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Abstract

Registration algorithms allow to associate two representations of a given
environment in a same reference frame. Although algorithms for image
registrations are very useful, we focused our effort toward geometric registra-
tion. It is usually the foundation of 2D and 3D mapping and an important
competence for a mobile robot to have. Solutions were found 20 years ago,
namely with the publication of the well-known Iterative Closest Point (ICP)
algorithm, but the number of publications on the topic kept growing, even at
a faster rate in the recent years. This situation underlies a stronger problem
related to the methodology used in robotics.

The simplicity of the ICP makes it an attractive solution for researchers
looking for an algorithm allowing them to test higher-level tasks (e.g., path
planning, exploration, etc.). Naively implemented, its simplicity also lead
to a number of flaws appearing when used in critical applications where an
autonomous system needs to take decisions in an unknown environment.
This explains why many variations of the original solution, adapted in
multiple ways, are published every year. Specially in robotics, the number of
possible adaptations becomes so large that it is hard to take clever decisions
about which algorithm should be implemented on a robot.

We addressed this problematic by providing a more structured methodol-
ogy to evaluate geometric registrations for robotic applications. To do so, we
surveyed a large number of solutions published and we related them together
in a unique framework. We reused this framework to design and implement
a registration library to compare the performance of different solutions in
different conditions. We structured an evaluation protocol around eight data
sets recorded over a period of half a year, with ground truth positioning
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Abstract

precision in the order of millimeters. Those data sets cover a variety of
environmental structures, as they were recorded indoors and outdoors and
include multiple types of dynamic elements.

The computational performance of the proposed library was demon-
strated by handling geometric registration in scenarios where real-time
processing is needed. The evaluation of standard ICP solutions using
our proposed methodology highlighted interesting and varying behaviors in
different conditions. This allowed us to rapidly tune tailored registration
algorithms for five robotic platforms. We used successfully those platforms
as case studies covering mobile systems on ground, water and air, with
different motion capabilities and sensors.

Keywords: Geometric Registration, Iterative Closest Point, ICP, 3D Map-
ping, Data Sets, Methodology, Laser Rangefinder, Robotics
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Résumé

Les algorithmes de registration permettent d’associer deux représentations
d’un environnement donné dans le même plan. Bien que les algorithmes de
registration d’images soient très utiles, nos efforts se sont concentrés sur la
registration géométrique. Ce type de registration constitue généralement les
fondements de la cartographie 2D et 3D, et est l’une compétence essentielle
que doit posséder un robot mobile. Plusieurs solutions ont été trouvées
depuis 20 ans, particulièrement suite à la publication du célèbre algorithme
ICP, mais le nombre de publications continue toujours d’augmenter, voire
même à un rythme accéléré ces dernières années. Cette situation sous-tend
un problème plus grave, qui est relié à la méthodologie utilisée en robotique.

La simplicité de l’ICP en fait une solution attrayante pour les chercheurs
désirant un algorithme qui leur permet de tester des tâches complexes (plan-
ification de chemins, exploration, etc.). Lorsque ingénument implémenté,
sa simplicité peut aussi amener des failles qui peuvent apparaître dans une
situation critique où le système autonome doit prendre des décisions dans
un environnement inconnu. C’est pourquoi de nombreuses variations de la
solution originale, adaptée de multiple façons, sont publiées chaque année.
Spécialement en robotique, le nombre d’adaptations possibles est devenu
si grand qu’il devient difficile de prendre des décisions éclairées au sujet de
l’algorithme qui devrait être implémenté sur un robot.

Nous avons abordé cette problématique en fournissant une méthodolo-
gie davantage structurée afin d’évaluer la registration géométrique lors
d’applications en robotique. Pour ce faire, nous avons passé en revue un
grand nombre de solutions publiées, et nous les avons réunies dans un
cadre unique. Nous avons réutilisé ce cadre pour concevoir et implémenter
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Résumé

une bibliothèque de registrations afin de comparer la performance de dif-
férentes solutions dans diverses conditions. Nous avons élaboré un protocole
d’évaluation à partir de huit jeux de données qui furent enregistrés au cours
d’une période de 6 mois, et ce, avec une précision de positionnement de
l’ordre du millimètre lorsque comparé à la réalité de terrain. Ces jeux de
données couvrent une variété de structures environnementales puisqu’ils ont
été enregistrés tant à l’intérieur qu’à l’extérieur, et incluent de multiples
genres d’éléments dynamiques.

La performance informatique de la bibliothèque proposée a été démontrée
lors du traitement de registrations géométriques dans des scénarios où le
traitement en temps réel est nécessaire. L’évaluation de solutions standard
de l’ICP avec notre méthodologie a mis en lumière des comportements
intéressants et variants selon les différentes conditions. Cela nous a permis
d’ajuster rapidement les algorithmes de registrations pour cinq plateformes
robotisées. Nous avons utilisé avec succès ces plateformes comme études
de cas couvrant des systèmes mobiles sur le sol, dans l’eau et dans l’air, et
ayant différentes capacités de mouvements et possédant divers capteurs.

Mots-clés: Registration géométrique, Iterative Closest Point - Point rap-
proché itératif, ICP, Cartographie 3D, Jeux de données, Méthodologie,
Télémètre à laser, Robotique
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Chapter 1

Twenty years of ICP: The
Legacy

T he scope of this thesis tackles the complex topic of autonomous
3D reconstruction using registration algorithms. Registration al-
gorithms associate sets of data into a common coordinate system

by minimizing the alignment error. Although they can be quite an abstract
concept, registration solutions already had an impact on the artistic field and
popular culture. Photographers proficiently use image registration to build
photograph composites achieving different looks-and-feels. The Brenizer
method is an exemplary technique that is applied to achieve dramatic depth
of field using panoramic image stitching (Figure 1.1 - left). Another example
is High Dynamic Range (HDR) photographs, where multiple images at
different exposure levels need to be precisely overlaid to retrieve details in
shaded and highlighted areas (Figure 1.1 - right). Nowadays, even the latest
cellphones have the capacity to build panoramic images from a series of
pictures taken based on a visual guidelines that direct the user to move
the camera viewfinder at the optimal position for the next picture. Even
the specific case of 3D mapping application had inspired cinematographers,
which had depicted possible uses of registration algorithms in several recent
science fiction movies. For instance, in the remake of Total Recall (Colombia
Pictures, 2012), an armed intervention team employed an array of hundreds
of tiny cameras in a dangerous room leading to a 3D reconstruction of the
area used to monitor potential threats within couple of seconds. Another
closely related potential application was the used by a geologist of flying
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1. Twenty years of ICP: The Legacy

drones carrying laser rangefinders to explore an alien facility in Prometheus
(Twentieth Century Fox, 2012).

Figure 1.1: Example of image registrations used in photography. Left: Brenizer method using the open
source software Hugin to stitch multiple images. Right: HDR composite of the San Francisco harbor
using the open source software Luminance HDR to overlay three images.

More at the research level, current applications include: robotic ex-
ploration in harsh environments, organ reconstruction to improve medical
diagnostics and object reconstructions for reverse engineering. AlthoughIn general, im-

age registra-
tions often have

access to la-
belled points,
which is less
the case for

geometric regis-
trations, either

in 2D or 3D.

registration using 2D images can be part of the same group of solutions, we
focus on systems where depth information is already available (e.g., from
laser rangefinders). We refer to the latter type as geometric registration.
However, some parallels with image registrations will be made throughout
this work when relevant. A simplified example of geometric registration
is illustrated in Figure 1.2. A scene with a large tree, a lamppost and a
bench was scanned using a laser rangefinder, so only the locations of the
objects are available to resolve the alignment error. Although all individual
points are similar, their proximity to other points gives enough information
to automatically align two consecutive point clouds.

2



1.1. Algorithm Overview

Figure 1.2: Examples of geometric registration between a reference point cloud (green) and a reading
point cloud (blue). Left: Initial position of the two point clouds. Middle: Alignment error (red). Right:
Final alignment of the two point clouds.

1.1 Algorithm Overview
A general scheme for geometric registration solutions is presented in Fig-
ure 1.3. More formally stated, the goal of data association is to be able to
represent a geometric set of features that we named reading in the same
coordinate frame as another set named reference. Each feature can be
already linked to a descriptor list, which are respectively represented by
blue and red (dashed) arrows. The use of the terms features and descriptors
is often misleading, so we specify here the nomenclature:

Features include all geometric parameters used to define shapes and sus-
ceptible to be affected by a space transformation (e.g., points coordinates,
surface normal vectors, tangent vectors, etc.).

Descriptors include all information assumed to be invariant of transforma-
tions applied to a reference frame (color, temperature, names, utilities, etc.).

An initial transformation is created to represent the reading features
in the same coordinate frame as the reference frame. The reading and
the reference generally come directly from a sensor or from the computer’s
memory (such as map, atlas, etc.). The data filters aim at removing the
features carrying a low level of information and at increasing the discrepancy
between the remaining features by generating new descriptors. The match
function associates, based on some assumptions, features and/or descrip-
tors coming from the reading and the reference together. The outlier
filters evaluate wrong associations and try to reduce their impacts on the

3



1. Twenty years of ICP: The Legacy

solution. Since descriptors are linked to features, outlier filters that are
applied to descriptors can be directly transfered in the feature space. This
relation is represented by the black arrow linking both outlier filters.
Finally, an error minimization function, that also considers some assump-
tions, is applied in the feature space to reduce the error created by the
initial transformation. The main output of the algorithm is a list of
parameters, the final transformation, allowing to represent the reading
features in the same coordinate frame as the reference features. Dealing
with unlabeled points leads to approximations in the match function re-
sulting in a non-optimal final transformation (i.e, some misalignment
errors remain). In those cases, an iterative version of the scheme is used,
where the final transformation is fed back in a loop to the initial
transformation up to convergence. This type of solution is known as the
Iterative Closest Point (ICP).

Data

Filter

Data

Filter

Outlier

Filter

Outlier

Filter

Error

Minimization

Reference

Reading

Initial
Transformation

Final
Transformation

Figure 1.3: Generic scheme proposed for registration algorithms.

1.2 Early Solutions
As an interesting historical note, in an early publication by Hurley and
Cattell [1962], registration is presented as an Orthogonal Procrustes problem.
The name Procrustes refers to a bandit from the Greek mythology who
made his victims fit in his bed by either stretching their limbs or cutting
them off. Theseus eventually defeated Procrustes using the same violent
procedure (Figure 1.4). The reference to the Orthogonal Procrustes problem
is not often used in the scientific literature, but it illustrates well the idea.

While working more specifically on 3D-shape primitives, Faugeras and
Hebert [1986] defined closed-form distances to minimize point-to-point and
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1.2. Early Solutions

Figure 1.4: Theseus adjusting
Procrustes to the size of his bed.
Photograph provided by Marie-Lan
Nguyen / Wikimedia Commons.

plane-to-plane alignment error. The proposed method solved translation
and rotation as a two-step procedure. Later, a solution proposed by Walker
et al. [1991] resolved together rotation and translation error using dual
quaternions. The registration problem concretizes itself further in a survey
of geometric matching algorithms and geometric representations for point
sets, curves, surfaces, volumes, and their respective space-time trajectories
[Besl 1988]. At this time, the main validation was using Computer-aided
design (CAD) models with simple shapes. The first mention of the name
ICP was proposed by Besl and McKay [1992]. They expressed the problem
as follows:

“Given 3-D data in a sensor coordinate system, which describes
a data shape that may correspond to a model shape, and given
a model shape in a model coordinate system in a different geo-
metric shape representation, estimate the optimal rotation and
translation that aligns, or registers, the model shape and the
data shape minimizing the distance between the shapes and
thereby allowing determination of the equivalence of the shapes
via a mean-square distance metric.”

In their work, the proof of the solution convergence is demonstrated under
the assumption that the number of associated points, or their weight, remains
constant. Unless two identical shapes are registered together, outliers that
are not present in both shapes need to be identified. This problems is
observed by Champleboux et al. [1992] while developing early registration
solutions for medical applications. They report failures when wrong initial
transformations are used in combination with scans having low overlap ratio.
During the same years, Chen and Medioni [1991] work with dense laser scans
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1. Twenty years of ICP: The Legacy

of status and tooth mockups [Chen and Medioni 1992]. They propose a
registration solution based on the minimization of point-to-plane alignment
errors, which is still quite used nowadays.

Even though a large volume of theoretical works was published on geomet-
ric primitives, Zhang [1994] states that precise primitives based on geometric
characteristics are too sensible to noise and are not stable in moving systems
with current (1994) sensing capabilities. Thus, he concludes that points
were more reliable. Zhang [1994] pioneeres the idea of using ICP-based
solutions for outdoor robotic applications. He proposes a generic framework
for symmetric match, but considers only one direction of registration as
an approximation to save computation costs. He highly emphasizes the
importance of removing spurious pairs and gives the first characterization of
fast subsampling solutions. In addition, he highlights the fact that outlier
rejection is required for robotic applications, and that the proof of ICP
convergence stated by Besl and McKay [1992] cannot not hold for most of
the applications. In the outlook section of his work, he already mentions
the use of uncertainty on the initial alignment, based on Kalman filters and
Mahalanobis distance, and the need to handle dynamic elements.

1.3 Division and Explosion of the Field
Within only two years, four main application types already emerged from
the possibilities to register 3D point clouds: object reconstructions [Chen
and Medioni 1991], non-contact inspections [Besl and McKay 1992], medical
and surgery support Champleboux et al. [1992] and autonomous vehicle
navigation [Zhang 1993]. Publications in specialized journals for computer
vision, robotics and medical imaging slowly divided the types of interesting
problems to be solved. We can still read in current literature that the credits
for being the first article to provide a solution differ from authors in different
fields.

The field of registration crystalized with its first survey on medical image
registration covering the years 1993 to 1998 [Maintz and Viergever 1998]. It
took 12 years for a specialized survey of 3D registration in Computer Vision
to appear [Bowyer et al. 2006], and one in robotics is still to come.

ICP is a popular algorithm due to its simplicity: its general idea is easy
to understand and to implement. However, the basic algorithm only works
well in ideal cases. This led to hundreds of variations (close to 400 papers
based on IEEE Xplore and around 1000 based on Scopus, in the last 20 years,
see Figure 1.5) around the original algorithm that was demonstrated on
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1.3. Division and Explosion of the Field

different and numerous number of experimental scenarios. This highlights
both the usefulness of ICP and the difficulty to find a single versatile
version.
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Figure 1.5: Evolution of the number of publications over the years. Results were
obtained for the keywords Iterative Closest Point appearing in the abstract or the title of
publications. The blue area is computed based on IEEE Xplore database and the green
area from Scopus.

Figure 1.5 shows an increasing number of publications appearing around
the year 2000. In robotics, this coincides with the advent of a 2D solution
for pose estimations demonstrated with a SICK rangefinder [Lu and Milios
1997] and of the basis of Simultaneous Localization and Mapping (SLAM)
algorithms Thrun et al. [1998]. Prior to the arrival of the SICK LMS-200 in
robotics [Pfister et al. 2002], most of the sensors used were custom-made
and thus, difficult to replicate by other researchers. In those years, 2D
lasers finally appeared as a viable solution for robot navigation over sonars
that were traditionally used [Thrun et al. 1998]. The 3D applications were
then not accessible due to high computation costs. At the same time in
computer vision, the seminal work of Rusinkiewicz and Levoy [2001] on ICP
algorithm comparisons led to significant progress in the scan registration
field. The experiments employed simulated objects, highlighting different
spatial constraints and sensor noises. Results mainly focused on the rapidity
of convergence and the final precision of different solutions helping to select
more appropriate solutions in further applications.

With the arrival of more standard sensors, researchers in robotics pushed
the 2D registration algorithms so they can deal with larger environments
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1. Twenty years of ICP: The Legacy

with faster platforms [Bosse et al. 2004] and 3D slowly came back [Nüchter
et al. 2004]. Because there exists no comparison framework, the selection
of an appropriate variant for particular experimental conditions is difficult.
This is a major challenge because registration is at the front-end of the
mapping pipeline, and the arbitrary nature of its selection affects the results
of all subsequent steps and more advanced robotic tasks. Even the early
work of Eggert et al. [1998] highlights the difficulty to compare with other
solutions given the lack of metric over common data sets. In their survey,
Maintz and Viergever [1998] point the fact that proper accuracy studies are
just starting; the problem being that the results provided are too specific.
In addition, they highlight the imprecise use of the term accuracy, precision
and robustness. They suggest to set up public databases and validation
protocols, but foresee logistic, costs and efforts as incoming problem to those
solutions.

Recently, the demand for a stronger experimental methodology in robotics
was also stressed by Amigoni et al. [2009]. The authors survey different
SLAM publications to highlight proper evaluation metrics that are applied
to SLAM algorithms. Three principles of an experimental methodol-
ogy in science (i.e, comparison, reproducibility/repeatability and justifica-
tion/explanation) are translated in requirements for stronger SLAM results.
As stated in their paper, a sound methodology should allow researchers to
gain an insight about intrinsic (ex., computational time, parameters used,
parameter behaviors) and extrinsic (ex., accuracy, precision) quantities.
The authors report that, even though comparisons between algorithms are
present in SLAM publications, very few researchers can reutilize the same
protocol and directly compare their results without having to re-implement
other solutions.

With the arrival of the Microsoft Kinect, another wave of publications is
expected, as it was observed following the widespread utilization of SICK
rangefinders. The Kinect augments accessibility to object modeling and
indoor mapping research by having a handheld sensor connected via USB
to a computer [Henry et al. 2012]. This camera produces depth reading
as well as colors. This also opens the door to a mix of hybrid algorithms
using labeled and unlabeled features without the need of expertise in sensor
calibration.
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1.4 Overview of the Thesis
Clearly, ICP is not a single solution, but more a framework where multiple
variations and algorithms can be used to resolve geometric registration
problems. For most of the applications, the pieces of the puzzle are spread
in the literature but hard to assemble together. Therefore, in the light of
this large corpus of work related to ICP and more generally to geometric
registration, we address the following overarching research question:

How to select, evaluate, and develop appropriate 3D geometric
registration solutions for autonomous mobile systems?

We believe that after 20 years of new registration algorithms, it is time to
evaluate what works best for robotic systems. Therefore, our contributions
aim at strengthening the current methodology and bring deeper analysis
of current solutions. The timing is appropriate for such study given that
computation power just reach real-time capabilities to support registration
on embedded systems. Also, new electronic advancements brought more
accurate and fast sensors in conjunction with better batteries allowing
for longer operation time. Most importantly, researchers face a boom of
solutions occluding a definition of standard solutions and avoiding the
field to progress on algorithms that rely on registration like path planning,
autonomous exploration, etc.

To answer our research question, we divided the work into three problems,
for which we proposed solutions in the following chapters:

1. The large number of solutions proposed: a literature review of
different solutions is presented in Chapter 2 with the aim to express
ICP solutions in a common framework and validate our generic scheme
proposed in Figure 1.3.

2. The little amount of comparisons: in Chapter 3, we propose a
methodology to evaluate 3D geometric registration on common ground
and we provide tools to support solution comparisons.

3. The little amount of characterizations: we provide a better un-
derstanding of current sensors limitations and present the results of
our evaluation protocol applied to the most compared registration
solutions in Chapter 4.

Finally, case studies using five different robotic platforms are described
in Chapter 5. The requirements of each application are explained with
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some insight on how to tune parameters for specific applications. Those
applications cover Search & Rescue activities, industrial inspection, shore
monitoring and autonomous driving. All chapters close with a discussion
in addition to a short summary. The conclusions of those chapter are
recapitulated in Chapter 6 for final remarks.

10



Chapter 2

Formalization of ICP Solution
Family

T he spread of registration solutions renders tedious the task of
finding particular problems to address, knowing there limits and
applying them properly. Although well structured surveys exist

to support registration in medical imagery [Maintz and Viergever 1998;
Markelj et al. 2012; Fluck et al. 2011; Pluim et al. 2003] and object re-
constructions/recognition [Salvi et al. 2007; Bowyer et al. 2006], there is
no scientific publication covering the evolution of registration applied to
robotics. Despite the fact that the effort of categorizing the work of others
can be tedious, surveys structure the nomenclature and focus the attention
on problem relevant to the field.

Different application fields have different constrains, which in our case
motivate a more targeted survey for robotics. For example, medical imaging
has the advantages of controlled environments, standardized sensors, precise
sensor motions, etc. On the other side, it has its own challenges: deformable
objects, low descriptor discrepancy, multi-modal sensing, high impact of
failure on human life, etc. As for object reconstruction/recognition field,
advantages can be: controlled to semi-controlled environments, human in
the loop for sensor motions, low real-time requirements, contained volume of
objects, etc., with challenges including loop closure, realistic representation
of the model, etc. On the other side, robotic applications often has an
unbounded object of interest: the scene. This scene can be considered
as a rigid body with spurious uncontrolled dynamic elements. Moreover,
the focus is more on the stability of the 3D reconstructions linked to the
localization of a mobile agent. In exploration, this mobility implies a suit
of sensors moved in an unknown environment by an autonomous system.
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2. Formalization of ICP Solution Family

This can imply a long sequence of measurements obtained through time
in a range of different environments. Overlaps between measurements can
largely vary and density of the point cloud should not be assumed uniform.

This chapter attempts to build foundation for a survey specialized on
the robotic field. Although this research mainly focus on 3D registration
applied to robots, having a broader overview of existing data-association
solutions would be relevant at this early stage. We follow the generic scheme
presented in Figure 1.3 to classify current publications. Different types
sources for reading and the reference are surveyed in Section 2.1. Then,
transformation functions mainly used in the Euclidian space are covered in
Section 2.2.2. Next, Section 2.3 presents different preprocessing functions
generally used to better approximate the environment or to enhance the
discrepancy between salient points. Furthermore, Section 2.4 lists different
way to associate a reading with a reference and some optimization tech-
niques. Section 2.5 describes ways to handle outliers generated during the
matching process. In Section 2.6, we finally expose diverse way to minimize
alignment error.

Given the number of publications covering this field, we present examples
of works for every modules instead of the complete list. Nevertheless, the
classification used should be generic enough to allow further publications to
be added in the future. In the summary presented in Section 2.7, we list the
classification terminology used in our registration overview and highlight
some relations between them.

2.1 Reading and Reference Sources
Sources where the reading and the reference come from are highly related
to the application requiring data association. Robotic applications are
mostly using 2D laser rangefinder for indoor [Yoshitaka et al. 2006] and
outdoor [Bosse and Zlot 2009a, 2008] localization. With the need for
3D localization, systems using rotating laser rangefinder recently get an
increasing attention also for indoor [Armesto et al. 2010] and outdoor [Segal
et al. 2009] environments. In computer vision, laser are used to reconstructGeomatic and

aerospace field
mostly refer to
Light Detection

And Ranging
(LiDAR) in-
stead of laser
rangefinder.

historical items in 3D [Pulli 1999; Druon et al. 2006] or simply 3D models
of small objects [Liu 2010; Jost and Hugli 2002]. Laser rangefinders are also
used in face recognition [Pan et al. 2010]. Geomatic applications use lasers
for 3D aerial mapping [Kumari et al. 2009] and, more exotically, depth data
can also come from Atomic Force Microscopy (AFM) [Jost and Hügli 2002].

The selection of a depth sensor depends on many different criteria. For
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2.1. Reading and Reference Sources

example, when external power is not accessible, power consumption becomes
critical. Also, a high maximum range of the sensor may become essential
if an environment is large or difficult to access. Field of View (FoV) can
also impact the design of mobile inspection tools since too narrow FoV
will require extra actuation to offer a better coverage of the environment.
We propose in Figure 2.1 an overview of the market by representing 25
sensors with respect to their maximal range versus their weight. Payload
that can be carried by a mobile platform may be a limiting factor of small
systems. This figure is intended to help in defining a first group of sensors
that a platform could carry while quickly seeing the possible scanning range
accessible to the platform. On the y-axis of the graph, we can divide the
graph into airborne survey sensors with more than 1 km range, terrestrial
survey sensors around 100m to 1 km, and safety/robotics sensors under
100m.
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Figure 2.1: Classification of range sensors based on maximum range (m) and weight
(kg). Note log scale. Manufacturers: Mesa Imaging (SR4000), PMD (CamCube 3.0),
ASUS (Xtion Pro), Microsoft (Kinect), Occular Robotics (RE05, RE03), Hokuyo (UBG-
04LX, URG-04LX, UTM-30LX), Sick (LMS-151, LMS-200, LMS-511), Velodyne (HDL-
64E, HDL-32E), FARO (Photon80), Leica (ScanStation 2, ASL70-HP), Riegl (VZ-
400, VZ-4000), Topcon (GLS-1500), Trimble (FX 3D, CX 3D), Optec (ILRIS), and
Zoller+Froehlich (Imager 5010, Imager 5006h)
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There are also new technologies emerging in this growing field. At the
level of early products and development kits, it is worth noting the TigerEye
3D Flash LiDAR, proposed by Advanced Scientific Concepts, which can
produce a depth image with a single laser beam. The system can read from
a distance of up to 70m with a 45◦ lens. Another company, Lytro, proposes
a small and low cost camera producing depth images with a single lens.
The system relied on a concept called light field to capture simultaneously
multiple focus points and reconstruct images with different depth of fields out
of the recorded data. Hand-held 3D scanner with sub-millimeter precision
also exist for reverse engineering or culture heritage preservation, as offered
by Artec 3D or Creaform to name a few. This type of sensors offers more
precision at the expense of range.

Data association is also used in a variety of applications based on image
acquired by a black and white or color camera [Zitová and Flusser 2003]. In
medical applications, other specialized images, like red-free or fluorescein
angiogram, are used to help diagnostic over several years of observations
[Stewart et al. 2003; Tsai et al. 2010]. Two cameras can be registered together
to produce a depth image which can then be used to track human body
motions [Kim 2010] or create map of the environment [Diebel et al. 2004].

Zitová and Flusser [2003] propose a general classification of data acqui-
sition as follow: different viewpoints (multi-view analysis), different times
(multi-temporal analysis), different sensors (multimodal analysis), and also
scene-to-model registration. Robotic and object reconstruction application
are more related to the registration of different viewpoints while medical
imagery different tend to do more time analysis to evaluate, for example,
the status of a growing tumor. Calibration problem falls into the category of
different sensors registration and search of a known object in the environment
relate to scene-to-model registration.

2.2 Transformation Functions

Transformation functions allow to express an entity defined in a reference
frame A in another reference frame B. A first type of transformation func-
tions without parameter can directly map spaces to another, following some
common convention (e.g., mapping function from Cartesian to Spherical,
Cartesian to Cylindrical, Homogeneous to Cartesian, etc.). A second type of
transformation functions uses a set of parameters to move/deform an entity
to express it in another frame.
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2.2.1 Parametrized Transformation
Basic parametrized transformation functions are: translation, uniform scal-
ing, rotation, nonuniform scaling, shear and projection. Typically, a com-
bination of those basic functions is used. A short nomenclature can be
introduced as follow:

• translation and rotation: rigid transformation (or euclidean transfor-
mation).

• rigid transformation and uniform scaling: similarity transform.

• rigid transformation, nonuniform scaling and shear: affine transform.

• vector and planar projection are from a group named orthogonal
projection.

The projective transformation is not listed above because it is linked
to a larger field, the projective geometric, which has ramifications beyond
basic parametrized transformation functions described above. For further
information, we refer to Appendix A, which expands more on reference
frames and parametrization of transformation functions. Most of the reg-
istration algorithms used in robotics are based on rigid transformation
parametrization. Nonlinear transformations are often expressed as a set
of rigid transformation with some limited spacial influence. This type of
registration can be referred as flexible registration and were considered first
in medical imaging [Maurer et al. 1996; Feldmar and Ayache 1996] for organ
reconstructions. It is interesting to note that those flexible registrations
resemble to graph relaxation used for error back propagation in SLAM
algorithm [Grisetti et al. 2007].

2.2.2 Initial Transformation
The initial transformation is a sensitive part of data association when
the data association is realized mainly based on geometric features. We
determined three types of initial transformation sources: (1) unimodal,
where only one type of information is used; (2) cascade, where a geometric
registration algorithm is used to feed the transformation to another one; and
(3) multimodal, where multiple types of minimizations are used in sequences.
Here are some examples of those initial transformation sources:

Unimodal While some papers present general algorithms assuming that a
reasonable transformation will be given [Armesto et al. 2010; Druon
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et al. 2006; Schutz et al. 1998; Jost and Hügli 2002], others include
humans in the loop [Godin et al. 1994; Pulli 1999]. More integrated
solutions rely on external sensor (wheel encoders, Inertial Measurement
Unit (IMU), Global Positioning System (GPS), etc.) as a first guest
[Diebel et al. 2004; Yoshitaka et al. 2006]. Multiple initial guesses
from the same external motion model and based on particle filters are
also used in robotics [Grisetti et al. 2005] and in human body motion
tracking [Kim 2010].

Cascade Cascade systems use the same registrations algorithm while vary
parameters through the process to achieve faster or more accurate
results. After some exit criterions, the registration parameters are
changed and the outputted transformation is fed to the subsequent
system. On example of cascade system is the coarse-to-fine strategy,
where the reading or the reference are down sampled using different
level of compression. The same registration technique is used to
minimize the error sequentially from the most compressed layer to
the less one [Zhang 1994; Jost and Hugli 2002; Magnusson et al. 2009;
Bosse and Zlot 2009a]. A more rare example is the fine-to-coarse
strategy, where the registration starts from a small bounding box.
The expansion of the bounding box follows the uncertainty of the
minimization until the bounding box covers the overlapping section
of the reading with the reference [Stewart et al. 2003; Tsai et al.
2010].

Multimodal Multiple minimization techniques are used in sequence. The
first registration is usually heavily based on descriptor matching be-
cause it is independent from the initial transformation (always
identity). Then other types of registration, either using descriptors
or features, are minimizing the alignment error. The motivation for
the selection of those registration techniques is to reduce local minima
possibilities with coarse alignment methods and continue with more
precise but computationally more expensive methods. From the papers
reviewed, system can have 2 layers [Bosse and Zlot 2008; Censi 2008;
Godin et al. 1994; Stewart et al. 2003; Tsai et al. 2010] or 3 layers
[Pan et al. 2010; Bosse and Zlot 2009a] but nothing seems to limit the
number of layers implemented on a given system.
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2.3 Data Filters
The different types of data filters try to augment the distinctiveness of
the inputs usually by reducing the number of features and by augmenting
the dimension of the descriptors. For example, a black and white image has
a uniform distribution of features (a grid) and one dimension descriptor (the
intensity) associated to each feature. After some data filters are applied, In computer

vision, remain-
ing features are
often called key
points.

only few points in the image will be kept has features and the descriptors
will be increased with information from neighboring pixels, typically to 64
dimensions (i.e., when using Scale Invariant Feature Transform (SIFT)
descriptors [Lowe 2004]). In the case of a point cloud, it might be necessary
to extract surface normal vectors (feature enhancement), while uniformizing
the density of points (features reduction). This can also be viewed as lossy
data compression.

2.3.1 Feature Enhancement
When only geometric information is available, there are still ways to extract
some level of distinctness by using Differential Geometry. We shortly in-
troduce key concepts related to the use of geometric information. In this
work, the notion of a shape S is used as a representation of an generic object
in the Euclidian space with a certain set of properties. Those properties
can be photometric, thermic, semantic, etc. Simple shapes, such as points,
lines, quadrics, can be easily parametrized but most of the shapes encounter
in the a real environment are too complex to be completely synthesized
with parameters. To allow a certain representation of the world, a complex
shape S can be approximated by a set of other shapes P only if they can
be expressed in the same frame of reference F.

SF ≈ {P1 ,P2 , · · · ,Pn}F (2.1)
Sensors measuring depth produce such approximation by discretizing

the environment in a set of points. From smooth areas defined by those
points, we present five types of primitives that can be extracted based on
Differential Geometry: point, line, plane, curve and quadric. The first
derivative group rely on normal vectors n (i.e. a vector perpendicular to
a line or plane) and tangent vector t (i.e. a vector parallel to a line or
plane) to express the area. Since they are defined with respect to a point
p, normal and tangent vectors can be represented with a minimal set of 2
angles in polar coordinates. Normal and tangent vectors can be seen as a
dual representation. The choice of using either one name or the other is
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defined by the minimum information required to express a primitive. In the
case of a line in 3D, the normal vectors needs to define a plane perpendicular
to that line. Therefore, only using the tangent vector is more convenient.
The same reasoning hold for using a normal vector for the surface. The
notion of direction also needs to be defined depending of the primitive. We
choose to use unsigned direction in the case of tangents and signed direction
in the case of normals where positive sign defined the outer surface of the
shape. The motivation behind this choice is that we want to keep track of
which side of a surface we are measuring while moving. In the 2D case, it is
equivalent to represent a line by a tangent or a normal in term of the number
of parameters. However, it is usually assumed that the perceived 2D plane
cuts perpendicular surfaces, so it makes more sense to use normal vector
to also track the outer side of the line. Figure 2.2 illustrates this choice of
representation for the 2D case. Viewpoints vn (i.e., where the sensor was
when a point p was measured on a surface S) are used to determine the
direction of the normal vectors n, whereas no extra information is needed
for a tangent vector t laying on a line.

Figure 2.2: Difference between using normal vectors (left) and tangent vectors (right)
to represent a 2D shape S.

As for the second derivative group, a curve is parametrized by a curvature
κ (a scalar) representing an osculating circle parallel to the tangent of a line.
In the case of a quadric (i.e. a curved surface), it is parametrized by principal
direction vectors tmin, tmax and the principal curvature scalars κmin, κmax.
Again, the principal directions rely on a point p and on the normal vector
n, so they could be expressed only with one angle. In other words, the
principal directions are tangent vectors to the surface complementing the
normal vector. In the case of curves, the curvature is always positive as
opposed to quadrics for which a positive κ means that the surface bend in
the same direction of the normal vector and vice-versa. Table 2.1 presents
the minimum parametrization of those primitives. For simplicity in further
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computation, most of the publications use normalized vectors to express
normals and tangents leading to a larger set of parameters, as resumed in
Table 2.2.

Table 2.1: Minimum set of parametrization used to represent geometric primitives

Name Parameters Constrains Reference

Point p = {x, y, z} p ∈ <3 F

Tangent t = {θ, φ} θ ∈ [−π, π[ F
φ ∈ [−π2 ,

π
2 ]

Normal n = {θ, φ} θ ∈ [−π, π[ F
φ ∈ [−π2 ,

π
2 ]

Principal Directions ψ ψ ∈ [−π, π[ {n,F}

Curvature κ κ ∈ <+ F

Principal Curvatures K = {κmin, κmax} K ∈ <2 {n,F}

Table 2.2: Set of parameters usually found in the literature to represent geometric
primitives.

Name Parameters Constrains Reference

Point p = {x, y, z} p ∈ <3 F
Tangent t = {tx, ty, tz} |t| = 1 F
Normal n = {nx, ny, nz} |n| = 1 F
Principal Directions γ = {tmin, tmax} n ⊥ tmin ⊥ tmax F
Curvature κ κ ∈ <+ F
Principal Curvatures K = {κmin, κmax} K ∈ <2 {n,F}

Those parameters (point, tangent, normal, principal direction, curvature
and principal curvature) brings us to a group of parametrized primitives
(point, line, plane, curve and quadric), which can be helpful to approximate
other complex 3D shapes. Those geometric primitives are listed in Table 2.3
with their characteristics. A graphical representation of those primitive is
also showed in Figure 2.3 in the case of a shape considered as a 1D manifold
and in Figure 2.4 in the case of a 2D manifold. In their current configuration,
lines, planes, curves and quadrics are unbounded, which means that they
can reach infinity on their unconstrained direction. One can constrained
a primitive by using a primitive with a lower dimensionality [Besl 1988].
Then, a plane can be bounded by a set of lines, a line can be bounded by a
set of points, etc.
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Figure 2.3: Representations (in blue) of a complex shape S (in gray) approximated as
a 1D manifold. Left: no derivative (point). Middle: first derivative (line). Right: second
derivative (curve).

Figure 2.4: Representations (in blue) of a complex shape S (in gray) approximated
as a 2D manifold. Left: no derivative (point). Middle: first derivative (plane). Right:
second derivative (quadric).
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Table 2.3: Characteristics of primitives used for shape approximations. Number in
parenthesis of the column Nb. Param. correspond to the minimum number of parameters
that can be used to express the same primitive.

Primitives Parameters Derivative Manifold Bound Nb Param.

Point p 0 0 - 3(3)
Line l = {p, t} 1 1 point 6(5)
Plane ω = {p, n} 1 2 line, curve 6(5)
Curve c = {p, t, n, κ} 2 1 point 10(7)
Quadric s = {p, n, γ,K} 2 2 line, curve 14(8)

Higher derivatives could also approximate a shape at one point with
more precision. Unfortunately, high derivatives are very sensible to noise
when applied outside of a theoretical context. We limit ourself to the second
derivative given that a non-negligible noise level is expected from the sensor
measurements and from the motion of the sensor. We will see in Section 4.1.2
that even the first derivative needs a large supporting surface with typical
laser rangefinders.

At an higher level of organization, a group of geometric primitives can
be processed without any proximity assumption (unstructured) or with some
smoothness constrains (structured). Examples of representation for a 1D
manifold is a spline, while for a 2D manifold simple mesh or Non-uniform
rational B-spline (NURBS) can be used. When it comes to a noisy group
of points, tensor voting [Medioni et al. 2000] can be used to interpolate
shape on a dense 3D grid. The voting results can then be later process to
extract 1D and 2D manifolds out of the dense volume.

Sensitivity to transformation functions

The shape representations are affected differently by transformation func-
tions. At a more generic level, transformation functions affect geometric
quantities. Examples of quantities are: coordinate, orientation, length, angle,
length ratio, etc. Those geometric quantities with examples of associated
primitives are listed in Table 2.4. As example of lengths, we used κ, which
is the inverse of a radius, and added the eigenvalues λ, which defined a scale
over a vector. Having geometric parameters as much invariant as possible
from transformation helps the matching function during registration because
the association will be less sensible to large initial alignment error. Ta-
ble 2.5 relates the different geometric quantities to the basic transformation
functions affecting them.
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Table 2.4: Quantities names susceptible to be affected by a transformation function
with examples related to the parameters of geometric primitives.

Quantity Single Entity Relationship in a Set

Coordinate p -
Orientation n, tmin, tmax -
Length κ, λ ||pa − pb||
Angle - acos(na · nb)
Length Ratio - κa/κb

Table 2.5: Influence of a transformation function on quantities defining a geometric
primitive. Cells marked with a “X” means that the transformation affect the values of
the entity.

Function Coordinate Length Orientation Angle Length Ratio

Translation X - - - -
Uniforme Scaling X X - - -
Rotation X - X - -
Nonuniform Scaling X X X X -
Shear X X X X X
Orthogonal Projection X X X X X
Perspective Projection X X X X X

Most of the time, point cloud features come without external descriptor
(ex.: intensity for image) so the proximity of other features is used to extend
the shape approximation to further derivative. Surface orientations (or line
orientations in 2D) are mainly used in literature [Pulli 1999; Censi 2008;
Bosse and Zlot 2009a; Jost and Hugli 2002; Schutz et al. 1998; Jost and
Hügli 2002; Segal et al. 2009]. Line orientations are also used in image
registration where the environment presents very few salient points when
considering only intensity variation [Stewart et al. 2003]. Surface normal
vector distributions of surrounding points are also used by Magnusson et al.
[2009] and Fairfield and Wettergreen [2009].

2.3.2 Descriptor Enhancement
A comparison of descriptors extracted from 2D point clouds can be found in
[Bosse and Zlot 2009b]. It is proposed that moment grid is better than 2D
shape context, Gestalt, Hough transform peaks, orientation and projection
histograms, and normal orientation histogram grid. Extension to the 2D
shape context can be found in [Tsai et al. 2010]. Another study for 3D point
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clouds also concludes that moment grids is better than 3D shape contexts,
spin images, shell images and local covariance [Bosse and Zlot 2009a].

Usually, ICP is done using only geometric features but some works
also present results using the laser reflexion intensity from an Hokuyo
[Yoshitaka et al. 2006] and from specialized system using three different
wave lengths [Godin et al. 1994]. Laser range finders are also combined with
camera to add color information on measured points [Schutz et al. 1998;
Druon et al. 2006]. When other sensors are used to provide descriptors,
calibration of those sensors is required. Interestingly, calibration rely also
on registration solutions. Terrestrial survey scanners often have a calibrated
camera associating color to 3D points, just as the Kinect do. With the larger
availability of photometric informations, the door opened to more classical
solution from Computer Vision. In “A survey on local invariant features”
[Tuytelaars and Mikolajczyk 2008], characteristics of descriptive features are
listed as being rotation, scale and affine invariant and evaluation criterion
as repeatability, distinctiveness, locality, quantity, accuracy, efficiency. In
images registration, the list of most common tools extracting descriptors are:
Harris, Hessian, SUSAN, Harris-Laplace, Hessian-Laplace, DoG (SIFT),
SURF, Harris-Affine, Hessian-Affine, Salient Regions, Edge-based, MSER,
Intensity-based and Superpixel [Tuytelaars and Mikolajczyk 2008]. It is
interesting to note that descriptors based on photometric information count
on passive illumination to ensure invariance. This rely on the assumption
that the illumination point remain static which mostly true for indoor lights
but one needs to be careful for outdoor illumination where the sun moves,
clouds can shade light, etc. As for laser intensity measurements, they are
even more sensible to transformation functions because the illumination
point follow the sensor.

2.3.3 Feature Reduction
In application using point clouds, features arrive already sparse but not
uniformly distributed. Nevertheless, the fact that sensors can provide a huge
number of readings on a short period of time creates a bottleneck in term of
computation power for the match function. Several techniques are used to
reduce the number of features: random sampling [Jost and Hugli 2002; Pan
et al. 2010], uniform grid [Magnusson et al. 2009; Bosse and Zlot 2009a],
grid projection [Pan et al. 2010], octree [Fairfield and Wettergreen 2009;
Wurm et al. 2010], and bounding box [Stewart et al. 2003; Tsai et al. 2010].
All these techniques reduce the number of features without considering their
distinctiveness. Having that criteria in mind, Bosse and Zlot [2009b] present
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results showing that keeping a representative point per curvature clusters is
better than segment centroids and mean-shift for 2D point clouds. Using
color associated to each point, [Druon et al. 2006] uses 7 clusters based
on hue values and selects only on cluster caring the most information for
registration. Cluster segmentation is also used on laser intensity values
[Godin et al. 1994].

It is also possible to find more application-specific methods in the litera-
ture. For example, the tip of the nose, inner eyes corner, and nose corners
are directly extracted for face detection [Pan et al. 2010]. In medical imagery,
blood vessel crossings are also used to reduce features. Moreover, the main
orientation of the blood vessel crossings and its number of branching is used
to construct descriptors [Stewart et al. 2003]. The complete point cloud can
also be resumed to its first and second statistical moments [Liu 2010] or
with orientation and projection histograms [Bosse and Zlot 2008].

2.3.4 Sensor Noise
Finally, sensor noise is also taken into account at this stage of the process.
Those sensor noise models intend to evaluate the uncertainty of a measured
point based on the limitations of the sensor used. They may try to identify
if a point is a measurement artifact or how accurate is the position measured.
To cope with stereo reconstruction noise, Diebel et al. [2004] removes points
with distance and surface angle to neighbors larger than two times the
median of all distances and surface angles within the point cloud. When
using laser reflexion intensity, which is not invariant to distance and angle,
Yoshitaka et al. [2006] proposes to keep points only close to the laser to
avoid noisy measurements. For color images, points with low saturation
value tend to be gray and are removed before applying clustering technique
based on hue [Druon et al. 2006]. Points on boundaries of the sensor reading
can also be removed to avoid misleading interpretation of neighbor points
[Armesto et al. 2010]. When an error model is available, it is also possible
to add noise information based on measurement distance, incidence angle,
reflectivity, etc. Examples of noise models based on Gaussian is investigated
in Section 4.1.

2.4 Match Functions
In the context of ICP, a match function C associates a first set of shapes
Sref to another set of shapes Sread based on a distance metric, and output
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tuples 〈i, j〉 representing links between shapes. Matching functions assumed
that all shapes are represented in the same coordinate frame F.

〈iref , jread〉 = C( Sref
F , Sread

F )

2.4.1 Types of matching
The matching of the reading with the reference can be divided in three
types: 1) features matching, 2) descriptors matching and 3) mixed. Feature
matching is mainly done using Euclidian distance between a point in the
reference and a point in the reading [Censi 2008; Druon et al. 2006; Pulli
1999; Pan et al. 2010; Kim 2010; Segal et al. 2009], a point and a plane
[Champleboux et al. 1992] and quadrics [Feldmar and Ayache 1994]. Custom
distances based on point positions and angles [Armesto et al. 2010] can also
be used. Descriptors are matched based on their Euclidian distances [Lowe
2004; Bosse and Zlot 2009a]. The concept of measuring distance between
two entities can take multiple forms (ex., correlation matching, earth mover
distance, L1, Linf , etc.) In the current literature surveyed, other distances
used in matching functions were Mahalanobis [Stewart et al. 2003] and Chi-2
test statistic [Tsai et al. 2010]. Both of those types of matching have their
advantages and inconveniences. In laser rangefinder based matching, feature When matching

uses only
descriptors,
the initial
transformation
is not explicitly
required.
Although
it is not
mentioned, the
transformation
is treated as
identity in
those cases.

positions are quite accurate compared to descriptor uniqueness but the
initial transformation needs to be within a maximum range to avoid
local minima. When using descriptors, the matching becomes independent
of the initial position but may fail for repetitive elements (ex.: checkerboard,
building facades with repetitive windows, etc.).

A logical extension is to mix both types of matching. One way is to
express descriptors in the feature space using a conversion factor. This was
used with surface orientations [Jost and Hügli 2002; Bosse and Zlot 2009a],
surface orientations and color [Schutz et al. 1998], color [Johnson and Kang
1997] and laser intensity [Godin et al. 1994; Yoshitaka et al. 2006]. The other
way around is also possible (i.e., expressing feature positions in descriptor
space). In [Mortensen et al. 2005], a descriptor, called Global Context, is
created using surrounding feature positions. The distance is computed as
the sum of the Euclidian distance of a SIFT descriptor with the Chi-2
distance of the Global Context descriptor. A ratio between feature and
descriptor distances can be used, but it is often implicitly defined as one
[Tsai et al. 2010].

Other parameters to consider during the matching stage is the match
direction and the number of matches used. The match direction refers to
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either match from the reference to the reading or from the reading to the
reference. Most of the time, one of those two possibilities is used without
further consideration but some techniques use both directions [Pulli 1999;
Godin et al. 1994]. As for the number of matches, most of the applications
consider only the closest point but some others process a certain percentage
of the lowest distance [Stewart et al. 2003] or the complete matching matrix.
The complete matching matrix is often used in loop closing detection [Bosse
and Zlot 2009b] but it can be used for local matching, as with the SoftAssign
method [Gold et al. 1998; Liu 2010].

2.4.2 Implementation optimization
The match function deals with the Nearest Neighbor (NN) problem which
has a complexity of O(nm) where n and m are respectively the number of
elements in the reading and in the reference. This stage is generally the
most time-consuming and a lot of papers present variations of NN search to
reduce its complexity. A dynamic space partitioning can by applied using kD-
trees to reduce the search complexity to O(n logm). Approximate kD-trees
decreases the computational time by employing a distance thresholds to limit
the search at the risk of returning sub-optimal neighbors [Arya and Mount
1993]. This increases the overall speed of the search, while the redundancy
between points prevents large accuracy degradation [Nüchter et al. 2005]. In
an iterative context, Nüchter et al. [2007] propose to use cached kD-tree for
faster search. NN from the previous iteration are feed to the current search
as starting points to accelerate the computation. Additionally, Zlot and
Bosse [2009] compare kD-tree, locality-sensitive hashing and spill-trees and
concluded that the kd-tree is better in terms of accuracy, query time, build
time, and memory usage. They also observed that huge approximations can
reduce the query time by two orders of magnitude while keeping a sufficient
accuracy.

KD-trees provide very little acceleration for high dimensionality like the
ones used for image based descriptors. Static space partitioning, usually
based on grid, or hashing offer less adaptation but can compensate with
their computation speed. Approximate search based on Best-Bin-First can
be used instead for optimization [Lowe 2004]. Other techniques use dual
proximity hypothesis (i.e., laser points ordered sequence [Censi 2008] and
n-search [Jost and Hugli 2002]), projection on one grid [Pan et al. 2010]
or on multiple grid (called multi Z-buffer) [Benjemaa and Schmitt 1997]
to also reduce the search time. Although very useful, kD-tree also limits
the distance used to be Euclidian. This forces some approximations when
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using Euclidian distances between components of unit surface normal vectors
instead of the angle between those [Feldmar and Ayache 1996; Eggert et al.
1998; Gelfand et al. 2003]. Figure 2.5 illustrates the error between the
angle distance of surface normal vectors against the approximation using
Euclidian distance. One can notice that as long as the distance is low, the
approximation can hold but with large error the discrepancy between the
vector is lost. Moreover, the construction of the tree requires some time and
often, only the reference is used as seeding points. Limiting the number
of kD-tree constructions by the use of keyframe or metascans can help to
decrease the registration time for a sequence of scans, while limiting the
drift of the final path [Wulf et al. 2008].
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Figure 2.5: Impact of using Eu-
clidian distance (dashed yellow line)
instead of angle (solid blue line)
between surface normal vectors.
Shaded gray area represent the
error.

Cascade systems, presented in Section 2.2.2, is also another research
direction to accelerate the search. Jost and Hugli [2003] compute the ICP
several times while varying the resolution from coarse to fine. At a coarse
resolution (i.e., with a limited number of points) ICP converges faster
but with less accuracy than at a fine resolution. However, by initializing a
finer-resolution ICP with the result of the coarser one, the convergence of
the fine-resolution ICP is much faster than with a single-shot ICP, as the
initial alignment is mostly correct. These authors also used a pre-computed
list of NN to approximate the matching step. With both of these techniques,
they showed a significant increase of the speed of ICP while maintaining an
adequate robustness. For the same absolute performance as standard ICP,
Li et al. [2010] obtain less iterations at higher resolution, which decreases
the total time by a factor of 1.5 in 2D and 2.5 in 3D. The multi-resolution
approach can also increase the search speed for the closest point by using
a hierarchical-model point selection with a stereo camera [Kim 2010]. By
subsampling the space and with the help of the sensor structure, this solution
can achieve a speed gain of factor 3 with respect to standard ICP when
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using a kD-tree search. In this case, the use of the structure of the depth
image increases the matching speed. In the same direction, the specificity
of a 2D laser scanner can help optimize the search [Censi 2008]. However,
these optimizations are oriented toward specific sensors, which makes them
hard to generalize, and are not suitable for a multi-sensor setup.

2.5 Outlier Filters

While the data filters try to reduce the impact of sensor noise, the
outlier filters try to reduce the impact of wrong matches mainly caused
by partial observations, dynamic elements and poor environment information
extraction. Match quality can be evaluated based on feature pairs, descriptor
pairs or even both together independently from the match distance used
(i.e., based on features or on descriptors). When using descriptors, it is
possible to apply an outlier filter. Regarding SIFT descriptors, the
original method proposes to reject all matches where the distance ratio with
the second match is higher than 80% [Lowe 2004]. In the work of Stewart
et al. [2003], all matches under 95% confidence based on Chi-2 uncertainty
bound are rejected.

In the case where the outliers are filtered based on features, rejection
techniques are mostly using a threshold based on the Euclidian distance,
the main difference being how to fix the threshold. A naive approach is to
use a maximal distance between points [Segal et al. 2009]. This technique is
sometimes hidden by using a fixed radius directly in the matching function.
Likewise, surface orientation differences between paired points can be limited
to a fixed value [Pulli 1999; Zhang 1994] or an adaptive one based on the
median [Diebel et al. 2004]. Adaptive methods can be based on the mean
distance between points and their Standard Deviation (std) [Druon et al.
2006; Zhang 1994], std only [Masuda et al. 1996], the quartile position
(a.k.a trimmed) [Chetverikov et al. 2002; Censi 2008; Armesto et al. 2010]
and the median [Diebel et al. 2004] of the distances of all paired points. In
an iterative system for data association, [Pulli 1999] proposed to reduce
manually the threshold at each iteration based on the notion of convergence
of the system. An automatic extension to this approach is presented in
[Pomerleau et al. 2010]. A different type of outlier filter evaluates
whether there are multiple matches from the reading to the reference
and keeps only the smallest distance [Zinsser et al. 2003].
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2.5.1 Weightings

All the methods above are using hard assignment to identify outliers. Which
means that, passed a certain threshold, the feature pair (i.e., tuple) is simply
discarded prior to the minimization. Assignments can also be considered
soft by using a weighting function promoting inliers during the minimization.
Those weighting function can be custom such as the ratio of mean distance
over each paired distances [Pan et al. 2010] or using known function such
as Gaussian [Godin et al. 1994] and Cauchy (a.k.a. Lorentzian) [Bosse
and Zlot 2009a]. Mix between soft and hard assignment are also used like
one minus the ratio of the tuple distance divided by a maximum distance
(with a saturation to zero when the tuple distance is over the maximum
distance) [Diebel et al. 2004] or directly using the bisquare (a.k.a Tukey
or Beaton-Tukey) function [Masuda 2001], [Stewart et al. 2003]. All those
techniques use only the feature information to weight outliers but one paper
computes a total weight by multiplying the feature distance by a reflectance
similarity function [Godin et al. 1994].

2.5.2 Robust statistics

Dealing with outliers during a minimization process falls into the field of
robust statistics. A suite of tools is proposed to robustly estimate the
position (i.e., robust variant of the mean) and the scale (i.e., robust variant
of the std). For the scale estimation, some possibilities were found: Huber
estimate, Median Absolute Deviation (MAD), interquartile range, Tukey
estimator, trimmed estimator and Winsorised estimator.

The utilization of weights for a minimization process is based on a class
of functions called M-estimators. Here is a list of M-estimators found in
the literature: Least-squares (a.k.a L2) (not robust and mostly used), Least-
absolute (a.k.a L1), L1 − L2, Least-power (a.k.a Lp), Fair, Huber, Geman-
McClure, Logistic, Median, Talworth, Welsch, Cauchy (a.k.a Lorentzian). A
category of M-estimator, called redescending M-estimators, have a saturation
point to reject gross outliers. This category is equivalent to a mixed of
soft and hard weights. Those functions are called: Hampel, bisquare and
Andrews. Note that only the Cauchy [Bosse and Zlot 2009a] and the bisquare
[Masuda 2001; Stewart et al. 2003] functions were found in data-association
papers.
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2.6 Error Minimization
The error minimization step relies on the definition of an error metric
calculated from the association of features and needs to be resolved using
an error model. The error model can be sometimes the same as the distance
used at the matching stage but the main difference is that error is only
defined in the feature space and not in the descriptor space. This is because
only features are influenced by transformation parameters, as listed in
Table 2.5. So, if the matching was based on descriptor distances, another
error must be defined. Parameters selected for minimization should follow
an expected deformation model. Zitová and Flusser [2003] present 2 generic
types of error metric: global (rigid, affine transform, perspective projection
model) and local (radial basis functions, elastic registration, fluid registration,
diffusion-based, level sets, optical-flow-based registration).

2.6.1 Shape Morphing
Most of the data association algorithms based on point clouds use global-rigid
error. This error metric is parametrized by 3 translations and 3 rotations
parameters for a total of 6 Degrees of Freedom (DoF) when dealing with
3D point clouds (3 DoF in 2 dimensions). Point-to-point error uses the
most basic primitive and was introduced in a registration context by Besl
and McKay [1992] and used subsequently in multiple solutions [Godin et al.
1994; Pulli 1999; Druon et al. 2006; Pan et al. 2010; Kim 2010]. During the
matching step, it might happen that different kind of geometric primitives
(e.g., point, line, curve, plane, quadric) are matched together. Multiple
error metrics were developed for those situations and we want to bring them
under the same concept that we introduce as Shape Morphing. Essentially,
when a primitive with higher dimensionality is matched with a lower one, it
is morphed via projective geometry to adapt to it counter part. Figure 2.6
presents the list of possible combination for a 2D space and illustrates the
concept for different errors.

The most represented example is the point-to-plane introduce by Chen
and Medioni [1992] and then reused in multiple works [Champleboux et al.
1992; Gagnon et al. 1994; Bergevin et al. 1996; Gelfand et al. 2003]. Its
2D version, point-to-line, is also used in robotics [Bosse and Zlot 2009b]
and a closed-form solution was presented by Censi [2008]. Using higher
complexity to represent 3D primitives, Segal et al. [2009] proposes the use of
plane-to-plane while early work of Feldmar and Ayache [1996] was already
using quadric-to-quadric.
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point-to-point point-to-line

line-to-line line-to-curve

curve-to-curve

point-to-curve

Figure 2.6: Possible morphing in 2D. The real shape is represented in gray with its
approximation in blue. The resulting errors are represented with black arrows.

It is also possible to find extensions to those error metrics: point-to-point
with extrapolation and damping [Zinsser et al. 2003], a mix of point-to-line
with odometry error [Diebel et al. 2004], a mix of point-to-point, point-to-line
or point-to-plane with angle [Armesto et al. 2010] and mix of point-to-point
with Boltzmann-Gibbs-Shannon entropy and Burg entropies [Liu 2010].
Entropy based methods used in medical registration were reviewed by Pluim
et al. [2003] as being: Shannon, Rodriguez and Loew, Jumarie, Rényi
entropies. All those techniques rely on mean squared error.

Recently, [Silva et al. 2005] introduces a novel error called Surface
Interpenetration Measure (SIM) which presents more robustness against
different noise types. This measure was then applied later by [Pan et al. 2010]
for face recognition. Image registrations mainly use affine transformations
including skew and scale deformations like in [Lowe 2004]. A more complex
hierarchical error models, presented by Stewart et al. [2003], increases the
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transformation parameter complexity from similarity to affine, reduced
quadratic and finally quadratic. Those error models allow them to achieve
higher precision on the final alignment while avoiding heavy computation at
the beginning of the minimization.

2.6.2 Minimization
Once the error model is defined, a strategy or scheme to reduce the error must
be selected. When a closed-form solution is available, direct minimization
can be used. Unfortunately, closed solutions are rarely possible so two
other minimization schemes are used: iteration and votes. Iterative schemes
seem to be more applied to point cloud registrations. Within this category
fall the well known ICP [Chen and Medioni 1991; Besl and McKay 1992],
Normal Distributions Transform (NDT) [Biber and Straßer 2003], Simulated
Annealing (SA) [Pan et al. 2010] and Genetic Algorithms (GA) [Silva et al.
2005]. Voting schemes are more the standard in image registration with
Hough transform [Lowe 2004] and Random Sample Consensus (RANSAC)
[Fischler and Bolles 1981]. Tensor voting was presented in a context of
stereo image registrations [Medioni et al. 2000] and later applied to point
cloud registrations [Reyes et al. 2007].

2.7 Summary
A survey of current registration solutions expressed in a common framework
has been presented in this chapter. Publications on this topic have a large
variety of contributions, from the adaptation of a generic solution to a specific
application, up to a detailed theoretical solution of a single registration
module. The concepts related to registration problem touch also a variety
of mathematical tools (e.g., differential geometry, statistics, probabilities,
(robust) regression, etc.) We also noted that same concepts have a different
nomenclature depending if it is oriented for computer vision, robotics or
medical imagery. Although the concepts are very similar, there is also a
gap to be bridged between the terminology used for geometric registration
or image registration. This situation seems to have been better handled in
medical imagery than in robotics and computer vision. It could be explained
by the fact that, from the beginning, registrations were applied for 2D/2D,
3D/3D and 3D/2D to cover the different sensors that medical staff were
using to provide diagnostics. We provide a summary of key concepts in
Table 2.6 to facility an overview of the classifications used.
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Table 2.6: Possible classifications for registration algorithms.

Reading and Reference

Sensor types Photometric, time-of-flight, triangulation
Applications Scene/object reconstruction, identification, tracking
Data acquisition Different viewpoints, different times, different sensors,

scene to model

Initial Transformations:

Sources External sensors, user, iteration
Types Single hypothesis, multiple hypotheses
Systems Unimodal, cascade, multimodal

Data Filters:

Goals Enhance discrepancy, reduce time, reduce noise
Descriptor invariance Rotation, translation, scale, affine
Feature Relationship Unstructured, structured
Support Laser intensity, color, geometry

Match Functions:

Types Feature, Descriptor, Mixed
Direction Reading to reference, reference to reading, both
Distance metric Euclidian, Mahalanobis, Chi-2 test statistic, Custom
Optimization Hashing/indexing, static space partitioning, dynamic

space partitioning, feature reduction

Outlier Filters:

Outlier sources Partial observations, dynamic elements, sensor noises
Support Features, descriptors, mixed
Assignment Hard, soft, mixed

Error Minimizations

Error Geometric, morphing, entropy
Deformation Global, local
Minimization schemes Direct, iterative, voting
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When a solution needs to be designed for a particular problem, require-
ments of the application should first be well clarified. Applications define
reading and reference sources and how the initial transformation
will be provided. As a rule of thumb, if the initial transformation can
not be controlled to remain small, improvement on the matching function
needs to be done, which may impact on the geometric representation built
using data filters. Outlier filters are necessary to ensure a robust er-
ror minimization and, most importantly, to handle variable overlaps between
the reading and the reference. One should compute only what is required
for his application. Simple solutions often work well if the assumptions on
which they rely are well understood and if the environment can be controlled
to keep those assumptions true. We will demonstrate this statement using
different applications in Chapter 5 based on system identifications realized
in Chapter 4.
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Chapter 3

Methodology

T his chapter concentrates on the issue of scientific methodology
raises by Amigoni et al. [2009] in the context of SLAM publi-
cations. We applied their observations more specifically to 3D

registration problems. A complete scientific publication should provide not
only a justification of the problematic and an explanation of the solution
proposed, but also the means used to facilitate (1) comparison and (2) re-
peatability while demonstrating (3) reproducibility of the experimental work.
A repeatable experiment needs to demonstrate sufficient measurements,
while reproducibility refer to the ability of an experiment to be reproduced
by an independent person. We address these three major points in the follow-
ing sections while listing some guidelines for a better analysis of the results.
Oriented more towards comparison and reproducibility, Section 3.1 presents A notable ex-

ample of an
unreproducible
experiment is
the well cov-
ered story of
the cold fu-
sion claimed by
Stanley Pons
and Martin
Fleischmann
[Fleischmann
and Pons 1989].
Since now, all
further attempt
to replicate
the experiment
failed.

two types of data sets specifically recorded for registration evaluations. The
first data set group was introduced at the AAAI 2011 Fall Symposium on
Robot-Human Teamwork in Dynamic Adverse Environments [Pomerleau
et al. 2011a] and then published in the International Journal of Robotics
Research [Pomerleau et al. 2012b]. Then, Section 3.2 introduces protocols
facilitating a stronger repeatability while suggesting an evaluation list with
the goal of accelerating comparison for further research. Section 3.3 focuses
on reproducibility with an open source library specialized for registration.
These two latter sections were introduced at the IEEE 2011 International
Conference on Intelligent Robots and Systems [Pomerleau et al. 2011b] and
then accepted for publication in the journal of Autonomous Robots [Pomer-
leau et al. 2013]. This chapter is concluded in Section 3.4 with a discussion
on the online tools provided to accelerate research on geometric registration
applied to robotics.
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3.1 Standard Data Sets
Many registration solutions have bloomed lately in the literature as demon-
strated in Chapter 1 and Chapter 2. Although they are widely used, it is
a common challenge to compare registration solutions on a fair base. The
main limitation is the lack of accurate ground truth in current data sets
[Smith et al. 2009], which usually cover environments only over a small
range of organization levels [Pandey et al. 2011]. In computer vision, the
Stanford 3D Scanning Repository pushes forward point cloud registration
algorithms and object modeling fields by providing high-quality scanned
objects with precise localization. We aimed at providing similar high-caliber
working material for both the robotics and computer vision communities but
with sceneries instead of objects. We proposed eight point cloud sequences
acquired in locations covering the environment diversity that modern robots
are susceptible to encounter, ranging from inside an apartment to a woodland
area. The core of the data sets consists of 3D laser point clouds for which
supporting data (Gravity, Magnetic North and GPS) are given at each
pose. A special effort has been made to ensure a global positioning of the
scanner within millimeter range precision, independently of environmental
conditions.

3.1.1 Available Data Sets
Urban environment navigation has received quite some attention in the last
years and triggered the creation of large-scale data sets of several kilometer
long [Pandey et al. 2011; Huang et al. 2010; Smith et al. 2009]. Even
though those data sets are undeniably very useful, other platforms, like the
ones used for Search and Rescue missions, encounter a broader range of
environments in which the robustness of localization needs to be assessed,
which is difficult in with the available data sets. In Search and Rescue
applications, environments that are likely to be faced are composed of
complex structures, and some of them have particular problematic features
such as a forest with dense foliage (see Figure 3.1) that shades GPS signals.
On the registration side, the planarity of the environment was taken for
granted in early implementations [Chen and Medioni 1991] and up to recent
versions of scan matching algorithms [Pathak et al. 2010a]. Clearly, there
is a need for semi-structured and unstructured data sets to challenge this
planar hypothesis and to validate the robustness of registration solutions in
a variety of environments that are encountered in the real world. Recently,
Peynot et al. [2010] presented data sets that highlight various environmental
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situations, but the focus was on atmospheric conditions (airborne dust, smoke
and rain). We continued in the same direction but for land-based studies by
proposing data sets that cover a larger spectrum of environmental structures,
so registration solutions can further be evaluated in real situations.

Laser
(Hokuyo UTM-30LX)

Theodolite

Prism

Figure 3.1: Scanner in targeted unstructured environments with dense foliage cover.

3.1.2 Ground Truth Localization
The notion of ground truth is highly dependent on the intention of use and
can hardly be absolute. The error of the reference measurement used as
ground truth should be significantly lower than the expected outcome of the
algorithm to achieve a fair comparison.

Precise global positioning can be obtained using a mechanical arm that
is fixed on a base holding a scanner, but this solution offers a limited
motion range. On the other side, GPS and differential GPS systems can
accommodate a large range of motions but are limited to outdoor locations
displaying a clear sky condition. The precision of such systems can be
highly variable (i.e., depending of foliage coverage, satellite alignment and
number, multi-paths, etc.), which also limits the evaluation of registration
precision. Optical motion capture systems, like the one proposed by Vicon,
have recently appeared as a precise way to track sensor poses [Pomerleau
et al. 2011b]. Those systems offer millimeter precision at 100Hz, but could
hardly be installed outdoors or in a highly cluttered environment. Instead
of using fixed sensors and mobile markers, Tong and Barfoot [2011] propose
a methodology to reuse directly laser reflectivity readings combined with
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some reflective beacons. This is a convenient way to acquire ground truth
localization in open space, but would lead to the installation of multiple
landmarks in a highly occluded environment, like a forest. Finally, Jet
Propulsion Laboratory uses a theodolite to track specialized prisms fixed on
a mobile platform to validate visual odometry performances [Maimone et al.
2007]. The precision reported was less than 2mm in position, and less than
0.2◦ in attitude. In addition to the excellent precision, the system reduces
infrastructure installation and ensures a fixed precision over all recorded
sequences, independently of environmental locations and conditions, which
is why we applied this technique to our data sets.

For our data sets, all sequences were selected to evaluate point cloud
registration algorithms with respect to: (1) semi-structured and unstruc-
tured environments, (2) rapid variation of scanning volumes, (3) repetitive
elements, and finally, (4) dynamic elements. Given that we targeted global
positioning evaluations, a special attention was given to the methodology
used to record ground truth poses with a consistent protocol for all the
sequences.

3.1.3 Material
The data sets were recorded with a partially custom-made rotating scanner
used in conjunction with a theodolite, as depicted in Figure 3.2. The main
sensor of the scanner was a laser rangefinder (Hokuyo UTM-30LX) mounted
on a tilting device. The sensor has a compact size (87×60×60mm) and
covers a field of view of 270◦ with a reading at every 0.25◦. The precise
control of the motor was ensured by a Maxon Motor EPOS controller. The
control system put in place used a dual regulation loop based on two encoders.
One encoder was located directly on the motor shaft to provide stability
control while the second was located at the end of the transmission chain.
Encoders had respectively 2000 and 48000 ticks per revolution, the precision
difference coping with the gear reduction employed. The later encoder gave
us a resolution of 0.0075◦ on the tilting axis. This setup allowed to remove
the uncertainty from gear backlash and transmission strap deformation,
which was estimated around 5◦. Supporting data (Gravity, Magnetic North
and GPS) was provided by a consumer grade GPS-aided IMU, Xsens
MTi-G.

The theodolite utilized was the Total Station (TS15) from Leica Geosys-
tems. Because it only measures one position at a time, three measurements
are necessary to retrieve the complete pose (translation and orientation). A
specialized reflective prism was mounted on a pole, which could be secured at
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Figure 3.2: Tilting
scanner with the
prism mounted at
p0. The theodolite
used for ground truth
measurements is in
the background.

three different locations on the scanner, namely p0, p1 and p2 (see Figure 3.3
(a)). A steel guide ensured the pole to be positioned at the same location
on the scanner every time. The pole was higher than the scanner to reduce
visual occlusion from the theodolite.

3.1.4 Field Deployments
Most of the recording process was done manually. The scanner was moved
from a location to another by an operator. Extra precautions were taken to
ensure that the scanner stayed in place while scanning (usually for 20 s) and
while the ground truth pose was measured (less than two minutes). Rubber
feet were used on hard floors, and metal spikes were used on soft grounds.
The inertia of the platform also guaranteed a good stability while recording
a scan. In some cases, like a in compartmented area such as an apartment, a
single line of sight cannot track all poses. For those situations, we changed
the theodolite pose and then used the last scanner pose as a fixed beacon to
relocalize globally the theodolite. We carefully planned those re-localizations
to minimize their numbers so that for all the sequences, we never had to
relocalize more than twice. We acknowledge that the overall system is costly
and time consuming (e.g., three hours for 35 scans), but we firmly believe
that this methodology is necessary to ensure that high-quality data sets are
available for further research.

All sensor data were logged on the same computer so the data were
time-stamped based on the same clock. Supporting data were recorded at a
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p1
Theodolite

p0

p2

Theodolite

Base

Axis
Laser

IMU

(a) (b)

Figure 3.3: Configuration of the scanner. The dashed line corresponds to the rotation
axis. (a) Perspective view with positions of the 3 prisms used to reconstruct the global
pose. (b) Reference frame notation.

different frequency than the laser, and they were segmented per 3D scan
pose.

3.1.5 Noise Evaluation
This section overviews the sources of noise, from the global pose down to
a measured laser point. As claimed by the manufacturer, the theodolite
has an accuracy of 1mm per kilometer. Because we did not have access
to an additional and more precise sensor to validate the ground truth, we
evaluated the distances between each prism (d12, d02 and d01) over 181
scanner poses measured in different conditions (Figure 3.4). The maximum
standard deviation (σmax) of the three distances is 1.4mm. Since we plotted
distances between two prisms positions, we can assume that the std of
one point is approximatively 1.0mm. This error englobes the noise of the
theodolite and some operator manipulation errors while moving the prism
from one position to another.

In the field, we used those position statistics to cancel spurious pose
measurements before taking the 3D scan. The translation component of
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Figure 3.4: Distribution frequencies of the distances between prisms [mm] measured by
the theodolite. (a) Distances between p1 and p2. (b) Distances between p0 and p2. (c)
Distances between p0 and p1. The mean µ and the std σ of the theoretical Gaussian
curves are plotted over the histogram of the distances.

the global pose is obtained with the mean of the three prism positions,
which would again lead to a σt of 1.0√

3 = 0.58mm under the assumption of
isotropic Gaussian noise. For the rotational components, we used the smallest
estimated distance between prisms (µ12 = 412.5mm) and when using basic
geometry from Figure 3.5, we can estimate an angular error (σθ) of 0.003 rad.
Those errors applied if the theodolite is kept at the same place during a
complete data set recording, which was not the case for three sequences
(see Table 3.1). After a simple error propagation, we can approximate the
global position error σt to be under 1.8mm and the orientation error σθ
under 0.006 rad, which is consistent with the level of precision reported by
Maimone et al. [2007]. As for the transformation linking the Theodolite to
the Base (Figure 3.3) frame, the parameters were computed with a global
optimization technique based on registration results in a controlled and
highly structured environment. To evaluate the alignment errors, we used
as control a different data set then the one used for the optimization.

As to the transformations from the Laser to the Base (Figure 3.3),
most of them were taken from the construction plans and were machined
with a precision under millimeter in centimeter thick aluminum plates.
Since encoders work in relative position, a homing procedure needs to be
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Nb. Scans Nb. Pts / Scan Re-loc. Poses Volume Scene Volume
Sequence Name (x× y × z) (x× y × z)

ETH Hauptgebaude 36 191 000 0 24× 2 ×0.50 m 62× 65 × 18 m
Apartment 45 365 000 2 5 × 5 ×0.06 m 17× 10 × 3 m
Stairs 31 191 000 0 10× 3 ×2.50 m 21×111× 27 m
Gazebo Summer 32 170 000 1 5 × 4 ×0.07 m 35× 45 × 16 m
Gazebo Winter 32 153 000 1 4 × 5 ×0.09 m 72× 70 × 19 m
Mountain Plain 31 102 000 0 18× 6 ×2.70 m 36× 40 × 8 m
Wood Summer 37 182 000 0 10×15×0.50 m 30× 53 × 20 m
Wood Autumn 32 178 000 0 6 ×12×0.50 m 36× 60 × 22 m

Table 3.1: Characteristics of the point clouds for each sequence.

p1 p2

Figure 3.5: Worst case orientation error given the position error σmax and the smallest
expected distance µ12 between the prisms p1 and p2

applied to reset the count of the encoders. The offset between the homing
position and the position of the rotating frame that is parallel to the Base
is directly added in the low level controller (Maxon EPOS). This offset has
been measured using two laser pointers, the ones typically used for public
presentations, fixed on the tilting Axis and on the Base. The two laser
points were projected on a wall at a distance of 8m. The angle was adjusted
to ensure that the distance between the projected laser points and the laser
pointers were the same. We roughly estimated the homing error σh to be
under 0.001 rad.

Finally, the Hokuyo UTM-30LX is a time-of-flight sensor with a minimum
range of 0.1m and a maximal range of 30m. The specifications of the sensor
indicates an accuracy σr varying from 0.01m to 0.03m depending on the
distance and reflectivity of the targeted object.

Values for transformations from the different frames depicted in Figure 3.3
(b) are listed in Table 3.2 with their estimated precision. We used a right-
handed coordinate system with the x-axis pointing forward, y-axis on the
left and z-axis upward. All the transformations were given the notation
TX←Y , which can be read as: a transformation T that can express a point,
originally in the Y coordinate frame, in a X coordinate frame. Translation
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vector t is represented as [tx, ty, tz] and the rotation vector q is represented
as a quaternion [qx, qy, qz, qw], where qw is the real part of the quaternion.

Sensor Estimated Pose Estimated Precision

TT←G Global to t = variable 0.0006 < σt < 0.0018m
Theodolite q = variable 0.0030 < σθ < 0.0060 rad

TB←T Theodolite to t = [0.016 -0.024 0.606]m residual = 0.004m
scanner Base q = [0.000, 0.010, -0.006, -0.999] residual = 0.004 rad

TB←A Tilting Axis to t = [0.000, 0.000, 0.220]m by construction
scanner Base q = variable σh < 0.001 rad

TB←I IMU to t = [0.000, 0.000, -0.085]m by construction
scanner Base q = [0.000, 0.000, 0.000, 1.000] by construction

TA←L Laser to t = [0.000, 0.000, 0.040]m by construction
tilting Axis q = [0.001, 0.000, -0.003, 0.999] by construction

TL←p Point to r ∈ [0.1, 10) m σr < 0.01m
Laser r ∈ [10, 30] m σr < 0.03m

Table 3.2: Relative transformation between frames with their estimated precisions.

As a general observation, very small angular misalignments can have
a large impact on point location at large distances, especially for highly
slanted surfaces. For example, we had to tune manually the orientation of
Laser to the tilting Axis by a third of a degree to ensure that a single point
cloud joints properly after a rotation of 180◦. This slight offset might be due
to tolerances in the construction and is related to the divergence of the laser
beam that is typically around 1◦. Although the precision of the scanner
global pose is in the order of millimeter, it is most likely that the uncertainty
of the reflected points in the environment is way larger when the beams
have a diameter of several centimeters at a few meters of distance. This
uncertainty is inherent to the sensors and occurs in most robotic systems.

3.1.6 Overview of the Data Sets
The aim of the proposed data sets was to provide unregistered point clouds
for researchers who are seeking to evaluate their registration solutions on a
common base. The point clouds were provided in Base frame, because it
can be compared against the measured global poses. We also provided glob-
ally consistent point clouds for researchers doing environmental modeling.
Before presenting the specific sequences, we first introduce the nomenclature
employed to characterize the different sequences. The abbreviations defined
below are reused in Table 3.3, which also presents an overview of the eight
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sequences recorded. The organization of the environment is characterized as
follows:

Structured (S): The environment can mainly be explained by geomet-
ric primitives (e.g., offices or buildings).
Unstructured (US): The environment mainly involves more complex struc-
tures (e.g., a dense forest or a very untidy room).
Semi-structured (SS): The environment has both geometric and complex
elements (e.g., partially collapsed building or a park essentially composed of
a flat ground and some trees).

Considering a static sensor pose, we also defined three types of dynamic
elements:

Intra-scan motions (AM): An element is moving while the data are
captured. The longer time it takes to capture the data, the more deformed
the element will be (e.g., walking persons or cars). This is comparable to
motion blur for a fixed camera.
Inter-scan motions (EM): A dynamic event occurs punctually with re-
spect to data acquisition (e.g., moved furniture or doors opened).
Global motions (GM): An event affects the environment at a global scale,
and dynamic elements are detected by multiple views recorded at different
time periods (e.g., seasonal changes or a building collapsing).

Finally, environment locations are divided into two categories: Outdoors
(OUT) and Indoors (IN).

The sequences were recorded over half a year (between August 2011 and
January 2012). Figure 3.6 and Figure 3.8 present a visual overview of all
sequences showing the variety of environments covered. Table 3.1 gives the
number of 3D scans, the average number of points per 3D scan and the
number of times the theodolite was relocated for each data set. The two
last columns give an indication of the volumes covered with a bounding box
in which the scanner was moved (Pose Volume) and with a bounding box
of the global map (Scene Volume).
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Sequence Name IN OUT S SS US AM EM GM Particularities

ETH Hauptgebaude X X X Repetitive elements like pillars.
Apartment X X X Single floor apartment with 5 rooms.
Stairs X X X Rapid variations of scanning volumes.
Gazebo (x2) X X X X X Recorded in summer and in winter.
Mountain Plain X X Pasture with few vertical structures.
Wood (x2) X X X X Recorded in summer and in autumn.

Table 3.3: Overview of the sequences with their characteristics.

Figure 3.6: Unstructured
and semi-structured data
sets. Top: aerial view of
Wood with the upper part
of the vegetation removed.
Bottom left: part of Gazebo
with the wine trees on the
right and some large trees
on the left. Bottom right:
aerial view of Plain. For
all figures, the lines and
black spheres correspond to
the scanner poses and point
clouds were colored to em-
phasize the depth of the
structure from the virtual
camera perspective.
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3.1.7 Unstructured and Semi-Structured
Environments

The sequence named Wood was a good example of a challenging environment
for registration algorithms that contains both complex structures and intra-
scan dynamic elements. Figure 3.1 shows the starting position of the recorded
path. This environment was mainly constituted of vegetation (trees, bushes,
etc.), a small paved road crossing the wood being the only structural element.
While recording the data, some people were walking on the road. The scanner
path started in the wood and continued for approximately 12 scans before
joining the small road for the next 14 scans. The sequence was recorded
at two different seasons (i.e., summer and late autumn), which gives the
opportunity to test registration algorithms robustness against Global Motion
(i.e, seasonal changes). Figure 3.7 shows a visible example of the impact of
those changes on trees, which trees were manually extracted from the global
map for each season.

Figure 3.7: Extracts of
global representations high-
lighting seasonal changes: (a)
summer, (b) late autumn.
Point cloud colors were se-
lected to enhance depth of the
screenshot. (a) (b)

Another sequence called Mountain Plain was recorded on a small area
of an alpine plain located at 1920m altitude. There was no major vertical
structure in the environment and the main element on the ground is dry
vegetation (around 50 cm height). The motivation behind this sequence was
to evaluate robustness of registration algorithms against low-constrained,
unstructured environment. The opposite of a low-constrained environment
would be an apartment where the ceiling and walls are large enough to fix
the position and orientation of the sensing platform easily. This sequence
was also very interesting because the hypothesis of a planar motion of the
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scanner does not hold since the scanner is going down a hill before ending
in a flat area.

The two sequences named Gazebo were recorded in summer and winter
in a park, in which there were grass, paved small roads and sparse trees. The
main construction standing in the environment was a gazebo with rock walls
and a ceiling covered with wines trees. This place is a good representative
of semi-structured environments with a mixture of man-made constructions
and vegetation. Some people were walking while the scanner was recording,
whereas others stayed seated for several scans under the gazebo. Figure 3.6
shows virtual views of those sequences with the path realized by scanner
during the recording.

3.1.8 Other Environments
To ease comparisons between a more complete spectrum of environmental
structures, we also provided three more sequences recorded with the same
methodology. The sequence called Stairs aimed at evaluating robustness of
registration algorithms against rapid variations of scanned volumes. The
path started indoors, crossed some doorways and finished outdoors. The
scanner passed over five steps, which offered a more complex motion than a
flat floor. ETH Hauptgebaude tackled the problem of repetitive elements with
its multiple pillars and arches in the hallway. In registration minimization
context, those elements may create multiple local minima, which can trigger
interesting observations for robustness evaluations. Finally, the sequence
Apartment was a well-structured environment including: a kitchen, a living
room, a bathroom, an office and a bedroom. A special care was taken
to include outer-scan motion by moving a person, some furniture and
boxes in between scans. The registration complexity of this environment
was considered low, so it could be used as a reference for other types of
environments. In both sequences ETH Hauptgebaude and Apartment, the
scanner moved indoors on a flat ground.

3.1.9 Contextual information
In order to assist the researchers as much as possible in their experiments, we
provided a certain number of contextual information for each sequence. We
evaluated the overlap between all pairs of scans and provided the information
as overlap matrices. Figure 3.9 shows those overlap matrices with the index
of the scans (temporally growing) used on both axes. First, one can see that
the overlap is not exactly symmetric. Indeed, if a scan cover a smaller area
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Figure 3.8: Structured
data sets. Top: side view
of the Stairs. Bottom left:
top view of the Apartment
with the ceiling and floor
removed. Bottom right:
cut view of a hallway from
ETH Hauptgebaude show-
ing arches and pillars. For
all figures, the lines and
black spheres correspond to
the scanner poses and point
clouds were colored to em-
phasize the depth of the
structure from the virtual
camera perspective.

than the other, all its points will find a match in the second, but not the
other way around. Second, Apartment and Stairs show clusters of scans
with high overlap within themselves but low overlap with other clusters of
the same sequence. This is due to the segmentation of the volumes in the
environment; typically, scans inside a room will all have a relatively high
overlap while in between rooms the overlap will quickly drop. In comparison,
ETH, Wood, and Mountain Plain share a pattern showing a high overlap
that decreases as the index difference grows, as expected. Finally, Gazebo
shows relatively high values of overlap for each of its scans because the
environment is rather open, and there are few occlusions. We would expect
Mountain Plain to show also high overlap ratio but it is not the case due
to the ground configuration, which is quite uneven, and the lack of points
upwards and sideways, which can be confirmed by the average number of
3D points per scan as shown in Table 3.1.

Moreover, we also provided 2D topological representations with annota-
tions for the different theodolite poses needed for the recording and extra
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Figure 3.9: Estimated overlap for all data sets. Tables can be read as the ratio of point
in Scan A that are also in Scan B. Dark red is high overlap and dark blue is low overlap.
Diagonal elements have a ratio of 1. Gazebo in winter and Wood in summer were selected
as representative of the duplicated data sets.

information specific for each data set. Photographs were also taken and
marked on the topological map to give the user a quick overview of the
real environment. Figure 3.10 shows an example of such representation. A
graph of the platform orientations, gravity vectors, number of satellites and
detected magnetic north vectors are also offer to the scientific community.

3.1.10 Data Sets for Triangulation Sensors
The later eight sequences cover a vast range of problematic linked to regis-
tration. For uniformity, only a Hokuyo UTM-30LX was selected as repre-
sentative of time-of-flight sensors. However, sensors recovering depth based
on triangulation have a different noise characterization and sensor noises
can also be a predominant factor dragging down the quality of registration.
We also wanted to tackle problems of fast motions and high data streaming
rate. To evaluate those elements, we employed a Kinect sensor in a room
equipped with a Vicon tracking system. The later provides ground truth
position in the order of millimeter. We acquired several sequences under
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Figure 3.10: Example of contextual information: topological map of Apartment with
associated photographs of the environment.

ros [Cousins et al. 2010], using the Kinect OpenNI driver1 and rosbag to
record the data.

In their comparison of ICP performance, Rusinkiewicz and Levoy
[2001] used three synthetic environments composed of low-frequencies, all-
frequencies, and high-frequencies surfaces with some added noise. We reused
this concept and transposed it in a real indoor experimental setup. We
assembled three different static environments of increasing complexity (Fig-
ure 3.11). For each complexity, an operator performs three types of motions:
(1) translations on the three axes (for about 10 s per axis), (2) rotations on
the three axes (for about 10 s per axis), (3) a free fly motion over the scene
(for about 15 s). We performed each type of motions, for all environments,
at three different speeds: (1) slow motion with speed in the range of indoor
ground robots (around 0.3m/s), (2) medium motion with speed in the range
of agile robots (around 0.5m/s), (3) fast motion with a more arduous speed
(around 1.3m/s).

This gave us 27 sequences with point clouds produced by the Kinect at
30Hz and its pose tracked by the Vicon at 100Hz. We used a resolution
of 160×120 depth pixels to generate the point clouds, which creates clouds
containing at most 19200 points, as some points from the sensor were invalid.

1http://www.ros.org/wiki/ni
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(a) (b) (c)

Figure 3.11: Experimental environments of (a) low complexity, (b) medium complexity,
and (c) high complexity

3.2 Evaluations Protocols
There are multiple ways to compare ICP algorithms. We wanted to gather
in a coherent protocol what researchers occasionally evaluate sparsely in their
publications. This protocol proposes a list of important elements to compare
against each other and to take into consideration in the interpretation. We
observed that, even though a solution is developed to address a specific
problem, the impact of the new solutions in a general context is often
forgotten. Moreover, a common protocol allows faster comparison between
ICP variants. This protocol encompasses an experimental methodology and
evaluation metrics, as it is already proposed in other fields such as stereo
correspondence detection [Scharstein and Szeliski 2002], multi-view stereo
reconstruction [Seitz et al. 2006] and optical flow computation [Baker et al.
2007].

In this section, we highlighted the different elements that influence the
outcome of ICP variants and what can be controlled in order to evaluate
those variants. We also introduced robust metrics that we took into account
for a quantitative assessment of the algorithm quality. The protocol was
split into two types of evaluation: (1) intrinsic, referring to the stability of
the solution against its own parameters, and (2) extrinsic, the robustness of
the solutions against external inputs.

3.2.1 Intrinsic Evaluations
Solution characterizations are considered as intrinsic evaluation of the so-
lution. Most of the solution have predominant parameters that need to
be adjusted depending of the context of the application. Although those

51



3. Methodology

parameters are specific to a given solution and require specific setups to
highlight their pertinence, some guidelines should be followed to help other
researchers to build upon their work. Observations over a continuous range
of parameters typically offer a deeper understanding of the solution behavior.
This help to asses how critical is the parameter and can provide some insights
on how to tune this parameter in another context. Even though the proposed
solution can be very flexible in different situations, parameters need to be
fixed for an evaluation against external inputs. To allow reproducibility, an
explicit list of the parameters with their optimized value is required. Those
optimized value should be the outcome of the solution characterization.

3.2.2 Extrinsic Evaluations
Although robotic platforms and applications have a long list of distinctions,
we brought back those differences to three main input elements: (1) ini-
tial alignment, (2) overlap between scans and (3) types of environmental
structure.

The ICP takes two scans for input with an initial alignment of one
with respect to the other. As ICP is an approximate algorithm essentially
doing local convergence, its result depends on the initial pose. This initial
guess is typically provided by inertial-measurement accumulation, odometry
or heuristic motion models, which all have limited precision and larger
uncertainty with an increasing time between observations. It is therefore
important to assess how well an ICP solution converges close to the correct
pose based on various initial hypotheses. To this aim, we sampled the
space of initial alignment by adding perturbations to a ground-truth value.
While the error distribution of odometry models is usually not Gaussian
for non-linear kinematic models, the deviation from a Gaussian depends on
the actual model and command history, which goes beyond the scope of our
data sets. As a reasonable approximation, we sub-sampled the perturbations
from zero-mean 6D multivariate Gaussian distribution.

For the sampling of the initial poses, we designed three different sets
of initial perturbations sampled from Gaussian distributions with three
different variance magnitudes: Easy, Medium and Hard. We selected the
variance for each of those sets with respect to the scale of the data sets.
Figure 3.12 depicts two reference (human and scanner) to show the scale
of the perturbations and presents a 2D projection of the the translation
components. Figure 3.13 shows the cumulative probability as a function
of translation error for the three perturbation sets(i.e., Easy, Medium and
Hard). The filled backgrounds show the respective theoretical distributions.
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It is worth noting that the norm of multivariate-Gaussian–distributed vari-
ables is an χ-distribution. The difference and the jaggedness of the sampled
distribution compared to the theoretical distribution is due to the relatively
low number of samples (64) compared to the six dimensions of the sampling
space. As we aimed at proposing those perturbation samples to the com-
munity to allow everyone to compare their solution in the same conditions
as ours, we felt that increasing significantly the number of perturbations
would deter people from trying due to the computation time it would take.
The sub-sampling we used required 2,240 tests per perturbation type per
environment, which we consider to be a reasonable compromise between the
number of samples and the evaluation time.
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Figure 3.12: Overview of the scale for the 64 selected perturbations generated from
Gaussian distributions: Easy (0.1 m, 10◦), Medium (0.5 m, 20◦) and Hard (1.0 m, 45◦).
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The second factor driving the difficulty of scan matching is the amount
of outliers. If there are a lot of points that do not correspond to the
same features in both scans, the ICP runs the risk of converging to a
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local optimum driven by false matches. We quantified this phenomenon by
assessing the overlap ratio of a scan with respect to another, as the outlier
ratio is the complement of the overlap ratio. More formally, the overlap ratio
is defined by the ratio of points of a Scan A for which there is a matching
point in a second Scan B. In robotics, this overlap ratio is primarily governed
by the field of view and the motion of the sensor. Indeed, without dynamic
elements in the scene, the overlap ratio corresponds mainly to the ratio
between the intersection of sensor fields of view on the one hand, and the
field of view of the reference point cloud on the other hand. If the motion,
especially for rotation, is large when compared to the field of view, then the
overlap can be too low for the ICP to converge properly. For slow sensors,
like 2D laser scanners generating 3D point clouds by rotating around an
axis, it is therefore preferable to apply a scan matching for each consecutive
pair of scans. However, on faster sensors like rgb-d cameras running up to
30Hz, it is often possible, and even desirable, to skip several scans, as long
as the overlap is not too low.

The quality of registration is very sensitive to overlap [Pathak et al.
2010b]. However, overlap is not homogeneous in a given data set path. For
example, Figure 3.14 shows the evolution of the error in the Apartment data
set for the point-to-plane distance metric. Scans were registered following
the path, which means that every scan was paired with the scan recorded
just before. In most cases, the registration is satisfying. However, there are
a few places, around openings, where the registration performance degrades.
Those places correspond to opening of the field of view which corresponds
to a sudden decrease in the overlap. A change in overlap does not appear
uniformly in all paths executed while recording the data sets. Thus, it is
possible that the difference in overlap between two paths shade the impact of
the type of environment. To overcome this limitation, we randomly selected
35 pairs of scans, ensuring a uniform coverage of the overlap between 0.30
and 0.99 for all data sets. Those pairs were selected using the values of
Figure 3.9 with the lower bound of 0.30 forced by the lowest overlap value
in Gazebo.

Finally, the environmental structures recorded in the scans themselves
can have a huge influence on the registration quality. Indoor environments
typically exhibit a lot of planar surfaces (e.g. ground, walls, ceiling, tables)
that are therefore locally regular. In that case, if the matching step is
slightly incorrect, a wrongly associated point still has a good chance of
behaving like a correct point. On the other hand, natural environments
with trees, bushes and herbs will have false matches that are detrimental
to the error minimization. Moreover, environments without a reasonable
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Figure 3.14: Point-to-
plane solution in the
Apartment data set: separate
statistics for every pose.
The path of the scanner
(green) with the A50 and
A75 quantile statistics
overlaid on a sketch of the
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ratio of horizontal and vertical objects might lack information for a proper
registration. This typically happens in long and straight hallways or outside
on open spaces where the ground is the only major surface present. To
capture the impact of the environment, we selected six different environments
from the “Challenging Laser Registration” data sets described in Section 3.1.
The selected data sets were: Apartment, ETH, Stairs, Wood (in summer),
Gazebo (in winter), and Mountain Plain.

3.2.3 Evaluation Metrics
For each ICP solution, initial alignments (i.e. being the ground truth plus
64 perturbations) is applied to all 35 selected pairs of scans in a predefined
environment. After all the registration are applied, the evaluation produces
samples from the error distribution of resulting alignments for each pair
of scans. Then, we proposed to use cumulated error distributions over all
pairs of scans ease the interpretation of samples from that particular ICP
solution for a given environment and a given perturbation level. We can also
accumulate over the different environments for the marginal distribution of
error of a given ICP solution.
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However, this error distribution lies in SE(3), the Special Euclidean
group in dimension 3, whereas we are mainly interested in both the transla-
tion and rotation. Therefore, for simplicity, we projected the 6D distribution
into the translation and rotation errors. Given the ground-truth transfor-
mation expressed by a 4×4 homogeneous matrix Tg and its corresponding
transformation found by the registration solution Tr, we can define the
remaining error ∆T as follows:

∆T =
[
∆R ∆t
~0 1

]
= TrT

−1
g (3.1)

with its translation error et, defined as the Euclidean norm of translation
vector ∆t:

et = ‖∆t‖ =
√

∆x2 + ∆y2 + ∆z2 (3.2)

and its rotation error er, defined as the Geodesic distance directly from
the rotation matrix ∆R:

er = arccos
(
trace(∆R)− 1

2

)
(3.3)

Although those metrics are not invariant to rigid coordinate transforma-
tions (i.e., an error on rotation can also produce an error on translation),
they uniform for every competitive solutions and represent quantity that
can easily be interpreted.

In order to compare more easily these error distributions, we used robust
statistics like the median and the quantiles instead of mean and covariance.
Indeed, as the error distributions are far from Gaussians, the empirical mean
and covariance are not really indicative values for interpreting precision and
accuracy. This choice is similar to May et al. [May et al. 2009] where the
authors defined A50, A75, A95 as the respective quantiles for probabilities
0.5 (i.e. the median), 0.75 and 0.95 of the error distributions. Another
advantage of these statistics is that they allow interpretation in terms of
accuracy and precision. The solution under evaluation is accurate if the
values of A50, A75 and A95 are close to zero. The solution is precise if the
difference between those quantiles are small.

We used a specific metric when evaluations need to be done on a sequence
of scans, as opposed to pre-selected pairs of scan. As demonstrated by
Kümmerle et al. [2009], it is better to evaluate the error between the relative
poses instead of the error in a global frame of reference. In the case of the
data set recorded with the Kinect, we had to select a significant relative
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displacement knowing that the data were recorded at 30 times per second. To
provide robustness against noise, we cumulated the path over 30 registrations
and then computed the error in translation et and in rotation er. This can
be interpreted as a rate of error per second.

In sequential evaluation, it is possible that failures happen (i.e. low
number of points, divergence, etc.), so it is preferable to output the same
initial transformation to the system in order to not break the sequence
of registration. In a situation where no motion model is used, this mean
returning an identity matrix. In the case of registration applied at 30Hz,
this default behavior can be very close to the ground truth pose. Thus,
it is important to keep track of those failures and penalize the evaluation
accordingly. We kept track of the number failures Nfail over a dataset having
a number of registrations Nicp. In the case of free-fly-motion sequences,
Nicp = 447. In the case of translation and rotation sequences, Nicp = 838.
We defined an ICP performance metric penalizing the number of failures
as:

perf = Nicp −Nfail

Nicp

1
median(et)

(3.4)

The first fraction gives the success ratio while the second one is the
inverse of the median error of the data set. The intuition behind the use
of this performance metric, instead of using directly the error, is that we
expected that time and performance curves have similar trends. If the
evolution of both curves follows the same tendency, it is difficult to devise a
clear parameter optimum. With this ratio (Equation 3.4), the performance
will be 0 if all registrations fail and will be equal to the inverse of the
translation error if all registrations succeed. We can define a similar metric
for rotation error by replacing et by er.

To have a deeper understanding of the error distribution, it is possible to
use the cumulative function of this distribution instead of only the A50, A75
and A95 quantiles. Those graphs thus present the proportion of registration
solutions that lie beneath a given error. Moreover, it is easy to see the
value of this error for each quantile. This type of representation was called
Recall-Accuracy Threshold in a previous work [Jian and Vemuri 2011]. An
alternative representation of those results is the histograms of the number of
registration solutions for each error bin, which corresponds to the derivative
of the cumulative error that we proposed. However, that representation
renders difficult the comparison of many error distributions and the depiction
of the A50, A75 and A95 statistics.
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Finally, the computing time can be an important factor, especially for
online applications with real-time constraints and embedded systems with
limited processing power. Thus the challenge is to obtain an absolute
evaluation of the computing time that is relevant for different hardware and
different use cases. The choice of the programming language, the technical
level of the programmers, the amount of parallelism, etc., are all elements
that could affect time performance. In general, time evaluation should
be considered as qualitative measurement, unless all those elements are
controlled and known to be as uniform as possible.

3.2.4 Protocol
With those metrics, we can now propose a protocol for the evaluation of
ICP variants that goes beyond parameter identifications.

First, variants should always be compared to a commonly accepted ICP
baseline. This contrasts with papers that compare novel variants between
themselves in order to highlight a specific hypothesis. While we recognize
the interest of these works, the amount of ICP variants presented in the
literature calls for more effort to link them to each other.

Second, ICP variants need to be compared on enough data in order to
reduce the risk of overfitting and to ensure statistically signifiant interpreta-
tions. Specific fields of applications may require specialized data sets, but
efforts should be made to also compare over generic data sets. To obtain
a comparison as unbiased as possible, the data sets should cover various
kinds of environments at different overlap ratios. In this section, we have
suggested to employ a group of 3D robotics data sets covering a variety
of environments. Moreover, algorithms should be compared with different
perturbation distributions in order to assess their robustness.

Finally, the comparison with other solutions should be made with respect
to the distribution of errors rather than being made just on a single result.

In a nutshell, researchers evaluating their solution against the laser data
sets should maintain a certain uniformity by:

1. Characterizing the main parameters of their novel solution.

2. Evaluating their solutions using predefined data sets, pairs of scans
and perturbations.

3. Recording translation and rotation errors following Equation 3.2 and
Equation 3.3.
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4. Recording computational time excluding data acquisition but including
preprocessing steps.

5. Reporting strength and weakness against environment type, perturba-
tion level and overlap ratio.

6. Comparing their results with formal solutions in terms of precision
and accuracy using A50, A75 and A95 statistics.

7. Making their results publicly available whenever possible, so that other
researchers can accelerate the comparison process.

Although the later protocol should be used in priority, it might be more
pertinent to realize the evaluation over more dynamic data sets. These
data sets can highlight specific problems encountered by more agile and fast
moving systems. In that case, we suggest to:

1. Characterize the main parameters of the novel solution.

2. Evaluate the solution using a predefined point cloud sequences.

3. Record translation and rotation errors following Equation 3.4.

4. Record computational time excluding data acquisition but including
preprocessing steps.

5. Report strength and weakness against environment type, motion speed
and motion type.

6. Compare their results with formal solution in terms of precision and
accuracy using A50, A75 and A95 statistics.

7. Make their results publicly available whenever possible, so that other
researchers can accelerate the comparison process.

3.3 Modular Registration Library
As explained in Chapter 2, the ICP is an iterative algorithm performing
several sequential processing steps, both inside and outside its main loop.
For each step, there exist several strategies, and each strategy demands for
specific parameters.

To our knowledge, there is currently no software tool to compare these
strategies. The Point Cloud Library (PCL) has a partial support for filters
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Table 3.4: List of processing blocks available in libpointmatcher. This list displays
the status of the library as of version 1.0.0 and is intended to evolve over time.

Modules Current Implementations

Data filtering FixStepSampling, MaxDensity, MaxPointCount,
MaxQuantileOnAxis, MinDist, ObservationDirection,
OrientNormals, RandomSampling, RemoveNaN,
SamplingSurfaceNormal, Shadow, SimpleSensorNoise,
SurfaceNormal

Data association KDTree, KDTreeVarDist
Outlier filtering MaxDist, MedianDist, MinDist, SurfaceNormal,

TrimmedDist, VarTrimmedDist
Error minimization PointToPlane, PointToPoint
Transformation checking Bound, Counter, Differential
Inspection Performance, VTKFile
Log File

in its registration pipeline, but not a completely reconfigurable ICP chain2.
To enable such a comparison, we have developed a modular ICP chain,
as illustrated in Figure 3.15, and made it available as open source in the
form of the libpointmatcher library3. This library is written in c++11,
restricted to the subset supported by gcc 4.4 and more recent versions. In
the ICP chain, every module is a class that can describe its own possible
parameters, therefore enabling the whole chain to be configured at run
time using yaml. This text-based configuration aids to explicit parameters
used and eases the sharing of working setups with others, which ultimately
allows for reproducibility and reusability of the solutions. Table 3.4 lists the
available modules.

Our ICP chain takes as input two point clouds, in 2D or 3D, and
estimates the translation and the rotation parameters that minimize the
alignment error. We called the first point cloud the reference and the second
the reading. The ICP algorithm tries to align the reading onto the reference.
To do so, it first applies filtering to the point clouds, and then it iterates
through a sequence of processing blocks. For each iteration, it associates
points in reading to points in reference and finds a transformation of reading
that minimizes the alignment error.

2We are in contact with PCL developers to integrate parts of our work into it.
3http://github.com/ethz-asl/libpointmatcher, version 1.0.0 at time of sub-

mission of this paper.
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Figure 3.15: The modular ICP chain as implemented in libpointmatcher. Note that
some data filters are applied to the reading only once, and some are applied at each
iteration step.

3.3.1 Processing Blocks
More specifically, the ICP chain consists of several steps (Figure 3.15),
implemented by modules (Table 3.4). The steps and the corresponding types
of modules are:

• Data filtering: This step applies to both the reference and the reading
point clouds. At this step, zero or more DataPointsFilter modules
take a point cloud as input, transform it and produce another cloud
as output. The transformation might add information, for instance
surface normals, or might change the number of points, for instance
by randomly removing some of them.

• Transformation: The reading point cloud is rotated and translated.
Additional data, such as surface normals, are transformed as well.

• Data association: A Matcher module links points in the reading to
points in the reference. Currently, we provide a fast k–nearest-neighbor
matcher based on a kd-tree, using libnabo.

• Outlier filtering: Zero or more OutlierFilter modules remove (hard
rejection) and/or weight (soft rejection) links between points in the
reading and their matched points in the reference. Criteria can be
a fixed maximum authorized distance, a factor of the median dis-
tance, etc. Points with zero weights are ignored in the subsequent
minimization step.
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• Error minimization: An ErrorMinimizer module computes a trans-
formation matrix to minimize the error between the reading and the
reference. Different error functions are available, such as point-to-point
and point-to-plane.

• Transformation checking: Zero or more
TransformationChecker modules can stop the iteration depending
on some conditions. For example, a condition can be the number
of times the loop was executed, or can be related to the matching
error. Because the modules can be chained, we defined that the
relation between modules must agree through an OR-condition, while
all AND-conditions are defined within a single module.

3.3.2 Data Types
The ICP chain provides standardized interfaces between each step. This
allows for the addition of novel algorithms to some steps to evaluate their
effect on the global ICP behavior. These interfaces are:

• The DataPoints class represents a point cloud. For every point, it
has features and, optionally, descriptors. Features are typically the
coordinates of the point in space. Descriptors contain information
attached to the point, such as its color, its normal vector, etc. For
both features and descriptors, every point can have multiple channels.
Every channel has a dimension and a name. For instance, a typical
3D cloud might have the channels “x”, “y”, “z”, “w” of dimension 1 as
features (using homogeneous coordinates), and the channel “normal”
of size 3 as descriptor. There are no sub-channels, such as “normal.x”,
for the sake of simplicity. Moreover, the position of the points is
in homogeneous coordinates because they need both translation and
rotation, while the normals need only rotation. All channels contain
scalar values of the scalar type from the template parameter. Although
this might be sub-optimal in memory, it eases greatly the interaction
between the different modules.

• The Matches class is the result of the data-association step, before
outlier rejection. It corresponds to a list of associated reference identi-
fiers, along with the corresponding squared distance, for all points in
the reading. A single point in the reading can have one or multiple
matches.
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• The OutlierWeights class contains the weights of the associations
between the points in Matches and the points in the reference. A
weight of 0 means no association, while a weight of 1 means a complete
trust in association.

• The TransformationParameters is a transformation in the Special
Euclidean group of dimension n, SE(n), implemented as a matrix of
size n+ 1× n+ 1.

3.3.3 Implementation

All modules are children of parent classes defined within the PointMatcher
class. This class is templatized on the scalar type for the point coordi-
nates, typically float or double. Additionally, the PointMatcherSupport
namespace hosts classes that do not depend on the template parameter.
Every kind of module has its own pair of .h and .cpp files. Because modules
can enumerate their parameters at run time, only the parent classes lie in
the publicly accessible headers. This maintains a lean and easy-to-learn
Application Programming Interface (API).

To use libpointmatcher from a third-party program, the two classes
ICP and ICPSequence can be instantiated. The first provides a basic regis-
tration between a reading and a reference, given an initial transformation.
The second provides a tracker-style interface: an instance of this class
receives several point clouds in sequence, and continuously updates the
transformation with respect to a user-provided point clouds. This is useful
to limit drift due to noise in the case of high-frequency sensors [Pomerleau
et al. 2011b]. A common base class, ICPChainBase, holds the instances of
the modules and provides the loading mechanism.

While developing novel solutions, it is crucial to understand what is
going on, in particular in complex processing pipelines like the ICP chain.
Therefore, libpointmatcher provides two inspection mechanisms: the log-
ger and the inspector. The logger is responsible for writing the information
during the execution to a file or to the console. It will typically display
light statistics and warnings. The inspector provides a deeper scrutiny than
the logger. There are several instances of inspectors in libpointmatcher.
For instance, one dumps ICP operations as vtk files [Schroeder et al.
2006], allowing to visualize the inner loop of the algorithm frame by frame.
Another inspector collects statistics for the performance evaluation.
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3.4 Summary
In this chapter, we introduced new data sets covering a diversity of chal-
lenging environments for registration algorithms. Although some of those
environments can be found in already available data sets, our Laser Regis-
tration Data Sets englobe them all in a coherent group recorded with the
same methodology and material. We achieved precise localization of the
scanner using a theodolite, which gave us the ability to record data sets in
GPS denied environments, indoors or outdoors, with the same setup. The
precision achieved is also higher than when using data sets that are already
available to the community, which should ease the evaluation of registration
algorithms on a fair base. This will allow for the development of improved
registration algorithms when mapping challenging environments, such as
found in real world situations. The data sets and supporting information
are publicly available under the section IJRR - Laser Registration Datasets
at:

http://projects.asl.ethz.ch/datasets

Complementary data sets for triangulation sensors with fast motions is also
available under the section IROS 2011 - Kinect Dataset.

The protocol proposed focus on comparing ICP variants but the guide-
lines could be applied to most of the registration evaluations. The results
obtained using the Laser Registration Data Sets will be made available
through the same web site. This should allow researchers to produce com-
parative results without having to re-implement other solutions.Online tools

have also a
strong influ-
ence in older

research fields.
For example

in biology,
GenBank is
a database

keeping track
of which or-

ganisms have
their DNA se-
quenced. This

avoid multi-
ple publica-
tions of the

same genome.

We also presented an open-source modular ICP library that can further
improve the repeatability by allowing easy tests and comparisons with
baseline variants. Thus, this modular library is the companion of choice of
our protocol. The library comes with code examples, documentation and
wrapper for Robot Operating System (ROS). It can be found on the public
repository:

https://github.com/ethz-asl/libpointmatcher

Publications are an essential tool for scientific research, but online tools
can also help gathering knowledge on a specific topic. When it comes to
hardware, repeatability of an experiment can be tedious to achieve. On the
contrary, softwares does not have the same physical limitations. ROS and
PCL are good examples of open source softwares having an impact in the
robotics field. The drawback is that it takes extra work to document well to

64

http://projects.asl.ethz.ch/datasets
https://github.com/ethz-asl/libpointmatcher


3.4. Summary

make the information accessible publicly and to maintain the information
up-to-date. In this work, we invested time to ensure that the data sets,
the evaluations results and the softwares are publicly available, hoping to
support further research. We believe that the combination of data sets,
protocol and software nicely shows how open-source softwares can drive
research forward.

65





Chapter 4

Characterizations and
Evaluations

R egistration solutions applied to robotics have their own needs
and constraints. Even if ICP algorithms are 20 years old, many
systems fail due to a lack of knowledge on intrinsic and extrinsic

characteristics of novel algorithms. In this chapter, we provide a deeper
analysis of typical sensor noises, real-time solutions and robustness against a
range of different inputs for improving successful autonomous system heavily
relying on registration algorithms.

Common time-of-flight sensors used in robotics are still missing noise
quantification. Section 4.1 presents noise models for three types of laser and
discusses of the impact of the noise on surface reconstructions. Those results
were presented at the 2nd International Conference on Applied Robotics
for the Power Industry [Pomerleau et al. 2012a]. The problem of real-time
optimization is addressed in Section 4.2 and conclusions were published at
the IEEE 2011 International Conference on Intelligent Robots and Systems
[Pomerleau et al. 2011b]. Modern mobile platforms are expected to localize
themselves in a range of environments. In Section 4.3, we approach the
question of how viable are the original solutions proposed by Besl and McKay
[1992] and Chen and Medioni [1991]. This refreshes the observations realized
by Rusinkiewicz and Levoy [2001], which were mainly based on simulated
data. The main conclusions of our evaluations were accepted for publication
in the journal of Autonomous Robots [Pomerleau et al. 2013]. The chapter
concludes in Section 4.4 with some guidelines for tuning ICP solutions
according to the application.
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4.1 Sensor Noise Identification
Many studies propose rangefinder sensor characterizations evaluating depth
measurement errors under one or multiple conditions. A first group of
characterizations evaluates the depth readings with respect to the target
distance, incidence angle, brightness/reflectivity and heat level (radiance).
Other type of studies evaluate the robustness of measurement in different
ambient lights and air conditions (e.g., dust, rain, smoke, etc.). Finally,
range sensors were found to be sensitive to their internal temperature, which
can evolve in time, especially during the first hour of utilization. This type
of error can easily be in the range of centimeters [Kneip et al. 2009]. The
mixed pixel problem (i.e., a single laser beam footprint large enough to cover
two objects at different depth) is first highlighted by Hebert and Krotkov
[1991] and is still present in more recent sensors.

The most studied scanner is the Sick LMS-200, which is first characterized
by Ye and Borenstein [2002], and further investigated in multiple work
[Alwan et al. 2005; Jain et al. 2011; Pascoal et al. 2008; Lee and Ehsani
2008; Sanz-Cortiella et al. 2011]. A new generation of smaller Sick laser
(LMS-100 family) is evaluated by Rudan et al. [2010]. This new scanner
was presented as a competition to the smaller scanners proposed by Hokuyo.
Evaluations for the Hokuyo series are well detailed with the characterization
of the PBS-03JN [Alwan et al. 2005], the UBG-04LX-F01 [Park et al. 2010],
the URG-04LX [Pascoal et al. 2008; Kneip et al. 2009; Paul et al. 2009;
Okubo et al. 2009] and, more recently, the UTM-30LX [Tretyakov and Linder
2011; Li et al. 2011; Hrabar 2012]. Comparisons between Sick LMS-200
and Hokuyo URG scanners is also tackled in the literature [Lee and Ehsani
2008; Pascoal et al. 2008]. At a larger scale, Wong et al. [2011] compare 10
sensors, from the Faro Photon80 up to a custom made stereo ring, in an
underground mapping situation. Time-of-flight cameras, from Mesa Imaging
(formally SwissRanger), are characterized by Kahlmann et al. [2006] and
May et al. [2009], leading to calibration models. Calibration for the Velodyne
is also proposed by Atanacio-Jimenez et al. [2011] to improve the accuracy
of the scanner from 23 to 1.5 cm. Recently, the Kinect is used in many
robotics applications and is also characterized by Khoshelham and Elberink
[2012]. Those studies, for sensors that are not discontinued, are regrouped
in Table 4.1 to ease further consultation.

Based on Figure 2.1 and Table 4.1, we selected sensors with a small
enough weight to be carried by medium-size robots, while ensuring a rea-
sonable scanning range. We focused on time-of-flight and phase-shift depth
sensors to ensure uniformity in the evaluation methodology. We investi-
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UTM Kinect UBG PBS LMS 200 URG
Target

distance 1 2 3 4 5, 6 5, 7, 8
brightness – 9 3, 9 4 5, 6 5, 7, 8
reflectivity – – 3 4 5, 6 5, 7, 8
incidence angle – – – 4 5, 6 5, 7, 8
heat – – – – 5 5

Ambient

conditions 1, 10 10 – – 5 5
lights – – – – – 8

Other

time/temp. drift – – 3 4 6, 5, 11, 12 7, 8, 5, 12
mixed pixel 1 – – 4 6, 13 7
sensor attitude – – – – – 8

Table 4.1: Related studies of popular range sensors in relation with different types of
evaluations. 1: [Li et al. 2011], 2: [Khoshelham and Elberink 2012], 3: [Park et al. 2010],
4: [Alwan et al. 2005], 5: [Pascoal et al. 2008], 6: [Ye and Borenstein 2002], 7: [Okubo
et al. 2009], 8: [Kneip et al. 2009], 9: [Park et al. 2011], 10: [Tretyakov and Linder 2011],
11: [Jain et al. 2011], 12: [Lee and Ehsani 2008], 13: [Sanz-Cortiella et al. 2011].

gated the UTM-30LX and the LMS-151 to provide uncertainty models for
which no models were found in the literature. Finally, we also studied the
URG-04LX with the same methodology to compare our results with prior
characterizations [Kneip et al. 2009; Okubo et al. 2009; Pascoal et al. 2008].

4.1.1 Experimental Protocol
A first set of measurements has been produced to determine the width of
the laser beams. This beam deviation is present in the specifications of the
SICK lasers but not in the Hokuyo ones. Each sensor scanning plane was
put perpendicular to a wall at four different distances: 1, 3, 5 and 9m. For
each distance, a picture was taken using a camera without an infrared filter.
A ruler fixed on the wall was used to determine the beam diameter as shown
in Figure 4.1.

Moreover, a larger set measurements were recorded to evaluate depth
error. As opposed to most protocols used in formal characterization, which
focus on a single beam, we realized our evaluation on full 3D scans of
metallic plates. We believed that such type of evaluation is much closer to
real applications and leads to more realistic models. We used the custom-
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Figure 4.1: Different laser
patterns detected using an in-
frared camera with the laser
at 3m: (a) LMS-151, (b)
UTM-30LX and (c) URG-
04LX. (a) (b) (c)

made tilting platform, described in more details in Section 3.1.3, to mount
the 3 different lasers and take 3D scans of different surfaces. The surfaces
have been selected to represent a subset of metallic surfaces. We aimed
at characterizing harsh and normal conditions to ensure that we did not
under evaluated the noise. The surfaces were roughly 2 m long per 1 m
large and the materials were: aluminum, metallic surface covered with paint
(white board usually used with colored markers), old steel and rusty iron.
Figure 4.2 presents photographs of all plates.

(a) (b) (c) (d)

Figure 4.2: Scanned plates: (a) aluminum, (b) white board, (c) steel and (d) rusted iron.

We scanned those surfaces at five different distances, namely 0.2, 1.0,
2.0, 4.0 and 8.0m. The theodolite TS15, from Leica Geosystem, was used
to collect ground truth distances in a precision range of millimeters. The
poses (i.e., orientations and positions) of the scanner were determined with
the same protocol as in Section 3.1.3. As for the plate poses, six markers
were installed on the periphery of the plates and measured with the same
theodolite. Given that we obtained the transformation from the theodolite
to the scanner, we can also express the points on the plates in the reference
frame of the scanner. Using the location of those markers, the plate is
divided in four triangles against which all points from the 3D scan of the
plate are segmented (Figure 4.3 - left). With some basic geometry concepts,
the error of each beam was determined given the triangle in which it is
associated (Figure 4.3 - center). For each 3D scan, the intensity reflected
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by the surface was also recorded (Figure 4.3 - right). Those measurements
were realized indoors for all combinations of sensors, materials and distances.
The experimental setup was repeated outdoors for the the UTM-30LX to
observe the influence of the sun on the measurements. The illumination
of the environment at the plate level was measured with the TES 1332a
Digital LUX Meter. This gave us a total of 80 different 3D scans with an
average of 30,000 points per scan.
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Figure 4.3: Example of the results based on a scan of the iron plate at 1.0 m using
the UTM-30LX. Left: point segmentation based on ground truth measurements, color
representing the clusters. Center: depth error [mm] on each beam value (positive when
too close and negative when too far from the plane), color representing error. Right:
intensity [103] returned for each beam, color representing the intensity as outputted from
the UTM.

4.1.2 Random noise
For all results reported in this subsection on noise modeling, we removed
measurements that were heavily affected by reflection. In our data set,
those points were producing errors larger than 0.05m. We separated the
evaluation of those spurious readings and addressed them in Section 4.1.2.

We first analyzed the angular uncertainty for each laser. We used a
linear regression in the form of y = ax + b to evaluate the beam opening
angle (Figure 4.4). For all fittings, the coefficient of determination R2 was
larger than 0.95. Based on those results, we confirmed the manufacturer
specifications for the LMS-151 with an opening angle of 0.83 ◦. For the
URG-04LX and the UTM-30LX, we evaluated the angles to be 0.13 ◦ and
0.14 ◦ respectively.

For the uncertainty on depth, we used the measurements realized over
different distances and clustered them per sensor and material as depicted in
Figure 4.5. For every type of material, represented with letters in the Figure,
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Figure 4.4: Radius of the
laser beam with respect
to measurement distances.
Dots represent the experi-
mental measurements and
the dashed lines the modeled
beam radius.
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the median is marked with a point while the 50% of the measurements are
contained within the error bars. Although systematic noise can be observed,
especially for the URG-04LX given the different materials, we were mainly
interested in the disparity of the depth measurement error for the model.
Considering that all types of materials are equally likely to be found in the
environment, we used the mean of the distances between each error bar
as an estimate of the std. This leads to a disparity of 0.028m for the
URG-04LX, 0.018m for the UTM-30LX, and 0.012m for the LMS-151.

Figure 4.5: Error in depth
measurement for different
types of material (A: Alu-
minum, B: White board, S:
Steel, and I: Iron). A B S I A B S I A B S I
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We defined 2 types of error models for every point based on the depth
returned by the sensors. Both models approximate the dispersion using
Gaussian representation with the mean being the point read. The first
model is anisotropic and is parametrized with a vector representing the
beam direction ~b supporting the std on depth σd. The std of the beam
radius σr is supported implicitly by any vector perpendicular to ~b. The
second model is a further simplification using an isotropic representation
with only one std defined as σm = max(σd, σr). Figure 4.6 presents the
notation and the comparison between the two models.

Parameters estimated based on our characterization are summarized in
Table 4.2, for all sensors. A graphical comparison of the isotropic noise model
for the three rangefinder lasers is depicted in Figure 4.7. We added the Kinect
noise model from Khoshelham and Elberink [2012] for comparison. One
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Sensor
laser

beam
Figure 4.6: 2D projection of
the isotropic (gray) and the
anisotropic (light gray) error
model. In 3D, σm corresponds
to the radius of a ball while
σr is uniform around ~b

should be careful when comparing the LMS-151 and the Kinect because the
largest uncertainty of the Kinect is mainly observed on depth measurements
while the LMS-151 uncertainty is mainly caused by the laser beam opening
angle when the depth is larger than 1.6m. One can also notice that more
precise measurements can be obtained with the Kinect if the expected
structure is within 4 m. Otherwise, the UTM-30LX should be used. On one
side, the opening angle of the LMS-151 produces less precise measurements
at long range. On the other side, this opening angle coupled with its angular
resolution ensures an overlap of 50% of every beam by the subsequent one,
giving more safety about the reading. The LMS-151 also has a longer range
than the UTM-30LX.

Table 4.2: Uncertainty model parameters for the three lasers studied. The measured
depth d is expressed in meters.

Sensor Anisotropic Isotropic

URG-04LX σr = 1.3d−0.1
1000 σm = 0.028

σd = 0.028

UTM-30LX σr = 0.6d+1.48
1000 σm = 0.018

σd = 0.018

LMS-151 σr = 6.8d+0.81
1000 σm = 0.012 if d < 1.646

σd = 0.012 σm = 6.8d+0.81
1000 else

When comparing our model for the URG-04LX to other studies, two
main differences appear. First, we did not adjust the depth measurements
based on a linear [Okubo et al. 2009] or third order polynomial [Kneip et al.
2009] correction. Based on our measurements, we could not find a simple
model that was only based on the measured depth that could be useful in
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Figure 4.7:
Comparison of the
isotropic error model for
the three lasers studied
compared with the error
model of the Kinect
from [Khoshelham and
Elberink 2012]. Top:
close-up of the models
at short range. Bottom:
models up to the maximal
range of all sensors.
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most environments. Second, our std is roughly ten times larger than the
ones suggested in the other studies. We argue that formal std reported are
underestimated mainly due to the methodology used. The other evaluations
take into consideration a single beam on an optimal material (medium gray
[Okubo et al. 2009] or white paper [Kneip et al. 2009]), without considering
the impact of the incidence angle. When looking more carefully at the larger
range of error they reported over different incidence angles and materials,
one can easily observe a variance in the order of centimeters, which seems
consistent with our model.

It might be surprising that we went for a constant noise model but, as
demonstrated in Figure 4.8, the simple model encompass well the random
noise and avoid the risk of over fitting a function with high degrees of
freedom. It is important to note that for each cluster of distances, we
subtract the median to reveal the variance of the data. The median error,
on the other side, is dependent on distance, reflectivity of the surface, angle
of incidence, etc.

Sensitivity to structure extraction

As explained in Section 2.3, structural information plays a critical role in the
registration process. Although differential geometry proposes useful theories
about shape modeling, noise in the reading might limit their usabilities. A
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Figure 4.8: Raw variance re-
sults for the UTM-30LX. Gray
points represent variance mea-
sured, while the blue lines the
model proposed.

typical way to extract surface normal vectors from a point is to search for
its NN, then recenter this subset to their mean and finally select the Eigen
vector associated to the smallest Eigen value as the surface normal. On one
side, the maximal radius for which the NN search is bounded depends on
the size of the expected planar structure. The larger is the radius, the more
robust to noise the extracted planar surface will be. On the other side, the
lower bound for the NN search radius depends of the expected noise of the
sensor used. We characterized this sensitivity to noise by extracting surface
normal for each point, i.e., all sensors, all distances and all materials, and
variated the size of the NN search radius, r = {0.01, 0.05, 0.1, 0.2, 0.5}m.
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Figure 4.9: Medians surface
normal errors (rad) for differ-
ent NN search radius and the
three sensors studied. Note
that the errors reported for
0.02m (> 0.6 rad) are cut to
improve readability.

Figure 4.9 presents the medians of the resulting surface normal error
(rad) for each sensor over the tested NN radius. Given that the evaluation
was done on large planar surfaces, one can notice that the median error
slowly decreases with a larger radius. Also, the median error grows very
quickly under 0.05m for all sensors. Based on those observations, we propose
this value as the minimum radius that should be used for surface extraction.
Within that lower bound, we can expect to have a surface normal error
around 3.5◦ (0.06 rad) for the URG-04LX and around 1.6◦ (0.03 rad) for
the UTM-30LX and the LMS-151. Of course, those values will hold only
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in the case where the density of point is high enough so the noise can be
minimized.

Impact of sunlight

We observed a difference between the measurements taken indoors and
outdoors, but the link between the sunlight and the difference in the reading
is not that obvious. Prior evaluations concluded that the internal tempera-
ture of the sensor can influence greatly the reading (see Table 4.1 column:
time/temp. drift for references). The main influence might arise from the
sun heating the sensors. More controlled experiments must be conducted to
confirm this hypothesis.

Impact of reflection and large intensity range

Reflecting surfaces like the aluminum plate poses three challenges. First,
when the incidence angle is large, most of the energy is not reflected back to
the sensor, which can lead to miss some measurements. Based on Figure 4.10,
the URG-04LX seems to be more sensitive to this phenomena than the others.
Second, there is also the probability that the beam gets reflected to another
surface, leading to an overestimation of the depth. On Figure 4.10, the
lower part of the plate displayed a larger error due to the ground being
reflected. We concluded that the LMS-151 is more prone to such reflection
given that the energy emitted by the sensor must be stronger to reach its
maximal range (50m). Finally, reflective plates exhibit a larger spectrum
of reflected intensity, which seems to create systematic error that produces
wave patterns. Preliminary results showed that there is a strong correlation
between the error and the intensity, but deeper a investigation is required
to propose a correction model.

This analysis gives us better understanding on noises that will be passed to
the registration solution. Therefor, we can use the noise models in the error
minimization function and relax the constraints induce by noisy points.
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Figure 4.10: Front view of the aluminum plate for different distances. Color represents
the error on depth with black being the error mainly due to reflection.

4.2 Fast Tracker Characterization

2D rangefinders were a cornerstone to the development of mapping and
navigation field in the last two decades. Nowadays, rotating laser scanners,
stereo cameras or depth cameras (rgb-d) can provide dense 3D point clouds
at a high frequency. Large point clouds are costly to process so approxi-
mation methods were developed to accelerate registration speed. The chief
assumption of ICP is that the association between points is mostly correct
when using the closest point. If not, the computed transformation may be
irrelevant. There are typically two ways to ensure that the association is
correct: (1) attaching descriptors to the points to ease disambiguation, or (2)
applying the ICP algorithm fast enough to limit the magnitude of changes.
Descriptors are widely used in the vision community to match images and
recently, 3D descriptors have been introduced to help the association step
of ICP (see the work of Pathak et al. [2010b] or Zhuo and Du [2010] as
recent examples). While the descriptor approach is promising, most elabo-
rated geometric descriptors are still too computationally costly for online
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processing. In the section, we explored the second option.
Our goal was to optimize the use of lean and simple descriptors to

produce an ICP-based 3D pose estimator at the frame rate of modern
rgb-d sensors and to observe the impact on registration quality. Thus, we
focused on simple solutions regarding sensor-noise modeling, point selection,
and matching. We concentrated on the improvement of the tracker speed
while keeping the pose estimation in a usable range. This was done by
exploiting the modularity of our ICP library to adapt different filters.
Finally, we showed statistical analysis of the tracker behavior in the context
of indoor navigation using a Microsoft Kinect. We performed this evaluation
using the data sets presented in Section 3.1.10.

4.2.1 Tracker
Using libpointmatcher, presented in Section 3.3, we implemented a fast
tracker for the registration evaluation. This tracker takes as input a stream
of point clouds and produces as output an estimation of the 6D pose of
the sensor. To avoid drift, the tracker holds a single reference and matches
every incoming point cloud against it. If the ratio of matching points drops
below a pre-defined threshold, the tracker creates a new reference with the
current cloud. This keyframe-based mechanism allows a higher frame rate
by reducing the number of kd-tree creation and by limiting drift if the sensor
stays at the same position. To easily explore the different parameters that
affect the performance of the ICP algorithm, the ICP chain is completely
configurable at run time.

4.2.2 Experimental protocol
A typical experiment on a data set implies a single value of time and perfor-
mance over Nicp for a given parameter. Then, we repeated the computation
Ntest times to increase statistical significance, as some filters introduce ran-
domness. We repeated these over a range of parameters Npar for different
datasets. Such experimentation gives us a graph such as Figure 4.11 (left).
Then, to ease the interpretation of results, we used robust estimators (i.e.
median or quantiles as opposed to mean or variance) to extract the mode
and the dispersion of the distribution for a given parameter. Figure 4.11
(right) shows the extraction of the median (A50) with the A75 and A95
quantiles. In our experiments, we observed that quantiles followed the same
tendency as the median, so in further graphs we only presented the median
for simplicity. Moreover, we made the assumption that a small parameter
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Figure 4.11: Example of processing taken from the sensor noise experiment (see the
following Sensor Noise Section). Left: raw results. Right: extracted metrics based on
0.5, 0.75 and 0.95 quantiles.

change will be continuous over a larger range of situations that we can test.
Following this assumption, we smoothed each curve using a moving average
with a window size of 3.

We first explored parameters related to sensor noise, subsampling, and
NN approximation. We used the data sets with the free-fly motion at low
speed within the three types of environments. Given the resulting optimized
parameters, we evaluated the robustness against all 27 data sets and also
looked at the effect of the hardware on the processing speed. All these
experiments used a different number of tests and parameters. Table 4.3
summarizes the configuration of each experiment, with the final column
representing the total number of ICP computed per experiment, expressed
as a factor of 1’000’000. The total number of registrations required for the
experimental section is around 11 millions.

Experiment Names Nicp Npar Ntest Total (M)
Sensor noise (fixed) 3× 447 20 45 1.2
Sensor noise (ratio) 3× 447 19 45 1.2
Subsampling (ratio) 3× 447 39 30 1.6
Subsampling (step) 3× 447 39 30 1.6
NN approximation 3× 447 20 60 1.6
Robustness 9× 447 1 20 3.8

+18× 838
Hardware speed 1× 447 39 20 0.4

11

Table 4.3: Number of ICP per experiment

Additionally, we fixed the error minimization solution as being the point-
to-plane error [Chen and Medioni 1991], and the outlier filter being the
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median distance [Chetverikov et al. 2002] for all experiments.

Sensor Noise

The first experiment deals with methods to handle the sensor noise. Based
on parallax, the Kinect has an accuracy on the depth that is inversely
proportional to the distance. Moreover, it has a dead zone of 0.4m close to
the sensor. To deal with the Kinect noise, we explored two techniques: (1)
a fixed threshold to prune points over a certain depth, and (2) a ratio of
points to keep with the smallest depths. Both these techniques eliminate
points farther then a certain distance. One could also employ weighted
minimization to handle sensor noise, but as we wished to optimize processing
time, dropping points is more efficient.

The results for the fixed threshold (Figure 4.12, left) showed that below
1.5m, this method does not yield enough points to ensure registration.
As the threshold increases from 1.5m to 5m, the performance and the
processing time follow a similar curve, essentially monotonic. The reason is
that the average depth of what is detected changes while the sensor moves,
and setting a fixed threshold leads to a lack of points in some situations. On
the contrary, using a percentage of points has a different behavior, as shown
in Figure 4.12 (right). Between a ratio of 0.4 and 0.6, the performance is
higher than using all the points (i.e. with a ratio of 1.0) while the time is
divided by half. Indeed, keeping less than 40% of the points reduces chances
to take advantage of important constraints and using all the points does not
cut off any noise. Therefore, in further experiments we selected the second
technique with a ratio of 0.4.
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Figure 4.12: Performance and processing time for sensor-noise thresholds. Left: param-
eters based on fixed distances Right: parameters using quantiles. On both graphs, the
ICP performances are in dark blue and the time in light yellow.
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Subsampling

The second experiment evaluates how much we can subsample the point cloud
without loosing too much performance. Again, we compared two subsampling
techniques: (1) the random selection of points using a uniform distribution,
and (2) the selection of only one point every n points (called fixed step
technique). More complex subsampling techniques exist to compensate
radial distribution of 3D scanners [Gingras et al. 2010] or to select points
leading to a more constrained minimization [Gelfand et al. 2003], but these
are too slow to cope with real time processing at 30Hz.

We observed that processing time follows linearly the ratio of points
used while performance follows an exponential convergence (Figure 4.13,
left). The step technique results (Figure 4.13, right) showed an exponential
reduction of the time while the general tendency of the performance is
to reduce linearly. It is worth noting that parameters of the fixed step
technique are discrete, which is shown using the filled dots on the curves.
The performance of the subsampling step showed more jitters than the one
of the random selection. We attributed this to artificial patterns in scans
due to the fixed step nature of this technique.
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Figure 4.13: Performance and computing time for subsampling methods. Left: random
selection. Right: fixed step based on n points skipped and expressed as ratio of point
kept to ease comparison. On both graphs, the ICP performances are in dark blue and
the time in light yellow.

We concluded that the random-subsampling technique gives us more
control on the desired computation time and is less likely to produce arti-
facts in the resulting scans than the fixed step technique. Moreover, the
comparison of computation time of both techniques in relation with the
number of points kept and the extra computation time required for the
random sampling showed that it does not augment the computational time
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significantly. Since there is no optimum for that parameter, we accepted the
fact that going fast increases error and we thus selected a subsampling ratio
of 0.3.

Nearest-Neighbor Approximation

This experiment stemmed from the observation that using an approximate
NN-search leads to a faster ICP computation without affecting the error
much [Nüchter et al. 2005; Zlot and Bosse 2009], when compared to an exact
search. We implemented the NN-search using an approximate kd-tree as
by Arya and Mount [1993] and varied the approximation factor ε.

Figure 4.14 (left) shows that when ε increases, both the computation
time and the performance decreases, but the latter decreases slower than
the former. Moreover, the time decreases rapidly to a minimum and then
increases again. The reason is that while the number of points visited in the
kd-tree decreases exponentially with ε, the number of iterations required by
the ICP to converge increases linearly (Figure 4.14, right). Given those
results, we selected ε = 3.3, which is interestingly the same optimal value as
reported briefly by Zlot and Bosse [2009].
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Figure 4.14: Performance and computation time for approximate search using a kd-tree.
Left: ICP performances are in dark blue and convergence time in light yellow. Right:
The average number of visited point per NN request expressed [103] are in dark blue and
the number of iterations per ICP in light yellow.

Robustness Evaluation

Using the selected parameters from the previous section experiments, we
compared the tracking error for different motion velocities, motion types,
and environment complexities using the Kinect data sets (recall Figure 3.11).
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Figure 4.15 presents the results of the tracker translation error directly in
meters instead of the performance metric used in former experiments. Each
of the subgraphs are a projection of all 27 data sets. For example, the bar
graph for slow motion englobe all three types of motions (i.e., translation,
rotation and free-fly) and three types of environment complexities. The
error on translation for the three graphs is represented following a common
log scale on the y-axis to highlight differences for low values. The box plots
represent quantiles with the vertical red line being the median (A50), the
blue box being the range [0.25, 0.75] and the dashed lines the range [0.05,
0.95].
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Figure 4.15: The error as
function of motion velocities
(slow, medium, fast), motion
types (translation, rotation,
free-fly), and environment
complexities (high, medium,
low).

The most important relation is the error that increases significantly
as a function of the motion velocity, with the median being outside the
first quartile for each velocity cluster. We also observed this effect with
the success rate, which has a median value of 1.0 for the slow motion and
going down to 0.68 for the fast motion (shown in Figure 4.16). Translation
motions are easiest to register, followed by rotational movements and free-fly
movements, where larger accelerations are present for both motion types. We
noted that the low complexity environment is harder to register compared
to high and medium complexity environments. The likely reason is that
the low complexity environment contains very few planes and they are
rarely all contained in the field of view of the Kinect, leading to some
under-constrained dimensions.

In our experiments, the main factor influencing the registration speed
was the number of points randomly subsampled. Since this processing
time highly depends on the computer, we tested three different processors,
keeping an increasing number of points. Note that the algorithm is not
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Figure 4.16: ICP success
rate as function of motion ve-
locities (slow, medium, fast),
motion types (translation, ro-
tation, free-fly), and envi-
ronment complexities (high,
medium, low). Slow Med Fast
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multi-threaded and does not employ any gpu acceleration, which allows us
to compare the performance with embedded systems. The three systems
tested were: (1) a recent laptop with an Intel Core i7 Q 820 (1.73GHz),
(2) an old desktop PC with an Intel Xeon L5335 (2.0GHz), and (3) an
embedded system with an Intel Atom CPU Z530 (1.6GHz).

Results in Figure 4.17 shows significant difference in the range of fre-
quencies between the different systems. To ease the interpretation of the
graph, a horizontal green line represents 30Hz (i.e. the minimum frequency
available for real-time operations using a Kinect) and a vertical green line
represents the minimum acceptable number of points selected in the sub-
sample experiment. Recent processors can process up to 3700 points at
30Hz, while the Atom can run at most at 10Hz, with the minimal number
of points. Based on former experiments with quadcopters [Achtelik et al.
2011], a control loop needs to run between 5 and 10Hz to cope with the
dynamic of the system. Altogether, results showed that our tracker is usable
on Unmanned Aerial Vehicles but those timing values excluded acquisition
process. Recently, dual core Atom boards were release, which would give
enough processing power for the acquisition and ICP.
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4.3 Well-established ICP variants in
Modern Applications

We wished to revisit two of the textbook ICP variants, using point-
to-point [Besl and McKay 1992] and point-to-plane [Chen and Medioni
1991] distance metrics, both combined with the trimmed-ICP outlier re-
jection [Chetverikov et al. 2002]. We have chosen these because they are
the most compared and researchers need to re-implement them every time.
We hope to accelerate the comparison process for more modern solutions
by providing complete evaluation results for those two baseline solutions.
Henceforth, further comparisons can be made without of optimizing them
to ensure fair analysis.

4.3.1 Variant Descriptions
Albeit simple, the variants depend on a certain number of parameters. We
have fixed some and optimized others to allow for an efficient convergence
of the algorithm. Table 4.4 shows the final values after optimization. We
aimed at both minimizing the error and maximizing the time performance
using the knowledge gathered while doing characterization of a fast tracker
in Section 4.2.

Our ICP chain starts by sub-sampling both the reference and the reading
point clouds. In the case of point-to-point, both point clouds are sub-sampled
with uniform probability using the RandomSampling module. We explored
the space of sub-sampling ratios using probabilities of keeping points in
the range of {0.001, 0.01, 0.05, 0.1, 0.5, 1.0} for the reading and {0.001,
0.01, 0.05, 0.1, 1.0} for the reference. In the case of point-to-plane, because
we wanted to extract the normals, we used the SamplingSurfaceNormal
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Step Module Description
Po

in
t-
to
-p
oi
nt

Data filtering of reference MinDist keep points beyond 1m
RandomSampling random sub-sampling, keep 5%

Data filtering of reading MinDist keep points beyond 1m
RandomSampling random sub-sampling, keep 5%

Data association KDTree kd-tree matching with ε of 3.16
Outlier filtering TrimmedDist keep 75% closest points
Error minimization PointToPoint point-to-point
Transformation checking Counter iteration count reached 150

Differential min. error below 1 cm and 0.001 rad
Step Module Description

Po
in
t-
to
-p
la
ne

Data filtering of reference MinDist keep points beyond 1m
SamplingSurfaceNormal sub-sampling 7× and normal extraction

Data filtering of reading MinDist keep points beyond 1m
RandomSampling random sub-sampling, keep 5%

Data association KDTree kd-tree matching with ε of 3.16
Outlier filtering TrimmedDist keep 70% closest points
Error minimization PointToPlane point-to-plane
Transformation checking Counter iteration count reached 150

Differential min. error below 1 cm and 0.001 rad

Table 4.4: Configurations of ICP chains for revisiting well-established ICP variants. Top: point-to-point.
Bottom: point-to-plane.

module. We explored sub-sampling ration of one out of {5, 7, 10, 20, 100,
200}. For the reading, we used the same sub-sampling method as for point-
to-point, looking for ratios of {0.001, 0.01, 0.05, 0.1, 0.5, 1}. After an
exhaustive search, this optimization returned a reasonable ratios of 0.05 for
both the reference and the reading for point-to-point, and a ratio of 0.05 for
the reading with a threshold of 7 points for the reference for point-to-plane.

The matching step looks for the nearest neighbors of every point using
a kd-tree. We used the KDTree module, which has three parameters: the
number of nearest neighbors in the reference to associate to each point in
the reading, an approximation factor ε allowing a maximum error of 1 + ε
between the returned nearest neighbor and the true nearest neighbor [Arya
and Mount 1993] and a maximal distance beyond which neighbors are not
considered any more. We chose a value of 3.16 for ε because, as shown in
Section 4.2, this value led to the fastest registration. Indeed, with a smaller
ε, nearest-neighbor queries take longer, and with a larger ε, more iterations
are required until convergence because of the matching errors. Following
the original implementation, we used only one neighbor and did not set any
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distance limit to the association.
We then rejected outliers whose distance is larger than a certain quantile.

Using the TrimmedDist module, we explored keeping a ratio of {0.2 0.5 0.7
0.75 0.8 0.85 0.90 0.95 0.9999}. Based on this search, we decided to keep
the 75% closest points for point-to-point and 70% for point-to-plane.

4.3.2 Evaluation against the Laser Registration
Data Sets

We executed our protocol for both solutions leading to a total of 80,640
registrations (i.e. 2 solutions × 6 data sets × 35 paired scans × 3 types of
perturbation × 64 perturbations). The overall translation results propose
that point-to-plane (A50 = 0.76m) is more accurate by 20% than point-
to-point (A50 = 0.97m) solution. The advantage is reversed when looking
at the difference between A95 and A50, which shows that point-to-point
is more precise by 30%. The same trend is observed for the rotation with
the accuracy gain cranking to 40% for point-to-plane while the precision
advantage stays at 30% for point-to-plane. For a deeper investigation, all
results in Table 4.5 are subdivided into three categories: (1) data sets, (2)
perturbation levels and (3) distance metrics. We can observe once more that
most of the times the results of point-to-plane are better than point-to-point.
Point-to-point error can however out-perform point-to-plane error for hard
perturbations.

To explore the influence of the environment, Figure 4.18 compares the
translation error combining all perturbations for each solution. Note that
the A95 values for ETH exceed the graph, being 12.16m for point-to-point
and 16.87m for point-to-plane. Focusing on A50 and A75, we see that the
gain of point-to-plane over point-to-point is overcome in the data sets Wood
and Plain. This observation proposes that the accuracy of each solution
follows the level of structure found in each data set. When looking at
the A95 statistics, point-to-plane is in all cases higher than point-to-point,
meaning that point-to-plane does not guarantee better worst-case errors
than point-to-point. It is worth noting that ETH consists of a long hallway
with repetitive elements, which seems to drag down the A95 performance
in translation while keeping reasonably low rotation errors (see Table 4.5).
The data set Plain has an even higher deficiency in term of constraints than
ETH, with only one major plane representing the ground. Even with this
level of constraint, the registrations applied in Plain seem to diverge less
than in ETH for hard conditions represented by A95 statistics.
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Apartment Stairs ETH Gazebo Wood Plain
A50 A75 A95 A50 A75 A95 A50 A75 A95 A50 A75 A95 A50 A75 A95 A50 A75 A95

Tr
an

sla
tio

n EP Plane 0.06 0.47 2.11 0.09 1.17 3.49 0.10 0.44 6.06 0.11 0.38 2.08 0.25 1.55 4.75 0.42 1.54 4.15
Point 0.13 0.54 1.54 0.35 1.29 2.57 0.47 2.23 6.86 0.28 0.60 1.71 0.39 1.48 4.21 0.51 1.46 3.09

MP Plane 0.20 1.04 2.98 0.61 2.08 4.64 0.60 4.06 16.3 0.28 0.96 3.51 1.25 2.92 6.62 1.30 2.58 5.58
Point 0.46 1.03 2.32 0.94 1.86 3.38 1.92 4.29 11.2 0.49 1.13 3.18 1.19 2.52 5.15 1.21 2.17 3.76

HP Plane 1.35 2.18 3.66 2.05 3.28 5.50 4.18 8.55 19.6 1.87 3.33 6.95 2.79 4.52 7.86 2.35 4.13 8.85
Point 1.29 1.99 3.24 1.81 2.78 4.75 3.84 7.06 14.8 1.58 2.79 4.57 2.32 3.73 6.82 2.02 3.14 6.33

R
ot
at
io
n EP Plane 0.02 0.20 1.14 0.02 0.31 1.58 0.01 0.02 0.61 0.02 0.08 0.48 0.05 0.34 0.95 0.07 0.20 0.60

Point 0.07 0.25 0.97 0.12 0.39 1.22 0.05 0.22 0.83 0.04 0.17 0.41 0.09 0.29 0.77 0.09 0.20 0.44

MP Plane 0.08 0.47 1.80 0.16 1.08 2.09 0.01 0.25 2.91 0.04 0.35 0.97 0.31 0.78 1.53 0.19 0.38 0.99
Point 0.20 0.61 1.49 0.33 0.78 1.63 0.14 0.59 1.82 0.15 0.35 0.80 0.32 0.69 1.22 0.20 0.37 0.77

HP Plane 1.01 1.72 2.95 1.48 1.91 2.94 1.31 2.09 3.11 0.58 1.31 2.88 1.05 1.56 2.53 0.50 1.09 3.05
Point 1.04 1.60 2.53 1.10 1.64 2.53 0.97 1.73 3.05 0.58 1.20 2.59 0.97 1.44 2.35 0.46 0.99 2.09

Table 4.5: Overall view of the precision obtained with our two proposed baselines for different perturba-
tions (easy (EP), medium (MP), hard (HP)). Top: Translation error [m]. Bottom: rotation error [rad].
Darker tones correspond to high error.

Figure 4.18: Comparison
of point-to-plane and point-
to-point performances for
all perturbations and clus-
tered environments. Thick
red bars correspond to A50
(i.e. the median); the higher
end of blue rectangles are
A75 and the top end of
dashed lines are A95.
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4.3. Well-established ICP variants in Modern Applications

Given that point-to-plane has a better overall performance, Figure 4.19
focuses exclusively on that solution and shows the cumulative probabilities
of its translation error. Those curves are similar to precision-recall graphs in
that the more top-left the curve the better the algorithm performs. The top
plot emphasizes the influence of the environments given easy perturbations.
This type of situation would happen for a mobile robot able to maintain low
uncertainty on its localization between registrations. All of the environments
keep their median error under 10 cm except Wood and Plain. Although
considered a semi-structured environment, Gazebo keeps lower error, with
Apartment, than the other environments. The bottom plot goes a bit
deeper in the analysis by expending the results for Apartment to assess the
influence of the perturbation levels. Each curve is associated with its initial
perturbation level represented as a filled area. Ideally, all pairs of scans
would have fewer residual errors after the registration leading to curves
closer to zero than their associate perturbation level. One can observe that,
for all perturbation types, roughly 25% of the registrations still present
worse translation than their initial perturbations. We believe the cause to
be mainly the weak robustness of the solution against a range of different
overlap ratios.

To demonstrate this low performance, Figure 4.20 shows the relation
between the pre-computed overlap between scans and the translation errors
for both solutions over all environments and all perturbation types. The
statistics A50, A75 and A95 were extracted for each bin of paired scan
sharing the same overlap, with the bin size being 0.08. Both solutions share
the same Outlier Filtering Module tuned to handle 70% and 75% of outliers.
This results in both solutions following the same trend leading to poor
performance for low overlap values. The error reaches a median error larger
than 2m for a range of overlap from 0.30 to 0.38.

Finally, Figure 4.21 shows the cumulative probabilities of the time needed
to converge for point-to-plane. The figure opposes structured environments
(solid lines) to unstructured and semi-structured environments (dashed
lines). It is interesting to note that in Plain the solutions converge rapidly
but, based on Table 4.5, to a large translation error. This means that the
observed errors were estimated to be below 1 cm and 0.001 rad (see the
line Transformation checking in Table 4.4) leading to an early exit out of
the iteration loop. For the overall performance between the two solutions,
point-to-point is 80% faster than point-to-plane with a median time of 1.45 s
compared to 2.58 s respectively. This suggests that for point-to-plane, the
extra time required to extract surface normal vectors is not compensated for
by the saving on the number of iterations required to converge. All the results
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Figure 4.19: Cumulative
probabilities of errors for
point-to-plane ICP variant.
Top: influence of environments
given an easy perturbation level.
The gray stripes correspond
to the quantiles of interest,
namely A50, A75 and A95.
Bottom: influence of the three
perturbation levels on the
Apartment data set with the
filled backgrounds correspond
to the theoretical curves of
initial perturbations.
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Figure 4.20: Correlation be-
tween the overlap of two scans
and the translation error for
point-to-plane over all envi-
ronments and all perturbation
types.
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were obtained on a 2.2 GHz Intel Core i7-2675QM, using libpointmatcher.
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Figure 4.21: Cumulative
probabilities of the time
needed to converge for
point-to-plane with easy
perturbations. The solid lines
represent structured envi-
ronments while dashed lines
represent unstructured and
semi-structured environments.

We have sub-sampled the point clouds using a fixed reduction percentage
leading to the use of approximately 10,000 points per scan. However, the
different data sets have a different number of points per scan in average,
for instance Apartment has twice as much as Stairs. It would be better to
reduce the point clouds to a fixed number of points instead of a ratio to
ensure more constant processing time given that the precision gain is very
low for a larger number of points. As demonstrated in Figure 3.14, overlap
between scans can largely vary depending on the motion of the robot and the
environment configuration. One of the limitation of trimming outliers based
on quartile is that this assumes a constant overlap of scans, which is hard
to control with a mobile platform. In order to work around this limitation,
it would be important to detect those places and react appropriately. For
example, the robot could acquire scans more frequently or reduce its velocity
at those places. Also, more flexible outlier-rejection algorithms need to be
investigated to cope with the variability of the overlap.

The use of the A95 statistic might seem excessive, but it is important
to note that it implies that one registration over 20 is beyond this value.
In the robotics context, this is very significant and can be the difference
between a stable system and a system that breaks its map every so often.

The point-to-plane solution can be stable for applications where: first,
the environment type can be controlled to be highly structured; second, the
overlap is kept high while the robot is moving and third, the state estimation
used as initial pose for the registration remains within 10 cm and 10◦. These
types of conditions are usual for laboratory experiments but are unlikely to
happen in real applications.
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4.4 Summary
Through this chapter, we proposed a better characterization of key factors
influencing registration algorithms. We had a deeper look at some popular
depth sensors, addressed real-time registration issues and assessed the impact
of potential environments on well established algorithms. All of those
elements being selected with respect to robotic constraints with the aim
to provided better intrinsic and extrinsic evaluations related to geometric
registrations.

More precisely, we proposed two types of model for the random noise of
the URG-04LX, the UTM-30LX and the LMS-151 scanning laser rangefinders.
We believe that the methodology used provides more realistic models than in
prior studies. Evaluation of surface reconstruction was also tackled, leading
to the conclusion that a NN search radius should be larger than 5 cm to
overcome the noise of the sensors. The implementation those models in
libpointmatcher should help further solutions to better handle typical
noise sources in their registration algorithms.

Based on this library, we designed and optimized a 3D pose tracker for
dense depth cameras running at 30Hz on standard laptop with thousands
of points. As it does not use gpu acceleration, the tracker can also be
run on embedded system (at 10Hz on an Atom board). We proposed
a sound performance evaluation using data sets recorded with a ground
truth of millimeter precision. When it comes to optimization, it is very
difficult to find a general solution to all problems using ICP. We can
optimize a particular ICP implementation by identifying environmental
characteristics and typical motions expected for a given application. One
must also take into account sensor frequency, noise, and field of view to
devise a robust registration strategy. Once a strategy allowing the ICP
to converge properly is found, one can further optimize the speed given a
minimal expected accuracy on the pose. The speed of ICP is linear with
the number of points in the reading point cloud, but the pose error decreases
exponentially. This means that, at some point, a solution using twice the
computation time will only slightly decreases the pose error. One must
carefully consider this trade-off, especially in time critical application.

From a robotic-application point of view, pose tracking in cluttered
rooms, typically encountered in apartments or offices, is easier than tracking
in corridors of public buildings or in places with few furnitures. To cope with
this, one could adjust the speed of the robot as a function of the complexity
of the environment. One should also limit the rotational velocity when
the curvature of the sensor path is large. Looking at results found in the
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literature, those considerations are often controlled by the person realizing
the experimentation without being explicitly stated and quantified. It is
suggested that novel solution evaluations should highlight range of intrinsic
and extrinsic parameters instead of presenting well controlled cases where
the algorithm work properly.

As a proof of concept, we also applied the protocol presented in Section 3.2
to classic ICP solutions. The procedure we proposed relies on some specific
data sets in order to have a common ground of comparison in the scientific
community. We shown that even if the point-to-plane distance metric is
in general superior to the point-to-point distance metric, it can be less
precise for large disturbances of the initial alignments and also no more
reliable in unstructured environments. This refreshes the observations
from Rusinkiewicz and Levoy [2001] by using data sets closer to robotic
applications. The performances of these baseline variants show a high
variability and strongly display the need for improved ICP methods for
natural, unstructured and information-deprived environments. This need
opens the door for other researchers to challenge their novel solutions against
our baselines.

However, as the sensor is the same across all data sets, we cannot
measure its effect on the ICP performances. The sensor has nevertheless
two important features, noise and field of view, that can have an influence
on ICP. Indeed, sensors may have different noise levels and even noise
profiles, and different ICP variants might cope better with some than others.
Furthermore, the field of view and the point-density profile of the sensor
inside its field of view can have a huge influence on the ICP performance
as those characteristics govern the overlap and the possibility of multiple
pairings between scans.

Concerning time, some applications require online matching of sensor
data. In these cases, the time spent in ICP is a relevant criterion to
compare variants. However, processing time is difficult to measure given
that internal memory management, processor load and processor types
are all relevant factors that cannot easily be compensated for and that
can drastically change time measurements. On the other hand, theoretical
complexity is not sufficient as different ICP variants will mostly have
a comparable complexity but different constant factors. Having a single
computer dedicated to running all the different ICP variants in the same
condition would yield a general idea of the relative efficiency. But still,
different ICP variants would scale differently for different practical cases.
A comparison of the variants in the specific case of application is thus
always pertinent. Our library can facilitate this comparison by highlighting
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only the relevant changes. Indeed, the efficiency of an implementation is
an important factor of time performance that can bias the comparison of
algorithms. Having a library in which only the modules to be compared
change already significantly reduces this effect by maintaining a homogeneous
environment for most data processing.
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Chapter 5

Applications

B uilding a 3D map of a given environment is rarely the final goal
pursued when using a mobile platform. The 3D representation
of an environment often support other algorithms or complement

other sensors. In this chapter, we present different platform prototypes
to demonstrate the utility of geometric registration in different applica-
tions. Following the analyses detailed in Chapter 4, we here describe those
applications by focussing on the environment, platform velocity, available
localization information and type of sensors. For all applications, the same
computation scheme was applied. We used a fairly simple processing pipeline
based on the concept of metascans proposed by Wulf et al. [2008]. A sequence
of 3D scans were streamed to a registration module, which employed (1) a
set of filters directly on the input 3D scan in its local frame of coordinate
(i.e., the origin being the center of the sensor), then (2) a standard ICP
that registered the new input scan with a global map and finally (3) a
concatenation of the newly registered scan with the global map, followed
by a set of filters applied to that global map. All of those processing steps
were made using the library presented in Section 3.3. Only text-based files
with parameters were changed to achieved the presented reconstruction. No
loop-closing detection nor error back propagation algorithms were used to
post-process the resulting maps. Indeed, this three-step procedure could be
considered as laser odometry (as compared to visual odometry) instead of a
globally consistent solution. The goal was to present qualitative mapping
results, evaluate for which applications local registration is sufficient and
to discuss about the impact of a specific application on the registration
solution used. We had the opportunity to cover multiple type of platforms
moving on the ground, air and water, with different sizes and velocities.

The first application presented in Section 5.1 addresses a critical task
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for real-time registration: Search & Rescue. Field deployments on firemen
training site were published at the 2012 International Conference on Field
and Service Robotics [Kruijff et al. 2012], while the results specific to regis-
tration were accepted for publication in the journal of Autonomous Robots
[Pomerleau et al. 2013]. A second application relevant to registration is
the automation of inspection as described in Section 5.2. The mapping
capability of the platform used to demonstrate this task was first published
at 1st International Conference on Applied Robotics for the Power Industry
[Tâche et al. 2010], and the extended results were issued in the Journal of
Field Robotics [Tâche et al. 2011]. In same section, we also briefly introduce
a path planning dealing with the particular mobility and mapping capabil-
ities of the platform used for inspection. Those results were published in
the International Journal of Robotics Research [Stumm et al. 2012]. The
third application employed a novel autonomous vessel, which was described
in IEEE Robotics and Automation Magazine [Hitz et al. 2012], to demon-
strate shoreline monitoring (Section 5.3). Finally, autonomous-driving car
is shortly addressed in Section 5.4. We end in Section 5.5 with some lessons
learned based on the experimentation in those different conditions.

5.1 Use Case: Search and Rescue
Within the framework of the European project NIFTi (FP7-ICT-247870),
novel solutions were assembled together and tested in order to support
firemen and first responders in Search & Rescue missions. A first use of
3D maps is to help strategic deployment of responders in environment were
humans can only intervene for a limited time. Those situations include
nuclear incident, chemical spill, unstable supporting structures, excessive
heat conditions, etc. When tele-operated, 3D maps can be used to enforce the
user situation awareness, supporting critical decisions about risky platform
motions. This type of application often has a limited communication range,
leading to an increased need for autonomous behavior. More autonomy also
means more onboard computations in case of communication breakdown. In
such situations, onboard localization is essential to bring back the platform
were the wireless communication can be reestablished.

Apart from increasing pressure on real-time solutions, Search & Rescue
environments cover a large spectrum of possibilities. For example, deploy-
ments can happen in a well-structured nuclear plant, in a partially-collapsed
building or outdoors in a case of a train chemical spill. In an advanced
robot-human collaborative intervention, dynamic elements created by the
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other agents (e.g., firemen, other robots, etc.) acting on the field need to be
considered in the registration solution. Moreover, dynamic elements at a
global level (e.g., building collapsing during the exploration) can happen. In
the case of relatively contained situations where human can hardly access a
restricted intervention area, very little dynamic elements are expected (e.g.,
the Fukushima incident). In the cases presented in this section, applications
were demonstrated with few dynamic elements and without the need to
identify them.

The platform deployed on the field was called NiftiBot (Figure 5.1). The
mobility was ensured by a set of two tracks having a passive suspension
system facilating the crossing of uneven terrain. Moreover, two flippers per
track allowed an active control of the platform orientation and offered an
extended range for gap traversals. The mechanical configuration of the robot
enabled it to climb slopes up to 45◦, including stairs. The robot occupied a
volume of 0.17m3 and weighted approximately 20 kg. The primary sensor
used for registration was a 2D rotating Sick LMS-151 laser, with its rotation
axis pointing toward the front of the robot. The aggregation of 2D scans
used the motion information of the platform to reconstruct 3D scan at
0.35Hz. A typical 3D scan contained 55,000 points. Two other sensors can
be found on the platform, namely a GPS-aided IMU (X-sens MTI-G )
and an omnidirectional camera (PointGrey Ladybug2). The velocity of the
platform can be considered slow (0.3m/s), especially during teleoperation
where delicate motion are required. The pre-alignment information used as
input for the registration was based on a Kalman filter fusing the IMU and
the odometry information. The large error on motion estimates came from
the vibration of the tracks, the large contact surface of the tracks on the
ground, and the fact that the platform often collided with obstacles and can
punctually slip. Therefore, smooth and continuous motion models can easily
break, thus simple prediction models (e.g., constant velocity) can hardly be
applied.

The configuration of the rotating laser produced a high density of points
in front of the robot, which was desirable to predict collision, but not
beneficial to the registration minimization. Thus, we forced the maximal
density to 100 points per m3 after having randomly subsampled the point
cloud in order to finish the registration and the map maintenance within
2 s. We expected the error on pre-alignment of the 3D scans to be less than
0.5m based on the velocity of the platform and the number of ICP per
second that will be executed. So we used this value to limit the matching
distance. We also removed paired points with an angle difference larger than
50◦ to avoid the reconstruction of both sides of walls to collapse when the
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Figure 5.1: Photograph of NiftiBot, the main platform used for Search & Rescue
demonstrations.

robot was exploring different rooms. As for the global map, we maintained a
density of 100 points per m3 every time a new input scan was merged in it. A
maximum of 600,000 points were kept in memory to avoid degradation of the
computation time performance when exploring a larger environment than
expected. The complete list of modules used with their main parameters
can be found in Table 5.1.

5.1.1 Indoor Preliminary Tests
To test the range of the platform motions and to demonstrate the need for 3D
reconstructions, we ran an experiment in our laboratory. The robot started
his path in an office located on the E-floor, and was driven down a staircase
two floors below (C-floor, in the basement). The robot was controlled using
a joystick by an operator following it throughout the path. The robot was
then driven six floors up to the I-floor using the same staircase (Figure 5.2).
In this application, the robot acquired scans from a stop-and-go strategy
with a scan taken roughly every 2m.

The complete map was processed onboard the robot respecting real-time
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Table 5.1: Configurations of ICP chains for the NIFTi mapping applications.

Step Module Description

In
pu

t

Read. filtering SimpleSensorNoise SickLMS
SamplingSurfaceNormal keep 80%, surface normals based on 20 NN
ObservationDirection add vector pointing toward the laser
OrientNormals orient surface normals toward the obs. direction
MaxDensity subsample to keep point with density of 100 pts/m3

R
eg
ist

ra
tio

n

Ref. filtering - processing from the rows Map
Read. filtering - processing from the rows Input
Data association KDTree kd-tree matching with 0.5m max. distance, ε = 3.16
Outlier filtering TrimmedDist keep 80% closest points

SurfaceNormal remove paired normals angle > 50◦
Error min. PointToPlane point-to-plane
Trans. checking Differential min. error below 0.01m and 0.001 rad

Counter iteration count reached 40
Bound transformation fails beyond 5.0m and 0.8 rad

M
ap

Ref. filtering SurfaceNormal Update normal and density, 20 NN, ε = 3.16
MaxDensity subsample to keep point with density of 100 pts/m3

MaxPointCount subsample 70% if more than 600,000 points

computation constrain. Because the information of the past environment
were fused in the global map while the robot went down the stairs, the drift
in the localization was considerably reduced on the way up. This experiment
comprised two critical moments: (1) when the robot moved out of the office
and (2) when the robot entered the basement (C-floor). In both situations
the overlap between the new scan and the global map went critically low.
This information was known by the operator, so more scans were taken at
those moments to avoid large deviations in the global map.

5.1.2 Rail Yard
On two occasions, the NIFTi platform was tested outdoors in a rail yard,
with the permission of the Depo kolejových vozidel Praha (Prague Depot of
Rail Vehicles, Czech Republic). In the first experiment, the robot was also
driven in the yard by operators who were following the platform. The robot
started its journey at one corner of a wagon, going along the wagon flank
to the other corner and then, turned back to the starting position passing
through the vegetation located on the other side of the wagon (Figure 5.3).
Even if the path contained a loop, the precision of the registration was
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Staircase
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Figure 5.2: Mapping of a 7-floor staircase using a Search & Rescue robot. Right: Side view of the
resulting map with the floors colored based on elevation. Left: Top view of the E-floor with the ceiling
removed and the points colored based on elevation, red being higher, blue lower.

accurate enough to properly match the first scan with the ones recorded at
the end.

In the second experiment, the robot was driven to explore inside of an
old wagon where a person was standing still in the shadow to test in parallel
the capability of the thermal camera. The robot then went out of the wagon,
crossed dense vegetation, followed the side of a more modern wagon and
stopped in front of it, where a second operator was captured in the global
map.

For both experiments, the robot acquired scans with a stop-and-go
strategy. The scans were gathered at uneven distances (up to 8m apart) by
operators without prior knowledge about critical situations. All the 3D scans
were processed offline four times faster than the speed at which they were
recorded. We thank people from the Czech Technical University (Prague),
who are partners in the NIFTi consortium, for recording and generously
providing the data.
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Figure 5.3: Deployment of the NiftiBot in a rail yard with a single wagon and dense
vegetation. Top: Side view of a the reconstructed environment with the wagon in the
middle and the vegetation behind. Bottom: Top view of the reconstructed environment.
For both images, colors of the point clouds were chosen to ease the comprehension of the
3D-scene.
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Figure 5.4: Bird view
of the second experi-
ment where the robot
explored inside an old
wagon and followed a
more recent one.

Person

Person

New wagon

Old wagon

5.1.3 Collapsed Church

In May 2012 a sequence of earthquakes hit the Emilia-Romagna region,
Northern Italy, with a magnitude of 5.8. Three month later, NIFTi partners
deployed the platform with the support of the Vigili del Fuoco (National
Fire-watchers’ Corps of Italy) and the Beni Culturali (Ministry of Culture
of Italy) in Mirandola for a damage assessment mission. One of the visited
sites was the Chiesa di San Francesco d’Assisi, in which 3D scans were
recorded. The robot started outside the church, crossed a door and realized
a straight line, navigating on the cluttered floor of the western gallery of the
church (Figure 5.5). One can observe on the reconstruction the pillars and
arches supporting the remaining roof of the church. The level of damage of
the church was quite important, thus limiting the exploration possibilities
of the platform, as depicted in Figure 5.6.

The platform was remotely operated from a control station situated
outside the church and was able to continuously scan the environment while
moving in the environment. Again, all the 3D scans were processed offline
four times faster than the speed at which they were recorded. We thank our
NIFTi collaborators from University La Sapienza (Rome) for recording and
generously providing the data.
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Figure 5.5:
Reconstruction of the San
Francesco d’Assisi Church
with the color following
elevation. Top: Side view
of the reconstruction.
Bottom: Top view of the
church.

Figure 5.6: Comparison of the point cloud reconstruction with a photograph taken during exploration.
Left: Photograph of the western gallery with the collapse roof on the right. Right: Front view of the
reconstruction.
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5.1.4 Collaborative Mapping
Within the framework of the European project sFly (FP7-ICT-231855),
three micro-helicopters (AscTec Firefly) were deployed over a Search &
Rescue training site in Zurich, Switzerland. The platform used is shown in
Figure 5.7 flying over a collapsed concrete building. The three Fireflys were
sent so that each one covered a pre-determined part of the environment and
streamed back images to a control station. The collected images were used
by the ETH Computer Vision and Geometry Group to reconstruct a 3D
representation of the environment explored (Figure 5.8 - Bottom left).

Figure 5.7: Photograph of one of the three AscTec Firefly used to map the environment
in collaboration with the NiftiBot.

Another map was realized using a ground platform (i.e., NiftiBot). The
robot was tele-operated on a road around the main collapsed building
presented in Figure 5.8, for a path totaling 110m long. The operator had a
good prior knowledge of the environment before driving the robot around
from a control station. The large road coupled with the awareness of the
environment contributed to increase the velocity of the robot while exploring
the area. The resulting map of the ground robot and the map of the
Fireflys were then fused using a standalone ICP implementation taken from
our registration library libpointmatcher. Both map were having roughly
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300,000 points and were registered using the configuration of Table 5.2. The
final map is depicted at the bottom right of Figure 5.8.

Table 5.2: Configurations of ICP for the collaborative mapping applications.

Step Module Description

R
eg
ist

ra
tio

n

Ref. filtering SamplingSurfaceNormal surface normals based on 50 NN, keep 15%
Read. filtering RandomSampling keep randomly 15% of the points
Data association KDTree kd-tree matching with 1.0m max. distance, k-NN = 5
Outlier filtering TrimmedDist keep 80% closest points
Error min. PointToPlane point-to-plane
Trans. checking Differential min. error below 0.01m and 0.001 rad

Counter iteration count reached 100

At that time, the Kalman filter used to fused the odometry with the
IMU was not well tuned and bias in the estimation were inducing drift
on yaw estimates. Roughly, a constant drift of 5◦/s was estimated visually.
The scans were gathered while the ground platform was moving, which
generated a larger localization error than prior experiments. A total of
four runs were recorded with the ground platform: (1) continuous scan-
ning, turning clockwise around the main building; (2) continuous scanning,
counterclockwise; (3) stop-and-go scanning, clockwise; and (4) stop-and-go
scanning, counterclockwise. Two experiments out of four closed the loop
with a negligible error at the closing point. Surprisingly, the successful runs
were the ones turning counterclockwise, contradicting our first intuition
that stop-and-go scanning would be more accurate. This experiment high-
lighted the importance of correcting IMU drift with an external registration
algorithm and also showed that the robot could scan while moving. We
selected the resulting representation of the second run to fuse both sources
of information (i.e., laser and camera) in a common 3D reconstruction.

5.1.5 Artor - Autonomous Rough Terrain Outdoor
Robot

An other platform was developed in parallel to the NiftiBot by the Au-
tonomous Systems Lab (ASL). Modifications were done over a LandShark
from Black-I Robotics, in collaboration with RUAG and Armasuisse. The
aim of the project was to develop techniques for reliable autonomous navi-
gation of a wheeled robot in rough, outdoor terrain.
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Figure 5.8: Resulting maps of the Zurich firefighter training site. Top right: Photograph
of the training site with a partially collapsed tower in the middle. Top left: Top view of
the reconstruction realized with the data from the ground robot. Bottom left: Top view
of the reconstruction realized with the data from the three Fireflys. Bottom right: Top
view of the combined map. Note that the color correspond the elevation: blue is low, red
is high.

The robot, named Artor, was much larger than NiftiBot, with a volume
of 0.96m3 and an approximate weight of 350 kg (Figure 5.9). Three wheels
on each side of the robot gave the same traction as tracked vehicles, while
simplifying the maintenance of the locomotion system. Odometry suffered
from the same large rotation error problem as NiftiBot because of the
unknown friction between the ground and the wheels. The robot can drive
at a maximum speed of 4.5m/s but is usually driven at around 1.2m/s.
The motion of the platform can be smooth on the pavement but in off-road
situation, the motion can be more rough, and at high speed the orientation
can change critically fast. Odometry computation can lead to large error
that is mainly caused by the high friction of the wheels on the ground. Given
the early development stage of the platform, only the wheel odometry was
available as prior information for the registration module. The main sensor
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Figure 5.9: Photograph of Artor, a Search & Rescue robot specialized for outdoor
applications.

used in this experiment is the Velodyne HDL-32E, which produces around
50,000 points at 5Hz. Other sensors present on the platform were: two Sick
LMS-151 (front and rear), high-resolution zoom camera, thermal camera
and a GPS-aided IMU.

The critical element for real-time processing is the amount of points that
needs to pass at high rate through the registration module. The tuning
evolved from the parameters and filters selected for NiftiBot with the aim
of increasing the registration speed for Artor. We first randomly removed
85% of the points to ensure a stronger data reduction. We also kept a lower
density of points because the platform usually covered larger areas than the
NifitBot during a typical deployment. The complete list of modules used
with their main parameters are listed in Table 5.3.

The Artor robot was driven over different types of terrain in a specialized
testing facility in Wachtberg, Germany. The path of the platform was 340m
long following a rectangle shape and no noticeable errors were found at the
loop closure. The robot realized the same loop for a second time using the
global representation of the first loop without any problems. An overlay of
the 3D map top view with an orthogonal projection of an aerial image is
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Table 5.3: Configurations of ICP chains for the Artor mapping applications.

Step Module Description

In
pu

t

Read. filtering RandomSampling keep randomly 15% of the points
SurfaceNormal surface normals based on 20 NN, ε = 3.16
ObservationDirection add vector pointing toward the laser
OrientNormals orient surface normals toward the obs. direction
MaxDensity subsample to keep point with density of 50 pts/m3

R
eg
ist

ra
tio

n

Ref. filtering - processing from the rows Map
MaxDist keep points within a radius of 70m

Read. filtering - processing from the rows Input
RandomSampling keep randomly 25% of the points

Data association KDTree kd-tree matching with 5.0m max. distance, ε = 3.16
Outlier filtering TrimmedDist keep 90% closest points

SurfaceNormal remove paired normals angle > 90◦
Error min. PointToPlane point-to-plane
Trans. checking Differential min. error below 0.01m and 0.001 rad

Counter iteration count reached 40
Bound transformation fails beyond 5.0m and 0.8 rad

M
ap

Ref. filtering SurfaceNormal Update normal and density, 20 NN, ε = 3.16
MaxDensity subsample to keep point with density of 10 pts/m3

MaxPointCount subsample 70% if more than 600,000 points

provided in Figure 5.10 - Top right.
The data were processed offline at the same rate as the recorded one.

The operator was driving the platform around to test the mobility capability
of the robot, without explicitly considering any registration limitations.
On an open terrain, the solution proposed can manage a global and dense
representation of the environment, even with the high turn rate of the robot.
This might be more challenging for a solution based on visual odometry to
avoid drift in those conditions. We thank Philipp Krüsi (ASL) for recording
and generously providing the data.
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Figure 5.10: Reconstruction of the testing facilities. Top right: Overlay of the 3D map
with an aerial view. Top left: Top view of the reconstruction. Bottom: Bird view of the
reconstruction. The color is based on the elevation of the points, light gray being low,
dark blue being high. The aerial image was provided by Bundesamt für Kartographie
und Geodäsie, Frankfurt, Germany - http://www.bkg.bund.de
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5.2 Use Case: Power Plant Inspection
In collaboration with Alstom Inspection Robotics (AIR), prototypes were
developed for the inspection and maintenance of industrial plants. Some
inspection tasks need to move inspection tools in environments that are
difficult to access by human due to dimensional, temperature or air quality
constrains. The use of mobile systems for inspection can not only deal with
those constrains, but also can reduce the time and costs of inspections. This
would, for example, allow for the inspection of critical pieces of equipment
on location, without the need to dismantle any structures. Similarly, the
installation of scaffolding around a structure becomes unnecessary, thus
saving inspection time. The typical environments encountered during inspec-
tion procedures are confined spaces (indoors) with well structured, static
surfaces.

Figure 5.11: Three prototypes of chest inspection robots without the sensors, in a
mock-up of a steam chest.

For the specific task of steam chest inspection, a robot was developed
with high mobility capabilities and a compact size [Tâche et al. 2009]. The
robot, named Magnebike, moved around a metallic, cylindric environment
by using its two magnetic wheels positioned in the same configuration as a
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bike (Figure 5.11). Those specialized wheels coupled with small lever arms
allowed the platform to move up-side-down, pass 90◦ edges and navigate
in high curvature tube. A considerable amount of effort were invested in
reducing the size of the platform, which ultimately gave a small volume of
0.006m3 and a weight of 0.34 kg. The platform was the slowest presented in
this chapter, with a maximal velocity value of only 0.045 m/s. The robot
gathered high-resolution scans (340,000 points) with a refresh time of 50 s.
The 3D scans were assembled from a 2D Hokuyo URG-04LX. Pre-alignment
of the scans were ensured by wheel odometry, which displays virtually no
slip because of the magnetic force hold the wheels on the surfaces. An IMU
was used in conjunction with the odometry to cope with the 3D nature of the
motion [Tâche et al. 2011]. The main sources of pre-alignment errors were:
(1) motions perpendicular to the gravity vector that were not observable
with the sensor used, and (2) the rapid cumulation of errors by the low-cost
IMU used on the slow-moving robot.

5.2.1 Steam Chest Reconstruction
During inspection, the robot is intended to be tethered for safety reason,
which solved the communication problem between the embedded computer
and a faster system used as control station. Because the system must
not damage the inspected structure in any case, it traveled slowly in the
environment, reducing the pressure on the real-time requirement for the
registration. However, the operator might not have a visual contact with
the robot at all times during inspection. Therefore, the map resolution
must be high enough to detect obstacles and holes during remote operations.
The number of points produced by the scanner was way beyond what was
required for a proper registration. To reduce rapidly this number of points,
we randomly removed 90% of the point as soon as the scan were recorded.
We used a maximal density of 20000 points per m3 to cope with the small
size of inspected environments. For the registration, we did not use any
pre-alignment to test the worst case scenario (i.e., when the rotation is not
observable by the IMU). This forced us to extend the maximal matching
distance to 0.5m. Given that scans are taken by an operator at a fix and
short interval, we used an outlier ratio of 80%. The complete list of modules
used with their main parameters are listed in Table 5.4.

To test the mapping capability of the platform, a real steam chest was
made available by AIR. This part was actually removed from a power
plant for reparation purpose. Multiple inspection runs were executed, each
run starting from one of the seven entry points (Figure 5.12). We only

111



5. Applications

Table 5.4: Configurations of ICP chains for the Magnebike mapping applications.

Step Module Description

In
pu

t

Read. filtering RandomSampling Keep randomly 10% of the points
SamplingSurfaceNormal surface normals based on 20 NN, ε = 3.16, keep 80%
ObservationDirection add vector pointing toward the laser
OrientNormals orient surface normals toward the obs. direction
MaxDensity subsample to keep point with density of 20000 pts/m3

R
eg
ist

ra
tio

n

Ref. filtering - processing from the rows Map
Read. filtering - processing from the rows Input
Data association KDTree kd-tree matching with 0.5m max. distance, ε = 3.16
Outlier filtering TrimmedDist keep 80% closest points

SurfaceNormal remove paired normals angle > 50◦
Error min. PointToPlane point-to-plane
Trans. checking Differential min. error below 0.01m and 0.001 rad

Counter iteration count reached 100
Bound transformation fails beyond 5.0m and 0.8 rad

M
ap

Ref. filtering SurfaceNormal Update normal and density, 20 NN, ε = 3.16
MaxDensity subsample to keep point with density of 20000 pts/m3

MaxPointCount subsample 70% if more than 600,000 points

present here the results from the longest path since it covered the entire
environment. The robot started on one side of the steam chest, situated on
the left of Figure 5.12. Each 3D scan was taken on a stop-and-go strategy
at every 0.1m. The total path covered a distance of 5.8m for a total of 59
scans. All runs were registered offline approximately 10 times faster than
the rate at which they were recorded. We thank Fabien Tâche and Andreas
Breitenmoser (ASL) for providing the recorded point clouds.

5.2.2 Support for 3D Path Planning
When aiming at increasing autonomy of a mobile platform, path planning
rapidly becomes an essential tool. The unusual motion capabilities of the
Magnebike posed challenges for traditional path planning algorithms that are
mainly applied on flat 2D environments. Even 3D path planner working on
elevation map can not be used because of the tubular shape of the potential
navigation surfaces. More advanced techniques plan on 3D mesh with the
assumption that there is a low level of noise corrupting the representation.
In the collaborative work of Stumm et al. [2012], we proposed a navigation
solution that takes into consideration the limitations of 3D mapping to
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Figure 5.12: Deployment
results of Magnebike in a
real steam chest. Top: Cut
view of the reconstructed
environment. The white
line correspond to the path
of the robot, with the
sphere being the positions
where the robot stopped
to take a 3D scan. The
colors of the map follow
the discreet time (from
0 to 58) at which the
scans where taken. Bot-
tom: Steam chest removed
for maintenance.

enable the planning of a 2D path embedded in a 3D space. We only briefly
introduce the results here to illustrate an application to 3D registration.

The environment structure was modeled from noisy point clouds that
employed the tensor voting framework proposed by Medioni et al. [2000].
Tensor voting propagates structural information from points within a point
cloud in order to estimate the saliency and orientation of the surfaces or
curves in the environment. This framework also permits the detection
of edge orientation, which constitutes important information in order to
attack them at 90◦ (limitation of the Magnebike). The final representation
outputted by the tensor voting provided a smooth interpolation of surfaces.
This rendered possible the use of a specialized graph-based planner that
established connectivities between robot states. The resulting sparse-graph
structure eliminated the need to generate an explicit surface mesh, yet
allowed for an efficient planning of paths along the surfaces, while remaining
feasible and safe for the robot to traverse.

Different experiments in different simulated environments were realized
to test the viability of the proposed navigation solution. Figure 5.13 shows
one of those results, where the robot was asked to plan a path from one
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Figure 5.13: Proof of concept of the path planning solution on simulated points. Top
left: Original point cloud. Bottom left: Perspective view of the reconstruction. Middle:
Side and top projection of the reconstruction. Right: 2D path used for the motion
controller. Note: 3D-planned path is in white and the edge detected as obstacles are in
red in the reconstruction views.

side of a hole to the other. The figure presents the inputted point cloud
with the surface saliency and the detected edges with the planned path.
From the point of view of the robot, the resulting trajectory that need to
be done moves forward in a straight line, turns left by 90◦, continues again
on a straight line, turns left a second time and continues ahead to the finish
point. Although simple in 2D, the path required complex maneuvers in 3D,
and dealt with surfaces and edges constrains.

Multiple paths were also planned on real 3D reconstruction. We reused
the environment presented in Figure 5.12 and applied tensor voting to it,
leading to the continuous representation at the top of Figure 5.14. Then, a
starting point (S) was determined on the left side, from which safe paths
were automatically computed to successfully reach five of the remaining exit
points (1, 2, 3, 4, 5) out of seven. The solution is now being extended to
platforms like NiftiBot, capable to move in 3D but limited by the gravity.
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Figure 5.14: Results of
the path planning algo-
rithm in a real steam chest
environment. Top: Cut
view of the reconstructed
environment with light yel-
low being an high proba-
bility of a surface. Mid-
dle: Side view of the five
paths leading to different
exit points. Bottom: Top
view of the same five paths.

5.3 Use Case: Shoreline Monitoring
In order to support environmental monitoring of freshwater bodies, an
autonomous surface vessel was developed in the ASL in collaboration with
the Limnological Station of the University of Zurich. Although the vessel
was initially developed to deploy biologic sensors in water (see [Hitz et al.
2012] for details on this application), a 3D laser was installed on its top
to complement the analysis of the ecosystem with geological information.
For example, 3D mapping of the shoreline could help to determine the
volume of organic material (leaves) falling in a lake, accurately identify
inflows of water, quantify coastal erosion, etc. The observation of coastal
erosion using rangefinder laser is already an active field in geology [Mitasova
et al. 2009], but it relies mainly on airborne surveys. However, this survey
method can not provide a good viewpoint of a cliff, and the costs are quite
high. The use of a boat as carrier is comparatively a low-cost method that
can give better vantage points in certain situations. Beyond the geological
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applications, localization on the shore with centimeters precision can increase
the autonomy of the system by allowing it to navigate to the sampling point
from a parked position in a confined area, such as a boat house, or from
its docking recharge station. One of the requirement of such application
is to have long range for measurements, given that shores imply shallow
water, which poses a limit on how close the boat can be without touching
the bottom. The type of outdoor environments expected when surveying
a water body can vary from structured to unstructured, depending on the
intensity of the recreational use by the local people. For example scanned
elements can be dams, bridges, houses, beaches, rocky shores, sparse to
dense vegetation, etc. Except for other boats, most of the environment is
expected to be static with potential for seasonal changes (global motion)
monitoring.

The platform, named Lizhbeth, was deployed several times in Lake
Zurich (Figure 5.16) and once in the alpine Lake Cadagno, both located
in Switzerland. It had a volume of 6.75m3 and weighted approximately
120 kg. The motion of the robot was ensured by two electrical propellers
positioned in the custom-built hulls of the catamaran. This gave differential
drive motion capability to the platform, allowing it to turn on spot. The
typical velocity of the robot is 0.7m/s when surveying away from the shore.
The main sensor used for 3D reconstruction was a Velodyne HDL-32E,
which was configured to produce 45,000 points at 1.6Hz. A single-beam
underwater sonar was used to produce bathymetric maps. The localization
sensors included an IMU, a magnetic compass and a GPS. The GPS
was mainly used for offshore navigation because its precision of 5m made it
dangerous for nearshore navigation. The odometry can hardly be computed
based on the motor inputs because of the high inertia of the boat in water,
and the unknown wind-driven surface currents. Among the main sources
of localization perturbations are the waves that may change rapidly the
platform orientation, which can be evaluated by the gravity vector measured
by the IMU. The smooth motion of the platform rendered difficult to extract
reliable translation information without adding any registration algorithms.
Nevertheless, a predictive model implying smooth 2D translations on the
xy-plane can be used to pre-align scans.

While keeping the constraints of Lizhbeth in mind, we ran preliminary
mapping experiments using the Velodyne installed on a small watercraft
(7m long). The substitute boat was a monohull and thus, was considered
less stable on water than Lizhbeth, which is a two-hull vessel. As no
external sensors were available, the full solution was tuned to not rely on
any pre-alignment of the scans. The input filters applied ensured that the
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Figure 5.15: The autonomous surface vessel, named Lizhbeth, during one of its survey
environment: pre-alpine Lake Zurich, Switzerland.

watercraft was removed from the scans, and a fast random subsampling
reduced the number of points to ensure registration at every 0.6 s. The
watercraft recorded scans while sailing, and its movements depended on water
motions. Since waves induced fast changes in the watercraft’s orientation,
the matching of the scans needed to be fast enough to keep the error on
the initial orientation small. The size of the survey area was expected to be
large, so a low density of points were forced. When the laser hits the water
it is usually not reflected back to the sensor, as opposed to solid ground.
This has the advantage that a path can be planned on the space free of
measurements instead of following a surface as presented in Section 5.2.2.
Unfortunately, some waves can be detected by the laser because of their
variable surface orientations. To reduce wave-reflectance effect, we applied
a strict shadow point filter that removes 3D points that display an angle
difference larger than 17◦ between surface normals and the direction of
observation. The complete list of modules used with their main parameters
are listed in Table 5.5.

The experiment executed with the watercraft was recorded on Lake
Zurich, in front of the Limnological Station, the typical operating area of
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Table 5.5: Configurations of ICP chains for the Lizhbeth mapping applications.

Step Module Description

In
pu

t

Read. filtering BoundingBox remove points in a box of 7×7×2m
RandomSampling keep randomly 80% of the points
SurfaceNormal surface normals based on 20 NN, ε = 3.16
ObservationDirection add vector pointing toward the laser
OrientNormals orient surface normals toward the obs. direction
MaxDensity subsample to keep point with density of 50 pts/m3

Shadow remove points with angle between surface normals
and observation direction > 17◦

R
eg
ist

ra
tio

n

Ref. filtering - processing from the rows Map
MaxDist keep points within a radius of 70m

Read. filtering - processing from the rows Input
RandomSampling keep randomly 25% of the points

Data association KDTree kd-tree matching with 5.0m max. distance, ε = 3.16
Outlier filtering TrimmedDist keep 90% closest points

SurfaceNormal remove paired normals angle > 90◦
Error min. PointToPlane point-to-plane
Trans. checking Differential min. error below 0.01m and 0.001 rad

Counter iteration count reached 40
Bound transformation fails beyond 5.0m and 0.8 rad

M
ap

Ref. filtering SurfaceNormal Update normal and density, 20 NN, ε = 3.16
MaxDensity subsample to keep point with density of 50 pts/m3

MaxPointCount subsample 70% if more than 600,000 points

Lizhbeth. The boat started away from the shore moving towards a harbor
where multiple boats were parked side by side. This starting position is
located on the lower left corner of Figure 5.16. The boat first passed between
the harbor and boats anchored on buoys and turned right to continue between
the anchored boats and the shore. The boat sailed parallel to the shore up to
a boat house situated within an artificial small canal leading to the entrance
of the warehouse. On the reconstructed environment, one can notice the
noise around the anchored boats that was caused by their movements during
the experiment, especially around the white one, at the bottom left corner.
Also seen in that corner are the noisy light gray points that were generated
by the reflection of the laser on the waves. The final map covered an area of
280 by 130m without displaying any major defects.

The final solution must take into consideration that elements located
offshore can have multiple possible positions. By keeping the global map
updated at every uses, those multiple positions will be retained in the map,
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Drifting Boat
Start

Boat 
House

Figure 5.16: Reconstruction of the shoreline from a boat. Top: Overlay of the 3D
map with an aerial view. Bottom: Top view of the 3D map with point colors based on
elevation, light gray being low and dark blue being high. The orthogonal projection of
the aerial image was provided by the Bundesamt für Landestopografie swisstopo (Art. 30
GeoIV): 5704 000 000
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thus reducing the chances of large drifts in cases where, for example, only
the boats on the buoys were scanned. We thank Gregory Hitz (ASL) for
its help gathering the scans.

5.4 Use Case: Autonomous Driving
The recent expansion of the autonomous driving field have been pushed
forwards by car companies that teamed up with research partners, like
Volkswagen in the EU project V-Charge, or by large company like Google
hiring roboticists to develop new car prototypes. The American state of
Nevada even officially delivered its first license for driverless car in May 2012.
Although photometric registration is more attractive from the industry point
of view, due to the potential low cost of cameras, geometric dense maps can
support other activities. For example, road inspection is a tedious task that
is mainly realized visually by operators driving on the roads. Large-scale
road construction sites can also profit from a fast monitoring of the work
progress. Applications usually target urban environments, which are mostly
structured (e.g., road, buildings) or semi-structured when the vegetation is
more prominent. The environment is predominantly static, but a large part
of the field of view can be occupied by other cars such as in dense traffic
situations.

The SmartTer (Figure 5.17) was a modified version of a Smart Fortwo.
The car was developed by the ASL and served in 2006 has a technological
demonstrator in the European SPARC project realized in collaboration with
Daimler Chrysler. The Smart is one of the most compact car with a volume
of 6.38m3 and a weight of 730 kg. Two Sick LMS-291 laser rangefinders
were mounted on a vertical rotating axis, each of them providing 14,000
points every second. Motion compensations were applied to the 3D scans
to cope with the high speed of the vehicle (15 km). Other sensors included
navigation laser, omnidirectional camera, monocular camera, GPS and
IMU. The overall motion of the vehicle is expected to be smooth, with a
strong assumption of translation on the xy-plane. For a deeper description
of the vehicle, we refer the reader to the publication of Lamon et al. [2006].

The solution selected for this application had to deal with a large scanned
volume and noises caused by the velocity of the vehicle. We drastically
reduced the number of inputted points by keeping a maximal density of 0.5
points per m3. For the registration, we cut points beyond the maximal reach
of the sensor to reduce the NN searching space. The pre-alignment of the
scans was fairly accurate, but we kept a maximum matching distance of 1.5m
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Figure 5.17: The autonomous car, named
SmartTer, with its suite of five Sick LMS-
291 laser rangefinders. Larger wheels were
installed to allow off-road driving.

to recover from loop-closing error. Many large trees along the road were
having their surface normal wrongly estimated due to their unstructured
nature, which increased the point-to-plane alignment error. With that in
mind, we used a point-to-point error metric for the minimization, as opposed
to other solutions presented in this chapter. A denser global representation
was maintained to ensure for more stability of the registration, especially on
the ground where the density of a single scan was dropping rapidly.

Table 5.6: Configurations of ICP chains for the SmartTer mapping applications.

Step Module Description

In
pu

t Read. filtering SurfaceNormal surface normals based on 20 NN, ε = 3.33
MaxDensity subsample to keep point with density of 5 pts/m3

R
eg
ist

ra
tio

n

Ref. filtering - processing from the rows Map
MaxDist keep points within a radius of 40m

Read. filtering - processing from the rows Input
Data association KDTree kd-tree with 1.5m max. distance, ε = 0, k-NN = 3
Outlier filtering TrimmedDist keep 70% closest points
Error min. PointToPoint point-to-point
Trans. checking Differential min. error below 0.01m and 0.001 rad

Counter iteration count reached 100
Bound transformation fails beyond 5.0m and 0.8 rad

M
ap

Ref. filtering SurfaceNormal Update normal and density, 20 NN, ε = 3.16
MaxDensity subsample to keep point with density of 10 pts/m3

MaxPointCount subsample 70% if more than 900,000 points
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The complete ICP solution ran at 3 Hz, which permits the registration
to run in real-time with a bit of margin. As showed in Figure 5.19, the
SmartTer started and ended its path in a street situated at the top left
corner of the aerial view. During the drive, a total of four loops were realized:
two loops were made counterclockwise around the Eidgenössische Technische
Hochschule (ETH) main building (Hauptgebäude), and two other loops
clockwise around the Hospital (Universitätsspital Zürich). Even with the
low density of point used, a reasonable amount of details could be preserved,
as depicted in Figure 5.19 where even wires powering trams are visible over
the street junction at the bottom of the image. At the first closing point, an
alignment error of 4.5m on the z-axis was recovered by the registration after
a path of 660m. The second closing point took place on a longer distance
(920m), with an error on the z-axis of 14.3m, which error was also recovered
by the registration a bit later, so the second loop could be done with the
same representation without any problem. It is interesting to note that, at
those two closing points, errors on z-axis were the most predominant of the
6 DoF possible. When looking at each scan separately, we observed that
the ground area displaying a usable density of points had a radius of 20m
around the car. Also, the distance between two scans was often 8m, going
as high as 17m when accelerating. Urban environment are often referred
as canyon-shaped, which means that the sides are well constrained by the
buildings, but lacking points on the ground can lead to drift on pitch angle
or/and on z-axis. The fast motion of the car coupled with the short range
measurements gave little overlap to stabilize the elevation or the pitch angle
and the error cumulated during each loop. When the car was passing again
in streets previously explored, the global map was reused successfully. This
application results are the largest presented in this chapter, with a total
path length of 3.8 km. We thank Rudolph Triebel and Luciano Spinello
(ASL) for recording and preparing the scans presented in this section.
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Figure 5.18: Overlay of a large scale reconstruction of the ETH main building and its
surroundings with an aerial view. Colors represent the elevation, dark blue being low
and dark red being high. Loop closing points are marked by numbers in circle, (1) being
the small loop, (2) being the larger loop. The orthogonal projection of the aerial image
was provided by the Bundesamt für Landestopografie swisstopo (Art. 30 GeoIV): 5704
000 000
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ETH 

Tram Wires

Figure 5.19: Bird view of the ETH main building. Colors represent elevation, light
gray being low, dark blue being high.
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5.5 Summary
This chapter covered a wide range of applications that were performed by
different types of robotic platforms. The key characteristics of the robots
employed in those applications are recapitulated in Table 5.7. We presented
registration utilizations in situation awareness for Search & Rescue activities.
The feasibility of real-time mapping deployments was demonstrated in a
confined staircase, in open outdoor areas and in a collapsed church. We also
demonstrated that surveying images recorded by an aerial vehicle and scans
from ground vehicle can be gathered to enhance a scene reconstruction of a
heavily damaged deployment site. A solution based on compact inspection
systems was also suggested for mapping unreachable components in power
plants. Such solutions could help reducing costs, time and dangers for the
operators by bringing rapidly 3D informations from inside the part inspected,
without the need for complex structures to support the operators. Finally,
large-scale environmental surveys were shown to be successful without the
need for specific loop closure algorithms, whether the survey is on water or
the road.

Table 5.7: Summary of the robot key characteristics influencing the proposed registration
solutions.

Magnebike NiftiBot Lizhbeth Artor SmartTer

Weight (kg) 0.34 20 120 300 730
Volume (m3) 0.006 0.17 0.96 6.75 6.38
Speed (m/s) 0.045 0.3 0.7 1.2 4.17

Depth Sensor URG-04LX LMS-151 HDL-32E HDL-32E LMS-291
Number of Points 340,000 55,000 50,000 45,000 28,000
Scan Rate (Hz) 0.02 0.35 1.6 5 1
Point Rate (Hz) 6,800 19,250 80,000 225,000 28,000

Based on the Search & Rescue deployments realized, we observed that
most of the exploration activities are linear or expend following a start-
shape. Most of the tasks imply: (1) going somewhere where no direct sight
is possible from a safe zone, (2) assessing the situation and damages, and
(3) backtracking the robot’s path to the control station. Those task rarely
imply loop closing and a coherent representation will be enough to bring the
robot back to the control station even with some drift. Although none of the
applications described in this chapter used loop closure, the street survey
with the SmartTer would not be the appropriate solution in its current
form. It is a good example of the utility of error relaxation and loop closing.
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Having more accurate local registrations relaxes the pressure on loop closing,
thus extending its reach to even larger loop.

Some lessons were learned while tuning the registration solutions for
each one of the applications. One of the main parameter to tune first would
be the maximal density required by the application. It can rapidly resolve
real-time issues and remove local minima from the registration minimization.
The maximal density and the maximum number of points in the global map
depend on the expected size of the explored zone. For the specific case
of exploration using NifitBot, the fact that the sensor is 0.21m above the
ground greatly reduces the motion planning range on a cluttered floor. Also,
speed reduction should automatically be applied when the elements around
the robot get too close, e.g., when crossing doorways. This would avoid the
rapid decrease of the overlap between scans, which would drag down the
registration quality. As for Artor, its fast motions required the handling
of real-time processing in priority. During tuning, the fact that 3D scans
jumped in critical situations (e.g., quick rotations) was enough to break
the chain of registrations. In the case of inspection using the Magnebike,
our evaluations provided better specifications for the construction of a new
compact rotating laser. This new sensor will rotate faster (10 rpm) and will
read from a UTM-30LX instead of the more noisy URG-04LX. This should
bring the quality of inspection closer to the goal of 0.01m precision that
is required for defect detection. The preliminary work on the autonomous
surface vessel, Lizhbeth, lead to a prioritization on the orientation estimation.
For next applications, we decided to replace the Velodyne by a cheaper
UTM-30LX moved by a custom tilting mechanism, allowing variable vertical
scanning angles. This would give faster scanning rates when the obstacles
are far away, while having the possibility to scan overhead vegetation when
close to the shore. Those advantages come at the expense of range. Further
tests will be needed to determine at which distance from the shore GPS
navigation will give the hand to the localization based on laser. The projects
implying the SmartTer finished a few years ago, but it was nevertheless
interesting to push the capabilities of local registration to its limit. One
of main observation is that even though the SICK LMS-291 specifications
mentioned a maximal range of 70m, the usable range remains under 20m
on concrete roads. Velodyne sensors can exceed this reach by three to four
times, which can lower the cumulated error over large distances. Although
more powerful, Velodyne sensors produce dense reading that are shaped like
concentric disks, which can create local minima when registered. The use of
past registered scan, in our case the global map, can help reducing those
reconstruction artifacts and provides a more accurate reconstruction.
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All examples demonstrate the added value of a modular ICP chains
as each application has a specific set of requirements, that can still be
fulfilled with the same open-source ICP library. The text-based parameter
configurations combined with visual debugging tools allowed us to rapidly
tune and understand limitations of configurations in order to achieved fast
and accurate solutions.
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Chapter 6

Conclusion

T his thesis presented our work for a solid scientific methodology
in robotics. At the beginning, we highlighted some flaws related
to geometric registration evaluations, and acknowledged some

difficulties encountered by researchers. The generic problem of registration
for mobile robotics is a complex one with multiple facets. We focused on
how to select, evaluate and develop 3D geometric registration algorithms
in accordance to past publications. There are many challenges faced by
researchers when dealing with registration applied to robotics. Notably, we
exposed the large number of available publications and the lack of common
grounds, which complicates the selection of an appropriate method. Also,
given the diverse applications with non-uniform sensors, motion capabilities,
environments, etc., it can be difficult to efficiently relate works between
them. Finally, the lack of deeper solution characterizations and knowledge
about algorithm limitations mislead researchers when implementing state-
of-the-art solutions on a platform, costing time and resources. We took on
those problems by four means: (1) an exhaustive literature review, (2) the
elaboration of methods and tools specific for geometric registrations and
applied to robotics, (3) a deeper investigation of well-known solutions, (4)
an enumeration of the lessons learned based on concrete implementations
on real-case scenarios.

6.1 Scientific Contributions
A detailed literature review was realized by surveying an extensive lit-
erature about registrations problems. By looking at the literature in related
fields, we discovered that medical imaging reported their advancements in a
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more structured manner than in robotics. This may be because research
with impacts on human requires deeper investigations before being applied
in clinical tests. A generic structure emerged from this review, leading to a
software framework. Although we covered a considerable amount of publi-
cations, many more remained unlisted in our survey. Further investigation
is required to ensure that our proposed classification handles appropriately
other scientific contributions on geometric registration. Moreover, the elab-
oration of a formal theoretical framework, either specialized for ICP or
more generic to geometric registration would be the next step to conceal
our proposed framework. Probabilistic methods, now providing more and
more solutions based on entropy, would benefit from a stronger link with
shape morphing to list possible solutions and their advantages.

Methods and tools were proposed to accelerate solution comparisons
and to evaluate them against standard perturbations. Data sets with ground
truth positioning, which was accurate enough to evaluate geometric regis-
trations, were recorded in a variety of environments. The stable recording
protocol followed for all data sets makes it a tool of choice for the transition
between theoretical algorithms and field tests. In addition, we provided
an evaluation protocol with predefined error metrics and controlled inputs
that we hope will be accepted as standards in a short future. Based on
the fact that most of the geometric registration algorithms share the same
processing structure, we developed a modular library gathering ICP solu-
tions in the same framework. We used this library to optimize solutions for
real-time processing of high-frame rate sensors and to evaluate standard
ICP solutions.

All specific problems tackled by researchers are unique, in a sense, and
any evaluation framework will not fulfill all the specific needs. Nevertheless,
it is the responsibility of the scientists to ensure an appropriate level of
comparison, which necessarily implies a standardization of the constraints.
One way to deal with this issue is to evaluate the proposed algorithm in a
generic framework, and then use the analysis to motivate a more precise
set of experiments. This procedure gives enough information to relate the
works together, while drawing attention to specific conditions where the
solution might be useful.

A concrete example would be someone proposing a registration solution
that minimizes the scale in addition to a rigid transformation. The solution
still needs to deal with different environments, variable overlaps of scans,
and multiple types of motions. Moreover, the estimated scale should be
close to identity when only rigid perturbations are applied. Once those
robustness are demonstrated, specific experiments looking specifically at
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the scale can be analyzed. Of course, there is a limit in the assessment of
an algorithm outside its intended conditions. This would be the case for
registration solutions that heavily rely on labelled points based on colors.
Although we specialized our effort on geometric registration, we believe that
our contributions cover a large number of active research fields.

In Chapter 2, we saw that there are a multitude of solutions that still
need to be tested. Our library currently only have few of those solutions
implemented, and further involvement will be required to challenge more
solutions.

Deeper investigations of basic solutions were realized to reveal some
of their strengths, limitations and underlying assumptions. A suite of laser
rangefinders is typically used in robotics, and some noise characterizations
were still missing for some of them. We produced random noise models
for the UTM-30LX, LMS-151 and reviewed older models proposed for the
URG-04LX. Using the same experiment, we also defined lower bounds for
surface reconstruction based on the noise produced by each sensors. The
study presented results only for a random noise but static noise can also
have a considerable impact on geometric registrations. Further evaluations
are required to analyze the possibility of a calibration model that could also
take into account the reflectivity, incidence angle and distance of a measured
point.

We also analyzed the impact of environments, trajectories and initial
perturbations on standard ICP methods using point-to-point and point-to-
plane minimization scheme. Our main observation is that computation speed
can be gained by fast reduction methods, without degrading the accuracy
of the solution in an unusable range. The first set of standard evaluation
results based on our proposed protocol were realized to demonstrate its
viability and the range of analysis that can be rapidly done. What is still
missing is an approbation of the scientific community for the proposed
methods and a common repository to achieve the results. Hopefully, the
transparency of open source softwares and publicly available results will
help us to build a community, without refraining researchers for privacy or
exclusivity concerns.

Lessons learned based on real scenarios were provided as a set of
solutions using different parameters but sharing the same implementation.
The same library, coupled with the analysis realized, allowed us to rapidly
develop application prototypes that have the common criterion of respecting
real-time constraints. The platforms used, Magnebike, NiftiBot, Lizhbeth,
Artor and SmartTer, covered a variety of situations. Their different velocities,
inertias, environments and locomotion types provided essential and unique
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information for for further implementations. Those study cases were also
used to demonstrate that, even though its modularity, our library still
provides strong computational performance. The results obtained help to
readjust prior platform designs and demonstrated the viability of geometric
registrations in a multitude of applications. Despite the fact that the
transition from theory to implementation was done rapidly, more tests are
required to ensure the stability of the prototypes presented.

6.2 Outside the Box
Robotics is a young research field compare to more traditional fields like
medicine, biology, or geology. Therefore, it may be worthwhile to have a short
glimpse on how those fields dealt with methodology problems. Focalizing
on observations and the impacts of different parameters on a system is a
clear concept in natural sciences, but in robotics, we often invest way more
time to build the system than the time we devote to make observations with
the platform. Although this might be true, other fields have similar long
development phases as a major constraint. One good example is the research
in medicine, or more precisely in pharmaceutics. The development of new
medicaments are engineered based on more theoretical fields like chemistry,
and must pass through a strict sequence of experimentations, from chemical
stability, in vitro tests, to clinical evaluations. When it is not done properly,
public health safety is endangered and harmful consequences may follow.

To achieve such deep investigations while working on a solution, time must
be invested. In biology, studies are carried over multiple PhD generations
to ensure that the full sequence of tests is done, and that safety is ensured
at the end. This is rarely the case in robotics, which presents itself as a
fast-paced field, where results from last year are already obsolete.

Sometimes overlooked, a robotic platform is an agent interacting with
the environment. This link strongly defines the success or failure of a
task, but the number of parameters influencing the environment can be
overwhelming. Again, we can inspire ourself by what is seen in other fields
to overcome the challenge. Field biologists face the same problematics and
often opposed their conclusions based on observations made in situ, where
the number of parameters is high, against the ones of colleagues who make
most of their observations in vitro, i.e. under a controlled and limited set of
parameters. We slowly see this distinction appearing in specialized journals
and conferences on field deployments of robots, but it remains unclear what
is a good field deployment and what validations are essential to go a step
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further and authorize the use of an autonomous systems in society.
Whenever there is a potential for strong and adverse consequences,

researchers tend to follow a solid and structured methodology to avoid wrong
interpretations. The open question is then: what will be those negative
consequences for the public that would motivate the robotics researchers to
apply a standardized methodology and how, as a community, we want to
face them?

6.3 Impact on Society
This particular work might have a limited impact on society, but the robotics
research in general does. Clearly, robots captivate the imagination and are
always seen as what the future will be. Making the effort to provide tools
to people that do not have thorough technical skills is also a good way to
seek for new research opportunities and support creativity of others. This
happened for photographers with image registrations, and it might also be
the case for geometric registration. At its current stage, our library targets
researchers and developers but with a bit of work, it could also support
home made 3D games (e.g., for characters and scene modeling), amateur
3D movies, or even a new form of artistic expression...
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Appendix – Transformation
Functions
A frame of reference F in a 3D Euclidian space as been defined by an origin
point Fo and a set Faxis of 3 orthogonal unit vectors, namely Fi,Fj,Fk. Some
parametrized shapes may have the same definition leading to confusion in
the notion. Therefore, double letters (e.g. A,B,C, ...) will be used when
using frames as a convention. Coordinates correspond to a scale on each
axis, which can be express as a triple [x, y, z]T . The components of F can
be explicitly defined in its own reference frame as:

F = {Fo,Faxis}, with Faxis = {Fi,Fj,Fk}, and

Fo =

 0
0
0

 ,Fi =

 1
0
0

 ,Fj =

 0
1
0

 ,Fk =

 0
0
1


The notation SF will be used to explicit the fact that a shape S is

express in a frame of reference F.
The basic nomenclature and properties of transformation functions used

in this work are defined here. A generic transformation function is written
as follow:

pB = TBA (Θ, pA ),
which can be read as a transformation function T taking a primitive p
expressed in a frame of reference A and transfering it to a new frame of
reference B. This transformation is defined by a set of parameters Θ. A
transformation function is always written with 2 double letters, which can
be read from A to B. When the parameters are not of interest, a shorter
notation is used:

pB = TBA pA
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A chained application of transformation function:

pC = TA
C (Θ3, pA ) = TC

B

(
Θ2, TBA (Θ1, pA )

)
can be expressed in homogeneous coordinates as a matrix multiplications:

pC = TC
A pA = TC

B TBA pA

Changing the direction of transformation matrix is equivalent to use the
inverse of the same matrix:

TBA = TA
B
−1

Transformation can be applied without parameter based on some conventions.
To make the distinction, we used the term mapping function instead of
transformation function. For example, the mapping function from Cartesian
C to Spherical S coordinates is:

MSC (x, y, z) =

 r
θ
φ

 =


√
x2 + y2 + z2

atan2(y, x)
asin( z

r
)


The mapping function from Spherical S to Cartesian C coordinates is:

MC
S (r, θ, φ) =

 x
y
z

 =

 r cosφ cos θ
r cosφ sin θ
r sinφ


The mapping from Homogeneous H to Cartesian C coordinates is:

pC = MC
H ( pH ) =

xy
z


C

=

x/wy/w
z/w


H

There is an infinite number of solutions to apply the mapping from Cartesian
C to Homogeneous H coordinates, since it is augmenting the dimensionality.
Although, to use homogeneous coordinates to linearly combined rotation
and translation, the extra component w is assigned to one:

MH
C (x, y, z) =


x
y
z
w

 =


x
y
z
1
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The other group of transformation uses parameters to modify the space.
Those transformation are: Translation, Uniforme Scaling, Rotation, Nonuni-
form Scaling, Shear, Vector Projection and Planar Projection; and there
parameters are defined in Table A.1. A convent way to combine linearly
transformation is the use their homogeneous representation as shown in
Table A.2.

Table A.1: Basic transformation function minimal set of parameters. * note: there exist
multiple way to express rotation: quaternions, Euler axis, Euler angle, rotation matrix.
We only show two basic examples here.

Function Notation Parameters Note

Translation T (t) t = {tx, ty, tz}
Uniforme Scaling U(s) s
Rotation* R(r, α) r = {rx, ry, rz}, α Needs one line and an angle
Basic axis in F Rx(α) α = R(Fx, α)

Ry(α) α = R(Fy, α)
Rz(α) α = R(Fz, α)

Yaw-Pitch-Roll R(α) α = {αx, αy, αz} = Rx(αx)Ry(αy)Rz(αz)
Nonuniform Scaling S(s) s = {sx, sy, sz}
Shear H(h) h = {hxy, hxz, hyx, hyz, hzx, hzy}
Vector Projection P (p) p = {px, py, pz} Needs one line
Planar Projection P (p1, p2) p = {px, py, pz} Needs two lines
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Table A.2: Basic transformation function express in their homogeneous forms. * note:
there exist multiple way to express rotation: quaternions, Euler axis, Euler angle, rotation
matrix. We only show one basic example here.

Function Parameters Homogeneous form

Translation tx, ty, tz T (t) =


1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1



Uniforme Scaling s U(s) =


s 0 0 0
0 s 0 0
0 0 s 0
0 0 0 1


Rotation* α, β, γ Rx(α)Ry(β)Rz(γ) =

cβcγ −cβsγ sβ 0
cαsγ + cγsβsα cγcα− sβsγsα −cβsα 0
sγsα− cγcαsβ cγsα+ cαsβsγ cβcα 0

0 0 0 1



Nonuniform Scaling sx, sy, sz S(s) =


sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1



Shear
hxy, hxz
hyx, hyz
hzx, hzy

H(h) =


1 hxy hxz 0
hyx 1 hyz 0
hzx hzy 1 0
0 0 0 1


Vector Projection px, py, pz P (p) =

[
px py pz 0

]
Planar Projection px, py, pz

qx, qy, qz
P (p, q) =

[
px py pz 0
qx qy qz 0

]
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