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Abstract

The language of probability is pervasive in almost all of the fields mod-
eling real or abstract systems. Despite presenting a variety of desirable
features, such as accounting for uncertainty, allowing reasoning over
marginalized variables of a global systems, and permitting predictions,
probabilistic models are often challenging to utilize in practice due to
the difficulties of inference. For this reason, a variety of approximate
inference approaches have been developed by the research community
in order to deal with more and more complex scenarios.

Despite the impressive advances that the fields of probabilistic mod-
eling and approximate inference have seen in the last 30 years, most
approaches encountered in the inference literature are developed with
general utility in mind, aiming at finding solutions to broad classes of
probabilistic problems. For this reason, many times probabilistic mod-
els tailored to specific applications require equally tailored inference
solutions that are not found in the literature.

In this thesis we deal with structured scenarios where, compared to
traditional approaches, the problems at hand come with more complex
generative assumptions or additional information in the data. Account-
ing for structure usually brings constraints that may be harder to treat,
as relations in the data need to be considered at both modeling and
inference time. When the difficulties of more restricted inference are
overcome, however, such additional information can be exploited to
draw more precise conclusions on the observed data itself.

In the works presented in the following chapters we consider the joint
problem of developing effective probabilistic models for structured data
while performing efficient and informed approximate inference. In par-
ticular, we explore some of the most prominent inference approaches,
namely Markov Chain Monte Carlo, message passing, variational in-
ference and expectation maximization, in the context of applications to
hypergraphs and variational autoencoders. In the former case, we show
how to devise models and inference approaches the take into account
the higher-order structure of the data. In the latter, we show how to de-
vise theoretically-grounded deep learning models to perform inference
under additional supervision and detailed generative assumptions.

In summary, the overarching theme of this thesis is how to exploit
additional structure in the data effectively, both theoretically and com-
putationally. As a result of aligning the inductive bias of the algorithms
to the data at hand, structured approaches outperform generic ones on
specific tasks, allowing to derive improved conclusions from observa-
tions.
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Sommario

Il linguaggio della probabilità è pervasivo in quasi tutti i campi che
modellano sistemi reali o astratti. Nonostante presentino una serie di
caratteristiche favorevoli, come la capacità di tenere conto dell’incertezza,
di ragionare su variabili marginali di un sistema globale e di consentire
previsioni, i modelli probabilistici sono spesso difficili da utilizzare
in pratica a causa delle difficoltà di inferenza. Per questo motivo, la
comunità di ricerca ha sviluppato una serie di approcci di inferenza
approssimata per affrontare scenari sempre più complessi.

Nonostante gli impressionanti progressi che i campi della modellazione
probabilistica e dell’inferenza approssimata hanno visto negli ultimi
30 anni, la maggior parte degli approcci incontrati nella letteratura
sull’inferenza sono stati sviluppati con uno scopo generale, con l’obiettivo
di trovare soluzioni ad ampie classi di problemi probabilistici. Per
questo motivo, molte volte i modelli probabilistici adattati a specifiche
applicazioni richiedono soluzioni di inferenza altrettanto personalizzate
che non si incontrano in letteratura.

In questa tesi ci occupiamo di scenari strutturati in cui, rispetto agli ap-
procci tradizionali, i problemi da affrontare sono caratterizzati da ipotesi
generative più complesse o da informazioni aggiuntive nei dati. La con-
siderazione della struttura di solito comporta vincoli che possono essere
più difficili da trattare, poiché le relazioni nei dati devono essere consid-
erate sia al momento della modellazione che dell’inferenza. Tuttavia,
quando si superano le difficoltà di un’inferenza più ristretta, queste
informazioni aggiuntive possono essere sfruttate per trarre conclusioni
più precise sui dati osservati.

Nei lavori presentati nei capitoli seguenti consideriamo il problema con-
giunto di sviluppare modelli probabilistici efficaci per i dati strutturati
e di eseguire un’inferenza approssimata efficiente e informata. In parti-
colare, esploriamo alcuni dei principali approcci all’inferenza, ovvero
Markov Chain Monte Carlo, message passing, inferenza variazionale e
massimizzazione dell’aspettativa, nel contesto di applicazioni a ipergrafi
e autoencoder variazionali. Nel primo caso, mostriamo come concepire
modelli e approcci di inferenza che tengano conto della struttura di
ordine superiore dei dati. Nel secondo caso, mostriamo come sviluppare
modelli di deep learning teoricamente fondati per eseguire l’inferenza
sotto una supervisione aggiuntiva e ipotesi generative dettagliate.

In sintesi, il tema principale di questa tesi è come sfruttare efficacemente
la struttura aggiuntiva dei dati, sia dal punto di vista teorico che com-
putazionale. Grazie all’allineamento del bias induttivo degli algoritmi ai
dati, gli approcci strutturati superano quelli generici su compiti specifici,
consentendo di trarre conclusioni migliori dalle osservazioni.
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To Alessandra, for
“The dunes are changed by the wind,

but the desert never changes.”1

1Paulo Coelho, The Alchemist.
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Chapter 1

Introduction

In the realm of probabilistic modeling, whether rooted in frequentist or
Bayesian principles, inference serves as the keystone guiding the process
that allows drawing conclusions from data. Bayesian inference, in particu-
lar, offers a rigorous framework for updating beliefs about parameters or
hypotheses based on observed data, leveraging prior knowledge to derive
posterior distributions. On a high level, performing inference in a frequentist
framework entails finding the maximum likelihood estimates of a model’s pa-
rameters, while Bayesian inference reduces to deriving posterior distributions.
While theoretically well-grounded, however, these inference procedures are
often hard to accomplish in practice. For this reason, many approximate infer-
ence approaches have been developed by the research community during the
years. Among these are Monte Carlo approaches, expectation-maximization,
variational inference, and message passing, to name a few.

While approximate inference algorithms are developed in full generality,
many times specific problems require adjustments for inference to be per-
formed correctly and efficiently. This issue becomes especially apparent
when the data at hand is highly structured, that is, it comes with precise
generative assumptions or specific relations to be exploited and taken into
account. In this thesis, we provide examples of how commonly utilized
inference frameworks can be adjusted to accommodate for such structured
scenarios. We tackle such a problem in a variety of both data and inference
regimes, and show how the union of general inference tools with problem-
specific adjustments can yield algorithms that are both efficient and effective
in practice.

1.1 Inference for structured problems

Historically, examples of hard-to-perform inference can be found in early
statistical physics, notably the exploration of systems such as the Ising model

1



1. Introduction

[9, 10, 11]. The Ising model describes the interactions between magnetic
spins, which govern the system’s energy. The connection between the energy
of the system and the probability of observing a specific spin configuration
is described by the Boltzmann distribution. Given the spin values σ ∈
{−1,+1}N of the N particles in the system, the Boltzmann distribution is
given by

p(σ) =
e−H(σ)

Z
,

where Z is a normalizing constant, also known as the free energy of the
system. The Hamiltonian H is described by the external field h and the
interaction strengths J between spins, amounting to

H(σ) = −
N

∑
i=1

hiσi −∑
i<j

Jijσiσj .

Such relatively simple systems, where variables are discrete and interactions
can be clearly decomposed inside the Hamiltonian, already showcase various
difficulties which can be encountered in other, possibly more complex, prob-
abilistic scenarios. First, sampling from the Boltzmann distribution poses a
significant challenge, particularly as the size and complexity of the system
increase. In fact, sampling from the Boltzmann distribution requires knowing
the value of the free energy, which has explicit form

Z = ∑
σ∈{−1,+1}N

e−H(σ) .

The combinatorial explosion of the 2N possible spin configurations renders
exhaustive enumeration infeasible, and requires resorting to approximate
sampling techniques. Second, when the hi, Jij parameters are not known, the
task of inferring their values from system’s observations, also referred to as
the inverse problem in the Ising model literature [12], is similarly rendered
difficult by the combinatorial explosion of configurations. As a result, the
Ising inverse problem gave rise to the first variational methods [11], which
are at the basis of numerous modern approaches in approximate inference.

That of the Ising model serves as an illustration of a challenging inference
problem where closed-form solutions are not available. More broadly, such
examples are encountered in many fields of probabilistic inference, ranging
from machine learning to detailed Bayesian modelling of complex systems
[13, 14]. In response to the inherent difficulties highlighted by the previous
example, researchers have developed a spectrum of modern approximate
inference techniques. These approaches offer pragmatic solutions in different
inference settings, often representing a trade-off between computational
complexity and generative assumptions, together with the higher or lower
levels of approximation they provide. In Section 2.2, we provide an overview
of modern approaches for approximate inference.

2



1.2. Accounting for structure

1.2 Accounting for structure

While modern approximate inference methods represent significant advance-
ments in tackling complex probabilistic inference problems, their general
applicability may pose limitations when confronted with more structured
or specialized scenarios. In fact, these methods offer efficiency and versa-
tility across a range of inference settings, but they are often designed with
broad utility in mind. Yet, when faced with more structured problems or
when incorporating detailed modeling assumptions, the need for tailored
approaches becomes apparent. In such cases, existing tools may require
modifications or extensions to accommodate the specific requirements of the
problem at hand. In Section 2.1, we delve into hypegraphs, which constitute
a prime example of a field where classical approaches need to be adjusted to
more structured data. In such a case, previous approaches for community
detection on graphs, briefly introduced in Section 2.1.2, are not readily ex-
tended, and additional effort is required both in devising viable probabilistic
models as well as efficient inference procedures. In Chapters 3–6 we show
how to devise probabilistic models for hypergraphs, and perform efficient
inference for these models based on data observations. In Chapter 7, we show
an example of how to define variational autoencoders respecting specific
generative assumptions, and how this results in both theoretical guarantees
and practical utility.

1.2.1 Inference in theory and in practice

The study of approximate inference encompasses both theoretical and practi-
cal considerations, each playing a vital role in the development and applica-
tion of inference methodologies. Theoretically, formal guarantees examining
the conditions under which these methods yield good approximate solutions,
and ideally bound their error, provide valuable insights into the validity of
the conclusions drawn from the data. Therefore, such theoretical analyses
serve to establish confidence for end-users and the broader community, of-
fering assurances regarding the accuracy and robustness of the inference
outcomes. Conversely, in practice, the emphasis lies on devising inference
procedures that exhibit computational scalability. Practical considerations
in this direction encompass algorithmic optimizations, parallelization and
sparsification techniques, dynamic programming for solving intermediate
problems, and implementation strategies aimed at ensuring that inference
procedures can be implemented efficiently in real-world settings. In Chap-
ters 3 and 6, we show how a variety of such techniques are vital to the
practical success of theoretically-grounded algorithms.

3



1. Introduction

1.3 Contributions

This thesis is written with the purpose of presenting the contributions of the
author to the scientific community, specifically the following works:

• “Community detection in large hypergraphs” [1], presented in Chapter 3.

• “Framework to generate hypergraphs with community structure” [2], pre-
sented in Chapter 4.

• “Hypergraphs with node attributes: Structure and inference” [3], presented
in Chapter 5.

• “Message-passing on hypergraphs: Detectability, phase transitions and higher-
order information” [4], presented in Chapter 6.

• “Provable concept learning for interpretable predictions using variational
inference” [5], presented in Chapter 7.

Other contributions of the author, which are not presented in this thesis are:

• “Hypergraphx: a library for higher-order network analysis” [6]

• “Fast rates for noisy interpolation require rethinking the effect of inductive
bias” [15]

• “Sampling on networks: estimating spectral centrality measures and their
impact in evaluating other relevant network measures” [7]

• “Sampling on networks: estimating eigenvector centrality on incomplete net-
works” [8]

4



Chapter 2

Background

2.1 Graphs and hypergraphs

In many fields, ranging from commercial transportation to social relationships
to ecology, the naturally occurring phenomena observed on global systems
stem from the interactions of numerous microscopic components. Crucially,
the low-level interactions that give rise to macro-observations combine in
a highly non-linear and complex fashion. Indeed, such systems are often
referred to as complex systems, whose main characteristic is that “it is difficult
to derive their collective behavior from a knowledge of the system’s components” 1

Within such a context, networks have emerged as invaluable tools for mod-
eling complex systems. Networks serve as maps delineating the physical
or virtual spaces wherein interactions unfold. Owing to the integration of
graph theory and statistical mechanics, networks have paved the way for a
multidisciplinary field that spans fundamental physics to the social sciences.

Yet, traditional network representations have their limitations [16, 17]. While
networks capture pairwise interactions effectively, many real-world systems
exhibit collective behaviors that cannot be explained only by dyadic con-
nections. Social systems, neuroscience, ecology, and biology often feature
interactions among groups of nodes rather than pairs [18, 19, 20, 21]. Such
higher-order interactions are critical for understanding phenomena with a
lesser level of approximation, sometimes uncovering dynamics that would be
fundamentally misunderstood under the lens of traditional network science.

To address this gap, the spotlight has turned to simplicial complexes and
hypergraphs [22] as promising frameworks for capturing group interactions.
Unlike traditional networks, hypergraphs accommodate interactions among
any number of units, making them ideal for modeling real-world systems

1Quote from the excellent and comprehensive introduction to complex systems,
Prof.Albert-László Barabási’s online book http://networksciencebook.com/.

5
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2. Background

characterized by higher-order relationships. In this section we give an in-
troduction to selected topics in the hypergraph literature, with a special
emphasis on community detection methods and on the comparison with
traditional dyadic methods.

2.1.1 Hypergraphs: An introduction

Consider a system of units V = {1, . . . , N}, denoted as nodes. In classical
networks, the interactions between these units are represented via a graph
G = (V, E). Here, the interactions between nodes are represented via edges
(i, j) ∈ E, where both i, j are nodes, i.e. E ⊆ V ×V.

Hypergraphs generalize this representation to systems where interactions
happen among an arbitrary number of nodes. A hypergraph H = (V, E)
maintains the definition of nodes as atomic parts of the systems, and allows
the interactions to be an arbitrary subset of nodes E ⊆ P(V), where is
P(V) is the set of all possible subsets of V. The elements of E are called
hyperedges. A hyperedge e = {i1, . . . , im} is said to have size, or dimension
m, and represents a single interaction among the nodes it contains.

A hypergraph whose edges all have size 2 can be equivalently represented
as an undirected graph, which explains how hypergraphs are a direct gen-
eralization of graphs. The representational power of hypergraphs, however,
comes from mixing interactions of various sizes. Such complexity results in
the emergence of phenomena that span different magnitudes and increase the
non-linearity of the system at hand, at the same time providing the possibility
for more nuanced explanations of such phenomena.

Graphs are generally represented via their adjacency matrix A ∈ RN×N ,
defined as:

Aij =

{
1 if (i, j) ∈ E
0 otherwise

.

In the case of weighted graphs, Aij can take on real values for edges present
in E, defining a notion of edge weight. The representation of hypergraphs,
is rendered more complicated by their high dimensionality. One way to
computationally and theoretically represent hypergraphs is directly via it
hyperedge list, i.e. as a set of node sets. Theoretically, many works utilize
adjacency tensors: For every possible node tuple (i1, . . . , im) of every possible
dimension m = 2, . . . , N, the adjacency tensor A of a hypergraph is defined
by

Ai1,...,im =

{
1 if {i1, . . . , im} ∈ E
0 otherwise

.

6



2.1. Graphs and hypergraphs

Another computationally advantageous representation of a hypergraphs is
given by the incidence matrix B ∈ {0, 1}N×|E|, defined by

Bie =

{
1 if i ∈ e
0 otherwise

.

In both the adjancency tensor and incidence matrix representations, weighted
hyperedges can be represented similarly to the case of the adjacency matrix
for graphs.

2.1.1.1 Extensions

In many cases the extensions that have been made to graphs in the past are
being made now in parallel for hypergraphs.

Among these, notable ones include directed [23], temporal [24], and mul-
tilayer [25] hypergraphs. Other extensions comprise the incorporation of
covariates, possibly both on nodes and hyperedges [3].

2.1.1.2 Other representations

The representation of a hypergraph as a collection of hyperedges H = (V, E)
is intuitive in terms of interpretation and provides a natural parallel with
pairwise networks. However, hypergraphs can be represented via a variety of
mathematical objects, which can at times be advantageous for specific tasks
or problems. Among these, we mention the representation as factor graphs,
or equivalently as bipartite graphs [22]. As introduced in Section 2.2.3.1,
factor graphs contain two types of nodes: variable nodes and function nodes.
In representing hypergraphs, it is useful to map elements of V, i.e. nodes in
the hypergraph, to variable nodes. Consequently, function nodes represent
hyperedges, and are connected to the variables nodes the hyperedge contains.

Equivalently, one can map hypergraphs to bipartite graphs, which factor
graphs are a special case of. While the mathematical representation is the
same, bipartite graphs are usually represented as a set of homogeneous
nodes partitioned in two groups, and where interactions can only connect
two groups, but never happen between nodes in the same group.

Often times, mapping hypergraphs to known structures can be helpful
as classical algorithms can be directly applied on higher-order problems.
Examples of such cases involve graphical representations [26], configuration
models [27], and synchronization [28].

Yet, many problems arise from the treatment of hypergraphs directly as
complex systems of their own. This renewed focus sometimes does not allow
a direct mapping to known algorithms for classical representations, and
requires solutions tailored to higher-order systems. One such case is that of
community detection, which we introduce next.
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2.1.2 Community detection

Community detection [29], also known as clustering or node partitioning,
involves the task of grouping the nodes within a system into clusters, known
as communities, according to observed interactions. Initially applied to social
and interaction-based networks, the concept of communities stemmed from
the analysis of social structures and relationships [30]. Over time, community
detection has expanded its application to various fields, emerging as a
prominent method for modeling complex systems across disciplines.

With the development of community detection as a defined branch of complex
systems, also the number of definitions of communities evolved to be applied
to specific cases where different modeling assumptions are required. To date,
there is no one-size-fits-all definition of community. On the contrary, different
works advocate for the usage of different generative models for community
detection that best match the generative process of the data [31, 32].

As with other fields, the approaches to community detection on networks
have been expanded to hypergraphs, with some contributions reported in
later chapters of this thesis.

Here, we introduce the topic of community detection with one of the most
popular algorithms in the literature, namely the Stochastic Block Model, to
then focus on the variational techniques which are commonly employed for
their inference.

2.1.2.1 Stochastic block models

Stochastic Block Models (SBMs) [33] are a class of generative models for
community detection on networks. In their most basic form, SBMs on
networks comprise two parameter sets that are the objective of inference:
an affinity matrix w ∈ RK×K, where K is the number of communities, and
a membership matrix u ∈ RN×K, where N is the number of nodes in the
network.

A Bernoulli SBM Depending on the type of network at hand, these pa-
rameters take on different ranges to accomodate for different types of data.
Consider the case of hard communities and unweighted graphs. In the case
of hard communities, where a node can only belong to a given community,
every row ui of the membership matrix is a one-hot vector representing such
membership. The probability of the data can be represented by a product of
Bernoulli probabilities:

p(A ; u, w) = ∏
i,j

Be(Aij ; uT
i wuj) . (2.1)

Notice that for this to be a valid overall Bernoulli probability, the affinity
matrix w needs to have entries constrained to the [0, 1] interval. It is crucial
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to notice that different adjacency matrix structures encode different types of
interactions: assortative structures are represented by diagonal matrices w,
while the disassortative case of inter-community interaction are represented
by higher off-diagonal entries of w. Furthermore, in principle it is possible
to infer which case best describes the data at inference time, as opposed to
assuming it a priori.

Different SBM flavours have been developed for a variety of cases, including
weighted data [34], soft community assignments [35], multilayer networks
[36], node and edge covariates [37], temporal data [38], making SBMs one of
the most prominent approaches in modern-day community detection.

Extension to hypergraphs The extension of SBMs to hypergraphs is not
straightforward, as the mathematical definition of community and assortative
(and disassortative) interactions lack a canonical form. As an example,
consider two recent models: Hypergraph-MT [39] and Hy-MMSBM [1],
the latter being presented in Chapter 3. Both models deal with weighted
hypergraphs, and assume a factorized Poisson likelihood. In both cases,
u ∈ RN×K

≥0 contains soft memberships, as every entry uik can take on any
non-negative value. For every hyperedge e = i1, . . . , im, the Poisson mean is
given by

λe :=
K

∑
k=1

w|e|k ∏
i∈e

uik

in the case of Hypergraph-MT, where wd is a diagonal tensor for every
possibly hyperedge dimension d, and wdk its k-th diagonal entry. For Hy-
MMSBM, w ∈ RK×K

≥0 resembles instead the affinity matrix of the graph SBM,
and the Poisson mean is modeled as:

λe ∝ ∑
i<j

uT
i wuj .

These different possibilities have both been shown to effectively model a
variety of higher-order dataset, and represent only two of a variety of model-
ing choices that can be made. In general, extending SBMs to hypergraphs
needs to be tackled from a variety of angles. Theoretically, the models need
to be apt to the data at hand. Computationally however, there is a trade-off
between the generality of the probabilistic model, the number of parame-
ters to be estimated, and the scalability of inference [40, 41, 42]. Similarly,
notice that the number of interactions to be considered, which we call the
configuration space, goes from O(N2) in the case of graphs to O(2N) in the
case of hypergraphs, making computational considerations yet more urgent.
Finally, due to their low inductive bias, very general models will require more
data for inference to be performed effectively. Oppositely, more restricted
models will work on restricted data when this aligns to the generative as-
sumptions. Similar arguments could be made also in the case of networks.
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However, the canonical choice of the SBM as a maximum entropy model [43],
together with the restriction to dyadic interactions, imply that the modeling
choices are much more restricted than for hypergraphs, where theoretical
and computational issues are exacerbated by the exploding configuration
space.

Variational approaches for SBMs To understand the need for efficient
inference routines, even in the case of networks, consider the example model
in Equation 2.1. In this case, inferring the maximum likelihood values
of w, u entails possibly iterating over all the possible NK configurations
of community assignment u, and obtaining closed-form formulas for the
affinity matrix w, which are hard to obtain in practice. For this reason,
most scalable approaches focus on greedy, hierarchical, or approximate
solutions that can drift away from the optimal solution. As pointed out in
the previous paragraphs, this problem is made even more severe in the case
of hypergraphs, where the sheer size of the configuration space makes most
naive approaches inapplicable.

Much of the success of SBMs in modeling community structure in networks
derives not only from their modeling flexibility, but also from the efficient
inference methods that have been recently developed in the field. Among
these, variational approaches have quickly gained success, and have proven
effective in a variety of contexts [35, 36, 37]. Considered the effectiveness
of variational approaches to inference in a dyadic context, the works in
Chapters 3 and 5 show how to expand this mathematical framework to the
case of hypergraphs. Together with careful probabilistic and implementation
choices, these works overcome the issue of scalability, while providing solid
predictive performances across a variety of datasets. In Section 2.2.4 we
introduce the technical background needed for such approaches, and in
Section 2.2.4.5 show examples of how to apply them to hypergraphs, with
reference to the work presented in Chapter 3.

2.2 Approximate inference in Bayesian modeling

2.2.1 Bayesian probabilistic models

Bayesian modeling provides a probabilistic framework for updating beliefs
based on new evidence. It revolves around the idea of using prior knowledge
and observed data to compute the probabilities of different hypotheses or
parameters. This approach allows quantifying uncertainty, making informed
decisions, and drawing meaningful conclusions across various fields in
machine learning and complexity science, among others.

On a high level, the goal of Bayesian inference is that of finding a posterior
distribution. Given a probabilistic model comprising a likelihood p(x|z) of
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the observed data x given latent variables z, and a prior distribution p(z),
Bayes’ theorem yields the posterior as distribution as:

p(z|x) = p(x|z)p(z)
p(x)

. (2.2)

In the scope of this thesis we are interested in finding good solutions or
approximations of the posterior for a given probabilistic model. However,
devising the probabilistic model, both considering the likelihood and prior,
constitutes a problem in-and-of-itself. In many cases this comprises choosing
the right prior distribution to avoid biasing inference [44], as well as choos-
ing the right likelihood function to describe the data. While not explicitly
mentioned, such tasks were implicit in many of the works presented in this
thesis.

Bayesian inference is often challenging to perform analytically. However,
there are instances where closed-form solutions are attainable. A notable
example is that of conjugate families, pairs of distributions where prior and
posterior belong to the same family. For example, a Poisson likelihood and a
Gamma prior

p(xi|λ) = Poisson(x; λ)

p(λ) = Gamma(λ; k, θ)

yield a posterior which is also Gamma distributed and with close-form
updates for its parameters:

p(λ|{xi}i) = Gamma

(
λ; k + ∑

i
xi,

θ

nθ + 1

)

where x1, . . . , xn is a sample of n data observations.

In more general cases, closed-form expressions for the posterior are hard
to obtain. This is due to the marginal likelihood of the data, also known as
evidence, being hard to compute or even approximate in higher dimensions:

p(x) =
∫

p(x, z) dz =
∫

p(x|z) p(z) dz .

For this reason, a variety of techniques for the approximation of posterior
distributions have been devised. In the following sections we introduce some
classical approximation methods, with a particular attention to variational
methods in Section 2.2.4.
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2.2.2 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) methods constitute the golden standard
for sampling from complex and possibly high-dimensional target distribu-
tions. In general, the goal of MCMC methods is to devise a Markov Chain
(MC) whose stationary distribution corresponds to the target one. As a result,
simulating the Markov Chain for long enough provides samples from a dis-
tribution which is guaranteed to asymptotically match the target. Crucially,
most MCMC methods rely on having access to quantities only proportional
to the probability density, bypassing the estimation of complex normalization
constants.

2.2.2.1 Basics of Markov Chains

A Markov Chain is a stochastic process with time dependencies, or autocor-
relations, only between consecutive time steps. Formally:

Definition 2.1 Given a sequence of random variables (r.v.) {yt}t, these satisfy the
Markov property if

p(yt|yt−1, . . . , y0) = p(yt|yt−1) .

Given this definition, it is also straightforward to factorize the probability of
the full sequence as:

p(y0, y1, . . . , yT) = p(y0)
T

∏
t=1

p(yt|yt−1) .

Assume that all of the r.v. belong to the same discrete probability space
yt ∈ Y . Then, the transition probabilities p(yt = i|yt−1 = j) are described by
a stochastic transition matrix Pij, which also defines the stationary distribution
of the Markov chains

Definition 2.2 Consider a discrete MC on a probability space Y with transition
matrix P. A probability distribution π on Y is said to be stationary for the MC if

Pπ = π

i.e. if it left unchanged after a one step of the Markov process.

In the context of MCMC methods, the stationary distribution of a chain is the
central object of interest. In fact, most MCMC techniques aim at construct-
ing chains with a stationary distribution corresponding to a distribution of
interest. When the stationary distribution exists, this is reached and asymp-
totically sampled from by running the Markov chain for a large number of
steps. For this reason, the existence of the stationary distribution is crucial to
the development of the sampling algorithms we present next.
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2.2.2.2 Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm [45] can be utilized in a Bayesian context
to draw samples from the posterior distribution of p(z|x). The algorithm is
presented in Algorithm 1

Algorithm 1: Metropolis-Hastings algorithm
Data: observations xi
Result: samples zt

1 t← 0
2 sample z0 from p(z0)
3 while True do
4 perturb zt to obtain z̃t according to a proposal g(z̃t|zt)

5 compute acceptance threshold τ = g(zt|z̃t)p(z̃t|{xi})
g(z̃t|zt)p(zt|{xi})

6 accept zt+1 = z̃t with probability min (1, τ), else zt+1 = zt

7 end

The key to the theoretical and computational utility of this procedure lies in
the definition of the transition probabilities: since the threshold τ = p(z̃t|{xi}))

p(zt|{xi}))
is defined as the ratio of the density between the new proposal z′t and
the current state zt, there is no need to know any normalizing constant.
For example, τ can be computed via the typically easier-to-access joint
distribution τ = p(z̃t,{xi}))

p(zt{xi})) , or in the case of the Ising models by only accessing
the Hamiltonian values without the need to estimate the high-dimensional
free energy.

2.2.2.3 Gibbs sampling algorithm

The Gibbs algorithm constitutes a special case of Metropolis-Hastings. It
is particularly well-suited for scenarios where sampling from the target
distribution is more efficiently achieved by sampling from its conditionals
rather than directly from the joint distribution. The observation is that
many hierarchical distributions, or more in general graphical models, can be
easily sampled knowing the probabilistic dependencies describing the single
random variables. More specifically, if we consider a set of n random variables
z1, . . . , zn, the Gibbs sampling algorithm samples from the conditionals

p(zj|z\j)

where z\j is the set of all variables but zj. By iterating over all variables
j = 1, . . . , n and repeating such procedure indefinitely, Gibbs sampling ap-
proximates the joint distribution, and can be computationally advantageous
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when the conditional ones are known in closed-form or cheap to sample
from.

In a Bayesian context, the goal is to obtain samples of the latent variables z
from the posterior distribution in Equation 2.2.

2.2.2.4 Limitations of MCMC

Markov Chain Monte Carlo methods stand as the gold standard for sam-
pling from complex distributions, owing to their theoretical foundations
and asymptotic guarantees of convergence. However, their applicability in
real-life scenarios is often hindered by many practical drawbacks.

First of all, most MCMC techniques require a burn-in period to reach equi-
librium, produce samples from the target distribution, and not be biased by
the choice of the starting point. Additionally, MCMC samples often exhibit
self-correlation between samples, leading to inefficiencies in the exploration
of the probability space. Perhaps the most significant issue is the challenge
of mixing, where the Markov chain struggles to efficiently explore the high-
dimensional space and tends to get stuck in local optima or valleys of the
probability distribution. Various techniques have been proposed to mitigate
these challenges, such as employing multiple chains in parallel or employing
techniques like replica with chain exchanges [46, 47]. Marginalization tech-
niques can also aid in improving mixing by integrating out certain variables
from the model, as in Gibbs sampling.

Despite these improvements, MCMC remains computationally intensive,
particularly in high-dimensional spaces where the curse of dimensionality
exacerbates the challenges of exploration. Consequently, while MCMC offers
a powerful framework for sampling from complex distributions, its practical
utility is often limited by its computational demands and challenges in
achieving efficient mixing.

2.2.2.5 Related techniques

Aside from the MCMC techniques presented above, there exist a variety of
other methods to sample from complex target distribution. Among these,
we mention acceptance-rejection sampling [48] and importance sampling
[49], both based on proposals distributions that approximate the target and
provide a reduction in variance in a variety of cases. Alternatively, justified by
asymptotic results like the Central Limit Theorem, the Laplace method [50]
provides a second-moment Gaussian approximation to a target distribution.
More recently, Langevin dynamics have been proposed to simulate sampling
from a distribution via its score function, overcoming the need for hard-to-
compute normalization constants [51].

14



2.2. Approximate inference in Bayesian modeling

2.2.2.6 Application: sampling from the Hy-MMSBM model

In this section, we introduce an application of the MCMC methods explained
above to hypergraph sampling. In particular, we focus on the Hy-MMSBM
probabilistic model, presented in more detail in Chapters 3 and 4. We show
how such methods can be tuned to take into account the structure of the
problem at hand.

The Hy-MMSBM model is a probabilistic model for community configura-
tions of hypergraphs, and extends the classical SBM model to higher-order
data. Consider a weighted hypergraph H = (V, E), which can be represented
via a vector of natural weights {Ae}e∈Ω = A ∈ N|Ω|, for every hyperedge
e ∈ Ω. Here, Ω is the space of all possible hyperedges, comprising both the
observed E and unobserved ones.

The Hy-MMSBM model assumes a factorized probability model defined as:

p(H ; w, u) = ∏
e∈Ω

p(Ae ; w, u) , (2.3)

where the single edges are Poisson-distributed according to

p(Ae ; w, u) = Pois

(
Ae ; λe :=

∑i<j∈e uT
i w uj

κe

)
, (2.4)

and κe a normalization constant. The symmetric affinity matrix w ∈ RK×K
≥0

and community assignments u ∈ RN×K
≥0 encode the community structure

of the hypergraph. While the problem of inferring such parameters from
the data can be tackled via variational techniques, here we focus on the
problem of directly sampling from a configuration of the model with given
w, u parameters.

The problem of sampling hypergraphs is relatively novel, as sampling dyadic
networks from a given SBM model can be done by directly sampling the
O(N2) edges from their marginal distributions. In hypergraphs, however, the
configuration space Ω is of size O(2N), therefore it is not possible to directly
sample from the marginals in Equation 2.4 for all the hyperedges.

Similarly, it is also not possible to apply vanilla MCMC techniques to directly
sample hypergraphs. For such an approach to be possible, in fact, we would
need to start from a random initial configuration of hyperedges and then
mix until convergence to the stationary distribution corresponding to that
presented in Equation 2.3. As explained in Section 2.2.2.4, the slow mixing
time would not allow performing the sampling efficiently, with the possibility
of the Markov chain getting stuck in local probability optima.

The solution proposed in [2] is to utilize the structure of the probabilistic
model to prompt the Markov chain with more structure, thus effectively
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reducing the space of configurations to be explored. Specifically, the sampling
procedure is divide in three consecutive steps.

The first step is to sample two global statistics of the hypergraph samples
to be produced. These two statistics are the degree sequence d = (di)i∈V ,
containing the (unweighted) degree of the single nodes, and size sequence
k = (k j)

N
j=2, containing the number of hyperedges k j for every possible size j.

As proven in Chapter 4, a Central Limit Theorem allows the cheap sampling
of such statistics, since their Gaussian approximation is available in closed
form.

The second step is to then combine the degree and size sequences into a first
unweighted hypergraph proposal, to then be recombined via the MCMC
procedure from [52]. Such an MCMC procedure is termed “configurational”,
since it preserves the degree and size sequences during mixing.

Combining the sequences sampled at the previous stage to only explore
hypergraphs that respect such sequences is the crucial step that renders this
whole procedure more efficient than a vanilla application of MCMC: the
space of configurations to be explored at this stage is reduced to the space of
hypergraphs with a given configuration, and can be sampled more efficiently
via Monte Carlo techniques.

The final step of the sampling procedure is to obtain the weights of the binary
hyperedges obtained from stage two. This can be performed cheaply, as the
expected number of hyperedges scales linearly for sparse hypergraphs, and
their weights come from a truncated Poisson distribution.

In summary, this approach to sampling hypergraphs from the Hy-MMSBM
probabilistic model shows how combining classical MCMC techniques with
more structured sampling approaches can allow overcoming the problem
of the exploding hypergaph configuration. As a result, it is one of the first
scalable approaches to sampling synthetic hypergraphs.

2.2.3 Message passing and belief propagation

Message passing (MP), and its widespread instance called belief propagation
(BP) stand out as particularly useful techniques for approximate inference in
models with high dimensionality but sparse probabilistic dependencies. First
introduced in the context of statistical physics and problems akin to the Ising
model presented in Section 1.1, BP operates on factor graphs. Factor graphs,
in turn, are useful tools for representing probabilistic dependencies among
random variables. In the following sections, we present the building blocks
of BP, and outline how and when this can be used in practical inference
problems.
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x1 x2 x3 x4 x5

Figure 2.1: Factor graph representation of a probability distribution with factoriza-
tion p(x1, x2, x3, x4, x5) = f1,2(x1, x2) f2,3,4(x2, x3, x4) f3,4,5(x3, x4, x5) for some functions
f1,2, f2,3,4, f3,4,5.
Variable nodes (circles) represent random variables, function nodes (squares) represent probabilis-
tic dependencies between variables, i.e. factors in the probability distribution.

2.2.3.1 Probabilistic models as factor graphs

For any given probabilistic model and its factorization, which illustrates the
probabilistic relationships between its variables, it is possible to depict the
model as a factor graph. Factor graphs comprise two types of nodes: variable
nodes and factor nodes. Variable nodes correspond to the original random
variables within the probabilistic model, while factor nodes symbolize the
factorization of the probability distributions. Put differently, factor nodes en-
capsulate the factors involved in the distribution’s factorization. In Figure 2.1,
we show the factor graph representation of a probabilistic model with fac-
torization p(x1, x2, x3, x4, x5) = f1,2(x1, x2) f2,3,4(x2, x3, x4) f3,4,5(x3, x4, x5) for
some functions f1,2, f2,3,4, f3,4,5.

As is intuitive from its representation, a factor graph is as useful as the
factorization of the probability distribution it represents. When numerous
variables are conditionally independent and the factorization yields sparse
representations in the graphs, using such a representation makes it easier
to perform inference on the data. The BP algorithm builds on this intuition
to devise fast, and in certain cases exact, inference procedures for a given
probabilistic model.

2.2.3.2 The belief propagation algorithm

The BP algorithm is based on the idea of cavity distribution in statistical
physics [53, 54], and yields useful and simplified formulas for the free energy
of a systems. Similar to the case of the Ising model presented in Section 2.2,
any probabilistic model on can be reformulated in the form of a Gibbs-
Boltzmann distribution, defined as

p(x) =
eH(x)

Z
,

where H is called the Hamiltonian of the system, and Z is a normalization
constant. We notice that, given a probabilistic model with distribution p
over all its variables, it is perhaps more familiar in the context of statistics
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and probabilistic machine learning to utilize the log-likelihood L(x) :=
log p(x). The connection between the Gibbs-Boltzmann distribution and the
original probabilistic model is specified by H(x) ∝ L(x), where any constant
independent of x can be absorbed into Z. Additionally, it is possible to read
the edges of the deriving factor graph directly from the Hamiltonian: every
addend of the Hamiltonian specifies a function node, and each variable xi
appearing in that term an edge between the relative function and variable
nodes. Going back to the example of Figure 2.1, the Hamiltonian function is
given by:

H(x) = log f1,2(x1, x2) + log f2,3,4(x2, x3, x4) + log f3,4,5(x3, x4, x5) .

From the first addend, we obtain a function node that is connected to the
variable nodes x1 and x2, the second function node is connected to x2, x3, and
x4, and similarly for all the addends appearing in H(x).

We now define the formal iterative updates at the core of the BP procedure.
In general, consider a Hamiltonian function with general form:

H(x) =
n

∑
i=1

Hi(xi) +
M

∑
a=1

Ha(x∂a) . (2.5)

Here a are factor nodes, and ∂a defines the set of all variables nodes xi which
are connected to a in the factor graph. We can then define the external fields
and interactions as

ψi(xi) = eHi(xi)

ψa(x∂a) = eHa(x∂a) ,

and the messages between nodes as

qi→a(ti)

q̂a→i(ti) ,

represented in Figure 2.2. The BP equations define fixed-point updates as
follows:

qi→a(ti) ∝ ψj(tj) ∏
b∈∂i\a

q̂b→i(ti) (2.6)

q̂b→j(tj) = ∑
t∂b\tj

ψb(t∂b) ∏
k∈∂b\j

qk→b(tk) . (2.7)

In turn, the messages define the marginal beliefs of the variable nodes

qi(ti) ∝ ψi(ti) ∏
a∈∂i

 ∑
t∂a\ti

ψa(t∂a) ∏
j∈∂a\i

qj→a(tj) ,
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x1 x2 x3 x4 x5

a
q 1→

a(
x 1
) q̂

a→
2 (x

2 )

Figure 2.2: Message propagation in a factor graph. In red, the message q1→a(x1) from the
variable node x1 to the function node a. In blue, the message q̂a→2(x2) from node a to node x2.

which correspond to their marginal distributions. Practically, Equations 2.6
and 2.7 can be alternated until convergence of the messages and of the esti-
mated marginal beliefs, which is attained due to the spread of the messages
through the factor graph.

2.2.3.3 Loopy graphs and extensions

Crucially, the BP procedure is theoretically justified and yields exact inference
on factors graphs without loops, i.e. on tree-like structures. However, most
of its utility comes from its application on complex scenarios where loops
are present. For this reason, many recent works tried to explain the empirical
success of BP also on loopy graphs in a variety of scenarios. A classical expla-
nation is that in most sparse graphs, the loops are statistically large enough
that the tree assumption is locally respected [11]. In other cases, it is possible
to disregard close-to-constant contributes of many neighbors of a node, and
collect them into graph-independent external fields [55], additionally lighten-
ing the computational burden found when such graphs are especially dense.
Other extensions of MP include adjustments to directly account for loops
in the graphical structure [56, 57] or reduce the approximations to take into
account more local correlations [58, 59].

The work presented in Section 2.2.3.4 and Chapter 6 broadly follows this
line of literature, and exploits classical MP arguments to make simplifying
assumptions and obtain practical inference protocols on hypergraphs.

2.2.3.4 Application: message passing on hypergraphs

Message passing represented one of the first approaches to obtain both
theoretical and empirical results on the recovery of community configurations
on graphs [55]. In this section, we show how such methods can be expanded
to hypergraphs, similarly yielding the first theoretical results that are also
empirically checked for a class of hypergraph SMB-like models, and refer to
Chapter 6 for further details.

The HySBM model is an extension of the SMB to hypergraphs, and is based
on hard-community configurations ti ∈ {1, . . . , K} for every i ∈ V, and a
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symmetric affinity p ∈ [0, 1]K×K. Similarly to the Hy-MMSBM probabilistic
model introduced in Section 2.2.2.6, the HySMB probabilistic model is defined
as

p(H ; w, u) = ∏
e∈Ω

Be
(

Ae ;
πe

κe

)
with Bernoulli sufficient statistics defined via

πe := ∑
i<j∈e

ptitj .

Additionally, here we impose a prior distribution ti ∼ Cat(n), where n are
the categorical probabilities over the K community assignments.

This probabilistic model yields a factor graph representation with Hamilto-
nian equal to the log-likelihood:

L(A, t | p, n) = ∑
e∈Ω

[
Ae log

(
∑
i<j

ptitj

)
+ (1− Ae) log

(
1− ∑i<j ptitj

κe

)]
(2.8)

The interactions in the derived factor graph represetation can be read directly
from Equation 2.8: the function nodes are one per hyperedge e ∈ Ω, and the
variable nodes connected to each are those that belong to the hyperedge itself.
Due to the number of hyperedges |Ω|, such a factor graph is too large to
approch computationally, and would yield practically infeasible MP updates.

For this reason, the key insight in [4] is to take inspiration from previous
approaches on graphs, and isolate the contributions of different hyperedges.
Crucially, the contributions of observed (Ae = 1), and unobserved (Ae = 0)
hyperedges can be separated in Equation 2.8. As proven theoretically in
sparse regimes, the messages to be exchanged between function and factor
nodes corresponding to unobserved hyperedges are approximately constant,
and can be absorbed into an external field h(ti) ∝ ∑j∈V ∑tj

ptitj qj(tj) that only
depends on the node marginals qj, and is thus efficiently computed and
updated.

This reasoning shows how, in parallel with previous results on dyadic net-
works, the direct application of the MP techniques is not possible, and incor-
poration of additional information from the probabilistic model is necessary
for the efficient implementation of the inference procedure.

2.2.4 Variational methods

Variational methods for statistical inference represent a powerful and versatile
tool kit that has gathered significant attention across disciplines such as
statistics and machine learning. First developed to address complex problems
in physical systems, these methods seek to approximate difficult distribution
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by optimizing simpler ones, transforming the problem of inference into an
optimization one. In particular, the core idea behind variational methods lies
in finding surrogate posterior distributions that closely mimic the true, often
intractable one.

One of the key motivations for the widespread adoption of variational meth-
ods lies in their computational efficiency. Unlike traditional Monte Carlo
methods, which rely on sampling techniques and can be computationally
intensive, variational methods offer scalability to large datasets and high-
dimensional models. Moreover, they provide a flexible and general frame-
work applicable to a wide range of probabilistic models, from simple latent
variable models to complex hierarchical structures. Their integration with
deep learning frameworks further enhances their versatility, enabling the
approximation of complex functional objectives via neural networks.

In this section, we give a brief introduction to variational methods for statisti-
cal inference, highlighting the main technical tools that lie at the basis of its
development.

2.2.4.1 Variational inequality and evidence lower bound

The goal of variational inference (VI) is to approximate the posterior distribu-
tion in Equation 2.2 via another surrogate distribution q(z). 2 To this end, VI
seeks to choose the distribution q(z) so as to minimize a notion of distance
to the exact posterior. While many choices are available [60], it is standard to
consider the KL-divergence [61]:

KL (q(z) || p(z|x)) := −Ez∼q(z)

[
log
(

p(z|x)
q(z)

)]
= −

∫
q(z) log

(
p(z|x)
q(z)

)
dz .

By expanding the KL-divergence the following equality can be derived

KL (q(z) || p(z|x)) = E[log q(z)]−E[log p(x, z)] + log p(x) , (2.9)

where all the expectations are taken with respect to q(z). This simple deriva-
tion has a clear interpretation in terms of optimization: the distribution q(z)
minimizing the KL-divergence is the same maximizing the much simpler
objective on the right-hand side, called evidence lower bound (ELBO)

ELBO(q) := E[log p(x, z)]−E[log q(z)] .

2We note here that while classical methods seek to find an approximate posterior q(z),
modern approaches in amortized inference use in turn a posterior directly dependent on the
observables as q(z|x). We keep the notation simple in this first introduction, and go back to
the case of amortized inference in Section 2.2.4.4.
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2. Background

The reason why this objective is simpler to optimize is that it does not contain
the posterior p(z|x) found in the KL-divergence expression, but the joint dis-
tribution p(x, z), which can be usually computed. In the literature, the ELBO
has been the object of intense investigations in terms of its interpretation and
as an optimization objective [62, 63, 64].

As a final note, we also highlight that the derivation above also yields the
so-called variational inequality

log p(x) = ELBO(q) + KL (q(z) || p(z|x))
≥ ELBO(q) .

This inequality can be alternatively derived directly using Jensen’s inequality
on the log-evidence log p(x) 3 , and justifies the name of the evidence lower
bound itself.

These derivations provide a clear VI framework: given a target posterior
distribution p(z|x), find an approximation q(z) that is as close as possible to
it in terms of KL-divergence. Such a distribution is found by optimizing the
evidence lower bound, and its choice is the subjection of the next section.

2.2.4.2 Choosing the approximate posterior

The ELBO objective provides a computationally viable proxy for optimiza-
tion. If the approximate posterior q(z) can take on any distribution in the
probability space of z, then the optimal choice is indeed the exact posterior
q(z) = p(z|x), which yields a null KL-divergence. However, letting q span
the whole probability space is a hard-to-treat problem. For this reason, q is
often chosen to belong to a restricted family of distributions. Among these,
we mention fully or partially factorized distributions, respectively referred
to as mean field and structured mean field approximations [61], hierarchical
families [65], and other parameterized families, notably neural networks such
as in the case of variational auto-encoders (VAEs) [66] and normalizing flows
[67].

In general, the choice of the approximation family depends on the complexity
of the posterior at hand: complex and multi-modal distributions may require
resorting to larger variational families, with the problem rendered even more
difficult by the optimization of the variational objective itself. We deal with
such a problem in the next sections.

3Using Jensen’s inequality makes the difference between the ELBO and the log-evidence
less explicit: in the derivations provided above, it is clear that such a difference is given by
the KL-divergence. The derivation via Jensen’s inequality is as follows:

log p(x) = log
∫ p(x, z)

q(z)
q(z)dz = log Eq

[
p(x, z)
q(z)

]
≥ Eq

[
log

p(x, z)
q(z)

]
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2.2. Approximate inference in Bayesian modeling

2.2.4.3 Optimization in variational inference

Once the evidence lower bound objective has been defined, variational in-
ference turns the posterior inference problem into that of maximizing said
objective. In general, two main approaches are available in the literature.

Coordinate ascent mean-field variational inference (CAVI) When utilizing
a fully factorized approximate posterior q(z) = ∏m

i=1 qi(zi), it is possible to
show [68, 61] that the optimal update for a single latent variable zj is given
by

qj(zj) ∝ exp
[

Ez\j∼q\j(z\j)
p(zj|x, z\j))

]
, (2.10)

where q\j(z\j) = ∏i ̸=j qi(zi). This local update suggests a simple iterative
optimization process, where the qj distributions are updated one at a time
while keeping all the other indices fixed. While such natural and simple algo-
rithm has connections to the message passing and factor graph frameworks
in Section 2.2.3 [61], it only yields a viable optimization procedure when the
updates in Equation 2.10 can be computed in closed form.

Black box variational inference While the CAVI procedure yields an efficient
coordinate ascent algorithm on the ELBO, its analytical updates cannot always
be computed in closed form. In such cases, black-box variational inference
(BBVI) [69] constitutes a viable alternative for general distributions p(x, z)
and parameterized posterior families q(z).

When we consider an approximate posterior family qθ(z) with parameters θ,
BBVI provides a closed form of the gradient as

∇θELBO(qθ) = Eq [∇θqθ(z)(log p(x, z)− log qθ(z))] .

In practice, approximations of the gradient can be accessed via Monte Carlo
samples of the expectation above, and can be utilized for stochastic optimiza-
tion [70].

2.2.4.4 Amortized inference and VAEs

The use of VI has led to notable advances in Bayesian inference, both in
terms of generality of the problems that can be tackled and of computational
scalability. Perhaps, one of the most impactful advances made possible by VI
is the introduction of variational autoencoders (VAEs) [66]. VAEs combine
the generality of variational inference with the representational power of
modern neural networks, which in such models are used to both estimate
a generative model for complex data, for example images, and perform
posterior inference for such a model.
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2. Background

The probabilistic framework of VAEs is very similar to that outlined in
this chapter: we set parameterized likelihood and approximate posterior
functions as

pϕ(x|z)
qθ(z|x) ,

where the parameters ϕ, θ are arbitrary neural network weights. Here, such
neural networks are combined in an encoder-decoder architecture which,
together with a simple prior q(z)4, fully define a probabilistic model and its
approximate posterior.

Optimization is then performed in a similar fashion to the BBVI procedure
presented in Section 2.2.4.3: noisy gradients of the ELBO are estimated
with respect to both ϕ and θ, and optimization is performed via stochastic
gradient descent. While similar on a high level, the optimization of VAEs is
substantially more nuanced due to their complex structure. First, while in
classic Bayesian modeling the generative model is fixed, here it is learned
in the form of pϕ as well, raising theoretical issues on the validity of the
ELBO as an objective for such a task [71, 72]. Second, optimization in VAEs
is performed in an amortized manner: at every inference step, a possibly new
data point x is passed into the neural network, and the posterior q(z|x) is only
estimated based on that single point. This approach allows scaling to modern-
sized dataset of thousand or millions of data points, as well as performing
inference on data never seen during training. Finally, effective optimization
of VAEs requires additional techniques, such as the reparameterization trick
[73, 74].

In Section 2.2.4.6, we show how the solid probabilistic basis of VAEs allows
designing identifiable architectures and obtaining interpretable predictions
in scenarios where additional supervision in the form of labels is available.

2.2.4.5 Application: inference for the Hy-MMSBM model

The Hy-MMSBM model, already mentioned in Section 2.2.2.6, is a proba-
bilistic model for communities in hypergraphs. In this section, we briefly
mention how the variational techniques presented above can be utilized to
efficiently perform inference of the Hy-MMSBM parameters based on data
observation, and refer to Chapter 3 for further details.

4While worthy of a deeper study, we only note here that the prior q(z) has two main
requirements: it mush be possible to sample from it, and its density must be available
for computation. While most vanilla VAEs architecture utilize a standard Gaussian to this
end, substantial research has gone into looking for more complex priors and their effects
on the quality of inference, with proposals ranging from normalizing flows to Gaussian
processes. For simplicity of exposition we assume here that the prior q(z) is fixed and hence
parameter-free.
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2.2. Approximate inference in Bayesian modeling

Recall that the probabilistic model is based on soft community assignments
u ∈ RN×K

≥0 and an affinity matrix w ∈∈ RK×K
≥0 . For every possible hyperedge

e based on the node set V, we define the Poisson mean

λe :=
∑i<j∈e uT

i w uj

κe
. (2.11)

A first approach to infer the optimal u, w values based on an observed
hypergraph is to perform maximum likelihood optimization. Notice that,
based on the parameterization in Equation 2.11, the log-likelihood can be
simplified to the following form

log p(A ; u, w) = −C ∑
i<j∈V

uT
i w uj + ∑

e∈E
Ae log ∑

i<j∈e
uT

i w uj , (2.12)

where C = ∑D
n=2

1
κn
(N−2

n−2) is a constant independent from the data. Direct
optimization of the log-likelihood is not possible, as closed-form solutions
for u, w cannot be promptly derived by simple differentiation. For this
reason, the optimization of the Hy-MMSBM model proceed via a variational
approach, briefly described next.

First, for every hyperedge e we define a probability distribution over all
pairs i, j of nodes in e, and choice of communities indices k, q for i and
j respectively. This probability distribution is defined by the values ρ

(e)
ijkq

such that ∑i<j∈e ∑K
k=1 ∑K

q=1 ρ
(e)
ijkq = 1. The approximation of p(Ae ; u, w) by

any choice of ρ(e) distribution corresponds to the mean-field factorization
mentioned in Section 2.2.4.2, and can be utilized for inference. In fact,
utilizing Jensen’s inequality we can obtain a variational lower-bound to the
right-hand-side of Equation 2.12:

log ∑
i<j∈e

uT
i w uj = log ∑

i<j∈e
uT

i w uj
ρ
(e)
ijkq

ρ
(e)
ijkq

= log E(i,j,k,q)∼ρ(e)

uT
i w uj

ρ
(e)
ijkq


≥ E(i,j,k,q)∼ρ(e)

log

uT
i w uj

ρ
(e)
ijkq

 (2.13)

= ∑
i<j∈e

ρ
(e)
ijkq log

uT
i w uj

ρ
(e)
ijkq

 . (2.14)

While optimizing the log-likelihood directly is not feasible, it can be checked
that differentiating Equation 2.14 with respect to both u and w yields closed
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y

zc zs

x

Figure 2.3: Independence assumptions for the dataset of observations x, labels y, and unobserved
latent variables z, divided into core and style features zc and zs.

form updates. Such updates, in turn, depend on the values of ρ
(e)
ijkq. These

can be chosen so as to maximize the tightness of the variational lower bound
with respect to the log-likelihood: the passage in Equation 2.13 is tightest

when the distribution of the random variable uT
i w uj

ρ
(e)
ijkq

has minimum variance.

This can be realized by choosing ρ
(e)
ijkq ∝ uT

i w uj, which yields update values
for all the ρ variables as well.

In summary, defining a variational lower-bound for the log-likelihood objec-
tive allows recursive optimization that alternates the update of the variational
distribution ρ

(e)
ijkq with that of the model parameters u, w, yielding an efficient

and effective approach to inferring community structure from the data.

2.2.4.6 Application: an identifiable and interpretable VAE model

In this section we show an application of the VAE inference framework,
where the goal is to develop an identifiable and interpretable VAE model.
The technical details are deferred to Chapter 7.

First, we outline the problem setting. We consider the case where we have
observational data x, e.g. X-ray images in a medical dataset, and additional
labels y attached to each observation, e.g. diseases of the patients, or sex and
other physical features. We set out to develop a prediction model for the
labels y given an image x, with the additional requirements of the prediction
model being interpretable and provably so. Notice that this setting differs
substantially from that of vanilla VAEs presented in Section 2.2.4.4, as the
additional labels y are seldom considered. Moreover, even when such labels
are considered to augment the learned generative model, such models are
not able to predict the labels y at test time, since they are required as an input
to the VAE itself [75, 76, 77].

Having outlined the problem setting, we make additional generative assump-
tions to make the problem more treatable. Namely, we assume a Bayesian
generative model where the latent variables z are divided in two groups of
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2.2. Approximate inference in Bayesian modeling

“core” and “style” features z = (zc, zs), and with the following factorization:

p(z | y) = p(zc | y) p(zs) (2.15)
p(x | z, y) = p(x | z) . (2.16)

We represent the related graphical model in Figure 2.3. Performing inference
on such a model presents different challenges. First, we need to perform
inference of the core features zc in an identifiable manner. By assumption,
disentangling such features means recovering some ground-truth, identifiable
information that is both interpretable to a human reader (e.g. lung size in a
chest X-ray), and informative for prediction of the labels y, as prediction is
the goal of the generative model.

To tackle this challenge, we develop a double VAE, structured as follows. We
assume two parallel encoder networks qϕcl (z | x, y) and qϕp(z | x), where “cl”
stands for “concept learning”, and “p” for prediction, parameterized by the
relative weights ϕcl , ϕp. While the encoders are separate based on the type of
input that is given (only the observations x, or both observations and labels
(x, y)), the decoder pθ(x | z) is unique.

This architecture derives from the intuition that the concept learning encoder
qϕcl is provided with all the information to perform posterior inference of the
latents z, hence learning the “concepts” that (by assumption) they represent.
At test time, however, prediction of the labels y will be performed using the
prediction encoder qϕp , that only requires x as input, paired with a classifier
ψ(y | zc).

Crucially, and in line with the independence assumptions in Equations 2.15
and 2.16, the shared decoder pθ(x | z) forces the two encoders to encode
an image to the same latent space of core variables zc, as the generative
process from z to x does not depend on the labels. Such an intuition can be
mathematically proven, we summarize it in the following informal result.

Theorem 2.3 Under the generative assumptions in Equations 2.15 and 2.16, and
under mild regularity conditions, the optimal solution of ϕcl , ϕp, θ, ψ of the ELBO
satisfies the following:

• the posterior samples z obtained from the two encoders qϕcl and qϕp are identical

• the posterior samples of zc are optimally predictive for y, i.e. p(y|x) = p(y|zc)

• the estimated posterior samples zc are equal to the ground truth ones up to
scaling and permutation

• the classifier ψ(y | zc) is Bayes optimal

The last two points in the theorem reflect the two requirements for the
prediction model: first we recover the correct latents zc, which are both
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informative for prediction and interpretable, second, we utilize the recovered
core features zc for prediction of the labels y, which is an optimal approach
under the assumed generative model. Furthermore, despite training the
model using the labels y as input, it is possible to directly perform prediction
at test time: we recover the latent concepts zc using the prediction encoder
qϕp , and utilize these for prediction. Owing to the first point in the theorem,
this approach retains all the information for prediction of y contained in x.
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Chapter 3

Community Detection in Large
Hypergraphs

Abstract

Hypergraphs, describing networks where interactions take place among
any number of units, are a natural tool to model many real-world social
and biological systems. In this work we propose a principled framework
to model the organization of higher-order data. Our approach recovers
community structure with accuracy exceeding that of currently available
state-of-the-art algorithms, as tested in synthetic benchmarks with both
hard and overlapping ground-truth partitions. Our model is flexible
and allows capturing both assortative and disassortative community
structures. Moreover, our method scales orders of magnitude faster
than competing algorithms, making it suitable for the analysis of very
large hypergraphs, containing millions of nodes and interactions among
thousands of nodes. Our work constitutes a practical and general
tool for hypergraph analysis, broadening our understanding of the
organization of real-world higher-order systems.

3.1 Introduction

Over the last decades, most relational data, from biological to social systems,
has found a successful representation in terms of networks, where nodes de-
scribe the basic units of the system, and links their pairwise interactions [78].
Nevertheless, such a modeling approach cannot properly encode the presence
of group interactions, describing associations among three or more system
units at a time [22, 79, 16, 80]. Such higher-order interactions have been
observed in a wide variety of systems, including collaboration networks [81],
cellular networks [21], drug recombination [82], human [83] and animal [84]
face-to-face interactions, and structural and functional mapping of the hu-
man brain [19, 85, 86]. In addition, the higher-order organization of many
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interacting systems is associated with the generation of new phenomena
and collective behavior across many different dynamical processes, such as
diffusion [87], synchronization [88, 89, 90, 91, 92, 93], spreading [94, 95, 96]
and evolutionary games [97, 98, 99].

Networked systems with higher-order interactions are better described by
different mathematical frameworks from networks, such as hypergraphs,
where hyperedges encode interactions among an arbitrary number of sys-
tem units [100, 22]. In the last few years several tools have been developed
for higher-order network analysis. These include higher-order centrality
scores [101, 102], clustering [103] and motif analysis [104, 105], as well
as higher-order approaches to network backboning [106, 107], link predic-
tion [39], and methods to reconstruct non-dyadic relationships from pairwise
interaction records [108]. A variety of approaches have been suggested to
detect communities in hypergraphs, including nonparametric methods with
hypergraphons [109], tensor decompositions [110], latent space distance mod-
els [111], latent class models [112], flow-based algorithms [113, 114], spectral
clustering [115, 116, 117] and spectral embeddings [118]. A different line of
works focuses on deriving theoretical detectability limits [119, 120, 121].

Recently, statistical inference frameworks have been proposed to capture in
a principled way the mesoscale organization of hypergraphs [41, 39, 122].
Despite their success, current approaches suffer from a number of notable
drawbacks. For instance, the method in [122] is restricted to utilizing very
small hypergraphs and hyperedges, due to its high computational complexity.
Also the approach in [41] suffers from a high computational complexity in
the general case, and needs to make strong assumptions to scale to real-
life datasets. Finally, the model in [39] is constrained to work only with
assortative community structures.

In this work we propose a framework to model the organization of higher-
order systems. Our method allows detecting communities in hypergraphs
with accuracy exceeding that of state-of-the-art approaches, both in the cases
of hard and mixed community assignments, as we show on synthetic bench-
marks with known ground-truth partitions. Furthermore, its flexibility allows
capturing general configurations that could not be previously studied, such
as disassortative community interactions. and core-periphery organization
observed in real data.

Finally, overcoming the computational thresholds of previous methods, our
model is extremely efficient, making it suitable to study hypergraphs contain-
ing millions of nodes and interactions among thousands of system units not
accessible to alternative tools. We illustrate the advantages of our approach
through a variety of experiments on synthetic and real data. Our results
showcase the wide applicability of the proposed method, contributing to
broaden our understanding of the organization of higher-order real-world
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systems.

3.2 Generative model

A hypergraph consists of a set of nodes V = {1, . . . , N} and a set of hyper-
edges E. Each hyperedge e is a subset of V, representing a higher-order
interaction between a number |e| of nodes. We denote by D the maximum
possible hyperedge size, which can be arbitrarily imposed up to a maximum
value of D = N, and Ω the set of all possible hyperedges among nodes in V.
We represent the hypergraph via an adjacency vector A ∈NΩ, with entry Ae
being the weight of e ∈ Ω. We assume the weights Ae to be non-negative and
discrete. For real-world systems, A is typically sparse. In fact, the number
|E| of non-zero entries is typically linear in N, and thus much smaller than
the dimension |Ω|.
We model hypergraphs probabilistically, assuming an underlying arbitrary
community structure with K overlapping groups, similarly to a mixed-
membership stochastic block model. Each node i can potentially belong
to multiple groups, as specified by a K-dimensional membership vector ui
with non-negative entries. We collect all the membership assignments in a
N×K matrix u. The density of interactions within and between communities
is regulated by a symmetric non-negative K× K affinity matrix w. These two
main parameters, u and w, control the Poisson distributions of the hyperedge
weights:

p(Ae; u, w) = Pois
(

Ae;
λe

κe

)
, (3.1)

where

λe = ∑
i<j:i,j∈e

uT
i w uj

= ∑
i<j:i,j∈e

K

∑
k,q=1

uik ujq wkq . (3.2)

Here, κe = κ|e| is a normalization factor that solely depends on the hyper-
edge size |e|. We develop our theory for a general form of κn. While in
principle any choice κn > 0 is possible, in our experiments we utilize the
form κn = n(n−1)

2 (N−2
n−2), for every hyperedge of size n [2]. Due to the fact

that κ2 = 1, if the hypergraph contains only pairwise interactions our model
is similar to existing mixed-membership block models for dyadic networks
[35, 36]. Intuitively, given two nodes i, j, the term (N−2

n−2) normalizes for the
number of possible choices of the remaining n− 2 nodes in the hyperedge.
The term n(n− 1)/2 averages among the number of possible pairwise inter-
actions among the n nodes in the hyperedge. Note that previous generative
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models for hypergraphs were limited to detect only assortative community
interactions [39, 41]. By contrast, in our model each entry wkq distinctly
specifies the strength of the interactions between each k, q community pair.
Hence, for the first time, our method allows encoding more general commu-
nity structures, without the need to impose a-priori assumptions to ensure
computational and theoretical feasibility. In particular, the bilinear form
in eq. 3.2 allows for a tractable and scalable inference, regardless of the
structure of w. Another relevant feature of the model is that the size of the
affinity matrix w does not vary with maximum hyperedge size D nor with
the number of hyperedges, making it memory efficient also for hypergraphs
with large interactions. We name our model Hy-MMSBM, for Hypergraph
Mixed-Membership Stochastic Block Model, and provide an open-source
implementation at github.com/nickruggeri/Hy-MMSBM. We have also in-
corporated our algorithm inside the open-source library Hypergraphx [6].

3.3 Inference

3.3.1 Optimization procedure

In real-life scenarios, practitioners observe a list of hyperedges, encoded in
the vector A, and aim to learn the node memberships u and affinity matrix
w that best fit the data. To this end, we start by considering the likelihood of
A given the parameters θ = (u, w). Using eqs. 3.1 and 3.2, this is given by

p(A|θ) = ∏
e∈Ω

Pois
(

Ae;
λe

κe

)
, (3.3)

where the hyperedge weights are assumed to be conditionally independent
given (u, w). Its logarithm is given by

log p(A|θ) = ∑
e∈Ω
− 1

κe
∑

i<j∈e
uT

i w uj

+ ∑
e∈E

Ae log ∑
i<j∈e

uT
i w uj , (3.4)

where we discarded constant terms not depending on the parameters. The
first summation over |Ω| terms appears intractable due to the exploding size
of the configuration space. However, one important feature of our model is
that this high dimensionality can be treated analytically, as the likelihood
conveniently simplifies. In fact, the summand ∑e∈Ω− 1

κe
∑i<j∈e uT

i w uj is
simply taking the interaction term uT

i wuj as many times as it appears in all the
possible hyperedges, each weighted by the factor 1/κe. This reasoning yields
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the count C = ∑D
n=2

1
κn
(N−2

n−2) and the following simplified log-likelihood:

log p(A|θ) = −C ∑
i<j∈V

uT
i w uj

+ ∑
e∈E

Ae log ∑
i<j∈e

uT
i w uj , (3.5)

obtaining a tractable sum of terms. To maximize eq. 3.5 with respect to
u and w, we use a standard variational approach via Jensen’s inequality
log E [x] ≥ E [log x], to lower bound the second summand as:

∑
e∈E

Ae log ∑
i<j∈e

uT
i w uj ≥ (3.6)

∑
e∈E

Ae ∑
i<j∈e

K

∑
k,q=1

ρ
(e)
ijkq log

uik ujq wkq

ρ
(e)
ijkq

 .

Here, the variational distribution is specified by the ρ
(e)
ijkq values, which can

be any configuration of strictly positive probabilities such that

∑
i<j∈e

K

∑
k,q=1

ρ
(e)
ijkq = 1 .

The equality in eq. 3.6 is achieved when

ρ
(e)
ijkq =

uikujqwkq

∑i<j∈e ∑K
k,q=1 uikujqwkq

=
uikujqwkq

λe
. (3.7)

Hence, maximizing log p(A|θ) is equivalent to maximizing

L(u, w, ρ) = −C ∑
i<j∈V

uT
i w uj

+ ∑
e∈E

Ae ∑
i<j∈e

K

∑
k,q=1

ρ
(e)
ijkq log

uik ujq wkq

ρ
(e)
ijkq


with respect to both (u, w) and ρ. This can be done by alternating between
updating ρ and (u, w), as in the Expectation-Maximization (EM) algorithm.
The update for θ ∈ {u, w} is obtained by setting the partial derivative
∂L(θ, ρ)/∂θ to 0, which yields the following expressions:

uik =
∑e∈E:i∈e Aeρ

(e)
ik

C ∑q wkq ∑j ̸=i∈V ujq
, (3.8)

wkq =
∑e∈E Aeρ

(e)
kq

C ∑i<j∈V uikujq
. (3.9)
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The terms ρ
(e)
ik , ρ

(e)
kq are defined as:

ρ
(e)
ik = ∑

j∈e:j ̸=i
∑

q
ρ
(e)
ijkq ,

ρ
(e)
kq = ∑

i<j∈e
ρ
(e)
ijkq ,

and obtained after updating ρ
(e)
ijkq according to eq. 3.7. These updates pre-

sented in this section are based on maximum likelihood estimation, where we
do not set any prior for (u, w). However, we can get Maximum-A-Posteriori
estimates (MAP) with similar derivations and complexity by arbitrarily set-
ting priors distributions for the parameters, as we show in Supp. Mat.
We comment on how to obtain efficient matrix operations that implement
the updates in eq. 3.8 and eq. 3.9 in Section Practical implementation and
efficiency.

3.3.2 Identifiability, interpretation and theoretical implications

In the following, we make some observations on relevant aspects regarding
the identifiability, interpretation and theoretical implications of the proposed
generative model. First of all, the log-likelihood in eq. 3.5 is invariant
under permutations of the groups and under the rescaling u → c u and
w → w/c2, for any constant c > 0. This observation may raise questions
about identifiability of the parameters. However, both permutation and
rescaling do not change the composition of the communities nor the relative
magnitude of the entries of w, thus the mesoscale structure is not impacted
by them. Nevertheless, one can easily make the model identifiable by setting
a prior probability on w and considering MAP estimates, see Supp. Mat. for
details.

Second, for similar invariance reasons, the constant C can be neglected and
absorbed after convergence, by either rescaling u′ =

√
C u or w′ = C w.

While the forms of the rescaling constants κe play no role during inference,
as they only enter the updates through the C term, they do instead impact
the generative process when sampling hypergraphs from it [2]. For instance,
calculations similar to those in Supp. Mat., allow getting a closed-form ex-
pression for the average weighted degree when only considering interactions
of size k. The resulting formula E[dw

k ] = (N−2
k−2 )

k
κk N ∑i<j∈V uT

i w uj shows that
rescaling the constant κk translates into a rescaling of the average degree.
Similar considerations apply to the expected number of hyperedges of a
given size, and show that the normalization constants κe play an important
role in determining the expected statistics of the model, and hence of the
samples it produces. Generally, the sampling procedure from the generative
model in eq. 3.3, allows determining the degree sequence (i.e. the degree
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array of the single nodes) as well as the size sequence (i.e. the count of hy-
peredges for every specified size), which depend on the Poisson parameters
and hence on the κe normalizers. Alternatively the sampling procedure from
our generative model can be conditioned to respect such sequences [2].

Third, it is possible to obtain the analytical expressions of the expected degree
of a node i, which evaluates to

E [dw
i ] = ∑

e∈Ω:i∈e
E[Ae]

= CuT
i w ∑

j∈V:j ̸=i
uj + C′ ∑

j<m∈V:j,m ̸=i
uT

j wum ,

where C′ = ∑D
d=3

(N−3
d−3 )
κd

is a constant similar to C, see Supp. Mat. This ex-
pression has a relevant interpretation, as it reveals a fundamental difference
between simple networks and higher-order systems. Since in dyadic systems
C′ = 0, we can think of the rightmost summand as a term contributing
only to higher-order interactions, while the leftmost one is a shift of the
expected degree coming from binary interactions only. One can also observe
an analogy with networks of interactions in physical systems. In this context,
the leftmost summand can be seen as a mean-field acting on node i in a
cavity system where the node is hypothetically removed, while the rightmost
term acts as a background field generated by all interactions involving any
pair of nodes that does not include node i. This background term is peculiar
to higher-order systems, as remarked above. Its presence has a relevant effect
of building higher-order interactions between nodes in different groups. This
can be illustrated with a simple example of a system with assortative w and
node i belonging to a different community than all the other nodes. While
the leftmost summand yields expected degree zero in dyadic systems, the
background field allows i to form on average non-zero edges. Intuitively, this
difference is due to the bilinear form in eq. 3.2, that allows observing hyper-
edges that are not completely homogenous, where there could be a minor
fraction of nodes that are in different communities than the majority. Notice
that such a generation, allowing for mixed hyperedges, is a desirable feature.
On the one hand, it is appropriate to model contexts where individuals have
multiple preferences and thus are expected to belong to multiple groups. On
the other hand, recent work [123] proves the combinatorial unfeasibility of
hypergraphs where all nodes exhibit majority homophily–implying rather
uniform hyperedges contained in single communities– and encourages the
development of more flexible generative models.

3.3.3 Practical implementation and efficiency

From an optimization perspective, the EM algorithm starts by initializing u
and w at random and then repeatedly alternating between the eq. 3.8 and
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Figure 3.1: Recovery of ground truth community assignments. We measure the cosine
similarity between the ground truth and the inferred assignments. We vary the maximum
hyperedge size D in synthetic data, and study the cases of hard (left) and mixed (right) ground-
truth memberships. When information is scarce, represented by few hyperedges of small maximum
size D, our method is comparable to the most efficient approaches currently available. However,
as larger hyperedges are considered, our method outperforms competing algorithms, both on hard
and mixed-membership planted partitions.

eq. 3.9 updates until convergence of L(u, w, ρ). This does not guarantee to
reach the global optimum, but only a local one. In practice, one runs the
algorithm several times, each time from a different random initialization,
and outputs the parameters corresponding to the realization with highest
log-likelihood L(u, w, ρ). We provide a pseudocode description of the whole
inference procedure in algorithm 2. For all our experiments, we perform
MAP inference on the affinity w, setting a factorized exponential prior with
rate 1, and maximum likelihood inference on the assignment u. This choice
corresponds to the half-Bayesian model presented in Supp. Mat. The updates
have linear computational cost, obtained by exploiting the sparsity of most
real-world datasets with efficient matrix operations, as we show in Supp.
Mat. Overall, the complexity scales as O(N K + |E|), allowing to tackle
inference on hypergraphs whose number of nodes and hyperedges was
previously prohibitive, see Section Modeling of real data. Another advantage
of our inference procedure is that it is stable and reliable for extremely
large hyperedges. Due to computational and numerical constraints, previous
models were also limited to consider hyperedges with maximal size D = 25
[41, 39]. As we illustrate in Section Modeling of real data with an Amazon
and a Gene-Disease dataset, large interactions (respectively D = 9350 and
D = 1074) should not be neglected as they provide useful information and
substantially boost the quality of inference
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3.4. Recovery of ground-truth communities

Algorithm 2: Hy-MMSBM EM inference
Input: Hypergraph A, training rounds r
Result: Inferred parameters (u, w)

1 BestLoglik = −∞
2 BestParams = None
> Train model r times and choose

> realization with best likelihood

3 for t = 1, . . . , r do
> Initialize at random

4 u, w← init(u, w)
> convergence is attained for a max number of EM steps,

or below a certain change in parameter values

5 while not converged do
6 u← update(u) eq. 3.8
7 w← update(w) eq. 3.9
8 end
9 L = loglik(u, w) eq. 3.5

10 if L > BestLoglik then
11 BestLoglik← L
12 BestParams← (u, w)

13 end
14 end

3.4 Recovery of ground-truth communities

A standard way to assess the effectiveness of a community detection algo-
rithm is to check if the inferred node memberships match those of a given
ground truth. Such ground truth is generally not available for real-world
systems [31], whilst it can be imposed as a planted configuration for synthetic
data. For this reason, we consider a recently developed sampling method to
produce structured synthetic hypergraphs with flexible structures specified
in input [2]. For further details, see Supp. Mat.

In fig. 3.1, we generate hypergraphs with an underlying diagonal affinity
matrix w (assortative structure) and show the recovery performance for the
cases of hard (left) and mixed-membership (right) community assignments.
The detailed description of the data generation process is provided in Supp.
Mat. We compare our approach with Hypergraph-MT [39], an inference algo-
rithm designed to detect overlapping community assignments and assortative
interactions; Spectral Clustering [115], which recovers hard communities via
hypergraph cut optimization; and Hypergraph AON-MLL [41], which per-
forms a modularity-like optimization based on a Poisson generative model
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3. Community Detection in Large Hypergraphs

with hard memberships. For our comparisons, we compute the cosine sim-
ilarity between the ground truth and the inferred communities, which is
appropriate to measure the similarity for both hard and mixed-membership
vectors. A value of zero represents no similarity, while a value of one is
attained by completely overlapping vectors. In both cases, we find that our
model successfully recovers the ground-truth communities as more infor-
mation is made available in terms of hyperedges of increasing sizes. This
is somehow expected because the generating process of these data reflects
the one of our method, and is a sanity check of our maximum likelihood
approach. Spectral Clustering and Hypergraph-MT attain comparable cosine
similarity scores on hard-membership data (left), while their performances
differ when detecting mixed memberships (right), with Hypergraph-MT
performing better. This is because Spectral Clustering performs an approx-
imate combinatorial search and can only recover hard communities, while
Hypergraph-MT allows for overlapping communities via maximum likeli-
hood inference. The low performance of Hypergraph AON-MLL is explained
by its generative assumptions. In fact, AON-MLL assigns the same probabil-
ity to all the hyperedges containing nodes from more than one community.
As most of the hyperedges in this synthetic data are made of nodes from more
than one community, the recovery of hypergraph modularity on such systems
is close to random. Altogether, such results highlight the effectiveness of
the inference procedure, making our model suitable for networked systems
with higher-order interactions. Although relevant, the results in fig. 3.1 are
just one possible comparison among algorithms with different generative
assumptions. Indeed, such assumptions are expected to yield better or worse
results depending on the data, and in general, the no-free-lunch theorem
implies that no algorithm will consistently outperform all others on all types
of data. As a case for this argument, in Supp. Mat. we present additional
results on different synthetic data.

3.5 Detectability of community configuration

Previous inference algorithms rely on the strong assumption of assortative
community interactions, hampering their ability to model more complex
mesoscale patterns observed in the real-world. By contrast, our model allows
detecting a variety of different regimes, as it assumes a more flexible w.

Here, we investigate the detection–and detectability–of different assortative
and disassortative community structures in hypergraphs, generalizing previ-
ous work on pairwise systems [55]. In particular, we generate hypergraphs
with hard community assignments, and different community interactions.
We take affinity matrices w with diagonal values cin and out-diagonal values
cout, and vary both cin and the ratio cout/cin. By fixing the value of cout/cin,
we expect higher detectability with increasing cin, as this term regulates the
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Figure 3.2: Detection of assortative and disassortative community interactions. We generate
data where the affinity contains diagonal values cin and out-diagonal cout and measure the ability
of our model to detect different assortative and disassortative regimes. (A) Positive (negative)
differences in log-likelihood values indicate that the assortative (disassortative) model attains a
better fit. An intermediate regime, highlighted in yellow, also emerges. Here, the detectability is
compromised due to not having enough structure (cout ≈ cin) or enough information (low cin).
(B) Log-likelihood of the disassortative model. In this case, the model attains better fit for data
with marked disassortative structure (darker red).

expected degree and consequently the information contained in the data.
On the contrary, for a fixed value of cin, we expect the disassortative model
to attain better recovery as the ratio cout/cin increases, due to the stronger
inter-community interactions. Details on data generation are provided in
Supp. Mat.

We compare the log-likelihoods obtained by the model when the affinity
matrix w is initialized as diagonal or full, which we refer to as assortative and
disassortative, respectively. Notice that the multiplicative updates in eq. 3.9
guarantee that, if w is initialized as diagonal, it will remain as such during
training. It is also possible that a full matrix will converge to diagonal during
inference. Nonetheless, the strong bias of a diagonal initialization restricts
the parameter space of the assortative model, facilitating the convergence to
better optima for the detection of assortative structures.

Given the log-likelihood of the assortative (La) and disassortative (Ld) models,
we measure the difference La−Ld while varying the values of cin and cout/cin.
Positive values denote stronger performance of the assortative model, as its
likelihood is higher, while negative values favor the disassortative one. We
observe that the assortative model attains higher likelihood for low values
of cout/cin, when within-community interactions are stronger, as shown
in fig. 3.2A. Its performance deteriorates as we increase cout/cin with the
disassortative one taking over with higher likelihood values. Furthermore, we
can notice an inflexion point at cout/cin = 1, where the difference in likelihood
between the models is null. While one would expect the disassortative model
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Figure 3.3: Recovery of structural core-periphery information. (A) Core-Periphery profile
(eq. 3.10) corresponding to the core-scores computed with HyperNSM on the input Enron email
(yellow), ten synthetic samples generated with Hy-MMSBM (blue), and ten synthetic samples
generated with a configuration model for hypergraphs (magenta). We plot 600 nodes with the
highest core-score in decreasing order, and report the averages and standard deviations of the core
dimension for the different datasets. Our method generates samples that closely resemble the
property of the input dataset, with an average core dimension close to 132 nodes. (B) Mean size
of the hyperedges a node belongs to against its CP score. We observe higher agreement between
the data and the inference-based sample generated with Hy-MMSBM. This is also highlighted by
the Pearson correlation of the 132 core nodes that is equal to 0.81± 0.01 for Hy-MMSBM versus
the value of 0.76± 0.03 for the samples generated with the configuration model.

to perform better in such a scenario, we highlight that this regime is a
challenging and noisy one, as the affinity matrix is the uniform matrix of
ones. Hence recovery is difficult and not guaranteed, regardless of the model.
We finally notice an increase of La−Ld with cin, which regulates the strength
of the signal and makes it easier to separate the two regimes.

While we expect recovery to improve at more detectable regimes, this may
not be observed by only looking at the La −Ld difference. For this reason,
in fig. 3.2B we complement our analysis by plotting only the log-likelihood
Ld attained via the disassortative initialization. In this case we notice that
the performance of the disassortative model increases with both cout/cin
and cin, as the inter-community interactions get stronger and the expected
degree higher. Taken together, our algorithm provides a principled way to
extract arbitrary community interactions from higher-order data with varying
structural organizations.

3.6 Core-periphery structure

Many real-world systems are characterized by a different mesoscale or-
ganization known as core-periphery (CP) structure [124, 125]. Networks
characterized by such structure present a group of core of nodes connected
among themselves, and often with high degree [126, 127], and a separate
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3.6. Core-periphery structure

periphery of weakly connected nodes. Recently, methods to study and detect
the existence of such patterns in hypergraphs have been proposed [128, 129].
Conceptually, Hy-MMSBM has not been developed with the purpose of
core-periphery detection. Nevertheless, we can show its ability in capturing
CP structures in hypergraphs through the generation of synthetic data that
resemble the core structures of the input dataset.

To measure the recovery of CP structures, we use the method developed by
Tudisco et al. [129], HyperNSM, that assigns to each node of a hypergraph a
core-score quantifying how close the node is to the core, where higher values
denote stronger participation. HyperNSM achieved good performance on
synthetic and real-world data and its implementation is extremely efficient.

We analyze the Enron email dataset [130]. Notably, the dataset comes with
metadata information identifying a group of core nodes, employees of the
organization who send batch emails to the periphery, which in turn only
receive emails. This allows us to evaluate the ability of a model to recover a
core-periphery structure. In our study, we utilize the dataset used in Tudisco
et al. [129] with a planted core set that arises directly from the data collection
process, as discussed in Amburg et al. [128] (it is pre-processed by keeping
only hyperedges of size D ≤ 25). The dataset has N = 4423 nodes and a core
composed by 132 nodes. We apply HyperNSM to quantify the CP structure
of the input Enron email dataset, as well as of the samples generated with Hy-
MMSBM. To generate the samples, we first run our inference procedure on
the Enron email dataset, and then sample hypergraphs distributed according
to the obtained u, w parameters. Further details on how to generate the
samples are provided in Supp. Mat. For comparison, we also generate
samples with a configuration model for hypergraphs [52] and obtain their
core-score vectors with HyperNSM as well.

In order to evaluate the quality of the CP assignments in the different samples,
we use the CP profile, the metric defined in [129] as:

γ(S) =
# hyperedges with all nodes in S

# hyperedges with at least one node in S
, S ⊆ V . (3.10)

For any k ∈ {1, . . . , N} we calculate the value γ(Sk(x)), where Sk(x) is the
set of k nodes with smallest core-score in x. Given its definition, γ(S) is small
if S is largely contained in the periphery of the hypergraph and it should
increase drastically as k crosses some threshold value k0, which indicates that
the nodes in V \ Sk0(x) form the core.

In fig. 3.3A we show the CP profiles corresponding to the core-scores com-
puted with HyperNSM on the different datasets, i.e. the input Enron email,
the samples generated with Hy-MMSBM, and the samples generated with
the configuration model for hypergraphs. We plot 600 nodes with the highest
core-score in decreasing order, and for all datasets we notice a sharp drop,
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which highlights the existence of a CP structure. The main difference is
given by the threshold k0 at which this drop happens. This determines the
dimension of the core. Remember that the data has a core composed by 132
nodes, and when applying HyperNSM on the input data, we obtain a core
dimension equal to 117, validating the good core-detection performance of
this algorithm. The samples generated with the configuration model present
a core with an average of 530.6 nodes, quite far from what observed in
the input dataset. On the other hand, Hy-MMSBM generates samples that
better resemble the property of the Enron email dataset, with an average core
dimension of 195.7 nodes.

To understand the impact of non-pairwise interactions on higher-order CP
structure, we also study the connection between hyperedge size and CP score.
In fig. 3.3B, we plot the CP score of a given node against the mean size of
the hyperedges it belongs to. While we can observe a strong relationship
between these two quantities at low CP scores, such regularity disappears
in the center of the plot, which contains core nodes and presents a high
scattering of hyperedge size values. This unexplained variance is justified
by the rich information encoded in the CP score, which jointly depends on
different factors related to the topology of the hypergraph. Yet, the scatter
plots obtained on the Enron email dataset and the samples generated with
Hy-MMSBM have higher similarity than the samples generated with the
configuration model. Quantitively, we measure the similarity between the
core-scores of the different datasets for the 132 core nodes with the Pearson
correlation, a measure ρ ∈ [−1, 1] of linear correlation between two sets of
data. The CP scores of the data have a Pearson correlation equal to 0.81± 0.01
with the samples generated with Hy-MMSBM, and of 0.76± 0.03 with the
samples generated with the configuration model. Similar results are found
on the relation between CP score and another structural property, namely
the degree of a node, see Supp. Mat.

3.7 Modeling of real data

In this section, we perform an extensive investigation of higher-order real-
world systems. As explained in Section Inference and Supp. Mat., the
linear-cost EM updates, together with a careful implementation that exploits
the sparsity of most datasets, make our method suitable for the analysis of a
variety of hypergraphs which were previously inaccessible due to computa-
tional constraints. In fact, our method proves to be scalable with respect to
both the number of system units and the size of the interactions, improving
substantially on competing algorithms currently available in the literature.
Moreover, our model is based on a probabilistic formulation, allowing it to
perform additional operations and extract information which is not viable
via other approaches, such as spectral clustering. First of all, we evaluate
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Figure 3.4: Modeling of real data: hyperedge prediction and running time. (A) Quality of
hyperedge prediction measured by the AUC score on a Gene-Disease dataset, where nodes are
genes, and hyperedges contain genes that are associated with a disease. For Hypergraph-MT and
Graph-MT the plot shows a computational threshold at the maximum hyperedge size D = 25.
Hy-MMSBM attains the highest scores and is able to model the entire hypergraph, up to D = 1074.
(B) Running time of Hy-MMSBM for a variety of real-world datasets. The node represents the
data domain. Both N and D are in log-scale. The corresponding AUC scores are reported in
table 3.1.

the quality of fit of various community detection methods based on their
hyperedge prediction capabilities on a Gene Disease dataset, where nodes
are genes, and interactions contain genes that are associated with a disease.
To this end, we utilize the AUC measure, a link prediction metric defined as
follows: given a randomly selected observed edge, and a randomly selected
non-observed one, the AUC ∈ [0, 1] computes the number of times that the
generative model assigns a higher probability to the observed edge. Here,
we split the datasets into train and test subsets, where the train sets are
used to estimate the parameters, and we evaluate the prediction performance
in terms of AUC on the test sets, see Supp. Mat. for details. Scalability
with respect to hyperedge size is a crucial aspect of models for higher-order
data. However, due to computational and numerical constraints, previous
methods are limited to considering interactions of moderate size only, pos-
sibly causing a loss of information and a biased representation of the full
system. In contrast, our model is able to efficiently process all the information
provided in the dataset, reliably scaling to hyperedges of size of the order of
the thousands. In fig. 3.4A we compare our method with other probabilistic
approaches with hyperedge prediction capabilities. When only small interac-
tions are considered, our model outperforms the competitive algorithms. At
the computational limit of other approaches D = 25, Hypergraph-MT and
our model attain a similar score, signalling the importance of considering
large interactions. Beyond this computational threshold, our method contin-
ues to exploit the information provided by interactions among a growing
number of units up to the maximum size observed of D = 1074, which
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results in an AUC score of 0.79.

We then extend our analysis to a variety of datasets from different domains,
as described in fig. 3.4B. For each dataset we show the inference running time
as a function of the number of nodes N and the size of the largest hyperedge
D. The AUC scores, reported in table 3.1 and ranging from 0.74 to 0.98,
show that the model generally yields a good fit and predicts the existence of
hyperedges reliably. While these scores are on average aligned with those
of other existing algorithms [39], the running time of our model is orders of
magnitude lower. This allows studying very large hypergraphs such as the
Arxiv, Trivago 2core and Amazon datasets, containing up to millions of nodes
and hyperedges. Overcoming the resulting computational challenges, our
method allows the efficient modeling of a variety of previously unexplored
datasets, which, to the best of our knowledge, could not be tackled by
competing higher-order community detection algorithms.

Taken all together, these results show the effectiveness of our model in
tackling datasets of small and large dimensions, both in terms of quantitative
performance and computational scalability, and make Hy-MMSBM a valid
tool for the study of complex higher-order systems.

Discussion

In this work we have developed a probabilistic framework to model hyper-
graphs. Our method allows performing inference on very large hypergraphs,
detecting their community structure and reliably predicting the existence of
higher-order interactions of arbitrary size. When compared to other available
methods on synthetic hypergraphs with known ground truth, for both hard
and mixed assignments our model attains the most efficient recovery of the
planted partitions. Moreover, compared to previous proposals, Hy-MMSBM
relies on less restrictive assumptions on the latent community structure in
the data, and is thus able to detect configurations, such as disassortative
community interactions, which could not be previously identified. Further-
more, our method is extremely fast. Its efficient numerical implementation
exploits optimized closed-form updates and dataset sparsity and has linear
cost in the number of nodes and hyperedges. The resulting formulas are also
numerically stable, not resulting in under- or overflows during the computa-
tions. Such numerical stability carries over to extremely large interactions,
a substantial improvement over the computational threshold of previous
methods, allowing to explore higher-order datasets with millions of nodes
and interactions among thousands of units, that could not be previously
tackled.

There are several directions for future work. From a theoretical perspective,
our proposed likelihood function is based on a bilinear form for capturing
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N |E| D K AUC

Justice 38 2,826 9 4 0.909± 0.008
Hospital 75 1,825 5 2 0.767± 0.013
Workspace 92 788 4 5 0.741± 0.015
Primary School 242 12,704 5 10 0.832± 0.002
Senate Committees 282 301 31 30 0.926± 0.023
Senate Bills 294 21,721 99 13 0.921± 0.002
Trivago 10core 303 3,162 14 11 0.960± 0.005
High School 327 7,818 5 17 0.879± 0.007
Walmart 4core 532 2,292 10 4 0.837± 0.013
Walmart 3core 1,025 3,553 11 4 0.825± 0.010
House Committees 1,290 335 81 25 0.939± 0.015
House Bills 1,494 54,933 399 19 0.946± 0.001
Enron Email 4,423 5,734 25 2 0.835± 0.009
Trivago 5core 6,687 33,963 26 30 0.962± 0.001
Gene Disease 9,262 3,128 1,074 2 0.828± 0.010
Walmart 2core 13,706 19,869 25 2 0.788± 0.004
Trivago 2core 59,536 140,698 52 100 0.863± 0.002
Arxiv 130,024 172,173 2,097 10 0.884± 0.001
Amazon 2,268,231 4,242,421 9,350 29 0.978± 0.002

Table 3.1: AUC scores on real datasets. We report the number of nodes N, number of
hyperedges |E|, maximum hyperedge size D, number of communities K and AUC scores attained
by our method on 19 large-scale real-world hypergraphs. The results are averages and standard
deviations over 10 random test sets, and the value of K is chosen via cross-validation, see Supp.
Mat.
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dependencies within the hyperedges, a key ingredient for ensuring both
mixed-membership nodes and fast inference. A possible extension would be
to consider alternative likelihood definitions where the probability of the hy-
peredges is determined by multilinear forms, which would in principle allow
capturing more complex interactions within the hyperedges. Similarly, here
we have assumed the hyperedges to be independent conditioned on the latent
variables. Relaxing this assumption may ameliorate the expressiveness of
the model, allowing to capture topological properties that involve more than
two hyperedges, as already observed in the case of networks [131, 132, 133].
From an algorithmic perspective, there are different questions that may allow
further stabilizing and improving the inference procedure. Among these,
the propensity of different initial conditions to be trapped in local optima
during EM or MAP inference has not yet been investigated. Devising suitable
initialization procedures or parameter priors to favor different membership
types, as done in other works [134], offers a promising path in this direction.
Finally, we have considered here a standard scenario where the input data is a
list of hyperedges, and these are provided all at once. Other approaches may
be needed in case of availability of extra information such as node attributes
[135, 37] or for dynamic data [136].

Altogether, our work provides an accurate, flexible and scalable tool for the
modeling of very large hypergraphs, advancing our ability to tackle and
study the organization of real-world higher-order systems.
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Chapter 4

Framework to Generate Hypergraphs
with Community Structure

Abstract

In recent years hypergraphs have emerged as a powerful tool to study
systems with multi-body interactions which cannot be trivially reduced
to pairs. While highly structured methods to generate synthetic data
have proved fundamental for the standardized evaluation of algorithms
and the statistical study of real-world networked data, these are scarcely
available in the context of hypergraphs. Here we propose a flexible and
efficient framework for the generation of hypergraphs with many nodes
and large hyperedges, which allows specifying general community struc-
tures and tune different local statistics. We illustrate how to use our
model to sample synthetic data with desired features (assortative or dis-
assortative communities, mixed or hard community assignments, etc.),
analyze community detection algorithms, and generate hypergraphs
structurally similar to real-world data. Overcoming previous limita-
tions on the generation of synthetic hypergraphs, our work constitutes
a substantial advancement in the statistical modeling of higher-order
systems.

4.1 Introduction

Over the last decades, networks have emerged as a fundamental tool to
describe complex relational data in nature, society and technology [78].
Indeed, most real-world systems are nowadays known to be characterized
by a highly non-trivial organization, which includes triadic closure and high
clustering [137], low diameter and an efficient communication structure [138],
and unequal degree distributions [139]. Noticeably, many systems reveal the
existence of modules or communities, where nodes are naturally clustered
in different groups based on their patterns of connections [29]. Identifying
communities is an important task that allows performing various downstream
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4. Framework to Generate Hypergraphs with Community Structure

analysis on networks, describing the roles of nodes and, generally, providing
a low dimensional representation of possibly large systems. Since the seminal
papers by Newman et al. [140] and Lanchichenetti et al. [141], the problem
of generating synthetic data for highly structured graphs with prescribed
features has attracted enormous interest in the community. On the one hand,
these models have led to tremendous improvements in evaluating which
community detection algorithms perform best at a given task [142]. On the
other hand, they have allowed the reliable generation of large synthetic data
samples, useful to analyze non-trivial statistics from single instances of real
networks and systematically investigate the impact of mesoscale structure
on dynamical processes on graphs [143, 144]. This methodology has been
applied to different domains, including studies on polarization on social
media [145], percolation thresholds in brain networks [146], and structural
and covariate information [147, 148].

Despite their success, recent evidence suggests that graphs can only provide
a limited description of reality, as links are inherently limited to describe
pairwise interactions [22, 79, 16, 80]. By contrast, non-dyadic higher-order
interactions have been observed across different domains, including the hu-
man brain [19, 85, 86], collaboration networks [81], species interactions [20],
cellular networks [21], drug recombination [82], and face-to-face human [83]
and animal [84] interactions. Interestingly, such higher-order interactions
naturally lead to the emergence of new collective phenomena in synchro-
nization [88, 89, 90, 91, 92] and contagion [94, 95, 96] dynamics, diffusive
process [149, 87] and evolutionary games [97, 98]. Hypergraphs [100], where
hyperedges encode interactions among an arbitrary number of system units,
are a natural framework to describe relational data beyond the pair [22].
In the last few years many tools have been developed to characterize the
higher-order organization of real-world hypergraphs, including new central-
ity measures [101, 102], higher-order clustering [103] and motif analysis [104],
hypergraph backboning [106], hyperedge prediction [39], methods to infer
higher-order interactions from low-order data [108]. In particular, several
tools to extract higher-order communities have been proposed, either based
on flow distribution [113, 114] or statistical inference frameworks [39, 41].

Nevertheless, how to generate structured hypergraphs is still an open prob-
lem. The few currently available models mainly focus on “unstructured”
higher-order generalizations of the configuration [150, 151, 52] and the Erdos-
Renyi model [152], or on growth models for hypergraphs [153, 154, 155]. A
different perspective is that of relational hyperevent models [156], which spec-
ify event rates based on hyperedge statistics for hyperedges to exist, similarly
to what exponential random graphs do for networks [157, 158]. All these
approaches, however, do not account for community structure, hence are of
limited usage when it comes to reproducing the complex mesoscale organi-
zation of real-world higher-order systems. Recent works introduced latent
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Figure 4.1: Sampling hypergraphs with community structure. A pictorial representation of
two small hypergraphs with N = 10 nodes, K = 2 communities, and (A) hard or (B) overlapping
membership assignment. Every node’s membership assignment ui = (ui1, ui2) is represented as a
pie chart. Nodes with a single color have hard assignments, mixed pie charts represent overlapping
assignments. Due to the likelihood in eq. 4.2, nodes with overlapping assignments are more likely
to belong to between-community interactions.

variables models to infer community structure in hypergraphs [159, 39, 41],
however they do not explain how to sample from the generative model.
Indeed, while sampling and inference are often studied jointly in standard
networks, these two tasks present distinct computational and theoretical
challenges in the case of hypergraphs.

In this work, we provide a principled and general framework to sample hy-
pergraphs. In particular, our method allows flexible sampling of higher-order
networks with prescribed microscale and mesoscale features, controlling the
distribution of node degrees and hyperedge sizes, as well as specifying arbi-
trary community structure (e.g. hard vs overlapping membership, assortative
vs disassortative, etc.). The method is highly efficient, and scales well with the
number of nodes, hyperedges, as well as hyperedge size, making it suitable
for the analysis of real-world systems. In the following, we first introduce our
generative model and sampling strategy. Then, we extensively characterize
the hypergraphs obtained by investigating the phase space associated with
the different structural parameters. Finally, we show how to utilize our
method to analyze the structural and statistical properties of real-world data.

4.2 Generative model

We consider hypergraphs H(V, E) consisting of N nodes V = {1, . . . , N}
and a hyperedge set E, where each hyperedge e ∈ E describes an interaction
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4. Framework to Generate Hypergraphs with Community Structure

among an arbitrary set of unique nodes, i.e. e ⊆ V, and |e| is the hyperedge
size. The degree of a node i, i.e. the number of hyperedges it belongs to, is
denoted as di. Similarly, we define the degree sequence d = {d1, . . . , dN} as
the vector of node degrees and the size sequence k = {k1, . . . , kD} as the count
of hyperedges per hyperedge size [52]. We consider hyperedges of arbitrary
sizes, up to a maximum of D ≤ N, and denote the space of all possible such
hyperedges with Ω. We assume positive and discrete hyperedge weights,
encoded using a vector A ∈N|Ω|, so that E = {e ∈ Ω : Ae > 0}.
Our sampling approach introduces a flexible way to generate highly struc-
tured weighted hypergraphs with mesoscale structure, where hyperedges
are generated probabilistically and nodes belong to K communities. Specif-
ically, each node i ∈ V is assigned a K-dimensional membership vector ui,
where we allow uik ≥ 0 for the general case of soft membership, where
nodes can belong to multiple communities. The particular case of hard
membership assignment, where a node can only belong to one community,
is recovered by setting only one non-zero entry for ui. In fig. 4.1 we illustrate
these two cases by showing two small hypergraphs with hard or overlap-
ping community structure. The non-negative symmetric K× K-dimensional
affinity matrix w regulates the interactions between communities. Classic
patterns are assortative affinity matrices, with dominant diagonal signaling
stronger inter-community interactions, and disassortative ones, where the
out-diagonal terms have higher magnitude. For any given hypergraph, we
define the following likelihood function:

p(H; w, u) = ∏
e∈Ω

p(Ae; u, w)

= ∏
e∈Ω

Pois

(
Ae;

λe

κ|e|

)
, (4.1)

where

λe := ∑
i<j∈e

uT
i w uj = ∑

i<j∈e

K

∑
k,q=1

uikwkqujq. (4.2)

This parameterization allows generating hypergraphs under different sce-
narios, e.g. with assortative or disassortative community structures, and
is reminiscent of those used in probabilistic models for pairwise networks
[36, 160] and in variants of non-negative tensor factorization as used in the
machine learning community [161, 162] when D = 2. In addition, restricting
our model to D = 2 and κ2 = 1 recovers the canonical Poisson stochastic
block model [163]. The parameter κ|e| is a normalization factor and is a func-
tion of the size |e| of the hyperedge e only (i.e. it only depends on the size of
the interaction, and not on the nodes involved in it). These constants regulate
the expected statistics of the model, such as expected degree and hyperedge
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size distribution. In general, any choice of κd > 0 yields a well-defined
probabilistic model. We illustrate sensible values for κd in Supp. Mat.

Alternative generative models for hypergraphs have been recently proposed.
In particular, the works of Chodrow et al. [41] and Contisciani et al. [39] can
be more closely compared to the model in eq. 4.1, since they are both based
on factorized Poisson likelihoods based on communities. The former work
assumes sufficient statistics only evaluated on hard community assignments
and we are not aware of any computationally efficient sampling procedure
from the relative generative process. The model of Contisciani et al. [39],
instead, bears closer resemblance to the one proposed in this paper. The main
difference lies in the specific form of the Poisson means, which, for every
hyperedge e, are based on a product of |e| terms, as opposed to the bilinear
form in eq. 4.1. Despite the similar generative process, the tools utilized in
this work cannot be straightforwardly applied to that model, as closed-form
statistics and approximate Central Limit Theorem results cannot be derived
in the same manner.
More generally, the primary goal of the aforementioned models is to infer
hypergraph structure, leaving the problem of sampling unsolved. While
our model is also well suited to efficiently infer hypergraph structure, as
we illustrate in Ruggeri et al. [1], the primary objective of this work is to
demonstrate how we can effectively sample from its probability distribution.
This key model’s capability makes it possible to generate highly structured
synthetic data with higher-order interactions. This is a key advancement for
practitioners handling hypergraph data and follows influential work on such
a topic for pairwise networks [140, 141].

4.3 Sampling hypergraphs

We now propose an efficient way to sample hypergraphs from the generative
model defined in eq. 4.1. Such a task is far from being straightforward. To
see why, let us consider a pairwise network model, where the configuration
space is of size |Ω| = N2, and compare it with our higher-order problem. In
the former case, generation is feasible by simply exploring every single edge
separately and sampling from the relative Poisson distribution. In the latter
case, however, the rapid growth of the Ω space renders both naive sampling
techniques and Markov Chain Monte Carlo (MCMC) algorithms inapplicable.
Here, we propose a solution to this challenge using approximate sampling.
In the following, we focus on the intuition behind our method and illustrate
relevant usage examples. For a more technical description, we defer to Supp.
Mat.
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4.3.1 Sampling algorithm

Our sampling procedure follows three consecutive steps:

Sampling node degrees and hyperedge sizes. The first sampling step con-
sists of approximately sampling the d and k vectors for a given choice of
community memberships u and affinity matrix w. Then, we use these two
quantities to draw a first proposal of a binary hypergraph defined by the
array Ab ∈ {0, 1}|Ω|. More in detail, we first approximate p(d, k; u, w) ≈
p(d; u, w) p(k; u, w) and then use the Central Limit Theorem (CLT) to sample
from p(d; w, u) and p(k; w, u) separately. We note that these are the only
approximations needed in the whole sampling routine. We elaborate more
on their validity in Supp. Mat. After sampling the d, k sequences, we combine
them into a first binary hypergraph configuration (i.e. a list of hyperedges)
to be passed in input to the next sampling step. Intuitively, we incrementally
build a hyperedge list until exhaustion of both sequences, starting by first
taking the nodes with the highest degrees. If the two sequences are not
compatible, i.e. it does not exist a hypergraph that satisfies both, one can
choose which of the two sequences to preserve during the hyperedge list
construction. Such sequence will be exactly replicated, while the other will
be modified to construct the first list proposal. Notice that the recombination
problem has connections with the Havel-Hakimi algorithm [164] and the
Erdös-Gallai Theorem [165]. Hence, the algorithm we propose for this task
is a technical novelty of independent interest. We explain the algorithm in
detail and present a pseudocode for it in Supp. Mat.

Sampling hyperedges. In this second step, we sample the binary hyper-
edges Ab

e , conditioned on d and k, using a MCMC routine. This works by
continuously mixing the hyperedges starting from the initial proposal Ab

obtained at step a. The main tool utilized here is the reshuffling operator
introduced in Chodrow et al. [52]: given two hyperedges e1, e2, reshuffle the
nodes not belonging to the intersection e1 ∩ e2 to obtain two new hyperedges
e′1, e′2. Then, accept or reject the new proposal according to the Metropolis-
Hastings algorithm [166], whose acceptance rates depend on the Poisson
means λe1 /κe1 , λe2 /κe2 and consequently on the u, w parameters. Due to the
properties of the reshuffling operator the new hyperedges e′1, e′2 have same
sizes as e1, e2, hence the sequences d and k are preserved. Intuitively, the
Markov chain achieves good mixing owing to conditioning on (d, k), which
restricts the space of the possible configurations.

Sampling hyperedge weights. In the third and final step, we sample the
weights Ae from p

(
Ae|Ab

e = 1
)
. This conditional distribution is a zero-

truncated Poisson with mean λe/κ|e|. A related efficient sampling procedure
based on inverse transform sampling is proposed in Supp. Mat.
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4.3. Sampling hypergraphs

Altogether, the three sampling steps described above correspond to the
following probabilistic decomposition:

p (A; u, w) = p
(

A|Ab; u, w
)

p
(

Ab|d, k; u, w
)

p (d, k; u, w) . (4.3)

In passing, we note that a single pair (d, k) is uniquely defined by a hyper-
graph A (or its binary counterpart Ab). For this reason, d and k do not appear
on the left-hand side of Equation 4.3.

We provide the pseudocode of the sampling procedure in algorithm 3 and
provide an open-source implementation at github.com/nickruggeri/Hy-
MMSBM.

Algorithm 3: Sampling algorithm.
a: Lines 1-3; b: Lines 4-10; c: Line 11.

Input: Number of communities K, memberships u, affinity w, MCMC
burn-in steps nb and intermediate steps ni, number of samples
S.

Result:
{

A(s)
}

s=1,...,S
1 Sample binary degree sequence d ∼ p (d; u, w)
2 Sample size sequence k ∼ p (k; u, w)

3 Create first proposal Ab from d, k
4 for i = 1, . . . , nb do
5 Ab ← reshuffle(Ab), accept according to Metropolis-Hastings,

depending on (u, w)
6 end
7 for s = 1, . . . , S do
8 for i = 1, . . . , ni do
9 Ab ← reshuffle(Ab), accept according to Metropolis-Hastings,

depending on (u, w)
10 end
11 sample A(s) ∼ p

(
A|Ab; u, w

)
12 yield A(s)

13 end

4.3.2 Additional user input

The sampling procedure described above only requires the community as-
signments u and affinity matrix w as generative parameters. However, a
practitioner may desire to generate hypergraphs with specific features, such
as a given degree or hyperedge size sequence. Our model allows doing so
naturally, either by providing such statistics as additional input or by tuning
the generative parameters prior to sampling. More precisely, one can skip
the initial step and simply fix d or k (or both) as input instead of sampling
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Figure 4.2: Sampling hypergraphs with hard and soft community assignment. (A) We sample
hypergraphs from a model with K = 5 equally-sized communities, an assortative affinity matrix
w, and different node community memberships u (from hard to soft). The five vertices represent
different communities, the thicknesses of the edges and circles are proportional to the interaction
strength between and within communities, see Supp. Mat. for details. (B) The entropy of
community memberships grows as increasingly overlapping configurations are considered. (C) We
show the maximum assignment ratio (the relative number of nodes belonging to the majority
class for each hyperedge) across hyperedge sizes. The set sizes are proportional to the amount of
hyperedges with a given maximum assignment ratio.

them. As explained in section 4.3.1, these quantities are guaranteed to be
preserved in the sampled hypergraphs. Algorithmically, this corresponds to
starting directly from line line 3 in algorithm 3.

In some cases, one might be interested in replicating the ddata, kdata sequences
observed in a real hypergraph dataset. In such a simplified scenario, one
can condition on the (binarized) hyperedges of the data, and proceed by
directly mixing them via the MCMC procedure in the second sampling step.
Since the hyperedges define the degree and size sequences, these will be
preserved and identical to those of the real data, while the samples will
come from the model’s probability distribution. As per eq. 4.3, the MCMC
procedure will yield samples from p(Ab|ddata, kdata; u, w). Notice that, in
general, conditioning on any given sequence d or k might yield samples A
outside the high-density areas of the distribution. This is a desirable feature,
as it allows the user to further specify constraints and sample hypergraphs
that would otherwise be far from the typical samples obtained without
conditioning [167].
Finally, with our model we can obtain closed-form expressions for relevant
hypergraph properties in terms of u and w, e.g. the expected degree of nodes,
as shown in Supp. Mat. This means that, by tuning the u, w parameters, such
properties can be specified prior to sampling. We illustrate some examples of
this procedure in section 4.4.
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4.4. Synthetic Data

4.4 Synthetic Data

In this section, we illustrate how the generative parameters u and w can
be tuned to sample hypergraphs with desired structures at a micro (node
and hyperedge) and mesoscale (community structure and hypergraph-level
statistics) level. We release ready-to-use examples of these synthetic datasets
along with the open-source implementation.

4.4.1 Community assignment

We begin by showing how varying the overlap in the membership assign-
ments u leads to different intra and inter-commmunity structure. In fig. 4.2
we tune the assignments from hard (ui has only one non-zero entry), to soft
(ui > 0 for multiple entries), and highlight the strength of the interactions
between and within communities by varying the thickness of edges and
circles. We include additional details on data and plot generation in Supp.
Mat. As memberships vary from hard to soft (left to right), edges become
thicker and circles smaller, as inter(intra)-community interactions increase
(decrease). Quantitatively, we compute the entropy −∑K

k=1 rk log rk, where
rk is the ratio of nodes belonging to community k. In mixed-membership
settings, one can extract a proxy for a hard assignment for node i by selecting
the k = arg maxk uik; we use this to compute rk. Lower entropy denotes
hyperedges whose nodes mostly belong to the same communities, higher
values denote hyperedges with nodes distributed across different commu-
nities. In fig. 4.2B we show how the entropy of the community distribution
grows as we sample from increasingly overlapping models. We also study
the partition in communities of nodes belonging to hyperedges of different
sizes. For each hyperedge we compute the ratio of nodes that belong to the
majority class. For example, in a hyperedge of size 5 with two nodes in
class 1 and three in class 2, the majority class is 2, yielding a majority class
ratio of 3/5. fig. 4.2C shows how this ratio decreases going from hard to
soft memberships, illustrating the heterogeneity of the nodes’ communities
across hyperedges of different sizes.

4.4.2 Affinity matrix and heterogenous community size

While varying u acts on the propensity of individual nodes to participate in
groups, the affinity matrix w controls the density of interactions within and
between communities. The generative model in eq. 4.1 is well-defined for
any non-negative symmetric affinity matrix w, allowing simulating various
structures by properly tuning its entries. To illustrate the generation of hyper-
graphs with different affinity matrices, here we consider a range of matrices
that start from diagonal (assortative) to gradually move to the uniform matrix
of ones (disassortative), and rescale them to obtain an expected degree of
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Figure 4.3: Sampling hypergraphs with assortative and disassortative affinity and heteroge-
neous community size. (A) We sample hypergraphs with five communities of different sizes and
hard membership assignments. We vary the affinity matrix w from assortative (left, diagonal) to
disassortative (right, uniform matrix filled with ones). The five vertices represent the communities,
the thicknesses of the edges and circles are proportional to the interaction strength between and
within communities, respectively. (B) We vary the affinity w from diagonal (left) and increase its
entries w12, w21 (right) for K = 3 equally-sized communities. The three vertices represent the
communities and the thickness of the edges and circles is proportional to the strength of the
interactions between and within communities respectively, see Supp. Mat. for details.

five. For simplicity we set the assignments u to hard membership. The
method is well suited to sample not only homogenous hypergraphs, but
also higher-order networks with heterogenous distribution of the community
size. Here we consider five communities with different sizes. As shown in
fig. 4.3A, moving from an assortative to a disassortative configuration, the
inter-community interactions strengthen substantially. Further, notice that
the strengths of the interactions are influenced by the heterogeneity of the
community size, as larger communities are expected to participate in more
interactions.

It is also possible to tune individual entries of the affinity matrix w. In
particular, in fig. 4.3B we perform an experiment where we start from a
diagonal matrix, and gradually increase only the w12 (and w21) entries, using
three equally-sized communities. In this way, only the expected interactions
between communities 1 and 2 are affected, while interactions among other
communities are left unchanged.

4.4.3 Analzying community detection

One of the most useful applications of generating synthetic data with a
desired underlying structure is the possibility to evaluate how competing
algorithms perform on a given task that depends on the structure under
control. In fact, when synthetic data with a known structure is available,
it is possible to quantitatively compare the outcome of various algorithms
and measure their ability to recover ground truth information. In network
science, a classical and much investigated problem is assessing the ability
of community detection algorithms to extract meaningful partitions of the
network [141]. For higher-order networks, the current lack of sampling
methods for synthetic data with flexible community structure has led to a
variety of custom-built examples, which renders comparison difficult and
subject to individual choices [41, 42, 39].
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Figure 4.4: Evaluating higher-order community detection algorithms. We sample hypergraphs
to test the ability of different higher-order community detection algorithms to recover well-defined
planted partitions. We consider hypergraphs with N = 500 nodes, K = 3 equally sized assortative
communities and hard assignments. We plot the cosine similarity between the inferred partitions
and the ground truth as a function of the maximum hyperedge size. Additional details on the
data generation are given in Supp. Mat.

In this section, we show how our synthetic data can be utilized to analyze
the behavior of some of the current algorithms for higher-order community
detection. To this end, we generate hypergraphs with assortative structure
and hard community assignments, and perform inference with a variety of
methods, namely Hy-MMSBM [1], Hypergraph-MT [39], spectral cluster-
ing [115] and hypergraph modularity [41]. In fig. 4.4, we show the cosine
similarity of the inferred communities with the ground truth as a function of
the maximum hyperedge size. As can be observed, Hy-MMSBM attains the
best performance when group interactions beyond a critical size are intro-
duced, successfully recovering the ground truth assignments. Hy-MMSBM
is a flexible inference tool whose inference procedure is based on the same
generative model described in eq. 4.1, and generally able to extract mixed-
membership assignments for arbitrary (e.g. assortative or disassortative)
community structure. Other algorithms attain varying scores, which might
be explained by the different assumptions of the underlying models. For
example, Hypergraph-MT is designed to extract overlapping communities,
while spectral clustering can only be utilized for the detection of hard assign-
ments. As such, the latter can be expected to perform well only in scenarios
where interactions are dictated by hard communities, while the former can be
employed when nodes may belong to more than one module. Considerations
of this type can be useful to compare the alignment of different algorithms
with the data generation procedure, which is expect to correlate with their
performance on such data. However, due to the additional optimization and
implicit bias of most algorithms, it is sometimes unclear to know beforehand
on what types of data each algorithm will perform well empirically. We
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believe that synthetic data with known ground-truth structure can provide
useful diagnostic and comparison tools in this direction.
Procedures like the one presented in this section can be used to understand
the limitations and strengths of different algorithms, allowing researchers to
effectively test new proposals in different scenarios by varying the properties
of the samples generated with our method, e.g. the degree of assortativity.

4.4.4 Computational cost

Our sampling method is highly efficient and computationally scalable. We
analyze the cost of our sampling strategy by discussing the cost of the indi-
vidual sampling steps. The first step, consisting of sampling the degree and
size sequences, can be cheaply performed in O(N) time. In fact, to sample
the d, k sequences we need to compute the mean and standard deviations
defined in the Central Limit Theorem, and thus draw the sequences from
the relative Gaussian distributions. These operations have linear cost, see
Supp. Mat. In the second step we first combine the sampled d, k sequences
into a first hyperedge configuration, and successively mix the hyperedges
via MCMC. Generally, while the number of Markov chain steps needed for
mixing is a function of N and |E| [168], it is difficult to specify a pre-defined
number. In fig. 4.5, we fix nb = 100000 burn-in steps and ni = 20000 in-
termediate steps between samples, which is a default value we utilized in
most experiments. Nonetheless, the main cost we observe in this case is
that prior to MCMC, i.e. the producing the first hyperedge configuration
from the sequences. Empirically, such step dominates the computational cost.
Finally, the third step consists of sampling the non-zero weights according
to p(A|Ab; u, w). The cost of this operation is proportional to the number
of hyperedges |E|; for sparse hypergraphs—and as often observed in real
data—this is comparable to N.

Empirically, we find the CLT approximations to be working well. Never-
theless, one could further improve on the quality of sampling by drawing
the pairwise edges from their exact Poisson distribution (eqs. 4.1 and 4.2),
with cost O(N2), and resorting to approximations only for interactions of
order three or greater. This is of particular help when sampling denser
hypergraphs: since the MCMC does not necessarily guarantee non-repeated
hyperedges, sampling directly the order-two interactions reduces the prob-
ability of repeated edges. For higher-order interactions, the probability of
repetitions is negligible, in particular in sparse regimes [52]. Indeed, in all
the experiments presented in this paper we sample the order-two interactions
directly, and resort to the CLT approximations for hyperedges of order at
least three.

In fig. 4.5 we investigate the efficiency of both exact and solely CLT-based
sampling and observe the difference to be negligible. As discussed above,
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Figure 4.5: Computational complexity and scalability. We plot the computational cost of our
sampling model for sparse hypergraphs as a function of the system size N. Our model is highly
efficient, as it allows sampling of sparse hypergraphs of dimensions up to N = 105 nodes in less
than one hour. We show results for hypergraphs with fixed expected degree equal to 5, both for
an exact (solid line with circles) and an approximate approach (dashed line with squares) based
on central limit theorem sampling of dyadic interactions. Here, we utilize K = 5 communities and
unconstrained maximum hyperedge size D = N.

this is a consequence of the higher computational effort required in other
sampling steps. Altogether, our model is highly efficient, as it allows sam-
pling sparse hypergraphs of dimensions up to 105 nodes in less than one
hour.

4.5 Real Data

4.5.1 Modeling real-world systems

In this section we aim at sampling hypergraphs that mimic the community
structure of a given dataset. To this end, we proceed as follows. First, we infer
the affinity matrix w and community assignments u using the Hypergraph-
MT algorithm [39] on the real data. Since this algorithm returns a (diagonal)
matrix wd for every possible hyperedge size d, we take their element-wise
geometrical mean to construct the matrix w utilized in eq. 4.2. Notice that a
similar approach could have been taken utilizing the Hy-MMSBM algorithm,
which employs the same probabilistic model of our sampling method, as
explained in section 4.4.3. To highlight the flexibility of our methodology,
which can be applied along with any community detection methodology, here
we utilize Hypergraph-MT. In fact, our method accepts input parameter w
and u regardless how these are obtained; in particular, these can be obtained
by using different inference methods applied to the input data. Our method
is capable of generating synthetic data conditioning on the desired input
communities and affinity matrix. As such, it can be used in a complementary
way together with community-based method focusing solely on inference.
Second, we condition the degree and size sequences by providing in input
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Figure 4.6: Matching statistics of real-world data and samples: the case of the House Bills
dataset We plot (A) the adjacency matrices, (B) the hyperedge inclusions occurences, (C) the
hyperedge eigenvector centrality distribution and (D) the sub-hypergraph centrality distribution
for the House Bills dataset, where nodes represent congresspersons, and hyperedges describe
subsets of them that co-sponsor a bill. For all such cases, we observe a good correspondence
between the statistics measured on the real data and those obtained from a single sample of our
generative model.

the observed hyperedge configuration, i.e. the hyperedges present in the real
data. As explained in section 4.3.2, this means skipping the first step of our
sampling procedure and moving directly to perform MCMC starting from
such configuration. The returned hypergraphs will have a structure similar
to that of the data, but will be sampled according to the generative model in
section 4.2.

4.5.2 Comparing data and sample statistics

We now apply the proposed methodology on a variety of real datasets. As
a representative example, we consider a dataset of co-sponsoring of bills
for the U.S. House of Representatives [169, 170]. Nodes correspond to
congresspersons, and hyperedges connect subsets of them that co-sponsor
a bill. The dataset contains N = 1494 nodes, |E| = 54933 hyperedges with
maximum size D = 399, and has been previously analysed via higher-order
stochastic block models [39, 41].

As a first sanity check, in Supp. Mat. we verify that the degree and size
sequences measured on the samples are identical to those of the data. This
is guaranteed by the properties of the reshuffling operator described in
section 4.3. We then proceed by comparing additional relevant statistics as
measured on the real data and on the samples. Such statistics serve as a test
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Figure 4.7: Hypergraph sample statistics, null hypothesis and generative assumptions. To
illustrate the wide applicability of our model, we compare several statistics on real and sampled
data. We plot (A) the adjacency matrix of face-to-face higher-order interactions among students
in a High School dataset, (B) the eigenvector centrality distribution of co-purchasing behavior at
Walmart, (C) the sub-hypergraph centrality distribution from committees data in the U.S. House.
Similarly to the results presented in fig. 4.6, our model correctly reproduces the desired statistics.
In (D) we show the adjacency matrix associated with co-voting Justices of the U.S Supreme Court.
Such data have a strong temporal structure which is not included in the generative assumption of
the model, hence explaining the limited correspondence between real and synthetic statistics.

for the goodness of fit, as they should match if the dataset is well-represented
by the model.

We start by performing a visual comparison of the adjacency matrices [171,
22], where the adjacency value Xij of any two nodes i, j is defined as Xij :=
∑e∈E:i,j∈e Ae . As shown in fig. 4.6A, our samples are well aligned with the
real data.

Another relevant structural property of a hypergraph is the inclusion relation-
ships between hyperedges, i.e. which hyperedges are subsets of others [104].
This is of particular interest when comparing a hypergraph with its clique
expansion, i.e. the graph obtained by projecting hyperedges onto pairwise
interactions, or when comparing with other higher-order representations
such as simplicial complexes [172, 173]. In fig. 4.6B, we count the number
of hyperedges of size n that are included in hyperedges of size n + 1. Also
in this case, results on our sample match well those measured on the input
dataset.

Finally, we explore two centrality measures on hypergraphs. As a first
example, in fig. 4.6C we consider a generalization of eigenvector centrality
[174] for hyperedges. In particular, we consider the dual representation of the
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hypergraph, where nodes represent interactions in the original hypergraph
and are connected if they have a non-empty intersection [175]. Moreover,
in fig. 4.6D we also compute sub-hypergraph centrality [176, 171], which
returns a measure of node importance in hypergraphs. Also in such cases,
the quantities measured on our samples behave similarly to those based on
the input data.

We highlight that the resemblance between samples and real data is not
simply due to the Markov Chain being stuck in a local optimum given by
the initial configuration, i.e. the real dataset. To prove this, we further
investigate the Markov Chain mixing while producing the samples based
on the House-Bills dataset. We observe that 73% of the shuffling steps
are accepted by the Metropolis-Hastings algorithm. We leave more formal
verifications of mixing via other statistics for future work. As an additional
structural confirmation, we measure the Jaccard similarity between the real
data and 10 samples, defined as the number of hyperedges in the intersection
divided by the number of hyperedges in the union. Also in this case, the
resulting score of 0.69± 0.11 signals that the microscopic structure of the
samples detaches from that of the real data, while the macroscopic statistics
in fig. 4.6 are preserved. Finally, we also observe that less structured methods
fail to replicate such statistics. In Supp. Mat. we obtain samples utilizing the
configuration model from Chodrow [52], which only takes into account the
degree and size sequences. In this case, we observe a significant difference
between the samples and the data, which could be explained by the lack of
additional probabilistic structure in the sampling procedure. In Supp. Mat.
we provide additional studies based on synthetic samples, showing how
these can be employed for formalizing and carrying out hypothesis testing
on complex structural patterns.

To illustrate the wide applicability of our method, we extend this analysis
to additional systems. In fig. 4.7A we report the observed adjacency matrix
of face-to-face interactions among High School students [177], and the one
obtained from a sample of our generative model. In fig. 4.7B we show
the distribution of the hyperedge eigenvector centrality computed on co-
purchasing customer Walmart data [178]. Finally, in fig. 4.7C we compare
the sub-hypergraph centrality on the House Committees dataset [41, 179],
where hyperedges connect the members of the U.S. House participating in
the same committees. In all such cases, we observe that our sampling method
successfully models the desired statistics of the real data.

Synthetic data generated to incorporate a particular structure are often uti-
lized as tests for null hypotheses. Indeed, discrepancies between sampled
and real data may arise if some data features are not explicitly taken into
account by the generative assumptions of the model [180]. Observing such
differences can help unveil some relevant additional structure present in
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the data and originally neglected. As an example, we consider a dataset of
co-voting patterns of the US Supreme Court Justices, where the nodes are
Justices and hyperedges describe co-voting behaviors observed from 1946 to
2019 [181]. Since the number of Justices is fixed to 9 at any point in time, only
interactions between Justices working in overlapping years can exist. Such
an intrinsic time dependency, however, is not enforced by our model. Hence,
we do not expect samples of our model to match the input adjacency matrix
well. We illustrate this in fig. 4.7D, where the comparison of the sampled and
observed adjacency matrices are distinctively different, with the real data
showing a clear time-dependence. Our example illustrates the importance
of correctly identifying the existence of particular structures in real-world
dataset, showcasing how our sampling method could be used for testing null
hypotheses and reproducing real-world statistics.

Discussion

In this paper, we presented a framework for the generation of synthetic
hypergraphs with flexible structure. Our model allows specifying different
assortative and disassortative mesoscale configurations, tuning the size of the
different communities and controlling the strengths of the interactions among
them. Moreover, it allows regulating different node-level statistics, including
hard or mixed community assignments and expected degrees. Through
a variety of experiments, we showed how desired characteristics specified
via input parameters are reflected in the generated data. Furthermore, we
illustrated how practitioners can use our framework on real systems, both as
a computationally efficient sampling tool for the replication of statistical mea-
sures, and as a structured null model for hypothesis testing. As an example,
our model generates synthetic samples that successfully replicate centrality
measures and inclusions relationship between hyperedges in higher-order
data from different domains. Similarly, our model can help reveal important
missing features in the generative assumptions made by different algorithms,
showing clear discrepancies between samples and real data when, for in-
stance, time-dependence is ignored. Finally, our framework allows testing
the performance of different higher-order community detection methods.

There are various interesting and relevant avenues for future work. A first
one is moving from the likelihood in eq. 4.1, which is based on a bilinear form,
to one based on a multilinear form. Examples from the literature include
symmetric tensors [39] and affinity functions [41]. While in principle this
would allow for more flexible specifications, such as preventing the formation
of certain hyperedge configurations, it is currently unclear how to obtain
efficient expressions for the expected statistics and compute the moments
required in the Central Limit Theorem. On a similar note, it is important to
highlight that ours is only one of different possible definitions of community
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in hypergraphs. Studying the implications of different probabilistic and opti-
mization procedures on the communities observed in higher-order systems,
both theoretically and empirically, is a promising avenue for future work.
Moreover, additional information, such as time dependency and attributes
on the nodes and hyperedges, could be explicitly incorporated in the proba-
bilistic model. Such an extension could be based on insights from models
for dyadic interactions, and result in substantial improvements when this
information correlates with the hypergraph structure [37, 135, 182, 133, 3].

Taken together, our methodology provides a principled, scalable and flexible
framework to sample structured hypergraphs. To facilitate its usage we
provide an open-source implementation at github.com/nickruggeri/Hy-
MMSBM. The method is also implemented as part of the HGX library [6].
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Chapter 5

Hypergraphs with Node Attributes:
Structure and Inference

Abstract

Many networked datasets with units interacting in groups of two or
more, encoded with hypergraphs, are accompanied by extra informa-
tion about nodes, such as the role of an individual in a workplace.
Here we show how these node attributes can be used to improve our
understanding of the structure resulting from higher-order interactions.
We consider the problem of community detection in hypergraphs and
develop a principled model that combines higher-order interactions
and node attributes to better represent the observed interactions and
to detect communities more accurately than using either of these types
of information alone. The method learns automatically from the input
data the extent to which structure and attributes contribute to explain
the data, down weighing or discarding attributes if not informative. Our
algorithmic implementation is efficient and scales to large hypergraphs
and interactions of large numbers of units. We apply our method to a
variety of systems, showing strong performance in hyperedge prediction
tasks and in selecting community divisions that correlate with attributes
when these are informative, but discarding them otherwise. Our ap-
proach illustrates the advantage of using informative node attributes
when available with higher-order data.

5.1 Introduction

Over recent years, systems where units interact in groups of two or more
have been increasingly investigated. Such higher-order interactions have been
observed in a wide variety of systems, including cellular networks [21], drug
recombination [82], ecological communities [183] and functional mapping of
the human brain [85].
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These systems can be better described by hypergraphs, where hyperedges
encode interactions among an arbitrary number of units [22, 16]. Often,
research in this area solely considers the topology of hypergraphs, that is, a
set of nodes and their higher-order interactions. Many hypergraph datasets,
however, include attributes that describe properties of nodes, such as the age
of an individual, their job title in the context of workplace interactions, or
the political affiliation of a voter. In this work, we consider how to extend
the analysis of hypergraphs to incorporate this extra information.

We focus on the relevant task of community detection, where the goal is
to cluster nodes in a hypergraph. Community detection algorithms solely
based on interactions tend to cluster nodes based on notions of affinity
between communities, cluster separation, or other arguments similar to those
classically utilized on graphs [29]. However, one can assume that relevant
information about the communities and the hyperedge formation mechanism
is additionally contained in the attributes accompanying a dataset.

For instance, students in a school have been observed to interact more likely
in groups that involve individuals in the same classes [177]. A similar
observation was also made for dyadic networks, where incorporating node
attributes helped in community detection and other related inference tasks,
e.g. prediction of missing information [37, 184, 185, 135, 186].

Several tools have been developed for community detection in higher-order
data [114, 113, 187, 115]. Methods based on statistical inference have estab-
lished themselves as effective tools in this direction, as they are both mathe-
matically principled and have a high computational efficiency [17, 1, 41].

Here, we build on these approaches to incorporate node attributes into a com-
munity detection framework for higher-order interactions. More precisely,
we follow the principles behind generative models for networks, which in-
corporate community structure by means of latent variables that are inferred
directly from the observed interactions [188, 36, 189] and extend them to
incorporate extra information on nodes.

The model we propose has several desirable features. It is flexible, as it can
be applied to both weighted and unweighted hypergraphs, it can incorporate
different node attributes, categorical or binary, and it outputs overlapping
communities, where nodes can belong to multiple groups simultaneously.
Furthermore, the model does not assume any a priori correlation structure
between the attributes and the communities. Rather, it infers such a connec-
tion directly from the data. The extent of this contribution can vary based on
the dataset. In the favorable case where attributes are correlated well with
the communities, our model exploits such additional information to improve
community detection. This is particularly beneficial in situations where data
is sparse or when data availability is limited to an incomplete set of obser-
vations. In less favorable situations where correlation is low (for instance
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when the attributes do not align with the mechanism generating higher-order
interactions), the model can nevertheless either discard or downweigh this
information.

In some cases, a system can be explained well by different community
divisions. Our model allows selecting a particular community structure
guided by the desired attribute, provided that it is informative, as measured
automatically by fitting the data. This allows a practitioner to focus the
analysis of group interactions on some particular node characteristic.

Finally, our model is computationally efficient, as it scales to large hyper-
graphs and large hyperedge sizes. This feature is particularly relevant in
the presence of higher-order interaction, where the increased computational
complexity limits the range of models that can be practically implemented
into viable algorithms.

Few works are available that investigate community detection in hypergraphs
in presence of node attributes [190, 191, 192], but they are limited to clustering
nodes without providing additional probabilistic estimates. Furthermore,
they can be computationally burdening, or they typically rely on stronger
assumptions about the nature of the data (e.g. assume real-valued weights)
or the communities (e.g. nodes can only belong to one group).

5.2 Results

5.2.1 The Model

We propose a probabilistic model that incorporates both the structure of
a hypergraph, i.e. the interactions observed in the data, and additional
attributes (or covariates) on the nodes. These two types of information,
which we call structural and attribute information, have been previously
shown to be beneficial to the inference, when correlation to be exploited is
present [37, 184, 185, 135].

We denote a hypergraph as H = (V, E, A), where V = {1, . . . , N} is a set of
nodes, E is a set of observed hyperedges whose elements e ∈ E are arbitrary
sets of two or more nodes in V, and A is a vector containing the weights
of edges. In this work, we assume that weights are positive and integer
quantities. Denoting Ω as the set of all possible hyperedges, we have that
Ae is the weight of edge e when e ∈ E, otherwise Ae = 0 if e ∈ Ω \ E. Given
these definitions, the observed edge set E can equivalently be represented
as E = {e ∈ Ω | Ae > 0}. We represent the covariates on nodes as a matrix
X ∈ RN×Z, where Z is the number of attributes, with entries equal to 1 if the
node i has attribute z and 0 otherwise. We note that a node can have several
types of covariates, e.g. gender and age, which are then one-hot encoded as
attributes.
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We model the presence of structural information A and covariate information
X probabilistically, assuming a joint probability of these two types of informa-
tion that is mediated by a set of latent variables θ = {w, β, u}. Here w, β are
specific to each of the two distinct types of information, while the quantity u
is a latent variable shared between the two. The presence of a shared u is a
key to allow coupling the two types of information and extracting valuable
insights about the system. Formally, we assume

P(A, X | θ) = PA(A |w, u) P(X | β, u) . (5.1)

This factorization assumes conditional independence between A and X,
given the parameters θ, and is analogous to related approaches on graphs
[37, 184]. The factorization in eq. 5.1 presents various advantages. First,
the parameters in θ can provide interpretable insights about the mechanism
driving hyperedge formation, as we show below. In our case, we focus
on community structure, hence we model u to represent the community
memberships of nodes. Second, it allows for efficient inference of the model
parameters θ, as we show in the Methods section. Third, it allows predicting
both A and X, which is relevant for example in the case of corrupted or
missing data.

Having introduced the main structure of the model, we now describe the
expressions of the two factors of the joint probability distribution in eq. 5.1.

5.2.1.1 Modeling structural information

We model the structural information A by assuming that latent communi-
ties control the interactions observed. For this, we utilize the Hy-MMSBM
probabilistic model [1], which assumes mixed memberships where nodes
can belong to multiple communities. This model flexibly captures various
community structures (e.g. assortative, core periphery etc.), scales to large
hyperedge sizes and allows incorporating covariates flexibly without com-
promising the efficiency of its computational complexity, as we explain in the
Methods section.

Assuming K overlapping communities, u is an N × K non-negative mem-
bership matrix, which describes the community membership for each node
i = 1, . . . , N. A symmetric and non-negative K× K affinity matrix w controls
the density of hyperedges between nodes in different communities. The
hypergraph is modeled as a product of Poisson distributions as:

PA(A|u, w) = ∏
e∈Ω

Pois
(

Ae;
λe

ke

)
, (5.2)

where

λe = ∑
i<j:i,j∈e

uT
i wuj = ∑

i<j:i,j∈e

K

∑
k,q=1

uikujqwkq . (5.3)
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The term ke is a normalization constant, which can take on any positive
value. In all our experiments we set its value to ke = |e|(|e|−1)

2 (N−2
|e|−2), with

|e| being the size of the hyperedge. Other parametrizations of the likeli-
hood PA(A|u, w) are possible, e.g. using different generative models for
hypergraphs with community structure [17, 41], but it is not guaranteed
that these would yield closed-form expressions and computationally effi-
cient algorithms when incorporating additional attribute information in the
probabilistic model. Similarly, in eq. 5.2 we assumed conditional indepen-
dence between hyperedges given the latent variables, a standard assumption
in these types of models. Such a condition could in principle be relaxed
following the approaches of [131, 193, 133]. We do not explore this here.

5.2.1.2 Modeling attribute information

We model the covariates X assuming that the community memberships u
regulate how these are assigned to nodes. We then assume that a K×Z matrix
β with entries βkz regulates the contribution of attribute z to the community
k. This parameter plays a similar role for the matrix X as the matrix w does
for the vector A. We combine the matrix β with the community assignment
u via a matrix product that yields the following Bernoulli probabilities:

πiz =
K

∑
k=1

uik βkz . (5.4)

We assume that attributes are conditionally independent given the parameters
π, which allows flexibly modeling several discrete attributes at a time. This
is implemented by assuming that each entry Xiz is extracted from a Bernoulli
distribution with parameter πiz as:

PX(X|u, β) =
N

∏
i=1

Z

∏
z=1

πxiz
iz (1− πiz)

(1−xiz) . (5.5)

To ensure πiz ∈ [0, 1], we constraint uik ∈ [0, 1] and ∑K
k=1 βkz = 1, ∀z.

We focus here on discrete and unordered attributes. This covers many
relevant scenarios, including the ones we study in the several real datasets
below, e.g. roles of employees in a company or classes of students. Other
specific cases could be treated using similar ideas and techniques as the one
we propose by suitably modifying the distribution in eq. 5.5. We give an
example of imposing categorical attributes, when we want to explicitly force
that having an attribute of one value does exclude any other possible value,
in Supplementary Note C.
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Figure 5.1: Community detection in synthetic hypegraphs. We show the cosine similarity
between the communities inferred by the various algorithms and the ground truth communities in
synthetic hypergraphs, with N = 500 and E = 2720. We show results for different numbers of
communities K (from left to right). The number of attributes Z is selected to be equal to K, and
the parameter γ is set equal to the fraction ρ of unshuffled attributes. We compare HyCoSBM
with Hy-MMSBM, which servevs as a baseline that only employs structural information. We also
measure the cosine similarity of the attribute matrix X and the ground truth membership matrix
u Only attributes).

5.2.1.3 Inference of latent variables

Having defined the probabilistic model eq. 5.1 and the two distributions
eqs. 5.2 and 5.5, our goal is to now infer the latent variables u, w and β, given
the observed hypergraph A and the attributes X. To infer these values we
consider maximum likelihood estimation and use an efficient expectation-
maximization (EM) algorithm that exploits the sparsity of the dataset, as
detailed in the Methods section. We combine the log-likelihoods of the
two sources of information with a parameter γ that tunes their relative
contribution, with extreme values γ = 0 ignoring the attributes and γ =
1 ignoring the structure, similarly to what has been done in attributed
network models [37, 184, 185], or in models for information retrieval from
text [194, 195]. In our experiments, we learn the γ hyperparameter from data
via cross-validation.

Overall, the inference routine scales favorably with both the system size
and the size of the hyperedges, as each EM iteration has a complexity

of O
(

K(K + Z)(N + |E|)
)

, which is linear in the number of nodes and
hyperedges. We refer to our model as HyCoSBM and make the code available
online at github.com/badalyananna/HyCoSBM.

5.2.2 Detecting communities in synthetic networks

Our first experiments are tests on synthetic networks with known ground-
truth community structure and attributes. We generate synthetic hypergraphs
using Hy-MMSBM [2] as implemented in the library HGX [6]. We select
parameter settings where inference with Hy-MMSBM is not trivial, to better
assess the influence of using attributes, see details in Supplementary Note
A. After the networks are created, we generate discrete attributes that match
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the community membership a fraction ρ of the time, while the remaining
fraction 1− ρ are randomly generated. This allows to vary the extent to
which attributes correlate with communities and hence the difficulty of
inferring the ground truth memberships. We varied ρ ∈ [0.1, 0.9], with higher
values implying that inference of communities is aided by more informative
attributes.

As a performance metric, we measure the cosine similarity between the
membership vectors recovered by our model and the ground truth ones.
In fig. 5.1 we can see that, when the attributes are correlated with ground
truth communities, HyCoSBM performs better than using either of the two
types of information alone. In addition, the performance of HyCoSBM
increases monotonically with increasing correlation between attributes and
ground truth. Although this is observed also when using attributes alone,
the performance of HyCoSBM in recovering the ground truth communities
is always higher.

This behavior is consistent across different values of K, with larger perfor-
mance gap between results at low and high ρ at larger K, where there are
more choices to select from. We observe small decreases of performances of
HyCoSBM at extreme regimes of ρ and K.

In short, these results demonstrate that the model is successfully using both
attribute and structural information to improve community detection.

5.2.2.1 Results on empirical data

We analyze hypergraphs derived from empirical data drawn from social,
political and biological domains, as detailed in the Methods section. For
each hypergraph we describe a different experiment, to illustrate various
applications of our method. We select the number of communities K and the
hyperparameter γ using 5-fold cross-validation. To assess the impact of using
attributes, we compare HyCoSBM with three baselines: i) Hy-MMSBM, that
only utilizes the structural information in the hyperedges to detect mixed-
membership communities; ii) HyCoSBM with γ = 0, which is equivalent
to not utilizing the attributes; iii) HyCoSBM with community assignments
u fixed to match the attributes, and only infer the w parameters, which
tests how attributes alone perform. Notice that i) and ii) differ in that the
membership vectors u are unconstrained in Hy-MMSBM, while they are
restricted to uik ∈ [0, 1] in our model. In iii) utilizing HyCoSBM and Hy-
MMSBM is equivalent, since the two models coincide in the updates for
w.

Recovering interactions on contact dataset In our first experiment we
study human contact interactions, using the data obtained from wearable
sensor devices in four settings: students in a high school (High School) and
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Figure 5.2: Predicting interactions in close-proximity datasets with partial observations. We
show the performance of various methods in hyperedge prediction tasks, measured by AUC, as
we vary the fraction of hyperedges made available to the algorithms. This plot shows that the
performance of HyCoSBM remains high when fewer hyperedges are available in input, while that
of the algorithms which do not use any attribute drops.

a primary school (Primary School), co-workers in a workplace (Workplace)
and patients and staff in a hospital (Hospital). Hyperedges represent a group
of people that were in close proximity at some point in time. Each dataset
contains attributes that describe either the classes, the departments, or the
roles the nodes belong to.

We measure the ability of our model to explain group interactions by assess-
ing its performance on a hyperedge prediction task. To this end, we infer the
parameters using only a fraction of the hyperedges in the dataset. Then we
utilize the held out hyperedges to measure the AUC metric, which represents
the fraction of times the model predicts an observed interaction as more
likely than a non-observed one (higher values mean better performance).

Models that do not utilize any attribute have been previously shown to
perform well on such a task on these datasets [41, 17, 1] when a large fraction
of the dataset was given as input. Here, we vary the amount of structural
information available to the algorithms more pronouncedly to assess their
robustness in realistic situations where the full data is unavailable and
investigate how making use of attributes can compensate for this. To simulate
this setting, we delete an increasing fraction of the existing hyperedges
(keeping the hypergraph connected) and perform 5-fold cross-validation on
the remaining dataset.

The results in fig. 5.2 show a significant and monotonic drop in performance
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Figure 5.3: Communities detected in a Workplace dataset from partial observations of close-
proximity interactions. We vary the fraction of hyperedges given in input to the algorithms (top:
100%, bottom: 50%) and compare the inferred communities against the attribute departement
(top left). The AUC barplot (bottom-left) shows the performance of the models in hyperedge
prediction. This plot shows that HyCoSBM is able to use the attributes effectively to keep
performance high even at a low fraction of input observations.

for Hy-MMSBM as we decrease the fraction of hyperedges, consequently
reducing the amount of structural information available to the algorithm.
In contrast, HyCoSBM maintains an almost constant and high performance,
all the way down to having access only to 20% of the hyperedges, owing
to its usage of the additional attribute information. In addition, even in the
favorable setting when all hyperedges are available, HyCoSBM yields higher
AUC in Workplace (with γ = 0.995), indicating that incorporating attributes
can be beneficial even when robust results are obtained using structural
information alone. Focusing on other datasets where HyCoSBM attains AUC
similar to that of other algorithms when all the interactions are utilized,
we still observe a difference in the types of communities detected. As an
example, in the High School dataset the community assignments u inferred
via Hy-MMSBM have cosine similarity of 0.59 with the class attribute of the
nodes, as opposed to the cosine similarity of 0.94 observed for HyCoSBM.

These different levels of correlation between inferred communities and at-
tributes, together with observing similar AUC (indicating a similar ability
to explain the structural information), could be explained by the presence
of competing network divisions, as already observed in network datasets
[196, 135, 31]. Our model allows selecting among divisions, finding ones that
correlate with the attribute of interest.

We highlight that, although the communities inferred by HyCoSBM correlate
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Figure 5.4: AUC on contacts dataset with partial hyperedges: uncorrelated attributes. Using
sex and has facebook as the attributes, the performance of all models drops as the hyperedges
are removed.

with the attributes, these two are not equivalent. In fact, we observe several
cases where the number of detected communities is not equal to the number
of attributes. For example, we observe cases where the model detects fewer
communities than the number of attributes available. In fig. 5.3 the nodes
with attribute SFLE (green) are included within the community formed
mainly by DISQ nodes (purple) by our model when 50% of the edges are
given in input. This partition achieves higher AUC than the model with
community assignments fixed and equal to the attributes. In other cases, our
model finds smaller communities within the bigger partitions determined
by the attributes. We find such an example in the High School dataset in
fig. 5.6, where HyCoSBM finds finer partitions (K = 11) than the one given
by the Z = 9 classes, hierarchically splitting some classes into subgroups.
The resulting partition attains a high AUC score. A high number of inferred
communities is also observed in Hy-MMSBM, but, in this case, the AUC
drops significantly, and the K = 30 communities inferred at 30% of the edges
are much more mixed between the classes. In short, the communities inferred
by our model do not simply replicate the attribute. Rather, this additional
information is used to infer a community structure that better explains the
interactions observed in the data.
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5.2.2.2 Performance with uninformative attributes

In the previous sections, we have shown how attribute information can aid
the recovery of effective communities and improve inference. In general,
though, we cannot expect that any type of attribute added to a network
dataset may help explaining the observed structure. This may be the case
for instance when an attribute is uncorrelated or weakly correlated with the
hyperedges, as in the synthetic experiments described above when ρ is close
to 0.1.

In this section we study the performance of HyCoSBM in this adversarial
regime and show that, when attributes are uninformative, these are read-
ily discarded by our model to only perform inference based on structural
information.

To this end, we feed the sex and has facebook attributes, respectively from
the Primary School and High School datasets, into our model. As we show
in fig. 5.4, the performance of HyCoSBM closely resembles that of the models
that do not use any attribute in input, signaling that these attributes are not
as informative as class to explain the observed group interactions. This is
reinforced by a very low AUC for the model that fixes u as the attributes (red
line).

We further illustrate this point in four datasets of US representatives. Here,
nodes are representatives (in the House of Representatives or in the Sen-
ate) and hyperedges represent co-sponsorship of bills (Bills datasets) or
co-participation in a committee during a Congress meeting (Committees
datasets). The attribute indicates whether the representative is associated
with the Republican or Democratic party (Z = 2). In table 5.1 we show
that there is no advantage in using this binary attribute to explain the co-
sponsorship nor the co-participation patterns, as the AUC is similar to that
of models that do not use attribute information in input. As a confirmation,
the value of γ obtained via cross-validation is equal to 0 in three out of four
cases, and 0.1 in one case, showing that the algorithm tends to discard the
attribute information and prefers to rely solely on structural data.

5.2.2.3 Improving prediction of Gene-Disease associations

Our final application is to a biological dataset containing Gene-Disease
associations [197]. Here, nodes represent genes, and hyperedges represent
a combination of genes specific to a disease. For each node, its Disease
Pleiotropy Index (DPI) is available as an attribute, indicating the tendency of
a gene to be associated with many types of diseases, with Z = 25 possible
discrete values. The dataset is highly sparse, as many nodes are present
only in one hyperedge. Previous results have shown that inferring missing
associations improves sensibly when using all hyperedges in the datasets [1]
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Dataset HyCoSBM Hy-MMSBM
K γ AUC K AUC

House Bills 22 0.0 0.952± 0.003 25 0.952± 0.001
House Committees 13 0.1 0.985± 0.015 24 0.972± 0.011
Senate Bills 23 0.0 0.929± 0.006 19 0.923± 0.003
Senate Committees 23 0.0 0.972± 0.01 21 0.963± 0.023

Table 5.1: AUC scores on co-sponsorship and co-participation datasets of US representatives.
We report the results of cross-validation in terms of selected K, γ, and obtained AUC. Here
the node attribute used by HyCoSBM is the political party of the representative (Democrat or
Republican, Z = 2).

(with AUC scores up to 0.84), compared to using only hyperedges up to size
D = 25 [17]. In this paragraph, we investigate whether these results can be
further improved when additional information is available in the form of the
DPI attribute. We find that running HyCoSBM achieves an AUC score of 0.9,
indicating that this attribute is informative. Furthermore, we observe that the
communities detected by HyCoSBM are similar to those obtained from the
attributes, see fig. 5.5a), but with a finer division into K = 30 communities,
which is larger than the Z = 25 covariate categories.

0.6
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Figure 5.5: Cosine similarity and AUC in a Gene Disease dataset. a) Cosine similarity between
the three types of communities: attribute, HyCoSBM and Hy-MMSBM. The membership u
detected by HyCoSBM correlates with the DPI attribute and achieves higher AUC than both
Hy-MMSBM and the model trained with u fixed as the attribute.

All the results of the previous analysis are summarized in table 5.2.

5.2.3 Discussion

We have analyzed how node attributes can be used to guide investigations
of higher-order data. We focused on the problem of community detection,
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Dataset Attribute N |E| Z HyCoSBM Hy-MMSBM Source
K γ AUC K AUC

Gene Disease DPI 9262 3128 25 30 0.500 0.9± 0.07 2 0.84± 0.122 [197]
High School class

327 7818

9 11 0.995 0.899± 0.011

24 0.884± 0.006

[198]
has filled questionnaire 2 21 0.800 0.892± 0.013
has facebook 2 15 0.950 0.888± 0.008
sex 2 16 0.800 0.889± 0.009

Primary School class
242 12704

11 10 0.600 0.841± 0.013
11 0.841± 0.007

sex 2 12 0.200 0.841± 0.007 [198]
Hospital status 75 1825 4 2 0.200 0.776± 0.032 2 0.758± 0.016 [198]
Workplace department 92 788 5 5 0.995 0.81± 0.02 5 0.752± 0.039 [198]
House Bills political party 1494 54933 2 22 0.000 0.952± 0.003 25 0.952± 0.001 [169, 170]
House Committees political party 1290 335 2 13 0.100 0.985± 0.015 24 0.972± 0.011 [179]
Senate Bills political party 294 21721 2 23 0.000 0.929± 0.006 19 0.923± 0.003 [169, 170]
Senate Committes political party 282 301 2 23 0.000 0.972± 0.01 21 0.963± 0.023 [179]

Table 5.2: AUC scores on real datasets. We report the AUC scores resulting from 5-fold
cross-validation on various real datasets. We report the number of nodes N, number of hyperedges
|E|, number of attributes Z and the values of K and γ as obtained from cross-validation.

introducing a mixed-membership probabilistic generative model for hyper-
graphs. Our model can explicitly incorporate both hyperedges and node
attributes, and find more expressive community partitions by exploiting the
combination of these information sources.

We have applied our model to a variety of social, political and biological
hypergraphs, showing how prediction of missing interactions can be boosted
by the addition of informative attributes, in particular in the regime of
incomplete or noisy data. We have also illustrated various scenarios where
attributes can be used to select between competing divisions, or cases where
they are not informative and can be discarded.

There are a number of possible extensions of this work. One could include
additional attribute types, such as attributes on hyperedges, continuous
variables or vector variables. Similarly, one could consider alternative proba-
bilistic expressions for the structural data, but this would require efforts to
derive closed form updates and maintain a low computational complexity.
On a related note, our model is based on the assumption that attributes
and structure are independent conditionally on the latent variables. This
approach is rather general, as the latent variables can potentially take on
different semantics. It would be interesting to study other types of dependen-
cies between structure and attributes. Finally, our model might be extended
to consider dynamical hypergraphs, where communities and interactions can
change in time, and assess what role attributes play in this case.
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5.3 Methods

5.3.1 Inference of the latent variables

The likelihood of HyCoSBM factorizes over all hyperedges e ∈ Ω, and single
hyperedges are modeled with a Poisson distribution:

PA(Ae|u, w) = Pois
(

Ae;
λe

ke

)
. (5.6)

Similarly, the probability of attributes factorizes into Bernoulli probabilities:

PX(X|u, β) =
N

∏
i=1

Z

∏
z=1

πxiz
iz (1− πiz)

(1−xiz) . (5.7)

Under the Poisson distribution in eq. 5.6, it can be shown that the log-
likelihood LA(u, w) of the full hypergraph evaluates to

LA(u, w) = −C ∑
i<j∈V

uT
i wuj + ∑

e∈E
Ae log ∑

i<j∈e
uT

i wuj , (5.8)

where C = ∑D
d=2 (

N−2
d−2 )

1
κd

and D is the maximum hyperedge size observed
[1]. Instead, eq. 5.7 yields the log-likelihood

LX(u, β) =
N

∑
i=1

Z

∑
z=1

xiz log

(
K

∑
k=1

uik βkz

)

+
N

∑
i=1

Z

∑
z=1

(1− xiz) log

(
K

∑
k=1

(1− uik) βkz

)
. (5.9)

As we assumed conditional independence of the network part and the at-
tributes part, the total log-likelihood becomes the sum of those two terms.
In practice though, performance improves by introducing a balancing pa-
rameter γ ∈ [0, 1] that tunes the relative contribution of the two terms
[37, 185, 195, 194], yielding a total log-likelihood as:

L(u, w, β) = (1− γ) LA(u, w) + γ LX(u, β) . (5.10)

The value of γ is not known a priori, and it can be learned from the data
using standard techniques for hyperparameter learning. In our experiments,
we utilize cross-validation. The γ parameter is necessary to better balance the
contribution of the structural and covariate information, as the magnitude
of the two different log-likelihood terms can be on different scales, with
the risk of biasing the total likelihood maximization towards one of the
two terms. This balancing is also useful when attribute data are somehow
more (or less) reliable than structural data, for instance when we believe
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that one is less (or more) subject to noise. Furthermore, γ is reminiscent
of any hyperparameter of approaches that adjust inference based on prior
distributions on the community assignments, as done in some attributed
network models, e.g. [135, 186].

We note here that the value of γ has a clear interpretation only for the extreme
cases of 0 or 1, which discards entirely the contribution of one of the two
terms. In all the other intermediate cases, its value is not simply interpreted
as a percentage contribution of the attributes over the network. This is
because γ balances the magnitudes of two likelihood terms. In general, the
network part is much larger than the attribute one, which draws γ to values
closer to 1, e.g. 0.995, to compensate for the difference in scales. This does
not necessarily mean that the network information is barely used, but rather
that it has to be rescaled to allow the attribute information to be effectively
considered.

As a final remark, our definition of X allows modeling several discrete
attributes at the same time, and the dimension Z is the total number of
values, including all the attribute types. Formally, Z = ∑p=1,...,P zp, where
P is the number of attribute types (e.g. age and class would give P = 2),
and zp is the number of discrete values an attribute of type p can take.
Alternatively, the presence of more than one attribute can be modeled by
considering separate terms LX, each with a different multiplier γ. While
this formulation would allow for tuning the contribution of attributes more
specifically, this comes at a price of higher model complexity (in case of using
different expressions for the LX) or higher computational complexity, as one
needs to cross-validate more than one type of γ. We do not explore this here.

5.3.1.1 Variational lower bound

To maximize the total log-likelihood in eq. 5.10 we adopt a standard varia-
tional approach to lower bound the summation terms inside the logarithm.
Introducing the probability distributions ρ

(e)
ijkl , hizk and h′izk and using Jensen’s
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inequality log E[x] ≥ E[log x], we get the following lower bounds:

∑
e∈E

Ae ∑
i<j∈e

log
K

∑
k,q=1

(
uikujqwkq

)
≥

∑
e∈E

Ae ∑
i<j∈e

K

∑
k,q=1

ρ
(e)
ijkq log

uikujqwkq

ρ
(e)
ijkq

 ; (5.11)
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∑
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xiz
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∑
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N

∑
i=1

Z

∑
z=1

(1− xiz) log
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K
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(1− uik)βkz
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≥
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∑
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(1− xiz)
K

∑
k=1

h′izk log
(
(1− uik)βkz
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)
; (5.13)

with equality reached when

ρ
(e)
ijkq =

uikujqwkq

λe
; (5.14)

hizk =
βkzuik

∑k′ βk′zuik′
; (5.15)

h′izk =
βkz(1− uik)

∑k′ βk′z(1− uik′)
; (5.16)

respectively.

Plugging eq. 5.11 into eq. 5.8 yields a lower bound LA of the structural
log-likelihood

LA(u, w, ρ) = −C ∑
i<j∈e

uT
i wuj

+ ∑
e∈E

Ae ∑
i<j∈e

K

∑
k,q=1

ρ
(e)
ijkq log

uikujqwkq

ρ
(e)
ijkq

 . (5.17)

Similarly, eqs. 5.12–5.13 yield a lower bound LX of the log-likelihood of the
attributes:

LX(u, β, h, h′) =
N

∑
i=1

Z

∑
z=1

xiz

K

∑
k=1

hizk log
(

uikβkz
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)
+

N

∑
i=1

Z

∑
z=1

(1− xiz)
K

∑
k=1

h′izk log
(
(1− uik)βkz

h′izk

)
, (5.18)
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so that
L := (1− γ)LA + γLX , (5.19)

is a lower bound of the full log-likelihood.

5.3.1.2 Expectation-Maximization

We now aim to optimize the variational lower bound in eq. 5.19 with respect
to the model parameters u, w and β. To account for the constraint on β and u,
we introduce the Lagrange multipliers λ(β) and λ(u) obtaining the following
objective:

Lconstr := L−
Z

∑
z=1

λ
(β)
z

(
K

∑
k=1

βkz − 1

)
−

N

∑
i

K

∑
k

λ
(u)
ik uik . (5.20)

We proceed as in the Expectation-Maximization algorithm [199], by alter-
nating two optimization steps until convergence. In one step, we maximize
eq. 5.20 with respect to the model parameters u, w, β and the Lagrange
multipliers λ(β), λ(u). In the other, we utilize the closed-form updates in
eqs. 5.14–5.16 for the variational parameters. The procedure is described in
detail in algorithm 4.

Differentiating objective eq. 5.20 with respect to the w, β parameters and the
multipliers λ(β) yields the following closed-form updates:

wkq =
∑e∈E Ae ∑i<j∈e ρ

(e)
ijkq

C ∑i<j∈V uikujq
, (5.21)

βkz =
∑i(xizhizk + (1− xiz)h′izk)

∑i,k′(xizhizk′ + (1− xiz)h′izk′)
. (5.22)

Equation 5.21 is valid when γ ̸= 1 and eq. 5.22 is valid when γ ̸= 0.

To obtain the updates for u we distinguish two cases. In the case of γ ̸= 0,
differentiating eq. 5.20 with respect to uik yields the condition:

aik u2
ik − (aik + bik + cik) uik + bik = 0 , (5.23)

where

aik = (1− γ)C ∑
j∈V,j ̸=i

K

∑
q=1

ujqwkq ,

bik = (1− γ) ∑
e∈E:i∈e

Ae ∑
j ̸=i∈e

K

∑
q=1

ρ
(e)
ijkq + γ

Z

∑
z=1

xizhizk ,

cik = γ
Z

∑
z=1

(1− xiz)h′izk .
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The updated values for uik are found by numerically solving eq. 5.23. We
take the smallest root of eq. 5.23, as this is guaranteed to be in (0, 1), as we
show in Supplementary Note B. This update automatically yields a value of
uik in [0, 1], therefore the constraints on u are inactive and we do not need to
differentiate with respect to the Lagrange multipliers λ

(u)
ik .

In the case γ = 0, we differentiate eq. 5.20 with respect to both uik and the
Lagrangian multipliers λ

(u)
ik to obtain the update

uik =
∑e∈E:i∈e Ae ∑j ̸=i∈e ∑K

q=1 ρ
(e)
ijkq

C ∑j∈V,j ̸=i ∑K
q=1 ujqwkq + λ

(u)
ik

, (5.24)

which is exactly the same as those of the Hy-MMSBM model [1], except that
in our case we have λ

(u)
ik which constrains uik ∈ [0, 1]. Thus, our model is

as powerful as Hy-MMSBM when γ = 0, but, when the attributes correlate
well with the communities, our model can utilize this information to boost
performance. In practice, in the latter case, cross-validation would yield
γ > 0.

The EM algorithms finds a local maximum for a given starting point, which
is not guaranteed to be the global maximum. Therefore, the algorithm is run
several times and the best parameters are chosen based on the run that gives
the highest log-likelihood.
A pseudocode for the algorithmic implementation is given in algorithm 4.

Algorithm 4: HyCoSBM: EM algorithm
Input: Hypergraph A, covariates X, hyperparameters γ and K
Result: Inferred (u, w, β)

1 u, w, β← init(u, w, β) : Randomly initialize the parameters
2 while convergence not reached do
3 ρ, h, h′ ← update(ρ, h, h′) eqs. 5.14–5.16
4 u← update(u) eq. 5.23 or eq. 5.24
5 if γ ̸= 1 then
6 w← update(w) eq. 5.21
7 end
8 if γ ̸= 0 then
9 β← update(β) eq. 5.22

10 end
11 end
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Figure 5.6: Communities detected in a High School dataset of close-proximity interactions.
We give the whole dataset as input to the algorithms, and compare the inferred communities
against the class attribute (top left). The plot shows that both HyCoSBM and Hy-MMSBM
detect communities aligned with the attribute, but with a number of communities greater than
the number of attribute values. AUC values are slightly higher for HyCoSBM , see table 5.2.

5.3.1.3 Hyperedge prediction and cross-validation

For all experiments with real datasets we used 5-fold cross-validation with
the test AUC as performance metric to select the hyperparameters K and
γ. We varied K ∈ {2, . . . , 30} and γ ∈ [0.0, 1.0]. The set of hyperedges was
split into 80% and 20% for training and testing. The AUC is calculated by
comparing the Poisson probabilities assigned to a given existing hyperedge
against that of a randomly generated hyperedge of the same size. Since
comparing all possible pairs of observed-unobserved edges is unfeasible, we
estimate the AUC via sampling. For every observed edge in the dataset,
we draw an edge of the same size uniformly at random, and compute the
relative Poisson probabilities. The resulting Poisson probabilities are saved in
a vector R1 for the observed edges and R0 for the randomly generated ones.
We then compute the AUC as

AUC =
∑(R1 > R0) + 0.5 ∑(R1 == R0)

|R1|
,

where ∑(R1 > R0) stands for the number of times the Poisson probability
of the positive hyperedge was higher than the negative one, ∑(R1 == R0)
when they were equal, and the total number |R1| of comparisons made is
equal to the number of hyperedges in the test set.

5.3.2 Extended data

We provide additional results in figs. 5.6 and 5.7.
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Status, Z = 4

ADM MED NUR PAT

HyCoSBM, K =  2 Hy-MMSBM, K =  3

Figure 5.7: Communities detected in Hospital dataset using 60% of hyperedges. We
give in input to the algorithms 60% of hyperedges and compare the inferred communities
against the attribute status (NUR=paramedical staff; PAT=Patient; MED=Medical doctor;
ADM=administrative staff) (top left). This plot shows that both HyCoSBM and Hy-MMSBM
detect fewer communities than the division indicated by attributes, with HyCoSBM achieving a
higher AUC that Hy-MMSBM, see Fig. 2 in the main manuscript.
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Chapter 6

Message-Passing on Hypergraphs:
Detectability, Phase Transitions and

Higher-Order Information

Abstract

Hypergraphs are widely adopted tools to examine systems with higher-
order interactions. Despite recent advancements in methods for com-
munity detection in these systems, we still lack a theoretical analysis
of their detectability limits. Here, we derive closed-form bounds for
community detection in hypergraphs. Using a Message-Passing for-
mulation, we demonstrate that detectability depends on hypergraphs’
structural properties, such as the distribution of hyperedge sizes or their
assortativity. Our formulation enables a characterization of the entropy
of a hypergraph in relation to that of its clique expansion, showing that
community detection is enhanced when hyperedges highly overlap on
pairs of nodes. We develop an efficient Message-Passing algorithm to
learn communities and model parameters on large systems. Addition-
ally, we devise an exact sampling routine to generate synthetic data
from our probabilistic model. With these methods, we numerically
investigate the boundaries of community detection in synthetic datasets,
and extract communities from real systems. Our results extend the
understanding of the limits of community detection in hypergraphs and
introduce flexible mathematical tools to study systems with higher-order
interactions.

6.1 Introduction

Modeling complex systems as graphs has broadened our understanding of
the macroscopic features that emerge from the interaction of individual units.
Among the various aspects of this problem, community detection stands
out as a fundamental task, as it provides a coarse-grained description of a
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network’s structural organization. Notably, community structure is observed
across different systems, such as food webs [200], spatial migration and gene
flow of animal species [201], as well as in social networks [202], power grids
[203], and others [29].

In the case of networks with only pairwise interactions, there are solid
theoretical results on detectability limits, describing whether the task of com-
munity detection can or cannot succeed [55, 204, 205, 206, 207, 208]. However,
many complex systems with interactions that extend beyond pairs are better
modeled by hypergraphs [22], which generalize the simpler case of dyadic
graphs. Phenomena that have been investigated on graphs are now readily
explored on hypergraphs, with examples including diffusion processes, syn-
chronization, phase transitions [16] and, more recently, community structure
[115, 41, 39, 1, 40].

Extending the rigorous results of detectability transitions for networks to
higher-order interactions is a relevant open question.

One of the main obstacles in modeling hypergraphs is their intrinsic com-
plexity, which poses both theoretical and computational challenges and
restricts the range of results available in the literature. The difficulty of
defining communities in hypergraphs and of deriving theoretical thresholds
for their recovery has limited investigations to the study of d-uniform hy-
pergraphs, i.e., hypergraphs that only contain interactions among exactly d
nodes [117, 209, 210, 211, 212, 213, 214, 215, 216].

A related line of literature focuses on the detection of planted sub-hypergraphs
[217, 218] and testing for the presence of community structure in hypergraphs
[219, 220]. Generally, extracting recovery results on non-uniform hypergraphs
proved to be demanding, with scarce literature on the subject.

Recently, Chodrow et al. [42] conjectured a recoverability threshold for their
spectral clustering algorithm on non-uniform hypergraphs. Closer to the
scope of our work, Dumitriu and Wang [40] provide a probabilistic model and
bounds for the theoretical recovery of communities under the same model.
However, such detectability bounds are based on algorithms which are not
feasible in practice, and no empirical demonstration of the predicted recovery
is provided. Furthermore, all these methods lack a variety of desirable
probabilistic features, such as the estimation of marginal probabilities of a
node to belong to a community, a principled procedure to sample synthetic
hypergraphs with prescribed community structure, and the possibility to
investigate the energy landscape of a problem via free energy estimations.

In this work, we address these issues by deriving a precise detectability
threshold for hypergraphs that depends on the node degree distribution,
the assortativity of the hyperedges, and crucially, on higher-order properties
such as the distribution of hyperedge sizes. Additionally, we show how these
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properties can be formally described via notions of entropy and information,
leading to a clear interpretation of the role of higher-order interaction in
detectability.

Our approach is based on a probabilistic generative model and a related
Bayesian inference procedure, which we utilize to study the limits of the
community detection problem using a Message-Passing (MP) formulation
[221, 11, 14], originating from the cavity method in statistical physics [222, 54].
We focus on an extension to hypergraphs of the stochastic block model (SBM)
[33, 223], a generative model for networks with community structure. Several
variants of the SBM [41], and of its mixed-membership version [39, 1], have
been extended to hypergraphs. The model we utilize is an extension of the
dyadic SBM to hypergraphs and allows generalizing the seminal detectability
results of Decelle et al. [55, 204] to higher-order interactions.

In addition to our theoretical contributions, we derive an algorithmic im-
plementation for inferring both communities and parameters of the models
from the data. Our implementation scales well to both large hypergraphs
and large hyperedges, owing to a dynamic-program formulation.

Finally, we show how, with additional combinatorial arguments, one can
efficiently sample hypergraphs with arbitrary communities from our prob-
abilistic model. This problem, often studied in conjunction with inference,
deserves its own attention when dealing with hypergraphs, as recently dis-
cussed in related work [224, 2].

Through numerical experiments, we confirm our theoretical calculations by
showing that our algorithm accurately recovers the true community structure
in synthetic hypergraphs all the way down to the predicted detectability
threshold. We also illustrate that our approach gives insights into the com-
munity organization of real hypegraphs by analyzing a dataset of group
interactions between students in a school. To facilitate reproducibility, we
release open source the code that implements our inference and sampling
procedures at github.com/nickruggeri/hypergraph-message-passing.

6.2 The hypergraph stochastic block model

Consider a hypergraph H = (V, E) where V = {1, ..., N} is the set of nodes
and E the set of hyperedges. A hyperedge e is a set of two or more nodes.
We define Ω = {e : 2 ≤ |e| ≤ D}, the set of all possible hyperedges up to
some maximum dimension D ≤ N, with |e| being the size of a hyperedge,
i.e., the number of nodes it contains. Notice that E ⊆ Ω. We denote with
Ae = 1 all e ∈ E and with Ae = 0 hyperedges e ∈ Ω \ E.

Our Hypergraph Stochastic Block Model (HySBM) is an extension of the
classical SBM for graphs [33, 223]. It partitions nodes into K communities
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by assigning a hard membership ti ∈ [K] ≡ {1, . . . , K} to each node i ∈ V,
with t = {ti}i∈V being the membership vector. It does so probabilistically,
assuming that the likelihood to observe a hyperedge Ae is a Bernoulli dis-
tribution with a parameter that depends on the memberships {ti}i∈e of its
nodes.Formally, the probabilistic model is summarized as

ti ∼ Cat(n) ∀i ∈ V (6.1)

Ae | t ∼ Be

(
πe

κ|e|

)
∀e ∈ Ω , (6.2)

where n = (n1, . . . , nK) is a vector of prior categorical probabilities for the
hard assignments ti. The Bernoulli probabilities are given by

πe = ∑
i<j∈e

ptitj , (6.3)

with 0 ≤ pab ≤ 1 being elements of a symmetric probability matrix (also
referred to as affinity matrix) and κ|e| a normalizing constant that only
depends on the hyperedge size |e|. This can take on any values, provided that
it yields sparse hypergraphs where πe/κ|e| = O(1/N) and valid probabilities
πe/κ|e|. We develop our theory for a general form of κ|e| and elaborate
more on its choice in Supp. Mat. In our experiments we utilize the value
κd = (N−2

d−2 )
d(d−1)

2 [1, 2].

Our specific formulation of the likelihood is only one among many alter-
natives to model communities in hypergraphs. The likelihood we propose
has three main properties. First, HySBM reduces to the standard SBM when
only pairs are present (as κ2 = 1). Since we aim to develop a model that
generalizes the SBM to hypergraphs, this is an important condition to satisfy.
Second, it enables to develop the MP equations presented in the following
section, which in turn lead to a theoretical characterization of the detectability
limits and a computationally efficient algorithmic implementation. Third, the
likelihoods based on expressions similar to eq. 6.3 have been shown to well
describe higher-order interactions that possibly contain nodes from different
communities [2].

For convenience, we work with a rescaled affinity matrix c = Np, which is
of order c = O(1) (elementwise) in sparse hypergraphs. The log-likelihood
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L ≡ L(A, t | p, n) evaluates to

L = ∑
e∈Ω

[
Ae log

(
πe

κe

)
+ (1− Ae) log

(
1− πe

κe

)]
+ ∑

i∈V
log nti

= ∑
e∈Ω

[
Ae log

(
∑

i<j∈e
ctitj

)
+ (1− Ae) log

(
1− ∑i<j∈e ctitj

Nκe

)]
+ ∑

i∈V
log nti

+ const. , (6.4)

where const. denotes quantities that do not depend on the parameters of the
model.

6.3 Inference and generative modeling

6.3.1 Induced factor graph representation

The probabilistic model in eqs. 6.1–6.2 has a negative log-likelihood that can
be interpreted as the Hamiltonian of a Gibbs-Boltzmann distribution on the
community assignments t:

p(t | A, p, n) =
p(A, t | p, n)
p(A | p, n)

=
expL(A, t | p, n)

Z
, (6.5)

where Z is the partition function of the system, that corresponds to the
marginal likelihood of the data. The quantity F = − log Z is also called
the free energy. The equivalence in Equation 6.5 allows interpreting the
probabilistic model in terms of factor graphs [11]. Here, the function nodes
are hyperedges f ∈ Ω, and variable nodes are elements of V. The interactions
between function and variable nodes can be read directly from the log-
likelihood in eq. 6.4. In other words, the probabilistic model induces a factor
graph F = (V ,F , E) with variable nodes V = V, function nodes F = Ω
and edges E = {(i, e) ∈ V × F : i ∈ e}. In fig. 6.1 we show a graphical
representation of the equivalence between hypergraphs and factor graphs.
For any variable node i and function node f of the factor graph we define
the neighbors, or boundaries, as ∂i = { f ∈ F : (i, e) ∈ E}, being all function
nodes adjacent to i, and ∂ f = {i ∈ V : (i, e) ∈ E} being all variable nodes
adjacent to f .

6.3.2 Message-Passing (MP)

Given the factor graph representation of HySBM, we can perform Bayesian
inference of the community assignments via message-passing. Originally
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Figure 6.1: Representing hypergraphs as factor graphs. (a) We depict a hypergraph and its
factor graph equivalent. In the factor graph F , function nodes represent hyperedges. Notice
that, while the node sets are the same in both representations, due to the presence of all possible
hyperedges in the log-likelihood in Equation 6.4, the factor graph does not only contain the
observed interactions E (black), but also the unobserved ones Ω \ E (gray). (b) In factor graphs,
there are two types of messages: variable-to-function node q (red), and function-to-variable node
q̂ (blue).

obtained from the cavity method on spin glasses [222, 54], MP allows esti-
mating marginal distributions on the variable nodes of a graphical model
by iteratively updating messages, auxiliary variables that operate on the
edges of the factor graph. The efficiency of MP comes from the fact that the
structure of the factor graph favors locally distributed updates. Although
exact theoretical results are only proven on trees, MP has been shown to
obtain strong performance also on locally tree-like graphs [11] and it has
been extended to dense graphs with short loops [56, 57].

Applying MP to our model, the inference procedure yields expressions for
the marginal probabilities qi(a) of a node i to be assigned to any given
community a ∈ [K]. Their values are obtained as solutions to closed-form
fixed-point equations, which involve messages qi→e(ti) from variable to
function nodes, and q̂e→i(ti), from function to variable nodes. The messages
follow the sum-product updates

qi→e(ti) ∝ nti ∏
f∈∂i\e

q̂ f→i(ti) (6.6)

q̂e→i(ti) ∝ ∑
tj :j∈∂e\i

(
πe

κe

)Ae
(

1− πe

κe

)1−Ae

∏
j∈∂e\i

qj→e(tj) , (6.7)

and yield marginal distributions as

qi(ti) ∝ nti ∏
e∈∂i

q̂e→i(ti) . (6.8)

Notice that, compared to those for graphs, the MP equations for hypergraphs
in Equations 6.6–6.8 present additional challenges. First, in graphs the
updates simplify. One can in fact collapse the two types of messages (and
equations) into a unique one, since paths (i, f , j) in the factor graph reduce to
pairwise interactions (i, j) between nodes. This simplification is not possible
in hypergraphs, as one function node may connect more than two variable
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nodes. Second, the dimensionality of the MP equations grows faster when
accounting for higher-order interactions. Here, the number of function nodes
is equal to |F | = |Ω| = ∑D

d=2 (
N
d ), yielding |F | = O(2N) at large D = N. In

contrast, one gets O(N2) pairwise messages in the updates for graphs. To
produce computationally feasible MP updates one can assume sparsity, as
already done in the dyadic case. We outline such updates in the following
theorem.

Theorem 6.1 Assuming sparse hypergraphs where c = O(1), the MP updates
satisfy the following fixed-point equations to leading order in N. For all hyperedges
e ∈ E and nodes i ∈ e, the messages and marginals are given by:

qi→e(ti) ∝ nti

(
∏
f∈E

f∈∂i\e

q̂ f→i(ti)

)
exp(−h(ti)) (6.9)

q̂e→i(ti) ∝ ∑
tj :j∈∂e\i

πe ∏
j∈∂e\i

qj→e(tj) (6.10)

qi(ti) ∝ nti

(
∏
f∈E
f∈∂i

q̂ f→i(ti)

)
exp(−h(ti)) (6.11)

h(ti) =
C′

N ∑
j∈V

∑
tj

ctitj qj(tj) , (6.12)

where C′ = ∑D
d=2 (

N−2
d−2 )

1
κd

.

A proof of theorem 6.1 is provided in Supp. Mat. The updates in Equa-
tions 6.9–6.12 are in principle computationally feasible, as products of func-
tion nodes f ∈ E have replaced products over the entire space f ∈ Ω. In
sparse graphs, that we observe in many real datasets, E is much smaller
than the original Ω, thus significantly decreasing the computation cost. An
intuitive justification of theorem 6.1, which we formalize in its proof, is that
the observed interactions f ∈ E hold most of the weight in the updates of
their neighbors, while the unobserved ones f ∈ Ω \ E send approximately
constant messages and thus can be absorbed in the external field h introduced
in Equation 6.12. This idea is inspired by the dyadic MP equations in Decelle
et al. [55]. However, in contrast to MP on graphs, a vanilla implementation
of the updates is still not scalable in hypergraphs, as the computational cost
of Equation 6.10 is O(K|e|−1). To tackle this issue, we develop a dynamic
programming approach that reduces the complexity to O(K2|e|). Dynamic
programming is exact, as it does not rely on further approximations on the
MP updates, its detailed derivations are provided in Supp. Mat.

The fixed-point equations of theorem 6.1 naturally suggest an algorithmic
implementation of the MP inference procedure. We present a pseudocode
for it in Supp. Mat.
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6.3.3 Expectation-Maximization to learn the model parameters

We have presented a MP routine for inferring the community assignments
{ti}i∈V . Now, we derive closed-form updates for the model parameters
c, n via an Expectation-Maximization (EM) routine [199]. Differentiating
the log-likelihood in eq. 6.4 with respect to n, and imposing the constraint
∑K

a=1 na = 1, yields the update

na =
Na

N
. (6.13)

Notice that this update depends on the MP results, as Na = |{i ∈ V :
arg maxb qi(b) = a}| is the count of nodes assigned to community a according
to the inferred marginals. To update the rescaled affinity c we adopt a
variational approach, where we maximize a lower bound of the log-likelihood,
or, equivalently, minimize a variational free energy. In Supp. Mat., we show
detailed derivations for the following fixed-point updates

c(t+1)
ab = c(t)ab

2 ∑e∈E #e
ab/πe

N C′ (Nnanb − δabna)
, (6.14)

where #e
ab = ∑i<j∈e δtiaδtjb is the count of dyadic interactions between two

communities a, b within a hyperedge e. In practice, when inferring t, n, c one
proceeds by alternating MP inference of t, as presented in section 6.3.2, with
the updates of c and n in eqs. 6.13–6.14 until convergence. A pseudocode for
the EM procedure is presented in Supp. Mat.

6.3.4 Sampling from the generative model

One of the main advantages of using a probabilistic formulation is the
ability to generate data with a desired community structure. Among other
tasks, this can be used in particular to test detectability results like the ones
we theoretically derive in the following section. However, in hypergraphs,
writing a probabilistic model does not directly imply the ability to sample
from it, as is typically the case for graphs [2, 224]. In fact, while the O(N2)
configuration space of graphs allows performing sampling explicitly, in
the case of hypergraphs the exploding configuration space Ω makes this
task prohibitive, even for hypergraphs with moderate number of nodes and
hyperedge sizes.

We propose a sampling algorithm that can efficiently scale and produce
hypergraphs of dimensions in the tens or hundreds of thousands of nodes.
We exploit the hard-membership nature of the assignments to obtain exact
sampling via combinatorial arguments, as opposed to the approximate sam-
pling in recent work for mixed-membership models [2]. The key observation
to obtain an efficient algorithm is that the hyperedge probabilities do not
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depend on the nodes they contain, but only on their community assignments,
as implied by Equation 6.3.

With this in mind, we define the auxiliary quantity

#e
a = ∑

i∈e
δtia , (6.15)

for a hyperedge e and community a ∈ [K], which is the count of nodes in e
that belong to community a. Crucially, the hyperedge probability depends
only on these counts:

πe = ∑
a<b∈[K]

#e
a #e

b pab + ∑
a∈[K]

#e
a(#e

a − 1)
2

paa . (6.16)

Therefore, all hyperedges with different nodes, but same counts #e
1, . . . , #e

K,
have equal probability.

Using Equation 6.16, we sample hypergraphs as in Algorithm 5 with the
following steps:

1. Iterate over the combinations.
For hyperedges of size d = 2, sample all the N(N− 1)/2 edges directly.
Otherwise, iterate the steps (ii), (iii), (iv) for the hyperedge sizes d =
3, . . . , D and vectors # = (#1, . . . , #K) of community counts (where we
omitted the superscript e to highlight that same counts yield identical
Equation 6.16) satisfying ∑K

a=1 #a = d.

2. Compute the probability.
For a given count vector #, the hyperedge probability π# is given in
eq. 6.16. Notice that there are N# = (N1

#1
) · . . . · (NK

#K
) hyperedges satisfying

the count #, since we can choose #a nodes from the Na nodes in each
community a.

3. Sample the number of hyperedges.
Importantly, we do not sample the individual hyperedges, but the
number of observed hyperedges. Since the individual hyperedges are
independent Bernoulli variables with same probability, their sum X
follows a binomial distribution:

X ∼ Binom
(

N#,
π#

κd

)
(6.17)

with probability π# fixed, determined by #, and number of realizations
N#. Sampling directly from eq. 6.17 is numerically challenging for
large N# and κd, hence we adopt a series of numerical approximation
summarized in Supp. Mat.
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4. Sample the hyperedges.
Given the count X of hyperedges sampled from Equation 6.17, we can
sample the hyperedges. This operation is performed by independently
sampling X times #a nodes from each community a. Notice that this
procedure might yield repeated hyperedges, which are not allowed.
In sparse regimes, this event has low probability [52]. As a sensible
approximation, we delete repeated hyperedges.

Owing to this sampling procedure, our results are not limited to theoretical
derivations, but can be tested numerically on synthetic data, as we show in
Supp. Mat.. In Supp. Mat. we give a detailed analysis of the complexity,
which is asymptotically upper bounded by O(N log N). A pseudocode for
this procedure is shown in Algorithm 5 and we provide an open source imple-
mentation of the sampling procedure at github.com/nickruggeri/hypergraph-
message-passing.

Algorithm 5: Sampling hypergraphs
Input: D maximum size of hyperedges

N number of nodes
K number of communities
n prior of the community memberships
p affinity matrix

1 Sample node memberships using eq. 6.1
2 for d = 2, . . . , D do
3 (i)
4 if d = 2 then
5 Sample N(N − 1)/2 (hyper)edges from eq. 6.2
6 else
7 for each # = (#1, . . . , #K) such that ∑K

a=1 #a = d do
8 (i)
9 Compute π# with Equation 6.16 (ii)

10 Sample X from Equation 6.17 (iii)
11 end
12 for a = 1, . . . , K do
13 Sample X times #a nodes (iv)
14 end
15 end
16 Delete repeated hyperedges
17 end
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6.4 Phase transition

6.4.1 Detectability bounds

Beside providing a valid and efficient inference algorithm, one of the main
advantages of MP is the possibility of deriving closed-form expressions for
the detectability of planted communities. The transition from detectable to
undetectable regimes has been first shown to exist in MP-based inference
models for graphs [55], and gave rise to an extensive body of literature
on theoretical detectability limits and sharp phase transitions [205, 206].
Here, we extend these classical arguments to hypergraphs, and find relevant
differences when higher-order interactions are considered.

In line with previous work, we restrict our study to the case where groups
have constant expected degrees. In fact, in settings where such an assumption
does not hold, it is possible to obtain good classification by simply clustering
nodes based on their degrees [55]. Formally, we assume

K

∑
b=1

cabnb = c , (6.18)

for some fixed constant c. Notice that eq. 6.18 does not immediately imply a
constant degree for the groups, as in hypergraphs the expected degree is de-
fined differently than the left-hand-side of the equation above. Nevertheless,
in Supp. Mat. we prove that imposing the condition in eq. 6.18 does indeed
imply a constant average degree. More precisely,

Proposition 6.2 Assuming eq. 6.18, the following holds:

• all the groups have the same expected degree;

• the fixed points for the messages read

qi→e(ti) = nti ∀e ∈ E, i ∈ e (6.19)

q̂e→i(ti) =
1
K
∀e ∈ E, i ∈ e . (6.20)

We want to study the propagation of perturbations around the fixed points of
Equations 6.19–6.20. We assume that the factor graph is locally tree-like, i.e.,
neighborhoods of nodes are approximately trees. We provide a visualization
of this in fig. 6.2. Classically, it has been proven that for sparse graphs almost
all nodes have local tree-like structures up to distances of order O(log N) [11].
We are not aware of similar statements for hypergraphs. While our empirical
results prove that these assumptions are reasonable and approximately valid,
we leave the formalization of such an argument for future work.

Referring to Figure 6.2(b), one can see that between every leaf and the root,
there is a single connecting path. Thus, perturbations on the leaves propagate
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Figure 6.2: Local tree assumption. (a) The classical local tree assumption for graphs. Here, it
is assumed that the neighborhoods of nodes are approximately trees. (b) The tree assumption for
factor graphs. Here, a path from a leaf (light blue) to a root (orange) consists of steps alternating
variable nodes and function nodes. These two representations coincide in the case of graphs. (c)
The perturbations propagate up the tree via the messages. In graphs (a), they reach the root
passing from nodes ir+1 to ir (green). In hypergraph-induced factor graphs, perturbations spread
from a node ir+1, at depth r + 1, to its neighboring function nodes fr+1 (red), and up to node ir
at depth r (blue) in an alternating fashion.

through a tree to the root, and transmit via the following transition matrix

T̃ab
r =

∂qir→ fr(a)
∂qir+1→ fr+1(b)

, (6.21)

where ir, fr are respectively the r-th variable node and function node in the
path. In words, this is the dependency of a message on the message one level
below in the path. In Supp. Mat. we show that, to leading terms in N, the
transition matrix evaluates to

T̃ab
r =

2 na

| fr|(| fr| − 1)

( cab

c
− 1
)

. (6.22)

A related expression was previously obtained for the transition matrix on
graphs is Tab = na (cab/c− 1) [55]. Hence, we can compactly write

T̃ab
i = [2/(| fr|(| fr| − 1))] Tab .

This connection highlights an important difference between the two cases:
hyperedges induce a higher-order prefactor with a “dispersion” effect. The
larger the hyperedge, the lower is the magnitude of this transition. Instead,
if the hyperedge is a pair, this prefactor reduces to one, and we recover
the result on graphs. A perturbation ϵkd

td
of a leaf node kd influences the

perturbation ϵk0
t0

on the root t0 by

ϵk0
t0
= ∑
{tr}r=1,...,d

(
d−1

∏
r=0

T̃trtr+1
i

)
ϵkd

td
. (6.23)

We can also express this connection in matrix form as

ϵk0 =

(
d−1

∏
r=0

2
| fr|(| fr| − 1)

)
Tdϵkd , (6.24)
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where T is the matrix with entries Tab (in Equation 6.24 raised to the power
of d), and ϵkd the array of ϵkd

td
values. Now, similarly to Decelle et al. [55], we

consider paths of length d→ +∞. In such a case, the r-dependent prefactor
in Equation 6.24 converges almost surely to

µ = exp
(

E

[
d log

2
| f |(| f | − 1)

])
, (6.25)

where the expectation is taken with respect to randomly drawn hyperedges
f ∈ E. If λ is the leading eigenvector of T, then

ϵk0 ≈ µ λdϵkd . (6.26)

Aggregating over the leaves, and since the perturbations have an expected
value of zero, we obtain variance:

⟨(ϵk0
t0
)2⟩ ≈

〈[d0(F−1)]d

∑
k=1

µ λdϵk
t

2〉
(6.27)

i.i.d.
= (d0(F− 1))dµ2 λ2d⟨(ϵk

t )
2⟩ , (6.28)

where d0 is the average node degree and F the average hyperedge size. The
expression in Equation 6.28 yields the following stability criterion, the key
result of our derivations:

d0(F− 1)
(

exp E

[
log

2
| f |(| f | − 1)

])2

λ2 < 1 . (6.29)

This generalizes the seminal result cλ2 < 1 of Decelle et al. [55] to hy-
pergraphs. When Equation 6.29 holds, the influence of the leaves to the
root decays when propagating up the tree in Figure 6.2(b). Conversely, if
Equation 6.29 is not satisfied, it grows exponentially.

To obtain more interpretable bounds, we focus on a benchmark scenario
where the affinity matrix contains all equal on- and off-diagonal elements,
i.e., caa = cin for all a ∈ [K] and cab = cout for all a ̸= b. In this case,
condition eq. 6.18 becomes cin + (K− 1)cout = Kc, the leading eigenvalue of
T is λ = (cin − cout)/Kc, and the stability condition in eq. 6.29 reads

|cin − cout| >
Kc√

d0(F− 1)
exp

(
−E

[
log

2
| f |(| f | − 1)

])
. (6.30)

When hypergraphs only contain dyadic interactions, Equation 6.30 reduces to
the bound |cin − cout| > K

√
c previously derived for graphs [55], also known

as Kesten-Stigum bound [225, 226].
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Figure 6.3: Phase transition. The overlap between ground truth and inferred communities
varies for different cout/cin ratios. The values attained are positive on the detectable region
(left of the dotted theoretical bounds) and continuously drop to zero as the phase transition
boundary approaches. We attribute the small drop at cout/cin to the the hypergraph being
possibly disconnected, hence resulting in some communities being assigned the same label when
the initialization in unfavourable. Values for hyperedges up to size D = 50 (orange) always yield
higher overlap compared to D = 2 (light blue). Shaded areas are standard deviations over 5
random initializations of MP.

6.4.2 Phase transition in hypergraphs

We test the bound obtained in Equation 6.30 by running MP on synthetic
hypergraphs generated via the sampling algorithm of Section 6.3.4. In our
experiments, we fix K = 4 and sample hypergraphs with N = 104 nodes. We
also fix c = 10 and change the ratio cout/cin. In this setup, for graphs, one ex-
pects a continuous phase transition between two regimes where the system is
undetectable and detectable [55]. In the former, where the inequality yielded
by the Kesten-Stigum bound does not hold, and the graph does not carry
sufficient information about the community assignments, community detec-
tion is impossible. In the latter, communities can be efficiently recovered by
MP. In Figure 6.3 we plot the overlap = (∑i q⋆i /N −maxa na)/(1−maxa na)
with q⋆i ≡ qi(a⋆i ) and a⋆i = arg maxb qi(b), against cout/cin. Our results are in
agreement with the theoretical predictions: the overlap is low in the unde-
tectable region, high in the detectable region, and we observe a continuous
phase transition at the Kesten-Stigum bound for graphs, i.e., when D = 2.

We expect the presence of higher-order interactions to improve detectability,
as it yields greater overlap for any cout/cin and it shifts the theoretical transi-
tion to larger values. We empirically validate this prediction by evaluating
Equation 6.30 for hyperedges up to size D = 50 and performing MP inference
in Figure 6.3. Diverging convergence times for larger cout/cin, i.e., when the
free energy landscape gets progressively rugged, further demonstrate this
behavior, as shown in Supp. Mat.
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6.4.3 The impact of higher-order interactions on detectability

As mentioned above, the transition matrix in eq. 6.22 reduces to the classic Tab

[55] when only dyadic interactions are present. In fact, the additional prefac-
tor 2/(| fr|(| fr| − 1)) is equal to one for 2-dimensional hyperedges. However,
when hyperedges of higher sizes are present, this prefactor is strictly smaller
than one. This dampens the perturbations ϵk0 when they propagate up the
tree in fig. 6.2(b). It is unclear whether this higher-order effect aids or hurts
detectability, as it could prevent signal from being propagated, but also noise
from accumulating at the root.

With this in mind, we investigate the impact of higher-oder interactions on
detectability by disentangling the effect that K, c and, most importantly, D
have on the detectability bound set by Equation 6.30. To this end, we rewrite
Equation 6.30 as ∣∣∣∣ρin −

1
Kc

∣∣∣∣ > Φ(K, c, D) . (6.31)

Here, we utilized cin/Kc = ρin ∈ [0, 1], a degree-independent rescaling of cin,
where we normalize by its maximum possible value Kc, as per Equation 6.18.
The term Φ(K, c, D) is the value of the theoretical bound at the r.h.s. of
Equation 6.30, normalized by Kc as well. This way, we get the decomposition
Φ(K, c, D) = α(K)β(c)γ(D) as a product of three independent terms:

α(K) =
K− 1

K
(6.32)

β(c) =
1√
c

(6.33)

γ(D) =
exp

(
−E

[
log 2

| f |(| f |−1)

])
√

C(F− 1)/2
, (6.34)

where C = ∑D
d=2 (

N−2
d−2 )

d
κd

In our experiments we choose of κd = (N−2
d−2 )

d(d−1)
2 , which conveniently

returns C = 2HD−1 (see Supp. Mat.), with HD−1 being the (D − 1)-th
harmonic number. However, our theory holds true for any κd yielding sparse
hypergraphs.

The classic effect of α(K) and β(c) is summarized in Figure 6.4(a), where
the maximum hyperedges size is fixed to D = 2, hence γ(D) = 1. Here, we
observe that the undetectability gap reduces when increasing c. Graphs with
higher average degrees are more detectable even when there is a larger inter-
community mixing. The effect of larger K is that of skewing the detectability
phase transition. This is because edges contributing to cout are spread over
K− 1 communities, while those accounted for cin concentrate in a single one.
Intuitively, increasing K allows to have more in-out edges, and detectability
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is still possible because of the dominating cin term. The limit value ρin = 1/K
constitutes the perfect mixing case cin = cout = c, where detectability is
unfeasible for any K and finite degree c. One should notice that, while
the bounds drawn in Figure 6.4 hold theoretically, for large K it may be
exponentially hard to retrieve communities even in the detectable region
[55, 227].

The higher-order effects on detectability are shown in Figure 6.4(b)-(c). The
presence of hyperedges with D > 2 enters in Equation 6.34 as the product of
two separate contributions, γ(D) = γ1(D)γ2(D), where

γ1(D) = exp
(
−E

[
log

2
(| f |(| f | − 1))

])
(6.35)

γ2(D) =
1√

C(F− 1)/2
. (6.36)

These two terms have contrasting effects that multiply to obtain the overall
trend of γ(D): γ1(D) is monotonically increasing while γ2(D) is monotoni-
cally decreasing. If we were to consider only the “dispersion” contribution
γ1, we would enlarge the detectability gap by increasing Φ. However, the γ2
term factors in the increasing number of interactions observed with larger
hyperedges. The result is the overall higher-order contribution to detectabil-
ity γ(D) = γ1(D)γ2(D), where the value of γ2 dominates over γ1, giving
rise to the non-trivial, monotonically decreasing, profile of Figure 6.4(b).

The overall effect of higher-order terms is illustrated by plotting the relative
difference ∆Φ(K, c, D) = (Φ(K, c, D)−Φ(K, c, 2))/Φ(K, c, 2) for a range of
c and D values, with K = 4, as shown in Figure 6.4(c). We observe how
higher-order interactions lead to better detectability for all c, especially in
sparse regimes, where c is small and pairwise information is not sufficient
for the recovery of the communities.

6.4.4 Entropy and higher-order information

Hypergraphs are often compared against their clique decomposition, i.e., the
graph obtained by projecting all hyperedges onto their pairwise connections,
as a baseline network structure [228, 229, 230].

The clique decomposition yields highly dense graphs. For this reason, most
theoretical results on sparse graphs are not directly applicable, algorithmic
implementations become heavier—many times unfeasible—and storage in
memory is suboptimal. Previous work also showed that algorithms devel-
oped for hypergraphs tend to work better in many practical scenarios [39].
Intuitively, hypergraphs “are more informative” than graphs [231], as there
exists only one clique decomposition induced by a given hypergraph, but
possibly more hypergraphs corresponding to a given clique decomposition.
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K

K

K

Figure 6.4: Theoretical phase transition. Due to the decomposition of our bound in Equa-
tions 6.32–6.34 it is possible to separately describe the effects of K, c and D on the predicted
phase transition. (a) Detectability bounds for networks (D = 2). Increasing c yields a broader
range of detectable configurations (colored areas) for ρin. The number of communities skews
detectability: while for K = 2 communities can be detected in extremely disassortative regimes
(ρin close to zero), when more communities are present, only assortative networks are detectable.
(b) Effect of the maximum hyperedge size D. The term γ(D) in Equation 6.34 can be split into
the product γ1(D)γ2(D), as defined in Equations 6.35–6.36. The non-trivial decrease of γ(D)
results from the interplay of γ1(D) and γ2(D), having opposite monotonicity. (c) The percentage
decrease ∆Φ(K, c, D) = (Φ(K, c, D)− Φ(K, c, 2))/Φ(K, c, 2) in detectability for different c, D
values shows that higher-order interactions steadily improve detection, especially in sparse regimes.

Here we give a theoretical basis to this common intuition and find that,
within our framework, we can quantify the extra information carried by
higher-order interactions.

For a given hypergraph H = (V, E), edge (i, j) ∈ V2 and hyperedge e ∈ E,
we define the probability distribution

pH({i, j}, e) =


1
E

2
|e|(|e| − 1)

if i, j ∈ e

0 otherwise .
(6.37)

This distribution represents the joint probability of drawing a hyperedge
uniformly at random among the possible E in the hypergraph and a dyadic
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interaction {i, j} out of the possible (|e|2 ) within the hyperedge e. From eq. 6.37
we can derive the following marginal distributions:

pE(e) =
1
E

(6.38)

pC({i, j}) = 1
E ∑

e∈E:i,j∈e

2
|e|(|e| − 1)

, (6.39)

for all e ∈ E and pairs of nodes i ̸= j. The distribution pE is a uniform
random draw of hyperedges. The distribution pC represents the probability
of drawing a weighted interaction {i, j} in the clique decomposition of H.

With Equations 6.37–6.39 at hand, it is possible to rewrite γ1(D) in Equa-
tion 6.35 as

log γ1(D) = H({i, j} | f ) , (6.40)

where H(· | ·) is the conditional entropy. This entropy is minimized when
pC({i, j}) is very different than pH({i, j}| f ), i.e., when conditioning a pair
{i, j} to be in f brings additional information with respect to the interaction
{i, j} alone. This happens when {i, j} appears in several hyperedges and it
is difficult to reconstruct the hypergraph from its clique decomposition. As
lower values of γ1 imply easier recovery, Equation 6.40 suggests that recovery
is favored in hypergraphs where hyperedges overlap substantially and that
cannot be easily distinguished from their clique decomposition.

We obtain a similar result by rewriting Equation 6.40 as

γ1(D) =
expH(pH)

expH(pE)
=

PP(pH)

PP(pE)
, (6.41)

which is the ratio of two exponentiated entropies. In information theory,
PP is referred to as perplexity [232], and it is an effective measure of the
number of possible outcomes in a probability distribution [233]. Once we fix
the number of hyperedges E (and therefore PP(pE)), the number of effective
outcomes is given by the number of likely drawn {i, j} pairs. This number is
minimized when there is high overlap between hyperedges, thus confirming
the interpretation of Equation 6.40.

Finally, we set a different focus by rewriting γ1 as

log γ1(D) = H(pC)−KL (pH || pC ⊗ pE) , (6.42)

where KL is the Kullback-Leibler divergence and ⊗ the product probability
distribution. Here we pose the question: given a fixed clique decomposition
and number of hyperedges, what is the hypergraph attaining the highest
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detectability? From the equation, such hypergraph is that with the highest
KL (pH || pC ⊗ pE) = I({i, j}, f ). In this case, the KL-divergence between a
joint distribution and its marginals, also called mutual information I [234]
of the two random variables, describes the information shared between
pairwise interactions and single hyperedges. Hypergraphs with high KL-
divergence, i.e, high information about a given {i, j} in a single hyperedge
f , will yield better detectability. In other words, it is preferable to choose
hypergraphs that, while still producing the observed clique decomposition
(thus achieving low entropy H(pH)), have largely overlapping hyperedges.
The results discussed in this section provides a theoretically guidance for the
construction of hypergraphs that explain an observed graph made of only
pairwise interactions [108], a problem relevant in datasets where higher-oder
interactions are not explicitly tracked.

6.5 Experiments on real data

Our model leads to a natural algorithmic implementation to learn communi-
ties in hypergraphs. In fact, alternating MP and EM rounds, our algorithm
outputs marginal probabilities qi(ti) for a node i to belong to a community ti,
as well as the community ratios n and the affinity matrix p. We illustrate an
application of this procedure on a dataset of interactions between high school
students (High School) [177]. Here, nodes are students and hyperedges
represent whether a group of students was observed in close proximity, as
recorded by wearable devices. The hypergraph contains N = 327 nodes and
E = 7818 hyperedges. In Figure 6.5(a) we show the communities inferred
on the dataset where only hyperedges up to size D = 2, 3, 4 are kept. We
observe a clear progression in how the nodes are gradually allocated into
different groups when higher-order interactions are progressively taken into
account. This suggests that interactions beyond pairs carry information that
would get lost if only edges were to be observed.

To get a qualitative interpretation, we compare the communities inferred
with the nine classes attended by the students, an attribute available with the
dataset. We illustrate the hypergraph of student interactions, coloring each
node according to its class, in Figure 6.5(b). Previous studies have shown
that in this dataset a number of interactions happen with stronger prevalence
within students of the same class [177]. In Figure 6.5(c), we compare the
communities inferred with different maximum hyperedge size D with the
classes, and observe that there is a stronger alignment between them when
larger hyperedges are utilized for inference. In Figure 6.5(d) we show, at
D = 2, 3, 4, the Normalized Mutual Information (NMI) between inferred
communities and class attributes,the AUC with respect to the full dataset,
and the fraction ρD of hyperedges with size equal to D. In addition, our
algorithm detects connection patterns that were previously observed between
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Figure 6.5: Experiments on the High School dataset. We infer the communities via MP and
EM on the High School dataset. In all cases, we run inference with K = 10 communities. (a)
Inferred communities on the High School dataset, only utilizing hyperedges up to a maximum size
D. Taking into account higher-order information, up to D = 4, results in more granular partitions.
(b) Graphical representation of the students’ partition into classes. We draw only hyperedges
of size D. (c) We compare the inferred partitions with the “attended class” covariate of the
nodes, i.e., the classes students participate in. We comment further on this comparison in Supp.
Mat.. (d) A quantitative measurement complementing that of panel (b): the Normalized Mutual
Information (NMI) between inferred communities and attended classes, the AUC on the full
dataset, as well as the ratio ρD of hyperedges of size equal to D. (e) Free energy landscape. We
consider the parameters (p2, n2), (p3, n3) and (p4, n4) inferred from the dataset with, respectively,
D = 2, 3, 4. With these, we build the simplex of convex combinations p = ∑i∈{2,3,4} λi pi, where

∑i∈{2,3,4} λi = 1 and 0 ≤ λi ≤ 1 (similarly for n). For every point in the simplex, we compute
the free energy on the full dataset, i.e., with D = 5. More details on these computations are
provided in Supp. Mat..

the different student classes as captured by the affinity matrix p, see Supp.
Mat. for details.

A feature that sets MP apart from other inference methods is the possibility
to approximately compute the evidence Z = p(A | p, n) of the whole dataset,
or, equivalently, the free energy F = − log Z. In Supp. Mat. we discuss
how to make the free energy computations feasible by exploiting classical
cavity arguments, as well as a dynamic program similar to that employed
for MP. We present the results of these estimates on the High School dataset
in Figure 6.5(e). Here we take the values of n and p inferred by cutting the
dataset at maximum hyperedge sizes D = 2, 3, 4. Then, we compute the free
energy on the full dataset (D = 5) in the simplex of n, p parameters outlined
by the three vertices. We notice that interactions of size D = 5 seem to be
less informative and lead to suboptimal inference, see Supp. Mat. Similarly
to what observed on graphs [55], the energy landscape appears rugged and
complex. EM converges to solutions that are local attraction points, i.e.,
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valleys of low-energy configurations. Moreover, the free energy of the p, n
parameters inferred with only pairwise interactions (i.e., D = 2, lower-right)
is higher than that inferred for D = 3 (upper-left), which is in turn higher
that the one of D = 4 (bottom-left).

6.6 Conclusion

We developed a probabilistic generative model and a message-passing-based
inference procedure that lead to several results advancing community de-
tection on hypergraphs. In particular we obtained closed-form bounds for
the detectability of community configurations, extending the seminal results
of Decelle et al. [55] to higher-order interactions. Experimental validation
of such bounds shows the emergence of a detectability phase transition
when spanning from disassortative to assortative community structures.
With these theoretical bounds at hand, we investigate the relationship be-
tween hypergraphs and graphs from an information-theoretical perspective.
Characterizing the entropy and perplexity of pairs of nodes in hyperedges,
we find that hypergraphs with many overlapping hyperedges are easier
to detect. Beside these theoretical advancements, we develop two relevant
algorithmic ones. First, we derive an efficient and scalable Message-Massing
algorithm to learn communities and model parameters. Second, we pro-
pose an exact and efficient sampling routine that generates synthetic data
with desired community structure according to our probabilistic model in
order of seconds. Both of these implementations are released open source at
github.com/nickruggeri/hypergraph-message-passing.

The mathematical tools we propose here to obtain our results are valid for
standard hypergraphs. We can foresee that they could be generalized to
dynamic hypergraphs where interactions change in time, using intuitions
derived for dynamic graphs [207]. Similarly, it would be interesting to see
how detectability bounds change when accounting for node attributes, as
results in networks have shown that adding extra information can boost
community detection [135, 37, 3]. Finally, from an empirical perspective, it
would be interesting to see how our theoretical insights in terms of entropy of
hypergraphs and clique expansion match measures that relate hypergraphs
to simplicial complexes [235].
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Chapter 7

Provable Concept Learning for
Interpretable Predictions Using

Variational Inference

Abstract

In safety-critical applications, practitioners are reluctant to trust neu-
ral networks when no interpretable explanations are available. Many
attempts to provide such explanations revolve around pixel-based at-
tributions or use previously known concepts. In this paper we aim
to provide explanations by provably identifying high-level, previously
unknown ground-truth concepts. To this end, we propose a probabilistic
modeling framework to derive (C)oncept (L)earning and (P)rediction
(CLAP) – a VAE-based classifier that uses visually interpretable concepts
as predictors for a simple classifier. Assuming a generative model for
the ground-truth concepts, we prove that CLAP is able to identify them
while attaining optimal classification accuracy. Our experiments on
synthetic datasets verify that CLAP identifies distinct ground-truth con-
cepts on synthetic datasets and yields promising results on the medical
Chest X-Ray dataset.

7.1 Introduction

Suppose a hospital aims to deploy a model that classifies diseases Y from
medical images X and informs the doctor about relevant predictive features.
There may be multiple diseases such as lung atelectasis and lung infiltration
and multiple interpretable ground-truth features (or concepts) Zc, such as lung or
heart shape, that are relevant for predicting each disease. Ideally, in addition
to identifying and utilizing these interpretable features, the model should
perform prediction in an interpretable manner itself. The domain expert can
then check whether the model is reasonable and also potentially make new
scientific discoveries – i.e. discover new factors relevant for prediction.
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Thus, in this paper, we seek an interpretable predictive model that uses the
ground-truth features for prediction. But what makes a predictive model
interpretable from a practical perspective? Even though the definite answer
depends on the application domain, practitioners often agree on the following
desiderata: first of all, the model should be simple – e.g. additive in the
predictive features with a small number of relevant features. Simplicity
allows us to interpret the relevance of each variable [236], and ensure that the
interpretation is robust to small changes to the input [237, 238]. Furthermore,
the model ideally assigns global and local importance to the features used
for prediction [239, 240]; in the context of medical imaging for example,
the former corresponds to the population-level importance, the latter to the
patient-level one.

While there have been many works on interpretable predictions, none of
them provide a prediction model that identifies and uses these previously
unknown ground-truth features (see relate works for more discussion). This
paper tries to go bottom-up, starting from a generative model to derive a
procedure based on variational inference that satisfies all the desiderata. Our
proposed framework i) mathematically formalizes concept learning and ii)
provably identifies the ground-truth concepts and provides an accurate and
simple prediction model using these discovered concepts.

More concretely, we view the recovery of the ground-truth concepts as a
latent variable estimation problem. We start by assuming an explicit graphical
model for the joint distribution of (X, Z, Y). Here, the latent variables Z
include all ground-truth latent features, as well as others irrelevant for
prediction. Together, the latent variables Z generate the raw observation
X. The task of concept learning can then be mathematically thought of as
obtaining identifiability and performing inference on the latent factors. Using
a VAE-based architecture, we enable both visualization (and thus facilitate
human interpretation) of the learned concepts, as well as prediction based
on these.

In summary, we make the following contributions:

1. We present a framework to model ground-truth latent features Zc
(Section 7.2), and derive C(oncept) (L)earning and (P)rediction (in short
CLAP), an inherently interpretable prediction framework based on
variational autoencoders (Section 7.3)

2. We prove that CLAP enables identification of the ground-truth concepts
underlying the data and learns a simple optimal prediction model
based on these. Importantly, our framework does not require knowing
the number of latent features (Section 7.4)

3. We validate CLAP on various multi-task prediction scenarios on syn-
thetic (MPI3D, Shapes3D and SmallNorbs) datasets that yield encour-

108



7.1. Introduction

aging results on domain-specific application of the framework on real
data (Section 7.5)

We believe that our theoretical framework is a useful step for formalizing
interpretable predictions. In particular, in settings where it’s reasonable to
assume that the ground-truth features are themselves interpretable by a do-
main expert, CLAP provably provides an end-to-end interpretable prediction
model. Even when the assumption does not hold, we can still guarantee
that CLAP finds a simple and accurate prediction model using ground-truth
features.

7.1.1 Related work

In this section, we compare existing interpretable prediction methods with
CLAP in detail, with a concise summary provided in Table 7.1. Previous
methods proposed in the context of explainable/interpretable AI can be
broadly divided into two categories: (i) providing post-hoc explanations
for black-box prediction models and (ii) designing interpretable models
that explicitly incorporate transparency into the model design, where the
explanation is learned during training.

Post-hoc explanations Inherently interpretable

Desiderata
pixel attribution+

counterfactual
pre-defined

concepts StyleGANs
existing VAEs/
autoencoders CLAP

Learning visually distinct features × × ✓ ✓⋆ ✓

Global importance of predictive features × ✓ × × ✓

Guarantees: concept learning+prediction × × × × ✓

Table 7.1: Comparison of CLAP with post-hoc explanation methods and other inherently
interpretable techniques. The symbol ✓⋆ highlights that for learning visually distinct features,
existing predictive VAEs require strong knowledge of the latent variables or auxiliary variables (in
addition to labels).

Post-hoc methods The majority of work on interpretability so far has focused
on (i), providing post-hoc explanations for a given prediction model. These
include pixel attribution methods [241, 242, 243], counterfactual explanations
[244, 245], explanations based on pre-defined concepts [246, 247, 248], and
recently developed StyleGANs [249, 250]. Post-hoc methods have a number
of shortcomings given our desired objectives: First, it is unclear whether
post-hoc explanations indeed reflect the black-box model’s true ”reasoning”
[251, 236]. Even if an expert deems the output of the explanation model as
unreasonable, one is unable to determine whether the explanation method
or the original model is at fault. Furthermore, by construction, post-hoc
methods cannot come with statistical inference guarantees and ensure that
the learned concepts align with the ground-truth features. Finally, post-hoc
methods are typically used to explain complex classifiers; as a result, they
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are unable to provide meaningful global and local importance of features for
prediction.

VAE-based methods for inherently interpretable prediction Our procedure
CLAP is an inherently interpretable prediction model and similar in spirit
to VAE-based prediction techniques. On a high level, existing procedures
either are unable to identify the ground-truth latent features or require addi-
tional labels. Therefore, they are not applicable in the traditional supervised
learning setting considered in this paper (where only X, Y are available).
Further, none of the existing methods provide simultaneous guarantees for
learning the underlying concept and obtaining optimal predictions using
these learned features. We provide more specific comparisons next.

Unsupervised VAEs [75] can easily be used for prediction tasks by training
a classifier on the latent features. A massive literature proposes various
structural adjustments to improve disentanglement [252, 253, 254, 255, 256].
However, [257] empirically and theoretically demonstrate that these meth-
ods generally do not successfully identify the ground-truth latent features.
Recently proposed VAE methods address the issue of non-identifiability by
assuming access to additional data and improve identifiability. However, they
either require the label as direct input [76], or labels for auxiliary variables
that contain information about the ground-truth latent factors [77, 258] or the
ground-truth factors themselves [257]. None of these scenarios are applicable
to the traditional supervised learning setting in our paper.

Other works With respect to model architecture, our method is similar to
Self-Explaining Neural Networks (SENN) [238] which decomposes a complex
prediction model into learning interpretable concepts (using an autoencoder)
and a simple (linear) predictor. More broadly, methods based on contrastive
learning or multi-view data (e.g. [259, 260, 261, 262, 263]) can identify
underlying latent features, albeit with access to pairs of images that share
similar sources. Furthermore, the focus of these methods is on representation
learning rather than interpretable predictions.

7.2 Modeling interpretable and predictive concepts

We present a probabilistic graphical model that statistically relates the ground-
truth latent features Zc to the labels and observed variables; our proposed
method later uses this model to learn the latent concepts as well as a simple
classifier based on these features. We remark that, although the methodology
in this paper is presented under a specific generative model, the framework
is general and flexible to other modeling choices.

Let X be raw observations and Y ∈ Y be the associated label vector taking a
finite collection of values. In general, X is comprised of style factors Zs, that
should not be relevant for prediction, and high-level core factors Zc that are
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the desired ground-truth concepts. For example, in the context of medical
imaging, Y are various disease labels such as the presence of lung atelectasis
and lung infiltration. Core factors Zc that one can see in the X-ray image X,
such as heart and lung shapes, are typically direct consequences of a patient
contracting the disease. Style factors Zs such as physiological characteristics
of the subject or specialities of the scanner are also factors that appear in the
image but are not related to the disease.

A natural model for settings such as the one above is to assume an anti-causal
model as in Figure 7.1a, where Zc is a child of Y, and combines with Zs to
produce the raw observation X. We assume Zc to be independent condition-
ally on Y, as in the X-ray example, they may often vary independently (across
patients) given a disease label. We instead allow arbitrary dependencies
within Zs and Y.

Aggregating style and core factors in the vector Z = (Zc, Zs), we impose the
following structural equation model on the graph in Figure 7.1a:

X = f ⋆(Z) + ϵ where ϵ ⊥⊥ Z, Y and for all y ∈ Y :

Z|Y=y ∼ N
((

µ⋆
y

µ⋆

)
,
(

D⋆
y 0

0 G⋆

))
; D⋆

y diagonal ,
(7.1)

for some continuous one-to-one function f ⋆, vectors µ⋆
y, µ⋆, and positive-

definite matrices D⋆
y , G⋆. The model Equation 7.1 encodes the conditional

independence relationships in Figure 7.1a: the covariance of the distribution
Zc|Y is diagonal; the mean and covariance corresponding to Zs are not a
function of y and the noise ϵ is independent of Y so that X ⊥⊥ Y|Zc and
Zs ⊥⊥ Y.

7.3 CLAP: interpretable predictions using ground-truth
concepts

Given data of X and Y arising from the graphical model in Figure 7.1a, our
objective is to identify the ground-truth concepts and learn a simple classifier
that uses these to accurately predict Y. Additionally, to facilitate human
interpretability, we aim to enable experts in the loop to visually interpret the
learned concepts. For concreteness, we specialize our exposition to images,
although our framework can in principle be used on other types of data.

Our proposed framework is based on variational autoencoders (VAEs) [75,
247]. VAEs offer a number of favorable properties for our objectives. First,
they can be derived in a principled manner from the underlying data gen-
erating mechanism. Second, the encoder/decoder pair in VAEs provide an
effective approach to visualize and thus interpret the learned latent features
via latent traversals (see Section 7.3.4 for more details).
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(b) VAE architecture of CLAP

Figure 7.1: The graphical model in (a) describes how the desired high-level core latent features
Zc are related to the remaining variables Y, X, Zs. The VAE architecture in (b) is derived by lower-
bounding the evidence values p(X, Y) and p(X|Y) and incorporating the generative assumptions
from (a) (see main text). We utilize two separate encoders, correspondent to the Lcl and Lp
terms of objective Equation 7.3, and impose sharing of the decoder. The two encoders define two
different sets of latents Z = (Zc, Zs), which are separately passed through f to get the relative
reconstructions. The two resulting objectives Lp and Lcl are then summed in the full objective
LCLAP. A simple classifier based on Zc is trained as part of the model inside Lp.

In that light, a natural first approach that might come to mind would be
to train a VAE that uses the estimated latent features for prediction. In
Section 7.3.1 we derive such a model, and show why, in its vanilla version, it
can perform prediction but cannot identify the ground-truth core concepts.

In Section 7.3.2, we overcome these challenges by introducing a novel VAE
architecture CLAP shown in Figure 7.1b. Our proposed method combines
the predictive VAE structure from earlier with a second VAE which helps
with identifying the underlying ground-truth concepts.

7.3.1 Vanilla predictive VAE and its shortcomings

A natural first attempt at learning a predictive VAE procedure is to maximize
the following ELBO of the log-evidence of (X, Y):

log p(X, Y) ≥ Eqϕp (Z|X) log
p f (X|Z)pψ(Y|Zc)pθp(Z)

qϕp(Z|X) =: Lp(ϕ
p, θp, f , ψ; X, Y) .

(7.2)
The objective Lp corresponds to the VAE architecture in the red box in
Figure 7.1b. Here, q is the approximate posterior with encoder parameters
ϕp, ψ parameterizes a simple classifier, f is the decoder’s parameters, and
θp the prior distribution’s parameters. Specifically, from the data generating
mechanism Equation 7.1, the prior pθp(Z) is a density of a Gaussian mixture
distribution with |Y| (number of labels) components, where the covariance
corresponding to the core features for each mixture component is diagonal.
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The ELBO Equation 7.2 is derived in a classical fashion by using Jensen’s
inequality log p(X, Y) ≥ Eq(Z|X,Y) log p(X,Y|Z)p(Z)

q(Z|X,Y) and leveraging the assumed
generative model Equation 7.1 to simplify the right-hand side.

The model learned by maximizing the objective Lp naturally yields a classifier
pψ(Y|Zc) based on core features extracted from the encoder qϕp(Z|X), which
should approximate the ground-truth ones. Since the encoder does not rely
on Y as an input, we can readily use it for end-to-end classification during
test time. In fact, under a regularity condition, we show in Supp. Mat. that
this architecture is optimal for prediction. However, it does not guarantee that
the estimated core features Ẑc correspond to the ground-truth factors Zc. In
fact, they can be arbitrary linear transformations of Zc without sacrificing
prediction performance [257] (see ablation studies in Section 7.4), thus not
satisfying our desired properties. In addition, as the dimensionality of the
core features Zc is typically unknown, a conservative choice for the number
of latent features (over-parameterized setting) may wrongly include style
features or redundant core features in the prediction model (see ablation
study in Section 7.4). In the next section, we propose our framework CLAP
that mitigates the aforementioned issues: it learns a prediction model using
the ground-truth core concepts (even in the over-parameterized setting),
without sacrificing classification accuracy.

7.3.2 CLAP to overcome shortcomings

To overcome the aforementioned challenges, we augment the objective Lp
with two additional terms to arrive at our proposed objective function for
CLAP:

LCLAP := Lp + Lcl − λnρ . (7.3)

On a high level, the additional component Lcl ensures identifiability of
the ground-truth concepts Zc (concept learning) and the regularization term
λnρ helps to identify a minimal number of ground-truth concepts in an
over-parameterized latent space. In the following, we formalize each term.

Concept-learning component Lcl While the objective Lp is designed to
maximize the full likelihood of image data X and target labels Y, the term
Lcl maximizes the likelihood of X conditioned on Y. The fact that the labels
act as additional input data in this likelihood objective, plays a central role in
provably obtaining identifiability. Furthermore, the conditional independence
of Zc given Y can be more naturally captured when Y is considered as
an input. Similarly to above, for any posterior q, we can lower-bound
the conditional log-evidence as log p(X|Y) ≥ Eq(Z|X,Y) log p(X|Z,Y)p(Z|Y)

q(Z|X,Y) , and
incorporate the generative assumptions in Equation 7.1 to obtain the final
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ELBO objective:

log p(X|Y) ≥ Eq
ϕcl (Z|X,Y) log

p f (X|Z)pθcl (Z|Y)
qϕcl (Z|X, Y)

:= Lcl(ϕ
cl , θcl , f ; X, Y) . (7.4)

The component of CLAP corresponding to Lcl is highlighted in blue in
Figure 7.1b. Here, ϕcl are the parameters of the encoder, and f those of
the decoder. Appealing to the data generating mechanism Equation 7.1, we
can further factorize the prior in the form pθcl (Z|Y) = p(Zc|Y)p(Zs). Here,
p(Zc|Y) is a Gaussian density function with diagonal covariance and different
parameters for different Y while we model the prior p(Zs) as a standard
Gaussian distribution without loss of generality. We aggregate all these
parameters in θcl .

In general, maximizing the ELBO or even the true log-evidence would not
allow for of identification the true concepts. However, a simple heterogeneity
assumption can alleviate this issue, formally stated in Supp. Mat.

Theorem 7.1 (Concept learning, informal) The functions f , f ⋆ satisfy a regu-
larity condition and the distribution of core features change ‘enough’ when condi-
tioned on different realizations of Y.

We now utilize these assumptions to prove the following result.

Lemma 7.2 (Maximizing Lcl identifies the ground-truth concepts) Suppose
the data is generated according to the model in Equation 7.1 with no noise, i.e. ϵ ≡ 0
and Theorem 7.1 holds. Suppose Lcl is maximized in the infinite data limit with the
correct number of latent features included in the model. Then, the posterior samples
Ẑc obtained from the encoder qϕ̂cl are equal to the ground-truth features Zc up to
permutation and scaling.

We prove this lemma in Supp. Mat., and also extend to the noisy setting in
Supp. Mat. Theoretical results for identifiability were previously established
in [77]. We note that our guarantees differ substantially and refer to Supp.
Mat. for more details. Despite the concept-learning capabilities, a model
trained only on Lcl cannot be used for prediction since it requires the labels
as input to the encoder qϕcl (Z|X, Y).

Therefore, we combine the objectives Lp and Lcl by utilizing the same decoder
f in Equation 7.2 and Equation 7.4, as represented in Figure 7.1b. This
coupling via a shared decoder is crucial, as it forces the Lp architecture to
also perform concept learning. To see why, first note that in joint training, the
two encoders of Lcl and Lp learn approximately the same latent space. In fact,
we show in Theorem 7.3 that the latent spaces align in the infinite data limit.
1Since Lcl provably identifies the ground-truth features in the latent space, it

1Informally speaking, the reason for this is that the latent features in each architecture
reconstruct the image via the same decoder. Since the common decoder defines a generative
model , the posteriors (i.e. the different encoders) need to be similar as well.
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then follows that the estimated core features obtained by the encoder of Lp
closely align with Zc. Thus, after training the combined objective Lp + Lcl ,
the trained VAE architecture corresponding to Lp provides an interpretable
prediction model: an input image is mapped to accurate ground-truth core
features, which are then used on top of a simple classifier to predict the
target label Y. We refer the reader to Section 7.3.4 for more discussion on
how the trained CLAP is used at test time.

Sparsity penalty ρ to account for overparameterized latent space We add
a regularization term λnρ( f , ψ) to impose simultaneous group sparsity on
the prediction weights and decoder weights – this ensures that if an esti-
mated core feature feature is predictive, it has non-negligible effect in the
reconstruction of the image and vice versa. In particular, let kc, ks be the
conservative choice on the dimensionality of the core and style features in
our VAE model, respectively. Further, let k = kc + ks be the total number of
latent variables. We consider the following parameterization for the decoder
f = f ′ ◦ B, B ∈ Rk×k and classifier ψ = ψ′ ◦ C, C ∈ Rkc×kc , where |Y| is
the number of labels to be predicted and f ′, ψ′ are one-to-one and continu-
ous. Then, the sparsity inducing penalty ρ( f , ψ) in the combined objective
function Equation 7.3

takes the form:

ρ( f , ψ) :=
kc

∑
i=1

I
[∥∥(BT

:,i CT
:,i
)∥∥

2 > 0
]
+

k

∑
i=kc+1

I
[∥∥∥BT

:,i

∥∥∥
2
> 0

]
, (7.5)

where the indicator function I[·] counts the number of latent features effec-
tively utilizes by the model. Note that the nonzero columns of C correspond
to core features in the model with predictive power, and the nonzero columns
of B correspond to core and style features that are used for reconstruction
with the decoder f . For practical considerations, we consider the following
convex surrogate in our experiments: ρ( f , ψ) = ∑kc

i=1

∥∥(BT
:,i CT

:,i
)∥∥

2.

7.3.3 Theoretical guarantees for CLAP

In Section 7.3.2, we described how after the training of CLAP, the component
corresponding to Lp can be used as an interpretable prediction model. We
next provide guarantees that this prediction model is optimal in terms of
accuracy and is based on high-level features that align with the ground-truth
concepts. In the sequel, we denote kc, ks to be the number of core and style
features chosen in the VAE architecture and k⋆c , k⋆s to be the dimensions of the
true features of the generative model in Figure 7.1a. Further, we use qϕ̂p , qϕ̂cl

to denote the encoders obtained by maximizing the objective in Equation 7.3
in the infinite data limit and let Ẑ be the posterior samples obtained from qϕ̂p .
Finally, we denote the trained classifier as ψ̂ = ψ̂′ ◦ Ĉ, and the core features
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Ẑc are specified as the elements corresponding to nonzero columns of Ĉ. Our
theory requires Theorem 7.1 for concept learning as well as an assumption
about a simple classifier being optimal:

Assumption 1 (optimal classifier) The Bayes optimal classifier for predicting Y
using Zc belongs to the set of simple classifiers used in CLAP.

We utilize Assumptions 1 and 2 to prove the following result, which in-
formally states that CLAP learns an optimal prediction model using inter-
pretable ground-truth features.

Theorem 7.3 (CLAP: Optimal and interpretable prediction model) Consider
the same setup as Lemma 7.2. Suppose kc ≥ k⋆c , ks ≥ k⋆s , and that Assumptions 1
and 2 hold. Then, the posterior samples Ẑ obtained from the encoder qϕ̂p are identical
to the posterior samples obtained from the encoder qϕ̂cl . Furthermore, the core features

Ẑc are 1) optimally predictive: Y|Ẑc
dist
= Y|X, and 2) aligned with the ground truth:

Ẑc is equal to Zc up to scaling and permutation.

The proof of Theorem 7.3 is presented in Supp. Mat. Our guarantees in
Theorem 7.3 ensure that the prediction model obtained by CLAP is optimal.
Furthermore, the core features Ẑc align with the ground-truth concepts.
Finally, the number of predictive factors equals to the number of ground-
truth concepts; that is, our model obtains the minimal set of predictive
features.

7.3.4 Visualizing and evaluating CLAP’s output for interpretation

We now discuss how CLAP’s trained model can be used to produce an
end-to-end interpretable prediction model pipeline, which we represent in
Section 7.3.4.

At inference time, the part of CLAP’s model corresponding to Lp is utilized,
since it does not require a label as an input (Section 7.3.4 left). As we describe
in detail next, the learned concepts are visualized using latent traversals; to
conclude the pipeline, a human expert visually inspects these traversals and
assigns a meaning to the relative latent variables.

Interpretations via latent traversals Generally, the visual explanations pro-
vided by the model need to be evaluated by a human expert (see Section 7.1).
As is customary for VAE models, we provide such visualizations via latent
traversals. Specifically, let x be an input image. The core concepts associated
to x are obtained via the posterior mean µ̂(x) := Eqϕ̂p (Ẑc|x)[Ẑc]. The semantics

of Ẑc are then discovered by performing latent traversals. In these, we change
one component of µ̂(x) at a time, while keeping the others fixed, and observe
the reconstructions obtained through the decoder f̂ . Owing to the concept-
learning capabilities of CLAP, the traversals on the core latent features will
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Figure 7.2: We present how the prediction model obtained by training CLAP can be used and
interpreted at test time. Supplying a test images x to the component Lp of CLAP, we learn core

features Ẑc. These features are visualized using latent traversals and interpreted by a human, who
assigns them to high-level concepts. Furthermore, the estimated linear classifier predicts a label
and provides global (population wise) and local (instance wise) importance for the interpreted
concepts.

produce distinct changes in the reconstructed images corresponding to the
different discovered ground-truth concepts, which will allow the human ex-
pert to assign them with a semantic meaning. This procedure is represented
in the top-right of Section 7.3.4. There, for example, upon visual inspection,
the first latent is assigned the meaning of ”Shape” from the expert, the second
”Color”, and so on.

Interpretable predictions using learned concepts We note here that in our
experiments, we found a linear classifier to be well-performing across all
datasets. For this reason, the following description assumes ψ to simply
be the linear weights of the corresponding linear classifier pψ(Y|Ẑc). For
each concept, we provide both a global and local relevance for prediction, as
depicted in the bottom right of Section 7.3.4. The global relevance represents
the importance of a concept for prediction at a population level (i.e. across
images) and is thus directly encoded in the entries of ψ̂. The local relevance is
instead image-specific, and is observed in the summands of the linear combi-
nation ⟨µ̂(x), ψ̂⟩. These two measures allow the practitioner to transparently
assess the decision process of the model, as they assign a prediction weight
to human interpretable features.

7.4 Experiments: using CLAP for interpretable predic-
tions

We next present experiments on synthetic data to corroborate our theoretical
results, and evaluate the ability of CLAP to learn an accurate prediction
model using the ground-truth features. Since in most real-world datasets,
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(b) SENN prototypes

Figure 7.3: a) CLAP traversals on (in order) the MPI3D, Shapes3D and SmallNORB datasets,
and b) SENN prototypes on (in order) the MPI3D and Shapes3D datasets.

ground-truth factors are unknown but necessary to verify whether CLAP
can work in practice, we resort to three standard ”disentanglement” datasets
MPI3D [264], Shapes3D [265] and SmallNORB [266]. These datasets consist of
collections of objects generated synthetically according to some ground-truth
factors of variation. The images are a priori unlabeled; thus, we select some
of the ground-truth factors, which represent the concepts Zc to be discovered,
and generate artificial binary labels Y. The ground-truth factors Zc are object
shape, size and color for MPI3D, object color and size for Shapes3D and object
type and lighting for SmallNORB (see Supp. Mat.). For all the experiments
and baselines in Section 7.4, details on training and architectures employed
are deferred to Supp. Mat.2. In general, for all methods, we used neural
network architectures comparable in complexity to those utilized in [76, 267].

2Our code is publicly available at https://github.com/nickruggeri/

CLAP-interpretable-predictions
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7.4. Experiments: using CLAP for interpretable predictions

As explained in Section 7.3.4, we proceed with the evaluation of CLAP
by first generating latent traversals. The goal is to determine whether the
discovered concepts have a one-to-one correspondence with the ground-truth
Zc that we used to generate the data. In Figure 7.3a, every row corresponds
to the traversal for one latent feature. As can be observed, the estimated
core features indeed represent the ground-truth ones; this means that the
model identifies the ground-truth concepts underlying the data generating
mechanism. Importantly, we remark that the concept names assigned to the
single rows (e.g. ”Size”, ”Shape”) are obtained by visual inspection; the model
doesn’t have direct access to them, but only to the images X and labels Y.

Finally, the discovered Zc are also fully predictive, as CLAP achieves classifica-
tion accuracy above 0.99 on all the datasets. We include additional traversals
in Supp. Mat.; there, we also show that, due to the sparsity regularization
penalty ρ( f , ψ), the model accurately assigns negligible global and local
weights (i.e. no predictive value) to the remaining latent features included
in the model. This is in contrast to the concepts shown in Figure 7.3a that
have non-negligible global and local weights. In other words, in line with
our theory, estimated core features that have prediction power align with the
ground-truth concepts.

Comparison with baselines We compare the outputs of CLAP with those
of SENN [238] and CCVAE [76], two prediction models in the existing
literature that are closest to CLAP. To explain its predictions and visualize
the learned concepts, SENN uses prototypes – a set of training images that
“best represent” every latent variable. In Figure 7.3b, we depict the prototypes
relative to some of these features. Similarly to CLAP, human inspection is
needed to describe the concepts that such latents encode. However, the task
here is substantially more difficult: for any of the latents, we can observe
many different changes, e.g in the first row objects of different colors and
shapes are observed, and from different camera angles. This indicates that
not only SENN is not able to identify the ground-truth Zc, thus hindering
interpretability, but also mixes them with non-predictive style features Zs.
We also apply CCVAE on synthetic data and observe that its learned latent
features do not align with the ground-truth ones; due to space constraints,
we show these results in Supp. Mat.

Ablation studies In order to demonstrate the importance of each of our de-
sign choices, we also perform various ablation studies on the MPI3D dataset,
presented in Supp. Mat. Firstly, we show that if the sparsity penalty λnρ( f , ψ)
is removed from the learning objective, the resulting model utilizes separately
some latent variables for visualization, and some others for prediction. On
the other hand, with the use of λnρ( f , ψ), CLAP ensures correspondence
between features utilized for prediction and visualization. Furthermore,
we show latent traversals for a model trained only on Lp. As explained in
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Section 7.3.1, the learned features are fully predictive, but do not correspond
to the ground-truth one. In fact, it can be observed that various ground-truth
features change jointly within one single traversal. Further, we empirically
confirm that the concept-learning capabilities of CLAP rely on the labels Y
being informative enough, as highlighted by the assumptions in Section 7.3.2.
Practically, this means that multiple labels help with more accurate recovery
of the ground-truth Zc; we show that the concept learning capabilities of
CLAP indeed decrease on a dataset where only one label is available.

7.5 Future Outlook

So far, we have evaluated CLAP in synthetic scenarios where we know the
ground-truth data generating mechanism and the core factors are easy to
recognize for a layperson. For many scientific scenarios such as the example
in the introduction, evaluating whether learned concepts correspond to
the ”ground-truth” can only be done by domain experts. Nevertheless, we
provide the outputs of CLAP for some challenging real datasets to highlight
some of its favorable properties compared to other competing methods.

In this section, we present results on the Chest X-ray dataset, and defer
additional experiments on the PlantVillage dataset [268] to Supp. Mat. The
Chest X-ray dataset [269] consists of radiography images; each image has 14
associated binary disease labels. We emphasize that only the disease labels
may be used to learn the underlying concepts and no additional supervision
is available. As explained in Section 7.1.1, many inherently interpretable
models cannot be applied successfully in this setting, since they generally
assume further information on the ground-truth factors. Due to the negative
results for SENN in Section 7.4, we only compare our method with CCVAE.

Both CLAP and CCVAE attain similar classification accuracies of 0.903 and
0.898, respectively. In Figure 7.4, we compare the traversals obtained by both
methods. First we observe that CLAP manages to learn concepts that are
localized in the X-Ray image, corresponding to separate properties, such
as ”Heart shape” and ”Lung shape”. Instead, in both the traversals presented
for CCVAE, characteristics that can be associated to both the heart and
lung shapes vary together. Thus, while CCVAE finds similar concepts for
prediction, they do not appear distinctly as separate components of Zc. For
this reason, it is harder for a human expert to uniquely label the learned
concepts and, consequently, interpret the model’s output.

Another desirable characteristic of CLAP is that the global and local weights
reflect the importance of the concepts in predicting different diseases. For
example, compared to atelectasis, the concept ”lung shape” has higher weight
(both global and local) in determining the presence of lung infiltration. Since
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Figure 7.4: Output of CLAP and traversals of CCVAE for the Chest X-ray dataset. In (a), we
present the weights for both the atelectasis and lung infiltration disease predictions, as well as the
human interpretations of the discovered concepts. For better visual comparison, we only show
the images obtained at the extremes of the latent traversals. Moreover, we highlight the changes
that occur during the traversals. We include magnified figures with full traversals in Supp. Mat.,
as well as a glossary on how to read the results.

lung infiltration is a condition related to dense substances in the lungs, the
concept ”lung shape” learned by CLAP is natural and indicative.

Further, we remark that the discovered concepts manifest through very
nuanced traversals. This is sensible, as it is to be expected that real life
examples come with subtle and less pronounced features than synthetic
and commonly used datasets. In conclusion, these experiments show the
advancement and potential of CLAP compared to existing methods for
providing real-life interpretable predictions.

There are a number of exciting future directions that can further improve
CLAP for broader and more effective use in real-world scenarios. For exam-
ple, the visualizations of the VAE are not optimally sharp compared to the
status quo for GANs. Hence, it would be interesting to explore whether one
can obtain provable concept learning when the VAE is replaced by a GAN
structure. Further, in many scientific applications, the number of available
images can be quite small. An interesting avenue for future research could
be to develop solutions for the small data regime, e.g. via transfer learning.
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[54] M. Mézard, G. Parisi, The bethe lattice spin glass revisited. The European
Physical Journal B-Condensed Matter and Complex Systems 20, 217–233
(2001).

[55] A. Decelle, F. Krzakala, C. Moore, L. Zdeborová, Asymptotic analysis
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