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A B S T R A C T

Extreme market events, characterized by sudden and significant disrup-
tions in market behavior, pose profound challenges to economic stability
and predictability. These events, often exemplified by financial bubbles and
crashes, disrupt the normative frameworks and functionalities of financial
markets and can lead to drastic economic consequences. Studying bubbles
and further extreme events is therefore crucial, despite their long-standing
reputation as unpredictable phenomena, which stems from the rarity of
these events and the complex, interdependent factors leading to their oc-
currence. While traditional financial theories and models typically rely on
known, usually oversimplified distributions which only work well under
stable conditions, specific methods can be developed to capture the transi-
tioning dynamics. Through these methods, even within the unpredictability,
patterns and underlying mechanisms can be studied and understood.

The scope of this thesis revolves around the methods, namely econometric
models and statistical tests, for the exploration of these rare but impactful
events.

The first half of the thesis introduces two time series models that cap-
ture the dynamics of market crashes by exploring the crash hazard rate.
The first model links the crash hazard rate to a non-local estimation of
mispricing, integrating historical price levels and investor expectations to
better capture potential market crashes and drawdowns. This model chal-
lenges traditional bubble models by describing the mispricing as non-local
self-referencing, breaking the instantaneous relationship between risk and
return. It quantifies what the investors ‘anchor’ on, providing a more re-
alistic depiction of financial crashes. Extending this analysis, the second
model differentiates the influences on the crash hazard rate into two parts:
the baseline intensities from external shocks and the self-excitations from
endogenous interactions. This distinction allows for an in-depth analysis of
market behaviors, illustrating that market crashes are typically not isolated
events but are contagious, especially during periods of market exuberance.
This model is exceptionally good at capturing the asymmetric shape in
bubble development, where a prolonged period of gradual price increases
are followed by swift and steep declines. Moreover, it captures key stylized
facts of financial time series such as volatility clustering and fat-tailedness,
without incorporating traditional volatility models like GARCH. By inte-
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grating principles from behavioral finance such as positive feedback loop
and herding, these models help understand the complexities of market
dynamics, providing insights into how and why markets crash.

The second half of the thesis focuses on statistical tests for outlier detec-
tion in data with exponential and Pareto tails. In the analysis of financial
data, it is often observed that distributions in the tails follow a Pareto
law, which indicates the fat-tailed characteristics of financial time series.
However, even within these Pareto-distributed tails, there exist significant
anomalies. These outliers are not statistical curiosities; on the contrary,
they represent critical events such as market crashes that hold substantial
relevance. The statistical tests and methods developed in our study are
particularly designed to capture these anomalies. Thanks to Extreme Value
Theory, the tests can also be applied to more general samples that have
approximately exponential or Pareto tails. By discussing the identification
of outliers in data with fat-tailed distributions, these statistical tools help
define what is ‘extreme’ in financial market.

The dual perspective provided by the innovative econometric models
and statistical tests in this thesis regarding bubbles and further extreme
events sheds light on the mechanisms and implications of these rare and
transformative occurrences in the financial world and beyond.
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Z U S A M M E N FA S S U N G

Extrem finanzielle Ereignisse, gekennzeichnet durch plötzliche und si-
gnifikante Störungen im Marktverhalten, stellen tiefe Herausforderungen
für die wirtschaftliche Stabilität und Vorhersagbarkeit dar. Diese Ereig-
nisse, oft als Finanzblasen und -crashs bezeichnet, stören die normativen
Rahmenwerke und Funktionalitäten der Finanzmärkte und können zu
drastischen wirtschaftlichen Konsequenzen führen. Das Studium extremer
finanzieller Ereignisse ist daher entscheidend, trotz ihres langjährigen Rufs
als unvorhersehbare Phänomene, was aus der Seltenheit dieser Ereignisse
und den komplexen, interdependenten Faktoren, die zu ihrem Auftreten
führen, resultiert. Während traditionelle finanzielle Theorien und Model-
le typischerweise auf bekannten, meist übervereinfachten Verteilungen
basieren, die nur unter stabilen Bedingungen gut funktionieren, können
spezifische Werkzeuge entwickelt werden, um die übergangsweisen Dy-
namiken zu erfassen. Mit diesen Werkzeugen können, auch innerhalb der
Unvorhersehbarkeit, Muster und zugrundeliegende Mechanismen studiert
und verstanden werden.

Der Umfang dieser Arbeit dreht sich um die Werkzeuge, nämlich ökono-
metrische Modelle und statistische Tests, zur Erforschung dieser seltenen,
aber einflussreichen Ereignisse.

Die erste Hälfte der Arbeit führt zwei Zeitreihenmodelle ein, die die
Dynamik von Marktzusammenbrüchen durch die Untersuchung der Crash-
Gefahrenrate erfassen. Das erste Modell verknüpft die Crash-Gefahrenrate
mit einer nicht-lokalen Schätzung der Fehlbewertung, integriert histori-
sche Preisniveaus und Investorenerwartungen, um potenzielle Marktzu-
sammenbrüche und -abschwünge besser zu erfassen. Dieses Modell stellt
traditionelle Blasenmodelle in Frage, indem es die Fehlbewertung als nicht-
lokal selbstreferenzierend beschreibt, wodurch die sofortige Beziehung
zwischen Risiko und Rendite aufgebrochen wird. Es quantifiziert, woran
sich die Investoren ‘anchor’, und bietet eine realistischere Darstellung von
Finanzkrisen. Die erweiterte Analyse des zweiten Modells differenziert die
Einflüsse auf die Crash-Gefahrenrate in zwei Teile: die Baseline-Intensitäten
von externen Schocks und die Selbstanregungen von endogenen Interak-
tionen. Diese Unterscheidung ermöglicht eine tiefgehende Analyse von
Marktverhaltensweisen und zeigt, dass Finanzcrashs typischerweise keine
isolierten Ereignisse sind, sondern ansteckend, besonders in Zeiten von
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Markteuphorie. Dieses Modell ist besonders gut darin, die asymmetrische
Form in der Blasenentwicklung zu erfassen, bei der eine verlängerte Periode
allmählicher Preisanstiege von schnellen und steilen Rückgängen gefolgt
wird. Darüber hinaus erfasst es wichtige stilisierte Fakten von Finanzzeitrei-
hen wie Volatilitätsclusterung und Fett-Schwänzigkeit, ohne traditionelle
Volatilitätsmodelle wie GARCH einzubeziehen. Durch die Integration von
Prinzipien der Verhaltensfinanzierung wie positive Rückkopplungsschleife
und Herdenverhalten helfen diese Modelle, die Komplexität der Markt-
dynamik zu verstehen und bieten Einblicke in wie und warum Märkte
zusammenbrechen.

Die zweite Hälfte der Arbeit konzentriert sich auf statistische Tests zur
Ausreirerkennung in Daten mit exponentiellen und Pareto-Schwänzen. Bei
der Analyse von Finanzdaten wird oft beobachtet, dass die Verteilungen
in den Schwänzen einem Pareto-Gesetz folgen, was die fett-schwänzigen
Eigenschaften von Finanzzeitreihen anzeigt. Doch selbst innerhalb dieser
Pareto-verteilen Schwänze gibt es bedeutende Anomalien. Diese Ausreir
sind keine statistischen Kuriositäten; im Gegenteil, sie stellen kritische
Ereignisse wie Marktkrisen dar, die von erheblicher Bedeutung sind. Die in
unserer Studie entwickelten statistischen Tests und Methoden sind speziell
dafür ausgelegt, diese Anomalien zu erfassen. Dank der Extremwerttheorie
können unsere Tests auch auf allgemeinere Proben angewendet werden,
die annähernd exponentielle oder Pareto-Schwänze aufweisen. Indem die
Identifizierung von Ausreirn in Daten mit fett-schwänzigen Verteilungen
diskutiert wird, helfen diese statistischen Werkzeuge zu definieren, was als
‘extrem’ auf dem Finanzmarkt gilt.

Die doppelte Perspektive, die durch die innovativen ökonometrischen Mo-
delle und statistischen Tests in dieser Arbeit bezüglich extremer finanzieller
Ereignisse geboten wird, beleuchtet die Mechanismen und Implikationen
dieser seltenen und transformativen Vorkommnisse in der Finanzwelt und
darüber hinaus.
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1
I N T R O D U C T I O N

When I see a bubble forming, I rush in to buy, adding
fuel to the fire. That is not irrational.

— George Soros

Central to the extreme market events are financial bubbles, which are
characterized by transient explosive growth followed by abrupt and intense
corrections. As we explore the intricate dynamics of financial bubbles, it
becomes imperative to look back at the historical bubbles that have shaped
our current understanding.

1.1 lessons from historical bubbles

The Tulip Mania and the South Sea Bubble

The Tulip Mania (1637) and the South Sea Bubble (1720) are among the
earliest recorded financial bubbles, showing how speculative frenzy can
detach asset prices from their intrinsic values. During the Tulip Mania,
the prices of tulip bulbs soared to extraordinary heights before collapsing,
driven by a speculative craze with little real economic activity. Similarly, the
South Sea Bubble saw the stock price of the South Sea Company skyrocket
based on speculative trading, ultimately ending in a catastrophic crash.
Both cases reveal the nature of zero-sum games to a certain extent, where
the profits of some investors came at the expense of others, leaving little
lasting value for the broader economy.

The British railway bubble and the dot-com bubble

In contrast, the British railway bubble of the 1840s and the dot-com bubble
of the late 1990s, while also marked by speculative excesses, left behind
substantial infrastructure and technological progress. A few years after
the British railway bubble burst, The Economist remarked, ‘Mechanically
or scientifically, the railways, with all their multiplied conveniences and
contrivances, are an honour to our age and country: commercially, they are
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2 Introduction

great failures.1’ This comment captures the dual nature of such bubbles:
while they can drive significant technological and infrastructural progress,
they can also lead to severe financial losses and misallocation of resources.
The dot-com bubble had a similar pattern, where the collapse of inflated
internet stocks in the early 2000s showed how technological optimism and
speculative investments can lead to problems. Despite the financial chaos,
it still resulted in important tech innovations and digital infrastructure.

Modern financial crises: 1929, 1987, and 2007-2008

The stock market crashes of 1929, 1987, and the 2007-2008 financial crisis
illustrate the consequences of financial bubbles on regional and global
economy. The 1929 crash, which was precipitated by over-speculation and
over-leveraging among investors, was also deeply influenced by factors
such as poor economic policies and bank weaknesses. The market failure
led to the Great Depression, a severe worldwide economic depression that
lasted through the 1930s.

In contrast, the crash of 1987, known as Black Monday, highlighted
the risks associated with computerized trading and automated markets.
While automated trading systems and portfolio insurance were intended to
handle risks, they actually accelerated the market failure once their limits
are exceeded during turmoils (Malliaris and Urrutia, 1992). Despite the
severity of the crash, the impact was relatively short-lived and did not lead
to a depression.

The 2007-2008 financial crisis, rooted in the housing bubble and exac-
erbated by complex financial derivatives like mortgage-backed securities,
demonstrated how innovations in financial technology can contribute to
systematic risks. The financial systems were unprepared for the cascading of
defaults and the devaluation of supposedly safe assets. As noted by George
Soros in his critiques of the period, this failure of the financial systems high-
lighted the severe consequence of relying too heavily on poorly understood
financial instruments (Soros, 2009). In response, regulations such as the
Dodd-Frank Act were enacted to strengthen the financial systems.

The study of financial bubbles has fundamentally changed how we think
about economics, from viewing extreme market events as unprecedented
abnormal outliers to recognizing them as systematic and cyclical phenom-
ena. This change of view can be traced back to Hyman Minsky’s Financial

1 Sept. 15, 1855 issue, pp.1010-11



Introduction 3

Instability Hypothesis (Minsky, 1977), which provides a framework for
understanding financial bubbles, emphasizing how periods of financial
stability can lead to speculative euphoria and increasing risk-taking. Works
like Manias, Panics, and Crashes (Kindleberger, 1978), and A Short History
of Financial Euphoria (Galbraith, 1994) also have highlighted the recurring
nature of financial instability driven by speculative manias.

1.2 approaches to understanding bubbles

As previously argued, the study of financial bubbles has changed our
understanding of economics. This shift in perspective has encouraged
researchers and practitioners to develop econometric models to explain
the formation, persistence, and bursting of financial bubbles. The various
approaches to understanding bubbles can be categorized into rational
expectations, behavioral finance, and econophysics models led by Log-
Periodic Power Law Singularity (LPPLS) models. Through these approaches,
we gain deeper insights into the mechanisms that drive financial bubbles
and their impact on markets.

Rational expectation

The Efficient Market Hypothesis (EMH) proposed by Fama (1970) argues
that asset prices fully reflect all available information, making it impossible
to consistently achieve higher returns without taking on additional risks.
According to EMH, bubbles should not occur because any deviation from
fundamental values is quickly corrected by rational investors. However, the
existence of bubbles suggests that markets are not always perfectly efficient.
The pioneers of rational bubble models have provided a more nuanced
perspective on market efficiency. This class of models are based on rational
expectation theory, introduced by Muth (1961) and further developed by
Lucas (1972), suggests that individuals form expectations about the future
based on all available information and that these expectations are, on
average, accurate. Rational expectation explains that the deviation from
intrinsic value persists because investors believe they can sell the overvalued
asset to someone else at a higher price. The study of rational bubbles gained
significant attention in the 1980s and 1990s. Several models have been
developed to explain how rational bubbles can exist even when investors
are rational.



4 Introduction

Blanchard (1979), Blanchard and Watson (1982) introduced a rational
bubble model demonstrating the emergence of rational bubbles due to
investors’ expectation of future price increases. Tirole (1982) explored the
conditions under which bubbles cannot exist in general equilibrium settings,
while Santos and Woodford (1997) analyzed the sustainability of rational
bubbles under different market conditions. These studies imply that, for
finite horizon investors, bubbles cannot arise as long as rational investors
can sell their shares without restrictions in any future scenario, and for
infinite horizon investors, bubbles become possible when removing the
transversality condition.

Tirole (1985) extended his analysis to a more realistic market structure
and examined the conditions under which bubbles can exist in a market
with overlapping generations of investors, suggesting that bubbles can
be sustained through intertemporal trades and expectations. Weil (1987)
also provided insights into how different confidence levels among different
generations can impact the formation and persistence of bubbles. These
models highlight the role of demographic and generational factors on
bubble dynamics, suggesting that bubbles can persist if the expectations of
future generations continue to support high asset prices. However, these
models generally assume stable demographic factors over time. Real-world
deviations, such as changes in population growth or investor behavior, can
compromise the models’ applicability.

Diba and Grossman (1988a) investigated the relationship between rational
bubbles and market fundamentals. Further research by Froot and Obstfeld
(1991) explored intrinsic bubbles and how they are related to fundamental
economic variables. Garber (2000) also analyzed historical bubbles to under-
stand their connection to market fundamentals and investor behavior. These
studies highlight the role of market fundamentals and investor expectations
in bubble formation, revealing that it is challenging to distinguish between
bubbles and fundamental-driven price changes.

Evans (1991) further extended the rational bubbles framework by incor-
porating stochastic processes, suggesting that prices can follow a stochastic
path with occasional deviations from fundamental values due to rational
speculation. West (1987) further contributed by investigating the empirical
characteristics of asset price movements in the presence of stochastic bub-
bles. The stochastic nature of bubbles implies that they can be unpredictable,
making it difficult for policymakers and investors to identify. While these
models account for randomness, they still assume that investors have a
consistent understanding of fundamental values.
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Empirically validating rational bubbles is challenging due to the need
to accurately measure fundamental values and investor expectations. Re-
search has shown that rational bubble models do not reliably comply with
empirical tests (see e.g. Adam and Szafarz, 1992; Camerer, 1989a; Flood
and Hodrick, 1990b, for reviews). Diba and Grossman (1988b) introduced a
test to detect rational bubbles based on the stationary properties of asset
prices and dividends, whereas Evans (1991) demonstrated that such a test
has limited power in detecting periodically collapsing bubbles. At a more
fundamental level, Lux and Sornette (2002) and Malevergne and Sornette
(2001) have further showed that the distributions of asset returns predicted
by rational bubble models are inconsistent with empirical estimates.

Irrational exuberance

‘Irrational exuberance’ is a term proposed by former Federal Reserve
Chairman Alan Greenspan in a 1996 speech, refers to the phenomenon
where investor enthusiasm drives asset prices above their fundamental
values. This term became popular with the publication of Robert J. Shiller’s
book Irrational Exuberance in 2000, which scrutinized the market bubbles in
the 1990s and early 2000s. The concept of irrational exuberance has its root
in behavioral finance, which seeks to understand how psychological and
emotional biases influence financial decisions, making it critically diverges
from classical financial theories like the EMH.

The theoretical foundations of behavioral finance stem largely from the
Prospect Theory and Mental Accounting. Kahneman and Tversky (1979)
introduced the Prospect Theory and explained that people value gains
and losses differently, leading to decision-making that deviates from the
expected utility theory. Thaler (1985) on the other hand explored how
individuals classify and treat money differently based on subjective criteria
in his work on Mental Accounting.

One of the core principles of behavioral finance is the concept of cogni-
tive biases. These biases, such as overconfidence, loss aversion, and herd
behavior, can cause investors to make decisions that deviate from rational-
ity. It also emphasizes the role of emotions in financial decision-making.
Emotions such as greed and fear can drive market volatility and create
feedback loops that exacerbate price fluctuations. During periods of market
exuberance, greed can fuel speculative buying, pushing prices to unsustain-
able levels. Conversely, during market downturns, fear can lead to panic
selling, causing prices to drop below intrinsic values. These emotional re-
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sponses question the idea that markets are always rational and emphasize
the importance of psychological factors in influencing the market dynamics.
Social factors also play a significant role in behavioral finance. Information
cascades, where individuals base their decisions on the actions of others
rather than on the information they have, can lead to collective irrationality
and the formation of bubbles. Additionally, the influence of media and
opinion leaders can influence investor sentiment and drive market trend.

The recognition of cognitive biases and emotional responses have led to
specific behavioral finance models. The Noise Trader model (Black, 1986a;
De Long et al., 1990) introduces irrational traders into market dynamics,
illustrating how their non-fundamental trading can result in increased asset
price volatility and the creation of bubbles. Similarly, models on Sentiment
Indices (Baker and Wurgler, 2006) and Overconfidence (Odean, 1998) ex-
plore how excessive optimism and self-assurance among investors can lead
to mispricings that significantly deviate from fundamental values. Further-
more, the Limits to Arbitrage model (Shleifer and Vishny, 1997) addresses
why rational, profit-seeking investors sometimes cannot exploit mispricings
due to risks and other market frictions, thereby allowing bubbles to inflate
further and persist. The perspectives adopted by these models are crucial
in explaining why speculative bubbles can form and eventually burst.

The behavioral finance models, however, still rely on the framework of
rational expectations to some extent (Barberis and Thaler, 2002; Shleifer,
2000). This is because irrational behaviors do not always provide a struc-
tured framework. While these models can effectively capture the bubbles
dynamics (although sometimes considered retrospective), they struggle to
provide systematically applicable theories and therefore need the mathe-
matical rigor from traditional finance theories. The integration of rational
frameworks helps make the behavioral finance models analytically tractable,
but also constrains the full expression of irrational market dynamics.

LPPLS models

Unlike traditional financial models that primarily analyze trends and
cycles in the financial market, the Log-Periodic Power Law Singularity (LP-
PLS) models (Johansen, Ledoit, and Sornette, 2000; Sornette, 2003a; Sornette,
2003b) are designed to identify the early signals of speculative bubbles. This
class of models is inspired by phase transitions and critical phenomena
in physics, such as the behavior of materials near their melting points or
the alignment of spins in a ferromagnetic material. By viewing financial
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markets as complex systems nearing critical phase transition, a slight per-
turbation can lead to a substantial shift in market dynamics – a bifurcation.
This critical state is characterized in LPPLS models by parameters that scale
with a log-periodic power law, indicating the susceptibility near a critical
point.

The power law component expressed by K(tc − t)m captures the super-
exponential acceleration in asset prices, where tc is the critical time expected
for the bubble to burst and m between 0 and 1 quantifies the intensity of
the bubble, representing a power law singularity. This super-exponential
acceleration is distinctive of speculative bubbles and is driven by positive
feedback loops where increased investment further drives up asset prices,
leading to even more investment. Meanwhile, the log-periodic component
involving cos(ω ln(tc − t) + ϕ) adds increasing frequency of oscillations as
markets approach tc, enhancing the model’s ability to capture the dynamics
at the brink of a crash. The crash hazard rate represents the probability
per unit time that a crash will occur, given that it has not yet happened.
The hazard rate of the model escalates as the critical time nears, indicating
heightened market instability and improving the model’s predictive accu-
racy regarding the timing of significant market corrections. This synthesis
of the power law growth and log-periodic fluctuations thus provides a
comprehensive framework for understanding and predicting the phases
and instabilities of financial bubbles.

The LPPLS models consider the presence of two types of traders within
the market: rational traders who operate with rational expectations, and
noise traders who exhibit herding behavior and amplify market volatility.
One can roughly see the power law part representing the rational acknowl-
edgment of larger risks and hence higher returns, and the oscillation part
as reflecting the interactions between different market participants and the
growing instability of the market. In fact, Schatz and Sornette (2020) have
clarified that there is no such thing as a rational bubble. The behaviors of
agents need to depart in one way or another from the standard assump-
tion, i.e., there needs to be at least one agent that is not rational or not
utility-maximizing, in the formation of a bubble.

The LPPLS model has been applied extensively to diagnose and predict
financial bubbles across various asset classes, including equities (e.g. Zhang
et al., 2016), commodities (e.g. Sornette, Woodard, and Zhou, 2009), real
estates (e.g. Zhou and Sornette, 2006), and cryptocurrencies (e.g. Wheatley,
Sornette, Huber, et al., 2019). Latest development includes the Deep LPPLS
model, which utilizes deep neural networks to enhance the precision of pa-
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rameter estimation and extend the forecasting capabilities to critical points
in various systems (Nielsen, Sornette, and Raissi, 2024).

Having outlined the historical development and milestones in the field,
we now introduce the frameworks and methodologies employed in this
thesis.

1.3 new bubble models with non-local hazard rate

In the models discussed above, the relationship between risk and return
is often depicted as an instantaneous connection, which oversimplifies the
market dynamics where inertia exists. Assuming that risks are instantly
reflected in returns effectively ignores the cumulative effects of prolonged
mispricings built up through a complex interplay between market forces
and investor psychology. During bubble periods, the perceived risk is not
instantly reflected in returns due to investor exuberance, herd behavior, and
various frictions. The assumption of instantaneous relationship can lead to
misunderstanding of the timing and the magnitude of bubble dynamics.
Therefore, it is natural to consider a non-local crash hazard rate.

Non-local behavioral hazard rate

In financial markets, the concept of ‘anchoring’ refers to the cognitive
bias where individuals rely on previously known information as reference
point to make new decisions. This anchoring effect significantly influences
investors’ perceptions regarding asset prices. Specifically, in the context of
market bubbles and crashes, investors tend to anchor on past price levels
when assessing current prices and predicting future trends.

Building on the concept of anchoring, we propose the non-local behavioral
self-referencing hazard rate, which is determined by a non-local estimation
of mispricing that reflects deviations from long-term price trends. In the
novel class of models that incorporates such non-local hazard rate, investors
rely on relative metrics, namely the ratio of the current price to the price
at a previous time adjusted for expected growth. This ratio serves as an
indicator of mispricing, denoted as δt,τ , where t is the current time point
and τ is the time period over which the mispricing is assessed (τ is also
among the model parameters to be estimated). This idea is illustrated in
Figure 1.1
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Figure 1.1: Illustration of the concept of mispricing captured by the ratio δt,τ

When δt,τ exceeds 1, it signals overpricing. The larger δt,τ is, the larger
the departure of the price from its inferred long-term level. When δt,τ
becomes significantly larger than 1, investors progressively presume that
the price trajectory is not sustainable and anticipate a growing probability
of a correction, which will terminate the bubble in progress and bring back
the price to its long-term growth trend.

The expression for the log-return of the risky asset rt in the model is
given by

rt = r̄ + σt · εt + κt · (λt − Jt · It),

where r̄ is the unconditional expected return, κt is the average size of a
jump, σt is the volatility, εt is a standard normal Gaussian variable, Jt is
a positive standardized random variable, and It is a Bernoulli random
variable with a conditional success probability λt, which is, as we explained
earlier, the non-local crash hazard rate.

In this setup, λt is modeled using a logistic function of the mispricing
measure because it is a straightforward function that ensures small mispric-
ings have minimal impact on crash probability, while large deviations push
the probability of a crash close to 1.

The model inherently incorporates a positive feedback mechanism: the
higher the price deviates from what can be expected over the long term,
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the larger the probability of a crash. This elevated crash probability, in
turn, demands a higher compensatory return for investors to undertake the
increased risk. As the expected return rises, it can drive prices even higher,
further deviating from the fundamental value and increasing the crash
hazard rate. This cycle can continue, potentially fueling bubble development
until a significant correction occurs in the form of a market crash. When
the bubble eventually bursts, the market correction is not just a reflection of
current risk but also a consequence of the accumulated imbalances.

Self-exciting hazard rate

The non-local behavioral hazard rate allows for the incorporation of past
information over extended periods, offering a robust method for modeling
mispricing and market corrections. However, the jump occurrence in the
previously proposed model is governed by a Bernoulli process, meaning
the jump clustering is a result of the built-up high crash hazard rate due to
a deficit of correcting jumps, and each jump within the cluster is indepen-
dently triggered by some level of mispricing. This independence restricts
the model from accounting for the clustering of jumps resulting from the
endogenous interplays within the market, as illustrated by e.g. reflexivity
(Soros, 1988). This limitation is also a common problem for models that use
Poisson and Lévy processes to model jumps. Their assumption of event
independence prohibits them from accounting for the clustering of jumps
identified in financial series.

The remedy we propose is to add a self-exciting term to the crash hazard
rate. Given the scope of our study, we conveniently employ the discrete-
time Hawkes process, allowing the crash hazard rate to be expressed as the
intensity of a Hawkes process

λt = µt +
t−1

∑
j=1

ϕ(j∆)Jt−j,

where the baseline intensity µt is characterized by a simple linear function
of the non-local self-referencing mispricing. As mispricing level increases,
the probability of immigrant jumps occurring increases, and the offspring
jumps also start from a higher initial intensity, making the system more
unstable. The higher probability of frequent and closely clustered jumps
demands higher expected returns for risk compensation, boosting the
bubble development until corrective jumps occur.



Introduction 11

Empirically, asset prices seem more volatile than their fundamental values
(Shiller, 1981b; Shiller, 1992a). This is known as ‘excess volatility’, which
suggests that price fluctuations are far greater than what can be explained by
relevant information. This leads to the understanding that price dynamics
are largely endogenous, driven by mechanisms within the market itself.
The inclusion of the self-excitation of jump process enhances the positive
feedback loop and attributes a significant portion of market movements
to endogenous dynamics. This new framework demonstrates how internal
market behaviors can scale up to produce critical phenomena, aligning
with bubble models like LPPLS, where price movements and speculative
bubbles are described as consequences of market sentiments and positive
feedback loops. Integrating this mispricing-jump interaction with Hawkes
process allows our model to naturally capture the clustering of jumps and
the endogenous dynamics of market volatility.

A key feature of the self-exciting hazard rate is that once the system is
triggered by external shocks, the subsequent jumps can sustain even after
the initial trigger diminishes. This is in contrast to a non-self-exciting hazard
rate, where the probability of jumps would decrease once the mispricing or
external shock is removed. The self-exciting nature of the model means that
past events continue to influence future events, perpetuating the volatility
even in the absence of new external triggers.

To quantify mispricing and its impact on the hazard rate, the model uses
a measure similar to the one in the previous model, defined as the ratio
of the current price to a reference price adjusted for expected growth over
a period. This model with self-exciting hazard rate is in particular good
at capturing asymmetries in volatility and jumps. It also has the ability
to replicate key stylized facts of financial time series, such as volatility
clustering, leverage effects, and fat-tailed return distributions. Unlike tradi-
tional volatility models like GARCH, which require additional constructs
to account for the aforementioned features, the Hawkes process inherently
captures them through its self-exciting nature. This makes the model both
parsimonious and effective for practical applications in risk management
and regulation.

Methodology

The major tasks facing econometric models are to rigorously estimate
and correctly interpret their parameters. For our first model, Maximum
Likelihood Estimation (MLE) offers a straightforward way to estimate the
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parameters that best fit the observed data when the log-likelihood function
is tractable. For the second model, a more complex Monte-Carlo Expectation-
Maximization (MCEM) is employed to handle the log-likelihood function
that does not have a closed form, especially in the presence of latent vari-
ables (in our case, the jumps). This method uses Monte Carlo simulations
to estimate the conditional expectations required in the E-step of the EM
algorithm. By simulating numerous potential outcomes, the log-likelihood
function can be effectively evaluated. Bayesian optimization is used in the
M-step to improve the accuracy of parameter estimation given it is gradient-
free and naturally deals with the noise intrinsic to MC simulations.

The models are validated using synthetic data, where the underlying
parameters are known, making it possible to assess the quality of parameter
estimation. The validated models are used to simulate asset prices to explore
different market phases and their implications. The models are then applied
to real-world financial data from major stock indices to diagnose historical
price movements, revealing the underlying dynamics of the markets using
the estimated parameters. The robustness and applicability of these models
are showcased through their ability to simulate and diagnose the dynamics
of financial markets.

1.4 stock market crashes are outliers

Johansen and Sornette (1998a) argue that the largest crashes of the cen-
tury, such as those in 1929 and 1987, do not merely represent the tails of
a probabilistic distribution but are statistical anomalies that occur with
a frequency and magnitude not predictable by standard models. This ar-
gument is supported by their analysis showing that these extreme events
significantly deviate from the exponential decay expected in less extreme
drawdowns. Later, Johansen and Sornette (2002b) extend this study to a
broader range of financial markets and show that large price drawdowns
are considered outliers because these extreme events are characterized by
different statistical behaviors compared to more moderate fluctuations,
suggesting that they are driven by distinct mechanisms.

These insights into the outliers in financial markets set the stage for the
development of more refined statistical tests to identify these outliers. By
recognizing the extreme events as beyond the norms, one can better deal
with the risks brought by such anomalies.
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The tests statistics

We introduce two ratio-based robust test statistics, the Max-Robust-Sum
(MRS) and the Sum-Robust-Sum (SRS), which are extensions of established
test statistics and are developed to provide robust outlier detection capabili-
ties.

The Max-Robust-Sum (MRS) statistic is a modification of Kimber (1982),
which considers the ratio of the maximum value to the sum of all observa-
tions. The original statistic is simple and effective in certain settings, but it
performs poorly in the presence of multiple outliers due to its susceptibility
to masking. The MRS addresses this issue by adjusting the denominator to
exclude the top m values where m is a predefined number that potentially
represents the maximum number of outliers:

TMRS
j,m =

x(j)

∑n
i=m+1 x(i)

, m ≥ 0 .

Here x(j) represents the j-th largest value. The adjustment makes the statistic
less prone to masking by reducing the disproportionate influence of the
largest values, allowing outliers within the dataset to be detected more
reliably.

The Sum-Robust-Sum (SRS) statistic is a modification of Lewis and Fieller
(1979), which considers the sum of the suspected outliers compared to
the sum of the remaining data. Similar to the MRS, the SRS modifies the
original statistic by excluding the top m values in the denominator:

TSRS
r,m =

∑r
i=1 x(i)

∑n
i=m+1 x(i)

, m ≥ 1 .

In this formula, the sum of the suspected top r outliers is compared to the
sum of the remaining data, preventing the swamping of the test statistic by
extreme but not necessarily indicative data points.

We provide the analytical distribution functions of these statistics, both
of which are independent of the parameters from the underlying distribu-
tion, making them highly adaptable and reducing the risk of parameter
estimation errors influencing the test outcomes. This feature is critical in
practice, where parameter misestimation can lead to significant biases in
outlier detection.
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Through empirical analysis using datasets from finance and other social
sectors, the MRS and SRS have demonstrated superior performance in
identifying outliers.

Extreme Value Theory (EVT)

EVT is primarily concerned with the types of distributions that extreme
values can follow given a large sample from a population. The theory cate-
gorizes these extremes into three types of distributions: Gumbel, Fréchet,
and Weibull, which collectively form the Generalized Extreme Value distri-
bution. Each type corresponds to different tail behaviors, which are crucial
for constructing statistical tests to the specific characteristics of the data.

In the context of our outlier detection tests, EVT provides a theoretical
justification for focusing on the tail properties of the distribution. By em-
ploying EVT, we ensure that our methods are not only robust to outliers but
also adapted to the inherent properties of financial data, which typically ex-
hibit fat-tailed distributions. This adaptation is critical, as financial markets
are known for their propensity for tail risks, which traditional models often
underestimate.

The Pickands-Balkema-de Haan Theorem, a cornerstone of EVT, particu-
larly influences our approach. This theorem states (Embrechts, Klüppelberg,
and Mikosch, 1997): For a broad range of distributions, for random vari-
able X, with sufficiently high threshold u, the excess distribution function,
Fu(x) = P{X − u ≤ x|X − u > 0} (i.e., the tail of the distribution func-
tion), is approximated by the Generalized Pareto Distribution Function.
This approximation is crucial for our testing strategy as it allows us to
model the tail behavior effectively and to apply the MRS and SRS tests,
which are specifically designed for samples with underlying exponential
and Pareto tail distributions. Within this framework, we can detect outliers
by evaluating how significantly a data point deviates from this modeled
tail behavior.

Employing EVT effectively simplifies statistical models by reducing com-
plex or unknown distribution tails to a more manageable exponential form.
Methods based on exponential and Pareto tail approximations can be robust
as they rely not on the exact shape of the tail but on its asymptotic behavior
as extremes become large. Given the ubiquity of exponential tails in real-
world data distributions, our tests gain broader applicability, enhancing
their utility across different data types and scenarios.
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Methodology

Our methodology begins with comparative analyses using synthetic
datasets designed to mimic various practical scenarios. Each dataset is
structured to contain no outliers, single outliers, multiple dispersed out-
liers, and clustered outliers. We run these analyses to test the resilience of
our outlier detection methods against common issues like masking and
swamping. The MRS and SRS are compared with traditional test statistics
and are found to have superior performance in these challenging scenarios.

Applying the statistics to real-world data involves a crucial step of thresh-
old selection, which is guided by EVT. The threshold determines at what
point the data behavior is extreme enough to be considered for outlier
testing. In our approach, we employ several methods to determine the
optimal threshold for applying the outlier tests, including (mainly) the Hill
plot, the AIC of exponential and non-parametric fits. And their comparative
evaluation helps in selecting a threshold that maximize the power of the
test.

Once the threshold is determined, the EVT-based MRS and SRS are ap-
plied to detect the extremes by focusing on how data points above the
threshold deviate from the modeled tail distribution. To illustrate the prac-
tical implications of our methodology, we conduct case studies on financial
crashes, nuclear power generation accidents, stock market returns, epidemic
fatalities, and city sizes. These case studies from different sectors demon-
strate the effectiveness of the proposed approach, and significant outliers are
detected and related to the concept of ‘Dragon King’ events – meaningful
extreme outliers that arise from a unique generating mechanism.

1.5 overview of the thesis

This thesis is based on a series of three research papers. Chapter 2 is based
on the paper co-authored with Yannick Malevergne and Didier Sornette;
chapter 3 is based on the paper co-authored with Alexander Wehrli and
Didier Sornette; chapter 4 is based on the paper co-authored with Didier
Sornette.

The first part of this thesis investigates the econometric modeling of finan-
cial bubbles through innovative approaches to crash hazard rate estimation.
The models leverage behavioral finance concepts, notably the anchoring
effect, to offer a new perspective on the risk-return dynamic in financial
markets.
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• Chapter 2, Modeling financial crashes with non-local behavioral
self-referencing hazard rate introduces a time series model where
the crash hazard rate is a function of a non-local estimation of mis-
pricing. The model combines a traditional jump-diffusion framework
with elements in behavioral finance, enabling it to effectively describe
drawdowns and crashes as market conditions characterized by clus-
tered negative jumps over finite periods. This approach addresses
a common issue in most crash jump models used in financial time
series, which often fail during calibration because they unrealistically
assume crashes occur through a single large negative jump. The esti-
mation of the model parameters is performed on both synthetic and
real market data. Results from daily series of three stock indices reveal
that the hidden expected return generally exceeds the realized return
over time, indicating that financial markets tend to be consistently
underpriced.

• Chapter 3, Modeling financial crashes with self-exciting hazard
rate extends the model introduced in the previous chapter by in-
troducing a self-exciting component to the crash hazard rate. The
authors demonstrate that the model not only explains the mechanism
of market crashes but also captures key stylized facts of financial time
series including volatility clustering, leverage effects, fat-tailedness,
long memory, without relying on conventional volatility models like
GARCH. The model is further applied to major market indices and it
is revealed that the distinctive performance trends of the indices are
largely driven by underlying differences in their baseline intensities
and degree of self-excitation, rather than by their underlying returns
or diffusive volatilities.

Transitioning from econometric models, the second part of the thesis
focuses on the detection of outliers in financial data using robust test
statistics. Based on Extreme Value Theory, this approach can be broadly
applied to data having approximately exponential or Pareto tails.

• Chapter 4, Detecting outliers in samples with exponential and
Pareto tails establishes robust test statistics for detecting multiple
outliers in samples with exponential tails. The test statistics are shown
to reduce the susceptibility of inward sequential testing to masking,
potentially revitalizing the utility of inward approach. A comprehen-
sive comparison of the test statistics is done, considering performance
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of the proposed tests in both block and sequential tests, and con-
trasting their performance with classical test statistics across various
data scenarios. Case studies across different social sectors are carried
out to showcase the versatility and effectiveness of these methods in
practical applications.

Bibliography and appendix follow each chapter.
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M O D E L I N G F I N A N C I A L C R A S H E S W I T H N O N - L O C A L
B E H AV I O R A L S E L F - R E F E R E N C I N G H A Z A R D R AT E

In this chapter, we introduce a novel class of models with its crash hazard
rate being determined by a function of a non-local estimation of mispricing.
Rooted in behavioral finance, the non-local estimation embodies in particu-
lar the characteristic of ‘anchoring’ on past price levels and the ‘probability
judgment’ about the likelihood of a crash as a function of the self-referential
mispricing, enabling us to disentangle the risk-return relationship from its
instantaneous connection. By describing drawdowns and crashes as market
regimes with correlated negative jumps clustering over a finite period of
time, our model provides a solution to the problem plaguing most crash
jump models, which are in general rejected in calibrations of real financial
time series because they assume that crashes occur in a single large negative
jump, which is counterfactual. The model estimation is implemented on
synthetic time series and real markets, shedding light on the estimation of
the ‘true’ expected return, which is usually confounded by the entanglement
between volatility and jump risks. Estimated from the daily time series of
three stock indexes, the hidden expected return exhibits a secular increase
over time and tends to be larger than the realized return, suggesting that
financial markets have been overall underpriced.

2.1 introduction

Financial bubbles, i.e. transient explosive prices followed by crashes, have
intrigued economists for centuries because of their dramatic influence and
inherent complexity. The possible origins, underlying mechanisms and
dynamical behaviors of bubbles are intensively discussed by researchers,
practitioners and policymakers (see e.g. Kaizoji and Sornette, 2010; Stiglitz,
1990, for reviews). In a market populated by fully rational agents and as-
suming general equilibrium, Tirole (1982) rules out the existence of bubbles,
and thus an asset must be valued according to its fundamental. For finite
horizon investors, bubbles cannot arise as long as rational investors are
unconstrained from selling the desired number of shares in all future contin-
gency. For infinite horizon investors, bubbles seem to be allowed formally

21
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when removing the transversality condition (Blanchard, 1979; Blanchard
and Watson, 1982), but Tirole (1985) and Santos and Woodford (1997) show
that strong rational expectations bubbles are necessarily driven by market
inefficiencies that transcend equilibria in markets populated by rational,
utility-maximizing investors. In fact, Schatz and Sornette (2020) have clari-
fied that there is no such thing as a rational (expectation) bubble. To arrive
at a price process that follows a strong rational bubble, the behaviors of
agents need to depart in one way or another from the standard assump-
tion, i.e., there needs to be at least one agent that is not rational or not
utility-maximizing. This is for instance instantiated in the Johansen-Ledoit-
Sornette model of rational expectation bubbles, in which a population of
rational fundamentalists co-exist with noise traders following social imi-
tation to make their investment decisions (Johansen, Ledoit, and Sornette,
2000; Johansen, Sornette, and Ledoit, 1999a).

In rational bubble models, the risk-return relationship imposes that the
conditional expected return is proportional to the contemporaneous crash
hazard rate. This condition is usually assumed to hold instantaneously. It
poses a serious empirical problem because real crashes are usually large
drawdowns developing over weeks to months (Johansen and Sornette,
2001b; Johansen and Sornette, 2010a). We thus argue that the condition
matching instantaneously return and risk is not a reasonable building block
for a sound model of financial bubbles because it assumes perfect markets
and no friction. The condition is even less likely to be true in times of
exuberant bubbles and of punishing crashes. Moreover, when the price
plateaus for some time at a very large overvaluation level, which does
occur empirically, rational expectation imposes that the crash hazard rate
vanishes instantaneously, and thus crash risks vanish. This prediction is
counterfactual, as many large crashes occur after the price has peaked
and gone sideway for weeks or months. In this paper, we thus propose to
replace the instantaneous connection between risk and return by a non-local
relationship that accounts for behavioral anchoring on past price levels.

A huge literature investigates the theoretical formulation and the em-
pirical detectability of rational bubbles (see e.g. Adam and Szafarz, 1992;
Camerer, 1989a; Flood and Hodrick, 1990b, for reviews). It has shown that
rational bubble models do not reliably comply with empirical tests. Diba
and Grossman (1988a) introduce a test to detect rational bubbles based
on the stationary properties of asset prices and dividends, whereas Evans
(1991) has proven that such test has limited power in detecting periodically
collapsing bubbles. At a more fundamental level, Lux and Sornette (2002)
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and Malevergne and Sornette (2001) demonstrate that the distributions of
asset returns predicted by rational bubble models are inconsistent with
empirical estimates.

Empirically, asset prices seem more volatile than their fundamental val-
ues (Shiller, 1981b; Shiller, 1992a). This feature is attributed to behavioral
traders who are not fully rational and may exhibit social imitation leading
to collective behaviors such as herding (Shleifer, 2000; Thaler, 1994). Addi-
tionally, Ma et al. (2021) report that the proportion of noise traders increases
during crises even if they leave the market sooner than others because
they follow sub-optimal strategies1. In models where rational investors
interact with noise traders whose trading incentives are biased, the price
of an asset can deviate from its fundamental if rational agents are limited
in their capacity to eliminate the mispricing (De Long et al., 1990). Abreu
and Brunnermeier (2003) further show that rational investors prefer to
ride rather than attack the bubbles due to the difficulty in determining the
beginning of the bubble and synchronize their market impact. Demos and
Sornette (2017) present empirical evidence that diagnosing the beginning of
a bubble is in fact much easier than forecasting its demise, suggesting an-
other reason for the lack of synchronization and the robustness of bubbles.
Johansen, Ledoit, and Sornette (2000) and Johansen, Sornette, and Ledoit
(1999a) introduce a framework that combines the rational expectation the-
ory and behavioral imitation and herding. The main characteristic of this
framework that embodies a positive feedback loop is the transient faster-
than-exponential growth of the price during the bubble phase (Sornette
and Cauwels, 2015). Empirical evidence of such explosive behaviors can be
found in (Ardila-Alvarez, Forro, and Sornette, 2021; Johansen and Sornette,
2010a; Lin, Schatz, and Sornette, 2019).

Different from the existing literature, we propose a novel class of asset
price processes in which the crash hazard rate is a function of the estimated
non-local mispricing, embodying a positive feedback mechanisms that leads
to a faster-than-exponential growth in asset prices. The rational expectation
setting ensures that the expected return conditional on no crash must offset
the expected loss in case of a crash. To the best of our knowledge and as
mentioned above, in the rational bubble literature, this balance condition is
always expressed in terms of contemporaneous returns. We depart from
this stance and determine the crash hazard rate by a function of a non-local
estimation of mispricing. Specifically, our model assumes that investors

1 See also Bekiros (2010) for evidence of the profitability of behavioral trading rules in highly
speculative environment.
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estimate the mispricing as an exponential moving average of the difference
between the present and the past log-prices over a long time scale (typically
one year or more), and the crash hazard rate is characterized by an S-shaped
logistic function of the mispricing. The model describes jump occurrences as
outcomes of the interplay between the mispricing and the crash hazard rate.
In other words, an increase in the mispricing increases the crash probability
and, by the condition of no-arbitrage, leads to a larger conditional expected
return. This process introduces a positive feedback mechanism in the price
dynamics: the higher the price above what can be expected over a long
term, the larger the probability of a crash; the larger the probability of a
crash, the higher the compensatory rate of return for investors to undertake
the increasing risk, further possibly fueling a possible bubble development
until a cluster of correcting jumps occur.

Unlike jump clustering traditionally being featured as a sequence of
jumps with each increasing the likelihood of subsequent ones, our model
views jump clustering as a result of accumulated mispricing, reflecting the
market’s response to it and its effect over time. When, by the occurrence of
stochastic fluctuations, there is a deficit of correcting jumps, mispricing de-
velops in the presence of a finite crash hazard rate. The growing mispricing
leads to a further increase in the crash hazard rate, eventually triggering
a cluster of negative jumps over a relatively short period of time, i.e. a
realistically looking crash.

Our view of behavioral anchoring also resonates with the path-dependent
volatility models, which emphasize the role of historical data in informing
current volatility, as presented in Hobson and Rogers (1998) and Guyon
and Lekeufack (2023). In this respect, in the model we propose, past price
trends that increase (resp. decrease) mispricing increase (resp. decrease) the
intensity of jumps and thus future realized volatility. Our focus on investor
sentiment and decision-making is thus consistent with path-dependent
volatility models and shares the premise that past market behavior has a
significant impact on current market dynamics. In other words, historical
market performance has an important impact in shaping investor expecta-
tions and market outcomes. Moreover, incorporating a jump process enables
us to capture abrupt market changes, at the cost of introducing additional
complexity in model calibration, particularly in estimating the jump process
parameters.

In order to obtain a sound model calibration and robust estimation of
the parameters, the maximum likelihood estimation (MLE) is performed on
the analytically derived log-likelihood function with the help of the Nelder-
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Mead algorithm improved by Taboo Search. The parameter estimation is
applied to synthetic time series and real markets (DAX, HSI and S&P 500)
and complemented by an analysis of bias estimation. Our model estimation
provides a novel and improved method for estimating the underlying
expected return, whose value is usually obscured by jumps and their
economic compensator.

The rest of the paper is organized as follows. Section 2.2 lays out the
model with a detailed presentation of the return and jump processes.
Section 2.3 presents the statistical properties of the model with simulations
and analytical derivations of the stationary conditions and of the log-
likelihood function. Section 2.4 (respectively Section 2.5) presents the results
of the parameter estimation for synthetic (respectively real) time series.
Section 2.6 concludes. Additional derivations, proofs and robustness checks
can be found in Appendices.

2.2 presentation of the model

2.2.1 Definition of the return process and rational expectation condition

• rt = ln St
St−1

• µt, σt and κt are Ft−1 measurable

• εt is a standard normal Gaussian variable independent of Ft−1

• Jt is a positive standardized random variable independent of Ft−1

• It is a Bernoulli random variable with conditional success rate λt

• εt, Jt and It are mutually independent conditional on Ft−1

Consider a discrete-time economy where trades take place at time t =
0, 1, 2, . . . One time step can be regarded as one trading day for the sake
of illustration. The considered process is defined on the probability space
(Ω,F , P) endowed with the filtration {Ft}t∈{0,1,2,...}. Two assets are traded
in the economy: a risk-free asset whose rate of return is r f and a risky asset
whose return is rt at time t. With the definition rt = ln St

St−1
where St is

the risky asset price, the log-return of the risky asset at time t follows the
dynamics

rt = µt + σt · εt − κt · Jt · It , (2.1)
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where µt, σt and κt are Ft−1 measurable, εt is a standard normal Gaussian
variable independent of Ft−1, Jt is a positive standardized random variable
independent of Ft−1, and It is a Bernoulli random variable with conditional
success probability Pr (It |Ft−1 ) = λt. The random variables εt, Jt and
It are mutually independent conditional on Ft−1. Notice that the model
specification encompasses several standard models such as the (geometric)
random walk model (µt = µ, σt = σ, κt = 0), the GARCH model (µt =
µ, σt = GARCH (p, q) , κt = 0) and most of the models that incorporate
rational bubbles (µt = µ, σt = σ, κt = κ, λt = λ).

The expected return conditional on Ft−1 is given by

Et−1 [rt] = µt − κt · λt , (2.2)

where Et [·] stands for E [· |Ft ], as usual. Under the constraint that the
conditional expected return is constant and equal to r̄, we have Et−1 [rt] = r̄,
hence

µt = r̄ + κt · λt, (2.3)

which is nothing but the conditional expected return given no crash occurs
at time t: Et−1 [rt |It = 0 ] = µt. By substitution in equation (2.1), we obtain

rt = r̄ + κt · λt + σt · εt − κt · Jt · It . (2.4)

The condition Et−1 [rt] = r̄ translates into the no-arbitrage condition or
martingale condition for the process rt − r̄ to be associated with rational
expectations, and r̄ is interpreted as the benchmark risk-free rate r f plus
the risk premium of the risky asset.

2.2.2 Definition of the mispricing and jump probability

In order to specify λt, the conditional probability of a jump at time t, we
assume that the investors acknowledge the difficulties and uncertainties
in estimating the fundamental value of the risky security, in the spirit of
Black (1986b) famous quote ‘an efficient market is one in which price is
within a factor 2 of value’. Given the difficulties in quantifying mispricing
as a deviation from an absolute (fundamental) price level, we consider
that the investors rely rather on a relative metric, namely they assess the
amplitude of the price change over a finite time period. They thus compare
the observed price at time t to that at an earlier time t − τ (τ is for instance
one calendar year), and form their judgment on the presence of a bubble
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based on whether the growth of the price from t − τ to t is ‘reasonable’
in comparison to their expectations shaped for instance by some average
growth rate over a long-term, in this paper proxied by r̄. This idea, is
captured by the ratio

δt,τ =
St

St−τ · er̄·τ , (2.5)

whose deviation from 1 quantifies the departure of the current price St
from what would have been the asset price had it grown at the expected
rate r̄ during the period under consideration. The price St−τ · er̄·τ can be
seen as the anchoring price at time t. The difference δt,τ − 1 quantifies the
over/under-pricing with respect to the expected long-term trend. The larger
δt,τ − 1 is, the larger the departure of the price from its inferred long-term
level. When δt,τ becomes significantly larger than 1, investors progressively
presume that the price trajectory is not sustainable and anticipate a growing
probability of a correction, which will terminate the bubble in progress and
bring back the price to its long-term growth trend.

Expression (3.5) can be rewritten as

1
τ

ln δt,τ =
1
τ

τ

∑
k=1

ln
St−τ+k

St−τ+k−1
− r̄ =

1
τ

τ

∑
k=1

(rt−τ+k − r̄) , (2.6)

which defines 1
τ ln δt,τ as the average daily excess return over the long-

term growth rate r̄. For estimation purpose, it is natural to introduce a
better-behaved smooth version of expression (3.6) as an exponential moving
average of the returns over τ ≃ 1/(1 − a) time steps

ln δt,a = (1 − a) (rt − r̄) + a · ln δt−1,a , (2.7)

whose solution reads

ln δt,a = (1 − a)
∞

∑
k=0

ak (rt−k − r̄) . (2.8)

By the correspondence 1 − a ≈ 1
τ , one can see that expression (3.8) is the

exponentially smoothed version of (3.6) and thus

ln δt,a ≈
1
τ

ln δt,τ , with a ≈ 1 − 1
τ

. (2.9)

In summary, we assume that investors form an estimation δt,a of the
possible existence of some overpricing via formula (3.8). Then, their collec-
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tive anticipation of a correction leads to the formation of an effective jump
probability at time step t that we postulate to be given by

λt = L
(

ln δt−1,a − ln δref

s

)
, (2.10)

where
L (x) :=

1
1 + e−x (2.11)

denotes the (standard) logistic function, δref is the average daily mispricing
ratio δt−1,a beyond which the probability for a jump to occur at time t is
larger than one-half, and the scale factor s > 0 controls the reactivity with
which λt varies from 0 to 1 as the mispricing develops, i.e. s controls the
steepness of the logistic function.1 Defining

Xt :=
1
s

ln
δt−1,a

δref
, (2.12)

expression (2.10) becomes
λt = L (Xt) (2.13)

with
Xt = (1 − a) · X̄ + a · Xt−1 + η · (rt−1 − r̄) , (2.14)

which is derived from (3.7) with

X̄ := − ln δref
s

and η :=
1 − a

s
. (2.15)

Expression (2.14) is an AR (1) equation for the variable (Xt − X̄), so that
E [Xt] = X̄. The introduction of Xt, η along with the function L (·) is for
simplicity in notation and estimation.

Notice that the jump probability λt introduces a positive feedback onto
the asset price dynamics. The larger the current price St, the larger the
probability λt+1 of a jump at the next time step, and the larger the condi-
tional expected return given no jump will occur as seen in equation (2.3).
Hence, as long as no or few jumps occur, the asset price exhibits a faster-
than-exponential growth due to increasing conditional expected returns
(Sornette and Cauwels, 2015).

1 The choice of the logistic function 2.10 for the crash hazard rate is mainly for illustration
purpose but also because of the standard use of the logistic function to represent decision
functions (called logit in McFadden, 1974).
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2.2.3 Summary of the model equations

Putting all the above together, and assuming additionally a GARCH (1,1)
dynamics for the volatility σt, our model reads

rt = r̄ + κt · λt + σt · εt − κt · Jt · It ,

σ2
t = σ̄2 · (1 − α − β) + α · (rt−1 − r̄)2 + β · σ2

t−1 ,

Xt = (1 − a) · X̄ + a · Xt−1 + η · (rt−1 − r̄) ,

with λt = Pr [It |Ft−1 ] = L (Xt) and L (x) =
1

1 + e−x ,

(2.16)

where the first equation is the dynamics of the log-return of the risky asset,
the second equation writes σt as following a standard GARCH (1,1) process,
the latter ones describe the measurement of the mispricing with the jump
probability.

In the present work, we do not consider the complication when the
amplitude κt is time-dependent, instead we restrict our attention to the
simplest case where κt = κ being constant.1 The jump probability λt is
determined via the logistic function by the variable Xt. Parameter X̄ controls
the small background probability of jumps λbackground := L (X̄) in the
absence of mispricing. Indeed, absent mispricing, δt ≃ 1 and Xt ≃ X̄, so
that λbackground ≪ 1 requires e−X̄ ≫ 1, meaning that reasonable values of
X̄ are negative. For instance, for X̄ = −4, λbackground ≈ 0.018, which means
that there is a 1.8% probability for a negative jump of amplitude κ to occur
in a given time step. Parameter η quantifies how the mispricing impacts
the jump probability. Parameter a encodes the time τ ≈ 1/(1 − a) over
which the mispricing of the risky asset away from the long term return r̄ is
influencing the jump probability λt.

Parameters X̄, η and a can be considered as resulting from a re-parameterization
of the intuitive derivation motivating the presented model. Given (2.15),
ln δref can be expressed as a function of a, X̄ and η as

ln δref = −1 − a
η

X̄ . (2.17)

1 As our model is discrete in time, with one time step taken to represent one trading day, one
can expect that there is no jump on some days and several jumps on other days. Hence, it
would be justified to consider that κt is distributed in sizes or even that κt is itself proportional
to the jump rate, i.e. κt = κ · λt for some constant κ. This would amount to consider that the
jump Jt at a given discrete time step t is actually the aggregation of Nt jumps of average size
κ drawn from a Poisson process with intensity λt. Hence the average size of the aggregated
jump would be κ · Et−1 [Nt] = κ · λt.
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As mentioned above, a realized average excess return 1
τ ∑τ

k=1 (rt−1 − r̄) ≈
ln δref makes the jump probability grow from λbackground to 0.5. For a =
0.996 (corresponding to τ = 250 financial trading time steps, i.e. one cal-
endar year), X̄ = −4 and η = 8, equation (2.17) gives ln δref = 0.2%
corresponding to a yearly 65% excess return. If we switch the narrative
from excess return to mispricing level, this would amount to say that, when
the average daily mispricing level reaches δref − 1 = 0.2% corresponding to
a mispricing level of δ250

ref − 1 = 65% over one year, the probability that a
jump occurs is approximately 0.5 per time step.

2.3 statistical properties of the model

2.3.1 Synthetic example

As a visual illustration of the model properties, Figures 2.1 and 2.2 show
respectively a typical synthetic price trajectory and its returns over 40 years
(10000 trading days), generated with the following parameters:

• long-term expected rate of return r̄ = 7% per annum;

• Jt ∼ E (1) follows a standard exponential distribution and the average
size κ = 2%;

• GARCH parameters α = 0.05, β = 0.94 so that (α + β < 1); and
GARCH volatility σ̄ = 15% per annum;

• X̄ = −4, η = 8, a = 0.996 so that the reference period τ = 1
1−a is 250

days (one calendar year).

As discussed at the end of the last section, with these parameter values,
the background probability of jumps is λbackground ≈ 0.018 and a jump
probability λt = 0.5 per time step is associated with an average daily
mispricing level of 0.2%. In Figure 2.1, one can observe three large rises of
the jump probability λt that peak around day 2000, day 3200 and day 8100

with the jump probability λt around 0.5 (the first two) and 0.2 (the third
one), associated with average daily mispricing levels around respectively
0.2% and 0.13%, which correspond to mispricing levels around respectively
65% and 38% over one year. The rises of λt lead to clustering of negative
jumps associated with subsequent crashes or drawdowns, producing shapes
in the asset price of usual speculative bubbles, except that, in the third
bubble case, the price level quickly rebounds and plateaus after a rather
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Figure 2.1: Synthetic price trajectory generated with parameters
(r̄, σ̄, α, β, κ, X̄, η, a) = (0.07 (ann.), 0.15 (ann.), 0.05, 0.94, 0.02,
−4, 8, 0.996) in semi-logarithmic scale (upper panel, left axis) with
the price growing over the long term at rate r̄ shown with the dotted
line, jump probability (upper panel, right axis) and jump occurrence
(lower panel). The average annual realized return is 4.7% and the
realized volatility is 22.7%.

Figure 2.2: Daily returns of the synthetic price trajectory shown in Figure 2.1 (up-
per panel) and the expected daily return conditional on no crash occur-
rence at the next time step (lower panel) with the horizontal line rep-
resenting the level of r̄ (corresponding to 7%/250 = 0.028%=0.00028

per day).
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small correction. As a consequence of the rebound and the long-lived
plateau lasting over two years, the jump probability also remains markedly
above the background level until the mispricing level diminishes. This
illustrates the main mechanisms of the model that large values of the jump
probability λt, which in turn produce large conditional expected returns
given by expression (2.3), are not necessarily associated with crashes. The
phenomenology of bubble formation, peak and drawdown is much richer
than hitherto modeled in most previous works in which a single large
negative jump brings a bubble to an end. Moreover, one can notice the
occurrences of transient upward convex log-price trajectories, which qualify
the presence of faster-than-exponential growth (recall that, in the linear-log
representation, a straight line qualifies an exponential growth), representing
in particular herding behavior among investors.

Comparing Figure 2.1 and 2.2, one can also observe the intermittent
bursts of the volatility associated with the clustering of jumps. The seem-
ingly paradoxical behavior that bubbles are often associated with small
volatility, as observed here, has been empirically documented by Sornette,
Cauwels, and Smilyanov (2018) in an extensive empirical study of 40 his-
torical bubbles. Persistent and sizable mispricing occurs when the jumps
remain insufficient to correct it, leading to the long-term existence of large
jump probabilities and hence of excess return.

In addition to the visual realizations in Figures 2.1 and 2.2, Appendix 2.A
presents a more quantitative study contributing to the conclusion that the
model generates synthetic time series that obey the standard stylized facts
of asset prices with the occurrence of bubbles. The synthetic price trajectory
with its returns presented in Figure 2.19 and 2.20 is an instance of our
systematic study on the influence of the parameters κ, X̄ and η. In par-
ticular, We vary κ, X̄ and η with the theoretical volatility and ln δref (2.17)
almost unchanged. In Figure 2.19, the average jump size κ is smaller and
the background jump probability is larger (|X̄| is smaller) compared to Fig-
ures 2.1. The comparison illustrates the property that, when the jumps are
on average smaller in size and more frequent while the reference level of the
mispricing and the theoretical volatility remain the same, the dynamics of
the asset price as well as the jump probability is less exuberant. Meanwhile
the clustering of jumps and the burst of returns are less noticeable, result-
ing in smaller bubbles. These qualitative features also help determine the
relevant ranges of the parameters to generate time series with bubbles that
mimic those occurring in real financial markets. Specifically, a reasonable
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range of parameters we have found is: κ ∈ [0.001, 0.1], X̄ ∈ [−10,−1] and
η ∈ (0, 10].

2.3.2 Stationary distribution of returns and its moments

In this section, we analyze the first moments of the stationary distribution
of the returns of the model defined in subsection 2.2.3. The formal proof
that the process of returns rt (2.16) admits a stationary distribution with
finite second moment is given in Appendix 2.C.

The unconditional expected return is indeed E [rt] = r̄ and the uncondi-
tional variance reads

Var [rt] = E
[
σ2

t

]
+ E

[
κ2

t

(
λt · E

[
J2
t

]
− λ2

t

)]
. (2.18)

By Jensen’s inequality, E
[

J2
t
]
≥ E [Jt]

2 = 1, therefore Var [rt] ≥ E
[
σ2

t
]
. In

particular, if we assume that Jt is a standard exponential random variable,
we have E

[
J2
t
]
= 2 and

Var [rt] = E
[
σ2

t

]
+ E

[
κ2

t

(
2λt − λ2

t

)]
. (2.19)

The first expectation term in the right hand side of expression (2.19) can
be evaluated from the GARCH volatility with the condition (α + β < 1) for
a finite second moment to exist. Taking the expectation of both sides of the
GARCH equation in (2.16), we get

E
[
σ2

t

]
= σ̄2 +

α · E
[
κ2

t
(
2λt − λ2

t
)]

1 − α − β
(2.20)

and

Var [rt] = σ̄2 +
(1 − β) · E

[
κ2

t
(
2λt − λ2

t
)]

1 − α − β
. (2.21)

With the assumption that κt = κ constant, we obtain

Var [rt] = σ̄2 +
(1 − β) · κ2 · E

[
2λt − λ2

t
]

1 − α − β
. (2.22)
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The skewness of the distribution of returns is also easy to express. With κ
constant in order to avoid a too cumbersome equation, we have

s3 =
E
[
(rt − r̄)3

]
E
[
(rt − r̄)2

]3/2 (2.23)

= −2
(

1 − α

1 − β

)3/2 E
[(

1 − (1 − λt)
3
)]

E
[(

1 − (1 − λt)
2
)]3/2

1 +
(1 − α − β) σ̄2

(1 − β) κ2E
[(

1 − (1 − λt)
2
)]
−3/2

,

(2.24)

which gives large negative skewness provided that α remains small com-
pared to 1− β. Using expression (2.22) and the definition of Xt in (2.16), we
obtain

Var [Xt] =
η2

1 − a2

(
σ̄2 +

(1 − β) · κ2 · E
[(

2λt − λ2
t
)]

1 − α − β

)
. (2.25)

As the time scale τ ≃ 1/ (1 − a) over which the mispricing is evaluated
is expected to be large (one year or more), the coefficient a is close to 1
and the stochastic process Xt is thus close to a unit-root AR (1) process. In
this regime, the approximate stationary distribution of Xt is known to be
well-approximated by (Cumberland and Sykes, 1982)

Xt ∼ N
(

X̄,
η2

1 − a2 · Var [rt]

)
. (2.26)

A more accurate approximation, which accounts for the tail behavior of the
distribution, can be found in (Olvera-Cravioto, 2010). As a consequence, the

asymptotic distribution of λt
law
= L (Xt) is the logistic-normal distribution

(Aitchison and Shen, 1980). Note that the logistic-normal distribution admits
either one single mode in the bulk of the distribution or two modes located
at both ends (see Figure 2.3). Denoting the mean and the standard deviation
of Xt in (2.26) by µlogit and σlogit, the location of the mode(s) is given by the
solution(s) to equation: ln

( x
1−x
)
= σ2

logit · (2x − 1) + µlogit.
Hence, the logistic-normal density is symmetric when µlogit = 0, skewed

to the right (respectively left) when µlogit > 0 (respectively µlogit < 0). It ad-

mits one single mode whenever σlogit ≤
√

2 or
∣∣∣µlogit

∣∣∣ > σ2
logit

√
1 − 2

σ2
logit

−
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Figure 2.3: Density of the logistic-normal distribution with µlogit = −1 and
σlogit = 0.5 (black curve) and µlogit = −0.75 and σlogit = 2.25 (blue
curve).

ln
1+
√

1− 2
σ2

logit

1−
√

1− 2
σ2

logit

and two modes otherwise. This means that, as long as the

condition

Var [rt] ≤
2
(
1 − a2)
η2 (2.27)

holds, σlogit is such that the logistic-normal density is unimodal. Substituting
a with 1− 1

τ and taking the square root of both sides in (2.27), the condition
becomes √

Var [rt] ≤

√
2 · 2τ−1

τ√
τ · η

≃ 2√
τ · η

, (2.28)

which requires the theoretical volatility to not exceed 2
η per annum. Given

the value e.g. η = 4 in our simulation above, 2
η = 50% is much larger than

any usual level of realized volatility of indexes and stocks. With the relevant
range of parameter η ∈ (0, 10], 2

η is equal to or above 20% and with the
parameters of the GARCH process and of κ, X̄ and η chosen accordingly,
the logistic-normal density remains unimodal.
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While the moments of the logistic-normal distribution have no close form,
in the limit where σlogit remains small, we have

E [λt] = L
(

µlogit

)
+

σ2
logit

2
· L′′

(
µlogit

)
+ O

(
σ4

logit

)
, (2.29)

E
[
λ2

t

]
= L

(
µlogit

)2
+ σ2

logit

(
L
(

µlogit

)
· L′′

(
µlogit

)
+ L′

(
µlogit

)2
)
+ O

(
σ4

logit

)
.

(2.30)

Equation (2.29) shows that, up to first order in σlogit, the average jump
probability is given by L (X̄) so that, with the range X̄ ∈ [−10,−1], the aver-
age time between jumps is the order of 1 to 103 time steps. Expressions (2.29)
and (2.30) lead to

2E [λt]− E
[
λ2

t

]
= L

(
µlogit

) (
2 − L

(
µlogit

))
+ σ2

logit

((
1 − L

(
µlogit

))
L′′
(

µlogit

)
− L′

(
µlogit

)2
)
+ O

(
σ4

logit

)
,

(2.31)

and, by substitution in equation (2.25), we get

σ2
logit ≃

η2

1 − a2 · σ̄2 · (1 − α − β) + (1 − β) · κ2 · L
(
µlogit

) (
2 − L

(
µlogit

))
1 − α − β − η2

1−a2 · (1 − β) · κ2
((

1 − L
(
µlogit

))
L′′ (µlogit

)
− L′ (µlogit

)2
) .

(2.32)
This approximation is valid as long as σ2

logit is small enough and the station-
ary distribution of λt remains unimodal.

2.3.3 Time-reversal asymmetry

Time reversal asymmetry is a well-known feature of asset prices and,
in particular, of stock prices. It manifests itself through the leverage ef-
fect (Black, 1976; Christie, 1982) and the asymmetric dependence between
squared-returns and conditional variance – what Blanc, Donier, and Bouchaud
(2017) call the Zumbach effect.

The simple GARCH formulation chosen in Equation (16) to model the
volatility does not directly incorporate the leverage effect, as it is the case
in the EGARCH, JGR-GARCH, or TARCH models, to name a few (Glosten,
Jagannathan, and Runkle, 1993; Nelson, 1991; Rabemananjara and Zakoian,
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1993). Nevertheless, the effect is present in the model as a consequence of
the asymmetry of the return distribution. Indeed, it can be shown that

E
[(

σ2
t − E

[
σ2

t

])
· (rt−1 − r̄)

]
= αE

[
(rt−1 − r̄)3

]
, (2.33)

= −2αE
[
κ3

t

(
1 − (1 − λt)

3
)]

, (2.34)

which is negative. Thus, as a first approximation, the cross-correlation be-
tween σ2

t and rt−1 is equal to α times the skewness of the return distribution,
which means that the model can generate cross-correlation between σ2

t and
rt−1that can reach −30%, which is sufficiently large to be consistent with
the literature.

The model is also consistent with the Zumbach effect, i.e. the fact that
past squared returns predict future volatilities better than past volatilities
predict future squared returns. To illustrate this effect, let us define the
cross-correlation

ρ(2) (τ) =
Cov

(
σ2

t , (rt−τ − r̄)2
)

√
Var

(
σ2

t
)

Var
(
(rt − r̄)2

) , (2.35)

as in Euch et al. (2020), and its integrated difference

∆ (τ) =
τ

∑
i=1

(
ρ(2) (i)− ρ(2) (−i)

)
. (2.36)

Simple, but tedious, algebraic manipulations yield

lim
τ→∞

∆ (τ) =
1
α

√√√√ Var
(
σ2

t
)

Var
(
(rt − r̄)2

) ·
(

1 + Corr
(

σ2
t , σ2

t−1

))
, (2.37)

=

√√√√√ (1 + α + β)2

1 + β (β − 2α)

1 − 2βκ2

α

Cov
(

σ2
t , (1 − λt)

2
)

Var
(
(rt − r̄)2

)


×

1 −
ακ2Cov

(
σ2

t , (1 − λt)
2
)

(1 + α + β)Var
(
σ2

t
)
 , (2.38)
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which is positive, and show that, at least on average, ρ(2) (τ) > ρ(2) (−τ)
for τ > 0, i.e. the correlation between past squared returns and future
volatilities is greater than the correlation between past volatilities and
future squared returns. For a GARCH model, i.e. κ = 0, the relationship is
simplified:

lim
τ→∞

∆ (τ) =
1 + α + β√

1 + β (β − 2α)
. (2.39)

Empirically, ∆ (∞) is found to be of the order of one, which is consistent
with the usual values of the parameters α close to zero and β close to one.

2.3.4 The log-likelihood derivation and parameter estimation

The likelihood of the model can be expressed in closed form when
Jt is exponentially distributed and κt is constant. Given expression (2.1),
conditional on Ft−1, Jt and It, we know that

rt |Ft−1, Jt, It
law
= N

(
µt − κ · Jt · It, σ2

t

)
. (2.40)

Taking the expectation with respect to It, we obtain a mixture of two
Gaussian distributions

rt |Ft−1, Jt
law
=

 N
(
µt − κ · Jt, σ2

t
)

with probability λt ,

N
(
µt, σ2

t
)

with probability 1 − λt .
(2.41)

Averaging the first Gaussian distribution with respect to Jt yields the expo-
nentially modified Gaussian distribution EMG (µt, σt, κ) with density (see
appendix 2.D for details)

fEMG (x |µ, σ, κ ) =
1
|κ| e

x−µ
κ + σ2

2κ2

(
1 − Φ

(
sgn (κ)

(
x − µ

σ
+

σ

κ

)))
, (2.42)

=
σt

|κ| · φ (x |µt, σt ) · R
(

sgn (κ)

(
x − µ

σ
+

σ

κ

))
, (2.43)

where Φ (·) denotes the cumulative distribution function of the standard

normal law, φ (x |µ, σ ) = 1√
2πσ2 e−

(x−µ)2

2σ2 is the Gaussian density and R (x) =
1−Φ(x)
φ(x|0,1 ) , which can be easily evaluated as pointed out by Marsaglia (2004).
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Hence the conditional distribution of the log-returns reads

rt |Ft−1
law
=

 EMG (µt, σt, κt) with probability λt

N
(
µt, σ2

t
)

with probability 1 − λt

(2.44)

and the log-likelihood function of the model becomes

lnL
(

θ
∣∣∣{St}T

t=0

)
=

T

∑
t=1

ln [λt · fEMG (rt |(µt, σt, κt) ) + (1 − λt) · φ (rt |µt, σt )]

=
T

∑
t=1

ln φ (rt |µt, σt ) +
T

∑
t=1

ln
[

1 − λt + λt
σt

|κ| · R
(

κ

(
rt − µt

σt
+

σt

κ

))]
where θ = (r̄, σ̄, α, β, κ, X̄, η, a) denotes the vector of parameters.

In the following, we carry out MLE using Nelder and Mead (1965) algo-
rithm, which is a direct search method commonly applied to optimization
problems and can be easily applied to nonlinear situations for which deriva-
tives may be unknown. The taboo search method based on Cvijovic and
Klinowski (1995) is introduced to randomize the initial points for the op-
timization process. As a result, the algorithm avoids entrapment in local
minima and ensures the continuation of the exploration of the parameter
space. In general, this search gives a near-optimal final solution. The choices
of the search parameters are such that an increase in any of these parameters
does not help improve the result of the optimization. Indeed, the objective
function (2.45) may be sloppy, in the word of Waterfall et al. (2006). This
means that the eigenvalues of the Fisher matrix of the log-likelihood func-
tion at the point of its maximum exhibit a broad range of values, with the
smallest eigenvalues being associated with quasi-degenerate directions in
the space of parameters. Along these directions, the corresponding param-
eters are highly undetermined. In addition to the danger of being misled
towards incorrect parameter values, the direct maximization of the likeli-
hood is also likely to exhibit a slow convergence. As a tentative solution,
along with the help of the search method, the parameter estimations are
always verified with profile likelihood.
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2.4 parameter estimation for synthetic data

2.4.1 Methodology of parameter estimation

θ = (r̄, σ̄, α, β, κ, X̄, η, a),
(r̄, κ, X̄) ∈ R3, (σ̄, η) ∈ R2

+, (α, β) ∈ {(x, y) ∈ [0, 1) , x + y < 1}, a ∈ [0, 1)
Our goal is to explore the model performance in explaining real time

series of financial returns. In order to efficiently perform the MLE, we
introduce a multi-step methodology to estimate the parameters (r̄, κ, X̄) ∈
R3, (σ̄, η) ∈ R2

+, (α, β) ∈ {(x, y) ∈ [0, 1) , x + y < 1} and a ∈ [0, 1). Note
that we introduced the model with the restriction κ > 0 in the asset price
dynamics in order to capture downward jumps and crashes. Nonetheless,
the model remains well-defined for κ ≤ 0. Therefore it is reasonable to set
the parameter space as κ ∈ R.

Step 1: GARCH model

rt = r̄ + σt · εt (2.45)

σ2
t = σ̄2 · (1 − α − β) + α · (rt−1 − r̄)2 + β · σ2

t−1 (2.46)

Step 2: Constant intensity model (CI model)

rt = r̄ + ·κ · λ + σt · εt − κ · Jt · It (2.47)

σ2
t = σ̄2 · (1 − α − β) + α · (rt−1 − r̄)2 + β · σ2

t−1 (2.48)

with λ = L (X̄) (2.49)

Step 3: Complete model

Finally, we deal with the complete model (2.16) and adopt the same
strategy as in the previous step. We first define a mesh for the parameters
(η, a) ∈ R+ × [0, 1) and maximize the likelihood of the complete model
with respect to the six parameters (r̄, σ̄, α, β, κ, X̄) at fixed η and a and with
the initial value X0 = X̄. We use the obtained parameters to initialize the
Nelder-Mead algorithm to maximize the likelihood of the complete model
with respect to its eight parameters. Note that, for η = 0, the complete
model reduces to the constant intensity model.
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One can go further and ask which of these models are sufficient to
describe the data. Here the complete model encompasses the GARCH and
CI models. The two nested models will be compared with the complete
model using Wilks’ theorem on maximum log-likelihood ratios, which
allows us to test nested hypotheses and compute the corresponding p-
values. The Wilks statistics is given by LR = 2(lnL(θ̂)− lnL(θ̂0)), where θ̂
and θ̂0 are the MLEs for the alternative and the null hypotheses.

2.4.2 Parameter estimation for the synthetic time series

For the synthetic financial time series shown in the last section in Fig-
ure 2.1, the realized average return is 4.7% per annum and is lower than
the underlying long-term rate r̄ = 7%. The realized volatility is 22.70%
per annum, close to the theoretical volatility 20.96% given by (2.22). Ta-
ble 2.2 presents the estimates obtained by the methodology described in
the previous subsection and their standard errors derived from the Hessian
matrix of the log-likelihood function, as well as the Wilks statistics and the
corresponding p-values. We find that our estimators effectively capture the
underlying values of the parameters. One should however note the differ-
ences between the standard errors of the different parameters. The standard
errors are small for σ̄, α, β, a, relatively large for κ, X̄ and particularly large
for r̄ and η. Such differences reflect the intrinsic stochasticity of the time
series of finite duration.

The quality of the estimations is further validated in Figure 2.4, where
the estimated jump probability is compared with the true jump probability.
One can see that the estimated jump probability captures well the dynamics
of the underlying jump probability. Taking a further look at the difference
between the estimated and the true jump probabilities, we find on the
lower panel of Figure 2.4 that the value of the estimated jump probability is
almost always larger than the true value in bubble regimes, implying that
the estimated jump probability tends to slightly overestimate the emergence
of a bubble and its growth compared with the true jump probability. In
contrast, when the end of the bubble approaches, the estimated jump
probability is slightly smaller than the true value. See also Table 2.12 and
Figure 2.21 for the parameter estimations of the synthetic price trajectory in
Appendix 2.A.

We are particularly gratified to observe that the estimated value for r̄ is
within 10% from the true value, while the realized average return, at 4.7%
per annum, is quite smaller. Indeed, if we did not use the knowledge about
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θ r̄
(ann.)

σ̄
(ann.)

α β κ X̄ η a Wilks p-
value

0.07 0.15 0.05 0.94 0.02 -4 8 0.996

θ̂GARCH 0.044 0.215 0.055 0.939

(0.028) (0.014) (0.0040) (0.0044)

θ̂CI 0.065 0.141 0.050 0.943 0.020 -3.9 507.2 < 10−4

(0.029) (0.009) (0.0033) (0.0038) (0.0029) (0.25)

θ̂Complete 0.077 0.138 0.048 0.943 0.017 -3.9 9.2 0.9952 46.5 < 10−4

(0.027) (0.008) (0.0034) (0.0039) (0.0025) (0.27) (1.4) (0.0015)

Table 2.2: Parameter estimation and associated standard errors for the synthetic
time series in Figure 2.1, with the underlying values of the parameters.
The Wilks statistics and the corresponding p-values are given for the
test of the GARCH model nested in the Constant Intensity model and
the test of the Constant Intensity model nested in the Complete model.

Figure 2.4: Synthetic price trajectory (as in Figure 2.1) in semi-logarithmic scale
(upper panel, left axis) with the estimated and underlying jump prob-
ability (upper panel, right axis), the difference between the estimated
and the underlying jump probabilities (lower panel, left axis) and
the ratio of the difference to the underlying value (lower panel, right
axis).
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the generating process, we would use the standard sufficient statistics for r̄,
equal to the realized average return, which here gives an incorrect value for
the expected return r̄. This example suggests that correctly accounting for
the structure of the generating process allows us to recover the expected
return r̄ which is otherwise hidden in the realized average return.

2.4.3 Distribution of parameter estimates over realizations with fixed underlying
parameters

Having studied the parameter estimation for a single realization of the
price process, we further explore the robustness of the estimation procedure
by constructing the distribution of the parameter estimates over an ensemble
of realizations generated with the same model parameters. We perform
the parameter estimation over 100 realizations, each with 10000 time steps,
generated with the parameters (r̄, σ̄, α, β, κ, X̄, η, a) = (0.07 (ann.), 0.15 (ann.),
0.05, 0.94, 0.02, −4.0, 8, 0.996). The mean value and the standard deviation
(within parenthesis) of the parameter estimates over these 100 realizations
are as follow:

E[ ˆ̄r] = 0.070 (0.025) (ann.) ,

E[ ˆ̄σ] = 0.151 (0.008) (ann.) ,

E[α̂] = 0.050 (0.004) ,

E[β̂] = 0.940 (0.004) ,

E[κ̂] = 0.020 (0.002) ,

E[ ˆ̄X] = −4.0 (0.3) ,

E[η̂] = 8.3 (1.5) ,

E[â] = 0.9960 (0.0014) ,

(2.50)

and the distributions of the parameter estimates are presented in Figure 2.5.
One can observe that the mean and mode values are essentially identical
to the true values. Importantly, the close match between the standard
deviations and the model-derived standard errors in Table 2.2 reinforces
the credibility of the model’s estimates. This alignment suggests that the
model is effectively capturing the inherent variability in data.

These phenomena are observed with alternative sets of parameters, as
demonstrated e.g. in Appendix 2.A. This further confirms the reliability
of the model and the robustness of the estimation procedure in providing
consistent estimates under varying conditions.

One more study of the distribution of parameter estimates is carried
out here in order to investigate the impact of the GARCH effect on the
model and examine how the heteroskedasticity captured by the GARCH
process affects the other parameters estimation. For this purpose, another
100 synthetic time series are generated with the restricted model where
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Figure 2.5: Distributions of the parameter estimates over 100 realizations,
each with 10000 time steps, generated with the same parameters
(r̄, σ̄, α, β, κ, X̄, η, a) = (0.07 (ann.), 0.15 (ann.), 0.05, 0.94, 0.02, −4.0, 8,
0.996). The underlying parameters are shown with the vertical red
lines with values readable on the x-axis and fits of normal distribu-
tions are shown as black smooth curves.

the GARCH parameters α and β are equal to 0 i.e. no GARCH effect. In
particular, the values of the other underlying parameters remain the same
except for σ̄ which is chosen such that the restricted and the unrestricted
models have the same theoretical volatility. Figure 2.6 shows that there is
practically no difference in the means of the parameter estimates (except
for σ̄) and little difference in the distributions of κ, X̄, η and a, which can
be expected to be less impacted or even not impacted by the GARCH
estimation.

A systematic study of the convergence of the estimators as a function of
the time series size is beyond the scope of the present study.

2.4.4 Dependence of the expected return estimation on the average realized return

In subsection 2.4.2, we have alluded to the fact that the estimated expected
return r̄ improves on the naive sufficient statistics for a Geometric Brownian
motion in the form of the average realized return. To quantify how general
is this result, Figure 2.7 presents the dependence of ˆ̄r as a function of the
average realized return (or average annual growth rate of the price), over
the 100 realizations used in the previous subsection. We can observe that
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Figure 2.6: Distributions of the parameter estimates over 100 realizations,
each with 10000 time steps, generated with the parameters
(r̄, σ̄, κ, X̄, η, a) = (0.07 (ann.), 0.20 (ann.), 0.02, −4.0, 8, 0.996) without
GARCH effect. The underlying parameters are shown with the ver-
tical red lines with values readable on the x-axis and fits of normal
distributions are shown as black smooth curves.

the average realized return does exert an influence on ˆ̄r, with a correlation
coefficient equal to 0.7. However, the fact that the correlation coefficient
is smaller than 1 confirms the value of accounting for the structure of
the generating process in order to better estimate the expected return r̄.
Unfortunately, we cannot avoid a contamination of ˆ̄r by the average realized
return. Quantitatively, the mean values of ˆ̄r and the average realized returns
are almost equally close to the underlying value r̄, nonetheless the standard
deviation of the model estimates of r̄ is a sizable 40% below the standard
error of the average realized returns.

The correlation found in Figure 2.7 can be exploited to correct the bias
introduced by the realized return. The regression ˆ̄r = 0.45rgrowth + 0.04,
where rgrowth is the average annual realized growth rate of the price, can be
rewritten ∆ ˆ̄r := ˆ̄r − r̄ = 0.45(rgrowth − r̄) where r̄ = 0.07 is the true value for
the set of parameters corresponding to Figure 2.7. This provides a corrected
estimation of r̄ given by

ˆ̄rcorrected = ˆ̄r − ∆ ˆ̄r = ˆ̄r − 0.45rgrowth + 0.03, (2.51)
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Figure 2.7: Estimates of the expected return r̄ as a function of the annual mean
realized growth rate over 100 realizations, each with 10000 time
steps, generated with the same parameters (r̄, σ̄, α, β, κ, X̄, η, a) =
(0.07 (ann.), 0.15 (ann.), 0.05, 0.94, 0.02, −4.0, 8, 0.996), with the re-
gression line of the scatter diagram. The correlation coefficient is
equal to 0.7.

General application of this correction to unknown time series would require
constructing an analogue of Figure 2.7 for every possible set of parameters
and is beyond the scope of the present study.

2.5 parameter estimation for real financial time series

In this section, we estimate the parameters of the model (2.16) on the
daily time series of three stock indexes: the DAX Performance Index, the
Hang Seng Index (HSI) and the S&P 500. The lengths of these time series
are approximately 50 to 60 years. For the HSI, the estimation procedure is
separately applied to the pre- and post-transition periods where changes
of society and policies in 1997 caused fundamental changes of regimes
in the indexes. For the S&P 500, the estimation procedure is applied to
rolling windows as well as to the entire time span. After each estimation, we
generate an ensemble of realizations with the estimated parameters of that
index and perform the same estimation procedure on the realizations. The
distributions of the estimated parameters of the simulated time series are
presented with violin plots and bivariate distributions in comparison with
the generating values, further proving the robustness of the model and the
estimation procedure. Additional parameter estimation conducted on the
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Nikkei 225, the Nasdaq Composite and the Dow Jones Industrial Average
are presented in Appendix 2.B. (Note that the time series are presented
with the starting point rescaled to one.)

2.5.1 DAX Performance Index

Figure 2.8 shows the DAX Performance Index time series from 28 Septem-
ber 1959 to 31 December 2020 with the estimated jump probability. The
average annual realized return of the sample price trajectory is 5.9% per
annum, larger than the estimate of the expected return r̄ shown in Table 2.4.

Figure 2.8: The DAX Performance Index daily time series from 28 September
1959 to 31 December 2020 in semi-logarithmic scale (left axis) com-
pared with an exponential growth at the rate ˆ̄r (ann.) = 4.4% (dotted
line) and estimated daily jump probability (right axis). The average
annual realized return is 5.9%, the realized volatility is 19.6% and the
theoretical volatility is 16.7%.

As the estimation of the self-referential memory determined by the
parameter â is more than 30 years, other parameter estimates are influenced
by the early part of the historical data that is accompanied by very low
jump probability and flat volatile prices. Given the estimates of the three
parameters controlling the amplitude of the self-referencing propensity in

the model, we have δre f = (e−(1−â)
ˆ̄X
η̃ | ˆ̄X = −3.7, η̂ = 2.5, â = 0.99988) =

1.0002 hence the reference of the mispricing level is δ250×30
re f − 1 ≈ 3 over 30

years, indicating that a jump probability of 0.5 per day requires a mispricing
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θ r̄
(ann.)

σ̄
(ann.)

α β κ X̄ η a Wilks p-
value

θ̂GARCH 0.105 0.215 0.117 0.868

(0.020) (0.015) (0.0062) (0.0068)

θ̂CI 0.094 0.156 0.095 0.887 0.015 -3.9 71.7 < 10−4

(0.021) (0.008) (0.0057) (0.0068) (0.0019) (0.24)

θ̂Complete 0.044 0.142 0.096 0.882 0.011 -3.7 2.5 0.99988 45.9 < 10−4

(0.008) (0.006) (0.0055) (0.0066) (0.0011) (0.39) (0.53) (0.0001)

Table 2.4: Parameter estimation and associated standard errors for the DAX daily
time series with the Wilks statistics of the pairwise comparisons of
the three models described in subsection 2.4.1 and the corresponding
p-values. To present the results of the estimation, the same structure
as Table 2.2 is used.

level of approximately 300% over 30 years, or 3.7% excess return per year.
Notice that the most remarkable peak ≈ 0.4 of the jump probability in
Figure 2.8 corresponds to the dot-com bubble in 2000. The model estimation
suggests that this peak is associated with a mispricing level of about 230%
over 30 years.

We generate 100 time series with the estimated parameters of the DAX
time series in Table 2.4 and estimate the parameters of the simulated time
series. Figures 2.9 and 2.10 exhibit the estimates for the simulations in
violin plot and bivariate distribution. The fact that the underlying values
(estimates for the DAX time series) are almost always at the center of the
distributions of both plots indicates the consistency in the estimation.

Figure 2.9: Violin plots of the parameter estimates over the 100 simulated time
series generated with the estimated parameters of the DAX time
series, with blue lines indicating the mean values of the distributions
and red lines the estimates for the DAX time series.
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Figure 2.10: Isolines of bivariate distributions of the three parameters control-
ling the amplitude of the self-referencing propensity in the model
over the 100 simulated time series generated with the estimated
parameters of the DAX time series, with the red dots indicating the
estimates for the DAX time series.

2.5.2 Hang Seng Index

The realized yearly return of the Hang Seng Index from 24 November
1969 to 31 December 2020 is 10.1%, quite smaller than the estimate of the
expected return r̄ shown in Table 2.6. One can observe in Figure 2.11 that
the price followed approximately an exponential growth at the rate r̄ until
1997 but thereafter leveled off, departing from the dotted line.

Although the distributions of estimates for the simulated time series
shown in Figures 2.12 and 2.13 suggest consistency in estimation and
validate the results, it is justified to distinguish different epochs and estimate
the parameters separately. Indeed, the price dynamics of the HSI exhibits
a change of regime in 1997, probably in part associated with the official
transfer of sovereignty from the United Kingdom to the People’s Republic
of China on 1 July 1997 and linked up with the 1997 Asian financial crisis,
which started also in July 1997 in Thailand and spread by contagion over
most of East Asia and Southeast Asia. By mid-August 1998, the HSI had
fallen by more than 60% to 6660 points from its previous peak and, despite a
rapid recovery in the following year, has grown at a slower pace ever since,
compared to the period before 1997. We therefore apply the parameter
estimation to the pre- and post-transition regimes, where the transitional
point is set on 13 August 1998, when the index reached its lowest during
the Asian crisis. The estimations and visualizations of the two regimes are
presented in Table 2.8 and Figure 2.14.

The parameter estimation reveals expected returns r̄ around 20.7% and
12% for the two regimes respectively, both quite larger than the average
realized returns of 12.9% and 6.4% respectively. Notably, the first regime,
impacted by the pronounced 1973-1974 global shock, exhibits an estimate of
the average jump size κ nearly triple that of the second regime and exceeds



50 Model with non-local self-referencing hazard rate

Figure 2.11: The Hang Seng Index from 24 November 1969 to 31 December 2020

in semi-logarithmic scale (left axis) compared with an exponential
growth at the rate ˆ̄r (ann.) = 14.4% (dotted line) and the estimated
daily jump probability (right axis). The average annual realized
return is 10.1%, the realized volatility is 28.1% and the theoretical
volatility is 28.6%.

the overall estimated average jump size of the index. For the entire sample,

we have δre f = (e−(1−â)
ˆ̄X
η̃ | ˆ̄X = −3.6, η̂ = 1.9, â = 0.9991) = 1.0017, hence

the mispricing reference level is δ250×4.5
re f − 1 = 5.6 over 4.5 years, indicating

that a jump probability of 0.5 per day requires a mispricing level of about
560% over four and a half years (i.e. 146% per year). This high reference
level explains the low jump probability of the sample.

Figure 2.12: Violin plots of the parameter estimates over the 100 simulated time
series generated with the estimated parameters of the HSI time serie,
with blue lines indicating the mean values of the distributions and
red lines the estimates for the HSI time series.
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θ r̄
(ann.)

σ̄
(ann.)

α β κ X̄ η a Wilks p-
value

θ̂GARCH 0.209 0.312 0.117 0.872

(0.033) (0.026) (0.0058) (0.0060)

θ̂CI 0.151 0.188 0.079 0.905 0.025 -3.9 560.7 < 10−4

(0.032) (0.009) (0.0049) (0.0054) (0.0031) (0.22)

θ̂Complete 0.144 0.184 0.078 0.906 0.025 -3.6 1.9 0.9991 18.5 < 10−4

(0.030) (0.008) (0.0048) (0.0054) (0.0032) (0.26) (0.45) (0.0004)

Table 2.6: Parameter estimation and associated standard errors for the HSI daily
time series with the Wilks statistics of the pairwise comparisons of
the three models described in subsection 2.4.1 and the corresponding
p-values.

Figure 2.13: Isolines of bivariate distributions of the three parameters controlling
the amplitude of the self-referencing propensity in the model over
the 100 simulated time series generated with the estimated parame-
ters of the HSI time series, with the red dots indicating the estimates
for the HSI time series.
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Figure 2.14: The HSI from 24 November 1969 to 13 August 1998 (left panel, left
axis) and from 14 August 1998 to 31 December 2020 (right panel,
left axis) compared with exponential growths at the rate ˆ̄r (ann.) =
20.7% and 12% respectively (dotted lines) and the estimated daily
jump probabilities (right axes). The average annual realized returns
are respectively 12.9% and 6.4%.

θ r̄
(ann.)

σ̄
(ann.)

α β κ X̄ η a

θ̂1st
Complete 0.207 0.212 0.109 0.873 0.033 -3.8 1.6 0.9989

(till 13 August 1998) (0.047) (0.016) (0.0083) (0.0087) (0.0055) (0.30) (0.54) (0.0007)

θ̂2nd
Complete 0.120 0.169 0.054 0.936 0.012 -2.6 1.9 0.9988

(from 14 August 1998) (0.043) (0.015) (0.0053) (0.0059) (0.0020) (0.48) (1.1) (0.0008)

Table 2.8: Parameter estimation and associated standard errors for the two epochs
of HSI.

2.5.3 S&P 500

The S&P 500 time series from 4 March 1957 to 31 December 2020 with
the estimated daily jump probability is shown in Figure 2.15. The average
realized return of the index is 6.9% per annum while the estimated expected
return is ˆ̄r = 10.8% (ann.), leading to a rather large discrepancy between
the price trajectory and the exponential growth with rate ˆ̄r depicted by the
dotted line. The distributions of the estimates for the simulated time series
generated with the estimated parameters of the S&P 500 time series are
presented in Figures 2.16 and 2.17, showing consistency of the estimation.
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Figure 2.15: The S&P 500 from from 4 March 1957 to 31 December 2020 in semi-
logarithmic scale (left axis) compared with an exponential growth at
the rate ˆ̄r (ann.) = 10.8% (dotted line) and the estimated daily jump
probability (right axis). The average annual realized return is 6.9%,
the realized volatility is 16.1% and the theoretical volatility is 16.3%.

θ r̄
(ann.)

σ̄
(ann.)

α β κ X̄ η a Wilks p-
value

θ̂GARCH 0.131 0.165 0.097 0.893

(0.016) (0.011) (0.0048) (0.0052)

θ̂CI 0.110 0.093 0.077 0.910 0.009 -2.8 598.4 < 10−4

(0.016) (0.0059) (0.0041) (0.0046) (0.0009) (0.24)

θ̂Complete 0.108 0.097 0.078 0.909 0.009 -2.9 3.1 0.9986 6.9 0.0314

(0.015) (0.0055) (0.0040) (0.0044) (0.0009) (0.23) (0.72) (0.0004)

Table 2.10: Parameter estimation and associated standard errors for the S&P 500

daily time series with the Wilks statistics of the pairwise comparisons
of the three models described in subsection 2.4.1 and the correspond-
ing p-values.

Given the observed discrepancy between the price trajectory and the
exponential growth at the rate ˆ̄r (ann.), we consider the possibility for a
non-stationarity of the model parameters by performing the estimation
in time windows of duration of 5000 days and with increment of 2500
days. Figure 2.18 shows the results with each straight segment representing
the estimated expected return of the corresponding rolling window. The
estimated expected returns span a range from the low of 5.4% for 1971-1990
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Figure 2.16: Violin plots of the parameter estimates over the 100 simulated time
series generated with the estimated parameters of the S&P 500 time
series, with blue lines indicating the mean values of the distributions
and red lines the estimates for the S&P 500 time series.

Figure 2.17: Isolines of bivariate distributions of the three parameters controlling
the amplitude of the self-referencing propensity in the model over
the 100 simulated time series generated with the estimated param-
eters of the S&P 500 time series, with the red dots indicating the
estimates for the S&P 500 time series.

Figure 2.18: The S&P 500 time series compared with an exponential growth at
the rate ˆ̄r (ann.) = 10.8 (dotted line) estimated over the whole time
interval and with the exponential growth at the different risk premia
estimated in each 5000 days long windows (solid lines) as explained
in the text. Each straight segment represents an exponential growth
at the rate of the estimated expected return of the corresponding
rolling window. The rolling window size is 5000 time steps and the
increment (between neighboring vertical lines) is 2500 time steps.
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to a high of 14% both for 1950-1971 and 2000-2020. Overall, they bracket
nicely the expected return estimated for the whole period. Even at times of
plateauing and highly volatile markets with no clear trend, the parameter
estimation gives robust positive values for the expected return.

2.6 conclusion

We have proposed a novel class of models in which the crash hazard rate
is determined by a logit function of a non-local estimation of mispricing ex-
pressed in excess return. We have argued that, given the large uncertainties
surrounding the determination of fundamental values, investors develop a
kind of heuristic approach to diagnose the existence of over-pricing and of
bubbles, by looking at the deviations between the current price and what it
would have been if it had grown at an average long term rate, the deviation
being estimated over a time of scale of one year or larger. This brings in a
kind of self-referencing which is further elaborated by introducing a jump
or crash hazard rate that depend on this self-referencing mispricing. The
model with such crash hazard rate incorporates a positive feedback associ-
ated with the fact that a larger mispricing leads to a larger crash hazard rate
which itself is compensated by a larger expected return as a compensation
for the risks incurred by investors. In addition, the model also includes
the behavioral anchoring on the past price levels over a long time scale.
This formulation improves on previous rational expectation bubble models
whose risk and return are in general instantaneously matched.

We have documented that the model produces synthetic price time se-
ries that exhibit structures and properties that are comparable to those of
real financial time series, with also the existence of transient bubbles look-
ing similar to real financial bubbles with transient faster-than-exponential
growth of the price. Rather than crashing in a single jump, our model
allows for multiple jumps and the synthetic time series exhibit quite re-
alistically looking drawdowns. We have also quantified the performance
of the parameter estimation for the synthetic times series, with a good
recovery of the true parameters and well-understood standard deviations
and inter-dependencies between the estimated parameters.

The model has been calibrated to the daily time series of three stock
indexes, which has allowed us to characterize their bubbles via the determi-
nation of the time dynamics of the jump probabilities. As a key feature of
our model, the usually hidden expected return (providing a guidance to
what should be the long-term expected return) has been estimated for each
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of the indexes over the entire time domain and over pre- and post-transition
periods or rolling windows. We have found that when, the self-referencing
memory is very long (e.g. more than 20 years) and underpricing exists in
historical data, the estimated expected return can be close to or lower than
the average realized return. Otherwise the estimated expected return is
more likely to exceed the average realized return, implying that the model
deems the financial time series overall to be underpriced.
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appendix

2.a additional synthetic example

Figure 2.19: Synthetic price trajectory generated with parameters
(r̄, σ̄, α, β, κ, X̄, η, a) = (0.07 (ann.), 0.15 (ann.), 0.05, 0.94, 0.008,
−2, 4, 0.996) in semi-logarithmic scale (upper panel, left axis) with
an exponential growth at the rate r̄ shown with the dotted line,
jump probability (upper panel, right axis) and jump occurrence
(lower panel).
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Figure 2.20: Daily returns of the price trajectory shown in figure 2.19 (upper
panel) and the expected daily returns conditional on no crash oc-
currence at the next time step (lower panel) with the blue line
representing the level of r̄.

Figure 2.21: Synthetic price trajectory (as in Figure 2.19) in semi-logarithmic
scale (upper panel, left axis) with underlying jump probability and
estimated jump probability (upper panel, right axis), the difference
of the estimated and the underlying jump probabilities (lower panel,
left axis) and the ratio of the difference to the underlying value
(lower panel, right axis). The average annual realized return is 5%
and the realized volatility is 20.7%.
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θ r̄
(ann.)

σ̄
(ann.)

α β κ X̄ η a Wilks p-
value

0.07 0.15 0.05 0.94 0.008 -2 4 0.996

θ̂GARCH 0.060 0.210 0.051 0.939

(0.031) (0.010) (0.0042) (0.0053)

θ̂CI 0.063 0.156 0.050 0.939 0.0082 -2.0 109.0 < 10−4

(0.031) (0.012) (0.0052) (0.0061) (0.0012) (0.45)

θ̂Complete 0.072 0.153 0.049 0.939 0.0081 -1.9 3.7 0.9964 13.1 0.0014

(0.031) (0.012) (0.0044) (0.0054) (0.0012) (0.56) (1.2) (0.0024)

Table 2.12: Parameter estimation and associated standard errors for the synthetic
time series in Figure 2.19 given by the three models described in
subsection 2.4.1 with the Wilks statistics of the pairwise comparisons
of the three models and the corresponding p-values. To present the
results of the estimation, the same structure as Table 2.2 is used.

Parameter estimates are performed over 100 realizations, each with 10000
time steps, generated with the same underlying parameters (r̄, σ̄, α, β, κ, X̄, η, a) =
(0.07 (ann.), 0.15 (ann.), 0.05, 0.94, 0.008, −2.0, 4, 0.996). The mean value
and the standard deviation (within parenthesis) of the parameters estimates
over the 100 realizations are as follow

E [ ˆ̄r] = 0.073 (0.030) (ann.) ,

E [ ˆ̄σ] = 0.152 (0.014) (ann.) ,

E [α̂] = 0.050 (0.004) ,

E
[
β̂
]
= 0.940 (0.005) ,

E [κ̂] = 0.008 (0.001) ,

E[ ˆ̄X] = −2.0 (0.6) ,

E [η̂] = 4.6 (2.2) ,

E [â] = 0.9960 (0.0030) .

(2.52)
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Figure 2.22: Distributions of the parameter estimates over 100 realizations,
each with 10000 time steps, generated with the same parameters
(r̄, σ̄, α, β, κ, X̄, η, a) = (0.07 (ann.), 0.15 (ann.), 0.05, 0.94, 0.008, −2.0,
4, 0.996). The underlying parameters are shown with the vertical red
lines with values readable on the x-axis and fits of normal distribu-
tions are shown as black smooth curves.

2.b additional parameter estimation for real data

Nikkei 225

The realized average return of the Nikkei 225 from 16 May 1949 to 31

December 2020 is 7.1% per annum, again lower than the estimate of the
expected return r̄, see Table 2.14. Similarly to the HSI case presented in
the main body of the paper, the estimated expected return ˆ̄r for the Nikkei
time series is approximately equal to the average realized growth rate in
earlier years, from 1950s to 1980s, but is found much larger than the average
realized growth rate from 1990s onward, see Figure 2.23. The distributions
of the estimates for the simulated time series shown in Figures 2.24 and 2.25

suggest that the parameters estimated from the Nikkei time series are
consistent.

The transition of the price trajectory of the Nikkei 225 index is associated
with the burst of the real-estate and financial bubbles in 1990 to 1991,
which have been followed by the so-called ‘Japan’s lost decades’ (of growth)
(Funabashi and Kushner, 2015). We estimate the parameters separately
for the two regimes divided at the date of 18 August 1992 where the
index reached its historical low subsequent to the asset price bubble. The
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Figure 2.23: The Nikkei 225 from 16 May 1949 to 31 December 2020 in semi-
logarithmic scale (left axis) compared with an exponential growth at
the rate ˆ̄r (ann.) = 12.6% (dotted line) and the estimated daily jump
probability (right axis). The average annual realized return is 7.1%,
the realized volatility is 19.5% and the theoretical volatility is 20.4%

Figure 2.24: Violin plots of the parameter estimates over the 100 simulated time
series generated with the estimated parameters of the Nikkei time
series, with blue lines indicating the mean values of the distributions
and red lines the estimates for the Nikkei time series.

Figure 2.25: Isolines of bivariate distributions of the three parameters control-
ling the amplitude of the self-referencing propensity in the model
over the 100 simulated time series generated with the estimated
parameters of the Nikkei time series, with the red dots indicating
the estimates for the Nikkei time series.
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θ r̄
(ann.)

σ̄
(ann.)

α β κ X̄ η a Wilks p-
value

θ̂GARCH 0.172 0.311 0.140 0.854

(0.019) (0.045) (0.0063) (0.0063)

θ̂CI 0.122 0.124 0.095 0.889 0.012 -3.0 957.4 < 10−4

(0.019) (0.007) (0.0055) (0.0064) (0.0019) (0.15)

θ̂Complete 0.126 0.129 0.095 0.890 0.014 -3.3 4.5 0.9952 17.9 0.0001

(0.019) (0.008) (0.0050) (0.0053) (0.0015) (0.24) (0.89) (0.0010)

Table 2.14: Parameter estimation and associated standard errors for the Nikkei
daily time series with the Wilks statistics of the pairwise comparisons
of the three models described in subsection 2.4.1 and the correspond-
ing p-values.

parameter estimates for the two regimes are presented in Table 2.16 and the
time series together with the jump probabilities are shown in Figure 2.26.
The obtained expected returns of 14.2% and 9% are quite larger than the
realized average yearly growth rate of 10.1% and 2.3% respectively. In the
second period, the parameter estimation deems the jump probability to be
constant (η̂ = 0). This means that the constant intensity model (2.47–2.49)
calibrates the time series well enough. This can be interpreted as the model
recognizing an absence of bubbles with positive feedbacks in the second
period.

Figure 2.26: The Nikkei 225 from 16 May 1949 to 18 August 1992 (left panel, left
axis) and from 19 August 1992 to 31 December 2020 (right panel,
left axis) compared with an exponential growth at the rate ˆ̄r (ann.)
= 14.2% and 9% respectively (dotted lines) and the estimated daily
jump probabilities (right axes). The average annual realized returns
are respectively 10% and 2.3%.



Model with non-local self-referencing hazard rate 63

θ r̄
(ann.)

σ̄
(ann.)

α β κ X̄ η a

θ̂1st
Complete 0.142 0.114 0.121 0.846 0.014 -3.5 6.3 0.9958

(till 18 August 1992) (0.022) (0.005) (0.0080) (0.0095) (0.0014) (0.22) (1.1) (0.0010)

θ̂2nd
CI 0.090 0.183 0.081 0.899 0.013 -2.9 - -

(from 19 August 1992) (0.039) (0.010) (0.0066) (0.0082) (0.0020) (0.32)

Table 2.16: Parameter estimation and associated standard errors for the Nikkei’s
two epochs

Given the estimates of the three parameters controlling the amplitude of
the self-referencing propensity in the model over the whole time interval,

we have δre f = (e−(1−â)
ˆ̄X
η̃ | ˆ̄X = −3.3, η̂ = 4.5, â = 0.9952) = 1.0035, hence

the reference of the mispricing level is δ250×0.83
re f − 1 ≈ 1 over 0.83 year,

indicating that a jump probability of 0.5 per day requires a mispricing level
of approximately 100% over ten months. This reference level is larger than
that of the first period, so that the same price amplitudes in Figure 2.23

are associated with smaller jump probabilities compared to those in the
first subplot of Figure 2.26. In the second regime, the jump probability
remains constant at L( ˆ̄X2nd) = 5.2%. Although the estimated expected
return is smaller than that for the whole period, the exponential growth at
the rate ˆ̄r2nd is still continuously above the real price shown in the second
subplot of Figure 2.26, implying that the model deems the Nikkei seriously
underpriced after 1992.

Nasdaq Composite

The Nasdaq Composite time series from 5 February 1971 to 31 December
2020 has an average realized return 9.7% per annum while the estimated
expected return ˆ̄r is 14.5%. The difference of these two returns is clearly
visible in Figure 2.27 where the exponential growth at the rate ˆ̄r remains
above the real price, especially after 2000. However, from 1976 to 1998 and
from 2009 to 2020, the Nasdaq index grows at a yearly rate approximately
in line with the estimated expected return. As a result, the daily jump
probabilities during these time intervals remain close to L( ˆ̄X) = 17% (recall
that it is the growth rate of the price in comparison with the expected return
that determines if a jump probability exceeds the average jump probability
so that a drawdown is more likely to happen). The discrepancy between
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the dotted line and the price trajectory can be mainly attributed to the
1973–1974 stock market crash and to the dot-com bubble drawdown and
subsequent abnormal behavior until the great financial crisis of 2008.

Figure 2.27: The Nasdaq Composite from 5 February 1971 to 31 December 2020

in semi-logarithmic scale (left axis) compared with an exponential
growth at the rate ˆ̄r (ann.)=14.5% (dotted line) and the estimated
daily jump probability (right axis). The average annual realized
return is 9.7%, the realized volatility is 19.2% and the theoretical
volatility is 16.1%

θ r̄
(ann.)

σ̄
(ann.)

α β κ X̄ η a Wilks p-
value

θ̂GARCH 0.179 0.192 0.116 0.872

(0.021) (0.015) (0.0059) (0.0061)

θ̂CI 0.148 0.065 0.089 0.890 0.007 -1.6 664.7 < 10−4

(0.022) (0.007) (0.0054) (0.0060) (0.0005) (0.17)

θ̂Complete 0.145 0.066 0.089 0.892 0.007 -1.6 2.1 0.9977 5.7 0.0577

(0.022) (0.008) (0.0055) (0.0061) (0.0007) (0.23) (0.60) (0.0011)

Table 2.18: Parameter estimation and associated standard errors for the Nasdaq
daily time series with the Wilks statistics of the pairwise comparisons
of the three models described in subsection 2.4.1 and the correspond-
ing p-values.

We take 9 October 2002, when the index reached its historical low sub-
sequent to the dot-com bubble, as the transition point and estimated the
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Figure 2.28: Violin plots of the parameter estimates over the 100 simulated time
series generated with the estimated parameters of the Nasdaq time
series, with blue lines indicating the mean values of the distributions
and red lines the estimates for the Nasdaq time series.

Figure 2.29: Isolines of bivariate distributions of the three parameters controlling
the amplitude of the self-referencing propensity in the model over
the 100 simulated time series generated with the estimated param-
eters of the Nasdaq time series, with the red dots indicating the
estimates for the Nasdaq time series.

parameters for the pre- and post-transition regimes separately. The results
are presented in Table 2.20 and the time series together with the jump
probabilities are shown in Figure 2.30. In the first regime, the estimated
expected return of 7.5% is equal to the average realized yearly return. In
the second period, the model reduces to the constant intensity model with
η̂ = 0 and the estimated expected return is 20.8%, much higher than the
average realized yearly return 13.1%. In the first regime, the crash and
drawdown ending in October 2002 can thus be interpreted as en efficient
correction to the long term growth trend.

Given the estimates of the three parameters controlling the amplitude of
the self-referencing propensity in the model over the whole time interval,

we have δre f = (e−(1−â)
ˆ̄X
η̃ | ˆ̄X = −1.6, η̂ = 2.0, â = 0.9977) = 1.0018, hence

the all-time reference of the mispricing level is δ250×1.73
re f − 1 = 1.2 over 1.73

years, indicating a jump probability of 0.5 per day requires a mispricing
level of 120% over about 21 months (which corresponds to a 111% annual
growth rate). This reference level is higher than that for the first regime.
For this reason, and also because of a longer self-referencing memory, the
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Figure 2.30: The Nasdaq Composite from 5 February 1971 to 9 October 2002

(left panel, left axis) and from 10 October 2002 to 31 December 2020

(right panel, left axis) compared with exponential growths at the
rate ˆ̄r (ann.) = 7.5% and 20.8% respectively (dotted lines) and the
estimated daily jump probabilities (right axes). The average annual
realized returns are respectively 7.5% and 13.1%.

θ r̄
(ann.)

σ̄
(ann.)

α β κ X̄ η a

θ̂1st
Complete 0.075 0.064 0.090 0.883 0.007 -1.7 1.5 0.99990

(till 9 October 2002) (0.041) (0.008) (0.0074) (0.0110) (0.0008) (0.43) (0.84) (0.0007)

θ̂2nd
CI 0.208 0.121 0.099 0.875 0.008 -1.7 - -

(from 10 October 2002) (0.042) (0.009) (0.0093) (0.0102) (0.0008) (0.23)

Table 2.20: Parameter estimation and associated standard errors for the two
separate time intervals of the Nasdaq index.

jump probability estimated from the first regime of the index has a different
behavior and a more pronounced peak for the dot-com bubble compared
to what are given by the estimation for the entire sample.

Dow Jones Industrial Average

The Dow Jones Industrial Average time series from 14 July 1896 to 31

December 2020 with the estimated daily jump probability is shown in
Figure 2.31. The discrepancy between the price trajectory with the average
realized annual return 9.7% and an exponential growth at the rate of 14.5%
has a pattern similar to that discussed for the S&P 500 time series.
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Figure 2.31: The Dow Jones Industrial time series from 14 July 1896 to 31 De-
cember 2020 in semi-logarithmic scale (left axis) with price growing
at the rate ˆ̄r (ann.) = 9% (dotted line) and the estimated daily jump
probability (right axis). The average annual realized return is 5.0%,
the realized volatility is 17.5% and the theoretical volatility is 16%.

θ r̄
(ann.)

σ̄
(ann.)

α β κ X̄ η a Wilks p-
value

θ̂GARCH 0.118 0.189 0.101 0.889

(0.012) (0.010) (0.0033) (0.0036)

θ̂CI 0.087 0.095 0.073 0.910 0.010 -2.7 1619.1 < 10−4

(0.012) (0.003) (0.0029) (0.0033) (0.0005) (0.10)

θ̂Complete 0.090 0.096 0.073 0.910 0.010 -2.7 1.3 0.9982 5.9 0.0512

(0.024) (0.010) (0.0046) (0.0037) (0.0017) (0.26) (0.85) (0.0018)

Table 2.22: Parameter estimation and associated standard errors for the DJIA
daily time series with the Wilks statistics of the pairwise comparisons
of the three models described in subsection 2.4.1 and the correspond-
ing p-values.

Due to a very high reference level of mispricing determined by the
parameter estimation, the jump probability stays close to its average value
L( ˆ̄X) = 6%. Nevertheless, the Great Crash in 1929 as well as the crashes
in 1987 and 2000 are characterized by small but visible peaks in the jump
probability. Given the length of the time series spanning 125 years, with
arguably many impactful geopolitical (two world wars), economic (great
depression) and financial regimes (different interest rate regimes), we apply
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the same rolling window approach as for the S&P 500 time series in the
previous subsection. The results are shown in Figure 2.34. Two observations
stand out. First, one can observe a secular tendency for the expected return
to increase over time from a low value of 2.7% from 1902 to 1917, and the
largest value of 14.7% observed for the last window from 1999 to 2020. A
possible interpretation is the increasing expectations of investors of the
positive impacts of the second, third and now fourth industrial revolutions
in creating value that translated in expectations revealed by the Dow Jones
index valuation. A complementary interpretation is the growing role of
finance in funding the economy and in shaping expectations, as well as the
increasing impact of central bank interventions arguably propping up the
markets (Sornette and Cauwels, 2014). The second interesting observation
is that, even in the time period covering the Great Depression or the Great
Recession, the estimated expected return remains positive with a minimum
of 6.7% during the Great Depression while the realized average return of
the same time window is −0.8%.

Figure 2.32: Violin plots of the parameter estimates over the 100 simulated time
series generated with the estimated parameters of the DJIA time
series, with blue lines indicating the mean values of the distributions
and red lines the estimates for the DJIA time series.

Figure 2.33: Isolines of bivariate distributions of the three parameters control-
ling the amplitude of the self-referencing propensity in the model
over the 100 simulated time series generated with the estimated
parameters of the DJIA time series, with the red dots indicating the
estimates for the DJIA time series.
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Figure 2.34: The DJIA time series with prices growing at the overall rate ˆ̄r (ann.)
= 9% (dotted line) and at the expected rate of each rolling window
(solid lines). The rolling window size is 5000 time steps and the
increment (between neighboring vertical lines) is 2500 time steps.

2.c stationarity and existence of the moments

Following the proof in (Embrechts, Samorodnitsky, et al., 1998), we es-
tablish the existence of a unique stationary distribution for Zt =

(
rt, σ2

t , Xt
)

defined in model (2.16) and the existence of the second moment of rt.
The process Zt =

(
rt, σ2

t , Xt
)

is a three-dimensional Markov chain with
state space E = R × R+ × R that can be expressed as

rt = κt · λt + σt · εt − κt · Jt · It , (2.53)

σ2
t = ω + α · r2

t−1 + β · σ2
t−1 , (2.54)

Xt = −1 − a
s

· ln d + a · Xt−1 +
1 − a

s
· rt−1 , (2.55)

where εt ∼ N (0, 1), Jt ∼ E (1) and Pr [It = 1|Ft−1] = λt, with λt = L (Xt)
constituting a continuous increasing mapping from R to [0, 1]. We here
make explicit that η := 1−a

s and X̄ := − ln δref
s (see expression (2.15)) and

define ln d := −sX̄ (see expression (2.14)). Without loss of generality, we
have assumed r̄ = 0.

The parameter space is such that (ω, α, β, d, s) ∈ R5
+, a ∈ [0, 1) and

E
[
κ2

t
]
< ∞. The transition probabilities is denoted by P (x, A), with x ∈ E

and A a measurable set.
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Necessary condition

Let us first establish a necessary condition for the existence of a second
moment of rt assuming the existence of a stationary distribution. The second
moment of rt reads

E
[
r2

t

]
= E

[
(κt · λt + σt · εt − κt · Jt · It)

2
]

, (2.56)

= E
[
σ2

t

]
+ E

[
κ2

t ·
(

2λt − λ2
t

)]
. (2.57)

The first expectation can be evaluated from the dynamic of the volatility:

E
[
σ2

t

]
= ω + α · E

[
r2

t−1

]
+ β · E

[
σ2

t−1

]
, (2.58)

= ω + (α + β) · E
[
σ2

t−1

]
+ α · E

[
κ2

t−1 ·
(

2λt−1 − λ2
t−1

)]
, (2.59)

which yields

E
[
σ2

t

]
= ω + (α + β) · E

[
σ2

t

]
+ α · E

[
κ2

t ·
(

2λt − λ2
t

)]
(2.60)

if the Markov chain is stationary, and

E
[
σ2

t

]
=

ω + α · E
[
κ2

t
(
2λt − λ2

t
)]

1 − α − β
, (2.61)

and

E
[
r2

t

]
=

ω + (1 − β) · E
[
κ2

t
(
2λt − λ2

t
)]

1 − α − β
, (2.62)

provided that the necessary condition α + β < 1 holds.

Sufficient condition

Taking the necessary condition α + β < 1 for granted, let us now prove
that it is sufficient for the existence of a stationary distribution of Zt with a
finite second moment for rt.

Given the density of the noise variables (εt, Jt, It), the Markov chain
{Zt, t ≥ 0} is irreducible. As a result of part (iii) of Theorem 6.0.1 in (Meyn
and Tweedie, 1993), it is even an irreducible T-chain. Indeed, according to
this theorem, the property of being an irreducible T-chain is equivalent
to the weak Feller property, which is equivalent to the weak continuity
property:
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The conditional distribution of Zt, given Zt−1 = yk, converges
weakly to that of Zt given Zt−1 = y if yk → y.

Therefore, to prove that the Markov chain {Zt} is an irreducible T-chain,
we just need to establish the weak continuity property, which follows from
the continuous mapping theorem (Billingsley, 2008, Theorem 5.1, p. 30)
because the dynamics of {Zt} is such that every new state is described by
analytic functions of the previous state and the new random variables.

Now, given {Zt} is an irreducible T-chain, we rely on the following
lemma from Embrechts, Samorodnitsky, et al. (1998):

i) Suppose that there exists a real-valued mapping V ≥ 0 with V ̸≡ 0 and
a compact set C such that

V (Zt)− PV (Zt) ≥ 0, for Zt /∈ C , (2.63)

where P expresses the expectation value at the following step of the Markov
chain, i.e. PV (x) = E (V (Zt) |Zt−1 = x) =

∫
E V (y) P (x, dy). Then there

exists an invariant measure and the Markov chain is Harris recurrent.
ii) Suppose that there exists a real-valued mapping V ≥ 0 and V ̸≡ 0 and

a compact set C such that

V (Zt)− PV (Zt) ≥ −b · 1C (Zt) + 1 , (2.64)

where 1C is the indicator function of the set C (1 if in C, 0 if outside), and b
is a finite positive number. Then there exists a unique stationary distribution
π and {Zt} is positive Harris recurrent.

iii) Suppose that {Zt} is positive Harris recurrent and there exist nonneg-
ative measurable functions f and V so that

V (Zt)− PV (Zt) ≥ f (Zt)− b , (2.65)

with a finite b ≥ 0. Then the π-expectation of f , π f =
∫

f (x)π (dx), is
finite, specifically: π f < b < ∞.

Hence, we have to find a mapping V that satisfies to previous conditions
to establish our result. Given the necessary condition α + β < 1 for the
existence of the second moment of rt, there exits a real u such that

α

1 − α
< u <

1 − β

β
. (2.66)
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Applying the previous lemma to {Zt} with the mapping V:

R × R+ × R → R+ , (2.67)

(x, y, z) 7→ V (x, y, z) = u · x2 + y + L (z)c , (2.68)

with c ≥ 0, we have

PV
(

r, σ2, X
)

=E
[

u · r2
t + σ2

t + L (Xt)
c
∣∣∣ rt−1 = r, σ2

t−1 = σ2, Xt−1 = X
]

, (2.69)

= (1 + u) ·
(

ω + α · r2 + β · σ2
)
+ L

(
−1 − a

s
· ln d + a · X +

1 − a
s

· r
)c

+ κ2 · L
(
−1 − a

s
· ln d + a · X +

1 − a
s

· r
)3

×
(

2 − L
(
−1 − a

s
· ln d + a · X +

1 − a
s

· r
))

, (2.70)

Hence we get

V
(

rt, σ2
t , Xt

)
− PV

(
rt, σ2

t , Xt

)
= (u − (1 + u) · α) · r2

t + (1 − (1 + u) · β) · σ2
t + L (Xt)

c

− (1 + u) · ω − L
(
−1 − a

s
· ln d + a · X +

1 − a
s

· r
)c

− κ2 · L
(
−1 − a

s
· ln d + a · X +

1 − a
s

· r
)3

×
(

2 − L
(
−1 − a

s
· ln d + a · X +

1 − a
s

· r
))

. (2.71)

Given (α, β) ∈ [0, 1], the coefficients before r2
t and σ2

t are positive so that
the sum of the three terms in the first line is positive and can be made as
large as desired. The sum of all the remaining terms is negative and its
absolute value can be bounded by (1 + u) · ω + 1 + 2 · κ, since L ∈ [0, 1].
Hence, V satisfies the points (i) and (ii) of the lemma. Now, defining

f (x, y, z) = ξ ·
(

x2 + y
)
+ L (z)c , (2.72)
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with 0 < ξ < min {u − (1 + u) · α, 1 − (1 + u) · β}, we satisfy the last point
of the lemma and prove that the condition α + β < 1 is sufficient for the
existence of a stationary distribution of {Zt} that admits a finite second
moment for rt.

2.d exponentially modified gaussian distribution

The joined law of the triple
(

rt = ln St
St−1

, Jt, It

)
conditional on Ft−1 is

(rt, Jt, It)
law
= N

(
µt − κ · Jt · It, σ2

t

)
· E (1) · λIt

t · (1 − λt)
1−It , (2.73)

with κ ∈ R.
The marginal density of rt conditional on Ft−1 reads

gt (x) =
1

∑
I=0

λI
t · (1 − λt)

1−I ·
∫ ∞

0
dJ

1√
2πσ2

t

e−
1
2

(
x−µt+κ·J·I

σt

)2

e−J , (2.74)

=λt · fEMG (x |µt, σt, κ ) + (1 − λt) · φ (x |µt, σt ) , (2.75)

where

φ (x |µ, σ ) =
1√

2πσ2
e
(x−µ)2

2σ2 , (2.76)

and fEMG is the exponentially modified Gaussian distribution with density

fEMG (x |µ, σ, κ ) =
1
|κ| e

x−µ
κ + σ2

2κ2 ·
(

1 − Φ
(

sgn (κ) ·
(

x − µ

σ
+

σ

κ

)))
, κ ̸= 0 ,

(2.77)
where Φ (·) denotes the cumulative distribution function of the standard
normal law, that is

fEMG (x |µ, σ, κ ) =


1
κ e

x−µ
κ + σ2

2κ2 ·
(

1 − Φ
(

x−µ
σ + σ

κ

))
, κ > 0 ,

1
|κ| e

x−µ
κ + σ2

2κ2 · Φ
(

x−µ
σ + σ

κ

)
, κ < 0 ,

(2.78)

so that
fEMG (x |µ, σ, κ ) = fEMG (−x |−µ, σ, κ ) . (2.79)

Of course when κ = 0, we have fEMG (x |µ, σ, 0 ) = φ (x |µ, σ ).
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3
M O D E L I N G F I N A N C I A L C R A S H E S W I T H
S E L F - E X C I T I N G H A Z A R D R AT E

This chapter presents an extended model of the previous model, which
includes a crash hazard rate consisting of two components: the baseline
intensity, which accounts for the exogenous shocks, and is determined by a
function of mispricing level that reflects the propensity to anchor on past
price levels; and the self-excitation, which accounts for the endogenous
shocks. Adhering to the basic tenet of economic theory, rational expectations,
our model expands previous frameworks by linking the crash hazard rate
to a non-local self-referencing estimation of mispricing, and on correcting
jumps. This linkage particularly encodes the tendency for stronger herding
behaviors, both in frequency and magnitude, when prices are exuberant. We
show that the model not only explains the mechanism of market crashes but
also captures key stylized facts of financial time series including volatility
clustering, leverage effects, fat-tailedness, long memory, without the need
for traditional volatility models like GARCH. We further apply the model
to major market indices and find that the distinctive performance trends of
the indices are largely driven by underlying differences in their baseline
intensities and degree of self-excitation, rather than by their underlying
returns or diffusive volatilities.

3.1 introduction

Traditional financial econometrics has predominantly treated market
jumps as isolated events. Since Merton (1976) and Cont and Tankov (2004),
Poission and Lévy processes have been extensively employed in option pric-
ing, portfolio optimization, and beyond. However, their assumption of event
independence prohibits them from accounting for the clustering of jumps
identified in financial series. The introduction of Hawkes process (Hawkes
(1971b) and Hawkes (1971a)) marks a shift in addressing this limitation.
Originally developed for seismology, Hawkes process has enjoyed great
popularity in finance econometrics in recent decades because it naturally
accounts for the clustering phenomena by describing that the occurrence of
an event increases the likelihood of subsequent ones. Across its broad appli-
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cation in finance econometrics, Hawkes process is used to describe market
events like trades, order flows, news releases, etc. (see e.g. Hawkes (2018)
and Hawkes (2020) for reviews), and is particularly preferred for modelling
in high-frequency environment (see e.g. Bacry, Mastromatteo, and Muzy
(2015) for review) because the microstructure in high-frequency data is
aligned with the event-based nature of Hawkes process. For coarser time
scales, Hawkes process is jointly used with diffusion process (Aït-Sahalia,
Cacho-Diaz, and Laeven (2015), Errais, Giesecke, and Goldberg (2010)) to
additionally account for the integration of information over longer period.

Hawkes process is particularly useful for its structural distinction between
the exogenous shocks such as market and geopolitical news, and endogenous
interactions driven by internal processes, such as trader behavior and
market sentiment that can lead to herding and feedback loops. Hawkes
process defines a clear endogenous term understood in terms of a branching
process, and allows for the classification of different types of events and
the study of pertinent concepts like reflexivity (Soros (1988), Filimonov and
Sornette (2012a)), which implies that perceptions of investors can influence
market outcomes and in turn affect perceptions, creating a feedback loop
that can deviate the asset price significantly from its fundamentals, and
excess volatility (Shiller (1981a) and Shiller (1992b), Wyart and Bouchaud
(2007), Wehrli and Sornette (2021)), which suggests that price fluctuations
are far greater than can be explained by relevant information. This leads
to the understanding that price dynamics are largely endogenous, driven
by mechanisms within the market itself, which diverges from the Efficient
Market Hypothesis.

Grounded in the studies of the endogenous and exogenous origins of
financial crises (Sornette, Malevergne, and Muzy (2004), Sornette (2005), Jo-
hansen and Sornette (2010b)), we employ the model framework introduced
by Malevergne, Sornette, and Wei (2023) and propose to link the crash
hazard rate to an endogenous term. This framework combines the rational
expectation theory and positive feedback loops by defining the crash hazard
rate as a function of mispricing level. It extends the literature of rational
bubble models, where the risk-return condition holds instantaneously, by
describing the mispricing as non-local self-referencing. Despite the ad-
vances, the jump occurrence in this framework is governed by a Bernoulli
process, meaning the jump clustering is a result of the built-up high crash
hazard rate due to a deficit of correcting jumps, and each jump within
the cluster is independently triggered by some level of mispricing. This
independence restricts the model from capturing asymmetries in volatility
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and jumps. The solution we propose in this paper is to add a self-exciting
term to the crash hazard rate. As the scope of this paper focuses on daily
time series, we conveniently employ the discrete-time Hawkes process,
allowing the crash hazard rate to be expressed as the intensity of a Hawkes
process

λt = µt +
t−1

∑
j=1

ϕ(j∆)Jt−j.

The baseline intensity µt is characterized by a simple linear function of
the non-local self-referencing mispricing. As mispricing level increases, the
probability of immigrant jumps occurring increases, and the offspring jumps
also start from a higher initial intensity, making the system more unstable.
The higher probability of frequent and closely clustered jumps demands
higher expected returns for risk compensation, boosting the bubble devel-
opment until corrective jumps occur. The inclusion of the self-excitation
of jump process enhances this positive feedback loop and attributes a
significant portion of market movements to endogenous dynamics. This
new framework demonstrates how internal market behaviors can scale up
to produce critical phenomena, aligning with bubble models like LPPLS
(Johansen, Ledoit, and Sornette (2000) and Johansen, Sornette, and Ledoit
(1999b)), where price movements and speculative bubbles are described as
consequences of market sentiments and positive feedback loops. Integrating
this mispricing-jump interaction with Hawkes process allows our model to
naturally capture the clustering of jumps and the endogenous dynamics of
market volatility: the market instability and corrections are not only due to
a high perceived risk, but also the internal market interactions.

More critically, the adoption of the Hawkes process enables the model
to effectively replicate the effects traditionally achieved by GARCH-family
models. Traditionally, models that incorporate independent jump processes
rely on volatility processes like GARCH and its numerous variations to
capture the volatility clustering and further characteristics such as fat-
tailedness, leverage effect, long memory, etc. These models often fall short
in considering the intricate dynamics of financial bubbles and crashes
because these epochs cannot be simply viewed as epiphenomenon resulting
from volatility properties or from isolated jumps, rather, they are largely
due to the direct interaction of the jumps themselves, i.e. the endogenous
effect. The self-exciting feature inherent in the Hawkes process provides
a parsimonious and elegant solution for modeling volatility clustering,
potentially eliminating the need for additional constructs to account for
time-varying volatility.
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While extensions such as the quadratic Hawkes (Blanc, Donier, and
Bouchaud (2017)) process have also been developed to better simulate
the stylized facts like fat-tailedness, we demonstrate that a well-calibrated
simple Hawkes process is sufficient. By focusing on the core mechanisms
of market interactions and the basic properties of Hawkes processes, our
approach simplifies the modeling and calibration process without compro-
mising the effectiveness in replicating real financial time series.

In order to obtain a sound model calibration and robust estimation of the
parameters, we perform a Monte-Carlo Expectation-Maximization (MCEM)
algorithm given the expected log-likelihood function does not have a closed
form. The parameter estimation is then applied to synthetic time series and
major market indices and complemented by an analysis of bias estimation.

The rest of the paper is organized as follows. Section 3.2 lays out the
model with its properties. Section 3.3 demonstrates the stylized fact of
model-generated data. Section 3.4 derives the expected log-likelihood for
the MCEM algorithm. Section 3.5 presents the results of the parameter
estimation for synthetic and empirical time series. Section 3.6 concludes
and propose further extension of the model.

3.2 the model with self-excited jumps

rt = γt + σtεt − κ Jt

• rt = log St∆ − log S(t−1)∆

• γt and σt are measurable with respect to the filtration {Ft}t=1,2,...,T/∆

• εt is an iid standard normal random variable

• Jt counts the number of jumps occurred in time step t

Assume we observe the price of a risky asset S over a long time interval
[0, T]. We discretize the time interval so that the time period t = 1, 2, ..., T/∆
lasts from a continuous time (t − 1)∆ to t∆. In this setting, the log-return
rt = log St∆ − log S(t−1)∆ of a risky asset follows the dynamics

rt = γt + σtεt − κ Jt, (3.1)

where γt and σt are measurable with respect to the filtration {Ft}t=1,2,...,T/∆
of the underlying probability space, and ε is an i.i.d. standard normal
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random variable. The random variable Jt counts the number of jumps that
occurred in the time step t and κ denotes their average jump size.

We can consider Jt to be the aggregate of an underlying point process N,
which itself is defined as a random measure on R, so that N((a, b]) = N(a, b)
counts the random number of points – or specifically the intra-period jumps
– on the half open interval (a, b]. Thus we have Jt = N((t − 1)∆, t∆). If
we assume the intra-period jumps to follow a generalized Hawkes point
process, then the discrete conditional intensity

Jt = N((t − 1)∆, t∆)

λt = lim
∆→0

∆−1E
[

Jt|F J
t−1

]
= µt +

t−1

∑
j=1

ηt−jh(j∆)Jt−j (3.2)

with F J
t−1 = σ(Jk : k ≤ t − 1) ⊂ Ft ensures (weak) convergence to the

conditional intensity of N (Kirchner, 2016). The ηt−j are the fertilities,
defining the expected number of jumps in some time step t − j that is
reproduced in all future time steps. The memory kernel hj := h(j∆) defines
the probability that a jump is retained in the j-th time step and thus
defines an offspring probability mass function with corresponding cumulative
distribution Hl := H(l∆) = ∑j≤l hj. The jump process is finally sub-critical
if the branching ratio η := E[ηj] < 1.

Using this specification, the conditional expected return is given by

E [rt|Ft−1] = γt − κE [Jt|Ft−1]

= γt − κλt
(3.3)

and when constrained to be constant, E[rt|Ft−1] = r̄, we recover

rt = r̄ + σtεt − κ (Jt − E [Jt|Ft−1]) . (3.4)

As in Malevergne, Sornette, and Wei (2023), we want the conditional jump
intensity to depend on the mispricing of the asset, i.e. its deviation from
growth at rate r̄. We can achieve this by having the background (or exoge-
nous) jump intensity µt, defined in (3.2), depend on the ratio

δt,τ =
St

St−τ · er̄·τ , (3.5)

whose deviation from 1 quantifies the departure of the current price St
from what would have been the asset price had it grown at the expected
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rate r̄ during the period under consideration. The price St−τ · er̄·τ can be
seen as the anchoring price at time t. The difference δt,τ − 1 quantifies the
over/under-pricing with respect to the expected long-term trend.

If we take the perspective of anchoring return, expression (3.5) can be
further rewritten as

1
τ

ln δt,τ =
1
τ

τ

∑
k=1

ln
St−τ+k

St−τ+k−1
− r̄ =

1
τ

τ

∑
k=1

(rt−τ+k − r̄) , (3.6)

which defines the average daily excess return over the long-term growth
rate r̄. For estimation purpose, it is natural to introduce a better-behaved
smooth version of expression (3.6) as an exponential moving average of the
returns over τ ≃ 1/(1 − a) time steps,

ln δt,a = (1 − a) (rt−1 − r̄) + a · ln δt−1,a , (3.7)

whose solution reads

ln δt,a = (1 − a)
∞

∑
k=0

ak (rt−k − r̄) , (3.8)

which is the exponentially smoothed version of (3.6) and thus

ln δt,a ≈
1
τ

ln δt,τ , with a ≈ 1 − 1
τ

. (3.9)

Subsequently, we can formulate the dependence between the level of
mispricing and the probability of jump occurrence using a monotonically
increasing function. For computational efficiency, we consider a piecewise
linear function 1

µt = max(0, ν ln δ + µ̄), (3.10)

where ν measures the sensitivity of jump intensity to changes in mispricing
and µ̄ adjust the base rate allowing for the existence of jumps even when
there is no mispricing.

In this setup, exogenous jumps due to mispricing at time t occur as
It ∼ Pois(µt) = Pois(µ̄F(δt−1,τ)) and then we have additional endoge-

1 the internal dynamics and interactions of past jumps play a much more significant role in
determining the jump intensity than the external factor of mispricing. Diminished Sensitivity
to Mispricing: When the self-exciting component overwhelmingly influences the jump intensity,
the specific choice of function connecting mispricing to the external jump intensity µ might
have a less critical impact on the model’s overall behavior. This is because the model’s dynamics
are primarily driven by the history of jumps rather than the current level of mispricing.



Model with self-exciting hazard rate 85

nous jumps occurring as Ot ∼ Pois(∑t−1
j=1 ϕt−j Jj) with ϕj := ηt−jh(j∆) and

Jt = It + Ot. For the jump offspring probability h, we choose a geometric
probability mass function hj = (1 − p)j−1 p, which corresponds to exponen-
tially decreasing memory in discrete times.

3.2.1 Model summary

Combining the equations, we obtain the full model as

rt = r̄ + σεt − κ(Jt − λt) (3.11)

Jt|Ft−1 ∼ Pois(λt) (3.12)

λt = µt + η
t−1

∑
j=1

hj Jt−j (3.13)

where µt = max(0, ν ln δt,a + µ̄) (3.14)

ln δt,a = (1 − a)(rt−1 − r̄) + a ln δt−1,a (3.15)

and hj = (1 − p)j−1 p (3.16)

with parameter set θ = (r̄, σ, κ, a, ν, µ̄, η, p), where σ, κ, µ̄ > 0 and 0 <
a, η, p < 1 to ensure the practical applicability and stationarity of the model.
The discrete time setting aggregates the effects of multiple jumps occurring
within a single time interval, with λt representing the jump intensity at
time t and κ the average size of the aggregated jumps. A constant κ assumes
that the average impact of the aggregated jumps is stable over time while
λt scales this impact according to the expected number of jumps. The paper
mainly focuses on scenarios when κ is positive, that is, when jumps are
negative and capture the dynamics of market crashes and drawdowns.
Although positive jumps are not explicitly included, the positive feedback
loops created by the buildup of perceived risks are capable of pushing the
bubble formation and exhibiting faster-than-exponential growth.

For parsimonious purpose, σ and η, p are also held constant, assuming
that the diffusive volatility does not react to market dynamics, and that the
influence of past jumps on the current condition is uniform. We show in
the next sections that a time-varying baseline intensity that is responsive
to the mispricing level is sufficient to account for dynamics of jumps and
volatility observed in financial time series, provided the branching ratio η
is close to 1.
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3.2.2 Moments of returns and stationarity

The unconditional expected return is given by

E [rt] = E [E [rt|Ft−1]] = r̄, (3.17)

and since Jt at each time point is a Poisson random variable with mean λt,
the unconditional variance reads

Var [rt] =E
[
σ2
]
+ E

[
κ2 (Jt − λt)

2
]

. (3.18)

=σ2 + κ2E
[
E
[
(Jt − λt)

2 |Ft−1

]]
(3.19)

=σ2 + κ2E [λt] . (3.20)

The expectation of intensity, given its expression (3.13), reads

E [λt] = ˜̄µ + ηE

[
t−1

∑
j=1

hj Jt−j

]
(3.21)

= ˜̄µ + η
t−1

∑
j=1

hjE
[
λt−j

]
, (3.22)

where E [max(0, ν ln δt,a + µ̄)] is denoted as ˜̄µ, and the solution reads

E [λt] =
˜̄µ

1 − η
, (3.23)

which corresponds to the classic results of the first moment of a classic
Hawkes process.

Given E [ln δt,a] = 0 provided by (3.14), a parameterization regarding ν
and µ̄ can be chosen such that ˜̄µ is equal to or can be approximated by µ̄.
Under this circumstance, the unconditional variance of returns (3.20) can
be expressed as

Var [rt] = σ2 +
κ2µ̄

1 − η
. (3.24)

Given the Efficient Market Hypothesis states that markets efficiently re-
flect all available information in asset prices almost instantaneously, so price
changes are just reflecting exogenous news. Therefore, price formation must
be efficient enough, so that no endogenous processes should be present in
any observation. Such a criterion for market efficiency is translated into
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the requirement of the branching ratio η = 0 in the framework of Hawkes
processes. Within the framework of our model, the excess volatility can be
therefore recognized as approximately

η

1 − η
· κ2µ̄. (3.25)

Next, we derive the skewness of the returns using the results of Poisson
central moments,

γ1 =
E
[
(rt − r̄)3

]
(

E
[
(rt − r̄)2

])3/2 =
−κ3E

[
(Jt − λt)

3
]

(
σ2 + κ2E

[
(Jt − λt)

2
])3/2 = − E [λt](

σ2

κ2 + E [λt]
)3/2 ,

(3.26)
and given (3.23), the skewness can be expressed by

γ1 = −
µ̄

1−η(
σ2

κ2 + µ̄
1−η

)3/2 . (3.27)

We observe intriguing behavior here as (3.27) indicates that the skewness
decreases when η increases from 0 and reaches its minimum at η∗ =

1 − µ̄κ2

2σ2 , then increases (decreases in magnitude) and finally vanishes as
η approaches 1. Initially, a larger η emphasizes negative skewness, but
the strong clustering and strong self-excitation at criticality will eventually
remove the skewness. The existence of a minimum at η∗ can be explained
by the competition between the standard volatility and the jumps.

We further derive the kurtosis of returns

γ2 =
E
[
(rt − r̄)4

]
(

E
[
(rt − r̄)2

])2 =
3σ4 + (6σ2κ2 + κ4)E [λt] + 3κ4E

[
λ2

t
]

(σ2 + κ2E [λt])
2 . (3.28)

To derive E
[
λ2

t
]
, we first recall Kirchner (2016) Proposition 5, which

derives the second moment of INAR(∞) sequence. Let R(j) := Cov(Jt, Jt+j),
we have

R(j) =
µ

1 − η

∞

∑
k=0

βkβk+|j|, (3.29)

where β0 := 1, βk := η ∑k
i=1 hiβk−i.

Given this, we can calculate the second moment of Hawkes intensity
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E
[
λ2

t

]
=E

µ2
t + 2µη

t−1

∑
j=1

hj Jt−j + η2

(
t−1

∑
j=1

hj Jt−j

)2
 (3.30)

=E
[
µ2

t

]
+ 2µη

t−1

∑
j=1

hjE [λt]

+ η2

t−1

∑
j=1

h2
j R(0) + 2 ∑

k<j
hjhkR(j − k) +

(
t−1

∑
j=1

hj

)2

E [λt]
2

 .

(3.31)

In fact, given the conclusion in Kirchner (2016) that INAR(∞) is (strictly)
stationary and exists unique solution, the same properties can propagate to
rt given the return equation linearly combines a stationary EWMA and an
INAR(∞), suppose the model parameters are well-specified.

3.3 stylized properties of synthetic data

3.3.1 Synthetic example

The requirement of stationary and the results of the moments, in particu-
lar (3.24) and (3.27) have imposed certain limitations in the parameterization.
As a visual illustration of the model properties, Fig. 3.1 show a typical syn-
thetic price trajectory and its returns over 40 years (10000 trading days),
generated with the following parameterization:

• r̄ = 7% per annum, σ = 8% per annum

• Jt|Ft−1 ∼ Pois(λt), κ = 1%

• µ̄ = 0.1, ν = 2, a = 0.99

• η = 0.93, p = 0.4.

• long-term expected rate of return r̄ = 7% per annum, diffusive volatil-
ity σ = 8% per annum;

• Jt|Ft−1 ∼ Pois(λt) follows Poisson distribution and the scale factor
of jump components κ = 1%;
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• parameters of the baseline intensity µt are µ̄ = 0.1, ν = 2; and the
memory for the EWMA is a = 0.99 about 100 trading days;

• parameters of the self-exciting part are branching ratio η = 0.93 and
memory decay p = 0.4.

Figure 3.1: Synthetic log-price generated with parameters (r̄, σ, κ, a, ν, µ̄, η, p) =
(0.07(ann.), 0.08(ann.), 0.01, 0.99, 2, 0.1, 0.93, 0.4) (upper panel, left
axis) with the price growing at rate r̄ over long term shown in straight
line, jump probability (upper panel, right axis) and log-returns (lower
panel).

3.3.2 Stylized properties for market profiles

In order to inform the basic adequacy of our model to describe properties
of actual bubbles and crashes, we first look at some empirical examples. To
identify where bubbles occurred in a price series, we will follow the simple
approach e.g. also used in Westphal and Sornette (2020) and define the end
of a bubble (or more generally, a drawup) as a peak in the time series.

A peak occurs at time-step ti if

Sti ≥ Stj ∀tj ∈ [ti − τd, ti + τd] (3.32)
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τd = 63

for some time scale τd, defining the minimum distance between two peaks.
In the following, we will choose τd = 63, corresponding approximately one
quarter of a calendar year. This time scale seems to satisfactorily identify
some well-known bubbles like the dot-com bubble, or the one ending
in October 1987, without additionally adding too many small/irrelevant
drawdowns (except maybe for the case of the Dow Jones Industrial Index).
The trough of the crash following the end of the bubble is then found at
the time at which the price is minimal between two consecutive peaks.

We present a summary of the resulting drawups and drawdowns charac-
teristics with the moments of returns for major indices in Table 3.2 and for
sample data in Table 3.4. The resulting start and end times of the drawups
are visualized in Figure 3.7 in the Appendix. The analysis of the sample
data reveals a close match with the stylized properties of empirical markets.

⟨r⟩
(ann.)

std(r)
(ann.)

skew(r) kurt(r) N ⟨B⟩/Max. ⟨C⟩/Max. ⟨τB⟩ ⟨τC⟩ slope
ratio

S&P 0.087 0.182 -1.21 28.4 40 31%/114% 15%/53% 0.74 0.25 2.5

Nasdaq 0.105 0.221 -0.33 11.2 40 44%/256% 20%/62% 0.68 0.29 2.1

Nikkei 0.037 0.222 -0.30 10.7 48 31%/88% 20%/51% 0.51 0.33 2.2

HSI 0.051 0.259 -2.12 56.5 42 42%/145% 24%/58% 0.52 0.33 2.0

DAX 0.078 0.219 -0.30 9.81 39 37%/111% 19%/60% 0.63 0.30 2.2

DJIA 0.077 0.175 -0.41 15.9 36 27%/98% 14%/50% 0.66 0.25 2.4

Table 3.2: Overview of the moments of returns and price dynamics for stock
indices, obtained with τd = 63 trading days. ⟨r⟩ the average annual
return, std(r) its standard deviation, skew(r) the skewness and kurt(r)
the kurtosis. N denotes the number of drawups in the sample, ⟨B⟩
their average size, accompanied by the maximum size, and ⟨τB⟩ the
corresponding average duration. ⟨C⟩ and ⟨τC⟩ denote the same quanti-
ties for the drawdowns, slope ratio is the average ratio of the slope of
a drawup to that of the corresponding drawdown. All durations are
expressed in years. See Figure 3.7 for a visualization of the drawups
start and end times.
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⟨r⟩
(ann.)

std(r)
(ann.)

skew(r) kurt(r) N ⟨B⟩/Max. ⟨C⟩/Max. ⟨τB⟩ ⟨τC⟩ slope
ratio

Sample 0.073 0.205 -0.67 10.5 34 45%/214% 22%/62% 0.88 0.27 2.9

Table 3.4: Overview of the moments of returns and price dynamics for the sample
time series as seen in Fig. 3.1. Notations are as defined in Table 3.2.

3.3.3 Stylized properties for returns

Volatility clustering and long-range dependence

In analyzing the synthetic sample time series, we first demonstrate volatil-
ity clustering and long-range dependence by plotting the autocorrelation
of log-returns and squared log-returns in Fig. 3.2. Both autocorrelation
functions exhibit patterns consistent with those observed in empirical data.

Figure 3.2: Autocorrelation functions of log-returns (left panel) and squared
log-returns (right panel) for the sample data as in Fig.3.1.

Leverage effect

The leverage effect (Black, 1976; Christie, 1982) is an acknowledged
feature of financial time series, referring to the negative correlation between
asset returns and changes in volatility. Figure 3.3 demonstrates the leverage
effect of the sample time series, which has similar pattern and greater
intensity compared to empirical time series.

Given the presence of leverage effect, we further study the level volatility
persistency employing (Glosten-Jagannathan-Runkle) GJR model, which
is a GARCH variant that accounts for leverage effect, with the following
method:
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Figure 3.3: Cross correlation between log-returns and squared log-returns, aver-
aged over indices S&P500, Nasdaq, Nikkei, HSI, DAX, and DJIA(left
panel); and of sample data as in Fig.3.1 (right panel).

First, conduct Engle’s ARCH test. The number of lagged terms to include
in the test statistic calculation is determined by fitting ARCH(q) models for
q = 1, ..., 50 and selecting the best fitting model q* using AIC. If the p-value
for the null of no ARCH effects from these tests indicates rejection of the
null, then the bubble model produces volatility clustering.

Second, perform a model selection test using the GJR model. In the GJR
formulation, large negative changes are more likely to be clustered than
positive changes. Since the GARCH model is nested in the GJR model (GJR
reduces to GARCH if all leverage coefficients are zero), we can test the
GARCH model against a GJR alternative using a likelihood ratio test. The
procedure is as follows: since GARCH(p,q) processes are locally equivalent
to ARCH(p + q) processes, consider all the possible GARCH(p,q) models
with p + q = q* and then select the best fitting GARCH model using AIC.
Subsequently, fit a GJR model with the same p,q like the AIC-optimal
GARCH model and then perform a likelihood ratio test for the null of
the GARCH model. If the p-value from this likelihood ratio test indicates
rejection of the null, then the bubble model produces asymmetric volatility
clustering.

We use the sum of the GARCH and ARCH coefficients and the leverage
parameter to indicate the volatility persistency. The results obtained from
the AIC optimal GARCH models fitted to the synthetic time series with
different parameterizations are shown in Fig.3.4. Given where the 0.95 level
is placed on the isoline maps, the volatility persistency remains close to one
as in empirical data only when η is also close to 1.
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0.95 0.95

0.95 0.95

Figure 3.4: Isoline map of the volatility persistency, calculated as the sum of the
GARCH and ARCH coefficients and the leverage parameter obtained
from the AIC optimal GARCH models fitted to the synthetic time
series. The colored areas indicates rejection of the null (the GARCH
model without leverage terms) at the 5% level. The values shown are
averages over 100 realizations.

Zumbach’s effects

The model is also consistent with the Zumbach’s effect (Blanc, Donier,
and Bouchaud, 2017), i.e. the fact that past squared returns predict fu-
ture volatilities better than past volatilities predict future squared returns.
This effect is more nuanced and often neglected in time series models. To
illustrate the effect, let us define the cross-correlation

ρ(2) (τ) =
Cov

(
σ2

t , (rt−τ − r̄)2
)

√
Var

(
σ2

t
)

Var
(
(rt − r̄)2

) , (3.33)

as in Euch et al. (2020), and its integrated difference

∆ (τ) =
τ

∑
i=1

(
ρ(2) (i)− ρ(2) (−i)

)
. (3.34)
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Figure 3.5 illustrates the Zumbach’s effect in empirical and synthetic sam-
ple time series, presented by the integrated difference (3.34). The consistent
patters further indicate the relevance of the model.

Figure 3.5: Integrated difference ∆ (τ), averaged over indices S&P500, Nasdaq,
Nikkei, HSI, DAX, and DJIA(left panel); and of sample data as in
Fig.3.1. (right panel)

Fat-tailedness

We demonstrate the fat-tail characteristic of synthetic data by plotting
complementary cumulative distribution function (CCDF) of log returns on
log-log scale and compare it to two empirical data. Fig.3.6 show how well
our model is capable of generating fat tails.

Figure 3.6: Tail behavior
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3.4 mcem algorithm for model calibration

In general, an expectation-maximization (EM) algorithm is an iterative
method to find maximum likelihood or maximum a posteriori estimates of
parameters in statistical models, where the model depends on unobserved
latent variables.

Given the statistical model which generates a set X of observed data, a
set of unobserved latent data or missing values Z, and a vector of unknown
parameters θ, along with a likelihood function L(θ; X, Z) = p(X, Z|θ),
the maximum likelihood estimate (MLE) of the unknown parameters is
determined by maximizing the marginal likelihood of the observed data

L(θ; X) =
∫

p(X, Z|θ)dZ =
∫

p(X|Z, θ)p(Z|θ)dZ, (3.35)

This quantity is often intractable since Z is unobserved and the distribu-
tion of Z is unknown before attaining θ. The EM algorithm seeks to find
the MLE of the marginal likelihood by iteratively applying these two steps:

• Expectation step (E-step): Define Q(θ|θ(t)) := EZ|X,θ(t) [ln L(θ; X, Z)]

• Maximization step (M-step): θ(t+1) := arg maxθ Q(θ|θt)

In our model, the arrival times of the jumps are unobservable. With
the discrete-time setting, the arrival times of the jumps are interpreted as
the numbers of jumps in different time interval. Let jt be the latent vari-
able that determines the number of jumps in time interval ((t − 1)∆, t∆),

then Pr (Jt = l) =
λl

te
−λt

l! , where l = 0, 1, 2, .... Here we need to impose
sup{Jt |1 ≤ t ≤ T/∆} = m and m being finite in order to close the likeli-
hood function. Let πt,l = Pr (Jt = l), l = 0, 1, 2, ..., m, we have ∑m

l=0 πt,l = 1
and the distribution of πt can be described by a truncated Poisson distribu-
tion.

Given the jumps J = {Jt}T
t=1, the returns r = {rt}T

t=1 are described by

rt ∼ N (r̄ + κλt − κ Jt, σ2). (3.36)

The aim is to estimate the unknown parameters

θ = (r̄, σ̄, κ, ν, µ̄, aτ , η, p) .
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One can factorize the likelihood conditional on the log returns r, such
that the likelihood reads

p(r,J |θ) = p(J |r,θ) p(r|θ) = p(J |r,θ)
T

∏
t=1

p(rt|rt−1, ..., r1,θ) (3.37a)

= p(J |r,θ)
T

∏
t=1

∑
J̃∈Nt

0

p(rt, J̃1:t|rt−1, ..., r1,θ) (3.37b)

= p(J |r,θ)
T

∏
t=1

∑
J̃∈Nt

0

p(rt|J̃1:t,θr)p(J̃1:t|rt−1, ..., r1,θJ) (3.37c)

= p(J |r,θ)
T

∏
t=1

EJ̃1:t |rt−1,...,r1,θ [p(rt|J̃1:t,θr)], (3.37d)

where J̃1:t is all possible realizations of jumps up to time t, θr refers to
the subset of model parameters that are specifically related to the return
process and θJ refers to that of the jump process.

To perform the EM algorithm, the entire expected log-likelihood is de-
rived as

EJ |r,θ′ [ln p(r,J |θ)] (3.38a)

=EJ |r,θ′

[
ln p(J |r,θ) +

T

∑
t=1

ln EJ̃1:t |rt−1,...,r1,θ [p(rt|J̃1:t,θr)]
]

(3.38b)

=EJ |r,θ′

[ T

∑
t=1

ln p(Jt|Jt−1, ..., J1, r,θ)
]
+

T

∑
t=1

ln EJ̃1:t |rt−1,...,r1,θ [p(rt|J̃1:t,θr)]

(3.38c)

=EJ |r,θ′

[ T

∑
t=1

ln
λt(J , r,θ′)Jt e−λt(J ,r,θ′)

Jt!

]
(3.38d)

+
T

∑
t=1

ln EJ̃1:t |rt−1,...,r1,θ

[ 1
σ
√

2π
exp

{
− (rt − r̄ − κ(λt − J̃t))

2

2σ2

}]
, (3.38e)

where θ′ denotes the parameter estimates from the previous iteration of the
EM algorithm, and (3.38d) and (3.38e) can be further derived as

EJ |r,θ′

[ T

∑
t=1

(Jt ln λt − ln(Jt!)− λt)
]

(3.39)
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and

−T
2

ln 2πσ2 +
T

∑
t=1

ln E J̃1:t |θ,r1:t−1

[
exp

{
− (rt − r̄ − κ(λt − J̃t))

2

2σ2 }
]
. (3.40)

3.5 parameter estimation

In our study, the expectation of the log-likelihood function is calculated
using the Monte-Carlo simulations, hence the overall approach is a Monte-
Carlo Expectation-Maximization (MCEM) algorithm. In each iteration of the
E-step, the Monte-Carlo simulation is employed, generating 24,000 samples
to estimate the conditional expectation of the latent variables given the
observed data. Given the stochastic nature of the expectation calculation,
each iteration of the MCEM may yield slightly different parameter estimates,
influenced by the inherent randomness of the MC. Given the challenges of
intractable log-likelihood function and the non-smooth nature of the Monte-
Carlo surface, traditional methods for estimating standard errors, such as
those derived from the Hessian matrix, are not feasible. To address the
variability introduced by this stochasticity and to estimate the uncertainty
of the obtained parameter estimates, we conduct 100 complete MCEM runs
with different starting points, use the mean of the estimates as the final
estimates, and report the empirical standard deviation of the estimates
across the runs. This method provides a straightforward and practical
estimation of the parameter uncertainties in the context of MCEM, and is
robust in our context.

To align the model parameters more closely with the observed data, a
penalty term is incorporated into the optimization in order to minimize the
discrepancy between the theoretical variance of the returns (3.24) and the
realized variance observed in the data. The penalty linearly increases as the
divergence between these two variances grows and encourages parameter
estimates to reflect the empirical characteristics of the data.

3.5.1 Parameter estimations for single synthetic data and ensemble distribution

The estimation of the sample time series as shown in Fig.3.1 is presented
in Table.3.6. On one hand, parameters are estimated with reasonable accu-
racy, suggesting that the model captures the dynamics well, especially those
related to σ̄, κ, η, even with a single dataset. On the other hand, the high
standard deviations for parameters such as ν and µ̄ indicate a higher level
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of uncertainty in the estimates, suggesting that single synthetic data may
not be sufficient to capture the full complexity of the parameter dynamics.

r̄
(ann.)

σ̄
(ann.)

κ a ν µ̄ η p

θ 0.070 0.080 0.01 0.99 2 0.1 0.93 0.4

θ̂ 0.088 0.094 0.012 0.991 2.3 0.122 0.926 0.49

Emp. SD (0.0298) (0.0199) (0.0053) (0.0015) (1.93) (0.0435) (0.0376) (0.214)

Table 3.6: Parameter estimation and associated empirical standard deviation for
the sample synthetic data.

In order to account for a complete manifestation of the characteristics
necessary for a more precise parameter estimation and to average out
anomalies, we perform the parameter estimation over 100 synthetic time
series generated with the same parameterization as in the sample data.
The mean and standard derivation of the estimates of the parameters are
reported in Table 3.6. In general, the mean of the estimates from an ensem-
ble of data is more consistent with the underlying value compared to the
estimates from single data, which is quite intuitive given the law of large
numbers. However, we also notice that ν, the scale factor of mispricing in the
exogenous measure violates this pattern as its mean of the estimates is even
larger than the already high estimate from single data. This discrepancy
does not necessarily indicate an overestimation, instead it reflects the inher-
ent difficulty in estimating ν because small changes in ν do not produce
significant changes in the model’s output. To understand this, we must
acknowledge the limitation in treating ν as a constant. During non-bubble
regimes, a minimal ν is required because the market condition is relatively
stable, and a large ν could lead to overreactions to normal market noise.
Conversely, during bubble regimes, market dynamics are characterized by
strong positive feedback loops and jump intensity is highly responsive to
changes in the mispricing, quickly accumulating potential energy for sharp
corrections. Indeed, the estimation of ν may improve in performance if
only the bubble regimes are considered. However, it is beyond the scope
of this time series study given that identifying bubble regimes is another
significant challenge in econometrics.
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r̄
(ann.)

σ̄
(ann.)

κ a ν µ̄ η p

θ 0.070 0.080 0.01 0.99 2 0.1 0.93 0.4

mean (θ̂) 0.073 0.088 0.011 0.989 2.5 0.113 0.937 0.42

std. (θ̂) 0.0272 0.0134 0.0039 0.0053 1.76 0.0241 0.0254 0.164

Table 3.8: The mean and standard deviation for the estimates of 100 synthetic
time series generated with the same parameterization as in the sample
data.

3.5.2 Parameter estimations for empirical time series

In this subsection, we calibrate the model on the daily time series of
six major global indices: S&P 500, Nasdaq Composite, Nikkei 225, Hang
Seng Index, DAX, and Dow Jones Industrial Average. For each indices, a
time window of 5000 time points from 12-May-2004 to 29-December-2023 is
selected. Parameter estimation and associated empirical standard errors are
reported in Table 3.10.

ˆ̄r
(ann.)

ˆ̄σ
(ann.)

κ̂ â ν̂ ˆ̄µ η̂ p̂

S&P 500 0.077 0.088 0.013 0.990 3.1 0.063 0.912 0.50

Emp. SD (0.0206) (0.0172) (0.0055) (0.0046) (1.68) (0.0390) (0.0425) (0.144)

Nasdaq 0.073 0.089 0.013 0.990 3.2 0.114 0.920 0.47

Emp. SD (0.0229) (0.0174) (0.0047) (0.0050) (2.05) (0.0547) (0.0433) (0.143)

Nikkei 0.072 0.097 0.012 0.991 4.0 0.109 0.906 0.47

Emp. SD (0.0234) (0.0173) (0.0041) (0.0045) (2.44) (0.0585) (0.0437) (0.141)

HSI 0.069 0.094 0.012 0.991 3.5 0.093 0.917 0.47

Emp. SD (0.0232) (0.0171) (0.0044) (0.0045) (2.25) (0.0429) (0.0433) (0.154)

DAX 0.070 0.093 0.013 0.990 3.4 0.084 0.908 0.48

Emp. SD (0.0213) (0.0166) (0.0048) (0.0046) (2.06) (0.0473) (0.0439) (0.158)

DJIA 0.077 0.089 0.013 0.990 3.0 0.059 0.913 0.51

Emp. SD (0.0205) (0.0159) (0.0057) (0.0046) (1.64) (0.0325) (0.0443) (0.146)

Table 3.10: Parameter estimation and associated empirical standard errors for
stock indices daily time series of a 5000-point time window.
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While it is tempting to attribute market performance to expected returns,
long-term growth rate may decouple itself from the performance trend.
This is because, even though factors like expected returns provide a general
picture of market behaviors, different market can react differently to the
news and trigger different degrees of cascades, resulting in diverse trends
and bubble dynamics. In fact, as shown in Table 3.10, the major contribu-
tions to the distinctive dynamics of different indices are µ̄ and η, not only
due to the differences in these parameters across indices, but also because
variations in these parameters have a more substantial impact compared to
other parameters (e.g. σ̄ and ν).

First and foremost, the near-critical branching ratios estimated from
empirical data are in line with the model calibration on synthetic data,
suggesting high endogeneity, i.e. strong self-reinforcing mechanisms. While
branching ratios for high frequency data are found to be around 0.8 for
equity futures and around 0.6 for foreign exchange (Wehrli, Wheatley, and
Sornette, 2021a), higher branching ratios at low frequencies are expected
given the greater influence of behavioral mechanisms.

The two benchmarks, S&P 500 and DJIA, have the lowest estimated µ̄,
indicating a relatively low sensitivity to external shocks. This aligns with
the fact that the two indices are considered stable and diversified. Their
estimated η are at moderate levels, suggesting a balance between investor
stability and speculative trading. They are more prone to feedback loops
than, e.g. the Nikkei, but less so than e.g. the Nasdaq. The Nasdaq is
characterized by the highest estimated µ̄ and η, which implies that it is
more susceptible to volatility clustering and feedback loops. The Nasdaq
tends to attract a larger volume of speculative trading partly due to the
growth-oriented nature of the companies listed. This speculative behavior
can amplify reactions to news and economic data, leading to increased
momentum and more abrupt market changes. The high-growth technol-
ogy stocks also tend to be sensitive to innovations and shifts in investor
sentiment, further amplifying market instability.

For regional indices like the DAX (Germany), Nikkei (Japan), and HSI
(Hong Kong), the Nikkei has a higher estimated µ̄ and a lower estimated η,
possibly due to geopolitical factors and currency fluctuations. Its special
financial environment is characterized by a prolonged period of deflation
and generally conservative strategies. The resultant risk aversion can lead
to, for instance, more pronounced reactions to negative shocks but less
aggressive buying during recoveries. On the other hand, HSI has a higher
estimated η, which appears aligned with Hong Kong’s market characteris-
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tics, known for its high level of retail and speculative trading, which can
amplify market reactions and create feedback loops.

Additionally, Table 3.12 displays the theoretical volatility (3.24), excess
volatility (3.25) and skewness (3.27) calculated from the parameter estima-
tion, in comparison with the realized volatility and skewness. The excess
volatility again confirms the significant role of endogenous interactions,
and in turn justifies a small σ in the parameterization and calibration given
the set-up of our model.

Furthermore, the theoretical skewness is consistently observed to be
negative and smaller than the realized volatility. This is determined by the
model framework, which accounts only for negative jumps as opposed
to the reality where there exist both negative and positive jumps. The
theoretical skewness is not necessarily aimed to match empirical skewness
but rather to give an insight into the asymmetry of the inherent distribution
of returns. Moreover, The empirical skewness of a particular time series
segment may reflect specific, non-recurring events that are not characteristic
of the typical behavior of the market (refer to the skewness for the indices
for longer period in Table 3.2).

Realized
Vol.

Theoretical
Vol.

Theoretical
Ex. Vol.

Realized
Skew

Theoretical
Skew

S&P 500 19.2% 19.5% 16.6% -0.52 -0.84

Nasdaq 21.5% 26.1% 23.5% -0.42 -0.70

Nikkei 22.5% 22.6% 19.4% -0.45 -0.68

HSI 23.1% 22.2% 19.2% 0.05 -0.70

DAX 20.8% 21.7% 18.7% -0.22 -0.77

DJIA 19.1% 19.1% 16.2% -0.38 -0.84

Table 3.12: Theoretical volatility, excess volatility and skewness calculated from
the parameter estimation for stock indices over a 5000-point time
window, compared with their realized volatility and skewness.

3.6 conclusion

We have developed a novel way of modeling financial time series with
crash hazard rate being influenced by both exogenous shocks and endoge-
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nous dynamics. It combines two fundamental mechanisms – the propensity
of agents to anchor on past price levels, and self-excitation of market crashes
– to improve the description and diagnosis of speculative bubbles and their
corrections.

Unlike traditional models that primarily consider exogenous factors, our
model attributes a significantly portion of market dynamics to endogenous
factors, accounting for how trader expectations and the clustering of market
events can self-excite and propagate through time, thereby influencing
market volatility and leading to crashes. The model effectively captures
various stylized facts in financial markets such as volatility clustering,
leverage effects, and fat-tailed distributions of returns, without relying on
conventional volatility models like GARCH.

Parameter estimation through the MCEM algorithm provides insights
into market dynamics. Model calibration on empirical data indicates that
the branching ratio operates near critical levels, suggesting that markets are
generally dominated by endogenous interactions. The calibration results
also reveal that the baseline intensity of market jumps and the branching
ratio are the primary drivers behind the distinctive behavioral patterns
observed across various financial indices.
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appendix

Figure 3.7: The start (green) and end (red) times of the drawups identified in
the daily log-price series. The last panel shows the dynamics of price
drawups for synthetic data in comparison with those for empirical
data from major indices in the previous panels.
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4
M U LT I P L E O U T L I E R S D E T E C T I O N I N S A M P L E S W I T H
E X P O N E N T I A L A N D PA R E T O TA I L S

This chapter introduces a novel class of ratio-based robust test statistics,
designed to enhance the robustness of outlier detection in samples with
exponential or Pareto tails. We also reintroduce the inward sequential testing
method – formerly relegated since the introduction of outward testing –
and show that MRS and SRS tests reduce susceptibility of inward approach
to masking, making the inward test as powerful as, and potentially less
error-prone than, outward tests. Moreover, inward testing does not require
the complicated type I error control of outward tests. A comprehensive
comparison of the test statistics is done, considering performance of the
proposed tests in both block and sequential tests, and contrasting their
performance with classical test statistics across various data scenarios. In
the case studies across financial crashes, nuclear power generation accidents,
stock market returns, epidemic fatalities, and city sizes – significant outliers
are detected and related to the concept of ‘Dragon King’ events, defined as
meaningful outliers that arise from a unique generating mechanism.

4.1 introduction

Anomalous observations, while sometimes dismissed as nuisances, can
be of primary relevance in applications ranging from medical diagnosis to
climate science (see Aggarwal, 2013 for examples). The statistical analysis
of these outliers has been extensively documented in literature (e.g., Bar-
nett and Lewis, 1994; Hawkins, 1980 are classic references). Traditionally,
statistical methods focuses on testing outliers relative to a null model, i.e.,
a model without outliers, which in many cases assumes an underlying
Gaussian distribution. Common approaches include the contaminated nor-
mal models that assume Gaussian sample with Gaussian outliers (Sec. 3.4
of Hawkins, 1980), and Gaussian mixture models that are often used to
detect anomalous sub-populations (Aitkin and Wilson, 1980; Hodge and
Austin, 2004). However, empirical data in many fields often do not follow
Gaussian distributions. In many scenarios, data can be better described by
distributions with fatter tails such as exponential or power law distributions.

107
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In particular, Pareto (power law) distributions are prevalent across a broad
spectrum of phenomena, ranging from natural hazards like earthquakes,
landslides, floods, and tsunamis, to industrial catastrophes such as chem-
ical spills, nuclear accidents, and power blackouts, and extend to social
systems and geopolitical events, including the distribution of wars and
conflicts intensities measured by human losses (Laherrère and Sornette,
1998; Mitzenmacher, 2004; Newman, 2005; Sornette, 2006).

This paper thus focuses on the detection of outliers in samples hav-
ing approximately exponential or Pareto tails. Notably, through a simple
transformation, outlier tests designed for exponential samples can also be
applied to Pareto samples. This places the test statistics with exponential
underlying distribution at the center of our study. Moreover, Extreme Value
Theory (EVT) suggests further generality of the exponential distribution by
providing that general ‘well-behaved’ distribution functions asymptotically
exhibit either exponential or Pareto tails (Embrechts, Klüppelberg, and
Mikosch, 1997). Although the exponential null models have been covered
in the literature ( Balakrishnan, 1996 provides a review), we show that
its application extends far beyond common usage. In addition, the tests
we consider are independent of the parameter of the exponential distri-
bution function, avoiding the danger of estimating the parameters of the
distribution function in the presence of outliers, which can lead to strong
biases.

Grounded in classical testing approaches, we introduce the two ratio-
based test statistics, max-robust-sum (MRS) and sum-robust-sum (SRS), which
are respectively modifications of the max-sum (MS) (Kimber, 1982) and the
sum-sum (SS) test statistics (Chikkagoudar and Kunchur, 1983; Lewis and
Fieller, 1979). The modifications involve altering the total sum in the ratio
to a partial sum, ensure ‘robust’ detection of outliers by recalibrating the
weight given to potential outliers in the calculation.

Historically, block testing and sequential testing have been utilized in
outlier detection. The masking and swamping issues in block testing have
led to the development of sequential testing. While inward sequential
tests are particularly vulnerable to masking, outward sequential tests were
developed to mitigate this issue (Kimber, 1982; Rosner, 1975), and have
since become the standard approach. Despite their widespread adoption,
outward tests are substantially more complicated as they require multiple
testing corrections that control the Type I error rate. In this study, we
show that the MRS and SRS test statistics effectively addresses the masking
problem of inward tests, making them competitive with outward tests. Our
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method opens new avenues for using inward tests without the extensive
complications associated with outward methods. Furthermore, we conduct
a comprehensive comparison of different statistics performed under these
testing approaches, providing useful practical insights that – in the opinion
of the authors – go beyond the existing literature (e.g., Balasooriya and
Gadag, 1994; Chikkagoudar and Kunchur, 1983; Lin and Balakrishnan, 2009;
Lin and Balakrishnan, 2014).

We also offer five interesting and extensive case studies including fi-
nancial crashes, nuclear power generation accidents, stock market returns,
epidemics fatalities, and city sizes. These studies shifts the outlier detec-
tion from reliability/failure applications (the exponential case) towards
applications in risk modeling (the Pareto case). A number of studies have
found suggestive evidence that there are extreme events ‘beyond’ the Pareto
sample (Sornette, 2009; Sornette and Ouillon, 2012a). This brings into play
the concept of ‘Dragon Kings’ (Sornette, 2009). We show that the proposed
outlier detection method effectively identifies these ‘Dragon Kings’.

The paper is organized as follows. Section 4.2 proposes the test statistics
and provides their analytical distribution functions. Section 4.3 presents
a variety of comparative studies across different scenarios, evaluating the
performance of various tests with both dispersed and clustered outliers
and their susceptibility to masking and swamping. Section 4.4 describes
the general methodology in outlier detection and the argument, based on
EVT, that supports the generality of the exponential outlier test. Section 4.5
explains the Dragon King (DK) concept and gives case studies on financial
crashes, nuclear power generation accidents, stock market returns, epidemic
fatalities, and city sizes. Section 4.6 concludes.

4.2 test statistics

The setup is an ordered sample x(1) > x(2) > ... > x(n) where n − k of

the observations are i.i.d. realizations of a random variable, X iid∼ Exp(α),
with the distribution function,

FX(x) = 1 − exp{−αx}, x ≥ 0, α > 0 , (4.1)

and the remaining k points are outliers, also i.i.d. with some different
distribution function, and independent of X. It is unknown which points are
outliers, and the objective is to detect them. Moreover, if X is exponentially
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distributed, then Y = u exp{X} iid∼ Pareto(α, u). That is, the exponential of
an exponential random variable has the Pareto distribution function,

F(x) = 1 − (x/u)−α, x ≥ u, α > 0 . (4.2)

Therefore, one can take the logarithm of Pareto samples and apply outlier
tests intended for exponential samples.

4.2.1 Gallery of test statistics

We now propose the MRS and SRS statistics, and review other standard
test statistics for outlier detection in exponential samples. In general, out-
lier test statistics compare the ‘outlyingness’ of the suspected outliers by
contrasting them against some measure of dispersion within another subset
of the data. Some of the measures are based on spacings or maxima, others
on the sums of observation sizes.

The max-robust-sum (MRS) statistic for the j-th rank,

TMRS
j,m =

x(j)

∑n
i=m+1 x(i)

, m ≥ 0 , (4.3)

is a modification of a classic statistic (Kimber, 1982), here referred to as
max-sum (MS) statistic. m is a pre-specified maximal number of outliers, and
the MS statistic is recovered when m = 0. Index j allows the test to be used
in sequential procedures for j = 1, ..., m. Having m > 0 in the denominator
prevents masking: when the true number of outliers is r > 0, for m < r,
there will be m − r outliers in the denominator that will make x(j) appear
less outlying. This consideration becomes crucial in inward testing, and
is similar to using robust scale estimates in the case of outliers relative to
a normal population (Iglewicz and Martinez, 1982). Thus, the choice of
m is a tradeoff between sample size (power) and sample purity (masking
avoidance). The classic MS statistic has optimal properties in the presence
of a single outlier (Hawkins, 1980) as it uses a single value in the numerator.
MRS/MS does not cause swamping because x(j−1) being outlying has no
influence on the test for its smaller neighbour x(j). However, the limitation
of this statistic is that it loses effectiveness when outliers are clustered
together.
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The sum-robust-sum (SRS) test statistic for r upper outliers,

TSRS
r,m =

∑r
i=1 x(i)

∑n
i=m+1 x(i)

, m ≥ 1 , (4.4)

is a modification of another classic test statistic (Chikkagoudar and Kunchur,
1983; Lewis and Fieller, 1979), here referred to as sum-sum (SS) statistic. m
is again a pre-specified maximal number of outliers, and when m = 0, the
SS statistic is recovered. In the classical form (m = 0), the test is equivalent
to a likelihood ratio test when the outliers also come from an exponential
(Balakrishnan, 1996). Due to the sum over r in the numerator, SRS/SS suffers
from swamping. Nevertheless, it is not susceptible to masking because it
uses the observation magnitude rather than differences; i.e., it does not
compare x(1) versus x(2), which may be close to each other, but far from the
rest of the sample. These test are particularly effective when the outliers are
clustered.

Another classic test statistic for r upper outliers is the Dixon (D) statistic
(Dixon, 1950),

TD
r =

x(1)
x(r+1)

, (4.5)

whose distribution function under the null is given by (Likeš, 1967). In the
outward testing case, the joint distribution function was given by (Lin and
Balakrishnan, 2014). It is often regarded as an inferior alternative to the SS
as it considers only a limited number of points in the dataset. This statistic
is less robust and also susceptible to masking compared to the SS.

We also include a test from the literature of complex systems on detecting
‘Dragon King’ (DK) outliers (Pisarenko and Sornette, 2012). The statistic for
r upper outliers,

TDK
r =

∑r
i=1 zi

∑n
i=r+1 zi

∼ F2r,2(n−r), (4.6)

uses the weighted spacings zi = i(x(i) − x(i+1)), i = 1, ..., n − 1, zn = nx(n).
The statistic follows an F-distribution under the exponential null distri-
bution. It suffers from both masking and swamping, and is less effective
in the presence of multiple clustered outliers because it counts spacings
rather than absolutes. This statistic is thus mainly advantageous due to the
simplicity of its distribution function under the null.

Under the exponential underlying distribution (4.1), the distribution
functions of all the test statistics above enjoy the pleasant property of be-
ing invariant to α. This stems from the Rényi representation of spacings
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(Balakrishnan, 1996; Rényi, 1953), where, for Ei
iid∼ Exp(α), the spacings

Si = X(i) − X(i−1) are equal in distribution to (αi)−1Ei where Ei
iid∼ Exp(1).

Consequently, α cancels out in the ratios of sums of spacings or order statis-
tics (which are themselves sum of spacings). This property is particularly
valuable as it avoids the need to estimate α in the presence of outliers.

In addition to the test statistics mentioned above, a mixture model is
considered as a benchmark,

f (x) = (1 − π)αexp{−αx}+ πϕ(x; µ, σ) , α, σ > 0 , (4.7)

where the Gaussian density ϕ(x; µ, σ) accounts for the outlier regime, and
0 ≤ π ≤ 1 is the weight. It is common and natural to consider Gaussian
distributions to model outliers in the mixture model Aitkin and Wilson,
1980; Hodge and Austin, 2004; Verdinelli and Wasserman, 1991. It is in
particular beneficial to use the mixture model when numerous outliers
together form a distinct, well-defined distribution of their own. The classi-
fication of points as either outliers or not is based on the relative weights
of the components. The model parameters are estimated using the EM
(Expectation-Maximization) algorithm (Redner and Walker, 1984), and a
likelihood ratio test against the null (π = 0) is used to generate p-values
and estimate the number of outliers (nπ̂). The major advantage of this
approach is that it does not require sequential testing, thereby naturally
avoiding masking and swamping. Moreover, the model can be extended
beyond the exponential, e.g., to a Weibull or gamma distribution function,
without complicating the procedure. It is important to note that this method
does not distinguish between inliers and outliers – i.e., the density ϕ can
be significant both within and beyond where the null distribution function
has substantial mass.

4.2.2 Distribution function of test statistics

Let Xi, i = 1, . . . , n be i.i.d realizations of a random variable X with
exponential distribution

F (x) = 1 − e−αx, x ≥ 0. (4.8)

Define the order statistics as the ordered sample X(1) > X(2) > · · · > X(n),
and the trimmed sum Sm,n = X(m+1) + · · · + X(n), 0 ≤ m < n, hence
the test statistic Tj,m = X(j)/Sm,n, j = 1, . . . , m. Also define the spacing
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Dj,m = X(j) − X(m), and use the triple
(

X(m), Dj,m, Sm,n

)
to derive the

distribution of Tj,m.
First, we derive the distribution of Dj,m and the joint distribution of(

X(m), Sm,n

)
fDj,m (d) ∝

(
1 − e−αd

)m−j−1
e−jαd, d ≥ 0 (4.9)

and

f(X(m) ,Sm,n) (x, s) ∝ e−α(s+mx)
n−m−1

∑
k=0

(−1)k
(

n − m
k

)
(s − kx)n−m−1

+ , 0 ≤ s ≤ (n − m) x.

(4.10)
The joint distribution of the triple is then derived as the product of (4.9)

and (4.10), presented by

f(X(m),Dj,m ,Sm,n) (x, d, s) = fDj,m (d) f(X(m),Sm,n) (x, s)

∝
(

1 − e−αd
)m−j−1

e−α(jd+s+mx)
n−m−1

∑
k=0

(−1)k
(

n − m
k

)
(s − kx)n−m−1

+

(4.11)

over the region 0 ≤ s ≤ (n − m) x, d ≥ 0.
Next, apply the change of variable z = x+ d and derive f(X(j),Dj,m ,Sm,n)(z =

x + d, d, s) from (4.11), then marginalize over d to obtain f(X(j),Sm,n) (z, s),

which reads

f(X(j),Sm,n) (z, s) ∝
m−j

∑
i=1

(−1)m−j−i
(

m − j − 1
i − 1

)
e−α(s+mz)

{
n−m−1

∑
k=1

(−1)k
(

n − m
k

)
kn−m−1

× (n − m − 1)!
(−αi)n−m (A0 + B0 − C0) +

sn−m−1

αi

(
eαi(z− s

n−m ) − 1
)}

, s ≤ (n − m) z

(4.12)

where
A0 = eαi(z− s

k )+ , (4.13)

B0 =
n−m−1

∑
l=1

(−1)l

(
αi
( s

k − z
)
+

)l

l!
, (4.14)

C0 = eαi(z− s
n−m )

n−m−1

∑
l=0

(−1)l

(
αi
( s

k −
s

n−m
))l

l!
. (4.15)
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Proceed with another change of variable t = z/s to derive f(Tj,m ,Sm,n)(t =

z/s, s), then integrate out s to get the null distribution function of the MRS
(for j ≤ m − 1),

fTj,m(t)∝
m−j

∑
i=1

(−1)m−j−i
(

m − j − 1
i − 1

){n−m−1

∑
k=1

(−1)k
(

n − m
k

)
kn−m−1 A1 + B1 − C1

(−i)n−m +

n − m
i

 1(
1 + i

(
1

n−m − t
)
+ mt

)n−m+1 − 1
(1 + mt)n−m+1


 , t ≥ 1

n − m

(4.16)

where
A1 =

1
(1 + mt − i(t − 1

k )+)
2

, (4.17)

B1 =
n−m−1

∑
l=1

(−1)l(1 + l)

(
i
(

1
k − t

)
+

)l

(1 + mt)l+2 , (4.18)

C1 =
n−m−1

∑
l=0

(−1)l(1 + l)

(
i
(

1
k −

1
n−m

))l

(
1 + i

(
1

n−m − t
)
+ mt

)l+2 . (4.19)

When j = m, the null distribution function of the MRS reads

fTm,m(t) ∝
n−m−1

∑
k=0

(−1)k
(

n − m
k

)
(1 − kt)n−m−1

+

(1 + mt)n−m−1 , t ≥ 1
n − m

. (4.20)

Next, in order to derive the distribution function of Tr,m =
∑r

i=1 x(i)
∑n

i=m+1 x(i)
=

S0,r
Sm,n

, r = 1, . . . , m, we are interested in the conditional distribution of(
S0,r|X(r+1)

)
, which reads

f(S0,r |X(r+1))
(s|x) ∝ e−α(s−rx) (s − rx)r−1 , s ≥ rx. (4.21)

The conditional distribution helps us to derive the joint distribution of

the triple
(

X(r+1), S0,r, Sm,n

)
given the joint distribution of

(
X(r+1), Sm,n

)
,

which can be conveniently obtained from (4.12). By performing transfor-
mation of variables and marginalization on the distribution function of
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the triple, one can obtain the null distribution function of the SRS. Both
it and the null distribution function of the MRS, which is detailed in the
paper, are provided as Matlab code and are available for access on GitHub
(github.com/ranwei-ethz/dfs-appendix) for direct implementation and
verification of the procedures discussed.

4.3 outlier test performance

4.3.1 Set-up of synthetic tests and issues

In this section, we compare the performance of the different tests through
simulation studies. First, we examine the robustness of test statistics in
block tests and contrast them with the mixture test, and study the issues
of masking and swamping. Then, we draw comparisons between inward,
outward, and mixture tests. Additionally, we examine how misspecification
of the null affects test performance. The setup uses a standard exponential
sample across four outlier scenarios: (0) no outliers, (I) a single outlier, (II)
multiple dispersed outliers, and (III) a cluster of multiple outliers. These
scenarios are plotted in Fig. 4.1.

x

(0) (I)

(III)

(II)

0 2 4 6 8 10

0
.0

0
.2

0
.4

Figure 4.1: Outlier cases. The null case (0) is the standard exponential for which
a realization of 50 points are plotted as open circles. Three outlier
cases are considered in addition to the null: (I) a normal distribution
function with mean µ = 6 and σ = 0.1, presented by a dashed red
line, and its single outlier is the red x mark; (II) multiple dispersed
outliers Yi ∼ 3+Exp(1/β), i = 1, ..., 5, plotted with a solid blue line
for β = 4, with blue triangles indicating (a realization of) the outliers;
(III) multiple clustered outliers Yi ∼Norm(µ, 0.1), i = 1, ..., 5, plotted
with a green dotted line for µ = 5, with green dots indicating the
outliers.
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Let us first revisit the testing methods and the issues of masking and
swamping for the sake of clarity.

The block test examines a fixed set r of suspected outliers in a single
test. It determines if all r points are outliers or none. Its success critically
depends on accurately choosing r, with risks of masking if r is set below
the actual number of outliers, and swamping if set above. However, if well
specified, it is powerful because of the simultaneous usage of all data.

The inward test sequentially tests the most extreme data point and
removes it if identified as an outlier. The test continues to the next extreme
value until a point is not recognized as an outlier. The estimated number
of outliers k̂ is the number of rejected (marginal) tests. Clearly, this test
can suffer from both masking and swamping, and the weaknesses of the
inward procedure were cited as motivation for the outward test (Hawkins,
1980; Kimber, 1982; Rosner, 1975):

The outward test specifies a maximum number of outliers r, and starts
by testing if the r-th largest value x(r) is an outlier by excluding the larger
values x(r−1), x(r−2), ..., x(2), x(1). If this test is rejected, then r outliers are
identified. If not, the test progresses to the (r − 1)-th largest point x(r−1).
The test continues until the first detection of outlier. The outward test
minimizes the probability and magnitude of both masking and swamping,
and has therefore been claimed superior over the inward (Balasooriya
and Gadag, 1994; Chikkagoudar and Kunchur, 1983; Kimber, 1982) and
received more subsequent development (Lin and Balakrishnan, 2009; Lin
and Balakrishnan, 2014).

However, control of the type I error (the probability of a false detection
of an outlier) is difficult in the outward test. The test considers the null
hypothesis H0 that there are no outliers, with multiple alternatives, Hj
that there are j outliers j = 1, ..., r, with test statistic Tj. A single rejection
of the r tests rejects the null H0. Thus, to achieve an overall type I error
level of 0 ≤ a ≤ 1, e.g., the common level of 0.05 or 0.1, the marginal
tests need to have a lower level. The larger r is, the larger the correction
will be, and thus the lower the power of the test. This ‘multiple testing
correction’ requires knowing the joint and marginal distribution function
of, generally dependent, Tj, j = 1, ..., r. More specifically, one defines all
marginal tests to have equal level b, i.e., Pr{Tj > tj} = b, j = 1, ..., r, and the
level b is determined such that Pr{Tj ≤ tj, j = 1, ..., r|H0} = 1 − a. Clearly
ar ≤ b ≤ a, where the lower bound corresponds to the case of independent
tests (the Bonferroni bound), and the upper bound to perfect dependence.
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For the specific test statistic (4.3) discussed below, the joint and marginal
distribution functions have been derived as described in 4.2.2.

In contrast, for the inward method, the type I error level is equal to the
marginal level (a = b) because a rejection of the null only happens when
the first marginal test (for the largest point, x(1)) is rejected. This is a major
advantage over the outward procedure in terms of computation and also
because no power is lost due to a multiple testing correction.

4.3.2 Performance of block tests

Here, we examine the power (at level 0.1) of the range of test statistics
employed in block tests, where the block size r, and the robustness value m
are set to the true number of outliers k. We consider three scenarios involv-
ing different types of outliers: (I) n = 20, k = 1, Xi ∼Exp(1), i = 1, ..., 19,
X20 ∼Norm(µ, 0.1), µ = 3, ..., 10; (II) n = 50, k = 5, Xi ∼ 3+Exp(1/β), i =
46, ..., 50, β = 1, 2, ..., 6; (III) n = 50, k = 5, Xi ∼Exp(1), i = 1, 2, ..., 45,
Xi ∼Norm(µ, 0.1), i = 46, ..., 50, µ = 3, 4, ..., 10. The mixture model (4.7) is
only estimated in the cases with multiple outliers.

Fig. 4.2 shows the power curves of the test statistics, for a range of outlier
parameters being computed over 10’000 independent simulations. For a
single outlier (case I), most of the tests are exactly identical (by definition),
with the exception of the DK and D tests, which are weaker. For multiple
dispersed outliers (case II), the SS and the SRS tests outperform others
and are equivalently effective, followed by the MRS test. The mixture is
poorly specified and is thus weakest. For clustered outliers (case III), the
performance of the tests varies greatly. Indeed, the test statistics with the
sum in the numerator often identifies the cluster of outliers. However, the
well specified mixture model is most powerful, also identifying the ‘outliers’
when they are not really outlying but rather a contamination well within
the sample (i.e., ‘inliers’). In detecting multiple outliers, the SS and SRS tests
perform almost identically, largely because they both operate under optimal
conditions where the block size r and the robustness value m are set to
the true number of outliers k. The robustness of the SRS statistic is further
demonstrated subsequently in context involving masking and swamping.

We now present simulation studies to expose the degree to which the
different test statistics suffer from masking and swamping in block tests
– that is, how accurately they estimate the number of outliers. This is
done by performing the tests on synthetic data for a range of block sizes.
The three scenarios considered are: (I) swamping due to a single outlier,
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Figure 4.2: Power curves (at level 0.1) for the MS/MRS (4.3), SS/SRS (4.4), D (4.5),
DK (4.6) statistics, employed in block tests, with the mixture model
(4.7) estimated in the cases with multiple outliers. The power curves
are plotted against the outlier location µ and the slippage coefficient
β, which are specified in the three outlier cases: (I) n = 20, k = 1,
Xi ∼Exp(1), i = 1, ..., 19, X20 ∼Norm(µ, 0.1); (II) n = 50, k = 5, Xi ∼
3+Exp(1/β), i = 46, ..., 50; (III) n = 50, k = 5, Xi ∼Norm(µ, 0.1), i =
46, ..., 50.

n = 30, k = 1, Xi ∼Exp(1), i = 1, ..., 29, X30 ∼Norm(8, 0.1); (II) swamping
without masking due to dispersed outliers, n = 30, k = 5, Xi ∼Exp(1),
i = 1, ..., 25, Xi ∼ 3+Exp(1/5), i = 26, ..., 30; and (III) swamping with
masking due to clustered outliers, n = 30, k = 5, Xi ∼Exp(1), i = 1, ..., 25,
Xi ∼Norm(8, 0.1), i = 26, ..., 30.

Our simulation study determines the frequency at which the tests are
rejected, at level 0.1, in 10’000 independent samples, for a range of block
sizes (b = 1, 2, ..., 10). The results are in Fig. 4.3. The MS and MRS tests
are not affected by block size since the maximum is always the largest
point. In the next section, the inward test will apply the MRS statistic to the
largest point, then the second largest, and so on. In that case, the MRS will
not cause swamping. As anticipated, masking is problematic for the MS
statistic, especially when large observations are densely clustered. Further,
as intended, the MRS suffers from masking less than the MS. The SS and
SRS tests suffer less from masking and swamping than those based on
spacings and maxima. Swamping is pervasive in block testing, even when
there is only a single large outlier. That the rejection rate decays slowly
as the block size surpasses the true block size indicates that the minimal
p-value in the sequence of estimates will not reliably indicate the true block
size. These problems motivate sequential testing.
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Figure 4.3: Power curves (at level 0.1) for the MS/MRS (4.3), SS/SRS (4.4), D (4.5),
DK (4.6) statistics, with different block sizes. The data generating
processes for the cases are: (I) n = 30, k = 1, Xi ∼Exp(1), i =
1, ..., 29, X30 ∼Norm(8, 0.1); (II) n = 30, k = 5, Xi ∼ 3+Exp(1/5), i =
26, ..., 30; and (III) n = 30, k = 5, Xi ∼Norm(8, 0.1), i = 26, ..., 30. In
each case, the true number of outliers is given by the vertical dotted
line.

4.3.3 Performance of sequential tests

Here, inward and outward sequential procedures are compared, along
with the mixture test. Again the four outlier scenarios visualized in Fig. 4.1
are considered. The tests used are: (i) the outward test with MS, MRS, SS,
and SRS statistics; (ii) the inward test with only the MRS statistic, which is
necessary to avoid masking and swamping; (iii) the mixture model (4.7);
and (iv) the SRS block test, given the correct number of outliers. This last
option, which was the best performing block test in Fig. 4.2, provides a
benchmark.

The distribution functions for the test statistics were simulated with
50’000 samples from the null model. All tests were done with a level of 0.1.
For the outward test, the level of the marginal tests b was lowered to obtain
the overall level of a = 0.1. For each test, this was done by applying the
test on 10’000 independent samples generated from the null, for multiple
values of b, and selecting b such that a(b) = 0.1 ± 0.005. The resultant
marginal levels are in Table 4.1. Note how large of an adjustment is needed
in the outward test, whereas in the inward test there is no adjustment:
bInward = a = 0.1.

The results, for slightly different specifications of the four cases, and
in order of decreasing sample size, are in Tables 4.2, 4.3, and 4.4. In case
(0), where there are no outliers, the inward and mixture procedures have
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n r MS SS MRS SRS
50 10 0.018 0.05 0.025 0.049

30 5 0.028 0.055 0.0345 0.0575

15 5 0.025 0.06 0.036 0.056

Table 4.1: Marginal levels (b) for outward tests for different sample sizes (n),
maximal number of outliers (r), and robustness value (m = r) to obtain
an overall type I error level of a = 0.1

Case Quantity MS Out SS Out MRS Out SRS Out MRS In Mix SRS Block
(0) Rej. Rate 0.11 0.10 0.11 0.10 0.10 0.14 0.10

(0) k̂ (3,6,9) (5,9,10) (3,6,9) (5,9,10) (1,1,3) (2,2,4)
(I) Rej. Rate 0.30 0.22 0.30 0.22 0.64 0.09 0.69

(I) k̂ (2,3,6) (2,5,10) (2,3,7) (2,5,10) (1,1,2) (2,2,2) = 1
(II) Rej. Rate 0.91 0.75 0.89 0.75 0.04 0.95 0.38

(II) k̂ (5,7,8) (5,7,10) (5,7,9) (5,7,10) (1,9,10) (5,5,6) = 5
(III) Rej. Rate 0.96 0.96 0.97 0.96 0.95 0.63 0.98

(III) k̂ (5,6,8) (4,6,10) (5,6,9) (4,6,10) (6,7,10) (3,10,10) = 5

Table 4.2: n = 50 (sample size), m = 10 (robustness value). Summary of
tests over 5000 repeated simulations of four cases: (0) the null case
(X ∼Exp(1)), (I) a single large outlier (Xi ∼Exp(1), i = 1, ..., 49;
X50 ∼Norm(7, 0.1)), (II) a cluster of multiple outliers (Xi ∼Exp(1),
i = 1, ..., 45; Xi ∼Norm(5, 0.1), i = 46, ..., 50); (III) multiple dis-
persed outliers (Xi ∼Exp(1), i = 1, ..., 45; Xi ∼ max({Xi : i =
1, ..., 45})+Exp(1/5), i = 46, ..., 50). The rejection rate and the median
k̂ and quartiles of the estimated number of outliers (in the event of a
rejection) are given in alternating rows.

false positive events that estimate a small number of outliers, whereas the
outward procedures falsely identify large numbers of outliers. In case (I) of
the sequential procedures, the inward test is most powerful at identifying
the single outlier, even matching the power of the block test. The outward
tests are substantially weakened, even with relatively small m = 5. The
inward test provides superior estimation of outliers, whereas the other
tests tend to overestimate. In case (II), with a cluster of outliers, both the
benchmark (the block test) and the inward test perform poorly. They are
outperformed by the outward test, which is less susceptible to masking,
by design. However, here the mixture approach is both the most powerful
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and accurate in estimating outlier numeracy. In case (III), with multiple
dispersed outliers, all of the inward and outward approaches are similarly
competitive, while being slightly dominated by the block test. The mixture
approach is weak since the outlier component is poorly specified. For the
outward procedure, the MS/MRS statistic dominates the SS statistic.

In summary, the inward procedure with the MRS test statistic is more
computationally convenient than the outward procedure, commits less
severe false positives, and can even be more powerful when identifying
single or multiple dispersed outliers. In the event of a dense cluster of
outliers, a mixture approach can be more computationally convenient and
powerful than the outward approach. Within the outward approach, the
MS/MRS statistic is found superior to the SS/SRS statistic, and robust
modifications performed similarly.

Case Quantity MS Out SS Out MRS Out SRS Out MRS In Mix SRS Block
(0) Rej. Rate 0.11 0.11 0.11 0.11 0.11 0.16 0.10

(0) k̂ (2,3,5) (4,5,5) (2,4,5) (3,5,5) (1,1,3) (2,2,5)
(I) Rej. Rate 0.45 0.32 0.43 0.33 0.72 0.08 0.75

(I) k̂ (1,2,3) (1,3,5) (1,2,3) (1,2,5) (1,1,2) (2,2,2) = 1
(II) Rej. Rate 0.72 0.63 0.73 0.64 0.08 0.96 0.36

(II) k̂ (3,4,5) (3,4,5) (3,4,5) (3,4,5) (4,5,5) (3,3,3) = 3
(III) Rej. Rate 0.87 0.86 0.89 0.86 0.88 0.50 0.90

(III) k̂ (2,4,4) (2,4,5) (2,4,5) (3,4,5) (3,4,5) (2,5,7) = 3

Table 4.3: n = 30 (sample size), m = 5 (robustness value). Summary of
tests over 5000 repeated simulations of four cases: (0) the null case
(Xi ∼Exp(1)), (I) a single large outlier (Xi ∼Exp(1), i = 1, ..., 29;
X30 ∼Norm(7, 0.1)), (II) a cluster of multiple outliers (Xi ∼Exp(1),
i = 1, ..., 27; Xi ∼Norm(5, 0.1), i = 28, 29, 30), (III) multiple dis-
persed outliers (Xi ∼Exp(1), i = 1, ..., 27; Xi ∼ max({Xi : i =
1, ..., 27})+Exp(1/5), i = 28, 29, 30). The rejection rate and the me-
dian k̂ and quartiles of the estimated number of outliers (in the event
of a rejection) are given in alternating rows.
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Case Quantity MS Out SS Out MRS Out SRS Out MRS In Mix SRS Block
(0) Rej. Rate 0.11 0.11 0.11 0.11 0.08 0.16 0.10

(0) k̂ (2,3,4) (3,5,5) (2,3,5) (3,5,5) (1,2,4) (2,3,5)
(I) Rej. Rate 0.25 0.22 0.23 0.20 0.30 0.14 0.30

(I) k̂ (2,3,4) (2,4,5) (2,3,4) (2,4,5) (1,2,3) (2,2,4) = 1
(II) Rej. Rate 0.42 0.42 0.43 0.41 0.04 0.93 0.13

(II) k̂ (3,4,5) (4,5,5) (3,4,5) (3,5,5) (3,4,5) (3,3,3) = 3
(III) Rej. Rate 0.63 0.62 0.64 0.62 0.63 0.37 0.66

(III) k̂ (2,3,4) (2,4,5) (2,3,4) (2,4,5) (2,3,5) (2,3,4) = 3

Table 4.4: n = 15 (sample size), m = 5 (robustness value). Summary of
tests over 5000 repeated simulations of four cases: (0) the null case
(Xi ∼Exp(1)), (I) a single large outlier (Xi ∼Exp(1), i = 1, ..., 14;
X15 ∼Norm(4, 0.1)), (II) a cluster of multiple outliers (Xi ∼Exp(1),
i = 1, ..., 12; Xi ∼Norm(4, 0.1), i = 13, 14, 15), (III) multiple dis-
persed outliers (Xi ∼Exp(1), i = 1, ..., 12, Xi ∼max({Xi : i =
1, ..., 12})+Exp(1/5), i = 13, 14, 15). The rejection rate and the me-
dian k̂ and quartiles of the estimated number of outliers (in the event
of a rejection) are given in alternating rows.

4.3.4 Robustness to null mis-specification

In practice, the correct specification of the null/main model is of consid-
erable importance. Here, the sensitivity of the rate of false positives (level /
type I error), and true positives (power), to the degree of misspecification of
the null are exposed via a simulation study, for the battery of test statistics
implemented in block tests. We consider simulating data from a Weibull
distribution,

F(x) = 1 − exp{−(x/τ)κ}, x ≥ 0, τ, κ > 0 , (4.22)

which is exponential (α = τ−1) when κ = 1, is fat tailed for κ < 1, and
becomes concentrated at τ as κ becomes large. The results of the simulation
study are presented in Fig. 4.4 and can be described as follows.

Panel (b) concerns the rate of false positives where r = 3 outliers are
tested, with level a = 0.1, in a Weibull (4.22) sample of size n = 30, for a
range of shape parameters κ, without outliers. When κ < 1, the distribution
function is fat tailed, having many events that are large, and thus the tests
falsely identify many points as outliers. This is problematic in practice (with
small to moderate sample sizes), because one does not know what the true
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null model is. For instance, with n = 30, even when the true distribution
function is considered as an alternative model versus the exponential, and
using the powerful likelihood ratio test, 50 percent of the time (for κ ≈ 0.6),
one will not reject the exponential model at a level of 0.1. In this case, when
falsely retaining the exponential model, the type I error will be between 0.3
and 0.5, depending on the selected test statistic. The KS test of compatibility
of the data with the exponential distribution function is even less powerful,
allowing for more severe false positives.

Case (c) considers the frequency of true positives (power). The setup is
the same as above, but 3 dispersed outliers are included. When the Weibull
distribution function becomes less fat tailed, the power of the SRS and MRS
tests decreases whereas the power of the D and DK tests increases. Here,
with n = 30, for the tests of the Weibull versus the exponential, including
the outliers in the sample, there is a high probability (0.6-0.8) of not rejecting
the exponential model when 1 < κ < 1.5, where the power of some of the
tests is weakened.

It is clear that the power, and especially the level, are highly sensitive to
the validity of the exponential model, and misspecification of the null can
lead to erroneous inference. This has important implications for the practical
application of the tests. In particular, one should have a sufficiently large
sample to diagnose the validity of the null, and not blindly accept/reject
the result of the test and its diagnostics.

4.4 generality of exponential distribution

It is important to note that outlier tests with both the Pareto and expo-
nential underlying distributions are generally applicable to data having
approximately Pareto or exponential tails. This follows from the well known
Pickands-Balkema-de Haan theorem of Extreme Value Theory (EVT), that
states (Embrechts, Klüppelberg, and Mikosch, 1997): For a broad range of
distributions, for random variable X, with sufficiently high threshold u,
the excess distribution function, Fu(x) = P{X − u ≤ x|X − u > 0} (i.e., the
tail of the distribution function), is approximated by the GPD (Generalized
Pareto Distribution Function),

GPD(x; ξ, β, µ) =

1 − (1 − ξ(x − µ)/β)−1/ξ , if ξ ̸= 0

1 − exp(−(x − µ)/β), if ξ = 0 ,
(4.23)



124 Multiple outliers detection

P
o
w

e
r

0.5 1.0 1.5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.5 1.0 1.5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Weibull Shape κ Weibull Shape κ
R

e
je

c
ti

o
n
 R

a
te

κ
=

1
.5

κ=
1

κ=0.5

0 2 4 6

1
0

0
1
0

-1
1
0

-2
p
d
f MS

DK D

MRS

(a) (b) (c)

SS, SRS
SRS,

SS

D

MRS

DK

MS

Figure 4.4: Test robustness Panel (a): The Weibull PDF (4.22) plotted for pa-
rameters (κ, β) equal to (0.5, 0.4), (1, 1) and (1.5, 1.5). Panel (b):
The frequency of rejection of the null of no outliers, at level 0.1,
in the presense of no outliers, for block tests for r = 3 outliers,
assuming an exponential null model, when the data is generated
from a Weibull for a range of shape parameters κ. Panel (c): The
frequency of rejection of the null using a level 0.1, of the block
tests for r = 3 outliers, with the same setup as frame (b), except
that 3 outliers are truly present. The models for the cases are: (b)
Xi ∼Weibull(κ, 1), i = 1, ..., 30; (c) Xi ∼Weibull(κ, 1), i = 1, ..., 27,
Xi ∼max({Xi : i = 1, ..., 27})+Exp(1/3), i = 28, 29, 30). For each
case, simulation and testing were performed 1000 times for κ sweep-
ing 0.5 to 1.5. The tests are colour coded: SS (red solid), SRS with
m = r (yellow solid), MS (blue dashed), MRS with m = r (turquoise
heavy dashed), D (magenta light dotted), DK (black dotted). In both
frames, the black heavy solid line is the power of the likelihood ratio
test of the Weibull versus the exponential on the data (including
outliers). Similarily the grey heavy solid line is for the Kolmogorov-
Smirnov test.

in the sense that,

limu→∞sup0≤x | Fu(x)− GPD (x|ξ, β(u), µ)| = 0 , β(u) > 0, ∀u. (4.24)

If ξ = 0 (the Gumbel case), then the GPD (4.23) is exponential with lower
truncation µ = u and scale parameter β = 1/α. This case includes common
distributions such as the exponential (obviously), the Normal, and even
some fat-tailed ones such as the Lognormal. If ξ > 0 (the Fréchet case), the
GPD (4.23) is (generalized) Pareto with µ = u, σ = u/α, and ξ = 1/α. This
case includes heavy tailed distributions such as the Pareto and Log-gamma.
The only other case (ξ < 0: the Weibull case) is where the distribution
function has a finite upper endpoint, which is of less interest in outlier
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detection. Therefore, since a Pareto tail can be transformed to an exponential
one, outlier testing in exponential samples is (asymptotically) extremely
general!

Since the GPD approximation (4.24) is only asymptotically valid, one
must select a sufficiently large lower threshold u before applying outlier
tests. The problem of threshold selection is a tradeoff between bias and
variance, and is the primary statistical issue in the EVT literature, where it is
referred to as sample fraction selection. In the physics literature, threshold
selection and goodness of fit diagnostics are important for the interpretation
of mechanisms underlying power laws found in datasets. There are a variety
of tools available for this task.

The classic ‘Hill plot’ method Hill, 1975 for threshold selection consists
of estimating the model for a range of thresholds and selecting the lowest
threshold (the largest sample fraction) where the estimate is ‘stable’ – i.e.,
consistent with values of the estimate for larger thresholds. See Fig. 4.5
for an example. Of course, one can also look for statistically significant
changes in the estimated parameter relative to the hopefully stable value
obtained deeper in the tail Bauke, 2007; Hall and Welsh, 1985; Hill, 1975,
however more powerful principled methods exist (see e.g., Beirlant et al.,
2006; Gomes and Oliveira, 2001 for a review). For instance, let us mention
the methods based on minimizing the asymptotic mean square error of
the estimate. This requires assuming the (class of) distribution beyond the
power law tail Hall and Welsh, 1985, or using bootstrap methods Danielsson
et al., 2001; Gomes and Oliveira, 2001.

These methods have not been extensively adopted outside of the EVT
literature. For instance, the most highly cited paper on the estimation of
power laws and sample fractions Clauset, Shalizi, and Newman, 2009 does
not mention the sample fraction estimation literature. However a subsequent
work Virkar and Clauset, 2014, extending the method to binned/aggregated
data, does provide such references. The popular work Clauset, Shalizi, and
Newman, 2009 suggests choosing the pair of u and α that have the smallest
KSD (Kolmogorov-Smirnov distance). The KSD criterion penalizes error,
and rewards sample size. However, as noted by Corral, Font, and Camacho,
2011; Deluca and Corral, 2013, comparing KSD across samples of different
size is not necessarily consistent as the KSD simply scales with growing
sample size like ∼ 1/n0.5. Further, in Clauset, Shalizi, and Newman, 2009,
no argument was given why this is optimal. In Corral, Font, and Camacho,
2011; Deluca and Corral, 2013, it was shown that the method fails when
the distribution has a power tail whose parameter changes from one value
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to another. Originally, Hall and Welsh, 1985; Hill, 1975 proposed applying
a test for decreasing u, and selecting u at the value before the first value
where the test is rejected. In Deluca and Corral, 2013, a similar approach
was proposed based on the KS test, where instead one would select the
largest sample that could not be rejected, regardless of if rejection occurs at
higher thresholds.

These methods can be thought of as outlier tests, where ‘lower outliers’
are points below the tail threshold u, that are discordant with the tail. How-
ever, instead of elaborating on this, a more general automatic approach is
recommended: One should fit both the exponential, and a more compli-
cated density to the range of upper samples, and identify the threshold
at which the complicated density is not significantly better. If the more
complicated density is sufficiently flexible, this should determine that the
exponential provides a good approximation and is sufficient to describe the
data above the threshold. One could consider comparing nested models
with the likelihood ratio test, however this is only a comparison with a
specific alternative model. For a more general alternative model, one can
use a non-parametric estimator, such as the logspline estimator (available
in R:locfit) Kooperberg and Stone, 1991. One can then compare the null
with this alternative with the Akaike Information Criterion (AIC). In the
presense of clear outliers, one may wish to use estimators that censor, or
are robust to the outliers.

Concerning outlier testing, it is useful to estimate the sample fraction to
have an idea of where the tail approximation begins to apply. However, tests
can often accept a model for a larger sample but reject it in the tail! Thus,
one should apply outlier tests for a range of lower thresholds and look for
stability in outlier test results for data that do not violate the null. That is,
letting nu ≤ n be the size of the largest upper sample that can be defended
based on the methods discussed above, an outlier test should be applied
to the upper samples consisting of the nu, nu−1, ..., 10 + r largest points,
where r is the expected number of outliers, and where one should certainly
not consider samples of size smaller than ten. Consistent identification of
outliers in these upper subsamples, where the GPD approximation (4.24)
is most relevant, and where the null model cannot be rejected, should be
interpreted as a robust result. This algorithm involves c = nu − (10 + r)
consecutive dependent tests, which gives multiple chances for a false posi-
tive. However, under the null, the probability of rejecting c > 1 consecutive
tests, decreases as c increases. Based on simulation studies with the range of
models considered within this work, we offer as a rough rule of thumb, that
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for a sample of size 10 < n < 100, one should require a run of c = n/10
tests to be rejected to maintain control of the type I error.

4.5 case study and ‘dragon kings’

4.5.1 Pareto distributions and beyond: the Dragon-King hypothesis

Outlier detection with exponential underlying distribution has been
primarily motivated by reliability engineering applications. Switching per-
spective from reliability to risk, the exponential of an exponential variable
has the (heavy-tailed) Pareto distribution (4.2) that is typically used for
modeling extremes in both natural and social sciences: earthquake energies,
stock prices, claims in non-life insurance, etc. (Embrechts, Klüppelberg, and
Mikosch, 1997; Mitzenmacher, 2004; Newman, 2005; Sornette, 2006).

The Pareto distribution is unique in that it is scale invariant (Dubrulle,
Graner, and Sornette, 1998; Lesne and Laguës, 2011), suggesting that events
of all sizes – including extremely large ones – are generated by a single
mechanism operating at different scales. This feature allows this single
parsimonious distribution function to generate a broad range of event
sizes. Thus, if a phenomenon is scale invariant, then extreme events are not
predictable and there is nothing anomalous about them as there is nothing
to distinguish these events from their smaller siblings, other than their
resultant size. This reasoning has been advanced to explain the extreme
difficulties in forecasting large earthquakes (Geller et al., 1997): according
to the approximate scale invariance of the Gutenberg-Richter law, large
earthquakes are just earthquakes that started small... and did not stop
growing.

However, a number of studies have found either strong or, in other cases,
suggestive evidence that there are extreme events ‘beyond’ the Pareto sam-
ple (Sornette, 2009; Sornette and Ouillon, 2012a), i.e., outliers, inspiring
the concept of the ‘Dragon King’ (DK) (Sornette, 2009) event. DK em-
body a double metaphor implying that an event is both extremely large (a
king (Laherrère and Sornette, 1998)), and generated from a unique mecha-
nism/origin (a dragon) relative to other events in the system/sample. The
hypothesis advanced in (Sornette, 2009; Sornette and Ouillon, 2012a) is that
DK events are generated by a distinct mechanism (e.g., positive feedback)
that intermittently amplifies extreme events, leading to the generation of
runaway disasters as well as extraordinary opportunities/successes. Due to
the uniqueness of such events, there is hope that such extremes may exhibit
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precursory signs, disclosing some predictability. The identification of the
existence of such phenomena is also clearly important – for example, with
applications in risk management. Examples of such DK events have been
proposed to include failures of material systems, landslides (Lei et al., 2023)
and some large earthquakes in geophysics, financial crashes in economics
(Filimonov and Sornette, 2015c; Johansen and Sornette, 1998b; Johansen
and Sornette, 2002a), and epileptic seizures and human parturition in bi-
ology (Sornette, 2009; Sornette and Ouillon, 2012a). Identifying DKs with
convincing statistical significance is a prerequisite to the investigation of
their origin, understanding their generating mechanisms, and developing
forecasting methods, controls, and resilient system designs. Motivated by
these considerations, and to provide pedagogical examples, five case studies
are considered where DK events are tested as statistical outliers.

4.5.2 Financial crashes

It is well known that crashes in financial markets occur frequently and
can have a significant effect not only on market participants, but also on the
broader economy. It is often thought that financial markets are unpredictable
– i.e., they are scale invariant / fractal (Mandelbrot and Hudson, 2014;
Sornette, 2003c) (Pareto distributed). However, in (Filimonov and Sornette,
2015c; Johansen and Sornette, 1998b; Johansen and Sornette, 2002a) it was
found that the sample of crash sizes – measured from the peak to the
valley of the event (so-called drawdowns) – contained outliers (defined
below). However, the statistical test used in (Filimonov and Sornette, 2015c)
contains an error in the distribution function of the marginal test statistics,
and (Johansen and Sornette, 1998b; Johansen and Sornette, 2002a) did not
use standard outlier tests. To correct this, and provide an example, this
problem is revisited with the same data. The data are the drawdowns
computed for the eleven most actively traded Futures Contracts on the
American and European Indices1, from January 1, 2005 to December 30,
2011.

A peak-to-valley measure of the size of intra-day financial crashes is
considered: an ϵ-drawdown (hereforth referred to simply as a drawdown) is
the total cumulative return of a negative run in price over time, with some
specified tolerance for small positive changes along the way (Johansen and

1 US: 1) ES, S&P 500, E-mini; 2) NQ, NASDAQ, E-mini ; 3) DJ, Dow Jones, E-mini. European: 4)
AEX, Netherlands; 5) CAC, CAC40, France; 6) DAX, Germany; 7) FTSE, UK; 8) IBEX, Spain; 9)
OMX, OMX Stockholm 30, Sweden; 10) SMI, Switzerland; 11) STOXX, Euro STOXX, Europe.
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Sornette, 2002a). A drawup is its positive counterpart. This is an interesting
measure of risk because it captures the transient dependence of price
changes in time, whereas studying the unconditional distribution of returns
does not. More specifically, considering one trading day [t0, t1], prices taken
at intervals of width ∆ are pi = p(t0 + i∆), i = 1, ..., n = ⌊(t1 − t0)/∆⌋. The
returns are then ri = log(pi/pi−1). One starts at the first negative return
i0 = min{i : ri < 0}. Then, the cumulative return,

ri0,i =
i

∑
j=i0

rj = log(pi/pi0), i > i0 ,

tracks the negative growth of the drawdown, continuing for i = i0, i0 + 1 . . .
until the first value of i, say i2, such that the cumulative return has appeared
to reverse direction, relative to its lowest point:

ri0,i2 − mini0≤j≤i2 ri0,j > ϵσ .

Parameter ϵ ≥ 0 tunes the tolerance of moves in the opposite direction,
and σ is the standard deviation of the returns from the previous trading
day. The inclusion of σ makes the tolerance adaptive, which allows for
volatility regimes. Finally, stepping backwards from i2, which is the index
of a positive change, the drawdown is defined to have occurred from the
start i0 to the lowest point, which occurs at i1 = argminj∈(i0≤j≤i2)ri0,j. From
the next index, i1 + 1, a drawup is defined to begin and computed in a
similar way. Drawdowns and drawups alternate in this contiguous way, for
the entire trading day.

In panel (a) of Fig. 4.5, for the eight contracts thought to contain an
outlier, the largest 5000 drawdowns are plotted according to their empirical
CCDF (complementary CDF, i.e., 1 − F(x)). The empirical CCDF appear
approximately linear in the double logarithmic scale, indicating a qualita-
tively good fit, with the exception of some outliers. There are also some
additional differences in the tail. For instance, the tail of the CCDF drops
beneath the Pareto fit before crossing back to form the outlying empirical
tail. This could suggest an amplification mechanism operating above a
threshold size. In panel (c), the Hill plot is given, where the MLE for the
tail exponent α is plotted for a range of upper sample sizes. The parameters
tend to have an increasing trend, indicating slight convexity in the CCDF
in panel (a), and thus a loss of outlier testing power for large sample sizes
(Sec. 4.3.4). Based on the Hill plot, the estimator for the top 1’000 points
appears to be approximately stable for most of the contracts. For systematic
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threshold / sample fraction selection, three methods are used: 1. comparing
the AIC of exponential and nonparametric (R:logspline) fits, 2. selecting
the smallest KSD as recommended in Clauset, Shalizi, and Newman, 2009,
and 3. selecting the smallest threshold where the KS test p-value is above
0.10. The results of these methods are given in Tab. 4.5. All but one of the
24 tests select at least the top 1’000 points, thus upper samples of this size
and smaller will be considered for outlier testing.
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Figure 4.5: Financial Market Crashes. (a): The 5000 largest drawdowns for each
of the 8 futures contracts thought to contain outliers, plotted according
to their empirical CCDF in double logarithmic scale. For clarity, each
CCDF above the black one is multiplied by 10 relative to the one
beneath it. The Pareto distribution function with MLE parameter for
the top 500 points is given by the dashed lines, starting at the solid
dot. The triangles identify the points that were identified as outliers
based on the interpretation of panel (b). (b) The number of identified
outliers is plotted against sample size where the MRS test (4.3) with
level a = 0.1 has been applied inward with m = r = 10, for a range of
sample sizes n, for each contract in (a) with the same colour coding.
(c) Hill plot: The estimated tail exponent is plotted for a range of
upper sample sizes. (see online version for colour)

In panel (a) of Fig. 4.5, the apparent outliers are large and dispersed. Thus,
the MRS test statistic (4.3) should be powerful (Sec. 4.3.3) and can be applied
inward for a range of thresholds, requiring a fraction of the computation of
outward testing. For each dataset, the inward test was performed – with
MRS, m = 10, level a = 0.1, and upper sample size ranging from n = 10
to n = 1000. For all contracts, excluding AEX, OMX, and STOXX, at least
1 outlier was found and are indicated in Panel (b) of Fig. 4.5. For some
of the contracts, the results are quite stable across sample size (e.g., CAC
and FTSE). For others, the impurity of the distribution function plays a
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Test ES CAC DAX FTSE SMI IBEX NQ DJ
AIC 1’184 1’214 2’290 2’734 2’704 2’055 1’154 3’757

KSD 1’049 1’115 1’520 3’144 609 1’501 1’074 1’134

p 1’985 1’323 2’403 3’714 2’701 2’255 3’123 4’000

Table 4.5: The selected number of points in the upper sample based on comparing
the AIC of the null and the nonparametric model, minimizing the KSD,
and the largest upper sample with KS test p value greater than 0.1.

role in the interpretation. For instance, for DAX, two outliers are detected
once the test is restricted to the bent-down tail. For ES, choosing between
zero and seven outliers is more subjective – are there multiple outliers, or
does the tail grow heavier? For IBEX, it is clear that the identification of
seven outliers is due to the dip in the empirical CCDF occurring between
drawdown size of twenty and thirty. The alternative choice of 1 outlier is
more stable with respect to a broad range of values of n. The interpreted
outliers are indicated in panel (a).

The largest outliers coincide with major news events: The 07 July 2005

London bombings coincided with the largest outliers of CAC, DAX, FTSE,
SMI, and IBEX – all being based on European indices. Further, DAX and
CAC each have an outlier corresponding to the ‘Mini Flash Crash’ of 27

Dec. 2010 (e.g., see (Bundesbank, Accessed on 29-07-2015)). All American
contracts (ES, DJ, and NQ) have their largest outliers coinciding with the
infamous ‘2010 Flash Crash’ of 6 May 2010. We thus observe that outliers
occur either due to some exogenous impacts (London bombings) or as a
result of an endogenous transiently unstable dynamics (flash crash). Indeed,
in (Filimonov, Bicchetti, et al., 2014; Filimonov and Sornette, 2012b; Wehrli
and Sornette, 2022a; Wehrli and Sornette, 2022b; Wehrli, Wheatley, and
Sornette, 2021b; Wheatley, Wehrli, and Sornette, 2019a), it was suggested
that financial markets exhibit a significant endogeneity or ‘reflexivity’, in
the sense that nowadays up to 70-80% of trades occurring at the time scales
of fractions of seconds to tens of minutes are motivated (or triggered)
by previous trades. In this framework (Filimonov, Bicchetti, et al., 2014;
Filimonov and Sornette, 2012b), Dragon Kings emerge when the market
dynamics become critical and super-critical, that is when the future trades
are triggered only by previous trades and not by news, making the financial
markets essentially self-referential in these periods. Thus, some of the
outliers can be classified as Dragon-King drawdowns.
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4.5.3 Stock returns

An issue of debate is if the 1987 stock market crash (Black Monday)
was an outlier. We focus on (Schluter and Trede, 2008), which is the most
recent study on this problem. In (Schluter and Trede, 2008), considering
daily returns on the Dow Jones Industrial Index, from 3 January 1977 to 31

January 2005, it was claimed that Black Monday is not an outlier. In further
detail, the returns were whitened by taking the residuals of a standard
AR(1)-GARCH(1,1) model estimated on the returns. Next, the two largest
whitened returns X(2) and X(1) were tested as outlying. The test used relies
on the GPD approximation (4.23) of the tail of the sample, and requires
an estimate of the tail parameter α. A sample size of n = 732 was used
to estimate α. The test statistic Tr = X(r)/X(r+1), comparing X(r) to the
previous (next largest) order statistic X(r+1), was used to test if X(2) and
X(1) were outlying. Testing outward, with a level of 0.05, neither of these
points were identified as outliers.
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Figure 4.6: Stock Returns: The rough line provides the empirical CCDF of the
magnitude of the 500 largest whitened returns of the Dow Jones
Industrial Index from 3 January 1977 to 31 January 2005. The solid
lines between solid dots provide Pareto model estimates for two
magnitude layers. The dashed line extends the slope of the first layer
for comparison with that of the second.

To evaluate the approach taken in (Schluter and Trede, 2008), we first plot
the CCDF of the 500 largest negative whitened returns in Fig. 4.6. This plot
was not provided in (Schluter and Trede, 2008), but is clearly essential to
assessing above which threshold the GPD approximation (4.23) is sound. A
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few important points are apparent from the figure: Firstly, the CCDF above
the 200 largest observations is shallow/concave, and thus considering more
than 200 points (i.e., 732 in (Schluter and Trede, 2008)) in the sample will
weaken the test (i.e., the estimate of α will be too small). Secondly, the
second largest point is similar in magnitude to the largest. Thus, the test
using T1 = x(1)/x(2) will be masked by x(2), and not rejected. Finally, the
top 6 or 7 points seem to follow a heavier tailed distribution. Thus, 6 or
7 points should be tested as outlying, rather than only 2, and a sum test
statistic, measuring the cumulative departure of the empirical tail, could be
more powerful.

First, we consider estimating a Pareto distribution with two layers. The
first layer, containing 193 points, covers 1.97 < x ≤ 4.45 and has MLE
α̂1 = 3.8. The second layer, containing the 7 largest points, covers 4.45 < X
and has MLE α̂2 = 1.8. Given that the first layer model is true, there is
a p = 0.02 probability of observing such an extreme difference between
the estimated parameters. This two layer model appears to describe the
empirical CCDF well (Fig. 4.6). Next, a single layer model for the top 200

points, covering 4.45 < X was estimated with MLE α̂0 = 3.9. The likelihood
ratio test of the two layer versus one layer model is rejected in favour of
the two layer with p-value 0.07. Further, applying the SS test for r = 6 with
the top 200 points rejects that there are no outliers with p = 0.04. Finally,
applying the DK test for 6 outliers, for upper sample sizes ranging from 20

to 200, all tests have p < 0.04. Thus it appears that the 6 largest points are
outlying.

The largest one is, unsurprisingly, ‘Black Monday’ Oct. 19, 1987, which
is unambiguously classified as an outlier. An enormous literature has
dwelled on its possible origin with a lot of confusion as no simple proxi-
mate cause can explain its occurrence. We find more compelling the story
that it marked the end of a large financial bubble and thus corresponded
to its burst (Johansen and Sornette, 2010c; Sornette, 2003c; Sornette, Jo-
hansen, and Bouchaud, 1996). The second largest event occurred on ‘Black
Friday’ Oct. 13, 1989 and is usually associated with a fall of the junk bond
market (https://en.wikipedia.org/wiki/Friday_the_13th_mini-crash).
The third largest loss corresponds to the first day of reopening of the US
stock markets on Sept. 17, 2001 after Sept. 11, 2001. It is not clear to us
how to interpret the fourth largest loss that happened on Nov. 15, 1991.
The fifth largest loss on Oct. 27, 1997 is analyzed in details in (Sornette,
2003c), which paints a picture much richer than the usual story that this
was a global stock market crash caused by an economic crisis in Asia. This

https://en.wikipedia.org/wiki/Friday_the_13th_mini-crash
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loss can actually be seen also as a partial burst of a bubble that had been
surging in the few previous years (recall the famous quip on the ‘irrational
exuberance’ of the stock markets by Alan Greenspan, then the Chairman of
the US Federal Reserve, on Dec. 5, 1996 (http://www.federalreserve.gov/
boarddocs/speeches/1996/19961205.htm)). The sixth largest loss on Nov.
9, 1986 is not clearly associated with any exogenous cause, to the best of our
knowledge. These six outliers are part of the list found by other researchers
(e.g. (Fortune, 1993)).

4.5.4 Nuclear accidents

We consider as events accidents occurring at nuclear power plants, stud-
ied in (Ayoub and Sornette, 2023; Ayoub, Stankovski, et al., 2021; Wheatley,
Sornette, and Sovacool, 2017). For this two measures of severity are consid-
ered: the cost measured in 2011 US Dollars, for which there are 173 values
over the period of 1960 to 2015; and a logarithmic measure of radiation
released called the Nuclear Accident Magnitude Scale (NAMS) (Smythe,
2011), for which there are 33 values over the same period. Since the disaster
at Fukushima in 2011, Nuclear power has come under major public scrutiny.
Further, the level of risk that the nuclear industry claims is consistently
much lower than statistical analysis of past events indicates (Sornette, Mail-
lart, and Kröger, 2013). Thus, it is crucial to arrive at a better understanding
of the true risk level in this critical application.

The disasters occurring at Chernobyl (1986) and Fukushima (2011) are the
most costly accidents thus far, and together are estimated to have caused
damage costing 430 Billion 2011 US dollars. This is roughly equal to five
times the cost of all 173 other events together. These events, together with
TMI (Three Mile Island, 1979), are also the largest radiation release events.
These events are thus extremely large. It is instructive to ask whether a heavy
Pareto tail is sufficient to account for these extreme risks or, alternatively, if
the tests discussed here can identify outliers / DKs in this data.

In Fig. 4.7 the empirical CCDF (complementary CDF i.e., Pr{X > x})
for NAMS and the log cost are plotted. For log cost only the 114 events
occurring post TMI are included due to an abrupt change in distribution
after TMI. For NAMS, the largest three events form a cluster, and appear
outlying relative to the exponential distribution with α̂NAMS = 0.7 (0.3) fit
by MLE to the top 15 points. Not surprisingly the distribution of NAMS
and the log cost are similar, as they are certainly related. For log cost, the
two or three largest events appear to be outlying relative to the exponential

http://www.federalreserve.gov/boarddocs/speeches/1996/19961205.htm
http://www.federalreserve.gov/boarddocs/speeches/1996/19961205.htm
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distribution with α̂$ = 0.6 (0.14) fit by MLE to the top 50 points. As shown
in the Hill plot, inset in Fig. 4.7, when comparing the AIC of the logspline
nonparametric fit with the exponential one, the exponential cannot be
rejected for samples smaller than the 60 largest points. Further, when
performing the KS test, the exponential fit cannot be rejected (at a level of
0.05) for samples smaller than the 80 largest points. Thus the exponential
approximation for the tail, and thus the outlier test, should only be applied
to not more than the upper 60 points.
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Figure 4.7: Nuclear Power Plant Accidents: the CCDF (cumulative complemen-
tary distribution function, i.e., Pr{X > x}) of the log of the 56 largest
cost events, in millions of US Dollars, (black solid) shifted by 2 units
for visibility, and the CCDF of all 33 log radiation release (NAMS)
values, in solid grey. The fitted lines are exponential MLE fits. The
inner panel is the Hill plot for the cost values. The solid rough line
is the MLE for the exponential distribution for the tail of cost events,
for multiple upper sample sizes. It is bracketed by lines indicating
one and two standard deviations of the estimator. The vertical dashed
line indicates the largest sample at which the exponential cannot be
rejected (based on AIC) as being as good as the logspline nonpara-
metric fit. The vertical solid line indicates the largest sample at which
the exponential cannot be rejected by the KS test.

We now test the outliers with a number of the aforementioned tests. The
results are presented in Tab. 4.6 and summarized below. First considering
NAMS, in Fig. 4.7 the CCDF is visibly concave until the top 15 points
or so, causing a decrease of test power for tests applied to larger sample
fractions (Sec. 2.7). Since the outliers are clustered, (from Sections 2.4 and
2.6) the mixture approach is most powerful, and inward tests the weakest.
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Despite the small sample size, the mixture test consistently identifies 2 or
3 outliers over a range of upper samples. This confirms that the cluster of
large events is a significant feature, however this cluster of large events is
not far enough beyond the tail for the other tests to reject the null. It is also
important to note that the sample size is very small, and thus our ability to
diagnose the validity of the null is weak! Next, cost values are considered
for which a larger sample is available. The outward test and the mixture test
consistently identify the two largest points as significant outliers. The SRS
block test fluctuates around a value of about 0.1. It is not surprising that
tests based on the MRS fail to reject due to lack of power when the largest
point is not extremely large. Thus Fukushima and Chernobyl appear to be
outliers in both radiation released (NAMS) and cost. This is compatible
with our understanding of these accidents, where the disaster escalated
beyond the threshold of control, leading to an unmitigated proliferation of
damage. That these points are outlying in both (dependent) samples would
give higher significance if a bi-variate outlier test were performed.

It is worth mentioning that there is a positive relationship between
NAMS and cost: Considering the 30 events with substantial radiation
release (NAMS> 0), a linear regression of the logarithm of cost (the re-
sponse) versus NAMS (the explanatory variable) yields an intercept of
2.33 (0.7), p = 0.003 and a slope of 0.97 (0.17), p < 10−5, with coefficient
of determination R2 = 0.5. Further, the same regression can be done for the
16 events that have occurred at Sellafield, in the UK. The result of this is an
intercept of 2.30 (1.0), p = 0.04 and a slope of 1.17 (0.39), p = 0.001, with
coefficient of determination R2 = 0.4. Thus, there is a significant relation-
ship between radiation release and cost, where we have simply considered a
linear relationship. Of course the regression parameters for different plants
will depend on the value of property development around the plant.

4.5.5 Fatalities in Epidemics

We now study the number of fatalities caused by outbreaks of bacterial,
viral, and parasitic diseases (epidemics). A dataset for this, with 1,285 events
covering the period from 1900 to 2024, was provided by The International
Disaster Database (EM-DAT). The dataset excludes, and in some case
provides only national fatalities for, pandemic events (spanning multiple
countries). Thus the dataset was complemented with Spanish (1918), Asian
(1957), and Hong Kong (1968) influenza pandemics, which each caused in
excess of 1 million fatalities (Potter, 2006); the 2009 H1N1 ‘Swine’ influenza
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Data n r = m MRS SRS MS Out MRS In Mix DK

NAMS 20 3 0.62 0.35 0, 0.09 > 0.04 0, 0.62 2, 0.03 0.21
NAMS 15 3 0.60 0.32 0, 0.07 > 0.04 0, 0.60 2, 0.025 0.20
NAMS 10 3 0.37 0.15 3, 0.025 < 0.04 0, 0.37 3, 0.025 0.14

Damage 50 2 0.17 0.08 2, 0.03 < 0.06 0, 0.17 2, 0.05 0.18
Damage 40 2 0.23 0.11 2, 0.04 < 0.06 0, 0.23 2, 0.06 0.22
Damage 20 2 0.25 0.14 2, 0.05 < 0.055 0, 0.25 2, 0.07 0.25
Damage 15 2 0.17 0.07 2, 0.02 < 0.04 0, 0.17 2, 0.03 0.21
Damage 10 2 0.06 0.02 2, 0.01 < 0.04 2, 0.01 0, 0.18 0.16

Table 4.6: Summary of outlier tests for NAMS and cost data for the upper n
points, for r outliers (with robustness value m = r). Bold values indicate
significance at a level of a = 0.1. Block tests performed include: MRS
(4.3), SRS (4.4), mixture likelihood ratio (4.7), and the DK test (4.6).
Further, the MS test was applied outward (MS Out), with the number
of identified outliers, the p-value, and the adjusted level (to achieve
a = 0.1) given. For instance, in the first row for MS Out there are zero
outliers because the p-value of 0.09 is above the adjusted level of 0.04.
Finally, the MRS test was applied inward (MRS In), with the number
of identified outliers, and the p-value of the test for the largest point
given.

pandemic, which was estimated to cause upwards of 150,000 fatalities
(Simonsen et al., 2013); and the COVID-19 pandemic, which has led to more
than 7 million fatalities globally according to the World Health Orgnization
(WHO), as of the writing of this paper. All epidemics and pandemics will
be simply referred to as events. From Panel (a) of Fig. 4.8, it is clear that
over time the dataset has become more complete, in particular for small
event sizes. Further, in the period from 1900-1980, 15 events had more
than 10,000 fatalities (0.19 per year), whereas in the period from 1980-2024,
only 2 such event (H1N1 and COVID) occurred (less than 0.05 per year).
Notwithstanding potential changes in the true frequency of events, this is
obviously a highly significant difference. These historical extreme events –
Influenzas, Bubonic plagues, Cholera, etc. – have largely been eradicated
through sanitation, vaccines and antibiotics.

Considering the period from 1900 onwards, many changes have occurred
that should have influenced both the incidence and severity of events. Due
to data incompleteness, the rate of events cannot be studied.
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Figure 4.8: Epidemic Fatalities: (a) scatterplot of epidemic fatalities from 1900 to
2024. (b) the CCDF of the 593 events in excess of 50 fatalities from
1900-2024 (circles) and the CCDF of the 537 events in excess of 50

fatalities from 1980-2024 (triangles). The latter is fitted with a Pareto
tail using a lower threshold u = 300, and its MLE α̂ = 1.01 (0.03)
is given by the Hill plot in in panel (c), where the estimate and
associated standard deviation are indicated by the horizontal line and
the dash lines.

Despite this, the sample in excess of 50 fatalities from 1980 onwards,
containing 537 points, is roughly stationary in severity. For instance, when
repeatedly (1000 times) sampling 100 points from the 537 points, splitting
the 100 points into two equal subsamples, and testing their distributions
for equivalence with the KS test, only 10.9% of p-values were less than
0.1. Thus, the modern sample – spanning the 44 years – may be used as a
proxy to evaluate the outlyingness of the historical extremes, or at least to
evaluate how outlying they would be if they were to occur now.

The events in excess of 50 fatalities from both 1900 onwards and 1980

onwards are plotted according to their CCDF in Panel (b) of Fig. 4.8. The
sample from 1980 approximately has a Pareto tail (see Panel (c)) with
parameter around 1.01 (0.03) for the 178 points above the lower threshold of
300. With increasing lower truncations, the estimated parameter increases
(as the CCDF bends down), however this is not a significant departure from
the estimated tail. For instance, the Anderson-Darling test for the fit of the
top 178 points gives a p-value of 0.75. The tail of the sample from 1900
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onwards is skewed both by the inclusion of historic large events, and also
by the absence of their smaller siblings, which were not recorded.

The value of the exponent α ≈ 1 is reminiscent of Zipf’s law, which is
known to derive quite robustly from the interplay between three simple
ingredients (Saichev, Malevergne, and Sornette, 2009): birth, proportional
growth (also known as ‘preferential attachment’ in network theory) and
death. If the variance of the proportional growth component is large, the
distribution of event sizes converges to a power law with exponent α ≈ 1.
These ingredients are arguably minimum constituents of epidemic processes
and rationalize our finding α = 1.01 (0.03). What is really surprising is the
detection of outliers that we present below, which, in some cases, suggests
the activation of strong amplification processes beyond the proportional
growth mechanisms.

We turn our attention to the detection of outliers relative to the approxi-
mately stationary data from 1980 onwards. The 17 events in excess of 10,000

fatalities – 15 of which happened before 1980 – are considered. The two
events closest to the threshold are the Cholera outbreak with 10,276 fatalities
(Egypt, 1947) and the pneumonic plague with 60,000 fatalities (China, 1910).
Given the smallest event is very close to the threshold, it is treated as a
non-outlier for the purposes of this analysis. We begin with the second
smallest event, considering as a sample the 176 points with between 300 and
10,000 fatalities occurring since 1980, plus the aforementioned Cholera and
pneumonic outbreak. Testing for a single outlier with the DK test (4.6) gives
a p-value of 0. Thus any of the other suspected outliers would be identified
as significant outliers too. And, including multiple of these outliers in the
sample, and testing them together, would provide equally high significance.

With respect to the mechanisms at the origin of these outliers, it is likely
that each case may be associated with specific catalysing processes. For
one of the largest Dragon Kings, the Spanish flu of 1918, serves as a clear
example with an identified amplification mechanism. This epidemic infected
500–600 million people, a third of the world’s population at that time, and
claimed an estimated 40-50 million lives, about five times the toll of the
First World War. The first cases of the unknown disease were registered in
Kansas, America, in January 1918. By March 1918, more than 100 soldiers
fell ill at the US army camp in Funston, Haskell County, where more than
5000 recruits were training for further military operations on the European
battlefronts of the First World War. Most of the recruits were farmers, had
regular contact with domestic animals and were less resistant to viruses
than recruits from cities. The high concentration of personnel in the camp
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simplified human-to-human transmission. At that time, viruses were not
known to medicine, and some doctors had not even accepted the idea
that microorganisms could cause disease. Later, the personnel of Funston
camp were transferred to Europe by ship, and during the long transatlantic
crossing, the virus spread among soldiers coming from other parts of the
USA. Upon arriving in Europe, American soldiers infected British and
French forces, which in their turn infected German forces in hand-to-hand
combat. When Woodrow Wilson, President of the United States from 1913

to 1921, began to receive reports about a severe epidemic among American
forces, he made no public acknowledgement of the disease (Barry, 2004).
Moreover, other governments involved in the war made similar decisions –
censorship, lies, and even active propaganda – to keep up morale, allowing
the disease to continue to spread without any preventive measures. The
pandemic was named ‘Spanish flu’ because Spain was a neutral country
during the First World War and did not suppress the media, so it was only
Spanish newspapers that published honest articles about the severity of
the disease – despite the fact that it had originated in the USA and spread
initially among American soldiers in the absence of a proper response by
the US government. This lack of response was probably due to the US
strategic goal of developing a strong political influence in the post-WWI
peace process that was to shape international politics in the following
decades. In summary, the amplification of the pandemic can be attributed
to two key mechanisms: the highly efficient transmission facilitated by the
movement of soldiers and the absence of any preventive measures due to
the war’s priority.

Similarly, the COVID-19 pandemic reflects the characteristics of an am-
plification mechanism, where specific catalyzing factors led to an unprece-
dented global impact. The virus, SARS-CoV-2, first emerged in Wuhan,
China, in late 2019 and rapidly spread worldwide. The pandemic was
exacerbated by factors such as global interconnectedness, delays in im-
plementing public health measures, and varying levels of preparedness
among countries. By mid-2024, the pandemic had resulted in over 7 million
confirmed deaths, with actual figures likely higher due to underreporting
and discrepancies in data collection. Economies around the world were
severely impacted as measures such as lockdowns and social distancing,
designed to contain the virus, led to unprecedented disruptions in global
supply chains and labor markets. Unlike the Spanish flu, where war ef-
forts took precedence, the initial underestimation of COVID-19 severity by
governments and the slow international response played significant roles
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in its spread. The COVID-19 pandemic highlights the potential for future
events in the realm of global health, where specific conditions – such as
increased travel, urbanization, and environmental degradation – can lead to
catastrophic outcomes. This underscores the importance of recognizing and
mitigating the factors that contribute to such extreme events, particularly
in the context of ongoing threats like antimicrobial resistance and climate
change.

We thus conclude that we found evidence of Dragon Kings in the database
of epidemic events, with the 2009 swine flu pandemic and the more extreme
COVID-19 being notable examples in the more recent post-1980 period.
Although the AIDS epidemic was not included in this analysis, it represents
another significant outlier in the realm of public health. In 2014, 1.2 million
[1 million–1.5 million] people died from AIDS-related illnesses, a marked
improvement from the peak in 2015, when 2.3 million [2.1 million–2.6
million] deaths were recorded. Since its identification, an estimated ∼
36 million people have died from AIDS-related causes (UNAIDS, 2012;
UNAIDS, 2015). The concept of Dragon King in epidemic dynamics suggests
that while such extreme events are rare, they are not beyond the realm
of possibility, especially in a world where human activities increasingly
intersect with natural processes in unpredictable ways.

4.5.6 City sizes

Within the disciplines of economics, geography and geopolitics (among
others), the distribution of city and of agglomeration sizes is of particular
interest, due to the importance of urban primacy, and because it constitutes
one of the key stylized facts. There is a large literature documenting that the
distributions of city and agglomeration sizes follows a Pareto distribution
with parameter close to one (Zipf’s Law) (see e.g. (Saichev, Malevergne, and
Sornette, 2009) and references therein). There has been some debate over
if the distribution would be better represented by a log-normal (Eeckhout,
2004; Eeckhout, 2009; Levy, 2009), however the debate has been clearly
settled in favour of the Pareto for the 1000 largest cities (Malevergne,
Pisarenko, and Sornette, 2011). Note that both the Pareto and log-normal
are generally taken as result from Gibrat’s principle of proportional growth
(Gibrat, 1931) (see (Saichev, Malevergne, and Sornette, 2009) for a general
derivation).

In (Pisarenko and Sornette, 2012), the DK test (4.6) was used to identify
outlying population agglomerations for a number of countries, assuming a
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Pareto tail. Here we consider city sizes rather than agglomerations since this
data is available for more countries. We only consider agglomeration sizes
for the case of Paris, France for comparison with (Pisarenko and Sornette,
2012). Data for 14 large countries2 were taken from CITY POPULATION:
Population Statistics for Countries, Administrative Areas, Cities and Agglomera-
tions - Interactive Maps and Charts Accessed on 01-01-2015. All tests use the
SRS block test statistic for testing the largest point as an outlier, with the
exception or Russia where two outliers are tested.

In Fig. 4.9, the 35 largest cities of each country are plotted according to
their empirical CCDF, rescaled in a way to make the largest cities compara-
ble. Since not all of the samples appear to follow a pure Pareto, results on
robustness and testing the tail (Sections 4.3.4 and 4.4) are relevant here.
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Figure 4.9: City sizes: plot of the CCDF for the 35 largest cities (and also agglom-
erations for France) in each of the 14 countries: Brazil, China, France,
India, Indonesia, Japan, Korea, Mexico, Nigeria, Pakistan, Philippines,
Russia, the UK, and the USA. The sizes were scaled such that the
second largest point (third largest for Russia) in each country has size
1. The scaled largest point (two largest for Russia) are plotted in the
bottom right. Each country that is suspected of having outliers is in
colour: France (blue circles for cities, blue downward triangles for
agglomerations), Russia (black x marks), Indonesia (purple triangles),
Mexico (green crosses), and England (red squares).

First considering French cities, for upper sample sizes of 5 < n ≤ 35,
the p-value fluctuates in a range of 0.1 − 0.2. Thus, there is only marginal

2 Brasil, China, France, India, Indonesia, Japan, Korea, Mexico, Nigeria, Pakistan, Phillipines,
Russia, the UK, and the USA.
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evidence that the city of Paris is an outlier. However, the agglomeration of
Paris is relatively larger, and for 5 < n ≤ 25 the p-value fluctuates between
0.02 and 0.15, providing stronger evidence of the uniqueness of Paris. The
CCDF of Indonesia is concave. Thus, if too large of a sample is considered
in the test, Jakarta will not be detected as an outlier. For instance, if one
draws a line that best interpolates all points of the empirical CCDF, the line
will be so shallow that the Jakarta point falls beneath it, essentially masking
the outlier. For this reason, Jakarta, Indonesia has p < 0.1 only for the upper
most points 5 < n < 11. Mexico is an even more extreme case of the above,
having p < 0.1 for 5 < n < 20 for Mexico City. London, UK, is the most
significant, having 0.001 < p < 0.05 for all 5 < n ≤ 35. Finally, testing both
Moscow and Saint-Petersburg as outliers, the p-value is in 0.01 < p < 0.15,
with a mean of 0.09 for all 5 < n ≤ 35. In conclusion, it is absolutely clear
that London is an outlier, and the largest city/cities of five of the remaining
fourteen countries considered have moderate/suggestive evidence that
they are outlying. A plausible mechanism for the outlier status of London
(and other cities) can be attributed to the positive feedback loops that have
bolstered the outsized importance of these imperial power centers over the
past centuries and decades, coupled with their self-reinforcing economic
attractiveness.

4.6 discussion

We have provided a comprehensive study of outlier detection in the
highly general case of samples with exponential and Pareto tails. By consid-
ering a variety of test statistics and outlier scenarios, many useful insights
are made available to for practitioners. Further, a simple yet novel modifica-
tion of classical test statistics was shown to make the convenient inward
test competitive with the relatively arduous outward test.

Insights include that one should select the correct test statistics based on
the nature of the suspected outliers. For instance, a mixture model can be
very useful for clustered outliers, whereas an inward test with a MS type
statistic will be powerless. Next, the power and level of outlier tests are
highly sensitive to the correct specification of the null. For robust results,
it may be better to focus on the tail of the sample, where EVT provides
that the best approximation is attained. If the approximation is poor even
in the tail, then one should choose a better null model to avoid spurious
inference. Further, tests should be applied for a range of upper samples
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sample (growing lower threshold) and consistent rejection required for a
robust rejection to be verified.

In the case studies, the concept of Dragon King events was introduced.
This stresses that some outliers are meaningful, and perhaps special. Further,
one should certainly not simply discard these outliers but rather focus
on understanding them. Significant outliers were found in the sizes of
financial returns and crashes, epidemic fatalities, nuclear power generation
accidents, and city sizes within countries. In the cases of financial crashes
and nuclear accidents, the existence of Dragon Kings should be considered
in the assessment of risk.
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5
C O N C L U S I O N A N D O U T L O O K

The thesis has explored into both econometric modeling and statistical
analysis that are developed to study the dynamics of financial bubbles and
extreme market events.

In terms of econometric modeling, two models from a novel class of
models are presented, both centered around the heuristic approach investors
develop due to large uncertainties in determining fundamental values.
Recognizing the challenge of accurately assessing fundamentals, investors
estimate mispricing by comparing the current price to a long-term average
growth rate and shape investment decisions based on the mispricing level.
The first model captures this by determining the crash hazard rate through
a non-local estimation of mispricing expressed in excess returns. Building
upon this foundation, the second model incorporates elements of self-
excitation in the crash hazard rate. The models with such crash hazard rates
also incorporate positive feedback loops associated with the fact that a larger
mispricing leads to a larger crash hazard rate which itself is compensated
by a larger expected return as a compensation for the risks incurred by
investors.

We have documented that the models produce synthetic price time se-
ries that exhibit structures and properties that are comparable to those of
real financial time series, with also the existence of transient bubbles look-
ing similar to real financial bubbles with transient faster-than-exponential
growth of the price. Rather than crashing in a single jump, our models
account for multiple jumps in the first model, and contagious clustered
jumps in the second model. We have also quantified the performance of the
parameter estimation for the synthetic times series, with a good recovery
of the true parameters and well-understood standard deviations of the
estimated parameters.

Reflecting on our initial motivation to incorporate non-local self-referencing
crash hazard rate and the further self-excitations in the model, it was primar-
ily to capture the transient dynamics and ‘abnormality’ of market bubbles.
One of the essential aspects of market dynamics during a bubble is the
increasing vulnerability as mispricing escalates before corrections. How-
ever, this growing vulnerability is not fully expressed in the current model
set-ups. This is largely due to the static parameters used for non-local mis-
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pricing, which is also a direct cause of the difficulty in precisely estimating
other parameters (e.g. ν as explained in section 3.5.1). To address this, there
are two ingredients that can aid for future model iterations:

1. A short-term mispricing calculation over e.g. 1-2 weeks, in addition to
the existing long-term mispricing.

2. A dependency where µt is non-zero only for negative values of the
short-term mispricing (loss side), and increases as losses accumulate.

This transient µt, consist of both a long-term measure and a short-term
trigger, prevents non-bubbles regimes from averaging out the effects that
are active only during bubble regimes. It will provide a more accurate and
responsive tool for risk management and financial analysis.

In terms of statistical analysis, we have provided a comprehensive study
of outlier detection in the highly general case of samples with exponential
and Pareto tails. Specifically, the Max-Robust-Sum (MRS) and Sum-Robust-
Sum (SRS) statistics have been adapted to enhance sensitivity to outlier
in a variety of scenarios. Empirical validations across various data types
demonstrate superior performance over conventional methods, especially in
complex outlier scenarios. Furthermore, the simple yet novel modifications
of test statistics are shown to make the convenient inward test competitive
with the relatively arduous outward test. The statistics and testing methods
presented in the study offer useful tools for practitioners, facilitating more
accurate and efficient analysis of data anomalies in diverse settings.

To further enhance the models introduced in this thesis, particularly in the
areas of parameter estimation, model optimization, and prediction, machine
learning offers a way to handle real-world scenarios more effectively. On
one hand, neural networks such as deep feedforward or recurrent networks
can be employed to improve parameter estimation by uncovering non-linear
relationships and interactions in the data, resulting in more accurate and
reliable parameter optimization. On the other hand, traditional econometric
models are often calibrated using fixed datasets and parameterization that
limits their ability to adapt to new information, whereas machine learning
can be applied to implement adaptive calibration, allowing the models to
adapt in real time to changing market conditions, ensuring that the models
remain accurate and relevant.
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