
ETH Library

Regret optimal control for
uncertain stochastic systems

Journal Article

Author(s):
Martin, Andrea; Furieri, Luca ; Dörfler, Florian ; Lygeros, John ; Ferrari-Trecate, Giancarlo

Publication date:
2024-11

Permanent link:
https://doi.org/10.3929/ethz-b-000706238

Rights / license:
Creative Commons Attribution 4.0 International

Originally published in:
European Journal of Control 80, https://doi.org/10.1016/j.ejcon.2024.101051

Funding acknowledgement:
180545 - NCCR Automation (phase I) (SNF)

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0001-6103-4480
https://orcid.org/0000-0002-9649-5305
https://orcid.org/0000-0002-6159-1962
https://doi.org/10.3929/ethz-b-000706238
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.ejcon.2024.101051
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


European Journal of Control 80 (2024) 101051 

A
0
(

Contents lists available at ScienceDirect

European Journal of Control

journal homepage: www.sciencedirect.com/journal/european-journal-of-control

Regret optimal control for uncertain stochastic systems✩

Andrea Martin a,∗, Luca Furieri a, Florian Dörfler b, John Lygeros b, Giancarlo Ferrari-Trecate a

a Institute of Mechanical Engineering, EPFL, Switzerland
b Department of Information Technology and Electrical Engineering, ETH Zürich, Switzerland

A R T I C L E I N F O

Recommended by T. Parisini

Keywords:
Predictive control
Stochastic systems
Regret minimization
Scenario optimization

A B S T R A C T

We consider control of uncertain linear time-varying stochastic systems from the perspective of regret
minimization. Specifically, we focus on the problem of designing a feedback controller that minimizes the
loss relative to a clairvoyant optimal policy that has foreknowledge of both the system dynamics and the
exogenous disturbances. In this competitive framework, establishing robustness guarantees proves challenging
as, differently from the case where the model is known, the clairvoyant optimal policy is not only inapplicable,
but also impossible to compute without knowledge of the system parameters. To address this challenge, we
embrace a scenario optimization approach, and we propose minimizing regret robustly over a finite set of
randomly sampled system parameters. We prove that this policy optimization problem can be solved through
semidefinite programming, and that the corresponding solution retains strong probabilistic out-of-sample regret
guarantees in face of the uncertain dynamics. Our method naturally extends to include satisfaction of safety
constraints with high probability. We validate our theoretical results and showcase the potential of our
approach by means of numerical simulations.
1. Introduction

Inspired by online optimization and learning methods, control of
dynamical system has recently been studied through the lens of regret
minimization (Hazan & Singh, 2022). This emerging paradigm aims
at designing efficient control laws that minimize the worst-case loss
relative to an optimal policy in hindsight. Algorithms with provable
regret certificates hence offer attractive performance guarantees that
– in contrast with the stochastic and worst-case assumptions typical
of 2 and ∞ controllers (Hassibi, Sayed, & Kailath, 1999) – hold
independently of how disturbances are generated.

Most prior work in this area employs gradient methods to deal with
adversarially chosen cost functions and perturbations, and shows that
the resulting control law achieves sublinear regret against expressive
policy classes (Agarwal, Bullins, Hazan, Kakade, & Singh, 2019; Hazan
& Singh, 2022; Simchowitz, Singh, & Hazan, 2020). A parallel line of
research, initiated by Goel and Hassibi (2023b) and Sabag, Goel, Lale,
and Hassibi (2021a, 2021b), studies the problem of competing against
the optimal control actions selected by a clairvoyant (noncausal) policy,
without imposing any parametric structure on this benchmark policy.

For the case of known cost functions, the formulation of Goel
and Hassibi (2023b) and Sabag et al. (2021a, 2021b) has received
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increasing interest thanks to: optimality of the clairvoyant benchmark
policy, possibility of computing the regret-minimizing controller, and
remarkable performance reported in several applications, including
longitudinal motion control of a helicopter and control of a wind
energy conversion system (Sabag, Lale, & Hassibi, 2022). In particu-
lar, among recent contributions, Didier, Sieber, and Zeilinger (2022)
and Martin, Furieri, Dörfler, Lygeros, and Ferrari-Trecate (2022) pro-
posed an efficient optimization-based synthesis framework to incorpo-
rate safety constraints, Martin, Furieri, Dörfler, Lygeros, and Ferrari-
Trecate (2023b) established recursive feasibility and stability guar-
antees for receding horizon regret optimal control, Goel and Hassibi
(2022) and Zhou and Tzoumas (2023) considered partially-observed
systems, Goel and Hassibi (2023a) and Sabag et al. (2022) investigated
the closely related metric of competitive ratio, Brouillon, Dörfler, and
Trecate (2023) and Goel and Hassibi (2023b) considered state estima-
tion problems, Martin, Furieri, Dörfler, Lygeros, and Ferrari-Trecate
(2023a) studied connections with imitation learning, and Martinelli,
Martin, Ferrari-Trecate, and Furieri (2023) introduced the notion of
spatial regret for distributed control design.

Despite these advances, an important open challenge is how to track
the performance of the clairvoyant optimal policy without knowledge
https://doi.org/10.1016/j.ejcon.2024.101051
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of the underlying dynamics. In fact, as the systems under control
become increasingly complex, assuming availability of precise math-
ematical models appears more and more unrealistic. Nevertheless, to
the best of our knowledge, only (Goel, Agarwal, Singh, & Hazan,
2023) approached this problem, showing that several iterative control
algorithms that combine system identification with gradient descent
methods, e.g., Agarwal et al. (2019) and Simchowitz et al. (2020),
also achieve, asymptotically, near-optimal competitive ratio relative
to the clairvoyant optimal policy. However, this result only holds
asymptotically and does not allow synthesizing control policies that,
given a set of admissible plants, guarantee that the regret relative to
the clairvoyant optimal policy is minimized robustly.

Towards addressing these issues, in this paper we present a solution
to the robust regret minimization problem based on scenario opti-
mization (Calafiore & Campi, 2006; Campi & Garatti, 2008; Esfahani,
Sutter, & Lygeros, 2014), which is applicable to uncertain stochastic
linear time-varying systems affected by a priori unknown but mea-
surable disturbance processes.1 A key challenge lies in handling the
ifferent impacts that parametric uncertainty has on the closed-loop
ehavior achieved by the clairvoyant benchmark policy, on the one
and, and by the causal controller to be designed on the other. In fact,
imultaneously accounting for these effects has not yet been achieved
ollowing the analysis methods used in Dean, Mania, Matni, Recht, and
u (2020), Furieri, Guo, Martin, and Ferrari-Trecate (2023) and Zheng,
urieri, Kamgarpour, and Li (2021) to derive suboptimality and sample
omplexity bounds for classical linear quadratic control problems. As
urther evidence of the complexity arising in a competitive setting due
o parametric uncertainty, we note that the concurrent work (Liu &
eiler, 2023), which also pursues similar robust regret minimization
bjectives, considers a suboptimal benchmark defined with respect to
ome nominal dynamics. Due to model mismatch, however, in the
ase of Liu and Seiler (2023) it remains unclear whether this nominal
lairvoyant policy does encode the ideal behavior that regret optimal
ontrollers strive to mimic, or if the proposed suboptimal benchmark
an be outperformed even by simple causal policies.

For several control applications, including robotics, building energy
anagement, and power grids (Huang, Coulson, Lygeros, & Dörfler,
021), designing a single state feedback policy that attains robust
erformance across all admissible system dynamics can prove overly
onservative. Instead, it is beneficial to optimize for a unique closed-
oop behavior – while allowing the state feedback law that achieves it
o vary – leveraging a posteriori measurements of exogenous perturba-
ions such as external forces, solar radiation, and electricity demands
or control implementation.

Motivated as above, we show how convex optimization and sam-
ling techniques can be used to synthesize a disturbance feedback
obust control policy with provable regret guarantees in spite of the
ncertain dynamics. In particular, building upon (Calafiore & Campi,
006; Campi & Garatti, 2008; Esfahani et al., 2014), we propose
onstructing a scenario problem by appropriately sampling over the
pace of uncertain parameters. We prove that the policy that minimizes
egret robustly over the considered scenarios can be computed via
emidefinite programming, and that this solution exhibits generaliza-
ion capabilities – in the sense that the resulting regret bound holds
rue for all but a small fraction of uncertainty realizations whose prob-
bility is no larger than a prespecified tolerance level. Our approach
aturally extends to include satisfaction of safety constraints with high
robability. The advantages of our probabilistic design method are
wofold. First, contrary to worst-case solutions, which are known to
e computationally hard to evaluate (Blondel & Tsitsiklis, 2000), and
oherently with the theory of scenario optimization, our approach uses

1 These include but are not limited to the class of linear parameter-varying
ystems – a middle ground between linear and nonlinear dynamics (Tóth,
010).
 i

2 
a finite number of randomly sampled uncertainty realizations only, and
thus calls for the solution of a convex program – albeit with a size that
increases with the number of considered scenarios. Second, as opposed
to probabilistic solutions based on scenario optimization with classical
∞ objectives, our method leverages the cost of the optimal policy
n hindsight to yield performance guarantees that are tailored to the
pecific uncertainty and disturbance realizations. In turn, as we validate
y means of numerical simulations, this often allows us to reduce
onservatism of ∞ methods by establishing tighter upper bounds on
he realized cost – which in turn translate into improved closed-loop
erformance across all system dynamics for several disturbance profiles
f practical relevance.

. Problem statement and preliminaries

.1. Dynamics, control objective, and constraints

We consider an uncertain discrete-time linear time-varying dynam-
cal system described by the state-space equation

𝑡+1 = 𝐴𝑡(𝜃𝑡)𝑥𝑡 + 𝐵𝑡(𝜃𝑡)𝑢𝑡 + 𝐸𝑡(𝜃𝑡)𝑤𝑡 , (1)

here 𝑥𝑡 ∈ R𝑛, 𝑢𝑡 ∈ R𝑚, 𝜃𝑡 ∈ R𝑑 and 𝑤𝑡 ∈ R𝑝 are the system state,
the control input, a vector of uncertain parameters that characterize
the family of admissible plants, and a measurable disturbance process,
respectively. We focus on optimizing the closed-loop behavior of this
uncertain system over a finite-time planning horizon of length 𝑇 ∈ N,
nd let

𝒙 = (𝑥0, 𝑥1,… , 𝑥𝑇−1) , 𝒖 = (𝑢0, 𝑢1,… , 𝑢𝑇−1) ,

= (𝑥0, 𝑤0,… , 𝑤𝑇−2) , 𝜽 = (𝜃0, 𝜃1,… , 𝜃𝑇−1) ,

or compactness. On the one hand, we do not make any assumptions
bout the statistical properties of the exogenous disturbance process
, that can also be adversarially selected.2 On the other hand, we

assume that 𝜽 is drawn according to a probability distribution P𝜽 with
a possibly unknown and unbounded support set 𝜣. This probability
measure may reflect a priori knowledge about the actual likelihood
of each realization of the system parameters, or may simply encode
the relative importance that we attribute to each uncertainty instance.
In particular, we do not require P𝜽 to be known explicitly, but rely
on a set  = {𝜽1,… ,𝜽𝑁} of 𝑁 ∈ N independent samples only.3
Finally, we assume that the matrices 𝐸𝑡(𝜃𝑡) are full column rank for
all 𝑡 ∈ I𝑇 = {0,… , 𝑇 − 1} and for all 𝜃𝑡 such that 𝜽 ∈ 𝜣.4

Remark 1. Often times, the probability distribution P𝜽 is unknown, yet
uncertainty samples are directly made available to the policy designer
as observations. For instance, this is the case when the realizations
𝜽𝑘 ∈  correspond to a series of system identification experiments,
see, e.g., Calafiore and Campi (2006) and Micheli and Lygeros (2022),
or to the values of the physical parameters of a batch of components,
which scatter around their nominal value due to tolerance levels and
variability in the production process. We refer the interested reader
to Cannon, Kouvaritakis, and Wu (2009) and Oldewurtel et al. (2012)
for examples of application of the proposed uncertainty description –
which lies at the core of stochastic model predictive control (Calafiore
& Fagiano, 2012; Prandini, Garatti, & Lygeros, 2012) – to wind turbine
and building climate control problems, respectively.

2 For simplicity, we embed 𝑥0 in 𝒘 and assume it is adversarially selected.
3 Note that the individual parameter realizations 𝜃𝑘0 ,… , 𝜃𝑘𝑇−1 inside a

training sample 𝜽𝑘 ∈  need not be independent and identically distributed.
4 For instance, this assumption is trivially satisfied if the matrices 𝐸𝑡(𝜃𝑡) are
dentities or triangular with non-zero diagonal entries for all 𝜽 ∈ 𝜣.
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Remark 2. As previously discussed, measurable disturbance pro-
esses arise in several control applications and include, e.g., reference
hanges, friction, and external forces in robotics, and heat and humidity
oads in heating, ventilating and air conditioning systems. Besides, our
ormulation encompasses the broad class of linear-parameter-varying
ystems, see Mohammadpour and Scherer (2012) for a comprehensive
verview and discussion of applications in automotive systems, aircraft
echnology, and robotics among others. In fact, if 𝜃𝑡 denotes an a
riori uncertain but measurable scheduling parameter, then past distur-
ance realizations can always be reconstructed by 𝑤𝑡 = 𝐸𝑡(𝜃𝑡)†(𝑥𝑡+1 −
𝑡(𝜃𝑡)𝑥𝑡−𝐵𝑡(𝜃𝑡)𝑢𝑡), where 𝐸𝑡(𝜃𝑡)† is the Moore–Penrose inverse of 𝐸𝑡(𝜃𝑡).
ifferently from most literature on linear-parameter-varying systems,
owever, we allow generic nonlinear dependence with respect to 𝜃𝑡 of
he system matrices 𝐴𝑡(𝜃𝑡), 𝐵𝑡(𝜃𝑡), and 𝐸𝑡(𝜃𝑡).

Motivated by the regret optimal control framework of Goel and
Hassibi (2023b) and Sabag et al. (2021a, 2021b), we consider the
problem of designing a causal decision policy 𝝅 = (𝜋0,… , 𝜋𝑇−1), with
𝑢𝑡 = 𝜋𝑡(𝑥0,… , 𝑥𝑡, 𝑤0,… , 𝑤𝑡−1), that closely tracks the performance
of an ideal clairvoyant policy 𝝍 = (𝜓0,… , 𝜓𝑇−1). Importantly, we
allow the noncausal benchmark policy 𝝍 to select the control actions
with foreknowledge of both the exogenous disturbance 𝒘 and the
system dynamics 𝜽, i.e., 𝑢𝑡 = 𝜓𝑡(𝑥0,… , 𝑥𝑡, 𝑤0,… , 𝑤𝑇−2, 𝜃0,… , 𝜃𝑇−1).
More specifically, for any fixed 𝒘 and 𝜽, let

𝐽 (𝝅,𝒘,𝜽) = 𝒙⊤𝑸𝒙 + 𝒖⊤𝑹𝒖 , (2)

with 𝑸 ⪰ 0 and 𝑹 ≻ 0, denote the control cost incurred by playing the
policy 𝝅, and define the per-instance regret of 𝝅 relative to 𝝍 as:

𝚁(𝝅,𝝍 ,𝒘,𝜽) = 𝐽 (𝝅,𝒘,𝜽) − 𝐽 (𝝍 ,𝒘,𝜽) . (3)

Building upon ideas proposed in Goel and Hassibi (2023b) and Sabag
et al. (2021a, 2021b) for the case where the system dynamics (1) are
perfectly known, we then formulate the robust regret minimization
problem as follows:

𝚁⋆(𝝍) = inf
𝝅

sup
𝜽∈𝜣

max
‖𝒘‖2≤1

𝚁(𝝅,𝝍 ,𝒘,𝜽) . (4)

A solution 𝝅⋆ to (4), if any, guarantees that its cost is always at most
𝚁⋆(𝝍) higher than that of the ideal, yet inapplicable, benchmark policy
𝝍(𝒘,𝜽) that minimizes (2) – no matter how 𝒘 is generated and which
𝜽 realize.

As modern engineering systems often feature safety-critical compo-
nents, we include in the synthesis problem a robust constraint satisfac-
tion requirement. In particular, we define a polytopic safe set in the
space of state and input trajectories as follows:5

(𝜽) = {(𝒙, 𝒖) ∶ 𝑯𝑥(𝜽)𝒙 +𝑯𝑢(𝜽)𝒖 ≤ 𝒉(𝜽)} . (5)

Then, we consider the objective of solving (4) while ensuring that
(𝒙, 𝒖) ∈ (𝜽) robustly for all 𝜽 ∈ 𝜣 and all 𝒘 belonging to a compact
disturbance set (𝜽) defined as

(𝜽) = {𝒘 ∶ 𝒘 = 𝑯𝑤(𝜽)𝒅 , ‖𝒅‖2 ≤ 1} . (6)

In particular, we note that (6) reduces to the bounded energy constraint
‖𝒘‖2 ≤ 1 used in (4) if 𝑯𝑤(𝜽) = 𝑰 . Other values of 𝑯𝑤(𝜽) instead
allow considering different assumptions on 𝒘 for what concerns safety
and performance, providing extra design flexibility that one can exploit
to strike a balance between these two critical – yet often competing –
aspects.

2.2. Linear disturbance feedback policy

In general, it is well-known that optimizing over the function
space of feedback policies is computationally intractable. Therefore, as

5 Inequalities involving vectors apply element-wise.
 t

3 
common in the control literature (Goulart, Kerrigan, & Maciejowski,
2006; Wang, Matni, & Doyle, 2019), throughout this paper we restrict
our attention to linear disturbance feedback policies of the form 𝒖 =
𝜱𝑢𝒘, with 𝜱𝑢 lower block-triangular to enforce causality.6 Note that
linear policies attain minimum regret against the optimal sequence of
control actions in hindsight if the system dynamics are known and the
safety constraints are not active (Goel & Hassibi, 2023b; Sabag et al.,
2021a, 2021b). Moreover, as we will show in the next section, unlike
linear state feedback policies, this choice allows us to approximate the
intractable minimization of (4) subject to the dynamics (1) and the
constraints (5) with a convex optimization problem.

Let us define through diagonal concatenation of matrices the opera-
tors 𝑨(𝜽) = blkdiag(𝐴0(𝜃0),… , 𝐴𝑇−1(𝜃𝑇−1)), 𝑩(𝜽) = blkdiag(𝐵0(𝜃0),… ,
𝐵𝑇−1(𝜃𝑇−1)), and 𝑬(𝜽) = blkdiag(𝐼𝑛, 𝐸0(𝜃0),… , 𝐸𝑇−2(𝜃𝑇−2)). With this
otation in place, we observe that the closed-loop state trajectory under
he feedback law 𝒖 = 𝜱𝑢𝒘 can be expressed as a linear function of 𝒘
s per:

= 𝒁𝑨(𝜽)𝒙 +𝒁𝑩(𝜽)𝒖 + 𝑬(𝜽)𝒘 , (7)
= (𝑰 −𝒁𝑨(𝜽))−1(𝒁𝑩(𝜽)𝜱𝑢 + 𝑬(𝜽))𝒘 ∶= 𝜱𝑥(𝜽)𝒘 ,

here 𝒁 is the block-downshift operator, namely, a matrix with iden-
ity matrices along its first block sub-diagonal and zeros elsewhere.

.3. On the choice of the clairvoyant benchmark policy

We conclude our problem formulation by commenting on the choice
f the clairvoyant benchmark policy 𝝍 . Extending ideas from Goel and
assibi (2023b) and Sabag et al. (2021a, 2021b) to the case where the
odel is uncertain, a meaningful objective is that of competing against

he best sequence of control actions in hindsight, without imposing any
tructure on 𝝍 . In this case, it can be shown by adapting the derivations
f Hassibi et al. (1999) and Martin et al. (2022) that:

(𝒘,𝜽) = −(𝑹 + 𝑭 (𝜽)⊤𝑸𝑭 (𝜽))−1𝑭 (𝜽)⊤𝑸𝑮(𝜽)𝒘 , (8)

here 𝑭 (𝜽) = (𝑰 − 𝒁𝑨(𝜽))−1𝒁𝑩(𝜽) and 𝑮(𝜽) = (𝑰 − 𝒁𝑨(𝜽))−1𝑬(𝜽) are
he causal response operators that encode the uncertain dynamics (1) as
= 𝑭 (𝜽)𝒖+𝑮(𝜽)𝒘. Differently from the model-based setting considered

n Goel and Hassibi (2023b) and Sabag et al. (2021a, 2021b), however,
he (nonlinear) dependence of 𝝍 on the uncertain system dynamics 𝜽
akes it impossible to compute the actual benchmark policy – and
ence also the policy that minimizes regret against it. To get around
his problem without sacrificing the instance-wise optimality of 𝝍 –
s would result, for instance, by constructing a benchmark policy that
chieves robust performance across all 𝜽 ∈ 𝜣 – in the next section
e present a randomized approach based on the scenario optimization

ramework (Calafiore & Campi, 2006; Campi & Garatti, 2008; Esfahani
t al., 2014).

emark 3. Alternatively, leveraging the foreknowledge of all elements
n 𝜽 and using results in Corollary 4 of Martin et al. (2022), one
ay define more complex linear control benchmarks that, e.g., further

omply with safety constraints (5) and (6).

. Main results

In this section, we show how a causal control policy with proba-
ilistic certificates of regret and safety can be efficiently computed in
pite of the uncertain dynamics. To do so, we first construct a scenario
pproximation of the robust regret minimization problem in (4) by
estricting our focus to a finite number of uncertainty instances only.
hen, inspired by Martin et al. (2022), we prove that the policy that

6 By carefully adapting the convex reformulation of Proposition 1 below,
ur results can be extended to the case of affine policies 𝒖 = 𝜱𝑢𝒘+ 𝒗 through
he definition of an augmented disturbance vector 𝜹 = (𝒘, 1).
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safely minimizes regret over the considered scenarios can be expressed
as the solution of a semidefinite optimization problem. Finally, leverag-
ing results from the theory of uncertain convex programs (Calafiore &
Campi, 2006; Campi & Garatti, 2008; Esfahani et al., 2014), we derive
strong guarantees on the probability of both out-of-sample regret bound
and safety constraint violation. For ease of presentation, we defer all
proofs to the Appendix.

In what follows and by inspection of (7) and (8), we let 𝜳 𝑢(𝜽) =
(𝑹+𝑭 (𝜽)⊤𝑸𝑭 (𝜽))−1𝑭 (𝜽)⊤𝑸𝑮(𝜽) and 𝜳 𝑥(𝜽) = 𝑭 (𝜽)𝜳 𝑢(𝜽)+𝑮(𝜽) denote

the closed-loop system responses that map 𝒘 to the control actions
selected by 𝝍 and to the corresponding state trajectory, respectively.
Further, with slight abuse of notation, we will often use 𝜱𝑢 and 𝜳 𝑢
instead of 𝝅 and 𝝍 , respectively. We start by introducing the following
epigraphic form of the robust safe regret minimization problem:

inf
𝜱𝑢 ,𝛾

𝛾 (9a)

subject to 𝜱𝑥(𝜽) = 𝑭 (𝜽)𝜱𝑢 +𝑮(𝜽) , (9b)

max
𝒘∈(𝜽)

𝑯𝑥(𝜽)𝜱𝑥(𝜽)𝒘 +𝑯𝑢(𝜽)𝜱𝑢𝒘 ≤ 𝒉(𝜽) , (9c)

max
‖𝒘‖2≤1

𝚁(𝜱𝑢,𝜳 𝑢(𝜽),𝒘,𝜽) ≤ 𝛾 , ∀𝜽 ∈ 𝜣 ; (9d)

we denote the optimal value of (9) by �̄�⋆(𝜳 𝑢(𝜽)). Despite we nar-
rowed attention to linear disturbance feedback policies, (9) remains
intractable if 𝜣 has infinite cardinality. Besides, strong duality results
do not apply in a straightforward way as 𝜣 is not assumed to be
connected, let alone convex.

Motivated by the scenario optimization framework (Calafiore &
Campi, 2006; Campi & Garatti, 2008; Esfahani et al., 2014), we there-
fore propose replacing the maximization over 𝜣 with a maximization
over the finite set  = {𝜽1,… ,𝜽𝑁} of randomly sampled uncertainty
realizations only. Proceeding in this way, we approximate (9) with its
scenario counterpart, that is:

min
𝜱𝑢 ,𝛾

𝛾 (10a)

subject to 𝜱𝑥(𝜽𝑘) = 𝑭 (𝜽𝑘)𝜱𝑢 +𝑮(𝜽𝑘) , (10b)

max
𝒘∈(𝜽𝑘)

𝑯𝑘
𝑥𝜱𝑥(𝜽𝑘)𝒘 +𝑯𝑘

𝑢𝜱𝑢𝒘 ≤ 𝒉𝑘 , (10c)

max
‖𝒘‖2≤1

𝚁(𝜱𝑢,𝜳 𝑢(𝜽𝑘),𝒘,𝜽𝑘) ≤ 𝛾 , ∀𝜽𝑘 ∈  , (10d)

with 𝑯𝑘
𝑥 = 𝑯𝑥(𝜽𝑘), 𝑯𝑘

𝑢 = 𝑯𝑢(𝜽𝑘), and 𝒉𝑘 = 𝒉(𝜽𝑘) for brevity. In
particular, note that the infimum in (10a) is attained since only a finite
number of uncertainty realizations 𝜽𝑘 ∈  are considered, and since,
for every 𝜽𝑘, 𝑹 ≻ 0 implies that the regret (3) is radially unbounded
with respect to𝜱𝑢. Building upon the reformulations proposed in Didier
et al. (2022) and Martin et al. (2022) for the case of known system
dynamics, the next proposition shows that (10) can be solved by means
of standard convex optimization techniques.

Proposition 1. The scenario optimization problem (10) is equivalent to
the following semidefinite program:

min
𝜱𝑢 ,𝛾

𝛾 (11a)

subject to (10b) , ∀𝜽𝑘 ∈  , ∀𝑖 ∈ {1,… , 𝑆} ,

‖

‖

‖

(𝑯𝑘
𝑥𝜱𝑥(𝜽𝑘) +𝑯𝑘

𝑢𝜱𝑢)𝑖𝑯𝑘
𝑤
‖

‖

‖2
≤ 𝒉𝑘 , (11b)

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑰

[

𝑸
1
2𝜱𝑥(𝜽𝑘)
𝑹

1
2𝜱𝑢

]

⋆ 𝛾𝑰 +

[

𝑸
1
2 𝜳 𝑥(𝜽𝑘)

𝑹
1
2 𝜳 𝑢(𝜽𝑘)

]⊤ [
𝑸

1
2 𝜳 𝑥(𝜽𝑘)

𝑹
1
2 𝜳 𝑢(𝜽𝑘)

]

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⪰ 0 , (11c)

where 𝑯𝑘
𝑤 = 𝑯𝑤(𝜽𝑘), 𝑆 is the number of constraints in (5), and ⋆ denotes

entries that can be inferred from symmetry.
 w

4 
We remark that, for each 𝜽𝑘 ∈ , the operators 𝜳 𝑥(𝜽𝑘) and 𝜳 𝑢(𝜽𝑘) in
11c) are the noncausal system responses associated with a benchmark
olicy that is optimal for the specific realization 𝜽𝑘 of the uncertain sys-
em parameters. For each 𝜽𝑘 ∈ , enforcing (11c) hence requires to first
valuate the corresponding optimal closed-loop behavior in hindsight
sing (8). Establishing regret guarantees relative to the clairvoyant
ptimal policy 𝜳 𝑢(𝜽𝑘), which is impossible to compute without knowl-
dge of 𝜽𝑘, constitutes our main motivation towards adopting sampling
echniques in a competitive setting, shedding light on an interesting
pplication of scenario optimization beyond those in stochastic model
redictive control (Calafiore & Fagiano, 2012; Prandini et al., 2012).

emark 4. Differently from the computationally efficient state-space
epresentations of a regret optimal controller available for the case
here the system dynamics are known and no safety constraints are

mposed on the system (Goel & Hassibi, 2023b; Sabag et al., 2021a,
021b), our solution to the robust regret minimization problem relies
n convex optimization. As the control horizon 𝑇 and the number
f uncertainty samples in  increase, solving (11) via semidefinite
rogramming may represent a major computational bottleneck. Indeed,
11) features 𝛿 = 1 + 𝑚(𝑇−1)(2𝑛+𝑝(𝑇−2))

2 optimization variables and 𝑁
linear matrix inequality constraints of the form (11c). As common in
the predictive control literature (Muñoz-Carpintero, Kouvaritakis, &
Cannon, 2016; Sieber, Bennani, & Zeilinger, 2021; Zhang & Ohtsuka,
2021) and inspired by time-invariant infinite horizon formulations,
the computational burden can be alleviated by imposing a Toeplitz
block structure on 𝜱𝑢, effectively reducing the number of optimization
variables to 𝛿 = 1+𝑚(𝑛+𝑝(𝑇 −2)) – a linearly growing function of 𝑇 . We
will return to this point in Section 4, where we numerically show that
this additional structure can substantially reduce the computational
time, at the price of an only slight increase in conservativeness in our
regret bound (cf. Fig. 2 in the numerical results section.). We also refer
the interested reader to Ahmadi and Majumdar (2019) and Zheng, Fan-
tuzzi, Papachristodoulou, Goulart, and Wynn (2017) for state-of-the-art
techniques that leverage diagonal dominance and chordal sparsity to
further improve scalability.

Let 𝜱⋆
𝑢 (𝜳 𝑢(𝜽),) and �̄�⋆𝑁 (𝜳 𝑢(𝜽),) denote the optimal policy and

the optimal value of (10), respectively.7 Since only a finite subset of
the constraints of (9) are considered in (10), we have that �̄�⋆𝑁 ≤ �̄�⋆,
that is, �̄�⋆𝑁 is an optimistic lower bound on the true minimax regret
�̄�⋆. Conversely, thanks to Proposition 1 and exploiting key results
in scenario optimization, we now show that the solution of (10) is
approximately feasible for (9) – in the sense that the measure of the
set of original constraints that it violates rapidly approaches zero as
𝑁 increases. Before formalizing this generalization property in the
theorem below, we observe that multiple optimal policies for (11) may
exist, since the function 𝜆max(⋅) is not strongly convex. In this case,
uniqueness of 𝜱⋆

𝑢 (𝜳 𝑢(𝜽),) can be enforced by designing a convex
tie-break rule, e.g., a lexicographic criterion (Campi & Garatti, 2018).
Conversely, if the safety constraints (10c) are overly restrictive, the
scenario problem (11) may become infeasible; if this were the case,
however, the original problem (9) would also certainly be infeasible,
and one would need to consider broader classes of policies, or to relax
the safety requirements, e.g., by introducing slack variables in (10c).

Theorem 1. Fix any violation and confidence levels, say 𝜖 and 𝛽, in the
open interval (0, 1), and let 𝛿 and P𝑁𝜽 denote the number of optimization
variables in (10) and the 𝑁-fold product distribution P𝜽 ×⋯ × P𝜽 with 𝑁
terms, respectively. If the scenario optimization problem (10) is feasible and
𝑁 > 𝛿 satisfies ∑𝛿−1

𝑗=0
(𝑁
𝑗

)

𝜖𝑗 (1− 𝜖)𝑁−𝑗 ≤ 𝛽, then, with probability of at least
1 − 𝛽 given a dataset  ∼ P𝑁𝜽 , it holds that:

P𝜽
(

max
‖𝒘‖2≤1

𝚁(𝜱⋆
𝑢 ,𝜳 𝑢(𝜽),𝒘,𝜽) ≤ �̄�⋆𝑁 ,

7 In the interest of readability, in the following, we omit function arguments
hen clear from the context.
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and (𝒙, 𝒖) ∈ (𝜽) , ∀𝒘 ∈ (𝜽)
)

≥ 1 − 𝜖 . (12)

Theorem 1 presents an explicit sample complexity bound that, given
a priori specified 𝜖 and 𝛽, ensures that the safety and regret guarantees
extend to all but at most a fraction 𝜖 of unseen dynamics 𝜽 ∈ 𝜣
with probability 1 − 𝛽. As well-known in the literature on scenario
optimization, the minimum number of scenarios 𝑁(𝜖, 𝛽) required to
fulfill the conditions of Theorem 1 grows linearly with 𝜖−1, yet at
most logarithmically with 𝛽−1. Hence, even if a very small 𝛽 is se-
lected – so that (12) holds with practical certainty – the number of
scenarios to be sampled remains manageable, see also (Calafiore &
Fagiano, 2012). Further, we note that the condition on the number 𝑁
of uncertainty samples given in Theorem 1 is tight for fully-supported
problems (Campi & Garatti, 2008); a simpler, albeit not tight, sufficient
condition on 𝑁 is given by Calafiore and Campi (2006):

𝑁 ≥ 2𝜖−1(𝛿 + log(𝛽−1)) . (13)

3.1. Comparison with worst-case oriented synthesis

Our main motivation towards embracing a scenario perspective is
that randomized approaches allow us to explicitly compute 𝝍(𝒘,𝜽) by
replacing the uncertain system dynamics with their sampled counter-
parts. Regret bounds relative to the instance-wise optimal benchmark
𝝍(𝒘,𝜽) are attractive, as they yield upper bounds on the closed-loop
cost that adapt to the realized dynamics 𝜽 and perturbation 𝒘. To
illustrate this point more thoroughly, let us consider an alternative
design based on a classical worst-case ∞ objective:

{𝜱⋆
𝑢,𝙷, �̄�

⋆
𝑁} = arg min

𝜱𝑢 ,𝛾
𝛾 (14)

subject to (10b) , (10c) ,
max

‖𝒘‖2≤1
𝐽 (𝜱𝑢,𝒘,𝜽𝑘) ≤ 𝛾 , ∀𝜽𝑘 ∈  .

Leaving safety concerns aside to ease the discussion, the control policies
𝜱⋆
𝑢 and 𝜱⋆

𝑢,𝙷 offer the following probabilistic performance guarantees:

𝐽 (𝜱⋆
𝑢 ,𝒘,𝜽) − 𝐽 (𝜳 𝑢(𝜽),𝒘,𝜽) ≤ �̄�⋆𝑁 , (15)

𝐽 (𝜱⋆
𝑢,𝙷,𝒘,𝜽) ≤ �̄�⋆𝑁 , (16)

for any 𝜽 ∈ 𝜣 and any 𝒘 with ‖𝒘‖2 ≤ 1. In particular, we observe
that, while the ∞ solution provides a single pessimistic upper bound
n the closed-loop cost as per (16), our regret optimal policy gives a
on-uniform certificate shaped by 𝐽 (𝜳 𝑢(𝜽),𝒘,𝜽) as per (15). Moreover,

our upper bound on 𝐽 (𝜱⋆
𝑢 ,𝒘,𝜽) is tighter than that on 𝐽 (𝜱⋆

𝑢,𝙷,𝒘,𝜽)
whenever

𝐽 (𝜳 𝑢(𝜽),𝒘,𝜽) ≤ �̄�⋆𝑁 − �̄�⋆𝑁 . (17)

As we will numerically show in the next section, (17) not only holds
consistently over several classes of disturbances, but this tighter guar-
antee in terms of upper bounds often translates into improved per-
formance, that is, 𝐽 (𝜱⋆

𝑢 ,𝒘,𝜽) ≤ 𝐽 (𝜱⋆
𝑢,𝙷,𝒘,𝜽), no matter which 𝜽

realizes. In this sense, our regret minimization approach can alleviate
the conservatism introduced by (14).

Remark 5. Towards establishing sample complexity and suboptimality
guarantees for uncertain linear systems, most recent work (Dean et al.,
2020; Furieri et al., 2023; Zheng et al., 2021) has focused on synthe-
sizing a single state-feedback control law 𝒖 = 𝑲𝒙 that attains robust
performance across all admissible dynamics. These works analyze the
effect of parametric uncertainty on the achieved closed-loop cost, and
leverage the analytical expressions of classical 2 or ∞ objectives to
derive tractable upper bounds by means of simple norm inequalities
(see, e.g., Section 3.2 in Dean et al. (2020)). When a regret objective is
considered, however, this analysis becomes significantly more intricate
due to the presence of a clairvoyant benchmark policy. For this reason,

by assuming that the exogenous disturbance process is measurable, we o
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have proposed designing a policy 𝒖 = 𝜱𝑢𝒘 that achieves minimum
regret across a finite number of uncertainty samples as per (11). In turn,
this implies that the corresponding implementation as a state-feedback
control policy 𝒖 = 𝜱𝑢𝜱𝑥(𝜽)−1𝒙 ∶= 𝑲(𝜽)𝒙 will depend on the particular
realization of 𝜽.

. Numerical results

In this section, we first validate numerically the probabilistic regret
uarantee we have established in Theorem 1, and we then show how
his guarantee allows improving the overall closed-loop performance in
ace of the uncertain system dynamics. For our experiments, we con-
ider a discrete-time stochastic mass–spring-damper system described
y the uncertain linear dynamics:

𝑡+1 =

[

1 𝑇𝑠
− (𝑘+𝛿𝑘)𝑇𝑠

𝑚 1 − (𝑐+𝛿𝑐 )𝑇𝑠
𝑚

]

𝑥𝑡 +

[

0
𝑇𝑠
𝑚

]

𝑢𝑡 +𝑤𝑡,

with mass 𝑚 = 1 kg, nominal spring and damping constants 𝑘 =
1 N m−1 and 𝑐 = 1 N m−1 s, respectively, and sampling time 𝑇𝑠 = 1 s.
This simple model is often used to describe the behavior of several
physical systems, including vibrating structures, suspension systems,
and mechanical oscillators; the uncertain parameters 𝜃 =

[

𝛿𝑘 𝛿𝑐
]⊤

can thus model deviations from the nominal parameters arising in the
mass production process of these devices. We assume that 𝜃 is constant
over the control horizon 𝑇 = 20, and that it is uniformly distributed,
i.e., 𝛿𝑘 ∼ [−0.2,0.2] and 𝛿𝑐 ∼ [−0.2,0.2]. We define the control cost (2)
by letting 𝑸 = 𝑰20 ⊗ 𝑰2 and 𝑹 = 𝑰20, where ⊗ denotes the Kronecker
roduct. For simplicity and to focus on the advantages brought about by
egret minimization, we assume that no safety constraints are imposed
n the system.

To corroborate our main theoretical result in Theorem 1, we repeat-
dly solve (11), each time considering a dataset 𝑖 with an increasing
umber 𝑁𝑖 of training scenarios. In particular, for each 𝜽𝑘 ∈ 𝑖, we
se (8) to compute 𝜳 𝑢(𝜽𝑘) as the closed-loop map associated with
he unconstrained optimal policy in hindsight; according to (7), we
btain the corresponding 𝜳 𝑥(𝜽𝑘) by 𝑭 (𝜽𝑘)𝜳 𝑢(𝜽𝑘) + 𝑮(𝜽𝑘). Then, given
set of 10 000 independently sampled uncertainty instances for val-

dation, we estimate the probability in (12) by recording how often
he optimal policy 𝜱⋆

𝑢 (𝜳 𝑢(𝜽),𝑖) fails to comply with the associated
egret bound �̄�⋆𝑁𝑖

(𝜳 𝑢(𝜽),𝑖). To showcase the effect of time-invariant
ontroller structure discussed in Remark 4, we repeat these experiments
hile including in (11) the additional constraint that the solution
̂⋆
𝑢 (𝜳 𝑢(𝜽),𝑖) has constant block diagonal terms. We denote the regret
ound associated to �̂�

⋆
𝑢 (𝜳 𝑢(𝜽),𝑖) by �̂�⋆𝑁𝑖

(𝜳 𝑢(𝜽),𝑖) ≥ �̄�⋆𝑁𝑖
(𝜳 𝑢(𝜽),𝑖).

n Fig. 1, we plot the evolution of the empirical violation probabil-
ties 𝑉 (𝜱⋆

𝑢 ,𝜳 𝑢(𝜽),𝑖) ∶= 𝑉𝑁 and 𝑉 (�̂�
⋆
𝑢 ,𝜳 𝑢(𝜽),𝑖) ∶= 𝑉𝑁 associated

with 𝜱⋆
𝑢 and �̂�

⋆
𝑢 , respectively, as a function of the dataset size.8 For

completeness, we also display the (non-tight) theoretical upper bounds
on the violation probability 𝜖 given by (13) for 𝛽 = 0.1. In Fig. 2,
we compare the regret certificates �̄�⋆𝑁 and �̂�⋆𝑁 provided by the control
policies 𝜱⋆

𝑢 and �̂�
⋆
𝑢 , respectively, as well as the computation times

𝜏𝑁 and 𝜏𝑁 required to evaluate them via semidefinite optimization.9
Besides validating our theoretical results, these figures allow us to draw
the following observations. First, the approximate solution �̂�

⋆
𝑢 with

constant block diagonal terms guarantees regret at most 9% higher than
𝜱⋆
𝑢 with high probability, yet its evaluation requires a computation

time 𝜏𝑁 that is lower than 𝜏𝑁 by an entire order of magnitude. Second,
consistently with the intuition that simpler models are less prone to
overfit, we observe that �̂�

⋆
𝑢 achieves better generalization than 𝜱⋆

𝑢 ,

8 The source code that reproduces our numerical examples is available at
ttps://github.com/DecodEPFL/ScenarioSafeMinRegret.

9 All optimization problems have been solved using MOSEK (Mosek, 2015)
n a standard laptop computer with a 2.3 GHz Intel Core i9 CPU.

https://github.com/DecodEPFL/ScenarioSafeMinRegret
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Fig. 1. Comparison between empirical regret violation probability and theoretical upper bound as a function of the number of sampled scenarios.
Fig. 2. Evolution of the probabilistic worst-case regret bounds (denoted by �̄�⋆𝑁 and �̂�⋆𝑁 on the left 𝑦-axis) and of the computation times (denoted by 𝜏𝑁 and 𝜏𝑁 on the right 𝑦-axis)
or the exact and approximate solutions of (11), respectively, as a function of the number of considered scenarios.
s the out-of-sample empirical violation probability 𝑉𝑁 is consistently
maller than 𝑉𝑁 . Third, the quantities 𝑉𝑁 and �̂�⋆𝑁 rapidly converge
o their corresponding limit values as the number 𝑁 of sampled sce-
arios increases, suggesting that the minimax solution to (9) could be
ractically approximated by sampling a limited number of uncertainty
nstances only. Motivated by these considerations and with the aim of
urther reducing the computational complexity of our scheme, we plan
o study the possible application of wait-and-judge (Campi & Garatti,
018) and constraint removal (Campi & Garatti, 2011) approaches in
uture work.

Next, to illustrate the potential of our synthesis method, we compare
he performance of the control policies 𝝅𝚁 and 𝝅𝙷 computed solving
11) and (14), respectively, using 𝑁 = 5000 random samples of 𝛿𝑘 and
𝑐 . For several classes of disturbances 𝒘 often encountered in prac-
ice, we evaluate the realized control costs 𝐽 (𝝅𝚁,𝒘,𝜽), 𝐽 (𝝅𝙷,𝒘,𝜽) and
(𝝍 ,𝒘,𝜽) for 20 different values of 𝜽. In Fig. 3(a), we plot 𝐽 (𝜳 𝑢(𝜽),𝒘,𝜽)
nd compare it with �̄�⋆𝑁 − �̄�⋆𝑁 to verify, according to (17), when (15)
ields tighter upper bounds than (16) on the realized performance. In
ig. 3(b), we instead display the percentage increase in the realized cost
ue to using 𝝅𝙷 instead of 𝝅𝚁, that is,10

𝐽 (𝒘,𝜽) =
𝐽 (𝝅𝙷,𝒘,𝜽) − 𝐽 (𝝅𝚁,𝒘,𝜽)

𝐽 (𝝅𝚁,𝒘,𝜽)
∶= 𝛥𝐽.

As already observed in previous work for perfectly known sys-
ems (Goel & Hassibi, 2023b; Martin et al., 2022; Sabag et al., 2021a,
021b), Fig. 3 shows that regret minimization constitutes a viable
ontrol design strategy for improving the closed-loop performance
hen the disturbances do not match classical design assumptions –

10 For stochastic disturbances, results are averaged over 104 realizations.
6 
in terms of both lower upper bounds (Fig. 3(a)) and lower realized
costs (Fig. 3(b)). Most importantly, our results show that regret optimal
policies continue to offer these performance advantages consistently in
face of the uncertain dynamics. Interestingly, we further observe that
the policy 𝝅𝚁 often outperforms 𝝅𝙷 even for the worst-case disturbance
𝒘. While this may seem counterintuitive, we note that 𝝅𝙷 ensures min-
imum cost on a single pair of worst-case disturbances and parameters
(𝒘worst ,𝜽worst ) only. Conversely, for randomly sampled instances of the
uncertain parameters 𝜽 ≠ 𝜽worst , the policy 𝝅𝙷 retains no optimality
guarantee on the cost that it incurs under the most averse perturbation
𝒘 for that 𝜽.

5. Conclusion

We have presented a novel method for convex synthesis of robust
control policies with provable regret and safety guarantees in face of
the uncertain stochastic dynamics. As the clairvoyant optimal policy
we compete against is unknown in this setting, we have proposed
sampling the space of parameters that characterize the system dy-
namics. Leveraging results from the theory of scenario optimization,
we have shown that the policy that minimizes regret robustly over
these randomly drawn uncertainty instances retains strong probabilistic
out-of-samples guarantees. Finally, we have presented numerical ex-
periments to corroborate our theoretical results, and to highlight the
potential of regret minimization in adapting to heterogeneous dynamics
and disturbance sequences. Interesting directions for future research
encompass studying infinite-horizon control problems, devising novel
solutions that do not rely on sampling in order to robustify against
dynamic and non-parametric uncertainties, addressing computational
complexity challenges for real-time implementation, and extending
the theory of this emerging competitive framework to systems with

nonlinear dynamics.
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Fig. 3. Closed-loop comparison between 𝝅𝙷 and our 𝝅𝚁: a priori performance guarantees and realized control cost for different disturbance profiles and different realizations of
the uncertain system dynamics. Points in the green shaded area denote instances where the proposed regret minimization approach yields an advantage in terms of lower upper
bound (Fig. 3(a)) and realized performance (Fig. 3(b)). We refer to our source code for a precise definition of the considered disturbance profiles.
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Appendix A. Proof of Proposition 1

For any 𝜽𝑘 ∈ , by combining (2) with (7), we first rewrite the
per-instance regret (3) as

‖

‖

‖

‖

‖

‖

[

𝑸
1
2𝜱𝑥(𝜽𝑘)
𝑹

1
2𝜱𝑢

]

𝒘
‖

‖

‖

‖

‖

‖

2

2

−
‖

‖

‖

‖

‖

‖

[

𝑸
1
2 𝜳 𝑥(𝜽𝑘)

𝑹
1
2 𝜳 𝑢(𝜽𝑘)

]

𝒘
‖

‖

‖

‖

‖

‖

2

2

. (A.1)

By gathering common terms, (A.1) can be equivalently expressed as the
quadratic form 𝒘⊤𝜟(𝜱𝑢,𝜳 𝑢(𝜽𝑘),𝜽𝑘)𝒘, where 𝜟(𝜱𝑢,𝜳 𝑢(𝜽𝑘),𝜽𝑘) ∶= 𝜟𝑘 is
defined as
[

𝑸
1
2𝜱𝑥(𝜽𝑘)

1

]⊤[
𝑸

1
2𝜱𝑥(𝜽𝑘)

1

]

−

[

𝑸
1
2 𝜳 𝑥(𝜽𝑘)
1 𝑘

]⊤[
𝑸

1
2 𝜳 𝑥(𝜽𝑘)
1 𝑘

]

.

𝑹 2𝜱𝑢 𝑹 2𝜱𝑢 𝑹 2 𝜳 𝑢(𝜽 ) 𝑹 2 𝜳 𝑢(𝜽 )
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From well-known properties of induced matrix norms and from classi-
cal results on semidefinite programming for eigenvalue minimization
(see, e.g., Section 2.2 in Boyd, El Ghaoui, Feron, and Balakrishnan
(1994)), we have:

max
‖𝒘‖2≤1

𝒘⊤𝜟𝑘𝒘 = 𝜆max(𝜟𝑘) = min
𝜆𝑘

𝜆𝑘

subject to 𝜆𝑘𝑰 ⪰ 𝜟𝑘 .

In other words, for a fixed 𝜽𝑘 ∈ , the regret bound (10d) is satisfied
if and only if the robust performance level 𝛾 is not smaller than
the minimum 𝜆𝑘 such that 𝜆𝑘𝑰 − 𝜟𝑘 ⪰ 0. Equivalently, but without
introducing an unnecessary optimization variable for each sampled
scenario, if and only 𝛾𝑰 − 𝜟𝑘 ⪰ 0. From this last expression, the set
of linear matrix inequality constraints (11c) follows by exploiting the
Schur complement to remove the quadratic dependence of 𝜟𝑘 on 𝜱𝑢.

We then turn our attention to enforcing robust satisfaction of the
safety constraints (10c). First, we note that each row max𝒘∈(𝜽𝑘)
(𝑯𝑘

𝑥𝜱𝑥(𝜽𝑘) + 𝑯𝑘
𝑢𝜱𝑢)𝑖𝒘 of (10c) constitutes a second-order cone pro-

gram in 𝒅, where 𝒅 is such that 𝒘 = 𝑯𝑤(𝜽𝑘)𝒅 as per (5). Lever-
aging well-known properties of dual norms, we then observe that
max

‖𝒅‖2≤1 (𝑯𝑘
𝑥𝜱𝑥(𝜽𝑘) +𝑯𝑘

𝑢𝜱𝑢)𝑖𝑯𝑘
𝑤𝒅 is equal to

‖

‖

‖

𝑯𝑘
𝑤
⊤(𝑯𝑘

𝑥𝜱𝑥(𝜽𝑘) +𝑯𝑘
𝑢𝜱𝑢)⊤𝑖

‖

‖

‖2
.

Lastly, iterating over all rows of (10c), the set of second-order cone
constraints (11b) follows.

Appendix B. Proof of Theorem 1

In light of Proposition 1, we have that the real-valued functions
𝑓1(𝜱𝑢, 𝛾,𝜽) = max

‖𝒘‖2≤1 𝚁(𝜱𝑢,𝜳 𝑢(𝜽),𝒘,𝜽)−𝛾 and 𝑓2(𝜱𝑢,𝜽) = max𝒘∈(𝜽)
𝑯 (𝜽)𝜱 (𝜽)𝒘+𝑯 (𝜽)𝜱 𝒘−𝒉(𝜽), with 𝜱 (𝜽) a linear map of 𝜱 as per
𝑥 𝑥 𝑢 𝑢 𝑥 𝑢
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(7), are convex in the design parameters 𝜱𝑢 and 𝛾. Since the point-
wise maximum of convex functions is convex, we then conclude that
𝑓 (𝜱𝑢, 𝛾,𝜽) = max (𝑓1(𝜱𝑢, 𝛾,𝜽), 𝑓2(𝜱𝑢,𝜽)) is also convex in 𝜱𝑢 and 𝛾.
Hence, the robustly safe regret minimization problem (9) effectively
calls for the minimization of a linear objective subject to a possibly
infinite number of convex constraints of the form 𝑓 (𝜱𝑢, 𝛾,𝜽) ≤ 0.
Based on these observations, our probabilistic guarantees then follow
by combining the results of Theorem 1 in Calafiore and Campi (2006)
and Theorem 2.4 in Campi and Garatti (2008).
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