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Abstract

Trapped ions are among the leading candidates for universal quantum computing,
thanks to their proven high level of control and extended coherence times. However,
scalability remains one of the main challenges to overcome. Several proposals have
been made, with one of the most promising solutions involving the use of multi-zone
traps with mixed-species ion crystals. This approach allows for operations on the
individual species with highly suppressed cross-talk, thanks to their spectral isolation.
This includes cooling one species while storing quantum information in the other. High-
quality shuttling and reconfiguration of the crystals in different zones are crucial in this
architecture.

In this thesis, we demonstrate various elements necessary to work with scalable
mixed-species ion trap architectures. One of the main achievements is the demonstra-
tion of low-excitation transport and separation of single-species ion crystals of up to 7
ions and mixed-species arrays of up to 4 ions, composed of ionic calcium and beryllium.
We optimize inter-zone transport of two-ion mixed-species crystals, achieving excita-
tions as low as n̄Z1 = 0.16(2) and n̄Z2 = 0.14(2) quanta for the axial in-phase and
out-of-phase modes, respectively. We present the separation of two-ion single-species
crystals with excitations of n̄Be < 0.8 and n̄Ca < 2.3 quanta for beryllium and cal-
cium respectively. In the mixed-species case, additional control challenges arose due
to stronger sensitivity to radial electric fields, which induces mass-dependent twists of
the ion chains, and to the coupling of normal modes of motion, exacerbated by the
high mass ratio of 4.4 for these species. For the two-ion arrays we achieve excitation
as low as n̄Be = 1.44(9) and n̄Ca = 1.40(8) quanta. These findings are also relevant for
architectures for quantum-logic-based spectroscopy of exotic species.

We apply the theory of Landau-Zener-Stückelberg–Majorana transitions to study
the coupling of normal modes of motion and develop methods for tuning its strength
to enhance or inhibit the transfer of heat. The tunable coupling is employed to demon-
strate the manipulation of motional states, where consecutive multiple interactions give
rise to interferometric measurements.

We describe a comprehensive framework we developed and expanded in function-
alities for controlling the electrode potentials, which manipulate ion positions, and
demonstrate its employment. We examine the underlying model of the trap potentials
through automated routines, establishing a method for initial verification of experi-
mental deviations from an ideal simulation.
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Riassunto

Gli ioni intrappolati sono tra i principali candidati per l’ implementazione di com-
puter quantistici, grazie al loro comprovato alto livello di controllo e ai prolungati tempi
di coerenza. Tuttavia, la scalabilità rimane una delle principali sfide da superare. Sono
state avanzate diverse proposte per fronteggiare questo problema, e una delle soluzio-
ni più promettenti coinvolge l’uso di trappole multi-zona con cristalli di ioni di specie
miste. Questo approccio consente operazioni sulle specie individuali con un cross-talk
altamente soppresso, grazie al loro isolamento spettrale. Ciò include il raffreddamento
di una specie mentre si memorizzano informazioni quantistiche nell’altra. Il trasporto
e la riconfigurazione di alta qualità dei cristalli in diverse zone sono cruciali in questa
architettura.

In questa tesi, dimostriamo vari elementi necessari per lavorare con architetture
scalabili di trappole ioniche di specie miste. Uno dei principali risultati è la dimostra-
zione del trasporto e della separazione a bassa eccitazione di cristalli di ioni di singola
specie fino a 7 ioni e catene di specie miste fino a 4 ioni, composte da calcio e berillio in
forma ionizzata. Ottimizziamo il trasporto inter-zona di cristalli di due ioni di specie
miste, raggiungendo basse eccitazioni al livello di n̄Z1 = 0.16(2) e n̄Z2 = 0.14(2) fononi
per i modi assiali in fase e controfase , rispettivamente. Presentiamo la separazione di
cristalli di due ioni di singola specie con eccitazioni di n̄Be < 0.8 e n̄Ca < 2.3 quanti
per berillio e calcio rispettivamente. Nel caso di specie miste, sorgono ulteriori sfide nel
controllo a causa di una maggiore sensibilità ai campi elettrici radiali, che inducono tor-
sioni dipendenti dalla massa delle catene di ioni, e all’accoppiamento dei modi normali,
esacerbato dall’alto rapporto di massa di 4.4 per queste specie. Per i cristalli di due
ioni raggiungiamo una bassa eccitazione di n̄Be = 1.44(9) and n̄Ca = 1.40(8) quanti.
Queste scoperte possono essere applicate per le architetture basate su spettroscopia
logica quantistica di specie esotiche.

Applichiamo la teoria delle transizioni di Landau-Zener-Stückelberg-Majorana per
studiare l’accoppiamento dei modi normali e sviluppiamo metodi per regolare la sua
intensità per incrementare o inibire il trasferimento di calore. L’accoppiamento rego-
labile viene impiegato per dimostrare la manipolazione degli stati vibrazionali, dove
interazioni multiple consecutive danno luogo a misure interferometriche.

Descriviamo un’architettura che abbiamo sviluppato ed espanso nelle funzionalità
per controllare i potenziali degli elettrodi, che manipolano le posizioni degli ioni, e ne
dimostriamo l’impiego. Esaminiamo il modello dei potenziali della trappola sottostante
attraverso routine automatizzate, stabilendo un metodo per la verifica iniziale delle
deviazioni sperimentali da una simulazione perfetta.
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1 Introduction

In the realm of computer science, Alan Turing proposed a theoretical machine known as
the Turing machine that could implement any computer algorithm [Tur37]. In later years
this concept was further developed by John von Neumann, who presented an architecture
for a simpler universal computing device which is still used to describe all contemporary
computers, regardless of their specific implementation. These studies sparked the develop-
ment of new technologies capable of implementing these models, paving the way for modern
computers that play a crucial role in our current society.

Computers that are designed based on von Neumann’s model inherently process inform-
ation from the classical realm. The emergence of quantum mechanics in the 19th century
unveiled that nature operates under different principles from those of classical mechanics.
The transition from quantum to classical mechanics occurs when a system loses its quantum
coherence. While classical computers have been employed to simulate quantum systems,
they have proven to be inefficient in doing so. Certain problems would demand computa-
tional time that increases exponentially with the problem size [Pre18]. In fact, simulating
a quantum system with about 50 interacting two-level quantum elements, quantum bits or
qubits, is considered infeasible for a modern classical supercomputer [Aru+19]. To address
this issue, Paul Benioff, Yuri Manin and Richard Feynman independently proposed in the
early 1980s that quantum systems could be simulated efficiently by devices that harness
quantum phenomena, thus introducing the concept of quantum computers [Ben82; Fey82].
During this period, the application of quantum principles in quantum cryptography by
Charles Bennett and Gilles Brassard [BB84] and in the first quantum algorithm by David
Deutsch [Deu85] demonstrated that quantum devices could overcome the limitations of clas-
sical ones. This led to the development of several innovative algorithms, including those of
Deutsch–Jozsa [DJ92], Bernstein–Vazirani [BV97], Simon [Sim97], Grover [Gro96] and Shor
[Sho94], including also for quantum simulation [GAN14]. Since then, extensive efforts have
been made to identify new categories of problems that can be solved efficiently on a quantum
computer, and the field continues to require collective efforts to push the boundaries.

Quantum computers operate by encoding quantum information, quantified in terms of
qubits, into the states of a quantum system. This information is processed by exploiting
the principles of superposition, interference and entanglement among different states of the
system. For a quantum system to be suitable for Quantum Information Processing (QIP)
it must satisfy five necessary conditions, known as the Di Vincenzo criteria [DiV00]. The
criteria are: the system must be scalable and have well-defined qubits, it must be capable
of implementing a universal set of quantum gates, it should have the ability to initialize
the state of the qubits to a specific one, it must be able to perform qubit-specific measure-
ments and the qubits should have long coherence times. Several architectures have been
developed that meet these requirements, each with its own set of strengths and weaknesses.
One of the leading candidates is the architecture based on trapped atomic ions. Originally
designed for high-precision spectroscopy and metrology [Deh68; Pau90], trapped ion tech-
nology has evolved significantly over the years. The attained level of control of quantum
systems has paved the way for its application as an architecture for quantum computing.

1



2 CHAPTER 1. INTRODUCTION

The most prevalent ion trap design for QIP is the Radio-Frequency Paul trap. Trapped
ion quantum computers store quantum information in the electronic states [Win+98] or in
the motional states [GKP01] of ions confined by electric fields. The Coulomb interaction
between ions is exploited for implementing quantum gates [CZ95]. Lasers, microwaves and
Radio-Frequency (RF) provide a diverse range of high-fidelity tools to manipulate and de-
tect the ions’ states [Lei+03]. Ions naturally have a long coherence times [Wan+17] and ions
of the same species are identical. One of the significant challenges for quantum computers
is scaling up to thousands of qubits. This is necessary to demonstrate an advantage over
classical computers for implementing Quantum Error Correction (QEC) schemes [Ste97]
and, consequently, useful quantum algorithms [HLH22]. Co-trapping thousands of ions in
a single potential well does not offer a scalable solution as the complexity of the system
increases. In particular, the number of vibrational modes of an ion string increases linearly
with the number of ions, slowing down high-fidelity entangling gates based on collective
motional modes, and increasing the likelihood of crosstalk between the modes [MK13].
A promising approach to this challenge is the Quantum Charge-Coupled Device (QCCD)
architecture [KMW02]. Since its proposal, it has become a standard in many quantum com-
puting devices [Kau+20; Mos+23]. The architecture is based on an extended trap, which
is divided into multiple distinct zones. Each zone is dedicated to performing specific tasks
such as executing quantum logic operations, storing quantum memories, qubit initialization
and detection. The ions are trapped in compact arrays and are transported across these
zones by applying time-dependent voltages to the chip electrodes. The design’s scalability is
derived from the ability to manipulate multiple small arrays in parallel without cross-talk.
However, this framework has its drawbacks. There is an increase in the number of required
electrodes, electrical connections and laser beams. Despite these challenges, ongoing efforts
are being made to address these issues [Meh+20; MAB23]. The design also imposes a de-
mand for high-quality control for the transportation and reconfiguration of the ion arrays.
This involves separating longer chains into smaller ones and vice versa, as well as reordering
the ions. If done imperfectly, these operations induce significant motional excitation of the
ions, thereby degrading the fidelity of subsequent quantum gates [Kau+20]. Furthermore
when quantum information is stored in the internal states of the ions, they cannot be dir-
ectly laser-cooled as the dissipation process destroys the information. To mitigate this issue
a second ion species can be co-trapped and used to re-cool the ions by means of sympathetic
cooling [Kie+00; HRB08]. The spectral isolation of the two species ensures that the cooling
light of one ion species does not affect the information stored in the other [Bar+03]. How-
ever, re-cooling is typically slow, making it the primary timescale in quantum operations
[Hom+09; Wan+19; Pin+21; Rya+21]. Therefore it is crucial to minimize the excitation
induced by the transport, separation, and reconfiguration of ion arrays. Comprehensive
studies have been conducted with single species ion chains [Row+02; Lei+07; Bow+12;
Wal+12; Rus+14; Kau+14; CE15; Ste+22; Cla+23], achieving low excitation over a wide
range of operations. For mixed-species arrays [Bar+04; Hom+09; Pin+21] additional chal-
lenges have to be overcome. Generally these studies lack of an in-depth analysis of these
sources of heating, relying on intense re-cooling of the ions to compensate [Mos+23].

In this thesis we investigate the transport, separation and reconfiguration of mixed-
species ion arrays in a QCCD architecture. We study the manipulation of ion crystals and
specify relative constraints to satisfy. We examine the performance of these operations for
different ion crystals, identifying and analyzing several factors inhibiting optimality, such as
imperfect manipulation, strong electric field noise, presence of stray electric fields and coup-
ling of normal modes of motion. This study was performed with ion strings composed of
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beryllium-9 and calcium-40 ions. The advantage of using beryllium ions is that quantum in-
formation can be stored in its hyperfine ground state with a long coherence time of up to ∼ 4s
[Lo15]. The second ion species was selected to have a mass as close as possible to that of the
beryllium ion, while still having a hydrogen-like electronic structure that generally presents
a simple electronic energy spectrum. A first choice could be the magnesium-25 ion, but the
manipulation of the electronic energy states requires UV lasers close to ∼ 280 nm, which
poses technical challenges. Another choice is the calcium-40 ion, which is widely employed
in trapped-ion quantum computing with well-established laser technologies. A drawback is
that, together with beryllium, these species present a high mass ratio, which exacerbates
the aforementioned effects. Nevertheless, these were counteracted with a tailored combina-
tion of measures, that allowed us to operate with single-species chains of up to 7 ions and
mixed-species chains of up to 4 ions. This enables the implementation of more complex
quantum computing algorithms based on reconfigurable ion strings in future applications.

In the course of this work, we extended the functionalities of a framework used for
designing time-varying voltages for the shuttling and reconfiguration of ions called Pytrans
[Mor+23], which initially developed in [Neg18]. This library was made publicly available
to enable its use by other research groups, to accelerate research and unify techniques
among different institutes. The design of the voltages is based on a simulation of the trap.
Subsequently, we studied the accuracy of this model and explored techniques to quantify
and adjust for experimental discrepancies.

Given the high mass ratio of the species involved, the research conducted in this thesis
also has implications for architectures used in spectroscopy. In these setups, an ion is co-
trapped with charged exotic particles of varying nature, charge and mass, such that the
ion can be utilized as a coolant [Sch+05; Kin+22; Sch+23]. For spectroscopy species that
are challenging to prepare or maintain, transport and separation may simplify operations.
An instance of this is the employment of transport and separation as part of sympathetic
cooling protocols for a single antiproton co-trapped with a single beryllium ion, necessary
to measure signals that are not degraded by motional excitation [Cor+21].

During the study of transport and separation of ion strings, the coupling of vibrational
modes was dynamically tuned to enable or prevent the transfer of energy between the modes.
This naturally lead us to study multiple interactions of motional states, which can induce
interference between phonon populations. Such phenomenon was not explored in trapped
ion architectures before [ISN23] and it can be employed as a resource for quantum computing
[LB99].

The thesis is organized as follows:

Chapter 2 introduces the operational principles of Paul traps and presents the exper-
imental setup employed in this thesis. It describes the dynamics of individual ions and
mixed-species arrays, with an emphasis on their motional quantum states.

Chapter 3 outlines the process of ion state manipulation through laser interaction, the
electronic energy level structure of beryllium and calcium ions and the techniques we employ
for cooling the ions close to their motional ground state.

Chapter 4 describes various techniques we employ to manipulate and analyze the elec-
tronic and motional states of mixed-species ion crystals. Starting from the typical exper-
imental sequence, we discuss the methods we employ to carefully measure the motional
frequencies and phonon populations. Then we discuss in detail the dynamics of the transfer
of energy between coupled vibrational modes and the factors that cause this coupling.



4 CHAPTER 1. INTRODUCTION

Chapter 5 presents the main features of the experimental control system and recent
advancements in managing some of the electronic devices used in ion trapping, generation
of magnetic fields and laser beams production.

Chapter 6 provides an in-depth analysis of the micromotion affecting the laser-ion in-
teraction in the trap and explains the methods we employ to compensate or account for
it. These procedures led us to study the simulation of the trap potentials and to quantify
experimental deviations.

Chapter 7 introduces the theoretical framework and practical implementation of the
routines for designing the voltages used for transport, separation and reconfiguration of the
ion crystals.

Chapter 8 describes the experimental investigations related to static confinement, trans-
port and separation of single- and mixed-species ion chains of different varying lengths and
configurations. It provides a quantitative analysis of the heating mechanisms and strategies
to minimize excitations and coupling between the modes.

Chapter 9 describes an experiment in which, diversely from the previous chapter, we
keep enabled the coupling between the modes and analyze them after multiple interac-
tions, obtaining an interferometric measurement between phonon populations in different
vibrational modes of a single calcium ion.



2 Ion dynamics in Paul trap

In this chapter I give the theoretical background describing systems of single and multiple
trapped ions and their implementation in the experimental setup of this thesis. The de-
scription strongly focuses on the trapping and motional states of mixed-species ion crystals,
as this will be relevant in later chapters.

2.1 Paul Trap

Ion traps spatially confine charged particles by means of electromagnetic fields. In order to
confine in all three dimensions, it is impossible to employ only static electric field due to
the Earnshaw’s theorem. From two of the Maxwell’s equations, one retrieves the Poisson
equation:

∇2V = − ρ

ϵ0
(2.1)

where V is the electric scalar potential, ρ is the electric charge density and ϵ0 is vacuum
permittivity. In a charge-free space, this equation turns into the Laplace’s equation:

∇2V =
∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
= 0 (2.2)

which means that it is impossible to create positive confining curvature in all three directions
at the same time with a static electric field. In order to confine the ions, one needs to use
an additional static magnetic field, as in Penning traps, or a time-varying inhomogeneous
electric field, as in Paul traps [Pau90]. In the experiments of this thesis, we employed
the latter solution, using a radio-frequency (RF) linear Paul trap. A schematic of this
configuration is shown in Fig. 2.1. Here the trap is composed of four sets of electrodes,
divided into RF and DC electrodes. The RF electrodes are primarily used for confining
along the x and y directions, which are referred to as radial directions. By applying a time-
varying voltage v(t) = vRFcos(ΩRFt) to these electrodes and considering the DC electrodes
as a ground (GND), the potential inside the trap forms a radial saddle point that varies in
sign. In order to provide confinement along the z direction, referred to as axial direction,
the DC electrodes are segmented and a voltage difference between the external electrodes
and the central one is applied, vD in the figure. Here we also take into account a possible
common voltage offset vC applied to all DC electrodes.

We can then compute the electric potential close to the trap axis for this configuration.
Due to the electrode radial symmetries, we expect the linear terms of the potential to vanish.
We approximate the potential up to the second order as:

V (x, y, z, t) = V0 +
1

2
vD
(
αzz

2 + αxx
2 + αyy

2
)
+

1

2
vRFcos (ΩRFt)

(
βxx

2 + βyy
2
)

(2.3)

where V0 is the potential at the trap center due to the DC and RF voltages, αx,y,z and
βx,y are geometric factors that depend on the exact trap configuration and are computed
through a numerical simulation (see Sec. 7.1).

5
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Figure 2.1: (a) Linear Paul trap schematics. Applied voltages for ion trapping are shown. Dashed
line indicates the trap axis. (b) Numerical simulation of 2D ion motion in a Paul trap. The time
range is over a single period of axial frequency. The frequencies are [ωz, ωy] = 2π × [1, 2] MHz,
ωRF = 2π × 100 MHz. The Mathieu parameters are ay = 0 and qy = 0.075. The micromotion is
visible and vanishes close to the trap axis. The secular motion is a closed Lissajous curve.

We are now interested in describing the motion of the ions. For each axis the potentials
are independent, consequently we can describe the equations of motion along these directions
separately. For a single ion of mass m and charge e, the classical equation of motion for the
ion position u⃗ = (ux, uy, uz) is computed from:

d2ui
dt2

= − e

m

∂Φ

∂u
(2.4)

with i = (x, y, z). Along the axial direction, it corresponds to:

d2uz
dt2

= − e

m
vDαzuz (2.5)

which is the equation of motion of a harmonic oscillator with oscillation frequency:

ωz =

√
eαzvD
m

. (2.6)

Radially we have:
d2ui
dt2

= − e

m
{αivD + βivRF cos (ΩRFt)}ui (2.7)

which can be expressed as the differential equations known as Mathieu’s equations [Pau90;
Win+98]:

d2ui
dτ2

+ (ai + 2qi cos(2τ))ui = 0 (2.8)

with Mathieu’s parameters:

ai =
4eαivD
mΩ2

RF

, qi =
2eβivRF

mΩ2
RF

and τ =
ΩRFt

2
(2.9)

which can be solved by means of an exponential series [Lei+03; McL47]. The solutions of
Mathieu’s equations and the stability of the trapping depend on ai and qi. Generally, linear
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Paul traps are operated in a region where q2i ≪ 1 and |a| < q2i /2, which is within the first
of the stability regions of Mathieu’s equations. Here we can approximate at first order the
solution of Eq. 2.8 as:

ui(t) ≃ A cos (ωit)
[
1− qi

2
cos (ΩRFt)

]
(2.10)

where A is given by initial conditions and ωi is the secular frequency :

ωi =

√
ai +

q2i
2

ΩRF

2
. (2.11)

This equation assumes a simple form in the case the contribution from the static potential
is negligible (ai → 0):

ωi =
eβivRF√
2mΩRF

(2.12)

The resulting radial trajectory is composed of the sum of two components. The first is a
slow secular oscillation of angular frequency ωi. The second is a faster motion at ΩRF, called
micromotion, whose amplitude is q/2 times smaller than the one of the secular motion and
increases with the distance of the ions from the trap center. The resulting trajectory of an
ion is shown in Fig. 2.1(b). This shows the existence of two different time scales governing
the motion of the ions. If the condition (|ai|, q2i ) ≪ 1 is satisfied, the secular frequency
is much smaller than the RF drive frequency. This represents the fact that, while the ion
is alternatively attracted and repelled from the trap center by the RF oscillating field, it
experiences on average an attractive force, or ponderomotive force. This can be described
by an effective static potential called a pseudopotential.

2.1.1 Pseudopotential

The pseudopotential is a simple and effective description of RF confinement and in numerical
simulations of ion trapping. It is a good approximation when the qi ≪ 1. Its derivation is
described in [Deh68] and here I summarize the main concept. We can separate the motion
of the ion into its fast and slow components, which happen at different timescales. We
then time average the force of the RF electric field over the period 1/ΩRF, obtaining at
the lowest order a zero net force, meaning that in this timescale the ions move around an
average position ūi. If the RF electric field is inhomogeneous and we Taylor expand it
around the average position ūi up to the first order, then the time average force affects the
slow trajectory:

F̄i(ūi) = −e
∂Vps(ūi)

∂ūi
, with Vps(ūi) ≡

eE2
RF(ūi)

4mΩ2
RF

(2.13)

where ERF(ui) is amplitude of the RF electric field along direction i at point ui and Vps(ūi) is
the pseudopotential. The latter is inversely proportional to the mass of the ions, so different
ions experience different radial confinements. The ponderomotive force is proportional to
the square of the charge e, which means that even negative ions can be confined. By
considering only the RF potential in Eq. 2.3, the ponderomotive force becomes:

F̄i(ūi) = −
e2β2

i v
2
RF

2mΩ2
RF

ūi (2.14)

which is the equation of a harmonic oscillator of secular frequency:

ωi =
eβivRF√
2mΩRF

(2.15)
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which corresponds to Eq. 2.11 in the limit of au → 0. The potential energy in the pseudo-
potential corresponds in fact to the average kinetic energy of the fast motion:

⟨Wmm(ui)⟩av =
e2E2

RF(ūi)

4mΩ2
RF

=
e2β2

i ū
2
i

4mΩ2
RF

= eVps(ūi) (2.16)

The pseudopotential can be used to estimate the trap depth of the radial confinement
caused by the RF potential only. The trap depth ERF

trap is defined as the energy difference
computed at the RF potential saddle point and at the nearest local maximum, namely the
energy required by an ion to escape the trap. The saddle point is located at the trap center,
while the nearest local maximum is close to the electrodes, at a distance R. From Eq. 2.16,
we can compute the trap depth similarly to [Mal21]:

ERF
trap =

e2β2
i R

2

4mΩ2
RF

(2.17)

which is valid for each i. Typical trap depths for 3D linear Paul traps are in the order of a few
electron-volts, corresponding to a temperature of thousands of Kelvin, considerably higher
than that of the atomic oven and background gas. For the axial direction, the confinement is
generated by the DC potential and typical trap depths are in the order of one electron-volt.

We can employ the pseudopotential for a simple simulation of the trapping potentials
in the radial plane. An example of this is shown in Fig. 2.2 (a) for the experimental
setup of this thesis. We also simulate the contribution of the DC electrodes. The DC
potential is responsible for the axial confinement, but due to Laplace’s equation, it also
induces an anti-confining potential in the radial plane. Along the x and y directions the
potential scales differently, breaking the rotational symmetry. Central and external DC
electrodes induce quadrupole potentials of different directions and magnitude, such that
different combinations of vD and vC induce a rotation and change of intensity in the radial
electric fields, as shown in Fig. 2.2 (b) and (c).

2.1.2 Micromotion

Micromotion affects the way the ions interact with the laser beams and, in some specific
cases, it can induce motional excitation [Win+98]. Depending on the exact cause, it is
referred to as excess or intrinsic micromotion. The exact definition differs across the lit-
erature, but here I use the one according to [Kie15; Ami+11]. The interested reader can
compare it with the definition discussed in [Zha21; Ber+98; Kel+15; Ber+17].

Excess micromotion

The excess micromotion happens when uncontrolled stray static electric fields generated by
charging up of the trap or imprecisely controlled static potentials cause the minimum of
the DC potential to be displaced radially from the RF electric field null. This causes the
ion to be trapped around an equilibrium position ueqi which does not lie on the trap axis.
As described in [Kie15; Ber+98], the trajectory of an ion subjected to a radial static stray
electric field Ei along direction i can be described as:

ui(t) ≃ A [ueqi + cos (ωit)]
[
1− qi

2
cos (ΩRFt)

]
, with ueqi =

eEi

mω2
i

≃
2mEiΩ

2
RF

eβ2
uV

2
RF

(2.18)
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Figure 2.2: Simulation of the radial confinement for a single calcium ion at the trap center of the
Paul trap employed in the experimental setup of this thesis, with architecture similar to Fig. 2.1
and parameters described in Sec. 2.2. (a) Pseudopotential in the radial plane in the absence of DC
potential. (b) Potential in the radial plane due to the pseudopotential and a DC voltage of 8 V
applied to the central electrodes. (c) Potential in the radial plane due to the pseudopotential and
a DC voltage of 40 V applied to the external electrodes of only one side. The DC voltages were
chosen to generate potentials of similar magnitude and highlight the difference in the directions of
the generated quadrupoles.

where the last approximation is valid for the case in which the contribution of the DC po-
tential is negligible with respect to the RF potential, i.e. ai ≪ q2i . Note that the higher the
mass of the ion, the further it gets displaced from the trap center. This might seem coun-
terintuitive, but it is originated from the fact that the ion with higher mass experiences a
smaller radial confinement caused by the pseudopotential. This will be particularly import-
ant for the experiments involving mixed-species ion chains described in the next chapters.
Displaced equilibrium position causes the ion to experience a higher amplitude of micromo-
tion, motivating the name excess micromotion. This has several negative effects on trapped
ion systems, as described in [Ber+98; Win+98; Hom13]. Here I only consider the two ef-
fects that are most relevant for the experiments described in this thesis. The micromotion
induces a phase modulation in the laser light seen by the ion, corresponding to sidebands
at the RF frequency in the light spectrum. In the ion rest frame, the laser’s electric field is
modulated:

E⃗(t) ≃ Re
[
E⃗0e

(ik⃗·u⃗−iωlasert)
]

(2.19)

where ωlaser is the frequency of the laser, E⃗0 the amplitude of the electric field, k⃗ the wave
vector and u⃗ the position of the ion, including the shift due to the excess micromotion. The
resulting probability of transition between two energy levels of the internal states of the ion
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is:

P ∝
∞∑

n=−∞

J2
n(β)

(ωion − ωlaser + nΩRF)2 + (γ/2)2)
(2.20)

where ωion is the frequency of the transition, γ is the linewidth, Jn are the Bessel functions of
the first kind and β is the amplitude of the phase modulation due to the excess micromotion,
computed as:

β =

∣∣∣∣∣∣12
∑
i=x,y

kiqiu
eq
i

∣∣∣∣∣∣ . (2.21)

As β increases, the probability of transition at ωion reduces, decreasing the efficiency of the
laser cooling for laser beams with radial wave vectors. For higher β, if ΩRF ≪ γ then the
excitation spectrum gets broader, while for ΩRF ≫ γ it forms sidebands at ±nΩRF, with
n ∈ N. In both cases, for some values of ωion − ωlaser the laser might heat the ion, rather
than cooling it. As stated in [Kie15], it is interesting to notice that, for ai ≪ q2i , β is
mass-independent, while it maintains a dependence on the ion species due to the different
wavelengths.

The excess micromotion is generally compensated by adding a voltage bias to the elec-
trodes or by means of an additional set of electrodes, aiming to nullify the stray static
electric fields. Detailed analysis of this technique can be found in Sec. 6.2.

Intrinsic micromotion

Intrinsic micromotion happens when there is a phase shift between the voltages applied to
the RF electrodes, or when the RF electric field has an axial component. The former is
minimized by the trap geometry used in the experiments described in this thesis [Kie15],
thus I consider it to have negligible effects. The latter instead is caused by manufacturing
imperfections of the ion trap, in which the electrodes are not properly aligned. It is also
due to the finite length of the electrodes and to the application of the RF potential to only
one pair of electrodes radially, inducing intrinsic micromotion along the entire trap axis
apart for the center of symmetry. Since this second effect played a more relevant role in
the experiments described in this thesis, I give a summary of the underlying mechanism,
following [Ami+11; Kie15]. Along the axial direction, we consider the effect of the DC
electric field together with the axial component of a homogeneous RF electric field:

Etotal = −αzvDz + ERF,z cos(ΩRFt). (2.22)

The resulting equation of motion is a harmonic oscillator subject to a sinusoidal driving
force with solution:

z(t) = A cos(ωzt+ φ) +
eERF,z

m(ω2
z − Ω2

RF)
cos(ΩRFt) (2.23)

where ωz is the usual axial secular angular frequency given in Eq. 2.6 and A and φ are
given by initial conditions. The first term in z(t) describes the usual axial secular motion,
while the second represents the drive of the axial RF field. If we consider ΩRF ≫ ωz,
the amplitude of this drive does not depend on ωz, but it is inversely proportional to the
mass of the ion. Consequently also β ∝ 1/m and the probability of transition between the
internal levels gets modulated by Bessel functions, causing detrimental effects analogous to
the excess micromotion. Intrinsic micromotion, independently from the cause, affects laser
beams with non-negligible wave vectors components along the trap axis.
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Differently from the excess micromotion, the intrinsic one we consider here cannot be
simply compensated by acting on the trap voltages. For this reason, we account for it
by phase-modulating the laser beam through some Electro-Optic Modulators (EOMs) to
maximize the absorption profile, when necessary. Detailed analysis of this technique can be
found in Sec. 6.1.

2.2 Segmented 3D Paul Trap

The experiments performed in this thesis were implemented in a linear Paul trap. It was
designed and developed by Daniel Kienzler [Kie15] and a schematic of the trap structure is
shown in Fig. 2.3. The trap is made from different layers of aluminium oxide (Al2O3), which
were laser-machined to create specific slots and subsequently gold plated. The outermost
wafers are masks which avoid excessive deposition from the atomic source ovens on the trap
electrodes, which would increase heating rates and motional decoherence [Win+98]. The
two inner wafers have one RF electrode and 15 DC electrodes each in an anti-symmetric
configuration, which are used for generating the trapping potentials. Around them, there
are two additional wafers and each has 7 shim electrodes for each side of the trap, for a
total of 28 shim electrodes, which are used to compensate stray electric fields causing excess
micromotion. Each wafer is separated by spacers from the others and all the layers have a
thickness of 125 µm.

The DC electrodes in this trap have non-uniform widths depending on the exact location
along the trap axis to satisfy different requirements. This allows to have zones or regions for
specific operations, fulfilling one of the conditions of the QCCD architecture. At each end
of the trap there are two loading zones where neutral atoms, generated in the atomic ovens,
get ionized and trapped. Two sets of atomic ovens are directed at each loading region for
redundancy, but currently only the left zone is used. Due to the large width of 500 µm of the
electrodes in this zone, the achievable maximum axial frequency is lower than in the other
regions. There are also three experimental zones composed by electrodes of 300 µm width.
The leftmost and rightmost ones are currently used as storage for multi-well operations,
while the central one is used for the quantum control of the ion arrays. This is performed
not exactly at the center of the DC electrodes 8 and 23 but displaced by 20 µm to the right
to minimize the axial pseudopotential gradient [Bla+09] experienced by the ions. In this
thesis, all three experimental zones were used, but I generally refer to the central one when
not specified. On either side of the central zone, there are two separation zones composed
of three narrow electrodes of 150 µm width each, enabling generating stronger higher-order
terms in the potential for separation and recombination of ion chains. All the electrodes
are separated from their neighbour by 20 µm gaps. The distance from the trap axis to the
electrodes is roughly 184 µm, which was chosen due to the trade-off between smaller distances
allowing the production of higher electric field gradients in the trap at lower voltages, and
larger distances which result in lower heating rates and increased optical access.

The trap stack is mounted on a filterboard and the electrodes are connected through
wirebonds. In the filterboard, most of the DC and shim lines are filtered against electrical
noise by first-order RC low pass filters, with R = 240(20)Ω and C = 820(40) pF which lead
to a cut-off frequency of 809(78) kHz. Four shim lines are only connected to capacitors to
generate additional RF electric fields known as tickle and for microwave driving of magnetic
dipole transitions of the ions. The chip and the filterboard are located inside the vacuum
chamber (also shown in Fig. 3.4) and connected to external lines to control the electrode



12 CHAPTER 2. ION DYNAMICS IN PAUL TRAP

voltages. The DC electrode 11 shown in Fig. 2.3(e) is not properly connected to the outside
line, preventing appropriate voltage control. Generally this does not affect daily operations,
apart for experiments involving the transport of ions in front of this electrode, which will
be described in Subsec. 8.2.3.
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Figure 2.3: Segmented 3D trap structure. (a) Exploded-view diagram of the wafer stack. (b)
Closed view of the electrodes of the assembled chip. (c) Empty filterboard. (d) Side view of the
DC, RF and shim electrodes. (e) DC electrodes numbering and dimensions, in µm. The image is
modified from [Neg18].

The trapping potential inside the chip can be well approximated by the one described
in Eq. 2.3, in which we neglect higher order terms due to the small size of the ion wave
packets (on the order of 10 nm) or small ion arrays (on the order of 10 µm) compared to the
electrodes distance. Here the potential offset V0, the factors αx,y,z and βx,y are modified
according to the trap geometry. Their value is non-analytical and requires a numerical
simulation, as described in detail in Sec. 7.1. The DC electrodes are driven by custom
arbitrary-waveform generators [Cle15] which span a voltage range of [-10, +10] V and are
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described more in detail in Sec. 5.2. The RF voltage is generated by a stable RF voltage
source, which gets amplified and filtered by a helical resonator, as described more in detail
in [Col18]. The RF amplitude is currently around vRF = 374V, meeting the requirements
of having higher amplitudes to increase the secular frequencies according to Eq. 2.11,
while being lower than the electrical breakdown safe limit which we conservatively estimate
to be 400V. The RF angular frequency is currently around ΩRF = 2π × 113.733MHz.
A lower RF frequency is desirable for increasing the secular frequency, but it cannot be
reduced arbitrarily as the Mathieu parameter has to lie in the stability region. Moreover,
the trapping has to be stable for both ion species used in this thesis, 40Ca

+ and 9Be
+,

at the same time. A conservative approach is to have ωi/ΩRF < 0.2 for all modes [Kie15].
Generally the highest radial secular angular frequency for 9Be

+ (40Ca+) for the experiments
of this thesis is around 2π × 14MHz (2π × 4MHz), resulting in a ratio of ωi/ΩRF = 0.12
(0.04), satisfying the requirement mentioned above.

2.3 Normal modes of motion

For the experiments described in this thesis, trapped mixed-species ion arrays were em-
ployed. The goal here is to compute the equilibrium positions and the motional frequency
of a chain of N mixed-species ions subjected to harmonic trapping potentials generated in
a Paul trap. The approach I describe here follows [Hom13; Mar20].

We first assume that the temperature of the ions is low enough such that their oscillations
around their equilibrium positions are small compared to the inter-ion separation. In the
chain of N ions, the mass of each of them is mj , with j ∈ [1, N ] and the charge is e. We
have that the ions’ position are a set of N vectors u⃗1, . . . , u⃗N , which will be indexed by the
subscript j. It is convenient to rewrite the position coordinates as 3N scalar parameters
z1, . . . , z3N , indexed by the subscript i. At this point, we consider the ions to be affected
by a trapping potential V (u⃗j ,mj) given by the sum of DC potential of Eq. 2.3 and the
pseudopotential of Eq. 2.13. The energy of the ions is given by E = T + U , where T is the
kinetic energy and U is the potential energy computed as:

T =
N∑
j=1

mj

2
˙⃗u2j ,

U =

N∑
j=1

eV (u⃗j ,mj) +
1

2

N∑
j,l=1,j ̸=l

e2

4πε0|u⃗l − u⃗j |
.

(2.24)

The equilibrium positions of the ions {z0i } can be computed by solving ∂U/∂zi = 0. This
can be solved analytically only up to N = 3 [Kie+00]. For longer chains, a numerical
method based on the minimization of the potential energy U is generally used. Along the
trap axis, the potential energy is independent of the mass, so the equilibrium positions are
independent of the exact species of the ions in a mixed-species chain.

Once the equilibrium positions are found, we can Taylor expand the potential up to the
second order around these points and neglect the constant terms, which do not affect the
dynamics, and the first order terms, as they vanish around the equilibrium positions. The
second order terms can be employed to retrieve the 3N × 3N symmetric Hessian matrix
according to:

H ′
ik =

1
√
mimk

∂2U

∂zi∂zk

∣∣∣∣
{z0i }

. (2.25)
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We can rewrite the coordinates zi with mass-weighted coordinates z′i =
√
mizi, which makes

the kinetic energy T to be written in a mass-independent form, which is more convenient
for mixed-species ion arrays. We also indicate the ions’ displacement from their equilibrium
position as ζ ′i = z′i − z0′i . This allows us to rewrite the Lagrangian of the system in terms of
the Taylor expanded potential and ζ ′i:

L =
1

2

 3N∑
i=1

ζ̇ ′ 2i −
3N∑

i,j=1

H ′
ikζ

′
iζ

′
j

 (2.26)

from which we retrieve the 3N equations of motions from the Euler-Lagrange formula:

ζ̈ ′k +

3N∑
i=1

H ′
ikζ

′
i = 0. (2.27)

Assuming a fiducial solution ζ ′k = ζ0′k eiωt, we retrieve a linear system of coupled equations.
By diagonalizing the Hessian matrix H ′

ik, we obtain a set of uncoupled equations. This
allows us to describe the ion oscillations in terms of the so-called normal modes. These form
a basis for the collective motion of the ions, in which they vibrate at specific frequencies and
with fixed phase relations. The eigenvalues of the Hessian matrix correspond to the angular
frequencies ω2

α of each normal mode α. The normalized eigenvectors can be rewritten as a
matrix (e′i,α) and used to obtain the normal-mode coordinates ξ′α from the individual ion
coordinates through the transformation:

ξ′α =
3N∑
i=1

e′i,αζ
′
i. (2.28)

The momentum of the ions in the normal modes description can also be transformed ana-
logously. Since the Hessian matrix is real and symmetric, the inverse transformation can be
obtained:

ζ ′i =
3N∑
α=1

e′i,αξ
′
α. (2.29)

Each normal mode acts as an independent oscillator.

The eigenvector matrix can also be used to study the features of the normal modes,
which depend on the relative masses of the ion species, their order in the chain and the
relative contributions of the ponderomotive potential and the static potential for the ions’
confinement. For a specific normal mode α, the relation between the signs of the eigenvector
elements e′i,α indicates if the ions oscillate in-phase or out-of-phase to each other. The
amplitudes of the eigenvector elements indicate the relative participation of the ith ion to
the mode α. For single-species arrays they often show symmetries. In the mixed-species
case the participation can be very different, with increasing deviations for higher ion mass
ratios, as shown in Fig. 2.4. This phenomenon, which could lead to some ions having close
to zero participation for a specific mode [SCM21], is more pronounced for the radial modes
than for axial ones. The radial frequencies have a stronger dependence on the ion mass
(compare Eq. 2.11 with Eq. 2.6). The Coulomb interaction, which couples the modes, is far
from resonance and has a small influence on the motion [Hom13]. In the axial direction the
mode of highest frequency is the out-of-phase mode, while radially this is the lowest one.
Radially this is due to the increase in the ion distance that lowers the Coulomb interaction



2.3. NORMAL MODES OF MOTION 15

energy, while in the axial case this is the opposite. For axial and radial lowest frequency
modes, the heaviest ion has the highest participation.

The study of normal modes for chains of mixed-species ion arrays is fundamental for the
experiments described in this thesis, as discussed in Ch. 7 and 8. The participation of the
ions in these modes has important consequences on the laser-ion interaction (described in
Sec. 3.1) and coupling to electric field noise sources (described in Subsec. 8.2.3). For these
reasons, I give now some examples of normal modes for mixed-species arrays composed of
2, 3 and 4 ions of 40Ca

+ and 9Be
+.

From now on, I use the convention to indicate ion chains by the chemical symbols of
their constituents, separated by dashes, in which the order reflects the order of the ions in
the trap according to Fig. 2.3(e). For example, a two-ion crystal composed of one 9Be

+

on the left and one 40Ca
+ on the right will be indicated as Be–Ca. Moreover along the

trap axis the in-phase or center-of-mass (COM) vibrational mode will be indicated as Z1,
while all the others will have increasing numbers according to the increasing frequencies,
e.g. Z2, Z3 and so on. For each of the radial directions, the COM modes have the highest
frequencies and will be indicated as Y 1 and X1. The two lowest frequency out-of-phase or
stretch (STR) modes will be labeled as Y 2 and X2, while all the other modes will have
increasing numbers according to the increasing frequencies, e.g. Y 3, X3 and so on. This
convention differs from [Mar20; Neg18].

In the case of a single trapped ion, the vibrational modes ωz and ωx,y are given by Eqs.
2.6 and 2.11, respectively. For a two-ion crystal, composed of Be–Ca (as stated above, the
order does not matter), the vibrational frequencies can be computed analytically according
to [Wüb+12], while an example of numerically simulated normal modes is shown in Fig.
2.4. The axial separation of the ions is given by s2 = 21/3s, where s = [e/(4πε0αzvD)]

1/3,
obtained from [Win+98] together with Eq. 2.6. Typical axial distances in our trap are
on the order of 5 µm. We can define the mass ratio as µ = mBe/mCa = 0.225. The axial
angular frequencies can be computed as:

ωZ1 =

√
1 + µ−

√
1− µ+ µ2

µ
ωz ≃ 1.19ωz,

ωZ2 =

√
1 + µ+

√
1− µ+ µ2

µ
ωz ≃ 3.08ωz,

(2.30)

while the axial elements of the eigenvector of Z1 can be computed as:

e′ 2Ca,Z1 =
1− µ+

√
1− µ+ µ2

2
√

1− µ+ µ2
≃ 0.93,

e′ 2Be,Z1 = 1− e′ 2Ca,Z1 ≃ 0.07,

(2.31)

while for Z2 they are swapped and with discordant signs. The ratio between the axial mode
frequencies is:

ωZ2/ωZ1 ≃ 2.6 (2.32)

For the radial normal modes the analysis becomes more complicated, but the interested
reader can find the analytical expressions in [Wüb+12].

In the three ion case, the axial vibrational frequencies can be computed analytically
according to [Kie+00], while two examples of numerically simulated normal modes are
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Figure 2.4: Normal mode frequencies and eigenvectors for a Be–Ca crystal. The trapping potentials
are such that for a single 40Ca

+ the secular frequencies are [ωz, ωy, ωx] = 2π× [1.5, 2.5, 3.2] MHz.
For each direction, the bars indicate the mass-weighted components of the eigenvectors e′i,α. On top,
the mode frequencies are shown together with the naming convention we adopted. The coordinate
system is oriented along the normal modes.

shown in Fig. 2.5. The axial distance of the ions is given by s3 = (5/4)1/3s [Win+98].
We now focus on the configurations Be–Ca–Be and Ca–Be–Ca, as these were employed in
the experiments described in this thesis. For the first case we define the mass ratio as
µ1 = mCa/mBe ≃ 4.44, while for the second we have µ2 = mBe/mCa = 0.225. The axial
angular frequencies can be computed as:

ωZ1 =

[
13

10
+

1

10µj
(21−

√
441− 34µj + 169µ2

j )

]1/2
ωz,

ωZ2 =
√
3ωz,

ωZ3 =

[
13

10
+

1

10µj
(21 +

√
441− 34µj + 169µ2

j )

]1/2
ωz,

(2.33)

where ωz is computed in the usual way with the mass of the ions located externally and µj

corresponds to µ1 or µ2 depending on the exact ion configuration. The axial elements of
the eigenvector of Z1 can be computed as:

e⃗ ′
∗,Z1 = N1

(
1,

√
µj

8
(13− 5ω2

Z1), 1

)
,

e⃗ ′
∗,Z2 = N2(1, 0,−1),

e⃗ ′
∗,Z3 = N3

(
1,

√
µj

8
(13− 5ω2

Z3), 1

)
,

(2.34)

where N1, N2 and N3 are normalization factors. It is interesting to notice that e⃗ ′
∗,Z2 is null

for the central ion, which is typical for an odd number of ions in a symmetric ion chain.
Regarding the ratio between the modes, for the Be–Ca–Be case they are ωZ2/ωZ1 ≃ 2.68,
ωZ3/ωZ1 ≃ 2.74 and ωZ3/ωZ2 ≃ 1.02. For the Ca–Be–Ca case they are ωZ2/ωZ1 ≃ 1.52,
ωZ3/ωZ1 ≃ 3.93 and ωZ3/ωZ2 ≃ 2.58. For the radial normal modes the analysis becomes
more complicated, but the interested reader can find more information in [Kie+00].
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Figure 2.5: Normal mode frequencies and eigenvectors for a (a) Be–Ca–Be and (b) Ca–Be–Ca
crystals. The trapping potentials are such that for a single 40Ca

+ the secular frequencies are
[ωz, ωy, ωx] = 2π× [1.5, 2.5, 3.2] MHz. For each direction, the bars indicate the mass-weighted
components of the eigenvectors e′i,α. On top, the mode frequencies are shown together with the
naming convention we adopted. The coordinate system is oriented along the normal modes.

In the four ion case, the axial vibrational frequencies cannot be computed analytically,
but an example of numerically simulated normal modes is shown in Fig. 2.6. The axial
minimum distance of the ions also needs to be computed numerically, with a value that
is around s4 = 2sN−0.56, where N is again the number of ions [Win+98]. For longer ion
chains, the inter-ion distances increase with the distance from the center, and anharmonic
potential terms need to be employed to compensate [Lin+09].

There is an additional factor to take into account. The radial in-phase mode frequency
should be set sufficiently higher than the axial in-phase one to have the ions aligned along
the trap axis. To avoid the formation of 2D or 3D structures (e.g. zig-zag configuration),
for single-species arrays it is required to have ωY1/ωZ1 > 1 for two ions and ωY1/ωZ1 > 1.55
for three ions and ωY1/ωZ1 ⪆ 0.73N0.83 [Win+98]. In the mixed-species case the ions
participate unevenly in the different modes, then the exact conditions are not trivial to
describe due to the complexity of analyzing the radial frequencies mentioned above. Having
non-zero Y2 and X2 modes is important, as described in [Wüb+12]. A numerical simulation
for N ≤ 9 is performed in [Kie+00].

2.4 Quantum motional states

Although it is possible to describe the motion of ions in RF traps with a full quantum
mechanical treatment that includes micromotion [Lei+03], treating the RF field in the
pseudopotential approximation already captures the quantum dynamics of the motional
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Figure 2.6: Normal mode frequencies and eigenvectors for a Ca–Be–Ca–Be crystal. The trapping
potentials are such that for a single 40Ca

+ the secular frequencies are [ωz, ωy, ωx] = 2π× [1.0, 2.8,
3.1] MHz. For each direction, the bars indicate the mass-weighted components of the eigenvectors
e′i,α. On top, the mode frequencies are shown together with the naming convention we adopted.
The coordinate system is oriented along the normal modes.

modes. In this approximation, the motion of the ion along each direction as an independent
quantum harmonic oscillator with Hamiltonian:

Ĥ =
p̂2

2m
+

1

2
mω2x̂2 (2.35)

where x̂ and p̂ are the position and momentum operators, respectively. The quantum
harmonic oscillator can be described in terms of its energy eigenstates called Fock basis |n⟩,
with the ladders operators defined as:

â =

√
mω

2ℏ

(
x̂+

i

mω
p̂

)
,

â† =

√
mω

2ℏ

(
x̂− i

mω
p̂

)
,

(2.36)

which act on the Fock states according to:

â|n⟩ =
√
n|n− 1⟩

â†|n⟩ =
√
n+ 1|n+ 1⟩,

N̂ |n⟩ = â†â|n⟩ = n|n⟩.
(2.37)

where N̂ = â†â is the number operator. The position and momentum operators can be
expressed as:

x̂ =

√
ℏ

2mω
(â† + â)

p̂ = i

√
ℏmω

2
(â† − â).

(2.38)

The Hamiltonian is then quantized as:

Ĥ =

(
â†â+

1

2

)
ℏω (2.39)
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with energy eigenvalue of the state |n⟩:

En ≡
(
n+

1

2

)
ℏω. (2.40)

In this way any motional state can be expressed as a superposition of the Fock states:

Ψ =
∞∑
n=0

cn|n⟩ (2.41)

where cn is the probability amplitude of the state |n⟩.
In the presence of an array of ions, the dynamics of each normal mode α can be described

as a set of independent oscillators, with its own raising (lowering) ladder operator â†α (âα)
[Hom13]. The normal modes are then described as (using the notation of Sec. 2.3):

ξ̂′α =
σ′
α√
2

(
âα + â†α

)
,

p̂′α = i
ℏ√
2σ′

α

(
âα − â†α

)
,

(2.42)

where σ′
α =

√
ℏ/ωα . The displacement of the ith ion is then:

ζ̂i =
1

√
mi

3N∑
α=1

e′i,ασ
′
α

(
âα + â†α

)
(2.43)

with a wave packet size of
√
ℏ/(2mωα)e

′
i,α in the ground state.

I now focus on a set of different motional states of a single harmonic oscillator as de-
scribed by Eq. 2.41. Each state is characterized by different cn and they are relevant for
the experiments described in this thesis.

Thermal state

The oscillator is subjected to coupling with the environment at a temperature T. At the
thermal equilibrium, the oscillator is in a fully mixed state with no phase coherence between
the Fock states. The population of each Fock state is weighted by the Boltzmann factor
exp{−nℏω/(kBT )}, where kB is the Boltzmann constant. The thermal state can be repres-
ented by the density matrix:

ρth =
1

1 + n̄

∞∑
n=0

(
n̄

1 + n̄

)n

|n⟩⟨n| (2.44)

with the average occupation following the Bose-Einstein distribution:

n̄ =
1

(eℏω/kBT − 1)
. (2.45)

The occupation probability is then:

Pth =
1

1 + n̄

(
n̄

1 + n̄

)n

, (2.46)
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Coherent state

Another important class of motional states is the coherent state |α⟩ [Lei+03]. The coherent
state can be represented in the Fock basis as:

|α⟩ = e−|α|2
∑
n

αn

√
n!
|n⟩ (2.47)

where α is a complex number and the probability distribution of the states is Poissonian:

Pn = |cn|2 = |⟨n|α⟩|2 = nne−n

n!
(2.48)

where n = |α|2 is the average number of the distribution.



3 Trapped ion quantum information processing

In this chapter I describe the theory of the interaction between ions and light fields, including
their manipulation and cooling. I then explain the structure of the laser related elements
of the experimental setup, which is based on the use of beryllium and calcium ions.

3.1 Coherent laser-ion interaction

In this section I describe the interaction of a trapped ion with a laser field and briefly
summarize the main concepts, derived from [Lei+03; Mar20].

We consider a trapped ion whose motional state is described by a quantum harmonic
oscillator of angular frequency ωα. The internal structure of the ion is such that we can
approximate it to a two-level system whose transition frequency is close to the laser driving
field frequency. This is a valid approximation as long as the coupling strengths of the laser
field to the off-resonant transitions are much smaller than the detuning to them. The two
internal states of the ion are indicated as |↓⟩ and |↑⟩ for the lowest and highest energy states,
respectively. The energy difference between the states is ℏω0, with ω0 being the frequency
of the transition. The two states will be used later as a qubit to store quantum information.
For the experiments of this thesis, the states that are used as qubits have typical transition
frequencies of ω0 ∼ 2π × 1GHz for beryllium and ω0 ∼ 2π × 400THz for calcium. The
Hamiltonian for the internal states of the ion and motional state of the quantum harmonic
oscillator is then:

Ĥ0 = Ĥqubit + Ĥmotion =
ℏω0

2
σ̂z +

3∑
α=1

ℏωα(â
†
αâα + 1/2) (3.1)

where σ̂z = |↑⟩ ⟨↑| − |↓⟩ ⟨↓| is one of the Pauli operators. For the laser field, we consider
its wavelength to be much larger than the size of the interacting electron wave function.
This allows us to consider only the lowest orders in the multipole expansion of the driving
field [Lei+03]. The resulting Hamiltonian describing the interaction of the ion with the field
becomes:

HI =
ℏΩ0

2
eik⃗·

ˆ⃗
Rei(ϕ−ωlt)σ̂+ + h.c. (3.2)

where h.c. is the Hermitian conjugate of the first term. k⃗, ωl and ϕ are the wave vector,
frequency and phase of the driving field, respectively. ˆ⃗

R is the position operator of the
center of mass of the ion in a coordinate system aligned along the normal mode directions.
σ̂+ = |↑⟩ ⟨↓| is the spin-flip operator. Ω0 is the resonant Rabi frequency which defines the
coupling strength between the laser field and the transition. It depends on the underlying
transition and the amplitude of the field. In the work of this thesis, we consider only dipole
allowed, quadrupole allowed or Raman transitions (see Sec. 3.2), which are all treated in
the same way through the use of the Rabi frequency parameter. The term k⃗ · ˆ⃗

R can be

21
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described in terms of the Lamb-Dicke parameter ηα as:

k⃗ · ˆ⃗R =

3∑
α=1

ηα

(
â†α + âα

)
, ηα = kα

√
ℏ

2mωα
, (3.3)

where kα is the projection of the laser wave vector along the direction of the normal mode
α and

√
ℏ/(2mωα) is the wave packet size in the ground state. In the experiments of this

thesis, for an axial motional frequency of 2MHz, the calcium ion qubit transitions are driven
by a laser with wavelength of 729.35 nm at 45°with respect to the trap axis has a typical
value of ηα ≃ 0.05, while for a single beryllium ion trapped with the same axial curvature
(frequency of ≃ 4.2 MHz) manipulated by Raman beams with resulting wave vector along
the trap axis it has ηα ≃ 0.4. The wave function of a single calcium ion in the ground state
has an axial extension of ∼ 8 nm, while for beryllium it is ∼ 12 nm due to the lower mass. For
the radial modes the secular frequency scales as ω ∝ 1/m according to Eq. 2.12, resulting
in the same wave packet size for both ion species of ∼ 7 nm for a voltage configuration that
gives a radial motional frequency of 2.5MHz for calcium. The Lamb-Dicke parameter is
different for both species due to the different wave vectors involved. In the case of an array
of N ions, the term k⃗ · ˆ⃗

Rj for the oscillation of ion j due to the normal mode α can be
computed as [Hom13]:

k⃗ · ˆ⃗Rj =
3N∑
α=1

ηj,α

(
â†α + âα

)
, (3.4)

where the Lamb-Dicke parameter is given by:

ηj,α =

√
ℏ

2mjωα
k⃗ · e⃗ ′

j,α. (3.5)

We can represent Eq. 3.2 in the interaction picture with respect to Ĥ0. We use the rotating-
wave approximation (RWA) in which fast rotating terms are neglected and only slowly
rotating terms near resonance are kept. Moreover we consider only one motional mode to
be near resonance with the laser field at a time (avoiding using the index α for now), while
the others can be neglected, resulting in:

H ′
I =

ℏ
2
Ω0e

iη(â†eiωt+âe−iωt)σ̂+e
i(ϕ−δt) + h.c (3.6)

where δ = ωl −ω0 is the detuning of the laser frequency from the transition. This Hamilto-
nian has resonances at δ = sω, where s is an integer number. These resonances perform the
transitions | ↓, n⟩ ↔ | ↑, n+ s⟩ and the main ones considered here are:

• carrier transition (CAR): where s = 0 → δ = 0 and the interaction induces Rabi
oscillations that just flip the spin | ↓, n⟩ ↔ | ↑, n⟩;

• blue sideband transition (BSB): where s = +1 → δ = +ω and the interaction induces
Rabi oscillations that flip the spin and change the energy of the Fock state by a single
quantum according to | ↓, n⟩ ↔ | ↑, n+ 1⟩;

• red sideband transition (RSB): where s = −1 → δ = −ω and the interaction induces
Rabi oscillations that flip the spin and change the energy of the Fock state by a single
quantum according to | ↓, n⟩ ↔ | ↑, n− 1⟩.
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A simple explanation for the formation of the sidebands can be seen in the reference frame
of the ion, in which it experiences a light field that is phase-modulated at the secular and
micromotion frequencies due to its motional state. The Rabi frequency is given by:

Ωn+s,n = Ω0

∣∣∣〈n+ s
∣∣∣eiη(â+â†)

∣∣∣n〉∣∣∣
= Ω0e

−η2/2η|s|
√

nmin!

nmax!
L(|s|)
nmin

(
η2
) (3.7)

where nmin = min(n, n + s), nmax = max(n, n + s) and L
(|s|)
nmin

(
η2
)

are the generalized
Laguerre polynomials defined as:

L(|s|)
nmin

(
η2
)
=

nmin∑
k=0

(−1)k
(

nmin + |s|
nmin − k

)
η2k

k!
. (3.8)

Eq. 3.6 can be simplified by working in the Lamb-Dicke regime where η
√
⟨(â† + â)2⟩ =

η
√
2n+ 1 ≪ 1, which means that the ion’s wave function is much smaller than 1/k. We

can then expand Eq. 3.6 at the first order:

Ĥ ′LD
I (t) =

ℏ
2
Ω0σ̂+

[
1 + iη

(
âe−iωt + â†eiωt

)]
ei(ϕ−δt) + h.c. (3.9)

and the Rabi frequency is approximated to:

Ωn+s,n ≃ Ω0η
|s|
√

nmin!

nmax!

1

|s|!
. (3.10)

By using the RWA, the CAR, BSB and RSB transition Hamiltonians can be expressed as:

Ĥ ′
CAR =

ℏ
2
Ω0

(
σ̂+e

iϕ + σ̂−e
−iϕ
)
,

Ĥ ′
BSB =

ℏ
2
Ω0η

(
iâ†σ̂+e

iϕ − iâσ̂−e
−iϕ
)
,

Ĥ ′
RSB =

ℏ
2
Ω0η

(
iâσ̂+e

iϕ − iâ†σ̂−e
−iϕ
)
.

(3.11)

with Rabi frequencies:
ΩCAR
n,n = Ω+O(η2),

ΩBSB
n+1,n = Ωη

√
n+ 1 +O(η2),

ΩRSB
n−1,n = Ωη

√
n+O(η2).

(3.12)

For a sideband of higher order j the Rabi frequency scales as ηj . For each transition a full
Rabi oscillation requires a time t = 2π/Ωn+s,n to make the spin to return to the original
state (apart for a global phase). This is commonly referred to as a "2π pulse". If the
transition is driven for half this time we have a "π pulse", which flips the spin state. For a
fourth of the time we have a "π/2 pulse" which creates an equal superposition of |↓⟩ and
|↑⟩.

Fig. 3.1 (a) shows a pictorial representation of the coupled system of spin and motional
state, which is also referred to as state ladder. This is useful to understand the energy of
the states and the most important transitions we consider here. The Rabi frequencies for
the carrier, first and second blue sideband transitions for different number states are shown
in Fig. 3.1 (b).



24 CHAPTER 3. TRAPPED ION QUANTUM INFORMATION PROCESSING

(a) (b)

0 5 10 15 20 25 30
n

0.0

0.2

0.4

0.6

0.8

1.0

|
n+

s,
n/

0|

Be s=0
Be s=1
Be s=2

Ca s=0
Ca s=1
Ca s=2

Figure 3.1: (a) State ladder of the coupled spin-motion system. Carrier (black), red sideband (red)
and blue sideband (blue) transitions for each state are indicated by the arrows, with relative Rabi
frequency. (b) Rabi frequency amplitudes as a function of the Fock state number from Eq. 3.7 for
|s|=0,1 and 2. Beryllium frequencies are computed for η = 0.4, while for calcium η = 0.05, typical
for single ion experiments.

3.1.1 Rabi oscillations

In the state ladder, a general superposition of states is given by:

|Ψ(t)⟩ =
∞∑
n=0

c↓,n(t)| ↓, n⟩+ c↑,n(t)| ↑, n⟩ (3.13)

This state evolves under the influence of the Hamiltonian of Eq. 3.6. We can compute the
evolution of the probability amplitudes through the Schrödinger equation, which result in:(

c↑,n+s(t)
c↓,n(t)

)
= R̂s

n(t, δ, ϕ)

(
c↑,n+s(0)
c↓,n(0)

)
(3.14)

where R̂s
n is the rotation operator:

R̂s
n(t, δ, ϕ) =

 e−iδ′t/2
(
cos Ω̃s

nt
2 + i δ′

Ω̃s
n
sin Ω̃s

nt
2

)
e−iδ′t/2

(
−i

Ωn+s,n

Ω̃s
n

ei(ϕ+|s|π
2 )
)
sin Ω̃s

nt
2

eiδ
′t/2
(
−i

Ωn+s,n

Ω̃s
n

e−i(ϕ+|s|π
2 )
)
sin Ω̃s

nt
2 eiδ

′t/2
(
cos Ω̃s

nt
2 − i δ′

Ω̃s
n
sin Ω̃s

nt
2

)


(3.15)
where δ′ = δ − sωm is the detuning of driving field from the s sideband frequency and
Ω̃s
n =

√
Ω2
n+s,n + δ′ 2 is the "effective" Rabi frequency, which differs from the common one

due to the detuning of the laser frequency.

As an example let’s assume that initially the state of the system is in the lower spin
state (c↑,n+s(0) = 0), and we are interested in studying the probability that the system,
interacting with a laser field, undergoes a spin-flip at time t. The probability is then given
by:

P|↑,n+s⟩(t) = |c↑,n+s(t)|2 =

∣∣∣∣∣e−iδ′t/2

(
−i
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n
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2 )
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2
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2

=

=
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n+s,n

Ω2
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√
Ω2
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2
t

 (3.16)
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which shows periodic oscillations. If the driving field is on resonance the oscillations have
higher contrast, while if it is off-resonance the oscillations are faster.

If the laser is on resonance with a specific transition δ′ = 0, the resonant rotation
operator describing a generalized Rabi oscillation is:

R̂s
n, res (θn+s,n, ϕ) =

[
cos

θn+s,n

2 −iei(ϕ+|s|π
2 ) sin

θn+s,n

2

−ie−i(ϕ+|s|π
2 ) sin

θn+s,n

2 cos
θn+s,n

2

]
(3.17)

where θn+s,n = Ωn+s,nt and ϕ are the rotation angles. This means that we can drive a
laser pulse with area θn+s,n and ϕ which coherently control the internal (spin) and external
(motion) states of the ion.

3.2 Ions

3.2.1 Beryllium ion

Beryllium is the lightest species which has been employed for trapped ion QIP. It is generally
chosen due to the low mass that induces tight confinement, strong light-motion coupling
and long coherence time qubit. On the other side, many of the internal transitions are
in the UV region, which causes technological challenges and might induce charging of the
trap. The isotope 9Be is the only stable one. In the experiments of this thesis, we work
with singly ionized beryllium ions 9Be

+. Now I give a summary of the internal structure
and how we manipulate the state of this ion. More details can be found in [Lo15; Mar20].

The generation of beryllium atoms is performed in an atomic oven [Kie15]. The atomic
beam reaches the loading zone of the trap, where it gets singly ionized through a two-
photon ionization (PI) process by a laser beam at 235 nm [Lo+14]. The electrical structure
of beryllium ion is similar to alkali neutral atoms, with just one valence electron. The
relevant electronic energy levels for our experiments are 22S1/2, 22P1/2 and 22P3/2, which
I indicate from now as S1/2, P1/2 and P3/2 respectively for simplicity. The energy levels
of the valence electron at the magnetic field of 119.45 G are shown in Fig. 3.2, while the
beam configuration is shown in Fig. 3.4. Beryllium ion has a hyperfine structure due to
the coupling of the total angular momentum J with the nuclear spin I = 3/2, creating
two manifolds of F = 1 and F = 2 for the levels mentioned above. The degeneracy of the
sublevels is lifted by the magnetic field due to the Zeeman effect. Transitions between the
sublevels of the ground state can be driven with microwave fields or two-photon stimulated
Raman process [Win+98]. In our setup, the latter approach is exploited. The transitions
S1/2 ↔ P1/2 and S1/2 ↔ P3/2 are dipole allowed. The manipulation of the electron state is
performed by means of lasers at 313 nm.

In our experiments state of the ion is always initialized in
∣∣S1/2, F = 2,mF = 2

〉
by

optical pumping. To perform state detection, the ion in the initialized state is almost
resonantly excited to

∣∣P3/2, F = 3,mF = 3
〉

with a σ+ polarized light. This is a cycling
transition with a linewidth of 2π×19.4MHz (lifetime of 8.2 ns), which makes the ion quickly
decay to the original level while emitting a photon at 313 nm, which is detected with a
photomultiplier tube (PMT) or a camera. Ideally, no other states are detected with this
method, but polarization impurity and off-resonant pumping slightly reduce the fidelity
of this process. Doppler cooling, described in Subsec. 3.3.1, is also performed on this
transition.
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The initialization and repumping of the ion from any state of the S1/2 manifold is
performed by means of two repump lines F1 and F2 which drive the transitions |S1/2, F =
1,mF = 1⟩ ↔ |P1/2, F = 2,mF = 2⟩ and

∣∣S1/2, F = 2,mF = 1
〉
↔
∣∣P1/2, F = 2,mF = 2

〉
,

respectively. F1 and F2 are σ+ polarized. They also off-resonantly drive the other states of
the S1/2 manifold.

To manipulate the state of the ion in the S1/2 manifold, we employ a Raman transition.
This is performed by means of two lasers that couple the S1/2 to the P1/2 states. A specific
transition in the S1/2 manifold can be driven by choosing the frequency difference of the
two lasers equal to the frequency of the transition. To minimize the population of the
P1/2 manifold, which would increase the scattering rate, the frequencies are detuned by
∼ 230GHz. This cannot be increased arbitrarily, as it would reduce the Rabi frequency
of the Raman transition. Multiple configurations are used for the beam directions of the
Raman lasers. Two of them are used in a co-propagating configuration, while two have
an angle of 90°between each other. The polarization of the common laser is π along the
magnetic field, while the other two are linearly polarized perpendicular to the magnetic field,
such that the ions experience a mixture of σ+ and σ−. For the Raman transition the effective
wave vector is given by the difference of the wave vectors of the beams k⃗ = k⃗1−k⃗2. In the co-
propagating configuration the effective wave vector has a magnitude of kco ≃ 30m−1, while
in the 90°setting it is k90 ≃ 2.8 × 107m−1. In the co-propagating configuration the Lamb-
Dicke parameter of Eq. 3.3 is η ≃ 0, which makes it suitable to drive motion-insensitive
transitions, decoupling from the ion’s motion induced by heating, micromotion or other
sources. In the 90°configuration the Lamb-Dicke parameter is higher, making it convenient
for driving motion-sensitive transitions, such as secular and micromotion sidebands. This
feature is used to detect and compensate the presence of axial micromotion, as explained in
detail in Sec. 6.1.

For the implementation of the qubit we use the state
∣∣S1/2, F = 2,mF = 0

〉
as | ↓⟩

and
∣∣S1/2, F = 1,mF = 1

〉
as | ↑⟩ because this transition is first-order insensitive to mag-

netic field fluctuations at 119.45 G magnetic field. This transition is referred to as field-
independent qubit (FIQ) and has a coherence time of ∼ 4s [Lo15]. Another interesting
transitions is

∣∣S1/2, F = 2,mF = 2
〉
↔
∣∣S1/2, F = 1,mF = 1

〉
which is used for initializing

the qubit or as a field-dependent qubit (FDQ). The transition
∣∣S1/2, F = 2,mF = 0

〉
↔∣∣S1/2, F = 1,mF = −1

〉
is referred to as field-independent shelving (FIS) which is used for

shelving during state readout.

It is interesting to notice that beryllium ions in an excited state, e.g. in P states, might
induce the endothermic chemical reaction Be+ + H2 → BeH+ + H [Saw+15]. This forms
a hydride that cannot be controlled by our laser setup, for this reason we generally empty
the trap once we think such a hydride has formed. This reduces the lifetime of the trapped
ion down to a few hours. This phenomenon can be mitigated by photodissociation with
a laser beam at 157 nm or by reducing the saturation parameter of the detection/cooling
laser [Saw+15]. In our setup, we noticed an increase in ion lifetime up to several hours by
reducing the duty cycle of the detection/cooling laser. Although the lower duty cycle cannot
be exploited while running an experiment, it is used while performing other operations to
reduce the necessity of loading new ions, which we find can charge the trap and increase
background vacuum levels.
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Figure 3.2: 9Be
+ energy level structure at 119.45 G. The solid lines are the transitions excited by

laser beams. The highlighted energy levels are typically manipulated in experiments.

3.2.2 Calcium ion

The second species used in our experiments is calcium. The advantage of this species is
that the wavelengths of the lasers used to drive the internal transitions are in the optical
region. The mass of this atom is ≈ 4.4 times the mass of beryllium. The 40Ca is one of
the stable isotopes and the most abundant. In the experiments of this thesis, we work with
singly ionized calcium ions. Now I give a summary of the internal structure and how we
manipulate the state of this ion. More details can be found in [Lo15; Mar20].

The generation of calcium atoms is performed in an atomic oven [Kie15]. The atomic
beam reaches the loading zone of the trap, where it gets singly ionized through a two-photon
ionization (PI) process by laser beams at 423 nm and 375 nm. The electrical structure of
calcium ion is similar to alkali neutral atoms, with just one valence electron. The relevant
electronic energy levels for our experiments are 42S1/2, 42P1/2, 42P3/2, 32D3/2 and 32D5/2,
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Transition λ (nm) Γ/2π (MHz) τ (ns)
S1/2 ↔ P1/2 397 22.7 7.7 ns
S1/2 ↔ D5/2 729 1.5× 10−7 1.045× 109

D3/2 ↔ P1/2 866 1.7 94.3
D5/2 ↔ P3/2 854 1.57 101

Table 3.1: Transition wavelength (λ), linewidth (Γ) and lifetime (τ) of the 40Ca
+ transitions.

which I indicate from now as S1/2, P1/2, P3/2, D3/2 and D5/2 respectively for simplicity.
The energy levels of the valence electron at the magnetic field of 119.45 G are shown in
Fig. 3.3, while the beam configuration is shown in Fig. 3.4. Calcium ion has no hyperfine
structure and the degeneracy of the sublevels is lifted by the magnetic field due to the
Zeeman effect. The transitions S1/2 ↔ P1/2, S1/2 ↔ P3/2, D3/2 ↔ P1/2 and D5/2 ↔ P3/2

are dipole allowed. The transition S1/2 ↔ D3/2 and S1/2 ↔ D5/2 are quadrupole allowed.
The transition P1/2 ↔ D5/2 is not allowed.

A summary of the properties of the transitions is shown in Tab. 3.1. The state of the
ion is always initialized in |S1/2,mJ = 1/2⟩. To perform state detection, the ion in the
initialized state is almost resonantly excited to |P1/2,mJ = 1/2⟩ with a π polarized light
at 396.96 nm. This transition is not closed, then an ion in P1/2 state can decay emitting a
photon either to the S1/2 or to the meta-stable D3/2 manifold, with a branching ratios of
95% and 5%. To remove population from D3/2 and repump into the P1/2 manifold we use a
866.45 nm laser. This light is modulated to have two frequency components such that any
sublevel can be repumped [Kie15], thus it has a polarization of σ+ and σ−. Doppler cooling
is also performed on the transition |S1/2,mJ = 1/2⟩ ↔ |P1/2,mJ = 1/2⟩.

The initialization and repumping of the ion |S1/2,mJ = −1/2⟩ ↔ |S1/2,mJ = 1/2⟩
is performed by having a second beam at 396.96 nm linearly polarized orthogonal to the
magnetic field, such that the ion experience a mixture of σ+ and σ− polarized light. The
σ− is far-off resonant, then it does not drive any transition. The repumping from the meta-
stable D5/2 manifold (for which I explain the use below) is performed by coupling it to
the P3/2 manifold with a 854 nm laser with two frequencies and polarization of σ+ and σ−.
The P3/2 state quickly decays either to the S1/2 (emitting a photon at 393 nm), to the D3/2

manifold or back to D5/2, with probabilities of around 94%, 6% and <1% respectively.

For the implementation of the qubit there are typically two choices. The first one, not
used in our experiment, is between the two levels of the S1/2 manifold and is referred to
as Zeeman qubit. This qubit can be manipulated with a radio-frequency magnetic field or
a stimulated Raman process [Hom+06; Pos+09] and has a long coherence time but suffers
from strong dephasing due to high sensitivity to magnetic field noise, requiring specific
measures [Rus+16]. The second choice is on the quadrupole transition

∣∣S1/2,mJ = 1/2
〉
↔∣∣D5/2,mJ = +3/2

〉
which is referred to as optical qubit. The qubit is manipulated by means

of a 729 nm beam at 45°to the trap axis which gives a Lamb-Dicke parameter of η ≃ 0.05,
which fulfills the Lamb-Dicke approximation for all the applications of this thesis. The
optical qubit has a coherence time of ∼ 1.7ms in our setup, mostly limited by magnetic field
noise. This makes this qubit a worse choice than the one implemented by the beryllium ion.
For this reason, the calcium ion is better used as a coolant ion for the QCCD architecture.
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3.3 Cooling of vibrational modes

High-fidelity quantum operations on trapped ions require their motional states to be as
close as possible to the ground state. Motional energy can be caused by collisions with
background gases, electric field noise, imperfect shuttling operations and state detection.
To remove it, we employ different cooling techniques. The general sequence is composed
by far-detuned Doppler cooling (pre-cool), standard Doppler cooling, Electromagnetically-
induced transparency (EIT) cooling on calcium only and resolved-sideband cooling (SBC).
This allows us to prepare ions close to the vibrational ground state. The use of mixed-species
arrays also allows for cooling normal modes for which one species has low participation by
applying dissipation on the other species, performing sympathetic cooling.

Here I summarize the theory behind these methods, more details can be found in [Hom13;
Lei+03; Mar20]. I then describe the performances when they are applied to the mixed-
species setup.

3.3.1 Doppler cooling

Doppler cooling is performed by means of a laser beam red detuned from a dipole-allowed
transition. An ion moving toward the laser beam will experience a blue-shifted frequency,
which makes it closer to resonance and increases the probability of photon absorption. The
photon momentum is then transferred to the ion, which gets slowed down. The decay from
the excited state makes the ion emit a photon, which happens probabilistically in the whole
solid angle, resulting in a net reduction in the initial velocity and kinetic energy. This also
imposes limits on the final achievable temperature, which is limited by the random walk in
momentum space. If the laser wave vector has a projection on all the normal modes, they
can all be cooled at the same time. It is important to not have degenerate modes as their
directions are not well-defined and only the motion along the laser wave vector is cooled
down, while the orthogonal ones are heated by photon recoil [Ami+11].

More in detail, we consider the motional frequency ωm smaller than the dipole transition
linewidth Γ. The probability of exciting the ions by the laser beam is given by:

pee =
s/2

1 + s+ (2∆/Γ)2
, (3.18)

where s = 2|Ω0|2/Γ2 is the saturation parameter, Ω0 is the resonant Rabi frequency and ∆
the detuning from the resonance. The rate of reduction in kinetic energy is then:

dEK

dt
=

2ℏΓ
m

(
dpee
d∆

)
(k⃗ · p⃗)2

2m
, (3.19)

where m is the ion mass, k⃗ is the laser wave vector and p⃗ the ion momentum. In terms of
the normal modes we have:

k⃗ · p⃗ =
3∑

α=1

√
mk⃗ · e⃗ ′

αp
′
α (3.20)

with e⃗ ′
α the eigenvector of the normal mode. The resulting cooling rate is:

dnα

dt
= 2ωαη

2
α(nα + 1/2)Γ

(
dpee
d∆

)
. (3.21)

where ηα is the Lamb-Dicke parameter for the mode α.
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As mentioned before, the cooling process is limited by the random emission of photons.
Assuming Ω ≪ ∆,Γ, the absorption and emission of photons can be considered independent
and the heating rate is:

dnα

dt
= Γpee

(
η2α +

2/5ℏ2 |⃗k|2|e⃗α|2

2m

)
(3.22)

and the equilibrium temperature is for ∆ = Γ
√
1 + s/2:

TD =
ℏΓ

√
1 + s

4kB
(1 + 2/5). (3.23)

Calcium ions are Doppler cooled through the transitions
∣∣S1/2,mJ = 1/2

〉
↔∣∣P1/2,mJ = 1/2

〉
and

∣∣S1/2,mJ = −1/2
〉
↔
∣∣P1/2,mJ = 1/2

〉
. the pre-cool stage is red

detuned by roughly 40 MHz from the first transition and 200 MHz from the second, and
it lasts for several milliseconds. Standard Doppler cooling is performed with the lasers red
detuned by 5-10 MHz and it lasts for about 600 µs. The resulting mean thermal occupation
for the axial and radial modes are n̄ax ≃ 5 and n̄rad ≃ 3− 4 quanta.

Beryllium ions are Doppler cooled through the transition
∣∣S1/2, F = 2,mF = 2

〉
↔∣∣P3/2, F = 3,mF = 3

〉
. Pre-cool is red detuned by roughly 600 MHz and it lasts for 2-3

ms. Standard Doppler cooling is red detuned by about 10 MHz and it lasts for about
600 µs. The resulting mean thermal occupation for the axial and radial modes are n̄ax ≃ 4
and n̄rad ≃ 1 quanta.

3.3.2 Electromagnetically-induced transparency cooling

The final temperature reached after Doppler cooling is limited by the natural linewidth
of the transition, as shown in Eq. 3.23. To further reduce the final temperature, the
electromagnetically-induced transparency (EIT) cooling creates a narrower spectral feature.

EIT cooling requires a three-level lambda system in which there are two ground states
|g⟩ and |f⟩ and a short-lived excited state |e⟩. A strong laser beam is blue detuned by ∆σ

from the transition |f⟩ ↔ |e⟩, with a Rabi frequency of Ωσ. Due to the AC Stark effect, the
light shifts the energy levels of the states by:

δ =
1

2

(√
Ω2
σ +∆2

σ − |∆σ|
)

(3.24)

creating shifted states called dressed states |f̃⟩ and |ẽ⟩, and pumps the ion to state |g⟩.
A second weaker probe beam drives the transition |g⟩ ↔ |ẽ⟩ with detuning ∆π and Rabi
frequency Ωπ ≪ Ωσ. This creates a sharp Fano-like absorption profile, with an excited state
|ẽ⟩ probability:

ρee(∆) =
4∆2Ω2

πΩ
2
σΓ

D
(3.25)

where Γ = Γπ + Γσ is the total decays rate of the two transitions, ρee is the population in
the excited state as function of the detuning ∆ = ∆π −∆σ and the denominator is:

D =8∆2Ω2
σΩ

2
πΓ + 4∆2Γ2
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π

)2 (
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)
.

(3.26)
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The absorption profile is shown in Fig. 3.5. The population in the excited state features a
zero for ∆π = ∆σ and a sharp resonance at ∆π = ∆σ + δ. To cool the vibrational mode m
with frequency ωm, it is possible to set ∆π = ∆σ and δ = ωm. In this way the transition
|g, n⟩ ↔ |ẽ, n⟩ is suppressed, where n is the n-th Fock state, but maximizes the red-sideband
transition |g, n⟩ ↔ |ẽ, n − 1⟩, removing a quantum of motion ℏωm and cooling the mode.
Cooling is limited by the probability of exciting the blue-sideband transition |g, n⟩ ↔ |ẽ, n−
1⟩, which is smaller than for the red-sideband. The resulting final temperature is then
[MEK00; Lei+03]:

n̄ ≃
(

Γ

4∆σ

)2

(3.27)

Figure 3.5: EIT absorption profile as a function of the probe laser detuning ∆π, for three different
pump detunings ∆σ. The value of Ωσ is adjusted such that the EIT resonance is at ∆ = 2π × 2.5
MHz, with Ωπ = Ωσ/100 and Γ = 2π × 22.7 MHz. The image is taken from [Mar20].

In our experimental setup EIT cooling is performed on calcium. There are two counter-
propagating 397 nm beams at 45°to the trap axis such that the wave vector difference has
a projection on all the vibrational modes. The employed states are |g⟩ =

∣∣S1/2,mJ = 1/2
〉
,

|f⟩ =
∣∣S1/2,mJ = −1/2

〉
and |e⟩ =

∣∣P1/2,mJ = 1/2
〉
. We generally set ∆σ ≃ Γ, reducing

the calcium motional energy n̄ < 1 in ∼ 300 µs. For mixed-species ion arrays we generally
set δ to the frequency of the lowest radial mode Y2, due to the highest participation of
the calcium ion in this mode. This mode is therefore cooled to the lowest occupancy, while
the cooling also shows a significant effect for the X2 mode. For the Be–Ca crystal, mean
occupancies of n̄Y 2=0.14(6) and n̄X2=0.36(7) quanta were measured after EIT cooling.

3.3.3 Resolved-sideband cooling

Resolved-sideband cooling, referred also as sideband cooling (SBC), is used as the last
cooling step to reach the motional ground state for specific vibrational modes, most often
the axial modes in our setup.

If the motional mode frequency ωm is big compared to the linewidth of the transition
Γ used for cooling, then the motional energy can be reduced by driving several cycles of
red-sideband transitions | ↓, n⟩ ↔ | ↑, n − 1⟩ followed by optical pumping into the internal
ground state | ↓, n−1⟩. The latter is performed by excitation to a short-lived additional state
(P1/2) in the ion from which it subsequently rapidly decays. The initial phonon population
generally follows a thermal distribution, where each Fock state has a different red-sideband
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Rabi frequency. To ensure that the population is cooled over the whole distribution, the
duration of the sideband pulse is linearly increased during the process. The cooling process is
primarily limited by the off-resonant carrier and blue-sideband excitation, which increase the
temperature and limit the ground-state occupation probability to p0 ≈ 1−(Γ/2ωm)2, which
can be made close to 1. These limitations are mitigated by shaping the pulse amplitude,
which reduces the bandwidth.

We apply sideband cooling on both calcium and beryllium ions. For beryllium, the
red-sideband Rabi frequency is zero for some Fock states in the relevant region. For this
reason in single-species crystals we implement second-order sideband cooling. Moreover
we can only sideband cool the axial modes due to the direction of the wave vector of the
90°Raman configuration. In the case of mixed-species crystals, these problems are solved by
sympathetically cooling the modes through the calcium ion. Generally, we employ calcium
sideband cooling on the axial in-phase mode (Z1) and beryllium one on the out-of-phase
mode (Z2), resulting in thermal mean phonon occupations of n̄Z1=0.03(2), n̄Z2=0.01(2)
quanta.



4 Mixed-species experimental operations

4.1 Typical experimental sequence

The mixed-species experiments performed on this experimental setup follow a standard
basic sequence. Each experimental shot starts with cooling of the vibrational modes and
internal state preparation. These steps are then followed by a set of operations on the ions
and/or the qubits, with intermediate detections when needed. Afterward both ions’ internal
states are detected. Lastly the far-detuned Doppler "pre-cooling" is left active until the next
shot. The involved laser pulses are shown in Fig. 4.1. This sequence is typically repeated
hundreads of times to obtain significant statistics, retrieving a data point. Tens of data
points with different experimental parameters are generally collected to form a scan.

The duration of the pre-cool part of the sequence is relatively long (5-8 ms) for the
experiments related to the transport and separation of ions, as they might induce intense
heating when not correctly calibrated. Additional cooling might be required in between
the separation sequence when unoptimized. The other cooling methods (EIT and sideband
cooling) require specific parameters depending on the exact ion crystal configuration, as
described in Sec. 3.3.

I describe now a set of experimental techniques we employ to diagnose and manipulate
the states of the ions.

4.2 Tickle

Applying an oscillating electric field in the ion trap can be used to probe the trap potentials,
diagnose the normal modes and manipulate motional states. This oscillating field is generally
referred to as tickle (or more informally DC tickle). It creates a force on the ion given by:

F0 cos(ωdt+ ϕd) (4.1)

where F0 is the amplitude of the force, ωd the angular frequency and ϕd the phase. In the
interaction picture with respect to the simple harmonic oscillator with angular frequency ωα

describing the mode α of the ion, applying the RWA, we obtain the interaction Hamiltonian
[Lee+05; Zha21]:

ĤI =
Fu0
2

â†eiδt +
F ∗u0
2

âe−iδt (4.2)

where F ≡ F0e
−iϕd , δ ≡ ωα−ωd is the detuning of the drive from the frequency of the mode

and u0 =
√

ℏ/(2mωα) is the wave packet size in the ground state. We can compute the
unitary propagation of the driven harmonic oscillator and approximate it at the first order,
obtaining the displacement operator with complex displacement amplitude [Lee+05]:

α(t) = − i

ℏ

∫ t

0

Fu0
2

eiδt
′
dt′. (4.3)
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Figure 4.1: Pulse sequence diagram for a single experimental shot of mixed-species ion crystals. For
each pulse the typical time duration is shown on the bottom. The pulse shapes are just indicative
and not on scale. For single-species experiments, only the relevant pulses for that species are used.

For a constant detuning δ the trajectory of the oscillator in phase space is circular with
period 2π/δ:

α(t) =
Fu0
2ℏδ

(1− eiδt). (4.4)

On resonance δ = 0 the period tends to infinity and the oscillator is displaced on a straight
line without returning to the origin, and its amplitude increases linearly in time:

α(t) = − iFu0
2ℏ

t. (4.5)

In the case of a single trapped ion F0 = eE0, where E0 is the amplitude of the electric field
along the oscillation direction. For mixed-species ion chains, the force due to the electric field
interacting with the normal mode α has amplitude F0,α = eE0

(∑N
j=1 e

′
j,α/

√
mj

)
[Hom13].

In the 3D segmented Paul trap the tickle is generated by modulating the voltage applied
to one of the DC electrodes, through a capacitive coupling that bypasses the out-of-vacuum
low pass filters with a cut-off frequency of 100 kHz. Different electrodes can be bypassed, but
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currently we apply the drive such that the resulting oscillating electric field has components
in both radial and axial directions near the central experimental zone. There are also some
additional shim lines whose filters can be bypassed, but these are currently not exploited.

4.3 Motional frequency measurement

There are several methods to measure the motional frequency of the vibrational modes.
Here I just described the methods employed in this thesis, but the interested reader can
find a detailed discussion in [Win+98].

The first method involves using a resonant drive of a motional sideband transition as
described in Sec. 3.1. The driving field can be detuned to δ = +ωm such that the ion
undergoes a blue sideband transition | ↓, n⟩ ↔ | ↑, n+1⟩, or to δ = −ωm for a red sideband
transition | ↓, n⟩ ↔ | ↑, n − 1⟩. In both cases the internal state of the ion can be detected
and the motional frequency retrieved when the transition probability is maximized. This
method relies on working in a resolved sideband regime, by means of a narrow-linewidth
internal transition and at low power of the driving field, to minimize the AC Stark shift.
For an ion cooled to the ground state the red sideband transition cannot be driven, thus
we use a blue sideband or a carrier followed by a red sideband transition. In the current
setup, this method is restricted to usage only in the central experimental region due to
the configuration of the laser beams. At low laser beam power, this method can reach a
precision below 100 Hz [Flü19].

Another method we use is based on using the resonant DC tickle to induce a strong ex-
citation in the motional state. When this is high enough, the resulting modulation produces
high enough Doppler shifts of the ion’s internal transitions. When the shift approaches the
linewidth of the dipole transition used for state detection, the observed ion fluorescence
reduces. For a single ion, this happens when the vibrational mode gains around 1000 phon-
ons [Hom13]. This method is unsuitable for longer chains as the ion displacements induce
vibrational mode frequency shifts due to the anharmonicity of the Coulomb interaction.
The advantage of this method is that it is free of AC Stark shift. In the work of this thesis
this method was used to measure the vibrational frequencies with an uncertainty of a few
hundred of hertz. It can be used near the central experimental zone and in the left separa-
tion zone, while for other regions the oscillating voltage source is currently not connected.
An alternative to this method is modulating the RF amplitude to induce excitation in the
motional state. It can can be used for ions confined along the entire trap axis and for both
radial and axial modes, due to the axial RF fields, but it is generally less precise. More
details are given in Subsec. 6.2.1.

A more sensitive method is based on cooling the vibrational mode close to the ground
state, applying a DC tickle pulse with a given driving frequency, and then diagnosing the
subsequent excitation by performing a red sideband transition and detecting the internal
state. Only if the DC tickle is resonant with the vibrational mode its motional state gets
excited and undergoes the red sideband transition. Otherwise, no transition occurs. The
final detection determines if the transitions occurred depending on the DC tickle frequency.
This method can be used at the central experimental zone, reaching uncertainties below 20
Hz depending on the probing time [Flü19].
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4.4 Motional state analysis

An arbitrary motional state can be represented as a superposition of Fock states as shown
in Eq. 2.41. To characterize the distribution of occupied energy eigenstates we can drive the
transition | ↓, n⟩ ↔ | ↑, n+ s⟩, where s is an integer number, which couples to the motional
state through the Lamb-Dicke parameter η. Here I focus on using the first blue sideband
transition as this is used for the work of this thesis. Considering initially the ion in the state
| ↓, n⟩, if we drive the blue sideband transition on resonance and detect the internal state,
the probability to find the ion in the initial bright state is:

P|↓,n⟩(t) = 1− P|↑,n+1⟩(t) = 1− sin2
(
Ωn+1,n

2
t

)
=

1

2
+

1

2
cos (Ωn+1,nt)

(4.6)

where we used Eq. 3.16. If the initial state is in a distribution of Fock states Pn(0), then
each of them will evolve according to Eq. 4.6 with a different Rabi frequency Ωn+1,n. To
retrieve the Fock state distribution, we can measure the internal state of the ion for different
pulse durations and fit it to the function:

P|↓⟩(t) =
∞∑
n=0

Pn(0)P|↓,n⟩(t)

=
1

2
+

1

2

∞∑
n=0

Pn(0)e
−γ

√
n+1t cos (Ωn+1,nt)

(4.7)

where we included an exponential decay exp (−γ
√
n+ 1t) to account for the spin decoher-

ence caused by fluctuations in the magnetic field or laser intensity during the probing time
[Win+98; Lei+03], with a phenomenological decay constant γ and the term

√
n+ 1 which

accounts for an observed increase of decoherence for higher n (in [Lei+03] the data is con-
sistent with an exponent of γ(n + 1)0.7). To perform the fit, in the work of this thesis we
assume Pn(0) to follow the thermal distribution of Eq. 2.46 or the Poisson distribution for
the coherent states of Eq. 2.48. In some situations we account for a displaced thermal state
by using the distribution function [Rus+14]:

Pn(0) =
∞∑
n=0

n̄n
th

(n̄th + 1)n+1 e
−|α|2 |α|2(k+n)n!k!

×

∣∣∣∣∣
n∑

l=0

(−1)l
|α|−2l

l!(n− l)!(k − l)!

∣∣∣∣∣
2 (4.8)

where n̄th is the mean phonon number for the thermal contribution and α is the amplitude of
the displaced distribution. This Fock state distribution emerges when a mix of heating and
coherent excitation occur. For instance, coherent excitation can be induced by imperfect
but repeatable control of transport sequences or by non-adiabatic transport and separation
sequences. While performing the fit the summations are truncated at a given nmax, above
which the terms are negligible. For mean phonon numbers close to the ground state, nmax ≃
20 is generally used. In Fig. 4.2 different simulated resonant blue sideband oscillations
are shown for thermal, coherent and displaced thermal states with different mean phonon
numbers.
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Figure 4.2: Blue sideband Rabi oscillations for different phonon distributions. On the left the
populations are computed for calcium, with resonant carrier Rabi frequency Ω0 = 2π × 0.5 MHz
and Lamb-Dicke parameter η = 0.05. On the right the populations are computed for beryllium,
with Ω0 = 2π × 0.07 MHz and η = 0.4. These are typical experimental values. The states are: a.
thermal, b. coherent and c. thermal coherent. Each distribution is computed for a n̄th and α in
the range [0,4], while for the last both parameters assume identical values.

The use of the first blue sideband transition is suitable for low mean phonon numbers.
In the Lamb-Dicke regime, for higher numbers the Ωn+1,n show smaller variations, while
out of this regime it becomes null or degenerate for different n, as shown in Fig. 3.1 (b).
Moreover the contrast of the flops reduces, requiring longer probing time to increase the
signal-to-noise ratio. We generally employ this method for up to 10 quanta. For higher
phonon numbers different methods have to be employed, e.g. driving a carrier transition
due to the low dependence on the motional state [Hom+11] or using a combination of carrier
and sideband transitions of different orders [Rus+14]. For arrays containing multiple ions
of the same species, one has to take into account that more ions participate to the same
vibrational mode, thus the probability of having all of them in the | ↓⟩ state can be measured
through blue sideband oscillations, which have lower contrast and increased Rabi frequency
with respect to the single ion case [Hom06].

For thermal distributions with mean phonon number lower than 1, a faster method
involves the use of the first blue sideband and the first red sideband for a fixed time tp and
then measuring the spin populations PBSB

|↓⟩ (tp) and PRSB
|↓⟩ (tp) respectively. Computing the
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ratio of these probabilities R = PRSB
|↓⟩ (tp)/P

BSB
|↓⟩ (tp), the mean phonon number is given by

n̄th = R/(1−R) [Lei+03].

4.5 Normal mode coupling

Manipulation of motional states can be performed through a controlled coupling of different
normal modes. Several methods can be employed. For a single ion it can be mediated by
the internal state [Kin+21; SS21], for more ions it can be induced by the anharmonicity of
the Coulomb interaction in some resonant conditions [Win+98; MSJ03; NRJ09; Din+17].
For an arbitrary number of ions, it can also be caused by the anharmonicity in the trapping
potential in resonant conditions [Win+98; Hom+11] or modulation of the harmonic well
curvature at the difference of the vibrational mode frequencies [Gor+14]. Here we focus
on the use of a rotation of the harmonic potentials and ion crystals to control the coup-
ling strength of normal modes close to frequency crossing. This occurred naturally in our
transport experiments, but could also be used in state engineering tasks, as discussed in
Ch. 9.

In this section I first describe the Landau-Zener-Stückelberg-Majorana transitions, in
which two coupled vibrational modes are treated as a two-level quantum system. An ex-
planation of the underlying coupling mechanism then follows.

4.5.1 Landau-Zener-Stückelberg-Majorana transitions

In this subsection I consider a coupled two-level quantum system that is subjected to a
transfer of population for a linearly varying drive. This was first described by Landau
[Lan32], Zener [Zen32], Stückelberg [Stu32] and Majorana [Maj32] independently in 1931-
1932. Interestingly, the theory can be derived also classically [Nov10; ISN18]. Here I follow
the approach discussed in [ISN23], which reviews the results related to the Landau-Zener-
Stückelberg-Majorana (LZSM) theory.

Let’s consider an external drive making up the energy difference ε(t) of two levels going
through a crossing. The presence of a constant coupling ∆ lifts the degeneracy and creates
an avoided-level crossing (or anticrossing), as shown in Fig. 4.3(a). The system is described
by the Hamiltonian:

Ĥ(t) = −ε(t)

2
σ̂z −

∆

2
σ̂x = −1

2

(
ε(t) ∆
∆ −ε(t)

)
. (4.9)

For ∆ = 0 (uncoupled regime) the Hamiltonian eigenfunctions are:

|0⟩ =
(

1
0

)
and |1⟩ =

(
0
1

)
(4.10)

they are defined as diabatic states and their energy eigenvalues are:

E0,1 = ∓ε(t)/2 (4.11)

For ∆ > 0 the instantaneous energy eigenstates are obtained by solving the Schrödinger
equation Ĥ(t) |E±(t)⟩ = E±(t) |E±(t)⟩, which gives:

|E±(t)⟩ = γ∓|0⟩ ∓ γ±|1⟩

γ± =
1√
2

√
1± ε(t)

∆E(t)

(4.12)
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which are defined as adiabatic states with energy eigenvalues:

E±(t) = ±1

2

√
∆2 + ε(t)2 = ±1

2
∆E(t). (4.13)

For ε = 0 the eigenstates becomes |E±(0)⟩ = 1√
2
(|0⟩ ∓ |1⟩) and ∆ is the minimum energy

spacing.

0

0

(a) (b)

Figure 4.3: LZSM transitions in a two-level system. (a) Energy levels of the adiabatic and diabatic
states. The energy difference is driven by ε(t), while the degeneracy is lifted by ∆. The population
transfer in a single passage of the avoided crossing is indicated by the arrows. (b) Energy levels
and population transfer in a double passage of the avoided crossing. The system behaves as an
interferometer. On top the relevant transition matrices are shown, while the shaded areas indicate
the accumulated phases ζ1 and ζ2 between the states. Images are modified from [ISN23].

We now study the dynamic evolution of the system as the drive strength changes over
time. We consider the system to be initially in the lower energy state |E−⟩ for an initial
ε(t) ≪ 0 at t → −∞. Subsequently, ε(t) is increased and the diabatic transition probability
PD of finding the system in the upper energy state |E+⟩ for t → +∞ is studied. The
external drive ε is considered to change linearly in time (or approximately linear around
the crossing point) as ε(t) = vt, where v is a constant. For slow variations, i.e. v ≪ ∆2/ℏ,
the probability of transition PD ≈ 0 and the system approximately follows the adiabatic
states, according to the adiabatic theorem [BF28]. For fast dynamics, i.e. v ≫ ∆2/ℏ, the
probability PD ≈ 1 and the system hops from |E−⟩ to |E+⟩ during the transition, following
the diabatic states far from the avoided crossing. The probability PD for other rates can be
calculated in several ways, but here we describe a simple derivation taken from [GS23] and
here we describe it. The system evolves according to the Schrödinger equation:

iℏ
d

dt

(
ã(t)

b̃(t)

)
= Ĥ

(
ã(t)

b̃(t)

)
(4.14)

with transformed probability amplitudes ã(t) ≡ exp
(
ivt2/4ℏ

)
a(t) and b̃(t) ≡

exp
(
−ivt2/4ℏ

)
b(t) for the states |0⟩ and |1⟩ respectively, such that |ã|2 = |a|2 and |b̃|2 = |b|2.

This gives two coupled differential equations of first order:

da(t)

dt
= i

∆

2ℏ
e−ivt2/4ℏb(t)

db(t)

dt
= i

∆

2ℏ
eivt

2/4ℏa(t).

(4.15)
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We integrate the second equation, with initial condition b(t → −∞) = 0, and insert into
the first equation to obtain:

da(t)

dt
= −

(
∆

2ℏ

)2

e−ivt2/4ℏ
∫ t

−∞
eivt

′ 2/4ℏa(t′)dt′. (4.16)

We can use the Markov approximation [SZ97] such that a(t′) ≈ a(t) to solve the integro-
differential equation. Having initially the system in the lower energy state sets the initial
condition a(t → −∞) = 1. This gives us the asymptotic transition probability:

PD = a(t → ∞) ≃ e−I(∆/2ℏ)2 (4.17)

where:

I ≡
∫ ∞

−∞
e−ivt2/4ℏ

∫ t

−∞
eivt

′2/4ℏdt′dt. (4.18)

To compute this integral we rewrite it in the form:

I =

∫ ∞

−∞
e−ivt2/4ℏdt

∫ 0

−∞
eivt

′2/4ℏdt′

+

∫ ∞

−∞
e−ivt2/4ℏ

∫ t

0
eivt

′2/4ℏdt′dt.

(4.19)

The second term vanishes as it is an integral of an anti-symmetric function, while the first
is a product of two Fresnel integrals:

∫ ∞

0
e±iβθ2dθ =

1

2

√
±iπ

β
(4.20)

leading to:

I =
2πℏ
v

. (4.21)

The resulting diabatic transition probability is:

PD = e−2πδ, where δ =
∆2

4ℏv
. (4.22)

During the transition, the wave function acquires a phase known as the Stokes phase [ISN23]:

ϕS(δ) =
π

4
+ δ(ln δ − 1) + Arg[Γ(1− iδ)] (4.23)

where Γ is the Gamma function. Note that for the adiabatic limit (δ ≫ 1) ϕS → 0, while
for the diabatic limit (δ ≪ 1) ϕS → π/4.

To study multiple passages through the avoided crossing and systems in a superposition
of states, it is convenient to describe their dynamics in the transition matrix formalism
[ISN23]. Far from the avoided crossing, the adiabatic states are not subjected to transitions
and only acquire a relative phase. The resulting time-evolution operator is:

U (ζ (t, ti)) =

(
e−iζ(t,ti) 0

0 eiζ(t,ti)

)
= e−iζ(t,ti)σ̂z (4.24)
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where ζ (t, ti) is the phase accumulated during the adiabatic evolution from time ti to time
t:

ζ (t, ti) =
1

2ℏ

∫ t

ti

∆E(t)dt. (4.25)

The passage through the avoided crossing is described by the transition matrix:

N =

(
Re−iϕS −T

T ReiϕS

)
(4.26)

where T =
√
PD is the transmission coefficient and R =

√
1− PD is the reflection coefficient.

Consequently, for a single transition through the avoided crossing at time t = 0 the total
evolution matrix is:

U (ζf )NU (ζi) =

(
Re−i(ϕs+ζi+ζf ) −Te−i(ζi−ζf )

Tei(ζi−ζf ) Rei(ϕs+ζi+ζf )

)
(4.27)

where ζi := ζ (0, ti) ̸= ζ (tf , 0) := ζf . By passing through the avoided crossing twice, as
depicted in Fig. 4.3(b), the initial state evolves under the transfer matrix:

Ξ ≡
√

U2N
−1U1N

√
U2 =

(
Ξ11 Ξ12

Ξ12 Ξ∗
11

)
(4.28)

where:

Ξ11 = −R2e−iζ+ − T 2e−iζ−

Ξ12 = −2iRT sin(ΦSt) = −Ξ∗
12

ζ+ = ζ1 + ζ2 + 2ϕS , ζ− = ζ1 − ζ2

ζ1 =
1

2ℏ

∫ t2

t1

∆E(t)dt, ζ2 =
1

2ℏ

∫ t1+Td

t2

∆E(t)dt

ΦSt = ϕS + ζ1

(4.29)

By initializing the system in the lower energy state, it adiabatically evolves, passes through
the avoided crossing, creates a superposition of the diabatic states, and evolves adiabatically
again. In the whole process, it accumulates a relative phase between the two states called
Stückelberg phase ΦSt, which becomes relevant at the second passage through the avoided
crossing, where the two states interfere with each other and the probability of finding the
system in the state |E+⟩ at the end is:

P double
+ = |Ξ12|2 = 4PD(1− PD) sin

2ΦSt (4.30)

The whole process acts analogously to an optical Mach-Zehnder interferometer, with the
avoided crossings acting as beam splitters for the light, which subsequently acquires a relat-
ive phase between the two branches. Constructive interference of multiple passages through
the avoided crossing can be probed in the form of Ramsey fringes with oscillation frequency
given by ΦSt; more information can be found in [ISN23].

4.5.2 Control of normal mode coupling

LZSM transitions happen in the presence of coupled two-level systems. By considering two
normal modes of an ion crystal, I describe their coupling arising from the rotation of the
trapping potentials or in the presence of a radial field. I focus on the cases of a single
trapped ion, two ions of the same species and two ions of different species. I then give an
overview of how these methods apply to longer ion chains.
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Single ion

We consider one ion of mass m and charge e to be trapped with a Taylor expanded potential
up to the second order:

V (y, z, t) =
1

2

(
Vzzz

2 + Vyyy
2 + Vzyzy

)
(4.31)

where we restricted to the 2D case from Eq. 2.3, with Vzz = VDαz and Vyy = VDαy+
eβ2

yV
2
RF

2mΩ2
RF

,
in which we applied the pseudopotential approximation. We are introducing the term
Vzyzy that couples the harmonic oscillators in the two directions as their equations of
motion cannot be described independently anymore. This might be a result of a quadrupole
potential generated by the DC electrodes or, as in [Fab+24], by the shims. For Vzy = 0,
the bare normal modes are trivially ω2

z = e
mVzz and ω2

y = e
mVyy. For Vzy ̸= 0, the Hessian

matrix of this potential is:

H ′
zy =

e

m

(
Vzz Vzy/2

Vzy/2 Vyy

)
(4.32)

which can be diagonalized to retrieve the angular frequencies of the coupled vibrational
modes ω2

± = e
2m

(
Vzz + Vyy ±

√
(Vzz − Vyy)2 + V 2

zy

)
. Diagonalizing the Hessian matrix is

equivalent to rotating the coordinate system by an angle θ = 1
2 arctan

(
Vzy

Vzz−Vyy

)
[Fab+24],

such that in this basis the Hessian is diagonal. Consequently the quadrupole potential
couples the bare normal modes, modifies their frequencies and rotates the potential wells
by an angle θ.

Once the Hessian is diagonalized, we can rewrite the Hamiltonian of the system in the
normal mode coordinates as described in Sec. 2.3, obtaining:

HD =
1

2

∑
α=±

p′ 2α + ω2
αξ

′ 2
α . (4.33)

where are p′α and ξ′α are defined according to Eq. 2.42. To describe the dynamics in the
quantum regime, we can quantize the Hamiltonian and rewrite the normal mode position
and momentum operators by the raising and lowering operators of Eq. 2.42 with respect to
the coupled modes to get the convenient form:

ĤD = ℏ
∑
α=±

ωαâ
†
αâα (4.34)

from which we subtracted the zero-point energy which does not affects the dynamics. The
Hilbert space for the two quantum harmonic oscillators has infinite size, but we can consider
the subsystem in which there is one vibrational quantum in one of the two modes, obtaining
the matrix representation of the Hamiltonian:

ĤD = ℏ
(

ω− 0
0 ω+

)
. (4.35)

If we didn’t diagonalize the Hessian of Eq. 4.32 and represented the quantized Hamiltonian
in the ladder operators with respect to the uncoupled vibrational frequencies ωz/y, we would
get:

Ĥ = ℏ
(

ωz Vzy/
√

4ωzωy

Vzy/
√

4ωzωy ωy

)
. (4.36)
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If the uncoupled vibrational frequencies vary over time, we can subtract their average value
from Eq. 4.36 to retrieve the Hamiltonian of the LZSM transitions of Eq. 4.9. This shows
that we can describe the dynamics of the coupled motional states through the LZSM theory
and that we can control the coupling strength through a quadrupole potential. As long as
at most two modes are interacting, this description applies analogously to longer ion chains
and for the other coupling methods described above.

Single-species crystal

We now consider two ions of the same species trapped together in a harmonic potential, in
which each ion j experiences the potential:

Vj(y, z, t) =
1

2

(
Vzzz

2
j + Vyyy

2
j

)
(4.37)

and the Coulomb potential VC = ke/(|u⃗2 − u⃗1|), where k = 1/(4πε0) and u⃗j = (zj , yj , xj).
From now on we focus only on the z−y plane, omitting the x coordinate. The total potential
experienced by the array is then:

Vtot = V1 + V2 + VC. (4.38)

Let’s assume the ions are located along the trap axis, with yj = 0. Their axial equi-
librium distance d can be computed analytically through ∂Vtot/∂zj = 0, which gives
d = 2[ke/(4Vzz)]

1/3. The Coulomb potential changes the total potential curvature experi-
enced by each ion. We indicate the ions displacement vector as u⃗d = u⃗2 − u⃗1 = (zd, yd) and
compute the curvature of the Coulomb potential at the equilibrium position as [Fab+24]:

∂2VC

∂z2d

∣∣∣∣
{u0

d}
=

2ke

d3
= Vzz,

∂2VC

∂y2d

∣∣∣∣
{u0

d}
= −ke

d3
= −Vzz

2
.

(4.39)

Consequently we can approximate the Coulomb term to second order in the total potential
with:

VC,0 ≃
1

2
Vzz

(
z2d −

y2d
2

)
=

1

2
Vzz

(
(z2 − z1)

2 − 1

2
(y2 − y1)

2

)
. (4.40)

The Coulomb interaction does not create any term proportional to xy in the potential,
thus the normal modes remain uncoupled. Consequently in the Hessian matrix of the total
potential, computed from the partial derivatives with respect to the position coordinates
z1, z2, y1 and y2, the elements related to different directions are null:

H ′
ik =

e

m


2Vzz −Vzz 0 0
−Vzz 2Vzz 0 0
0 0 Vyy − Vzz/2 Vzz/2
0 0 Vzz/2 Vyy − Vzz/2

 (4.41)

which gives the normal mode frequencies (ω2
Z1, ω

2
Z2, ω

2
Y 1, ω

2
Y 2) = e/m(Vzz, 3Vzz, Vyy, Vyy −

Vzz).

The application of an additional quadrupole potential in the zy plane gives rise to a
Vzy (z1y1 + z2y2) term that rotates the ion crystal, modifies the normal modes and creates
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mode cross-coupling in the original mode basis. However, only some vibrational modes can
be coupled. This can be seen by writing the ion positions in the normal mode coordinates.
Neglecting constant terms that do not affect the dynamics and linear terms that vanish near
the equilibrium, we obtain:

z1y1 + z2y2 ≃
1

m

∑
α∈{Z1,Z2}
β∈{Y 1,Y 2}

(
e′z1,αe

′
y1,β + e′z2,αe

′
y2,β

)
ξ′αξ

′
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=
1

m
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′
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′
y2,Y 1

)
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′
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+
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′
y1,Y 2 + e′z2,Z1e

′
y2,Y 2

)
ξ′Z1ξ

′
Y 2

+
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′
y1,Y 1 + e′z2,Z2e

′
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′
Y 1

+
(
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′
y2,Y 2

)
ξ′Z2ξ

′
Y 2

]
=

1√
2m

[
2ξ′Z1ξ

′
Y 1 + 2ξ′Z2ξ

′
Y 2

]

(4.42)

where the terms proportional to ξ′Z1ξ
′
Y 2 and ξ′Z2ξ

′
Y 1 are null due to the opposite sign of the

eigenvectors for the out-of-phase modes, while the amplitudes are all equal to 1/
√
2 due to

the ions having the same mass. This indicates that COM and STR modes do not couple
to each other. Considering that ωZ1 < ωZ2 while ωY1 > ωY2, no more than two modes can
be coupled at the same time in the zy plane in this way. In the radial plane spanned by
y and x, in both cases the COM modes have the highest frequency, then a rotation of the
potential in this plane can be exploited to couple Y1/X1 and Y2/X2 simultaneously. By
changing the modes dynamically through the two simultaneous avoided crossings, each of
them induces LZSM transitions of the motional states.

Mixed-species crystal

We now consider two ions of different species with masses mj and same charge. In this case
each ion experiences a different pseudopotential, due to the mass dependence of the latter.
The resulting ion-dependent radial curvature is:

Vj(y, z, t) =
1

2

(
Vzzz

2
j + Vyy,jy

2
j

)
. (4.43)

This modifies the mode spectrum and ion participations, but does not induce mode coupling,
even when including the Coulomb interaction. The total potential experienced by the array
is then similar to Eq. 4.38 with Coulomb term approximated as in Eq. 4.40.

9 Be+ 40 Ca+

(a) (b) (c)

Figure 4.4: Methods for coupling the normal modes of a Be–Ca crystal. (a) Be–Ca crystal confined
at the trap center with near-degenerate curvatures (not on scale), in the absence of coupling. Mode
cross-coupling is induced by (b) applying a radial electric field Ey and/or (c) rotating the trapping
potentials.

The application of a radial electric field Ey displaces the ions radially by an amount
that is inversely dependent on the mass, as shown in Eq. 2.18 and in Fig. 4.4(b). This
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shifts and tilts the ion crystal and creates a coupling between the axial and radial normal
modes through the Coulomb potential. To compute the strength of the coupling we first
find the equilibrium ion displacement with coordinates u⃗ 0

d = (z0d, y
0
d). For a small Ey we

approximate z0d ≃ d and z0d ≫ y0d such that:

y0d ≃ 2Ey
Vyy, 1 − Vyy, 2

−2Vyy, 1Vyy, 2 + Vyy, 1Vzz + Vyy, 2Vzz
(4.44)

In this configuration we expand the Coulomb potential at the second order [Fab+24]:

∂2VC

∂zd∂yd

∣∣∣∣
{u0

d}
≃

3y0d
2d

Vzz (4.45)

which adds to the total potential the term:

VC,zy ≃
3y0d
2d

Vzzzdyd. (4.46)

The product zdyd constitutes a shifted rotation in the zy plane. The strength of the coupling
of different modes is sensitive to the ions’ participation and masses:

zdyd ≃
∑

α∈{Z1,Z2}
β∈{Y 1,Y 2}

(
e′z2,α√
m2

−
e′z1,α√
m1

)(
e′y2,β√
m2

−
e′y1,β√
m1

)
ξ′αξ

′
β. (4.47)

As opposed to the result obtained for the single-species case, for mixed-species arrays in-
and out-of-phase modes can be coupled in every combination. For the axial and radial COM
modes this is increasingly harder to achieve for higher mass ratios of the ions, as their energy
gap widens considerably and the mode eigenvectors become biased towards one particular
species. The eigenvectors scale non-trivially with the mass ratio of the ions, thus their
analytical expression is not shown in Eq. 4.47. It is simpler and more insightful to show a
simulation of the mode cross-coupling as a function of the radial field in the segmented 3D
Paul trap, which we show in Fig. 4.5 (a)-(b).

In the presence of only a rotated potential as shown in Fig. 4.4(c), mixed-species arrays
experience mode cross-coupling. Analogously to the application of a radial electric field, the
rotated potential translates the center-of-mass and geometric center of the ion chain. The
orientation of this displacement depends on the order of the ions and the rotation angle
of the potential. The Coulomb interaction also adds a mixing term analogous to the one
discussed above. A simulation of this type of mode cross-coupling is shown in Fig. 4.5
(c)-(d) and the coupling strengths are compared to the radial field-induced coupling.

The application of both radial electric field and rotated potential at the same time can
be used to enhance the strength of the coupling, and this was performed in [Fab+24] with
the aim of transferring heat between normal modes. For the experiments of mixed-species
ion transport and separation described in Ch. 8 the heat transfer induced by mode-mode
coupling was a detrimental effect, consequently we minimized it by compensating the stray
electric fields and applied a compensating quadrupole to remove residual rotated potentials.
The duality of the approaches highlights the versatility of these methods to manipulate
motional states.

For longer single-species ion chains radial electric field and rotated potential will displace
and rotate the entire array. In the mixed-species case they can induce local deformations to
the crystal, which can be exploited for more complex manipulations of the motional states,
analogous to [Hou+24], although performed with a different approach.
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Figure 4.5: Simulation of normal modes coupling for a Be–Ca crystal in the splitting region of the
trap. (a) and (b) show the lifting of frequency degeneracy of Z1/Y2 and Y2/Z2 modes, respectively,
due to a mode cross-coupling induced by a radial field generated by applying a positive voltage
shift to the DC electrodes in the range [19, 23] (see Fig. 2.3(e)) and an opposite shift to the DC
electrodes in the range [4, 8]. (c) and (d) show the lifting of frequency degeneracy of Z1/Y2 and
Y2/Z2, respectively, due to a quadrupole potential generated by applying a positive voltage shift to
the DC electrodes 5 and 22 and an opposite shift to the DC electrodes 7 and 20. For (a) and (c) the
single 40Ca

+ frequencies are [ωz, ωy, ωx] = 2π× [1.2, 1.6, 3.8] MHz, while for (b) and (d) they are
[ωz, ωy, ωx] = 2π× [0.6, 2, 3.7] MHz. The voltage ranges are chosen to show significant splittings,
with the same intervals between (a)-(b) and (c)-(d). The crossing Z1/Y2 shows stronger sensitivity
to the perturbation around the minimum distance for both methods. For each plot the horizontal
radial positions of the ions are shown, with a slight tilt with zero perturbation due to the low radial
confinement.



5 Control system

In this chapter I describe the control system and laboratory instrumentation, with a focus
on the major improvements that I introduced during the work of this thesis. The system
upgrades mostly involve software and hardware of the control system, remote control and
automation of different voltage and laser sources, and stabilization of the magnetic field.

5.1 Control system overview

The control system behind the trapped ion experiment is based on a complex architecture of
devices. At the hardware level, the system has to control the trapping potentials, laser pulses
and data acquisition while working with synchronous and asynchronous devices. This is
based on RF, analog and digital voltages, satisfying stability and low-latency requirements.
At the software level, the system is controlled by a C++ based code, a set of Python scripts
and a C++ Graphical User Interface (GUI) called Ionizer2 for the user.

The core of the hardware architecture is described in detail in the PhD thesis of Vlad
Negnevitsky [Neg18], with extensions described in the future PhD thesis of Martin Stadler
[Sta]. The C++ code and the GUI are described in the PhD thesis of Matteo Marinelli
[Mar20], with upgrades described in the future PhD thesis of Tanja Behrle [Beh] and Bren-
nan De Neeve [Nee]. Here I summarize the structure of the hardware architecture, as it is
relevant for the next sections describing the work I performed.

In Fig. 5.1 the structure of the control system is depicted. This is called M-ACTION.
The core is composed of an Avnet Zedboard, which is a commercial device hosting a Xil-
inx Zynq-7000 chip which has two ARM CPUs and one Field-Programmable Gate Array
(FPGA). It has several input and output ports for communicating with the PC and syn-
chronized devices. The Zedboard is connected to the Direct-Digital Synthesizer (DDS)
boards with their own FPGAs, which produce RF signals to control the Acousto-Optic
Modulators (AOMs) for controlling laser pulses. Other devices directly controlled by the
Zedboard are the two PMTs for detection (one for each ion species) as well as several RF
and Transistor-Transistor Logic (TTL) switches and triggers. M-ACTION is also composed
of some custom-made Arbitrary Waveform Generators (AWGs) called Direct Ethernet-
Adjustable Transport Hardware (DEATHs). These devices are used to synchronously con-
trol the voltages applied to the DC electrodes of the trap chip. More details can be found
below in Sec. 5.2. A set of Raspberry Pi (RPi) boards [Fou12] control asynchronous devices,
e.g. piezo controllers, Digital-to-Analog Converters (DAC) boards, RF sources and Propor-
tional–Integral–Derivative (PID) controllers for the stabilization of the lasers. The RPis are
managed in different ways depending on the purpose, but mostly through the control PC
by means of software servers. For some of them we use the library TIQI Plugin, developed
by Matt Grau, for creating a Remote Procedure Call (RPC) server with a web interface and
Ionizer2 integration.

I describe now the parts of the control systems that were improved during the work of
this thesis.

48
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Figure 5.1: Control system overview. The network dedicated to the asynchronous devices and
networked PCs is shown on the right-hand side. The network dedicated to the M-ACTION system
is shown on the left-hand side. Here only 16 RF channels, 32 analog outputs of the DEATHs, 32
digital outputs and 2 PMTs are currently in use. The image is modified from [Neg18] and updated
to the current configuration.

5.2 DEATHs

The control of the DC voltages is a fundamental part of the experiments described in this
thesis. This is performed by the DEATH boards. They were developed by Ludwig de Clercq
[Cle15], with improvements in the software by David Nadlinger [Nad16].

The DEATH is composed of an Avnet Microzed board, featuring the same Zynq chip as
used on the Zedboard, which is mounted on a custom-made board. This board hosts two
dual-channel 16-bit DACs running at 100 MSPS, whose clock is generated by the Microzed.
Each output of the DACs gets amplified and low-pass filtered in an output stage, resulting
in a voltage range of around [-9.5, 9.5] V with a 50 MHz cutoff frequency. The two outputs
of a single DAC are used to drive corresponding DC electrodes on different wafers such
that any drift (due to temperature, humidity or aging) do not induce differential voltages,
which would generate radial fields that displace the ions radially. The custom board also
features a TTL input for external triggering, currently controlled by the Zedboard, and an
external clock input, which is unused at the moment. Both surfaces of the custom board are
covered by thermal pads to minimize thermal fluctuations. This is required as the cooling
is performed by means of fans and it was added during the course of this thesis. We have
noticed that in each DEATH one of the DACs had lower nonlinearities over the whole output
voltage range compared to the other despite being the same model. The ones with better
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performances were connected to the DC electrode from the left loading zone to the central
experimental zone, where it was mostly required.

The FPGA gateware is described in Verilog and is composed of Block Random Access
Memories (BRAM) that store different data. Most importantly here four memories store
the voltage waveforms, which define the time-varying voltages for the DEATH outputs.
These are composed of arrays of digital voltage samples that are sent sequentially to the
DACs. The samples can be passed in forward or reverse order, after a triggering signal and
with an adjustable slowdown. The slowdown defines the number of clock cycles for which
the same sample must be held, such that the total time required for a single waveform
is T = n(s + 1)tclock, where n is the number of samples, s is the slowdown and tclock is
the clock period, which is 10 ns. A slowdown of 0 means that the waveform is run at
the maximum sample rate of 100 MSPS, for a slowdown of 1 the rate is halved to 50
MSPS, and so on. The maximum slowdown is 65535 by design [Nad16]. A typical value
for the experiments discussed in Ch. 8 is 80, which means a rate of ≈ 1.23 MSPS. The
total number of samples that can be stored is 16384, divided into up to 256 waveforms.
Each sample goes through a stage that performs an affine linear transformation, useful for
correcting first-order imperfections in the DAC output voltages [Nad16]. The BRAMs also
store waveform sequences which are used to define the sequence of waveforms employed in
a single experimental shot.

The ARM CPU runs software programmed in C++ and implements a server that receives
waveform sets from Ionizer2, consisting of the waveforms and additional metadata, for which
more details are given in the Subsec. 5.2.2. The waveform sets are generated in the PC
by numerical techniques described in Ch. 7 and are structured according to the JavaScript
Object Notation (JSON) format, which is parsed by Ionizer2 and distributed to different
DEATHs and the Zedboard. The waveforms in a waveform set have different purposes:
loading, recrystallization, reordering, transporting and separation, which will be described
more in detail in Ch. 7.

The setup employs 8 DEATH boards with 32 voltage outputs in total, controlling 30
electrodes and leaving 2 unconnected. In some of the experiments described in Ch. 8, one
DEATH is used to control the shim electrodes, such that each output of a single board
drives an entire shim row, and the stray fields are corrected through the excess micromotion
compensation described in Sec. 6.2.

During this thesis, I worked in collaboration with Martin Stadler to update the software
and gateware libraries to the latest versions. Moreover I extended the software’s capabilities,
enabling more flexible manipulation and scanning of the waveforms as described in Subsec.
5.2.2. The affine transformation parameters were periodically calibrated as described in
Subsec. 5.2.1 to compensate for drift and aging of the components. A TIQI Plugin server was
developed by Carmelo Mordini to simplify the integration of the waveform set generation,
managing and running.

5.2.1 Voltage calibration

The affine linear transformation stage rescales the waveform samples and applies the floor
function, according to [Nad16]:

y(x) =

⌊
k

32768
x+ d

⌋
(5.1)
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where k is the sample gain in the interval of [0, 216-1], corresponding to a voltage gain
of [0, 2), and d is the sample offset within [0, 216-1], which shifts the voltages in the full
output range. The calibration is generally performed by setting the default values k = 32768
(voltage gain 1) and d = 0 (voltage offset of 0 V) and then running waveform samples in the
set Vreq = {−8,−5,−2, 0, 2, 5, 8} V, while measuring the output voltages for each channel
with a digital multimeter (generally the Keithley 2100 ). We then perform a linear fit of the
function Vout = kvVin + dv, where kv and dv are the voltage gain and offset obtained from
the linear fit. These values are then converted into 16-bit representation and used for the
linear transformation stage. Generally the output voltages show drifts in the order of a few
millivolts over several months.

5.2.2 Waveform interpolation

For the experiments related to shuttling and reconfiguration of ion crystals it was necessary
to quickly modify waveform voltages in response to experimental requirements or calibra-
tions, without regenerating them in the control PC and reloading into the system. In this
way we could improve the flexibility of the control system and allowed for fine-tuning of the
waveform parameters. For this reason in the work of this thesis we developed the waveform
interpolation or waveform linear combination routine, which allows us to perform linear
combinations of waveforms directly in the DEATHs’ CPU. This routine can perform an
interpolation of an arbitrary number Nw of waveforms. For each DEATH output, the kth
sample of each waveform wi is computed as:

wint[k] =

Nw∑
i

aiwi[k] (5.2)

where ai are interpolation weights or linear combination weights. Both interpolation weights
and samples are floating-point numbers. In the process, the code checks if the sum induces
overflow, sending the user an error if this happens. To perform the computation, the
processing system requires access to the waveform samples. This was not possible before
the upgrade work, as the processing system had no access methods for the BRAMs where
the samples are stored. Consequently a second memory was allocated in the RAM to store
the waveforms and their metadata.

The interpolation is centrally managed by the Zedboard software. There are two routines
that can perform the interpolation, with different purposes. The simplest and most used
is the manual interpolation: the user defines the waveforms to use and the corresponding
weights in Ionizer2, which communicates with the Zedboard that sends the same command
to all the DEATHs. We can scan the weights while performing the experiments, such that
they can be calibrated depending on the experimental results. This is a typical method we
employ to improve the performance of the waveforms or compensate for experimental imper-
fections in the voltage control. In Ch. 8 we show how this method allowed us to manipulate
the waveforms and achieve low excitation separation of mixed-species ion crystals.

The second routine is an extension of the first one and it is referred to as the automatic
interpolation. This feature aims to be employed when several different transport waveforms
are loaded into the memory, and used to generate a transport event automatically. This is
based on defining the required initial and final position of the ions, which are then used by
the system to find two appropriate waveforms that, interpolated, can produce the required
transport event. It becomes particularly relevant when we want to scan the initial or final
position of the ions due to a transport event without regenerating new waveforms in the
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PC. More in detail, this method exploits a set of metadata peculiar to each waveform.
Before this work, they were composed of a "slot" indicating the position in the DEATH’s
waveform memory, a unique ID (UID) to uniquely identify them, a description, and starting
and ending voltages. These were mostly relevant for Ionizer2 visualization. For a more
advanced manipulation of the waveforms, more fields were added to the individual metadata:
the number of samples, a flag indicating if the waveform was generated in the PC or is a
product of the DEATH manipulation (PcGen), and four additional arrays indicating the
positions of the potential wells in the initial and final sample which are used to find the
waveforms to use for the interpolation. These are the User Defined Initial Position (UDIP),
Real Initial Position (RIP), User Defined Final Position (UDFP) and Real Final Position
(RFP). The positions refer to the axial one, and the distinction between "user defined"
(integer number) and "real" (floating-point number) is to give flexibility to the system. The
automatic method for performing waveform interpolation takes from the user the number
of potential wells of the desired waveform and the initial (UDIP) and final (RFP) desired
positions of one of the wells. The initial one is based on the UDIP to be more generic. Then
it finds two waveforms in the loaded waveform set that have the required number of wells,
have the specified initial position and are the closest in terms of final position for one of the
wells. The distances of the found waveforms’ RFPs from the desired final position are used
to compute the weights. The slot of the found waveforms and their weights are then sent to
the DEATHs. This is more convoluted and, although fully functional, it is not commonly
used yet.

For both interpolation methods, the waveform memories get updated with the newly
generated waveforms. The use of the interpolation routines might fill the BRAMs used to
store the waveforms, which currently do not give any error message. In a future version this
can be checked, possibly through the processing unit memory. The waveform memories of
the Zedboard and DEATHs are synchronized at each restart/reprogram of the boards.

5.3 Improvements on voltage control

5.3.1 Shim control

The shim electrodes are controlled by either the DEATHs or other low-cost low-bandwidth
DACs, depending on the experiment. In the latter case, this is performed by means of the
DAC AD5371 evaluation board from Analog Devices [65] which is commonly used in the
group. This device can control up to 40 channels with 14-bit resolution at a sampling rate of
540KSPS. The output range is [VSS+1.4, VDD-1.4], where VSS is the negative supply voltage
which is given within the range [-16.4, -4.5] V, and VDD is the positive supply voltage within
[9, 16.5] V. It is controlled over by an RPi through a Serial Peripheral Interface (SPI) line.
It was set up by Tanja Behrle [Beh], who also wrote the RPi software. Successively, in the
work of this thesis the code was rewritten to be compatible with the TIQI plugin system,
which has a better web interface and integration with Ionizer2 GUI.

Due to the voltage supply, currently the output of the DAC reaches voltage limits around
[-7.4, 9.9] V. To perform proper compensation of the excess micromotion, the output range
needed to be amplified by a factor of 3 by an amplification stage. This was performed by
a simple unboxed custom board which was controlling the shim electrodes in each radial
quadrant of the trap commonly. A new design was implemented in the work of this thesis
which used 28 voltage amplifiers, based on the operational amplifier OPA454 from Texas
Instruments. This allows the control of each shim electrode individually for local compens-
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ation of the electric stray fields in the different zones. If no local compensation is needed,
a set of switches can be employed to connect 4 blocks of 7 different operational amplifiers
to the same 4 DAC signals to commonly control the shim electrodes of each quadrant. For
each amplifier there is also an LED that indicates an overcurrent or overtemperature con-
dition. Detailed schematics can be found in Appendix A. The board is partially covered by
thermal pads for thermal stability and enclosed by a grounded aluminum box for shielding
from electric fields. The cable that connects the board to the feedthrough connector (which
delivers the voltages to the trap chip) is shielded and grounded for the same reason. The
case was also isolated from the optical table to avoid possible ground loops [Hor15].

5.3.2 RF circuit

The trap RF voltage is supplied through a helical resonator to the trap [Kie15; Col18].
This is composed of a transformer, an impedance-matching circuit, a resistive drain for the
accumulated static charges and a pickoff. The entire structure was originally implemented
using an aluminum shield and connected to the chamber via an aluminum base. In the
work of this thesis, both of the parts were rebuilt with the same shape but using Teflon
to prevent ground loops. For the same reason several parts of the amplification circuit for
the RF were galvanically isolated by transformers. Despite these measures, we found that
certain electrical connections to the trap chip had resistive contact with the trap chamber,
creating ground loops. These loops could not be removed from the outside, leading to a 50
Hz noise experienced by the ion and affecting the motional coherence. In the future, these
connections can be isolated to reduce this source of noise.

It was also found that the RF source SMC100A from Rohde&Schwarz we were using to
drive the RF at 113.7MHz was generating higher harmonics at 227.5MHz and 341.2MHz.
Although the second and the third harmonics were ∼ 52 dBm and ∼ 46 dBm less than the
carrier, they were amplified more than the latter from the nonlinearities of the RF amplific-
ation circuit which reduced the gap by more than 20 dBm. Despite these harmonics being
filtered by the helical resonator along their path toward the trap, they can still reach the
ions and other circuits requiring the RF, for example for intrinsic micromotion compens-
ation 6.1. The higher harmonics were reduced by exchanging the RF source with a less
noisy device of the same model and by setting it to the "normal operation mode", as it was
found that the "low noise mode" and "low distortion mode" were performing worse. A few
bandpass filters with cut-off frequencies of 87 MHz and 117 MHz were also added in the RF
circuit, where relevant.

5.3.3 Mains filters

Many electrical devices in the setup are connected to two Uninterruptible Power Supplies
(UPSes) to supply power and reduce voltage spikes in case of power cuts. The model of the
UPSes is APC Smart-UPS SRT2200RMXLI. Thanks to the suggestion of Nick Schwegler,
it was found that they inject discrete noise lines at different frequencies, e.g. 5.75 kHz, 30
kHz, 60 kHz, etc. To reduce this noise, two mains filters FN2080-16-06 from Schaffner were
connected between the mains socket and the UPSs.

5.4 Remote control

During the work of this thesis, several devices were switched from a manual control to
a remote one. This offers several advantages: finer and more reproducible tuning, easier
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monitoring of the parameters in the short and long term, distributed control among different
laboratories using shared resources and control of the devices from inside and outside the
lab. The latter was one of the main reasons behind this effort, especially due to the Covid-
19 pandemic and the consequent temporary halting of laboratory activities. Thanks to the
upgrades to the experimental setup, we were able to reach the state where experiments
could be performed fully remotely. Here I describe some of the improvement implemented
in the control system.

Laser control: 729 nm

As described in Subsec. 3.2.2, the optical qubit of the calcium ion is manipulated through
a 729 nm laser. This is generated by a diode laser of the model DL pro from Toptica
[Top98]. The diode laser is based on an external cavity whose orientation is tuned by a
piezo. Its voltage is controlled by an analog controller, which features an input to modulate
the applied voltage. The remote control system acts on this input. This is performed by
means of a DAC AD5370 evaluation board which works similarly to the DAC AD5371 but
with 16-bit voltage resolution. The output is connected to a current buffer and voltage
limitation stage, to supply enough current while protecting the piezo controller input with
a [-0.3, 1] V range. Just a few tens of mV are generally enough for setting the desired laser
wavelength. The DAC is controlled by an RPi, which has also a software voltage limitation
for further protection and is connected to the lab network via wifi.

Laser control: 423 nm

The photo-ionization of calcium is performed by a 423 nm and a 375 nm lasers [Kie15]. The
first wavelength needs to be precisely tuned to resonantly drive the transition 4s2 1S0 ↔
4s4p1P1 in neutral 40Ca, while the second just needs to have a wavelength smaller than 390
nm to complete the ionization [Luc+04]. The 423 nm laser is generated by an 846 nm diode
laser (similar to the one for 729 nm) which passes through a Second Harmonic Generation
(SHG) stage. The current of the diode laser is regulated by its analog controller. It gets
modulated by a voltage output of the same DAC used for the 729 nm laser piezo driver,
and it is conditioned by a current buffer and voltage limitation stage. Just a few tens of
mV are generally enough for setting the desired laser wavelength.

The temperature of the nonlinear chip of the SHG stage affects the conversion efficiency.
Its temperature is stabilized by a temperature controller TED200C from Thorlabs [89], but
we noticed that it generally drifts over the course of the day. For this reason we remotely
manage the temperature controller analogously to the current for the 846 nm diode laser.
To ensure power stability while loading ions, we also measure the actual temperature of the
SHG chip through the temperature controller and the 423 nm laser amplitude through a
photodiode. The output voltages are measured by two analog-to-digital converters (ADC)
ADS1115 from Texas Instruments which communicate to the RPi. The maximum sampling
rate is 0.86 KSPS and it is tunable depending on the need.

Laser control: 940 nm

The photo-ionization of beryllium is performed by a 235 nm laser. This is generated by
a diode laser at 940 nm which pass through two SHG stages [Lo+14]. The diode laser is
also managed by an analog controller, whose piezo driver is voltage modulated by a DAC
AD5370 communicating with an RPi, similarly to that described above. In this case there
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is no current buffer and voltage limitation stage at the output of the DAC, but there is a
software voltage limitation of [-1, 1] V.

We also added one of the custom PID controllers developed in the group called Electron-
ically Variable Interactive Lockbox (EVIL) to perform the locking of the first SHG through
a Pound-Drever-Hall (PDH) technique, similarly to what is described in [Cle15]. Before this
the locking was performed manually through a commercial device.

Other devices

For the other diode lasers used in out setup, there was a simultaneous contribution from
different members of the group to make them remotely controllable. At the moment, all
the diode lasers for both calcium and beryllium can be controlled remotely and most of the
parameters are continuously logged on the Grafana platform.

Also the control of the EOMs for the compensation of the intrinsic micromotion were
switched to a remote control. More details are given in Sec. 6.1.

5.5 Laboratory monitoring

The alignment and electronic controlling of the laser beam lines is checked on a daily basis
to ensure their optimality. Given the complexity of the beam lines and the different types of
pulses employed, this might be time-consuming and error-prone. To automate this process,
I collaborated with Matteo Simoni to implement a lab monitoring system. It is based on a
set of photodiodes installed after the ion trap which measure the intensities of some laser
pulses, send the signal to dedicated inputs of two oscilloscopes Picoscope 2406B, which
communicates with a script in the control PC that recognizes the pulses and verifies that
their amplitudes are the expected ones. If this is not the case, the user can act on the
setup accordingly. We started to use this system in the laboratory towards the end of my
time in the laboratory, but further improvements are needed to improve the reliability and
automation.

5.6 Magnetic field

The magnetic field of the setup is generated through the use of two coils in Helmholtz
coils [Kie15]. They are controlled though an Agilent 6682A current supply that generates a
current of around 115 A. The power supply requires a reference voltage for stabilizing the
current, which is generated by averaging five voltage reference sources Ref102CU from Texas
Instruments and regulated by a voltage divider network [Flü19]. The voltage divider can be
manually tuned by means of a mechanical potentiometer. During the work of this thesis,
I collaborated with Tenzan Araki [Ara21] and Giorgio Fabris [Fab21] to build a remotely
controllable voltage reference source. It is based on the voltage reference LTC6655BHMS8-
2.5#PBF from Analog Devices, and can be interfaced with different magnetic field sensors
for stabilization and can communicate through Serial Peripheral Interface (SPI) for setting
of the reference voltage. It is currently controlled by an RPi with software based on the
TIQI-plugin. The voltage reference source is protected from external electric fields by an
aluminium case with a temperature controller, which has not been tested yet. The function-
alities were tested and it worked, but it was noticed that the output noise spectral density
was compared to the system currently in use and showed a worse performance [Fab21]. Non-
etheless, the functionalities of this device make it suitable for a wide range of applications
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and it is in use in other experiments in the group, e.g. for a careful variation of the magnetic
field.

The high current induces heating in the Helmholtz coils which needs to be dissipated
through water cooling. The temperature of the water is stabilized through the building
infrastructure, but it was noticed that in the laboratory it might vary by at most 0.5◦ over
the day, especially in the summer. This changes the calcium optical transition frequency by
up to 1 kHz. To reduce this effect we increased the gain of the proportional part of the PID
loop for the magnetic field stabilization, which reduced the fluctuations down to roughly 0.5
kHz. We also planned to install a water chiller to stabilize the water temperature. Given
that this was not needed for the work of this thesis, we did not proceed any further, but it
might be needed for the implementation of further quantum algorithms.

5.7 Laboratory network

The laboratory network was previously managed by a central RPi before, which was con-
trolling the interface between the internal and external network and was assigning IPs to
the devices. This was substituted by Matt Grau with an Ubiquiti EdgeRouter Lite, due to
better performance, higher reliability and easier configuration. The current network topo-
logy is shown in Fig. 5.1. During the course of this thesis, the network was maintained and
more functionalities were added, such as an updated authentication scheme for the Virtual
Private Network (VPN).



6 Micromotion compensation and trap model

Compensation of intrinsic and excess micromotion is fundamental for optimizing the control
over the ions’ internal and motional states. It is also particularly important when working
with mixed-species ion chains, since the presence of stray electric fields distorts the ion
array and changes the characteristics of the normal modes. In this chapter I explain how
these unwanted effects are minimized in the experimental setup. I then describe how the
compensation of excess micromotion led us to develop a method to improve the model of
the trap potentials and how this deviates from the ideal one.

6.1 Intrinsic micromotion

In Subsec. 2.1.2 I introduced the motivations that cause intrinsic micromotion and what
the consequences are. Here I describe how it is accounted for in the experimental setup.

Intrinsic micromotion affects the laser-ion interaction for laser beams with non-negligible
axial components. In the ion rest frame, the main effect is to create sidebands in the laser
spectrum at ±nΩRF, with n ∈ N. For the n-th sideband the Rabi frequency gets modulated
as [Neg18]:

Ωmm,n = Ω0 |Jn(β)| (6.1)

where Ω0 is the carrier Rabi frequency in absence of micromotion, Jn are the Bessel functions
of the first kind and β = kzeERF,z/m(ω2

z −Ω2
RF) is the modulation amplitude. Fig. 6.1 (b)

shows the dependence of the Rabi frequency on β. Due to its inverse proportionality to the
ion mass, in the experimental setup the intrinsic micromotion mostly affects the beryllium
lasers, in particular the detection and the Raman beams in the 90°configuration. For this
reason we employ EOMs which we drive at the same frequency as the RF drive with a
particular phase, which we use to modulate the laser light and maximize (minimize) the
carrier (sideband) Rabi frequency. The beams are modulated at the frequency ΩRF, with
adjustable amplitudes and phases.

The beryllium detection beam is modulated with a single EOM whose amplitude is
fixed and the phase is electronically controlled through a phase shifter. The calibration is
performed by changing the phase and maximizing the carrier detection fluorescence. This
optimization is rarely required and no further characterization was performed.

The Raman beams require a finer calibration of the modulation for minimizing the
intrinsic micromotion and the EOM setup was improved through different steps during the
work of this thesis. The modulation is applied to the Raman 90 of Fig. 3.4. At the start
of this thesis, this modulation was performed by means of two cascaded resonant EOMs
EO-T115D3-UV from Qubig [08], as shown in Fig. 6.1 (a). Two EOMs were necessary
as individually they were not able to reach the required modulation amplitude before their
resonances became unstable due to the high RF input power. However the use of two EOMs
poses challenges in the calibration procedure. They modulate an incoming beam according
to:

Aeiωt → Aeiωt+iβ1 sin(ΩRFt+ϕ1)+iβ2 sin(ΩRFt+ϕ2) (6.2)
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where β1/β2 are the modulation amplitudes of the two EOMs and ϕ1/ϕ2 are the phases.
This shows that their calibration needs to be performed by carefully choose their parameters,
as for some values of the phases the two modulations may cancel each other, while only for
some others they sum up. The calibration process is performed by initially disconnecting
EOM2 and only driving EOM1 at low power. Its phase is adjusted to minimize the ratio
of the Rabi frequencies Ωmm,1/Ωmm,0 and Ωmm,2/Ωmm,0 (shown in Fig. 6.1 (d)) measured
on the ion. Then the EOM1 is connected and calibrated analogously. The RF amplitude
of EOM1 is gradually increased up to ∼ 34 dBm, while calibrating the phase. Finally
the RF amplitude of EOM2 is increased analogously. In this way we were able to reduce
the measured β from 2.94 down to 0.64, mostly limited by the circuit controlling the RF
amplitude and phase, as we describe below. During this process, the EOMs dissipate a lot
of heat and their temperature is stabilized through a Peltier cooler, a heatsink and a fan.
The RF amplitude needs to be slowly increased to ensure the thermalization of the EOMs,
whose resonances need to be manually tweaked to ensure the transmission of most of the
RF power to the nonlinear crystal. The calibration of the two EOMs is time-consuming but,
once performed, it does not require further adjustments unless the RF power is turned off.
In this case, only a small recalibration is needed if the RF source returns to the previous
settings.

The RF amplitudes and phases are each manipulated by one Voltage Variable Atten-
uator (VVA) ZX73-2500+ and two voltage-controlled Phase Shifters (PS) JSPHS-150+,
from Mini-Circuits [68]. Before this work, the control voltages were generated by a power
supply and tuned through the use of three resistive potentiometers. We modified this by
substituting the potentiometers with a DAC AD5370 evaluation board (described in Ch. 5)
controlled by an RPI. This allowed us to remotely perform the compensation in a simpler,
finer and more reproducible way. Thanks to these improvements, we reached a measured
modulation index of β ≃ 0.04.

While applying the modifications to the RF circuit described in Subsec. 5.3.2, we decided
to further improve the intrinsic micromotion compensation circuit by substituting the two
EOMs with a newly developed EOM PM8-VIS 113.7 from Qubig. The advantage of this
EOM is that we can reach a modulation index of 3 with an RF input power of just 16 dBm
with a single unit. The disadvantage is that it suffers from higher optical attenuation, with
a transmission efficiency of around 60% from the datasheet, while the previous ones had
an efficiency of more than 98% from the datasheet. We decided that this difference was
acceptable since we have plenty of power from the laser. With the use of only one EOM
we modified the control circuit, removing one branch after the VVA and using both PS
in the remaining branch, such that we can shift the RF by 360°. This circuit is shown in
Fig. 6.1 (c). In the meanwhile we implemented a removable optical beam path to detect
the beat-note of the Raman 90 with one of the co-propagating beams onto a photodiode,
such that we can have a direct measurement of the modulation amplitude of the EOM as a
first step. A fine-tuning of the amplitude and a scan of the phase shifters, while measuring
the ratio of the Rabi frequencies with the ion, concludes the calibration procedure. With
the new EOM and control circuit we were able to reduce the modulation index to 0.25,
which was not as low as before for unknown reasons, but good enough for the experiments
of the next chapters. The scan of the control voltages for the VVA and PS was integrated
into the rest of the lab control system, which could be employed to perform the intrinsic
micromotion compensation automatically in the future.



6.2. EXCESS MICROMOTION 59

   

   

   

   

      

        

        
        

   
    

      
       

  

  

   

      

        

      

        

        
        

   
    

(a) (b)

(c) (d)

Figure 6.1: Compensation of the intrinsic micromotion. (a) Circuit for intrinsic micromotion
compensation based on two Electro-Optic Modulators (EOM). The trap RF reaches the EOMs
after passing through a Voltage Variable Attenuator (VVA) and two Phase Shifters (PS), which
are tuned by control voltages, discussed in the main text. (c) Circuit for intrinsic micromotion
compensation based on one EOM. An additional optical beam path can be used to measure the
beat-note of the Raman 90 with one of the co-propagating beams at a Photodetector (PD) to
simplify the calibration. The Beam Splitter (BS) is removable and used only for this calibration.
(b) Modulation of the Rabi frequencies for the carrier, first and second micromotion sidebands due
to the intrinsic micromotion. (d) Ratio of the Rabi frequencies of the two micromotion sidebands
and the carrier, which are used to compute the modulation amplitude experienced by the ion.

6.2 Excess micromotion

In Subsec. 2.1.2 I explained the motivations that generate stray radial electric fields and
how they induce excess micromotion. The main consequences are a displacement of the
ions in the radial direction, modifying the normal modes, and modulation of the laser-ion
interaction. It is important to minimize excess micromotion when performing cooling and
manipulation of trapped ions. In the experiments involving transport and separation of
mixed-species crystals it was crucial to compensate stray fields throughout the waveform in
order to avoid re-ordering and mode cross-coupling.

There are several methods to detect excess micromotion [Ber+98; Kel+15]. We employ
a parametric excitation method for different reasons: it requires a simple experimental
configuration, can be performed along the entire trap and requires only a single laser beam
with projection onto all the normal modes. Here I describe in detail how we perform the
excess micromotion compensation and then discuss experimental results.
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6.2.1 Parametric excitation

The parametric excitation of the ion’s motional states is based on modulating the RF
amplitude with an oscillating drive of frequency ωd and amplitude (or modulation index)
h ≪ 1. This is informally called RF tickle in the group. It creates a parametric oscillator
at the ion position ūi due to the radial electric field along direction i = (x, y) [ITU11]:

ERF,i(ūi, t) = ERF,i(ūi) [(1 + h cosωdt) cosΩRFt] . (6.3)

We can apply the pseudopotential approximation of Subsec. 2.1.1 and average over the RF
period:〈

ERF,i(ūi, t)
2
〉
ΩRF

= ERF,i(ūi)
2
〈(
1 + 2h cosωdt+ h2 cos2 ωdt

)
cos2ΩRFt

〉
ΩRF

≈ ERF,i(ūi)
2
〈
(1 + 2h cosωdt) cos

2ΩRFt
〉
ΩRF

=
1

2
ERF,i(ūi)

2(1 + 2h cosωdt),

(6.4)

where the term proportional to h2 can be neglected and cosωdt is quasi-static in the RF
period. As shown in Eq. 2.13 the force due to the pseudopotential acting on the ion is
proportional to its spatial derivative:

F̄i(ūi) = −e
∂
〈
ERF,i(ūi, t)

2
〉
ΩRF

∂ūi

= − e2

4mΩ2
RF

[
ERF,i(ūi)

∂ERF,i(ūi)

∂ūi

]
(1 + 2h cosωdt)

(6.5)

which means that the pseudopotential is modulated by the factor (1 + 2h cosωdt). Consid-
ering also the contribution of the DC potential and a stray radial electric field E⃗ = (Ei)i
which displaces the ion and that we want to detect, the ion is subjected to the following
equations of motions [Nad+21]:

d2ūi
dt2

+

(
ΩRF

2

)2 [
ai +

q2i
2

(
1 + h cosωdt

)2]
ūi =

eEi

m
(6.6)

with the usual Mathieu parameters ai and qi such that |ai| ≪ |qi| ≪ 1, and resulting angular
frequency:

ωi =
ΩRF

2

√
ai +

q2i
2

(
1 +

h2

2

)
(6.7)

which shows that this frequency is also modulated. If we define the "effective" modulation
index:

h̃ ≡ h

1 + h2/2

(
1−

aiΩ
2
RF

4ω2
i

)
(6.8)

and we neglect terms proportional to h2, we can cast Eqs. 6.6 into the Mathieu’s equations:

d2ūi
dt2

+
(ωd

2

)2
(A+ 2Q cos(ωdt)) ūi =

eEi

m
(6.9)

with Mathieu parameters A ≡ (2ωi/ωd)
2 and Q ≡ h̃A. Here we are generally not working

in the usual regime where the Mathieu parameters are much smaller than 1, but where they
are close to instability due to parametric resonances. This happens for:

ωd =
2ωi

n
, with n ∈ N. (6.10)



6.2. EXCESS MICROMOTION 61

At these resonances the ion trajectory is oscillatory with exponentially growing amplitude
over time. The linewidth of the resonances gets broader for larger h, but narrower for
higher n (scaling as hn [LL76]). For n = 1 there is the strongest resonance, but we typically
employ n = 2, such that ωd = ωi to simplify the frequency calibration process. In the
pseudopotential approximation and neglecting the Heisenberg uncertainty, the parametric
excitation does not happen for the conditions ūi = 0 and ˙̄ui = 0, which makes it suitable
to detect the presence of excess micromotion. It can also be used as a method to measure
mode frequencies, including for axial modes due to the presence of axial RF fields away
from the trap center.

6.2.2 Excess micromotion compensation

Excess micromotion is compensated by applying a set of DC voltages to the shim electrodes,
such that the generated electric fields cancel the stray fields and move the ions back to the
RF null. The four shim rows are composed of seven electrodes which are currently commonly
driven. The voltages of each row are defined by two parameters α and β (not related to the
modulation index) such that:

vA = −vD =
1

4
(α+ β) , vC = −vB =

1

4
(α− β) (6.11)

or conversely:

α = (vA + vC)− (vB + vD), β = (vA + vB)− (vC + vD), vA = −vD, vC = −vB
(6.12)

where the subscripts A, B, C and D indicate different shim rows according to Fig. 6.2 (a).
A positive value of α and β makes the shim generate electric fields along the −x and y
directions, respectively. The intensity of the electric fields in the two directions is not the
same: 1V applied to the shim row B generates an electric field with components Ex ≃ 2.4
V/m and Ey ≃ 30.9 V/m at the central experimental zone.

Manual excess micromotion compensation

The calibration of the required (α, β) for compensating the stray fields using a single ion as
a probe is based on the following steps:

1. set an initial αc and arbitrary β;

2. scan of the parametric excitation drive ωd to find the two radial mode frequencies.
On resonance the ion fluorescence reduces and the frequencies are found;

3. 2D scan of β against ωd for each vibrational mode X and Y to find two βc for which
each of the radial modes cannot be excited. At these two points the stray fields along
the two spatial directions are independently compensated;

4. repeat steps 1-3 for a set of {αc}, generally more than 2. The sets of {βc}X and {βc}Y
found for the two modes lie on two lines in the (α, β) plane. The intersection of the
two lines gives the optimal coordinates (αopt, βopt) which compensates for the stray
fields in the radial spatial plane.
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A schematic of the step 4 is shown in Fig. 6.2 (b). During the compensation the set {αc}
should preferably be chosen close to the αopt or should converge to it, given that far from
this point the βc do not lie on a straight line. In step 3 we employ a 2D scan given that the
mode frequencies change for a large variation of β due to the shim potential curvature and
anharmonic potential terms of the other electrodes. This generally does not happen near
the compensation point and for a parametric modulation amplitude that is high enough to
make the change in the shim potential curvature negligible.

One advantage of this method is that it can be employed to compensate stray fields in
any part of the trap chip and for any voltage configuration. Starting with an ion trapped in
the central experimental zone, we can gradually modify the voltages of the DC electrodes
to reach the final configuration, trigger the RF tickle and then return to the initial configur-
ation, where the ion’s state can be detected. This feature was essential for the experiments
of transport and separations of mixed-species ion crystals described in Ch. 8, where stray
field compensation was required throughout the transport trajectories of the ions.

Calibration of the stray field compensation was found to be necessary on a timescale
of a few weeks and requires a few tens of minutes. We performed it with a single calcium
ion and found that the same compensation is valid also for small mixed-species ion arrays.
Typically the optimum points are such that 0 ≤ αopt ≤ 20 and −2 ≤ βopt ≤ 0, but they
vary depending on the position, charging of the trap and exact DC voltage configuration.
The latter, for which we show some examples in Subsec. 6.2.3, might be caused by an
imperfect calibration of the DACs and/or a deviation between the trap model and the
actual situation in the ion trap, for example due to imperfect fabrication. The former is
generally minimized by periodic calibration of the DACs, while for the latter we developed
a routine based on shifting the voltages of the DC electrodes and measuring the variation
of the required stray fields compensation. This method is described in Subsec. 6.2.3 and
requires many iterations of the compensation procedure described above, which would make
it highly time-consuming. To reduce this time and automatize the process we developed an
automatic compensation procedure based on the one described above. In the next sections
I describe this method and the steps we took to improve the model.

Automatic excess micromotion compensation

The automatic stray field compensation is based on finding (αopt, βopt) by scanning the
shim voltages and checking the parametric excitation of the ions, but it differs in how the
scans are performed. It is implemented as a Python script used by the control system and
it is based on the following steps:

1. set of an initial (α, β);

2. simulate the radial mode frequencies Y and X for the given set of voltages;

3. scan of ωd to find the Y mode frequency near the simulated one;

4. scan of (α, β) along a given direction while RF tickling at ωy, until the coordinates
(αc, βc)y that compensate stray fields along this direction (which results in lower loss
of fluorescence from the tickle) are found;

5. repeat point 3 for the X mode frequency;

6. repeat point 4 while RF tickling at ωx to find the compensation (αc, βc)x for the stray
fields in the other direction;
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7. repeat steps 3-6 until consecutive points are closer than a threshold or enough points
have been collected, such that a linear interpolation can be performed to find the
intersection (αopt, βopt).

In steps 3 and 5 the scans are automatically fitted with a Lorentzian function and the
quality of the fit is analyzed. Depending on the outcome, the result might be accepted
or the scan might be repeated with a different range. If the amplitude of the Lorentzian
is smaller than a threshold, the coordinates (αc, βc)y/x are accepted for this iteration. In
step 4 (6) the direction of the scan of the shim electric field should be parallel to the
direction of the radial mode X (Y). Initially these directions were simulated, but we then
found experimentally from different sets of {(αc, βc)}y/x that an angle of θy = 0.74◦ with
respect to the horizontal axis for step 4 and an angle of θx = −3.95◦ for step 6 make
the algorithm converge quickly for a large range of DC voltage configurations. The angles
might be computed and updated while running the algorithm, but this was not needed. The
number of datapoints for each scan was experimentally chosen to make the fit robust. The
algorithm ideally requires only one iteration to converge, but it generally employs around
2-3 iterations, including a verification step that the optimal point is reached. A schematic
of the convergence of the algorithm is shown in Fig. 6.2 (c). The compensation is generally
performed in a few minutes, depending on the initial guess, and with an uncertainty that
is less than 2 V/m.
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Figure 6.2: Excess micromotion compensation. (a) Schematic of the DC and shim electrodes.
Parameters α and β generate compensating electric fields along the horizontal and vertical directions,
respectively. (b) Manual compensation of the stray fields. For each α we find the two β that
compensate the stray fields along the two mode directions. The resulting optimal point is found
by linearly interpolating through the compensation points (circles). (c) Automatic compensation
of the stray fields. From a generic position (square), we move along a given direction until we find
a compensation point for one of the modes. From there we move in another direction and find
another point for the other mode. These steps are repeated until the algorithm either converges to
the optimal point or finds it from a linear interpolation when enough points are collected.

6.2.3 Potential model calibration

The generated potentials are simulated starting from a perfect trap model. Manufacturing
imperfections might cause the actual electric fields to deviate from the ideal ones. For this
reason, we worked on experimentally compensating for these deviations, focusing on those
associated with the DC electrodes. We tested different approaches, but here I describe the
most promising one.
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The improvement of the potential model relied on measuring the magnitude of the
electric fields generated by DC electrodes on different wafers. The ratio of magnitudes could
be used to rescale the DC electrode voltages to compensate for deviations. This routine
started with confining a single calcium ion at the center of two selected DC electrodes. The
voltages of the electrodes that were not strictly necessary for confinement were set to zero
to minimize external disturbances. The stray fields were compensated with the methods
described in the previous sections to give a reference configuration for the shim voltages in
the (α, β) plane. The voltages of the selected DC electrodes were then shifted by a small
amount δV and the stray fields were compensated again, saving the new shim configurations.
An example of this step is shown in Fig. 6.3 (a). We repeated these measurements for
different values and signs of δV , generally taken to be around ±0.1 V, from which we
computed the mean values of the compensation changes. During this procedure we measured
the exact voltage outputs of the DACs, to ensure we applied the correct shifts within half a
millivolt. We then computed the magnitude of the shifts in the required compensation due
to each electrode, and computed their ratios Rv. These were used to rescale the voltages
applied to the DC electrodes symmetrically. This procedure was repeated for the pairs of
DC electrodes 6/21, 7/22 and 8/23 of Fig. 2.3 (e) and the resulting ratios are shown in
Tab. 6.1. We notice that the DC electrodes in the top wafer (6, 7 and 8) have a stronger
influence at the ion position than the electrodes in the bottom wafer (21, 22 and 23), which
suggests imperfect manufacturing of the trap such that the top wafer is closer to the ion.

To see how the ratios change for different confining wells, we also shifted the pairs of
electrodes by a common amount ∆Vcom, which is of the order of a few volts, and obtained
changes in the required shim configuration similar to that shown in Fig. 6.3 (a) for the
electrodes 6/21. We notice that the displacements in the (α, β) plane caused by δV for
different electrodes are not parallel, inducing a displacement for a large ∆Vcom. If the shifts
caused by δV were parallel, common changes in the voltages of the pairs of electrodes would
not change the required stray field compensation, making it independent of the exact DC
voltage configuration. For the same reason a symmetric rescaling of the voltages of the
pairs of electrodes is not enough to maintain the ion at the RF null. We also computed the
ratios Rv depending on ∆Vcom and the results for the electrodes 6/21 are shown in Fig. 6.3
(b). We can notice that the ratios are roughly similar, although a clear behavior is hard to
obtain due to the large error bars.

Electrode pair Rv

6/21 1.033(7)
7/22 1.040(7)
8/23 1.028(7)

Table 6.1: Ratios computed according to Fig. 6.3 for different pairs of electrodes, averaged over
measurements performed with different ∆Vcom. Ratios higher than 1 indicate that the first set of
electrodes (6, 7 and 8) affect the ion at the RF null more than the second set of electrodes (21, 22
and 23).

We tested the use of rescaled voltages using the factors of Tab. 6.1 for transporting
a Be–Ca crystal from the central experimental zone (in front of electrodes 8/23) to the
left separation zone (electrodes 6/21), but residual stray fields were still intense enough to
cause a reordering of the ions. This independently confirms that a constant rescaling of the
electrode voltages is unable to keep the ions at the RF null. To solve this issue, we employed
time-varying shim voltages that were able to compensate for stray fields while transporting
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Figure 6.3: Potential model calibration for the electrodes 6 and 21. (a) Stray field compensation
points for a given trapping configuration when no common voltage shift is applied (∆Vcom = 0)
and with a common shift (∆Vcom = 1 V). For each of them, a small voltage shift δV = 0.15 V is
applied to each electrode individually, generating radial fields that are compensated by the shim
electrodes. Connected points have the same ∆Vcom, while for the central ones δV = 0. (b) Ratios
of the amplitudes of the displacements caused by δV applied on electrode 6 and the one applied on
electrode 21 for different ∆Vcom. Ratios higher than 1 indicate that electrode 6 affects the ion at
the RF null more than electrode 21.

the ions.

In conclusion, with the method presented here we were able to detect and quantify
a discrepancy between the model and the actual trap potentials, where the electrodes of
the top wafer have a stronger influence at the ion position than their counterparts in the
bottom wafer. This information can be included in the routines for designing the trapping
voltages described in Ch. 7. Unfortunately we were not able to find a method to keep the
stray field compensation constant while changing the DC voltages, which is required for
experiments involving the shuttling of mixed-species ion crystals. Further characterization
of the potential model for larger voltage ranges might find a solution to this problem,
although a large amount of datapoints might be necessary for a proper characterization
with low uncertainty.



7 Waveform generation

Waveform generation was first implemented in our group during the Ph.D. of Ludwig de-
Clerq [Cle15] and master thesis of Robin Oswald [Rob15]. Consequently, Vlad Negnevitsky
[Neg18] extended the previous work and developed a Python library compatible with M-
ACTION called Pytrans. In the work of this thesis, I extended the functionalities of this
library for waveform analysis, manipulation and simulation. Then Pytrans was rewritten
and generalized in a modular approach by Carmelo Mordini, with contributions from me,
Robin Oswald and Tobias Sägesser. A technical description of the package tools and fea-
tures can be found in the documentation of [Mor+23] and will be the subject of a future
publication.

In this chapter, I describe the trapping potential generation for controlling the position-
ing of the ions and its implementation in the first version of Pytrans, similarly to how it is
illustrated in the Ph.D. thesis of Vlad Negnevitsky. Then I describe the more recent exten-
sions to this library and the new features of the second version of Pytrans. This overview
will be particularly relevant for the experiments described in the next chapters.

7.1 Trapping potential

As described in Sec. 2.2, the trapping of ions is performed by means of a segmented 3D trap
composed of multiple RF, DC and shim electrodes. If a voltage vj is applied to the electrode
j ∈ 1, 2, . . . , J , it creates an electric potential Vj(x, y, z) which depends on the geometry of
the electrode itself and the surrounding environment. The potential is expressed as:

Vj(x, y, z) = vjϕj(x, y, z) (7.1)

where ϕj(x, y, z) is a dimensionless parameter which we call the potential moment, defined
as the potential generated at position (x, y, z) when 1V is applied to electrode j and the
others are grounded. The potential generated by applying a set of voltages {vj} to the DC
and shim electrodes is then given by the sum of the potentials generated by each electrode
due to the superposition principle. If the pseudopotential is also taken into account (defined
in Subsec. 2.1.1), the total potential is:

V (x, y, z) =

J∑
j=1

vjϕj(x, y, z) + Vps(x, y, z) (7.2)

and the electric field along coordinate u ∈ {x, y, z} is:

E⃗u(x, y, z) = −∂V (x, y, z)

∂u
= −

J∑
j=1

vj
∂ϕj(x, y, z)

∂u
− ∂Vps(x, y, z)

∂u
(7.3)

In the segmented 3D trap there are 30 DC electrodes and they are used for confinement
and shuttling, while there are an additional 28 shim electrodes which are primarily and
they are mostly used for compensating radial micromotion, as described in Sec. 6.2. The
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2 RF electrodes are used to produce radial confinement. As shown in Fig. 2.3, in an ideal
trap, opposing DC electrodes would be geometrically symmetric. If the voltages applied to
opponent electrodes are equal, ideally no radial electric fields are present, and the ions sit
along the trap axis (x=0, y=0). Consequently, the contribution of the shim electrodes can
be neglected, and the ions are located at the RF null, which makes Vps(x, y, z) = 0 and
∇⃗Vps(x, y, z) = 0 by definition. From now on the x and y dependencies can be suppressed,
describing the confining potential only along the z axis. In this scenario, a positively charged
ion will stay confined at the local minimum of the total potential z = p. Close to this
minimum, the potential is well approximated by a harmonic well potential Vh(z) over a few
tens of µm [Win+98; Hom+11], which can be described as:

Vh(z) =
m

2e
ω2
com(z − p)2 + d (7.4)

where m is the ion mass, ωcom is the axial angular frequency experienced by a single ion or
the common mode of motion for a short string of equal-mass singly-charged ions and d is a
constant DC offset. The angular frequency can be found close to the local minimum as:

ω2
com =

e

m

∂2

∂z2
V (z)

∣∣∣∣
z=p

(7.5)

It is worth noting that ωcom depends on the charge-to-mass ratio of the ions, so the formula
above is not valid for mixed-species chains. For the exact formula see Sec. 2.3. The DC offset
d is controlled by the common voltage shift vC applied to the DC electrodes described in
Sec. 2.1, which changes the quadrupole in the radial plane as discussed at the end of Subsec.
2.1.1. It is used as a parameter to control the frequency and direction of the radial modes
with respect to the trap axis. The potential moments of all the trap electrodes are obtained
from an electrostatic boundary-element simulation performed in COMSOL, discretized on
a 3D grid with arbitrary steps of 5µm between each point around the trap axis. In Fig. 7.1
the potential moments for DC electrodes 1, . . . , 10 and for shim electrodes 2, . . . , 5 along the
trap axis are shown. Due to the symmetry of the trap structure, the potential moments of
opponent electrodes are equal along the trap axis, and the ones related to the DC electrodes
11, . . . , 15 and the shim electrodes 6, 7 and 8 are mirrored around z = 0 (this is of course a
simplification, as illustrated in the work of the previous chapter).

7.2 Waveform generation libraries

7.2.1 Pytrans version 1

Static harmonic wells

As described in Sec. 7.1, the confining harmonic well can be parameterized by the axial
position p, frequency ω and potential offset d. In the presence of N desired static wells, they
can be described by {{p1, ω1, d1}, . . . , {pN , ωN , dN}}. The routine for generating the wave-
forms, which are introduced in Sec. 5.2, aims to find a set of electrode voltages {v1, . . . , v30}
such that the following cost function is minimized:

Cstatic =

∫ zR

zL

N∑
n=1

Gn(z
′)Dn(z

′)dz′ (7.6)
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Figure 7.1: Electrode potential moments for the top DC and shim electrodes, with relative elec-
trodes shown on top. Only the moments for the electrodes located from the left loading zone to the
central experimental zone are shown, while the right side and the bottom ones are symmetric. The
moments of the shim electrodes, due to the lower magnitudes, are magnified by a factor of 10 and
electrode 1 is not shown as it is not relevant for the work of this thesis. The image is modified from
one taken from [Neg18].

where zL and zR are the trap boundaries. For each potential well n with {{pn, ωn, dn}, we
have the Gaussian term Gn(z) defining the relative region of interest:

Gn(z) = exp

[
−(z − pn)

2

2R2
n

]
(7.7)

where Rn parametrizes its width. It is chosen such that it coincides with a fixed minimum
well depth VR (usually few mV), such that R2

n = 2VRe/mω2
n. The difference term Dn(z) is

the quadratic distance between the desired harmonic potential well as described in Eq. 7.4
and the potential generated by the electrode voltages {v1, . . . , v30}:

Dn(z) = [V (z)− Vh,n(z)]
2 =

[(
30∑
i

viϕi(z)

)
−
(m
2e

ω2
n (z − pn)

2 + dn

)]2
(7.8)

This method is well-suited for statically confining the ions. It can also be used for slow adia-
batic transport by stacking the computed solutions for a varying set of harmonic wells. For
faster transport, the cost function needs to be modified, as described in the next subsection.

Transport waveform

Transport waveforms are defined by a set of time-varying voltages {v1(t), . . . , v30(t)} applied
to the electrodes. Consequently, each of the N desired wells is described by the time-
dependent parameters {pn(t), ωn(t), dn(t)}. The Gaussian term, difference term and cost
function can then be expressed as:

Gn(t, z) = exp

[
−(z − pn(t))

2

2R2
n(t)

]
(7.9)
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Dn(t, z) = [V (t, z)− Vh,n(t, z)]
2 =

[(
30∑
i

vi(t)ϕi(z)

)
−
(m
2e

ω2
n(t) (z − pn(t))

2 + dn(t)
)]2

(7.10)

Ctransp =

∫ tf

t0

[∫ zR

zL

N∑
n=1

Gn(t
′, z′)Dn(t

′, z′)dz′

+
30∑
j=1

{
r0
[
vj(t

′)− vdef
]2

+ r1

[
dvj(t

′)

dt′

]2
+ r2

[
d2vj(t

′)

dt′2

]2} dt′

(7.11)

where t0 and tf are initial and final transport times. The cost function contains several
terms in the Taylor expansion with respect to time, which are relevant for transport. The
first one, weighted by the constant r0, disfavors voltage deviations from the default one
vdef , constraining the voltages for electrodes outside the region of interest of Gn(t, z). The
value of vdef is typically set to 5V, making a trade-off between deep potential wells and
agreement of p, ω and d values with the required ones. The second and third terms,
weighted by r1 and r2, disfavor the first and second derivatives of the waveform, reducing
high frequency components and limiting the voltage slew rate, which are technically limited
by the DEATH output stage (with a maximum slew rate of 4V µs−1 [Rob15]) and out-of-
vacuum filters. The weights r0, r1 and r2 are experimentally optimized by measuring the
single ion excitation caused by the transport waveform; a summary of their typical values
is shown in Tab. 7.1 and more details of this optimization can be found in [Neg18]. During
the generation of the waveform, there are additional hard constraints that are imposed.
The first one is that the {vj(t0)} and {vj(tf )} are fixed to the results obtained by solving
for Cstatic, such that different transport waveforms can be connected without provoking
discontinuous voltages. Note that this condition is not always fully satisfied, for instance due
to experimental adjustment of the Cstatic parameters. Although we worried that these might
induce motional excitation in related experiments, in practice we didn’t see any. To avoid
the repeated concern about these effects however, we more recently compensated by linearly
interpolating the voltages through a few tens of samples. We also constrain |vj(t)| ≤ 8.9V ,
such that the voltages have some margin from the DEATH output limits, leaving space for
summing with other waveforms (discussed in Subsec. 5.2.2) or filtering and ensuring that
voltage saturation of the DEATH output stage does not provoke nonlinearities. Voltage
saturation has not been noticed in the limits described above, and other nonlinearities
in this voltage range figure as deviations of around a few tenths of mV from the desired
voltages. These are accounted for by calibrating the offset and gain of the DEATH output
stage as described in Subsec. 5.2.1.

Numerical optimization

The minimization of the cost functions is performed through quadratic programming. It
uses the CVXPY library [Agr+18; DB16], with the MOSEK solver backend [MOS19].

For the numerical optimization of Eq. 7.11, the spatial and temporal dimensions need
to be discretized. The trap axis is divided into K = 943 points, at 5 µm interval, from
−2355 µm to 2355 µm. The COMSOL trap simulation provides a K×J matrix Φ, in which
the potential of the j ∈ 1, 2, . . . , J electrode is evaluated at k ∈ 1, 2, . . . ,K points along the
trap axis. The transport time is discretized in M timesteps, where typically 1 ≤ M ≤ 2000.
Once the optimization is performed, the library returns the waveform in the form of a J×M
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matrix W, which is the output for use in the experiment. The trapping potentials at the
trap axis can be computed as the k ×M matrix V = ΦΦΦW.

Separation process

Next we move to consider how the separation waveform works. During this operation, the
ions of a multi-ion chain gradually transition from being co-trapped in a single well to
being distributed into two distinct wells. This process is intrinsically non-harmonic, and
the required trapping potential can be approximated by a 4-th order polynomial described
as:

Vsep(zs) = α(t)(z − zs)
2 + β(t)(z − zs)

4 + γ(t)(z − zs) + δ(t) + g(t)(z − zs)
3 (7.12)

where zs is the separation point, which is −422.5 µm (422.5 µm) for the left (right) separation
zone, as shown in Fig. 2.3. We impose the potential to be locally symmetric around zs by
setting the cubic term g(t)(z−zs)

3 ≃ 0, which can be well satisfied thanks to the symmetric
electrode geometry of this zone. Moreover, the size of the electrodes is particularly small
to allow the generation of stronger quadratic and quartic potential terms [HS05]. The
Taylor expansion is still a valid approximation of the potential along the trap axis as the
positions of the ions vary by a small range around zs compared to the width of 155 µm of
the central electrode of the separation zone [Kau+14]. For larger distances, higher-order
terms in the potential need to be taken into account. The parameter δ is the DC offset at zs,
while γ is the axial electric field, which ideally is null but in practice will be present in the
experiment, due to stray fields and potential moment imperfections, we find that it needs
to be experimentally calibrated. The parameters α and β are related to the ion separation
distance s(t), the axial in-phase angular frequency ωZ1(t) and the axial out-of-phase angular
frequency ωZ2(t) of a two single-species ion chain. The equilibrium positions of the ions are
z = zs ± s/2, in which s is a solution of [HS05]:

βs5 + 2αs3 =
e

2πϵ0
(7.13)

which is generally solved numerically given α and β, while the axial angular frequencies are
computed as:

ω2
Z1 =

(
2α+ 3βs2

) e

m
(7.14)

ω2
Z2 = ω2

Z1

(
1 +

e2

πϵ0mω2
Z1s

3

)
(7.15)

where ϵ0 is the free-space permittivity, m is the ion mass and e is the ion charge. In the case
of two-ion mixed-species chains, the equilibrium positions are unchanged. The axial angular
frequencies can be computed by taking into account the quartic term as a perturbation of the
usual harmonic well, as described in [Hom+11]. If we consider the characteristic ion distance
as l = (q/8πϵ0α)

1/3, in the regime in which l2 |β/α| ≪ 1, the axial angular frequencies can
be approximated as:

ω± ≃
√

2eα

m1

(
1 + µ±

√
µ2 − µ+ 1

)1/2 [
1 +

1

3× 24/3
∓(1 + µ) + 7

√
µ2 − µ+ 1√

µ2 − µ+ 1

∣∣∣∣βα
∣∣∣∣ l2
]

(7.16)
where ω− ≡ ωZ1, ω+ ≡ ωZ2, m1 is the mass of the heaviest ion (40Ca+ in our case), m2 the
mass of the lightest ion and µ = m1/m2 is their mass ratio.
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The separation process is composed of different stages. Initially, the typical scenario is
that the ions are confined in the same potential well, with α positive and β small. Since
the lowest frequency of the separation process is close to the critical point where α = 0 and
the trap frequencies are given by β, we then raise β to the maximum possible value. This
allows the waveform to be run as fast as possible without violating adiabaticity constraints.
Once this is done, we decrease α from its initial value through the critical point, until it
reaches a negative value and the ions are separated by a distance of around 120 µm. The
process described above is generally preceded and followed by transport waveforms, which
bring the multi-ion crystal to the separation location, and transport the ions from their
separated well positions to the final destinations.

Separation waveform

In the segmented 3d Paul trap, there are two separation regions. The relevant one for the
experiments of this thesis is the left one shown in Fig. 2.3. Here the electrodes involved
on one of the trap wafers are labelled from 4 to 8, and their counterparts on the other
trap wafer from 19 to 23. During the waveform generation, the potential moments of these
electrodes are fitted with 4-th order polynomials in a region of interest (ROI) with a range
of 200 µm around zs = −422.5 µm. The fit for each electrode i ∈ {4, . . . , 8, 19, . . . , 24} gives
the fitted parameters α̃i, β̃i, γ̃i and δ̃i for the approximating quartic polynomial potential
in the ROI:

ϕ̃i (z) = α̃i(z − zs)
2 + β̃i(z − zs)

4 + γ̃i(z − zs) + δ̃i + g̃i(z − zs)
3 (7.17)

which gives the fitted total potential Ṽsep (z) =
∑

i viϕ̃i (z − zs) in the ROI. The {α, β, γ, δ}
parameters of Eq. 7.12 can be computed by using the following set of linear equations:


α
β
γ
δ

 =


α̃4 . . . α̃8 α̃19 . . . α̃23

β̃4 . . . β̃8 β̃19 . . . β̃23
γ̃4 . . . γ̃8 γ̃19 . . . γ̃23
δ̃4 . . . δ̃8 δ̃19 . . . δ̃23





v4
...
v8
v19
...

v23


. (7.18)

To achieve a maximal β, and take into account voltage limits, we perform a minimization
of the cost function:

Csep =
∑
i

[
q1 (α(t)− α̃ivi(t))

2 + q2 (γ(t)− γ̃ivi(t))
2 + q3

(
δ(t)− δ̃ivi(t)

)2]
−
∑
i

β̃ivi(t)

(7.19)
where the constants q1, q1 and q3 are weights for each term. Their typical values used for
the experiments of this thesis are shown in Tab. 7.1. This cost function can be numerically
minimized similarly to the transport cost function of Eq. 7.11, taking into account the
DEATH voltage limit constraint |vi| ≤ 8.9V.

More details on how the trajectories of the parameters {α, β, γ, δ} vary over time have
been chosen are given in Subsec. 8.3.1.

Auxiliary waveforms

Pytrans is also used to generate other waveforms that are used for additional tasks. The
loading conveyor waveform is used to load the ions in the left loading zone while keeping the
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Cost function weight Typical value
r0 5× 10−10

r1 5× 10−4

r2 2× 10−6

q1 100
q2 10
q3 0

Table 7.1: Typical values for the Weights used in the cost functions for the generation of transport
(Eq. 7.11) and separation (Eq. 7.19) waveforms.

ones that are already in the trap in an additional well at the central experimental zone. The
two wells are then merged and transported to the central experimental zone for subsequent
experimental operations.

The reordering waveform is used to deterministically set the order of the ions of a mixed-
species chain. In the work of this thesis, this was performed in the central experimental
zone by applying a radial displacement of the ions by increasing the voltages applied to the
DC electrodes 7, 8 and 9, which pushes calcium further than beryllium according to Eq.
2.18. Afterward, a twisting quadrupole potential is generated by increasing the voltages
of the DC electrodes 7 and 24, while decreasing the ones of the electrodes 9 and 22. This
pushes both ions axially, but the calcium one experiences a stronger force due to the reduced
distance to the DC electrodes. The radial displacement and, subsequently, the quadrupole
potential are removed, realigning the ions along the trap axis but in a specific order. The
voltage shifts used for the radial displacement and the quadrupole potential depend on the
exact ion chain configuration and desired final order. They are experimentally tuned until
the order of the ions is set deterministically, and we notice that they need to be recalibrated
after a few months.

The recrystallization waveform is used for improving the cooling of multi-ion chains
after being subjected to collision with the background gas atoms. This interaction causes
considerable motional excitation, which induces a chaotic dynamic of the ions and strongly
detunes the detection and Doppler cooling beams from the ions’ internal transitions. This
event happens approximately every 30 s per beryllium ion. Decreased detection fluorescence
is automatically recognized by the control system, which triggers the recrystallization wave-
form. This causes the axial frequency to reduce down to around a few hundreds of kHz
for a single calcium, reducing the heating induced by the RF drive while the ions are not
crystallized and subjected to chaotic motion [Van+22] and allowing for an efficient cooling.
As soon as the detection fluorescence returns to a high level, the axial frequency is set to the
original value. The low frequency of the recrystallization waveform needs to be recalibrated
depending on the exact crystal configuration. Generally it is set to ∼ 400 kHz, but in the
case of four-ion mixed-species experiments described at the end of this thesis a value of
200 kHz (calculated on a single calcium ion) was used.

Extension of the library

The Pytrans 1 library includes a set of functions for analyzing waveforms, visualizing the
generated potentials and some additional utilities. During the work of this thesis, I extended
the Pytrans 1 library by adding some functionalities. These involve 1D classical simulation
of axial ion transport and separation, a set of functions for waveform management, manipu-
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lation and visualization (e.g. linear combination, interpolation, voltage modifications), trap
characterization and filter compensation. The latter were implemented but not used in the
work of this thesis.

1D dynamic simulation

The 1D dynamic simulator of Pytrans 1 is used for simulating ion trajectories controlled
by any arbitrary waveform along the trap axis. The ions are treated as classical particles
subjected to classical dynamics. This approximation is valid as long as the ions are not
subjected to squeezing of their states or wavepacket dispersions, which translates into the
condition that the trapping frequencies or, in the presence of anharmonicities, electrode
voltages changes slowly with respect to the harmonic oscillator dynamics [Für+14]. In the
work of this thesis, we mostly consider adiabatic shuttling which satisfies these requirements.
In the simulator, an arbitrary number of ions are initialized at any desired position, and
they are controlled by an arbitrary transport or separation waveform, which is polynomially
interpolated in space and time. The library then computes the forces acting on the particles,
including the Coulomb repulsion, and integrates their equations of motion along the trap
axis at arbitrary timesteps. In the end, the axial normal modes are computed from the
Hessian matrix and they are used to fit the ion oscillations, whose amplitudes are employed in
calculating the motional excitation. The library can also be used to run multiple simulations
with different initial conditions to compute the mean phonon number, the waveforms can
be run at different velocities, and different external perturbations (such as the effect of
waveform filtering or the excitation induced by anomalous heating) can be considered.

7.2.2 Pytrans version 2

The newest version of the library has been designed with a more general and modular
approach than the previous one. In this subsection, I describe the Pytrans 2 library and its
functionalities, highlighting the improvements over the previous verion. A schematic of the
structure of Pytrans 2 is shown in Fig. 7.2.

AbstractTrapModel
- potential
- gradient
- hessian
- ...

DCElectrode

RFElectrode Objective
- objective
- constraint

Ion

Waveform Solvervariable

value

pytrans.analysis
- analyse_potential
- analyse_waveform
- simulate_waveform
- mode_solver

- plot_potential
- plot3d_potential
- mode_solver

pytrans.plotting

value

Figure 7.2: Class diagram of Pytrans version 2. The ovals show the classes, while the arrows
indicate that a class is used by another one to compute the output.
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Trap model

Pytrans 1 was specifically developed for the segmented 3D Paul trap used for the experi-
ments described in this thesis (as explained in Sec. 2.2). Consequently, using this library
for different traps required some modifications. Pytrans 2 was developed to manage any
generic ion trap architecture: it introduces the use of an abstract trap model, which is an
interface between the specific data describing one particular ion trap and the generic al-
gorithms implemented for generating waveforms. In this way, the user can describe their
trap electrodes, potential moments, electric field moments, etc. in different forms, e.g.
through analytical expressions or numerical simulations, and encapsulate it into a compat-
ible Python class. Pytrans 2 has been used with the segmented 3D Paul trap of this thesis,
but also for transporting in a surface trap [Mor+24] and in a Penning trap [Jai+23].

Arbitrary ion crystal

Pytrans 1 can only work with defined potential wells. On the contrary Pytrans 2 takes
into account an arbitrary trapped ion chain. The crystal can be composed as a list of
ion objects, which is used for waveform analysis (for waveform generation this feature is
under development). Each ion object specifies the particle’s mass and charge, and this
information is accounted for by a mode solver. These are taken into account by employing a
mode solver, which was initially developed by Matt Grau in the group and then integrated
into the project by Carmelo Mordini. The mode solver can compute the 3N normal modes
of an N ion crystal as explained in Sec. 2.3, incorporating in a single framework elements
that were previously scattered among different libraries.

Arbitrary cost function

Pytrans 1 manipulates the cost functions defined in Subsec. 7.2.1 inside specialized func-
tions. Whenever a new type of waveform needs to be generated, a new function needs to
be rewritten. Pytrans 2 takes into account a modular approach: the cost function is "as-
sembled" as a linear combination of terms from a set of objective primitives. These can
be used to enforce specific terms in the potential (linear, quadratic, cubic and quartic),
Hessian, electrode potentials or in their time-derivatives.

3D Dynamic simulation

In Pytrans 1 I developed a 1D classical simulator for the trajectories of ions subjected
to transport and separation waveforms. Pytrans 2 features a comparable simulator, but
thanks to the 3D simulation of the trap potential, it can analyze ion trajectories in 3D.
This is particularly relevant for the simulation of the transport and separation experiments
described in the next chapters.

Extension of the library

During the work of this thesis, I worked on testing, debugging and extending the functional-
ities of the package. These include the computation of ions energies during the 3D dynamic
simulation, improved analysis and visualization of the waveforms.



8 Transport and separation results

In this chapter, I describe the work performed to improve the trapping, positioning, trans-
port, separation and recombination of the ion crystals, which are all fundamental building
blocks of the QCCD architecture. Starting from the description of how to choose the para-
meters for each routine, I then describe the experimental results for single-species crystals,
obtained in collaboration with Matteo Marinelli and Vlad Negnevitsky. This formed the
basis for later experiments I performed, in which the performance of the ion shuttling and
separation was improved and extended to more complex mixed-species ion crystals. In this
process, a deeper understanding of the underlying mechanisms has been developed. Some
of the results showed in this chapter are published in [Lan+24].

8.1 Static Confinement

In Sec. 7.1 I described the general shape of an axial harmonic well for confining a short
string of equal ions. Experimentally this potential needs to take into account additional
requirements enforced by the specific ion string structure and the experimental setup. Ions
confined in a static potential are typically subjected to cooling, state preparation and qubit
manipulation. For this purpose, the normal modes involved (generally all) need to have a
projection on the laser beams’ wave vector k⃗. In the segmented 3D trap this requirement is
easily satisfied for the axial modes, but since we have the ability to rotate the radial modes,
it is possible to choose nonoptimal configurations where one radial mode is perpendicular
to the laser beams. For this reason we check the cooling of all modes of a single ion for
any new trap potential we use. Another requirement for cooling the ions is to avoid the
degeneracy of vibrational modes [Ami+11]. Degenerate modes do not have well-defined
directions and only the motion along the cooling laser wave vector will be cooled, while the
motion along other directions will be heated by photon recoil. In the segmented 3D trap the
axial mode frequency can be controlled by the DC electrodes, easily avoiding degeneracy
with the radial ones. For the radial modes, by acting on the potential offset and on the
axial curvature (which has an impact on the radial directions due to Laplace’s equation 2.2)
the degeneracy can be lifted. Regarding the motional frequencies, we attempt to realize
confining potentials that should maximize them. As will be described in Subsec. 8.2.3,
the heating rate of normal modes in Paul traps scale as 1/ωα, where ω is mode angular
frequency and α is a positive experimental constant, favouring higher trapping frequencies
for keeping the ions as cool as possible. The limit to this is placed when working with ion
strings, for which excessively high axial frequency can induce a zig-zag structure. We also
observe that this leads to inefficient recrystallization after collision with background gases,
as described in Subsec. 7.2.1. For all these reasons, the choice of the static well properties
depends on the ion string and specific experiment. Some of the most relevant ones used in
this thesis are shown in Fig. 8.1.
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Figure 8.1: Simulation of the vibrational modes for
a single 40Ca

+ confined at the start of the transport
waveform T0. Laser beams are aligned along the y
axis.

Waveform Z Y X Angle
T0 1.49 2.33 3.32 126°
T1 1.49 1.78 3.66 55°
T2 1.49 2.52 3.19 67°

Table 8.1: Vibrational modes (in MHz) for a
single 40Ca

+ confined at the start of some rel-
evant transport waveforms (see Subsec. 8.2.3
for definitions) and angle of the mode X with
respect to the horizontal axis.

8.2 Transport

The first demonstration of a single ion adiabatic transport in a segmented 3D Paul trap for
quantum computing was reported in [Row+02]. Diabatic transport of up to two identical
ions crystal was shown in [Wal+12; Bow+12]. Transport of mixed-species strings was repor-
ted in different publications, among which is interesting to note [Bar+04; Hom+09]. Over
this period several methods were proposed for minimizing transport excitation, based on op-
timal control [Sch+06] and invariant-based inverse engineering [Tor+11; Lu+14; Für+14].
An automatic routine for transport waveform optimization was implemented in [Ste+22].
In this section I give an overview of how the well trajectories for the transport experiments
of this thesis were chosen and optimized, and I describe the obtained results.

8.2.1 Transport trajectory

Adiabatic transport involves a very slow change of the confining well, in such a way that
an ion starting in the ground state will end up in the same state after transport due to
the adiabatic theorem. Consequently the exact trajectory of {pn(t), ωn(t), dn(t)} should
not affect the final state. This requires a timescale of hundreds of microseconds for the
transport of ions through hundreds of micrometers, which is comparable to the recooling
time. No real transport is adiabatic, thus it is worth considering the effects of diabaticity to
see the limits on how well transport could be performed. As described in [LJ11; Bow+12],
constant frequency ωn(t) = ωn diabatic transport produces a coherent motional state α(t):

α(tf ) =

√
mωn

2ℏ

[
−e−iωnt

∫ tf

t0

dpn(t
′)

dt′
eiωnt′dt′

]
(8.1)
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For a constant velocity transport profile v = dpn(t)/dt, with initial and final impulsive
acceleration/deceleration, the coherent state becomes:

α(tf ) =

√
mωn

2ℏ

[
i

ω

dpn(t)

dt

(
1− e−iωn(tf−t0)

)]
. (8.2)

This state can be nullified by choosing ωn(tf − t0) = 2πk, with k ∈ N or by applying a
sharp voltage pulse at the end of the transport to counteract the displaced state [Wal+12].
This has allowed to transport ions over hundreds of micrometers in just a few microseconds.
For most of the transport routines of this thesis, longer timescales were used, since these
are more robust to parameter changes. For this reason, the position trajectories pn(t) were
chosen according to smooth functions, in order to minimize the initial and final impulse of
the ions, and they can be easily used for transport velocities of a few meters per second.
These trajectories follow:

pn(t)− pn(t0) = [pn(tf )− pn(t0)]P

(
t− t0
tf − t0

)
(8.3)

where:
P (x) =

ρ(x)− ρ(0)

ρ(1)− ρ(0)
, ρ(x) = ln

∣∣∣∣ζ(x)− ie−a

ζ(x)− iea

∣∣∣∣ , ζ(x) = e[ab(2x−1)] (8.4)

where the parameter a determines the sharpness at the start and end of the transport
trajectory and b determines the slope in the middle. Typically a = 3 and b = 1.5 were
used. Analogously, the trajectories of ωn(t) and dn(t) were chosen according to Eq. 8.4.
Fast variations of ωn(t) can lead to motional squeezing, which can be avoided by ensuring
that the following adiabaticity condition [Che+10; Bow+12; Rus+14] is fulfilled:

δ =

∣∣∣∣ 1ω2

dω

dt

∣∣∣∣≪1. (8.5)

For most of the transport waveforms used in this thesis, ωn(t) was kept constant or
slowly changed. An example of transport trajectory can be seen in Fig. 8.5. In order to
control multiple wells simultaneously, adjustments to the transport cost function parameters
were needed, as discussed in [Neg18].

8.2.2 Transport requirements

Designing of transport waveforms needs to take into account additional requirements given
by the specific ion string and the experimental setup, including the ones described for static
well in Sec. 8.1. While transporting, the trapping modes frequencies and directions need
to be carefully designed in order to reduce excitations due to the specific trap noise model.
Generally, the frequencies should be high in order to minimize heating rates. One of the key
findings of the mixed-species experiments was that while ramping the motional frequencies,
any intersection of two modes in the presence of coupling terms can lead to a transfer of
phonon populations, as described in Sec. 4.5. If a vibrational mode is required to be cold for
a specific reason, e.g. for quantum gates, it might get excited by interaction with a hotter
one, which is not relevant to the computation. Not only the intersection of modes can lead
to phonons transfer. In the presence of potential anharmonicities, due to the waveform
or the Coulomb interaction between the ions [Hom+11], one vibrational mode can couple
to another one or more, especially when the frequencies are in some resonant conditions
[Win+98; MSJ03].
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8.2.3 Transport results

In this subsection I describe the performance of different transport waveforms applied on
different ion chains and how the transport requirements were managed. Assessment of the
transport waveforms is carried out in different ways: here I focus on the after-shuttling
phonon distribution, while in Sec. 9.1 I consider the degradation of motional coherence,
which is essential for interferometric measurements of motional states. Motional excitation
is generally measured by cooling down the ion chain close to the ground state in the experi-
mental zone, initializing the internal state, triggering a transport event, keeping the system
static for an idle waiting time and subsequently triggering the previous transport event in
reversed order, returning to the original configuration. Finally, the phonon distribution is
probed, which is performed by driving a blue or red sideband transition, which correlates
the vibrational state to the spin as described in Sec. 3.1, followed by a detection of ions
internal state. An example of this protocol for a mixed-species ion crystal is shown in Fig.
8.2.
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Ca detect
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Figure 8.2: Spatial and temporal schematic of the transport experiments. One row of the segmen-
ted DC trap electrodes is shown. Single 9Be

+ and 40Ca
+ ions are shown as blue and red icons,

respectively. The positions of the ions at different steps of the experimental protocol are indicated.

Heating rate

Ions confined in a Paul trap are continuously subjected to heating due to technical noise,
anomalous heating and other sources depending on the system [Bro+15]. The resulting
heating rate scales as [Hom13]:

Γh(ω) =
e2

4ℏωα
SE,α (8.6)

where:
SE,α = 4

∫ ∞

0
ξα(t)ξα (t+ τ) eiωατdτ (8.7)

ξα (t) = E⃗(t) ·

 3N∑
j=1

e⃗ ′j,α√
mj

 (8.8)
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where ⃗E(t) is the electric field and e⃗ ′j,α is the α normal mode eigenvector component along
direction j. SE,α reduces to SE(ωα)/m for a single ion of mass m affected by an electric field
noise spectral density of SE(ωα). This was characterized in the segmented 3D Paul trap. As
described in [Mar20], in the experimental zone the frequency of the axial vibrational mode of
a single calcium ion was adiabatically changed from fz = 1.1MHz to a desired f ′

Z , where the
ion was left for a variable waiting time, for then returning to the original configuration and
measuring the final thermal state mean phonon number using the blue sideband method.
By repeating the measurement for different waiting times, one can compute the derivative
of the mean phonon number for specific values of f ′

Z . The result of this measurement is
shown in Fig. 8.3, where the data fit gives a scaling of:

Γh(fz) = 1/fα
z + c, α = 5.84(5), c = 48(5) 1/s (8.9)

where fz is in units of MHz. Given that α > 2 this indicates that the electric field noise
spectral density is affected by strong low-frequency components. For motional frequencies
higher than 1 MHz, we extrapolate the heating rate from Eq. 8.9, as we expect to not
have strong electric field noise components in this regime. The measured electric field noise
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Figure 8.3: Heating rate measurement as a function of the axial vibrational mode frequency for
a single calcium ion trapped in the experimental zone. The solid line is a fit of the datapoints,
resulting in a scaling of Γh(fz) = 1/fα

z + c, where α = 5.84(5) and c = 48(5) 1/s. Data was acquired
with Matteo Marinelli and the plot is taken from [Mar20].

spectral density for a single ion can be rescaled to account for an ion string according
to Eq. 8.8. While performing the experiments of transport and separation of a Be–Ca
crystal discussed in the next sections, it was noticed that one radial out-of-phase mode was
subjected to a heating rate that was considerably stronger than the one predicted by Eq.
8.9, even considering the rescaling for this ion chain. In Fig. 8.4a a typical static well used
for ion state preparation in the experimental zone is analyzed. The three lowest vibrational
modes for the three directions of a Be–Ca crystal are highlighted. The mode at the frequency
of 1.42MHz is oriented between the DC electrodes. The value of the heating rate for this
mode was estimated to be around ∼ 3000 quanta/s, which is much higher than values found
for the axial mode. To understand the reason behind this, in another experiment a Be–Ca
crystal was confined in the static potential configuration shown in Fig. 8.4b, which has a
similar radial frequency of 1.41MHz, but oriented along the RF electrodes. The heating
rate of this mode was measured, obtaining a value of 79(17) quanta/s, revealing that a
strong source of electric field noise in the segmented 3D Paul trap is oriented between the
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DC electrodes. The high radial mode high heating rate along the axis between the DC
electrodes was not a limiting factor for the experiments of this thesis, so no further steps
have been performed to reduce it, but it needs to be taken into account in all the situations
in which there might be transfer of energy between the vibrational modes, as discussed later
in this chapter.
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Figure 8.4: Simulation of radial trapping potentials for two different static wells. The ion crystal is
composed of one 9Be

+ (in blue) and one 40Ca
+ (in red). The lowest frequency vibrational modes for

each direction are shown, where the blue is related to Z1, the orange to Y2 and the green to X2. The
arrows indicate the direction of the modes and the length is proportional to 40Ca

+ participation.
The ions are slightly tilted radially due to the low radial confinement compared to the axial one.

Single-species transport excitation

Once the parameters of the transport waveform cost function (Eq. 7.11) are experimentally
optimized, the single 40Ca

+ transport excitation can be measured. In the PhD thesis of Vlad
Negnevitsky [Neg18] it is reported that adiabatic transport waveforms with axial frequency
higher than 1MHz induce an axial excitation that is less than 0.2 quanta. For frequencies
lower than 500 kHz, the mode gets excited by several quanta, which can be attenuated
by transporting faster than 4m/s. For 9Be

+, the same transport waveforms induce lower
excitation due to higher frequencies. This data was taken with trap electrode filters with a
cutoff of 260 kHz. Since then, the cutoff frequency has been lowered down to 68 kHz, but
no appreciable difference in behaviour was observed. Instead, additional characterization
has been carried out. Adiabatic transport of single 40Ca

+ ions with axial vibrational modes
lower than 1MHz induces an axial excitation of several quanta. Strong heating might be
caused by the lack of a proper electrical connection to parts of the DC electrode number 11,
as noted in Sec. 2.2. In one experiment a single 40Ca

+ was confined with an axial frequency
of 1.4MHz, shuttled from the central experimental zone to the right one and back, covering
1690 µm in 1732 µs (see Fig. 8.2), and the entire process excited the axial mode by ∼ 4
quanta. Transport of longer single-species chains of up to 7 ions performs reliably without
losses and additional adjustments, but no detailed characterization of transport of these
longer strings has been performed.

Mixed-species transport excitation

The transport of mixed-species ion chains has been extensively studied and improved dur-
ing the work of this thesis. Achieving low excitation adiabatic transport from the central
experimental zone to the left splitting zone was important, covering a distance of 442.5 µm,
as shown in Fig. 8.2. As reported in [Mar20], this was first tested by shuttling a Be–Ca
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crystal, with 9Be
+ on the left and 40Ca

+ on the right, with a waveform in which the DC
offset d was gradually ramped from d=1.4V down to d=−1.5V, while the simulated axial
frequencies are fZ1 = 1.77MHz and fZ2 = 4.59MHz, as shown in Fig. 8.5(a). The change
of DC offset was needed as in the central experimental zone the cooling laser had better
projection onto the radial modes for an offset of 1.4V, while in the left splitting zone the
lower DC offset was used to achieve higher confining frequencies during separation. Due to
the importance of this waveform in later separation experiments, it will be referred to as T0
waveform. After a round trip transport of 1ms, the axial in-phase mode Z1, axial and radial
out-of-phase modes Z2 and Y2 got excited by roughly ∆n̄Z1 = 0.71(6), ∆n̄Z2 = 0.49(3) and
∆n̄Y2 = 4.82(72) quanta. The intense excitation of the mode Y2 is due to the strong heating
rate affecting low-frequency radial modes aligned along the DC electrodes, described in the
previous section.

(a)

(b)

(c)

(d)

(e)

(f)

T0

TC

T1

T2

Figure 8.5: Analysis of the most relevant transport waveforms discussed in the text, performed with
Pytrans 2. On the top, the simulation of the lowest four energetic vibrational modes’ frequencies
for a Be–Ca chain for (a) T0, (b) TC, (d) T1 and (e) T2 transport waveforms are shown. On
the bottom, the simulated position of the ions along the trap axis as a function of the waveform
timesteps for (c) T0 and TC, for (f) T1 and T2 are shown. Waveform T1 has 30 more timesteps
than T2, but the position of the ions remains invariant in the final samples and is thus not indicated.
The timestep duration depends on the slowdown (see Sec. 5.2), but we typically set it to 0.81 µs,
unless stated otherwise, such that T0 and TC take around 405 µs, while T1 requires 697 µs and T2
requires 672 µs. The other mode frequencies are not shown as they are higher than 10MHz and are
not considered in the analysis of the text. The frequencies show small ripples that are an artifact
of Pytrans 2 simulation and not physical.

In a second transport waveform, denoted as TC and analyzed in Fig. 8.5(b), the DC
offset was kept constant to a value of d=1.4V, with axial frequencies similar to above, and
the final mode temperature showed better results as ∆n̄Z1 = 0.21(3), ∆n̄Z2 = 0.01(2) and
∆n̄Y2 = 0.04(5) quanta. The low excitation of mode Y2 is due to its orientation along the
RF electrodes. Although TC offered an improvement, the DC offset at the splitting zone
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was too high for separation. Moreover, it was noticed that, after a round trip, the order
of the ions was systematically set to Be–Ca, independent of the initial configuration. This
was attributed to the presence of radial stray fields, which displace the ions radially by
an amount which is proportional to the mass, as shown in Eq. 2.18, and was inducing a
systematic reordering. We also noted that the stray fields change with the DC electrode
voltages, as described in Sec. 6.2.3, most likely due to discrepancies between the trap model
and the real trap. In all the experiments described so far the compensation of the stray
electric fields was only calibrated at the start of the sequence and left unchanged for the
remaining part, being unable to prevent reordering of the ions.

In a third transport waveform, referred to as T1, the DC offset was set to a constant
value of d=−1.2V for most of the time and was ramped down to d=−1.5V in the last steps.
In this way, the radial modes could be properly cooled at the start, while keeping the Be–
Ca axial modes unchanged and Y2 mode higher than 1MHz. We also aimed to implement
time-varying compensation for the stray electric fields synchronously to the transport events.
This was not possible initially, as the shim voltages were controlled by the AD5371 DAC,
which has a sampling rate of 540KSPS, slower than the 100MSPS of the DEATHs. For this
reason, 4 DEATH outputs were disconnected from the DC electrodes 14-15-29-30, and were
then grounded, since they are not involved in the experiments of this section. These DEATH
controllers were connected to the 4 shim rows, commonly controlling all the electrodes of
each row. Afterwards, the stray fields were compensated at the start, middle and final step
of the transport waveform and the compensation voltages were linearly interpolated between
these values. This was enough to maintain the initial order of the ions (Be–Ca or Ca–Be)
along the entire sequence, which was verified by separating the ions at the end, excluding
a possible double reordering that could have happened during a round trip. At this point,
it was important to characterize the heating caused by the transport waveform T1. It was
found that the axial mode Z1 was excited by coupling to the radial mode Y2, which is
subjected to a strong heating rate as already mentioned. This was happening because the
two vibrational modes were getting closer to each other by less than 100 kHz and were also
coupling. This was found to happen when the ions were positioned close to the gap between
electrodes 7 and 8, in which the confining well cannot keep the frequencies constant with the
voltage limits of our system. A first attempt to mitigate the coupling was to change the shim
voltages during the crossing, similar to the approach shown in [Bla+11] where the authors
employ shim electrodes to maintain a constant orientation of the modes and, consequently,
minimize their coupling. This showed an effect, but no clear improvement was obtained. A
more successful approach was to modify the transport waveform to increase the frequency
gap between the modes Z1 and Y2, by lowering the potential offset, leading to the modes
not coming close to each other. The initial and final conditions were not changed and they
were connected to the intermediate potential offset configuration by a smooth transition.
This offset was experimentally tweaked and the best results were obtained with a value of
d=−1.4V. This waveform made it possible to perform a Be–Ca round-trip transport in
1.08ms with a thermal excitation of ∆n̄Z1 = 0.60(5) quanta. It is important to take into
account that fluctuations in the AWG voltage calibrations make the measured excitation
slightly change thus the transport performances need to be checked periodically. In the
experiments of this thesis, it was necessary to set the voltage offset to −1.55V at a different
point of the waveform T1 in which the modes Z1 and Y2 get close a few months after the
initial calibration to counteract these drifts, obtaining a round-trip thermal excitation of
∆n̄Z1 = 0.82(8), ∆n̄Z2 = 0.36(7) in 1.39ms. While doing so, it was noted that the minimum
frequency gap between the modes Z1 and Y2 necessary to nullify any phonon transfer for
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a Be–Ca crystal is around 230 kHz. This value was then kept as a reference and taken into
account for other waveforms too. The calibration of the frequency trajectories not only
depends on the number of ions for each species but might depend also on their order due to
the presence of pseudopotential gradients and anharmonicities that shift the modes [Mar20].
The T1 waveform was tested for a Ca–Be crystal (so with 40Ca

+ on the left and 9Be
+ on the

right) and the required offset for enlarging minimum frequency gap was −1.45V, instead of
−1.55V. The final configuration of the waveform T1, including the changes in the offset to
increase frequency gaps, is the one shown in Fig. 8.5(d). Due to the variations introduced
to the parameter trajectories of T1 described so far, the stray fields were compensated at
an increasing number of points of up to 11, to prevent any reconfiguration of the crystals.

Once waveform T1 was characterized, we generated a new transport waveform T2 as
shown in Fig. 8.5(e), in which the frequency of mode Y2 was maintained throughout to be
higher than Z1, motivated by the separation experiment described in Subsec. 8.3.6. Several
requirements had to be satisfied at the same time for this waveform, reducing the available
parameter space size. Firstly the lowest axial frequency mode Z1 for Be–Ca had to be higher
than 1MHz, as described before. During transport, mode Y2 should be at least 230 kHz
higher than Z1, while minimizing the number of intersections with Z2, the latter being 2.6
times larger than Z1 for a harmonic well (see Eq. 2.32). Similarly to the previous waveforms,
the radial modes of the initial sample should have the same projection onto the cooling laser,
while connecting to the low DC offset required for the separation waveform at the end. The
waveform T2 was able to satisfy most of these requirements, and the position of the ions
follows the smooth trajectory described by Eq. 8.4, while the frequencies and offset of d=0V
are not changed until the ions reach the splitting zone and then are linearly ramped to a
specific configuration. The performance of T2 was tested in different ways. Initially, we
measured a Be–Ca round-trip thermal excitation of ∆n̄Z1 = 0.46(3), ∆n̄Z2 = 0.59(7) and
∆n̄Y2 = 1.07(27) for a slowdown of 80 (which is the sample holding time, see Sec. 5.2),
as for the previous transport waveforms, requiring a transport duration of 1.34ms. The
transport duration does not include an additional wait time of 150 µs applied after each
transport event to ensure the stabilization of the voltages, which was used for this and the
next measurements. These results show a low transport excitation. For the Y2 mode, the
heating rate contribution is 1.07(27) quanta in 1.34ms, which we interpret as being due
to a reduction of Y2 heating rate down to ∼ 800 quanta/s due to the higher frequency of
2.28MHz.

In another experiment, the timescale of the whole Be–Ca round-trip T2-T2−1 was
scanned by changing the waveform slowdown, and the final excitation of the axial modes
was measured, obtaining the results shown in Fig. 8.6. Here the data shows a low thermal
excitation of ∆n̄Z1 = 0.16(2) and ∆n̄Z2 = 0.14(2) quanta for a single-way transport duration
down to 46 µs (slowdown of 5), where the ions are shuttled at an average speed of 9.7m s−1.
For faster operations (slowdown of 4), the motional population suddenly shows a combin-
ation of coherent and thermal fractions for mode Z1, indicating non-adiabatic excitation.
The phonons relative to the data point of shortest duration have a thermal contribution of
n̄th
Z1 = 0.04(6) and a coherent contribution of n̄coh

Z1 = |α|2 = 3.36(10) phonons. For even
shorter transport durations, the coherent displacement increases and the sideband analysis
becomes challenging, for this reason they are not shown in the plot. Diabatic changes to
the curvature and ion position during transport might induce squeezing as well as coherent
displacement, and the rise of these effects can generally be simulated by analyzing T2. In
an attempt to quantify whether to expect squeezing during transport, we calculated the
adiabatic parameter of Eq. 8.5 is satisfied throughout the whole process. For the fastest
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(a) (b)

Figure 8.6: (a) Example of extrapolation of phonon population in the axial motional mode of
40Ca

+ (red) and 9Be
+ (blue) after a transport sequence. Datapoints are fit with the thermal

phonon distribution of Eqs. 4.7 and 2.46 (solid lines) and mean phonon numbers of n̄ = 1.40(8)
for the calcium ion and n̄ = 1.44(9) for the beryllium ion are extracted. (b) Excitation of the axial
modes after the transport protocol T2-T2−1. Mean phonon numbers are plotted as a function of the
total protocol time and they are composed by the sum of the thermal and coherent contributions.
The plots are also shown in [Lan+24].

data point of Fig. 8.6 we simulated a value of δ ≤ 0.04. Moreover, no sudden change in δ
as a function of the transport duration is visible. Regarding the coherent displacement, we
simulated the classical ion dynamics using Pytrans and projected their displacements and
velocities at each timestep onto the normal modes as described in Sec. 2.3, from which we
computed the energy of each mode and converted it into phonons. In the diabatic transport
regime, the simulation showed a strong variation of the final phonon number depending on
the slowdown, even including the effect of the out-of-vacuum low-pass filters, which slow and
distort the resulting transport potentials. This suggests that the transport waveform needs
to be modified to be robust in the diabatic regime [Bow+12; Wal+12], without excluding a
possible contribution coming from an imperfect control of the trapping potentials.

Waveform T2 was used to transport a reversed order Ca–Be crystal for a round-trip
transport time of 1.2ms, obtaining a thermal excitation of ∆n̄Z1 = 0.57(5) and ∆n̄Z2 =
0.20(3) quanta, showing similar results to the Be–Ca transport.

Larger ion crystal transport

After an extensive study of transport and separation with two-ion chains, we extended this
work by transporting three- and four-ion mixed-species crystals. For the former, we trapped
both Be–Ca–Be and Ca–Be–Ca and we could readily use waveform T2 to transport them,
for which the vibrational modes for the first sample are shown in Tab. 2.5. Thanks to
the separation waveform, we could also verify that the order of the ions is maintained after
a single transport event, proving that the same stray field compensation used for two-ion
chains works for these crystals too. In these configurations, no additional characterization
of the transport process was performed. We also performed a similar test with a Ca–Be–
Ca–Be ion crystal. In this configuration, it was found that the first sample of T2 did
not allow for efficient cooling of the ions, requiring frequent uses of the recrystallization
sequence described in Subsec. 7.2.1 for initializing the state of the ions. For this reason,
T2 was substituted with a transport waveform of lower axial trap curvature and DC offset,
corresponding to an axial in-phase mode frequency for Ca–Be–Ca–Be ion crystal of fZ1 =
1.274MHz, as shown in Fig. 2.6, and a DC offset of d = 0V. This allowed a more efficient
cooling but required a different transport waveform. The new one kept the ions confined in
a similar potential well during the whole transport from the central experimental zone to
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the left splitting zone, where the potential was linearly ramped to connect to the separation
waveform. During the whole process, the stray field compensation was performed by using
the same shim potential configuration of the T2 waveform and, despite the different DC
electrode voltages, it was possible to maintain the order of the ions, which was verified by
separating them.

8.3 Separation

The first demonstration of a two ion crystal adiabatic separation in a segmented 3D Paul trap
for quantum computing was reported in [Row+02], which was also employed in more com-
plex experiments in [Bar+04]. Diabatic separation of ion chains was discussed in [Bow+12;
Rus+14]. Interesting analyses about this process can be found in [HS05; Kau+14]. In this
section I give an overview of how the parameters for the separation waveforms were chosen
and optimized in the experiments reported in this thesis, and I describe the obtained results.

8.3.1 Separation trajectory

As discussed in Subsec. 7.2.1, the separation waveform is characterized by four time-varying
parameters {α, β, γ, δ}. Here I describe how the trajectories of these parameters have been
chosen according to previous work described in more depth in the thesis of [Neg18].

Firstly the trajectory of α(t) is chosen. At the initial time t0, β0 ≃ 0 and α0 = 5× 106

V/m2, such that the single calcium axial frequency, computed from Eqs. 7.12 and 7.4, is
ω0 =

√
α02e/mCA = 2π × 780 kHz. This value is chosen arbitrarily halfway between the

minimum axial frequency experienced during the separation process and the usual one of
the transport waveforms, which will be connected by a linear interpolation. At the final
time tf , βf is kept as high as possible while αf = −α0 = −5× 106 V/m2. In between, the
parameter trajectories are chosen to minimize motional excitation. As discussed before, β
is kept as high as possible. In the meantime, in order to minimize impulsive acceleration
around the critical point, the waveform is re-parameterized in terms of the ion separation
distance s(t), which gives α(t) by solving Eq. 7.13. This is done in different steps:

• A trajectory of α is defined between α0 and αf . This trajectory is composed of
three linear segments of different slopes and 100 points each, where the second part is
centered around α = 0 and is less steep.

• For each point k of the trajectory of α, the cost function of Eq. 7.19 is minimized
by the solver and returns a set of voltages v⃗[k] and the simulated attainable values of
α[k] and β[k]. The latter two values are used to determine an estimate of the attained
ion separation s[k].

• Since s[k] is monotonic with respect to α[k], a 4-th order spline is used to interpolate
the coordinate sets (x, y) = (s[k], v⃗[k]), obtaining a re-parametrization of the voltages
v⃗(s) as a function of separation distance s, instead of time.

• The separation distance trajectory between the initial (s0) and final (sf ) values is
chosen according to a power-law function [Kau+14]:

s(t) = s0 + τ(t)ϵ (sf − s0) (8.10)

with the normalized time τ = (t− t0)/(tf − t0) and 2 ≤ ϵ ≤ 3.5. For the mixed-species
experiments described in this thesis, the separation distance changes from s0 ≃ 7 µm
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to sf = 120 µm, employing an exponent of ϵ = 3, which is chosen due to the trade-off
between minimizing the time in the shallow well and ion acceleration. The computed
parameter trajectories are shown in Fig. 8.7.

Finally, τ is chosen at 300 evenly-spaced points, at which s(t) and, in turn, the voltages
v⃗(t) are directly calculated from the spline function, obtaining a voltage matrix that is the
waveform.

Experimentally it was found that the presence of stray axial potential curvature induced
an additional second-order term in the quartic potential, which shifts the time at which the
critical point happens. Since this is uncontrolled, there is a possibility that this modifies
the separation distance trajectory and might induce impulsive acceleration, increasing axial
motional excitation. In order to mitigate this phenomenon, the separation waveform can be
linearly combined (using the routine described in Subsec. 5.2.2) with a second waveform that
offsets the axial curvature around the separation region-of-interest. This waveform, referred
to as axial potential curvature waveform, smoothly adds 1V to the electrodes at the center
of the separation zone (electrodes 6 and 21). The weight of this waveform, corresponding
to a multiplication of it by a dimensionless factor, is experimentally adjusted such that the
critical point happens at the correct time.
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Figure 8.7: Parameter trajectories of the separation process. Ion separation distance s, axial in-
phase motional frequency ω for a Ca–Ca crystal and polynomial coefficients α and β are plotted as
function of a. α and b. normalized time τ . The critical point is located at τ = 0.5, where α = 0
and ω = 230 kHz. The plot is taken from [Neg18].

The axial potential gradient (or axial electric field) parameter γ is required to be set to
γ = 0 for a symmetric separation. Due to imperfect potential moments and stray electric
fields, it experimentally assumes a different value than that expected from simulations.
Initially, several waveforms were generated with different axial electric fields in the range
−300 ≤ γ ≤ 300 V/m and then tested experimentally. Afterward, this parameter has
been set to γ = 0 in the separation waveform, and the waveform was linearly combined
with a second waveform that aims to add a finely tuned axial potential gradient around
the separation region of interest. This waveform, which will be referred to as axial electric
field waveform, smoothly increases by 1V the voltages of the electrodes on the left of the
separation zone (electrodes 5 and 20) and decreases by 1V the voltages of the electrodes
on the right (electrodes 7 and 22) as shown in Fig. 8.10 (right). This adds an axial field of
magnitude 1372.8 V/m. By experimentally choosing the summing weight of this waveform,
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the axial field is finely tuned. As shown in the next sections, generally the required axial
field magnitude is in the range of [-50, 50] V/m.

The DC potential offset parameter δ is generally not constrained, thus its cost weight
q3 of Eq. 7.19 is set to 0. Consequently, the solver let this parameter change throughout
the separation waveform, reaching the lowest negative value of −1.5V at the critical point
in order to maximize the axial frequencies.

In order to complete the separation waveform, the two potential wells have to be indi-
vidually transported from a separation of 120 µm to 865 µm, leaving the left well in the left
experimental zone and the right well in the central experimental zone. This is achieved by
a two-well linear transport, whose velocity is computed as ds(t)/dt|t=tf from the previous
part of the waveform and is kept constant almost until the end of the process, where it gets
smoothly reduced to minimize final excitations. The number of timesteps of this part of the
waveform depends on the velocity and the distance to cover. The final separation waveform
is shown in Fig. 8.8. Recombination of the ions is performed by reversing the separation
waveform, with the possibility to adjust the tunable axial electric field if necessary.

8.3.2 Auxiliary waveforms for separation

Separation experiments of ion chains not only require the separation waveform described
above but also some auxiliary ones. Firstly, the ions should be shuttled from the central
experimental region to the left separation zone using a transport waveform, for which an
in-depth analysis and optimization have been carried out; the results we discussed in Subsec.
8.2.3. An example of such a waveform is shown in Fig. 8.8. Second, once the separation
is completed and the two potential wells are located in the central and left experimental
zone, we need to detect the state the ions trapped in both potential wells. For the well
located at the central experimental zone, this can be performed directly after the crystal
separation. In the left experimental zone, for which no laser beam line is present, this
cannot be done. Consequently, an additional waveform called parallel transport waveform
and referred to as PT waveform is required, which transports the left potential well to the
central experimental zone, while shuttling the right well to the right experimental zone,
located at +845 µm. The generation of this waveform can be performed with the usual
transport waveform generation routine. Thanks to this procedure, we can also operate on
the ions trapped in the left potential well. A sketch of the ion positions during the sequence
is shown in Fig. 8.9.

8.3.3 Assessment of the separation process

Assessment of the separation waveform performances is based on the induced motional
excitation of the ions or their detection fluorescence for a specific separation time duration.
The presence of high thermal excitation, non-adiabatic effects (creation of displaced coherent
or squeezed states) and/or low detection fluorescence are all unwanted behaviors of badly
performing waveforms.

Separation experiments are based on cooling down the ions and initializing their states
in the experimental zone, then transporting the chain to the separation region, where it gets
separated employing the separation waveform. The phonon distribution of the vibrational
modes of the ions in the right potential well can be probed by driving a blue or red sideband
transition and detecting the internal state. The ions are then subjected to the parallel
transport waveform and the motional state of the ions in the left potential well is probed
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Figure 8.8: (top) Voltages applied to the relevant trap electrodes shown in Fig. 8.9 and (bottom)
generated potentials at the trap axis while running the transport and separation waveforms, respect-
ively T2 and S2 in text. The origin of the trap position axis corresponds to the central experimental
zone, shown in the trap schematic in Fig. 8.9. The plots are also shown in [Lan+24].

in an analogous manner. Finally, the waveform sequence is run in reversed order, returning
to the initial configuration. Here the motional state of the ions might be further probed.
Generally, the phonon distributions are interrogated either after the ions get separated or
after they return to the original configuration. In the first case, the experiment focuses on
characterizing the performances of the separation process or calibrating some of the involved
parameters, and the sequence of waveforms is also referred to as T−S−PT , where T stands
for a generic transport waveform, S for separation and PT for the parallel transport. A
sketch of this sequence is shown in Fig. 8.9. In the second case, the sequence of waveforms is
also indicated as T −S−S−1−T−1, where the superscript denotes the time order direction
of the waveform. This form allows transport and separation waveforms to be run until a
specific sample and then reversed, in order to probe some particular feature. More details
will be given in Subsec. 8.3.6.

8.3.4 Single-species separation results

In this subsection, I describe the results obtained after separating ion chains composed of
only one ion species, either calcium or beryllium. Most of the experiments involved two-ion
crystals, but the separation process was also tested on longer ion chains of up to seven ions.

For the Ca–Ca and Be–Be crystals, the waveform sequence T0–S1–PT was applied,
where T0 is the transport waveform described in Subsec. 8.2.3, S1 is the separation waveform
computed as described in Subsec. 8.3.1 and PT is the parallel transport waveform described
in Subsec. 8.3.2. This sequence is experimentally optimized by running several iterations
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Figure 8.9: Spatial and temporal schematic of the separation experiment. One row of the segmen-
ted DC trap electrodes is shown. Single 9Be

+ and 40Ca
+ ions are shown as blue and red icons,

respectively. The positions of the ions at different steps of the experimental protocol are indicated.
The image is also shown in [Lan+24].

while scanning the axial electric field γ over a range of tens of Vm−1. This term changes the
number of ions distributed to each well during separation. We then detect the fluorescence
of the ions in each well as a function of γ, obtaining a characteristic n-step function, where n
is the number of ions involved. Any deviation from uniform steps indicates a suboptimality
of the sequence, which might be relevant if it affects the region around the chosen γ. An
example of this type of scan is shown in Fig. 8.10 (left): the chosen γ for the low-excitation
separation sequences is the value in the middle of the step where the ions end up trapped
in individual well, −17.5Vm−1 in the plot. This parameter is calibrated on a daily basis
in order to ensure the optimality of the process, but deviations of at most 1Vm−1 were
observed over several weeks. Once γ has been chosen, the separation experiment can be
executed again and characterization of the motional states of the ions can be performed. For
the Ca–Ca chain, the vibrational states are initially cooled down close to the ground state,
achieving axial motional states with mean thermal occupation of n̄Z1 = 0.18(2) and n̄Z2 =
0.11(1) phonons. After transporting the crystal for 355 µs (slowdown 70) and performing
separation in 721µs (slowdown 70), the thermal occupation of the axial mode of each ion is
n̄W1,Z = 1.56(6) and n̄W2,Z = 1.63(7) quanta, respectively for the ion in the right (well 1)
and left well (well 2). For the Be–Be chain the initial thermal occupation of the axial modes
is n̄Z1 = 0.13(2) and n̄Z2 = 0.19(2) phonons, they are transported for 255 µs (slowdown
50) and separated in 518 µs (slowdown 50), resulting in thermal occupations of n̄W1,Z =
0.37(1) and n̄W2,Z = 0.51(2) quanta. Thanks to the results of the mixed-species separation
presented later in the chapter, we can now understand the reason behind the difference
in final temperatures Ca–Ca and Be–Be. By analyzing the vibrational modes of the Be–
Be and Ca–Ca chains while being transported by T0, as shown in Fig. 8.11(a) and (b)
respectively, we can notice that the vibrational modes Y1 and Y2 intersect with both axial
vibrational modes Z1 and Z2. As mentioned before in this chapter, Y2 is affected by a
strong heating rate (which might also be true for Y1 due to its low frequency, but it was
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not verified). The intersection of Y1 and Y2 with Z1 and Z2, respectively, might induce
energy transfer between these modes, while this is prevented in the other cases as single-
species crystals in-phase and out-of-phase modes cannot couple to each other (see Subsec.
4.5.2). This phenomenon happens again when the separation waveform S1 reduces the axial
mode frequencies. During separation, the energy of Z1 and Z2 are distributed among the
axial modes Z of the individually confined ions. These could be the reasons behind the
stronger Ca–Ca separation excitation, while Be–Be ion chains are not affected by these
effects, demonstrating a lower final temperature.

Figure 8.10: Application of the axial field γ for separating the ions. (left) Fluorescence detention
of the two wells after separation of Be-Be crystal as a function of γ. On top of the plot, the schemes
show the final arrangement in the different regions, delimited by dashed lines. (right) Schematic
showing the signs of the shifts to the electrode voltages used to generate the axial electric field γ.

We further characterize the separation process by changing the transport and separa-
tion duration, through the slowdown, and measuring the final axial motional excitation of
the ions employing a red sideband pulse. The results are illustrated in Fig. 8.12, where
separation time duration is varied from 518 µs (slowdown 50) to 925µs (slowdown 90). All
the data points are obtained from a fit of a thermal population, which we found to perform
reasonably well, indicating that non-adiabatic effects are not generated in this range of
parameters. The general behavior has only a very small dependency on the time variation
and an almost equal performance for ions stored in different wells. There is a small increase
of phonons at 650 µs and 863 µs for the ion in well 1 in the Ca–Ca case, which could be
attributed to experimental imperfections, e.g. imperfect calibration of γ. The nearly con-
stant behavior of the data suggests that a more detailed characterization of the separation
process can be achieved by repeating the measurement over a broader range of times, which
might be considered in a future experiment.

The use of the separation experiment for single-species crystals has been also applied to
ion chains of up to four 9Be

+ and seven 40Ca
+, as shown in Fig. 8.13. This works robustly

and the steps are uniform in the four 9Be
+ chain. In the case of seven 40Ca

+, the steps are
uneven for well 1, indicating a suboptimality, but no additional study was performed as this
crystal was not used in experiments.

8.3.5 Introduction to mixed-species separation

Once the operation of single-species separation experiment was confirmed to work, we used
the same waveform sequence T0-S1-PT for Be–Ca crystals. In initial experiments we were
able to calibrate the axial electric field γ and separate the ions into the two final wells.
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Figure 8.11: Analysis of the transport waveform T0 for single species ion chains, performed with
Pytrans 2. On the top, the simulation of the vibrational mode frequencies for (a) Be–Be and (b)
Ca–Ca ion crystals are shown. In (c) the position of the ions along the trap axis as a function of
the waveform timesteps are simulated. The frequencies show small ripples that are an artifact of
Pytrans 2 simulation and not physical.

Figure 8.12: Excitation of the axial modes of Ca-Ca and Be-Be crystals after the separation
sequence T0-S1-PT, scanning the total time of S1. The index 1 indicates the ion trapped in the
first well that reaches the detection zone after separation, while the index 2 indicates the ion that
arrives after parallel transport.
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(a) (b)

Figure 8.13: Fluorescence detection after separating multi-ion single-species chains. In particular,
it is shown the separation of (a) four-ion 9Be

+ and (b) seven-ion 40Ca
+ crystal. The axial field

offset has been subtracted for comparison.

However, the ions were lost after a few hundred shots and the characterization of the final
phonon populations was a challenging task. To investigate the reasons behind these un-
wanted phenomena, the Pytrans 1 one-dimensional dynamic simulation was used to identify
any suboptimality of the transport and separation waveforms. The results indicated an axial
motional excitation of around n̄Ca = 0.2(1) and n̄Be = 0.05(2) for the typical experimental
timescale. Together with the contribution of the anomalous heating, computed from the
measurement of a single calcium, the code was not able to reproduce the experimental data.
We also experimentally characterized the motional excitation after a round trip transport
T0-T0−1, obtaining the results shown in Subsec. 8.2.3. This process caused an intense
excitation of the radial out-of-phase mode Y2, which was initially thought to be caused
by the strong varying radial stray fields generated by the changing DC electrode voltages,
which tilt the crystal by pushing the ions radially proportionally to their masses (Eq. 2.18).
This led us to characterize the DC electrodes’ potential moments as described in Sec. 6.2.3
to create a better model and mitigate the radial stray fields. Although showing promising
results, the characterization was tested during the transport of a Be–Ca crystal, but resid-
ual stray fields were still intense enough to cause a reordering of the ions. We think that
this happened because the adapted model was valid only in a small range of DC voltages,
and an extension to a larger domain was experimentally demanding. For this reason, we
adopted the strategy of using time-varying compensation of the stray fields through the
shim electrodes, correcting for an imperfect model of the trap. It was later found that the
intense excitation of Y2 was caused by the strong radial heating rate, and an improvement
to the transport waveform was performed through several steps described in detail in Sub-
sec. 8.2.3. In the next subsections, I describe the key steps that led us to solve several issues
affecting the separation process when applied to a mixed-species crystal and the obtained
results.

8.3.6 Mixed-species separation results

Separation improvements

The first important step involved the use of time-varying compensation of the radial stray
fields while running the transport and separation waveforms. As discussed in Subsec. 8.2.3,
this was an important aspect of the mixed-species transport waveform that allowed the shut-
tling of the crystal while avoiding unwanted and uncontrolled re-ordering of the ions, which
could cause motional excitation. This calibration was performed for 12 points throughout
the waveform, with lower density after the critical point, where it has reduced importance
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due to the trapping of the ions in individual wells. This compensation was checked daily
and it was required to be re-calibrated on a timescale of a few weeks. Subsequently, we
observed that the order of the ions was maintained. Nevertheless, the re-ordering waveform
was still run at the start of each shot to compensate for changes in the crystal configuration
due to collisions with background gas. The excess micromotion compensation, together
with the use of the improved transport waveform T1, brought the final phonon population
to the limit of the regime where it could be characterized by sideband spectroscopy (around
n̄ ≃ 10), which was then used for the next steps of optimization at the expense of acquiring
more data.

Figure 8.14: (a) Time-resolved measurement of the axial phonon populations after running the
separation sequence forward up to a certain separation time, wait for an idle time of 150 µs and
then execute the sequence backward. The separation waveform S1 starts at t = 0, with negative
times belonging to the transport waveform T1. (b) Simulated (solid lines) and measured (diamond
points) mode frequencies of the lowest four modes throughout the separation sequence. Uncertainties
on the measured data points are smaller than the marker size. The position of Z1/Y2 mode crossing
at 30 µs is indicated by the vertical black dashed line. The critical point is denoted by the vertical
dotted line at 243 µs, after which the ion separation is greater than 29 µm and the normal modes
smoothly become uncoupled. During this transition, their color is kept constant due to the strong
uneven mode participation. The inset shows measurements and simulations close to the avoided
crossing between Z1 and Y2. The plots are also shown in [Lan+24].

The second improvement involved the use of a time-resolved measurement of the phonon
population in the axial modes during the separation of the Be–Ca crystal. This was per-
formed by running the separation sequence T1-S1 up to a certain timestep, keeping the
ions static for an idle time of 150 µs, which ensured the reach of the desired voltage config-
uration, and reversing the waveform sequence, returning to the central experimental zone.
Finally, the phonon population was characterized by sideband spectroscopy on calcium and
beryllium for the modes Z1 and Z2, respectively, according to their highest axial mode
participation. The results for some samples of the S1 waveform are shown in Fig. 8.14
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(a). In part (b), the simulated frequencies for the modes Z1, Z2, Y2 and X2 (the latter
being the second radial out-of-phase mode) of S1 are shown, while the frequencies of the
modes Z1 and Z2 were also measured by parametric excitation for some significant separa-
tion times. All the waveforms are executed with a slowdown of 80, high enough to avoid any
non-adiabatic effect caused by the sudden truncation of the sequence. At this slowdown,
the entire T1 waveform requires 697 µs and S1 is run for 823 µs. The populations measured
at negative times are related to the transport waveform T1, which induces n̄Z1 ≃ 1.17(11)
and n̄Z2 ≃ 0.18(9) quanta. This measurement revealed that a sharp increase in the phonon
population of Z1 was occurring around 30 µs from the start of S1 (corresponding to sample
38, highlighted by the black dashed line). This is close to the expected crossing of the modes
Z1 and Y2. We therefore conjectured that this induces a transfer of phonons from the ra-
dial mode (which is affected by a strong heating rate) to the colder axial mode according
to the Landau-Zener-Stückelberg-Majorana theory explained in Subsec. 4.5.1. In order to
control this coupling mechanism, we need to act on the coupling term ∆ of Eq. 4.22. The
goal was to maximize the diabatic transition probability PD, which in turn minimizes the
probability of exchanging phonons between the modes. The parameter ∆ results from an
off-diagonal term in the Hessian of the trapping potential. As discussed in Subsec. 4.5.2,
for single-species crystals this term corresponds to a rotation of the confining potential axis
with respect to the trap axis. For the mixed-species case, the presence of radial electric
fields displaces the ions proportionally to their masses, resulting in a tilted configuration
that changes the normal modes’ orientations, producing an additional channel for introdu-
cing the coupling terms. This behavior is minimized by the radial stray field compensation
mentioned before. To further reduce the coupling term, we generated a heuristic quadru-
pole potential by adding 1V to electrodes 5 and 22, and −1V to electrodes 7 and 20, as
shown in Fig. 8.15 (a). This voltage is turned on before the start of S1 and turned off
a few samples after the crossing point to not affect the remaining part of S1, obtaining
the quadrupole potential waveform. A schematic of the timing at which the potentials are
turned on is shown in Fig. 8.14 (d). This waveform is then linearly combined with S1 and
its weight aq is scanned to minimize the phonon population transferred to the Z mode of
calcium at the end of S1, given that this ion has the highest participation in Z1. This is
estimated by driving the blue sideband with a pulse significantly shorter than a pi time
and then measuring the spin population, giving a proxy that indicates, for higher values, a
lower mean phonon number for the final thermal state. An example of this scan is shown
in Fig. 8.15 (b). This plot correlates with 8.15 (c), in which a lower coupling between
the modes results in a reduced distance between the vibrational modes Z1 and Y2 at the
crossing point. In the shown example, their difference is reduced down to ≃ 11 kHz. This
became a typical regime of working, giving a probability of diabatic transition of PD = 0.99
and experimentally allowing to obtain a ∆n̄Z1 = 0.27(18) quanta after a round trip. Al-
though the frequency difference between the modes close to the crossing can be reduced
even further by individually calibrating the potentials applied to each electrode, this was
not needed for the work of this experiment. For a higher minimum separation of the modes
the probability PD gets reduced. As an example, in the inset of Fig. 8.14 (b) the minimum
difference without using the quadrupole waveform is ≃ 23 kHz, which results in PD = 0.7
and induces an excitation of Z1 of ∆n̄Z1 = 3.13(38) quanta. These results demonstrate the
efficacy of the quadrupole term in decoupling the modes. Regarding mode Z2, the cross-
ing with modes Y2 and X2 does not induce an appreciable increase in phonons, and no
dependency on the quadrupole waveform weight factor is noted. This phenomenon can be
associated with the high mode participation of calcium in Y2 and X2, while this quantity is
low for Z2, effectively decoupling the modes by the high mass ratio of the two ion species.
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Figure 8.15: Application of a quadrupole potential for decoupling the vibrational modes. (a)
Schematic showing the signs of the shifts to the electrode voltages used to generate the quadrupole
potential. (b) Calibration of the quadrupole scaling factor aq for the separation sequence (T1-S1)
and recombination one (T1-S1-S1−1-T1−1). At the end of the two sequences, a short blue sideband
pulse tuned at the axial mode Z or Z1, respectively, is driven and the calcium spin population is
measured as a proxy for mode excitation. A high value indicates low excitation. (c) Measurement
of the Z1/Y2 mode frequencies as a function of aq close to the avoided mode crossing. (d) Timing
of the waveforms that are linearly combined with S1. The separation waveform starts at t = 0 and
ends at t = 823µs, while for negative times the ions are transported by T1.

For the other datapoints, the truncation of the separation waveform shows a small increase
in the axial mode excitation right after the critical point and in the linear transport parts,
which is reduced by running the waveform until the end.

Some additional aspects relate to the use of the quadrupole potential. We noticed
that the calibration of the required quadrupole term needed to be performed on a daily
basis, as the mode coupling is sensitive to the voltage drifts of the trap. This was a key
element of this calibration that was underestimated in the first sets of data acquisition.
Secondly, the weight factors for the quadrupole term were different for the separation and
recombination parts of the sequence, as shown in Fig. 8.14 (b), where the recombination
weight is calibrated by running a blue sideband transition on Z1 on calcium after a full
round trip. We observe that not only are the required weights different, but the one used
for separation is the worst choice for recombination. The reason behind this phenomenon
is unclear. Another interesting aspect of the separation-recombination sequence is that the
double passage through the avoided crossing creates a Landau-Zener-Stückelberg-Majorana
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interferometer as described in Sec. 4.5.1. This means that, in the case of no use of the
quadrupole potential, the phonon populations of the modes Z1 and Y2 are split into
the two modes during separation, acquire a phase for the rest of the sequence and then
interfere during the recombination. This phenomenon leads to a fluctuation of the phonon
population in the two modes depending on the exact mode trajectories. A large energy
gap induces a considerable dynamical phase, which relates to the population probability
through Eq. 4.30. As an example, in Fig. 8.14 (a) we can estimate the dynamical phase ζ1
of Eq. 4.29 acquired by the modes Z1 and Y2 after the crossing point at 30 µs, where we
stop the waveform at 81 µs, wait for an idle time tidle = 150 µs and then return to the mode
crossing again. The dynamical phase is computed by the frequency difference of the diabatic
vibrational states around the crossing point that scales as fY 2(t) − fZ1(t) ≃ mt, where
m = 14 × 109Hz s−1, and the minimum energy gap of the coupled modes ∆/h = 23 kHz,
where h is the Planck’s constant. The total dynamical phase is then ζ1 ≃ 459 rad, which
highlights how quickly the probability of the mode occupancy changes between the data
points. For this reason, the hopping of phonons between the modes is not noticeable in the
acquired undersampled data. Additional analysis of this type of experiment can be found
in Ch. 9.

Once the contribution of the mode crossing was characterized and controlled by exploit-
ing the quadrupole waveform, we could focus on the performance of the entire separation and
recombination processes. This was achieved by running different waveforms at a slowdown
of 80, and the final excitation for different sequences involving T1, S1 (linearly combined
with the axial electric field waveform, quadrupole potential waveform and axial potential
curvature waveform) and PT waveforms are summarized in Tab. 8.2. The time duration of
each sequence is also shown. It is important to highlight that the PT waveform required
around 1.1ms, which constituted a significant amount of sequence time, but we did not try
to optimize this further as it induces an excitation of less than 0.2 quanta (for the left well,
for the right one it is considerably higher due to the disconnected electrode number 11, as
described in 8.2.3, but it does not affect the separation sequence). Moreover, the excita-
tions caused by the recombination sequence T1-S1-S1−1-T1−1 are higher than the ones for
separation T1-S1-PT. While for Z mode of beryllium and Z2 of Be–Ca the mean phonon
numbers are in a ratio of roughly 2 (considering the contribution of PT), this is not the case
for the Z mode of calcium and Z1 of Be–Ca for unknown reasons.

The relevance of the study of mode coupling increases with the number of ions involved
in the transport and separation operations. For more complex crystals, due to the higher
number of vibrational modes, more mode crossings are possible which can couple phonon
populations of several modes. While in the particular case of dealing with shorter ion chains,
as described in this chapter, the crossing of vibrational modes can be avoided altogether by
carefully designing the initial and final potential wells, this gets harder for more complex ion
chains. For the Be–Ca crystal, in order to remove the crossing of the modes Z1 and Y2 (the
other intersections are not subjected to coupling, as mentioned before), we had to generate
a new transport waveform called T2 and a new separation waveform S2. For the former,
a detailed description can be found in Subsec. 8.2.3, while for the latter it was sufficient
to remove the first 100 samples of S1 (corresponding to the first 81 µs in Fig. 8.14). This
ensures that Z1 and Y2 are separated by at least 380 kHz for both T2 and S2. Afterward,
the performance of the transport sequence T2-T2−1, separation sequence T2-S2-PT and
recombination sequence T2-S2-S2−1-T2−1 (the latter two involving the linear combination
of S2 with the axial electric field waveform and axial potential curvature waveform) was
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Sequence Duration n̄Z1 n̄Z2

T1 - T1−1 1.4ms 0.82(8) 0.36(7)

T2 - T2−1 1.34ms 0.46(3) 0.59(7)

T1 - S1 - S1−1 - T1−1 3.2ms 2.26(23) 0.98(11)

T2 - S2 - S2−1 - T2−1 2.8ms 3.01(20) 1.12(13)

Sequence Duration n̄Ca n̄Be

T1 - S1 - PT 2.7ms 1.85(15) 0.79(9)

T2 - S2 - PT 2.5ms 1.40(8) 1.44(9)

Table 8.2: Mean phonon number in the axial modes of motion for different transport/separation
sequences. The upper four are for forward and back operations, probing mode Z1 using 40Ca

+

sidebands and mode Z2 using 9Be
+. The lower two are mean axial excitations of the calcium and

beryllium ions, with the latter measured after the PT segment. The sequence duration is the time
for running the full waveform sequence.

characterized and the results are shown in Tab. 8.2. The performance for T1-S1 and T2-S2
are comparable, demonstrating the efficacy of the quadrupole potential in decoupling the
modes. The sequence T2-S2-S2−1-T2−1 shows an excitation that is higher than the one-
directional T2-S2-PT for 40Ca

+, with the Z1 mode being heated the most, as would be
expected given that this low-frequency mode would be most affected by heating. For 9Be

+

the sequence T2-S2-S2−1-T2−1 shows lower excitation than the separation sequence only.
Although the reason is unknown, we suspect that this might be caused by the fluctuations in
the control voltages affecting the performance of PT. Despite this phenomenon, the results
lie in an acceptable range.

Dynamic simulation

I performed a 3D dynamic simulation of the separation and recombination sequence S1-S1−1

for a Be–Ca crystal using Pytrans 2 and computed the thermal mean phonon population
of each normal mode during the entire process. Although this simulation only gives ap-
proximated results due to a high sensitivity to the actual experimental potential, we can
use it to get a deeper understanding of the process. The results are shown in Fig. 8.16.
The waveforms include the contributions of an axial electric field to separate the ions, an
axial potential curvature and a quadrupole potential to match the experimentally measured
frequencies.

In Fig. 8.16 (c) and (d) the motional states have an initial energy to simulate the induced
heating due to the transport T1-T−1 and the heating rate of the trap. In (c) the quadrupole
is such that at the avoided crossing of Y2/Z1 the strength of the coupling is higher, while
in (d) the strength is reduced. The exchange of energy between Y2 and Z1 shows different
magnitudes for the two cases. After recombination the interaction between the modes
induces constructive interference of phonon populations in one mode and destructive in the
other. By changing the time in between the two avoided crossing of Y2/Z1 or the coupling
strength the distributions in the two branches can be tuned. The intersection of Y2/Z2
shows only a small exchange of phonons due to the low coupling strength. A small transfer
of phonons between different modes is also visible when the frequencies are in integer ratios
due to the anharmonicity of the Coulomb potential [Hom+11].

In Fig. 8.16 (e) the motional states of all modes are initially in the ground state and the
increase in the energies is due to the separation and recombination processes only, which
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show excitations of at most one quanta in the axial vibrational modes.

(a)

(b)

(c)

(d)

(e)

Figure 8.16: Simulation of the separation and recombination sequence S1-S1−1 for a Be–Ca crystal.
In between the two waveforms, the ions are statically confined for 4µs and the waveforms are run
with a slowdown of 80. (a) Axial positions of the ions. (b) Mode frequencies of the lowest four
vibrational modes. The small ripples are an artifact of Pytrans 2 simulation. (c) Simulation of the
mean phonon numbers for the relevant modes. The initial energies are similar to the experimental
ones and the quadrupole is chosen such that the minimum frequency difference between Y2 and
Z1 is ∼ 46 kHz, so in a high-coupling regime. (d) Simulation of the mean phonon numbers for a
quadrupole that induces a minimum frequency difference between Y2 and Z1 of ∼ 9 kHz, so in a
low-coupling regime. (e) Same as (d) but for motional states initially in the ground state. For (c),
(d) and (e) the excitation in between the waveforms is due to the sudden stop of S1 and was not
noticed in the experiments due to the trap filters. The increase in thermal energy shown around
500 µs and 1300 µs can be attributed to the waveform solver transitioning from the separation phase
to the two-well linear transport that brings the ions to their final positions (see Subsec. 8.3.1), and
was not observed in the experiments.
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Separation process duration

In another experiment, the duration of S2 in the separation sequence T2-S2-PT was scanned
by changing the waveform slowdown, and the final excitation of the axial modes of Be–Ca
was measured, obtaining the results shown in Fig. 8.17. Here the data show a low thermal
excitation of ∆n̄Z = 1.53(9) quanta for calcium and ∆n̄Z = 1.06(8) quanta for beryllium
for a S2 duration down to 559 µs (slowdown of 60). For a duration of 375 µs (slowdown
of 40), the motional populations start to show a combination of thermal and coherent
contributions, which for calcium they are n̄th

Z = 0.42(15) and n̄coh
Z = |α|2 = 0.93(4) phonons,

respectively. Instead, for beryllium they are n̄th
Z = 0.18(10) and n̄coh

Z = 0.80(4) quanta.
For an even shorter separation of 192 µs (slowdown 20), non-adiabatic effects become very
pronounced, with n̄th

Z = 0.44(14) and n̄coh
Z = 2.64(6) phonons for calcium, n̄th

Z = 0.31(14)
and n̄coh

Z = 0.85(5) quanta for beryllium. For this timescale, we calculated an adiabatic
condition of δ ≤ 0.03 from Eq. 8.5, indicating that the resulting states should not be
squeezed. These outcomes show a positive scenario: the thermal contribution is pretty low
and decreases with the separation duration. Moreover, even if the coherent contribution
becomes relevant at shorter timescales, it was shown in [Bow+12; Wal+12] that this term
can be removed by RF de-excitation or employing sharp "kick" potentials, which could be
applied in a further extension.

Figure 8.17: Excitation of axial modes after the separation sequence T2-S2-PT, scanning the total
time of S2. Excitation is composed of the sum of the thermal and coherent contributions. The plot
is also shown in [Lan+24].

Separation of Be–Ca vs. Ca–Be

Another interesting aspect of the separation process involved the comparison of the per-
formance for different orders of the two-ion chain, namely Be–Ca and Ca–Be. By executing
the separation sequence T2-S2-PT with the usual time duration of 2.5 ms on both configur-
ations, we originally noticed very strong excitation in the case of Ca–Be, such that proper
thermometry by sideband spectroscopy was challenging. The first step to investigate the
reasons behind this phenomenon involved the re-calibration of the axial electric field, which
changes by a few V/m depending on the exact ion crystal configuration, as shown in Fig.
8.18. This suggests the presence of a pseudopotential gradient along the trap axis [Hom13].
The separation of Ca–Be strongly improved by reducing the slowdown of the S1 waveform
from the usual value of 80 down to 23, requiring a separation duration of 220 µs. In this
way the resulting axial thermal excitation is n̄Ca = 3.8(6) and n̄Be = 0.24(3). This was
achieved by using an axial field of −31.6Vm−1. We also set the axial field to a value of
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−32.3Vm−1, obtaining n̄Ca = 3.2(5) and n̄Be = 1.9(2), which shows an improvement on
the calcium performance, but a degradation for the beryllium one.

(a)

(b)

(c)

Figure 8.18: Fluorescence detention of the two wells after separation of two-ion chains as a function
of the axial electric field. In particular, the crystals are: (a) Ca–Ca, (b) Be–Ca and (c) Ca–Be. Data
was measured on the same day and the axial field ranges are the same for comparison.
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A further study was performed by measuring the frequency and heating rate of Z1 in
the two ion configurations close to the critical point, and the results are shown in Fig. 8.19.
Here the minimum of Z1 frequency and the timestep at which this is reached vary depending
on the ions’ order. The exact reason behind this phenomenon has not been investigated,
but this might be caused by anharmonic terms in the potentials (as described in [Hom+11])
or by different positioning of the ions in the two configurations. Regarding the heating
rates, a large discrepancy can be noticed in the two cases, and in particular the highest
value is reached for Ca–Be, despite the motional frequency being higher. Before the critical
point, at similar frequencies, the heating rate is considerably lower in the Ca–Be case, while
for Be–Ca it is comparable. No further studies were performed on this phenomenon, but
it might be caused by an asymmetric radial orientation of the crystal induced by residual
stray fields, which makes the two modes prone to different electric field noise sources. These
results also highlight a discrepancy noticed when performing heating rate measurement on
a single calcium ion (Subsec. 8.2.3), even after rescaling for the two-ion case (as shown in
Eq. 8.8). Considering that in between the two measurements the experimental setup was
modified, the electric field noise spectrum might have changed accordingly.

Figure 8.19: Z1 frequency (top) and heating rate (bottom) measurements for the Be–Ca and Ca–
Be chains as a function of time during separation waveform S1. The critical point is at ∼235 µs
for Be–Ca and at ∼203 µs for Ca–Be. The heating rate measurements are shown only at relevant
separation times and where the measurement uncertainty is sufficiently low. The plots are also
shown in [Lan+24].

Separation of longer mixed-species ion crystals

Once the separation of two-ion crystals was optimized, the next step involved separation of
longer ion arrays. The extension to three-ion chains was performed by using the same wave-
forms for reordering, transport, separation (linearly combined with the axial electric field
waveform and axial potential curvature waveform) and parallel transport. Consequently, we
could easily load Ca–Be–Ca and Be–Ca–Be crystals and deterministically set their orders,
which was maintained while running the sequence T2-S2-PT. We could then calibrate the
axial electric field during separation and detect the ions in each well. The results are shown
in Fig. 8.20 (a) and (b). In the Ca–Be–Ca case, the ions generally show no loss of fluor-
escence and the steps are clear. Only for a very negative axial field the detection counts
decrease, indicating a possible nonoptimal beam alignment or excitation of the vibrational
modes, but in this regime all the ions end up in the left well (W2 in the figure) and they
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are not separated. For the Be–Ca–Be chain, the steps are clear, but the fluorescence of the
ions collected in the left well is low, possibly indicating beam misalignment or motional ex-
citation. In this situation, even the fluorescence detected during the usual Doppler cooling,
which happens after recombination, decreases by 1/3 and 3/4 for calcium and beryllium,
respectively, suggesting that the waveforms are not optimized and a longer cooling process
is required.

In another experiment, we employed a Ca–Be–Ca–Be crystal. In this case, as described
in Subsec. 8.2.3, in the initial potential well the vibrational modes were not efficiently
cooled. For this reason, the transport waveform T2 was substituted by one that had a lower
axial trap frequency and lower DC offset. This also required a recalibration of the reordering
waveform, while S2 and PT were left unchanged. Afterward, the separation experiment was
performed analogously to the three-ion cases and the result is shown in Fig. 8.20 (c). Also
in this case the steps are clear, and we notice a loss of fluorescence only when three or more
ions are trapped in W2.

For the experiments described in this subsection, no additional measurement of the
after-separation temperature of the vibrational modes was performed.

8.3.7 Next steps

Currently the adiabatic transport and separation processes applied to single and mixed-
species crystals work reliably and in the low excitation regime. Faster timescales and longer
ion arrays have been initially exploited and characterized.

One current limitation is that in the mixed-species separation the calcium ion is occa-
sionally lost. This is thought to be caused by an imperfect cooling of the vibrational modes
in which calcium has high participation. In the future, a better cooling scheme might be
found. Moreover, diabatic transport and separation should be further studied and optim-
ized, even by automatically designing the waveform parameter trajectories, as described for
a single ion in [Ste+22]. Longer ion chains and multiple wells might also be investigated,
allowing the implementation of complex algorithms involving the use of multiple qubits,
without the use of extensive sympathetic recooling.
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(a)

(b)

(c)

Figure 8.20: Fluorescence detention of the two wells after separation of three- and four-ion chains
as a function of the axial electric field, similarly to Fig. 8.18. In particular, the crystals are: (a)
Ca–Be–Ca, (b) Be–Ca–Be and (c) Ca–Be–Ca–Be. Axial field ranges depend on the ion array.



9 Motional state interferometry

In Ch. 4 I described the theory behind the Landau-Zener-Stückelberg-Majorana transitions,
and discussed that consecutive interactions of two normal modes can give rise to interference
of their phonon populations. In other trapped-ion systems this phenomenon was analyzed
involving the internal states of an ion in [Zha+14; ISN23], but not by exploiting the motional
states.

In this chapter I describe a preliminary experiment in which two vibrational modes of a
single calcium ion were made to interact to obtain an interferometric measurement of their
phonon occupancies. To analyze the interference we employed a modified motional coherence
measurement scheme. I first describe this technique and then analyze the experimental
results. This experiment serves as a test bench for a broad class of experiments involving
manipulation of interacting motional states.

9.1 Motional coherence

The motional coherence of a superposition of Fock states of a vibrational mode can be
measured by employing a modified Ramsey sequence. We first initialize the state of the ion
in | ↓, 0⟩ and then we apply a π/2 carrier pulse followed by a π red-sideband pulse, obtaining
the state:

|Ψinit⟩ =
1√
2
[| ↓, 0⟩+ | ↓, 1⟩] . (9.1)

The confining potential is modified to a desired one (which could involve a transport pro-
cess), wait for a time twait, for then returning to the initial configuration. The whole process
requires a time τ . This process induces a relative phase shift between the two Fock states:

|Ψprobe⟩ =
1√
2

[
| ↓, 0⟩+ eiφ(τ) |↓, 1⟩

]
. (9.2)

A final sequence of π red-sideband pulse and π/2 carrier pulse induces the state:

|Ψfinal⟩ =
1

2

[
(1 + eiφ(τ)) |↓, 0⟩+ (1− eiφ(τ)) |↑, 0⟩

]
. (9.3)

If we scan the phase ϕ of the last carrier pulse, we can measure the probability of the spin
population in | ↓⟩ state to be:

P|↓⟩(τ, ϕ) =
1

2
[1− C(τ) cos(φ(τ)− ϕ)] (9.4)

where the contrast C(τ) is 1 in the ideal case. Heating rate and fluctuations in the trap
voltages make the ion experience a different φ(τ) at each measurement shot, reducing the
contrast. By scanning ϕ, we can retrieve the contrast as a function of τ , which is then fit
with an exponential decay to obtain the coherence time. In the experimental setup, the
motional coherence for the axial mode of a statically confined calcium ion was measured
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to be around 10 ms, while for the radial ones it reduces down to ≃ 1 ms due to the non-
stabilized RF circuit [Flü19]. If the axial frequency changes but stays above 0.5 Mhz during
the transport part, we noticed no appreciable reduction in its motional coherence. Below
this threshold we noticed a drop in the contrast, due to electrical noise. Transporting the
ion from the central experimental zone to any other zone reduces the coherence time by one
order of magnitude, but further characterization is required to understand this better, also
for the radial modes.

9.1.1 LZSM interferometry

Motional coherence was also measured for a transport process affected by mode cross-
coupling. The waveform keeps the calcium ion in the central experimental zone but modifies
the radial mode frequencies such that one mode intersects and interacts with the axial one,
as shown in Fig. 9.1. This experiment measures the motional coherence of the axial mode
by creating a superposition of Fock states, running the transport waveform, waiting for a
final idle time twait = 2.8 µs, before returning to the original configuration by an inverse
transport process and measure the spin probability contrast. Both the transport and its
inverse are run with decreasing speed (increasing slowdown), and the probability contrast
as a function of the total transport duration is shown in Fig. 9.2.

There are several aspects to take into account. The mode cross-coupling induces a
superposition between the states | ↓, 0ax, 0Y⟩, | ↓, 1ax, 0Y⟩ and | ↓, 0ax, 1Y⟩, where the sub-
script indicates the mode of the state. The probability for the ion to be in the second or
third state after the first mode interaction depends on the diabatic transition probability
PD = exp (−π∆2/2ℏv), introduced in Subsec. 4.5.1, which changes with the velocity of the
transition v. In the process, the phase of the two states is shifted by a Stokes phase ϕS

given by Eq. 4.23, which also depends on v. Afterwards, the two states acquire a relative
dynamic phase ζ1 as shown in Eq. 4.29, until they interact again when the transport process
is reverted. Given that the dynamic phase depends on the difference between the two mode
frequencies, which changes from ≃ 7 kHz to ≃ 201 kHz after the avoided crossing in the sim-
ulation, it reaches values that are much larger than the Stokes phase, which is in the range of
[0, π/4]. The two phases are summed together to get the Stückelberg phase ΦSt = ϕS + ζ1.
The probability for the phonon to be measured in the axial mode after returning to the
original trapping configuration is given by 1−P double

+ = 1− 4PD(1−PD) sin
2ΦSt, obtained

from Eq. 4.30. Its amplitude changes depending on the transport speed, as shown in the
simulation of Fig. 9.2. The final state of the ion after the π red-sideband pulse and π/2
carrier pulse is:

|Ψfinal⟩ =
1

2

[(
1 + eiφ(τ)

(
−2i

√
PD(1− PD) sin(ΦSt)

))
|↓, 0ax, 0Y⟩

+
(
1− eiφ(τ)

(
−2i

√
PD(1− PD) sin(ΦSt)

))
|↑, 0ax, 0Y⟩

+ eiθ(τ)
(
−PDe

−iζ+ − (1− PD)e
−iζ−

)
(|↓, 0ax, 1Y⟩ − |↑, 0ax, 1Y⟩)

]
.

(9.5)

where ζ+ and ζ− are given in Eq. 4.29 and θ(τ) is the dephasing between the axial and
radial mode. The experimental data suggests that this dephasing reduces the maximum
contrast, but a proper experimental characterization is required. Moreover, we expect that
this effect is enhanced due to the coupling of an axial mode with a radial one, as the DC
and RF voltages are generated by different sources.
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From a comparison of the experimental data and the oscillations of 1−P double
+ , it becomes

evident that the Ramsey fringes are undersampled. A finer sampling would enable a better
characterization. Furthermore, the data suggests a reduction in their oscillation range with
increasing transport duration.
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Figure 9.1: Simulation of the normal mode frequencies for the waveform employed in the LZSM
interferometry experiment. The radial mode Y and the axial mode are coupled and subjected to an
avoided crossing, as shown in the inset.

9.1.2 Outlook

In future experiments, the mode frequencies have to be measured precisely to better charac-
terize the interferometer, as small deviations from the simulation would strongly affect the
overall behavior. In particular, the probability of the diabatic transition is exponentially
sensitive to the frequency separation at the crossing. For a simpler characterization, the ex-
periment could be modified to perform the transport process at a constant speed, changing
only the wait time twait and measuring the probability contrast. The probability of being
in the | ↓, 1ax, 0Y⟩ state could be measured in a simpler way by means of a red-sideband
transition on the axial mode, which is possible only if the phonon populates this state. This
measurement can also be performed on the radial mode to correlate the two results.

This experiment shows an application of the interaction of motional states, which can be
employed in a broader range of experiments with applications in cooling of vibrational modes
[Fab+24], in quantum computing and simulation with motional states [LB99; Toy+15;
Che+21] and quantum sensing [DRC17]. If an ion array is employed, the mode cross-
coupling between multiple vibrational modes can be exploited for creating high-dimensional
entangled states, which are generally challenging to prepare [EKZ20].
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Figure 9.2: Preliminary results of the LZSM interferometer. The experimental data show the spin
probability contrast, indicating that the motional coherence of the axial mode oscillates due to
the coupling with the radial mode Y. The connecting lines are used solely for readability and do
not indicate the actual underlying behaviour. The simulation shows the probability of finding the
phonon in the axial vibrational mode after interacting two times with the radial one.



10 Summary and outlook

This thesis covers the implementation of mixed-species shuttling and reconfiguration tasks
for QCCD architectures for building a scalable trapped-ion quantum computer. We invest-
igated the working principles of ion traps involving mixed-species crystals and the main
components of the experimental setup used for the experiments of this thesis. We described
the set of tools necessary to manipulate and diagnose the state of the ions. We analyzed
the control of cross-coupling of normal modes of motion employing different methods. We
presented the control system of the setup along with its recent upgrades. We analyzed
the methods we employ to compensate and account for intrinsic and excess micromotion,
alongside with an analysis of the validity of the trap model. We showed the working prin-
ciples and implementation of the library Pytrans used for designing waveforms to shuttle
and reconfigure ion crystals, highlighting how different requirements of different waveforms
are accounted for. These waveforms were then employed with single- and mixed-species ion
crystals, characterizing the induced motional excitation. In this process, several sources of
heating were studied and quantified, and diverse solutions for minimizing their impacts were
identified. In particular the tunable interaction of different vibrational modes was employed
to manipulate the motional states of the ions.

In chapter 6 we analyzed the influence of intrinsic and excess micromotion. We de-
scribed the improvements in the control system to account for intrinsic micromotion, al-
most nullifying its impact. We also developed an automatic routine for excess micromotion
compensation, which yields the required shim voltages to cancel the radial stray fields in a
few minutes. By performing this compensation for a set of different trapping conditions, we
noticed that manufacturing imperfections of the trap were a major source of stray fields,
where the electrodes of one chip wafer have a stronger influence at the ion position than the
other electrodes. We subsequently rescaled the DC voltages to account for this deviation,
but this measure did not eliminate stray fields while changing trap potentials and more
sophisticated methods are necessary.

In chapter 8 we described relevant experimentally-driven designing criteria related to
waveforms used for static confinement, transport and separation of single and mixed-species
ion crystals. We characterized heating rates caused by technical noise for the axial vibra-
tional modes of a single calcium ion, and compared to the mixed-species case, for axial
and radial vibrational modes and for different orders of the ions. We analyzed the per-
formance of the transport process for a two-ions mixed-species array in different conditions,
showing that multi-point compensation of stray fields was necessary to maintain the order
of the ions. Different transport velocities were analyzed, obtaining excitations as low as
n̄Z1 = 0.16(2) and n̄Z2 = 0.14(2) quanta for the axial in-phase and out-of-phase modes,
respectively, after a round trip through a distance of 442 µm in 46 µs. For higher velocities,
we showed the transition from the adiabatic to the diabatic regime. We also transported
larger single-species crystals of up to 7 ions and mixed-species ion arrays of up to 4 ions. A
full characterization was not performed, but the methods we developed allowed us to easily
design ready-to-use transporting waveforms for these crystals too. We characterized the
separation of single-species arrays of two 9Be

+ or two 40Ca
+ ions and measured excitations
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of n̄Be < 0.8 and n̄Ca < 2.3 phonons for the axial vibrational modes respectively. These
waveforms were not readily applicable to the mixed-species scenario, due to reordering in-
duced by stray fields and coupling of vibrational modes that led to heat transfer from a
hot radial mode into the axial modes, typically used for quantum gates. Multi-position
compensation of stray fields prevented ion reordering, while the application of a quadrupole
potential enabled decoupling of normal modes, thereby reducing the motional excitation
below n̄Be = 1.44(9) and n̄Ca = 1.40(8) quanta. We also varied the separation time and
demonstrated the transition into the diabatic regime. We compared the separation of ion
crystals of different orders, revealing strong deviations in performance. We employed the
same separation routines for longer arrays and demonstrated arbitrary separation into two
parts, but no further characterization was performed. We expect that the methods we de-
veloped in this thesis can be readily applied to these larger crystals to retrieve low-excitation
operations.

In chapter 9 we demonstrated the employment of cross-coupling of two vibrational modes
of a calcium ion for measuring Landau-Zener-Stückelberg-Majorana interferometry. The
preliminary results showed Ramsey fringes in the phonon occupancy of one of the modes as
a function of the transport duration, indicating a periodic swapping between the modes. A
simulation of the occupation probability was performed and suggestions for improvements
of the experiment were made. Future applications for these methods involve the cooling of
vibrational modes [Fab+24] and the generation of high-dimensional entangled states among
several motional states [EKZ20].

The methods developed in this study pave the way for numerous potential future exper-
iments. The in-depth characterization of the heating processes associated to transport and
separation of mixed-species ion crystals could facilitate the development of an automatic
optimization routine for generating and testing optimal waveforms, based on the work of
[Ste+22] but applied to longer crystals. An obvious extension is to investigate further how
fast such operations can be performed, aiming to control non-adiabatic operations, allowing
the shuttling and reconfiguration of the crystals faster and with lower excitation [Bow+12;
Rus+14; Che+10].

The capability to transport, separate and recombine arbitrary mixed-species ion crys-
tals, along with an improved laser and control system, allows us to perform more complex
algorithms in the experimental setup. These involve quantum error correction schemes
[LR14; Rya+24], quantum simulation [Fos+24] or Measurement-Based Quantum Comput-
ing (MBQC), for which first studies were carried out in parallel work to this thesis [Mar20;
Beh]. In the future, larger multi-zone traps, where multiple chains of ions are continu-
ously reconfigured, will become essential to demonstrate quantum computing with many
qubits [Mos+23]. This technological advantage will require a large number of optimally
controlled electrical connections, automatic characterization and compensation of trapping
electric fields, stable laser beams (even using integrated optics [Mor+24]) and high-fidelity
quantum gates and detection.

The Pytrans library has now reached a release stage and it is available at [Mor+23].
While its documentation and certain features are still in the development phase, it is already
usable by other teams. The objective is to establish a unified software framework that
can be applied across various experimental setups, accelerating research and standardizing
solutions for common problems in the field. It is already in use in many experiments across
our research group, and I hope to see its adoption more widely in the community. Once
this library is adopted by other institutes and companies, collective efforts can be made to
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enhance it.
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