
ETH Library

The history of CoCoMac

Journal Article

Author(s):
Stephan, Klaas 

Publication date:
2013-10-15

Permanent link:
https://doi.org/10.3929/ethz-b-000070578

Rights / license:
Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported

Originally published in:
NeuroImage 80, https://doi.org/10.1016/j.neuroimage.2013.03.016

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0002-8594-9092
https://doi.org/10.3929/ethz-b-000070578
http://creativecommons.org/licenses/by-nc-nd/3.0/
https://doi.org/10.1016/j.neuroimage.2013.03.016
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


NeuroImage 80 (2013) 46–52

Contents lists available at SciVerse ScienceDirect

NeuroImage

j ourna l homepage: www.e lsev ie r .com/ locate /yn img
The history of CoCoMac

Klaas Enno Stephan ⁎
Translational Neuromodeling Unit (TNU), Institute of Biomedical Engineering, University of Zurich & Swiss Federal Institute of Technology (ETH Zurich), Switzerland
Laboratory for Social and Neural Systems Research (SNS), University of Zurich, Switzerland
Wellcome Trust Centre for Neuroimaging, University College London, UK
⁎ Translational Neuromodeling Unit (TNU), Institut
University of Zurich & Swiss Federal Institute of Technol
8032 Zurich, Switzerland.

E-mail address: stephan@biomed.ee.ethz.ch.

1053-8119 © 2013 Elsevier Inc.
http://dx.doi.org/10.1016/j.neuroimage.2013.03.016

Open access under CC BY-
a b s t r a c t
a r t i c l e i n f o
Article history:
Accepted 7 March 2013
Available online 21 March 2013

Keywords:
Connectivity
Network
Circuit
Database
Tract tracing
Computational neuroscience
Neuroinformatics
Objective relational transformation
ORT
CoCoMac, the “Collation of Connectivity Data for the Macaque” is a relational database system which presently
constitutes the largest electronic repository of published neuroanatomical connectivity data. Developed since
1996, CoCoMac comprises approximately 40,000 experimental findings on anatomical connections in the
macaque brain, as derived from neuroanatomical tract tracing studies. In this historical review, I describe the
origin and the history of CoCoMac from a personal perspective, illustrate the principles of its structure and
outline the impact it has had on systems neuroscience, in particular as a prelude to the “Human Connectome”
research programme.

© 2013 Elsevier Inc. Open access under CC BY-NC-ND license. 
Introduction: The origin of CoCoMac

The history of CoCoMac dates back to 1996 when I started as doc-
toral student of Rolf Kötter and Karl Zilles in the C. & O. Vogt Institute
for Brain Research at the Heinrich-Heine-University of Düsseldorf.
Rolf and I had met two years earlier, in autumn 1994, in the human
anatomy dissection course of the university's medical curriculum.
Rolf was a young lecturer in anatomy at the time and had recently
returned from Dunedin, New Zealand, where he had trained in
computational neuroscience, a field that was still rather new and
not widely recognised in the early 1990s. In the dissection course,
he supervised eight medical students who, over the course of six
months, jointly dissected a whole corpse. During this slow and at
times almost meditative process, we had ample opportunity to talk
and soon discovered similarities in thinking and perspectives. In
particular, both of us had a background in computer science and
shared the strong belief that many aspects of brain function could
only be understood properly on the basis of mathematically formal
and biophysically plausible system models. One difference was that
Rolf had a very general, almost philosophical, interest in understanding
how the brain works. In contrast, my motivation was more strongly
driven by clinical questions. In particular, I was under the (slightly
delusional) belief that the anatomical and physiological properties of
e of Biomedical Engineering,
ogy (ETH Zurich), Wilfriedstr. 6,
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single neurons and neuronal populations were sufficiently well
known that all that remained to do in order to understand complex
brain functions and their alterations in diseasewas tomodel a sufficiently
large number of neuronal units and study the behaviour that would
emerge from their interactions. My dream was that such a model
would eventually comprise the whole brain and enable a quantitative
and formal characterisation of the mechanisms underlying complex
brain diseases which had so far escaped our understanding.

Following the dissection course, Rolf and I started working together
informally (on historical and conceptual aspects of the “limbic system”;
(Kötter and Stephan, 1997)), until I started officially as doctoral student
under his and Karl Zilles' supervision in April 1996. (In the German
system, it is quite common to complete a dissertation in parallel to
one's medical studies or during an intermediate break). The initial
goal of my dissertation was to construct a large-scale model of the
spread of activity during photosensitive epilepsy. This particular type
of epilepsy arises in predisposed individuals after prolonged exposure
to flickering light stimuli (typically around 10 Hz). It had been studied
in great detail in a baboon model, with the interesting finding that the
earliest epileptiform activity appeared in motor cortex, preceding
epileptic responses in other parts of the brain (Menini and Silva-
Barrat, 1998; Silva-Barrat et al., 1988). One possible explanation rested
on the connectivity of the system, assuming a confluence of cortical and
subcortical visual inputs in motor cortex with catastrophic resonance
effects that would eventually lead to local runaway excitation and its
subsequent spread, via long-distance connections, to the rest of the
brain. To demonstrate the plausibility of this putative mechanism, I
wanted to construct a large-scale model of interacting neuronal
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populations whose local dynamics was governed by established bio-
physical equations (e.g., the Hodgkin–Huxley formalism) and which
interacted according to the anatomical long-distance connections be-
tween the different regions involved. In other words, the hope was
that the large number of published neuroanatomical tract tracing stud-
ies in themonkey would enable me to build a realistic whole-brain net-
work intowhich I simply had to plug in conventional biophysicalmodels
of neuronal populations. I thus turned my attention to the neuroana-
tomical connectivity databases for the macaque monkey which were
available at the time.

The first database of this kind had become available in 1991. This
was the pioneering work by Felleman and Van Essen (1991) who had
collected data from numerous tract tracing studies in the visual system
of the macaque. Their approach was straightforward and pragmatic:
they listed their interpretations of the findings from the tract tracing lit-
erature in an Excel spreadsheet, providing a condensed summary of
data distributed across hundreds of published studies. Although meth-
odologically based on a simple approach, this initial database enabled
statistical analyses of the macaque brain's connectivity layout, such as
the hierarchical arrangement of areas in the visual system, which had
previously not been possible and which had tremendous impact on
neuroscience (as demonstrated by thousands of citations). This work
was extended by the group of Malcolm Young at Newcastle who
applied additional analyses to the Felleman & Van Essen database
(Hilgetag et al., 1996; Young, 1992) and added macaque connectivity
data from outside the visual system (Young, 1993). Furthermore, they
established connectivity data repositories in other species, such as the
rat (Burns and Young, 2000) and the cat (Scannell et al., 1995, 1999).

However, all of these early neuroanatomical connectivity databases
suffered from a severe methodological limitation in how the original
experimental findings were represented. The problem was that neuro-
anatomical tract tracing studies do not usually describe their data
(i.e., the location of injections and labelled cell bodies and/or terminals)
in spatial coordinates but refer to the absence or presence of injections
or label within the areas defined by a particular parcellation scheme
(“brainmap”). Unfortunately, a large number of different parcellation
schemes have been proposed over the last few decades, based on
different microstructural (e.g., cytoarchitectonic, myeloarchitectonic,
chemoarchitectonic) or functional criteria (e.g., neuronal response
properties). Since each author chooses his/her favourite (combination
of) parcellation scheme(s), a truly Babylonic confusion has arisen in
the neuroanatomical literature over the last decades: often the same
acronym is used to refer to areas that differ in the definition of the
boundaries, e.g. they only partially overlap; more frequently still, differ-
ent acronyms are used to refer to identically defined areas. Given this
problem and the lack of systematic and global attempts in “translating”
these different maps, the early connectivity databases by Felleman &
van Essen and by the Newcastle group sensibly adopted a pragmatic
approach: they chose one particular “reference map” to which they
manually translated all original findings from the published literature.
This resulted in a compact summary that could be compiled and
searched reasonably quickly. However, the disadvantage was that
these databases only contained the final results of an opaque transfor-
mation that rested on the subjective criteria and judgement of the data-
base creators. This made it impossible to uncover the original data from
the database entries and prohibited remapping the original findings
into a different parcellation scheme, which was necessary, for example,
when the “reference”mapwas suboptimal for the particular application
of the user. Also, the various inconsistencies and contradictions across
studies that are prevalent throughout the literature were no longer
visible in these databases, making it difficult to judge how one should
integrate new data that had arisen since the original publications.

These limitations suggested the creation of an entirely new type of
connectivity database: a database that would store the published find-
ings from each paper, described in terms of the parcellation scheme
originally used by the authors, and which was equipped with analysis
tools that would enable the user to transform the original data into
any particular parcellation scheme while leaving the original data
completely untouched. From a computer science perspective, this strict
division into data representation and data interpretation seemed a
natural, and indeed a mandatory, step. I suggested this to Rolf who
was initially very sceptical. While I, in my youthful optimism, was
convinced that this would be an exercise of at most a few months of
hard work, Rolf feared that this methodological challenge would be
much harder than I imagined and would distract me from my original
goal of building a large-scale system model of photosensitive epilepsy.
Of course, he was absolutely right. It took me almost three years to
fully develop the theoretical foundations and implement the database
structure and algorithms of what came to be known as CoCoMac.

Principles and implementation of CoCoMac

In designing the new database, we started with five general
principles; for details, see Stephan et al. (2001). First, objectivity:
each entry should be represented in its original nomenclature, with
a precise reference to its publication and a citation of the original
description. Second, reproducibility: transforming data from one
parcellation scheme to another should be based on mathematical algo-
rithms. Third, transparency: not only should the mapping process be
fully documented and accessible, but also all inconsistencies and
contradictions in the original data should be preserved in the raw data
representation. Fourth, flexibility: the user should have the choice of
converting the raw data into any chosen target map. And finally, we
demanded simplicity: the new database should be able to deal with
the existing data in the literature, despite their various shortcomings
such as the lack of spatial coordinates.

The algorithmic framework developed on the basis of these five
principles was called objective relational transformation (ORT;
(Stephan and Kotter, 1999; Stephan et al., 2000b)). ORT consisted of
three main components. First, it introduced three classifications:
(i) the Extension Codes (EC) which described the spatial extent of
experimental findings (i.e., the spread of injection or label within an
area); (ii) the Relation Codes (RC) which comprised all possible logical
relations that areas from two different brain maps could have; and
(iii) the Precision of Description Codes (PDC) which reported the preci-
sion by which experimental findings were described in the original
literature, thus supporting algorithmic resolution of contradictory or in-
consistent cases. Second, these classifications formed the basis for an al-
gebra of transformation, i.e., a set of rules formally stating whether and
how a particular experimental finding (described in terms of EC) could
bemapped from one parcellation scheme to another (given their logical
relations encoded by RC), and how the result of this mapping would be
integrated with the conversion of other original findings in literature,
based on their relative precision of description (PDC). Third, one
major problem was that for the large majority of parcellation schemes
the original literature did not contain any statement on their logical re-
lations to other parcellation schemes. Given that we did not wish to in-
troduce our own judgement and only refer to what original authors had
stated in the literature, another componentwas added to ORT. This was
a collection of graph-theoretical methods that combined formal lan-
guages and shortest-path-all-pairs algorithms (adapted from the origi-
nal algorithm by Floyd (1962)) in order to deduce logically valid
transformation paths between any given pair of brain maps via a set
of intermediate known relations (Stephan et al., 2000b). Since its intro-
duction, these three components of ORT have been adopted by other
neuroanatomical database projects (e.g., Bota and Arbib, 2004; Burns
et al., 2003) and have been further refined (e.g., Bezgin et al., 2008).

I worked out most of the theory of ORT and CoCoMac during a stay
of several months in Malcolm Young's group at Newcastle in 1997. As
mentioned earlier, this was one of the leading groups in neuroana-
tomical databasing in the late 1990s, bringing together people like
Gully Burns, Claus Hilgetag and Jack Scannell who created
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neuroanatomical connectivity databases for various species (Burns and
Young, 2000; Scannell et al., 1995) and developed new analysis strategies
for large connectivity data sets, including the use of multidimensional
scaling (Young, 1992; Young et al., 1995; see also the criticism by
Goodhill et al., 1995) and genetic algorithms, such as optimal set analysis
(Hilgetag et al., 2000). Malcolm and Rolf had been awarded a collabora-
tion grant from the Wellcome Trust, which not only paid for my stay at
Newcastle but also for a personal laptop — a huge help given that I did
not have my own computer at the Düsseldorf lab and had to use which-
ever lab computer was temporarily available.

Being immersed in the Newcastle group provided me with an
inspiring environment for laying the foundations of ORT and CoCoMac.
After several months at Newcastle, I returned to Düsseldorf, bringing
home a first functional version, implemented as a relational database
system under Microsoft Access and Visual Basic code libraries. In fact, I
had started building two complementary versions of CoCoMac, one
anatomical and one functional connectivity database of the macaque
monkey. The functional connectivity data were obtained from “strych-
nineneuronography” studies, describing correlated epileptiform activity
between spatially remote patches of the macaque cortex that had been
elicited by local application of strychnine. As established in pioneering
physiological studies in the early 20th century (Dusser de Barenne and
McCulloch, 1938, 1939; McCulloch, 1944), the local application of
strychnine, an antagonist of GABAA and glycine receptors, leads to
local disinhibition and ensuing epileptiform activity which propagates
via association fibres to remote areas of the brain. It was Rolf's idea to
harvest and re-use these data which were fairly old (mostly recorded
in the 1930s and 1940s) and had largely been forgotten about. Over
the course of a fewmonths, I entered about 4000 published experimen-
tal findings from approximately 250 experiments into an early version
of CoCoMac called “CoCoMac-Stry”. Despite their age, these data consti-
tuted a unique collection of whole-brain functional connectivity and
turned out to be surprisingly useful for statistical analyses. Initially, we
used ORT to map these data into two classical maps of macaque cortex
(Von Bonin and Bailey, 1947; Walker, 1940). Subsequent analyses of
the resulting adjacency matrix of functional interactions, conducted in
close collaboration with Claus Hilgetag, Gully Burns and Malcolm
Young, led to two major findings (Stephan et al., 2000a). First, we
found that the functional interaction patterns defined clearly distin-
guishable clusters of areas, suggesting a division of primate cortex into
visual, orbito-temporal-insular and somatomotor systems. Motor and
somatosensory areas were inseparably linked, while the visual system
showed a clear differentiation into ventral and dorsal streams. Second,
and perhaps more importantly, we showed that the macaque's func-
tional connectivity network exhibited a clear “small world” structure.
At the time, this was very exciting, given that Watts and Strogatz
(1998) had recently published their seminal paper on “small world”
properties of various networks and had hypothesised that the primate
brain should exhibit such small world features, too. Together with
Olaf Sporns and colleagues, who published similar conclusions using
the data by Felleman and Van Essen (1991) at the same time (Sporns
et al., 2000), we were the first to provide empirical evidence for this
hypothesis. In retrospect, I have to smile a little at our excitement
back then, given that it has since emerged that “small worldness” is
an extremely common property of networks, and from today's
perspective it would have been more intriguing had we failed to find
evidence for small word structure.

This application of CoCoMac-Stry was important because it dem-
onstrated the functionality of the five database principles described
above and the underlying algorithmic machinery, including ORT. From
a data collection perspective, however, it was still a comparatively
moderate exercise, even though it contained thousands of entries. Its
sister database containing anatomical tract tracing data (which we
initially called “CoCoMac-Tracer” in order to distinguish it from
CoCoMac-Stry) grew to contain an order of magnitude more data than
CoCoMac-Stry. This was only possible because several additional
students joined Rolf's team from 1998 onwards (see http://cocomac.
org/WWW/contacts.htm). Each of these students would systematically
collect tract tracing data for a particular division of the brain, such as
the amygdala and hippocampus (Ahmed Bozkurt), thalamus (Lars
Kamper), interhemispheric connections (Jürgen Maier), sensorimotor
cortex (Andreas Geissler), auditory system (Konrad Rybacki) or the
visual system (Ina Gerken). Collectively, this team entered almost
40,000 experimental tests of individual connections and thousands of
statements on inter-map relations from the published literature into
CoCoMac-Tracer (which gradually was referred to only as “CoCoMac”).
To guide this process by strictly defined rules, I wrote a manual
(see http://cocomac.org/WWW/manual_dataEntry_cocomac.pdf) which
operationalised each aspect of data representation in CoCoMac and
standardised data collection. The process of entering data from the
primary literature into CoCoMac was tedious and rather dull but neces-
sary because we could not find a satisfying way of automatically
extracting the data from the literature. Rolf tried to convince colleagues
from neuroanatomy who had published some of the key papers to
engage in the data collection process and make these data available in
a format readable be CoCoMac. Unfortunately, these attempts were
unsuccessful, mainly because there were no real incentives for the
experimentalists to engage in this tedious process. These challenges of
extracting published information automatically and of motivating
experimental scientists to upload their data into electronic repositories
still exist in many domains of neuroscience today, not only with regard
to connectivity data (Bakker et al., 2012; Russ et al., 2011) but also, for
example, in functional neuroimaging (VanHorn andGazzaniga, in press).

From network analyses to effective connectivity

By 1999, CoCoMac had reached a level of technical maturation and
included enough anatomical connectivity data that serious applications
were becoming feasible (see Fig. 1 for an overview of the analysis
stream from data in the original literature via ORT to network analyses
and simulations). For example, we had a sufficiently complete repre-
sentation of prefrontal connectivity that we could examine, using
multivariate techniques, the cluster structure of prefrontal areas based
on their connectivity and describe putative differences between medial
and lateral prefrontal areas (Northoff et al., 2000; Stephan et al., 2001).

It was at this point that I finally felt ready to return to the original
question that had triggered my interest in developing a connectivity
database in the first place, i.e., the construction of a large-scale and
biophysically realistic model of the spread of excitation during photo-
sensitive epilepsy. However, when I started to work on the
implementation of this model, using a set of “cortical regions”
(consisting of small populations of Hodgkin–Huxley units) that
were wired together according to the connectivity information from
CoCoMac, I quickly encountered a major problem: my model had so
many degrees of freedom that it easily produced extremely different
types of behaviour. This diversity partly arose when varying the
parameters of the biophysical equations within ranges deemed plau-
sible by the literature. More critical, however, was the influence of
long-range connectivity. Even though the anatomical connectivity
layout of the large-scale network was fixed, as prescribed by the
structural information in CoCoMac, the functional strength of each
individual connection, i.e. the effective connectivity, was unknown
and had to be assumed arbitrarily. Altering the effective connectivity
throughout the network resulted in vastly different large-scale
dynamics, from regular firing via complicated burst patterns to rapid
runaway excitation and whole-brain epilepsy.

At the time, I did not see how one could decide between different
parameter settings and accept one as more plausible than another in
explaining the empirically measured spread of excitation during pho-
tosensitive epilepsy. It seemed that even under a fixed anatomical
connectivity pattern the unknown coupling strengths made my model
so indeterminate that variations in the inter-regional connectivity
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Standardized data representation
(EC, RC, PDC, ...)

Objective Relational
Transformation (ORT)

Fig. 1. This figure provides a summary of the data analysis stream in CoCoMac. The published experimental data, described in reference to numerous different parcellation schemes,
are represented within a relational database system, using their original nomenclature and standardised coding schemes for the spatial extent of tracer, logical relation of brain
maps, precision of description, etc. The original connectivity data across all publications stored in CoCoMac can then be integrated andmapped to a user-chosen parcellation scheme
using ORT. This results in a connectivity matrix which serves as the basis for subsequent analyses. These may include, for example, multivariate or graph-theoretical analyses of
network structure, or large-scale simulations of brain dynamics that use this connectivity matrix as an “anatomical skeleton”. Please note that this figure combines and adapts
figures from previous publications (Barbas et al., 2005; Honey et al., 2007; Passingham et al., 2002; Stephan et al., 2000a) which are reproduced here with permission by the
copyright holders.
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parameters could lead to almost any dynamics. As my model seemed
too complex for fitting it to the empirical data, I had no criterion by
which I could decidewhich of these parameter settingswasmoremean-
ingful. As a consequence, I became doubtful whether this bottom-up
approach to modelling, which rested on generating predictions about
neuronal dynamics from the anatomy and physiology of network
components, was at all a promising approach to obtainmygoal of deter-
mining mechanisms of brain disease. I was deeply dissatisfied by the
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uncertainty of how to choose parameter values within physiologically
plausible ranges and by the qualitative nature of comparing themodel's
predictions to published data.

At this point, my attention was drawn to a different approach
which inferred parameters of effective connectivity from empirical
measurements of brain activity. This included techniques such as struc-
tural equation modelling (SEM) (Buchel and Friston, 1997; Horwitz
et al., 1999; McIntosh and Gonzales-Lima, 1994) or time series analyses
(Buchel and Friston, 1998; Friston and Buchel, 2000) that could be
applied to non-invasive measurements of human brain activity with
positron emission tomography (PET), functional magnetic resonance
imaging (fMRI) or electroencephalography (EEG). I was fascinated by
these approaches. These models were considerably less sophisticated
and allowed for biophysically far less fine-grained interpretations than
the one I had toyed with. However, while the representation of physio-
logical mechanisms was coarse, it was possible to estimate these from
the data. This possibility of inferring upon the strength of specific
network connections from empirical measurements started to look
much more relevant for my goal of elucidating disease mechanisms
than bottom-up modelling approaches.

CoCoMac online

Influenced by these thoughts and experiences, I started to slowly
disengage from the CoCoMac project. Until 2000, the conceptual
and technical development of CoCoMac had been entirely in my hands.
Now, as I was approaching the end of my dissertation in medicine, I
started to look for labs abroad where I hoped to obtain training in
methods for inferring effective connectivity from neuroimaging data.
While I still remained involved in some aspects of database and code
development from a distance until 2004, my engagement slowly faded
out and Rolf was increasingly required to take over the actual develop-
ment process of CoCoMac. Over these years, he initiated some important
developmentswhich enabled CoCoMac to become thewidely used data-
base it is today. Clearly, the most important decision Rolf made was to
develop an online version of CoCoMac (www.cocomac.org) that gave
free access to the community. Over the years, CoCoMac online slowly
grew in functionality andoffered increasinglyflexible access to the entire
contents in CoCoMac (Kötter, 2004).

The process of making CoCoMac available online revealed that
some of its design features created practical obstacles for external
users. In particular, the philosophy of representing only original state-
ments, in the very same description and nomenclature as used by
the original authors, was conceptually well-motivated but made it
difficult for users not deeply familiar with the multitude of brain
maps to extract the data they needed. To overcome this problem
and facilitate access, Rolf engaged in two main initiatives. First, he
collaborated with colleagues like David van Essen, Robert Cannon
and George Paxinos in order to establish interfaces between CoCoMac
and graphical software, such as Caret (Van Essen, 2002) or Catacomb
(Cannon et al., 2003), and link it to anatomical atlases (Bezgin et al.,
2009). Secondly, he took up an idea from my earlier work which I
had not fully brought to completion. To facilitate data queries and
enhance the graph-theoretical optimization of transformation paths,
I had previously envisaged the creation of “synthetic” brain maps
referred to as Acronym Map and General Map, respectively (see http://
cocomac.org/WWW/manual_dataEntry_cocomac.pdf). The concept of
these synthetic maps was eventually published by Kötter and Wanke
(2005), together with the definition of a so-called Regional Map which
consisted of topographically defined regions across the whole cortex.
The macroanatomical definition of these areas was sufficiently specific
for addressing concrete neuroscientific questions, yet sufficiently
broad that they would absorb uncertainty about the exact boundaries
and that they could be determined in different species. This facilitated
comparisons between theprimate and human literature and constituted
an important step forward, given that despite all advances of diffusion
weighted imaging we still lack methods for obtaining very high resolu-
tion measurements of directed connectivity in the human brain, and
primate tract tracing data still represent the gold standard to inform
anatomically groundedmodels of human brain function. The connectiv-
ity matrix derived by mapping the contents of CoCoMac, via ORT, to the
Regional Map defined in (Kötter and Wanke, 2005) has subsequently
been used in numerous modelling studies, as described in the next
section.

The impact of CoCoMac on systems and computational neuroscience

Before it became publically available online, CoCoMac had already
enabled several novel analyses of principles underlying the brain's
structural and functional organization, such as the small world analyses
based on neuronographic data (Stephan et al., 2000a). Another impor-
tant example was the idea of “connectional fingerprints”, i.e., the notion
that the functional profile of a given cortical area is critically determined
by the anatomical pattern of its afferent and efferent connections. This
idea, which was introduced in Passingham et al. (2002) and illustrated
by juxtaposing anatomical data from CoCoMac and electrophysiological
recordings, became an influential concept. Motivated by the connec-
tional fingerprint idea, in vivo parcellation methods of the human
brain, based on diffusion weighted imaging have been developed.
Specifically, several studies used tractography-derived connectivity pro-
files to determine boundaries between neighbouring areas, e.g., between
motor areas (Klein et al., 2007; Tomassini et al., 2007), or between
speech-relevant areas in inferior frontal cortex (Klein et al., 2007). It
was also used to define subdivisions of Broca's area (Anwander et al.,
2007) and cingulate cortex (Beckmann et al., 2009), respectively, show-
ing a good correspondence with parcellations suggested on functional
grounds. The connectional fingerprint concept also contributed to the
development of methods for formally integrating structural connectivity
information into models of effective connectivity, e.g., tractography-
based priors for dynamic causal models of fMRI data (Stephan et al.,
2009). Finally, an elegant experimental validation of this concept was
provided by a recent human diffusionweighted imaging study, showing
that the individual anatomical connectivity patterns predicted face selec-
tivity in the fusiform gyrus (Saygin et al., 2012).

The online tools for searching and extracting data from CoCoMac
were crucial in making it a popular tool for studies modelling large-
scale neuronal systems. These studies can be classified broadly into
two groups, those concerned with characteristics and principles of
the brain's structural network, and those using data from CoCoMac
to define an anatomical “skeleton” for large-scale models of neuronal
dynamics (cf. Fig. 1). Concerning the first group of studies, numerous
papers have used CoCoMac for sophisticated statistical analyses of
neuroanatomical network properties. For example, data from
CoCoMac were used to quantify the statistical properties of large-
scale connectivity patterns in the primate brain (Averbeck and Seo,
2008; Bezgin et al., 2012; Kötter et al., 2001; Modha and Singh,
2010), to characterise the distribution of structural network motifs
(Sporns and Kötter, 2004), to examine the potential processing roles
of individual areas in the cortical network with graph-theoretical
methods (Kötter and Stephan, 2003; Kötter et al., 2007; Sporns
et al., 2007), to revisit the long-standing question whether and
which hierarchies can be defined between cortical regions on the
basis of the laminar specificity of cortical connections (Goulas et al.,
in press; Krumnack et al., 2010; Reid et al., 2009), or to demonstrate
that the design of the global wiring layout is not exclusively driven,
as previously suggested (Cherniak, 1994), by the need to minimize
wiring length, but are shaped by functional constraints such as the
minimization of processing steps (Kaiser and Hilgetag, 2006).

Beyond structural analyses, CoCoMac has also enabled major
progress in building anatomically plausible large-scale dynamic system
models for investigating structure–function relationships. This has
resulted in important insights into the mechanisms underlying, for
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example, functional connectivity during “rest”, in particularwith regard
to how time delays and noise shape dynamics at multiple time scales;
e.g., Deco et al. (2009), Ghosh et al. (2008a, b), Hlinka and Coombes
(2012), Honey et al. (2007), Knock et al. (2009), Rho et al. (2011), and
Shen et al. (2012). Other notable work has used CoCoMac to show
that seemingly inconsistent relations between structural connectivity
hierarchies and visual response latencies can be explained by
subcortical–cortical connections (Capalbo et al., 2008). Finally, CoCoMac
is used within the “Virtual Brain” project which aims at using
simulation-based predictions for clinical purposes, e.g., concerning
epilepsy and stroke (http://www.thevirtualbrain.org).

When reviewing the continuously growing literature on applica-
tions of CoCoMac for constructing large-scale dynamic system models,
and noting the intentions of the Virtual Brain project, it was extremely
pleasing to see that, with respect to its original motivation and goal,
the construction of CoCoMac had not been in vain. In exploiting the
detailed anatomical connectivity information in CoCoMac for
constructing useful large-scale dynamical system models, others have
clearly succeeded where I had failed.

The future of CoCoMac

The application examples described above may illustrate that
CoCoMac has established itself as an important neuroinformatics
tool for the computational and systems neuroscience community.
Following Rolf's tragic death in 2010 there was great concern that this
resource could decay. Fortunately, several colleagues have stepped
forward, taking initiative and responsibility to maintain and further
develop CoCoMac as an open resource for the community. Their ideas
on the future of CoCoMac are described in a recent paper (Bakker
et al., 2012) and include, for example, the transfer of CoCoMac to
a more efficient database engine, computationally more powerful
implementations of ORT, and newonline tools for data entry and graph-
ical display. These extensions, which they refer to as “CoCoMac 2.0” and
whose development is illustrated at www.cocomac.g-node.org, will
undoubtedly be instrumental in maintaining, and further enhancing,
the utility of CoCoMac for future applications.

From today's perspective, CoCoMac has made three major contri-
butions to enabling structure–function analyses of the brain. First, it
has developed a novel methodological framework which has enabled
previously infeasible computational treatments of the vast amounts
of available tract tracing data and which has provided techniques
such as ORT of which derivatives can now be found in most other
neuroanatomical databases. Second, it has enabled a wealth of studies
examining principles of network structure and structure–function
relationships in the primate brain through graph-theoretical analyses
and dynamic system modelling. These have led to important insights,
e.g., concerning “connectional fingerprints” of brain areas, fundamen-
tal properties of structural network organization in the primate brain,
and the crucial role of noise and delays in shaping large-scale brain
dynamics. And finally, and perhaps most importantly in the context
of the specific special issue in which this paper appears, the experi-
ences with CoCoMac led Rolf to write a paper, jointly with Olaf Sporns
and Giulio Tononi, which was fundamentally important for initiating
the research programme on the “human connectome” (Sporns et al.,
2005). In this paper, Olaf, Giulio and Rolf argue that a quantitative
database of the anatomical connectivity of the human brain will be
crucial for developing a formal understanding of human brain func-
tion. I could not agree more and suspect that by nowmany colleagues
in neuroscience feel the same—which is perhaps the reason why you
are presently reading the special issue in which this paper appeared.
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