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Abstract

Rust is a novel programming language that is rapidly gaining adoption in the software
industry thanks to its performance and safety properties. Among its strengths, Rust’s
type system is designed to detect at compile time certain kinds of memory-related bugs,
such as dangling pointers and null dereferences. However, the language does not aim to
detect functional errors; how to do this efficiently is in general an open topic in the field
of software verification.

This thesis explores the link between Rust and software verification, showing how the
static properties of Rust can be leveraged to develop new, simpler, verification techniques.
In particular, we identify formalization, specification and automation challenges that
block user-friendly, scalable, deductive verification. To address these challenges we
develop two novel verification techniques for Rust that work on different subsets of the
language.

Our first new technique focuses on verification of programs that are entirely written in safe
Rust: the portion of the Rust language in which the compiler takes care of guaranteeing
absence of memory-related bugs. For this setting, we define a model of the properties of
Rust types in the implicit dynamic frames logic — a variant of separation logic — using
the Viper language. We then develop a new static analysis that tracks the capabilities of
Rust types (e.g., the ability to read or write a certain memory location), and we use its
results in an algorithm that constructs automatically a core proof of the program, which
encodes the immutability and aliasing guarantees of Rust types. This proof is expressed
in the implicit dynamic frames logic, but our technique hides this as an implementation
detail, effectively shielding the verification users from the complex details of the logic. To
verify the functional correctness of a program, users only have to specify the functional
behavior of its functions, writing contracts such as preconditions and postconditions.
To this end, we offer program annotations with syntax and semantics identical to
those of boolean Rust expressions, with some restrictions regarding side-effects and
determinism that we describe with a definition of purity. Some aspects of Rust require
special annotations. For example, to describe formally the relation between returned
references and the function arguments that they block according to type system rules,
we introduce a new program annotation called a pledge. We implement our technique in
an open-source verification tool called Prusti, which we use to evaluate our technique on
several collections of programs. Overall, by leveraging Rust types to construct the core
proof automatically, the annotations required by our technique are drastically simpler,
and shorter, than those of verification techniques for other programming languages.

When a Rust program is not entirely safe, but also contains unsafe code, the strong
properties of Rust types are weakened by some exceptions. For example, libraries that
are implemented with unsafe code can expose interior mutability, meaning that they
can mutate values behind shared references that, in a fully-safe program, would be
immutable. Naively applying the verification techniques for fully-safe code to this
setting would be unsound, because a verifier would incorrectly assume that interior
mutability cannot cause mutations. To handle these cases, we develop a second new
verification technique to reason about safe clients: safe programs that use trusted libraries
implemented with unsafe code. These clients pose verification challenges due to the



ability to observe interior mutability. To address this, we base our technique on a new
notion of implicit library capabilities: properties of a Rust type, such as immutability or
non-aliasing, that are not defined by the Rust language as in the case of references, but are
determined by the developers of the Rust library. We introduce new library annotations
to declare these capabilities explicitly, and we develop a verification technique that uses
the capabilities to verify the functional correctness of safe clients based on an encoding
into first-order logic. Our technique supports an expressive variety of capabilities: core
capabilities correspond to the properties of regular Rust references in safe code, while
extended capabilities go one step beyond and enable expressing new properties that do
not have an equivalent in safe code. Each of these capabilities has particular properties,
including unique access to a memory location, write access, immutability, and absence of
concurrent usages. For our core capabilities, we prove correctness of their properties by
developing a novel proof technique. This derives the properties of core capabilities from
those of Rust references, side-stepping some problems posed by the current absence
of formal semantics for unsafe code. We implement our technique in an open-source
verifier called Mendel, which we use to verify functional properties of sequences of
API calls to popular Rust libraries, including Rc, Arc, Cell, RefCell, AtomicI32, Mutex,
and RwLock. Our results show that our technique is expressive enough to specify the
functional behavior of real-world API methods, while requiring little annotation on the
client side of their libraries.

Overall, the verification techniques that we develop are lightweight because they require
few user annotations, while still being rich enough to verify expressive user-chosen
properties. The verification tools that we build around them are designed to offer a
particularly curated user experience, thanks to some usability choices and solutions that
we also describe.



Sommario

Rust è un linguaggio di programmazione innovativo che sta rapidamente guadagnando
terreno nell’industria del software grazie alle sue prestazioni e proprietà di sicurezza.
Tra i suoi punti di forza, il sistema di tipi di Rust è progettato per rilevare durante la
compilazione certi tipi di errori di memoria, come puntatori non validi e dereferenziazioni
di puntatori nulli. Tuttavia, il linguaggio non mira a rilevare errori funzionali; come
farlo in modo efficiente è in generale un problema aperto nell’ambito della verifica del
software.

Questa tesi esplora il legame tra Rust e la verifica del software, mostrando come le
proprietà statiche di Rust possano essere sfruttate per sviluppare nuove e più semplici
tecniche di verifica. In particolare, identifichiamo sfide di formalizzazione, specifica,
e automazione che ostacolano la verifica deduttiva, scalabile, e di facile utilizzo del
software. Risolviamo questi ostacoli sviluppando due innovative tecniche di verifica per
Rust che operano su diversi sottoinsiemi del linguaggio.

La nostra prima nuova tecnica si focalizza sulla verifica di programmi interamente
scritti in Rust sicuro: la porzione del linguaggio Rust per cui il compilatore si occupa di
garantire l’assenza di errori di memoria. Per questo contesto, definiamo un modello delle
proprietà dei tipi di Rust nella logica dei frame dinamici impliciti — una variante della
logica delle separazioni — usando il linguaggio Viper. Successivamente, sviluppiamo
una nuova analisi statica che tiene traccia delle capacità dei tipi di Rust (ad esempio, la
capacità di leggere o scrivere in una determinata posizione della memoria) e utilizziamo
i suoi risultati in un algoritmo che costruisce automaticamente una dimostrazione base
(“core proof”) del programma, la quale codifica le garanzie di immutabilità e assenza
di aliasing dei tipi di Rust. Questa dimostrazione è espressa nella logica dei frame
dinamici impliciti, ma la nostra tecnica nasconde ciò come un dettaglio implementativo,
effettivamente difendendo gli utenti della verifica dai dettagli complessi della logica.
Per dimostrare la correttezza funzionale di un programma, agli utenti rimane solo
di specificare il comportamento delle proprie funzioni, scrivendo contratti come ad
esempio precondizioni e postcondizioni. Per far ciò, offriamo annotazioni la cui sintassi
e semantica sono identiche a quelle delle espressioni booleane di Rust, con alcune
restrizioni riguardanti gli effetti collaterali e il determinismo che descriviamo con
una definizione di purezza. Alcuni aspetti di Rust richiedono annotazioni speciali. Per
esempio, per descrivere formalmente la relazione tra i riferimenti ritornati da una
funzione e gli argomenti che blocca secondo le regole del sistema di tipi, introduciamo
una nuova annotazione chiamata pledge (“impegno”). Implementiamo la nostra tecnica
in uno strumento open-source di verifica chiamato Prusti, che utilizziamo per valutare
la nostra tecnica su varie raccolte di programmi. Complessivamente, sfruttando i tipi
di Rust per costruire automaticamente la dimostrazione base, le annotazioni richieste
dalla nostra tecnica sono drasticamente più semplici e più brevi rispetto a quelle delle
tecniche di verifica per altri linguaggi di programmazione.

Quando un programma scritto in Rust non è interamente sicuro, ma contiene anche
una parte di codice insicuro, le forti proprietà dei tipi di Rust sono indebolite da
alcune eccezioni. Per esempio, le librerie che sono implementate con codice insicuro
possono esporre mutabilità interiore, il che significa che possono modificare i valori



raggiungibili dai riferimenti condivisi, che in un programma completamente sicuro
sarebbero immutabili. In questo contesto sarebbe sbagliato applicare con leggerezza le
tecniche di verifica per codice completamente sicuro, perché un verificatore arriverebbe
ad assumere incorrettamente che la mutabilità interiore non può causare modifiche.
Per gestire questi casi, sviluppiamo una seconda nuova tecnica per ragionare sui client
sicuri (“safe clients”): programmi sicuri che usano librerie fidate implementate con codice
insicuro. Questi client presentano sfide di verifica a causa della loro capacità di osservare
mutabilità interna. Per risolvere questo problema, fondiamo la nostra tecnica su una
nuova nozione di capacità implicita di libreria: proprietà di un tipo di Rust (come ad
esempio l’immutabilità o l’assenza di aliasing) che non sono definite dal linguaggio Rust
come nel caso dei riferimenti, ma che sono determinate dagli sviluppatori delle librerie
Rust. Introduciamo nuove annotazioni di libreria per dichiarare queste capacità in modo
esplicito, e sviluppiamo una tecnica di verifica che utilizza le capacità per verificare la
correttezza funzionale di client sicuri basandosi su una codifica nella logica del primo
ordine. La nostra tecnica supporta una espressiva varietà di capacità: le capacità base
corrispondono alle proprietà di regolari riferimenti Rust in codice sicuro, mentre le
capacità estese vanno un passo oltre e abilitano l’espressione di nuove proprietà che
non hanno un equivalente nel codice sicuro. Ciascuna di queste capacità ha particolari
proprietà, tra le quali l’accesso esclusivo ad una posizione della memoria, l’accesso
in scrittura, l’immutabilità, e l’assenza di utilizzi concorrenti. Per le nostre capacità di
base, dimostriamo la correttezza delle loro proprietà sviluppando una nuova tecnica di
dimostrazione. Questa deduce le proprietà delle capacità di base a partire da quelle dei
riferimenti di Rust, evitando alcuni problemi posti dall’attuale assenza di una semantica
formale per il codice insicuro. Implementiamo la nostra tecnica in un verificatore open-
source chiamato Mendel, che utilizziamo per verificare proprietà funzionali di sequenze
di chiamate all’API di popolari librerie Rust, tra cui Rc, Arc, Cell, RefCell, AtomicI32,
Mutex, and RwLock. I nostri risultati mostrano che la nostra tecnica è espressiva al punto
da specificare il comportamento di metodi di API reali, richiedendo al tempo stesso
poche annotazioni dal lato client delle librerie.

Nel complesso, le tecniche di verifica che sviluppiamo sono leggere perché richiedono
poche annotazioni da parte dell’utente, pur essendo comunque ricche abbastanza da
verificare espressive proprietà scelte dall’utente. Gli strumenti di verifica che costruiamo
attorno ad esse sono progettati per offrire un’esperienza utente particolarmente curata,
grazie anche ad alcune scelte di usabilità e soluzioni che descriviamo.
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Introduction 1
As the importance and complexity of software increase, developers are
increasingly pressured to find innovative solutions to ensure its reliability
and robustness. One approach used in the design of programming
languages consists of introducing language restrictions that make it
more difficult, or entirely impossible, to implement certain kinds of
bugs. In fact, there is a positive correlation between the static guarantees
of a programming language and the ease of reasoning about it, with a
progression from Assembly, through C, to Java. Compared to Assembly, C
has a structured control flow, type declarations, and other abstractions that
make it much easier to understand and check the intent of the program.
This way, jumping to the wrong memory address or misinterpreting
data bytes is much less common, although not entirely impossible. Java
goes one step further, ensuring memory and type safety thanks to its
type and runtime checks. Still, the language does not protect developers
from unintended data races, aliasing or mutations, as well as uncaught
exceptions such as null-pointer exceptions. In functional languages such
as Haskell, in-place mutations are not possible, and all data structures
are immutable. This effectively solves aliasing issues, but it also requires
a significant mental shift for developers used to imperative languages.

Rust is a recent imperative programming language designed for speed,
safety, and concurrency, which provides particularly strong static guaran-
tees while remaining accessible to developers. Rust solves and mitigates
many of Java’s challenges by offering a safe language subset1 in which un-
intended data races, aliasing, mutations, and memory errors are caught
at compile time thanks to advanced type checks. For example, Rust makes
sure that any mutable reference can be used only as long as the memory
location that it points to is allocated, initialized, and not reachable via
other references. Among Rust’s types, immutable types guarantee absence
of mutations — even from other threads — in a way that cannot be “cast
away” like the const annotations in C++. Moreover, its unique types
guarantee that certain memory locations can be reached only via one
specific reference, preventing unintended aliasing. These benefits are not
just theoretical. It is not a coincidence that the Rust language was found
for the eighth year in a row to be the most admired language in Stack
Overflow’s developer survey [1].

In our work, we observe that many concepts of Rust’s type system are
not new and have similarities with pointer capabilities [2] and separation
logic [3], a powerful logic that was developed in the formal verification
field to ease the construction of memory-safety and correctness proofs
regarding programs manipulating heap-allocated memory. For exam-
ple, the memory-safety guarantees of Rust are based on type checks
whose mechanism is similar to the role that permissions and, in gen-
eral, resources have in separation logic. Moreover, Rust’s immutable
types resemble separation-logic resources with fractional permissions [4],
which can be shared but cannot be used for modifications. Unique types,
instead, resemble resources with full permissions, which can be used
for modifications but cannot be duplicated. These similarities that we
observe suggest that there might be a way of bringing the usability
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advantages of Rust to separation logic, and the verification advantages of
separation logic to Rust. In fact, despite the static guarantees of existing
programming languages, in situations where correctness is critical, soft-
ware development still needs to be accompanied by formal techniques in
order to guarantee absence of bugs with respect to a certain specification
of its correctness. Among the verification approaches, deductive verification
is one of the best suited for the verification of non-trivial codebases. The
approach consists of expressing the correctness of a program as a set of
mathematical statements, which are typically proved either manually in
a theorem prover, or with the aid of automated solvers. However, the
main downside of existing deductive verification techniques, such as
those based on separation logic, is that they are usually expensive to use:
they require a large amount of manual effort, as well as expert knowledge
of the logic used in the proof.

Our Goal This thesis claims that Rust types follow a capability system
that can be used to make program reasoning easier for formal verification
techniques. We demonstrate so by developing novel deductive verification
techniques, and functioning verification tools, for heap-manipulating
Rust programs that leverage Rust’s capabilities to achieve several goals:
they automate the construction of a core component of program proofs,
they are lightweight in the manual annotations that they require, they
offer a rich language to express functional properties, and they do not
require the verification users to be experts in advanced topics such as
separation logic or interactive theorem proving.

1.1 Deductive Verification

At a high level, software verification techniques aim to statically guarantee
that a program implementation agrees with a formal specification of its
correctness. Both sides of this problem, expressing a formal specification,
and checking it against the implementation, are subjects of study in this
discipline.

The properties expressed by a formal specification can be divided into
safety properties (i.e., “bad things never happen”) and liveness properties
(i.e., “good things eventually happen”) [5]. While some of these properties
can be defined based on the semantics of a programming language —
for example, absence of crashes, or absence of undefined behavior —
other aspects depend on what the program is supposed to do, and thus
need to be expressed by verification users using, e.g., program annotations.
Depending on the technique, these annotations can describe functional
correctness properties of the desired input-output behavior [6], temporal
properties such as that an event should eventually happen, and so on.

A formal specification is often based on a specification logic that gives
meaning to the specifications. For example, temporal properties can be
expressed within temporal logics such as LTL [7] or CTL [8], while func-
tional correctness properties are often expressed using Hoare triples [9].
These logic systems can then be used to build several different verification
techniques, such as static analysis [10], model checking [11], and deductive
verification [9].
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This thesis focuses on deductive verification: a technique that can reason
about complex program properties and can scale to large codebases
thanks to its modularity. In deductive verification, the correctness of
a program is expressed as a set of logical statements, which are then
proven using a proof system such as Hoare logic. This proof can be con-
structed by hand using an interactive theorem prover such as Coq [12] or Is-
abelle/HOL [13]. Alternatively, it can be constructed (semi)automatically
with the aid of SMT-solvers such as Z3 [14] or CVC5 [15]. What enables
deductive verification to be modular is its usage of function contracts to
over-approximate the behavior of a function call using only its annota-
tions. This way, the verification of a large program can be divided into
independent verification units that (1) can be verified in parallel and
(2) make the program proof more robust to code changes, so that only
the verification units whose code changed need to be reverified2.

In Hoare logic, logical statements are expressed using a Hoare triple of
the form t𝑃u𝐶t𝑄u, where 𝐶 is a program, while 𝑃 and 𝑄, expressed
logics such as first-order logic or separation logic, are called precondition
and postcondition, respectively. Such a triple can be used to describe
a partial functional correctness property, meaning that if the program
is executed starting from a state that satisfies the precondition, then
if it terminates without reaching an error its final state satisfies the
postcondition. Separation logic was developed as an evolution of Hoare
logic to reason more easily about heap modifications and concurrency. The
core novelty is the separating conjunction operator 𝐴˚𝐵, expressing that
there exists a partition of the program memory such that the assertion 𝐴

holds in one partition, and 𝐵 in the other. The advantage of this approach
is that it makes it easy to prove that modifications to one partition of the
memory cannot invalidate the assertions associated with other memory
partitions; a reasoning step that is formalized with the frame rule.

Deductive verification techniques that are automated and modular have
motivated the development of many verification languages, to express
programs with formal specifications, and enabled the construction of
program verifiers, to check a program against its specification. Among
the verification systems based on first-order logic two notable examples
are Boogie [16] and Why3 [17]. Both of them provide a verification tool
with established industrial applications and an intermediate verification
language, designed to ease the construction of new verifiers by translating
other languages and their specifications into the intermediate one. One
difference between the two systems is that Boogie builds on top of Z3 for
automation, while Why3 is designed to use various external automated
or interactive provers. Many automated program verifiers have been
built based on Boogie: Spec# [18] for verification of an extension of
C#, VCC [19] for verification of concurrent C code, and Dafny [20] for
verification of a language that can be compiled into various other popular
programming languages. Regarding Why3, some notable systems based
on it are SPARK [21], which provides a verification tool for the Ada
language, and a plugin for Frama-C [22], a static analyzer for C programs.
Among the verification systems based on separation logic, Viper [23]
provides an intermediate verification language and a verification tool
with two backends: one based on a translation to Boogie, the other on
symbolically executing a program and checking its conditions using Z3.
The variant of separation logic that Viper uses, called implicit dynamic
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frames [24], provides benefits in terms of automation and conciseness,
because in that logic functional specifications can be easily conjoined to
the specification of memory safety, without having to intertwine the two
as typically required in other separation logics.

Given this state of the art, achieving automation of separation logic is
still not trivial. Even in Viper, designed for automation, constructing a
proof of simple functional properties requires explicit proof-directive
statements, such as the fold and unfold statements, to state where to
apply the definition of the logical predicates used in the proof. For this
reason, many program verifiers that are built on top of Viper — such as
Nagini [25] for verification of Python and Gobra [26] for verification of
Go — still require the user to write proof-directive statements to guide
in certain cases the construction of the Viper proof.

1.2 Challenges

Despite the advancements made in the past few decades, program
verification remains an expensive task, both in terms of manual effort
(e.g., to write the specifications and proof hints that are needed by the
verifier) and in terms of necessary expertise (e.g., knowledge of the
intermediate verification language and program logic). In particular,
separation logic and tools based on it are well-suited to reason about
imperative programs that use shared mutable structures, but at the same
time they also require deep — often doctorate-level — knowledge of the
verification technique to reach proficiency.

The core goal of this thesis is to improve the state of the art by leveraging
the Rust language and its strong type properties to simplify program
verification. In particular, we aim to make the benefits of separation logic
accessible to a larger verification audience, to the point where the usage
of separation logic is an implementation detail that can be hidden from
Rust verification users. Achieving our goal requires solving the following
challenges.

Challenge 1: Modeling Types Rust’s type system offers many static
guarantees, among them transitive immutability, non-aliasing, and other
properties related to memory safety. In some cases, these type properties
are a design choice of Rust, while in other cases they are design choices
of the API of a Rust library. Modeling these properties and their special
exceptions in a program logic is challenging and, to the current day,
a formalization that captures all of them does not exist. A model is
necessary for two reasons. First, in techniques based on separation logic,
a formal model of the types is a necessary step to enable reasoning
and constructing proofs about their values. Second, the Rust developers
intuitively expect certain properties, such as immutability, to be known
to a program verifier. A formal model has to provide these guarantees
to be complete, while at the same time, it should correctly model their
limitations to be sound.
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Challenge 2: Annotations Compared to other programming languages,
there are two directions along which designing program annotations for
Rust is challenging. First, Rust introduces new limitations that require new
annotations. For example, when a Rust function uses mutable reference
types in both its argument and return types, under certain conditions
the reference passed as argument is blocked until the one returned by the
function goes out of scope. This particular pattern requires designing
specifications that, when expressing the postcondition of a function, can
express the relation between the returned and the blocked reference
in a way that is as natural as possible for Rust developers. Second, to
work around some of its limitations, Rust provides new features that
require new annotations too. For example, immutable references normally
imply transitive immutability of their reachable values, but the language
also provides a special exception, called interior mutability, to this rule.
So, if the common annotations of a Rust program are designed based
on the non-exceptional cases, describing these exceptions requires new
annotations. Overall, the design of all these program annotations should
be done in a way that maximizes expressivity, while at the same time
keeping an eye on practical usability aspects.

Challenge 3: Automation As a further challenge, we want our ver-
ification technique to be automated to a level that is precise enough
to prove memory safety. Our insight is that, since the Rust compiler is
already able to guarantee memory safety with its static checks, there
should be a similar way to leverage the properties of the Rust language
to build automatically a memory-safety proof of safe Rust programs.
The intent of achieving an automated memory-safety proof is to pave
the way to the verification of unsafe Rust code, which should generate
a compatible memory-safety proof, so that the two can be combined to
achieve modular verification of Rust programs containing both safe and
unsafe code. The difference in our aims is that for unsafe Rust the proof
construction would not be expected to be fully automated.

1.3 Contributions

In this thesis, we address each of the challenges by developing novel
verification techniques for two large subsets of Rust:

1. Safe code: programs and libraries entirely written in safe Rust
code.

2. Safe clients: programs written in safe Rust code using trusted
real-world libraries whose implementation contains unsafe code.

1.3.1 Safe Code

In Chapter 3, we address the challenges in the context of verification
of safe code. To address Challenge 1, we designed an encoding of the
properties of Rust types and signatures into the logic of implicit dynamic
frames using Viper. To address Challenge 2, we designed a specification
language for expressing the intended functional properties of Rust code,
choosing a syntax and semantics that is familiar to Rust developers. This
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specification language includes pledges: a novel specification construct
for expressing the functional properties of functions returning references.
To address Challenge 3, we provide an algorithm, based on a novel static
analysis of Rust capabilities, to automate the encoding of Rust programs
into the Viper language. We implemented our verification technique
in an open-source tool called Prusti [27], which we use to evaluate our
technique both on a large corpus of Rust code without annotations, and
on a small corpus of interesting programs with hand-written contracts.

1.3.2 Safe Clients

In Chapter 4, we address the challenges in the context of verification of
safe clients, where several static properties of Rust types are weakened by
the usage of interior mutability. To address Challenge 1, we identify the
novel notion of implicit capabilities of library types — i.e., type properties
decided by the library developers — and we present a new technique that
leverages them to reason about safe Rust code, even in the presence of
interior mutability. To address Challenge 2, we propose a new annotation
to specify the implicit capabilities of library types and several annotations
to model some methods of these libraries as logical functions, some of
which might even depend on the memory address of type instances
reachable from their arguments. To address Challenge 3, we designed
our verification technique to produce a model that can be fully expressed
in first-order logic, so that it is well-suited for automation using an SMT-
based verification toolchain. We implement our verification technique in
an open-source tool called Mendel [28], showing with an evaluation that
our technique supports popular types with interior mutability defined
in the standard library, requiring little annotations on the client side of
these libraries.

1.4 Outline

Overall, this thesis is structured as follows:

§ Chapter 2 introduces why Rust is a good fit for software verification,
showing the language properties, verification opportunities and
design principles of our Rust verification framework.

§ Chapter 3 presents our novel technique for verification of safe Rust
code.

§ Chapter 4 presents our novel technique for verification of safe Rust
clients.

§ Chapter 5 presents notable design choices and solutions of our tool
implementations.

§ Chapter 6 concludes the thesis and presents future directions.

https://github.com/viperproject/prusti-dev
https://github.com/viperproject/prusti-dev
https://github.com/viperproject/prusti-dev
https://github.com/viperproject/prusti-dev
https://github.com/viperproject/mendel-verifier
https://github.com/viperproject/mendel-verifier
https://github.com/viperproject/mendel-verifier
https://github.com/viperproject/mendel-verifier
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Part of the work in this thesis has been published in the following
papers:

§ Vytautas Astrauskas, Peter Müller, Federico Poli and Alexander
J. Summers: ‘Leveraging Rust Types for Modular Specification and
Verification’ [29]
This is the first paper in which we describe our verification tech-
nique for safe Rust code, which we implemented in the Prusti
verifier. Vytautas and I contributed equally to most aspects of this
paper. The notable differences are that Vytautas led the work on
the borrowing DAG (described in this thesis but not in the paper),
the encoding of shared references, and the functional-correctness
evaluation. On my side, I led the work on the capability analysis
(the algorithm that computes place capability sets in the paper), the
large-scale core-proof, and the overflow-freedom evaluation.

§ Vytautas Astrauskas, Christoph Matheja, Peter Müller, Federico
Poli, and Alexander J. Summers: ‘How Do Programmers Use Unsafe
Rust?’ [30]
In this paper, we present our empirical study of how programmers
use unsafe Rust code. Vytautas, Christoph and I contributed equally
to most aspects of this paper. The notable differences are that
Vytautas proposed the idea of the paper and led the implementation
of the data-gathering tool. On my side, I performed the study of
usages of unsafe code presented in Sec. 2 of the paper.

§ Vytautas Astrauskas, Aurel Bílý, Jonáš Fiala, Zachary Grannan,
Christoph Matheja, Peter Müller, Federico Poli, and Alexander J.
Summers: ‘The Prusti Project: Formal Verification for Rust’ [31]
This paper provides an overview of our Prusti project for the
verification of safe Rust code. Vytautas, Aurel, Jonáš, Zachary,
Christoph and I contributed equally to most aspects of this paper.
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Rust Verification 2
This chapter presents the reasons why Rust is a good language for doing
software verification, and the design principles of our Rust verification
framework on which the later chapters of the thesis are based.

2.1 Rust Guarantees

Compared to other popular programming languages, Rust stands apart
for its particularly strong type system, which makes it possible to declare
and enforce immutability, non-aliasing, and safety aspects of the language.
As a preview, in this section, we are going to define and discuss:

§ The memory-safety properties of the safe language subset of Rust.
§ The transitive immutability property of the so-called shared refer-

ences.
§ The linearity properties of non-duplicable types, by which assign-

ments move type instances instead of creating aliases.
§ The read-xor-write property, by which types providing mutable and

immutable access cannot have shared reachable memory locations.
§ The uniqueness properties of mutable references, by which all reach-

able locations can be mutated only via the reference itself.
§ The library soundness principle, which enables the safe encapsulation

of unsafe Rust code, in a way that does not break the properties
above.

The language design choice of using a strong type system has both
advantages and disadvantages. Among the disadvantages, convincing
the compiler to accept a Rust program is relatively harder than in other
languages. For example, the checks regarding lifetimes (presented later)
are infamously known to be difficult to learn for new Rust developers [32,
33]. Among the advantages, Rust programs that are accepted by the
compiler are less likely to contain certain kinds of bugs, such as undefined
behavior (UB) cases that plague C [34]. Moreover, as we show in this
thesis, the strong invariants of Rust’s type system make it easier for both
tools and human developers to reason about many Rust programs.

At a high level, Rust can be seen as having two language subsets, a safe
and an unsafe one, with widely different safety properties and intended
use cases. When writing in safe Rust, the compiler is able to fully check
memory safety and absence of undefined behavior (e.g., writing to the
target of a null pointer). This is the most popular language fragment; the
one that all developers should strive to use whenever possible, especially
if they are not experts. When writing unsafe Rust code, instead, the
compiler relaxes some of its static checks and lets developers use C-style
raw pointers and other potentially dangerous Rust features. The benefit is
that this gives additional expressivity to developers who know what they
are doing, but the main disadvantage is that it is up to those developers
to carefully ensure that all strong type properties of Rust still hold. The
guiding interoperability principle between these language fragments
is that unsafe code should be minimized and hidden behind library
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abstractions that are sound [35], meaning that they cannot be used by
safe Rust code in a way that causes undefined behavior.

The following subsections present some of the properties of Rust that are
particularly useful for the verification of programs fully written in safe
code, or programs written in safe code that use sound libraries.

2.1.1 Memory Safety

One of the main selling points of Rust is that the language is designed to
prevent memory errors such as null pointer dereferences, buffer overflows,
use-after-free errors, or usages of uninitialized memory. The language
mainly achieves this thanks to its type system, which uses a concept of
ownership to make sure that safe Rust code never accesses uninitialized
memory locations nor dereferences invalid pointers.

In order to check valid usages of pointers, the Rust language makes a
distinction between C-style raw pointer types and the safer pointer types
called references. Raw pointer types have very few static guarantees and
can be used only in unsafe Rust code, while reference types have stronger
properties that are checked by the compiler and can thus be used in safe
Rust. In particular, there are two types of references: shared references
(also called immutable) and unique references (also called mutable). As
the names suggest, the former provides shared immutable access to
some data, the latter exclusive mutable access. A component of the type
checker called the borrow checker takes care of ensuring correct usage
of all references. For instance, it checks that there can never be usable
shared and mutable references pointing at the same time to the same
memory location, and that references can always be dereferenced as long
as they are alive. To make it possible to conduct these checks statically,
the Rust language associates with each reference a lifetime, which is used
to describe and control what the reference might point to at runtime.

The documentation of the Rust language uses the concept of ownership
to explain the checks regarding lifetimes. In the Rust terminology, every
allocated memory value has a unique owner: a local variable that is
responsible for deallocating all its owned memory when going out of
scope. References are said to borrow the target memory location when
they are created, starting a loan. When a reference is no longer used,
all its loans expire, transferring the borrowed ownership back to the
original owners. This is done because when an owning variable goes out
of scope, the compiler checks that all the references that borrowed from
it expired first. All this ownership tracking is done at compile time so
that lifetimes can be elided during compilation and do not translate to
runtime checks.

2.1.2 Immutability

In safe Rust, shared references are guaranteed to be transitively immutable.
That is, as long as a shared reference can be used, it is not possible
to mutate memory that is reachable by safe code through the shared
reference. This property is checked by the borrow checker, which in
the example of Fig. 2.1 is responsible for raising a compilation error
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Rust

fn bad() {
let mut data = 42;
let x = &data;
data += 1; // Compilation error
drop(x)

}

Output

error[E0506]: cannot assign to ‘data‘ because it is borrowed
--> program.rs:4:5
|

3 | let x = &data;
| ----- ‘data‘ is borrowed here

4 | data += 1;
| ^^^^^^^^^ ‘data‘ is assigned to here but it was
| already borrowed

5 | drop(x)
| - borrow later used here

Figure 2.1: An example of a Rust pro-
gram with a borrow-checking error. The
compiler prevents modifying the vari-
able data because it is reachable from
the shared reference x .

Rust

fn good(x: &u32){
let first = *x;
anything();
let second = *x;
assert!(first == second); // Always succeeds at runtime

}

fn anything() { /* ... */ }

Figure 2.2: An example of an assertion
that never fails at runtime. The motiva-
tion is that the shared reference x guar-
antees immutability of its target instance,
even across the anything() call that ex-
ecutes unknown safe Rust code.

[32]: Zhu et al. (2022), Learning and Pro-
gramming Challenges of Rust: A Mixed-
Methods Study
[33]: Zeng et al. (2018), Identifying Bar-
riers to Adoption for Rust through Online
Discourse

[3]: Reynolds (2002), Separation Logic: A
Logic for Shared Mutable Data Structures

when a statement attempts to modify the variable data while the shared
reference x is still usable.

The rules of the borrow checker are infamously known to be (in some
cases) hard to learn for Rust users [32, 33], but once they are satisfied the
benefit is that reasoning about a program becomes much easier than in
more permissive languages. In the program of Fig. 2.2, for example, the
immutability of the shared reference x makes it possible to statically
guarantee that no matter what the safe implementation of the anything

function is, the target of x will not change and the first == second

comparison will always succeed at runtime. Reasoning like this can be
performed in a code review or can be automated in a verification tool,
and is only directly possible in Rust or other languages with transitively-
immutable types that cannot be circumvented by the programmer, e.g.,
with casts. Other popular languages such as Java, Python, C or C++ do
not provide types with this kind of useful property, so verifying the
equivalent of Fig. 2.2 in other languages would require a challenging
program logic such as separation logic [3].

When using unsafe code, it is possible to define library types whose private
content can be modified via a shared reference. This shared mutability
pattern is not in contradiction with the transitive immutability guarantee
of shared references, because the private visibility modifier matters. In
fact, safe code cannot directly access the private content of a library,
so the transitive immutability property defined above stops at such
library boundaries. The expectation is that library developers should
only achieve shared mutability with unsafe code by using either (a) the
special UnsafeCell type, whose documentation and special compiler
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semantics clearly state its mutability properties under the definition of
interior mutability [36, 37], or (b) C-style raw pointers, which are not subject
to the invariants of reference types. In practice, developers try to avoid
shared mutability whenever possible because it makes it more difficult
to reason about their code.

2.1.3 Non-Aliasing

Aliasing — the situation where two expressions in a program might
refer to the same instance — is one of the biggest challenges in program
verification [38]. The Rust language restricts aliasing by enforcing several
properties at compile time:

1. Linearity: each use of a non-duplicable type moves its value, leaving
the read-from place uninitialized. Because of this, assignments do
not create aliases, but move values between places.

2. Read-xor-write: each type instance cannot be usable at the same
time via both a mutable and an immutable type. Because of this,
shared and mutable references cannot alias the same instance.

3. Uniqueness: mutable references are the unique way by which
the reachable instances can be mutated. Because of this, multiple
mutable references cannot alias the same instance.

Our insight, which we explore in this thesis, is that these properties enable
syntax-driven reasoning, in that Rust guarantees that certain syntactically-
different expressions always resolve to different memory locations. In
particular, this brings two advantages to program verifiers:

§ Separation-logic reasoning. The non-aliasing properties of stan-
dard Rust types imply that there are no mutable memory locations
that are reachable from multiple type instances. As we show in this
thesis, these type properties make it possible to reason about usages
of the types in isolation using techniques inspired by program
logics such as separation logic [3] and automated verification tools
built on top of it, such as Viper [23].

§ Low-overhead specifications. The non-aliasing properties implied
by the types declared in a function signature make redundant some
parts of user-provided contract annotations. As we show in our
work, these type properties make it possible to lower the manual
effort that users have to put in when specifying the functional
behavior of a function.

The following subsections further present each of the non-aliasing prop-
erties and the novel ways in which they help program verification.

2.1.3.1 Linearity (Affine Types)

The Rust language allows users to declare non-duplicable types called non-
copy types. These types, when moved from one variable or field to another
location, leave the former place uninitialized. The type-checker takes care
of tracking which places might be uninitialized, raising a compilation
error in case a statement attempts to access a possibly uninitialized place.
In Rust, declared types are by default non-duplicable, but duplicable type
declarations can be expressed by marking the type as #[derive(Copy)] .
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[39]: Girard (1987), Linear Logic

The functions in Fig. 2.3 show the different semantics of assignments
for copy and non-copy types: in the duplicable function, the u32 type
of x is Copy, so the assignment y = x copies the value of x into y .
In non_duplicable , instead, the type Vec<u32> of x is non-copy, so
y = x moves the values of x into y , leaving x uninitialized.

Rust

fn duplicable() {
let mut x: u32 = 42;
let y = x; // copies ‘x‘ to ‘y‘
x += 1;
println!(f"{x} {y}"); // Prints "43 42"

}

fn non_duplicable() {
let x: Vec<u32> = vec![1, 2, 3];
let y = x; // moves ‘x‘ to ‘y‘; uninitializing ‘x‘
drop(x); // ERROR: value ‘x‘ is used here after move

}

Figure 2.3: Examples of functions using
a duplicable and non-duplicable type
for x , respectively. non_duplicable is
rejected by the compiler because the as-
signment y = x consumes x .

Formally, the non-duplicable types in Rust are affine types, because the
type-checker ensures that they can be used at most once. In the context of
Rust, these types are also often informally said to be linear, although this
name is technically incorrect because the formal definition of linear types
implies that such types must be explicitly consumed exactly once [39].
This is not guaranteed by Rust, because (1) local variables can go out of
scope implicitly and (2) the compiler does not check termination of the
code in between the initialization of a variable and the statements that
consume it. The functions in Fig. 2.4 show an example of this difference:
the Rust compiler accepts all implementations, even though the latter
function should be rejected in a language with linear types. The reason
is that in not_linear the vector x is not explicitly consumed.

Rust

fn linear() {
let x: Vec<u32> = vec![1, 2, 3];
drop(x); // Explicitly consume the vector

}

fn not_linear() {
let x: Vec<u32> = vec![1, 2, 3];
// ‘x‘ goes out of scope without being explicitly consumed

}

Figure 2.4: Rust functions that demon-
strate the difference between affine and
linear types. The Rust compiler accepts
all functions because Vec is an affine
type. If Vec were a linear type, the com-
piler would need to ensure that x is al-
ways explicitly consumed, rejecting the
non_linear function.

2.1.3.2 Read-Xor-Write

The Rust language disallows usable shared references from aliasing other
usable mutable references or non-borrowed types. This is because the
transitive immutability guarantee of shared references is incompatible
with the mutability capabilities of the latter types. To reject programs
that attempt to break this rule, the compiler checks that each place cannot
be mutated as long as it might be reachable via a shared reference. As
a consequence, shared references cannot alias mutable references, nor
variables or fields that are not borrowed. The program in Fig. 2.5 shows
an example of this. The first two functions check at runtime whether their
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reference arguments are aliasing the same u32 instance, raising a panic
if they do. Because of the read-xor-write rule, mutable references cannot
alias values reachable via shared references, thus the assertion in the
non_aliasing function is guaranteed to never fail. The compiler takes
care of rejecting bad_client , whose implementation tries to violate
this property. However, the language does not prevent multiple shared
references from being aliases of the same instance. So, it is possible for
the assertion in the function possibly_aliasing to fail, for example
when called from good_client .

Figure 2.5: Rust functions that demon-
strate the non-aliasing between shared
and mutable references. The addr_of!
macro returns the memory location
pointed by a reference. At runtime, the
assertion in the non_aliasing func-
tion will never fail, because the type
checker ensures that mutable references
cannot alias values reachable via shared
references. The function bad_client
is rejected by the compiler because of
this check. The assertion in the function
possibly_aliasing , however, can fail
because shared references can alias the
same memory location, as it happens in
the good_client function. Rust

fn non_aliasing(x: &u32, y: &mut u32) {
assert!(addr_of!(*x) != addr_of!(*y)); // Never fails

}

fn possibly_aliasing(x: &u32, y: &u32) {
assert!(addr_of!(*x) != addr_of!(*y));

}

fn bad_client(mut x: u32) {
// Compilation error: cannot borrow ‘x‘ as mutable
// because it is also borrowed as immutable
non_aliasing(&x, &mut x);

}

fn good_client(x: u32) {
possibly_aliasing(&x, &x);

}

2.1.3.3 Uniqueness

Mutable references are guaranteed by the language to be unique, in that
the sets of memory locations reachable from two mutable references
cannot have any mutable location in common. This rule prevents any
form of mutable aliasing between mutable references. For example,
consider the program in Fig. 2.6, which defines two functions that
split a mutable reference to a Point instance into two references. The
first function, bad_split , is rejected by the compiler because it would
return two mutable references from both of which p.x can be modified.
good_split is instead accepted because the returned references do not
have reachable memory locations in common.

Figure 2.6: Rust functions that demon-
strate the uniqueness property of muta-
ble references. The function bad_split
is rejected by the compiler because it at-
tempts to create two mutable references,
from both of which a caller would be
allowed to mutate the value of p.x . The
function good_split , however, is ac-
cepted because the two returned refer-
ences do not have common reachable
memory locations.

Rust

struct Point {
x: u32,
y: u32

}

fn bad_split(p: &mut Point) -> (&mut Point, &mut u32) {
// Compilation error: cannot borrow ‘p.x‘ as mutable
// more than once at a time
(p, &mut p.x)

}

fn good_split(p: &mut Point) -> (&mut u32, &mut u32) {
(&mut p.x, &mut p.y)

}
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1: More precisely, using the implicit dy-
namic frames logic [24].

2.1.3.4 Separation-Logic Reasoning

The non-aliasing properties of standard Rust types imply that given
any two type instances the memory locations that, using safe Rust, are
reachable and modifiable form two disjoint sets. Our novel insight that
we explore in this thesis is that this disjointness property is the key to
enabling and automating separation-logic reasoning. In particular, the
technique of Ch. 3 relies on static non-aliasing properties to automate the
construction of a separation-logic proof1, while the technique of Ch. 4
uses the static non-aliasing information to encode separation-logic-style
reasoning into first-order logic. The common ground between these
techniques are the framing properties that they express. That is, the
knowledge of which information is preserved across the execution of a
statement.

For example, consider the set_and_assert function in Fig. 2.7, which
assigns different values to its reference arguments and then checks the
value behind the first argument x . In order to prove that the assertion
never fails, a verifier has to know that the modification to the second
argument y does not affect the memory reachable via x . This framing
property can either be proven, checking that the non-aliasing claims
of Rust’s type system effectively hold, or can be assumed based on the
compiler’s type information. In separation logic, the proof can be done by
using a frame rule around the *y = 100 statement. The rule application,
shown in Fig. 2.8, temporarily puts aside the knowledge about x ’s
target while reasoning about a statement that affects y . The separating
conjunction ˚ in the proof models that the memory locations reachable
via x and y are disjoint, as motivated above. In this example, the frame
rule can be applied mechanically based on the syntax of the program,
because the statement does not use x and because x does not alias the
y used in the statement. Based on this idea, in Ch. 3 we develop a static
capability analysis technique that we use to automate the construction of
a Viper program. In Ch. 4, instead, we use the type-system information
to generate the starting assumptions that a verifier can use to deduce the
framing properties of Rust types with interior mutability, for which Rust’s
type system does not provide explicit guarantees. In both approaches,
the non-aliasing properties of Rust play a key role and help to reason
about a large number of programs.

Rust

fn set_and_assert(x: &mut u32, y: &mut u32) {
// x ÞÑ ´ * y ÞÑ ´

*x = 42;
// x ÞÑ 42 * y ÞÑ ´

*y = 100;
// x ÞÑ 42 * y ÞÑ 100
assert!(*x == 42);

}

Figure 2.7: A Rust functions annotated
with the separation-logic assertion that
holds at each program point.

¨ ¨ ¨

ty ÞÑ –u *y = 100 ty ÞÑ 100u
tx ÞÑ 42 ˚ y ÞÑ –u *y = 100 tx ÞÑ 42 ˚ y ÞÑ 100u

Figure 2.8: Example application of a
frame rule (at the bottom) to reason about
the second assignment in Fig. 2.7.
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[40]: (2024), The Rust Reference

[41]: (2023), The Rust Reference: Behavior
considered undefined

[42]: Jung et al. (2020), Stacked Borrows:
An aliasing model for Rust

2.1.3.5 Low-Overhead Specifications

Another novel insight that we explore in this thesis is that by reusing
the non-aliasing properties of Rust types, verifiers for Rust require
fewer annotations than verifiers for other languages. Consider again
for example the function in Fig. 2.7. If the arguments x and y are
aliases to the same memory location, then the assertion in the function
body panics at runtime. To prove absence of panics in this situation,
modular verifiers typically require the user to specify as a precon-
dition that the two reference arguments point to different memory
locations. For simple types such as &i32 one way to do so is by writ-
ing #[requires(addr_of!(*x) != addr_of!(*y))] , but for more com-
plex types (e.g., structures with fields, or recursive data types) absence
of shared memory regions cannot be expressed by stating disequalities.
A verifier for Rust, however, can automatically extract and use the non-
aliasing properties that are already implied by the types in the function
signature. Thus, unlike in other popular languages, for the program in
Fig. 2.7, no additional preconditions are needed to verify the function
implementation.

2.1.4 Absence of Undefined Behavior

Safe Rust code is guaranteed by the language design of Rust to have
no undefined behavior (UB). In the unsafe fragment of the language,
however, absence of undefined behavior is a property that needs to be
guaranteed by Rust developers. An official formal definition of which
Rust program executions are UB is still in progress, but for the time being,
the main informal (but official) description is the Rust Reference [40].
This reference presents an under-approximated list of situations that are
described to surely be UB [41], as can be seen in the excerpt presented in
Fig. 2.9.

Figure 2.9: Excerpt from the Rust Ref-
erence, presenting the list of behaviors
considered undefined [41].

Rust code is incorrect if it exhibits any of the behaviors in the
following list. (...)
Warning: The following list is not exhaustive. There is no formal
model of Rust’s semantics for what is and is not allowed in unsafe
code, so there may be more behavior considered unsafe. The
following list is just what we know for sure is undefined behavior.
Please read the Rustonomicon before writing unsafe code.

One example of UB is unsynchronized data races. That is, modifying a
memory location while another thread is concurrently reading or writing
it, without using synchronization or atomic primitives to ensure that the
concurrent operations have defined behavior. By design, safe Rust cannot
have undefined behavior. Therefore, the compiler takes care of rejecting
any program written in safe Rust that might have unsynchronized data
races. For example, the program in Fig. 2.10 is rejected because it tries
to write to the same memory location DATA from two threads. Using
atomic integer types, it is possible to fix the program as shown in Fig. 2.11,
so that the program does not have UB but only exhibits a less dangerous
(from the point of view of language semantics) race condition.
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Rust

use std::thread;

static mut DATA: i32 = 0;

fn main() {
thread::spawn(|| { DATA = 1; });
thread::spawn(|| { DATA = 2; });
println!("Data: {}", DATA);

}

Output

error[E0133]: use of mutable static is unsafe and requires
unsafe function or block

--> src/main.rs:7:9
|

7 | DATA = 1;
| ^^^^^^^^ use of mutable static
|
= note: mutable statics can be mutated by multiple threads:

aliasing violations or data races will cause undefined
behavior

error[E0133]: use of mutable static is unsafe and requires
unsafe function or block

--> src/main.rs:10:9
|

10 | DATA = 2;
| ^^^^^^^^ use of mutable static
|
= note: mutable statics can be mutated by multiple threads:

aliasing violations or data races will cause undefined
behavior

For more information about this error, try ‘rustc --explain
E0133‘.

Figure 2.10: An example of a safe Rust
program that is rejected by the compiler.
The root issue of this program is that it
tries to concurrently modify the same
memory location from two threads.

[43]: Villani (2024), Tree Borrows: A new
aliasing model for Rust
[44]: (2024), Miri: An interpreter for Rust’s
mid-level intermediate representation

Recently, the Stacked Borrows [42] model and its Tree Borrows evolu-
tion [43] were proposed to formally define an aliasing model for Rust in
a way that can be checked at runtime by the Miri interpreter [44]. Any
violation of this aliasing model would be considered UB. At the time of
writing, the consensus of the community is that an evolved version of
Tree Borrows is going to become in the future the official aliasing model
of the language. Since the differences between Tree Borrows and the list
of UB in the Rust Reference are still being discussed, we conservatively
designed the verification technique in this thesis to be sound under all
models, at the expense of being sometimes incomplete. We give more
details in Ch. 4.

2.1.5 Soundness of Libraries

To prevent the relaxed properties of unsafe code from polluting the
strong properties of safe Rust, the Rust language uses a principle of
library soundness. According to this principle, a library is sound only if
it is impossible for Rust developers to write a safe client that uses the
library in a way that causes undefined behavior. Each violation of this
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Figure 2.11: An example of a safe Rust
program with a race condition, imple-
mented using the atomic integer type
AtomicI32 to avoid UB. Depending on
the scheduling by the operating system,
the program might print 0, 1 or 2.

Rust

use std::thread;
use std::sync::atomic::{AtomicI32, Ordering};

static DATA: AtomicI32 = AtomicI32::new(0);

fn main() {
thread::spawn(|| {

DATA.store(1, Ordering::Relaxed);
});
thread::spawn(|| {

DATA.store(2, Ordering::Relaxed);
});
println!("Data: {}", DATA.load(Ordering::Relaxed));

}

[45]: Tolnay (2019), Soundness bugs
[46]: (2024), RustSec Advisory Database:
Advisories with Keyword ’unsound’

principle is treated by the Rust community as a serious security issue [45,
46].

Our insight is that the library soundness principle helps to reason
about safe usages of libraries implemented with unsafe code, making it
possible to deduce that the library cannot implement certain pathological
behaviors. For example, consider the code in Fig. 2.12. The implementation
of the library module is unknown and might use unsafe code or other
obscure Rust features. However, we assume to know that its API is sound.
The function lib_client calls the library passing a reference to the
argument x , where Box is the Rust way to allocate memory on the
heap. Then, the client checks at runtime that x ’s value did not change
across a second library call with no arguments. In this case, the assertion
never fails, and the goal of a verifier is to prove so. The immutability
and non-aliasing type properties presented so far would help in case all
used libraries were fully implemented using safe code. However, what
if lib contains some unsafe code? Would it be possible for the library,
during the observe call, to store in a global variable a raw pointer to
the location of x , so that it can later use the global variable to mutate
x ’s value during the do_something call? As we explore in Ch. 4, the
answer is no: the value of x cannot change across the do_something

call, because if it did, the library would be unsound. In particular, it
would be possible to use the library from safe Rust code in a way that
would cause UB. Knowing that the value of x cannot change is useful
for a verifier, because it makes it possible to prove that the assertion in
the code always succeeds.
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Rust

// A sound library
mod lib {

pub fn observe(x: &mut Box<i32>) { /* ... */ }
pub fn do_something() { /* ... */ }

}

fn lib_client(mut x: Box<i32>) {
lib::observe(&mut x);
let before: i32 = *x;
lib::do_something();
let after: i32 = *x;
assert!(before == after); // Always succeeds at runtime

} Figure 2.12: A safe Rust function calling a
sound library with an unknown, possibly
unsafe, implementation.

2.2 Practical Relevance

The Rust language provides many useful guarantees. Even just the non-
aliasing properties are effective, in practice, at avoiding most data races
and unintended aliasing bugs that plague other mainstream languages.
However, existing verification techniques are unable to benefit from these
guarantees, because they were designed for programming languages
with a weaker type system than Rust’s. As an example, in Sec. 3.1 we
compare and discuss the guarantees of programs written in C and Rust.
What is needed is a new methodology that comprehends and exploits
the properties of Rust types. In this thesis, we achieve so with our novel
verification techniques for Rust that we present in Ch. 3 and Ch. 4.

Given the strong compile-time checks of Rust, what are the remaining
Rust-specific bugs that would be helpful to eliminate, or some properties
that would be useful to ensure, with a verifier? In this section, we
present several real-world examples. At a high level, we divide this
non-exhaustive list into cases where verification helps the users or the
compiler of Rust.

2.2.1 Helping Rust Users

In this subsection, we present cases where a verifier helps developers
who write Rust code. Mostly, these are cases of ensuring absence of errors
in the logic of a program, but also cases where the annotations that are
needed for verification can be reused for other means.

2.2.1.1 Absence of Panics

In Rust, a panic is an explicit program termination operation that is
used by Rust developers to stop the program in case of unrecoverable
implementation errors. Users of software written in Rust should ideally
never observe a panic, and if they do, it strongly signals that there is a bug
in the implementation. While it is possible to design Rust programs that
recover from unexpected errors, panicking is often used as a trade-off to
still prevent bad behaviors but without adding too much complexity to the
codebase. Given how panics are used, a clear application of verification
is to guarantee that Rust programs never panic.
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As an example, consider the program in Fig. 2.13, which defines the
constructor of an iterator that advances by a custom number of steps
at each iteration. Intuitively, the step argument should never be zero,
but just stating a requirement in the documentation is not enough to
guarantee absence of unintended usages. So, the first statement in the
implementation checks the desired property at runtime with an assert!

statement, which panics in case step is zero. A necessary goal for a
verifier, in this case, is to check at every call site that the step argument
is never zero.

Figure 2.13: Part of the implementation
of the StepBy core library type [47].
Its constructor performs a precondition
check at runtime using an assert state-
ment.

Rust

impl<I> StepBy<I> {
#[inline]
pub(in crate::iter) fn new(iter: I, step: usize)
-> StepBy<I> {

assert!(step != 0);
let iter = <I as SpecRangeSetup<I>>::setup(iter, step);

StepBy { iter, step: step - 1, first_take: true }
}

}

2.2.1.2 Absence of Arithmetic Errors

Unlike C and C++, the Rust language takes care of ensuring that arithmetic
errors like integer overflows do not cause undefined behavior. Depending
on the compilation flags chosen, in Rust, overflows at runtime either
panic or are computed using wraparound behavior. Both outcomes are
considered bugs in a Rust program, and the core library exposes special
functions to explicitly perform wrapped addition when a developer
intentionally wants it. Thus, proving absence of unintentional overflows
is a desirable feature for a Rust verifier, as well as absence of other
arithmetic errors.

To see an example, consider the buggy bisection implementation in
Fig. 2.14, which performs a binary search on the domain of a monotoni-
cally increasing discrete function. The assignment that computes mid

performs an addition between two usize variables, low and high ,
which might overflow if the size of the domain is large enough. Since
nothing in the documentation limits the size of the domain, the overflow
is reachable and is a bug. As a fix, the developers should in this case
use the low + ((high - low) / 2) expression, which computes the
desired value without overflowing.

2.2.1.3 Reasoning About Determinism

When manually reasoning about function calls that have only shared
references as arguments, an unfortunate mistake is to believe that identical
sequential calls are going to produce the same results. This misconception
is perhaps incorrectly motivated by the properties of shared references,
which provide the necessary immutability properties across the calls, but
do not ensure in any way deterministic execution. Consider for example
the main function in Fig. 2.15, assuming for simplicity that the Data

type has no interior mutability. Because the data variable is passed
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Rust

/// A monotonically increasing discrete function, with domain
/// [0, domain_size)
trait Function {

fn domain_size(&self) -> usize;
fn eval(&self, x: usize) -> i32;

}

/// Find the ‘x‘ s.t. ‘f(x) == target‘
fn bisection<T: Function>(f: &T, target: i32) -> Option<usize>
{

let mut low = 0;
let mut high = f.domain_size();
while low < high {

let mid = (low + high) / 2;
let mid_val = f.eval(mid);
if mid_val < target {

low = mid + 1;
} else if mid_val > target {

high = mid;
} else {

return Some(mid)
}

}
None

}

Figure 2.14: The implementation of a bi-
section method on a discrete function.
The program contains a bug because
(low + high) / 2 might overflow for
large enough domains. The fix is to use
low + ((high - low) / 2) .

[48]: (2024), The rust-osdev/volatile crate

to the compute functions as a shared reference, it is guaranteed that
both calls will be invoked with identical arguments. This is not enough
to guarantee that the results a and b of the calls are equal because
the execution of compute can still be non-deterministic. For example,
it might internally perform system calls to read the current time, use
randomization libraries, perform I/O operations, and so on. So, without
any additional information about the implementation of compute , a
sound verifier should point out that the final assertion might fail.

Rust

fn compute(data: &Data) -> i32 {
// ...

}

fn main() {
let data: Data = // ...
let a: i32 = compute(&data);
let b: i32 = compute(&data);
assert!(a == b);

}

Figure 2.15: An example of sequential
calls that only take shared reference ar-
guments. Without knowing the imple-
mentation of compute , a verifier should
report that the final assertion might fail.
The reason is that the Rust language en-
sures immutability of the arguments, but
not determinism of the implementation
of compute .

To see how unexpected non-determinism leads to a real-world bug,
consider the code snippet in Fig. 2.16, extracted from a library designed
for developing operating systems in Rust [48]. The important expressions
to focus on are the two self.reference.len() expressions, which are
desugared by the compiler into self.reference.deref().len() . All
method calls in this chain take a shared reference, so it might seem that
the two expressions evaluate to the same values because they use identical
arguments. However, since the implementation of deref is provided by
the user of this library, by using types with interior mutability, or by per-
forming non-deterministic operations, the data checked in the assertion
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[49]: (2022), Issue #26 in the rust-
osdev/volatile crate

[50]: Xu et al. (2003), Transparent Runtime
Randomization for Security

can actually be different from the data passed later to the intrinsic::

function call [49]. Issues such as this one are called time-of-check to time-
of-use errors because a property is violated after the runtime operation
that was responsible for checking it. A sound verifier should identify the
bug in this example by reporting that, despite the runtime check, some
precondition of the non-overlapping copy is not guaranteed to hold. In
this case, a fix for the bug is to call self.reference.deref() exactly
once, storing the result in a local variable. This way the user-provided
implementation of Deref would only be executed once, avoiding issues
due to the potential non-determinism.

Figure 2.16: A code snippet from the
rust-osdev/volatile library, contain-
ing a time-of-use to time-of-check bug
due to a potential non-deterministic im-
plementation of Deref . Rust

#[derive(Clone)]
#[repr(transparent)]
pub struct Volatile<R, A = ReadWrite> {

reference: R,
access: PhantomData<A>,

}

impl<T, R, A> Volatile<R, A>
where

R: Deref<Target = [T]>,
{

pub fn copy_into_slice(&self, dst: &mut [T])
where

T: Copy,
{

assert_eq!(
self.reference.len(),
dst.len(),
"(...) different lengths"

);
unsafe {

intrinsics::volatile_copy_nonoverlapping_memory(
dst.as_mut_ptr(),
self.reference.as_ptr(),
self.reference.len(),

);
}

}
}

There are many ways to achieve non-determinism in Rust. Almost all of
them, e.g., system calls and concurrency, require some usage of unsafe
code in the implementation of a library. However, even by using only safe
Rust code a program can achieve non-determinism by casting a reference
to an integer, revealing in this way a memory address that for security
reasons is intentionally randomized by most operating systems [50].
Reasoning about determinism requires considering many special cases
of the semantics of Rust, which developers can easily forget since they
are relatively rare in practice. This is where a verifier becomes useful.
By complementing the immutability guarantee of the shared references
with some contract annotation for determinism, as we do in our thesis
with the purity annotations #[pure] presented later, a verifier would
be able to prove the cases in which assertions like the one in Fig. 2.15 are
guaranteed to never fail.
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2: Calling unsafe functions is only possi-
ble from other unsafe functions or from
code blocks marked as unsafe.

[51]: (2020), Square root implementation in
the ontology-wasm-cdt-rust crate

[52]: (2015), Issue #29723 in rustc: Vari-
ables moved from in match guards are still
accessible in other match arms

2.2.1.4 Proving Rust Safety Conditions

There are multiple reasons why a developer might have to declare that a
function is unsafe. One particular reason is to signal that the function has
a precondition that must be satisfied in order for the function to be safely
executed. Moreover, there are cases in which calling a function of this kind
is the only reason why an unsafe block exists2. In this special situation,
the usage of unsafe Rust can be fully checked to be correct by proving
with a verifier that the precondition of the function is always satisfied.
This is beneficial for Rust developers: instead of having to manually check
the safety condition of all unsafe code usages, they would only need
to specify the precondition of the unsafe function, annotating that the
precondition is sufficient to ensure safety.

Consider for example the code snippet in Fig. 2.17, taken from the integer
square root implementation of a library for smart contracts [51]. The
unchecked_div function is a compiler intrinsic that is faster than a
standard integer division in Rust, but unsafe because it causes UB when
it is called with unsigned integer types passing a zero divisor. In the
example, this condition was manually checked by a developer: as the
comment suggests, proving that xkn is never 0 is enough to guarantee
that the unsafe block used in the expression is safe. However, this manual
process is error-prone and would benefit from the automation that a
program verifier can offer.

Rust

// div is safe since xkn will never be 0
xk = xkn.wrapping_add(unsafe { unchecked_div(n, xkn) }) / 2;

Figure 2.17: Example of usage of an un-
safe block in the square root implementa-
tion of a library for smart contracts [51].

2.2.2 Helping the Rust Compiler

In this subsection, we present cases where a verifier could help the Rust
compiler, either by double-checking some guarantees of the language or
by proving program invariants that enable new optimizations.

2.2.2.1 Proving Memory Safety

One of the guarantees of Rust is memory safety, but there have been bugs
in the past causing the Rust compiler to generate programs that were
not memory safe. For example, consider the program in Fig. 2.18, which
was reported as part of the issue #29723 of the Rust compiler [52]. Old
versions of the compiler, before 2018, incorrectly accepted the program.
The memory-safety bug is in the second branch of the match, where
the variable s is used after being consumed during the evaluation
of the condition of the first branch. The compiler should reject the
implementation of the second branch, pointing out that s was consumed
in the first branch. Since safety is one of the main selling points of Rust,
the language would benefit from having a verifier that double-checks the
guarantees of Rust. This can be seen as an instance of dual programming, the
approach used to enhance software reliability and reduce the likelihood
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Figure 2.18: An example of a Rust pro-
gram with UB, which was incorrectly
accepted by old versions of the Rust com-
piler [52].

Rust

fn main() {
let s = String::new();
let _s = match 0 {

0 if { drop(s); false } => String::from("oops"),
_ => {

// This should trigger an error,
// s could have been moved from.
s

}
};

}

of errors by independently implementing the same functionality in two
different ways.

2.2.2.2 Identifying Redundant Runtime Checks

In order to prove absence of errors, program verifiers have to perform
complex reasoning that typically exceeds the capabilities of a traditional
compiler. After successfully checking a program, the verifier holds useful
information that can be used to justify additional optimizations, such as
dead code elimination.

For example, consider the noop function in Fig. 2.19. The compiler could
recognize that the entire function is equivalent to a no-operation because
there are no observable side effects. What is hard for the compiler to
realize is that the expression in the assert! statement always evaluates
to true , which is exactly what a verifier needs to prove when checking
the absence of panics. By informing the compiler that the failing branch of
the assert! is unreachable, the Rust compiler can optimize the program
beyond what is currently possible.

Figure 2.19: An example of a Rust func-
tion with no side effects. The entire body
of the function is dead code and could be
removed as an optimization. However,
using rustc version 1.72.0 with release
optimizations enabled (the compilation
flag -C opt-level=3) is not enough to
compile the function to a single return
assembly statement.

Rust

pub fn noop(flag: bool, x: i32) {
let y;
if flag {

y = 0;
} else {

y = x;
}
assert!(y == 0 || y == x);

}

Our evaluation of Ch. 3 shows one possible way to compute redundant
runtime checks using a verifier. Although in this thesis we do not
study techniques to feed this optimization information back to the Rust
compiler, that might be done by injecting calls to special functions, such
as std::hint::unreachable_unchecked , which make the compiler
assume that certain branches are unreachable.

2.3 Rust Verification Framework

In this section, we present the design principles of the verification
framework for Rust that we developed to accommodate the verification
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techniques described in Chapter 3 and Chapter 4. A description of the
implementation of the framework is in Chapter 5. Overall, the guiding
objective is to develop a verification tool for Rust that is sound and easy
to use in practice.

2.3.1 Modularity

Practical verification tools need to scale well with the size of a codebase.
To achieve so, we designed our verification techniques to be modular: the
verification of a program is achieved by dividing the program into many
smaller verification units, each of which is verified independently. This
choice makes it possible for the verification to scale linearly with the size
of a codebase. A necessary ingredient to make this possible are contract
annotations, which describe the functional behavior of each unit. This way,
when verifying a unit the implementation of other units can be ignored,
by using their contracts as an approximation of their behavior. Overall,
modularity leads to the following advantages:

§ Since the verification of each unit does not depend on the outcome
of the verification of other units, the verification of a large program
can be easily parallelized.

§ By using contracts to abstract the functional behavior of each
unit, re-verifying a program after making a small change can be
done efficiently. In particular, when the modification affects the
implementation of a single unit, re-verifying the program only
requires re-verifying the unit that changed. When the modification
instead affects the contract of a unit, it is additionally necessary
to re-verify all other units that were relying on the contract that
changed. In both cases, the re-verification needs to verify only a
small number of units; much less than the entire program in which
they are contained.

To maximize modularity, we defined these verification units to be the
functions and methods of Rust programs.

As an example, consider the chain of function calls in Fig. 2.20. As the
name suggests, the outermost function add_four adds 4 units to its
argument by repeatedly calling add_two , which in turn is implemented
with calls to add_one . Since each addition might overflow, the contracts
of all functions require their arguments to be small enough to handle the
increments. Each contract also describes the functional behavior of its
function, by ensuring that the result is the expected one. When verifying
the program for the first time, the verifier will successfully check each
function implementation against the provided contracts. Now, imagine
that a developer optimizes the implementation of add_two by replacing
its body with y + 2 . In order to check the modified program, a verifier
will only need to re-verify the implementation of add_two , knowing
that the other two functions are still correct. In more detail: (1) add_one

is still correct because it does not make any calls, so it cannot depend
on changes to other verification units, while (2) add_four is still correct
because its verification relies on the contract of add_two and not on its
implementation. In this small example, the modularity property made it
possible to avoid re-verifying two functions, and the benefit grows with
the size of the program to be verified.
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Figure 2.20: A chain of Rust functions.
A modular verifier can verify all func-
tions in parallel. By reasoning about each
function call using its contract and not
its implementation, re-verifying a pro-
gram after small changes can be done
efficiently.

Rust

#[requires(x < i32::MAX)]
#[ensures(result == x + 1)]
fn add_one(x: i32) -> i32 {

x + 1
}

#[requires(y <= i32::MAX - 2)]
#[ensures(result == y + 2)]
fn add_two(y: i32) -> i32 {

add_one(add_one(y))
}

#[requires(z <= i32::MAX - 4)]
#[ensures(result == z + 4)]
fn add_four(z: i32) -> i32 {

add_two(add_two(z))
}

2.3.2 Executable Semantics of Specifications

The modularity requirement implies the need to write contract annota-
tions describing the functional behavior of functions. When designing
these annotations, we decided to match the syntax and semantics of reg-
ular Rust code whenever possible. For example, in Fig. 2.20 the contracts
are written using regular boolean Rust expressions. The advantages are
the following:

§ Verification users do not need to learn another language in order
to understand or write contracts.

§ The contract annotations can be type-checked as regular Rust code,
reporting familiar error messages. For example, the type checks
help in case a user erroneously tries to add a boolean to an integer
in a contract.

§ The expressions can be easily copy-pasted between contracts and
runtime checks, preserving their meaning. This, for example, makes
it easy to convert existing precondition checks implemented with
assert! statements to preconditions of a contract. Even more, this
semantic equivalence makes it possible to call certain Rust functions
from contracts, provided that they are marked and checked using
the purity annotations of Ch. 3.

Even if it is possible to restrict the language of contracts to the point that
the borrow checks are not necessary and can be disabled, we preferred
to avoid that. One disadvantage of this approach is that the user might
have to introduce shared references to satisfy the borrow checker. The
advantages are that our language of contracts supports imperative idioms
such as updates to local variables, rejecting at the same time nonsensical
lifetime usages that would confuse Rust developers.

As an example of our contract annotations, consider the code in Fig. 2.21.
The IntTree type represents either an empty tree or a node of the tree.
The function get_root_value returns the value stored in its root if the
tree is non-empty, otherwise the function panics. To annotate this function
with a precondition, it is sufficient to copy-paste the runtime check done
in the assert! statement into the #[requires(..)] annotation. Since
the language of contract annotations supports Rust syntax, the matches!
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3: Defining quantifications over
bounded integer types with loops would
be possible, but iterating over all their
values at runtime would not terminate
in a reasonable amount of time in the
case of big integer types.

Rust macro used in the copied expression does not pose a problem and
is supported by the verification framework.

As an example of a contract with more complex semantics, consider the
code in Fig. 2.22. The return_true function returns true by evaluating
a convoluted expression that might cause many kinds of arithmetic
errors: a division by zero if x == 0 , an overflow in 42 * x if x is too
big and an underflow if x is too small. Instead of manually computing
the exact range of values of x by which the function is correct, in this
example, it is quicker for the user to just copy-paste the expression that
should evaluate to true in the precondition annotation. By our design,
the semantics of a precondition that might panic or have integer errors
requires the verification of each caller to prove at the call site that the
panics or integer errors in the precondition cannot happen. On the callee
side, the implementation of the function will be checked to be panic-free
under the assumption that the evaluation of the precondition did not
encounter arithmetic errors, encoding precisely what we need.

Rust

enum IntTree {
Node {

value: i32,
Box<IntTree>,
Box<IntTree>,

},
Empty,

}

#[requires(matches!(tree, IntTree::Node { .. }))]
fn get_root_value(tree: &IntTree) -> i32 {

assert!(matches!(tree, IntTree::Node { .. }));
if let IntTree::Node { value, ... } = tree {

return value;
}
0

}

Figure 2.21: Example of a possibly empty
binary tree type, with a function that
returns the value stored in the root node.
In this case, the precondition matches
exactly the runtime check implemented
in the function.

Rust

#[requires(42 * x / x == 42)]
fn return_true(x: i32) -> bool {

42 * x / x == 42
}

Figure 2.22: Example of a function that
should only be called for certain values of
x . Instead of manually specifying these

values, our verification framework sup-
ports preconditions containing expres-
sions that might cause arithmetic errors
by implicitly generating the additional
preconditions that are necessary to avoid
the errors.

Our design of mirroring the executable semantics of Rust aims to make
contracts more familiar to Rust users, but we do not want this choice
to limit the expressivity of the annotations. To cover advanced cases,
we decided to let the language of contracts still offer constructs with
special semantics, such as existential and universal quantifications. Even
if these quantifier extensions do not have realistic executable semantics3,
to maintain a uniform syntax we decided to use a Rust-like syntax that
resembles a function call.

For example, consider the binary_search function in Fig. 2.23. The
precondition of the function needs to express that the list of values is
sorted, which is typically done by using a universal quantification. In the
language of contracts used by the verification framework, this can be done
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Figure 2.23: Example of a binary search,
whose precondition uses a universal
quantification to require that the list of
values should be sorted.

Rust

#[requires(
forall(|j: usize, k: usize|

(0 <= j && j < k && k < values.len()) ==>
values[j] <= values[k]

)
)]
fn binary_search(v: i32, values: &[i32]) -> Option<usize> {

// ...
}

by calling the special boolean forall function, which accepts a Rust
closure whose arguments are the quantified variables, and whose body
is the quantified expression. Even if forall does not have a realistic
implementation, the overall syntax of the contract still looks like regular
Rust.

2.3.3 Automation

In our work, we decided to use SMT-based verification to automate the
task of proving that each function implementation satisfies its contract.
This way, the user can focus on writing the contracts rather than also
writing a proof in an interactive theorem prover. Manually writing a
proof would bring several disadvantages, because the user would first
need to learn (1) how the Rust program is formalized in the theorem
prover, and (2) how to make proofs using the logic defined in the theorem
prover. Both tasks typically require expert knowledge that would make
the verifier hard to use for regular Rust developers.

While SMT solvers provide powerful automation for verification tasks,
they come with their own set of challenges. Mainly, the automation has
limits that surface as timeouts or incompleteness errors in the verification
of Rust programs. For example, the automation of non-linear arithmetic
works only in trivial cases because the underlying logic is not decidable,
and the search space for proofs involving quantifier instantiations is
sometimes too big to be explored in a reasonable amount of time. To
work around these issues when they happen, the verification technique
should offer the users a manual way of guiding the proof search, so
that the verification task falls back to be tractable automatically. For
example, incompleteness issues might be solved by manually applying
lemma functions in the program, at the point where the user knows that
a certain proof step should be made. The proof step itself might then
be small enough to be verified automatically on its own, or the lemma
should be marked as trusted to signal that its correctness has been checked
externally (i.e., manually, or using other verification tools). Regarding
quantifications, a common technique to guide the proof search consists
of annotating the quantifications with syntactic patterns called triggers,
which limit the quantifier instantiations to the cases where the pattern
matches a term of the proof.
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[53]: (2022), Fuzz-gen tool implementation
in the WaVe project

2.3.4 Reusability of Specifications

Writing contract annotations is the only necessary step that a user has
to perform manually. To mitigate the cost of this work, we designed the
annotations of our verification framework to be easily reusable between
different tools and verification techniques. For example:

§ The verification techniques of both Ch. 3 and Ch. 4 consume
the same core language of contract annotations, even though the
techniques are different.

§ The WaVe project, whose goal was to build a verified Wasm runtime,
implemented a tool that consumes the contract annotations of our
framework to generate property-based tests [53]. This gives more
flexibility to the users, which can make trade-offs by deciding in
some cases to extensively test a function against its contract instead
of formally verifying its implementation. This can be useful to
validate the contract of items that cannot be verified for some reason.
For example, functions implemented using language features that
are not supported by the verifier.

2.3.5 User-Friendly Error Reporting

We designed the verification errors of our framework to be reported and
phrased in a way that is natural to Rust developers, without exposing
them to the complexity of the underlying verification techniques. This
translates to the following requirement that the instantiations of the
framework should adhere to:

§ Each error message should be associated with a position that accu-
rately identifies the source code item that triggered the generation
of the error. For example, for a function call that does not satisfy the
associated precondition the position of the error message should
be the line of the call. Note that the cause of the error might be
somewhere, but the position of the error message should be a good
starting point to start from to debug the verification error. As an
example, in Fig. 2.24, the use_elevator function call does not
satisfy the precondition people < 10 , so the verifier reports an
error at the line of the call. As an additional suggestion, the verifi-
cation error also reports the line at which the failing precondition
is defined.

§ The message of each error diagnostic should be phrased in a way
that is understandable by Rust developers, who are not aware of the
internals of the verifier. As an example, for a failing precondition,
the error message should not be an obscure message such as “the
SMT solver reported that <..> is satisfiable”, where “<..>” might
be some internal SMT encoding of a Rust expression. Instead, as
shown in Fig. 2.24, the report should clearly describe what the
error is — a failing precondition — without mentioning confusing
implementation details.

§ When the framework implementation encounters unsupported
language features, it should report an error message explaining
what the unsupported feature is and where it is located, without,
e.g., crashing. An example is shown in Fig. 2.25, where the verifier
reports an error because it does not support the raw pointers
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Figure 2.24: Example of a verification
error, reported by the Prusti verifier, for
a function call that does not satisfy a
precondition.

Rust

#[requires(people < 10)]
fn use_elevator(people: u32) {

// ...
}

fn main() {
let people = 10;
use_elevator(people);

}

Output

error: [Prusti: verification error] precondition might not
hold.

--> program.rs:10:5
|

10 | use_elevator(people);
| ^^^^^^^^^^^^^^^^^^^^
|

note: the failing assertion is here
--> program.rs:3:12
|

3 | #[requires(people < 10)]
| ^^^^^^^^^^^

Verification failed
error: aborting due to previous error

4: To distinguish between verification
and compilation errors, all messages of
the first kind have a prefix that specifies
“verification error”.
[54]: (2024), Visual Studio Code
[55]: (2024), VSCodium

contained in the using_pointer function. Bugs or failing validity
checks in the implementation of the verifier should be reported
in a similar way. This allows verification users to evaluate the tool
even in codebases where not all function implementations are fully
supported by the tool or verification techniques.

2.3.6 Command-Line and IDE Interface

To make it easy for Rust developers to incorporate verification in their
workflow, we decided that our framework should offer both a command
line interface and an IDE interface. The command line interface makes it
possible to use the verification framework in an environment without a
graphical interface. For example, the terminal of a developer, a server
accessed over an SSH connection, or a script executed as part of an
automated continuous integration process. The verification errors are
then reported in the textual output of the tool as shown in Fig. 2.26,
using the same reporting style4 of the usual compilation errors of Rust.
The IDE interface, instead, makes it possible to use the verification
framework without leaving the code editor (Visual Studio Code [54]
or VSCodium [55]) used for development. For example, starting the
verification of a program can be done by clicking a button in an IDE
or by executing one of the commands offered by the plugin. This way
verification errors can be reported directly on the source code as shown
in Fig. 2.27.
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Rust

pub fn using_pointers(ptr: *const i32) {
assert!(ptr as usize % 8 == 0);

}

Output

error: [Prusti: unsupported feature] raw pointers are not
supported

--> program.rs:2:13
|

2 | assert!(ptr as usize % 8 == 0);
| ^^^

Verification failed
error: aborting due to previous error

Figure 2.25: Example of an error message
caused by the presence of a Rust feature
that is not supported by the Prusti veri-
fier.

Figure 2.26: Screenshot of the command line interface of the verification framework, instantiated in the Prusti verifier.

Figure 2.27: Screenshot of the IDE interface of the verification framework. The interface is implemented as a plugin for Visual Studio
Code and VSCodium [54, 55]. Clicking on the “Prusti” button at the bottom left in the status bar starts the verification process using the
Prusti verifier. The outcome of the verification is reported in the status bar and through the standard diagnostics handler of the IDE. The
IDE reports the diagnostics in the source code (top right panel), in a list of problems (bottom right panel) and in the project structure (left
panel).
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Verification of Safe Code 3
In this chapter, which is based on our OOPSLA 2019 paper ‘Leveraging
Rust Types for Modular Specification and Verification’ [29], we present
our technique for the verification of safe Rust code.

Collaborations This work was done in collaboration with fellow doc-
toral student Vytautas Astrauskas. Vytautas and I contributed equally to
most aspects of the work. Vytautas led the work on the borrowing DAG
(Sec. 3.7), the encoding of shared references (Sec. 3.5.2), and the functional-
correctness evaluation (Sec. 3.8.2.3). I led the work on the loop body
invariant annotations (Sec. 3.4.2), the capability analysis (Sec. 3.7), the
large-scale core-proof, and the overflow-freedom evaluation (Sec. 3.8.2.1,
Sec. 3.8.2.2).

3.1 Introduction

To understand what makes Rust special in the context of software
verification, let us start with a small example of verification of C code.
The client function in Fig. 3.1, which is implemented in C, takes two
linked lists by address as arguments. During its execution, it stores the
length of the second list in a local variable old_len , appends an element
of value 100 to the first list, and then checks that the length of the second
list did not change. Even for such a simple function, proving that the final
check never fails is challenging, because there are various possible bugs
that a verifier has to rule out. First, one has to prove absence of memory
errors, such as that the expression b->len does not dereference a null
pointer and that the accessed memory location is initialized. Second, one
has to prove that the two parameters are not aliasing each other. In fact,
it is not enough to prove that a != b ; it is also necessary to prove that
the memory locations reachable from a and from b are disjoint. Third,
one has to prove absence of data races in the implementation. Only after
all these preliminary steps can one finally reason about the append call
and prove that the length of b does not change.

C

void client(List *a, List *b) {
int old_len = b->len;
append(a, 100);
assert(b->len == old_len);

} Figure 3.1: C function manipulating two
linked lists.

Verifying this program in a modern program logic such as separation logic
usually requires a lot of manual work. First, one needs to model the data
structure referenced by the arguments by declaring a logical predicate,
which represents the possibly unbounded set of memory locations of a
linked list. Second, one needs to specify in a precondition that the two
data structures do not have memory locations in common, which can
be done using the separating conjunction operator in separation logic.
Third, one needs to define the logical predicate of the List data structure,
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modeling that it contains a field called len that can be modified by
whoever holds the permission to modify the data structure. A popular
technique to do so is by expressing an ownership relation between the
data structure and the fields that compose it. Fourth, depending on the
verification logic, one also needs to specify throughout the proof how to
switch between an abstract representation of the data structure, where the
fields are not visible, and an equivalent representation where the fields
are instead visible. This can be done by using auxiliary proof annotations
called ghost code, among which there are statements that exchange an
instance of a predicate with its definition, and dual statements that
exchange the fields of a definition with an instance of the predicate.
Knowing that the lists a and b do not have elements in common, and
knowing that b->len is part of the data structure of b , in separation
logic one can immediately deduce that any modification to a will not
affect b->len , which is the goal of this verification example.

The verification ingredients that we just presented are powerful, but quite
difficult to use in practice. In a real-world proof, one might end up having
to deal with hundreds of proof steps, each using one of these ingredients.
The result is that verification can usually be done only by proof experts,
who know the details of the program logic used in the proof. Avoiding
these proof steps is not an option in these modern logics, because proving
basic properties such as memory safety and non-aliasing is necessary in
order to prove more interesting properties such as functional properties.
In our work, we call a core proof this proof of memory safety that one has
to build before proving any of the functional properties of interest.

In this chapter, we focus on the verification of Rust code. We present a
technique that solves verification challenges like those described in the
previous example by leveraging some of the Rust properties presented
in Sec. 2.1, simplifying the functional specifications and automatically
constructing a core proof. Consider for example the code in Fig. 3.2,
which is an idiomatic Rust translation of the C code of Fig. 3.1. The
compiler checks many more properties than in C. First, the compiler
takes care of ensuring absence of memory errors in the program, which
means for example that the expression b.len() will not dereference
a null pointer nor access uninitialized memory locations. Second, the
non-aliasing properties of the mutable reference types in the arguments,
checked as well by the compiler, guarantee the disjointness property
between the data structures of a and b . This holds because the type
system of Rust uses a notion of linear capabilities for its type checks, by
which mutable references can be seen as temporary holding unique access
to the referenced data structures. Since a memory location cannot have
more than one unique owner, the data structures are disjoint. Finally,
the compiler also takes care of ensuring absence of data races, which
are defined to have undefined behavior in a fully-safe Rust program.
Following the checks of the Rust compiler, our technique automatically
generates the core proof and all the auxiliary ghost code annotations
that it requires. What is left is a proof where the verification user only
needs to plug-in the functional specification of its functions, by writing
contract annotations in the Rust source code. Our technique takes care of
integrating these functional specifications in the proof, so that verification
users are not required to be experts of the program logic used by our
technique.
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Rust

fn client(a: &mut List, b: &mut List) {
let old_len = b.len();
append(a, 100);
assert!(b.len() == old_len);

}

Figure 3.2: Rust functions manipulating
two linked lists. The types and the lan-
guage guarantee non-aliasing, mutabil-
ity and memory-safety properties that
are not guaranteed in Fig. 3.1.

The language of contracts used by our technique is mostly standard,
except for some extensions that we developed to handle challenging
patterns of Rust. The functional behavior of functions is specified by pre-
and postcondition annotations, in which the result keyword represents
the returned value and logical conditions can be expressed using a subset
of boolean Rust expressions called pure (deterministic, side-effect free, and
non-diverging). To express mathematical relations, the language offers
universal and existential quantifications, as well as the old(..) construct
to evaluate an expression written in a postcondition using the pre-state
of the function (i.e., just before the execution of the function). Among the
specification challenges, we identify that the special reborrowing function
pattern of Rust, which arises when a Rust function returns a reference
created from some other reference-typed argument, requires the user
to write postconditions that refer to a future program state where the
returned reference expires. To address this case, we developed a novel
contract annotation called a pledge to express how future modifications
to the returned reference affect the original reference from which it
was created. Additionally, loops in Rust can have complex control-flow
graphs (CFG) because the loop guard can contain statements with side
effects or early returns. For example, the ? operator can be used in Rust
expressions to conditionally perform an early return of an error value,
even during the evaluation of the condition of a loop. This does not match
classical loop invariant definitions, which assume loop guards to be pure.
To address these cases, we developed a new annotation called loop body
invariant that generalizes classical loop invariants, making it possible for
verification users to specify an invariant even at an intermediate program
point in the body of a loop.

The verification technique presented in this chapter relies on what we
call the explicit properties of Rust types. That is, properties that are
determined by the semantics of the Rust language. This is to contrast with
the implicit type properties that developers can define when developing
new libraries using unsafe code. The intuition behind the name is that
explicit properties hold whenever a developer can see a type annotation in
a Rust program, meaning that a verifier can programmatically discover
these properties just by traversing the type declarations (e.g., tuples,
struct , enum , references). The implicit properties, instead, are in the
best case described only in prose in the documentation of the libraries.
Handling the latter case is out of scope for the current chapter, but is
covered in Ch. 4.

Contributions The main contributions of our work are:

§ We present a specification language for expressing the intended
functional properties of Rust code. This language is designed to
use the same syntax and semantics as Rust in order to be familiar
to Rust developers.
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§ We present two annotations that we developed to handle special
patterns of Rust code: pledges for expressing the functional proper-
ties of functions returning references, and loop body invariants for
expressing loop invariants in the presence of loop conditions with
side effects or early return statements.

§ We present an encoding of the properties of Rust types and signa-
tures into the logic of implicit dynamic frames [24, 56], a variant of
separation logic [3].

§ We automate the encoding of Rust programs into the Viper verifica-
tion language, defining an imperative and a functional translation
of Rust code. A key ingredient of our automation lies in a static
analysis of capabilities, which elaborates and augments the typing
information provided by the Rust compiler.

§ We provide an implementation of our verification technique in a
tool called Prusti. Using Prusti, we evaluate our technique on a
large-scale corpus of unannotated real-world code, as well as a
hand-written collection of Rust programs annotated with functional
specifications. The version of our tool used for the evaluation is
available as an artifact [57], while more recent versions are available
as open-source software [27].

Outline The rest of this chapter is structured as follows. In Section 3.2,
we provide an overview of the Viper verification language. In Section 3.3,
we present our verification approach, based on the construction of a core
proof using the Viper verification language. In Section 3.4, we introduce
two annotations that we designed to handle Rust-specific code patterns.
In Section 3.5, we define our encoding of Rust types into Viper predicates,
and in Section 3.6, we define our encoding of Rust code into imperative
or functional Viper code. In Section 3.7, we explain how we automate the
construction of a Viper proof by using a static analysis of type capabilities.
In Section 3.8, we implement our technique in a verifier called Prusti, and
we evaluate it on various verification tasks. In Section 3.9, we discuss
related work, then we conclude in Section 3.10.

3.2 Viper Background

In our work, we use the Viper verification language to build a correctness
proof in a variant of separation logic called implicit dynamic frames [24,
56]. We chose to use Viper based on three requirements. First, we want to
adhere to the design principles of our verification framework (Sec. 2.3),
especially modularity and automation. We identified that the implicit
dynamic frames of Viper are useful in this regard because they make
it easier to automatically combine the functional specifications with a
memory-safety proof. Second, as introduced in this chapter we want
to encode properties of Rust types using separation logic. Third, as a
practical goal, we want to minimize the engineering effort required
to implement the verifier, by reusing existing automated tools and
techniques where possible. Viper is one of the few verification toolchains
that satisfy all such requirements. Other solutions that we considered
lack in automation [12, 58], do not offer separation-logic primitives [16, 17,
20], or are not designed to be primarily used as intermediate verification
languages.

https://github.com/viperproject/prusti-dev
https://github.com/viperproject/prusti-dev
https://github.com/viperproject/prusti-dev
https://github.com/viperproject/prusti-dev
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1: Given an assertion of the shape
xAy ˚ xBy, the resources necessary to
satisfy it are defined as the sum of the
resources of xAy and of xBy.

[59]: Summers et al. (2013), A Formal Se-
mantics for Isorecursive and Equirecursive
State Abstractions

The Viper verification infrastructure is built around an intermediate
verification language, called Viper as well, used as an abstraction layer
between the development of frontend verifiers (e.g., our verifier for
Rust) that generate Viper encodings, and backend solvers (e.g., symbolic
execution, verification condition generation) that take care of performing
the verification.

3.2.1 Permissions and Resources

One of the main features of the Viper language is the use of fractional
permissions to reason about access to memory locations and usage of other
kinds of resources. The Viper entities used to model imperative code
blocks are called methods. Any method in a Viper program is allowed to
read from the memory locations for which it holds a non-zero permission,
while to also perform modifications the permission needs to be full (i.e.,
equal to one, the maximum). In particular, permissions can be declared
in the contract of a method to state which memory locations may be
accessed or modified.

Viper’s resources can be declared using one of the following constructs:

§ Field permissions. A Viper field models a memory location reach-
able from a reference stored in another memory location, called
object. A field permission expression of the form acc(x.f, p)

represents the fractional permission amount p for accessing the
memory location of x.f via the field f of the object x . When
p is omitted, its value is implicitly one. In Viper, the sum of all
permissions held to the same memory location cannot exceed
one, and this makes it possible to express non-aliasing properties.
For example, the assertion acc(x.f) ˚ acc(y.f) always implies
x != y because in the case x == y there would be an impossible
permission of value 2 associated with the memory location of
x.f 1.

§ Predicates. A Viper predicate is a possibly recursive definition that
describes a set of resources and related invariants. For example,
predicates can be used to model data structures in Viper. To limit
the proof search space and to enforce abstractions, predicates
are by default treated iso-recursively [59] by the solvers, which
apply predicate definitions only at the point where special proof-
hint statements ( fold and unfold ) are used. For example, since
Viper resources are affine, fold statements consume the definition
of a predicate and produce a predicate instance, while the dual
unfold statements consume an instance to produce its definition.
A predicate does not necessarily need a definition. When that is
missing, the predicate is said to be abstract and cannot be unfolded,
meaning that the Viper proof would hold for any definition of the
predicate.

§ Magic-wands. In Viper, a magic wand of the form 𝑃 ˚ 𝑄 repre-
sents an instance of a resource that enables obtaining the resource
𝑄 by consuming both the magic wand and a resource satisfying
𝑃. Creating a 𝑃 ˚ 𝑄 resource – an operation called packaging –
has the effect of consuming 𝑄 and other auxiliary resources to
generate the magic wand, while applying 𝑃 ˚ 𝑄 has the dual
effect of consuming 𝑃 and the magic wand to generate 𝑄. Creating
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a magic wand requires proving that there exists a way to construct
the 𝑄 resource starting from 𝑃 and the auxiliary resources. Since
this proof cannot always be constructed automatically, it can be
provided by the Viper user using imperative Viper code.

Like with fields, predicate and magic wand resources can be declared in
method contracts. That is, a method that unfolds a predicate, or applies a
magic wand, can require a corresponding resource in the precondition of
the method. For example, Fig. 3.3 shows a Viper program that declares
four fields, two predicate definitions, and one method. The predicates
are defined as a combination of other field and predicate resources. In
order to unfold the predicates and access the fields, the method requires
in its precondition a predicate instance, which has to be provided by each
caller. Since the predicate instance is also declared in the postcondition,
the method will return such a resource to its caller when it terminates.

Figure 3.3: Viper method demonstrating
the usage of predicates and permissions.
All && conjunctions in this program are
separating conjunctions. In Viper, if a
conjunct does not have resources in one
of its operands, && acts as a logical con-
junction.

Viper

field x: Ref
field y: Int
field start: Ref
field end: Ref

predicate Point(self: Ref) {
acc(self.x) && acc(self.y)

}

predicate Segment(self: Ref) {
acc(self.start) && acc(self.end) &&
Point(self.start) && Point(self.end)

}

method align_y(s: Ref, t: Ref)
requires Segment(s) && Segment(t)
ensures Segment(s) && Segment(t)

{
unfold Segment(s);
unfold Point(s.start);
unfold Point(s.end);
s.end.y := s.start.y;
fold Point(s.start);
fold Point(s.end);
fold Segment(s);

}

3.2.2 Memory Safety

In the Viper language, proving memory safety effectively means gen-
erating a Viper program such that every memory access respects the
permission rules mentioned above. To prove so, each method should de-
clare in its contract which permissions it might use during the execution
and which permissions it returns to the caller at the end. Moreover, when
a Viper method uses predicates, any manipulation of the permissions
modeled by the predicate should be done by generating the correct fold

and unfold statements.

As an example, consider the Viper method align_y in Fig. 3.3, which
shows one of the Viper programs that we generate as part of our Rust
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verification technique. The s.end.y := s.start.y statement in the
method models an assignment between heap memory locations: s

identifies one object, with fields start and end , both of which are objects
with integer fields x and y . To perform the assignment, Viper checks that
the method has the permissions to read s.end , s.start , s.start.y ,
and to modify s.end.y . These permissions are represented (as full
permissions) by the Segment(s) predicate instance in the precondition
of the method, stating that these permissions should be provided by the
caller. However, the precondition is not enough to automate the proof.
In order to reveal the definition of the Segment and Point predicates,
the method must explicitly use the unfold statements. Then, in order to
prove that the method gives back all these permissions to the caller, the
method has to fold back the predicates and then declare Segment(s)

in the postcondition. The contract also states that the method requires
and ensures a predicate instance for the second argument, Segment(s) ,
even though such an argument is never used in the method’s body.
Overall, this Viper program constitutes a memory-safety proof, because
each memory access is linked to a permission passed from the caller.

3.2.3 Functional Specification

Given the Viper memory-safety proof, proving partial-correctness prop-
erties requires additionally including in the Viper program a functional
specification expressed with contracts and loop invariants. In other
verification techniques, adding the functional specification may be a non-
trivial task that involves changing the memory-safety proof. However,
thanks to how we design the memory-safety proofs in our work, it is
possible to combine the functional and the permission specifications
with a simple conjunction operator (syntactically, a && in Viper). Our
approach leverages the implicit dynamic frames logic of Viper to achieve
so.

Consider for example the method in Fig. 3.4. In order to add a functional
postcondition, such as s.end.y == old(s.start.y) , by the way we
structured the Viper program all that is needed is to conjoin a boolean
expression after the predicate permission in the postcondition. Other
approaches would require merging the functional specification with
the predicate definition, for example by adding new parameters to the
predicate and new boolean expressions to its definition. As done to build
the memory-safety proof, also memory accesses in the specifications
need to be supported by permissions. In our work, we chose to do
this using Viper’s unfolding expressions, which instruct the verifier
where to apply a predicate definition. For example, the s.end.y in the
postcondition should be wrapped in the unfolding Segment(s) and
unfolding Point(s.start) expressions.
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Viper

method align_y(s: Ref, t: Ref)
requires Segment(s) && Segment(t)
ensures Segment(s) && Segment(t) && s.end.y == old(s.start.y) && ...

{
...

}

Figure 3.4: Viper method demonstrating the simplified usage of functional specifications. The full Viper program would need to use
unfolding expressions in the postcondition to declare where to apply the definition of the predicates.

2: Proving termination – obtaining a
total-correctness proof – is not covered
in this thesis, but it is a straightforward
extension of the presented verification
technique. In fact, it has already been
implemented in some experimental vari-
ants of our verification tool.

3: When checking shared references, our
technique additionally relies on the cor-
rectness of the borrow checker.

3.3 Verification Approach

Our verification technique builds a partial-correctness proof of a Rust
program in Viper, generating a Viper method for each Rust function or
method, and one Viper predicate for each Rust type declaration. The
proof construction is performed in two steps, starting from a core proof
of memory safety that is then augmented with functional specifications2.
The clean separation between these two steps is made possible by the
properties of safe Rust and our design of the Viper encoding. Our
motivation behind this approach is that the compiler needs to build
an argument similar to a memory-safety proof when type-checking
the program, so the same language restrictions that make Rust special
should also make the automatic generation of Viper programs easier.
When verifying unsafe Rust code, C code or other non-memory-safe
programming languages, the clean separation between these proof-
construction steps might not be guaranteed.

3.3.1 Core Proof

In our work, the core proof is a Viper memory-safety proof that is
generated automatically by our technique. The purpose of this proof is
manifold. First, the proof encodes the immutability and non-aliasing
properties of Rust types into Viper using permissions. This way, these
properties are available to the verifier and do not need to be re-stated in
the contracts by the users. Second, the core proof ensures that memory
accesses are performed only when they do not cause memory errors3. For
example, this ensures that mutable references are dereferenced only when
they are initialized and non-dangling. This serves as a solid ground on
which to base future work on verification of unsafe code, where the Rust
compiler does not ensure memory safety and it is instead up to verifiers
to guarantee so. Third, the core proof checks that our permission-based
formalization of how Rust capabilities flow is correct. For example, this
prevents encoding bugs such as using immutable types as mutable ones,
or failing to transfer back the capabilities of expiring mutable references
correctly. This further validates our model and offers practical benefits
during tool development.

To construct the core proof, our technique encodes Rust types into Viper,
modeling Rust’s capabilities using Viper permissions. In particular, our
insight is that Rust’s write capabilities can be described as full Viper
permissions, while Rust’s read and immutability capabilities as small
permissions strictly between zero and one. Based on this, each Rust
structure is modeled as a Viper predicates, whose definition models each
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Rust

struct Point {

x: u32,

y: u32,

}

struct Segment {

start: Point,

end: Point,

}

Figure 3.5: The Rust types encoded to
Viper in Fig. 3.3. For simplicity, u32
is encoded not as a predicate, but as a
simple Int type in Viper. The predicate
encoding of primitive types is presented
in Sec. 3.5.

non-reference field of the Rust structure with a Viper field and a predicate.
For example, consider the Segment predicate in Fig. 3.3, which encodes
the Rust type definitions of Fig. 3.5. In our Viper encoding, the predicate
is parameterized by self , modeling the memory location at which one
instance of the type is stored. In the predicate, acc(self.start) and
acc(self.end) model the memory locations at which the fields of the
Rust type are stored. In this example, the fields start and end are owned
by the Segment instance, meaning that deallocating the latter would
also deallocate the two fields. To reflect this structure, the predicate
definition contains two nested predicate instances, Point(self.start)
and Point(self.end) , modeling the Rust type instances that comprise
the Segment type.

In our encoding of signatures, our technique uses Viper permissions
to model the non-aliasing and immutability properties expressed by
Rust. To do so, each argument is modeled as a predicate instance, whose
permission amount depends on the properties of the Rust type. Owned
types and mutable references are encoded using a full permission, so
that those instances are known to be non-aliasing. Shared references,
instead, are modeled using a small fractional permission, so that their
target is modeled as being immutable. These resources encoding Rust’s
function arguments are then combined using separating conjunctions to
construct the resources required by the precondition. For the postcon-
dition, the encoding only needs to return the resources corresponding
to capabilities that, in Rust, are transferred back to the caller. These are
the resource representing the returned Rust type, and the target of Rust
arguments of type mutable reference. For example, Fig. 3.6 shows the
Rust function that we would encode to Viper as in Fig. 3.3. The encoded
precondition requires the caller to provide full predicate instances for the
two &mut Segment arguments, modeling that in Rust the two mutable-
reference arguments s and t cannot have reachable memory locations
in common. Then, the postcondition transfers back the resources that
represent the capabilities of the target of the arguments. In this case,
these are two Segment instances. If the type of the second argument
had been a shared reference (i.e., t: &Segment ), the encoding would
have used a fractional permission amount for the predicate instance (e.g.,
acc(Segment(t), 1/2) ) to model that t ’s target is readable but not
modifiable.

Rust

#[ensures(s.end.y == old(s.start.y) && ...)]
fn align_y(s: &mut Segment, t: &mut Segment) {

s.end.y = s.start.y;
} Figure 3.6: The Rust function encoded to

Viper in Fig. 3.3 and Fig. 3.4.

3.3.2 Functional Specification

The functional specifications in our Viper proofs are generated using
the contracts annotated on the Rust code. Mainly, these annotations
are preconditions, postconditions and loop invariants. In particular, the
encoding is performed in two steps. First, the Rust expressions in a
contract are automatically converted to a first-order logic expression
using a technique that we present in Sec. 3.6.2. As part of this step,
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the Rust expression is checked to be deterministic and side-effect-free.
Second, the first-order logic expression is converted to Viper, introducing
the unfolding constructs that Viper uses as proof hints to know when
to apply the definition of predicates. This step is described in Sec. 3.7,
and is based on a static analysis of Rust capabilities that we developed.
Third, thanks to Viper’s choice of using the implicit dynamic frame
logic in combination with the design of our predicate encoding of
Rust type capabilities, the boolean Viper expression representing the
functional specification can be conjoined to the contracts of the core proof
using a simple && conjunction. As an example, Fig. 3.6 shows part of
a postcondition in Rust that is encoded to the Viper code reported in
Fig. 3.4. While the core proof is never expected to fail, a Viper program
with user-provided functional specifications might fail with a verification
error. In those cases, a back-translation step in our tool converts Viper’s
verification errors into user-readable diagnostics reported on the Rust
program, pointing out which user annotation was involved in the error
and why (cf., Sec. 5.2.1). This way, the verification user never has to
interact with the low-level details of the core proof (or understand Viper
at all).

3.3.3 Limitations Regarding Unsafe Code

The technique presented in this chapter relies on the explicit properties
of Rust types. As a consequence, the programs that are supported cannot
have unsafe code. The reason is that unsafe code can break (in special
cases) the properties of types used in safe Rust. For example, consider
the code in Fig. 3.7. There, the private safe function unused takes a
shared reference argument. While in a fully safe program, this type
annotation would imply that the target memory location is initialized,
from unsafe code it is possible to call the function in a way such that the
reference points to uninitialized memory. This is exactly what the main

function does in the example, so that using the reference such as in the
commented statement would cause undefined behavior. Supporting this
kind of scenario, where some safe functions are called only from unsafe
code, would require checking additional properties such as absence of
undefined behavior and library soundness.

Figure 3.7: A Rust program where a
safe private function is called with a
shared reference that points to uninitial-
ized memory.

Rust

use std::mem::MaybeUninit;

fn unused(p: &u32) {
// let v = *p;

}

fn main() {
unsafe {

let m = MaybeUninit::<u32>::uninit();
unused(&*m.as_ptr());

}
}

The limitation to fully-safe Rust programs might seem quite restrictive at
first, because real-world Rust programs often contain some unsafe code
in their dependencies. However, the intended Rust way of working with
unsafe code is to encapsulate it behind an API that exposes a safe and
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[29]: Astrauskas et al. (2019), Leveraging
Rust Types for Modular Specification and
Verification
4: The most recent Prusti version avail-
able on GitHub [27] uses a snapshot
technique not described in this chap-
ter, which allows Prusti to support even
more language features, such as generic
types with trait constraints, pure func-
tions with non-primitive return types,
arrays and slices. This is described in our
NFM’22 paper [31].

sound API (cf., Sec. 2.1.5), and our technique is sound for safe clients of
these libraries as well. In particular, we support annotating the libraries
with trusted (that is, not verified) contracts, as if the implementation were
entirely safe. This way, for example, it is possible to verify Rust programs
that make use of common collection types of the standard library: vectors,
sets, maps and so on. For example, in many libraries, the unsafe blocks
in the implementation are there just for performance reasons and do not
affect the overall functional behavior of the library API.

Unlike standard collections, libraries that provide interior mutability
require some unsafe code in their implementation; a fully-safe implemen-
tation would not be able to provide the same API behavior. In this case, it
is not possible to annotate the libraries using our technique to express the
modifications that happen through shared references. Our verification
technique remains sound in the presence of interior mutability, but at the
cost of being incomplete. That is, each method call on a type with interior
mutability would result in losing any knowledge about the content of
the type. An example usage of interior mutability is in Fig. 3.8, where
the reset_cell function modifies the content of cell via a function
call on a shared reference. Our specification language in this chapter
is not expressive enough to describe the content of Cell . For example,
a postcondition such as cell.get() == 0 would be rejected by our
verifier with an error message stating that the Cell::get method is not
pure and cannot be called from a contract. The only alternative, marking
this method as trusted and pure, would be unsound in our technique
because it would incorrectly model that the result of cell.get() cannot
change across any call of reset_cell(cell) . We will describe in Ch. 4
a technique that overcomes this obstacle, introducing new annotations
to model the memory locations modifiable via interior mutability and
enabling verification of some of their usages.

Rust

fn reset_cell(cell: &Cell<u32>) {
cell.set(0);

}

Figure 3.8: A Rust function using interior
mutability to modify the content of a type
passed as immutable reference.

3.3.4 Supported Rust Subset

Within safe code, the verification technique in this chapter works for a
small but technically-challenging language subset. The supported types
include primitive types (bool, integers, char) and the following compound
types without a Drop implementation: boxes (for heap-allocated data),
tuples, structs, enumerations, and generic type parameters. In addition,
we support mutable and shared references to those types. Notably, this
definition excludes structures with fields of type reference, which we
do not support. Regarding usages of these types, the technique that
we present — based on our OOPSLA 2019 paper [29] — supports
functions with at most one lifetime and does not handle all usages
of mutable references in loops, trait constraints on type parameters,
nor pure functions returning non-primitive types. In addition to the
paper, the technique that we present in this chapter supports loops with
abrupt terminations (i.e., break , continue , and return statements)
and non-pure loop guards.4
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3.3.5 Trusted Computing Base

Our verification technique and tool build upon several assumptions:

§ Our verification technique is defined on a compiler-provided CFG
representation of Rust programs, called middle intermediate repre-
sentation (MIR). Because of this, we assume that the translation from
source code to MIR, referred to as “lowering” in Rust terminology
and performed by the Rust compiler, is correct.

§ MIR does not have a formal semantics. In our work, we rely on the
available informal documentation of the semantics of MIR, as well
as on tests that check the observable behavior of hand-written Rust
programs.

§ For the encoding of shared references (Sec. 3.6.1.3), we rely on the
correctness of the borrow checker to determine when the shared
references are created and when their associated lifetime ends.

§ For the encoding of move assignments (Sec. 3.6.1.1), we rely on
the correctness of the linearity checks of the compiler and assume
that moved-out places are not read in a program. The alternative
encoding proposed in Sec. 3.5.5 would remove this assumption.

§ For the encoding of pure functions (Sec. 3.6.2), our verification tool
assumes that the user-provided pure functions always terminate.
This assumption could be removed by adding decreases-clause
annotations on the Rust source code, encoding and verifying them
as Viper’s decrease clauses.

§ The implementation of our verification tool has not been formally
verified and is part of the trusted computing base. The tool might
have bugs, independently of the correctness of the verification
technique.

3.4 Rust Verification Annotations

In order to verify functional correctness, users of our verification tech-
nique need to declare the expected functional behavior of Rust functions
and methods by annotating them with first-order logic contracts: precon-
ditions, postconditions, and loop invariants. At their core, these contracts
are side-effect-free boolean Rust expressions, augmented with quantifica-
tions and old expressions to refer to past program states. However, Rust
has some commonly used language features that cannot be annotated, or
are difficult to annotate, using just this standard specification language.
In this section, we present the Rust-specific challenges and solutions that
we developed.

3.4.1 Pledges

In Rust, the creation of a reference from another reference is called
reborrowing. When the references are mutable, such as the creation of q

in Fig. 3.9, the original reference p remains blocked until the last usage
of the reborrowing reference q . From that point, called expiration of q ,
p can be used again. Since p and q refer to the same target memory
location, any modification done via q will be visible via p .
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Rust

fn reset_x(p: &mut Point) {
let q: &mut i32 = &mut p.x;
// p cannot be used here

*q = 0;
// q stops being used; from now on p can be used again
assert!(p.x == 0); // always succeeds

} Figure 3.9: Example of a reborrowing
statement.

When reborrowing happens through a function boundary, meaning that
the reborrowed reference is a function argument and the reborrowing
reference is returned by the function, specifying the functional behavior in
a modular way is not trivial. Consider for example the function nth_mut

in Fig. 3.10, which returns a mutable reference to the nth pointer in
a sequence route that is passed by mutable reference as well. On a
call site like let p = nth_mut(route, n); the original route remains
blocked until p expires. Until then, p can be used to make modifications
that will persist past the expiration. Just by looking at the signature of
nth_mut , one cannot get a precise understanding of the behavior of the
function. For example, the signature does not prevent nth_mut from
changing the length of route , nor prevents it from altering every point
in the list. Moreover, the signature is clearly not enough to express at
which position the returned reference is in route , and also does not
express how the modifications that the caller may do via p will affect
route . All of this needs to be expressed in a postcondition, but there
are three main issues:

1. The standard semantics of postconditions is such that they are
evaluated at the program point just after the function call, where
the result is available and the function arguments can be expressed
using old(..) expressions that are evaluated just before the func-
tion call. However, none of these program points (i.e., before and
after the call) makes it possible to describe whether and how the
call modified route . The reason is that just after the call route

is blocked, and cannot normally be evaluated. The first program
point where the value of route is unambiguously defined is later,
at the point where p expires.

2. In order to express how modifications to p affect route , the
postcondition of nth_mut needs to refer to the future program
state where p expires. In particular, it needs to evaluate p just before
the expiration point and route just after the expiration point. This
is because, in order to respect the usual non-aliasing guarantees of
mutable references, p and route should not appear in the same
Rust expression.

3. Even if we broke the Rust rules to refer to both p and the blocked
route from the same postcondition, there is one last issue: using
at the expiration point the information defined in the postcondition
regarding p and route is difficult. Such a postcondition would
need to state precise aliasing properties, expressing that the re-
turned p points to the memory location of the n-th node in the
linked list. This kind of reasoning based on memory addresses is
unnecessarily complex in many situations.

To solve the issues above, we designed a new functional specification
annotation called a pledge, which makes it possible to express relations
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that hold at the expiration point between the reborrowing and the
reborrowed reference, without having to refer to memory addresses. In
particular, such a relation is assumed to hold when verifying the caller
and is verified on the callee side. To be sound, the latter verification step
needs to be done considering any possible modification that might be
done via the returned reference.

To see an example of a pledge specification, consider again Fig. 3.10. The
after_expiry on nth_mut is a pledge annotation. The expression that
it contains describes the relation between route and result that is
supposed to hold at the program point where the result expires. Since in
Rust, the result and the reborrowed route cannot coexist in the same
expression, the before_expiry(..) expression can be used to refer
to the program point just before the expiration, while after_expiry

refers to the program point just after the expiration. When verifying
nth_mut , the verifier will check that no matter how the result is used,
the expression in the pledge is guaranteed to hold at the expiration point
where route resumes being usable.

3.4.1.1 On-Expiration Condition

There are cases in which a reborrowing function requires the caller to
leave the returned reference in a particular state. One example is a caller
that needs to re-establish an invariant that might be temporarily broken
while a borrow is alive. To make it possible to express such properties in
a contract, we designed a generalization of the pledge annotation called
assert_on_expiry .

The assert_on_expiry(xAy, xBy) annotation takes two arguments.
Both xAy and xBy are expressions that must hold at the point in time
when the reborrowed reference expires. However, the difference is in who
is responsible for guaranteeing that this is so. The first argument, xAy, is
the novelty of this annotation: a boolean expression that must be satisfied
by the caller. The evaluation of this expression happens just after the expi-
ration point, similarly to the evaluation of after_expiry . The second
argument, xBy, is the boolean expression that must be guaranteed by the
reborrowing function. That is the same semantics of the argument of an
after_expiry . In fact, any annotation of the form after_expiry(xXy)

is equivalent to assert_on_expiry(true, xXy) .

To see an example, consider the contract annotation of Fig. 3.11. Compared
to the specification in Fig. 3.10, the contract uses an assert_on_expiry

to require the caller of nth_mut to leave the route in a state where the x

field of the returned &mut Point is non-negative. This condition makes
it possible to re-establish the invariant that all x fields in the route are
non-negative, as expressed by the additional nth_x(route, i) >= 0

in the second argument of the assert_on_expiry . This way, a caller of
nth_mut that assigns a negative value to its result will fail to verify with an
error stating that, by the time the reference returned by nth_mut expires,
the condition in the assert_on_expiry annotation of the reborrowing
function has not been re-established.
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Rust

struct Point {
x: i32,
y: i32,

}

struct Route {
head: Point,
tail: Option<Box<Route>>

}

#[pure]
#[ensures(result > 0)]
fn length(route: &Route) -> usize {

1 + match route.tail {
Some(ref tail) => length(tail),
None => 0

}
}

#[pure]
#[requires(0 <= n && n < length(route))]
fn nth_x(route: &Route, n: usize) -> i32 {

if n == 0 {
route.head.x

} else {
match route.tail {

Some(ref tail) => nth_x(tail, n-1),
None => unreachable!()

}
}

}

#[requires(0 <= n && n < length(route))]
#[ensures(result.x == old(nth_x(route, n)))]
#[after_expiry(

length(route) == old(length(route)) &&
nth_x(route, n) == before_expiry(result.x) &&
forall(|i: usize|

(0 <= i && i < length(route) && i != n) ==>
nth_x(route, i) == old(nth_x(route, i))

)
)]
fn nth_mut(route: &mut Route, n: usize) -> &mut Point {

if n == 0 {
&mut route.head

} else {
match route.tail {

Some(ref mut tail) => nth_mut(tail, n - 1),
None => unreachable!()

}
}

} Figure 3.10: Example usage of the pledge
annotation.
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Figure 3.11: Example usage of the
assert_on_expiry pledge annotation. Rust

#[requires(0 <= n && n < length(route))]
#[ensures(result.x == old(nth_x(route, n)))]
#[assert_on_expiry(

// Condition:
nth_x(route, n) >= 0,
// After expiry pledge:
length(route) == old(length(route)) &&
nth_x(route, n) == before_expiry(result.x) &&
forall(|i: usize|

(0 <= i && i < length(route) && i != n) ==>
nth_x(route, i) == old(nth_x(route, i)) &&
nth_x(route, i) >= 0

)
)]
fn nth_mut(route: &mut Route, n: usize) -> &mut Point {

...
}

Figure 3.12: Example of a client
of nth_mut that violates the
assert_on_expiry annotation
of Fig. 3.11.

Rust

#[requires(0 <= n && n < length(route))]
fn bad_reset_nth_x(route: &mut Route, n: usize) {

let p = nth_mut(route, n);
p.x = -1; // Error: unsatisfied pledge of nth_mut

}

3.4.1.2 Alternative At-Expiration Formulation

When declaring pledges, we used before_expiry and after_expiry

to distinguish between the program point just before and just after the
expiration. However, this syntax could potentially be simplified. An
expiration is a ghost operation that is used only to explain the behavior of
the borrow checker. That is, it does not compile to any runtime operation.
There are no differences between the values observable at these two
program points; what changes are just the expressions that can be used
to refer to them. Based on this observation, and also noting that contract
expressions are by definition side-effect free, we designed an alternative
formulation of the pledge annotation by which there is no distinction
between the program point before and after the expiration. Instead, the
pledge is evaluated at the expiration point assuming that, for a brief
moment, both the reborrowing and the reborrowed references are usable
in a read-only mode. The example in Fig. 3.13 shows what the new
pledge annotation would look like. Overall, it is syntactically simpler
and potentially easier to grasp. Reasoning about immutable references
at the same program point may require less mental overhead than
reasoning about references evaluated at more distant program points.
However, there are also downsides. To support this new annotation
the tool implementation has to do more work to recognize what in the
expression should be type-checked before and what after the expiration
point. Moreover, mixing expressions that in Rust are valid only before or
after the expiration point would violate the principle by which contracts
should contain valid Rust expressions.

As an additional simplification one can observe that, since the rebor-
rowed arguments are unusable just after the call, any usage of them
in a postcondition should implicitly be evaluated as if they were in an
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Rust

#[requires(0 <= n && n < length(route))]
#[ensures(result.x == old(nth_x(route, n)))]
#[at_expiry(

length(route) == old(length(route)) &&
nth_x(route, n) == result.x &&
forall(|i: usize|

(0 <= i && i < length(route) && i != n) ==>
nth_x(route, i) == old(nth_x(route, i))

)
)]
fn nth_mut(route: &mut Route, n: usize) -> &mut Point {

...
} Figure 3.13: Example usage of the

at_expiry syntax of pledges.

at_expiry(..) annotation. Syntactically, this makes pledges look ex-
actly like postconditions when they do not refer to result , but without
causing ambiguities. The reason is that since the reborrowed reference is
blocked and unusable on the call site until the expiration point, and since
the pledge is checked to hold no matter how the reborrowing reference
is used, a pledge that does not refer to result can be seen as holding at
any point between the end of the reborrowing function and the expiration
point. The postcondition, evaluated just after the reborrowing function,
is just a special case of the pledge. So, unifying the syntax of pledges and
postconditions is possible. The example in Fig. 3.14 shows what the new
pledge annotation would look like.

Rust

#[requires(0 <= n && n < length(route))]
#[ensures(result.x == old(nth_x(route, n)))]
#[ensures(length(route) == old(length(route)))]
#[ensures(nth_x(route, n) == at_expiry(result.x))]
#[ensures(forall(|i: usize|

(0 <= i && i < length(route) && i != n) ==>
nth_x(route, i) == old(nth_x(route, i))

))]
fn nth_mut(route: &mut Route, n: usize) -> &mut Point {

...
} Figure 3.14: Example of a pledge specifi-

cation expressed in a postcondition.

In this chapter, we evaluated and implemented only the former pledge
definition, based on before_expiry and after_expiry . However, we
think that these alternative at_expiry formulations can be beneficial to
future work.

3.4.2 Loop Body Invariants

When verifying code that contains loops, the standard approach in Hoare
logic is to build an inductive proof using a loop invariant, which is a
property that holds when entering the loop and after each loop iteration.
The classical definition, in Fig. 3.15, requires the guard 𝐵 of the loop to
be a boolean expression with a side-effect-free evaluation. This makes it
possible to directly embed 𝐵 in the program logic used for the proof, by
assuming that ␣𝐵 holds after the loop in addition to the invariant.

The classical definition of loop invariants works well for simple Rust
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Figure 3.15: Hoare-logic rule for loops.

t𝑃 ^ 𝐵u 𝑆 t𝑃u

t𝑃u while 𝐵 do 𝑆 done t␣𝐵 ^ 𝑃u

[60]: Zhou et al. (2024), VST-A: A Foun-
dationally Sound Annotation Verifier

loops such as the one in Fig. 3.16, where the guard is i < 10 and the
loop invariant sufficient to verify the assertion after the loop is i <= 10 .
In this case, the CFG representation is quite simple: the block 1 is
the loop head, is side-effect free, and is also the origin of the exit edge
corresponding to the negation of the loop guard. The loop invariant, in
particular, holds on all edges that arrive at the loop head 1 .

Figure 3.16: Simple while loop.
Rust

fn main() {
let mut i = 0;
// Loop invariant: i <= 10
while i < 10 {

i += 1;
}
assert!(i == 10);

}

1

2

However, loop guards in Rust are not always side-effect free and the
loop may contain break , continue or return statements. A common
example of guards with side effects are iterators, for which we provide
an example in Fig. 3.17. The main function first declares an iterator that
generates values from 0 to 9, which are counted in the loop. The special
syntax while let Some(..) = .. is Rust’s syntax sugar to break the
loop when the result of the next call is None . A loop invariant alone, such
as the conjunction of i == range.from , range.from <= range.to ,
and range.to == 10 , is not enough to verify i == 10 after the loop.
It is also necessary to know that after the loop iter.from >= iter.to ,
which is implied by the postcondition of next when returning None .
Since the loop guard is not pure, we cannot directly use the standard
Hoare rule in Fig. 3.15. Manually rewriting the loop so that the guard is
side-effect free or so that the loop does not contain break , continue , or
return statements is possible, but it would make both the source code
and the loop invariant more complex. A better option is to perform the
rewriting automatically in the verifier, transparently to the user. However,
for a given loop there are many different possible rewritings, depending
on what the new loop guard should be and at what point in the loop
the invariant should hold. Since this choice affects the semantics of the
invariant, the user should have control over it. As we are going to present,
our technique performs the loop rewriting automatically, based on a user
choice of where to place the invariant. For example, before the evaluation
of the loop guard, immediately after the guard’s evaluation, or even at an
intermediate state during the execution of the loop body. The novelty of
our work is not in rewriting the loop but in allowing the user to flexibly
choose where to place the invariant, which in turn implicitly determines
the loop rewriting used by the verifier. Recent work on verification of
C programs use loop invariant annotations with a similar degree of
flexibility [60].

To handle the general case of loops, we designed a loop body invariant
annotation, body_invariant! , that makes it possible to flexibly declare
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Rust

struct IterRange {
from: usize,
to: usize,

}

#[requires(iter.from <= iter.to)]
#[ensures(iter.to == old(iter.to))]
#[ensures(old(iter.from < iter.to) ==> iter.from == old(iter.from) + 1)]
#[ensures(old(iter.from < iter.to) == matches!(result, Some(_)))]
fn next(iter: &mut IterRange) -> Option<usize> {

if iter.from < iter.to {
let v = iter.from;
iter.from = v + 1;
Some(v)

} else {
None

}
}

fn main() {
let mut range = IterRange { from: 0, to: 10 };
let mut i = 0;
while let Some(_) = next(&mut range) {

i += 1;
body_invariant!(i == range.from && range.from <= range.to && range.to == 10);

}
assert!(i == 10);

}

Figure 3.17: While loop traversing an iterator.

an invariant at any non-conditional point in a loop body. The semantics
is similar to the one of classical invariants, but generalized. First, the
loop body invariant should hold when reaching the invariant for the
first time. Second, assuming that an invariant already holds at a generic
loop iteration, it should also hold when the invariant is reached again
in the next loop iteration. Third, the invariant should be specified in
a non-conditional point that cannot be avoided when executing a loop
iteration. As a result, when reasoning about the code that comes after
the loop, the verifier can assume that the loop body invariant was either
holding the last time it was reached, or that the loop body was never
executed at all. Note how this definition does not restrict in any way the
expression of the loop guard and does not limit the usage of break and
return statements. This semantics of the invariant closely matches the
evaluation of a runtime assertion, meaning that in the case of simple
invariants, it is possible to switch between verified and runtime-checked
invariants by replacing body_invariant! with assert! , or the other
way around.

To see an example, consider again the loop in Fig. 3.17. Instead of rewriting
the loop to have a side-effect-free guard, which would require manually
desugaring Rust’s while let syntax, the invariant is specified with a
body_invariant! annotation placed at the end of the loop body. First,
the verifier checks that the body invariant holds the first time it is reached,
when i == 1 . Then, it checks that the invariant is preserved across
one loop iteration. That is, after assuming the invariant and executing
next(&mut range) , if the result is Some(_) , after incrementing i by
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one the invariant should hold again. The position of the invariant is legal
because there are no if or continue statements that can skip over the
body_invariant! going to the next loop iteration. As a result, the verifier
can prove the assertion after the loop, by using the information that the
invariant was holding before the last execution of next(&mut range) ,
which returned None .

The choice of where to place the loop invariant is up to the user, who can
choose what is most convenient case by case. In Fig. 3.17 the invariant
is placed at the end of the loop, but an equivalent invariant could also
be expressed at the beginning of the loop body by shifting the value
of i by one: body_invariant!(i == range.from - 1 && ...) . As an
extreme, the loop invariant can even be placed at the beginning of the loop
head, just before the evaluation of the loop guard. This way, demonstrated
in Fig. 3.18, the semantics of the loop body invariant matches exactly
the semantics of the classical loop invariant, although the syntax of the
resulting program may seem unusual.

Figure 3.18: While loop a body invariant
annotation. This is the annotated version
of Fig. 3.16.

Rust

fn main() {
let mut i = 0;
while {

body_invariant!(i <= 10);
i < 10

} {
i += 1;

}
assert!(i == 10);

}

3.5 Viper Encoding of Types

The approach of our verification technique requires modeling several
properties of the Rust type system in separation logic, which we do using
the Viper verification language. This section presents our encoding of
Rust types in Viper.

At a high level, we want our technique to model memory safety, non-
aliasing and immutability properties of the Rust types. These properties
should be checked during verification so that our technique is ready to
be extended to cases of unsafe code, making it possible at the same time
to rely on these properties in the proof when reasoning about function
calls, aliasing and mutations. Since the term ownership in Rust is already
used to describe the memory locations that must be deallocated when the
local variable that owns them goes out of scope, in this chapter we use
the term capability to define an abstraction that captures the properties
of the Rust language that we are interested in. In particular, we use two
kinds of capabilities, shared and exclusive, which intuitively correspond to
the properties of shared and mutable references, respectively. A shared
capability guarantees that the reachable memory locations are immutable
and can safely be read, while an exclusive capability ensures that the
reachable memory locations can be safely read and written, but only via
the Rust expression that is holding such capability. In fact, capabilities are
statically associated with syntactic places, which are Rust expressions that
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can be constructed starting from local variables by repeatedly accessing a
field, following a reference, or downcasting an enumeration. Like mutable
references in Rust, an exclusive capability is non-duplicable and can be
temporarily split into duplicable shared capabilities. In this chapter, we
use a capability definition that is transitive, meaning that if the local
variable x has an exclusive capability for the place x.f , and if x.f has
an exclusive capability for x.f.g , then x has an exclusive capability for
x.f.g . Moreover, shared capabilities have precedence over exclusive
ones when they are chained. For example, if y has a shared capability
for y.f and y.f has an exclusive capability for y.f.g , then y has a
shared capability for y.f.g . Overall, these capabilities are enough to
express the type properties that we are interested in:

1. Memory safety: holding a capability guarantees that the corre-
sponding memory location is initialized, safe to read and free of
data races. If the capability is exclusive then the memory location
is also safe to write to.

2. Immutability: holding a shared capability guarantees that the
corresponding memory location is immutable.

3. Non-aliasing: holding an exclusive capability guarantees that there
are no usable places that alias the same memory location.

In Viper, capabilities can be modeled as resources with fractional permis-
sions. An exclusive capability corresponds to a full fractional permissions,
which implies absence of aliases and provides read and write access to
the holder of the permission. A shared resource, instead, can be modeled
as an infinitesimal non-zero fractional permission, which can be aliased
and provides read access and immutability. This is the core on which the
whole encoding is built upon.

3.5.1 Non-Reference Rust Types

One challenge of modeling Rust types is that the capability of a type
instance might have to describe an unbounded number of memory
locations. Take for example the linked-list definition in Fig. 3.19, which is
a recursive data type composed of a generic field value and a field next

pointing to the next node in the list. The Option in the type definition is
an enumeration; a sum type akin to the Maybe type in Haskell. Finally,
the Box type is an owning pointer used to allocate the target instance on
the heap. When holding an instance of List , there is no static limit to
the number of memory locations that might be reachable from there.

Rust

struct List<T> {
value: T,
next: Option<Box<List<T>>>,

} Figure 3.19: Type declaration of a linked
list in Rust.

Viper makes it possible to model an unbounded set of memory locations
using recursive predicates. We model the Rust types after monomorphiza-
tion, so the Viper encoding contains one predicate definition for each
monomorphized Rust type definition. Each predicate is parameterized
by a Viper reference type, Ref , which models in Viper the base address
in Rust of an instance of the type. To encode Rust structures, the corre-
sponding Viper predicate is defined as containing several Viper fields
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5: In some cases, the Rust compiler takes
advantage of invalid bit patterns (niche
values [61]) to represent the discriminant
using the existing fields of the type. In
our work, this optimization does not mat-
ter because we always model the discrim-
inant as a separate field.

of type Ref , one for each field of the Rust structure. This models the
memory address of each field. For each field, the predicate declares (1) to
have full permission to the field, so that it can be read and even modified
when encoding moves, and (2) to hold another predicate instance that
encodes the content of the field. This way, each predicate definition can
be constructed using only the information available in a single Rust type
declaration. Tuples are encoded following the same recipe, as if they
were anonymous structures.

As an example, consider the Rust type List<u32> , whose Viper encoding
is shown in Fig. 3.20. The figure just shows a part of the encoding; what
is not yet visible is the encoding of the Option field, which internally
contains another instance of the ListU32 predicate to encode the next
node in the list. As defined earlier, the ListU32 predicate contains the
full permission for two fields, expressed by the acc(..) expressions, as
well as a predicate instance of U32 or OptionBoxListU32 to encode the
Rust type of the fields.

Figure 3.20: Viper encoding of the
List<u32> type.

Viper

field value_field: Ref
field next_field: Ref

predicate ListU32(self: Ref) {
acc(self.value_field) && U32(self.value_field) &&
acc(self.next_field) && OptionBoxListU32(self.next_field)

}

The Option type is defined in the standard library as an enumeration
composed of two variants, as shown in Fig. 3.21: a Some variant that
contains an instance of the type parameter T , and a None variant that is
empty. When compiling enumerations, the Rust compiler automatically
generates a discriminant field under the hood to represent at runtime
which variant is stored in an instance of the enumeration5, similar to
the tagged unions idiom in C. When modeling enumerations in Viper,
the encoding uses a discriminant integer field constrained to the same
range of values of the Rust discriminants. Then, depending on the value of
the discriminant, the predicate definition declares to hold the permission
and predicate instances corresponding to the fields of each variant.

Figure 3.21: Rust definition of the
Option<T> type. Rust

enum Option<T> {
None // discriminant: 0
Some(T), // discriminant: 1

}

As an example, Fig. 3.22 shows the Viper encoding of
Option<Box<List<u32>>> . Since the enumeration has two
variants, the Viper discriminant is constrained to be either 0 or 1. Then,
in case the discriminant is 1, an implication in the predicate definition
encodes the fields that compose the Some variant in the same way they
were encoded for structures. Since the None variant has no fields, the
predicate definition does not need to define anything more for the case
where self.discriminant == 0 .

To complete the definition of the encoding of List<u32> , we still need to
define the ending of Box and of primitive types such as u32 . Box<T> is
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Viper

field discriminant: Int
field some0: Ref

predicate OptionBoxListU32(self: Ref) {
acc(self.discriminant) &&
0 <= self.discriminant && self.discriminant <= 1 &&
(self.discriminant == 1 ==>

acc(self.some0) &&
BoxListU32(self.some0))

} Figure 3.22: Viper encoding of the
Option<Box<u32>> type.

a type that represents a pointer to some heap-allocated data. Its definition
internally uses raw pointers, but Rust special-cases the compilation of
this type so that from safe Rust code, the type looks like a simple wrapper
around an instance of T . In our Viper model, we do not distinguish
between data structures on the stack or on the heap. So, like the Rust
compiler, our technique special-cases the Box type, encoding it as if
it were a regular Rust structure with just one field. An example for
Box<List<u32>> is shown in Fig. 3.23. Note that by using ListU32 , the
predicate definition becomes recursive, passing through all the predicates
used in the examples above. For primitive types, our encoding defines a
predicate that contains one integer Viper field, as well as an encoding of
the value range of the Rust integer. In the case of u32 , a 32-bit unsigned
integer, the Viper encoding is shown in Fig. 3.23. Other integer primitive
types are encoded in a similar way, but using different value ranges. As
for the Rust bool type, its Boolean encoding shown in Fig. 3.23 does
not need any value range.

Viper

field target: Ref
field val_int: Int
field val_bool: Bool

predicate BoxListU32(self: Ref) {
acc(self.target) && ListU32(self.target)

}

predicate U32(self: Ref) {
acc(self.val_int) &&

0 <= self.val_int && self.val_int < 232

}

predicate Boolean(self: Ref) {
acc(self.val_bool)

} Figure 3.23: Viper encoding of
Box<u32> and primitive Rust types.

3.5.2 Reference Types

As introduced earlier, mutable and shared Rust references can be modeled
as exclusive and shared capabilities, which in Viper correspond to full
and infinitesimally small fractional permissions, respectively. Since in
Rust it is possible to create references that point to other references, in
our Viper predicate encoding we still model the address of the reference
instance with a Viper Ref parameter, the address of its target instance
with a target field, and the content of the target with another predicate
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instance. For the case of mutable references, Fig. 3.24 shows the encoding
of a &mut List<u32> type.

The encoding of shared references is similar, but slightly complicated
by the fact that Viper does not natively support infinitesimally small
fractional permissions. Instead, in our technique we model them by using
an uninterpreted function rd() , axiomatized to be strictly between zero
and one. By using rd() , we can then model that a shared reference holds
only a fractional permission amount rd() for its target predicate instance,
modeling a shared and not an exclusive capability. This is expressed by
the Viper syntax acc(ListU32(self.target), rd()) in the example
of Fig. 3.25, which shows the encoding of the &List<u32> type. The
field self.target that models the address of the target instance is still
owned with a full permission by the predicate of the shared reference,
because in Rust it is legal to change which target a shared reference points
to, without modifying the content of the old or the new target instance.

When building on top of the axiomatization of rd() , reasoning with
usages of rd() sometimes hits incompletenesses in the Z3 SMT solver
used internally by Viper. The reason is that non-linear arithmetic is unde-
cidable, and sometimes the solver is not able to prove simple properties
such as 0 < rd() * rd() or rd() * rd() < rd() . To mitigate those
incompletenesses, in our experiments we found it useful to provide these
two properties as axioms, as shown in Fig. 3.25.

Figure 3.24: Viper encoding of the
&mut List<u32> type.

Viper

predicate MutRefListU32(self: Ref) {
acc(self.target) && ListU32(self.target)

}

Figure 3.25: Viper encoding of the
&List<u32> type. In Viper, none “ 0
and write “ 1.

Viper

domain RdPerm {
function rd(): Perm
axiom { none < rd() && rd() < write }
axiom { none < rd() * rd() && rd() * rd() < rd() } // Hint

}

predicate ShrRefListU32(self: Ref) {
acc(self.target) &&
acc(ListU32(self.target), rd())

}

3.5.3 Borrowed Types

When a reference is created, it borrows its capabilities from an existing
place. This leaves a hole in the capabilities of the data structure from
which the reference is borrowing, meaning that the predicates that we
defined above are not suitable for describing the remainder capabilities
“with a hole”. For example, consider the value_mut function in Fig. 3.26.
The capabilities that the function receives from the caller can be modeled
by a MutRefListU32 predicate instance, but what about the capabilities
that the function returns to the caller? Returning just a MutRefU32

instance for the return type is not enough, because in Rust a client such
as set_all can resume using the borrowed argument after the returned
reference expires, like it happens in the example after the *v = new_val
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statement. This means that we need a way to model, and return to the
caller, the capabilities that are left after the creation of a reference such
as &mut x.value .

Rust

fn value_mut(x: &mut List<u32>) -> &mut u32 {
&mut x.value

}

fn set_all(x: &mut List<u32>, new_val: u32) {
let v = value_mut(x);

*v = new_val;
if let Some(ref mut tail) = x {

set_all(tail, new_val)
}

}

Figure 3.26: Example of a reborrow-
ing function. The implementation of
value_mut returns a reference created
from a reference argument.

When the reborrowing involves mutable references, as in the case of
the argument and return type of value_mut , we model the remainder
capabilities using the magic wand connective of separation logic. Infor-
mally, a magic wand 𝐴 ˚ 𝐵 is a resource that testifies that there is a
way to obtain the resource 𝐵 by consuming the resource 𝐴 and the magic
wand itself. This matches what we need to express in the postcondition
of reborrowing functions such as value_mut . In Viper, we can express a
magic wand that represents the capabilities that, if conjoined with the
content of the MutRefU32 instance representing the returned reference,
can generate a ListU32 instance that models the capabilities that should
be restored when the mutable reference argument expires. The encoding
of the capabilities in the contract of value_mut can be seen in Fig. 3.27.

Viper

method value_mut(x: Ref) returns (res: Ref)
requires MutRefListU32(x)
ensures MutRefU32(res)
ensures U32(res.target) ˚ ListU32(x.target) Figure 3.27: Viper encoding of the capa-

bilities of a reborrowing function.

3.5.4 Generic and Unsupported Types

Predicates, in Viper, are not required to have a definition. In that case,
the predicate is called abstract to suggest that any proof involving them
would work for any possible definition of the abstract predicates. This is
a convenient feature that we use in our technique to verify functions with
type parameters, or functions that use some type (e.g., String ) whose
declaration uses unsupported Rust features (e.g., raw pointers) that can
be hidden as implementation details without affecting the specification of
the public API. In the case of instances of type parameters, our technique
encodes them as abstract predicates when verifying the Rust function
where they are declared. When reasoning about calls of such functions,
where the type parameters are instantiated by concrete Rust types, our
technique replaces the abstract predicates with the predicates encoding
the concrete Rust types. In the case of unsupported types, our technique
encodes them as abstract predicates, so that the proof around them can
proceed with the guarantee that it will not depend on the content of the
unsupported types.
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[62]: Lattuada et al. (2023), Verus: Ver-
ifying Rust Programs using Linear Ghost
Types

3.5.5 Alternative Allocation-Based Encoding

The encoding technique described in this chapter essentially uses per-
missions to model initialized memory locations. That is, a statement that
deinitializes some memory, such as a move assignment, is encoded so that
after the statement there are no permissions in Viper for the deinitialized
memory location. This choice is necessary in order to verify full memory
safety, which has safety advantages but also technical disadvantages. For
example, to encode a move assignment such as a = b our technique
has to handle the case where it is statically not known whether a was
initialized before the statement or not. So, it is more difficult to generate
an encoding (as we describe in Sec. 3.6.1.1) that is correct in both cases.

There exist alternative encodings that may be easier to generate. One
such encoding is based on the idea of using permissions to model
allocated memory locations, instead of initialized ones. Under this model,
the guarantees of the verification are weaker because accessing a non-
initialized memory location would raise no verification errors, while
trying to access deallocated memory locations would still be rejected.
The expected advantage is that the encoding should be easier to define,
because gaining and losing permissions would essentially correspond
1:1 to allocation and deallocation machine operations (e.g., pushing an
element on the stack, or allocating a new region on the heap) that the
compiler represents in the CFG of a function.

3.5.6 Alternative Instance-Identity Based Encoding

When designing the encoding of move assignments of non-copy types, we
observed an interesting invariant: across a move, the address at which the
type instance is stored might change, but the type instance is intuitively
still the same. Because of this, linear types can be considered as having an
intrinsic identity characteristic, which copy types do not have. Being able
to refer to the identity of a non-copy type instance from specifications
has been shown to enable specification techniques that use Rust types
to manage separation-logic resources [62], making the specification
language more expressive. Moreover, leveraging this instance identity, it
might be possible to design a Viper encoding that is particularly concise
and efficient in modeling move assignments.

Modeling an instance identifier can be done in several ways. The first
way, which builds on top of the technique presented in this chapter, is to
implicitly add a special id field to all Rust types during the encoding
to Viper, so that this special field cannot be used in Rust code but can
be mentioned only in the specifications. This field should be initialized
with an unconstrained value at the moment of the creation of an instance,
and should always be moved together with the type instance to a new
memory location when modeling a move assignment. This would make it
possible to expose the identity of non-copy instances in the specifications,
but would not bring performance advantages to the verification.

The second way is to change the conceptual meaning of the Ref values
in Viper, so that they model the identifier of a type instance instead
of memory locations. The encoding of types into predicates would
mostly remain the same, because interpreting the Ref parameter of the
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predicates as being the identifier of an instance mostly works, and would
only require changes to the magic wands that encode borrowed types
and to the encoding of Rust assignments (presented later, in Sec. 3.6.1.1).
An advantage of this approach is that move assignments would be easy
to model, because they would only need to assign a Viper Ref from one
place to another instead of using the encoding described in Sec. 3.6.1.1.
Because of this, the Viper backend that uses symbolic execution might
have a greater chance of verifying the Viper program based on syntactic
properties instead of having to resort to using a (powerful but slow) SMT
solver, potentially greatly increasing the performance of the verification.
A disadvantage is that in this encoding it would not be possible to reason
about memory locations, making it more difficult to tackle verification of
unsafe code in future work.

A third option is to keep the current encoding that uses Ref types
to model memory addresses, but insert a new .instance_id field in
between the self parameter and the content of each predicate to model
the identifier of the instance. This way, considering a particular program
point, the content of the type is modeled as being a function of the instance
identifier, which is in turn a function of the address of the reference. The
.instance_id field would model allocation, while the existing Viper
fields would still model initialization. The advantage of this approach
is that in this encoding move assignments can be easily (and efficiently)
encoded as a single assignment between the .instance_id field of the
source and target instance as before, while still being able to reason
about memory locations from specifications. An example of the predicate
encoding a List<u32> type with this technique is in Fig. 3.28.

Viper

field instance_id: Ref
field value_field: Ref
field next_field: Ref

predicate ListU32(self: Ref) {
acc(self.instance_id) &&
acc(self.instance_id.value_field) &&
U32(self.instance_id.value_field) &&
acc(self.instance_id.next_field) &&
OptionBoxListU32(self.instance_id.next_field)

} Figure 3.28: Alternative Viper encoding
of the List<u32> type.

3.6 Viper Encoding of Procedures

In this section, we describe how our technique models Rust procedures
(i.e., functions and methods) in Viper. At a high level, our technique
models Rust functions in two ways: a functional pure encoding and an
imperative impure one. All procedures are modeled using the imperative
style, but only the procedures that are guaranteed to be deterministic and
side-effect free can additionally be modeled using the functional style. To
opt-in into this second kind of encoding, a verification user has to mark
the procedure using the #[pure] attribute, which checks the desired
properties by conservatively enforcing several language limitations. For
example, pure functions cannot have mutable reference parameters,
loops, or calls to other non-pure functions.
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3.6.1 Imperative Encoding

The main goal of the imperative encoding is to generate a Viper program
that verifies only if the source Rust program respects all properties
checked by the verification technique (e.g., absence of panics, absence
of integer overflows and divisions by zero, functional correctness). A
first challenge when working with a real-world programming language
is that the grammar of the language is large, and defining an encoding
starting directly from the syntax of the language might not be feasible,
or not possible if the grammar has not been formalized. Moreover, the
encoding is trusted and not formally verified, so there might be the risk
of misinterpreting the semantics of a Rust program. To address both
challenges, we designed our encoding to remain as close as possible to the
compiler-provided CFG representation of Rust programs, called middle
intermediate representation (MIR), whose definition is much simpler than
the grammar of the language or its abstract syntax tree representation.
In order to make the technique easier to maintain, modify, and reuse, a
second goal of our design is to be as modular as possible, meaning that all
statements in the MIR representation should be encoded independently.
This way, a Rust procedure can (almost entirely) be modeled as the
concatenation of the simpler encoding of its statements.

At a high level, the MIR representation of a function is a CFG where
the nodes are called basic blocks. Each basic block contains a sequence
of consecutive statements, the last of which can be a goto or a switch
statement, whose jumps lead to the beginning of basic blocks. Among
the statements, the most important are assignments. The left-hand side
of an assignment must be a Place , which is a local variable followed by
a sequence of projection operations such as field accesses, dereferences
and downcasts of enumerations. The right-hand side can be either a
function call, a usage of a Place (a move or, if the type allows it, a copy)
and other operations such as integer arithmetic. This list is not exhaustive
and overall this MIR definition is simpler than the real one, but it is
nevertheless sufficient to present the core of the encoding.

Our technique encodes Rust procedures into Viper methods, modeling
the structure of the CFG using if and goto Viper statements. At the
beginning of the Viper method, the encoding models the capabilities that
the caller passes to the callee. This is done by assuming the predicate
instance that corresponds to the capabilities of the Rust arguments. After
that, the encoding assumes the precondition of the procedure and then
encodes the body of the procedure. Finally, the method checks at its
end that the postcondition of the procedure holds, and that the method
actually has the permission for the predicate instances of the capabilities
that should be returned to the caller.

As an example, the diagram in Fig. 3.29 shows a simplified version
of the encoding of the force_inc function. There, we can see that
the parameters are encoded as Ref arguments for which the proof
inhales the resource of a predicate, modeling its creation: MutRefRoute
for &mut Route and I32 for Rust’s i32 . The encoding from types to
predicates follows what presented in Sec. 3.5. Since force_inc does not
have a precondition, the encoding uses true as default precondition.
The CFG of the procedure contains a single switch statement, which
is directly modeled in Viper with an if statement. In this case, the
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branch condition depends on the discriminant of the Rust expression
r.tail , which Rust internally desugars to the Place (*r).tail . Rust
dereferences and field accesses are encoded to Viper field access, such
as .target for dereferencing r and .some0 for accessing the only
element of the Some variant of the expression *r . Note that Viper, based
on the predicate definition of the Option type of *r , automatically
checks that the .some0 field is only accessed in a program path where
the discriminant of the enumeration is known to be 1, i.e., the Some

variant. Moreover, every field access such as .tail is checked to be only
performed when the method holds a permission for the field, which in
our encoding technique models that the Rust field has been initialized.

3.6.1.1 Encoding of Assignments

One of the most common kinds of MIR assignment is those whose right-
hand-side is a usage (move or copy) of a Place . Since our verification
technique does not aim to verify absence of memory leaks nor functional
properties of Rust addresses (e.g., equality between the target addresses
of two shared references), in our encoding we have the freedom of
modeling new allocations whenever we want. This gives an advantage
when modeling initialization using Viper permissions, because whenever
a statement assigns to a place that cannot statically be determined to be
surely initialized, the encoding can model that the statement allocates
a new memory location with a new address instead of overwriting
the existing one. Consider for example the encoding in Fig. 3.29. The
assignment to q and the temporary variables introduced by the compiler
arg1 and arg2 are modeled by assuming with an inhale statement
that the statement allocates a new memory location, instead of potentially
reusing an existing but no longer used memory location on the stack.
When encoding the assignment to r.head.x , however, the left-hand-side
place is statically known to be already initialized, so our technique can
model the assignment more efficiently, simply overwriting the memory
location represented by the Viper expression r.target.head.x .

Another common kind of MIR assignment is the one whose right-hand
side is a function call. Our encoding differs depending on whether the
called function is pure or not. In case it is pure, the encoding of the call is
a single Viper assignment which calls on the right-hand side a functional
encoding of the callee, which we present in the next section. This is the
case of the call to max in Fig. 3.29. In case the called function is not
pure, the encoding is done based on the signature and contract of the
callee. More precisely, the encoding checks that it holds the predicate
instances modeling the capabilities of each of the arguments of the call,
and that the precondition of the callee holds. Then, it consumes all
those predicate instances to model that they were passed to the callee.
These three steps correspond to the exhale statement in the encoding
of force_inc . Then, the encoding models that the callee transfers
back some capabilities to the caller, and that the postcondition in the
contract holds. These two steps correspond to the inhale statement
in the encoding of force_inc . The additional label call_pre Viper
statement in the encoding is used by the functional encoding of contracts.
This way, the old(..) expressions in the contracts can be encoded
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Rust

#[pure]
fn max(a: i32, b: i32) -> i32 {

if a < b { b } else { a }
}

#[ensures(<post>)]
fn force_inc(

r: &mut Route,
min_x: i32,

) {
r.head.x = max(

r.head.x,
min_x

);

if let Some(
box ref mut q

) = r.tail {
// let q = &mut(*r.tail.0)

// let arg1 = &mut *q;
// let arg2 = r.head.x;
force_inc(q, r.head.x);

}
}

Viper

function max(a: Ref, b: Ref): Int
requires acc(I32(a), rd()) && acc(I32(b), rd())

{
a.val_int < b.val_int ? b.val_int : a.val_int

}

method force_inc(r: Ref, min_x: Ref) {
inhale MutRefRoute(r) && I32(min_x) && true
label pre

r.target.head.x.val_int := max(
r.target.head.x,
min_x,

)

var guard: Int := r.target.tail.discriminant
if (guard == 1) {

var q: Ref
inhale MutRefRoute(q)
q.target := r.target.tail.some0.target

var arg1: Ref
inhale MutRefRoute(arg1)
arg1.target := q.target

var arg2: Ref
inhale I32(arg2)
arg2.val_int := r.target.head.x.val_int

label call_pre
exhale MutRefRoute(arg1) && I32(arg2) && true
inhale Route(arg1.target) && <post>

}

exhale Route(r.target) && <post>
}

signature

pure-call

if-let

let

reborrow

copy

call

Figure 3.29: Imperative Viper encoding of a Rust function.
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6: The loop invariant should also be
strong enough to be used as an inductive
argument in the correctness proof of the
loop, but it is not necessary to focus on
this aspect to understand our encoding.

to a Viper old[call_pre](..) expression, which evaluates a Viper
expression before the call, where the call_pre label is declared.

3.6.1.2 Encoding of Loops

The main idea behind our encoding of loops is that the loop invariant
does not need to be placed at the head of the loop, because at its core an
invariant is just a property that has to hold whenever the execution reaches
the program point of the invariant annotation6. What is important for
verification models is to encode, in some way, an unconstrained number
of loop iterations using a finite number of modeling statements in loop-
free code. Our finding is that this can be done even when the invariant is
placed at various places in the middle of the loop body, using a single
semantics-preserving CFG transformation. The only requirement is that
the invariant annotation should be in a non-conditional path of the
execution of the loop body, so that it is not possible to complete a loop
iteration without passing through the invariant annotation. With this
technique, we can verify loops using the loop body invariant annotation
presented in Sec. 3.4.

To understand how the technique works, consider the diagram on the
left of Fig. 3.30, which represents the generic shape of any loop in Rust.
The blocks “A” and “B” are composed of any number of CFG nodes, and
the “inv” edge between them is the point where the loop body invariant
annotation is specified. The edges “E1” represent the exit edges of the
loop that start from a statement placed inside the loop, but before the
loop body invariant. Similarly, “E2” represents the exit edges placed in
the loop, but after the loop body invariant. These two kinds of edges are,
for example, break , return and error-handling statements. Finally, the
edges “E3” are CFG edges that start in one of the statements in “B” and
end up in “A”. These are typically caused by continue statements or by
the end of the loop body.

The first and most important step in our encoding is the semantics-
preserving CFG transformation that makes the entry point of “B” become
the new head of the loop. This is done by duplicating the group of CFG
blocks in “A” and its exit edges “E1”, moving the targets of “E3” to the
new group “A” and creating a new edge between the end of the new “A”
and “B”. The resulting CFG is shown in right of Fig. 3.30.

The advantage of the new CFG is that, after the transformation, the
loop body invariant holds at the beginning of the loop head. This is
a much simpler kind of loop, which can be verified using standard
techniques. For example, the loop and its invariant can be modeled as a
while (true) invariant <perms> && <inv> ... loop in Viper and
the exit edges as goto Viper statements.

The only missing step is to generate the permissions <perms> and the
functional specification <inv> of the loop invariant. The latter is done by
using the functional encoding presented later, while the permissions to be
used in the invariant are determined by a static (syntax- and type-based)
analysis of the loop body. At a high level, this analysis computes the Rust
places that, during a loop iteration, are required to hold an exclusive
capability, or for which a shared capability is enough. This is done in a
few passes. First, the analysis computes which Rust places are definitely
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A

B

inv

E1
...

E2
...

... E3

(a) Original CFG of a loop. The loop head is in “A”.

A

B

A

inv

... E3

E1
...

E2
...

E1
...

inv

(b) Modified CFG. The loop head is in “B”.

Figure 3.30: CFG transformation for the encoding of loops. The rectangles “A” and “B” represent two generic groups of CFG nodes. For
each group, the diagram represents only the CFG edges that exit from the group.

initialized when the loop is reached for the first time. Second, the analysis
collects all the Rust places that are used for mutations, i.e., those that
are in the left-hand side of an assignment, are moved or are mutably
borrowed during the loop. This can be performed by pattern-matching on
the syntax of Rust statements and querying the type system to determine
whether the assigned types are duplicable. Finally, the analysis collects
all Rust places that are ever used in the loop. The permissions of the loop
invariant are then determined by generating an exclusive permission for
the places that are initialized and used for mutations, and by generating
a shared permission for the places that are initialized and used, but not
for mutations. These two sets of places associated with a permission
are not yet ready to be used in the loop invariant, because there might
be duplicate permissions when, e.g., both x.y and x.y.z are used
for mutations. Since capabilities (and permissions) are transitive, x.y
already implies the permission for x.y.z . To solve this, the actual
permissions used in the invariant are computed by removing from the
two sets of places all the places that are an extension of some other place
in the same set.

Note that the soundness of our verification technique does not depend
on the correctness or completeness of this algorithm that computes the
permissions of a loop invariant, because Viper will nevertheless check
that the permissions are correct and sufficient to verify the loops. In
fact, our encoding is actually incomplete when the loop body reborrows
a reference or calls a reborrowing function. In those cases, we believe
that the permissions of the invariant can be encoded with a magic-wand
resource, to model the capabilities that should be restored when the
reference expires. In our automation technique presented in Sec. 3.7,
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we do already compute a static representation of the information of all
references at a given program point. We think that this representation
should be sufficient for future work to additionally generate the magic-
wand resources that should be placed in a loop invariant.

As an example of the computation of the permissions of the invariant,
consider the loop in the main function of Fig. 3.31, which iterates over the
values in the range between 0 and 10. At the point of the loop invariant,
the surely initialized places are three: upper , i , and range . During the
loop, new_i , i and range are used for mutations because new_i and i

appear in the left-hand side of some assignment, while range is mutably
borrowed in the next(&mut range) call. The loop uses many places in
a read-only way: range.from , range.to , upper , new_i and i . Note
how several of these are also used mutably or are an extension of some
place used mutably. To compute the exclusive capabilities that should
go in the loop invariant, it is enough to take the places used mutably,
except for new_i which might be uninitialized (e.g., the first time that the
execution reaches the invariant). In the resulting set of places t i , range u,
there are no places that are an extension of other places, so no further
steps are to be performed. Regarding the shared capabilities, many of
the places used in a read-only way are already covered by the exclusive
capabilities that we just computed: range.from , range.to , and i .
After removing them and the new_i which might be uninitialized, the
resulting set of places just contains upper . Thus, the algorithm encodes
in the loop invariant a full permission for i and range , and a fractional
infinitesimal permission for upper . In Viper, this can be expressed as
Usize(i) && IterRange(range) && acc(Usize(upper), rd()) .

Rust

struct IterRange {
from: usize,
to: usize,

}

#[requires(...)]
#[ensures(...)]
fn next(iter: &mut IterRange) -> Option<usize> {

...
}

fn main() {
let upper = 10;
let mut new_i: usize;
let mut range = IterRange { from: 0, to: upper };
let mut i = 0;
while let Some(_) = next(&mut range) {

body_invariant!(
i == range.from - 1 && range.from <= range.to &&
range.to == upper

);
new_i = i + 1;
i = new_i;

}
assert!(i == upper);

} Figure 3.31: While loop with a body in-
variant.
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3.6.1.3 Encoding of Shared References

So far, we always described that shared capabilities are encoded as
infinitesimal fractional permissions in Viper. Fractional permissions
model the immutability and the potential of having aliases, but not yet
the duplicability of shared capabilities. To model the latter, our tech-
nique relies on an elaboration of the compiler information to determine
when a shared capability should be created, duplicated and when it
should expire at the end of a lifetime. Each of these three cases is en-
coded in a different way. When a shared capability is created from a
place that has an exclusive capability, the Viper encoding generates a
exhale acc(T(...), write - 2 * rd()) statement to model that the
permission amount associated with the predicate instance of T should
be lowered until it is equal to 2 * rd() , where one rd() is associated
with the place of the original exclusive capability and the second to the
place of the newly created shared capability. When a shared capability is
duplicated, the Viper encoding generates an inhale acc(..., rd())

statement to generate a new rd() permission associated with the du-
plicated place. When the last shared capability associated with a place
expires and unblocks the exclusive capability that was being borrowed,
the Viper encoding generates an inhale acc(..., write - rd())

statement to raise again the permission to the amount used to model
exclusive capabilities. Only in these last two cases (duplicating or expiring
a shared capability) the correctness of the generated Viper code relies
on the correctness of the compiler. In particular, the encoding relies on
the borrow checker component to make sure that the shared references
are not duplicated after their expiration, and that shared references only
expire once. In both cases, the Viper encoding would end up assuming
that the fractional permission of the capability is greater than one, which
contradicts one of the axioms of Viper. Because of this, in the presence of
shared references and only for this reason, our technique does not fully
verify memory safety.

To see an example, consider the encoding diagram in Fig. 3.32. In
the shared_references function, the exclusive capability of the
x: &mut u32 argument is first downgraded to a shared capability
to initialize y1 . Then, the initialization of y2 and y3 duplicates an
existing shared capability either from x or from y2 . Finally, when
the references y1 , y2 , and y3 expire, all borrows of x expire and
the original exclusive capability for x is restored. Along these steps,
the Viper fractional permission associated with the place x.target

changes as follows. Initially, before initializing v1 , the permission
amount is write , i.e., full. After the “create” encoding block the
permission amount is 2 * rd() , where one rd() can be seen as
being associated with x.target and the other to y1.target . Then,
after initializing y2 it becomes 3 * rd() and after initializing y3 it
becomes 4 * rd() . That is, one rd() for the targets of x and of the
other three local variables. During the “expire” encoding block, the
three exhale statements consume a rd() permission each, bringing
the permission amount to just rd() . Then, the last inhale upgrades
the rd() permission of x.target back to the original write amount,
effectively restoring the original capability.
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Rust

fn shared_references(x: &mut u32) {
let y1 = &*x;
let y2 = &*x;
let y3 = y2;
...
// Expiration

}

Viper

method shared_references(x: Ref) {
inhale MutRefU32(r)
label pre

var y1: Ref;
inhale ShrRefU32(y2);
exhale acc(x.target, write - 2 * rd());
y2.target = x.target;

var y2: Ref;
inhale ShrRefU32(y2);
inhale acc(x.target, rd());
y2.target = x.target;

var y3: Ref;
inhale ShrRefU32(y3);
inhale acc(y2.target, rd());
y3.target = y2.target;

...

exhale ShrRefU32(y1);
exhale ShrRefU32(y2);
exhale ShrRefU32(y3);
inhale acc(x.target, write - rd());

exhale U32(x.target)
}

create

1st duplicate

2nd duplicate

expire

Figure 3.32: Imperative Viper encoding of a Rust function using shared references.

3.6.2 Functional Encoding

Our functional encoding has two goals. The main goal is to encode the
pure expressions used in contracts and invariants into a formal logic,
such as Viper or first-order logic. A second goal is to model in the proof
that the evaluation of Rust expressions and Rust functions marked with
the #[pure] attribute is deterministic. This is desirable when reasoning
about code where a pure function is called multiple times with the same
arguments, and is also necessary for soundness when modeling pure
functions as mathematical functions in our encoding. The imperative
encoding presented so far is not suitable for these goals. This is because
the Viper language requires contracts and invariants to be written using
only a restrictive pure subset of Viper, which does not include, e.g.,
assignments to local variables or fields. Moreover, to express that the
result of a Rust function is a deterministic function of its parameters, the
verification user would have to model that the result is a pure function
of its arguments, thus requiring the existence of a pure encoding of such
function anyway. For these reasons, our technique defines a functional
encoding, composed of two steps: a Rust functionalization and a 1:1
translation to Viper. Overall, the functional encoding generates pure
Viper functions and expressions starting from a subset of Rust that we
designed to be deterministic and side-effect free.

At the Rust level, our technique requires all Rust expressions written in
contracts, invariants and in all functions marked with #[pure] to be pure,
meaning they are deterministic and side-effect free. Expressions that do
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7: Sometimes, to show that a pure func-
tion is well-defined, the syntactic checks
are insufficient and the verifier would
also need to prove termination. This
could be done by adding decreases-
clause annotations on the Rust source
code and checking them with an encod-
ing into Viper. Our verifier does not do
this and, instead, relies on the user to
check termination of its pure functions.
8: A block expression in Rust is an
anonymous namespace scope that can
be used as an expression and that
can be defined using imperative state-
ments. For example, the block expression
{ let x = 40; x + 2 } is an expres-
sion that evaluates to 42.

9: In MIR, the result corresponds to the
local variable named _0 .

not satisfy these requirements are conservatively rejected by the verifier7.
For example, calling non-pure functions from a pure expression is not
allowed, as well as declaring a pure function with a mutable reference
argument.

Expressions in Rust are quite flexible, because they can contain blocks8

with if and match statements, local variables, overflow checks and other
kinds of assertions. To take advantage of this expressivity, our functional
encoding uses as input the CFG representation of the evaluation of
a Rust expression. The only requirement is that the code should not
contain loops and that all assignments should have a local variable in
their left-hand side (i.e., x = ... is allowed but x.y = ... is not). The
functionalization step of our technique converts a MIR body to a single
Rust expression that does not contain any expression blocks. For example,
the functionalization of { let x = y; x + 2 } where y is a function
parameter is y + 2 ; all imperative-style statements such as local variable
assignments disappear during the conversion.

At a high level, the functionalization is a symbolic interpreter of MIR
statements that computes a pure Rust expression representing the result
of the evaluation of the MIR body. This interpreter works backward, i.e.,
starting from the final blocks in the CFG and following the CFG edges
backward, and is based on syntactic substitutions, meaning that each
assignment is interpreted by searching the left-hand-side variable in the
result and replacing all occurrences with copies of the right-hand side of
the assignment. At the beginning of the interpretation, the expression
representing the result is a fixed local variable called result 9, which,
substitution after substitution, ends up being an expression where the
only free variables are the arguments of the original pure Rust function
or expression that was to be encoded. What we described works only
for straight-line code; for code with branches at each join point in the
CFG the state of the interpreter has to be duplicated so that each branch
can perform its substitutions independently. The important step is the
encoding of a branch point, where the state of the interpreter from the
branches is unified generating an if expression.

To see an example of the execution of the symbolic interpretation, con-
sider the code in Fig. 3.33. The interpreter starts at 1 with a result
expression that is simply result . The interpreter proceeds to evaluate
the statement return tmp , and with a r result Ñ tmp s substitution
the result expression becomes tmp . At the join point 2 , the state of the
interpreter is duplicated to follow both branches independently. To go
from 3 to 4 , the interpreter replaces r tmp Ñ b s, so the result becomes
b . To proceed to 5 , the two branches need to be unified with an if

expression, so the result becomes if b > a { b } else { tmp } . To
go from 5 to 6 , the interpreter replaces r tmp Ñ a s, so the result
becomes if b > a { b } else { a } . This is the end of the symbolic
interpretation. At this point, each free variable in the expression of the
result is an argument of the function. This is guaranteed because any
other local variable in such an expression is removed when symbolically
interpreting the first statement that initialized it. For example, when
going from 5 to 6 the interpreter replaces all usages of tmp with a .
Since local variables cannot be initialized cyclically, this is sufficient to
guarantee that by the time the interpretation terminates the expression
of the result will only mention the arguments of the function.
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Rust

#[pure]
fn max(a: i32, b: i32) -> i32 {

// 6 result := if b > a { b } else { a }
let mut tmp = a;
// 5 result := if b > a { b } else { tmp }
if b > a {

// 4 result := b
tmp = b;
// 3 result := tmp

}
// 2 result := tmp
return tmp
// 1 result := result

}

Figure 3.33: Functionalization of a Rust
function, generated with a backward in-
terpreter.

After the functionalization step generates a single Rust expression con-
taining no imperative statements, the translation to Viper is defined as a
1:1 mapping from Rust expressions to Viper expressions:

§ Rust function arguments are translated to Viper function arguments
with the same name.

§ Primitive values in Rust are translated to primitive values in Viper.
§ Rust operations between boolean or integer values are translated

to the equivalent Viper operations.
§ if a { b } else { c } Rust expressions are translated to the

equivalent a ? b : c Viper conditional operator.

Given that we designed the language of pure expressions to have the same
syntax and semantics as Rust, one possible outcome of their evaluation
is for the expressions to panic. To prevent such cases, our technique
generates well-definedness checks in parallel to the functional encoding.
In particular, for the case of Rust function marked as #[pure] , the
verifier uses the imperative encoding to verify that the precondition of
the pure function is sufficient to guarantee absence of panics during its
evaluation. In the case of pure expressions written in contract or loop
invariant annotations, we identified two alternative solutions. The first
solution is to verify that all panicking cases of contract expressions are
unreachable. For example, given a possibly-panicking precondition such
as a + b == c , where a , b and c are of type u32 , the verifier should
reject the contract because a + b might cause an integer overflow. To
fix this example, the user would have to strengthen the precondition
to something like a < 10 && b < 10 && a + b == c . This way, when
a or b is too large the evaluation of the expression is well-defined to
be false . However, this approach requires users to manually specify
verbose conditions, potentially making the overall contract less readable.
So, in our verification technique, we instead opted for a second solution,
which automatically generates the conditions under which the expression
does not panic, so that contract annotations evaluate to false when
such conditions are not met. While this could be done by using existing
techniques to compute the weakest precondition of the expressions
used in the contracts, we found that to be unnecessary. Instead, when
encoding contract annotations, we instruct the functional encoding to
treat every panic call as if it was a return false; statement. This
way, our encoding achieves the desired semantics in a way that is
both lightweight for the user (in terms of the number of annotations
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that must be written) and easy to implement. One downside of this
approach is that symbolic manipulations of the specifications are as
difficult as symbolic manipulations of the Rust code. For example, in
a precondition a + b < c || a + b >= c is not equivalent to true

because, in the case where a + b causes an overflow, the expression
evaluates to false . As another example, since boolean operations have
short-circuiting semantics, true || 1/0 == 1 evaluates to true while
1/0 == 1 || true evaluates to false .

3.6.2.1 Alternative Functionalization: Forward Interpretation

While designing the functionalization, we explored several other possible
techniques. One of them is a substitution technique that works forward,
instead of backward. The state of the interpretation, in this case, is not just
one expression representing the result, but instead is a map from local
variables to expressions that represent their value. Instead of generating
a single if at the branching points, the interpretation generates one
if for each local variable at each join point. This approach, compared
to the backward interpretation, tends to generate expressions that are
larger, because each branch can generate many more if expressions.
Moreover, the algorithm uses more memory because it needs to store
an expression for each local variable, even when the local variable does
not influence the result. Among the advantages, by working forward the
algorithm is usually easier to follow step-by-step and debug. Moreover,
the algorithm computes a pure encoding of each local variable at each
program point, which might be useful for other techniques. For example,
an optimization pass of a compiler might use this technique to detect
which local variables correspond to expressions that are syntactically
equal, so that their evaluation can be deduplicated.

The code in Fig. 3.34 shows an example of the execution of our forward-
interpretation algorithm. Starting from the top, where the only local
variables that are defined are the arguments, the execution defines
tmp := a and, inside the then branch, re-defines it as tmp := b . To
unify these representations, when joining the branches the technique
introduces an if expression.

Figure 3.34: Functionalization of a Rust
function, generated with a forward inter-
preter.

Rust

#[pure]
fn max(a: i32, b: i32) -> i32 {

// 1 a := a, b := b
let mut tmp = a;
// 2 tmp := a, a := a, b := b
if b > a {

// 3 tmp := a, ...
tmp = b;
// 4 tmp := b, ...

}
// 5 tmp := if b > a { b } else { a }, ...
return tmp
// 6 result := if b > a { b } else { a }, ...

}
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Rust

#[pure]
fn max(g: bool, x: i32, y: i32) -> i32 {

// 3 result := def x1 = y + z in g ? x1 + 1 : x1 - 1
let x = y + z;
// 2 result := g ? x + 1 : x - 1
if g { x + 1 } else { x - 1 }
// 1 result := result

}

Figure 3.35: Functional Viper encoding
of a Rust function, generated with a back-
ward interpreter using syntactic defini-
tions.

3.6.2.2 Alternative Functionalization: Syntactic Definitions

Both functionalization approaches described above have the downside
that, in the worst case, the size of the generated expression is exponential
in the number of branches contained in the imperative code, which causes
a large memory consumption to represent the AST of the expression.
The bottleneck is the encoding of the join and branch points, which in
the worst case can duplicate each time the size of the encoded expres-
sion. One way to solve this problem, in both approaches, is to extend
our language of functional-style expressions to include syntactic defini-
tions. To distinguish these from regular Rust local variable declarations,
we use the syntax def xvariabley = xdefinitiony in xexpressiony .
With this, the functionalization can introduce a new syntactic defini-
tion whenever a large expression needs to be duplicated at a join or a
branch point. This allows large expressions to be used just once in the
definition of a fresh variable, which can then be used multiple times
without causing a worst-case exponential growth of the size of the AST.
Apart from the reduced memory usage and all the advantages that derive
from it, another advantage of this approach is that the generated pure
expression tends to be easier to read and debug for humans because the
overall size is smaller and the syntactic definitions correspond almost
exactly to the let assignments that were in the original Rust code. The only
disadvantage is during the translation to Viper. Rust syntactic definitions
can be translated 1:1 to Viper let expressions, but Viper does not permit
using certain expressions inside the definition of let expressions. For
example, this is the case of the unfolding permission-manipulating
expressions that will be described in Sec. 3.7. This let-based encoding
cannot be used in the presence of such expressions.

The code in Fig. 3.35 shows an example of this functionalization technique
applied on a backward interpretation. When going from 2 to 3 , instead
of repeating y + z twice in the expression representing the result, the
technique generates a new unique variable name x1 and uses y + z

just once to define x1 . The x1 variable is then used multiple times
in the expression of the result, but that does not increase the size of
the expression. Note the similarity between the generated syntactic
definitions and the corresponding Rust assignment that generated it.

3.7 Automatic Generation of the Core Proof

So far, we presented our verification technique with one big simplification:
the generated Viper program does not contain any of the proof steps
that Viper needs in order to know where to apply the definition of
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predicates. Since in Viper, predicates can be defined recursively and
aliasing is unrestricted, this is in general an undecidable problem [63];
the search space for the proof is too big to be explored exhaustively.
In fact, automation of predicate reasoning is a known problem in the
automated verification community. Existing solutions rely on triggering
heuristics [16, 17, 19, 20, 23, 64] or require the verification user to manually
specify when a recursive definition should be applied. The latter, for
example, is done with fold / unfold / unfolding operations in Viper
and in verifiers based on it [25, 26, 65], with open / close operations in
VeriFast [64], and with reveal operations in Dafny [20].

Our key observation is that, despite the known challenges of recursive
definitions, a memory-safety proof of a Rust program can be constructed
automatically and deterministically using an approach that associates
capabilities with syntactic places. What is special about Rust is that the
language has been designed around several restrictions, such as aliasing,
linearity, and mutability, that make it possible for the compiler to check
memory safety statically. In other words, a Rust program that compiles
is a testimony that the compiler internally constructed the equivalent
of a memory-safety proof. In this section, we present our technique —
inspired by the compiler — to reasoning statically about Rust capabilities.
This technique can be seen as a certified borrow checker implementation,
which, as a certificate, generates a separation-logic memory-safety proof
of the supported programs10. The resulting proof serves as the basis for
verifying functional properties, whose encoding has been presented in
Sec. 3.6. In the proof, all recursive predicate definitions are explicitly
applied where necessary, addressing the automation challenge presented
above.

3.7.1 Capability Analysis

At a high level, our technique works as a static analysis that follows
the CFG of the program while tracking in its state a set of capabilities
associated with syntactic places. Whenever a Rust statement requires
a particular capability, the state is modified using state operations that
apply the required predicate definitions and make the capability available.
Whenever the CFG joins two branches, the state from the branches is
unified using operations until the two states are identical. These state
operations, which are saved and later encoded to Viper, are the proof
hints that are needed to complete the separation-logic proof. In a way,
the computed information is a representation of the definitely-initialized
places of a Rust program, but augmented with step-by-step checkable
explanations of what the analysis computed. In this subsection, we
present the analysis of programs without references, and we later expand
the analysis to also cover usages of references.

The outcome of our analysis is a program annotated with state opera-
tions written in an intermediate Rust-like language that we call a VIR
(i.e., verification intermediate representation), and with a description
of the capabilities available at each program point. The benefit of this
representation, compared to Rust, is that the state operations describe
explicitly the hidden steps that the Rust compiler performs internally
when checking a Rust program. This is useful for visualization, debug-
ging and implementation purposes. As an example, Fig. 3.36 shows a
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11: A place in this context is an expres-
sion that starts with a local variable, fol-
lowed by a sequence of field accesses,
downcasts of enumerations, or derefer-
ences.

representation of the outcome for the analysis of get_values . In there,
the only state operation is an unpack curr that opened the definition
of the unique capability List<T> for the memory location of curr . The
capabilities at each program point of this example are described by the
comments that start with // Unique .

VIR

struct List<T> {
value: T,
next: Option<Box<List<T>>>,

}

fn get_values(list: List<u32>) -> Vec<u32> {
// Unique: { list }
let mut curr = list;
// Unique: { curr }
let mut values = vec![];
// Unique: { curr, values }
loop {

// Unique: { curr, values }
unpack curr;
// Unique: { curr.value, curr.next, values }
values.push(curr.value);
// Unique: { curr.value, curr.next, values }
match curr.next {

Some(box tail) => {
// Unique: { curr.value, tail, values }
curr = tail;
// Unique: { curr, values }

}
None => {

// Unique: { curr.value, values }
break;
// Unique: { curr.value, values }

}
}
// Unique: { curr, values }

}
// Unique: { curr.value, values }
values
// Unique: { result }

}

Figure 3.36: Result of a capability anal-
ysis. The program is augmented with
a description of the capabilities avail-
able at each program point, and in this
case one unpack state operation intro-
duced to satisfy the requirements of the
values.push(curr.value) statement.
For simplicity, the temporary mutable
borrow of values in that statement is
not represented in this example.

3.7.1.1 Capability State

The state of our analysis describes which capabilities are available at a
specific program point. Each capability is associated with a syntactic
place11, which in our approach holds the capability corresponding to
the memory location identified by the place. The type of each place is
uniquely determined by the compiler, so there is no need to keep track
of it in our analysis.

The initial state that describes the capabilities at the beginning of a
function simply associates a unique capability to each function argument.
As an example, consider Fig. 3.36. The state at each program point is
described by the // Unique comments. In this case, there is no state that
contains a shared capability, so the states only define the set of places
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that hold a unique capability. Since the function has a single argument,
the initial state contains only one unique capability, held by list .

Since capabilities are transitive, not all combinations of places and
capabilities are legal. For example, at any program point, it would be
illegal to have a state where there is a unique capability held by curr and
also a unique capability held by curr.next . This is because the capability
for curr already provides the capability for curr.next . In our analysis,
all states are legal, because the initial state is legal by construction and
because all state transformations (that we are about to describe) preserve
the legality of a state.

3.7.1.2 State Operations

It is possible to have different capability states that represent the same
capabilities. For example, in Fig. 3.36 the state curr and the state
curr.value, curr.next describe the same capabilities, because the
capability for curr is defined as being the union of the capabilities for
its two fields. To reshape a state into a different but equivalent one, we
define two state operations called pack and unpack . To reshape a state
losing information, we define an archive operation.

The first two operations, pack 𝑝 and unpack 𝑝 are an application of the
definition of the capability of the type of the place 𝑝. The effect of the
pack operation is to add the capability for 𝑝 to the state, by consuming
the capabilities of its direct fields. The dual unpack operation performs
the opposite: it consumes the capability for 𝑝, generating the capabilities
for its fields.

The last operation, archive 𝑝 , removes the capability for the place 𝑝

from the state. Contrary to the other operations, the effect of an archive

operation is that the resulting state is not equivalent to the initial one.
In fact, the resulting state describes a weaker set of capabilities. This
operation is needed to unify the capability states of some CFG join points.
That is, if the execution of a branch consumed a capability while the
second did not, the capability states before joining the branches are not
equivalent. To make them equivalent, the second branch needs to archive
its remaining capability. This unification step, presented in more detail
later, is necessary to make sure that after the join all capabilities in the state
are unconditionally available, as opposed to path-sensitive capabilities
that are available only for certain path conditions. The archived path-
sensitive capabilities are not completely lost; the analysis remembers the
program point where a place was archived. We will see later another
operation to restore an archived capability in the state of another program
point of the program, provided that the path condition of the restoration
and archival are the same.

3.7.1.3 Statement Requirements

During our analysis, each Rust statement is modeled to have some
requirements on the capabilities of the state and an effect that describes
how the statement changes the capability state. The requirements consist
of two kinds: requirements to have a certain capability contained in the
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12: Not all places on the left-hand side
determine a capability requirement. For
example, let x = y requires a capabil-
ity for y , but cannot require one for x

because before the assignment that place
is uninitialized.

state, or requirements to have some capability unpacked enough in the
state.

As part of the first kind, a statement can require the state to explicitly con-
tain a certain capability associated with a certain place. This is typically
the case of places that are mentioned on the right-hand side of assign-
ments and function calls12. As an example, the let mut curr = list

statement in Fig. 3.36 requires a unique capability for list , because
such capability is then transferred by the statement to the left-hand
side. Similarly, the call values.push(curr.value) requires a unique
capability for curr.value to be in the state. This is not immediately
satisfied, because the state contains a capability for curr . However, by
introducing an unpack operation the state is transformed in an equiv-
alent representation where curr.value and curr.next are explicitly
available.

Just requiring certain capabilities to be contained in the state might be
sufficient to express all statements in our analysis, but it would not be
practical. The reason is that by not knowing whether these capabilities
are packed or not, the definition of the effect of a statement would have to
handle a much larger number of cases of combinations of capabilities in
the initial state, including cases where before the statement the capabilities
are contained one in another. As a solution, we introduce a second kind
of requirement that simplifies the definition of the effect of statements: a
statement can require unpacking certain capabilities if they are obtainable.
This is typically the case of assignments that have at least a field access
in their left-hand side, which require the base of the field access to be
unpacked in the state. For example, consider the assignment x.f.g = y .
The requirement of the statement is to unpack x and x.f . Thanks to
this, the definition of the effect of the assignment can assume that the
capability for x.f.g is either already in the state or cannot be obtained
at all. That is, the definition of the statement does not need to consider
the case where a capability for x.f.g is obtainable by unpacking other
capabilities.

Note that requirements coming from the left and right-hand side of an as-
signment may be conflicting. Consider for example (*x).f = foo(*x) ,
whose right-hand side requires a capability for *x , while the left-hand
side requires *x to be unpacked. These conflicts can be solved by
desugaring the assignment to two simpler statements using a fresh
temporary variable. For example, let tmp = foo(*x); (*x).f = tmp .
A similar rewriting can be used when the requirements coming from
different places in the right-hand side are conflicting. For example, the
call bar(x, x.f) requires both the capability for x and for x.f , but
the two are never available in the same state. This conflict can be resolved
by introducing more local variables, automatically rewriting the call to
let a = x; let b = x.f; bar(a, b) .

3.7.1.4 Statement Effect

Each Rust statement has an effect that describes how the statement changes
the capability state. In our analysis, we make sure that the requirements are
satisfied before the statement affects the state. This way, when modeling
the effect we can assume that the requirements already hold. In general,
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the execution of an assign statement (1) consumes the capabilities for places
in the right-hand side that correspond to non-copy types, (2) archives
the remaining capabilities for extensions of the left-hand-side place,
and (3) generates a new capability for the left-hand-side place. The
intermediate archive step is essentially a clean-up operation that removes
remaining capabilities that would potentially overlap with the newly
generated capability. Note that this model of the effect of statements
covers the case of calls without a return value, because they can be seen
as assignments of a unit value to an anonymous temporary variable, but
is not yet expressive enough to describe the case of assignments that
create borrows. To handle those cases, as we present later, it is necessary
to track additional borrowing information in the capability analysis.

The function in Fig. 3.36 contains several examples of assignments. First,
curr = list consumes a capability for list and generates one for
curr . Then, values = vec![] removes no capabilities and generates
one for values . Later, values.push(curr.value) does not consume
a capability for curr.value because its type is copy, not generates any
capability because the call does not return any value. In the match
statement, curr = tail consumes a capability for tail , archives the
remaining permission for curr.value and then generates one for curr .
Finally, returning values removes all capabilities from the state and
generates one capability for the distinguished symbol result that
represents the memory location of the returned value.

3.7.1.5 Unification

When the analysis reaches a branch in the CFG, the capability state is
duplicated for each branch, so that the analysis can explore them inde-
pendently. However, when the analysis reaches a point where multiple
branches are joined there is a problem: the capability states at the end
of the branches might not coincide, or might not even be equivalent.
To solve this, our technique performs a unification in three steps. First,
the unification generates unpack operations if another branch has a
capability that can be obtained that way. Second, the unification tries
to generate pack operations to unify the capabilities that originated
from different enumeration variants. Third, if the previous steps were
not enough, the remaining differences between the states are removed
by generating archive operations. Since the last step always succeeds,
in the worst case the states can be joined by archiving all capabilities.
However, the intention of the analysis is to compute which capabilities
are unconditionally available, in contrast to path-sensitive capabilities
that are available only for some path conditions. This way, the analysis
models faithfully what the compiler knows to be definitely initialized.
While in theory the difference between two capability states might just
be in the capability kind, e.g., x is unique in one branch but shared in
the other, this is only possible when a branch created a reference, which
we cover later.

To see an example of unification, consider the states a, b and
a.value, b where a: List<u32> and v: Vec<u32> . The a.value

capability of the second branch can be obtained with an unpack a

in the first branch. The resulting state for the first branch is
a.value, a.next, b . Now, the a.next in the first branch cannot be
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obtained by unpacking capabilities in the second branch. The two states
cannot be unified by packing a , because the a.next capability does
not originate from a difference in the enumeration variants unpacked
in the two branches. Another way to see it is that the states cannot be
unified by packing a because the second branch lacks the a.next

capability necessary to do so. So, the remaining option is to generate a
archive a.next in the first branch, so that the resulting unified state is
a.value, b . These steps correspond to the unification of the two if
branches in Fig. 3.37. Note how this reflects the initialization analysis of
the compiler, because after the if statement a.value and b are usable
in Rust, while a.next is not.

VIR

fn random_drop(mut a: List<u32>, b: Vec<u32>) {
// Unique: { a, b }
if rand() {

// Unique: { a, b }
unpack a;
// Unique: { a.value, a.next, b }
archive a.next;
// Unique: { a.value, b }

} else {
// Unique: { a, b }
unpack a;
// Unique: { a.value, a.next, b }
drop(a.next);
// Unique: { a.value, b }

}
// Unique: { a.value, b }

}

Figure 3.37: Unification of two capability
states. To unify a, b with a.value, b ,
the analysis generates an unpack and a
archive at the end of the first branch.

3.7.2 Capabilities of References

In order to extend our automation technique to handle reference types,
we need to model the implicit flow of capabilities that happens when
a reference is created or expires. The expiration of a reference does not
have any effect at runtime, but is only used to describe the point where a
reference stops being used and the borrowed place regains the capabilities
that make it usable. When that happens, we model that the capabilities for
the target of the expiring reference go back to the syntactic place that was
used in the right-hand side of the assignment that created the reference.
We note two challenges when reasoning about these capabilities. First,
depending on their borrowing relations, many references may expire at
the same time. Second, modeling how expiring references restore the
borrowed places might require temporarily referring to path-sensitive
capabilities, in case a reference was created in some branch of the CFG. To
handle these cases, we extend our analysis to generate a representation of
the borrowing information that we call a borrowing DAG, which we then
use to model the rearrangements of capabilities at expiration points.

3.7.2.1 Borrowing DAG

A borrowing DAG is a directed acyclic graph that represents for a certain
program point the borrowing relations between its live references, and
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Figure 3.38: Rust function with rebor-
rowing and conditional borrowing state-
ments.

Rust

fn branching<T>(mut a: T, mut b: T, cond: u32) {
let y: &mut T;
y = &mut a; // 1

match cond {
0 => { y = &mut a; } // 2

1 => { y = &mut a; } // 3
_ => { y = &mut b; } // 4

}
let z = &mut *y; // 5

drop(z);
}

Figure 3.39: Borrowing DAG after the
creation of z in Fig. 3.38.

mut a: T mut b: T

y = &mut a; // 2 y = &mut a; // 3 y = &mut b; // 4

z = &mut *y; // 5

13: A node with no outgoing edges.

between live references and function arguments. The nodes of the graph
represent Rust places or local variables of type references, identified by the
statement that initialized them. In particular, each sink13 node represents
a Rust place that is being borrowed, while each non-sink node represents
a statement that creates a reference. Each directed edge in the graph,
from the creation of reference 𝑎 to a place 𝑏, represents that 𝑎 borrows
𝑏 (e.g., let 𝑎 = &mut 𝑏 ) or the target of 𝑏 (e.g., let 𝑎 = &mut *𝑏 ). A
key property of the graph is that it describes the capability flow of
an expiration point: when a reference expires the capabilities for its
target “flow” through the borrowing DAG and reach the statement that
borrowed them. In general, there can be more than one assignment that
created a reference, which means that there is more than one way by
which the capabilities of the reference can flow back to other places.

As an example, consider the function in Fig. 3.38. The borrowing DAG
after statement 5 is represented in Fig. 3.39. The reference created at 1
is not in the graph, because that borrow expires in the branches of the
match statement. One way to visualize the expiration of capabilities is
to imagine that when a reference expires the capabilities for its target
“flow back” through the CFG up to the statement that borrowed them.
Because of this, the shape of the borrowing DAG is always going to be a
simplified version of the CFG of the function, but with its edges going in
the opposite direction. For example, the reference z created at 5 has
three outgoing edges, because in the CFG the creation of z happens
after joining the three branches that initialize y . When z expires, the
capability for *z goes back to *y , but then the capability for *y can
follow 2 , 3 or 4 , depending on a path condition that we will model
later.
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14: In addition to pack , unpack ,
archive .

3.7.2.2 Expiring References

When a reference expires, its capabilities go back to the original bor-
rowed place. In our automation technique, we make this flow explicit,
by introducing a new state operation kind14 transfer 𝑎 Ñ 𝑏 , which
explicitly transfers the capability from the syntactic place 𝑎 to 𝑏. We
also introduce a new restore 𝑝 state operation to reverse the effect of
a archive 𝑝 performed at a past program point with the same path
condition. This archive-restore pair is useful to remove some capabilities
from the state, as long as those capabilities are path-sensitive and cannot
be represented in the capability state. In particular, for each archive 𝑝

operation that was executed along the way, the encoding generates a
dual restore 𝑝 operation that restores the capability for that place at
an expiration point. Restoring a path-sensitive capability is needed to
reconstruct the step-by-step flow of the capabilities for our memory-safety
proof. The Rust compiler is only interested in knowing which references
become available at the very end of an expiration, but in our analysis,
we want to reconstruct which capabilities are temporarily restored in
the intermediate steps that explain a flow of capabilities between distant
nodes.

As an example, Fig. 3.40 shows the result of the capability analysis on the
function in Fig. 3.38. In this VIR program, y expires immediately after
z , so after the drop(z) statement the analysis models their expiration
in sequence, in reversed order of initialization. Since y was initialized in
three different ways, the analysis models its expiration by generating a
match cond statement with three branches, inside which the analysis
restores either a or b , reversing the archive operation that the analysis
generated in the original match statement. As a result, after the expiration
of y and z , all original arguments a , b and cond are as usable as they
were at the beginning of the function. This is reflected in the capability
state, which at the end of the function is equal to the capability state at
the beginning of the function.

3.7.3 Viper Encoding

The output of the capability analysis, composed of a VIR program and
the capability state associated with each of its program points, is the last
ingredient necessary for the generation of the core proof in Viper. The
key property of the encoding is that for each capability computed by the
analysis, the Viper proof holds a corresponding resource at the same
program point. For example, if the capability state states that there is
a unique capability for x and for y , then it means that P(x) ˚ Q(y)

holds at the same program point in the Viper encoding, where P and Q

are the predicates encoding the types of x and y .

To complete the Viper proof of the imperative encoding, the capability
state operations of VIR need to be encoded to the corresponding Viper
statement. Each pack 𝑝 operation is encoded to a Viper fold P(𝑝)

statement, where P is the predicate corresponding to the encoding of the
type of 𝑝. Respectively, each unpack 𝑝 operation is encoded to a Viper
unfold P(𝑝) statement. All the remaining transfer , archive , and
restore operations are encoded to a no-op in Viper, because resource



80 3 Verification of Safe Code

Figure 3.40: Intermediate representa-
tion of the program in Fig. 3.38, aug-
mented with capability-state operations
that show the flow of capabilities. The
comments in the code show the capabil-
ity state at each program point.

VIR

fn branching<T>(mut a: T, mut b: T, cond: u32) {
// Unique: a, b, cond
let y: &mut T;
y = &mut a;
// Unique: y, b, cond
unpack y;
// Unique: *y, b, cond
transfer *y Ñ a // Expiration of y
// Unique: a, b, cond
match cond {

0 => {
y = &mut a;
// Unique: y, b, cond
archive b;
// Unique: y, cond

}
1 => {

...
}
_ => {

y = &mut b;
// Unique: y, a, cond
archive a;
// Unique: y, cond

}
}
// Unique: y, cond
unpack y;
// Unique: *y, cond
let z = &mut *y;
// Unique: z, cond
drop(z);
// Unique: *z, cond
transfer *z Ñ *y; // Expiration of z
// Unique: *y, cond
match cond {

0 => {
transfer *y Ñ a; // Expiration of y
// Unique: a, cond
restore b;
// Unique: a, b, cond

}
1 => {

...
}
_ => {

transfer *y Ñ b; // Expiration of y
// Unique: b, cond
restore a;
// Unique: a, b, cond

}
}
// Unique: a, b, cond

}
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reasoning in Viper is already path-sensitive and because assignments
are not destructive. Even if these state operations do not need a Viper
encoding, they are necessary for two reasons. First, the VIR language
is based on Rust, so it technically needs new statements to express
path-sensitive semantics that Rust does not have. Second, these state
operations break down complex resource reasoning in very simple steps,
providing this way valuable debugging information that would be harder
to reconstruct in Viper. For these reasons, the state operations and our VIR
representation might be useful for more techniques than our Viper-based
verification. For example, they might be used for pedagogical purposes to
explain how the Rust compiler internally performs its capability checks,
or might be used as a starting point for a formalization of Rust that aims
to define exactly how capabilities flow during the execution of a Rust
program.

An important part of our technique consists of the verification of
pledge annotations, which describe functional properties of functions
returning references. In Sec. 3.5, we described that the capabilities
of borrowed Rust types are encoded as magic wands resources in
separation logic, whose creation is modeled by the Viper construct
package 𝐴 ˚ 𝐵 { ... } that we generate at the end of the encoding
of functions returning references. In particular, given a pledge annotation
of the form #[after_expiry(xFy)] , our technique places the functional
property xFy on the right-hand side of the magic wand of the borrowed
type, conjoining it with 𝐵, to express that the property of the pledge
holds after applying the magic wand when the borrow expires. The
package statement, in its body, requires showing with Viper code how
the resources for 𝐵 can be generated by consuming the resources in 𝐴.
Since in our encoding from Rust both 𝐴 and 𝐵 represent the capabilities
of the target of some references, our key idea is that the Viper code that
we generate for the body of the package statement corresponds to the
encoding of the expiration of the resources associated with 𝐴. Concretely,
this means that to model an expiration the verifier should encode the
expiration of the edges of the borrowing DAG that separate the resources
of 𝐴 from the resources of 𝐵. In fact, the effect of the expiration is to make
the capabilities for 𝐵 available again, exactly as the package statement re-
quires. For more details regarding the generation of the body of package
statements, refer to the thesis of Vytautas Astrauskas [66].

3.7.4 Analysis of Pure Expressions

When analyzing pure Rust expressions, i.e., the implementation of
#[pure] functions or the expressions in contract annotations, the capa-
bility analysis described above can be performed in a much simpler way
on the result of the functionalization step of Sec. 3.6. The advantage is
that such a result is an expression that does not contain any imperative
statement, nor borrow definitions or non-copy types. So, there is no need
to model the effect of statements that might mutate the capability state
like in Sec. 3.7.1.4, and there is no need to handle borrow expirations
like in Sec. 3.7.2. For this kind of capability analysis on functionalized
expressions, instead of the statement-like pack and unpack operations,
we define a single expression-like state operation called unpacking ,
which can be used to temporarily unpack a capability in the context of
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a subexpression. The syntax is unpacking 𝑝 in 𝑒 , where 𝑝 is a place
and 𝑒 the Rust expression where 𝑝 needs to be unpacked. Instead of
following the CFG of the function, this capability analysis follows the
AST of the expression, from the root to the leaves. In this representation,
each internal node can be either a pure function call, an operation be-
tween primitive types, or an if expression, while the leaves are Rust
places using one of the arguments of the function. When a node re-
quires some capability to be unpacked, the analysis wraps a subtree in
an unpacking 𝑝 in ... expression, and then proceeds to analyze the
subtree using a capability state in which 𝑝 is unpacked. Lastly, for the
translation to Viper, each unpacking operation is directly encoded as an
unfolding Viper expression, which has an analogous semantics.

3.7.5 Alternative Viper-to-Viper Formulation

The capability analysis that we presented in this section works entirely
at the level of Rust, generating a VIR program such that the encoding
to Viper can be defined in a simple way with 1:1 translations from
VIR to Viper. An alternative automation technique that we explored
consists of performing the capability analysis not at the level of Rust,
but on an intermediate Viper-like language that is generated before
the analysis runs. In this intermediate layer, Rust programs would be
modeled in a Viper-like language extended with the transfer , archive
and restore state operations, but without Viper’s fold or unfold

statements, nor unfolding expressions. These fold-related operations
that are necessary to translate the Viper-like program into a complete
Viper one would then be generated with a Viper capability analysis that
works analogously to the one that we presented for Rust.

The benefit of this approach is that by moving the automation technique
closer to the Viper language, the automation can potentially be reused
by other verifiers based on Viper. For example, to verify non-Rust pro-
gramming languages by requiring to annotate their source code with
Rust-like lifetime annotations. The disadvantage of this approach is that
in order to guarantee automation the intermediate Viper-like language
would need to be more restrictive than Viper. For example, it would need
to reject Viper features such as quantified permissions, because such
features manage permissions in a way that is difficult to track statically.
So, evolving the encoding of this approach would be more constrained
and difficult.

3.8 Implementation and Evaluation

In this section, we report the implementation and evaluation that we
presented in our OOPSLA 2019 paper [29]. Since then, the technique and
implementation have evolved in multiple ways:

§ Prusti now supports more language features. Thus, Rust programs
can now be verified with less manual rewriting. The main examples
of this are loops with return and break statements, which no
longer need to be rewritten to avoid these statements.
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§ We made our specification language more expressive, incorporating
features such as loop body invariant annotations (which we describe
in this thesis) and a deep value equality based on a new snapshot-
based technique [31]. As a result, we expect that the number of
annotations needed to verify existing programs should roughly
remain the same.

§ We upgraded the Rust compiler and Viper version used in our
implementation. Since the encoding and verification techniques
are largely still the same, we do not expect major changes in the
verification time.

We have implemented our work as a Rust compiler driver, and evaluated
it on a wide variety of crates (Rust packages) from the Rust package
repository. The evaluation shows that our technique can generate core
proofs fully automatically and verify interesting correctness properties
without the need for complicated specifications. The version of our tool
used for the evaluation is available as an artifact [57]; more recent versions
are available as open-source software [27].

3.8.1 Implementation

We implemented a tool called Prusti as a Rust compiler driver, usable
with Cargo, the official package manager for Rust. Working with Prusti
provides a similar experience to existing tools used by Rust developers,
such as the Rust linter Clippy [67]. Prusti performs its main work after
the type-checking pass of the Rust compiler. We extract the compiler’s
MIR along with type and borrow-checker information, construct the
corresponding Viper program, and verify it with Viper’s symbolic execu-
tion verifier; verification results are translated back from Viper to Rust
and reported using the Rust compiler’s error reporting mechanisms. In
addition to proving user specifications, Prusti optionally checks absence
of panics and overflows.

During the development of our tool, we built a test suite of more than 300
correct and incorrect Rust programs (annotated with expected verification
errors) to check that we model corner cases of Rust’s semantics correctly;
these are provided with our implementation.

To support libraries, our tool provides a #[trusted] annotation, allow-
ing us to equip functions with contracts used by callers but not checked
against the function’s implementation.

3.8.2 Evaluation

We evaluate our work in three ways: (1) we evaluate the construction of
core proofs on all functions from the top 500 Rust crates that fall within
our supported language subset; (2) we evaluate the ability to verify panic-
freedom by proving the absence of overflows in examples that check for
overflow at runtime, to determine whether these runtime checks may
ever fail (without any user-provided specifications); (3) we evaluate the
use of user-provided specifications by verifying panic freedom and richer
functional correctness properties of existing implementations of well-
known algorithms. All timings were performed using a clean Ubuntu

https://github.com/viperproject/prusti-dev
https://github.com/viperproject/prusti-dev
https://github.com/viperproject/prusti-dev
https://github.com/viperproject/prusti-dev
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Figure 3.41: Left: cumulative distribution of the verification time (horizontal axis, in seconds) required for the core proof verification of
each of the 11,791 supported functions (177 functions required between 10 and 120 seconds; 11 required between 120 and 888 seconds).
Right: distribution of error messages for the overflow freedom evaluation on 519 functions.

15: On November 2𝑛𝑑 , 2018.
[68]: (2024), The Rust community’s crate
registry

16: rustc nightly-2018-06-27;
flags -Zborrowck=mir -Zpolonius

-Znll-facts and using the reference
Polonius algorithm (“Naïve”).

17: These functions were not manually
discarded because their encoding takes
less than one minute.

18.04.1 installation, on a desktop with a 4-core (8 hyper-threads) Intel
i7-2600K 3.40GHz CPU, 32GB of RAM and an SSD.

3.8.2.1 Core Proofs

To test the automation of our core proof construction, we took the 500
most popular Rust community crates15 [68], and applied three simple
filters: firstly, we discarded any crates (148) which did not compile
successfully within 15 minutes using the standard compiler configured
and the Polonius borrow checker16 (without our tool); secondly, we filtered
all remaining 56,257 functions (top-level, impl and trait functions) with
a simple syntactic check for unsupported language features; thirdly, we
manually discarded ten unusually large functions that would have taken
more than one minute just for the encoding, due to the large number of
local variables used (five implement 4×4 matrix operations; the other five
contain huge match expressions with up to 2,000 cases). This left us with
11,791 functions (21% of the total) to evaluate our work on. We re-ran the
compiler with Prusti on the unmodified source code of these functions
to generate and verify core proofs.

The verification of these 11,791 functions succeeded as expected, without
any need for manual intervention. This shows that we generate sufficient
annotations to automate the core proofs in Viper. These annotations are
non-trivial: we generated a total of 1,140,384 lines of Viper code, of which
138,499 are fold , unfold , package or apply statements necessary to
automate the proofs.

We measured how much time is required by Viper to verify each function,
reporting results (averaged across three runs) in Fig. 3.41 (left). We observe
that the average verification time per function is 1.2 seconds, that only
0.16 seconds are enough to verify 50% of the functions, and that almost
all of the functions (98.6%) are verified in less than 10 seconds each. A
small fraction of the functions take more than 10 seconds to verify17.
Upon close inspection, we found that these functions are similar in style
to the ten unusually-large functions that we discarded (see above).
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3.8.2.2 Overflow Freedom

We automatically identified all 519 supported functions in our evaluation
crates which contain runtime checks for integer overflows or divisions by
zero. We re-ran Prusti on these, enabling checks for panics and overflows
(again, without specifications). Interestingly, 52 of these functions verified;
on manual inspection, this was due to expressions that cannot overflow
(e.g., x-x/4 ), or that were guarded by range checks. Since our tool proves
soundly that these checks can never fail, one could eliminate them to
improve performance without compromising safety.

For each of the remaining 467 functions, Prusti reported a verification
error, listed in Fig. 3.41 (right). Manual inspection showed that these are
mostly due to implicit assumptions on argument ranges; our technique
makes it possible for developers to make these assumptions explicit as
preconditions, and verify them at each call site. In eight cases, Prusti
failed to prove that Rust’s dynamic overflow checks actually imply that
an operation does not overflow. Our inspection revealed that these
verification failures are due to the handling of non-linear arithmetic in
the underlying Z3 SMT solver. Increasing Viper’s timeout for each Z3
query from 10 to 60 seconds results in “divide by zero” verification errors
in all eight cases, which is the expected result.

Overall, this evaluation shows that even on a code without specifications
our verification technique is already useful, proving automatically that
several of Rust’s runtime checks are redundant. In those cases where
the verification fails, users have still the option to trade manual effort for
stronger guarantees, adding preconditions. Still, we identify that SMT
solver limitations remain an issue. These can be worked around, but
there is still a need for better automation or mitigation techniques.

3.8.2.3 Specifications and Functional Behavior

In the third part of the evaluation, we investigated the specification and
verification of both absence of panics and richer functional properties, us-
ing examples from the programming chrestomathy site Rosetta Code [69],
a Rust tutorial on linked lists [70], and from Matsakis’ blog posts on Rust’s
language design [71, 72]. From Rosetta Code, we manually selected a
diverse list of eleven examples that either fall into the supported subset of
the language or can be adapted without major changes. In order to handle
examples using standard library types, we wrote wrappers marked with
#[trusted] for these types (as explained above); we also rewrote for

loops as while loops, and restructured some code to avoid return and
break statements.

Table 3.1 gives an overview of the verified examples (we provide the
code including specifications in the accompanying artifact). Before any
manual modifications, the Rosetta Code examples had between 10 to 89
lines of code (excluding blank lines and comments) and between 1 and
6 functions. The average total verification time (averaged over 3 runs)
is typically less than 30 seconds, which we consider reasonable for our
so-far unoptimized encoding and tool. The slowest examples “Knight’s
tour” and “Knapsack Problem/0-1” take less than two and a half minutes
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Table 3.1: An overview of the examples verified in the third part of the evaluation. The column “LOC” indicates the number of lines
in the unmodified example; “#Fns” is the number of functions; “Spec. LOC” is the number of lines used for specification and ghost
code; “All Time” indicates the time in seconds required to encode and verify the example; “Viper Time” is just the time needed by the
Viper symbolic execution back-end verifier to verify the encoding. “No Panic”/“No Overflow” shows whether we verified absence of
panics/overflows (“–” means that the example contains no operations that could panic/unchecked arithmetic). The first two groups of
examples are taken from the Rosetta Code website [69], except the “Linked List Stack” example which we took from [70] because it is
more complete than the one in Rosetta. The second group differs from the first one in that we verified some functional properties. For
example, for the “Ackermann Func.” and “Fibonacci Seq.” examples, we showed that multiple implementations all compute the correct
result. We had to monomorphize “Binary Search” and “Selection Sort” for proving stronger functional properties because Prusti does not
yet support intrinsic trait properties such as transitivity of the equivalence operator. As reported by Xavier Denis, in [29] we incorrectly
marked one selection sort example as generic; we fix the mistake here. The preconditions we chose for the Ackermann functions do not
prevent overflow and, thus, this aspect could not be verified (indicated by “×”). In “Knapsack Problem/0-1”, we verified correctness of
all intermediate computations; correctness of the result and absence of overflow would require sum comprehensions, an advanced
specification feature not yet supported in Prusti. The two examples in the last group are from Matsakis’ blog posts about non-lexical
lifetimes in Rust [71, 72]. For one of them, proving panic freedom failed because the program does not handle all IO errors.

Example LOC #Fns Spec.
LOC

Time (s) No
Panic

No
Overflow

Verified Additional
PropertiesAll Viper

100 doors 19 2 7 10.9 7.4 ✓ ✓
Binary Search (generic) 16 1 2 16.2 12.9 ✓ ✓
Heapsort 39 3 18 30.6 26.2 ✓ ✓
Knight’s tour 89 6 71 127.6 120.2 ✓ ✓
Knuth Shuffle 16 2 3 9.5 6.2 ✓ ✓
Langton’s Ant 58 4 22 16.7 11.8 ✓ ✓
Selection Sort (no-panic) 20 2 8 19.2 15.2 ✓ ✓

Ackermann Func. 16 2 17 7.4 4.4 - × Correct result
Binary Search (monomorphic) 16 1 29 25.5 21.4 ✓ ✓ Correct result
Fibonacci Seq. 46 6 26 9.1 5.7 - - Correct result
Knapsack Problem/0-1 27 1 86 139.4 131.6 ✓ × Correct computation
Linked List Stack 59 5 60 21.4 16.9 ✓ - Correct behavior
Selection Sort (functional) 20 2 34 29.6 24.2 ✓ ✓ Sorted result
Towers of Hanoi 10 2 5 5.9 3.2 - ✓ Correct param. range

Borrow First 7 1 1 6.6 3.6 ✓ ✓
Message 13 1 0 7.2 4.2 × -

(each of them contains one large function that takes most of the time). In
all cases, standard deviations were around 1 second.

For most examples, we verified the absence of panics and overflows, by
adding specifications where necessary. In some cases, for example for
“Binary Search”, this required adding only a simple invariant that the
indices are no larger than the vector’s length, which allowed the verifier
to prove not only the absence of out-of-bounds accesses, but also the
absence of overflows. In other cases, for example for “Knight’s tour”, we
had to add ghost code to encode object invariants. The most interesting
specification for proving panic-freedom is for “Langton’s Ant”, which
required not only quantifiers to specify an invariant of the grid on which
the ant walks, but also a pledge to specify how changes made via borrows
affect the invariant of the grid. Via our evaluation, we found a bug in the
source code of this example, which causes an integer overflow during
execution. We fixed this error by correcting existing boundary checks
and types.

For seven examples, we also verified properties that go beyond basic
safety. For two of them, we had to monomorphize the generic parameters
to integers in order to use integer comparisons instead of a trait function.
Functional correctness of the binary search example initially failed to
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verify; closer inspection revealed an off-by-one bug in the source code
(a fixed version verifies with our tool). We encode other properties such
as sortedness (“Selection Sort”), functional correctness of recursive and
iterative implementations (“Fibonacci Seq.” and “Ackermann Func.”),
functional correctness of a data structure (“Linked List Stack”), cor-
rectness of intermediate computations (“Knapsack Problem/0-1”), and
validity of parameter values in function calls (“Towers of Hanoi”).

These seven examples require on average 1.3 lines of annotation per
line of code. While this overhead is not negligible, it is lower than the
overhead required by many existing verifiers for heap-manipulating
programs. Moreover, our annotations are conceptually much simpler
since they are expressed in terms of Rust expressions rather than complex
program logics. Another core advantage of our approach is that the
user is not forced to provide all of them from the beginning, but can
add them gradually to strengthen the verified properties. For instance,
proving safety for “Binary Search” requires only two lines of annotations.
To additionally prove that the returned index is correct if Some is
returned, the user needs to add two additional straightforward assertions.
Finally, proving correctness for the case that None is returned is slightly
more involved because it requires writing a quantifier that expresses
that the vector is sorted. Nevertheless, none of these assertions expose
the complexity of program logics for concurrent, heap-manipulating
programs.

We also evaluated our tool on two examples from Matsakis’ blog [71, 72],
designed to illustrate difficult borrowing patterns. The support for the
first example was added to stable Rust only recently, while the second one
still requires a nightly-build version of Rust. Both examples are already
supported by our tool (using the corresponding new borrow checker
implementation).

Overall, in our evaluation of Prusti, we demonstrated on a large collection
of real-world code that our automated construction of the core proof
works well. Additionally, we showed that our technique enables users
to incrementally verify Rust code. In fact, even without specifications,
our verifier is already useful and proves or reports possible overflows.
Developers can then invest manual effort and add annotations using
our rich specification language, obtaining in return the verification of
stronger properties. Even in this setting, our technique is lightweight in
that it requires a relatively low average number of annotations per lines
of code.

3.9 Related Work

As a general point, we believe our tool was the first deductive verifier for
Rust with source code contract annotations, and our implementation was
the first verification technology to operate directly on the Rust compiler’s
analysis results and representations of source programs; there is no gap
between the Rust programs and notions and the starting point for our
work.
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Capability-Based Type Systems Many other type systems can also be
understood to associate capabilities with reference types [2]. Some extend
pre-existing languages (e.g., C7 [73] and Scala actors [74]); more recently,
several programming languages have built these in (e.g., Pony [75],
Æminium [76], Verona [77] and Rust itself [78]). Such built-in type systems
can be used by the compiler: e.g., for memory management in Rust, or to
enable the distributed garbage collection in Pony. While these systems
provide programmers with stronger guarantees than traditional type
safety, functional correctness of programs cannot be expressed: our work
shows how to layer such verification concerns on top, while exploiting
the benefits provided by the type system.

Type Systems for Verification Liquid Types [79] equip types with
logical qualifiers prescribing value properties; their extension to Alias
Refinement Types [80] applies to mutable heap data structures. Type-
checking is decidable, and loop invariants can be inferred. Flux [81] shows
how liquid types can be used to verify lightweight correctness proper-
ties of Rust programs, taking advantage of ownership types to reason
about imperative updates. Flux makes it possible to specify decidable
invariants attached to types, verifying efficiently that they are respected.
In particular, Flux introduces a new kind of mutable reference called
strong reference ( &strg ), which can be used to modify the invariant
attached to the target type, while regular mutable references cannot.
Similar invariant checks can be expressed using our assert_on_expiry

annotation. In comparison, the specification language of Prusti is more
expressive because it is not limited to a decidable logic fragment. This
makes it possible to specify more advanced correctness properties, such
as sortedness and other relations between elements within the same
collection.

SYMPLAR [82] targets formal verification for Java, employing a notion
of permission (unique or immutable) to separate reasoning about aliases
from functional properties concerning values. These permissions are
checked using an SMT solver, while in Rust they are checked by the
borrow checker using a decidable fixpoint technique. The verification of
functional properties is performed in a second step, which leverages the
aliasing restrictions of the permissions to generate verification conditions
that are simpler than those of other approaches. For example, in our work,
both aliasing and functional properties as encoded as part of the same
program proof, making the job of the SMT-based verifier harder. The
advantage of our approach is that our proof is more powerful, because it
is ready to be extended to verification of code, such as unsafe Rust, in
which the type system does not provide useful non-aliasing guarantees.
The advantage of SYMPLAR’s approach is that, within a codebase in
which all types have been annotated with permissions, automation is
easier because the SMT solver has to prove simpler properties.

SPARK, a subset of Ada designed for formal verification, was extended
in [83] by introducing Rust-like borrowing restrictions to enable reason-
ing about pointers. From 2019 to 2020, their approach used a Pledge

annotation inspired by Prusti’s pledges to describe the borrowing relation
across function boundaries and loops [84]. While the syntax and seman-
tics of these annotations are similar, they are verified in different ways.
Prusti checks the memory safety of borrowing relations as part of the core
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proof, while SPARK relies on the borrowing restrictions of the language
and only needs to verify the functional properties of their pledges. Since
then, SPARK upgraded its internals to verify Pledge annotations using
the prophecy variables technique of RustHorn [85], and later replaced
the relation-based Pledge syntax with a value-based At_End_Borrow

syntax. The resulting simpler borrowing annotations are closer to the ˆ

syntax used in Creusot [86], and the at_expiry alternative syntax that
we presented in Sec. 3.4.

The Move prover [87] is a verification tool for Move, the smart contract
language for the Libra/Diem blockchain [88]. The Move language is
inspired by Rust, but is also much more restrictive. For example, Move has
linear resources and references that can be either mutable or immutable,
but does not allow developers to declare references in structures stored
in global memory. Similarly to Prusti, the Move prover leverages these
language restrictions to greatly simplify reasoning about aliased mutable
data. In particular, the Move prover uses them to eliminate heap reasoning
while encoding a program into Boogie [16], by transforming, e.g., a
function with an argument &mut T into a function that takes and returns
T values. This is done based on a borrow graph representation that tracks
when references are released and how they relate to each other, similarly
to our borrowing DAG presented in Sec. 3.7.

Flowistry [89] is a static analyzer for safe Rust, which shows that owner-
ship types can be used to soundly and precisely reason about information
flow in an ownership-based language like Rust. For example, the lifetime
constraints in a Rust function signature soundly describe from which
arguments a returned reference may be reborrowing from, and a static
analysis can benefit from that to approximate the behavior of a function
call. Similarly to Prusti, Flowistry taps into the type system information
of the Rust compiler to perform its analysis of borrow information.

Automated Rust Verifiers CRUST [90], adaptations of SMACK [91], and
KLEE [92] are bounded verification tools for Rust (including unsafe code);
these tools allow user checks to be added as Rust expressions. They work
on C/LLVM code where Rust’s type information is absent. By contrast,
we exploit this information for modular unbounded (sound) verification,
and support richer functional specifications via old expressions and
pledges.

Kani [93] is a bounded model-checker for Rust that internally encodes
programs to CBMC [94]. Unlike other model-checkers, this tool is de-
signed to be a Rust compiler backend, thus it has first-class access to
Rust’s type information. By default, Kani attempts to unroll all loop and
function calls, and terminates only after having exhaustively checked all
possible program executions. When this is not possible, the tool offers
several annotations to the user to limit or simplify part of the proof.
Among them, Kani offers annotations to limit the exploration to a certain
number of loop unrollings, and stub functions to replace problematic
code (e.g., using unsupported features) with a more verification-friendly
version. Recently, Kani even added function contract annotations [95],
based on CBMC’s code contract, that enable users to benefit from the
scalability advantages of modular verification techniques. However, they
do not have annotations for loop invariants and their contract language



90 3 Verification of Safe Code

[85]: Matsushita et al. (2020), RustHorn:
CHC-Based Verification for Rust Programs
[96]: Bjørner et al. (2015), Horn Clause
Solvers for Program Verification

[86]: Denis et al. (2022), Creusot: A
Foundry for the Deductive Verification of
Rust Programs
[85]: Matsushita et al. (2020), RustHorn:
CHC-Based Verification for Rust Programs
[17]: Filliâtre et al. (2013), Why3 - Where
Programs Meet Provers

[62]: Lattuada et al. (2023), Verus: Ver-
ifying Rust Programs using Linear Ghost
Types

[97]: Ullrich (2016), Simple Verification of
Rust Programs via Functional Purification
[98]: Moura et al. (2015), The Lean Theorem
Prover (System Description)
[99]: Foster et al. (2015), Combinators for Bi-
Directional Tree Transformations: Linguistic
Approach to the View Update Problem
[100]: Dockins et al. (2016), Constructing
Semantic Models of Programs with the Soft-
ware Analysis Workbench

is strictly more limited than Prusti’s pure expressions, because it does
not include old(..) expressions, pure functions, nor pledges.

RustHorn [85] proposes an encoding technique of safe reference-
manipulating Rust programs into constrained Horn clauses [96], based
on the key idea of using prophecy variables to describe the target value
of a mutable reference at the moment of its expiration. The novelty of
the prophecy variable approach is that the functional behavior can be
modeled entirely in first-order logic by relying on the properties of the
Rust language. In contrast, Prusti encodes to separation logic in order to
verify the core proof, relying less on the Rust language guarantees.

Creusot [86] uses the prophecy encoding of RustHorn [85] to build a
deductive verifier for safe Rust code by encoding Rust programs with
contracts into Why3 [17]. Like RustHorn, Creusot relies on the Rust
language properties and does not verify memory safety like Prusti.
By avoiding the burden of the core proof, the tool can support more
language features such as nested references, and verify similar programs
in less time. Instead of pledges, Creusot lets verification users specify
borrows in contracts using the ˆ operator to refer to the target value
of a mutable reference at the moment of its expiration. We believe that
the semantics of the annotations are largely compatible, and that the
syntax of pledges can benefit from the expressivity of the ˆ approach
as observed in Sec. 3.5.6. However, the prophecy variable technique
might also bring some challenges, because so far they have not been
used to verify invariants of mutably borrowed types that should hold
by the time the borrow expires — a use case for which we designed
the assert_on_expiry specifications. One possible direction for future
work is to further investigate the differences between pledges and the
prophecies annotations, bringing them closer in syntax and semantics. A
unification of the two could be of great value for verification users.

Verus [62] is a deductive verifier for a language close to Rust, but with
non-Rust syntax for proofs, contract specifications and ghost types.
Compared to regular Rust code, libraries in Verus can be marked as safe
under the assumption that all clients will be verified. This assumption is
then used to avoid runtime checks in the implementation of the library,
with a performance gain. The specification language of Verus offers
a way to refer to the identifier of a type instance, which is preserved
across moves of linear types. This annotation, combined with ghost types,
makes it possible to split data from permissions in the specifications of the
libraries, enabling reasoning about some cases of concurrency and interior
mutability since this notion of identity is standard in separation-logic
reasoning. We believe that Prusti can benefit from the same expressivity
by using one of the techniques to encode object identifiers presented in
Sec. 3.5.6.

Rust Verifiers Based on Interactive Theorem Proving Ullrich [97]
encodes safe Rust programs into functional programs, to be interactively
verified in Lean [98]. Reborrows are supported via lenses [99]. Recent
work at Galois similarly reduces reasoning about a subset of safe Rust
to proofs about functional programs in Saw [100]. In contrast to these
works, our technique does not require the manual construction of proofs
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or verifier directives; in addition, we designed our underlying separation-
logic formalism to provide a suitable (imperative-style) model for future
extension to unsafe code.

RustBelt [101] provides a formalization aimed at proving that unsafe
library implementations encapsulate their unsafe behavior, and defining
formally what this notion should mean for Rust. RustHornBelt [102] adds
functional specifications to RustBelt predicates, formalizing the prophecy
variable technique used by RustHorn. The goals of our work are very
different, and this led to different technical choices and contributions.
Whereas RustBelt aims to formalize metatheory for the language and to
construct proofs using the Coq proof assistant, we do not address Rust
semantics, and aim primarily at the functional (automatic) verification of
safe Rust code, and to equip programmers with specification mechanisms
at the level of abstraction of such code, largely shielding them from the
complexity of formal logics.

RustBelt handles the expiry of borrowed references with a combination
of a lifetime logic for determining when lifetimes can be known to safely
end, and rules that restore full capabilities to a borrowed-from place
once the corresponding lifetime is over. Restoring capabilities using this
indirection via the lifetime logic has the advantage that this solution
works consistently for mutable and for shared borrows, and for both safe
and unsafe code (in the latter case, more work is required in the lifetime
logic itself). Our handling of shared borrows (and the corresponding
upgrade to full permissions) was inspired by this approach, but we rely
on Rust’s borrow checker to determine when borrows expire.

One key difference in our technical approach is that our logical encoding
of borrows (using magic wands) reflects the flow of capabilities from the
re-borrowed reference to the place borrowed from. It is this modeling
which enables our pledges specification to be layered on top, since we
can relate the two states of the accessible memory before and after the
borrow’s expiry in one assertion. In this way, we can directly express
how changes made via a borrow affect the borrowed data; this is a
fundamental difference in the two models. It would be interesting future
work to integrate the two approaches, using RustBelt’s lifetime logic
to justify expiry of references in unsafe code in place of the (currently
trusted) borrow checker we use for safe code.

There are also other technical differences that were motivated by the
differing goals of the projects. RustBelt focuses on a formal program
model usable even in the presence of unsafe Rust, designed for Coq-
based proofs. Because of this, their logical foundation is a powerful and
complex separation logic based on Iris, and their language formulation is
a continuation-passing-style intermediate representation, convenient to
work with in Coq. Translations from Rust to this representation have to
be performed manually by experts. For our goals, it is essential that the
translation to the language in which the proof is performed is automated,
and that the input specifications written by users match the features and
abstraction level of Rust’s source code.

Aeneas [103] translates Rust programs into a value-based functional
language that can be used to prove functional properties of the original
program using interactive theorem provers. To reason about modifica-
tions via mutable references, instead of RustHorn’s prophecies or Prusti’s
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pledges Aeneas proposes a new backward function translation technique
and a borrow graph static abstraction that represents the dependencies
between borrows. Compared to Prusti and other deductive verifiers,
the Rust language support of Aeneas is a bit more limited because of
some limitations regarding nested loops and disjunctions in the control
flow. It would be interesting to explore in future work the relation be-
tween Aenea’s borrow graph and Prusti’s borrowing DAG representation
presented in Sec. 3.7.

Rust Semantics and Formalizations A number of formalisms for sub-
sets of Rust have been designed, focusing on type soundness results [104–
107]. It would be interesting to compare these formal models with the
capability analysis and borrowing DAG that our work produces from the
compiler.

Oxide [108] is an in-progress work that formalizes Rust’s borrow checker
using standard type-checking rules that are proven sound using progress
and preservation. Their approach follows the view that a lifetime is a
set of loans, as proposed by Matsakis [109]. This is reflected in Oxide’s
typing rules, which track which reference might point to which others
in a way that looks similar to the borrow graph that we compute in our
work.

In the context of unsafe Rust, an important property is whether a program
has undefined behavior or not. While there is not yet an officially accepted
formal definition of UB, Stacked Borrows [42] and its follow-up Tree
Borrows [43] propose a formal aliasing definition of UB that can be
checked at runtime using the Miri interpreter [44]. By assuming that the
verified safe code is not called by unsafe code, our encoding of Rust types
is based on safety assumptions that are stronger than just absence of UB.
One notable difference is that the current consensus is that in Rust, it is
not UB to have private reference fields that point to uninitialized memory,
as long as such memory locations are not read, while our work assumes
that such a case cannot happen. To extend Prusti to verification of unsafe
code, it would be necessary to introduce, e.g., new annotations to specify
to which extent the usual guarantees of Rust types are weakened in
unsafe code.

3.10 Conclusions

In this chapter, we presented our verification technique that leverages the
properties of Rust’s type system to simplify program specifications and
automate heap reasoning, making verification accessible to non-experts.
The technique in this chapter is based on the explicit properties of Rust
types; those defined by the Rust language. As a consequence, verification
is incomplete when reasoning about types with implicit library-defined
properties. For example, types with interior mutability or concurrent
semantics. In the next chapter, we are going to see how to express some
of these library-defined properties with lightweight annotation.
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Verification of Safe Clients of
Interior Mutability 4

In this chapter, we present our technique for the verification of safe
clients: safe Rust programs that make use of trusted libraries that may
be implemented with unsafe code. These libraries pose several verifica-
tion challenges due to their ability to implement mutable shared data
structures, including concurrent data structures. The examples in this
chapter focus on the popular interior mutability pattern of Rust to ease
the presentation, although the presented verification technique can be
applied to any case of shared mutability because it abstracts over the
implementation details of the libraries.

Existing automated verification techniques for safe Rust code rely on
the strong type-system properties to reason about programs, especially
to deduce which memory locations do not change (i.e., are framed)
across function calls. However, these type guarantees do not hold in
the presence of interior mutability (e.g., all concurrent data structures)
and other behaviors made possible by implementing safe libraries using
unsafe code. As a consequence, existing automated verification techniques
for safe code such as Prusti [29] and Creusot [86] are either unsound
or fundamentally incomplete if applied to this setting. In this work, we
present the first automated technique to verify some safe usages of real-
world Rust libraries, including those implemented with unsafe code, that
does not require changing the signature of the existing library methods1.
At the core of our approach, we identify a novel notion of implicit
capabilities: library-defined properties that cannot be expressed using
Rust’s types. We propose a new annotation to specify these capabilities,
with a meta-theory soundness proof for their semantics and a first-order
logic encoding suitable for program verification. We implemented our
technique in a verifier called Mendel and used it to prove absence of
panics in simple Rust programs that make use of popular standard-
library types with interior mutability, among which Rc , Arc , Cell ,
RefCell , AtomicI32 , Mutex and RwLock . Our evaluation shows that
these library annotations are useful for verifying usages of real-world
libraries, and lightweight enough to require zero client-side annotations
in many of the verified programs.

4.1 Introduction

Rust’s ownership type system offers strong guarantees, such as memory
safety, absence of data races, absence of dangling pointers and, in general,
absence of undefined behavior (UB). In the safe language fragment of
Rust, these properties are statically guaranteed by the compiler, making
it possible for verification techniques and tools to build upon them [29,
62, 86, 103]. This is achieved by associating an exclusive capability [2] to all
mutable references and non-borrowed types, and a shared capability to
all immutable references, as done in the capability analysis of Sec. 3.7.
The former capability guarantees write access and non-aliasing, while
the latter read access and immutability. In our work, we call these type
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2: That is, without changing the signa-
ture of the existing library methods.

capabilities explicit, because they are fundamental properties defined by
the Rust language.

The explicit capabilities of Rust types are too restrictive to implement
certain behaviors: cyclic data structures such as doubly linked lists, con-
currency, shared mutable state such as a global cache, and so on. To
overcome this, many Rust libraries use unsafe Rust in their implementa-
tion to offer interior mutability in their API. This is the only way by which
safe Rust libraries can implement shared mutable state. If it were not
for the unsafe code in the library implementation, the shared references
would imply transitive immutability, preventing any mutations. However,
the additional expressivity for the library developers comes at the cost
of losing static guarantees. In fact, in the presence of interior mutability,
it is no longer statically known whether shared references may be used
for mutations or not, because the explicit capabilities of these library
types do not describe the memory locations where the mutations may
happen. This is an inherent limitation for existing static analysis and
automated verification tools, none of which is able to reason about basic
usage of real-world unmodified libraries with interior mutability. For
example, the program in Fig. 4.1 shows a simple usage of the Cell type
of Rust’s standard library, which is a container with interior mutability.
The cell_client function receives a shared reference c pointing to an
instance of Cell . Thanks to interior mutability, despite the immutabil-
ity of shared references, the function is allowed to increment the cell’s
content by one with a call to c.set(..) . The two c.get() calls around
the increment simply return a copy of the cell’s content. At the end, with
an assert!(..) statement, the function checks at runtime whether the
value read after the increment is exactly one more than the value read
before. The assertion never fails at runtime, because the design of the
Cell library guarantees that its content cannot be modified concurrently
as long as there is a &Cell instance like c , so the only modification
happens as a result of the set call. The compiler would generate an error
as soon as a program tries to send &Cell to a different thread. Naively
treating Cell like any other type would lead to unsoundness in existing
automated verifiers, because they would use the immutability properties
of shared references to incorrectly prove that before == after holds
at the point of the assertion. To soundly model the interior mutability
of Cell , they can only conservatively assume that other threads might
interfere at any moment and modify the cell’s content, losing all preci-
sion. As a consequence, existing automated verifiers are fundamentally
incomplete and cannot prove the last assertion, for which they report a
verification error.

Figure 4.1: Example of a client of the
Cell library. Rust

fn cell_client(c: &Cell<i32>) {
let before = c.get();
c.set(before + 1);
let after = c.get();
// Goal: prove that the following never fails
assert!(before + 1 == after);

}

In this work, we provide a technique to reason about safe clients of
real-world unmodified2 libraries with interior mutability in an automated
verifier. The focus on real-world unmodified libraries and automation is
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aimed at minimizing the manual effort needed to verify existing software.
At the core of our work, we identify that Fig. 4.1 and many other usages
of interior mutability can be verified by introducing a new notion of
library-defined capabilities, which we call implicit to oppose them to
the regular explicit capabilities guaranteed by the Rust language. In
fact, not all Rust types provide explicit capabilities. Raw pointers, for
example, are C-style pointers that can be dereferenced only in unsafe
code because the type system does not ensure their validity. When using
raw pointers, e.g., to implement an API with interior mutability, library
developers can still decide to guarantee immutability or uniqueness
properties if they wish. When that happens, we say that the library has
implicit capabilities associated with its types. While explicit capabilities
can be automatically discovered by traversing Rust type declarations (as
we exploited extensively in Ch. 3), implicit capabilities cannot, because
they are in the best case only described in prose in the documentation of
the libraries. For example, the design of the Cell library is such that any
&Cell instance is a witness that the content of the cell is thread-local. This
means that every &Cell implicitly provides a non-interference capability
with other threads that can be exploited for verification, even though
the Rust types used in the private declaration of Cell are too weak to
guarantee this property inherently. Knowing this implicit capability is
a key step to verifying the example in Fig. 4.1. Since the instance c is
available (i.e., not moved-out nor mutably borrowed) throughout the
entire implementation of cell_client , a verifier can deduce that the
cell’s content is always thread-local and can be modified only as an effect
of the c.get() and g.set(..) calls. To prove the last assertion, it is
then sufficient to rely on contract annotations that specify the functional
behavior of the get and set methods.

Contributions The main contributions of our work are:

1. We identify the notion of implicit capabilities and propose new
annotations to specify them on library types and APIs.

2. We present a new verification technique that uses capabilities to
reason about safe Rust code in the presence of interior mutability.

3. We present a novel proof technique that relies on basic UB properties
to prove what the unsafe implementation of a sound library cannot
do. Using this proof technique, we prove the correctness of our
model of a core subset of our capabilities.

4. We show an encoding of our reasoning technique to first-order
logic, suitable for automation using an SMT-based verification
toolchain.

5. We implement our reasoning technique in a deductive verifier for
Rust called Mendel, showing with an evaluation that our technique
is (1) useful, as it supports popular types with interior mutability
defined in the standard library, and (2) lightweight, because it
requires near-zero annotations on the client side of the simple
programs in our evaluation.

Outline The rest of this chapter is structured as follows. In Section 4.2,
we present the verification challenges of our setting and we identify the
core notion of implicit capability. In Section 4.3, we present our implicit
capabilities, introducing library annotations to specify them and semantic
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3: i.e. without dereferencing raw point-
ers or entering the special unsafe cell
types

rules to reason about them. In Section 4.4, we prove the correctness of
the semantics of a core subset of our capabilities, introducing our proof
by semantics-preserving transformation technique to derive properties of
sound Rust abstractions from well-established properties of safe Rust.
In Section 4.5, we present a first-order logic encoding of our capability-
based reasoning technique. In Section 4.6, we implement our work in a
deductive verification tool and evaluate it on simple clients of popular
standard-library types. In Section 4.7, we discuss related techniques, then
we conclude in Section 4.8.

4.2 Problems

In this section, we present the key problems of verifying Rust clients that
make use of libraries exposing interior mutability.

4.2.1 Shared Mutable State

Shared references in Rust normally provide a transitive immutability
guarantee, in that every value reachable with safe code3 starting from
the shared reference cannot be modified as long as the reference is alive.
In this work, we call those memory locations stable. When a library is
implemented with unsafe code, this immutability property is not always
transitive, posing a verification challenge presented in the following
example.

Consider the two functions option_client and cell_client in Fig. 4.2,
which are written in safe Rust and only use libraries with a safe API.
Both functions take as parameter a shared reference to either an Option

type or to a Cell type, where the Option type represents an optional
value and the Cell type can be seen as a container of size 1 with interior
mutability. The implementations of option_client and cell_client

follow a similar structure. They start by calling what we call a query
method on x : both is_some and get are side-effect free, deterministic,
non-diverging, and make it possible to observe the state of their receiver.
Then, a copy of the (duplicable) shared reference x is passed to a function
call whose implementation is unknown, and finally the state of x is
queried and compared with other observations.

Rust

fn use_option(x: &Option<i32>) { /* ??? */ }

fn option_client(x: &Option<i32>) {
let a = x.is_some();
use_option(x);
let b = x.is_some();
let c = x.is_some();
assert!(b == c); // Succeeds
assert!(a == b); // Succeeds

} Rust

fn use_cell(x: &Cell<i32>) { /* ??? */ }

fn cell_client(x: &Cell<i32>) {
let a = x.get();
use_cell(x);
let b = x.get();
let c = x.get();
assert!(b == c); // Succeeds
assert!(a == b); // Might fail

}

Figure 4.2: Example of a client of the Option library (left) and of the Cell library (right).

Because of the transitive immutability property of shared references,
a naive expectation might be that use_option and use_cell cannot
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modify the state of x , so that all assertions in the code should always
succeed. With the Option type, this is indeed guaranteed by the type
system and library API design. This property is already exploited in the
verification technique used by existing Rust verifiers, which allow a de-
veloper to mark the query method is_some as, e.g., #[pure] to express
that its result is a mathematical function of the stable value reachable
from the arguments [29]. This implies that the result of x.is_some()

remains the same as long as x is alive. It is then easy for a verifier to
prove that the results a , b and c of the query are equal even if there is
an unknown usage of x in between.

The same reasoning, however, does not apply to the cell_client

function. Since the Cell library internally uses unsafe code to provide
interior mutability, use_cell can modify the state of the cell using the
API method x.set(42) . The challenge for verification techniques is
that query methods such as get can now depend on unstable values
(as opposed to stable) reachable from their arguments. Contrary to the
example with Option , the correct verification outcome is now to report
that the final runtime check a == b might fail, but that b == c succeeds
because concurrent threads cannot access the Cell . How can this be
achieved? If a verifier naively ignores interior mutability and treats get()

analogously to is_some() , it would be unsound. This is because the
verifier would believe that a == b holds, contradicting the behavior of
use_cell . Alternatively, if a verifier treats get() non-deterministically,
it would be unable to prove that b == c holds. Neither of these two
options is sufficient to verify the cell_client function. What is missing
is a technique to soundly and precisely model the framing properties
of these libraries: whether and when the results of query methods are
preserved or not. Hard-coding that the Cell type has special framing
rules in a verifier might be sufficient to verify this example, but such
an approach would not be general and would face identical limitations
when reasoning about other types with interior mutability, including
cases where a Cell type is part of a larger data structure.

Key Problem K1: How to model framing properties of types with
interior mutability?

4.2.2 Library Properties

In order to verify clients of libraries exposing interior mutability, a key
requirement is to know the library-defined immutability and unique-
ness properties of its types. Consider for example the signature of the
refcell_client function in Fig. 4.3. RefCell is a type with interior
mutability, which allows clients to access the cell’s content using flexible
runtime aliasing checks instead of rigid compile-time borrow checks.
When a client asks for a reference to the data of the cell, for example
with a borrow or try_borrow method call, the library returns a Ref or
RefMut auxiliary type, where Ref provides a read-only view of the data
and RefMut also provides write access. A key property of the library is
that its API (as opposed to the Rust language) ensures that at any point,
there can be either multiple Ref instances associated with a certain cell
or, alternatively, at most one RefMut . As a consequence, Ref implies



98 4 Verification of Safe Clients of Interior Mutability

Rust

fn use_refcell(x: &RefCell<i32>) { /* ??? */ }

fn refcell_client(x: &RefCell<i32>, y: RefMut<i32>) {
let Ok(a /*: Ref */) = x.try_borrow() else { return; };
let before: i32 = *a;
use_refcell(x);
let after: i32 = *(x.borrow());
assert!(before == after); // Succeeds
assert!(x.as_ptr() as *const _ != y.deref() as *const _); // Succeeds

}

Figure 4.3: Example of a client of the RefCell library. At runtime, both assertions never fail, so a complete verifier should be able to
verify them. The first line in the implementation, let Ok(..) = .. , makes the function return in case the try_borrow method fails
due to x being already borrowed.

immutability of the cell’s content while RefMut ensures non-aliasing
with other Ref or RefMut instances. These properties can be modeled
as capabilities of the Ref and RefMut types.

In order to prove that the two assertions in refcell_client never fail
at runtime, a verifier must be aware of the implicit capabilities of the Ref

type. The first assertion checks whether the content of x changed across
the use_refcell call, whose implementation is unknown, while the
second uses a pointer comparison to check whether x and y are aliasing
the same memory location. At the beginning of the function body, the
try_borrow call tries to obtain a Ref instance to access the data of x . If
it fails, for example because there already exist some RefMut instances
associated with the data of x , the function enters the else branch and
terminates due to the explicit return statement. If it succeeds, then
try_borrow returns an instance that remains alive until the end of
the function. The implicit capabilities of a are enough to ensure that
(1) across the call to use_refcell , the content of x does not change,
proving that the first assertion always succeeds, and (2) that a and y

do not alias the same data. Since try_borrow ensures that the returned
a surely aliases the data in x , it follows that y does not alias x . These
two deductions are sufficient to prove that the last two assertions in the
program do not fail. The reasoning is high-level enough to match what a
Rust developer would think when analyzing this function. In particular,
it is modular in that it does not rely on implementation details of the
RefCell library, but just on immutability and non-aliasing properties
described in its API.

Without knowing the implicit capabilities of the RefCell library, a
verifier would have to conservatively assume that any usage of any type
with interior mutability might potentially alias and modify the content of
any other type with interior mutability. That is, use_refcell(x) should
be conservatively modeled as possibly modifying x , and y as possibly
sharing the same content of x , forcing the verifier to report a verification
error for the two assertions in the program. Such a verifier would be
sound, but unable to prove any interesting property regarding the content
of types with interior mutability. Instead, to be useful a verifier should
be able to leverage on the guarantees provided by these libraries.
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4: This can be verified by adding
a false precondition to all the
API functions that might create
a weak reference ( Arc::downgrade ,
Arc::new_cyclic ).

Key Problem K2: How can developers specify the implicit capa-
bilities of libraries?

Key Problem K3: How can implicit capabilities be used by auto-
mated verification tools?

4.2.3 Conditional Library Properties

The library properties used so far to reason about Rust programs hold for
all instances of certain library types, independent of the values that the
instance contains. Certain programs, however, show that it is possible
for some library properties to hold only for certain instances of a library
type.

Consider for example the function in Fig. 4.4. The parameters are of
type Arc , a popular thread-safe reference-counted pointer that makes it
possible to share data between threads. At the beginning of the function,
the two parameters x and y might share the same memory, and might
even share the same memory of Arc instances used by other threads.
The Arc::strong_count function makes it possible to read the current
value of the reference counter. The Arc type has a second counter
for a weak pointer but the API does not provide a way to atomically
observe both at once. So, in this work, we assume that the weak counter
is always at zero4. If the counter of x is exactly 1, then it means that
x does not share its content, neither with y nor with any other Arc

instance used in other threads. In other words, when the counter is 1, an
Arc instance has unique access to its own counter and the contained
data. This implies that the two assertions in the first branch always
succeed, because uniqueness provides the necessary immutability and
non-aliasing properties to deduce so. When the counter is not 1, however,
multiple Arc instances can access and modify the same counter, even
from other threads. Thus, a verifier should report the first assertion in the
second branch as potentially failing, because nothing prevents x and y

from sharing the same memory. Moreover, the last assertions should also
be reported as potentially failing, since other threads might suddenly
bring the counter to 1 just after the evaluation of the branch condition.

Key Problem K4: How can the answers to K2 and K3 be extended
to implicit capabilities that depend on runtime conditions?

Rust

fn arc_client(mut x: Arc<i32>, y: Arc<i32>) {
if Arc::strong_count(&x) == 1 {

assert!(Arc::strong_count(&x) == 1); // Succeeds: the counter is stable
assert!(Arc::as_ptr(&x) != Arc::as_ptr(&y)); // Succeeds: non-aliasing

} else {
assert!(Arc::as_ptr(&x) != Arc::as_ptr(&y)); // Fails: might be aliasing
assert!(Arc::strong_count(&x) != 1); // Fails: the counter is unstable

}
}

Figure 4.4: Example of a client of the Arc library. The assertions in the first branch never fail at runtime, while those in the second
branch might fail. Thus, a verifier should be able to verify the first branch, and should report verification errors for the two assertions in
the second branch.
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4.3 Approach

In this section, we present our verification technique based on the
concept of capabilities, providing an annotation methodology to declare
the implicit capabilities of library types. The verification technique of this
work can be used to prove the functional correctness of safe Rust clients,
building upon the memory-safety guarantees of safe Rust. In particular,
we rely on the correctness of the Rust compiler in order to kick-start
our verification technique, by assuming that the explicit capabilities
of the Rust types hold whenever these are initialized and not mutably
borrowed.

4.3.1 Core Capabilities

In this subsection, we present the core of our capability-based approach
to verify clients of libraries with interior mutability. We start by showing
at a high level the final results of our technique: the annotations and
reasoning steps on the program of Fig. 4.5, which is a simplified version
of Fig. 4.3 that avoids calling the possibly-panicking x.borrow() call.
Then, we proceed by defining the core capabilities of our approach and
their properties, showing how these finally justify these results.

4.3.1.1 Motivating Example

Figure 4.5: Example of a client of the
RefCell library, based on Fig. 4.3. The
full annotations on the RefCell library
can be seen in the test suite of the evalu-
ation.

Rust

#[capable(&mut self => writeRef(self.as_ptr()))]
impl<T> RefCell<T> {}

#[capable(&self => readRef(self.refcell().as_ptr()))]
impl<’b, T> Ref<’b, T> {}

fn use_refcell(x: &RefCell<i32>) { /* ??? */ }

fn refcell_client(x: &RefCell<i32>, y: RefMut<i32>) {
let Ok(a /*: Ref */) = x.try_borrow() else { return; };
let before: i32 = *a;
use_refcell(x);
let Ok(b /*: Ref */) = x.try_borrow() else { return; };
let after: i32 = *b;
// Both following assertions succeed
assert!(before == after);
assert!(x.as_ptr() as *const _ != y.deref() as *const _);

}

At the beginning of the code in Fig. 4.3, the #[capable(..)] annotations
declare two implicit capabilities of the RefCell library. The first, on
RefCell , states that any &mut RefCell instance is capable of obtaining
a mutable reference to the content of RefCell . Or, in other words,
mutable instances of RefCell hold the unique capability for mutating
their content. This annotation uses the existing RefCell::as_ptr API
method to identify the content of the RefCell by address. The second
annotation, on Ref , states that any &Ref instance is capable of obtaining a
shared reference to the content of the associated RefCell . In other words,
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5: It would be possible to introduce a
third core capability kind to distinguish
between mutable references and non-
borrowed types, but we did not find prac-
tical advantages in the use cases that we
considered.
6: Soundness, here, refers to the library
soundness principle of Rust, described in
Sec. 2.1.5.
7: In Sec. 4.4 we define more precisely
this special class of methods, calling
them conversion methods.

Ref instances hold the capability to read the content of the RefCell

with the guarantee that it is immutable. To formalize this property, the
annotation uses an auxiliary specification method Ref::refcell (not
shown in the figure) that models the RefCell instance associated with a
Ref . Using these two annotations, it is possible to prove panic-freedom
of the programs in two key steps. First, the a instance of type Ref is
alive across the use_refcell(x) call. Because of the implicit capability
of a , the content of x is immutable across the call. This is the key
property that, combined with standard functional specifications for
the other methods in the program, makes it possible to verify the first
assertion on the program. The second step is to notice that, before the
last assertion, the instances a and y are both alive. The instance a

still holds a capability that implies immutability of x ’s content. At the
same time, the instance y of type RefMut holds an implicit capability
that implies exclusive mutable access to y ’s content. Since these two
capabilities are incompatible, it follows that the content of x must be at a
different location than the content of y , which proves the second and
last assertions in the program. Without the library capability annotations,
neither of the two assertions could be verified.

In order to verify this example and other Rust programs, in the rest of
this section we will define novel capabilities that can be annotated on
library types. These capabilities make it possible to reason about the
content of types with interior mutability, using implication, non-aliasing
and immutability properties that are based on the properties of Rust
reference types.

4.3.1.2 Kinds of Core Capabilities

To verify programs such as the one shown in Fig. 4.3, we define the
following two kinds of capabilities. We call them core capabilities because
they are fundamental capabilities inherent to the Rust language.

§ readRef corresponds to the capability of Rust shared references.
It provides shared read-only access, with the guarantee that the
target memory location is not modified via aliases.

§ writeRef corresponds to the capability of mutable references, and
of fully initialized non-borrowed types5. It provides exclusive read
and write access.

A type instance is said to hold one of these core capabilities if and only
if it is sound6 for the API of the type to return the shared or mutable
reference corresponding to the capability, without causing side effects
other than borrowing the receiver instance7. This definition makes it
easy to determine some of the core capabilities of a library: it is enough
to identify an existing safe method of the API that returns a reference
while satisfying the side-effect-free requirements. For example, this is the
case of RefCell::get_mut : a method that given &mut RefCell always
returns a mutable reference to the content of the type, even though
the type has interior mutability. Thus, an instance of &mut RefCell

holds a writeRef capability for its content. In practice, we observed that
implementations of the popular Deref and DerefMut traits provide
similar side-effect-free methods for many real-world library types. Our
tool does not make any assumption about the implementation of the
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Deref and DerefMut traits, but for the verification users it might
be convenient to start from these traits when looking for conversion
methods.

4.3.1.3 Library Annotations

The immutability implication of Ref instances and the exclusive mu-
tability implication of RefMut are properties of the RefCell library,
informally stated in the documentation. To make it possible for library
designers to formally state them, we developed a new annotation to
express the implicit capabilities of library types. Each annotation is as-
sociated with a library type and has two components: one describing
the required borrowing state of the library type, because mutably and
immutably borrowed library types might hold different capabilities, and
one describing the capability held by the library type. The syntax of the
annotation and its components are the following:

Rust

#[capable(xsource_kindy => xtarget_kindy(xaddry))]

impl xtypey {}

§ xtypey is the Rust type of the source instance.
§ xsource_kindy is the required borrowing state of the type. Possible

values are &self , representing an immutably borrowed type, and
&mut self , representing a mutably borrowed or non-borrowed
type.

§ xtarget_kindy is the capability kind of the target instance. Possi-
ble values are readRef and writeRef , which correspond to the
capabilities of shared and mutable references, respectively.

§ xaddry is a pure Rust expression of type raw pointer that identifies
the target instance by address.

For example, consider the type Ref<T> used for the variable a in Fig. 4.5.
The Ref type implements a method Deref::deref with signature
fn deref(&self) -> &T that returns a shared reference pointing to the
associated RefCell ’s content. This testifies that any &Ref instance holds
the capability corresponding to a shared reference for the content of the
associated RefCell instance. Thus, &Ref can be annotated to hold a
readRef capability, as expressed by the second library annotation in the
example. In fact, we will discuss later in Sec. 4.4 that the core capabilities
readRef and writeRef can be seen as representing the capability of
obtaining a shared or a mutable reference through the library API, like
Ref ’s deref method does.

The annotation above declares capabilities that hold unconditionally, but
there exist library types whose capabilities depend on runtime conditions.
An example is the Rc type, a single-threaded reference-counting pointer
that uses interior mutability to update its counter when cloning the
type. A &mut Rc instance has a writeRef capability for its content, but
only if (1) the counter of references is exactly 1, and (2) the counter of
the weak references is zero. To express this conditional capability, we
provide a second capability annotation with the following syntax. The
new xcondy component is a pure Rust expression of boolean type, which
expresses the condition that needs to be satisfied in order to for the source
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8: In theory, libraries with mutually ex-
clusive unstable conditions might still be
combined to preserve a target capability.

instance to hold the target capability. Our technique does not require this
condition to be stable, but only stable conditions are useful in practice.
This is because target capabilities depending on unstable conditions are
usually8 lost when modeling interference from other threads.

Rust

#[capable(xsource_kindy if xcondy => xtarget_kindy(xaddry)]

impl xtypey {}

4.3.1.4 Implication Properties

The definitions of our capabilities are not independent; some can be
obtained by consuming others. For example, given a mutable reference
one can always obtain a shared reference, but without ever holding
both the shared and mutable capabilities at the same time. Similarly,
given a mutable reference to a structure in Rust, it is always possible to
obtain a mutable reference to one of its visible fields, but both mutable
references are never obtainable at the same time. For the moment, we
model the property that a capability is sufficient to obtain another as
an implication between capabilities. Later, in Sec. 4.3.1.5 and Sec. 4.3.1.6,
we will introduce a mechanism to identify which capabilities can be
obtained at the same time.

For a fixed memory location, the diagram in Fig. 4.6 represents with a
solid directed edge the writeRef ñ readRef implication, motivated
by the fact that in safe Rust clients, it is always possible to convert a
mutable reference x into a shared one using the expression &*x .

The Rust type of a capability determines further implications. Capabilities
of a tuple, structure or enumeration type imply capabilities for the
visible fields, and capabilities of a reference imply capabilities for the
reference’s target. For example, the capability of obtaining a mutable
reference to a local variable x of type mutable reference implies the
capability of obtaining a mutable reference pointing to x ’s target. The
Rust expression to do so is &mut **x . Thus, we model this property with
the implication readRef(x) ñ readRef(*x) , where the arguments x

and *x represent the memory location at which x and *x are stored. An
analogous rule holds for shared references and other types with fields, for
which, given a reference to a type instance, it is always possible to obtain a
reference to its visible fields using an expression like &x.f or &mut x.f .
Overall, these rules are presented in the first two rows of Table 4.1. The
only case where the kind of the capability is different than the initial one
is when x is a shared reference. In this case, the capability of obtaining

writeRef

readRef

Figure 4.6: Diagram of the core capability
implication (arrow edge) and incompati-
bility (dashed edge, explained later) for
common types (non-zero-size types that
do not implement !Unpin ). The capa-
bilities of shared and mutable references
correspond to readRef and writeRef ,
respectively. For a fixed program point
and memory address, implications are
between capability facts with the same
root, while incompatibilities are between
capability facts with different roots.
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Table 4.1: Table of the implications be-
tween the capability of a source instance
x and the capability of its fields or deref-
erences. We will discuss the last line in
Sec. 4.3.2.

Source
capability

Target capability

if x.f is visible if x: &mut T if x: &T

writeRef(x) writeRef(x.f) writeRef(*x) readRef(*x)
readRef(x) readRef(x.f) readRef(*x) readRef(*x)
localRef(x) localRef(x.f) localRef(*x) readRef(*x)

9: The conditions under which a capabil-
ity holds can additionally be expressed
using implications, as in xcondy ñ

xkindy𝑇p𝑟, 𝑎q.

a mutable reference to x implies the capability of obtaining a shared
reference to *x , mirroring the Rust rule by which shared references
behind mutable references cannot be used for mutations. In the case of
enumeration types, the discriminant is modeled as a field, and each other
field implication only holds under the condition that the value of the
discriminant corresponds to the variant in which the field is defined.

4.3.1.5 Syntactic Representation of Capabilities

To aid the presentation of the following properties, we need a syntax to
represent capabilities. We do so by defining that the capabilities of a type
𝑇 at a program point have in total two parameters and can be expressed
as the boolean function application xkindy𝑇p𝑟, 𝑎q. This represents the
capability of a certain kind associated with the instance of type 𝑇 at
address 𝑎9. The 𝑟 parameter expresses the syntactic place from which
the capability originates, among a set of places that we later define
and call roots in Sec. 4.4. This parameter is used to model separation-
logic-like disjointness properties of some memory locations associated
with capabilities with different roots (cf. Sec. 4.3.1.6). For the moment,
it is sufficient to know that the set of all initialized local variables is a
definition of root places that is sound, although incomplete for some
programs with moved-out fields. When convenient for the presentation,
we omit 𝑇, 𝑟, or 𝑎 if their value is made clear by the context. Moreover,
when 𝑎 is written as a Rust place, for example x.f , the value of 𝑎 refers
to its address, which in the example corresponds to the Rust expression
addr_of!(x.f) .

As an example, consider the function in Fig. 4.7. Both arguments x

and y are valid roots in the only program point of the empty body.
The first root, x , determines two capabilities writeRef("x", x)

and readRef("x", x) , where the first parameter "x" identifies
syntactically the root place x , while the second parameter x identifies
the memory location pointed by the reference x . The second root, y ,
determines three more capabilities as shown in the figure. How exactly
all these capabilities are generated will be discussed in detail later in
Sec. 4.5. As anticipation, each root at each program point generates
exactly one capability; writeRef("x", x) and readRef("y", y)

in the example. The remaining capabilities are a consequence of
an implication property between capabilities: writeRef("x", x)

determines readRef("x", x) , while readRef("y", y) determines
readRef("y", y.0) and readRef("y", y.1) . Note that the root
parameter is preserved across these implications. As we are about
to present, this enables defining non-aliasing properties between
capabilities originating from different roots.



4.3 Approach 105

Rust

fn capabilities(x: &mut u32, y: &(u32, u32)) {
// roots: [x, y]
// capabilities: {
// readRef("x", x), writeRef("x", x),
// readRef("y", y), readRef("y", y.0), readRef("y", y.1)
// }

}

Figure 4.7: Rust function annotated with
the capabilities originating from the two
arguments.

4.3.1.6 Non-Aliasing Properties

There are cases where the definitions of the capabilities are incompatible if
they refer to the same type and memory location. For example, in Rust it is
never be possible to have at the same time a shared and a mutable reference
pointing to the same (non-zero-size) type instance. This condition can be
exploited by a verification tool to infer non-aliasing properties, because
if a library ensures readRef or writeRef for a memory location 𝑎1 and,
at the same program point, writeRef for a memory location 𝑎2 then a
verifier can deduce that 𝑎1 ‰ 𝑎2. However, how the capability originates
matters. For a fixed program point, incompatibilities only hold between
capabilities that originate from different places:

writeRef(𝑟1,𝑎1) ^ readRef(𝑟2,𝑎2) ^ 𝑟1 ‰ 𝑟2 ñ 𝑎1 ‰ 𝑎2

This property of our capabilities is represented by the dashed edge
in Fig. 4.6. We later use the syntax writeRef(𝑟1) Ü readRef(𝑟2) to
represent this formula. In contrast, the implications that we presented
in Sec. 4.3.1.4 hold between capabilities that originate from the same
place.

Why is it necessary to restrict this property to capabilities with dif-
ferent origins? This can be seen using the example in Fig. 4.7. In the
program, there are two local variables that are alive: x and y . The
former generates a writeRef("x", x) capability, while the latter gen-
erates a readRef("y", y) capability. Since writeRef and readRef

are incompatible, it follows that x and y must point to different mem-
ory locations as expected. However, we previously stated that there
is also an implication between writeRef and readRef . In the exam-
ple, writeRef("x", x) implies readRef("x", x) . An unsound non-
aliasing definition that ignores the root parameter would also apply
between these two capabilities, because the former is a writeRef while
the latter is a readRef . The consequence would be that a verifier would
deduce that the address pointed by y is not the address pointed by y ,
which is a contradiction. The restriction regarding the root parameter is
designed to avoid this case.

One limitation of this non-aliasing definition based on root arguments is
that it does not model the non-aliasing property of different fields of the
same structure, when both fields originate from the same root. This is an
incompleteness. In such cases, a sufficient workaround is to briefly create
two references pointing to those fields, expiring them immediately after.
This forces for a moment the reasoning technique to model the two fields
using different root arguments, from which the verifier can deduce their
non-aliasing property, which can then be reused even after the expiration
of the references.
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4.3.1.7 Immutability Properties

With the rules presented so far, a verifier can prove only the non-aliasing
properties resulting from the incompatibilities between capabilities.
However, a verifier also needs to deduce which values do not change, i.e.,
are framed, across statements. To achieve this goal, we apply the capability
reasoning across each statement. First, we define that a place is available
across a statement if the place is available before the statement but is not
used by the statement. This can be determined with a syntactic check.
The capabilities held by the type instance of that place are also said to
be held across the statement, including those obtained via implication
properties. Then, as a framing rule, we define that a readRef capability
on a primitive type held across a statement implies immutability of the
associated memory location. The intuitive motivation is that readRef is
the capability corresponding to a shared reference, and primitive types
cannot have interior mutability. Thus, noticing that a shared reference is
alive and unused across a statement is sufficient to deduce that the target
memory location cannot be mutated, not even by concurrent threads. We
discuss the motivation of this rule in more detail later in Sec. 4.4.

To see an example where this immutability rule is applied several times,
consider again the use_refcell(x) statement of Fig. 4.5. The a root
place is available across the statement, thus writeRef(a) also holds
across it. By the implication rules of capabilities, readRef(a) holds
as well. From here, there are many possible deductions that a verifier
can make. First, since readRef(a) is available across a statement then
the instance a is known to be immutable across use_refcell(x) .
Second, because of the library annotations of Ref , readRef(a)

implies readRef(a.refcell().as_ptr()) across the statement.
Third, the immutability rule can be applied again, but this time on
readRef(a.refcell().as_ptr()) . As a result, a verifier can deduce
our goal: the memory location at a.refcell().as_ptr() , which is the
content of the RefCell , is immutable across use_refcell(x) . While
in general the reasoning needs to consider the case where the evaluation
of a.refcell().as_ptr() might change across the statement, in this
case the immutability of a and the purity annotations on the following
method calls are sufficient to guarantee that the evaluation does not
change. These details regarding the evaluation order are discussed later
in Sec. 4.5.

4.3.2 Extended Capabilities

The core capabilities presented so far have immutability and non-aliasing
properties that coincide with the properties of shared and mutable
references. However, those capabilities are not expressive enough to
annotate and verify usages of types of the standard library that, for
soundness of their design, cannot have the same properties as Rust
references.
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10: This is a property guaranteed by the
API of Cell and necessary for the li-
brary to be sound (cf., Sec. 2.1.5). Violat-
ing this would be an important bug of
the library because it would allow safe
clients of Cell to have UB.

4.3.2.1 Motivation

Consider for example the programs in Fig. 4.8. The code makes use
of Cell , a library type with interior mutability that makes it possible
to read and replace the content of the cell via shared references. The
verification goal of these examples is to prove that the last assertion
in the program on the left never fails at runtime, while the one on the
right might. The key step to prove is that the *x = 100 statement does
not mutate the content of the cell pointed by c . Intuitively, this holds
because (1) the Cell library never leaks to its clients a reference pointing
to the content of the cell10, and (2) Cell is thread-unsafe, so it cannot
be modified by other threads while a function is holding c . The latter
property is guaranteed by the compiler, under the assumption that all
Rust libraries are sound. Knowing both properties, a verifier can deduce
that (1) the x reference being modified in *x = 100 does not point to
the content of the cell c , and (2) c cannot be modified concurrently
during the assignment. Thus, across the assignment to x the content of
c does not change, from which a verifier can deduce that the assertion
in the left program always succeeds. Regarding the program on the right,
nothing prevents the unknown() call from obtaining a shared reference
aliasing c , through which the call can modify the cell. However, how
can we model the capabilities associated with the content of the cell?
Declaring that each &Cell instance holds a readRef capability for its
content would be unsound! In fact, such annotation would imply that
across the unknown() call the cell’s content is immutable, while it might
actually change at runtime. The core capabilities are not expressive
enough to annotate and verify this kind of example. What we need are
more fine-grained capabilities than readRef , so that we can describe the
cell’s content using something that is similar to readRef , but weaker.

Rust

fn client_cell_1(c: &Cell<i32>, x: &mut i32) {
c.set(42);

*x = 100;
assert!(c.get() == 42); // Succeeds

}

Rust

fn unknown() { /* ? */ }

fn client_cell_2(c: &Cell<i32>) {
c.set(42);
unknown();
assert!(c.get() == 42); // Fails

}

Figure 4.8: Example of two clients of the Cell library. The assertion in the program on the left never fails at runtime because Cell

is thread-unsafe and never returns a reference pointing to its content. In terms of extended capabilities, across *x = 100 the caller
holds a local and a noWriteRef capability for the content of c . Instead, the assertion in the program on the right can fail because the
unknown() call might obtain a reference aliasing c .

4.3.2.2 Beyond Core Capabilities

To address the limitations of the core capabilities, we define new extended
capabilities, which describe more fine-grained properties that cannot
be expressed using Rust types. With them, we classify at a high level
the capabilities in the following four groups. The new capabilities are
presented individually shortly later.

1. Core capabilities, corresponding to the explicit capabilities of
Rust references. These capabilities provide an abstraction that is
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[75]: Clebsch et al. (2015), Deny capabilities
for safe, fast actors
[110]: Gordon et al. (2012), Uniqueness and
reference immutability for safe parallelism

necessary to connect our capability reasoning to the actual Rust
types that are used in function signatures.

2. Fine-grained capabilities to read, write, express immutability,
unique access, or thread-local ownership ( read , write ,
immutable , unique , local ). These are fundamental properties
used across many program reasoning techniques, such as the type
system of Pony [75] or experimental type systems for C# [110].
Compared to the core capabilities, read and write are weaker
definitions that lack the immutability and non-aliasing guarantees
of shared and mutable references, respectively. Likewise, unique
is weaker than writeRef , but for a subtle reason that we will
discuss in Sec. 4.4: writeRef implies that it is possible to obtain a
mutable reference through the library API, while unique does
not.

3. Deny capabilities ( noReadRef and noWriteRef ), expressing that
there cannot exist references to a certain memory location. This
makes it possible to deduce (1) non-aliasing properties between
existing references used in safe Rust and memory locations man-
aged by libraries, and (2) immutability of memory locations across
assignments to mutable references, as done to verify the example
in Fig. 4.5.

4. Combinations of other capabilities. This is the case of localRef ,
defined as the conjunction of local and readRef , for convenience.

Our capabilities are a pragmatic choice, which gives us all the properties
we need for our solution to work. Other choices are possible. For instance,
we will define later that the capability to write to a memory location
( write ) implies the capability of reading from the same memory location
( read ). This special implication can be avoided by defining that the
write capability is the conjunction of two capabilities: read and a
new, more atomic, write capability that does not imply read . We do
not do so for simplicity. From our experience, the capability framework
that we propose to reason about Rust code is flexible and could also be
instantiated with many variations of the capability definitions.

Using the new capabilities, in addition to readRef the content of a &Cell

instance can be modeled as local , noReadRef and noWriteRef : the
first expresses that the cell’s content is thread-local, while the other two
express that the library API never leaks shared or mutable references
pointing to the cell’s content. The capabilities of a &mut Cell instance
are slightly stronger: the content of the cell can additionally be annotated
with the writeRef capability to express that the &mut Cell instance
can be used to obtain a mutable reference to the content of the cell.
We will see how this implies more fine-grained capabilities such as
unique and local . All these library annotations are shown in Fig. 4.9,
which additionally includes annotations for a few methods of the Cell ’s
API. The as_ptr and get methods are marked with special purity
annotations, which will be discussed later in Sec. 4.3.3, while new and
set are annotated with postconditions expressing that after the call,
the cell contains the value that was passed by argument. These library
annotations on Cell are sufficient to verify the program on the left
of Fig. 4.8, while still reporting the expected verification error for the
program on the right.

The writeRef capability held by &mut Cell instances, in particu-
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Rust

#[extern_spec]
#[capable(&self => local(self.as_ptr()))]
#[capable(&self => noReadRef(self.as_ptr()))]
#[capable(&self => noWriteRef(self.as_ptr()))]
#[capable(&mut self => writeRef(self.as_ptr()))]
impl<T> Cell<T> {

#[pure_memory]
pub fn as_ptr(&self) -> *mut T;

#[ensures(deref(result.as_ptr()) ==== value)]
pub fn new(value: T) -> Cell<T>;

#[ensures(deref(self.as_ptr()) ==== value)]
pub fn set(&self, value: T);

}

#[extern_spec]
impl<T: Copy> Cell<T> {

#[pure_unstable]
#[ensures(result ==== deref(self.as_ptr()))]
pub fn get(&self) -> T;

}

Figure 4.9: Example of the capability and
contract annotations on the Cell type of
the standard library. #[extern_spec]
states that we are attaching trusted con-
tract annotations to an existing library
API. The figure contains two impl

blocks because in the second the T pa-
rameter has an additional Copy trait
restriction; this is a design choice of
the library API. All #[capable(..)]
annotations are trusted by the verifier.
pure_memory and pure_unstable are
two purity annotations discussed later
in Sec. 4.3.3. The method as_ptr acts
as a model of the memory location of the
cell’s content, so that other contracts can
refer to it. ==== is a special structural
equality operator, discussed in Sec. 4.3.3,
that includes the target memory address
of reachable references in the compari-
son.

Rust

fn unknown() { /* ? */ }

fn client_cell_3(c: &mut Cell<i32>) {
c.set(42);
unknown();
assert!(c.get() == 42); // Succeeds

}

Figure 4.10: Example of a clients of the
Cell library. The assertion in the pro-
gram never fails at runtime, because
across unknown() the caller holds a
writeRef capability for the content of
c , which implies a unique capability.

lar, makes it possible to verify the example in Fig. 4.10. The function
client_cell_3 is similar to client_cell_2 in Fig. 4.8, but one type
argument is &mut Cell instead of &Cell . This small difference has a
big semantic implication. Since c is not used in the unknown() call,
and since c has exclusive access to the cell’s content, it follows that
the unknown() call cannot modify the cell’s content. We will define
later how the writeRef capability in the library annotation implies a
unique capability, whose immutability rules make it possible to verify
the assertion in the program.

4.3.2.3 Kinds of Extended Capabilities

All the new capabilities are defined as follows. The diagram in Fig. 4.11
represents the implication and incompatibility rules between capabilities,
which will be discussed later.

§ unique declares that the source instance has unique access to the
target instance. This is weaker than writeRef , in that unique

does not imply that a client can obtain a reference to the target
instance, but it maintains other properties of writeRef , such as
non-aliasing. For example, this is the capability that a &mut Rc

type has for its (weak and strong) reference counters when the
weak one is zero and the strong one is exactly one. The API never
returns to the client a reference pointing to the value of one of
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Figure 4.11: Diagram of the extended
capability implications (arrow edges)
and incompatibilities (dashed edges).
All incompatibilities hold only for types
that are not zero-size. The implications
marked with ‹ hold only for types that
do not implement !Unpin . When they
do, the edges with ‹ end at write and
readRef instead.

‹ ‹

noReadRef

noWriteRef writeRef

localRef unique

readRef local write

immutable

read

these counters, which means that the content cannot be modeled
using a core capability ( readRef or writeRef ). Still, the content
can be accessed and modified only via a &mut Rc instance, which
implies useful non-aliasing and framing properties. The unique

capability makes it possible to express that.
§ local declares that the target instance is thread-local, i.e., it is not

reachable at the same time from multiple threads. This capability
is weaker than unique , in that multiple instances can hold a
local capability for the same memory location, as long as all
such instances can be used only by the same thread. The main
advantage of local is that it guarantees absence of concurrent
modifications. For example, this is the capability that a non-write
borrowed &RefCell type has for its content because the RefCell

type is not thread-safe (i.e., does not implement Sync ) and the
type checker guarantees that it is never used concurrently. Another
example is the Rc type, which holds a local capability for the
location of its reference counters because the library never modifies
it concurrently.

§ write declares that the target instance can be modified by using
the source instance. For example, this is the capability that an
&AtomicI32 type implies for its content because it is always possi-
ble to modify the content of the type by calling the store method.
This capability is weaker than writeRef , in that (1) write does
not imply that a client can obtain a reference to the target instance,
and (2) it does not imply that the source instance has unique access
to the target instance.

§ immutable declares that the target instance is immutable, as if it
were referenced by a shared reference. This capability is weaker
than readRef , in that immutable does not imply that a client
can actually obtain a shared reference to the target instance. For
example, this is the capability that a &RefMut instance holds for
the memory location storing the counter of the active borrows (i.e.,
the number of Ref and RefMut instances referring to RefCell ’s
content). Such a counter is constant as long as the RefMut instance
is alive, because (1) a RefCell instance can be referred to by at
most one RefMut instance, and (2) the library ensures that one
RefMut cannot coexist with other Ref instances.

§ read declares that the target instance can be read by using the
source instance. For example, atomic types such as &AtomicI32
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hold a read capability for their content because it is always possible
to read that by calling the load method. This capability is weaker
than readRef , in that read (1) does not imply that a client can
obtain a reference to the target instance, and (2) it does not imply
that the target instance is immutable. Still, read provides non-
aliasing guarantees with respect to memory locations modeled as
unique because it cannot be that a memory location is uniquely
reachable from a place 𝑥, but also readable without using 𝑥.

§ localRef represents the capability of an instance that is reachable
only from the shared references of one thread. This combination,
which is equivalent to the conjunction of readRef and local ,
corresponds to the local reference type described in [111]. Whenever a
local variable or mutable reference is blocked by shared references
that have not been used in any function call, both the blocked place
and the shared references satisfy the definition of local reference.

§ noReadRef declares that there exist no shared references to the
target instance. For example, this is the capability that a &Cell type
implies for its content because the library guarantees to never leak
a reference to the internal data (or the library would be unsound).
This capability is useful to deduce non-aliasing properties between
references and special memory locations managed by a library.

§ noWriteRef declares that there exist no aliasing mutable references
to the target instance or to other instances for which the target is
a (sub)field11. Mutable references to the target that are obtainable
from the source instance are still allowed. For example, this is
the capability that a read-locked &RwLock type implies for its
content: the API ensures that no mutable references to the content
are given out while the lock is read-locked, and also ensures that
RwLock remains borrowed as long as it is locked, so that there
cannot be mutable references pointing to an instance that contains
the RwLock . Like noReadRef , this capability is useful to deduce
non-aliasing properties between references and special memory
locations managed by a library.

All these new capabilities can be used in the xtarget_kindy component of
our capability annotations, but only localRef can be used in addition
to readRef and writeRef in the xsource_kindy component by using
the special syntax &loc self . In the rest of this section, we present the
properties and parameters of the new capabilities, following the same
structure used in Sec. 4.3.1.

4.3.2.4 Implication Properties

As with core capabilities, there exist implications between the extended
capabilities. These implications are represented in Fig. 4.11 and explained
as follows:

§ writeRef ñ readRef , which is the implication already presented
in Sec. 4.3.1.4.

§ writeRef ñ write , because any mutable reference can be used
to perform modifications.

§ writeRef ñ unique , because any mutable reference guarantees
exclusive access to its target instance. For example, any local variable
of type &mut u32 guarantees that the referenced u32 value cannot
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be reached via other local variables. The Rust compiler implements
one exception to this rule: if a type implements the special !Unpin

trait, then its mutable references do not guarantee exclusive access
and might even alias each other [112]. In our work, we implement
the same exception, so that writeRef ñ unique holds only for
the types that do not implement !Unpin . Reasoning about Rust
programs rarely needs to use this exception, but we included it in
our work for correctness.

§ unique ñ local , because the target of a unique pointer is
reachable only from the thread holding the pointer. As an example,
any instance of &mut u32 guarantees that the referenced u32

value is thread-local, meaning that it cannot be modified by other
threads.

§ localRef ñ readRef ^ local , because we defined localRef

to be the conjunction of readRef and local .
§ writeRef ñ localRef , because we defined that writeRef

implies both readRef and unique , and unique in turns im-
plies local . So, writeRef is stronger than localRef . Because
of the !Unpin exception of writeRef ñ unique rule, also
writeRef ñ localRef only holds for types that do not im-
plement !Unpin .

§ readRef ñ immutable , because all shared references guarantee
immutability of their target.

§ unique ñ write , because in our model, whenever a program
holds a unique pointer, it is always possible (i.e., never UB) to mod-
ify the pointed-to instance. In other words, the model presented in
this work does not have a capability for unique read-only point-
ers. As an example, consider the &mut Cell type. We previously
described that its instances can be modeled as holding a unique

capability for the content of the Cell . Any &mut Cell instance
can also be used to modify the content of the Cell , via its get_mut

method or by swapping the targets of &mut Cell instances. Since
in practice we found that the unique capability is always accom-
panied by a write capability, we defined for convenience that the
former capability implies the latter.

§ immutable ñ read , local ñ read , and write ñ read ,
because in our model, whenever a program holds an immutable,
local, or writable pointer, it is always possible (i.e., never UB) to
read the pointed-to instance. In other words, the model presented
in this work does not have a capability for unique, local, or writable
pointers that cannot be dereferenced. These implications are defined
only for convenience because we found that in practice when these
capabilities are used the memory location can also be modeled
with read .

There exist additional implications between the capability of an instance
and the capability of its fields or dereference. Overall, all these implica-
tions are listed in Table 4.1. The additional cases compared to what we
presented in Sec. 4.3.1.4 are:

§ If x has a visible field f , localRef(x) ñ localRef(x.f) be-
cause readRef(x) ñ readRef(x.f) and because if an instance
is local so are the fields that compose it.

§ If x: &mut T , localRef(x) ñ localRef(*x) because
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readRef(x) ñ readRef(*x) and because if a mutable reference
is local, so is its target.

§ If x: &T , localRef(x) ñ readRef(*x) because a shared refer-
ence type does not provide any locality guarantee.

4.3.2.5 Non-Aliasing Properties

With our extended capabilities, there are more combinations from which
we can infer non-aliasing properties. Given two different roots 𝑟1 and 𝑟2,
if the target type has non-zero-size we define the following incompati-
bilities between capabilities at the same program point. These are also
represented by the red dashed edges in Fig. 4.11.

§ immutable(𝑟1) Ü write(𝑟2) , because the immutability prop-
erty of immutable(𝑟1) would conflict with the modifications that
write(𝑟2) enables through 𝑟2. This rule generalizes the read-xor-
write property of Rust, so that it holds not only between references,
but also between implicit capabilities that might originate from
library annotations.

§ unique(𝑟1) Ü read(𝑟2) , because unique(𝑟1) implies that there
is no other root from which the target memory location is reachable,
but read(𝑟2) contradicts that. This rule expresses the non-aliasing
property of mutable references as an instance of the more general
case of unique pointers. For example, given x: &mut Cell<T>

and y: &mut T where T is a non-zero-size type then y cannot
alias the content of the cell, because x: &mut Cell<T> implies a
unique capability for its content while y: &mut T implies read .

§ noReadRef(𝑟1) Ü readRef(𝑟2) , because readRef implies that
it is possible to obtain a shared reference to the target memory
location, but noReadRef implies that there cannot be such ref-
erences. For example, given x: &Cell<i32> and y: &i32 then
y cannot alias the content of the cell, because x: &Cell<i32>

implies a noReadRef capability for its content while y: &i32

implies readRef .
§ noWriteRef(𝑟1) Ü writeRef(𝑟2) , because writeRef implies

that it is possible to obtain a mutable reference to the target memory
location, but noWriteRef implies that there cannot be such refer-
ences. For example, given x: &Cell<i32> and y: &mut i32 then
y cannot alias the content of the cell, because x: &Cell<i32> im-
plies a noWriteRef capability for its content while y: &mut i32

implies writeRef .

Note that contradictions can be derived for more pairs via implica-
tions, e.g., readRef(𝑟1) Ü writeRef(𝑟2) because the first capability
implies immutable(𝑟1) and the second implies write(𝑟2) , which are
incompatible12.

4.3.2.6 Immutability Properties

With the extended capabilities, there are two more rules, in addition to
Sec. 4.3.1.4, to deduce immutability properties.

§ Across any statement, an immutable capability ensures immutabil-
ity of the target instance.
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§ Across any statement, a unique capability ensures immutability
of the target instance. This is because any modifications done by
the callee or by other threads would need to be done via an aliasing
pointer that violates the uniqueness property of the capability.

§ Across non-call statements 𝑆, the conjunction of a local and
a noWriteRef capability for the same type instance 𝑥 ensures
immutability. This is because (1) local prevents any modification
of 𝑥 from other threads, and (2) noWriteRef ensures that the
statement 𝑆 does not modify 𝑥 via a mutable reference. The latter
holds because assignments to mutable references are the only way
by which non-call statements can modify values in safe code.

§ Across call statements 𝑆 of functions that are marked by a purity
annotation (presented in Sec. 4.3.3), the conjunction of a local

and a noWriteRef capability for the same type instance 𝑥 ensures
immutability. This holds because pure calls are side-effect free,
thus the only modifications can be (a) due to other threads, which
is disallowed by the local capability, or (b) due to an assignment
performed by 𝑆, which is disallowed by the noWriteRef capability.

With these rules, we can now show the step-by-step reasoning that makes
it possible to verify the core of Fig. 4.8 and Fig. 4.10. In the program on the
left of Fig. 4.8, it is necessary to deduce that the content of the cell cannot
be modified during the assignment *x = 100 . To do so, the first step
is to notice c is alive (determined by a static analysis of the compiler)
and unused (determined syntactically) across the assignment. This static
information is encoded in the proof by assuming13 a writeRef(c)

capability. Even if the type of c is a shared reference, the capability it
represents that c holds the capability to mutate the local variable, e.g.,
by replacing the shared reference with an assignment statement. Because
of the implied capabilities of shared references, writeRef implies a
readRef for the target of the reference: readRef(*c) . Due to the library
annotations of Cell , readRef(*c) implies local(c.as_ptr()) and
noWriteRef(c.as_ptr()) . By the immutability properties of local

and noWriteRef , these capabilities are sufficient to deduce that the
content of the cell does not change across the assignment. This was the
core verification step, after which a verifier can deduce that the assertion
in the program never fails.

In the program of Fig. 4.10, it is necessary to deduce that the content
of the cell cannot be modified during the call to unknown() . Like in
the previous example, the first step is to notice that c is alive and
unused across the call, which is encoded in the proof by assuming a
writeRef(c) capability14. Because of the implied capabilities of muta-
ble references, writeRef propagates to the target of the reference as
writeRef(*c) . Due to the library annotations of Cell , writeRef(*c)
implies unique(c.as_ptr()) , where c.as_ptr() describes the ad-
dress of the content of the cell. Thus, by the immutability property of
unique , the content of the cell does not change across the call. Using
this, a verifier can prove that the assertion in the program never fails.

4.3.3 Purity Annotations

Many library APIs offer methods, which we call pure, that are determin-
istic, side-effect free, and always terminate. These properties make it
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relatively easy to reason about their result: given two calls, it is sufficient to
know that the arguments of the calls are equal to deduce that their results
are equal as well. A standard example of a pure method is Vec::len ,
which returns the length of a vector by reading its value from a private
field. Among libraries with interior mutability, Cell::as_ptr is a pure
method that returns a raw pointer, whose target address is computed as
a fixed offset from the address at which the Cell instance is stored. In
the same API, the Cell::get method is pure as well, because it returns
the value contained in the Cell instance by internally dereferencing the
result of Cell::as_ptr . These three methods are all pure, but they rely
on different kinds of input values. Vec::len depends on a field value,
Cell::as_ptr depends on the target memory address of its reference-
typed argument, and Cell::get depends on a value that is reached
via a raw pointer. In program verification, the set of values on which a
pure function can depend is called footprint. Defining the footprint of
a pure function is a crucial task. The more precise the footprint is, the
easier it is to reason about its result because fewer values might affect it.
However, requiring a verification user to manually declare the precise
footprint of each pure function might be detrimental to the usability of
the verification technique. For example, declaring the precise footprint
of Vec::len would force the user to expose implementation details of
the library, breaking information hiding. In our verification approach, as
a trade-off between precision and usability, we defined three classes of
pure functions — #[pure] , #[pure_memory] , and #[pure_unstable]

— corresponding to different footprint definitions, ordered from the more
to the less restrictive.

The #[pure] annotation, also called pure-value, declares that a pure
function depends only on the values reachable from its arguments. These
values might be reached by following fields, dereferencing references,
or calling other #[pure] functions. For example, this is the case of
Vec::len , which depends only on the value of a private field. The values
of fields of type raw pointer and type reference are defined differently:
the value of a raw pointer is the address of its target, while the value of a
reference is the value of its target. Accordingly, pure-value functions can
depend on the address of the target of raw pointers but not on the value
of its target, while pure-value functions can depend on the value of the
target of references but not on the address of their target. Because of this
restriction, Cell::as_ptr cannot be annotated as pure-value, because
this function depends on the target address of a reference argument. As a
special rule, pure-value functions cannot depend on the content of types
with interior mutability (i.e., UnsafeCell ). This follows the intuition
that shared references guarantee immutability of their reachable target
values. Because of this restriction, Cell::get cannot be annotated as
pure-value: such function depends on a value that might be modified
via usages of &Cell .

The #[pure_memory] annotation declares that a pure function depends
only on the values reachable from its arguments, and their memory
addresses. For example, this is the case of Cell::as_ptr , because such
function depends on the target address of its only reference argument.
The Vec::len method might also be annotated as pure-memory, but
such annotation would be needlessly imprecise. As with pure-value
functions, also pure-memory functions cannot depend on the content of
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types with interior mutability (i.e., UnsafeCell ), but they can depend
on their memory address. Because of this restriction, Cell::get cannot
be annotated as pure-memory.

The third purity annotation, #[pure_unstable] , is the most permissive.
It declares that a pure function might depend on any memory value,
including global variables or values at special memory addresses. The
intuition is that these values are unstable and might change at any
time, even though the execution of the pure function is deterministic.
Because of this, when reasoning about a program it is typically difficult
to ensure that the result of different pure-unstable calls is the same, so
such functions should always be annotated with a postcondition that
effectively restricts the footprint. One example of a pure-unstable function
is Cell::get , as shown in Fig. 4.9. Its postcondition states that the result
is equal to the dereference of self.as_ptr() , where the syntax ====

expresses a structural equality that considers both values and addresses
(e.g., the target address of references), while deref is a built-in ghost
pure-unstable function that models dereferences. The capabilities that
the library declares for the memory location self.as_ptr() make it
possible to reason about the results of multiple Cell::get calls. In
contracts, which are considered to be evaluated atomically, the semantics
of pure-unstable functions is stronger: within the same specification,
calls of pure-unstable functions with the same arguments are guaranteed
to evaluate to the same value. To make sure that the atomic semantics
of contracts with one pure-unstable call is equivalent to the executable
semantics of the same expression, we impose that the implementation
of pure-unstable functions can call at most one pure-unstable function.
However, in the presence of at least two pure-unstable function calls, the
semantics of a specification differs from the executable semantics of the
same expression: in a specification all these calls are evaluated in the
same program state, while in executable code each of them is evaluated
in a different program state. This design choice makes it possible to
describe complex relations in memory, at the cost of losing the semantic
equivalence.

Even though the evaluation of a specification uses atomic semantics,
the evaluation of contracts in consecutive statements is not atomic, be-
cause we model the thread interference that might happen between
them. For example, consider the arc_client function in Fig. 4.12. The
postcondition of the first call set_42 ensures that the RefCell con-
tains an integer of value 42, while the precondition of the following
function require_100 requires such integer to be 100. Each contract
is evaluated atomically, but in two different states, because in between
the two calls other threads might interfere and modify all values that
are not stable. In particular, the i32 type contained in an instance of
&Arc<RefCell<i32>> is not stable, because Arc instances have unique
access to their content only as long as their reference counters are equal
to 1. So, the expected verification result is to report an error stating that
the precondition of require_100 is not guaranteed to hold. Similarly,
with the given signature and contracts it is not possible to implement
set_42 in a way that satisfies its postcondition, because immediately
after returning from set_42 , other threads might interfere and modify
the content of the RefCell . To prevent this, the type argument should
be &mut Arc<..> and the precondition should state at least that the
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strong counter of the Arc is 1. This would model that the argument has
unique access to the contained RefCell<i32> instance, which in turn
would have unique access to the contained i32 instance.

Rust

#[ensures(a.data() == 42)]
fn set_42(a: &Arc<RefCell<i32>>) { ... }

#[requires(a.data() == 100)]
fn require_100(a: &Arc<RefCell<i32>>) { ... }

fn arc_client(a: &Arc<RefCell<i32>>) {
set_42(a);
require_100(a);

}

Figure 4.12: Rust program with contracts
referring to unstable values. The precon-
dition of the require_100(a) call fails
to verify.

Overall, these purity annotations can be ordered in a chain from the least
restrictive (pure-unstable) to the most restrictive (pure-value), while at
the same time weakening the guarantees about the result, because there
are increasingly more values on which the result might depend on. By the
definitions, each pure-value function is a valid pure-memory function,
and each pure-memory function is a valid pure-unstable function.

The purity of the implementation of these functions is checked syntacti-
cally using the same rules mentioned in Sec. 3.6. Among them, the most
important requirements are that pure functions must have copy-type
parameters to prevent passing mutable references, cannot contain unsafe
code to prevent implementing interior mutability, and can only call
other pure functions to prevent, e.g., invoking libraries with interior
mutability.

The footprint of the various purity kinds must be checked as well. For
example, according to the footprint definitions, the result of a pure-
memory function f with an argument x: &i32 can depend on the
target address of x but a pure-value function g with the same signature
cannot. So, the former function can call the latter but the opposite
direction should be disallowed, or g could violate its footprint by calling
and returning f(x) . The general rule, checked statically, is that functions
of a given purity kind can only call pure functions of the same kind. Since
we defined all pure-value functions to be valid pure-memory functions,
but not the other way around, only one of the two calls in our example is
allowed. Similar footprint checks are performed on the statements of a
pure function. So that, for example, the pure-memory function f in our
example can be implemented to return the address of x by performing a
cast ( x as *const i32 ), while the same implementation is disallowed
for pure-value functions.

Since we want our footprint checks to be performed statically and mod-
ularly, we introduced further restrictions to conservatively reject cases
where the result of a pure function might be used as an argument in a
pure function call with a larger footprint. Depending on the implemen-
tation of the functions, some of these cases might respect all footprint
definitions, but detecting so would require an inter-procedural analysis
that we want to avoid. Our restrictions, for example, prevent the result of
pure-value functions from being used as an argument of pure-memory or
pure-unstable functions. This rule can be seen as a second type-check pass
in addition to Rust’s: the arguments and result of pure-value functions
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are what we call value snapshot types, while the arguments and result
of pure-memory or pure-unstable functions are memory snapshot types.
Intuitively, value snapshots represent the reachable values of an instance,
while memory snapshots also represent the target memory addresses
of references. Thus, a subtyping holds between the two: all memory
snapshots are valid value snapshots, but the opposite direction does not
hold for all types. Ideally, the user interface of a verification tool using
this technique should represent in a different way expressions of type
value or shared snapshot, to distinguish between them.

Many existing verification tools for Rust offer similar purity annotations:
#[pure] in Prusti [29], #[logic] in Creusot [86], specs in Verus [62].
In all these cases, the semantics of these annotations correspond to
the semantics of pure-value function annotations of our work. The
definition of value snapshots is largely equivalent to the mathematical
representation of type instances used in Creusot but, to the best of our
knowledge, the definition of memory snapshots is novel and has not
been used by any of the existing verifiers. Our approach provides the
additional flexibility needed to reason about memory locations and
interior mutability, as shown in the following examples.

4.3.4 Examples

By using the capability and purity annotations presented so far, it is now
possible to explain the main proof steps needed to verify the examples
in Fig. 4.2 (page 96), Fig. 4.3 (page 98), and Fig. 4.4 (page 99), which
make use several types of the standard library. The full details of the
encoding and memory model will be presented in Sec. 4.5, while the
full annotation of the library types is available in the repository of our
verifier [28].

4.3.4.1 Usage of Option

The program on the left of Fig. 4.2 (page 96) requires the
Option::is_some method to be marked as #[pure] to prove that
its assertion always succeeds. Since x is a copy-type, across the call
use_option(x) a capability writeRef(x) remains held by the client,
implying readRef(*x) and then immutable(*x) (Sec. 4.3.2.4). This,
in turn, implies that across the call the value of *x does not change
(Sec. 4.3.2.6). Knowing that the arguments of the two calls of the pure
function is_some are equal, we can then deduce that also the results
are equal, which proves the assertion. This example does not contain any
usage of libraries implemented with unsafe code, but it shows how the
technique of this paper is generic enough to be used for reasoning about
fully-safe Rust programs.

4.3.4.2 Usage of Cell

The program on the right of Fig. 4.2 (page 96) contains two assertions,
only one of which should verify. Proving or disproving the assertions
by using the library annotations provided in Fig. 4.9 requires first

https://github.com/viperproject/mendel-verifier
https://github.com/viperproject/mendel-verifier
https://github.com/viperproject/mendel-verifier
https://github.com/viperproject/mendel-verifier
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reasoning about the value of x.as_ptr() , which is used in the con-
tracts of the Cell library. Since the Cell::as_ptr method is marked
as pure-memory, the call x.as_ptr() is known to depend only on
the memory snapshot of the receiver x . This memory snapshot is
constant throughout the execution of the cell_client function, be-
cause across each statement, a writeRef(x) capability remains held
by the client, implying an immutable(x) capability that in turn guar-
antees immutability of x . Since across each statement writeRef(x)

implies readRef(*x) , where *x is of type Cell , by the capability
annotations of the library, we can then deduce local(x.as_ptr()) and
noWriteRef(x.as_ptr()) . These two capabilities guarantee immutabil-
ity of the target of x.as_ptr() across each statement of the function,
except for use_cell(x) because it is a call of a non-pure function. This
immutability property is sufficient to prove the last assertion in the
program, as expected. Regarding the first assertion, checking a == b ,
our technique does not generate any deduction that proves it, so the
assertion is reported as potentially failing. This is the correct outcome
because to falsify a == b it would be enough to implement use_cell

with the single statement x.set(x.get() + 1) .

4.3.4.3 Usage of RefCell

The program in Fig. 4.3 (page 98) contains two assertions, the first of which
can be verified by deducing an immutability property for the content of
the RefCell across the use_refcell(x) call, the second by proving a
non-aliasing property between the data contained in x and y . To verify
the absence of panics it would be necessary to also prove that the cell is
not mutably borrowed when executing the borrow method, because in
that case the library would panic. The RefCell type, in fact, contains two
internal states mutable via shared references: one is used to store what is
commonly called the content of the cell, while the second holds a reference
counter, called borrow flag, that tracks how the content is borrowed. For
simplicity, here we only present the main proof steps necessary to verify
the two assertions, omitting the proof steps related to the borrow flag.
A simplified version of the annotated library is in Fig. 4.13. Similarly
to the annotations of Cell , the method RefCell::as_ptr is marked
as pure-memory, thus the expression x.as_ptr() can be deduced to
be constant throughout the execution of refcell_client because a
readRef(x) capability is available across each statement, and readRef

implies immutable . Initially, the content of the cell is copied into the
variable before , because *a is desugared to *a.deref() and the
contract of the Ref::deref function ensures that the result is a reference
pointing to the memory location of a.as_ptr() , which in turn is known
to be equal to x.as_ref() because of the postcondition of try_borrow .
Across the initialization of before and all the following statements
the place a remains immutably available (i.e., available, but immutably
borrowed), implying for each statement a readRef(a) capability that,
by the annotations of Ref , in turn implies readRef(a.as_ptr()) . The
immutability properties of the latter capability ensure that the content
of the cell does not change across these statements, which in particular
means that after use_refcell(x) , the value of before is still equal to
the content of the cell. Next, the *x.borrow() expression returns a Ref

instance whose deref method returns a reference to the content of the
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Figure 4.13: A simplified portion of the
library specification of the RefCell stan-
dard library module. Methods such as
borrow_flag_ptr are not part of the

API of RefCell , but clients of the li-
brary can model them by introducing
new traits. The omitted code (. . . ) corre-
sponds to library properties that are not
necessary to prove the examples in this
thesis.

Rust

#[capable(&self => readRef(self.as_ptr()))]
impl<’b, T> Ref<’b, T> {}

#[capable(&self => readRef(self.as_ptr()))]
#[capable(&mut self => writeRef(self.as_ptr()))]
impl<’b, T> RefMut<’b, T> {}

#[extern_spec]
impl<T> RefCell<T> {

#[pure_memory]
pub fn as_ptr(&self) -> *mut T;

#[ensures(if let Ok(ref actual_ref) = result {
actual_ref.as_ptr() == self.as_ptr() && ...

} else { ... })]
pub fn try_borrow<’b>(&’b self) -> Result<Ref<’b, T>, ...>;

#[requires(...)]
#[ensures(result.as_ptr() == self.as_ptr() && ...)]
pub fn borrow<’b>(&’b self) -> Ref<’b, T>;

}

#[extern_spec]
impl<’b, T> Deref for Ref<’b, T> {

#[pure_memory]
#[ensures(result as *const _ == self.as_ptr())]
fn deref<’a>(&’a self) -> &’a T;

}

#[extern_spec]
impl<’b, T> DerefMut for RefMut<’b, T> {

#[ensures(result as *mut _ == self.data_ptr() && ...)]
fn deref_mut<’a>(&’a mut self) -> &’a mut T;

}

15: An alternative is to use the non-
aliasing property between the implied
immutable and write capabilities.

cell, which is then used to initialize the variable after . Since the value
of before was already equal to the content of the cell, it thus follows
that before “ after , as required to verify the first assertion.

For the second assertion, it is enough to notice that a is available
before the assertion, generating a writeRef(a) capability that implies
read(a.as_ref()) where a.as_ref() “ x.as_ref() . Also y is avail-
able, generating a writeRef(y) that, by the annotations of RefMut and
implication properties, leads to unique(y.as_ref()) . Because of the
non-aliasing property between the implied unique and read capabil-
ities15, it follows that x.as_ref() ‰ y.as_ref() , which, considering
the postcondition of RefMut::deref , is then enough to prove that the
second assertion always holds.

4.3.4.4 Usage of Arc

The program in Fig. 4.4 (page 99) requires reasoning about the values
and properties of the reference counter of the Arc type, whose API is
annotated in Fig. 4.14. Like with RefCell , the type definition of Arc ac-
tually contains (at least) two internal states mutable via shared references:
one is used to store what is commonly called the content of the Arc ,
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16: For simplicity, in our work we as-
sume that the weak counter is always
zero, which can be verified by adding a
false precondition to all the API func-
tions that might create a weak reference
( Arc::downgrade , Arc::new_cyclic ).
Reasoning about weak pointers in con-
current code is challenging because it is
difficult to check atomically the state of
multiple atomic counters, but we support
that kind of reasoning in single-threaded
libraries which are not affected by inter-
ference from other threads. For example,
the Rc library that we use in our eval-
uation models both its weak and strong
counters.
17: It does not need to be pure-memory,
because moving an Arc instance does
not move its content or reference counter,
so it is sound to abstract from the concrete
memory.

while the second holds its reference counter, also called strong counter16.
Since the API does not expose the memory location of this counter, the
specification models it with a pure method strong_count_ptr , marked
as ghost to make sure that it can be called only from specifications17. The
key capability annotation of the library is the following, expressing that if
the value of the reference counter is 1, then its value cannot be modified
by other threads:

Rust

#[capable(&self if Arc::strong_count(self) == 1

=> local(Arc::strong_count_ptr(self))

)]

Thanks to this capability, in the first branch of arc_client , the reference
counter is known to be local. This, combined with the noWriteRef

capability of the Arc library, ensures that the counter remains exactly 1
for the whole first branch, making it possible to verify the first assertion.
Knowing that the counter is 1, the second assertion can then be verified:
before the assertion the root place x implies writeRef(x.as_ptr()) ,
while the root place y implies readRef(y.as_ptr()) . The non-aliasing
property of the capabilities implied by readRef and writeRef , ensures
that x.as_ptr() ‰ y.as_ptr() . The assertion in the else branch of
the program checks a second time the exact same condition that was
necessary to enter the branch. However, the evaluation of the condition
of the if and the evaluation of the last assertion are done at different
program points, and when the reference counter is not 1 nothing in
the contracts of the library guarantees that its value remains the same.
Indeed, other threads might drop all the existing clones of x , suddenly
bringing the reference counter to 1 just before executing the last assertion.
In the absence of any information about the counter, a verifier will then
conservatively report a verification error, as expected.

Rust

#[extern_spec]
#[capable(&self => readRef(Arc::as_ptr(self)))]
#[capable(&self => noReadRef(Arc::strong_count_ptr(self)))]
#[capable(&self => noWriteRef(Arc::strong_count_ptr(self)))]
#[capable(&self if Arc::strong_count(self) == 1 => local(Arc::strong_count_ptr(self)))]
#[capable(&mut self if Arc::strong_count(self) == 1 => writeRef(Arc::as_ptr(self)))]
#[capable(&mut self if Arc::strong_count(self) == 1 => unique(Arc::strong_count_ptr(self)))]
impl<T> Arc<T> {

#[pure]
fn as_ptr(this: &Self) -> *const T;

#[pure_unstable]
#[ensures((result == 1) == (deref(Arc::strong_count_ptr(this)) == 1))]
fn strong_count(this: &Self) -> usize;

#[pure] #[ghost_fn]
fn strong_count_ptr(this: &Self) -> *mut usize;

}

Figure 4.14: A simplified portion of the specification of the Arc type of the standard library. The strong_count_ptr is not part of the
API of Arc , but it can be introduced using new traits. Here we show it as part of Arc for simplicity.

Overall, in this section we presented how our capability annotations, in
combination with several different kinds of purity annotations, make
it possible to reason about clients of popular libraries with interior
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18: We treat all local variables as being
annotated with mut , which does not
modify the semantics of Rust code be-
cause it is used only as a linter check in
Rust.

mutability. In the next sections, we are going to motivate and justify
the semantics of the core capabilities, then we later present how our
verification technique can be encoded into first-order logic and checked
by using an SMT solver.

4.4 Core Soundness

In this section, we present our novel proof technique, based on a semantics-
preserving transformation (SPT) of the program, that makes it possible
to derive the semantics of our core capabilities from simpler properties of
Rust types.

4.4.1 Available Places and Root Places

Before presenting our proof technique, we first need to define our
available and root places representation of the type system information,
which are later used to define the semantics of our capabilities. In the
context of this work, we define Rust places as expressions composed of a
local variable followed by field accesses or downcasts of enumerations.
Consider the example in Fig. 4.15, which we use to aid the presentation
in this subsection. In the function root_places_ex below, x and x.f

are places, but &x.f is not. The expression x.g.0 would also be a valid
place in the context of this function, even though the program does not
make use of it.

Figure 4.15: Rust example used to present
the root and the available places.

Rust

struct T { f: i32, g: (i32, i32) }

fn root_places_ex(mut x: T, mut y: Mutex<i32>) {
// 1

let z = &x.f; // A

// 2

drop(z); // B

// 3

}

Given a compiling program written in safe Rust, for a fixed program
point we call available the places that are usable by programmers. More
precisely, these are the places that the compiler would allow to mutably
or immutably borrow in a new statement injected at that particular
location18. This determines two sets for each program point, which can
be constructed using the compiler API: a set of places that are mutably
available and a set of places that are immutably available, where the
former is always a subset of the latter due to Rust language rules. In the
example above, at 1 the places x , y , x.f , x.g , x.g.0 , and x.g.1 are
both mutably and immutably available. At 2 , x and x.f are no longer
mutably available because of the borrow z , but they are still immutably
available. The mutably available places are then y , x.g , x.g.0 , x.g.1
and the new z , while the immutably available places are the same as at
1 with the addition of z . At 3 , after the expiration of the borrow z ,

the mutable and immutable places are the same as at 1 .
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The two-set representation of the available places is largely redundant.
Knowing that x is mutably available already implies that the places x.f ,
x.g , x.g.0 and x.g.1 are mutably available too, because the fields f

and g , as well as all the elements of the tuple at g , are visible in the
program and can (one at a time) be mutably borrowed given a mutable
borrow of x . Moreover, the two-set representation fails to capture which
places can be simultaneously borrowed and which cannot. Just knowing
that two elements 𝑎 and 𝑏 are in the set of mutably available places is
not enough, because if 𝑎 “ x and 𝑏 “ y then it is permitted to mutably
borrow both at the same time, but if 𝑎 “ x and 𝑏 “ x.g then after
mutably borrowing the first place the second place would no longer be
mutably available.

To solve these issues, we define a new single-set representation that
we call the set of root places. Intuitively, root places are the available
places that can be used independently from one another. Each root place,
moreover, is mapped to a flag that represents whether the place is only
immutably, or also mutably, available. The name root comes from the
observation that the available places of a set can be seen as nodes in a
forest of trees, where each edge represents a “is a subfield of” relation
and where all the places in the same tree share the same prefix, which
corresponds to the place represented by the root node of the tree. In the
example above, at 1 and 2 the root places would then be just x and
y , both mutably available. At 2 , instead, the root places would be x.f ,
x.g , y and z , of which only x.f is marked as immutably available
while all other places are marked as mutably available. Note that all
subsets of the root places at the same program points can be borrowed at
the same time, because no root place is a syntactic prefix of another root
place.

Computing the set of root places is done in four steps:

1. Remove redundancy in the mutably available places. The set
of mutably available places, obtained from the compiler API, is
reduced by removing all places that are an extension of some other
place in the set. This determines a set A.

2. Remove overlap between immutably and mutably available
places. The set of immutably available places is reduced by remov-
ing all places that are in A, or a prefix of one of the places in A.
This determines a set B.

3. Remove redundancy in the remaining immutably available places.
The set B is further reduced by removing all its places that are an
extension of some other place in the set. This determines a set C.

4. Construction of the root places. The set of root places is computed
by taking the union of A and C, which are guaranteed by construc-
tion to have no elements in common. The places from C are the
roots that are only immutably available, while the places from A
are the roots that are also mutably available.

Applying these instructions step-by-step on the places available at 2 in
the example, we obtain:

1. Initially, the mutably available places are t x.g , x.g.0 , x.g.1 , y ,
z u. Removing x.g.0 and x.g.1 , which are extensions of x.g ,
we obtain A “ t x.g , y , z u.
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19: The precise definition of the unique-
ness or immutability properties is pre-
sented later and has some exceptions,
due to special Rust language rules re-
lated to visibility, zero-size types and
implementations of the !Unpin trait.

2. Initially, the immutably available places are t x , x.f , x.g , x.g.0 ,
x.g.1 , y , z u. Removing the elements of A and their extensions,
we obtain B “ t x.f u.

3. Since B only contains one place, no element is removed from it
when computing C, which is then defined as t x.f u.

4. Overall, the set of root places is t x.f , x.g , y , z u, where x.f is
immutably available and all the others are mutably available.

The main benefit of the set of root places representation is that a set can
be seen as a separating conjunction of predicates in separation logic,
where each mutably available place is interpreted as a predicate that
guarantees unique access to the reachable memory locations, while each
immutably available root is interpreted as a predicate that guarantees
immutability of the reachable memory locations19. This representation
has many similarities with the capability state defined in Sec. 3.7, although
the construction technique is completely different.

When a place is mutably available at a program point but is not used by
the following statement, we say that the place is mutably available across
the statement. For example, the places x and x.f are mutably available
at 1 but are not mutably available across A , while x.g , x.g.0 , x.g.1
and y are. In this simple program, the places mutably available across
B happen to be equal to the places mutably available across A .

Similarly, when a place is immutably available at a program point but
is not used for modifications by the following statement, we say that the
place is immutably available across the statement. For example, all places
that are immutably available at 1 are also immutably available across
A , because the only place used for modifications at A is z . As before,
in this simple program the places immutably available across B happen
to be equal to the places immutably available across A , because z is
consumed by the call.

The computation of root places available across a statement works exactly
as described above, only starting from the sets of places available across
a statement rather than available at a program point. Thus, across both
A and B the mutably available roots are x.g and y , while the only
immutably available root is x.f .

4.4.2 Proof by Semantics-Preserving Transformation

When reasoning about safe clients of libraries that are implemented with
unsafe code, a recurring need is to prove what the unsafe implementation
of the libraries cannot mutate. For example, consider the code on the left
of Fig. 4.16, which uses a type with interior mutability RefCell and its
associate types Ref and RefMut , which act as immutable and mutable
pointers to a RefCell , respectively. The try_borrow call performs a
runtime aliasing check, and then returns an instance a of type Ref only
if there exist no aliasing RefMut instances. Inside the branch where a

is alive, x is still usable and is passed to a function unknown , of which
we ignore the implementation. The informal documentation of RefCell

describes that a Ref instance guarantees immutability, which in our
technique we model with a readRef capability. However, unknown

might be implemented with unsafe code, and it is not clear which
properties of the RefMut library still hold in that context. Our key



4.4 Core Soundness 125

20: Some details of the runtime execu-
tion would differ, such as the number of
elements in the call stack, or DWARF de-
bugging information, but the soundness
of Rust libraries should not depend on
them.

question to motivate the soundness of the semantics of readRef is the
following. Assuming that the program executing client does not have
UB and that all unsafe code is wrapped in a safe library, can we deduce
that unknown does not mutate the content of the RefCell ? Our answer
is yes, and we deduce so with a novel proof technique that relies only
on well-established properties of safe Rust – immutability of shared
references to primitive types – and a basic property of library APIs that
we later call conversion methods.

Rust

// Before:
fn client(x: &RefCell<i32>) {

if let Ok(a) = x.try_borrow() {
// a is available from here...
unknown(x);
// ...to here

}
} Rust

// After:
fn client(x: &RefCell<i32>) {

if let Ok(a) = x.try_borrow() {
let tmp: &i32 = a.deref();
unknown(x);
drop(tmp); // restores a

}
}

Figure 4.16: Example of a refactoring that introduces a conversion method call, a.deref() , using a place that was available across the
unknown(x) statement.

The main idea of the proof is that by leveraging the notion of available
places, it is possible to rewrite the program into a semantically equivalent
one, in which there are new local variables whose explicit capabilities
reveal semantic properties that were implicit in the original program.
We call this semantics-preserving transformation SPT. The code on the
right of Fig. 4.16 shows the result of an SPT, which introduces a local
variable tmp pointing to the content of x , and dropping tmp after
unknown(x) so that it remains alive during the call. This transformation
does not introduce compilation errors because (1) a is available before the
unknown call, and (2) a is not being used in the unknown call. Moreover,
it also does not modify the observable semantics of the program because
(1) deref is what we later define to be a conversion method, roughly
meaning that it has no side effects, and (2) the transformation does not
introduce any UB because we assumed that all used Rust libraries are
sound. Thus, the transformed program cannot have UB, because we
assumed that also the original one has no UB. At this point, the important
step is to notice that in safe Rust, it is UB to have a shared reference whose
target value is modified while the reference is alive. Considering the
shared reference tmp , and knowing that the transformed program has no
UB, we deduce that the unknown(x) call cannot modify the content of x .
This result holds in the transformed program, but since the a.deref()

call that we introduced is side-effect free, the execution of unknown

cannot detect whether the client called a.deref() or not20 and the set
of possible executions is the same. Thus, we can deduce that also in the
original program the unknown(x) call cannot modify the content of x .
Overall, we showed with an SPT that in both the original and transformed
program the memory described by the readRef capability cannot be
mutated by the call. This result holds based on the soundness of all used
libraries, and on the knowledge that certain API methods such as the one
used in a.deref() are side-effect free.

In this example, the SPT that we used seems to have been constructed
ad-hoc to make the example work. However, the reasoning can be
generalized in a proof by SPT that can be applied to any program that
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21: The other capabilities do not coin-
cide with the explicit capabilities of a
Rust type, so their semantics cannot be
derived using this proof technique.
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has a core capability available across a statement, determining in each
of such cases that the associated memory location cannot be modified
by the statement, even when the statement calls a library implemented
with unsafe code. The key step of the generalization is to notice that a
core capability available across a statement is sufficient to ensure that
there exists an SPT that creates a local variable of type shared reference
pointing to the memory location associated with the capability. Moreover,
concretely performing the SPT in a tool is not necessary in order to derive
the immutability property. Instead, it is sufficient to identify that the
SPT is possible, as we will do later to motivate the semantics of the core
capabilities21.

One assumption of our proof technique is to know what are the conversion
methods of a library API, which we define as the public safe methods
whose only purpose is to convert between two types in a way that has
no side effects. In particular, we consider consuming a non-copy type
parameter to be a side effect, as well as non-terminating, triggering a
panic, and using synchronization primitives. Intuitively, this means that
usages of conversion methods cannot be detected at runtime by the
library by means such as incrementing a counter each time the method
is executed. Compared to the class of pure functions, these conversion
methods can also accept non-copy type arguments such as mutable
references. Examples of conversion methods in the standard library
are the methods get_mut (implemented for Mutex , RwLock , Cell ,
RefCell , OnceCell , UnsafeCell , SyncUnsafeCell ), Deref::deref
(implemented for MutexGuard , RwLockReadGuard , RwLockWriteGuard ,
Ref , RefMut , Box ), and DerefMut::deref_mut (implemented for
MutexGuard , RwLockWriteGuard , RefMut , Box ) [113]. Identifying the
conversion methods in a library might be achieved with an interproce-
dural static analysis that inspects the implementation of such methods,
but in this work we do not do so. Instead, we ask our users that for each
core library capability annotation that they write, there should exist a
corresponding conversion method that motivates the capability. Identify-
ing conversion methods in an API can be done much more easily than
proving the immutability of a memory location handled via raw pointers
in unsafe code, because conversion methods are usually implemented
with a few lines of code. For example, the deref method of Ref is
implemented with unsafe { self.value.as_ref() } , where as_ref

is a conversion method of the NotNull type that essentially performs a
cast from a raw pointer to a shared reference.

One might wonder if the properties provable with our SPT technique are
provable using a UB model such as Stacked Borrows or Tree Borrows [42,
43]. The answer is no, because such models define whether one program
execution is UB or not, while in our technique we reason about UB of
a different program, in which there are new local variables and method
calls. Instead, we believe that our proof technique may be formalizable in
RustBelt [101]. The difference is that we designed the assumptions of our
proof to be easy enough to be checked manually (safe clients, conversion
methods) or to coincide with Rust’s library soundness assumptions.
RustBelt’s approach makes it possible to prove type soundness statement
that we expect to be more expressive than our capabilities, but at the cost
of requiring expertise and extensive manual effort regarding interactive
theorem proving using the Iris framework [58]. Moreover, RustBelt’s
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formalization uses a possible definition of UB that does not capture
the aliasing model of Stacked Borrows or Tree Borrows, while our
proof by SPT is very conservative and (at the cost of incompleteness)
makes only one assumption about UB: modifications to the primitive-
typed target of active shared references are UB. As a consequence, our
technique conservatively assumes that the private fields of a library type
might be used to implement interior mutability even if the library type
does not contain raw pointers or UnsafeCell types. By making as few
assumptions about the definition of UB, our verification technique is
sound for almost any formalization of UB that will be officially chosen
by the Rust language team.

4.4.3 Semantics of Core Capabilities

Using the SPT technique, we can now give a more precise definition of
the core capabilities, and prove the correctness of their properties. Other
capabilities do not correspond to the explicit capabilities of a Rust type,
so their semantics depend entirely on our definitions.

4.4.3.1 Definition

A writeRef(x) corresponds to the capability of obtaining a mutable ref-
erence with target address x , via an SPT (e.g., by introducing conversion
method calls and borrows).

A readRef(x) corresponds to the capability of obtaining a shared refer-
ence with target address x , via an SPT.

Proving that a Rust library with an unsafe implementation provides
a certain capability is out of scope for our work, because it requires
verifying the unsafe-code implementation. Instead, in this section, we
start from the two definitions above, corresponding to trusted library
annotations, and we derive all properties presented in Sec. 4.3.1.

4.4.3.2 Implication Properties

To prove that the writeRef ñ readRef holds we need to prove that
it is possible to obtain a shared reference (right-hand side), under the
assumption that it is possible to obtain a mutable reference (left-hand side).
This holds because in Rust any mutable reference r can be temporarily
converted to a shared one using the expression &*r .

To prove the implications expressed by the first two rows of Table 4.1,
we need to prove in a similar way that the reference represented by the
target capability can be obtained from the reference corresponding to
the source capability:

§ writeRef(x) ñ writeRef(x.f) , where x.f is a visible field.
In this case, we start by assuming that we can obtain a mutable
reference a pointing to the memory address of x (left-hand side
of the implication). Obtaining a mutable reference pointing to
the address of x.f can always be done with let b = &mut a.f ,
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which proves the writeRef(x.f) in the right-hand side of the
implication.

§ writeRef(x) ñ writeRef(*x) , where x: &mut T for some
type T . In this case, we start by assuming that we can obtain
a mutable reference a: &mut &mut T pointing to the memory
address of x (left-hand side of the implication). Obtaining a
mutable reference pointing to the address of *x can always be
done with let b = &mut **a , which proves the implication.

§ writeRef(x) ñ readRef(*x) , where x: &T . This case is analo-
gous to the second one, but using let b = &**a .

§ writeRef(x) ñ writeRef(x.f) , where x.f is a visible field.
This case is analogous to the first one, using let b = &a.f .

§ readRef(x) ñ readRef(*x) , where x: &mut T . This case is
analogous to the second one, but using let b = &**a .

§ readRef(x) ñ readRef(*x) , where x: &T . This case is analo-
gous to the second one, but using let b = &**a .

4.4.3.3 Non-Aliasing Properties

The only non-aliasing property that we defined for core capabilities is the
following, in which all capabilities refer to the same program point.

writeRef(𝑟1,𝑎1) ^ readRef(𝑟2,𝑎2) ^ 𝑟1 ‰ 𝑟2 ñ 𝑎1 ‰ 𝑎2

To prove this implication, we start by assuming the left-hand side and
we derive the right-hand one by using a proof-by contradiction that
internally uses our SPT technique. From the capabilities on the left-hand
side, we have that x: &mut T and y: &T can be obtained, and 𝑟1 ‰ 𝑟2
guarantees that both x and y are obtainable in the same SPT and
usable at the same time. We then prove the right-hand side 𝑎1 ‰ 𝑎2
by contradiction, showing that 𝑎1 “ 𝑎2 leads to an impossibility. This
equality means that both x and y point to the same memory location.
This is a seemingly impossible case in Rust, because subsequent code
might perform modifications via x that would end up modifying the
target value of the shared reference y . For example, in the case where
T is the primitive type u32 , it is possible to introduce an SPT like the
following.

Rust

let tmp = *x;

*x = 0;

let y_val_0 = *y;

*x = 1;

let y_val_1 = *y;

*x = tmp;

This snippet guarantees that y will be observed when x holds different
values. This conflicts with the immutability guarantee of y , by which
y_val_0 and y_val_1 should be equal. Because of this contradiction,
we conclude that the two references x and y must point to different
memory locations, which coincides with the right-hand side of the
implication that we wanted to prove.
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However, there are certain exceptional cases where mutable references
such as x and y might actually point to the same memory address in
Rust. The official formal definition of UB is still under discussion, but to
the best of our knowledge, the conjunction of the following conditions is
sufficient to rule out all such exceptional cases:

(i) T is a type with a non-zero size. References of zero-size types can
indeed point to the same memory address in Rust.

(ii) T does implement the Unpin trait (i.e., it does not implement
!Unpin ). Mutable references to !Unpin implementations do not
imply unique access [112].

In our approach, we model these cases by weakening the implication or
non-aliasing properties of our capabilities when one of the conditions
above holds. For example, by defining that the incompatibility edges of
Fig. 4.11 (page 110) only hold between non-zero-size types, or that the
implication edges starting from writeRef skip localRef and unique

for types that do not implement !Unpin .

4.4.3.4 Immutability Properties

The only immutability property that we defined for core capabilities is
that a readRef(x) capability available across a statement xSy guarantees
that x ’s memory location, of type T , remains unchanged. Holding the
readRef capability means that before the statement it is possible to
obtain, using an SPT, a shared reference that remains alive at least until
after the statement. For example, the reference shared in the following
snippet where T is u32 .

Rust

let shared: &u32 = ... // Shared reference pointing to x

xSy // The original statement to reason about

drop(shared);

Since the Rust community agreement is that modifications to the target
of an active shared reference should always be undefined behavior,
being able to obtain the variable shared as shown by the snippet is
sufficient to guarantee that the value of x cannot change across xSy.
In particular, if one considers the special case where xSy is an empty
statement (e.g., a {} block in Rust), then the immutability result can
actually be used to prove which values cannot be modified by concurrent
threads. This motivates the soundness of our technique in the presence of
multithreading: across any statement and between any two consecutive
statements, our technique loses all information regarding memory values
except for those for which it is possible to obtain a shared reference.

4.5 Encoding

In this section, we present the encoding of Rust programs and of the
implicit capabilities to a first-order-logic subset of the Viper language [23].
This approach makes it possible for us to define our Rust verification
technique independently from the lower-level techniques used for verifi-
cation, such as symbolic execution or verification condition generation. At
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a high level, our encoding uses a versioning technique to model the state
of the memory at different program points in a control-flow graph. Ini-
tially, each version of the program memory is completely unconstrained.
Then, while encoding each statement in the control-flow graph, the
encoding progressively introduces constraints between memory versions.
This expresses framing properties that hold across the execution of the
statement, analogously to what in separation logic is done by the framing
rule. Possible thread interferences are encoded as no-op Rust statements,
across which only the values that cannot be modified by other threads
are framed. At each program point, the typing information addition-
ally generates non-aliasing constraints between instances stored with
the same memory version, similar to what is expressed by separating
conjunctions between type instances in separation logic.

4.5.1 Type Instances

We represent the memory (both heap and stack) of a Rust program with
a family of memory total functions

M𝑇 : A𝑇 ˆ VÑ S𝑇

each of which, indexed by a type 𝑇, maps an address A𝑇 and a memory
version V to an instance S𝑇 modeled with a mathematical data type
(defined later) that we call a memory snapshot. In the Viper language,
these functions are defined using Viper domains. Since M𝑇 is total, the
instance of invalid addresses is defined, but their value is unconstrained
and we rely on the Rust compiler to ensure that such invalid addresses
are never used in the executable code of safe Rust programs. The choice
of using a version parameter to model the values of a memory location
at different points during the execution of a program was inspired by
VCC [19]. Unlike VCC, which uses a version for each object instance,
we use a global version to identify the state of the whole memory at
a fixed point in time. Since a function execution and its specifications
use only a subset of the memory, all the unused memory locations
are left unconstrained without affecting the verification. Modeling the
whole memory, moreover, might also make it easier to model in the
specifications of a library special memory addresses corresponding to
global variables or hardware access.

The memory snapshot of a Rust type instance is a mathematical repre-
sentation of its values and memory locations that are reachable without
following raw pointers or entering UnsafeCell types. In our encoding,
we model the memory snapshot of a variable x with a memory address
(representing the location of x ) and an algebraic data type (representing
its reachable values and memory locations) with the following recursive
definition:

§ The memory snapshot of a primitive type is its mathematical value.
§ The memory snapshot of a raw pointer is the address of the target,

represented as an integer.
§ The memory snapshot of a reference is composed of both the

address and the memory snapshot of its target.
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22: In this model, the memory snapshot
of a structure is isomorphic to the mem-
ory snapshot of a tuple whose elements
have the same type of the fields of the
structure.

§ The memory snapshot of an UnsafeCell does not contain any
representation of its content. It is as if the UnsafeCell were
defined as an empty tuple.

§ The memory snapshot of tuples is composed of the memory snap-
shot of its elements.

§ The memory snapshot of structures is composed of the memory
snapshot of its fields22.

§ The memory snapshot of an enumeration is composed of the
discriminant represented as an integer and then, depending on the
value of the discriminant, the memory snapshot of the fields of the
corresponding variant.

Memory snapshots are convenient for modeling pure-memory Rust func-
tions, which are encoded as a mathematical function whose arguments
and return value are the memory snapshots of the corresponding Rust
instances. To model pure-value functions, however, we rely on a weaker
representation of Rust instances that abstracts over memory addresses.
We do so by declaring a weaker kind of value snapshots, or Ŝ𝑇 . Since
memory snapshots are always at least as descriptive as value snapshots,
it is always possible to convert instances of the former to the latter. The
conversion between them is modeled by the following function:

toValue𝑇 : S𝑇 Ñ Ŝ𝑇

This function is a bĳection for types𝑇 that either do not contain references,
or are defined such that all references are behind raw pointers or inside
unsafe cells. For such cases the conversion is lossless, while for all other
cases the conversion loses the address of reference targets.

Given a memory snapshot of a structure, tuple, or enumeration, the
snapshot of a field is identified by the following function, which can be
seen as a selector of the algebraic data type of memory snapshots. In the
case of enumerations, this total function is defined only for the snapshots
where the discriminant represents a variant that contains 𝑓 , leaving other
cases underspecified.

fieldSnap 𝑓 : S𝑇 Ñ S𝑇𝑓

For each type 𝑇, we model the constant offset between the base address
of an instance of 𝑇 and a field 𝑓 of type 𝑇𝑓 with the following bĳective
function.

fieldAddr 𝑓 : A𝑇 Ñ A𝑇𝑓

Given the address of an instance, there are now two ways to obtain the
snapshot of one of its fields: by using fieldSnap (i.e., fieldSnap 𝑓 ˝M𝑇 ) or
by using fieldAddr (i.e., M𝑇𝑓

˝ fieldAddr 𝑓 ). The consistency between the
two is modeled with axioms, generated for each Rust type. For example,
given an instance of (i32, i32) at address 𝑎, calling 𝑓 an element of the
tuple, such axiom states that the following consistency property holds
for any memory version 𝑣:

fieldSnap 𝑓 pM(i32, i32)p𝑎, 𝑣qq “Mi32pfieldAddr 𝑓 p𝑎q, 𝑣q

For reference and raw pointer types 𝑇, the function to obtain the memory
address of its dereference (˚𝑇) is targetAddr𝑇 , while, only for reference
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23: The domain of 𝑟 is ℕ because, at any
program point, the root places are a finite
set that can be ordered and enumerated,
associating each root place with a nu-
merical index. The numerical index of
syntactically-equal root places can be dif-
ferent between different program points.

types, the function to obtain the memory snapshot of the dereference is
targetSnap𝑇 :

targetAddr𝑇 : S𝑇 Ñ Å 𝑇

targetSnap𝑇 : S𝑇 Ñ S̊ 𝑇

Note that the domain of targetAddr are memory snapshots, because the
memory address of the target is defined as part of the memory snapshot,
and because the memory location of the target of a reference is not
a constant offset from the memory address at which the reference is
stored. Like with fieldSnap 𝑓 and fieldAddr 𝑓 , the consistency between
targetAddr𝑇 and targetSnap𝑇 is modeled with axioms. An example usage
of snapshots is presented later when explaining the encoding of the Rust
program in Fig. 4.17 to the Viper program in Fig. 4.18.

Instead of defining two snapshot kinds, an alternative approach would
be to just use memory snapshots everywhere in the encoding. On the
one hand, this would have two disadvantages. First, for all snapshots
passed to pure-value functions, this approach would require constraining
the target address of references to a fixed dummy value, by defining a
function that lowers a snapshot into a snapshot with dummy addresses.
Second, using the same snapshot kind everywhere would not benefit
from Viper’s type-checks, which help uncover encoding bugs when, e.g.,
the encoder incorrectly passes the result of a pure-value function to a
pure-memory function. On the other hand, this approach might have the
potential advantage of generating a shorter and more efficient encoding.
Overall, for this project we preferred the safer route of defining two
snapshot kinds, leaving the evaluation of the alternative single-snapshot
approach to future work.

4.5.2 Capabilities

For each type, the approach described in Sec. 4.3 defines that capabilities
at a given program point have two parameters: a root identifier and a
memory address. Since all a verifier needs to know about a capability
is whether it holds or not in a particular program point, we model
them as uninterpreted boolean functions. Given a type 𝑇, we define the
capability functions xkindy𝑇p𝑟, 𝑎, 𝑤q, where xkindy is one of the extended
capability kinds (i.e., readRef , writeRef , etc.), 𝑤 P VY pVˆ Vq is
either a memory version that models the memory at a program point or
a pair of memory versions that models a transition between two program
points, 𝑎 P A𝑇 is the memory address of the capability, and 𝑟 P ℕ is the
identifier of the root place at program point 𝑤 from which the capability
originates23.

4.5.2.1 Implication Properties

For each Rust type 𝑇 used in a program, the implication properties of its
capabilities are modeled with axioms.

The implications represented by the arrow edges in Fig. 4.11 are modeled
by axioms of the following shape, where xkindLHSy and xkindRHSy are
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the source and target capability kinds of the edge:

@𝑟 P ℕ, 𝑎 P A𝑇 , 𝑤 P VY pVˆ Vq :
xkindLHSy𝑇p𝑟, 𝑎, 𝑤q ñ xkindRHSy𝑇p𝑟, 𝑎, 𝑤q

As an example, one of the implications for the i32 type is the follow-
ing, expressing that for all roots, memory addresses, and versions, a
writeRef capability always implies unique :

@𝑟, 𝑎, 𝑤 : writeRefi32p𝑟, 𝑎, 𝑤q ñ uniquei32p𝑟, 𝑎, 𝑤q

The implications represented by the cells of Table 4.1 are encoded by a
slightly more generic axiom of the following shape, where xaRHSy is the
expression representing the address of a field instance or of the target of
a reference:

@𝑟, 𝑎, 𝑤 : xkindLHSy𝑇p𝑟, 𝑎, 𝑤q ñ xkindRHSy𝑇p𝑟, xaRHSy, 𝑤q

As an example, one of the implications for the &i32 type is the following,
expressing that a writeRef capability on a shared reference implies a
readRef capability for its target:

@𝑟, 𝑎, 𝑤 : writeRef&i32p𝑟, 𝑎, 𝑤q ñ readRefi32p𝑟, targetAddr&i32p𝑎q, 𝑤q

4.5.2.2 Non-Aliasing Properties

Similarly to the implication properties, the non-aliasing represented by
the red dashed edges in Fig. 4.11 are encoded as axioms of the following
shape:

@𝑟1 , 𝑟2 , 𝑎, 𝑤 : xkindLHSy𝑇p𝑟1 , 𝑎, 𝑣q ^ xkindRHSy𝑇p𝑟2 , 𝑎, 𝑣q ñ 𝑟1 ‰ 𝑟2

For example, one of the non-aliasing properties of the i32 type is the
following, expressing that a unique capability cannot alias a read

capability originating from a different root place:

@𝑟1 , 𝑟2 , 𝑎, 𝑤 : uniquei32p𝑟1 , 𝑎, 𝑣q ^ readi32p𝑟2 , 𝑎, 𝑣q ñ 𝑟1 ‰ 𝑟2

4.5.2.3 Capability Annotations

The encoding of any capability annotation, conditional or not, is done by
generating an axiom of the following shape, slightly more generic than
those used to model the implication properties. In the axiom template,
xcondy represents the runtime condition that guards the capability
annotation (“true” if there is none), and xaRHSy is the encoding of the Rust
expression identifying the target memory location of the capability.

@𝑟, 𝑎, 𝑤 : xkindLHSy𝑇p𝑟, 𝑎, 𝑤q ^ xcondy ñ xkindRHSy𝑇p𝑟, xaRHSy, 𝑤q

To encode xcondy and xaRHSy it is sometimes necessary to apply M𝑇 ,
for example when dereferencing raw pointers. However, the parameter
𝑣 of M𝑇 has type Vwhile 𝑤 has type VY pVˆ Vq. To express that
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the evaluation should be done by using the memory version before the
transition it is enough to define the following function

start : VY pVˆ Vq Ñ V

startp𝑣q “

#

𝑣 if 𝑣 P V

𝑣1 if 𝑣 P Vˆ V, where 𝑣 “ p𝑣1 , 𝑣2q

As an example, for the type Cell<i32> the first capability annotation of
Fig. 4.9 generates the following axiom:

@𝑟, 𝑎, 𝑤 : readRefCell<i32>p𝑟, 𝑎, 𝑤q ^ true ñ locali32p𝑟, xaRHSy, 𝑤q

where in this case xaRHSy is

targetAddr
*const i32pCell<i32>::as

_ptrpMCell<i32>p𝑎, startp𝑤qqqq

4.5.2.4 Pure Functions

Pure-memory functions such as Cell<i32>::as_ptr are encoded as
uninterpreted functions that take memory snapshots as arguments, and
return a memory snapshot. Pure-unstable functions take as argument
both the memory snapshots of the Rust parameters and the memory
version in which the function is evaluated, returning a memory snapshot.
Regular pure functions, instead, take as arguments and return value
snapshots. In Viper, the generated uninterpreted functions can be con-
strained by axioms, which we generate by modeling the body of the pure
function as a pure Viper expressions, using the same functional encoding
technique presented in Sec. 3.6.

4.5.3 Modeling of Non-Call Statements

When encoding a Rust function, the address of each local variable and
argument is modeled as an unconstrained memory address. The body
of the function is encoded starting from the middle intermediate repre-
sentation (MIR) used by the Rust compiler: each statement is encoded
independently, as well as each program point (before and after each
statement). To model that any memory value might change when transi-
tioning from a program point to the next, e.g., because of unsafe code,
synchronized data races, or interior mutability, the encoding generates
a fresh memory version to represent the state of the memory at each
program point. The semantics is that the memory version represents
any of the possible states of the memory at the modeled program point:
each memory location is by default unconstrained, and is progressively
constrained by encoding statements and capabilities.

Each statement is encoded by assuming a relation between applications
of M that use the memory version before the statement and applications
that use the memory version after the statement. For example, consider
the program in Fig. 4.17, where the locations of the two local variables are
modeled as loc_x:Ai32 , loc_y:A&i32 , the location of the parameter is
modeled as loc_unused:Ai32 , and the three program points marked
by comments are modeled with the memory versions v0, v1, v2: V .
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prusti_assert is a ghost assertion, which does not generate executable
code but is verified to hold. The intermediate encoding of the body of
this program is provided in Fig. 4.18, where new_snapi32(123) is the
uninterpreted function that yields the memory snapshot containing the
value 123.

Rust

fn example(unused: i32) {
/* v_0 */ let x: i32 = 123;
/* v_1 */ let y: &i32 = &x;
/* v_2 */ prusti_assert!(x == 123 && addr_of!(unused) != addr_of!(x));

}

Figure 4.17: Rust function used to demonstrate the encoding of non-call statements in Sec. 4.5.3.

Viper

// Encoding of ‘let x: i32 = 123‘
assume Mi32(loc_x, v_1) == new_snapi32(123);

// Encoding of ‘let y: &i32 = &x‘
assume targetAddr&i32(M&i32(loc_y, v_2)) == loc_x;
assume targetSnap&i32(M&i32(loc_y, v_2)) == Mi32(loc_x, v_1);

// Encoding of ‘prusti_assert!(x == 123 && addr_of!(unused) != addr_of!(x))‘
assert Mi32(loc_x, v_2) == new_snapi32(123) && loc_unused != loc_x;

Figure 4.18: Viper encoding, excluding capabilities, of the body of the function of Fig. 4.17. All variables modeling memory versions v_𝑖 ,
and address of local variables loc_𝑗 , are initially unconstrained.

This encoding is correct in the presence of concurrency, interior mutability,
or, in general, libraries implemented with unsafe code, because in safe
Rust code, non-call statements in different threads are guaranteed by the
compiler to commute. That is, any of their thread interleavings will result
in the same execution of the program. This is ensured by Rust because
observable data races in safe Rust programs can be implemented only by
using safe function calls that internally use unsafe code, otherwise they
are undefined behavior. The model described above already takes care of
removing any information regarding unstable locations, for which no
relation is assumed across statements.

As next encoding step, it is necessary to model the capabilities generated
by root places by assuming them at the program point where they hold.
More precisely, for the program in Fig. 4.17 the generated capabilities
should express that the place unused is available at every program
point and across every statement, x is available at the program points
v_0 and v_2 but only immutably available between v_1 and v_2 ,
while y is never available because its lifetime ends immediately after
its initialization. These information are computed from the compiler
API, using the algorithm presented in Sec. 4.4. The resulting encoding
is in Fig. 4.19, where root_0 and root_1 are syntax sugar for 0 and 1,
respectively.

The encoding presented so far is now sufficient to deduce immutability
and non-aliasing properties. For example, at v_1 the two writeRef

capabilities imply that loc_unused ‰ loc_x , as a direct application of
the axiom expressing the non-aliasing properties of capabilities. Across
the assignment let y: &i32 = &x , instead, the value of both x and
unused are known to not mutate, because of the immutable capability
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Viper

// Encoding of program point v_0
assume writeRefi32(root_0, loc_unused, v_0); // ‘unused‘ is available

// Encoding of ‘let x: i32 = 123‘
assume Mi32(loc_x, v_1) == new_snapi32(123);
assume writeRefi32(root_0, loc_unused, (v_0, v_1)); // ‘unused‘ is available

// Encoding of program point v_1
assume writeRefi32(root_0, loc_unused, v_1); // ‘unused‘ is available
assume writeRefi32(root_1, loc_x, v_1); // ‘x‘ is available

// Encoding of ‘let y: &i32 = &x‘
assume targetAddr&i32(M&i32(loc_y, v_2)) == loc_x;
assume targetSnap&i32(M&i32(loc_y, v_2)) == Mi32(loc_x, v_1);
assume writeRefi32(root_0, loc_unused, (v_1, v_2)); // ‘unused‘ is available
assume readRefi32(root_1, loc_x, (v_1, v_2)); // ‘x‘ is immutably available

// Encoding of program point v_2
assume writeRefi32(root_0, loc_unused, v_2); // ‘unused‘ is available
assume writeRefi32(root_1, loc_x, v_2); // ‘x‘ is available

// Encoding of ‘prusti_assert!(...)‘
assert Mi32(loc_x, v_2) == new_snapi32(123) && loc_unused != loc_x;

Figure 4.19: Viper encoding, including capabilities, of the body of the function of Fig. 4.17. The encoding of capabilities introduces
non-aliasing and immutability properties that are necessary to prove the last assertion.

24: For the capability reasoning (e.g., im-
mutability rules), this statement can be
considered equivalent to a no-op non-call
Rust statement, such as let _ = () .

that can be deduced for both local variables. Overall, these properties
make it possible to verify the two assert statements in the generated
code. Note that the encoding contains some redundancy, e.g., because
the non-aliasing between x and unused can be deduced by both v_1

and v_2 , but no issue arises from that.

4.5.4 Calls and Semantics of Contracts

For modularity, each function call is modeled using only the contract
of the callee, that is, preconditions and postconditions. The expressions
written in a contract are evaluated as the body of pure-unstable functions,
and are subject to the same restrictions. All expressions within the same
precondition or postcondition are evaluated atomically, using the same
memory version. For example, this means that multiple dereferences of
the same raw pointer in the same expression will evaluate to the same
value.

Our encoding models the interference of other threads by making sure
that across any statement, any knowledge about memory locations that
might be modified by other threads is lost. This way, their value is left
unconstrained and the encoding soundly models any possible value that
they might have. When encoding function calls and the postcondition
check at the end of the function, the effect of other threads is modeled by
introducing a thread-interference statement24 with havocking semantics,
which prevents the evaluation of contracts from incorrectly stating facts
about unstable values. Crucially, the available capabilities at the program
point of the thread-interference must also be encoded as being available
across the statement that models it, or all knowledge about the stable
memory values would be lost as well. This thread-interference step
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is encoded just before the corresponding check: on the caller side for
preconditions, and on the callee side for postconditions.

Overall, the encoding of a Rust call statement between two program points
modeled by the memory versions v_pre and v_post is composed of
the following steps, which internally make use of a fresh memory version
v_havocked to encode the thread-interference before the precondition
check:

1. Model the environment interference, by introducing a new memory
version v_havocked and propagating to it only the memory values
of v_pre that are known to be stable. As a result, all knowledge
about unstable memory locations is havocked in the memory model
corresponding to the new version.

2. Check of the precondition, evaluated using v_havocked .
3. Assumption of the postcondition, evaluated using v_post . Since

old(..) expressions in a postcondition refer to the program state
in which the precondition holds, such expressions are evaluated
using v_havocked .

As part of this encoding, all root places that are available at v_pre will
also be encoded as being available across the transition from v_pre to
v_havocked , while the root places that are available across the call will
be encoded as being available across the transition from v_havocked to
v_post .

An example of the Viper encoding of the function wrapper of Fig. 4.20
is reported in Fig. 4.21. This function is annotated with a contract and its
body only contains the call of a non-pure function, which is annotated
with a contract as well. Note how all the memory versions in the encoding
are initially unconstrained, and are gradually constrained and checked
by assuming or asserting two-state expressions.

Rust

#[requires(deref(x.as_ptr()) >= 0)]
#[ensures(deref(x.as_ptr()) > old(deref(x.as_ptr())))]
fn increment_positive(x: &Cell<i32>) { /* ... */ }

#[requires(deref(x.as_ptr()) >= 123)]
#[ensures(deref(x.as_ptr()) > 123)]
fn wrapper(x: &Cell<i32>) {

// v_0
increment_positive(x);
// v_1

} Figure 4.20: A Rust program used to
demonstrate the encoding of calls.

4.5.5 Branches and Loops

At a high level, branching statements in Rust are encoded as branching
statements in Viper. The only relevant detail is the encoding of memory
versions, because when entering one branch, the memory version should
correspond to the version after the side effects of the evaluation of the
branch condition. Similarly, inside each branch, the memory version at its
end determines the memory version to be used after the join. An example
of the Viper encoding of an if statement is provided in Fig. 4.22, where
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Viper

method wrapper(loc_x: A&Cell<i32>) {
var v_0, v_0_havocked, v_1, v_1_havocked: V;

// Assumption of the precondition ‘deref(x.as_ptr()) >= 123‘ at v_0
assume let as_ptr == (Cell<i32>::as_ptr(M&Cell<i32>(loc_x, v_0))) in

getValuei32(Mi32(as_ptr, v_0)) >= 123

// Encoding of program point v_0
assume writeRef&Cell<i32>(root_0, loc_x, v_0); // ‘x‘ available

// Encoding of call ‘increment_positive(x)‘ between v_0 and v_1
{

// Apply thread-interference to v_0
assume writeRef&Cell<i32>(root_0, loc_x, (v_0, v_0_havocked)); // ‘x‘ available

// Encoding of program point v_0_havocked
assume writeRef&Cell<i32>(root_0, loc_x, v_0_havocked); // ‘x‘ available

// Check of the precondition ‘deref(x.as_ptr()) >= 0‘ at v_0_havocked
assume let as_ptr == (Cell<i32>::as_ptr(M&Cell<i32>(loc_x, v_0_havocked))) in

getValuei32(Mi32(as_ptr, v_0_havocked)) >= 0

// Assumption of the postcondition at v_1
// ‘deref(x.as_ptr()) > old(deref(x.as_ptr()))‘
assume let as_ptr == (Cell<i32>::as_ptr(M&Cell<i32>(loc_x, v_1))) in

let old_as_ptr == (Cell<i32>::as_ptr(M&Cell<i32>(loc_x, v_0_havocked))) in
let lhs == (getValuei32(Mi32(as_ptr, v_1))) in
let rhs == (getValuei32(Mi32(old_as_ptr, v_0_havocked))) in
lhs > rhs

assume writeRef&Cell<i32>(root_0, loc_x, (v_0_havocked, v_1)); // ‘x‘ available
}

// Encoding of program point v_1
assume writeRefi32(root_0, loc_x, v_2); // ‘x‘ available

// Apply thread-interference to v_1
assume writeRef&Cell<i32>(root_0, loc_x, (v_1, v_1_havocked)); // ‘x‘ available

// Encoding of program point v_1_havocked
assume writeRef&Cell<i32>(root_0, loc_x, v_1); // ‘x‘ available

// Check of the postcondition ‘deref(result.as_ptr()) > 123‘ as v_1_havocked
assert let x_as_ptr == (Cell<i32>::as_ptr(M&Cell<i32>(loc_x, v_1_havocked))) in

getValuei32(Mi32(x_as_ptr, v_1_havocked)) > 123
}

Figure 4.21: The Viper encoding of the program in Fig. 4.20.
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25: Resolving trait calls is not necessary
to compute available places. All that is
needed are function signatures, and the
compiler already uses them during type-
and borrow-checking.

the memory version after the join v_4 is initialized using the memory
versions at the end of each branch, v_2 and v_3 .

In our technique, the encoding of loops is defined in two steps. First, a
Rust loop annotated with an invariant is encoded as a non-deterministic
if statement; a standard encoding technique designed such that the
only branch of the if models and verifies an arbitrary loop iteration:

§ The invariant is (1) checked before the if using the memory version
of the program state that first enters the loop, (2) assumed inside
a branch of the if using a fresh memory version that represents
the program state at the beginning of any loop body execution,
(3) checked at the end of the same branch using a memory version
that represents the program state at the end of a loop iteration.
Before any check of the invariant, all memory values are stabilized
using the no-op statement encoding described before.

§ The loop guard is modeled by assuming that it evaluates to true
at the beginning of the branch of the if , while after the if it is
modeled by assuming that it evaluates to false.

§ An assume false statement terminates the branch of the if , in
order to model that the verifier should not consider program traces
that, from the branch of the if , join the encoding after the if .

Rust

fn branch() {
...
// v_0
if x {

// v_1
xAy

// v_2
} else {

// v_1
xBy

// v_3
}
// v_4
...

}
Viper

method branch() {
var v_0, ..., v_4: V;
...
// Encoding of ‘if x ...‘ starting from v_0
var tmp: Bool := getValuebool(Mbool(loc_x, v_0));
if (tmp) {

... // encoding of xAy starting from v_1
v_4 := v_2;

} else {
... // encoding of xBy starting from v_1
v_4 := v_3;

}
...

}

Figure 4.22: Example of the Viper encoding (right) of a branching statements in Rust (left).

The second step takes care of modeling all the information that should be
propagated across the loop. This is done by first statically computing the
root places that are statically known to be available across all statements
of the loop25. Then, the capabilities generated by such root places are
assumed to hold between the program state immediately before the loop
and (i) the program state after the loop, as well as (ii) the program state
at the beginning of an arbitrary loop iteration. This way, an arbitrary
number of loop iterations is abstracted and modeled by capabilities
that are known to be available across the memory versions representing
the beginning and the end of the loop iterations. An example of the
Viper encoding of a simple Rust loop is provided in Fig. 4.23. The most
important thing to notice is that inside the if , the capabilities are
assumed to hold between the memory versions v_0_havocked and v_1 ,
modeling all past iterations before the one that is represented by the
branch of the if , while after the if the capabilities are assumed using
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26: Gregor Mendel, the father of modern
genetics, opened the way to the study of
capabilities and mutations of DNA.
[28]: (2024), Repository of the Mendel ver-
ifier for safe Rust clients of interior mu-
tability. url: https : / / github . com /

viperproject/mendel-verifier

the memory versions v_0_havocked and v_3 , modeling all iterations
of a loop that terminated.

Rust

fn a_loop(z: bool) {
let mut y: bool;
let mut z: bool;
...
// v_0
#[invariant(y)]
while x {

// v_1
x, y = foo();
// v_2

}
// v_3
...

}

Viper

method a_loop(loc_z: Abool) {
...
// Apply thread-interference to v_0, before the check
...
// Check of ‘y‘ at v_0_havocked
assert getValuebool(Mbool(loc_y, v_0_havocked));
// Encoding of the loop body
if * {

// Assumption of the guard at v_1
assume getValuebool(Mbool(loc_x, v_1));
// Capabilities available across the loop
assume writeRefbool(0, loc_z, (v_0_havocked, v_1));
// Assumption of ‘y‘ at v_1
assume getValuebool(Mbool(loc_y, v_1));
// Encoding of ‘x, y = foo()‘
...
// Apply thread-interference to v_2, before the check
...
// Check of ‘y‘ at v_2_havocked
assert getValuebool(Mbool(loc_y, v_2_havocked));
// Kill trace
assume false;

}
// Assumption of the negated guard at v_3
assume !getValuebool(Mbool(loc_x, v_3));
// Capabilities available across the loop
assume writeRefbool(0, loc_z, (v_0_havocked, v_3));
// Assumption of ‘y‘ at v_3
assume getValuebool(Mbool(loc_y, v_3));
...

}

Figure 4.23: Example of the Viper encoding (right) of a while loop in Rust (left). if * is a non-deterministic choice. In the Rust program,
the place z is the only one that is available across all statements of the loop.

4.6 Implementation and Evaluation

We implemented our verification technique in Mendel26: our new
capability-based verification tool for Rust [28]. As an engineering choice,
we developed Mendel by reusing various components from the codebase
of Prusti: parsing and type-checking of specifications, retrieval of
borrow-checker information, various intraprocedural dataflow analyses
(e.g., definite initialization), bindings with the Viper verification
framework, back-translation of verification errors to user-readable
diagnostics on source code, caching, IDE integration and so on. We then
used Mendel to evaluate our verification technique.

To the best of our knowledge, the technique that we presented handles any
safe Rust code, except for the two-phase borrows feature of Rust, by which
the properties of mutable references might hold starting from an activation
program point that does not coincide with the creation of the mutable
reference. To support this Rust feature, it might be enough to update
the capability analysis so that the capabilities of mutable references are

https://github.com/viperproject/mendel-verifier
https://github.com/viperproject/mendel-verifier
https://github.com/viperproject/mendel-verifier
https://github.com/viperproject/mendel-verifier
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Table 4.2: Description of the modeled unstable memory locations and assumptions for each library type.

Library Modeled unstable locations Assumptions

UnsafeCell Content -
Rc Content, strong and weak reference counters
Arc Content, strong reference counter No weak references
Cell Content -
RefCell Content, borrow flag -
AtomicI32 Content -
Mutex Content, poison flag, lock flag -
RwLock Content, poison flag -

Box Target -

Mutex with invariant - No poisoning
Verus-style cell - -
Verus-style pointer Target Always verified

generated starting from the activation rather than the creation of the
reference. However, we have not explored that so far. Although our
technique is general, due to time constraints, our implementation has some
notable limitations: it does not support loops, quantifications, array and
slice types, and integer type bounds. These features were not needed
to test the examples in our evaluation, which use fairly simple features
of Rust and whose verification challenges are largely orthogonal to
the language limitations of the tool. More precisely, the complexity of
verifying the programs in our evaluation lies in the interactions between
types with interior mutability: aliasing, mutations via shared references
and interference from other threads.

Our evaluation aims to show that our capability annotations are useful
and, on the client side, lightweight. To do so, we first annotated the APIs
of popular types with and without interior mutability of the standard
library using capability annotations, contracts and helper ghost methods.
As a second source of libraries, we ported to our specification language
the core of three libraries related to interior mutability taken from the
test suites of Creusot and Verus: a Mutex with a monitor invariant from
the former; a cell-like and a pointer-like type from the latter. Overall, the
annotated libraries are described in Table 4.2 and Table 4.3. Then, we built
several safe clients for each of the annotated libraries, while including a
large number of assertions to check that, in addition to panic freedom,
the tool can verify the functional behavior of the API interactions. These
clients are rather simple compared to real-world code, but the goal is to
test short sequences of API calls. Finally, we ran our verification tool on
the clients, measuring the verification time for each of them. The client
programs and their verification times are described in Table 4.4. All the
measurements were averaged over 10 runs (after a warm-up of the JVM)
and were done on a laptop with a i7-7700HQ processor, 16 GB of RAM,
and operating system Ubuntu 22.04.

In Table 4.2, we listed for each library the unstable memory locations that
we modeled using our capability annotations. The simplest library types,
such as UnsafeCell , or Cell , only contain one such memory location,
while more complex types can have more of them. For example, we
modeled three unstable memory locations in the Rc and Mutex libraries.
When annotating the Arc library, we made one simplifying assumption.
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Table 4.3: Description of the library annotations. “LOC” reports the number of lines of code needed to annotate the library (excluding
empty lines, comments, imports and module declarations). “Functions” reports how many existing functions (including methods) were
annotated as pure or not, and how many ghost functions were necessary to annotate the library. “Specifications” reports the number
of library capability annotations, and the number of lines of code occupied by the contracts (i. e., pre- and postconditions, and purity
attributes).

Type LOC
Functions Specifications

Impure Pure Ghost Capabilities Contracts

UnsafeCell 16 3 1 0 1 6
Rc 89 4 4 2 10 33
Arc 51 2 3 1 6 18
Cell 28 3 2 0 4 8
RefCell 127 6 1 10 8 52
Ref 34 1 1 2 3 9
RefMut 45 2 1 2 5 11
AtomicI32 23 2 0 1 3 5
Mutex 103 4 1 8 9 40
MutexGuard 48 3 0 2 6 12
RwLock 76 5 1 5 4 35
RwLockReadGuard 23 1 0 2 1 4
RwLockWriteGuard 37 2 0 2 4 7

Box 40 3 1 1 3 10
Option 33 3 2 0 0 22
Result 37 4 2 0 0 25
ControlFlow 9 0 2 0 0 4

Mutex with invariant 51 6 2 0 0 10
Verus-style cell 82 5 0 3 0 22
Verus-style pointer 74 4 1 3 2 16

27: This is also a challenge for Rust devel-
opers. In fact, the documentation of the
Arc::weak_count method that returns
the value of the weak counter states that
“This method by itself is safe, but using
it correctly requires extra care. Another
thread can change the weak count at
any time, including potentially between
calling this method and acting on the
result.” [114]. The documentation does
not suggest what the correct way to use
this method is, and does not even state
the memory ordering model that is used
internally to perform the atomic updates
on the counter. The API provides two
more useful methods, Arc::get_mut

and Arc::make_mut , which pose no par-
ticular issues for our verification tool.
28: This can be verified by adding a
false precondition to all the methods
of the API that might create a weak ref-
erence.

The Arc type is implemented using two reference counters, one counting
the strong references and the other counting the weak references.
However, the library does not provide a way to check atomically the
value of both the strong and weak counter, which makes it difficult to
write a library capability annotation with an atomic condition that checks
the value of both of them at the same time27. To work around this issue
of the API, in our annotations we ignored the weak counter, assuming
that it is always zero28. This challenge does not apply to single-threaded
libraries such as Rc , for which we are able to annotate both its strong
and weak reference counter. Regarding the types taken from the test
suite of Creusot and Verus, we kept the existing assumptions: the type
of a Mutex with invariant assumes that no mutex is ever poisoned –
something that happens when a thread panics while holding a lock. This
is not the case for our other annotations of the Mutex and RwLock types,
for which we also model the panic flag. Regarding the Verus-style pointer
type, its API is sound only under the assumption that its clients always
respect the declared preconditions. This is a choice of Verus that brings
greater flexibility in the design of libraries. We retained this choice to
evaluate our tool on these advanced cases of specification.

In Table 4.3, we reported some statistics regarding our annotations
of the libraries. For many library types, we were able to reuse some
existing methods of the API, marking the methods as pure. For exam-
ple, in the case of the Rc library we marked the Rc::as_ptr method
as pure-value, Deref::deref pure-memory, Rc::strong_count and
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Table 4.4: Description of the verified clients, each of which tests properties of the library type reported in the “Used library type” column.
“Lines of code” reports the total number of lines of code of the program (excluding empty lines, comments, empty main functions,
imports and module declarations) and, among them, the lines of code used for contracts. “Assertions” reports the number of assertions
to be verified in the program, classified by meaning: “Expected” are assertions that verify or that report a verification error as expected;
“Incompl.” are assertions for which the verifier reports an error due to an incompleteness. Each assertion occupies 1 line of code, counted
as part of the “Total” column. “Time” reports the average verification time with standard deviations, out of 10 runs, using the Viper
backend based on verification condition generation. The three groups of clients, from top to bottom, are hand-written clients making use
of libraries with interior mutability, hand-written clients making use of libraries implemented using raw pointers and unsafe code, and
clients adapted from the test suite of Creusot [86] or Verus [62].

Client Used library type
Lines of code Assertions

Time (s)
Total Contracts Expected Incompl.

arc.rs Arc<i32> 66 0 27 0 10.0 ˘ 0.7
arc_rwlock.rs Arc<RwLock<Vec<i32>>> 97 6 29 2 34.6 ˘ 0.8
atomic.rs AtomicI32 35 0 9 2 5.6 ˘ 0.1
cell.rs Cell<i32> 102 5 30 0 8.8 ˘ 0.2
mutex.rs Mutex<i32> 47 0 18 0 12.7 ˘ 0.4
rc.rs Rc<i32> 102 0 53 0 15.8 ˘ 0.9
refcell.rs RefCell<i32> 71 6 25 0 13.5 ˘ 0.8
unsafecell.rs UnsafeCell<i32> 35 7 7 0 4.8 ˘ 0.2

box.rs Box<i32> 10 0 4 0 5.5 ˘ 0.1

mutex_inv.rs Mutex<i32> with invariant 11 0 1 0 4.9 ˘ 0.3
verus_cell.rs Verus-style cell 9 0 4 0 6.2 ˘ 0.4
verus_ptr.rs Verus-style pointer 34 7 10 0 10.3 ˘ 0.5

Rc::weak_count as pure-unstable. However, the existing methods were
not always sufficient to specify the library. So, we introduced new ghost
methods (declared in a new trait, and implemented for the library types)
to model some type properties. For example, in the case of the Mutex

library we added a data_ptr method that returns the address at which
the content of the mutex is stored. We marked as ghost all methods
that we added, even though in most cases it would be possible for the
library to provide an implementation. Overall, most ghost methods were
necessary to model some aspects of the interiorly mutable values of
libraries. For example, by exposing their address, or by making it possible
to refer to their value from specifications. Among the types with the
highest number of ghost methods, RefCell uses them to expose the
address and value of the contained data, and of the borrowing flag
tracking the aliasing status of the type (non-borrowed, read-borrowed,
or write-borrowed). In Mutex , we used the ghost methods to model
the address and value of the protected data, and of other internal flags
(locking and poisoning). In RwLock we did the same as in Mutex , but
without modeling the locking flag. In the Verus-style libraries, some of
the existing methods were already marked as ghost.

In Table 4.4, we reported some statistics regarding the clients in our
evaluation, among which the used library type and the average time took
by Mendel to verify them. Each function in the client programs makes a
sequence of API calls, checking with a large number of assertions, or with
a postcondition, that the verifier is able to prove the expected functional
behavior of the library. These properties that are checked are mostly
comparisons between primitive values, or between the target address of
raw pointers. In a few clients, we also used preconditions to check only a
particular scenario. For example, in the refcell.rs client, we required
some functions to be such that their RefCell argument is not read-
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29: That is, a reference that has not been
passed to any function call.

nor write-borrowed. In two cases, we also hit an incompleteness of our
technique, described at the end of this section. The verification time that
we measured for these programs goes from 4.8 seconds for the simplest
libraries, to 34.6 seconds for the more complex ones. In fact, the longest-
taking client, arc_rwlock.rs, requires the verifier to reason about nested
library types: a Arc containing a RwLock , containing a Vec . The second
longest-taking client, refcell.rs, uses the RefCell library, which is
one of those with the highest number of modeled unstable locations.
These measurements were all made while using the Viper backend that
internally translates Viper programs to Boogie. By profiling the verifier
on a few cases, our preliminary results seem to indicate that most of the
verification time is actually spent in the generation and parsing of Boogie
code. This might be a result of our encoding technique that generates
one axiom to model each capability property. Future work might confirm
these profiling results and explore more efficient engineering solutions.

From the results of the evaluation, we can conclude that our specification
technique effectively works on real-world libraries with interior muta-
bility. It makes it possible to describe the properties decided by library
developers and to verify usages of these libraries using an automated
verifier. In particular:

1. The specification language is expressive, in that it made it possible to
explicitly declare properties of all the types with interior mutability
of the standard library that we considered.

2. The technique works well in the presence of nested types such as
Arc<RwLock<Vec<i32>>> , for which the capabilities automatically
propagate properties across the type boundaries thanks to the
capability annotations and the implication properties that we
defined.

3. The technique allows developers to reuse existing library methods
in the specifications, for example by modeling with the as_ptr

method the address of the content of the Arc library (Fig. 4.14). In
fact, the annotations of libraries such as UnsafeCell and Cell

required no new methods at all.
4. The technique makes it possible to verify clients of libraries with

interior mutability, requiring in many cases little to no proof anno-
tations on the client side.

Nevertheless, our verification technique has some limitations. Our tech-
nique relies on capabilities to deduce all framing and non-aliasing
properties of a program. In some situations, the capabilities that we
presented are not expressive enough to describe the content of some type
with sufficient strength. In such cases, our technique has to conservatively
consider the case that the content might be mutated by any function call,
or aliased by any other type instance. As a result, our technique has incom-
pleteness when reasoning about some framing or non-aliasing properties.
This happened in the evaluation when using the Arc and AtomicI32

types, but it might be possible to construct examples using other libraries.
For the Arc type, we do not have a capability that precisely describes its
content when (a) the strong reference counter is not 1, or (b) the strong
reference counter is 1, the weak reference counter is 0, and the Arc is
immutably shared. For the AtomicI32 type, we do not have a capability
that describes its content when the AtomicI32 instance is borrowed by
local references29. Future work might overcome this by introducing new
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capabilities, or by combining our capability-based technique with other
verification techniques for concurrent code.

4.7 Related Work

4.7.1 Rust Verifiers

In Ch. 3 we presented Prusti, a deductive verifier for Rust that leverages
Rust’s type properties to automatically build a memory-safety proof based
on separation logic and — given user-written contracts — verify the
functional correctness of the program. Prusti does not support reasoning
about interior mutability because (like many other automated deductive
verifiers) it lacks the necessary expressivity and completeness, even
though its verification technique is sound in the presence of libraries
implemented with unsafe code. In contrast, Mendel’s technique supports
reasoning about libraries with interior mutability, proving functional
correctness of their clients. While Mendel’s technique is primarily meant
for reasoning about clients of interior mutability, it can also be used to
reason about fully-safe Rust code, with some cases of incompleteness
described at the end of our evaluation. Since both Mendel and Prusti are
sound on their own, but incomplete in different cases, combining both
approaches would make it possible to reduce the incompleteness to only
the cases where both techniques are at the same time incomplete.

RustBelt [101] is a Coq formalization of Rust in which it is possible
to model and verify the soundness of libraries. This work was later
extended by RustHornBelt [102], adding support for verifying functional
correctness. While both works are based on the Iris [58] framework
and require manual proofs, our verification technique is automated and
can be used by developers who do not have advanced knowledge of
Coq or separation logic. The language of RustBelt and RustHornBelt is
more expressive than the capability specifications of our work, but also
more verbose. We believe that our capabilities are a useful user-readable
abstraction that might be used to automatically generate parts of the
Rust type definitions encoded in Coq. Proving the properties of our
capabilities in Iris is an interesting research question for future work.

Creusot [86] is a deductive verifier for Rust that leverages Rust’s type
properties to verify functional properties. Creusot uses a technique based
on prophecies to encode Rust programs into first-order logic, using the
Why3 language [17]. The technique that it uses is not based on notions
of capabilities and only supports reasoning about interior mutability
by wrapping the types behind an API with a monitor invariant. Our
technique makes it possible to reason more precisely about mutations to
the content of types with interior mutability, without needing to change
the signature of existing methods nor to wrap the types behind a new
API. Moreover, Creusot’s technique does not support reasoning about
memory addresses, while our work has first-class support for them.

Verus [62] is another deductive verifier for Rust that, like Creusot, is
based on a first-order logic encoding of Rust programs. One novelty
of Verus is that it uses the linearity and borrow checks of Rust to let
the user manage separation-logic permissions by using regular (ghost)
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Rust variables. In our view, the capability system of Mendel can be seen
as a generalization of the permissions tracked by Verus. For example,
Verus’ PermData type might be modeled in our technique as a structure
providing a unique capability for the target of the associated PPtr

type. The approach of Verus requires defining custom libraries in which
the types representing permissions show up explicitly as arguments or
return types, while our technique makes it possible to annotate existing
libraries without modifying their method signatures; only adding new
methods. As a result, our technique requires fewer annotations on the
client side and can be applied to existing Rust code. Like Creusot, Verus
has no support for explicitly reasoning about memory addresses, while
our technique has first-class support for them.

Aeneas [103] translates a subset of Rust into a pure lambda calculus,
which can then be verified using F*. Their technique explicitly does not
support interior mutability nor unsafe code, but we believe that library
annotations like ours might be used to detect usages of interior mutability
that could in principle be translated into a pure functional language.

RefinedRust [115] is a Coq-based refinement types system for Rust that
enables foundational semi-automated deductive verification of both safe
and unsafe Rust code. RefinedRust has not yet been applied to verification
of usages of interior mutability, but the language of its type invariants
is based on RustBelt and is thus quite expressive. As such, it would be
interesting to try to formalize the capabilities of our work in RefinedRust.
We expect that this should be easier to do for our core capabilities
because their semantics coincide with that of Rust references, while other
capabilities such as local might require more work to formalize their
concurrency-related aspects.

4.7.2 Verification of Other Languages

RefinedC [116] verifies functional correctness of C code by using a type
system with ownership and refinement types, carefully designed so that
the Coq proof of memory safety and functional correctness is automated
and syntax-directed. Compared to our specification language, their type
system is more complex and does not have a notion of immutability.

VCC [19] verifies low-level concurrent C code annotated with global
invariants [117]. Their invariants typically require each shared object to
keep track of its referencing objects using a set of back-pointers. This
technique could be ported to Rust by modeling a ghost set of back-pointers
for each object, but cyclic data structures are unidiomatic in Rust and
manually updating the set of back-pointers is verbose. Our technique
requires neither of the two. Still, our first-order logic encoding is inspired
by their encoding to Boogie [16].

Pony [75] is a programming language that ensures data-race freedom
of concurrent actor-based code by using a strong type system with
capabilities, among which deny and unique properties. Part of our work
on the capabilities of Rust libraries was inspired by the rich expressivity
of Pony types.
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4.8 Conclusions

We have presented a new technique to specify the capabilities of Rust
libraries implemented with unsafe code, and to verify the functional
correctness of some of their safe clients. To ground the semantics of
the capabilities associated with Rust types, we have presented a proof
technique, based on a semantics-preserving transformation, that enables
reasoning about safe clients without requiring knowledge of the semantics
of unsafe code. Our approach enables developers to explicitly declare the
intended aliasing and mutability properties of existing libraries, making it
easier for both automated verifiers and other human developers to reason
about their usages. An open-source implementation of our verification
technique and our evaluation data is available on GitHub [28].

https://github.com/viperproject/mendel-verifier
https://github.com/viperproject/mendel-verifier
https://github.com/viperproject/mendel-verifier
https://github.com/viperproject/mendel-verifier
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Tool Implementation 5
We implemented both of our verification tools, Prusti (cf. Ch. 3) and
Mendel (cf. Ch. 4), following the Rust verification principles outlined
in Sec. 2.3. These tools largely share the same codebase. In this chapter,
which is partially based on our NFM 2022 paper ‘The Prusti Project:
Formal Verification for Rust’ [31], we describe the common architecture
of our tools and highlight some usability solutions that we adopted to
ensure a good user experience.

Collaborations Overall, the development of the first version of Prusti
was done in collaboration with fellow doctoral student Vytautas As-
trauskas. While Vytautas and I contributed equally to most aspects of
the project, I led the implementation of the cargo integration (Sec. 5.1.1),
verification server (Sec. 5.1.1), testing infrastructure, source-level error
reporting (Sec. 5.2.1), error handling (Sec. 5.2.2) and IDE integration
(Sec. 5.2.3). Later versions of Prusti were developed with additional
collaboration from fellow doctoral students Aurel Bílý and Jonáš Fiala.
Among the notable improvements, Aurel and Jonáš reimplemented the
specification embedding (Sec. 5.1.2) using procedural macros, and imple-
mented the retrieving of specification from external crates (Sec. 5.1.3.2).

5.1 Architecture

Our verification tools target real-world code written in Rust, which is
itself a mature and complex language. Accordingly, our tools are designed
to reuse existing functionality from the Rust compiler whenever possible,
in order to reduce the implementation burden and faithfully maintain
compatibility with the constantly-evolving Rust ecosystem.

5.1.1 Design Overview

Our tools are implemented as compiler drivers [118], using the library
interface of the standard rustc compiler extensively; the overall workflow
is presented in Fig. 5.1. When verifying a crate, our verifiers start by
launching a cargo instance 1 , which in turn launches in the correct order
several instances of rustc to verify the dependencies 2 and the local
crate to be verified 3 . Our verifiers then interact with each rustc process,
using its program representations, analysis results, and error reporting
utilities. To have verification-specific program annotations type-checked
analogously to regular Rust expressions (including error-reporting),
our tools perform a specification embedding pre-processing, converting
annotations into Rust code so that any type error in the annotations is
caught when type-checking the generated code 4 (cf. Sec. 5.1.2). As
a result of this step, rustc holds a mid-level representation (MIR) of
both the program and its (embedded) specifications. Working on the
MIR, our tools can then perform their own analyses (in 5 ), and generate
a Viper program that is sent to a verification server, which wraps an
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instance of the Viper verifier. If verification fails, our tools translate the
Viper errors back to user-readable Rust errors reported via the compiler
API (cf. Sec. 5.2.1). If, instead, verification succeeds, our tools persist the
public specifications on disk, so that they can be retrieved when verifying
dependent crates.

The compiler driver architecture is used by popular tools such as
Clippy [67] and Miri [44]; it has two main advantages. First, it raises
confidence that the semantics used by our tools is faithful. In fact, our
verifiers directly obtain a control-flow graph (CFG) representation of
any parsed Rust function from the compiler, instead of inventing a new
representation, which could lead to errors or semantic differences over
time. The CFG-based representation used in our work, called unoptimized
MIR, has a simple order-of-execution semantics and a limited number of
statements; at this stage, many of the more-subtle aspects of Rust’s evalua-
tion semantics have been already handled by the compiler. For example, our
tools do not need to be aware that Rust uses short-circuiting semantics for
Boolean operators, because Boolean expressions are already transformed
by the compiler into multiple statements evaluating individual operators.
Unoptimized MIR maintains all type-checker information, along with
back-links that allow the compiler (and thus also our tools) to translate
error messages back to the source code.

Second, the above architecture enables our verifiers to reuse compiler
components. Besides building upon unoptimized MIR, our tools reuse
the compiler’s type and borrow checker to ensure that user-written
annotations follow typing rules analogous to regular Rust expressions, as
explained in Sec. 5.1.2. Similarly, our tools reuse the Rust compiler’s error
reporting component to display verification errors. This way, the default
syntax of the reports is familiar to Rust programmers and the compiler
can be configured to report machine-readable errors. The latter simplifies
integrating our verifiers with other tools. For example, IDE extensions
like our Prusti Assistant extension for Visual Studio Code [119], but even
verification-unaware tools such as Rust-analyzer [120], can be configured
to report verification errors generated by running, e.g., cargo prusti

instead of cargo check.

5.1.2 Specification Embedding

Verification-specific program annotations (e.g., method contracts) are
implemented with procedural macros [121]. These macros are defined to
generate nothing when compiled using the regular Rust compiler. How-
ever, when compiled with one of our verifiers, a specification embedding is
performed: to make the compiler both type-check and translate (to MIR)
these specifications, corresponding methods are added to the program.
For some specification constructs, such as logical implications and quanti-
fiers, the specification embedding is more involved, replacing them with
usages of Rust features that have the right type-checking requirements.
For example, logical quantifiers are embedded as closures.

Our verifiers use a Pratt parser [122] to perform the embedding of specifi-
cation constructs, before invoking the syn [123] Rust parser on the result,
yielding an AST representation. The resulting specification expressions
are embedded into the bodies of new methods with unique names. Then,

https://github.com/viperproject/prusti-assistant
https://github.com/viperproject/prusti-assistant
https://github.com/viperproject/prusti-assistant
https://github.com/viperproject/prusti-assistant
https://github.com/viperproject/prusti-assistant
https://github.com/viperproject/prusti-assistant
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Figure 5.1: Overview of the encoding process of our verification tools. Rounded rectangles represent actions, while non-rounded
rectangles represent data structures. The verification of dependencies, internally, applies the same steps 3 , 4 , and 5 on each crate.
The public specifications of each crate are persisted on disk and are retrieved when verifying the dependent crates.
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our tools construct a mapping between these generated methods (called
specification items) and the relevant construct in the original source code
(e.g., for a precondition, the method it is a precondition of). By feeding
the program augmented with specification items through the compiler,
we both check that the specifications type-check and can obtain corre-
sponding MIR representations of the specifications. The type-checking
and evaluation semantics reflected by this translation to MIR are those of
standard rustc; this approach reuses the standard semantics of the Rust
language for specification checking and compilation.

5.1.3 Compiler Interface

Out tools obtain various information from rustc’s data structures, as
illustrated in the edges from 3 to 4 in Fig. 5.1. Given how Rust compila-
tion works, different information is available (and used by our tools) for
the local crate (i.e., the crate being compiled/verified) and external crates
(the dependencies of the local crate).

5.1.3.1 Local Crate

For the local crate, our tools obtain a high-level AST representation
(HIR), the type definitions, the unoptimized CFGs of the functions (MIR),
and borrow-checker information (Polonius facts), defining the compiler-
determined lifetimes of references. In particular, our tools use HIR, in
which function names have already been associated with their definition,
to retrieve specifications embedded in specification items, as described
in Sec. 5.1.2. Type definitions are used to generate Viper predicate or
domain definitions that model those types in the program proof, while
unoptimized MIR is used to generate the corresponding Viper code
itself.

The compiler offers various versions of MIR at different stages during
the compilation process. Our tools use the unoptimized version because
it is the only one on which the borrow checker runs. This also has a
semantic advantage, since we do not need to worry whether compiler
optimizations preserve the strong type properties that Prusti exploits1.
Our tools use the results from the Polonius borrow-checker, also called
facts, in the static analysis of capabilities that automates the generation
of annotations such as folding and unfolding of Viper predicates (cf.
Sec. 3.7), or in the static analysis that computes which Rust places are
fully initialized and non-borrowed (cf. Sec. 4.4.1).

Previously, the compiler API did not expose Polonius facts, but the
compiler developers were very supportive in accepting our proposed
additions to the API [125]. Our changes have since been used by at least
one other static analysis tool, Flowistry [89], to access precise aliasing
information.

5.1.3.2 External Crates

For external crates, the compiler offers strictly less information than for
the local one, primarily for performance reasons. Type definitions and
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optimized MIR are available (our tools use the former to encode calls), but
the HIR, the unoptimized MIR, and the Polonius facts are not present.
Since the overall methodology of our verifiers is modular, the only real
limitation this imposes is that any verification specifications written in
an external crate cannot be seen via the compiler interface. To work
around this, following the example of the MIRAI static analyzer [126],
our verifiers store the public specifications of successfully verified crates
on disk, so that when verifying dependent crates these specifications can
be retrieved automatically. Additionally, in case the source code of the
external crates cannot easily be modified by the user (e.g., Rust’s standard
library), our tools support declaring trusted external specifications in the
local crate.

5.2 Usability Solutions

In the design of our verification tool, we strived to make the user
experience as smooth as possible, so that users can focus on the important
correctness properties of their program instead of, e.g., jumping between
several different program representations or different tools. In this section,
we present some of the usability solutions that we implemented.

5.2.1 Source-Level Error Reporting

A core usability feature of our verification tools is the error reporting on
the Rust source code, which is enabled by a back-translation of verification
errors from Viper into Rust. At a high level, the result of this translation
has to be informative enough for the user to fix a verification error,
but without mentioning any implementation detail of the verifier. This
conversion is handled by an error manager that, in its simplest form,
generates a source-code span and an error message. The overall back-
translation technique is similar to what already used in other verifiers
based on Viper, such as Nagini [25].

To generate the source-code span, the error manager registers during
the encoding process which source-code span was responsible for the
generation of which Viper statement and expression. More precisely, the
encoding process associates a unique position ID with each AST node
of the generated Viper program, and the error manager keeps a map
from position IDs to source-code spans, where the source-code span is
determined by querying the Rust compiler for the span associated with
the MIR statement that the verifier was encoding to Viper.

To generate a user-readable message, the error manager additionally
registers during the encoding contextual error information for each item
of the Viper program that might fail with a verification error. For example,
Viper’s assert statements. Since the encoding is such that each Viper
AST node is associated with a unique position ID, the error manager only
needs to map each position ID of a possibly-failing node to its contextual
information. This information consists of a verification-error kind and,
in some cases where the kind alone is insufficient, a string with some
additional details. The error kind serves to distinguish, for example, a
failing Viper assert statement that encodes a Rust assert! statement
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from an identical Viper statement that, instead, encodes the check of the
precondition of a Rust function call.

Having registered all this information, to perform the back-translation,
the error manager only needs to read from a Viper verification error
the position ID of the AST node responsible for the error, using that
ID to retrieve a source-code span and an error context. The error con-
text is then converted to a Rust-level verification error message that is
reported on the associated source-code span. The diagram in Fig. 5.2
represents the encoding of a Rust program into Viper (going right) and
the back-translation of a Viper error into a source-code span. If the Viper
verification error reports, in addition to the failing statement, the precise
subexpression that caused the failure (e.g., an unsatisfiable conjunct in a
assert statement), then its position is back-translated using the same
technique to the source-code level and is reported to the user.

Figure 5.2: Overview of the encoding (go-
ing right) from Rust, through MIR, into
Viper. The red lines and blocks (going
left) show the back-translation of a Viper
verification error into the source-code
span that generated the failing Viper
statement. Every horizontal rectangle
represents the position of a statement
on the Rust, MIR, or Viper level.
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5.2.2 Error Handling

A verification tool for Rust has to handle several different kinds of errors,
and reporting them in a clear way enables a better user experience. For
example, the verification might fail because the implementation contains
some bugs or disagrees with the specification. Otherwise, when writing
program annotations the users might make mistakes, such as calling a
non-pure function from a contract, that have to be reported in a special
way to avoid confusing them with, e.g., functional-correctness verification
errors. Moreover, the tool might also encounter internal errors, such as
broken invariants, that have to be reported to the user. Terminating the
tool is one option, but not the best one.

In our tools, we classified these errors into three kinds, depending on
what is to blame for the error.

§ Verification errors report that the tool reached the point of checking
the correctness of the program, but that step failed. This signals
that there is a bug in the implementation, that the specification
expresses the wrong property, or that the property to be checked
is too complex for the underlying SMT solver. In this case, the
solution is to change the implementation or specifications2.

§ Specification errors report that a user-written specification is
invalid. For example, a contract is trying to call a non-pure function.
In this case, the blame is on the verification user who wrote it and
the specification has to be fixed.
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§ Internal errors report that an internal check of the tool failed. In
this case, the blame is on the tool and the error always signals a
bug in the implementation. Depending on the bug, there might be
known workarounds in the issue tracker of the tool. To help users
and tool developers identify the cause of the failure, these errors
are reported on the verification unit (e.g., Rust function or method)
or the precise Rust statement that was being processed by the tool
when the failure happened.

In the implementation of our tools, these error kinds are described by an
enumeration type that optionally contains the span in the source code
that corresponds to the error. Every function in our codebase that might
fail with one of these errors returns a result type, following the standard
error handling practices of Rust.

The reason for having explicit handling of internal errors, instead of
just terminating with a panic, is to ensure a good user experience even
in those cases where the tool implementation is incomplete. Rust is a
real-world programming language based on a complex type system.
As such, developing a static tool for it requires handling many edge
cases and unexpected usages. For example, and for reference for future
developers that might aim to build a Rust tool from scratch, we report
some of the special cases that we encountered:

§ The CFG representation of some functions might not have a path
between the entry point and the return point. This can happen
when the function contains an intentionally-infinite loop such as
loop {} .

§ The CFG of a function might have edges that go from one branch of
the CFG to another, e.g., Fig. 5.3. This can happen when the function
contains match statements with if conditions on its arms. Such
CFGs are reducible, but naive static analysis implementations might
incorrectly expect that loop-free code cannot produce such shapes3.

§ The condition of a loop is an expression, which (1) can contain a
loop itself, and (2) can contain continue statements that jump
to the next loop iteration, before finishing the evaluation the loop
condition. These cases, shown in Fig. 5.4, are usually not possible
in other programming languages.

§ Some definitions, such as enum types and match statements, might
contain an unexpectedly high number (i.e., thousands) of variants
and cases, respectively. This happens, for example, in automatically-
generated code handling Unicode characters. A tool with a naive
quadratic (or worse) memory complexity might run out of memory
and terminate when handling these cases.

§ Certain mutable borrows have an implicitly two-phase semantics,
meaning that their properties do not hold immediately after their
creation, but are postponed until the borrow is activated at its first
usage. This rule requires special handling in verification techniques.

§ Types that are zero-size have properties that might be surprising at
first glance. For example, in safe Rust, it is possible to have several
mutable references all active at the same time and pointing to the
same memory location, provided that their target type is zero-sized.
This case is permitted by Rust because, having size zero, there are
no overlapping memory regions between the targets of the mutable
references.
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§ Types that do not implement the Unpin trait have special aliasing
properties, by which it might be possible to have several mutable
references to the same non-zero-size type all active at the same
time and pointing to the same memory location.

5.2.3 IDE Integration

In addition to reporting errors on the command line, our verification tools
can also be used from the Visual Studio Code IDE and its freely-licensed
VSCodium distribution [54, 55]. There are several ways to integrate the
error reporting of a verification tool in an IDE, with various degrees of
engineering effort and customizability. Some of these options are made
possible by our design choice of using the Rust compiler’s error reporting
infrastructure, which can report machine-readable error messages in
a JSON format that is well-understood by existing tools in the Rust
ecosystem [129].

5.2.3.1 Using Rust Analyzer

The simplest of all options does not involve writing new code at all, and
only requires a special configuration of Rust Analyzer [120], the official
Visual Studio Code extension for Rust. The extension has been built
to report in the IDE the error messages that a command reports using
the compiler’s JSON format. By default, this command is a standard
cargo check , which only checks that a Rust crate compiles. However,
the extension can also be customized to use one of our verifiers. For
example, the Rust Analyzer configuration reported in Fig. 5.5 shows how
to make the extension verify crates using Prusti instead of just reporting
Rust compilation errors. Despite being very simple, this approach has
some nice advantages. For example, it automatically benefits from Rust
Analyzer’s caching to avoid re-verifying crates that do not contain new
modifications, and the extension behaves reasonably well even in the
cases where the tool unexpectedly crashes. However, there are also several
disadvantages. Since the extension has been designed for a different use
case, the user interface does not clearly distinguish a crate that has
not been verified from one where the verification succeeded. It is not
possible to make the extension automatically start the verification server
component of our tools’ architecture, so the overall performance of the
tool is worse. Switching on and off the verification is tedious because it
requires changing several settings of Rust Analyzer each time. Moreover,
it is still up to the user to download and update the binaries of the verifier.
All these issues might not be a problem for quick demos, but on real
projects, they degrade the user experience.

Figure 5.5: An example configuration
to use Prusti from Rust Analyzer
(v0.3.1868). cargo-prusti is the Prusti
binary to verify a crate.

JSON

{
"rust-analyzer.check.overrideCommand": [

"/path/to/cargo-prusti",
"--quiet",
"--workspace",
"--message-format=json",

],
}
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5.2.3.2 Custom Extension

A second option, slightly more involved but much more customizable,
consists of developing a new IDE extension built around a parser of
the JSON output of our verification tools. This approach brings many
advantages, because such an extension can automatically take care of
downloading the binaries of the verifier, or checking for updates, so that
the user does not have to follow complex instructions to set up their IDE.
Moreover, it makes it possible to add verification-specific buttons and
messages to the user interface, so that the user always knows what is the
outcome of the verification. The disadvantage of this approach is that it
requires developing and maintaining a project for the extension written
in JavaScript or TypeScript, using a completely different set of tools
compared to the development of Rust projects. Nevertheless, this is the
approach that we chose when building our Prusti Assistant extension [119].
Our experience was quite pleasant, and the required maintenance effort
was minimal compared to the maintenance of Prusti.

Workflow At its start, Prusti Assistant automatically downloads the
verification binaries if they are missing, and runs a set of pre-requisite
checks to make sure that, e.g., Rust has been installed on the operating
system. Then, the extension launches our Prusti verification server to
cache and handle efficiently the Viper verification requests generated
by our tools. When the user asks to verify a Rust program, for example
by clicking on a verification button set up in the IDE, the extension
launches in a child process one of our Prusti binaries: prusti-rustc

when verifying a standalone Rust file with no dependencies (convenient
for quick demos), or cargo-prusti when verifying a Rust crate. These
processes verify the Rust program as presented in Sec. 5.1, contacting
the verification server managed by the extension and writing in their
output a list of verification errors in the JSON format. These errors are
parsed by the IDE extension and then converted to IDE diagnostics that
are displayed on the source code. If the verification takes too long, the
user can decide at any moment to interrupt the verification, implemented
with a command that kills the verification processes.

In addition to starting or stopping the verification of a program, the user
interface provides ways to restart the verification server and clear its
in-memory cache, show the exact Prusti version used by the tool, check
for updates, clear all Prusti-related diagnostics, and also offers a few
links of convenience to reach the user guide or the chat of our verification
project. The interface of these actions is shown in Fig. 5.6. The core of
this architecture — parsing the JSON output of a child process — comes
from Rust Assist [130]: a simple and neat extension (now deprecated
in favor of Rust Analyzer) to report Rust compilation errors in Visual
Studio Code. This extension was of great help to us in kick-starting the
development of our Prusti Assistant.

5.2.3.3 Language Server

A third option is to develop a custom extension that, instead of launching
verification processes and parsing their JSON output, delegates all this
logic to a language server, which communicates with the IDE through

https://github.com/viperproject/prusti-assistant
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Figure 5.6: Screenshot of a menu of Prusti
Assistant.

[131]: (2024), Official page for Language
Server Protocol

the language server protocol [131]. The intention of this protocol, which
can be used to implement functionalities such as error reporting or
code navigation, is to decouple the implementation of the extension
from the API of the IDE, making it possible to use the same language
server in different IDEs. One advantage of this architecture, used by
popular extensions such as the Rust Analyzer, is that it makes it possible
to move most of the logic of the extension into a server that can be
written in languages other than JavaScript or TypeScript. By choosing
to implement a language server in Rust, for example, it would be easier
to reuse components implemented in the Rust Analyzer. This approach,
however, does not solve any of the technical challenges of the approach
in Sec. 5.2.3.2. The language server, even when implemented in Rust,
would still have to launch a verifier in a child process, because the
compiler driver architecture of our tools does not support executing
multiple instances of the Rust compiler in the same process. Moreover,
the language server would still need to obtain from the verifier a list of
errors to report, and the JSON output might still be the best way to do so.
In our case, the language server protocol was not stable and complete
enough when we started implementing Prusti Assistant, and since then
we did not find a killer feature useful enough to motivate rewriting our
extension to an architecture based on a language server. However, this
approach might make sense for new tool developers, who might need to
develop a new IDE integration from scratch.
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Conclusions and Future Work 6
“Sokath. His eyes uncovered!”

— Dathon (2368)

6.1 Summary

In this thesis, we have proposed several novel techniques to verify Rust
programs in an automated deductive verification tool. These techniques
are lightweight because they have been designed to require few user
annotations, while still being rich enough to verify expressive user-
chosen properties. Chapter 2 presented why Rust is a good fit for software
verification, showing the language properties, verification opportunities
and design principles of our approach to Rust verification. Chapter 3
presented our technique to reason about programs and libraries entirely
written in safe Rust code, which verified automatically memory safety and
user-provided partial correctness properties. However, such a technique is
incomplete when reasoning about some usages of libraries implemented
with unsafe code, e.g., libraries exposing interior mutability. To handle
those cases, Chapter 4 presented a technique to declare and reason about
library-defined type capabilities on trusted libraries implemented with
unsafe code, making it possible to verify, e.g., usages of popular types
with interior mutability of the standard library. All our techniques have
been implemented in open-source verification tools that are available
online: Prusti [27] for Chapter 3 and Mendel [28] for Chapter 4. Chapter 5
described some notable implementation decisions behind these tools,
which were designed to offer a particularly curated user experience,
intuitively reporting verification error messages on the Rust code both
when running on the command-line and in an IDE. Next, we summarize
our key ideas and solutions to the challenges of Sec. 1.2.

Modeling Type Properties A common goal of our verification tech-
niques is to model relevant properties of Rust’s type system, using — and
optionally checking — them during the program verification. In Chap-
ter 3, this is done by modeling Rust types in the implicit-dynamic-frames
logic, by (1) modeling the read and write capabilities of memory locations
using Viper’s fractional permissions, (2) modeling the composition of
types using nested Viper predicates, and (3) modeling reborrowing cases
using Viper’s magic wands. In Chapter 4, the type properties are modeled
in first-order logic by defining a fine-grained system of capabilities, a
subset of which correspond to the explicit capabilities of shared and
mutable references of safe Rust code. This enables reasoning about the
memory locations that are managed by Rust libraries implemented with
unsafe code, and that cannot be described using the explicit capabilities
of regular Rust types.

Annotations Our techniques provide program annotations that enable
specifying functional correctness properties and type properties. These
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annotations are useful in two ways. First, they enable the realization of
modular deductive verification techniques, as we do. Second, they make it
possible to state explicitly several program properties on which software
developers implicitly rely on. For example, in addition to functional prop-
erties and loop invariant properties, the purity annotations introduced by
Chapter 3 make it possible to declare that the implementation of certain
functions is deterministic, does not have side effects, and depends only
on the values of its arguments. In Chapter 4, this idea is brought forward
by introducing new annotations for pure functions whose result can
additionally depend on the memory addresses reachable from the func-
tion arguments. Moreover, the implicit capability annotations defined
in the same chapter make it possible for Rust developers to clearly state
several properties of the memory locations that it manages via unsafe
code: immutability, uniqueness, non-aliasing, thread-local usage, and so
on.

Automation Our techniques have been designed for automation, which
is achieved in two steps. First, we developed our techniques to be
modular, in that they verify each Rust function independently from the
implementation of other functions. This is made possible by the program
annotations, which provide an abstraction of the function behavior that
can be used in place of the implementation. Second, we constructed our
techniques to work on top of an SMT solver. The choice of using the Viper
verification language greatly helped in the realization of both these two
steps.

Usability A distinguishing feature of our techniques is their high
usability, which is achieved in several ways. First, we designed the
language of specifications to be as familiar as possible to Rust developers.
For example, declaring boolean conditions in contract annotations can
be done using the exact same syntax and semantics as Rust. Second, we
designed our tools to be user-friendly in the way they report verification
errors and other possible failures. Notably, our tools report verification
errors on the source-code level — the same level on which developers
reason and write program annotations. This minimizes fatiguing context-
switches for the users. To ensure a good user experience, we implemented
our tools to be easily usable from both the command line and from an IDE:
on the command line, our error messages are reported using the familiar
syntax of Rust’s compiler errors; in the IDE, our errors are reported as
native IDE diagnostics.

Overall, we believe our work had a great impact on the verification
and programming languages community, showing that it is possible to
leverage the Rust types to simplify the task of verification, encouraging
this way further lines of research. For example, following our publication
of Prusti [29] in 2019, RustHorn [85] and Creusot [86] showed how
borrowing relations can be encoded into first-order logic using prophecy
variables, enabling more efficient verification without constructing a
memory-safety proof. Verus [62] showed how Rust’s type checks can
be used to build new Rust-like languages that are particularly well-
suited for verification. Flowistry [89] showed how Rust’s type system
can additionally help and bring precision to static analysis techniques.
Flux [81] showed how Rust types enable efficient liquid-type-based
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verification of some functional correctness properties.

6.2 Future Work

There are many directions along which our verification techniques for
verification of safe code (Ch. 3) or safe clients (Ch. 4) can evolve. Most of
them are specific to one of these two techniques, but a natural extension
of our work is to unify the two techniques, encoding the capabilities of
Ch. 4 in separation logic as described at the end of this section.

6.2.1 Verification of Safe Code

Formalization Our encoding of Rust programs into Viper is based on a
soundness principle by which if the verification of the Viper program
succeeds, then the execution of the Rust program is guaranteed to never
fail. We have justified the correctness of our approach on paper [29] and
we continuously validate in our test suite that the verifier behaves as
expected. However, both approaches have their limitations. To fill this
gap, it would be interesting to formalize our verification technique in a
foundational way. One promising approach could be using Iris [58] and
building upon RustBelt [101] or its various evolutions [102, 115].

Specification Language Prusti currently does not support reasoning
about memory addresses or object identifiers. Designing new specifica-
tions to reason about these program properties would enable new speci-
fication approaches, similar to those introduced by Verus. As discussed
in Ch. 3, it might also be possible to re-design the pledge specifications to
offer a more generic syntax inspired by Creusot’s prophecies. This is not
trivial because it might require generating new kinds of magic wands
in the Viper encoding, as well as proving a formal connection between
them and the prophecies formulation of specifications.

Rust Language Features By constructing a core memory-safety proof,
our technique is well-suited to be extended to the verification of unsafe
code, making it a natural extension of our work. For example, research in
this direction might design new annotations to associate special resources
with the memory locations used in unsafe code. Within safe code, our
technique can still be extended to model more language features, such as
complex cases of borrows, traits and lifetime annotation. All these require
solving challenges in the generation and automation of the program
proof.

Verification-Enabled Optimizations The program reasoning that is
possible in a verifier is usually more advanced than the compiler rea-
soning that is used to enable optimizations. One interesting research
direction to explore consists of feeding back useful verified properties
to the compiler, in order to enable new optimizations. For example, this
approach might elide the redundant runtime checks that we identified
in the second part of our evaluation of Ch. 3. A research challenge in this
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direction is to prove that none of the new optimizations will introduce
undefined behavior.

Shared Tool Framework As visible in the discussion of the related work
of Ch. 3, there are some recurring concepts that have been implemented
with some variation in multiple works. For example, the construction
of a graph representation of the borrowing relations, or a language
for contract annotations used by deductive (and other) verifiers. This
duplication leads to duplicate engineering effort in the implementation,
and additional work for the user when switching from one verification
tool to the other. This can be mitigated by designing a shared technique-
agnostic verification framework between tools, and by publishing tool
components such as the analysis that computes the borrowing graph or
the capability analysis as libraries.

6.2.2 Verification of Safe Clients of Interior Mutability

Formalization Similar to our approach in Ch. 3, we have justified on
paper the soundness of our encoding of Rust programs into Viper (cf.,
Sec. 4.4, Sec. 4.5) and we have developed a test suite to validate the
verifier’s behavior on numerous programs. Moving forward, it would be
interesting to formalize our verification technique in a foundational way.
For example, using Iris [58] and building upon RustBelt [101] or its many
evolutions [102, 115]. In particular, we expect that the correctness of each
of our library capability annotations might be proven as a lemma stating
that the capability (expressed as a semantic invariant) associated with
the content of a library type with interior mutability can be obtained
from the capability of the library type that contains it.

Automated Core Capability Discovery In our work, we require the
user to write trusted capability annotations on the libraries implemented
with unsafe code. However, some of the core capabilities of a library
are already implied by the implementation of the library. For example,
any library implementing the Deref trait provides a deref method
that returns a shared reference to a memory location that, in some cases,
is computed by the library by casting a raw pointer. Because of this, it
should be possible to develop a whole-program static analysis technique
that analyzes the source code of a library to identify a subset of its implicit
core capabilities. These discovered capabilities could be then used to
suggest capability annotations to the user, or could be directly used in
our verification technique.

Soundness-Based Optimizations The semantics-preserving transfor-
mation (SPT) technique that we presented can be applied to other contexts.
One example is to motivate a new kind of optimization, which can only
be applied to safe Rust code that is known to never be called from unsafe
code. Our insight is that there seem to be more optimizations possible in
this safe subset of Rust than in the general Rust language. Optimizations
of this kind would have the nice side effect of encouraging developers
to avoid unsafe code in order to benefit from the potential additional
optimizations.
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Fuzz Testing Soundness A second possible usage of our SPT technique
is the realization of automated techniques for testing the soundness
of Rust libraries. The idea is to use our SPTs as random mutations in
a fuzzing tool whose aim is to detect sequences of safe API calls that
demonstrate that a Rust library is unsound. Concretely, the fuzzer could
start from a set of seed programs that call small sequences of API calls.
These seed programs could be, for example, the programs in the test
suite of the library to be fuzzed. Then, the fuzzer could generate random
mutations using our SPTs, checking the result of each mutation with Miri
to identify which of them have any UB. Since our transformations only
preserve the behavior of a program under the hypothesis that all used
libraries are sound, finding UB in any of the modified programs is only
possible if one of the libraries (or their annotations) is unsound.

Separation-Logic Encoding In our work, we defined a first-order-logic
model of the capabilities of Rust types. The choice of using first-order
logic derives from flexibility and automation needs, that we felt were
more challenging to satisfy using a separation logic. However, we think
that separation-logic model of our capabilities is possible. The core idea is
that each of the implications between capabilities in our technique could
be expressed using nested logical predicate definitions in separation
logic, while non-aliasing properties could be expressed using a resource
algebra similar to what done in concurrent abstract predicates [132].
A separation-logic encoding of this kind would enable unifying our
verification technique of Ch. 4 with Ch. 3.

Language Support Even though the Mendel verifier that we imple-
mented in Ch. 4 uses the safe verification framework of Prusti, and thus
benefits from the various same usability benefits among which error
reporting and IDE integration, the Rust language support of Mendel is
still quite limited. A possible direction is to continue the engineering
effort and implement support for quantifications, loops, arrays, slices,
and two-phase borrows. This would greatly increase the set of verifiable
clients, to the point where Mendel could be tested using almost the
entire test suite of Prusti. Continuing in this direction, one of the main
challenges could be to add support for checking pledge annotations in
Mendel. This should be possible by taking inspiration from the internal
checks that Viper does to check packaging of magic wands.
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