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Abstract

In this thesis, we investigate the convergence behavior of the dual adaptive model predictive
controller (MPC). The dual adaptive MPC is a compelling area of research due to its ability to
actively explore unknown parameters within the system. The current convergence result using
Lyapunov stability analysis depends on two practical challenges: the difference between the cur-
rent and the previous estimated parameter and the covariance matrix derived from the recursive
least squares (RLS) estimation. Our research aims to achieve convergence independent of these
factors. By applying logarithmic upper bounds to both the average squared Euclidean distance
between consecutive parameter estimates and the terms in the average Lyapunov decrease func-
tion, we establish the average convergence of the dual adaptive MPC. We validate our results
with detailed mathematical proofs and simulations, which also illustrate limitations. We con-
tribute valuable insights into the convergence behavior of the dual adaptive MPC and provide
some assurance of its operational reliability in practical applications.
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Chapter 1

Introduction

Motivation: Adaptive control has been an attractive area of research in control theory due
to its ability to adjust the controller based on real-time data. A typical adaptive control system
includes a component that processes measured data using an estimation algorithm to refine
unknown parameter estimates. These updated estimates are then fed into the controller, which
computes the optimal tracking input for the plant. However, this architecture only explores
the system’s unknowns passively because there are no components actively encouraging the
exploration of the system since the controller solely optimizes the tracking path.

Related Works: [1] addresses this by integrating exploration and exploitation into a single
optimal control problem where the optimized control inputs meet both criteria simultaneously.
Initially, the practical implementation was challenging due to computational limitations, but
advancements in hardware and the development of efficient solvers have revitalized interest in
this approach. Dual adaptive MPC, which integrates dual theory with model predictive control
(MPC), has gained significant attention. MPC is favored in various industries due to its ability
to handle constraints and its straightforward implementation with current tools.
In the work of [2], a stochastic approach to dual adaptive MPC for single-input single-output
(SISO) systems was presented and converted into a deterministic quadratic constrained quadratic
programming (QCQP) problem. This formulation enables the dual adaptive MPC to be solved
using well-established solvers. However, stability proofs for dual adaptive MPC remained chal-
lenging and were not provided.
[3] presented a stability analysis where the dual adaptive MPC was considered within the rein-
forcement learning framework. The cost function was treated as a Bellman equation to explain
stability. However, they did not address tracking, which is a common application of MPC.
A stability analysis of dual adaptive MPC for tracking was provided in [4] using Lyapunov
stability analysis. They achieved convergence that depends on the difference between consecutive
parameter estimates and the current covariance matrix. This dependence introduces practical
challenges that could impact the operational safety of dual adaptive MPC.

Thesis Goal: In this thesis, we aim to enhance the convergence aspect compared to the results
presented in [4]. We consider a discrete linear time-invariant system with a scalar output dis-
turbed by additive bounded noise and an unknown parameter vector. The unknown parameter
vector is estimated using recursive least squares (RLS) estimation. To improve the estimation
accuracy, we project the RLS estimate onto a predefined set, that the true parameter vector is
assumed to be contained within this set.
In contrast to the approach proposed in [4], which utilizes set-membership estimation to dynam-
ically update the predefined set, our method maintains a constant predefined set throughout the
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algorithm. This approach may lead to conservative constraints, but it simplifies the mathemati-
cal proof of stability. The objective of the dual adaptive MPC is to steer the output towards the
desired value while concurrently refining the estimate of the unknown parameter.
In typical MPC, the control law ensures that the system remains within a positive invariant
set, and a terminal controller is employed to guide the system towards the origin. We intro-
duce a terminal equality constraint to define a positive invariant set that includes only a single
point, thereby simplifying the mathematical proof. Our investigation reveals that, with these
modifications and additional assumptions, both the squared Euclidean norm of the difference
between consecutive parameter estimates and the tracking error converge on average. This im-
plies average convergence of the dual adaptive MPC independent of the difference between the
consecutive parameter estimates and the covariance matrix. This result is less strict than the
classical convergence criteria, yet it offers meaningful observations for practical applications.

Contributions: This investigation ensures the proper operation of the dual adaptive MPC
algorithm by ensuring recursive feasibility and achieving average convergence of the Lyapunov
decrease function. Without these properties, the system may fail to reach the desired output
or exhibit destabilizing behavior. By removing the dependence of variables obtained from the
parameter estimation in the average convergence analysis, the dual adaptive MPC is ensured to
operate correctly despite online updates of the parameter estimates. This research advances the
practical usability and reliability of the dual adaptive MPC.
We validate our findings by providing a mathematical proof of the average convergence. The
analysis involves demonstrating a logarithmic upper bound for the average squared Euclidean
norm of the difference between consecutive parameter estimates and for the Lyapunov decrease
function. To support our theoretical findings, we will simulate the MPC algorithm under several
examples.

Structure: The thesis is structured as follows: We will begin by outlining the problem and
detailing the necessary assumptions and design choices of the dual adaptive MPC for the average
convergence analysis. Then, we will present our main result as a theorem which states that the
change between the parameter estimates and the tracking error will converge on average. We
highlight the meaning of the theorem for the average convergence of the dual adaptive MPC.
Then, we will provide the proof of the average convergence of the change between the parameter
estimates first, since it will be utilized for the tracking error proof as well. This will be accom-
plished by identifying a logarithmic upper bound for the average term. Then we proceed with
the proof of the average convergence of the tracking error, where we first determine a candidate
solution for the dual adaptive MPC scheme. Following this, we validate that the candidate so-
lution is recursively feasible and satisfies all constraints. Then we derive the upper bound for
the Lyapunov decrease using the candidate solution and the last optimal solution and form the
average of the consecutive Lyapunov decrease function. We demonstrate that this upper bound
converges on average.
Finally, we illustrate our findings with simulations of various examples.
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Chapter 2

Literature Review

Dual Theory: The concept of simultaneous control and exploration, called dual theory, was
suggested in [1] in 1960. The innovative idea involved introducing controlled noise into the system
plant to promote exploration. While the primary objective of the controller remained steering
towards a reference value, this noise injection enabled the acquisition of information regardless of
the specific control strategy employed. The information gained from steering towards a reference
value is described as passive exploration in [1]. By deliberately introducing controlled noise to
the system, the controller was driven to actively gather information. [1] demonstrated that the
quality of the information depended on the characteristics of the noise sequence, demonstrating
how different noise strategies could influence the exploration process. This important insight
encouraged further exploration and adoption of dual control strategies in control systems.

Dual Adaptive MPC: With model predictive control widely adopted in industries for its
ability to handle constraints and its straightforward implementation with current software, [2]
presented dual adaptive MPC in 2017, integrating dual control strategies into model predictive
control. They utilized a linear system output model y(t) = θ⊤ϕ(t− 1)+ v(t), where θ represents
an unknown parameter and v(t) denotes additive noise. The unknown parameter was estimated
using recursive least squares estimation, and the covariance matrix was incorporated into the cost
function to promote active exploration. Their work involved formulating the dual adaptive MPC
as a stochastic optimal-control problem and reformulating it as a quadratic constrained quadratic
programming problem. This reformulation is crucial because it improves the computational
efficiency of the dual adaptive MPC and enables its use in practical applications. To ensure
safety and achieve the control goal, stability analysis is required for the dual adaptive MPC.

Stability Analysis using Reinforcement Learning: Prior research has explored the sta-
bility of the dual adaptive MPC. For instance, [3] provided a stability analysis without tracking.
Inspired by reinforcement learning theories, they treated the MPC algorithm as an agent and
formulated the cost function as a cost-to-go function, similar to a Bellman equation. In their
analysis, they approximated the cost function by neglecting the exploration cost after a certain
number of steps. This approximation allowed them to demonstrate two costs: a finite horizon
cost with exploration and an infinite horizon cost without exploration, resembling a terminal
cost. This approach provided insights into the stability properties of the dual adaptive MPC
algorithm.

Stability Analysis using Lyapunov Stability Analysis: Another approach to stability
analysis was done in [4]. They provided a comprehensive stability analysis with a tracking
objective using Lyapunov stability analysis. With the introduction of set-membership estimation
on top of the RLS estimation, the accuracy of the parameter estimate improved. Furthermore,
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it enabled the imposition of robust constraints on truncated Gaussian noise models to ensure
recursive feasibility. As a result, a stability analysis of the dual adaptive MPC is possible
using the Lyapunov decrease method. They demonstrated uniformly practically exponentially
stability with respect to the covariance matrix of the estimated parameter and the change between
consecutive parameter estimates.

Summary: In summary, the evolution and current state of research in dual adaptive MPC be-
gan with [1] and progressed through recent advancements in [2], [3], and [4]. The reviewed studies
collectively highlight the potential of integrating dual control strategies with MPC frameworks.
However, stability analysis remains a significant challenge, with current approaches showing
promises but also leaving room for improvement.
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Chapter 3

Problem Formulation

3.1 System Properties

In this thesis, we consider a discrete time-invariant linear system model, which is described by
the following state transition equation:

xt+1 = Axt +But, (3.1)

where A ∈ Rn×n represents the state transition matrix, B ∈ Rn×m represents the input matrix,
and xt ∈ Rn and ut ∈ Rm represent the state and the input, respectively, at time t. The output
of the system is denoted by

yt = θ⊤truext + wt, (3.2)

where yt ∈ R and wt ∈ R denote the system output and the additive noise, respectively, at time
t and θtrue ∈ Rn is a constant unknown parameter vector. The goal is to steer the output to
a desired output yd as close as possible, while simultaneously providing an estimation of the
unknown parameter vector.

Systems potentially using this model are, for example, autonomous car driving systems, where
the known internal system is the engine system, the road condition is constant but unknown,
and the output is the velocity. The objective of the car is to drive at a desired target velocity.
Another example is in an electric heating system, where the heating system of a plate is known
but the heat capacity of the material in the pot is unknown. The output is the temperature of
the material, and the goal is to reach a desired temperature.

We consider the following assumptions for our discrete linear time-invariant system:

Assumption 1. The pair (A,B) is stabilizable.

Assumption 2. The unknown parameter θtrue lies inside a predefined hyperbox set Θ0.

Assumption 3. If yd is unreachable, then given µ ∈ (0, 1) and any θ ∈ Θ0, the following optimal
steady state problem is strictly convex:

min
x,u

(θ⊤x− yd)2

s.t. x = Ax+Bu

(x, u) ∈ µZ

(3.3)
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Assumption 1 is standard for tracking problems to ensure non-trivial solutions for the steady
state and input. Assumption 2 allows us to impose a robust constraint to deal with bounded
noise while having an unknown parameter vector. Assumption 3 ensures, that if yd is unreach-
able, then there exists a unique steady state and input pair, where the error of the output to the
desired output is minimized.

Both the state and the input are constrained within a polytope described by:

Z := {(x, u)|x ∈ X, u ∈ U}, (3.4)

where

X := {x|Hxx ≤ hx}, (3.5)

and

U := {u|Huu ≤ hu}, (3.6)

for some matrices Hx, Hu and vectors hx, hu of appropriate dimensions. The output of our
system is constrained within the interval:

Y := [ymin, ymax]. (3.7)

We consider that the additive noise is bounded within the interval:

W := [−w̄, w̄], (3.8)

with zero mean and a variance of σ2. We consider polytopic constraints, because they are
widely used in systems with parameter uncertainties and in MPC controllers. They provide the
advantage of representing the constraints as a set of linear inequalities. This results in increased
computation efficiency when solving the optimization problem of the MPC.

3.2 Parameter Estimation

Since θtrue is unknown, an estimation is needed to achieve our control objective. From the current
measured state xt and output yt and the last estimated parameter θ̄t−1, we first employ the
recursive least squares estimation algorithm to obtain the estimate θ̂t and its current covariance
matrix Π−1

t . The recursive least squares update algorithm is described by the following equations
for all time t ≤ 1 with a given initial parameter estimation θ̄0 ∈ Θ0 and covariance matrix
Π−1

0 ⪯ 1
λI with λ > 0:

θ̂t = θ̄t−1 + σ−2Π−1
t xtet (3.9)

Πt = Πt−1 + σ−2xtx
⊤
t (3.10)

The vector et = yt − θ̄⊤t−1xt in (3.9) describes the estimation error of the current measured
output and the noise-free estimated output. Since we assumed that the predefined hyperbox set
Θ0 contains the unknown parameter vector θtrue, we project the RLS estimated parameter vector
θ̂t into the hyperbox set Θ0 to increase the accuracy of the estimate. It is possible to update the
hyperbox with the set-membership estimation to further improve the accuracy, which is done in
[4]. We decided to ignore the update to simplify the analysis. The resulting projection is the
next estimated parameter vector, θ̄t. The projection is done by using the following formula:

θ̄t = arg min
θ∈Θ0

||θ − θ̂t||2Πt
(3.11)

We define the difference between consecutive parameter estimates as:

∆θ̄t−1 = θ̄t − θ̄t−1 (3.12)
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3.3 MPC Scheme

The control goal is to steer the output yt to the desired output yd as close as possible and to
improve the parameter estimation concurrently while satisfying the constraints. Since yd might
be unreachable, we define at each time t the closest reachable output ydt with the correspond
steady state xdt and input udt under dependence on the current estimated parameter vector θ̄t as
follows:

(xdt , u
d
t , y

d
t ) = argmin ||yd − y||2 (3.13a)

s.t. (x, u) = MΨΨt (3.13b)

y = θ̄⊤t x (3.13c)

ymin + w̄ ≤ θ̄⊤i,0x ≤ ymax − w̄ (3.13d)

i = 1, ..., 2n

It is important to recognize that due to the update of the estimated parameter vector at each
time step, the estimated parameter vector θ̄t+1 might differ from θ̄t. This consequently leads to
different solutions between xdt+1, udt+1, and ydt+1 and xdt , udt , and ydt , respectively, when solving
(3.13).

We solve the control problem with the dual adaptive MPC, which has the following scheme:

min Jt(xt, θ̄t,Θ0,Πt, y
d) (3.14a)

s.t. xk+1|t = Axk|t +Buk|t (3.14b)

Πk+1|t = Πk|t + σ−2xk|tx
⊤
k|t (3.14c)

ymin + w̄ ≤ θ̄⊤i,0xk|t ≤ ymax − w̄ (3.14d)

(xst , u
s
t ) = MΨΨt (3.14e)

yst = θ̄⊤t x
s
t (3.14f)

xN |t = xst (3.14g)

(xk|t, uk|t) ∈ Z (3.14h)

x0|t = xt, Π0|t = Πt (3.14i)

k = 0, ..., N − 1 i = 1, ..., 2n,

where xst , ust , and yst are the optimal artificial steady state, input, and output, respectively. We
use the artificial steady state and input pair (xst , u

s
t ) for tracking, as proposed in [5], to ensure

recursive feasibility of the dual adaptive MPC with Assumption 1. Instead of directly tracking
the desired state and input, which may pose some challenges due to the unknown parameter
vector θtrue, this approach establishes a reference trajectory that the system can track with a
feasibility guarantee in the presence of uncertainties.

We also introduce the parametrization of the artificial steady state and input with the ma-
trix MΨ and the parameter vector Ψt to solve the optimization problem more efficiently. This
parametrization is included as the constraint (3.14e), where the matrix MΨ is chosen by design
and the vector Ψt is to be optimized by the dual adaptive MPC.

We refer to xk|t and uk|t as the optimal predicted state and input, respectively, after k steps
at time t. Compared to the usual MPC scheme, where the terminal set is an invariant set, our
MPC scheme has a terminal equality constraint (3.14g), such that the last predicted state equals
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the optimal artificial steady state, hence x∗N |t = xs,∗t . This can be conservative in practice, but
it simplifies the analysis. With this change, we also no longer need to calculate the closed-loop
control gain matrix since x∗N |t − xs,∗t = 0n and our terminal control law is u = ust .

The constraint (3.14d) ensures the constraint satisfaction of (3.7) for all future outputs, for
any future noise wt+1 ∈ W and parameter estimate θt+1 ∈ Θ0. The hyperbox set Θ0 is described
by its i vertices θ̄i,0 for i = 1, ..., 2n.
The cost function Jt(xt, θ̄t,Θ0,Πt, y

d) of the dual adaptive MPC scheme is defined as:

Jt(xt, θ̄t,Θ0,Πt, y
d) :=

N−1∑
k=0

(||θ̄⊤t (xk|t − xst )||2q + ||xk|t||2Π−1
k|tq

+ ||uk|t − ust ||2R + ||xk|t − xst ||2Q0
) + ||θ̄⊤t xst − yd||2Tc

,

(3.15)

where q > 0 is the weight of the information matrix, R is the input cost matrix, Q0 is the state
cost matrix, and Tc is the terminal cost matrix. The first, third, and fourth, terms of (3.15) refer
to the tracking cost penalty for the artificial steady output, input, and state, respectively. We
refer to the second term of (3.15) as the learning cost, since this term encourages active explo-
ration of the system by promoting the state to go to the origin. This learning cost corresponds to
the mean cost of a stochastic process. The last term of (3.15) refer to the cost penalty between
the artificial steady output and the desired output.

For the analysis of this thesis, we assume the following for Q0:

Assumption 4. The the following condition holds:

Q0 ⪰
4q

λ
I ⪰ 4qΠ−1

0 . (3.16)

This assumption establishes a relation between the state cost matrix Q0 and the initial covari-
ance matrix Π−1

0 . It will be crucial when we upper bound the Lyapunov decrease function.

The overall algorithm is summarized in Algorithm 1.

Algorithm 1 Dual Adaptive MPC Scheme

Given the model, initial state x0, hyperbox set Θ0 ,prior estimate θ̄0 ∈ Θ0, and covariance
matrix Π−1

0 .
for t ∈ N0 do

Measure the state xt and the output yt.
Solve the MPC optimization problem (3.14).
Update the covariance matrix Π−1

t with (3.10).
Update the estimate parameter vector θ̄t with (3.9) and 3.11.
Apply the control input ut = u∗0|t to the system (3.1).

end for
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Chapter 4

Average Convergence Analysis of the
Dual Adaptive MPC

We present the following theorem as the main result of this thesis.

Theorem 1. Suppose that Assumptions 1, 2, 3, and 4 hold. Suppose that the MPC scheme
(3.14) is feasible at t = 0, then the following hold:

1. The average squared Euclidean norm of the difference between consecutive parameter esti-
mates converges to zero:

lim
T→∞

1

T

T∑
t=0

||∆θ̄t||22 = 0, (4.1)

2. The average squared weighted norm of the tracking error converges to zero:

lim
T→∞

1

T

T∑
t=0

||xt − xdt ||2Qθ̄t
= 0, (4.2)

where Qθ̄t =
1
2Q0 + qθ̄tθ̄

⊤
t .

Theorem 1 refers to the average convergence of the dual adaptive MPC. Equation (4.1) indicates
the average convergence of the estimated parameter vector. This also implies the average con-
vergence of the solution of the optimization problem (3.13), since the constraints (3.13d) and
(3.13b) doesn’t change dynamically and the solution solely depends on the estimated parame-
ter vector. Equation (4.2) suggests that the dual adaptive MPC will steer towards the closest
reachable state xdt on average, satisfying (3.13). Since Qθ̄t depends on θ̄t, this also implies that
the output will steer towards the closest reachable output ydt .
It is important to note that even if the closest reachable output from the solution of the opti-
mization problem (3.13) converges, there is no guarantee that the converged value is the desired
output due to the constraints in (3.13). Furthermore, we have no guarantee that the estimated
parameter vector converges to the real one, as there might not be enough excitation in the sys-
tem to ensure this. Still, Theorem 1 provides some guarantees for average convergence, which is
essential for practical applications.
In order to prove Theorem 1, we will proceed as follows: First, we prove the average convergence of
the parameter estimation. Then we analyze the stability of the MPC with standard procedures.
We define a candidate solution and verify that the chosen candidate solution is feasible and
satisfies all constraints. Then, we derive an upper bound for the Lyapunov decrease function
and the corresponding average from the cost function (3.15) and show that this upper bound
converges on average.
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4.1 Proof of the Equation (4.1)

In this section, we provide the proof for Equation (4.1), which is the average convergence of the
estimated parameter.

Proof (4.1): We first introduce the following Lemma:

Lemma 1. With the constraints introduced in (3.5), (3.7), and under Assumption 2 and 4, the
following inequality holds:

T∑
t=0

||∆θ̄t||22 ≤
σ−2nemax

λ
log(

(T + 1)σ−2(xmax)
2 + λ

λ
) (4.3)

with ∆θ̄t defined as in (3.12).

Lemma 1 enables us to establish a logarithmic upper bound of the cumulative sum of the differ-
ence between consecutive parameter estimates for the average analysis of Equation (4.1).

Proof Lemma 1: We begin by stating the following using Assumption 4 and (3.10):

∆θ̄Tt Πt+1∆θ̄t
(3.10)

≥ ∆θ̄Tt Π0∆θ̄t
(3.16)

≥ ∆θ̄Tt λI∆θ̄t,
(4.4)

The reasoning of this inequality can be found in Appendix A.5. We use (4.4) to reformulate the
following:

T∑
t=0

||∆θ̄t||22 = ∆θ̄Tt ∆θ̄t
(4.4)

≤
T∑
t=0

1

λ
∆θ̄Tt Πt+1∆θ̄t ≤

T∑
t=0

1

λ
||θ̄t+1 − θ̄t||2Πt+1

. (4.5)

Using the property of the non-expansiveness of the projection, which is proven in Appendix A.6
we can further reformulate (4.5) to:

T∑
t=0

1

λ
||θ̄t+1 − θ̄t||2Πt+1

(A.17)

≤
T∑
t=0

1

λ
||θ̂t+1 − θ̄t||2Πt+1

(4.6)

Since θ̄t is already within the predefined hyperbox, the projection of θ̄t is θ̄t itself. We now utilize
the RLS algorithm update (3.10) and Lemma 2 to further reformulate the term:

T∑
t=0

1

λ
||θ̂t+1 − θ̄t||2Πt+1

=

T∑
t=0

1

λ
||Π

1
2
t+1(θ̂t+1 − θ̄t)||22

(3.9)
=

T∑
t=0

1

λ
||Π

1
2
t+1σ

−2Π−1
t+1xt+1et+1||22 =

T∑
t=0

1

λ
||σ−2Π

− 1
2

t+1xt+1et+1||22

(A.9)

≤
T∑
t=0

1

λ
σ−4||Π− 1

2
t+1xt+1||22||et+1||22

=
σ−4

λ

T∑
t=0

||Π− 1
2

t+1xt+1||22||et+1||22 ≤
σ−4

λ

T∑
t=0

||Π− 1
2

t+1xt+1||22emax

=
σ−4emax

λ

T+1∑
t=1

||xt||2Π−1
t

(4.7)
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where emax = max ||e||22. The error et+1 = yt+1 − θ̄Tt xt+1 is bounded because of the state
and output constraints, and Assumption 2. Thus every variable appearing in et+1 is bounded,
implying that et+1 is bounded too.
Before proceeding, we provide another Lemma that is similar to the result in [6] to deal with the
sum in Equation (4.7):

Lemma 2. For Π−1
0 ⪰ λI, Πt defined as in (3.10), and xt is bounded for all t. Then the following

relation holds:
T∑
t

||xt||2Π−1
t

≤ σ2n log(
Tσ−2(xmax)

2 + λ

(t− 1)σ−2(xmax)2 + λ
), (4.8)

This lemma provides a logarithmic upper bound of the learning cost. We utilize this result both
now and later in our analysis of the average convergence of the dual adaptive MPC.

Proof Lemma 2: We start by reformulating det(Πt−1) as follows:

det(Πt−1)
(3.10)
= det(Πt − σ−2xtx

⊤
t ) = det(Πt) det(I − σ−2Π

− 1
2

t xtx
⊤
t Π

− 1
2

t )

= det(Πt) det(I − σ−2x⊤t Π
−1
t xt) = det(Πt)(1− σ−2x⊤t Π

−1
t xt).

(4.9)

We can reformulate ||xt||2Π−1
t

as follows:

det(Πt−1)

det(Πt)
= 1− σ−2x⊤t Π

−1
t xt

σ−2x⊤t Π
−1
t xt = 1− det(Πt−1)

det(Πt)

||xt||2Π−1
t

= σ2(1− det(Πt−1)

det(Πt)
),

(4.10)

From (A.13) in the Appendix, we have the following relation:

det(Πt−1)

det(Πt)
≤ 1. (4.11)

Given the fact that 1− x ≤ log( 1x) for x ≤ 1, we get from (4.10) to

||xt||2Π−1
t

= σ2(1− det(Πt−1)

det(Πt)
) ≤ σ2 log(

det(Πt)

det(Πt−1)
)

= σ2(log det(Πt)− log det(Πt−1)).

(4.12)

The next step is to reformulate
∑T

t ||xt||2Π−1
t

as follows:

T∑
t

||xt||2Π−1
t

(4.12)

≤
T∑
t

σ2(log det(Πt)− log det(Πt−1))

= σ2(log det(ΠT )− log det(Πt−1))

(4.13)

With Πt defined as in (3.10) for all t, log det(Πt) is rewritten as:

log det(Πt)
(3.10)
= log det(Πt−1 + σ−2xtx

⊤
t )

(3.10)
= log det(λI + σ−2

t∑
k=0

xkx
⊤
k ) ≤ log det(λI + σ−2

t∑
k=0

(xmax)
2I)

= log det(λI + tσ−2(xmax)
2I) = log det((λ+ tσ−2(xmax)

2)I)

= log(λ+ tσ−2(xmax)
2)n = n log(λ+ tσ−2(xmax)

2),

(4.14)
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where xmax = maxx∈X ||xt||22, and n is the dimension of the state. The inequality holds because
of the state being constrained. Thus, we can upper bound

∑T
t ||xt||2Π−1

t

with the following
logarithmic bound:
T∑
t

||xt||2Π−1
t

≤ σ2(log det(ΠT )− log det(Πt))

(4.14)

≤ σ2n log(
Tσ−2(xmax)

2 + λ

(t− 1)σ−2(xmax)2λ
)

(4.15)

Now we proceed with the proof of Lemma 1. By utilizing (4.8) in (4.7), we get:
T∑
t=0

||∆θ̄t||22 ≤
σ−4emax

λ

T+1∑
t=1

||xt||2Π−1
t

(4.8)

≤ σ−4emax

λ
σ2n log(

(T + 1)σ−2(xmax)
2 + λ

λ
)

=
σ−2nemax

λ
log(

(T + 1)σ−2(xmax)
2 + λ

λ
).

(4.16)

With Lemma 1, we recognize that (4.1) holds:

lim
T→∞

1

T

T∑
t=0

||∆θ̄t||22
(4.3)

≤ lim
T→∞

σ−2nemax

Tλ
log(

(T + 1)σ−2(xmax)
2 + λ

λ
) = 0, (4.17)

with the reasoning behind the last equality being that as T approaches infinity, log(T )
T tends to

zero.

4.2 MPC Candidate Solution

Now, let’s proceed with the proof of the Equation (4.2) of Theorem 1. We start by choosing a
suitable candidate solution. Given the optimal solution at time t, denoted by ∗, we define the
following candidate solution at time t+ 1:

Ψt+1 := Ψ∗
t , xst+1 := xs,∗t , ust+1 := us,∗t

uk|t+1 := u∗k+1|t, k = 0, ..., N − 2

xk|t+1 := x∗k+1|t, Πk|t+1 := Π∗
k+1|t, k = 0, ..., N − 1

ΠN |t+1 := Π∗
N+1|t := ΠN−1|t+1 + σ−2xN |t+1x

⊤
N |t+1

uN−1|t+1 := u∗N |t := us,∗t

xN |t+1 := AxN−1|t+1 +BuN−1|t+1

(4.18)

The chosen candidate solution at time t + 1, is the optimal solution at time t, shifted by one
time instant. Since the state x and the input u are not influenced by uncertainty, the constraint
(3.14h) from the MPC ensures constraint satisfaction of the candidate state and input. The
constraint satisfaction of the candidate output is ensured by (3.14d), since we have θ̄t+1 ∈ Θ0

from our parameter estimation and (3.14d) takes account of all possible noise robustly. With the
choice of the candidate solution and the terminal equality constraint (3.14g), recursive feasibility
is ensured for this particular candidate solution.
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4.3 Upper Bounding the Average Lypunov Decrease Function

In this section we present the upper bounded, decomposed equation of the average Lyapunov
decrease function, for which we will analyze each term separately for convergence.

Lemma 3. The Lyapunov decrease function for (3.15) is upper bounded by:

J∗
t+1 − J∗

t ≤ Jt+1 − J∗
t ≤ ||xt||2Π−1

t q
+

N−1∑
k=1

||x∗k|t − xs,∗t ||2
q∆θ̄t∆θ̄⊤t

+ ||∆θ̄tx
s,∗
t ||2Tc

+ 2∆θ̄Tt x
s,∗
t Tc(y

s,∗
t − yd)− (||xt − xs,∗t ||2Qθ̄t

+ ||ut − us,∗t ||2R),
(4.19)

with Qθ̄t =
1
2Q0 + qθ̄tθ̄

⊤
t and Jt+1 as the cost of a candidate solution defined as

Jt+1(xt+1, θ̄t+1,Θ0,Πt+1, y
d) :=

N−1∑
k=0

(||θ̄⊤t+1(xk|t+1 − xst+1)||2q

+ ||xk|t+1||2Π−1
k|t+1

q
+ ||uk|t+1 − ust+1||2R + ||xk|t+1 − xst+1||2Q0

)

+ ||θ̄⊤t+1x
s
t+1 − yd||2Tc

(4.20)

Proof Lemma 3: We first calculate the difference in cost between a candidate solution at time
t+ 1 and the optimal solution at time t, which is

Jt+1 − J∗
t

(3.15)
=

N−1∑
k=0

(||θ̄⊤t+1(xk|t+1 − xst+1)||2q + ||xk|t+1||2Π−1
k|t+1

q

+ ||uk|t+1 − ust+1||2R + ||xk|t+1 − xst+1||2Q0
) + ||θ̄⊤t+1x

s
t+1 − yd||2Tc

− (
N−1∑
k=0

(||θ̄⊤t (x∗k|t − xs,∗t )||2q + ||x∗k|t||Π∗−1
k|t q + ||u∗k|t − us,∗t ||2R+

||x∗k|t − xs,∗t ||2Q0
) + ||θ̄⊤t x

s,∗
t − yd||2Tc

).

(4.21)

Next, we simplify (4.21) by substituting (4.18) into our chosen candidate solution. The equation
then becomes:

Jt+1 − J∗
t

(4.21,4.18)
=

N−1∑
k=0

(||θ̄⊤t+1(x
∗
k+1|t − xs,∗t )||2q + ||x∗k+1|t||

2
Π∗−1

k+1|tq

+ ||u∗k+1|t − us,∗t ||2R + ||x∗k+1|t − xs,∗t ||2Q0
) + ||θ̄⊤t+1x

s,∗
t − yd||2Tc

−

(
N−1∑
k=0

(||θ̄⊤t (x∗k|t − xs,∗t )||2q + ||x∗k|t||
2
Π∗−1

k|t q
+ ||u∗k|t − us,∗t ||2R + ||x∗k|t − xs,∗t ||2Q0

)

+ ||θ̄⊤t x
s,∗
t − yd||2Tc

)

(4.22)

Since the candidate solution at time t + 1 that we choose is the optimal solution at time t, we
result in similar terms in (4.22) that appear in the optimal and candidate solutions, which allows
us to simplify them. We group up similar terms and simplify them through reformulation.
We begin with the reorganization of the learning cost terms, which we can write as:

N−1∑
k=0

||x∗k+1|t||
2
Π∗−1

k+1|tq
−

N−1∑
k=0

||x∗k|t||
2
Π∗−1

k|t q
= ||x∗N |t||

2
Π∗−1

N|t q
− ||xt||2Π−1

t q
. (4.23)
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Similarly, simplification is done for the difference in state tracking costs between the optimal
solution and the candidate, which is then:

N−1∑
k=0

||x∗k+1|t − xs,∗t ||2Q0
−

N−1∑
k=0

||x∗k|t − xs,∗t ||2Q0
=

||x∗N |t − xs,∗t ||2Q0
− ||xt − xs,∗t ||2Q0

(3.14g)
= −||xt − xs,∗t ||2Q0

,

(4.24)

where we use the terminal equality constraint (3.14g).

An analogous reformulation can be made for the difference in the input tracking cost:

N−1∑
k=0

||u∗k+1|t − us,∗t ||2R −
N−1∑
k=0

||u∗k|t − us,∗t ||2R

(4.18)
= ||u∗N |t − us,∗t ||2R − ||ut − us,∗t ||2R

(3.14g)
= −||ut − us,∗t ||2R

(4.25)

where u∗N |t = us,∗t comes from (4.18).

For the output tracking cost, we first reformulate the candidate solution as follows:

N−1∑
k=0

||θ̄⊤t+1(x
∗
k+1|t − xs,∗t )||2q

=
N−2∑
k=0

||θ̄⊤t+1(x
∗
k+1|t − xs,∗t )||2q + ||θ̄⊤t+1(x

∗
N |t − xs,∗t )||2q

(3.12,3.14g)
=

N−2∑
k=0

||(θ̄t +∆θ̄t)
⊤(x∗k+1|t − xs,∗t )||2q

=
N−1∑
k=1

(x∗k|t − xs,∗t )⊤(θ̄t +∆θ̄t)q(θ̄t +∆θ̄t)
⊤(x∗k|t − xs,∗t )

=
N−1∑
k=1

(x∗k|t − xs,∗t )⊤q(θ̄tθ̄
⊤
t + 2∆θ̄tθ̄

⊤
t +∆θ̄t∆θ̄⊤t )(x

∗
k|t − xs,∗t )

(4.26)

The second term of the output tracking cost can be rewritten as:

N−1∑
k=0

||θ̄⊤t (x∗k|t − xs,∗t )||2q =
N−1∑
k=1

||θ̄⊤t (x∗k|t − xs,∗t )||2q + ||θ̄⊤t (xt − xs,∗t )||2q

=

N−1∑
k=1

(x∗k|t − xs,∗t )⊤qθ̄tθ̄
⊤
t (x

∗
k|t − xs,∗t ) + ||xt − xs,∗t ||2

qθ̄tθ̄⊤t

(4.27)
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Now, we combine (4.26) and (4.27) together and simplify the output tracking cost to:

N−1∑
k=0

||θ̄⊤t+1(x
∗
k+1|t − xs,∗t )||2q −

N−1∑
k=0

||θ̄⊤t (x∗k|t − xs,∗t )||2q

(4.26,4.27)
=

N−1∑
k=1

(x∗k|t − xs,∗t )⊤q(θ̄tθ̄
⊤
t + 2∆θ̄tθ̄

⊤
t +∆θ̄t∆θ̄⊤t )(x

∗
k|t − xs,∗t )

−
N−1∑
k=1

(x∗k|t − xs,∗t )⊤qθ̄tθ̄
⊤
t (x

∗
k|t − xs,∗t )− ||xt − xs,∗t ||2

qθ̄tθ̄⊤t

=

N−1∑
k=1

(x∗k|t − xs,∗t )⊤q(2∆θ̄tθ̄
⊤
t +∆θ̄t∆θ̄⊤t )(x

∗
k|t − xs,∗t )− ||xt − xs,∗t ||2

qθ̄tθ̄⊤t

=

N−1∑
k=1

||x∗k|t − xs,∗t ||2
2q∆θ̄tθ̄⊤t

+

N−1∑
k=1

||x∗k|t − xs,∗t ||2
q∆θ̄t∆θ̄⊤t

− ||xt − xs,∗t ||2
qθ̄tθ̄⊤t

.

(4.28)

The terms of the terminal cost can be expressed as:

||θ̄⊤t+1x
s,∗
t − yd||2Tc

− ||θ̄⊤t x
s,∗
t − yd||2Tc

(3.12)
= ||(∆θ̄t + θ̄t)

⊤xs,∗t − yd||2Tc
− ||θ̄⊤t x

s,∗
t − yd||2Tc

= (∆θ̄⊤t x
s,∗
t + θ̄⊤t x

s,∗
t − yd)⊤Tc(∆θ̄⊤t x

s,∗
t + θ̄⊤t x

s,∗
t − yd)

− (θ̄⊤t x
s,∗
t − yd)⊤Tc(θ̄

⊤
t x

s,∗
t − yd)

= xs,∗⊤t ∆θ̄tTc∆θ̄⊤t x
s,∗
t − 2θ̄⊤t x

s,∗
t Tcy

d + 2xs,∗⊤t ∆θ̄tTcθ̄
⊤
t x

s,∗
t

− 2xs,∗⊤t ∆θ̄tTcy
d + xs,∗⊤t θ̄tTcθ̄

⊤
t x

s,∗
t + ydTcy

d − xs,∗⊤t θ̄tTcθ̄
⊤
t x

s,∗
t

+ 2θ̄⊤t x
s,∗
t Tcy

d − ydTcy
d

= xs,∗⊤t ∆θ̄tTc∆θ̄⊤t x
s,∗
t + 2xs,∗⊤t ∆θ̄tTcθ̄

⊤
t x

s,∗
t − 2xs,∗⊤t ∆θ̄tTcy

d

= ||∆θ̄⊤t x
s,∗
t ||2Tc

+ 2xs,∗⊤t ∆θ̄tTc(θ̄
⊤
t x

s,∗
t − yd)

(4.29)

Combine the terms back, the difference of the cost function transforms into:

Jt+1 − J∗
t

(4.23,4.24,4.25,4.28,4.29)
= ||x∗N |t||

2
Π∗−1

N|t q
− ||xt||2Π−1

t q
− ||xt − xs,∗t ||2Q0

− ||xt − xs,∗t ||qθ̄tθ̄⊤t − ||ut − us,∗t ||2R +

N−1∑
k=1

||x∗k|t − xs,∗t ||2
2q∆θ̄tθ̄⊤t

+
N−1∑
k=1

||x∗k|t − xs,∗t ||2
q∆θ̄t∆θ̄⊤t

+ ||∆θ̄⊤t x
s,∗
t ||2Tc

+ 2xs,∗Tt ∆θ̄tTc(θ̄
⊤
t x

s,∗
t − yd)

(4.30)

Now, we upper bound the term ||x∗N |t||
2
Π∗−1

N|t q
as follows:

||x∗N |t||
2
Π∗−1

N|t q

(3.14g)
= ||xs,∗t ||2

Π∗−1
N|t q

(A.12)

≤ ||xs,∗t ||2
Π−1

t q
= ||xs,∗t − xt + xt||2Π−1

t q

≤ 2||xs,∗t − xt||2Π−1
t q

+ 2||xt||2Π−1
t q

≤ 2||xt − xs,∗t ||2
Π−1

0 q
+ 2||xt||2Π−1

t q
.

(4.31)
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Finally, we arrive to our upper bounded Lyapunov decrease function by using Assumption 4:

J∗
t+1 − J∗

t ≤ Jt+1 − J∗
t

(4.31)

≤ 2||xt − xs,∗t ||2
Π−1

0 q
+ 2||xt||2Π−1

t q
− ||xt||2Π−1

t q
− ||xt − xs,∗t ||2Q0

− ||xt − xs,∗t ||qθ̄tθ̄⊤t − ||ut − us,∗t ||2R +
N−1∑
k=1

||x∗k|t − xs,∗t ||2
2q∆θ̄tθ̄⊤t

+

N−1∑
k=1

||x∗k|t − xs,∗t ||2
q∆θ̄t∆θ̄⊤t

+ ||∆θ̄tx
s,∗
t ||2Tc

+ 2∆θ̄Tt x
s,∗
t Tc(y

s,∗
t − yd)

(3.16)

≤ ||xt||2Π−1
t q

+
N−1∑
k=1

||x∗k|t − xs,∗t ||2
2q∆θ̄tθ̄⊤t

+

N−1∑
k=1

||x∗k|t − xs,∗t ||2
q∆θ̄t∆θ̄⊤t

+ ||∆θ̄tx
s,∗
t ||2Tc

+ 2∆θ̄Tt x
s,∗
t Tc(y

s,∗
t − yd)

− ||xt − xs,∗t ||2Qθ̄t
− ||ut − us,∗t ||2R,

(4.32)

with Qθ̄t =
1
2Q0 + qθ̄tθ̄

⊤
t .

This implies, that the upper bound of the average Lyapunov decrease function is

1

T

T∑
t=0

J∗
t+1 − J∗

t ≤ 1

T

T∑
t=0

Jt+1 − J∗
t

≤ 1

T

T∑
t=0

||xt||2Π−1
t q

+
1

T

T∑
t=0

N−1∑
k=1

||x∗k|t − xs,∗t ||2
2q∆θ̄tθ̄⊤t

+
1

T

T∑
t=0

N−1∑
k=1

||x∗k|t − xs,∗t ||2
q∆θ̄t∆θ̄⊤t

+
1

T

T∑
t=0

||∆θ̄tx
s,∗
t ||2Tc

+
1

T

T∑
t=0

2∆θ̄Tt x
s,∗
t Tc(y

s,∗
t − yd)− 1

T

T∑
t=0

(||xt − xs,∗t ||2Qθ̄t

+ ||ut − us,∗t ||2R).

(4.33)

4.4 Proof of the Equation (4.2)

After establishing an upper bound for the average Lyapunov decrease function, the next step is
to show the convergence of these terms.
For the proof of Equation (4.2), we use the following two lemmas.

Lemma 4. The following terms converge to zero as time approaches infinity:

lim
T→∞

1

T

T∑
t=0

||xt||2Π−1
t q

+
1

T

T∑
t=0

N−1∑
k=1

||x∗k|t − xs,∗t ||2
2q∆θ̄tθ̄⊤t

+
1

T

T∑
t=0

N−1∑
k=1

||x∗k|t − xs,∗t ||2
q∆θ̄t∆θ̄⊤t

+
1

T

T∑
t=0

||∆θ̄tx
s,∗
t ||2Tc

+
1

T

T∑
t=0

2∆θ̄Tt x
s,∗
t Tc(y

s,∗
t − yd) = 0.

(4.34)
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Lemma 5. There exists a constant c > 0 sufficiently small, such that the following holds:

1

T
(

T∑
t=0

||xt − xs,∗t ||2Qθ̄t
+ ||ut − us,∗t ||2R) ≥

c

T

T∑
t=0

||xt − xdt ||2Qθ̄t
(4.35)

Lemma 4 indicates the average convergence of the terms appearing in (4.33), while Lemma 5
establishes a relation between xt and xdt , as xdt does not appear in Equation (4.33). This is
important, since the goal is not only to achieve convergence of (4.33) as time approaches infinity
but also to show (4.2).
Compared to the solution of [4], where case distinction analysis is done based on the distance
between xt, x

s,∗
t and xdt , in this thesis, we assume:

Assumption 5. There exists a constant c0 such that the following inequality holds for all t ≥ 0:

||xt − xs,∗t ||2Qθ̄t
+ ||ut − us,∗t ||2R ≥ c0||xs,∗t − xdt ||2Qθ̄t

, (4.36)

with c0 sufficiently small.

This assumption is motivated by the results in [7], where they have shown in a different but
similar scenario that the case

||xt − xs,∗t ||2Qθ̄t
+ ||ut − us,∗t ||2R ≤ c0||xs,∗t − xdt ||2Qθ̄t

(4.37)

does not exist. We do not provide the mathematical verification for this assumption within this
thesis and leave it for future works. However, due to the similarity between the scenarios, we
utilize this assumption to prove Lemma 5.

Proof Lemma 4. We start with the convergence analysis of the first term in Lemma 4. Using
Lemma 2, we can directly prove that:

lim
T→∞

1

T

T∑
t=0

||xt||2Π−1
t q

= lim
T→∞

q

T
(

T∑
t=1

||xt||2Π−1
t

+ ||x0||2Π−1
0
)

(4.8)

≤ lim
T→∞

qσ2n

T
log(

Tσ−2(xmax)
2 + λ

λ
) +

1

T
||x0||2Π−1

0
= 0.

(4.38)

The reasoning behind the last equality is that the growth rate of T is bigger than log(T ).
For the second term in (4.34), we first utilize the boundedness of the estimated parameter and
state and reformulate it to:

lim
T→∞

1

T

T∑
t=0

N−1∑
k=1

||x∗k|t − xs,∗t ||2
2q∆θ̄tθ̄⊤t

= lim
T→∞

1

T

T∑
t=0

N−1∑
k=1

2q||(∆θ̄tθ̄
⊤
t )

1
2 (x∗k|t − xs,∗t )||22

(A.7,A.9)

≤ lim
T→∞

2q

T

T∑
t=0

N−1∑
k=1

||x∗k|t − xs,∗t ||22||θ̄t||2||∆θ̄t||2

= lim
T→∞

2q

T

T∑
t=0

||θ̄t||2||∆θ̄t||2
N−1∑
k=1

||x∗k|t − xs,∗t ||22

≤ lim
T→∞

2q

T

T∑
t=0

θmax||∆θ̄t||2(N − 1)∆xmax

= lim
T→∞

2q(N − 1)θmax∆xmax

T

T∑
t=0

||∆θ̄t||2

(4.39)
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where θmax = maxθ∈Θ0 ||θ||2 and ∆xmax = maxx∈X ||x∗k|t − xs,∗t ||22. Then average convergence of
the second term in (4.34) is established with Lemma 1 and Appendix A.3:

lim
T→∞

1

T

T∑
t=0

N−1∑
k=1

||x∗k|t − xs,∗t ||2
2q∆θ̄tθ̄⊤t

≤ lim
T→∞

2q(N − 1)θmax∆xmax

T

T∑
t=0

||∆θ̄t||2||1||2

(A.6)

≤ lim
T→∞

2q(N − 1)θmax∆xmax

T
(

T∑
t=0

||∆θ̄t||22)
1
2 (

T∑
t=0

||1||22)
1
2

= lim
T→∞

2q(N − 1)θmax∆xmax

T
(

T∑
t=0

||∆θ̄t||22)
1
2 (T + 1)

1
2

(4.3)

≤ lim
T→∞

2q(N − 1)σ−1n
1
2 θmax∆xmaxe

1
2
max(T + 1)

1
2

Tλ
1
2

(log(
(T + 1)σ−2(xmax)

2 + λ

λ
))

1
2

= 0,

(4.40)

The inequality holds as T grows faster than (T + 1)
1
2 log(T ) when T approaches infinity.

Utilizing the boundedness argument similar to the analysis of the second term and (4.1), we
show average convergence for the third term in (4.34) by following:

lim
T→∞

1

T

T∑
t=0

N−1∑
k=1

||x∗k|t − xs,∗t ||2
q∆θ̄t∆θ̄⊤t

= lim
T→∞

1

T

T∑
t=0

N−1∑
k=1

q||∆θ̄⊤t (x
∗
k|t − xs,∗t )||22

(A.7)

≤ lim
T→∞

1

T

T∑
t=0

N−1∑
k=1

q||x∗k|t − xs,∗t ||22||∆θ̄t||22

= lim
T→∞

q

T

T∑
t=0

||∆θ̄t||22
N−1∑
k=1

||x∗k|t − xs,∗t ||22

≤ lim
T→∞

q(N − 1)∆xmax

T

T∑
t=0

||∆θ̄t||22

(4.1)
= 0,

(4.41)

where we utilize Equation (4.1) for the convergence criteria. The convergence of the fourth term
in (4.34) is established using (4.1) as follows:

lim
T→∞

1

T

T∑
t=0

||∆θ̄tx
s,∗
t ||2Tc

(A.7)

≤ lim
T→∞

1

T

T∑
t=0

Tc||xs,∗t ||22||∆θ̄t||22

≤ lim
T→∞

Tcxmax

T

T∑
t=0

||∆θ̄t||22
(4.1)
= 0

(4.42)
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Finally, the last term in (4.34) converges using a similar method as the second term:

lim
T→∞

1

T

T∑
t=0

2∆θ̄⊤t x
s,∗
t Tc(y

s,∗
t − yd)

≤ lim
T→∞

2Tc

T

T∑
t=0

||∆θ̄⊤t x
s,∗
t ||2||(ys,∗t − yd)||2

≤ lim
T→∞

2Tc

T

T∑
t=0

||∆θ̄t||2||xs,∗t ||2∆ymax

≤ lim
T→∞

2Tc

T

T∑
t=0

||∆θ̄t||2xmax∆ymax

= lim
T→∞

2Tcxmax∆ymax

T

T∑
t=0

||∆θ̄t||2||1||2

(A.7)

≤ lim
T→∞

2Tcxmax∆ymax

T
(

T∑
t=0

||∆θ̄t||22)
1
2 (

T∑
t=0

||1||22)
1

2

= lim
T→∞

2Tcxmax∆ymax

T
(

T∑
t=0

||∆θ̄t||22)
1
2 (T + 1)

1
2

(4.3)

≤ lim
T→∞

2Tcσ
−1n

1
2xmax∆ymaxe

1
2
max(T + 1)

1
2

Tλ
1
2

(log(
(T + 1)σ−2(xmax)

2 + λ

λ
))

1
2 = 0,

(4.43)

where ∆ymax = maxy∈Y ||ys,∗t − yd||2 holds due to the boundedness of the output. The last
inequality holds for the same reason as in (4.40). Thus, the convergence of all terms in (4.34) is
established, and the proof of Lemma 4 is complete.

With the remaining term, which has not yet been used in (4.33):

− 1

T
(

T∑
t=0

||xt − xs,∗t ||2Qθ̄t
+ ||ut − us,∗t ||2R), (4.44)

we now provide the proof for Lemma 5.

Proof Lemma 5: With Assumption 5 we show the following reformulation:

||xt − xs,∗t ||2Qθ̄t
+ ||ut − us,∗t ||2R

(4.36)

≥ 1

2
(||xt − xs,∗t ||2Qθ̄t

+ ||ut − us,∗t ||2R) +
c0
2
||xs,∗t − xdt ||2Qθ̄t

≥ 1

2
||xt − xs,∗t ||2Qθ̄t

+
c0
2
||xs,∗t − xdt ||2Qθ̄t

≥ min{1
4
,
c0
4
}||xt − xdt ||2Qθ̄t

,

(4.45)
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where we used the fact that 1
2(a+ b)2 ≤ (a2 + b2) for a, b ∈ R and c0 > 0. Then we have

1

T
(

T∑
t=0

||xt − xs,∗t ||2Qθ̄t
+ ||ut − us,∗t ||2R) ≥

1

T

T∑
t=0

min{1
4
,
ct
4
}||xt − xdt ||2Qθ̄t

≥ c

T

T∑
t=0

||xt − xdt ||2Qθ̄t
,

(4.46)

where c = min{1
4 ,

c0
4 , ...,

cT
4 }.

With the introduction of Lemma 4, Lemma 5, and (4.33), we now provide the proof of (4.2).

Proof 4.2: One can observe that as time approaches infinity, we have the following relation using
Lemma 4 and Lemma 5:

lim
T→∞

−J0
T

≤ lim
T→∞

J∗
T+1 − J∗

0

T
= lim

T→∞

1

T

T∑
t=0

J∗
t+1 − J∗

t ≤ lim
T→∞

1

T

T∑
t=0

Jt+1 − J∗
t

(4.34)

≤ (−1) lim
T→∞

1

T

T∑
t=0

(||xs,∗t − xt||2Qθ̄t
+ ||ut − us,∗t ||2R)

(4.35)

≤ (−1) lim
T→∞

c

T

T∑
t=0

||xt − xdt ||2Qθ̄t

(4.47)

Especially, we have the relation

lim
T→∞

1

T
J0 ≥ lim

T→∞

c

T

T∑
t=0

||xt − xdt ||2Qθ̄t
, (4.48)

with J0 finite, implies that the term

lim
T→∞

c

T

T∑
t=0

||xt − xdt ||2Qθ̄t
= 0 (4.49)

converges on average. Furthermore, for our average Lyapunov decrease function, this means:

lim
T→∞

1

T

T∑
t=0

J∗
t+1 − J∗

t ≤ (−1) lim
T→∞

c

T

T∑
t=0

||xt − xdt ||2Qθ̄t
= 0, (4.50)

which concludes the proof of the Equation (4.2) and thus the proof for Theorem 1.
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Chapter 5

Simulation

In this chapter, we present different scenario examples of our proposed dual adaptive MPC with
simulations. The simulations were implemented in MATLAB, and the optimization problem of
the dual adaptive MPC was solved using the CasADi solver.

5.1 Simulation System Model

For all simulations, we use the following discrete linear time-invariant system:

A =

[
1 1
0 1

]
, B =

[
0 0.5
1 0.5

]
,

The real parameter vector in the output system is:

θtrue =

(
2
1

)
.

Furthermore, the steady states and inputs are characterized by the vector Ψ ∈ R2, which is
optimized by the dual adaptive MPC, and the matrix

MΨ =


1 0
0 1
0 1
0 −2

 .

The predefined hyperbox set is chosen to be Θ0 = [1.4, 2.6] × [0.7, 1.3]. The MPC has a fixed
horizon of N = 20. In all simulations, the initial covariance matrix is Π−1

0 = 1
10I2, and we choose

the following cost matrices for the cost function: Q0 = I2, R = I2, q = 1 and Tc = 1. By the
choice of Q0 and q Assumption 4 is satisfied.

5.2 Active Exploration Example without Noise

5.2.1 Example with Constant Desired Output

In this example we demonstrate the exploration and exploitation effects of our dual adaptive MPC
scheme. The prior distribution of the unknown parameter is set to have a mean of θ̄0 = (2.4, 0.8)⊤.

The system is noisefree, and to prevent numerical issues in (3.10), we set σ =
√

2
3 . The desired

output is set as yd = 2, and the initial state is x0 = (0.5, 1)⊤. The constraints for the states,
inputs and outputs are intentionally set to relatively loose standards, as they are not critical for
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the outcome of this simulation. We compare the performance of the dual adaptive MPC with
the certainty-equivalent MPC (CE-MPC), which uses the same constraints and costs as the dual
adaptive MPC except the learning cost is omitted.

As illustrated in Figure 5.1, even when the initial output matches the desired output and the
initial estimated parameter matches the true parameter, the output still deviates from the de-
sired output. This deviation arises from the cumulative learning cost

∑N−1
k=0 ||xk|t||Π−1

k|tq
, which

encourages the system to explore actively and improves the parameter estimate as shown in
Figure 5.2. In contrast, the CE-MPC maintains the system at the desired output. As the simu-
lation time progresses, the dual adaptive MPC attempts to steer the output back to the desired
output, demonstrating effective tracking. The optimal cost of the dual adaptive MPC converges,
as illustrated in Figure 5.3.

Figure 5.1: The output shows the exploration effect of the dual adaptive MPC compared to the
certainty-equivalent MPC in Example 5.2.1.

Figure 5.2: Error of the parameter estimation improves through exploration in Example 5.2.1.
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Figure 5.3: The cost of the dual adaptive MPC converges in Example 5.2.1

5.2.2 Example with Changing Desired Output

Next, we repeat the simulation with the same settings but the desired output is changed to
yd = 0.5 at t = 200. This allows us to observe how the dual adaptive MPC behaves after
undergoing active exploration in response to the change in desired output compared to the CE-
MPC.

Figure 5.4 shows that through exploration, the dual adaptive MPC adapts faster to the new
desired output compared to the CE-MPC. Due to the change in desired output, the CE-MPC
undergoes a larger correction in the estimation process as the experienced error is larger than
the dual adaptive MPC. As a result, it achieves better overall parameter estimation than the
dual adaptive MPC, as illustrated in Figure 5.5.

Figure 5.4: The change of the desired output demonstrates improved tracking with the dual
adaptive MPC in Example 5.2.2.
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Figure 5.5: The CE-MPC achieves better parameter estimation compared to the dual adaptive
MPC following the change in desired output in Example 5.2.2.

5.3 Convergence Example with Truncated Gaussian Noise

In this example, we simulate the system where the output is disturbed by a truncated Gaussian
noise wt within the range [−0.2, 0.2] with a standard deviation of σ = 1√

5
and zero mean. The

desired output is set to yd = 2, the initial state for this example is set to x0 = (0.5, 0.5)⊤, and
the initial estimate is set to θ̄0 = (2.4, 0.8)⊤ This results in a initial output y0 that differs from
the desired output. The state is constrained to a two-dimensional hyperbox ranging from -2 to 2
along each dimension, while the input is restricted to a two-dimensional hyperbox ranging from
-4 to 4. The output is constrained within the interval [−3.5, 3.5]. The simulation is repeated 10
times.
Figure 5.6 illustrates the convergence of the averaged output to the desired output. Moreover,
the convergence of the parameter estimate despite noise in one of the simulations is illustrated
in Figure 5.7. It is important to highlight that the converged value differs from the true value of
the estimate due to the system not being sufficient excited, even in instances where the initial
output differs from the desired output.

5.4 Example of Unreachable Desired Output

This simulation illustrates a scenario in which our dual adaptive MPC encounters difficulties to
reach the desired output. For this purpose, we set the desired output to yd = 2.5, the initial
state to x0 = (0.5, 0.5)⊤, and the initial estimate to θ̄0 = (2.4, 0.8)⊤. The state is constrained
within a two-dimensional hyperbox ranging from -2 to 2 along each dimension, while the input
is restricted within a two-dimensional hyperbox ranging from -8 to 8. The output is constrained
within the interval [−3, 3]. To clearly illustrate the result, we do not introduce noise into the
output, but we chose σ = 1 to avoid numerical issues.
We observe that the dual adaptive MPC is unable to reach the desired output, as illustrated
in Figure 5.8. Furthermore, the estimated parameter vector converges to the vector θ̄t ≈
(2.13, 0.7)⊤, as illustrated in Figure 5.9. Similarly, the state xt converges to the vector xt ≈
(0.98, 0.35)⊤ in Figure 5.10. Despite the lack of tight input constraints, the state vector does not
progress further towards another state, where the resulting output is closer to the desired output
than the current output with the current estimated parameter vector. This issue arises from
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Figure 5.6: The average output converges to the desired output with respect to the current noise
in Example 5.3.

Figure 5.7: Parameter estimate converges to a different value than the real value in Example 5.3.

constraint (3.14d), where potential solutions violating (3.14d) are not considered. As a result,
the dual adaptive MPC converges to the closest reachable output, but this closest reachable
output does not converge to the desired output.
To illustrate this, we examine the vertex θ̄1,0 = (2.6, 1.3)⊤ of Θ0 that θ̄⊤1,0xt ≈ 3. Further
increases in the state vector would result in violations of the constraint (3.14d). This issue can
be addressed by introducing set membership estimation to the set Θ0. This would allow for a
decrease in this set over time and increase the number of feasible solutions.
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Figure 5.8: The output is unable to reach the desired output in Example 5.4.

Figure 5.9: The estimated parameter converges to a an estimate, which should be able to reach
the desired output in Example 5.4.
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Figure 5.10: The state converges to a specific vector in Example 5.4.
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Chapter 6

Conclusion

In this thesis, we investigated the convergence behavior of the dual adaptive MPC in a discrete
time-invariant linear system. The goal was to improve the current state-of-the-art convergence
result by analyzing the average convergence.

We introduced a theorem that ensures the average convergence of the dual adaptive MPC to
the closest reachable output. This result is based on the average convergence of the parameter
estimation and the average convergence of the tracking error. The average convergence of the
parameter estimation implies the average convergence of the closest reachable output because the
solution of the optimization problem (3.13) depends solely on the estimated parameter vector.
Therefore, it is sufficient to prove the average convergence of the tracking error to the closest
reachable output to confirm the overall average convergence of the dual adaptive MPC.

We have provided the mathematical proof of this theorem. The average convergence of the
parameter estimation is proved by establishing a logarithmic upper bound for the cumulative
sum of the differences between estimates at consecutive time steps. For the average convergence
proof of the dual adaptive MPC, we defined the candidate solution as the optimal solution at
the previous time instant and shifted it by one time step. Thus, we demonstrated an upper
bound for the Lyapunov decrease function by considering the difference between the candidate
solution and the optimal solution from the previous time instant. We first showed the average
convergence of specific terms by showing their dependence on the estimated parameter. Then
we established a relation between the current state and the steady state corresponding to the
closest reachable output with the remaining term of the upper bound function, and proved its
average convergence. To support the mathematical results, we provided simulation examples,
that also illustrated the convergence behavior.

Our average convergence result provided valuable insight into the behavior of the dual adap-
tive MPC algorithm. In particular, we removed the convergence dependence of the covariance
matrix and the estimated parameter from the result of [4]. By demonstrating the average con-
vergence of the dual adaptive MPC, we confirm the stability and reliability of the dual adaptive
MPC.

However, our result has limitations. We have not introduced the set-membership estimation
in our parameter estimation. Therefore, the constraint to ensure the recursive feasibility of the
dual adaptive MPC becomes too conservative, and the dual adaptive MPC may not reach the
desired output. Future research should be done to develope the mathematical proof for the
convergence of the dual adaptive MPC with set-membership estimation. Furthermore, the val-
idation of Assumption 5, for which we did not provide formal proof, is another opportunity to
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research. Given that our learning cost is the mean of a stochastic process and does not guaran-
tee exact parameter estimation, exploring alternative learning costs for the dual adaptive MPC
could improve its overall tracking and exploration capabilities.

In conclusion, our work has successfully improved the convergence result of the dual adaptive
MPC by showing average convergence without the dependence on the covariance matrix and
the difference between the parameter estimates at consecutive time steps. Nevertheless, there
remains potential for further investigation and enhancement of the dual adaptive MPC.

30



Bibliography

[1] Aleksandr Aronovich Feldbaum. “Dual control theory. I”. In: Avtomatika i Telemekhanika
21.9 (1960), pp. 1240–1249.

[2] Tor Aksel N Heirung, B Erik Ydstie, and Bjarne Foss. “Dual adaptive model predictive
control”. In: Automatica 80 (2017), pp. 340–348.

[3] Juan E Morinelly and B Erik Ydstie. “Dual mpc with reinforcement learning”. In: IFAC-
PapersOnLine 49.7 (2016), pp. 266–271.

[4] Raffaele Soloperto, Johannes Köhler, Matthias A Müller, and Frank Allgöwer. “Dual adap-
tive MPC for output tracking of linear systems”. In: 2019 IEEE 58th Conference on Decision
and Control (CDC). IEEE. 2019, pp. 1377–1382.

[5] Daniel Limón, Ignacio Alvarado, Teodoro Alamo, and Eduardo F Camacho. “MPC for
tracking piecewise constant references for constrained linear systems”. In: Automatica 44.9
(2008), pp. 2382–2387.

[6] Anastasios Tsiamis and George J Pappas. “Online learning of the kalman filter with loga-
rithmic regret”. In: IEEE Transactions on Automatic Control 68.5 (2022), pp. 2774–2789.

[7] Raffaele Soloperto, Johannes Köhler, and Frank Allgöwer. “A nonlinear MPC scheme for
output tracking without terminal ingredients”. In: IEEE Transactions on Automatic Con-
trol 68.4 (2022), pp. 2368–2375.

[8] Peter C Young. Recursive estimation and time-series analysis: an introduction. Springer
science & business media, 2012.

[9] Ankit Goel, Adam L Bruce, and Dennis S Bernstein. “Recursive least squares with variable-
direction forgetting: Compensating for the loss of persistency [lecture notes]”. In: IEEE
Control Systems Magazine 40.4 (2020), pp. 80–102.

[10] Zicheng Cai and B Erik Ydstie. “Dual adaptive model predictive control with disturbances”.
In: IFAC-PapersOnLine 54.3 (2021), pp. 206–211.

[11] MATLAB. version 9.10.0.1602886 (R2021a). Natick, Massachusetts: The MathWorks Inc.,
2021.

[12] Joel A E Andersson, Joris Gillis, Greg Horn, James B Rawlings, and Moritz Diehl. “CasADi
– A software framework for nonlinear optimization and optimal control”. In: Mathematical
Programming Computation 11.1 (2019), pp. 1–36.

[13] Arcadii Z Grinshpan. “Weighted inequalities and negative binomials”. In: Advances in Ap-
plied Mathematics 45.4 (2010), pp. 564–606.

[14] Eduardo H Zarantonello. “Projections on convex sets in hilbert space and spectral theory:
Part i. projections on convex sets: Part ii. spectral theory”. In: Contributions to nonlinear
functional analysis. Elsevier, 1971, pp. 237–424.

31



32



Appendix A

Appendix

A.1 Inner Product in Euclidean Space

The inner product in Euclidean space of a vector u ∈ Rn is defined by:

⟨u, u⟩ :=
n∑

k=1

u2k = ||u||22, (A.1)

where uk is the k-th entry of the vector u, and || · ||2 is the Euclidean l2 norm. The inner product
in Euclidean space of two vectors u and v ∈ Rn is defined by:

⟨u, v⟩ :=
n∑

k=1

ukvk. (A.2)

The squared magnitude of the inner product of u and v is given by:

|⟨u, v⟩|2 := |
n∑

k=1

ukvk|2 = (

n∑
k=1

ukvk)
2 (A.3)

A.2 Hoelder’s Inequality

Hoelder’s inequality is stated as follows: Let (S,Σ, µ) be a measure space, and let p, q ∈ [1,∞]
with 1

p + 1
q = 1. Then, for all measurable real- or complex-valued functions f and g on S,

||fg||1 ≤ ||f ||p||g||q. (A.4)

With Hoelder’s inequality, we state the following inequality for the inner product of two vectors
u, v ∈ Rn: ∣∣∣∣∣

n∑
k=1

ukvk

∣∣∣∣∣ ≤
(

n∑
k=1

|uk|p
)1/p( n∑

k=1

|vk|q
)1/q

. (A.5)

A.3 Cauchy-Schwartz Inequality

The Cauchy-Schwartz inequality can be derived from Hoelder’s inequality with p, q = 2, and for
two vectors u, v ∈ Rn is defined by:

|⟨u, v⟩|2 (A.3)
= (

n∑
k=1

ukvk)
2 ≤ (

n∑
k=1

|ukvk|)2
(A.5)

≤ ||u||22 · ||v||22. (A.6)
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With (A.6), we write the following inequality:

||uT v||22 =
n∑

k=1

(ukvk)
2 ≤ (

n∑
k=1

ukvk)
2
(A.6)

≤ ||u||22 · ||v||22. (A.7)

A.4 Sub-Multiplicative Property of the Spectral Norm

With the definition of the spectral norm:

||A||2 := max
x ̸=0

||Ax||2
||x||2

≥ ||Ax||2
||x||2

, (A.8)

we have the following inequality:

||A||2||x||2 ≥ ||Ax||2. (A.9)

A.5 Relation of the Covariance Matrix

By definition, the initial given covariance matrix Π−1
0 is positive-definite. Furthermore, the

inverse is uniquely defined for a positive-definite matrix and is also positive-definite by the
eigenvalue decomposition:

Π−1
t = UΣ−1

t U⊤ → Πt = UΣtU
⊤, (A.10)

where Σt is the diagonal matrix with the eigenvalues of Πt as the diagonal elements and U the
matrix containing the eigenvector. From (3.10), we have:

Πt ⪰ Πt−1 ⪰ Π0 ∀t ≥ 1, (A.11)

since the outer product xtx
T
t from (3.10) is positive semi-definite. And with Π0 being positive-

definite, resulting Πt is also positive-definite for all t ≥ 0. Hence, the covariance matrix has the
following relation:

Π−1
0 ⪰ Π−1

t−1 ⪰ Π−1
t (A.12)

For the determinant of the covariance matrices, the following relation also holds:

det(Πt) = det(Πt −Πt−1 +Πt−1) ≥ det(Πt −Πt−1) + det(Πt−1)

≥ det(Πt−1),
(A.13)

where we used the sum rule of positive semi-definite matrices and that Πt − Πt−1 is positive
semi-definite.

A.6 Proof of the Non-Expansiveness of the Projection

In this section, we exploit the non-expansiveness of the projection with weighted norm.

Proof. First, we define relation between the inner product and the squared weighted norm of a
vector x ∈ Rn as follows:

⟨x, x⟩ = x⊤Πx = ||x||2Π
⟨x, y⟩ = x⊤Πy ≤ ||x||Π||y||Π,

(A.14)

with Π positive-definite. The weighted projection is defined as:

P (x) = arg min
P (x)∈C

||x− xc||2Π, (A.15)
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with C as a convex set and xc as a constant. Since the inner product and the projection use the
same norm weight, with the Hilbert projection theorem, the following inequality holds for any
y ∈ C:

⟨x1 − P (x1), y − P (x1)⟩ ≤ 0

⟨x2 − P (x2), y − P (x2)⟩ ≤ 0
(A.16)

By replacing y with P (x2) in the first inequality and with P (x1) in the second inequality and
sum these two inequality together results in:

⟨x1 − P (x1), P (x2)− P (x1)⟩+ ⟨x2 − P (x2), P (x1)− P (x2)⟩ ≤ 0

⟨x1 − P (x1), P (x2)− P (x1)⟩ − ⟨x2 − P (x2), P (x2)− P (x1)⟩ ≤ 0

⟨x1 − P (x1)− x2 + P (x2), P (x2)− P (x1)⟩ ≤ 0

⟨P (x2)− P (x1), P (x2)− P (x1)⟩ − ⟨x2 − x1, P (x2)− P (x1)⟩ ≤ 0

⟨P (x2)− P (x1), P (x2)− P (x1)⟩ ≤ ⟨x2 − x1, P (x2)− P (x1)⟩
||P (x2)− P (x1)||2Π ≤ ||x2 − x1||Π||P (x2)− P (x1)||Π
||P (x2)− P (x1)||Π ≤ ||x2 − x1||Π,

(A.17)

which concludes the proof.
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