiment
3.8 was run on zuestoll08 with the C3 no instruction test bitstream loaded on the FPGA.
The program usr/fetch-latency.c was compiled using gcc 9.4.0-1ubuntu1˜20.04.1. All

36

https://gitlab.inf.ethz.ch/OU-ROSCOE/Students/2023-msc-mhaessig/c3-fpga-no-instruction-test
https://gitlab.inf.ethz.ch/OU-ROSCOE/Students/2023-msc-mhaessig/c3-fpga-no-instruction-test

Figure 3.1: Latency to fetch one cache line from the FPGA into the CPU L2 cache.

CvmCache instructions were executed from EL0 as the experiment sets the required bit
in the CVM_ACCESS_EL1 register.

Immediately, we can see that the measured latency for the PREFu/prefetch instructions
in the middle is much lower with a mean of 21.42 ns without TLB invalidation and
116.98 ns with TLB invalidation is much lower that for the other two instructions. This is
well below the interconnect latency for two connected ThunderXs of roughly 150 ns [10]
and thus this is certainly not the latency between issuing PREFu and the prefetched data
arriving in the L2 cache. However, this is contrary to the ThunderX manual which states
that a dsb sy will wait for all prior load and prefetch operations to complete. Thus, either
prefetching using prfm instructions does not work in experiment 3.8 or the completion of
a prefetch operation on the ThunderX is different from the data arriving in the cache.

We can see further, that only the fetch and lock instruction, which operates on physical
addresses, is not affected by the TLB flush. The load instruction and the PREFu/prefetch

37

instructions are roughly 100 ns slower when the TLB has been flushed and suggests that
a page table walk has taken place. The load instruction without TLB invalidation and
the fetch and lock instruction have roughly the same latency at with a mean of 248.66 ns
and 244.95 ns respectively.

Comparing the distributions of all sets of measurements in figure 3.1 we can see that the
distributions spike about every 10 ns. This is due to the resolution of the system timer
cntvct_el0 which runs at a frequency of 100MHz on Enzian.

Utility

After investigating the behavior of three different methods for achieving L2 cache injection
on the ThunderX and measuring their performance, we draw some conclusions on their
utility in the C3.

The main goal of direct L2 cache injection from the FPGA is to transfer a cache line
from the FPGA into the CPU L2 cache such that an application on the CPU can access
that cache line without incurring a miss in the L2 cache. One way of reading this goal is
that we want as low latency as possible.

This reading would suggest to always use a prefetch instruction preceded by a PREFu
to fetch a cache line into the L2 cache as this allows the line to be prefetched while the
C3 can already go off and fetch the next C3 instruction. However, when the L2 cache is
highly contested, the fetched cache line might already have been replaced by a competing
workload before the application on the CPU has managed to access it. A load suffers
from the same problem, albeit with roughly 200 ns higher latency. Transient prefetches
will, due to their inherent nature, fare even worse and therefore be of limited use to C3.

To guarantee that a fetched cache line remains in the L2 cache until the application
accesses it, we must lock the cache line by fetching it using the L2 Cache Fetch and Lock
CvmCache instruction. While it is 100 ns to 200 ns slower, the CPU application will
never incur a miss in the L2 cache on injected cache lines. The fetch and lock instruction
has the requirement that it will only replace unlocked cache lines in the L2 cache. Due to
the FPGA application having to write the data to memory first, the coherence protocol
will invalidate and thus unlock all cache lines the C3 will have to fetch.

In summary, due to its guarantees of fetched cache lines remaining in the cache, the
fetch and lock instruction seems most promising for use with the C3. However, instead
of locking a cache line, we could also prevent aggressive workloads from evicting fetched
cache lines using cache allocation.

38

3.3.2 Cache Allocation

Cache allocation refers to mechanisms which reserve parts of a shared cache to a subset of
workloads using the shared cache. For example, the L2 Cache Fetch and Lock CvmCache
instruction is a form of cache allocation as it reserves a locked cache line to workloads
accessing this specific cache line. The ARMv8 architecture features cache allocation
hints complementing the cacheability attributes, which implementations can use to ”limit
cache pollution to a part of the cache” [39]. Unfortunately, the ThunderX does not make
use of cache allocation hints [43].

But the ThunderX L2 cache has a feature called way partitioning. Using bitmasks in
system registers software can restrict access to certain L2 cache ways for each core and
each I/O bridge [43]. It is important to understand that way allocation on the ThunderX
only affects replacement. Hence, any core can read and invalidate (for exclusive access)
any cache line in the L2 cache. However, only cores which are inside a way partition are
allowed to replace cache lines. This cache allocation feature allows us to isolate one or
multiple L2 cache ways for the C3 and cores running the application from conflict misses
originating from other cores However, removing one 16th of the total L2 cache capacity
for the rest of the system may have a significant impact on the overall performance of
the machine as a whole. The tradeoff between removing contention in push-prefetching
as observed by Farshin et al. [22] and overall system performance needs to be reevaluated
for each C3-aware application depending on how many cache lines it wants to inject into
the L2 cache at a time.

Similar to the fetch and lock instruction, the applications need to take care to deallocate
allocated ways on shutdown or even dynamically when they are idle4. In fact, this is
more important than with locked cache lines as at least 1 MiB will not be accessible
to the rest of the system. Further, we must take care that the C3 is always allowed to
access the allocated L2 cache ways as it would not fetch cache lines into the allocated way
otherwise, which would entirely defeat the purpose. Unfortunately, for the C3 to fetch
all cache lines of an application into the allocated way is only possible if the allocated
way is the only way the C3 can access in the L2 cache. This is because the ThunderX
places cache lines in the first available way in the L2 cache. However, we cannot control
in which way a cache line is placed except if there is only one way the writing core is
allowed to replace blocks in by use of way partitioning. However, it is unclear if reserving
a single way for the C3 is more beneficial than restricting the access of other memory
heavy applications on the system to a subset of the ways. Unfortunately, due to time
constraints we were not able to conduct any tests regarding way partitioning.

4It is not clear at this time whether repeated allocation and deallocation is more beneficial than having
a way reserved constantly if the system is under heavy load. Intuitively, giving back more of the cache
to a memory intensive application should be beneficial, but taking it away unexpectedly might also
lead to unforeseen access patterns and thrashing.

39

With this, arguably quite limited, cache allocation capability available we need to control
it effectively. In principle both the CPU application and its counterpart on the FPGA
can control the way partitioning. If the applications need a way allocated for the entire
runtime, it is easier to have the CPU side control way partitioning as it can be done
during initialization and cleanup of the CPU application and does not need a round trip
via the FPGA. If, however, the FPGA knows that based on a particular request from
the CPU or perhaps network traffic that a lot of data needs to be transferred in the
foreseeable future, it would be beneficial to have it dynamically allocate a cache way using
a C3 instruction. In general, applications must use way partitioning thoughtfully and
benchmark different configurations to ensure that the performance of other workloads is
not drastically diminished. Further, applications must take care to not starve any cores
or I/O-bridges of replacing cache lines in the L2 cache.

3.3.3 Core Isolation

Above in section 3.2.1 we decided that the Cache Control Coprocessor should be im-
plemented as an isolated core that continuously polls for new C3 instructions. In this
section we investigate different methods of isolating a core on Enzian and decide on a
method to use for the C3 implementation for this work.

The first method for core isolation is to run the C3 as kernel thread on a core isolated
using the isolcpus command line parameter for Linux. By writing an out of tree Linux
kernel module we are afforded with (almost) all the capabilities and amenities of the Linux
kernel. We trivially have access to all memory in the system and all system registers
and instructions only available from EL1. Further, we can use the file abstractions to
implement notifications. A no data notification can be implemented using the poll system
call to wait for a new notification and a notification with data can be implemented using
the read system call. However, using these facilities incurs the penalty of a context switch
on notification.

Because the Linux kernel is monolithic by design it is hard to isolate a core fully. In terms
of isolation, the isolcpus command line parameter gets us most of the way there. The
isolcpus parameter provides three options to isolate a list of CPUs from [12]. The nohz
flag disables the timer interrupt or tick on the listed CPUs. The domain flag isolates the
CPUs from simultaneous multiprocessing (SMP) balancing and scheduling algorithms by
putting them in a special scheduling domain. This domain isolation cannot be changed
during the runtime of the system. The managed irq flag isolates the specified CPUs from
managed interrupts, by removing the isolated CPUs from the respective interrupt request
(IRQ) affinity list. This leaves still some management kernel threads on an isolated CPU.
Most importantly, we have to make sure that the Read, Copy, Update (RCU) subsystem
does not starve when we run the C3 fetch loop as it is central to keep the Linux kernel
functioning. To isolate CPUs from RCU callbacks, we can use the rcu nocbs kernel
command line parameter which offloads the callbacks to dedicated kernel threads on other

40

cores. However, the offloaded cores are required to periodically wake up the offloaded
kernel threads. To relieve this burden from the isolated core we use the rcu nocb poll
command line parameter which makes the offloaded kernel threads wake up periodically
without any prompting form an isolated CPU.

The second option guaranteeing a fully isolated CPU core is the work of Walters master
thesis [61] which uses Linux as a boot loader. This was achieved by effectively shutting
down a CPU, but replacing the PSCI cpu_off() function with a custom function that
jumps to the entry point of a bare metal program. This bare metal program then runs
on a core that from Linux’s point of view is off and thus fully isolated. Before calling the
isolated program, the Linux kernel sets up page tables in a memory region reserved at
boot so the bare metal program does not have to install pages itself and does not conflict
with the Linux kernel.

On the isolated core we would run in EL1 so we have the same privileges as in the first
variant, but without the comforts of the abstractions that Linux provides. Although, this
also affords us some freedoms. One concern with an isolated kernel thread is that it is
very hard to map huge pages for use in the kernel. It would be useful to map the entire
FPGA DRAM address space using 16 GiB huge pages to increase the address space
mappings in the TLB cover. Running bare-metal, we are free to install these ourselves —
but we have to do everything ourselves.

By default, we also do not have any communication from the isolated core to the rest
of the system. In the thesis, this was solved by implementing a virtio interface on the
isolated core and a kernel module on Linux implementing a virtio driver. This way
the isolated was able to implement a serial device and provide output to the outside
world. Since the virtio interface can abstract many kinds of I/O, the C3 should also be
able to use it for notifications. Further, cross core communication using some UMP like
mechanism would also be possible.

The third option for isolating the C3 is to run it as a userspace process and isolate a core
the same way as in the first variant at boot time or using cgroups at runtime. While we
can issue all CvmCache instructions from EL0 with the correct setting in CVM_ACCESS_EL1,
we would still need some function implemented in the kernel to issue SGIs for example.
However, from userspace it is also easier to map the entire FPGA DRAM address space
using huge pages. Cross core communication between the C3 and an application would
need to use some UMP mechanism or some Linux interprocess communication (IPC)
mechanism like Unix domain sockets for a lower level of abstraction or D-Bus for a higher
level of abstraction. All in all it seems unlikely for a userspace C3 to have as low latency
as the first two options described above.

In light of the goals of this thesis, the first option of isolating a Linux kernel thread seems
most promising as it provides more flexibility and extensibility with its facilities than a
bare metal program where we would have to implement everything ourselves. While a

41

reimplementation of a Linux based C3 to a bare metal C3 might prove valuable after
some time due to measurable deficiencies it is much more important for the scope of this
work to have a solid foundation and a basis for experimentation.

Design Decision 9. The C3 is implemented as a Linux kernel module and the Linux
facilities are used to isolate it on a core.

3.4 C3 Instructions

At the heart of the C3 system is the fetching and execution of C3 instructions. Since we
fetch instruction from the FPGA I/O address space our address size is 64 bits. First, we
describe the encoding in these 64 bits and then we describe the different C3 instructions
in detail.

3.4.1 Encoding

Instructions need opcodes. To be useful in all cases, a C3 instruction should be able to
carry an opcode and a full 57-bit ARMv8 tagged virtual address. This leaves us with a
7-bit opcode. We restrict the instruction encoding to four different forms. The forms
represent a common structure for encoding and decoding to be easier. To further simplify
decoding, we use the most significant two bits of the opcode to encode the form of our
instruction (see 3.2). Hence, we have space for 32 functions or different instructions per
form. With only three forms needed at the time of writing, this encoding can be extended
with one more form or alternatively one form can be expanded to have 64 instructions.
In principle, a specific function could specify the effect of an instruction and the form
only specifies the encoding akin to different addressing modes in other ISAs. For C3 we
do not go this route, as this would leave us with only 32 instructions and a capability
which is not needed as such. Functions in the context of opcodes are thus merely a name
for the least significant 5 bits of a C3 opcode.

form function

6 5 4 0

Figure 3.2: Encoding of the opcode of a C3 instruction.

For even easier decoding, we also give the opcode a fixed place across all forms, so a
simple bitmask can read the form and function of the instruction. For direct cache
injection of cache lines, C3 instructions must carry the addresses of cache lines. Since the
cache line size on Enzian is 128B, the least significant 7 bits of that address are irrelevant
for addressing the cache line. Therefore, we put the opcode in the least significant 7 bits
for all forms of C3 instructions.

42

data length−1 physical DRAM address (CL aligned) opcode

63 (9) 55 54 (13) 42 41 (35) 7 6 (7) 0

Figure 3.3: The form 0 encoding of a C3 instruction.

Form 0 When preforming direct cache injection of multiple consecutive cache lines,
the FPGA application should not have to issue multiple C3 instruction. From this
requirement we draw the need for ranged C3 instruction to enable the direct injection
of a range of cache lines. For a cache line injection we obviously also need the address
(physical, of course, as discussed in section 3.2.1) of the first cache line in the range.
To specify any physical address in the DRAM address space on the ThunderX we need
42 bits [43], although on Enzian we only need 41 bits because we only have two nodes.
However, the extra bit simplifies the encoding overall, as it makes the field boundaries of
form 0 and form 1 line up. As mentioned above, we do not need the seven least significant
bits of this address, because we are addressing a 128 byte cache line. We use 13 bits for
the length field, so we can transfer 1MiB or one way of the L2 cache with one instruction
as decided in design decision 1. To be able to transfer the full1MiB, the length field
actually encodes the length minus one. Hence, to transfer one cache line, we set the
length field to zero. This leaves 9 bits we can use for additional data like an application
ID. Figure 3.3 shows the encoding of form 0.

Decoding form 0 is very efficient as the opcode and the cache line address can be obtained
with a single bitwise and operation and do not require any shifting. These two values
are also the first values needed when executing a cache injection instruction. The length
field is also not needed until after the first cache line fetch, so its slightly less efficient
decoding could be pipelined with the fetch operation.

Form 1 The form 0 of a C3 instruction is useful for addressing cache lines, but sometimes
we might also need to address a full 48 bit physical address. This is exactly the functionality
form 1 provides. As shown in figure 3.4, it features the opcode and additional data in
the same location as form 0, but, in between those two fields, the 48 spare bits neatly fit
the full physical address.

data full physical address opcode

63 (9) 55 54 (48) 7 6 (7) 0

Figure 3.4: The form 1 encoding of a C3 instruction.

Form 2 To enable the biggest argument possible in a C3 instruction, we have form 2. It
features only the opcode in the 7 least significant bits and a 57-bit field for data, which
is large enough for a full 57-bit ARMv8 tagged virtual address. Form 2 is also the way

43

data/full virtual address opcode

63 (57) 7 6 (7) 0

Figure 3.5: The form 2 encoding of a C3 instruction.

to go if an instruction has no associated data to transfer. Figure 3.5 shows the simple
encoding of form 2.

3.4.2 Instruction Descriptions

In the following subsections we find the descriptions of the concrete C3 instructions.
For each C3 instruction its opcode with form and function, its operation and design
considerations are given. We can group the instructions into the following groups: control
instructions, prefetch instructions, cache management instructions, and notification
instructions.

Control Instructions

Control instructions provide error signal capabilities to FPGA applications and the C3
envoy. At the time of writing, the semantics of error handling on the FPGA have not been
investigated intensively. Thus, the design of the instructions below is mostly uninformed
and should be understood as a starting point for further investigation.

No Instruction opcode 0x00 (form 0, function 0x00)
This is the NOP of the C3 instructions. It is the NULL instruction which is ignored by
the C3 and continues the fetch loop in the next iteration. The only reason that it has
form 0 is that the opcode is all zeroes.

Error opcode 0x2e (form 1, function 0x0e)
The error C3 instruction signals a recoverable error condition. The data field contains an
application defined error number. The C3 logs errors and continues its fetch loop.

Fatal Error opcode 0x2f (form 1, function 0x0f)
This instruction signals a fatal error to the C3 which logs it as such and stops its operation
because it has to assume that the C3 envoy has encountered the error.

44

Prefetch Instructions

The main purpose of the prefetch instructions is direct cache injection. However, they can
also be used to prefetch data on the CPU the FPGA application knows will be needed
based on its knowledge. All prefetch instructions are form 0 and use the address and
length fields as designed, but the data field is unused.

Fetch and Lock opcode 0x10 (form 0, function 0x10)
The Fetch and Lock C3 instruction prefetches the specified cache lines into the CPU
L2 cache using the L2 Cache Fetch and Lock CvmCache instruction. All caveats from
section 3.3.1 apply.

Prefetch Shared opcode 0x11 (form 0, function 0x11)
The Prefetch Shared C3 instruction uses a prfm pldl2keep instruction preceded by a
PREFu CvmCache to fetch the specified range of cache lines into the CPU L2 cache. All
caveats from section 3.3.1 apply.

Prefetch Shared Streaming opcode 0x12 (form 0, function 0x12)
The Prefetch Shared Streaming C3 instruction uses a prfm pldl2strm instruction preceded
by a PREFu CvmCache fetch the specified range of cache lines into the CPU L2 cache.
All caveats from section 3.3.1 apply. In particular, cache lines prefetched with this
instruction tend to be replaced shortly after they have been fetched.

Prefetch Exclusive opcode 0x13 (form 0, function 0x12)
The Prefetch Exclusive C3 instruction uses a prfm pstl2keep instruction preceded by
a PREFu CvmCache to enable the prefetch to succeed. All caveats from section 3.3.1
apply.

Prefetch Exclusive Streaming opcode 0x14 (form 0, function 0x14)
The Prefetch Exclusive Streaming C3 instruction uses a prfm pstl2strm instruction
preceded by a PREFu CvmCache to fetch the specified range of cache lines into the CPU
L2 cache. All caveats from section 3.3.1 apply. In particular, cache lines prefetched with
this instruction tend to be replaced shortly after they have been fetched.

Load opcode 0x15 (form 0, function 0x15)
The Load C3 instruction uses a load to access a cache line and thus also fetch these cache
lines into the CPU L2 cache. Note that this instruction pollutes the L1d cache of the

45

C3 and thus potentially causes the C3 loop to incur conflict misses which causes higher
latency between instruction fetches.

Cache Management Instructions

The cache management instructions expose features to FPGA applications usually reserved
to CPU applications for managing the L2 cache. Depending on the bitstream on the
FPGA, the DCS can perform some of these operations for FPGA-homed cache lines, but
not for remote cache lines from the view of the DCS.

All cache management instructions except those concerned with cache allocation use
form 0 the same way as prefetch C3 instructions since they also operate on ranges of
cache lines.

L2 Zero opcode 0x01 (form 0, function 0x01)
The L2 Zero C3 instruction uses dc zva to zero a range of cache lines in the CPU cache.
The C3 must ensure that the system register DCZID_EL0 is set such that dc zva actually
operates on the granularity of a cache line. It may set the register to larger values to
zero multiple cache lines with a single instruction, but then it would need to reset the
value right after that call. Since this instruction behaves like a store it may pollute the
L1d cache of the C3.

L2 Invalidate opcode 0x02 (form 0, function 0x02)
The L2 Invalidate C3 instruction uses the L2 Cache Hit Invalidate CvmCache instruction
to invalidate a cache line at a specific physical address. This instruction must be used
with care as it causes data loss if it invalidates a cache line with dirty data that has not
been written back at the time of invalidation.

L2 Writeback Invalidate opcode 0x03 (form 0, function 0x03)
The L2 Writeback Invalidate C3 instruction uses the L2 Cache Hit Writeback Invalidate
CvmCache instruction to first write back and then invalidate a cache line at a specified
physical address. This operation can be performed by the DCS for FPGA-homed cache
lines with a local-clean-invalidate transaction [51].

L2 Writeback opcode 0x04 (form 0, function 0x04)
The L2 Writeback C3 instruction uses the L2 Cache Hit Writeback CvmCache instruction
to write back an L2 cache line at a specified physical address. This operation can also be
performed by the DCS for FPGA-homed cache lines with a local-clean transaction [51].

46

L2 Partition Way for Cores opcode 0x20 (form 1, function 0x00)
The L2 Partition Way for Cores form 1 C3 instruction partitions a specified way of the
CPU L2 cache to the cores specified in the CPU mask. While all cores are still able to
access all L2 cache lines, only the specified cores will be able to replace cache lines in the
specified way. Note that this instruction does not affect the way partitioning of IOBs.
Use this instruction in conjunction with L2 Partition Way for IOBs to fully configure the
partition for a way. See figure 3.6 for the encoding of the instruction.

L2 way CPU mask (1 = core in partition) 0x20

63 (9) 55 54 (48) 7 6 (7) 0

Figure 3.6: Encoding of the L2 Partition Way for Cores C3 instruction.

L2 Partition Way for IOBs opcode 0x21 (form 1, function 0x01)
The L2 Partition Way for IOBs form 1 C3 instruction partitions a specified way of the
CPU L2 cache to the IOBs specified in the IOB mask. While all IOBs are still able
to access all L2 cache lines, only the specified IOBs will be able to replace cache lines
in the specified way. Note that this instruction does not affect the way partitioning of
CPU cores. Use this instruction in conjunction with L2 Partition Way for Cores to fully
configure the partition for a way. See figure 3.7 for the encoding of the instruction.

L2 way 16 bit IOB mask (least significant 16 bits) 0x21

63 (9) 55 54 (48) 7 6 (7) 0

Figure 3.7: Encoding of the L2 Partition Way for IOBs C3 instruction.

Notification Instructions

Notification instructions offer an FPGA application a variety of ways to let the CPU
know about an event. The abstract notification instructions notify an application on the
CPU using the method the application registered with the C3 based on the specified ID.
The SGI instructions cause the C3 to issue an SGI on the CPU.

Notify No Data opcode 0x30 (form 1, function 0x10)
The Notify No Data C3 instruction causes the C3 to notify the application specified with
the application ID that a notification has arrived. This instruction is similar in nature
to an interrupt. See figure 3.8 for the encoding of this instruction and note that this
instruction has form 1 for reasons of consistency with the other notification instructions
which also have the application ID in the data field in the nine most significant bits of
the instruction.

47

app id ignored 0x30

63 (9) 55 54 (48) 7 6 (7) 0

Figure 3.8: Encoding of the Notify No Data C3 instruction.

Notify Cache Line Range opcode 0x0a (form 0, function 0x0a)
The Notify Cache Line Range C3 instruction is used to notify the CPU application
specified in the data field with its application ID that data is ready in a range of cache
lines. The cache line range is associated data which is included in the notification to the
CPU application.

Notify Data opcode 0x31 (form 1, function 0x11)
The Notify Data C3 instruction is used to notify a CPU application specified by its
application ID with associated data. This data is included in the notification to the
application. See 3.9 for the encoding of this instruction.

app id associated data 0x31

63 (9) 55 54 (48) 7 6 (7) 0

Figure 3.9: Encoding of the Notify Data C3 instruction.

SGI 8 – 15 All Cores opcode 0x48-0x4f (form 2, function 0x08-0x0f)
The SGI All Cores family of C3 instructions issue an SGI to all cores on the CPU. The
GIC interrupt ID is specified in the function of the opcode. Data passed in the 57 bit
data field is copied into a list of SGI vectors maintained by the C3. See figure 3.10 for
the encoding of this instruction. Applications need to coordinate the eight interrupt lines
among themselves. Ideally, the FPGA application can be configured to use a specific
interrupt number by its CPU counterpart depending on which interrupt it was able to
acquire.

interrupt vector 0x4|SGI

63 (57) 7 6 (7) 0

Figure 3.10: Encoding of the SGI All Cores family of C3 instructions. SGI is the 4-bit
interrupt ID of the SGI.

SGI 8 – 15 Core Mask opcode 0x38-0x3f (form 1, function 0x18-0x1f)
The SGI Core Mask family of C3 instructions issue a SGI to the cores specified in the
core mask. The GIC interrupt ID is specified in the least significant nibble of the opcode
(all bits except the most significant bit of the function). The 9 bit data field is copied

48

into the list of SGI vectors maintained by the C3 before the cores are interrupted. See
figure 3.11 for the encoding of this instruction. Applications need to coordinate the eight
interrupt lines among themselves. Ideally, the FPGA application can be configured to
use a specific interrupt number by its CPU counterpart depending on which interrupt it
was able to acquire.

vector CPU mask 0x3|SGI

63 (9) 55 54 (48) 7 6 (7) 0

Figure 3.11: Encoding of the SGI Core Mask family of C3 instructions. SGI is the 4-bit
interrupt ID of the SGI.

3.5 Application Interface

After having designed the internals of the C3 system, we look at the interface to applica-
tions in this section. On the FPGA the only interface to C3 is the ready/valid interface
to submit C3 instructions into the instruction queue of the C3 envoy. This interface
can also easily be multiplexed for multiple C3-aware applications on the FPGA. On the
CPU though, there are two principle interfaces of the C3 to applications: application
registration and notifications from C3 instructions. Knowing that the C3 is implemented
as a Linux kernel module (cf. design decision 9), we can design those more concretely.

3.5.1 Application Registration

With the C3 implemented as a Linux kernel module, we have applications register
themselves with the C3 using an ioctl. With this registration ioctl, applications provide
their application ID and a notification method. Using this, the C3 can match the
application ID from notification instructions to IDs registered with it from applications
and send notifications using the preferred method. To allow the applications to choose
their ID themselves, the C3 provides a large enough ID space to make ID collisions
unlikely.

An application can, in principle, register itself multiple times with the C3, for example to
be able to distinguish between two kinds of notification or notifications from two different
FPGA applications. However, if it does so, it needs to open the C3 file again for every
new registration. This allows the C3 to track application information on a per file basis.

The C3 can limit the number of concurrent registered applications to maintain low-latency
guarantees. It also provides an ioctl for applications to unregister. New applications
can reuse application IDs used previously, as long as they do not collide with any IDs
registered at the time of registration.

49

3.5.2 Notifications

Notification instructions leave the C3 with the task of delivering these notifications, often
with associated data to the application on a different core. Because the C3 is a kernel
module, can use all the Linux kernel facilities for cross-core communication. Further, we
can use file operations like read of poll to notify the application.

As mentioned above, C3-aware applications register themselves with the C3 and provide
a notification method. With a notification method, the application tells the C3 at least
which interface and what guarantees it expects. The real design decision is whether the
notification message also specifies the data format the application expects. If the data
format, i.e. no data, cache line range, and data, is fixed for each method, then we need
the cross product of available interfaces and data formats as notification method. Also,
not ever notification instruction can send a notification to every registered application
ID, because the data format might not fit. A more flexible approach would be to have a
data format that tells the application how to interpret the data, because then all notify
instructions could send notifications to all registered applications.

Design Decision 10. All notifications deliver data in the same format that contains a
format-tag. The tag serves applications as the information on how the delivered data
should be decoded.

Each registered notification needs to keep some state to store the delivery method
and data structures needed for notification delivery. For some delivery methods, this
notification state needs to be shared across cores. File operations like read(2) run on
the same core as the application that invoked the system call. Thus, this data is shared
memory for many notification mechanisms and needs to be protected accordingly. The
mechanism for protecting this shared memory can be different for every notification
method. However, we want to avoid cache line thrashing between the caches of the C3
and the application core. Thus, methods with which the application core only has to
read the shared data are preferred. Further, the data for each notification resides on its
own cache line to avoid thrashing cache lines between applications.

Notifications over File Abstractions

With the C3 implemented as a kernel module, it can implement file operations to deliver
notifications to applications. First, an application needs to open(2) the device file of the
C3 and use it to register itself using the ioctl(2) described above. Once registered, the
C3 will deliver notifications over poll(2) and read(2). The operation of the two depends
on whether the application has opened the file in a non-blocking way, i.e. with the flag
O_NONBLOCK.

50

By poll(2)ing the C3 in a non-blocking fashion, an application can find out if a notification
has arrived yet and do other work while waiting. In non-blocking mode, poll(2) returns
immediately, only giving information if a notification has arrived. In blocking mode,
poll(2) blocks the execution of the application until a notification arrives. Usually,
poll(2) is used to wait on data in a file descriptor to become ready to read (or write)
which it will signal with a POLLIN flag as a return value. But because we have notifications
which are only events without associated data, it would be advantageous to be able to
distinguish this from cases where the application will still need to read data. The flag
POLLPRI is used to signal “some exceptional condition on the file descriptor”. We use it
in C3 to signal that the received notification does not have any associated data if it is
possible to do so.

By read(2)ing the C3 file descriptor in a non-blocking fashion, we can achieve about
the same functionality as with poll(2). When no notification has arrived yet, read(2)
will then return EWOULDBLOCK to tell the application to try again later. In blocking mode,
read(2) will block until a notification arrives. Once a notification has arrived, read(2)
copies the requested amount of data into the application provided buffer. In this case, it
is the application’s job to determine if this is a no-data notification based on the format
tag in the data it received5.

With the file abstractions, notification delivery can be both synchronous and asynchronous
depending on whether the application has opened the file with the non-blocking flag.
Therefore, we must assume asynchrony and buffer notifications until they are delivered.
However, with asynchronous notification delivery we can run into the problem where
the next notification arrives before the current notification has been delivered to the
application. There are essentially three ways to deal with this: buffer multiple notification
in a queue, drop the old notification, or drop the new notification. Because all three have
valid use cases, C3 offers all of them as variants for notification delivery.

UMP-like Notification Delivery

Using the file abstractions as our notification method has the drawback that we pay the
cost of a context switch on top of a cross-core communication. Ideally, we would only
have to pay for the cross-core communication without paying for a context switch. Using
the idea of Barrelfish’s UMP [3], which in turn is based on the ideas of URPC [5] to
avoid context switches and FastForward [26] as a technique, we use shared memory to
communicate synchronously between the C3 and the application.

The core idea of UMP-like Notification Delivery (UND) is to use a cache line shared
between the C3 and the application for notification delivery using the UMP transfer
mechanism. This allows the application, polling the cache line from userspace, to receive

5Checking data to see if “no data” arrived is counterintuitive, granted, but a direct consequence of
design decision 10

51

data written to the cache line by the C3 in kernel space without a context switch in the
middle.

The data transfer mechanism of UMP leverages the cache coherence protocol to transfer
a shared cache line between a writer and a reader polling the cache line. All coordination
and data transfer is completed on the shared cache line which is parsed as a message.
The two sides coordinate using a state field in this message.

First, we go over the sender’s steps to send a message.

1. Check that the state of the previous message on the cache line is received (or the
buffer was just initialized).

2. Write the message to the shared cache line.

3. Set the message state to sent.

4. Poll the shared cache line until the receiver sets the message state to received.

Note, that step 4 is not strictly necessary, but if we wanted the sender to synchronize
with the receiver, this step would achieve that. This would also ensure that the first step
is a simple check and does not need polling.

Second, consider the reader’s steps to receive a message.

1. Poll the shared cache line until the message state is sent.

2. Copy the message from the cache line.

3. Set the message state to received.

In its first step, the reader will poll on the shared cache in its local L1d cache with the
cache line in shared state until the steps 2 and 3 of the writer will cause the coherence
protocol to invalidate the readers copy of the cache line. Due to always hitting in the L1
cache, the reader’s polling is very efficient. The first time the reader polls the now locally
invalidated cache line, the coherence protocol will fetch a local copy of the shared copy
back into the readers L1d cache. At this point, the reader reaches step 2 and subsequently
step 3.

In Barrelfish, UMP is implemented on a ring buffer of shared cache lines, so the reader
could receive messages asynchronously to the writer sending them. However, UND for C3
initially requires the C3 and the application to synchronize on the notification. This is
mainly for simplicity, so the method can be evaluated and improved before implementing
the more complicated version. This synchrony, however, results in the UND notification
method requiring that all applications using it need to synchronize between the CPU
and FPGA such that the CPU side is always ready to receive a notification when the
FPGA side sends a notification.

52

The crux with UMP is the setup of the shared memory on two different cores in different
address spaces. UND faces the same challenge with the addition that the sender executes
in kernel space and the receiver in userspace.

To set up a shared buffer with a kernel thread, we could have the userspace process
allocate a buffer and pass a pointer to the buffer to the kernel. The kernel thread
can then access the buffer using the Linux kernel API get_user()/copy_from_user() and
put_user()/copy_to_user(). However, these functions involve address translations, but if
the kernel thread does not perform polling that should be fine. However, these functions
would not work in the C3 because they rely on the ldtr instruction on ARMv8, which
performs a load as if the context was EL0. Because the C3 is a different kernel thread on
a different core than the kernel thread which registered the application this will not load
the desired location. But since the kernel knows the address mapping, it can calculate
the physical address of the buffer allocated by the userspace process and write directly
to that physical address using the Linux kernel’s identity mapping of physical memory.
While this would work, it violates some of the most basic assumptions and security
principles in the Linux kernel or for operating systems in general.

A more principled, but also more complicated way is to have the kernel thread allocate a
buffer. The userspace process can then mmap(2) the buffer into its address space. Now
the buffer is not some memory pointed to by an untrusted user pointer, but memory
managed by the kernel which is mapped properly. Using this extra call to mmap(2) we
can get a shared buffer to use for UND.

SGIs as Notifications for Kernel Applications

So far, whenever we talked about a C3-aware application we implicitly talked about
a userspace process on the CPU with an offloading workload on the FPGA that use
the C3 for transferring data. However, workloads in the kernel can also be a C3-aware
applications. One possible scenario would be a smart-NIC running on the FPGA which
uses C3 to send incoming packets to the kernel networking stack using direct cache
injection.

While communication between an application kernel thread and the C3 could in principle
be established, we do not need any additional mechanisms to enable kernel applications.
We can simply use SGIs as notification instructions. Kernel applications can install an
interrupt handler for a given SGI, which also prevents two kernel applications from using
the same SGI, and read from the SGI vector inside the handler to get the notification
data. Since there are only eight SGIs available, the FPGA application will have to be
told by the kernel application for which SGI it was able to install a handler.

53

3.6 Synchronization

This section goes into detail on the synchronization between the applications on the
FPGA and the CPU with respect to C3 instructions. Basis for this discussion is design
decision 4.

3.6.1 Provided Guarantees

Design decision 4 states that “the only explicit synchronization in the C3 system is the
serialized execution of C3 instructions and notification instructions for FPGA applications
to notify CPU applications”. What guarantees does this design decision provide for the
C3 system?

The serialized execution of C3 instructions guarantees that a C3 instruction i1 is issued,
i.e. it is written to the instruction queue of the C3 envoy, before another instruction
i2 if and only if i1 has taken effect before i2 starts executing on the C3. Taking effect
means that the instruction has executed and effected the system, e.g. fetched memory
into the CPU L2 cache. Note that for notification instructions this only guarantees that
the notification was sent to the application and not that it was effectively delivered.

With this, notification instructions guarantee the CPU application that the FPGA
application has reached the state signaled in the notification. But the FPGA application
gains no knowledge whatsoever about the execution of the CPU application from the
notification instruction. The C3 system only provides one way communication from the
FPGA to the CPU. This missing feedback on the progress of the CPU application’s
execution is an important part of what the “synchronization contract” in the second
sentence of design decision 4 should provide the FPGA.

3.6.2 Synchronization Contract between CPU and FPGA applications

The synchronization contract between the CPU application and its counterpart on
the FPGA specifies how the two cooperate during their execution to ensure the correct
functionality. There does not exist a one-size fits all approach for all C3-aware applications.
The contract depends mainly on how the FPGA receives data to process and consequently
transfers to the CPU. This informs which notification method is appropriate and if the
CPU needs a way to apply backpressure to the FPGA.

This seems very abstract and vague. Hence, let us look at two examples.

54

Encryption Offloading In this setting, the CPU application offloads the encryption of
data to a C3-aware encryption application on the FPGA which transfers the ciphertext
back to the CPU using direct cache injection. Each encryption is initiated by the CPU
with a pointer and size to a plaintext. The encryption application can also pipeline
multiple encryption requests. A possible contract is that whenever the CPU requests
a new encryption, it is immediately ready to receive a notification because it wants to
achieve the lowest possible latency. Thus, it selects the synchronous UND notification
method when registering with the C3.

An alternative scenario might be that the CPU will issue multiple encryptions over the
course of its execution and eventually handles all the notifications at once. Because
of this it selects the buffered file notification method. In this situation, the contract
comprises that the CPU will not request too many large plaintexts to be encrypted such
that the ciphertexts still fit in one way of the L2 cache and it does not request more
encryptions than it has space in the notification buffer before handling the notifications.

Smart-NIC In this setting, the FPGA is configured as a C3-aware smart NIC which
offloads all protocol processing and delivers the received data to a CPU application
using direct cache injection. To coordinate reading and writing from a buffer, this
synchronization contract sets up a ring buffer where the updates to the written pointer
from the FPGA are delivered using C3 notifications and the updates of the read pointer
from the CPU are written to a register in the smart-NIC. Because the written pointer of
a ring buffer increases the area where the CPU application may read from, the smart-NIC
uses Notify data instructions to only send the address and the CPU application uses the
file notification method which drops the old notification. With the update of the read
pointer—or rather with the lack of an update—the CPU can signal backpressure to the
smart-NIC.

3.7 Summary

In this chapter, we looked at the design choices and tradeoffs for the design for the
C3 system. The system consists of the Cache Control Coprocessor (C3) isolated on
a dedicated CPU core and implemented as a pinned Linux kernel thread and the C3
envoy, an FPGA component maintaining a queue of C3 instructions and providing a
register which the C3 continuously polls to fetch new instructions. The C3 executes
the fetched instructions which provide functionality for prefetching cache lines into the
CPU L2 cache, enabling direct cache injection from the FPGA, cache management
instructions, notifications, and SGIs. We investigated several key mechanisms in detail:
how can we reliably prefetch cache lines into the ThunderX L2 cache, how can we employ
cache allocation for the ThunderX L2 cache and how useful could it be for C3-aware
applications, and how we can best isolate the C3 on a dedicated core. Further, we saw

55

the encoding and description of all C3 instructions. Lastly, we looked at the interface to
C3-aware applications with registration and notification instructions and a discussion
about the synchronization between the CPU and FPGA part of an application using the
C3.

56

4 Implementation

In this chapter, we look at the implementation details and challenges of the C3 system
as it is implemented for this work.

4.1 Infrastructure

Before implementing the C3 system itself, a fair amount of implementation was required
to setup some infrastructure to enable deeper introspection into Enzian required for
testing (e.g. to investigate prefetching as seen in section 3.3.1) or debugging the C3
system.

4.1.1 Getting as suitable Linux Kernel

Originally, the plan was to implement the C3 as a kernel module written in Rust since
the Rust for Linux project is upstream as of Linux 6.2 [13]. However, the golden images
for Enzian are based on Ubuntu 20.02 with a 5.4 kernel. Therefore, building a custom
kernel was on the order.

Compiling a new Linux kernel is the easiest when it is done on the system the kernel to be
compiled will be running on. This allows to use make(1) targets like make localmodconfig

which generates a minimal kernel configuration based on the configuration of the running
system and only enabling modules currently loaded, and it simplifies the generation of
the initramdisk1, greatly. However, Enzian is booted using TFTP images of the file
system. These images have a size limit of 5GB, which poses a challenge when you need
to install new compilers and other tools. Because the minimal requirements to build a
kernel with Rust need a newer version of clang than Ubuntu 20.04 offers, we install a
newer version of clang. But because this is a separate package, we now have two versions
of clang installed. Together with other needed updates, the system will be larger than
5GB and we have to start over because we end up in a state, where most temporary files
cannot even be created anymore. By first uninstalling big packages, we can give ourselves

1The initramdisk is a minimal root file system used during the boot process of Linux. It is mounted
as the root file system when the system first boots and its main job is to mount the “real” root file
system.

57

some wiggle room to not run out of space. Luckily, the Rust toolchain can be installed in
the scratch directory using rustup and the kernel can be compiled there as well. The last
remaining challenge is to build the initramdisk, which needs a load of scratch space to
copy modules, often causing the system to run out of space resulting in having to start
again2. This can be remedied by mounting a RAM filesystem since Enzians feature loads
of DRAM. This odyssey has been documented on the Enzian Wiki3 for future students
wanting to compile their own Linux kernel on Enzian.

Sadly, after some experimentation with the kernel running Rust, implementing the C3
in Rust proved to be infeasible as the API in the upstream 6.6 kernel was still quite
limited and lacked needed features like kthreads. Since maintaining patches to the Linux
kernel is not the goal of this work, C3 is now a kernel module written in C. However,
we still need a custom kernel, because we need some special configuration options and
some APIs which the 5.4 kernel does not export. We are building C3 as an out-of-tree
loadable kernel module. But out-of-tree modules can only use symbols explicitly exported
in the kernel tree using the EXPORT_SYMBOL macros4. For instance kthread_create_on_cpu()

has only been exported since version 5.17 of the Linux kernel. As for configuration,
we want some more debug functionality to gain some introspection if needed and some
additional functionality. Our config disables all CONFIG_STRICT_DEVMEM rules, allowing
userspace to directly map physical memory even in if it is not device memory, and it
enables CONFIG_RCU_NOCB_CPU to enable the offloading of RCU callbacks from certain cores.

In order to be able to quickly boot with our custom kernel with additional comman-
dline parameters, the emg had to be modified. Before, we had to edit the bootloader
configuration every time we wanted to boot an Enzian with a different kernel than the
golden images. By implementing flags5 to specify the kernel image, the initramdisk, and
additional kernel commandline parameters when invoking emg-acquire(1), we can now
boot with our custom kernel as follows:

emg acquire -n $IMAGE_NAME -k mhaessig/vmlinuz-6.7.1-enzian-debug \
-i mhaessig/initrd.img-6.7.1-enzian-debug \
-a "isolcpus=nohz,domain,managed_irq,47 nohz_full=47 rcu_nocbs=47 \
rcu_nocb_poll" zuestoll09

2Good thing Enzian has 48 cores, which lowers compilation times significantly.
3see https://unlimited.ethz.ch/display/enzianwiki/Compile+a+Custom+Linux+Kernel+for+Enzian
4Some APIs are also only exported if the out-of-tree module is GPL licensed which is why the C3
module is BSD/GPL dual licensed.

5Commit: https://gitlab.inf.ethz.ch/project-openenzian/enzian-boot-and-image-management/-/
commit/a737009dda5e3c1f2c8cbb4ed49d9f53e5106180

58

https://unlimited.ethz.ch/display/enzianwiki/Compile+a+Custom+Linux+Kernel+for+Enzian
https://gitlab.inf.ethz.ch/project-openenzian/enzian-boot-and-image-management/-/commit/a737009dda5e3c1f2c8cbb4ed49d9f53e5106180
https://gitlab.inf.ethz.ch/project-openenzian/enzian-boot-and-image-management/-/commit/a737009dda5e3c1f2c8cbb4ed49d9f53e5106180

4.1.2 Enzian FPGA Driver

The Enzian project provides a Linux driver that maps memory of the FPGA DRAM
address space into some processes virtual address space using mmap(2)6. This memory
driver maps FPGA memory using 1 GiB huge pages, by implementing only the huge
page handler. Unfortunately, this driver does not compile on a newer 6.7 kernel, as it
uses methods which are not exported and which changed in the meantime7. Thus, an
FPGA memory driver had to be implemented.

Our new driver is a bit simpler as it uses remap_pfn_range() to map a range of pages
based on their physical address. However, using remap_pfn_range() also prevents us from
supporting huge pages or prefaulting as Linux allows this only for memory it considers
RAM. On Enzian, the FPGA DRAM memory is not given to Linux to be used as RAM,
as Linux would use it in its allocator because its support for NUMA and according
memory placement restrictions is still quite limited. Additionally, the driver provides
resource information for the FPGA DRAM and I/O address spaces to other kernel
modules wanting to map FPGA memory. A Linux resource struct is basically a range
and a tag that marks this range as an address range of memory. Further, the driver also
provides a user header to provide the constants for the location and size of the FPGA’s
address spaces.

4.1.3 Enzian ThunderX Driver

The preexisting Linux driver for FPGA memory also provides a handful of ioctls to
provide access to CvmCache instructions, which are normally only accessible from EL1.
Since we need more functionality related to the ThunderX and because it is not really
related to FPGA memory, we implemented a separate driver for the ThunderX on Enzian.
This driver provides mainly ioctls to expose functionality in EL1 to programs in user
space. Further, it provides headers for userspace programs with definitions for ioctl

numbers, system register addresses and layouts.

System Registers

As in all ARMv8 CPUs, most system registers are only accessible from EL1 or higher
using the msr instruction. Because we want to give userspace programs deep introspection
into the CPU, we implement ioctls for reading and writing from a select set of system
registers. Note, that these ioctls are only needed for core system registers, also called AP

6Repository: https://gitlab.inf.ethz.ch/project-openenzian/enzian-software/linux-memory-dri
ver

7The driver was reimplemented shortly before the deadline for this work and now also works on newer
kernels. Also, it now uses only exported symbols.

59

https://gitlab.inf.ethz.ch/project-openenzian/enzian-software/linux-memory-driver
https://gitlab.inf.ethz.ch/project-openenzian/enzian-software/linux-memory-driver

registers on the ThunderX. All other configuration and status registers on the ThunderX
are memory mapped and can be accessed by mapping the appropriate memory regions.

Apart from the core system registers described in the ARM ARM [39], the ThunderX also
features a set of Cavium specific registers, easily identified by their AP_CVM* names [43].
Among these Cavium specific registers are AP_CVM_ACCESS_EL{1,2,3} which can configure
access for certain Cavium specific features to lower exception levels. They configure access
to CvmCache instructions and different groups Cavium specific core system registers.
Because we want to enable introspection from EL0, the goal is to be able to configure
EL0’s access from the driver we are currently describing.

To do this, we must first ensure that Enzian’s ARM Trusted Firmware (ATF), the
EL3 monitor, is set correctly, so we do not trap into EL3, because our settings in
AP_CVM_ACCESS_EL1 are overridden by those made by the ATF in AP_CVM_ACCESS_EL{2,3}.
As it turned out, the ATF only enabled the CvmCache instructions on EL1 and disabled
the rest, which is very reasonable for a firmware distributed to commercial customers as
these registers offer very low-level access into the system and do pose a security risk if
exposed unwittingly. But since Enzian is a research-computer, the firmware received an
update which zeroes the relevant bits in AP_CVM_ACCESS_EL{2,3} such that EL1 can fully
configure all access provided by AP_CVM_ACCESS_EL1.

To simplify the process for userspace programs, the driver provides a Cavium library to
request access to the different primitives provided by AP_CVM_ACCESS_EL1 using the read
and write system register ioctls. Further, this library also exposes the shared headers
with the definitions of the system register bitfield structs and print functions for select
registers to help with the parsing of the register contents. To prevent unnecessary system
calls into the kernel, the Cavium library tracks the permissions requested by userspace
programs and depending on the permissions performs a direct call to read a system
register or execute a CvmCache instruction in EL0 instead of issuing an ioctl at the cost
of some state and a branch. This library can be seen in action in experiment 3.1.

L2 Cache Inspection

While it is possible to determine if a read hit in the L2 cache or not using timing, it would
be nice to get a definite answer by reading the state of the cache line in question. Luckily,
the ThunderX offers the L2 Cache Index Load Tag CvmCache instruction which loads
the tag of an L2 cache line specified by its set and way into one of the L2C_TAD(0..7)_TAG

data registers [43].

All L2C registers are memory mapped and can be accessed by userspace if the appropriate
address space is mapped using /dev/mem. We provide a shared header with definitions of
CvmCache instructions, constants, addresses, and bitfield struct definitions for registers.
The L2C userspace library uses this header to implement functions which, given a physical

60

address will return the state of the cache line, or simply if the address hits in the L2
cache.

Because the Index Load Tag instruction takes an L2 cache index and the way, we have to
read the cache line at the specified index in each way of the L2 cache. If a cache line is
not invalid and the tags match with the specified address, we have found a hit. Because
this procedure to determine if a cache line is in the L2 cache is not atomic, it can return
false negatives, although only very rarely the L2 cache is highly contended.

For CPU-homed cache lines, we can also find out in which state they are held on the
FPGA by fetching the remote tags of a cache line. Each DC has to track the cache line
states of its homed cache lines on both the home node and the remote node. However,
currently this is not implemented in our library.

Most of this functionality was first implemented by Jasmin Schult over the course of
her master thesis [54]. This library is an extension of her implementation. The library
described here can be seen in action in experiment 3.2.

TLB Inspection

Similar to the L2 cache, we also want introspection into the ThunderX’s TLBs. Again,
the ThunderX provides a CvmCache instruction to read each level of the TLB hierarchy:
µTLB read, MTLB read, and WCU read. All three instructions write the mapping tag
and data into the AP registers AP_CVM_XLATVTAG{0,1}_EL1 and AP_CVM_XLATDATA{0,1}_EL1.
Thus, to check if a virtual address hits in one of the TLBs, we have to read each entry in
the TLB and read one core system register for every entry in the worst case.

Reading the µTLB will thus often evict the mapping we want to check from the µTLB
due to this large overhead. This is demonstrated by experiment 4.1.

Following along: Experiment 4.1: µTLB Observation

Required bitstream: None
Script: experiments/utlb-observation.sh

What you will see: The script repeatedly reads from an address and then reads
the µTLB to see if the just accessed address hits.

Unfortunately, the output obtained from reading an entry of page walker cache can not
be interpreted yet because the documentation only provides us with abbreviated names
of register fields. These field names make sense for the µTLB and MTLB, but not for
the walker cache due to its different nature of not caching last level translations.

61

Software Generated Interrupts

The ThunderX’s GIC provides 16 SGIs with interrupt IDs 0 through 15. In its GIC
initialization code, Linux allocates the SGIs 0 through 7 to the IRQ numbers 1 through
88 as inter-processor interrupts (IPIs), but not the upper eight. The comments state that
the SGIs 8 through 15 are often used by firmware9. Checking the Enzian ATF, we find
that it does not allocate any SGIs.

This leaves the problem of allocating SGIs 8 through 15 with Linux after the GIC has
been initialized. We can simply do what the GICv3 driver on Linux does for the lower
SGIs at initialization for the higher SGIs at initialization of the ThunderX driver10. Linux
allocates the SGIs 0 through 7 as per CPU IRQs. We can reimplement the functionality
by copying some internal structs into our module and reimplementing the functionality of
some non-exported functions. With per CPU IRQs, we need to enable every IRQ on every
core to which we will send it. Otherwise, we get “unexpected IRQ” warnings from the
kernel. Using request_percpu_irq(irq, handler_func, &cpu_number), where cpu_number is
a per CPU constant defined in linux/smp.h, to register an interrupt handler, an SGI to
all cores will be handled on every core separately if we enabled the irq on every core.
While this behavior is desired for IPIs where one core signals mostly exactly one other
core, it is not desired in all cases for C3. While there might be usecases for IPI-like
behavior, it is more important to ensure that only one interrupt handler handles an SGI
if they are used as notifications.

Thus, we allocate the upper SGIs as “normal” rising edge triggered interrupts11. To be
able to allocate IRQs, we need a pointer to the IRQ domain and the struct irq_chip of
the GIC. We can obtain this from the struct irq_data of an SGI allocated by Linux. It
turns out that the SGIs 0 through 7 have IRQ numbers 1 through 8. Therefore, we can
irg_get_irq_data(1) and obtain the IRQ domain and chip struct from there. With this,
we can create new mappings for SGIs 8 through 15, set an IRQ flow handler and chip
information, and clear the IRQ_NOREQUEST flag, so we can in fact request the SGIs.

To be able to handle SGIs we need to send them in the first place. Luckily, this is as
easy as writing to the GIC register ICC_SGI1R_EL1. This generates a non-secure group 1
SGI [40]. An SGI can be sent to all cores, or to a group of 16 cores specified in a CPU

8On Linux the IRQ number 0 does not exist.
9See https://elixir.bootlin.com/linux/v6.7/source/drivers/irqchip/irq-gic-v3.c#L81

10If you, dear reader, ever find yourself in the position of reading the SMP init functions of a GIC driver
to reimplement its functionality, please take the following advice. The drivers use a struct irq_fwspec
to pass parameters to the IRQ allocation function. For example in gic_smp_init() in irq-gic-v3.c
Linux allocates the lower 8 SGIs. Note, that param_count is 1, but no parameter is specified. Of
course, since we want to allocate SGI 0 through 8, the struct initialization will take care of setting the
invisible to 0 implicitly. Remember this and save hours of your life. Don’t ask me how I know.

11The implementation with the per CPU allocation can still be found on the sgi-percpu branch of the C3
Kernel Module repository.

62

https://elixir.bootlin.com/linux/v6.7/source/drivers/irqchip/irq-gic-v3.c#L81
https://elixir.bootlin.com/linux/v6.7/source/drivers/irqchip/irq-gic-v3.c#L1392
https://gitlab.inf.ethz.ch/OU-ROSCOE/Students/2023-msc-mhaessig/c3-kernel-module/-/blob/sgi-percpu/thunderx/irq.c?ref_type=heads
https://gitlab.inf.ethz.ch/OU-ROSCOE/Students/2023-msc-mhaessig/c3-kernel-module/-/blob/sgi-percpu/thunderx/irq.c?ref_type=heads

mask and affinity routing. Our driver implements a slightly more ergonomic wrapper
around the Linux provided function to write to the interrupt generating register.

To enable other kernel modules to request the upper eight SGIs, we export a resource
struct with the IRQ numbers. In order to test our freshly allocated, we can use the
sgi-test kernel module which installs a handler for SGI 8. Then handler logs on which
core it was called using trace_printk(), because plain old printk() cannot be used in an
interrupt handler as it might block. See experiment 4.2 for a demonstration.

Following along: Experiment 4.2: SGI Test

Required bitstream: None
Script: experiments/sgi-test.sh
What you will see: The ThunderX driver allocates SGIs 8 through 15 in its probe
and the SGI test module installs a handler for SGI 8. After issuing an interrupt
on SGI 8 the trace shows that the interrupt was handled.

If you run experiment 4.2 multiple times, your Enzian will freeze at some point. Hence,
our implementation has a mistake. While time and debugging priorities did not permit
an in depth investigation, at this time the IRQ flow handler seems a likely culprit as it
might not acknowledge the SGI properly. Further, on a second run of experiment 4.2
we find three handled interrupts in the trace. This might be a hint that SGIs must be
treated as per CPU IRQ regardless. In any case, more investigation is needed.

4.1.4 Enzian Memory Explorer

Experimenting with different low-level memory accesses over ECI on Enzian using C
programs quickly becomes tedious. Opening files, mmaping memory, fiddling with pointer
offsets, translating virtual addresses to physical addresses because some instructions
take physical addresses while others take virtual addresses. These papercuts make the
development of a test error-prone and leads to frequent recompilation which in turn takes
a lot of time. All this ceremony is only prescribed by the method of the testing and
not due to the thinking. Mostly, we come up with these tests by thinking of a series of
operations on different locations in memory. On Enzian these memory locations often end
up being physical addresses, because the documentation talks about physical addresses
and the FPGA talks about physical addresses or L2 cache indices and tags, which again
map to physical addresses.

To remove the ceremony from experimenting on Enzian the Enzian Memory Explorer is
a simple read-evaluate-print-loop (REPL) to perform operations on physical addresses.
It maps the entire FPGA DRAM address space and parts of the CPU DRAM and FPGA
I/O address space. The latter two are mapped using /dev/mem which requires a kernel
configured with CONIFG_DEVMEM=y and CONFIG_STRICT_DEVMEM=n. Every instruction with an

63

address then computes if the address is within a mapped address space and uses the
offset into this address space to get a pointer to the desired memory location. The Enzian
Memory Explorer implements most functionality mentioned above (see the help message
in appendix A).

Because the memory explorer was implemented in an evening after a day of debugging
fueled frustration it does not use readline(3) as any sane REPL would, but it is entirely
handwritten. Despite that it features editing and a history. To avoid a dependency on
ncurses it also needed an implementation of getch() to receive all keypresses unbuffered,
including control characters for arrow keys and the like. It relies on disabling canonical
mode and echoing of input characters over the termios(3) interface. This enables fully
controlling the command line and manipulating the cursor using ANSI control sequences.
The history is just a simple circular buffer with 100 entries. It does not duplicate a
command in the history if the previous command was the same as the current command
and otherwise always appends the last command at the end. Despite not using readline(3)

the history and editing work just fine and only very esoteric keypresses will be ignored to
not scramble the REPL.

Apart from the REPL mode of operation, the memory explorer also supports scripting
simply by adding a list of quoted commands on program invocation. This allows for
simple reproducible test scripts without any ceremony. This feature is used in this thesis
in most follow along experiments.

While the quick testing and scripting enabled by the memory explorer is a huge time and
nerve saver, it is not a full replacement for proper C programs as tests. The instructions
executed by the CPU always depend on the command input. Due to this fundamental
fact we have a data dependency on every access which prevents potential reordering
of instructions. While data effect reorderings due to ARM’s weak memory model, are
technically still possible, the amount of work performed between two commands it
becomes very unlikely. Thus, tests exploring reordering on the ThunderX are probably
not served well by the memory explorer.

With the REPL processing and command parsing between every two commands the
tested sequence of instructions is not really what the user intends. This is mostly fine
because only the memory explorer is using the memory behind its mappings, but some
operations relying on the architectural state of the CPU like l2-line-state or utlb-hit
are affected by the additional work. For instance, the result of experiment 4.1 is also
influenced by this effect, but the observation remains valid, as it also occurs with a C
program. Also, because of the overhead the Enzian Memory Explorer should not be used
for measurements.

64

4.2 Cache Control Coprocessor

The Cache Control Coprocessor (C3) is implemented as an out-of-tree loadable Linux
kernel module. It consists mainly of setup code which starts the C3 fetch and execute
loop on the core isolated using the isolcpus command line parameter and the code
related to notifications. It relies on the FPGA and ThunderX drivers described above to
be loaded for mapping memory and SGIs.

4.2.1 Setup & Core Isolation

During module initialization C3 creates a misc device and uses the device struct to allocate
the large C3 context data structure. In C3 we use devres [29] to allocate resources as it
takes care of unmapping all resources allocated using devres, which alleviates memory
leaks and a bunch of boilerplate code at the cost of a few bytes of overhead. Further,
FPGA memory for the registers of the C3 envoy and all of the FPGA DRAM address
space are mapped. After initializing the notification subsystem, the C3 starts the C3
envoy by writing a one into the enable register. Afterwards, we check if the enable register
actually reads one and that the sanity register contains the expected value. These two
additions were very helpful in diagnosing bugs during development. Only after starting
the C3 envoy the C3 starts the C3 loop by creating a kthread on the CPU core passed
as an argument to the module and then calling the loop function on that kthread. By
starting the loop after the envoy, we ensure that it will always read an instruction from
the envoy and do not need any checks in the loop to ensure that the envoy is ready.

Note, that starting the C3 kernel module activates the C3 envoy on the FPGA. Conversely,
removing the module stops the C3 loop and subsequently the C3 envoy. With this we
ensure that one lever enables the entire system with all needed components and relieve
the user of the responsibility to correctly orchestrate the startup.

The heavy lifting of isolating the core is performed by the command line parameter
isolcpus, which is described in detail in the design investigation section 3.3.3. The
kernel documentation suggests tweaking the affinity of the IRQ that were not able to be
moved off of the isolated core. While this could in principle be done by iterating over
all active IRQs and removing a bit from the affinity mask of each IRQ descriptor, we
again run into the problem of symbols which are not exported. We can also achieve the
same from userspace by writing the new affinity mask to /proc/irq/$IRQ/smp_affinity.
Experimenting with this showed that all IRQs were already removed from the isolated
CPU core or the affinity of the IRQ cannot be modified.

Investigating tasks still running on the isolated core reveals that a handful of kernel
threads for workqueues are still affine to it. The C3 could iterate over all tasks known

65

to Linux to find these kernel threads and move them off of the isolated core. However,
currently we do not do this due to lack of time.

4.2.2 C3 Loop

At its core the C3 loop is an endless fetch, decode, execute loop. However, before every
iteration it checks if it was signalled to stop by the module exit function. Fetching
an instruction is a straightforward read to the instruction register of the C3 envoy,
which might stall the read but always send an instruction so the C3 does not “notice”.
Right after the fetch we first check if the instruction is zero in which case there was no
instruction ready. If no instruction is ready, the loop short circuits, increments a counter
to track the amount of NOPs received between instructions and continues with the next
iteration.

On arrival of a “proper” instruction the C3 decodes the opcode using a macro which
clears the most significant 57 bits. If a debug variable is defined at compile time, the
instructions get printed in the kernel log with their arguments based on their form. Based
on the opcode, the C3 has one big switch block where all instructions are fully decoded
and executed.

Non-ranged instructions like SGIs or notifications, simply decode the rest of the arguments
and call the appropriate function with the supplied arguments. Ranged instructions like
fetch and lock need to execute an instruction in a loop. Intuitively, one would write a
for loop to execute a fetch and lock for the entire range of cache lines. This, however,
creates a data dependency on the very first iteration which will always be done because
ranged C3 instructions operate on at least one cache line. But the compiler cannot infer
that the length is always at least one because it is loaded from some volatile memory
location it cannot assume anything about. By using a do-while loop instead we express
this fact to the compiler, which eliminates a branch before the first fetch and allows it
and the CPU to pipeline the fetch with the bitfield read to decode the length. Further,
cache management instructions like fetch and lock need a dsb to become visible to the
system. When executing a bunch of these instructions in a loop we can put a single dsb

at the end of the loop because the cache management instructions do not rely on the
visibility of each others effects. We can see all this in the decoding and execution of the
fetch and lock C3 instruction in listing 4.1.

In effect, the C3 loop is an infinite loop running in the Linux kernel which never yields.
Thus, it hogs CPU time and starves all other tasks on the C3 core, which is exactly why
we isolated the C3 in the first place. However, the Linux kernel is designed to run short
running tasks or longer running tasks which cooperatively yield so it can schedule all
tasks fairly according to their priority. Because the isolation is not complete, running the
C3 in testing caused errors in the kernel due to starved tasks. As stated in the previous
section, there are some possible improvements for the isolation we did not get to. But as

66

1 switch (c3_opcode) {
2 case C3_OPC_FETCH_LOCK: { // form 0
3 u64 base_cl_paddr = c3_cache_line(raw_instr);
4 u16 len = c3_len_minus_one(raw_instr);
5 u64 cl_idx = 0;
6 do {
7 u64 cl_paddr = base_cl_paddr + (cl_idx * L2_CL_BYTES);
8 cvmcache_l2_fetch_and_lock(cl_paddr);
9

10 cl_idx += 1;
11 } while (cl_idx <= len);
12 dsb(sy);
13 break;
14 }
15 ...
16 }

Listing 4.1: Example of the decoding and execution of a ranged C3 instruction.

a workaround, the C3 loop yields to the scheduler after every 100 NOPs which prevents
all starvation errors encountered previously. While this goes against the goal of a low
latency fetch loop, it is better to have a stable system than an unstable but lightning
fast system.

4.2.3 Notifications & Interface to User

Notifications are handled off of the isolated C3 core. But before the applications can
receive a notification, the C3 has to send them. As per design decision 10 we have a
unified data format for notifications which we implement such that it fits in 64 bits (see
listing 4.2). The structure is a union which includes different representations used in the
delivery of notifications. The C3 fills the data according to the notification instruction it
received and calls the send_notification() function with the notification data and the
application ID.

For an application to receive a notification it must register itself using the registration
ioctl provided by the C3. The C3 has a fixed number of slots available for notifications. In
its context struct each notification slot has a cache line to store all state for a notification.
C3 maintains a mapping from of indices to applications IDs in a separate array. During
registration it checks that the application ID, which can be any 8-bit number to reduce
the possibility of conflicts, does not conflict with any ID already in use. If not the new ID
is registered at a new index and the notification state at the chosen index is initialized for
the requested notification method. Once the application unregisters using the unregister
ioctl the C3 simply removes the application ID from the mapping.

67

1 union c3_ntfy_data {
2 // This is a duplicate of "data", but identifying with `identify.format`
3 // makes for much more understandable code.
4 struct {
5 c3_ntfy_format format : 8;
6 __u64 ignored : 56;
7 } __attribute__((packed)) identify;
8 struct {
9 c3_ntfy_format format : 8;

10 __u64 length : 14;
11 __u64 cache_line : 42;
12 } __attribute__((packed)) cl_range;
13 struct {
14 c3_ntfy_format format : 8;
15 __u64 data : 56;
16 } __attribute__((packed)) data;
17 __s64 i;
18 __u64 u;
19 char c[8];
20 };

Listing 4.2: C3 notification data format.

The notification state (see listing 4.3) is shared between the sending and delivering
side of the C3 and thus memory shared across cores. Every notification method has a
different layout in the tagged union. The file based methods rely on Linux waitqueues to
signal äcross cores. The overwrite and drop file based notification methods use the same
principle: A delivered flag indicates if the previous notification has been delivered to
the application, i.e. the application has read the associated data. If the delivered flag is
set to 1, then the sending side can safely write the associated data as the receiving side
will not read it because it is waiting for new data, i.e. the delivered flag being set to 0.
All reads and writes follow acquire/release ordering. The buffered file based notification
method relies on a cache line sized lock-free ring buffer for buffering of notifications.
UND, unfortunately, has not been implemented yet due to time constraints.

Because the notification state is shared memory and because any two applications are
most likely on different cores, aligning the notification state to one cache line is important
to prevent cache line thrashing. Further, all accesses to the cache line state is lockless
wit the fewest writes possible on the receiving side such that the state remains in the
L1d cache of the C3 if possible.

With this background we can get back to sending a notification from the C3 using
send_notification. Given the notification data and the application ID, the C3 can obtain
the index and thus the notification state. Using the notification method indicated by the
notification state it then sends the data provided by the notification instruction.

68

1 struct c3_notification {
2 union {
3 struct {
4 wait_queue_head_t wq;
5 atomic64_t data;
6 // Indicates if the previous notification was delivered (1) or not (0).
7 atomic_t delivered;
8 } file;
9 struct {

10 wait_queue_head_t wq;
11 struct c3_ntfy_rb rb_data;
12 } file_buffered;
13 struct {
14 void *und_cl;
15 } und_sync;
16 } kind;
17 // Tag for the union above.
18 enum c3_ntfy_method method;
19 u8 id;
20 } __attribute__((aligned(128)));

Listing 4.3: The C3 notification state.

The reception of a file based notification is started by a read(2) or poll(2) syscall on the
C3 device file used to register the application. In the kernel, C3 first checks if there is
already a notification ready to deliver (remember, file based notification methods allow for
asynchronous notification delivery). If not, C3 sleeps on the waitqueue until a notification
is ready and then delivers the notification. poll(2) does not deliver notifications carrying
data, but only notifys the application that a notification is ready for delivery using the
POLLIN return value. It does, however, deliver notifications without associated data which
is signalled using POLLIN | POLLPRI as a return value. This complicates the receiving end
slightly, requiring a compare exchange loop, but obviates a second system call.

When using SGIs as notifications, C3 provides a cache line of shared memory for SGI
vectors. Whenever the C3 receives an SGI instruction it writes to the vector at the index
corresponding to the SGI hardware interrupt ID with release ordering before issuing the
SGI. An interrupt handler can then read from the vector, which is exported as a symbol,
with acquire ordering.

Additionally, the C3 provides an ioctl to adjust the amounts of cycles the C3 envoy
stalls a read to the instruction register when no instruction is available. It is mainly for
testing purposes (see section 5.1).

69

4.3 C3 FPGA Envoy

The C3 envoy12 is a fairly straightforward FPGA component. It consists of an AXI-lite
subordinate providing read and write access to a handful of registers and an instruction
FIFO. The only complexity is that one register reads from the reading end of the
instruction queue and stalls reads if the queue is empty.

The envoy provides a readable and writable enable register. This signal is exposed as a
pin to other FPGA components to ensure that they will not try to use C3 while it is not
running. Further, it provides a read-only sanity register which returns a known value and
a read-write stall cycles register with which an application can set the number of cycles
the envoy should stall reads to the instruction register when not instruction is available.

Finally, a read to the read-only instruction register causes one C3 instruction from the
instruction queue to be returned to the reader (usually the C3). If the queue is empty,
the envoy starts incrementing a wait counter every cycle until it reaches the number of
stall cycles configured using the corresponding register. If the instruction FIFO is still
empty by that time, the envoy returns a no-instruction C3 instruction, which is all zeros.
However, every cycle while stalling the envoy checks if there is now an instruction in the
queue. If an instruction appears in the queue it is immediately returned.

The C3 envoy FPGA component is built such that it can be included in the project of an
FPGA application as a git submodule. It provides a create_ips.tcl script, which should
be added into the project creation script used in the workflow of Enzian FPGA projects.

For debugging, the C3 envoy provides introspection using integrated logic analyzers
(ILAs). It features generic parameters to configure whether to use the ILAs when the
component is instantiated.

Currently, the instruction queue of the envoy is a Xilinx FIFO queue intellectual property
(IP). However, when a congested design has to run in a different clock domain (the C3
envoy runs on the same clock as ECI) the design has to add an asynchronous FIFO in
front of the already existing queue for clock domain crossing. These duplicate queues are
unnecessary and so it would be nice to have an asynchronous FIFO as the instruction
queue which can perform the clock domain crossing at the interface to the envoy. This
allows the AXIlite interface to the ECI I/O-bridge to run in the same clock domain as
ECI which is desirable since we want to be accurate with stalling the reads to avoid
timeouts.

12Link to repository: https://gitlab.inf.ethz.ch/OU-ROSCOE/Students/2023-msc-mhaessig/c3-fpga-e
nvoy

70

https://gitlab.inf.ethz.ch/OU-ROSCOE/Students/2023-msc-mhaessig/c3-fpga-envoy
https://gitlab.inf.ethz.ch/OU-ROSCOE/Students/2023-msc-mhaessig/c3-fpga-envoy

4.4 FPGA Test Applications

To test the C3 system incrementally, several test applications of increasing complexity
were developed. While they are not examples of useful practical applications of C3, they
serve as tools to explore the capabilities and problems of the system as well as tools for
characterizing the system.

4.4.1 No Instruction Test

The C3 no instruction test FPGA component13 is basically the Enzian static shell with
the application stub and the C3 envoy as shown in figure 4.1. This component will never
send anything besides a NOP. This component was used in initial testing to ensure the
AXIlite subordinate implementation of the C3 envoy is working. Further, it found use
in determining the effects of stalling instruction reads on the rest of the system (see
section 5.1).

C3 Envoy FIFO

0x180’0000’0080

0x180’0000’0100

ECI
coherence
messages

I/O

AXIlite

copy

FPGA

Figure 4.1: Schematic of the no instruction test.

4.4.2 Fixed Instruction Test

The C3 fixed instruction test FPGA component14 extends the no instruction test with a
fixed instruction loop as shown in figure 4.2. Its main use was for initial testing of the C3
with instructions. The instruction loop has an array of C3 instructions and roughly every
10 seconds it sends the next instruction from that array, wrapping around back to the
first instruction once it reached the end of the array. Due to its inflexibility its use was
only limited to the very first earliest testing of the C3. Further, testing to fetch memory
also relies on the cache line copy mechanism. In terms of synchronization, the CPU

13Link to repository https://gitlab.inf.ethz.ch/OU-ROSCOE/Students/2023-msc-mhaessig/c3-fpga-n
o-instruction-test

14Repository Link

71

https://gitlab.inf.ethz.ch/OU-ROSCOE/Students/2023-msc-mhaessig/c3-fpga-no-instruction-test
https://gitlab.inf.ethz.ch/OU-ROSCOE/Students/2023-msc-mhaessig/c3-fpga-no-instruction-test
https://gitlab.inf.ethz.ch/OU-ROSCOE/Students/2023-msc-mhaessig/c3-fgpa-fixed-instructions-test

application must always be ready for a notification or select an appropriate buffering
notification method as it has no possibility of feedback to the fixed instruction test.

C3 Envoy FIFO

0x180’0000’0080

0x180’0000’0100

instruction
loop

ECI
coherence
messages

I/O

AXIlite

copy

FPGA

Figure 4.2: Schematic of the fixed instruction test.

4.4.3 Dynamic Instruction Test

Due to the flexibility needed the fixed instruction test involved to the C3 dynamic
instruction test FPGA component15. The dynamic instruction test provides registers in
the FPGA’s I/O address space to enable the component and to provide the C3 instructions
the component should issue. The application provides instructions by first setting the
array instruction length register and then writing the instructions in the instruction
array registers. The component provides has a maximum instruction array length of 32
instructions. The CPU application is responsible that it writes correct C3 instructions as
they are not checked by the FPGA component. The dynamic instruction test iterates
through the instruction array like the fixed instruction test. It also provides a register to
set the number of cycles the test should wait between sending instructions. Because we
now have two components on the FPGA which need to connect to the ECI I/O-bridge
over AXIlite, we need an AXIlite interconnect to demultiplex the requests to the two
different segments of the address space as shown in figure 4.3.

As for synchronization between the FPGA and CPU applications, the CPU application,
much the same as for with fixed instruction test, has no way of giving feedback to the
FPGA application. Thus, it must either be ready to receive an instruction all the time
or use a buffering notification method.

The dynamic instruction test is, like the two test applications before, only useful for
testing and debugging the C3, however in a more flexible way due to its reconfigurability.
It also relies on the cache line copying component for cache line transfers. As such, tests

15Link to repository: https://gitlab.inf.ethz.ch/OU-ROSCOE/Students/2023-msc-mhaessig/c3-fpga-d
ynamic-instruction-test

72

https://gitlab.inf.ethz.ch/OU-ROSCOE/Students/2023-msc-mhaessig/c3-fpga-dynamic-instruction-test
https://gitlab.inf.ethz.ch/OU-ROSCOE/Students/2023-msc-mhaessig/c3-fpga-dynamic-instruction-test

C3 Envoy FIFO

Test

A
X
Il
it
e

In
te
rc
o
n
n
ec
t

0x180’0000’0080

0x180’0000’0100

ECI

I/O

AXIlite

coherence
messages

copy

FPGA

Figure 4.3: Schematic of the dynamic instruction test.

with the dynamic instruction test still do not rely on the FPGA to perform coherent
writes independently of CPU writes.

4.4.4 Copy Word Test

While the following test is not yet implemented because the idea only came up during the
writeup of this thesis, it is the basis for the simplest kind of useful C3 aware application.
The C3 copy word test waits for a write to a register and then proceeds to copy the
written value coherently into a FPGA-homed cache line and issues cache injection and
notification C3 instructions for this cache line. It is designed to measure the roundtrip
latency of a 64-bit word using C3 for the return trip with a bare minimum of processing
on the FPGA.

C3 Envoy FIFO

Test

A
X
Il
it
e

In
te
rc
o
n
n
ec
t

Cache Line Controller

ECI

I/O

AXIlite

coherence
messages

copy word

FPGA

Figure 4.4: Schematic of the copy word test.

As we can see in figure 4.4, the schematic is almost the same as for the dynamic instruction
test. The copy word test would provide a register to enable its state machine and a
register to write a word which should be copied. In the copy word’s state machine in
figure 4.5 we see that the enable register works as an active low soft reset and a write to

73

Idlereset

write cache line

send cache injection C3 instruction

send notify C3 instruction

received word in register

enable = 0

write complete

write incomplete

enable = 0

instruction FIFO valid = 1

instruction FIFO
valid = 0

instruction FIFO valid = 1
or enable = 0

instruction FIFO valid = 0

Figure 4.5: State machine of the copy word test.

the copy register triggers the rest of the state machine. To get a comparison between
a coherent read from memory and direct cache injection we could add a register which
contains a bypass flag. If the flag is set the state machine would skip the sending of the
cache injection C3 instruction.

Because the FPGA is only acting upon a CPU request synchronization between the two
is given and the CPU must thus only be ready for a notification after sending a request
to the FPGA.

The copy word test is useful beyond testing, because it can serve as the basis for actual
C3 applications. While the copy word test only performs a copy, an application could
perform arbitrary processing after such a request. The single cache line controller is
a much simpler alternative to the DCS if only few cache lines are needed. While the
application shown here only features one cache line, it can easily be extended to multiple
cache lines. As an untested rule of thumb we conjecture that if it is known in advance
that an FPGA application will never need to return more than 20 cache lines to the
CPU, it should use multiple single cache line controllers instead of the DCS. This should
significantly reduce the complexity of the design and reduce the amount of effort needed
to reach timing closure on the design.

74

C3 Envoy FIFO

A
X
Il
it
e

In
te
rc
o
n
n
ec
t

DCS odd DCS even Test

ECI

AXI Crossbar

BRAM

I/O

AXIlite

coherence
messages

LCL

FPGA

Figure 4.6: Schematic of the DCS copy word test.

4.4.5 DCS Copy Word Test

Before the idea for the copy word test materialized, the DCS copy word test 16 was
created. It was created with the same end-to-end latency benchmark in mind, but using
the DCS to extend the test for transferring multiple cache lines in the future. The DCS
copy word test follows more or less the design overview from figure ??.

Figure 4.6 shows the schematic of the DCS copy word test. In principle, it replaces the
cache line controller from the copy word test with the DCS. The schematic does not
accurately show that the local interface to the DCS is actually demultiplexed from the
test component to the odd and even DCS’. As a consequence, we have to issue a LCI
request to the correct DCS — odd cache lines to the even DCS and vice-versa — and
wait for the LCIA to ensure that the cache line we want to write to is written-back and
invalidated in the CPU cache so we can write to it. Writing to the BRAM over the AXI
crossbar has to be done in two parts, because the DCS is only able to write half a cache
line at a time over its AXI interface. After writing to the cache line, we also have to issue
an UL request so the CPU can access the cache line again. This increase in complexity
leads to the state machine shown in figure 4.7. Note, that if the DCS copy word test is
disabled after a cache line was invalidated, it will have to be unlocked before reaching

16Link to repository: https://gitlab.inf.ethz.ch/OU-ROSCOE/Students/2023-msc-mhaessig/c3-fpga-d
cs-return-word

75

https://gitlab.inf.ethz.ch/OU-ROSCOE/Students/2023-msc-mhaessig/c3-fpga-dcs-return-word
https://gitlab.inf.ethz.ch/OU-ROSCOE/Students/2023-msc-mhaessig/c3-fpga-dcs-return-word

the idle state. Otherwise, the next request might fail because the cache line is already
invalidated.

The DCS copy word test can also be extended to transfer more than one cache line by
introducing a counter and an edge from send notify to send LCI as long as the counter
has not reached the desired value. Such a loop can also be pipelined quite nicely. Further,
to get the difference in latency due to direct cache injection, we can simply skip the state
where the cache injection C3 instruction is sent based on a register value.

The synchronization between the CPU and the FPGA is ensured by the fact that the
DCS copy word test only progresses out of the idle state upon receiving a request from
the CPU. Thus, the CPU knows to expect a notification right after issuing a request.

The principle of the DCS copy word test is the foundation of any larger C3 aware
application. Instead of simply copying a 64-bit word we can perform any processing and
use a very similar state machine to send the data to the CPU.

Challenges

With the increased complexity of the DCS also came a lot of challenges. For instance,
when multiplexing the AXI interface of the two DCS’ one does not only need to be aware
that these AXI interfaces are using cache line indices as addresses, but that these indices
are shifted to the right by one. That is because the DCS AXI interface to memory was
designed to be used with one memory bank for each odd and even slice. Hence, the
last bit of the cache line index would always be the same because all cache lines in the
memory bank would be either odd or even. To ensure that half of the memory bank is
not wasted, the last bit was removed. However, that bit is needed when multiplexing the
interfaces using an AXI crossbar, lest we alias half of the FPGA DRAM address space.

Another challenge, not just with the DCS copy word test are Xilinx IPs. They are
tedious to configure, because they must be configured using TCL scripts and not using
generic parameters. Further, the AXI interfaces in Xilinx IPs is often not compliant
to the AXI specification [1]. For example, it is perfectly legal to keep the ready signal
high between two requests if a component is immediately ready again, but many Xilinx
components require that after a valid handshake ready is pulled low for at least one cycle.
Some components also have stricter ordering requirements between the address and data
handshakes than the specification requires. For that reason, the Xilinx BRAM generator
was switched out for Alex Forencich’s AXI RAM [25] which features a much better
AXI implementation and configuration over generic parameters directly in hardware
description language (HDL).

The most challenging problem with the DCS copy word test is achieving timing closure.
To fill an entire cache way with data, the design goal is to have 1MiB of low-latency

76

Idlereset

Send LCI

Wait for
LCIA

Write lower
half

Write upper
half

Send UL

Send cache
injection
instruction

Send notify
instruction

received word in register and
enable = 1

enable = 0

VC ready/valid
handshake

enable=0

received LCIA

AXI write transaction complete

enable = 0

AXI write transaction complete or
enable = 0

VC ready/valid handshake

FIFO ready/valid handshake

FIFO ready/valid handshake or
enabled = 0

Figure 4.7: State machine for the DCS copy word test.

77

memory — in this case BRAM. Now, 1MiB of BRAM is quite a lot so the initial thought
was that this contributes to the congestion in the design together with the ILAs. Since
the ILAs were needed for debugging initially, the amount of BRAM was reduced to 512
cache lines, which is an eight of an L2 cache way. However, this reduction did reduce
resource usage, but not the congestion.

As it turns out, the DCS is a very congested (congestion level 5 out of 6 according
to Vivado) design. This makes it almost impossible to meet timing. The best worst
negative slack (WNS) ever achieved for the implementation of the DCS copy word test
is about -0.25 ns. If a design does not meet timing this is the equivalent of undefined
behavior in compiled languages as not all data will be ready before the next clock cycle
and the computation will then produce and propagate garbage. Often this manifests as
an asynchronous external exception when trying to run the experiment on Enzian.

The furthest the implementation of this application was tested is that an LCI was issued
and an LCIA was received. The test got stuck when writing to the lower half of the
cache line due to the Xilinx BRAM generator. However, by accessing the locked cache
line from the CPU and getting a timeout error confirmed that invalidating and locking
the cache line using the DCS was successful.

The Solution

The solution to the DCS not meeting timing would be to run it at a lower clock frequency
to give the data more time to propagate between the clock edges. Currently, the DCS
runs at the same clock as ECI, which is approximately 322MHz. With a WNS of -0.25 ns
a clock frequency of 250MHz should provide ample headroom by increasing the clock
period by more than 0.8 ns.

To be able to run the DCS at a lower frequency, we need to introduce clock domain
crossing into our design. Because there is no benefit to running only the DCS at a lower
clock frequency, we also run the application, the BRAM, and the AXI crossbar at the
same lowered frequency. To cross clock domains, we add asynchronous FIFOs to each
ECI VC and to the C3 instruction queue. In figure 4.8 the red shaded area shows the
new, slower clock domain. Every arrow crossing into or out of the clock domain will need
an asynchronous FIFO to enable clock domain crossing.

Unfortunately, due to lack of time, implementing clock domain crossing for the DCS copy
word test is out of scope for this thesis.

78

C3 Envoy FIFO

A
X
Il
it
e

In
te
rc
on

n
ec
t

DCS odd DCS even Test

ECI

AXI Crossbar

BRAM

I/O

AXIlite

coherence
messages

LCL

FPGA

Figure 4.8: Schematic of clock domain crossing for the DCS copy word test.

79

5 Evaluation

This chapter should evaluate the C3 system with different tests. However, due to the
copy word tests being unfinished because of the limited time available for this thesis.
Instead, this chapter presents the one test which should be performed to evaluate the
system.

5.1 The Influence of Stalling Instruction Fetches on the Rest of
the System

The C3 envoy stalls the C3’s read when no instruction is ready. Early during testing, the
shell would not respond anymore after the C3 was started. This raised the suspicion that
the stalling the instruction reads might not only stall the C3 but also influence other
cores as a read transaction remains in flight for tens of microseconds. To determine the
effect on the rest of the system, we run the C3 no instruction test (see section 4.4.1) on
the FPGA, which has the C3 continuously polling for instructions, and run the PARSEC
benchmark suite [6] on the rest of the cores.

PARSEC is a benchmark suite for multiprocessors featuring a set of benchmarks “diverse
in working set, locality, data sharing, synchronization, and off-chip traffic”[6]. It was
originally designed to run on the i386, AMD4, Itanium, Sparc, and PowerPC architecture.
Since Enzian features an ARMv8 CPU, we need to use Ciro Santilli’s [53] port to Ubuntu
22.04 supporting ARM cross-compilation. Unfortunately, we cannot use the benchmarks
facesim and x264 on ARM, because they depend on vector instructions which would
require significant porting work. However, porting vector instructions to aarch64 is out
of scope for this work. The next challenge is obtaining the inputs to the benchmarks.
The PARSEC website has been offline as of November 2023 and only reachable through
archive.org1. Luckily, archive.org also includes downloads in its snapshots, so we can
download the inputs if we have some patience.

The experiment is conducted on zuestoll07 with all code and input stored on the NVMe
SSD. Core 47 is isolated such that the C3 can run on it as described in section 3.3.3. The
FPGA is loaded with the no instruction test bitstream (see section 4.4.1). It consists

1Working link to the latest snapshot: http://web.archive.org/web/20220930220452/https://parsec.c
s.princeton.edu/

80

http://web.archive.org/web/20220930220452/https://parsec.cs.princeton.edu/
http://web.archive.org/web/20220930220452/https://parsec.cs.princeton.edu/

Figure 5.1: Plot of the normalized runtime of PARSEC benchmarks with the C3 running
on the system stalling instruction read requests for different amounts of time.

of multiple runs of the PARSEC benchmark suite (without facesim and x264) with
native inputs. The first run consists of only the PARSEC benchmarks without the C3
running. It is thus referred to as “No C3”. On the second run, the C3 is running and
continually fetching instructions with the C3 envoy configured to stall requests for 1 ns
before returning a no instruction available C3 instruction. Before every subsequent run,
the C3 envoy is configured to stall for ten times longer, i.e. 10 ns on the second run,
100 ns on the third, and so forth.

Figure 5.1 shows the runtime of the PARSEC benchmarks normalized to each of their
runtime without the C3 running for each run with increasing stalling time on the C3 envoy.
Hence, the runtimes for each PARSEC benchmark are relative to the corresponding
benchmark shown in the leftmost group labeled “No C3”. The x-axis shows the different
stall times of the C3 envoy during the runs of the PARSEC benchmark suite. Each bar
color corresponds to a PARSEC benchmark as indicated by the legend. The y-axis shows
the normalized runtime on a logarithmic scale. If a parsec benchmark has a normalized
runtime of 2.0, this means that it ran two times slower than the corresponding benchmark
without the C3 running.

81

At a first glance, we see that the higher the stall time, the slower the runtimes of the
PARSEC benchmarks tend to be. However, the stall time of 10ms is an anomaly as
it shows times even faster than without a C3 running. This is because the C3 crashed
due to an asynchronous external exception in the beginning of the 10ms run. It did so
across three different instances of running this experience, each with slightly different
implementations of the C3 envoy. Hence, we exclude the 10ms stall time from this
discussion.

Next, we can see that the benchmarks exhibit noticeably slower runtimes starting with a
stall time of 1 µs. We could draw the conclusion from this that the C3 envoy should stall
as little as possible or even not at all, because the rest of the system is clearly less affected
than if we stall instruction fetches. However, this conclusion would be premature as it
does not take the effect on C3 applications into account, because this experiment does
not feature any. Whenever the C3 envoy stalls an instruction fetch and an instruction
enters the queue the instruction is immediately returned leading to the lowest possible
time between the C3 instruction being issued and the instruction being executed on the
C3. Since one of the goals of C3 system is low latency, some stalling of instruction fetches
should be beneficial. However, this experiments allows us to conclude, that stalling
fetches for longer than 1 µs will affect the rest of the system in some cases.

Further, figure 5.1 shows that not all PARSEC benchmarks are affected equally by the
C3 envoy’s stalling of instruction fetches. Most affected is the dedup benchmark with
very significant slowdown of 30x for a stall time of 1ms, followed by the vips benchmark
with a slowdown of roughly 1.3x for a stall time of 1ms. While the bodytrack, canneal
and freqmine benchmarks also experience some slowdown for a stall time of 1ms, the
rest of the benchmarks are not noticeably affected. Looking at the benchmarks in detail,
the only thing which really differentiates dedup from the rest of the benchmarks is that
it only has a traffic from the cache, i.e. the amount of data transferred to and from
the cache, of around 1.5 bytes per instruction which is lower than all other benchmarks
with have a traffic of around 3 bytes per instruction or more [6]. Also, the second and
third-lowest traffic have the bodytrack and vips benchmarks at slightly less than 3 bytes
per instruction. However, the canneal and freqmine benchmarks have exhibit cache
traffic of 4 bytes per instruction, more than other benchmarks which are not noticeably
affected by the stalling of instruction fetches. This suggests that cache traffic is part of
the cause for the slowdown but not the whole story.

Looking at off-chip traffic, dedup, bodytrack, freqmine, and vips all tend to have more
store off-chip traffic with increasing core size. The paper showed the figures for off-chip
traffic for 16 cores. Since the ThunderX features 48 cores this effect is likely more
exaggerated. The canneal benchmark has significant, but slightly decreasing writeback
and load off-chip bandwidth needs as the number of cores increase. The streamcluster
benchmark needs around 0.9 bytes per instruction of off-chip load bandwidth, but is
entirely unaffected by the stalling of instruction fetches. This suggests that off-chip traffic

82

for writebacks and stores are slowed down by stalling non-caching reads issued from the
CPU to the FPGA.

This experiment seems to disprove our hypothesis used in the design of the C3 control
path that reducing traffic on the memory bus would reduce the effect of continuously
polling for C3 instructions. Instead, stalling the non-caching reads seem to cause some
sort of blocking on the memory bus of the ThunderX which mainly affects stores. As a
consequence, design decision 3 should be revisited with this new knowledge. However,
further tests on the benefits of stalling C3 instruction reads on the C3 envoy for the
latency of C3 aware applications should be conducted.

5.2 Future Tests

This section discusses tests not conducted due to the necessary FPGA test applications
not being completed in time. The following tests should help to characterize the C3
system.

C3 Roundtrip Latency Test Using the C3 copy word test application, this test should
determine the roundtrip latency of a 64-bit word sent to the FPGA and then immediately
sent back using the C3 and direct cache injection. The value being sent to the FPGA
can be the system counter value right before sending, so when the value is returned using
C3 it can immediately be compared to the system counter value right after reading the
received cache line. This roundtrip latency test should be conducted for each notification
method and for both the copy word test and the DCS copy word test to compare between
the different system configurations. Further, both test copy word test should implement a
register to allow the CPU application to forego the direct cache injection so a comparison
to reading directly from the FPGA can be established.

Direct Cache Injection Throughput Test By extending the C3 copy word test applica-
tions to write to multiple cache lines, this test should measure the throughput of data
transferred from the FPGA to a CPU application using direct cache injection. The CPU
test application should request a number of cache lines from the FPGA application,
which then transfers the requested number of cache lines using C3, and measure the time
from the writing the request to the FPGA until reading the last cache line on the CPU.
Dividing the measured latency by the number of cache lines received gives the achieved
bandwidth for that request. By repeating this test for both copy word test applications
for larger and larger number of cache lines to transfer we can find out for which transfer
size direct cache injection becomes worse than just reading from memory directly.

83

Direct Cache Injection Reliability Test The direct cache injection reliability test should
repeatedly perform direct cache injection for a cache line and track the miss rate in the
L2 cache after the cache injection using the different cache injection C3 instructions. This
test should also be conducted once where only the test is using the L2 cache and once
when the L2 cache is contended because of some other memory intensive load running on
the system. By combining this with a latency measurement, we gain an additional data
point. This reliability test should show which C3 instruction is best suited for direct
cache injection in different situations.

Cache Footprint Analysis of the C3 To run with the lowest possible latency, the C3
would ideally always hit in its L1d and L1i cache. This test should measure the number of
misses in the L1d and L1i cache of the C3 using the counters of the ThunderX performance
measurement unit.

Influence of Stalling C3 Instruction Reads on the Roundtrip Latency This test is the
complement to the test in the previous section (see section 5.1) to determine the benefits
of stalling instruction fetches in the C3 envoy. This test works like the C3 roundtrip
latency test, but it varies the stall time in the C3 envoy in different runs. Ideally, this is
done once with only the test running and once with another memory intensive workload
running in parallel. These data points in conjunction with those from section 5.1 should
then provide an ideal range for the stall time of C3 instruction reads.

84

6 Conclusion

In this chapter the results of this project and future work are discussed.

6.1 Discussion

This section discusses the shortcomings and tradeoffs of the C3 system and whether it
actually reached its goals.

6.1.1 Is C3 a convincing Cache Coherence Protocol Extension?

To function as an extension of the cache coherence protocol interfacing with C3 should
actually feel like interfacing with a cache coherence protocol. While the interface for
submitting C3 instructions is very similar to sending ECI messages over VCs. However,
from the view of an FPGA application the C3 system lacks one critical feature because
of design decision 4. An FPGA application does not receive an acknowledgement when a
C3 instruction has been executed. This is contrary to ECI and the DCS local interface
where transactions taking a long time will be acknowledged or a transaction is more or
less instant and is assumed to be completed instantly when the message is submitted
(e.g. the UL message of the DCS local interface). This is the only reason why notification
instructions are needed and why the C3 even needs an interface to CPU applications
which, notably, cache coherence protocols usually lack. With synchronization traditional
notification methods in the form of ring buffers or a polled device register would suffice.

While notifications might be a novel feature for cache coherence protocols worthy of
investigation in their own right, saying that no acknowledgements for C3 instructions
make for a simpler system as stated in section 3.2.1 is probably not true because it
increases the interfaces needed for the C3. Design decision 4 did not consider that and it
also did not take into account the goal of behaving like a cache coherence protocol.

The notifications have their advantages. For one, they make C3 instructions “fire-and-
forget” from the perspective of an FPGA application. This allows the FPGA application
to use its processing resources to “more important things” and putting to work the C3
on a dedicated core, which really ought to do some work to justify getting an entire core

85

to itself. Further, this “fire-and-forget” nature of C3 instructions and the resulting lower
coupling to the coherence protocol and hopefully allowing for more parallelization and
less synchronization overhead. But this would have to be proven using tests.

Speaking of decoupling from the coherence protocol, another unexplored tradeoff in the
C3 system is the low level nature of the C3 instructions and the simplicity of the C3
envoy. All the C3 envoy really does is aggregating instructions in a queue and delivering
these to the C3 on the CPU. Currently, a cache injection C3 instruction functions like a
notification to the C3 that data is ready to fetch into the L2 cache. The FPGA application
has to take care of coherently writing the data to memory it wants to transfer itself.
The C3 envoy could also be involved in the execution of C3 instruction and take care of
coherently writing data to memory instead of the application. While this would relieve the
application of some burden it couples the design of the C3 envoy to coherence components
avaliable on the FPGA and would need to have a different implementation depending on
whether cache line controllers or the DCS are used. Such a shift of responsibility would
also trade off flexibility of the application to write to whatever memory it sees fit for ease
of use. As such the current design meets our goals better than the alternative, but for a
non-experimental C3 system certain patterns might pay off to be abstracted in such a
way.

Another difference to some coherence protocols, including ECI, is that the execution of
C3 instructions is inherently serialized. ECI, however, can reorder packets on the bus
and features multiple parallel VCs. While this serialization cannot easily be removed
from the C3, it results in the C3 always being slower than a cache coherence protocol
implementing the features C3 instructions provide as such a protocol will be able to
execute some requests in parallel.

6.1.2 Viability as a Platform for Experimentation

A major goal of this thesis is that C3 should serve as platform for experimentation and
thus be flexible, modular and extendable such that future research needs are enabled
rather than hindered by the system. This goal is mostly achieved as the implementation
provides a wealth of infrastructure (see section 4.1) which can be used for extending the
functionality of C3 and is useful for use on Enzian otherwise. The code is modular such
that a rewrite of all C3 instructions was completed in all of half an hour thanks to only
having to change the definitions in a central location. However, the C3 instructions also
show a weak point of the modularity: the code for the C3 and the C3 envoy duplicate
most of each other’s constants. It would be much nicer if these constants could be derived
from some central location such that they only have to be changed in one central location
instead of both repositories.

The C3 system is inherently flexible as it is agnostic of how it is used by applications.
It only provides instructions and poses only few requirements on how they are used.

86

While this can be a burden on the applications, for instance in terms synchronization
(see section 3.6), it also provides freedom to the application which is the tradeoff this
thesis is shooting for

6.2 Future Work

This section presents interesting avenues for future investigation around the C3 system.

Finish what was started This work leaves many components of the C3 system unim-
plemented which makes us unable to run the tests described in section 5.2 needed to
characterize the system. The obvious future work item is thus to finish what this thesis
started. In order to characterize the performance of C3 in a real setting, it should be
incorporated into a proper application like a smart NIC. A smart NIC is a good choice
for a first application as there is a bunch of related work to using direct cache access to
accelerate NICs. Further, a smart NIC is an I/O device which is fundamentally different
from all tests proposed thus far in that the FPGA application will send cache lines and
notifications without the CPU application requesting it directly.

Synchronization This implementation of C3 is non-synchronizing. The CPU side just
executes whatever the FPGA side has put in the queue and then goes on to fetch the next
instruction. The execution of C3 instructions is completely unrelated from the execution
of the FPGA application (see section 3.6). We could extend the C3 such that the CPU
executes in lock-step with the FPGA application by sending an acknowledgement to the
FPGA whenever it is done executing a C3 instruction. As discussed above this would
obviate notifications to CPU applications from the C3 because the FPGA application
is able to take care of the notification itself. It would be interesting to investigate the
tradeoffs between the two approaches and to see if they yield different performance.

How far can we push precognition? One of the advantages of C3 is that it offers a way
to take advantage of the prior knowledge an FPGA application has when it transfers data
to a CPU application. For one, the C3 enables push prefetching of the data into the CPU
L2 cache from the FPGA because the FPGA knows that the CPU application will want
to access the transferred data and thus eliminating the (thought to be) compulsory miss.
However, in the same way the FPGA application could use C3 instructions to prefetch
other data or instructions needed to process the data which it will transfer. But for that
it needs to know what to prefetch, as does the CPU application. A CPU application can
be built such that relevant pieces of code and data can be referenced using pointers such
that we are able to determine their location in memory or we could use static analysis
to find locations which would benefit from prefetching. Once the location to prefetch

87

are known, the FPGA application can either notify the CPU application that it should
prefetch some locations which has the advantage that this memory could be prefetched
into the L1 cache, or the FPGA application can issue C3 instructions to prefetch these
locations if it is told about these locations, e.g. by writing to some registers. If the data
the FPGA application has to transfer contains control-plane data, e.g. the header in a
network packet, this information can be transferred before the rest of the data so the
CPU application can already configure the data path for the incoming data.

Can cache allocation make a difference? In section 3.3.2 we investigate what could be
done with L2 cache way partitioning to reduce possible conflict misses in the L2 cache.
The conclusion is that it is probably difficult to derive a benefit due to the difficulty
in placing cache lines in the appropriate way in the L2 cache. But a cache control
coprocessor should at least try. This test should on one hand test if conflict misses are
reduced by way partitioning in a contended cache and on the other hand make sure that
it does not hurt performance if the application is running by itself on the CPU with way
partitioning still enabled.

Does sharing the C3 make sense? The design and implementation of the C3 system
always erred on the side of enabling multiple applications to use the C3 at the same
time without ever testing it. Future work should run multiple C3 aware applications
in parallel and observe how they interact in the C3. Is the ThunderX L2 cache large
enough to handle multiple applications using it for direct cache injection? To share the
C3 among multiple applications with different runtimes, it would be interesting to have
dynamic reconfiguration of applications on the FPGA to allow new applications to be
loaded while running other applications.

6.3 Summary

This thesis introduces the Cache Control Coprocessor (C3), a dedicated core on the
Enzian CPU fetching instructions from the FPGA to execute on the CPU. It is designed
to serve as an extension to ECI allowing us to implement novel features currently not
available in cache coherence protocols with the goal of enabling experimentation with
features for new cache coherence protocols in hardware.

Based on the goals of creating a flexible and extensible system for experimentation,
we designed the C3 system to be capable of injecting FPGA-homed cache lines into
the CPU’s L2 cache from the FPGA, of issuing interrupts to CPU cores, and sending
notifications to CPU applications that data is ready to be read. FPGA applications can
submit C3 instructions into an instruction queue managed by the C3 envoy which is an
FPGA component providing a register for the C3 to fetch instructions from. If upon an

88

instruction fetch from the C3 no instruction is available in the queue, the C3 envoy stalls
the read for a configurable amount of time to wait if an instruction arrives in the queue.
Tests in this work have determined that stalling for longer than 1 µs will slow down other
write intensive programs on the CPU.

The C3 itself is a Linux kernel module isolated on a dedicated core using Linux’s
isolcpus commandline parameter. It consists mainly of a tight instruction fetch loop.
Upon receiving a C3 instruction from the C3 envoy, the C3 decodes it and executes
the corresponding instruction. During the design, we investigated in detail how the
ThunderX executes prefetches into the L2 cache to provide a guide for using the cache
injection C3 instructions. We also implemented a ThunderX driver which allocates the
SGIs with interrupt number 8 through 15 with Linux such that they can be used by C3
instructions.

As an interface to CPU applications, the C3 provides ioctls to register the applications
with an ID such that incoming notifications instructions can be routed to the appropriate
notifications and using the appropriate notification method. Because the C3 is a Linux
kernel module it implements the read and poll system calls to deliver notifications to
applications. C3 notification instruction serve as the main synchronization primitive
between a CPU application and its offloading counterpart on the FPGA. It is often used
to signal that data has been transferred into the CPU L2 cache which is now ready to be
consumed.

We implemented a handful of C3 aware FPGA applications for testing and characterizing
the C3 system. However, due to problems during the implementation the applications
could not be finished in time to perform the tests to characterize C3.

89

Bibliography

[1] ARM. AMBA AXI and ACE Protocol Specification. AXI3, AXI4, and AXI4-Lite.
IHI 0022E. Version E. 2023. url: https://developer.arm.com/documentation/
ihi0022/e (visited on 08/25/2023).

[2] Nilanjana Basu, Claudio Montanari, and Jakob Eriksson. “Frequent background
polling on a shared thread, using light-weight compiler interrupts.” In: Proceedings
of the 42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation. PLDI ’21. Virtual, Canada: Association for Computing
Machinery, 2021, pp. 1249–1263. isbn: 9781450383912. doi: 10.1145/3453483.
3454107.

[3] Andrew Baumann et al. “The multikernel: a new OS architecture for scalable
multicore systems.” In: Proceedings of the ACM SIGOPS 22nd Symposium on
Operating Systems Principles. SOSP ’09. Big Sky, Montana, USA: Association
for Computing Machinery, Oct. 11, 2009, pp. 29–44. isbn: 9781605587523. doi:
10.1145/1629575.1629579.

[4] László A. Bélády. “A study of replacement algorithms for a virtual-storage com-
puter.” In: IBM Systems Journal 5.2 (1966), pp. 78–101. issn: 0018-8670. doi:
10.1147/sj.52.0078.

[5] Brian N. Bershad et al. “User-level interprocess communication for shared memory
multiprocessors.” In: ACM Transactions on Computer Systems 9.2 (May 1, 1991),
pp. 175–198. issn: 0734-2071. doi: 10.1145/103720.114701.

[6] Christian Bienia et al. “The PARSEC benchmark suite: characterization and archi-
tectural implications.” In: Proceedings of the 17th International Conference on Paral-
lel Architectures and Compilation Techniques. PACT ’08. Toronto, Ontario, Canada:
Association for Computing Machinery, 2008, pp. 72–81. isbn: 9781605582825. doi:
10.1145/1454115.1454128.

[7] Thomas Burd et al. ““Zeppelin”: An SoC for Multichip Architectures.” In: IEEE
Journal of Solid-State Circuits 54.1 (Jan. 2019), pp. 133–143. issn: 0018-9200. doi:
10.1109/JSSC.2018.2873584.

[8] Surendra Byna, Yong Chen, and Xian-He Sun. “Taxonomy of Data Prefetching
for Multicore Processors.” In: Journal of Computer Science and Technology 24.3
(May 26, 2009), pp. 405–417. issn: 1860-4749. doi: 10.1007/s11390-009-9233-4.

[9] CCIX Consortium Inc. An Introduction to CCIX. White Paper. CCIX Consortium
Inc., 2019. url: https://www.ccixconsortium.com/wp-content/uploads/2019/
11/CCIX-White-Paper-Rev111219.pdf (visited on 03/25/2024).

90

https://developer.arm.com/documentation/ihi0022/e
https://developer.arm.com/documentation/ihi0022/e
https://doi.org/10.1145/3453483.3454107
https://doi.org/10.1145/3453483.3454107
https://doi.org/10.1145/1629575.1629579
https://doi.org/10.1147/sj.52.0078
https://doi.org/10.1145/103720.114701
https://doi.org/10.1145/1454115.1454128
https://doi.org/10.1109/JSSC.2018.2873584
https://doi.org/10.1007/s11390-009-9233-4
https://www.ccixconsortium.com/wp-content/uploads/2019/11/CCIX-White-Paper-Rev111219.pdf
https://www.ccixconsortium.com/wp-content/uploads/2019/11/CCIX-White-Paper-Rev111219.pdf

[10] David Cock et al. “Enzian: An Open, General, CPU/FPGA Platform for Systems
Software Research.” In: Proceedings of the 27th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems. ASPLOS
’22. Lausanne, Switzerland: Association for Computing Machinery, 2022, pp. 434–
451. isbn: 9781450392051. doi: 10.1145/3503222.3507742.

[11] CXL Consortium. Compute Express Link (CXL). url: https://computeexpresslink.
org/ (visited on 03/25/2024).

[12] Linux Kernel Contributors. The kernel’s command-line parameters. Version 6.7.
2024. url: https://docs.kernel.org/6.7/admin-guide/kernel-parameters.
html (visited on 04/30/2024).

[13] Jonathan Corbet. “Rust in the 6.2 kernel.” In: LWN (Nov. 17, 2022). url: https:
//lwn.net/Articles/914458/ (visited on 05/05/2024).

[14] Bill Dally. “Power, Programmability, and Granularity: The Challenges of ExaS-
cale Computing.” In: 2011 IEEE International Parallel & Distributed Processing
Symposium. IPDPS ’11. Anchorage, AK, USA: IEEE Computer Society, May 2011,
pp. 878–878. isbn: 978-1-61284-372-8. doi: 10.1109/IPDPS.2011.420.

[15] William J. Dally, Yatish Turakhia, and Song Han. “Domain-specific hardware
accelerators.” In: Communications of the ACM 63.7 (June 2020), pp. 48–57. issn:
0001-0782. doi: 10.1145/3361682.

[16] William J. Dally et al. “Efficient Embedded Computing.” In: Computer 41.7 (July
2008), pp. 27–32. issn: 0018-9162. doi: 10.1109/MC.2008.224.

[17] Michael Dalton et al. “Andromeda: Performance, Isolation, and Velocity at Scale
in Cloud Network Virtualization.” In: 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18). NDSI ’18. Renton, WA, USA:
USENIX Association, Apr. 2018, pp. 373–387. isbn: 978-1-939133-01-4. url: https:
//www.usenix.org/conference/nsdi18/presentation/dalton.

[18] Robert H. Dennard et al. “Design of ion-implanted MOSFET’s with very small
physical dimensions.” In: IEEE Journal of Solid-State Circuits 9.5 (Oct. 1974),
pp. 256–268. issn: 1558-173X. doi: 10.1109/JSSC.1974.1050511.

[19] Ulrich Drepper. What Every Programmer Should Know About Memory. In: LWN
(Nov. 24, 2007). Ed. by Jonathan Corbet. url: https://lwn.net/Articles/259710/
(visited on 03/15/2024).

[20] Bengisu Elis et al. “Non-Blocking GPU-CPU Notifications to Enable More GPU-
CPU Parallelism.” In: Proceedings of the International Conference on High Per-
formance Computing in Asia-Pacific Region. HPCAsia ’24. Nagoya, Japan: As-
sociation for Computing Machinery, 2024, pp. 1–11. isbn: 9798400708893. doi:
10.1145/3635035.3635036.

[21] Hadi Esmaeilzadeh et al. “Dark silicon and the end of multicore scaling.” In:
Proceedings of the 38th Annual International Symposium on Computer Architecture.
ISCA ’11. San Jose, California, USA: Association for Computing Machinery, 2011,
pp. 365–376. isbn: 9781450304726. doi: 10.1145/2000064.2000108.

91

https://doi.org/10.1145/3503222.3507742
https://computeexpresslink.org/
https://computeexpresslink.org/
https://docs.kernel.org/6.7/admin-guide/kernel-parameters.html
https://docs.kernel.org/6.7/admin-guide/kernel-parameters.html
https://lwn.net/Articles/914458/
https://lwn.net/Articles/914458/
https://doi.org/10.1109/IPDPS.2011.420
https://doi.org/10.1145/3361682
https://doi.org/10.1109/MC.2008.224
https://www.usenix.org/conference/nsdi18/presentation/dalton
https://www.usenix.org/conference/nsdi18/presentation/dalton
https://doi.org/10.1109/JSSC.1974.1050511
https://lwn.net/Articles/259710/
https://doi.org/10.1145/3635035.3635036
https://doi.org/10.1145/2000064.2000108

[22] Alireza Farshin et al. “Reexamining Direct Cache Access to Optimize I/O Intensive
Applications for Multi-Hundred-Gigabit Networks.” In: Proceedings of the 2020
USENIX Conference on Usenix Annual Technical Conference. USENIX ATC’20.
Berkley, CA, USA: USENIX Association, 2020. isbn: 978-1-939133-14-4.

[23] Daniel Firestone et al. “Azure Accelerated Networking: SmartNICs in the Public
Cloud.” In: 15th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 18). NSDI ’18. Renton, WA, USA: USENIX Association, Apr. 2018,
pp. 51–66. isbn: 978-1-939133-01-4. url: https://www.usenix.org/conference/
nsdi18/presentation/firestone.

[24] Denis Foley and John Danskin. “Ultra-Performance Pascal GPU and NVLink
Interconnect.” In: IEEE Micro 37.2 (May 10, 2017), pp. 7–17. issn: 1937-4143. doi:
10.1109/MM.2017.37.

[25] Alex Forencich. Verilog AXI Components. Feb. 26, 2019. url: http://alexforencich.
com/wiki/en/verilog/axi/start (visited on 05/12/2024).

[26] John Giacomoni, Tipp Moseley, and Manish Vachharajani. “FastForward for efficient
pipeline parallelism: a cache-optimized concurrent lock-free queue.” In: Proceedings
of the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming. PPoPP ’08. Salt Lake City, UT, USA: Association for Computing
Machinery, 2008, pp. 43–52. isbn: 9781595937957. doi: 10.1145/1345206.1345215.

[27] Chris Gregg and Kim Hazelwood. “Where is the data? Why you cannot debate
CPU vs. GPU performance without the answer.” In: Proceedings of the IEEE
International Symposium on Performance Analysis of Systems and Software. IS-
PASS ’11. Austin, TX, USA: IEEE Computer Society, 2011, pp. 134–144. isbn:
9781612843674. doi: 10.1109/ISPASS.2011.5762730.

[28] John L. Hennessy and David A. Patterson. “A new golden age for computer
architecture.” In: Communications of the ACM 62.2 (Jan. 2019), pp. 48–60. issn:
0001-0782. doi: 10.1145/3282307.

[29] Tejun Heo. Devres - Managed Device Resource. Version 6.8. 2007. url: https:
/ / docs . kernel . org / driver - api / driver - model / devres . html (visited on
05/09/2024).

[30] Seokbin Hong, Won-Ok Kwon, and Myeong-Hoon Oh. “Hardware Implementation
and Analysis of Gen-Z Protocol for Memory-Centric Architecture.” In: IEEE Access
8 (July 9, 2020), pp. 127244–127253. issn: 2169-3536. doi: 10.1109/ACCESS.2020.
3008227.

[31] Ram Huggahalli, Ravi Iyer, and Scott Tetrick. “Direct Cache Access for High Band-
width Network I/O.” In: Proceedings of the 32nd Annual International Symposium
on Computer Architecture. ISCA ’05. Madison, Wisconsin, USA: IEEE Computer
Society, May 1, 2005, pp. 50–59. isbn: 076952270X. doi: 10.1109/ISCA.2005.23.

[32] Intel Corporation. Intel Data Direct I/O Technology. url: https://www.intel.
com/content/www/us/en/io/data-direct-i-o-technology.html (visited on
04/11/2024).

92

https://www.usenix.org/conference/nsdi18/presentation/firestone
https://www.usenix.org/conference/nsdi18/presentation/firestone
https://doi.org/10.1109/MM.2017.37
http://alexforencich.com/wiki/en/verilog/axi/start
http://alexforencich.com/wiki/en/verilog/axi/start
https://doi.org/10.1145/1345206.1345215
https://doi.org/10.1109/ISPASS.2011.5762730
https://doi.org/10.1145/3282307
https://docs.kernel.org/driver-api/driver-model/devres.html
https://docs.kernel.org/driver-api/driver-model/devres.html
https://doi.org/10.1109/ACCESS.2020.3008227
https://doi.org/10.1109/ACCESS.2020.3008227
https://doi.org/10.1109/ISCA.2005.23
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html

[33] Farshad Khunjush and Nikitas J. Dimopoulos. “Hiding Message Delivery and
Reducing Memory Access Latency by Providing Direct-to-Cache Transfer during
Receive Operations in a Message Passing Environment.” In: Proceedings of the
2005 Workshop on MEmory Performance: DEaling with Applications, Systems and
Architecture. MEDEA ’05. Saint Louis, Missouri, USA: IEEE Computer Society,
Sept. 2005, pp. 41–48. doi: 10.1145/1152779.1147358.

[34] Dario Korolija, Timothy Roscoe, and Gustavo Alonso. “Do OS abstractions make
sense on FPGAs?” In: 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20). OSDI ’20. Berkley, CA, USA: USENIX Association,
2020, pp. 991–1010. isbn: 978-1-939133-19-9. url: https://www.usenix.org/
conference/osdi20/presentation/roscoe.

[35] David A. Koufaty et al. “Data Forwarding in Scalable Shared-Memory Multipro-
cessors.” In: IEEE Transactions on Parallel and Distributed Systems 7.12 (Dec.
1996), pp. 1250–1264. issn: 1045-9219. doi: 10.1109/71.553274.

[36] Jaekyu Lee, Hyesoon Kim, and Richard Vuduc. “When Prefetching Works, When It
Doesn’t, and Why.” In: ACM Transactions on Architecture and Code Optimization
9.1 (Mar. 2012). issn: 1544-3566. doi: 10.1145/2133382.2133384.

[37] D. Lenoski et al. “The Stanford DASH multiprocessor.” In: Computer 25.3 (1992),
pp. 63–79. doi: 10.1109/2.121510.

[38] Edgar A. Leon, Kurt B. Ferreira, and Arthur B. Maccabe. “Reducing the Impact
of the Memory Wall for I/O Using Cache Injection.” In: 15th Annual IEEE
Symposium on High-Performance Interconnects (HOTI 2007). HOTI ’07. Stanford,
CA, USA: IEEE Computer Society, Aug. 22, 2007. isbn: 978-0-7695-2979-0. doi:
10.1109/HOTI.2007.8.

[39] Arm Limited. Arm Architecture Reference Manual for A-Profile architecture. Ver-
sion J.a. 2023. url: https://developer.arm.com/documentation/ddi0487/ja
(visited on 08/23/2023).

[40] Arm Limited. Arm Generic Interrupt Controller Architecture Specification. GIC
architecture version 3 and 4. Version H.b. Apr. 2024. url: https://developer.arm.
com/documentation/ihi0069/hb (visited on 05/08/2024).

[41] Jiuxing Liu and Bulent Abali. “Virtualization polling engine (VPE): using dedicated
CPU cores to accelerate I/O virtualization.” In: Proceedings of the 23rd International
Conference on Supercomputing. ICS ’09. Yorktown Heights, NY, USA: Association
for Computing Machinery, 2009, pp. 225–234. isbn: 9781605584980. doi: 10.1145/
1542275.1542309.

[42] Clemens Lutz et al. “Pump Up the Volume: Processing Large Data on GPUs
with Fast Interconnects.” In: Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data. SIGMOD ’20. Portland, OR, USA: Association
for Computing Machinery, 2020, p. 16331649. isbn: 9781450367356. doi: 10.1145/
3318464.3389705.

93

https://doi.org/10.1145/1152779.1147358
https://www.usenix.org/conference/osdi20/presentation/roscoe
https://www.usenix.org/conference/osdi20/presentation/roscoe
https://doi.org/10.1109/71.553274
https://doi.org/10.1145/2133382.2133384
https://doi.org/10.1109/2.121510
https://doi.org/10.1109/HOTI.2007.8
https://developer.arm.com/documentation/ddi0487/ja
https://developer.arm.com/documentation/ihi0069/hb
https://developer.arm.com/documentation/ihi0069/hb
https://doi.org/10.1145/1542275.1542309
https://doi.org/10.1145/1542275.1542309
https://doi.org/10.1145/3318464.3389705
https://doi.org/10.1145/3318464.3389705

[43] Cavium (now Marvell). Cavium ThunderX CN88XX, Pass 2. Hardware Reference
Manual. Document Number CN88XX-HM-2.7P. 2017.

[44] V. Milutinovic, A. Milenkovic, and G. Sheaffer. “The cache injection/cofetch ar-
chitecture: initial performance evaluation.” In: Proceedings Fifth International
Symposium on Modeling, Analysis, and Simulation of Computer and Telecommu-
nication Systems. MASCOT ’97. Haifa, Israel: IEEE Computer Society, Jan. 12,
1997, pp. 63–64. isbn: 0818677589. doi: 10.1109/MASCOT.1997.567582.

[45] Sparsh Mittal. “A Survey of Recent Prefetching Techniques for Processor Caches.”
In: ACM Computing Surveys 49.2 (Aug. 2016). issn: 0360-0300. doi: 10.1145/
2907071.

[46] Gordon E. Moore. “Cramming More Components onto Integrated Circuits.” In:
Electronics Magazine 38.8 (Apr. 19, 1965), pp. 114–117. issn: 0748-3252.

[47] Vijay Nagarajan et al. A Primer on Memory Consistency and Cache Coherence,
Second Edition. Comp. by Natalie Enright Jerger and Margaret Martonosi. Found.
by Mark D. Hill. 2nd ed. Synthesis Lectures on Computer Architecture 49. Cham,
CH: Springer, 2022. isbn: 978-3-031-01764-3. doi: 10.1007/978-3-031-01764-3.

[48] Amy Ousterhout et al. “Shenango: Achieving High CPU Efficiency for Latency-
sensitive Datacenter Workloads.” In: 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19). Boston, MA, USA: USENIX
Association, Feb. 2019, pp. 361–378. isbn: 978-1-931971-49-2. url: https://www.
usenix.org/conference/nsdi19/presentation/ousterhout.

[49] Daniel Petrisko et al. “BlackParrot: An Agile Open-Source RISC-V Multicore for
Accelerator SoCs.” In: IEEE Micro 40.4 (July 1–Aug. 1, 2020), pp. 93–102. issn:
1937-4143. doi: 10.1109/MM.2020.2996145.

[50] DPDK Project. Data Plane Development Kit (DPDK). url: https://www.dpdk.org
(visited on 03/25/2024).

[51] Abishek Ramdas. “CCKit: FPGA acceleration in symmetric coherent heterogeneous
platforms.” PhD thesis. Zürich: ETH Zürich, Nov. 20, 2023, p. 296. doi: 10.3929/
ethz-b-000642567.

[52] Abishek Ramdas et al. “ECI: a Customizable Cache Coherency Stack for Hybrid
FPGA-CPU Architectures.” In: (2022). doi: 10.48550/arXiv.2208.07124. arXiv:
2208.07124 [cs.AR].

[53] Ciro Santilli. PARSEC Benchmark. 2023. url: https://github.com/cirosantilli/
parsec-benchmark (visited on 05/13/2024).

[54] Jasmin Schult. “Characterization and validation of an in-silicon cache coherence
protocol implementation.” MA thesis. Zürich: ETH Zürich, Apr. 3, 2023. 242 pp.
doi: 10.3929/ethz-b-000630895.

[55] SiFive, Inc. SiFive TileLink Specification. Specification. Version 1.9.3. SiFIve, Inc.,
Feb. 9, 2023. url: https://www.sifive.com/document-file/tilelink-spec-
1.9.3 (visited on 03/25/2024).

94

https://doi.org/10.1109/MASCOT.1997.567582
https://doi.org/10.1145/2907071
https://doi.org/10.1145/2907071
https://doi.org/10.1007/978-3-031-01764-3
https://www.usenix.org/conference/nsdi19/presentation/ousterhout
https://www.usenix.org/conference/nsdi19/presentation/ousterhout
https://doi.org/10.1109/MM.2020.2996145
https://www.dpdk.org
https://doi.org/10.3929/ethz-b-000642567
https://doi.org/10.3929/ethz-b-000642567
https://doi.org/10.48550/arXiv.2208.07124
https://arxiv.org/abs/2208.07124
https://github.com/cirosantilli/parsec-benchmark
https://github.com/cirosantilli/parsec-benchmark
https://doi.org/10.3929/ethz-b-000630895
https://www.sifive.com/document-file/tilelink-spec-1.9.3
https://www.sifive.com/document-file/tilelink-spec-1.9.3

[56] Jeff A. Stuart, Michael Cox, and John D. Owens. “GPU-to-CPU callbacks.” In:
Proceedings of the 2010 Conference on Parallel Processing. Euro-Par 2010. Ischia,
Italy: Springer-Verlag, Aug. 31, 2010, pp. 365–372. isbn: 9783642218774. doi:
10.1007/978-3-642-21878-1 45.

[57] J. Stuecheli et al. “IBM POWER9 opens up a new era of acceleration enablement:
OpenCAPI.” In: IBM Journal of Research and Development 62.4/5 (June 2018),
8:1–8:8. issn: 0018-8670. doi: 10.1147/JRD.2018.2856978.

[58] Wen Su et al. “Using Direct Cache Access Combined with Integrated NIC Archi-
tecture to Accelerate Network Processing.” In: Proceedings of the 2012 IEEE 14th
International Conference on High Performance Computing and Communication
& 2012 IEEE 9th International Conference on Embedded Software and Systems.
HPCC ’12. Liverpool, UK: IEEE Computer Society, 2012, pp. 509–515. isbn:
9780769547497. doi: 10.1109/HPCC.2012.75.

[59] Dan Tang et al. “DMA cache: Using on-chip storage to architecturally separate I/O
data from CPU data for improving I/O performance.” In: HPCA - 16 2010 The
Sixteenth International Symposium on High-Performance Computer Architecture.
HPCA ’10. Bangalore, India: IEEE, 2010, pp. 1–12. isbn: 978-1-4244-5659-8. doi:
10.1109/HPCA.2010.5416638.

[60] Neil C. Thompson and Svenja Spanuth. “The decline of computers as a general
purpose technology.” In: Communications of the ACM 64.3 (Feb. 2021), pp. 64–72.
issn: 0001-0782. doi: 10.1145/3430936.

[61] Jan Nino Walter. “Linux as a universal boot loader for new operating systems.” MA
thesis. Zürich: ETH Zürich, Nov. 28, 2022. 55 pp. doi: 10.3929/ethz-b-000583404.

[62] Minhu Wang, Mingwei Xu, and Jianping Wu. “Understanding I/O Direct Cache
Access Performance for End Host Networking.” In: Proceedings of the ACM on
Measurement and Analysis of Computing Systems. Vol. 6. 1. New York, NY, USA:
Association for Computing Machinery, Feb. 28, 2022. doi: 10.1145/3508042.

[63] Mark Wyse. The BedRock Cache Coherence Protocol and System. Specification.
Version 1.1. Paul G. Allen School of Computer Science & Engineering, University
of Washington, Apr. 5, 2022. url: https://github.com/black-parrot/black-
parrot / blob / master / docs / bedrock protocol specification . pdf (visited on
04/10/2024).

[64] Sun Xian-He, Surendra Byna, and Yong Chen. “Server-Based Data Push Architec-
ture for Multi-Processor Environments.” In: Journal of Computer Science and Tech-
nology 22.5 (Sept. 25, 2007), pp. 641–652. issn: 1860-4749. doi: 10.1007/s11390-
007-9090-y.

[65] Xilinx. UltraScale Architecture and Product Data Sheet: Overview (DS890). Ver-
sion v4.4.1. 2023. url: https://docs.xilinx.com/v/u/en-US/ds890-ultrascale-
overview (visited on 08/24/2023).

95

https://doi.org/10.1007/978-3-642-21878-1_45
https://doi.org/10.1147/JRD.2018.2856978
https://doi.org/10.1109/HPCC.2012.75
https://doi.org/10.1109/HPCA.2010.5416638
https://doi.org/10.1145/3430936
https://doi.org/10.3929/ethz-b-000583404
https://doi.org/10.1145/3508042
https://github.com/black-parrot/black-parrot/blob/master/docs/bedrock_protocol_specification.pdf
https://github.com/black-parrot/black-parrot/blob/master/docs/bedrock_protocol_specification.pdf
https://doi.org/10.1007/s11390-007-9090-y
https://doi.org/10.1007/s11390-007-9090-y
https://docs.xilinx.com/v/u/en-US/ds890-ultrascale-overview
https://docs.xilinx.com/v/u/en-US/ds890-ultrascale-overview

[66] Chia-Lin Yang et al. “Tolerating Memory Latency through Push Prefetching for
Pointer-Intensive Applications.” In: ACM Transactions on Architecture and Code
Optimization 1.4 (Dec. 2004), pp. 445–475. issn: 1544-3566. doi: 10.1145/1044823.
1044827.

[67] Yuan Yuan, Rubao Lee, and Xiaodong Zhang. “The Yin and Yang of processing data
warehousing queries on GPU devices.” In: Proceedings of the VLDB Endowment
6.10 (Aug. 2013), pp. 817–828. issn: 2150-8097. doi: 10.14778/2536206.2536210.

[68] Ardhi Wiratama Baskara Yudha et al. “A Simple Cache Coherence Scheme for
Integrated CPU-GPU Systems.” In: Proceedings of the 57th ACM/EDAC/IEEE
Design Automation Conference. DAC ’20. Virtual Event, USA: IEEE Press, 2020.
isbn: 9781450367257. doi: 10.1109/DAC18072.2020.9218664.

96

https://doi.org/10.1145/1044823.1044827
https://doi.org/10.1145/1044823.1044827
https://doi.org/10.14778/2536206.2536210
https://doi.org/10.1109/DAC18072.2020.9218664

A Enzian Memory Explorer Help Page

enzian-memory: REPL to explore all things memory on Enzian

Usage: enzian-memory [options] "[command1]" "[command2]" ...
Without any commands, the program will start a REPL.
Commands passed over the command line must be surrounded with quotes.

The program maps CPU memory from 0x100000000 to 0x1300000000 and FPGA
memory from 0x10000000000 to 0x20000000000 with an identity mapping.
Therefore, all addresses are physical addresses.

Number formats: <addr> and <hex-value> are expected to be in hexadecimal
<seconds> and <sgi number> are expected to be in decimal

If not all memory is mapped, not all instructions are available.

Options:
-c Do not map CPU memory
-e Echo commands
-f Do not map FPGA memory
-h Print this help message
-i Do not map FPGA I/O memory

Commands:
read <addr> Read from physical address
write <addr> <hex-value> Write to physical address
dmb Data memory barrier
dsb Data system barrier
l2-inv <addr> Invalidate L2 cache line
l2-inv-wb <addr> Invalidate and write back L2 cache line
l2-wb <addr> Write back L2 cache line
l2-fetch-lock <addr> Fetch and lock cache line in the L2 cache
l2-pref <prefetch type> <addr> Prefetch address into L2 cache
prefu <addr> Prefetch address into uTLB
tlb-inv-all Invalidate all entries in the TLBs on this core.
l2-hit <addr> Check if address is in L2 cache

97

utlb-hit <addr> Check if address is in uTLB
mtlb-hit <addr> Check if address is in mTLB
sysreg <sysreg name> Read system register; the name is case insensitive
l2-line-state <addr> Print L2 cache line state
print-tlb <tlb name> Print TLB; the name is case insensitive
sgi <sgi number> Send SGI
sleep <seconds> Sleep
echo <text> Echo some text
help Print this help message
exit Exit the program

98

