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ABSTRACT

Purpose

The asparagine endopeptidase legumain and the co-stimulatory molecule CD80 have
key but distinctly different functions in the progression of cancer and Alzheimer’s disease
(AD). Tumor-associated macrophages express both proteins. The expression of legumain
by M2 macrophages is linked to tumor progression, while CD80 presentation on M1
macrophages is typically associated with T-cell activation. In AD, legumain is highly
expressed in activated M1 microglia and contributes to the formation of amyloid plaques
and neurofibrillary tangles. Both proteins are potential biomarkers for diagnosing and
treating cancer and AD. This dissertation aimed to characterize CD80 and legumain in
mouse models of disease and contribute to developing PET and SPECT tracers for their
non-invasive imaging.

Main findings

For animal studies pertaining to cancer, the mice were inoculated with CT26 mouse
colon carcinoma cells or MDA-MB-468 human breast cancer cells. The tumor microenvi-
ronment was modulated by the administration of the chemotherapeutic agent decitabine.

Fluorescence activity assays and qPCR revealed high activity and mRNA levels of
legumain in CT26 tumors and kidneys, suitable for PET imaging, while decitabine
treatment did not affect legumain levels in CT26 tumors. MDA-MB-468 tumors had
lower legumain RNA but higher legumain activity compared to CT26 tumors. Based on
fluorescence microscopy, M2 macrophages, associated with legumain, were also present
in CT26 tumor tissue slices. In vitro fluorescence assays with compound 3 yielded a
low nanomolar Ki, similar to compounds 1 and 2. [11C]1 and [11C]2 showed tumor
accumulation in PET and biodistribution after dissection but were rapidly metabolized
with no observed specific binding. [11C]3 was more stable in vivo as evaluated by reverse-
phase, column-switch HPLC and showed specific binding in the kidney and spleen, both
rich in legumain, but had low accumulation in CT26 and MDA-MB-468 tumors. A weak
blocking effect of [11C]3 was seen in CT26 tumors in vitro, but not in vivo.

In a pilot study using APP/PS1 transgenic mice, higher legumain and amyloid precursor
mRNA expression was observed in their brain tissue compared to wild-type mice. Western
blot showed similar levels of zymogen and activated legumain in wild-type and transgenic
mice. Legumain activity was higher in the brain tissue of transgenic mice than in muscle
tissue from healthy wild-type mice. The legumain-targeting tracer [11C]CC11m showed
uptake in the brain tissue of wild-type mice in PET. The expected BP of [11C]CC11m,
based on legumain activity and CC11m binding affinity in the brain tissue, was low.

The CD80-targeting tracers 99mTc-CACM-1 and 99mTc-CACM-2 were evaluated in
CT26 tumor-bearing mice. Both tracers showed high affinity for CD80 in SPR and were
used in SPECT imaging, revealing higher accumulation in tumor tissue compared to
muscle, especially with 99mTc-CACM-2. However, high accumulation was also observed in
other tissues, and co-injection of excess unlabeled protein did not affect uptake. Both
tracers suffered from high renal and liver uptake.

Radioluminescence microscopy was combined with fluorescence microscopy in a stan-
dard immunohistochemical workflow, showing a homogeneous signal distribution on CT26
tumor cryosections. The radioluminescence signal correlated with the added activity and
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ABSTRACT

qualitatively overlapped with tissue edges in the bright-field and fluorescence channels.
The binding of 64Cu-NODAGA-abatacept was likely nonspecific due to the high concen-
tration used, substantially exceeding the KD of abatacept for CD80.

Principal conclusions

Legumain and CD80 are potential biomarkers for the diagnosis, prognosis and treatment
adaptation in the context of cancer and AD. Both are expressed by resident macrophages of
the respective tissues. Our preclinical studies have shown that the P1-Asn peptidomimetic
PET tracer [11C]3 binds to legumain in the kidney and the spleen in a specific manner.
However, the accumulation of [11C]3 in the tumor tissue was not blocked by 3 in excess,
possibly due to the presence of competing endogenous substrates, reducing the specific
binding of the tracer. Our pilot study with [11C]CC11m showed distribution to the brain
of healthy mice, indicating blood-brain-barrier penetration. Furthermore, the brain tissue
of APP/PS1 transgenic mice contained pro- and active-legumain as well as activated
microglia cells. Future developments of legumain tracers may be based on P1-Asn pep-
tidomimetic that, in the case of AD, should be able to cross the blood-brain-barrier.
The use of alkyne-based, irreversible legumain PET tracers might alleviate the issue
of endogenous substrate binding. For use in AD, one should use a blood-brain-barrier
penetrant P1-Asn peptidomimetics. The CD80-targeting SPECT tracers 99mTc-CACM-1
and 99mTc-CACM-2 accumulate in CT26 tumors. However, high uptake in liver and
kidney leaves room for improvement. Future studies should focus on optimizations with
regard to kidney and liver uptake. Radioluminescence microscopy could be implemented
in a standard immunohistochemical staining workflow and might be used to concurrently
image radiotracer binding and another biomarker of choice in tissue slices. The method
needs to be adapted based on the needs for radiotracer development.
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Zusammenfassung

Zweck

Die Asparagin-Endopeptidase Legumain und das co-stimulatorische Molekül CD80 haben
zentrale, aber deutlich unterschiedliche Funktionen in der Entwicklung von Krebs und der
Alzheimer-Krankheit (AD). Tumor-assoziierte Makrophagen exprimieren beide Proteine.
Die Expression von Legumain durch M2-Makrophagen korreliert mit der Tumorprogres-
sion, während die Präsentation von CD80 auf M1-Makrophagen typischerweise mit der
T-Zell-Aktivierung assoziiert ist. Bei AD ist Legumain in aktivierten M1-Mikroglia hoch
exprimiert und trägt zur Bildung von Amyloid-Plaques und neurofibrillären Tangles bei.
Beide Proteine sind potenzielle Biomarker für die Diagnose und Behandlung von Krebs
und AD. Diese Dissertation zielte darauf ab, CD80 und Legumain in Mausmodellen der
jeweiligen Krankheit zu charakterisieren und zur Entwicklung von PET- und SPECT-
Tracern für deren nicht-invasive Bildgebung beizutragen.

Wichtigste Ergebnisse

Für Tierstudien im Zusammenhang mit Krebs wurden die Mäuse mit CT26-
Mauskolonkarzinomzellen oder MDA-MB-468 menschlichen Brustkrebszellen inokuliert.
Das Tumormikromilieu wurde durch die Verabreichung des Chemotherapeutikums
Decitabin moduliert.

Fluoreszenzaktivitätsassays und qPCR zeigten eine hohe Aktivität und mRNA-Spiegel
von Legumain in CT26-Tumoren und Nieren, geeignet für PET-Bildgebung, während die
Decitabin-Behandlung die Legumain-Spiegel in CT26-Tumoren nicht beeinflusste. MDA-
MB-468-Tumoren hatten niedrigere Legumain-RNA, aber höhere Legumain-Aktivität
im Vergleich zu CT26-Tumoren. Basierend auf Fluoreszenzmikroskopie waren auch M2-
Makrophagen, die mit Legumain assoziiert sind, in CT26-Tumorgewebeschnitten vorhan-
den. In vitro Fluoreszenzassays mit Verbindung 3 ergaben einen niedrigen nanomolaren Ki,
ähnlich wie bei den Verbindungen 1 und 2. [11C]1 und [11C]2 zeigten Tumorakkumulation
in PET und Biodistribution nach der Sektion, wurden jedoch schnell metabolisiert, ohne
spezifische Bindung zu zeigen. [11C]3 war in vivo stabiler, wie durch RP-HPLC mit Säu-
lenschaltung bewertet, und zeigte eine spezifische Bindung in Niere und Milz, beide reich
an Legumain, jedoch eine geringe Akkumulation in CT26- und MDA-MB-468-Tumoren.
Ein schwacher Blockierungseffekt von [11C]3 wurde in vitro in CT26-Tumoren beobachtet,
aber nicht in vivo.

In einer Pilotstudie mit APP/PS1-transgenen Mäusen wurde eine höhere Legumain-
und Amyloidvorläufer-mRNA-Expression im Gehirngewebe im Vergleich zu Wildtyp-
mäusen beobachtet. Western Blot zeigte ähnliche Zymogen- und aktivierte Legumain-
Spiegel in Wildtyp- und transgenen Mäusen. Die Legumain-Aktivität war im Gehirngewebe
transgener Mäuse höher als im Muskelgewebe gesunder Wildtypmäuse. Der Legumain-
targetierende Tracer [11C]CC11m zeigte eine Aufnahme im Gehirngewebe von Wildtyp-
mäusen in PET. Der erwartete BP von [11C]CC11m, basierend auf der Legumain-Aktivität
und der CC11m-Bindungsaffinität im Gehirngewebe, war gering.

Die CD80-targetierenden Tracer 99mTc-CACM-1 und 99mTc-CACM-2 wurden bei CT26-
tumortragenden Mäusen untersucht. Beide Tracer zeigten in SPR eine hohe Affinität zu
CD80 und wurden in SPECT-Bildgebung eingesetzt, wobei eine höhere Akkumulation
im Tumorgewebe im Vergleich zu Muskelgewebe festgestellt wurde, insbesondere mit
99mTc-CACM-2. Allerdings wurde auch in anderen Geweben eine hohe Akkumulation
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beobachtet, und die gleichzeitige Injektion eines Überschusses an unmarkiertem Protein
hatte keinen Einfluss auf die Aufnahme. Beide Tracer litten unter einer hohen Aufnahme
in Nieren und Leber.

Radiolumineszenzmikroskopie wurde mit Fluoreszenzmikroskopie in einem standard-
mässigen immunhistochemischen Workflow kombiniert, was eine homogene Signalverteilung
auf CT26-Tumor-Kryoschnitten zeigte. Das Radiolumineszenzsignal korrelierte mit der
hinzugefügten Aktivität und überlappte qualitativ mit den Geweberändern in den Hellfeld-
und Fluoreszenzkanälen. Die Bindung von 64Cu-NODAGA-Abatacept war wahrscheinlich
unspezifisch aufgrund der hohen verwendeten Konzentration, die den KD von Abatacept
für CD80 erheblich überschritt.

Hauptschlussfolgerungen

Legumain und CD80 sind potenzielle Biomarker für die Diagnose, Prognose und An-
passung der Behandlung im Zusammenhang mit Krebs und AD. Beide werden von
ansässigen Makrophagen der jeweiligen Gewebe exprimiert. Unsere präklinischen Stu-
dien haben gezeigt, dass der P1-Asn-peptidomimetische PET-Tracer [11C]3 spezifisch
an Legumain in der Niere und der Milz bindet. Die Akkumulation von [11C]3 im Tu-
morgewebe wurde jedoch nicht durch Überschuss von 3 blockiert, möglicherweise auf-
grund der Anwesenheit konkurrierender endogener Substrate, die die spezifische Bindung
des Tracers verringern. Unsere Pilotstudie mit [11C]CC11m zeigte eine Verteilung im
Gehirn von gesunden Mäusen, was auf eine Blut-Hirn-Schranken-Penetration hinweist.
Darüber hinaus enthielt das Hirngewebe von APP/PS1-transgenen Mäusen sowohl Pro-
als auch aktives Legumain sowie aktivierte Mikrogliazellen. Zukünftige Entwicklungen von
Legumain-Tracern könnten auf P1-Asn-Peptidomimetika basieren, die im Falle von AD
in der Lage sein sollten, die Blut-Hirn-Schranke zu überwinden. Der Einsatz von alkin-
basierten, irreversiblen Legumain-PET-Tracern könnte das Problem der Bindung endogener
Substrate lindern. Für den Einsatz bei AD sollten blut-hirn-schranken-penetrierende
P1-Asn-Peptidomimetika verwendet werden. Die auf CD80 zielenden SPECT-Tracer
99mTc-CACM-1 und 99mTc-CACM-2 akkumulieren in CT26-Tumoren. Die hohe Aufnahme
in Leber und Niere schafft jedoch Spielraum für Verbesserungen. Zukünftige Studien soll-
ten sich auf Optimierungen in Bezug auf die Aufnahme in Nieren und Leber konzentrieren.
Die Radiolumineszenzmikroskopie könnte in einen standardmässigen immunhistochemis-
chen Färbeprotokoll integriert werden und könnte verwendet werden, um gleichzeitig
die Bindung von Radiotracern und weiterer Biomarker nach Wahl in Gewebeschnitten
abzubilden. Details zur Anwendung der Radiolumineszenzmikroskopie im Zusammenhang
mit der Radiotracerentwicklung hängen von den Anforderungen der jeweiligen Studie ab.
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CHAPTER 1 1.1 The immune system

1.1 The immune system

The immune system is a network of cells, tissues, organs and soluble components that
protects an organism from a wide variety of disease-causing agents such as viruses,
parasites and cancer cells. The immune system can be divided into two main branches:
the innate immune system and the adaptive immune system. The innate immune system
comprises preconfigured responses to pathogens, while the adaptive immune system, as
the name implies, adapts to pathogens as they are encountered by the host. A network of
vascularization and nodes amenable to immune cell migration and development forms the
lymphatic system. The lymphatic system comprises primary lympoid organs that provide
the site for lymphocyte development and maturation, and secondary lymphoid organs,
which provide the environment for lymphocytes to interact with antigens. Many different
cell types play a role in the immune system of mammals. For the purpose of this thesis,
we will focus on two cell types: T cells and macrophages [132].

1.1.1 T cells

T cells are lymphocytes that play an integral role in the adaptive immune response. They
are characterized by the presentation of T-cell receptors (TCR) on their cellular surface.
The TCR recognizes antigens (usually peptides) that are presented on the surface of other
cells and bound to either major histocompatibility complex (MHC) class I or MHC class
II receptors, depending on the type of T cell. MHC class I receptors are expressed by
all nucleated cells and MHC class II receptors are specific to antigen presenting cells
(APCs). T cell activation through the TCR is mediated by the binding of co-stimulatory
molecules on the surface of the T cell (e.g., CTLA-4) and on APCs (e.g., CD80). T cells
have many different functions in the immune system. An essential role is to kill cells that
are potentially harmful to the body. Cytotoxic T cells express the CD8 protein on their
surface and can directly kill cells that present foreign antigens on their surface such as
virus-infected cells or cancer cells. T helper cells express the CD4 protein on their surface
and can increase the activity of other immune cells. Regulatory T cells are a distinct
population of T cells that prevents immune cells from acting against self-antigens and
maintaining overall immune tolerance [132].

1.1.2 Macrophages

Macrophages are a cell type that is part of the innate immune system. Macrophages
patrol the body, engulf and digest particles and pathogens that are recognized as foreign.
They are ubiquitously found throughout the body and differ and in their form depending
on the residence tissue [132]. Examples in mammals include liver-resident macrophages,
called Kupffer cells, microglia specific to the brain and macrophages in tumors, known
as tumor-associated macrophages (TAMs) [99,146]. In their role as APCs, macrophages
present peptides from phagocytosed antigens on MHC class II molecules to T helper cells.
In the process of interacting with T cells, macrophages rely not only on the MHC class
II molecules, but also on co-stimulatory molecules, such as CD80 and CD86 that bind
to CD28 and CTLA-4 on the surface of T cells. In this way, macrophages modulate T
helper cell activation and can facilitate full effector function. Classically, macrophages
have been divided into two categories (depending on their polarization): M1 and M2
macrophages [128]. In a simplified view, M1 macrophages are pro-inflammatory and
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M2 macrophages are anti-inflammatory. Macrophage polarization is a dynamic process
that involves a complex network of signaling pathways, transcriptional epigenetic and
post-transcriptional regulatory mechanisms [30]. The plasticity of macrophage polarization
and findings of mixed phenotypes in vivo have led to criticism of the M1/M2 classification
model [133]. However, the dichotomic polarization model provides a useful framework to
understand macrophage function in the context of immune-related diseases.

1.2 Immune-related diseases

While the immune system plays a critical role in defending against numerous diseases,
it can, under certain conditions, exert detrimental effects on the host. There are many
maladies that are related to a malfuction of the immune system. Two with high prevalence
and societal impact are cancer and Alzheimer’s disease (AD).

1.2.1 Immune mechanisms in cancer

Cancer is a group of diseases characterized by uncontrolled cell growth with the potential
to invade healthy tissues [6]. Although uncontrolled cell proliferation is the defining
feature of cancer, the immune system is also fundamentally involved in its development
and progression. Avoiding immune destruction and tumor-promoting inflammation are
two hallmarks of cancer directly linked to the immune system [67]. Immune cells, together
with stromal cells, blood vessels and the extracellular matrix, surround the cancerous
cells and provide a tumor-specific hypoxic and slightly acidic milleu, the so-called tumor
microenvironment (TME). Early on in the development of a tumor, a reciprocal relationship
between the TME and the tumor cells is established. The TME varies in composition
between different types of cancer and between different lesions within the same patient.
Different types of immune cells infiltrate the tumor microenvironment (TME) to varying
extents, resulting in three main categories of TMEs: i) immune infiltrated, characterized
by immune cells homogeneously distributed throughout the tumor tissue, ii) immune
excluded, where T cells are primarily found in the periphery of the tumor, and iii) immune
silent, which is devoid of any immune cell infiltration [11]. Immune infiltrated tumors are
characterized by the presence of tumor-infiltrating lymphocytes (TILs). The presence
of TILs is linked to a more favorable prognosis in many types of cancer, through not
universally. Additionally, the type, function and location of TILs in the TME has an impact
on tumor progression [55]. Activation of T cells in the TME is mediated by the interaction
with other cells. Through hypoxia and the secretion of cytokines, the TME promotes the
polarization of macrophages toward the immunosuppressant M2 type. Clinically, such
TAMs can represent a large proportion of the tumor mass [11]. The presence of such
M2 TAMs is associated with a poor prognosis in many types solid tumors. M2 TAMs
accelerate cancer progression through modulating cell growth, contributing to extracellular
matrix degradation, promoting of angiogenesis and manipulating T cell activity [110].
M2 TAMs interact with their surroundings through the secretion of signaling peptides
and proteins. For instance, secreted interleukin-6 and interleukin-10 are growth factors,
that support the proliferation of cancer cells and matrix-metalloproteinases (MMPs) are
enzymes that degrade the extracellular matrix and promote angiogenesis [110].

3



CHAPTER 1 1.2.2 Alzheimer’s disease and immune system dysfunction

1.2.2 Alzheimer’s disease and immune system dysfunction

AD is a neurodegenerative disease that is clinically characterized by progressive cognitive
decline. The main pathological hallmarks of AD are the accumulation of amyloid-β (Aβ)
plaques and neurofibrillary tangles in the brain [98]. However, targeting Aβ plaques and
neurofibrillary tangles therapeutically has led to limited success [195]. Epidemiological
studies and genetic evidence point to neuroinflammation as an important risk factor for
AD. Microglia, the resident macrophages of the brain, can be activated by Aβ prior to
the formation of plaques [121]. Microglia activation can create a positive feedback loop,
leading to more Aβ plaques and subsequently more activation. The mechanisms through
which microglia activation may be damaging to the brain are manifold. As part of the
inflammatory response, microglia generate neurotrophic factors, potentially contributing
to the demise of neurons. Activation disrupts the housekeeping function of microglia,
aggravating the disease pathology. Furthermore, the activation of microglia can lead to
the formation of neurofibrillary tangles characteristic for tau pathology [74]. The role of
microglia in AD is a subject of intense research. Different proteins expressed by microglia
have been associated with a high AD risk [175]. It was suggested that the role of microglia,
similar to the one of macrophages in other diseases, is dependent on the larger disease
context [73]. Similar to TAMs in cancer, activated microglia in AD can be polarized to the
M1 or M2 type [65,215]. While the immunosuppressant M2 type is associated with disease
progression in cancer, immunosuppression is neuroprotective in AD and thus beneficial.
In contrast, M1 activated microglia produce inflammatory cytokines and chemokines,
reactive oxygen species and nitric oxide, contributing to neurological damage [140].

1.3 Molecular imaging

Molecular imaging is the imaging-probe-aided visualization of in vivo biological processes
at molecular and cellular scale [10]. The term encompasses methods such as magnetic
resonance imaging (MRI) and spectroscopy, optical imaging, ultrasound and radiotracer
imaging. Positron emission tomography (PET) and single photon emission computed
tomography (SPECT) are radiotracer imaging techniques that are highly sensitive and
widely used in the clinics. Both techniques allow to obtain functional information about
a process of interest based on the localization of a radiotracer in vivo. They are often
used in conjunction with anatomical imaging techniques such as computed tomography
(CT) or MRI. SPECT and PET differ fundamentally in the type of tracers that are used.
SPECT tracers emit γ-rays and are directly detected by a γ-camera. On the other hand,
PET tracers are β-particle (positrons) emitting. The location of the parent nuclide is
inferred based on annihilation photons [170]. In principal, any nuclide that fulfills the
aforementioned criteria can be used for PET or SPECT imaging. However, the choice of
nuclide is influenced by a range of factors such as the physical half life and the chemical
properties. The most frequently used nuclides for PET imaging are 18F and 11C. 18F has
a radioactive decay half life of ∼ 110 min and 11C has a half life of ∼ 20 min [4]. In both
cases, the respective stable isotopes are widely used in medicinal chemistry and can readily
be incorporated into drug-like molecules. In clincal use, [18F]fluoredeoxyglucose (FDG), a
glucose analog, is a major tool for diagnosis. For imaging with large molecules such as
antibodies, the use of 89Zr or 64Cu is common and other radiometals such as 43Sc and 44Sc
are emerging [114]. Radiometals are typically conjugated to the targeting macromolecule
using a metal-complexing chelator. There is a plethora of different polydendate bifunctional
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chelators available. Examples include DTPA, EDTA, DOTA, NOTA, and others. For
SPECT, the most commonly used nuclides are 123I, 111In and 99mTc. 99mTc has a favorable
half life of 6 hours, can be produced using a generator and subsequently incorporated
using a chelator or a His6-tag [4, 79].

1.3.1 PET and SPECT in cancer

The discovery that FDG accumulates in tumors has revolutionized cancer imaging. To this
day, FDG-PET is widely used as a tool in cancer diagnosis. In addition to FDG, many
other tracers have since been developed for PET and SPECT imaging in cancer. SPECT
imaging in clincal oncology has been employed to identify tumors overexpressing particular
proteins. Notable examples include somatostatin receptors, prostate-specific membrane
antigen, and gastrin-releasing peptide receptors. All of them are targets of 99mTc-labeled
peptides [166]. Past efforts have largely been focused on the tumor cells themselves.
However, the TME is now recognized as an important imaging target [207]. Examples of
TME imaging targets such as fibroblast associated protein (FAP), CD8, and programmed
death-ligand 1 (PD-L1) are expressed by cancer-associated fibroblasts, CD8-positive T
cells, and antigen presenting cells, respectively. In an effort to harness the targeting
specificity of monoclonal antibodies, the field of immunoPET has emerged. Numerous
antibodies and antibody fragments are in clinical use in support of cancer diagnosis and
therapy [208]. For instance, 89Zr-labeled atezolizumab, an anti-PD-L1 antibody, has
been used to image PD-L1 expression in different types of cancer [17, 208]. Functional
imaging tracers beyond FDG have been established to inspect the TME. To visualize
the hypoxic conditions in the TME, imaging agents such as 18F-fluoromisonidazole and
18F-fluoroazomycin arabinoside are in clincical use [23]. Acidosis, another hallmark of the
TME, is harnessed for imaging by use of ultra pH-sensitive nanoprobes manufactured from
a NOTA chelator and a PEG-b-PEPA polymer labeled with 64Cu [163]. PET radiotracers
to image enzymes such as MMPs, typically overexpressed by M2 TAMs of the TME, have
recently gained momentum. A number of 11C and 18F-labeled MMP inhibitors have been
explored in clinical trials [162,180].

1.3.2 PET and SPECT in AD

While SPECT plays a minor role in the imaging of AD, PET has been a major tool
in the diagnosis and monitoring of the disease. Aside from the established FDG brain
imaging, molecular imaging in AD has evolved around the visualization of Aβ plaques
and neurofibrillary tangles. The first in-patient PET study to visualize Aβ plaques was
conducted using 11C-labeled Pittsburgh compound B (PIB) [13]. Since then, three tracers,
namely 18F-florbetapir, 18F-florbetaben, and 18F-flutemetamol, have been approved by the
FDA for clinical use [98]. It has been suggested that this is due to Aβ accumulation in the
brain in some cases decades prior to the onset of functional changes measurable by FDG
PET [85]. Although Aβ has provided useful outcome measures in AD, limited therapeutic
success of anti-Aβ drugs and the presence of large Aβ deposits in 33 % of cognitively
normal, elderly individuals leave room for improvement [13,168]. For the imaging of tau
pathology, the PET ligand 18F-flortaucipir has been developed and approved by the FDA
for clinical use [86,98]. In contrast to Aβ PET, tau PET is highly predictive of subsequent
cognitive decline, irrespective of symptomatic status [5, 70]. In recent years, monitoring
neuroinflammation using PET has gained interest. The most thoroughly investigated

5



CHAPTER 1 1.4 Promising PET and SPECT imaging targets

target mitochondrial translocator protein (TSPO), is expressed in different cell types of
the central nervous system. The detection of TSPO by PET has been linked to microglia
activation in AD patients [222]. Other emerging targets that are more specific for microglia
cells and have 11C and 18F-labeled tracers in development include colony-stimulating
factor 1 receptor, cyclooxygenases and cannabinoid receptor type 2. There is also a
growing body of evidence that builds upon the investigation of extra- and peri-cellular
neuroinflammation targets such as reactive oxygen species and matrix MMPs [222].

1.4 Promising PET and SPECT imaging targets

There are many potential targets for PET and SPECT imaging in the context of immune-
related conditions. In this work, we will focus on legumain and CD80.

1.4.1 Legumain

Legumain is a cysteine protease and is primarily located in late endosomes and early
lysosomes of eukaryotic cells. In mammals, legumain is highly abundant in kidney and
spleen tissue, and is expressed, albeit at a lower level, in other tissues throughout the body.
Depending on the context, alternative names are used for legumain such as asparaginyl
endopeptidase (AEP) and δ-secretase. Due to its His-148-Gly-spacer-Ala-Cys-189 motif,
legumain is classified as a member of clan CD and the C13 family of cysteine proteases.
It is the only known protease with Asn and Asp specificity at the P1 position. The main
physiological function of legumain is the digestion of proteins in the lysosome. In this
context, legumain plays an important role in the processing of self and foreign proteins
for presentation on MHC class II molecules. A multitude of other functions have been
ascribed to legumain and are subject of ongoing research. Legumain is expressed as
a zymogen with a molecular weight of 56 kDa and undergoes activation at acidic pH.
Autocatalytic processing at pH ≤ 5.5 of the proenzyme results in the formation of a
46/47 kDa intermediate active legumain. Further downstream processing yields a 36 kDa
legumain variant. Activated legumain is stable at pH ≤ 6 and irreversibly inactivated at
neutral pH. However, complexation with intregrins on the cellular surface and cystatin, an
endogenous legumain inhibitor, can stabilize the protease at neutral pH, preventing it from
irreversible structural changes. At pH ∼ 5.8, legumain specifically cleaves Asn residues
C-terminally. Asp cleavage is exclusively observed at pH < 4, and is thus physiologically
negligible.

Under pathophysiologic conditions, legumain is found outside the lysosome in the
cytoplasm, the nucleus, or in the extracellular space [35]. Legumain cleaves many
endogenous substrates including other proteases such as cathepsins and MMPs [182].
Specifically in the context of cancer, legumain expression has been linked to tumor
progression and metastasis in different tumors such as ovarian, breast, prostate, colorectal
and gastric cancer [60, 134,144,201,203]. The non-canonical localization of legumain has
been widely observed in tumor tissue including the TME [182]. For instance, pro- and active
legumain were found in the nucleus and cytosol of colorectal cancer cells [71, 72]. In large
B cell lymphoma, legumain was localized on the cellular surface and in the extracellular
matrix [179]. Moreover, the same study found that legumain was overexpressed by M2
TAMs specifically in the TME [179]. In gastric cancer, the downregulation of legumain
expression in TAMs reduced cancer cell proliferation and angiogenesis in vitro and in
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vivo [203]. In experiments differentiating between M1 and M2 TAMs, more active legumain
was found in M2 than M1 polarized macrophages [183].

In AD mouse models, legumain expression is associated with microglial activation
and disease progression [204]. Legumain levels increase with age in wild type mice and
are significantly higher in mice with known AD-related mutations [204, 218]. In the
human brain, legumain is abnormally activated in AD patients and is upregulated in
microglia specifically upon acute inflammation [84,218]. Similar to cancer, non-canonically
located legumain was identified in AD [14,219]. In in vitro and in vivo studies, legumain
cleavage of APP, the precursor of Aβ and tau has been shown [218,219]. The prevention
of legumain-mediated tau cleavage in P301S AD mice, led to ameliorated synaptic and
cognitive function [219]. Similar effects were observed in mice expressing uncleavable
APP [218]. The causal implication of legumain in cancer and AD makes it an interesting
target for therapy.

Based on the narrow substrate specificity in P1 position, a series of azaAsn inhibitors
with the α carbon replaced by a nitrogen has been developed in the early 2000s [141].
Since then, developments have included epoxide and michael acceptor containing moieties
specifically targeting the active site Cys-189 [152]. The P1-Asn mimicking approach
has culminated in reversibly binding cyano-warhead equipped and irreversibly binding
alkyne compounds with favorable pharmacokinetic properties [40,81,101,138,139,152].
Importantly, these active-site targeting inhibitors only bind to activated legumain, in
which the active site is sufficiently accessible. An entirely different pharmacophore for
legumain inhibition was discovered in a high-throughput screen with mouse kidney lysates
and a > 50 000 compound library [217]. The inhibitor was termed compound 11, bound to
a regulatory exosite in addition to the active site and has since been further optimized [112].
Existing inhibitors and known substrates of legumain build the foundation of legumain-
specific PET tracer development. Several legumain PET tracers have been explored
preclinically. A group of molecules makes use of the physiological localization of legumain
in lysosomes through lysosome-targeting. These lysosome-targeting tracers undergo
intramolecular condensation upon legumain cleavage and are subsequently trapped within
the lysosomes [159]. These 18F tracers have since been optimized to reduce hepatic uptake
and increase lysosomal targeting [118,119]. Furthermore, the scaffold was coupled to a
NOTA chelator and used for 68Ga PET [80]. The tracers show more accumulation in
MDA-MB-468 tumors with high legumain expression than in low-expression PC-3 tumors.
The binding specificity of these tracers remains to be elucidated.

1.4.2 CD80

CD80 is a co-stimulatory membrane protein expressed on APCs [149]. The binding of
T cells through the TCR to APCs is not sufficient to fully activate T cells [46]. CD28
is constitutively expressed on the surface of T cells and acts an an auxillary activator
when binding to CD80 on APCs. Additionally, CTLA-4 is expressed on the surface of
T cells and acts as a homologous, yet functiontionally opposite ligand for CD80 [127].
Thus, CTLA-4 competes with CD28 for the binding of CD80 and upon binding, reduces
the required signal for T-cell activation. Additionally, CD80 and PD-L1, both expressed
on the surface of APCs can interact and block the binding of PD-1 expressed on T cells
to PD-L1 [150]. Notably, M1 polarized macrophages are characterized by high CD80
expression. CD80 is expressed not only by APCs, but also by various types of tumor cells,
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leading to suppression of T cell activation and thereby evading immune surveillance [192].
Low CD80 expression in the tumor tissue has been associated with poor outcome in tumors
such as gastric cancer and thyroid carcinoma patients [48, 191]. In immune checkpoint
inhibitor (ICI) therapy, co-inhibitory molecules like CTLA-4 and PD-L1 are blocked
in order to reactivate T cells in the TME and enhance the immune response to cancer
cells [189]. Although exact numbers vary depending on the study, ∼ 60 % of patients
respond only partially or not at all to the ICI therapy with generally higher response
rates in combination therapy than monotherapy [33,189]. Furthermore, immune-related
adverse events in the form of T cells reacting with self-antigens in healthy organs are a
major concern [12,54]. Efforts to image the immune checkpoint molecules CTLA-4, PD-1
and PD-L1 have shown high predicive power for clinical response in the case of PD-L1
immunoPET with 89Zr-labeled anti-PD-L1 atezolizumab [17]. However, antibodies that
possess therapeutically favorable properties such as a long biological half life , are not
necessarily optimal for PET or SPECT imaging. In the case of monoclonal antibodies, the
long biological half life in combination with poor tumor penetration, requires the patient
to come back to the hospital for PET scanning after an extended span of time, during
which they will be exposed unnecessarily to ionizing radiation. A vast amount of ligands
different from antibodies such as andibody fragments, nanobodies, small proteins and
peptides coupled to different PET radioisotopes are currently in preclinical and clinical
development [22]. As it pertains to SPECT, molecules of similar structures labeled with
99mTc are in development [211, 216]. CD80 imaging offers an alternative approach to
CTLA-4, PD-1 and PD-L1 imaging. CD80 is expressed on M1-polarized macrophages of
the TME and is predictive for ICI therapy response [171]. Aside from efforts within our
group, we are not aware of any CD80 radiotracers in development [24,187].

1.5 Aim of the thesis

The body of work that makes up this dissertation revolved around the development of
tracers for PET and SPECT imaging of legumain and CD80, respectively. Both targets are
expressed in the context of immune-related diseases. Legumain is an emerging therapeutic
target both in cancer and in AD. It is overexpressed in tissue-resident macrophages such as
M2-type TAMs and M1-type microglia and, provided a pathologically acidic environment,
is activated and processes several endogenous substrates. CD80 is an important co-
stimulatory signaling molecule of the TME. Similar to legumain, it is expressed by
macrophages, albeit by M1-type TAMs. CD80 is crucial for the activation of T cells,
which form the cornerstone of ICI therapy. Immunotherapeutic efforts to conquer cancer
and AD could benefit greatly from the non-invasive detection of such biomarkers allowing
for disease characterization in research and diagnosis and monitoring in the clinics. The
specific goals of this thesis were:

• Characterization and modification of CD80 and legumain expression in cancer and
AD mouse models using various biological methods

• Development (and continued development) of legumain- and CD80 targeting radio-
tracers followed by evaluation in vitro and in vivo

Furthermore, we have attempted the implementation of radioluminescence microscopy
into the immunohistochemical staining workflow typically used in radiotracer development.
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2.1 Background

Cancer remains one of the leading causes of death in high-income countries [49]. In search
of effective treatments, the therapeutic focus has increasingly shifted from targeting cancer
cells to targeting the tumor microenvironment (TME). This gave rise to therapeutic
approaches with T-cell activity-modulating immune checkpoint inhibitors (ICI). These
therapies leverage the involvement of T cells in the immune response to cancer through
the targeting of CTLA-4, PD-1 or PD-L1. In recent years, the adoption of ICI therapy has
substantially improved the prognosis for a sub-population of patients [68]. However, low
response rates and immune-related adverse events necessitate an extension of treatment
strategies beyond the established, leveraging other components of the TME [33,36]. Tumor-
associated macrophages (TAM) of the anti-inflammatory M2 phenotype dampen the
potential of T cells to attack tumor cells [205]. Various proteins expressed by TAMs have
been studied as possible targets for the therapeutic modulation of the immune response.
Immune-modulating strategies include the depletion of TAMs at the tumor site and the
reprogramming of anti-inflammatory M2 to tumoricidal M1 type macrophages [148,161].
Legumain, a lysosomal cysteine endopeptidase, is ubiquitously expressed across the body.
Legumain specifically hydrolyzes substrates C-terminally to Asn residues (P1 position)
in the Ala-Ala-Asn motif [35, 83]. In patients suffering from ovarian, breast, prostate,
colorectal or gastric cancer, legumain expression correlates with tissue invasion and
metastasis, a hallmark of tumor progression [60,67,134,144,201,203]. Legumain facilitates
extracellular matrix (ECM) remodeling through activation of metalloproteinases and
cathepsins or by direct proteolysis of ECM components [29,131,181,213]. M2 TAMs show
elevated expression levels of legumain and its inhibition suppresses tumor progression in M2
TAM-dependent diffuse large B cell lymphomas in mice carrying human xenografts [179].

Consequently, legumain has been explored as a therapeutic target and prodrug-activator
in the context of various tumor types. Based on the narrow substrate specificity of legumain,
compounds containing nonproteinogenic amino acids and peptidomimetics have been
developed. Such compounds were used to inhibit legumain and deliver chemotherapeutic
payloads to the tumor [152]. Efforts in the development of activity-based inhibitors
culminated in the synthesis of P1-Asn peptidomimetics equipped with an electrophilic
cyano-warhead. In the presence of active-site Cys-189, these compounds form a reversible
covalent bond, thereby inhibiting the enzyme [40,81,138,139].

Medical imaging of legumain may offer a method to support immunotherapy in
oncology [169]. Multiple attempts to image legumain have been undertaken in the course
of the last decade. These include fluorescence imaging, MRI with contrast agents and
positron emission tomography (PET) [31, 41, 58, 108, 111, 220]. PET enables clinically
relevant deep tissue visualization. Recently, nanoparticle-based, 18F- and 68Ga-labeled
PET tracers were developed to visualize legumain-expressing xenografts in tumor-bearing
mice. The tracer relies on intracellular intramolecular condensation and macrocyclization
based on legumain activity, resulting in lysosomal trapping [80,118,119,159].

In this work, we aimed to develop a legumain-targeting PET tracer based on P1-Asn
peptidomimetics amenable to 11C-labeling and with suitable binding affinity for PET
imaging. We chose two inhibitors with IC50 values of 3.85 nM (1) and 6.05 nM (2),
respectively, as depicted in Figure 2.1. These inhibitors were developed and characterized
as previously described [138]. We established the radiolabeling for [11C]1 and [11C]2,
characterized a CT26 tumor mouse model in vitro regarding the expression and activity
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CHAPTER 2 2.2 Methods

of legumain and evaluated both tracers in vivo in CT26 tumor-bearing mice by PET.

Figure 2.1: Chemical structures of a com-
pound 1 and b compound 2. The P1-Asn
mimicking moiety is highlighted in blue.

2.2 Methods

2.2.1 Cell culture

The murine colon carcinoma cell line CT26.WT (ATCC CRL-2638) was obtained from
the American Type Culture Collection. The cells were cultured in Roswell Park Memorial
Institute (RPMI) 1640 medium with GlutaMAX-I and 25 mM HEPES (Gibco, Life
Technologies, US) supplemented with 10 % fetal calf serum (FCS, Life Technologies, US),
10 000 U/ml penicillin and streptomycin (PS, Gibco, Life Technologies, US) at 5 % CO2

and 37 °C. At 80-95 % confluence, cells were detached with 0.05 % trypsin-EDTA solution
(Gibco, Life Technologies, US) and split 1 to 7 for sub-culture.

2.2.2 Mouse tumor inoculation

Animal studies were approved by the Zurich Cantonal Veterinary Office, Switzerland
(license ZH28/2018), and conducted according to Swiss Animal Welfare legislation. Female
BALB/c mice (Charles River Laboratories, Sulzfeld, DE) were housed at 22 °C with a
12-hour light-dark cycle and unlimited access to food and water. At the age of 14 weeks,
the mice were inoculated subcutaneously in the right shoulder region with 8 * 105 CT26
cells re-suspended in 100 µl Matrigel (BD Biosciences, US). Experiments were performed
7-12 days after CT26 cell inoculation when tumors were clearly visible but no larger than
1.76 cm3.

2.2.3 Fluorescence microscopy

Dissected CT26 tumors were embedded in OCT compound mounting medium (Avantor,
US), cut to 10 µm slices with a cryotome, thaw-mounted on microscopy slides and stored
at -80 °C. For fluorescent staining, slices were thawed, left to dry and washed (3 * 5 min)
in phosphate-buffered saline (PBS, Gibco, Life Technologies, US). Tissue was encircled
with a hydrophobic pen (Dako, DK) and fixed in 4 % paraformaldehyde in PBS for 10 min.
Tissue was washed (3 * 5 min) in PBS and incubated in 5 % (w/v) powdered, skimmed
milk in PBS on a benchtop rocker for 30 min. All subsequent incubation steps were
performed protected from light on a benchtop rocker. Tissue was washed (3 * 5 min)
in PBS and incubated with primary antibodies in PBS for 120 min. Tissue was washed
(3 * 5 min) in PBS and incubated with secondary antibodies in PBS for 30 min. Tissue

12
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was washed (3 * 5 min) in PBS and incubated with DAPI (BioLegend, US) 1:2 000 in
PBS for 5 min. Tissue was washed (1 * 5 min) and sections were left to dry for 30min.
Cover slip was mounted with mounting medium (Mowiol, Kuraray, JP) and left to dry
for 30 min. Slides were stored at 5 °C for up to 4 weeks prior to image acquisition. For
macrophage staining, rat CD206 targeting primary antibody (MA5-16871, Thermo Fisher
Scientific, US) 1:500 and goat Alexa Fluor 647 IgG secondary antibody (A21247, Thermo
Fisher Scientific, US) 1:300 were used. For legumain staining, rabbit legumain targeting
primary antibody (bs-3907R, Bioss, US) 1:100 and donkey Alexa Fluor 488 IgG secondary
antibody (406416, BioLegend, US) 1:500 were used. Slides were scanned with a slide
scanner (Pannoramic 250, 3DHistech, HU). Software provided by the manufacturer was
used for image processing (3DHISTECH’s Slide Converter version 2.3.2 and SlideViewer
version 2.6).

2.2.4 Flow cytometry

CT26 tumors were dissected and washed with PBS, pH 7.4 (Gibco, Life Technologies,
US). Tissue was chopped and incubated in 0.1 mg/ml DNAse I (11284932001, Roche,
CH) and 1 mg/ml collagenase IV (1704-019, Gibco, US) in PBS at 37 °C, shaking for 2 h.
Tissue was homogenized using a micropipette and forced through a 70 µm cell strainer
(Corning, US). Single cell suspension was spun down at 500 * g for 5 min at 5 °C and
re-suspended in culture medium based on RPMI 1640 with GlutaMAX-I and 25 mM
HEPES (Gibco, Life Technologies, US) supplemented with 10 % heat-inactivated FCS
and 10 000 U/ml penicillin and streptomycin (PS, Gibco, Life Technologies, US). For
counting, cells were diluted 1:1 with 0.4 % trypan blue solution (Gibco, US), transferred
to a counting chamber slide (Thermo Fisher Scientific, US) and inserted in an automated
cell counter (Countess, Thermo Fisher Scientific, US). 100 000-400 000 cells per well were
transferred to U-bottom 96-well plates (Greiner, AT) and spun down at 500 * g for 5 min
at 5 °C. After removal of the supernatant, the cells were re-suspended in cell viability dye
(Zombie Aqua, BioLegend, US) 1:1 000 in FACS buffer (2 mM EDTA in PBS containing
2 % (v/v) FCS) for 15 min and washed with FACS buffer. For fixation, cells were
re-suspended in 1 % paraformaldehyde in FACS buffer and incubated for 10 min at 4 °C.
After washing with FACS buffer, cells were permeabilized in permeabilizer solution (0.04 %
(v/v) Triton x-100 in FACS buffer) and incubated for 20 min at 4 °C. Cells were washed
with permeabilizer solution and re-suspended in Fc receptor blocking solution (Trustain
FcX) 1:500 in permeabilizer solution followed by 10 min of incubation at 4 °C. Cells were
washed with permeabilizer solution and incubated in permeabilizer solution containing
antibody for 45 min at 4 °C. Cells were washed with FACS buffer (2 x) and re-suspended in
FACS buffer. Measurements were performed on a flow cytometer (CytoFLEX S, Beckman
Coulter, US). Compensation beads (UltraComp eBeads Plus, Thermo Fisher Scientific,
US) were used to generate a compensation matrix for the given fluorophores. Isotype
controls, fluorescence-minus-one samples and unstained cells were used to assist gating.
PE conjugated rat CD206-targeting antibody (141705, BioLegend, US) 1:400 in FACS
buffer was used to detect M2 macrophages. Gating and data processing were performed
in R (R-project [160]) using open-source packages [3, 51–53,66,130,151].

2.2.5 Gene expression analysis

CT26 tumors were dissected and washed with RNA-preserving solution (RNAlater, Thermo
Fisher Scientific, US). For RNA extraction, tissue was transferred to RNA extraction
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CHAPTER 2 2.2.6 Legumain activity and estimation of binding potential

solution (TRIzol, Thermo Fisher Scientific, US) and homogenized using a bead-mill
system (Qiagen, DE). The homogenate was centrifuged (12 000 * g, 10 min, 4 °C) and the
uppermost phase was mixed with chloroform. After centrifugation (same conditions as
above), the aqueous phase was mixed with isopropanol and incubated for 10 min. The
samples were centrifuged (same conditions as above) and the resulting pellet was washed
with 75 % ethanol and centrifuged (8 000 * g, 5 min, 4 °C). The wash was repeated,
the sample pellets were centrifuged (15 000 * g, 2 min, 4 °C) and left to dry for 1-2 h.
The pellet was dissolved in RNAse-free water. Concentration and quality of the RNA
extract were determined using a microvolume spectrophotometer (NanoDrop, Thermo
Fisher Scientific, US). For reverse transcription, RNA extract was incubated with wipeout
buffer (QuantiTect Reverse Transcription kit, Qiagen, DE) for 2 min at 42 °C. Reverse
transcriptase, reverse transcription buffer and reverse transcription prime mix (QuantiTect
Reverse Transcription kit, Qiagen, DE) were added and the solution was incubated for
15 min at 42 °C followed by 3 min at 95 °C. Real-time quantitative polymerase chain
reaction (RT-qPCR) was performed using cDNA from the previous step, gene specific
primers and qPCR Master Mix (GoTaq qPCR Master Mix, Promega, US). Primers for
qPCR were custom-made oligonucleotides (Microsynth, CH): legumain (Lgmn, NCBI
Gene: 19141), forward 5’-GTG ATC AAC CGA CCT AAC G-3’, reverse 5’-ATT CTC
TGG AGT CAC ATC CTC-3’; ATP synthase beta chain (Atp5b, NCBI Gene: 8617357),
forward 5’-GGT TCA TCC TGC CAG AGA CTA-3’, reverse 5’-AAT CCC TCA TCG
AAC TGG ACG-3’; cytochrome c1 (Cyc1, NCBI Gene: 66445), forward 5’-TAG CTA
AGG ATG TCG CCAC-3’, reverse 5’-TCA ACA ACA TCT TGA GAC CCA-3’; β-actin
(Actb, NCBI Gene: 11461), forward 5’-GTG ACG TTG ACA TCC GTA AAG-3’, reverse
5’-GCC GGA CTC ATC GTA CTC C-3’. On a real-time PCR system (Quantstudio 7
Flex, Thermo Fisher Scientific, US), 10 µl of total volume were run through 40 cycles with
the hold stage temperature at 95 °C for 2 min and a PCR stage consisting of 95 °C for 15 s
(denaturation) and 60 °C for 60 s (annealing/extension). Melt curve stage was included
for quality control on a single well level. Lgmn was normalized to Actb1, Cyc1 and Atp5b
levels [139]. Data processing was performed in R using open-source packages [209].

2.2.6 Legumain activity and estimation of binding potential

Tissues were dissected and washed with assay buffer consisting of 20 mM citric acid,
60 mM Na2HPO4, 1 mM EDTA, 0.1 % (m/v) CHAPS, 4 mM DTT at pH 5.8. Tissue
was homogenized using a Polytron (Kinematica, US), and centrifuged at 19 000 * g, 4 °C
for 20 min to precipitate debris. Protein content of the lysate was determined using
the BCA assay, with bovine serum albumin for calibration [104]. Legumain activity was
measured with a fluorescence assay [87]. In brief, samples of tissue lysate with total protein
concentrations ranging from 382.0 to 11 325.2 µg/ml were prepared. The substrate Z-Ala-
Ala-Asn-AMC (Bachem, CH) was added to the samples to reach a substrate concentration
of 10 µM. Fluorescence was measured at excitation 340 nm and emission 460 nm every
minute over 5 h. The activity was determined from the slope of the initial linear increase
in fluorescence and normalized to the protein content of the tissue sample. Data processing
was performed in R using open-source packages [209].
The density of legumain, corresponding to the maximal possible specific binding of
legumain- targeting tracer per mg protein in the tissue (Bmax in nmol/mg) was estimated
based on the measured legumain activity in comparison to recombinant mouse legumain of
known concentration (R&D Systems, US). To estimate the expected binding potential (BP)
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of a tracer in tissue with Equation 2.1, Bmax (nmol/mg) was transformed to Bmax in nmol
per 1 000 cm3 tissue (nM), assuming a protein content of mouse tissue of 0.23 g/cm3 [188],
i.e., Bmax in nmol/mg was multiplied by 2.3 * 105 mg/l to get Bmax in nM.

BP =
Bmax(nM)

Ki(nM)
(2.1)

Ki in Equation 2.1 was estimated from the IC50 of the inhibitor, i.e., 3.85 nM for 1
and 6.05 nM for 2 (determined according to [27]), the substrate concentration at which
IC50 was determined, i.e., 10 µM [139] and the KM reported for human legumain, i.e.,
25.7 µM [153] according to the Cheng-Prusoff equation (Equation 2.2).

Ki =
IC50

1 + [S]
KM

(2.2)

2.2.7 Radiochemistry

Generation of [11C]CH3OTf

Proton bombardment of a target filled with N2 fortified with 0.5 % O2 in a Cyclone 18/9
cyclotron (18-MeV, IBA, BE) afforded [11C]CO2 by 14N(p, α)11C nuclear reaction. For
the conversion to [11C]CH3I, nickel-based catalytic reduction of [11C]CO2 with hydrogen
was performed to form [11C]CH4, which was followed by iodination to afford [11C]CH3I.
[11C]CH3I was further converted to [11C]CH3OTf by passing through a silver triflate
column at elevated temperatures (190 °C).

Radiosynthesis

Approx. 1 mg precursor was dissolved in 500 µl acetone containing 3 µl 5 M NaOH. The
generated [11C]CH3OTf was bubbled into the solution with constant stirring followed by
incubation for 3 min at 70 °C. The reaction was quenched with water and the crude
solution was injected into a semi-preparative HPLC column (Symmetry C18 Prep Column
5 µm 7.8 * 50 mm, Waters, US). A solvent gradient of 85-50 % phosphoric acid (0.1 %
(v/v) in water) and 15-50 % acetonitrile over 7 min was applied. The flow rate was
4 ml/min. The product was collected with the help of a UV detector and a radio detector
(Gabi Star, Elysia-Raytest, DE), diluted with water (8 ml) and purified using an activated
(5 ml ethanol, 10 ml water) C18 cartridge (Sep-Pak C18 light, Waters, US). The cartridge
was washed with 5 ml water and the product was eluted with 0.5 ml ethanol into a sterile
vial. 9.5 ml saline solution (NaCl 0.9 %, B.Braun, DE) was added to obtain an isotonic
product containing 5 % ethanol. Nitrogen was used as a propellant. For quality control,
HPLC was performed with 50 µl of the solution injected into a reverse phase HPLC
column (ACE 3 C18 3 µm 50 * 4.6 mm, ACE, UK). A solvent gradient was applied with
A (0.1 % phosphoric acid in water/acetonitrile 95/5) and B (water/acetonitrile 5/95)
from A/B 80/20 to 10/90 over 10 min. The flow rate was 1.2 ml/min. The molar activity
was determined based on linear regression with reference compound measured with a UV
detector (Gabi Star, Elysia-Raytest, DE) at 254 nm wavelength.
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2.2.8 In vitro autoradiography

Frozen tissue slices as described for fluorescence microscopy were thawed and incubated
with PBS for 10 min. Tissue was submerged in PBS containing 1 % (v/v) FCS for 2 h,
followed by PBS or PBS with the addition of 4 µM reference compound 1 (blocking
conditions) for 15 min at 2-8 °C. After this pre-conditioning, the slices were incubated
for 30 min with 4 nM [11C]1 or [11C]2 in PBS (baseline conditions) or in PBS containing
4 µM reference compound 1 (blocking conditions) at 2-8 °C. Standards were prepared by
dilution of tracer solution with PBS. Tissues were washed in ice-cold PBS (3 * 3 min)
and water (1 * 5 sec) and left to dry. The slices were exposed to a photostimulable
phosphor plate (BAS IP MS 2025, Fujifilm, JP) for 45-60 min and images were acquired
using a phosphoimager (BAS-5000, Fujifilm, JP). Tissue images were cropped to rectangle
including tissue and background. Gray-scale pixel intensity arrays were reduced to values
above 20th percentile prior to plotting. Image processing was done with open-source
imaging software [173], python community modules [69, 125, 199] and R open-source
packages.

2.2.9 In vivo metabolism

Tracer (4.1 MBq to 139.7 MBq, 1.0 to 5.2 nmol/kg) was injected via lateral tail vein
in CT26 tumor-bearing BALB/c mice. Animals were euthanized by decapitation under
anesthesia (2-3 % isoflurane in oxygen/air, 1/1) and tissues were dissected. Blood was
collected, plasma was separated for analysis by centrifugation at 5 000 * g for 3 min, and
proteins were precipitated with an equal volume of ice-cold acetonitrile and centrifugation
at 5 000 * g, 4 °C for 5 min. Tumor samples were homogenized in matching volumes of
PBS using a Polytron (Kinematica, US), and centrifuged at 5 000 * g, 4 °C for 5 min.
Supernatants were filtered through 0.45 µm pore size filters and analyzed by UPLC. A
reverse phase UPLC column (Acquity UPLC BEH C18 1.7 µm 2.1 * 50 mm, Waters,
US) was used. The mobile phase was 15-60 % acetonitrile over 2.5 min. The plates were
exposed to a photostimulable phosphor plate for 1.5 h and images were acquired using
the phosphorimager.

2.2.10 PET/CT scans

Tumor-bearing mice were anesthetized with 2-3 % isoflurane in oxygen/air (1/1) 10 min
prior to PET acquisition. PET/CT scans were performed on a small-animal PET/CT
scanner (Super Argus, Sedecal, ES) with an axial field of view of 4.8 cm and a spatial
resolution of 1.6-1.7 mm (full width at half maximum) [61]. Respiratory rate was kept at
∼ 60 min−1 through adjustment of isoflurane concentration. Body temperature was kept
at 37 °C using heated air. Tracer was injected into tail vein at the indicated time point and
dose, and PET data were acquired in list mode. Anatomical information was obtained by
CT following each PET acquisition. PET data were reconstructed with 2D ordered-subsets
expectation maximization (2D-OSEM), applying random scatter correction and decay
correction but no correction for attenuation, and analyzed with PMOD v4.2 software
(PMOD Technologies Ltd., Zurich, Switzerland). Volumes of interest for the tumor,
liver and reference region (muscle) on the contralateral side of the tumor were drawn
manually in PMOD on the basis of the PET and CT images. SUVs were calculated as
the ratio of regional averaged radioactivity in Becquerel per cubic centimeter and injected
radioactivity in Becquerel per gram body weight, multiplied by 1 cm3 per g body weight.
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Image analysis was performed in python using community modules [15,69,82,117,125,212]
and R open-source packages. All radioactivity was decay-corrected to the time point of
injection to the animal.

2.2.11 Biodistribution after dissection

Following PET acquisition, tumor-bearing mice were euthanized through decapitation
under anesthesia. Tissues were dissected and radioactivity determined with a gamma
counter (Wizard 3”, PerkinElmer, US). Data analysis was performed in R using open-source
packages [209].

2.2.12 Statistical analysis

Statistical differences in radiotracer uptake or SUV ratios were analyzed by two-tailed
paired or unpaired Student’s t test, as indicated. Differences with p < 0.05 were considered
significant. Average values are shown with standard deviations (SD) or data range in case
of n = 2.

2.3 Results

2.3.1 Legumain mRNA expression, activity and association with
M2 macrophages in CT26 tumors

The relative abundance of legumain in CT26 tumors was inferred using mRNA from 6
mice. Muscle and kidney of the same mice were analyzed as control tissues for low and
high legumain expression, respectively [27]. Legumain expression in the CT26 tumors was
similar as in kidney and expression in both tumor and kidney was significantly higher than
in muscle, as shown in Figure 2.2. To quantify legumain in its active form, legumain activity
was determined in CT26 tumor, kidney and muscle whole tissue lysates from 4 additional
mice. In agreement with the mRNA expression, the legumain activity was significantly
higher in tumor and kidney than muscle (Figures 2.2 and 2.11). The estimated density
of legumain (Bmax) in muscle, kidney and tumor tissue was ∼ 0 (-1.6 ± 0.81 pmol/mg),
62.9 ± 23.4 pmol/mg and 40.7 ± 19.1 pmol/mg, respectively. Assuming 0.23 g protein per
cm3 this corresponds to 14 471 ± 5 381 nM and 9 352 ± 4 387 nM in kidney and tumor,
respectively. The Ki values of 1 and 2 as calculated with Equation 2.2 from the IC50 were
2.77 nM and 4.36 nM, respectively. The respective theoretical BP in tumor (Equation
2.1) are 3 376 ± 1 584 for 1 and 2 145 ± 1 006 for 2.
The qualitative colocalization of M2 macrophages with extracellular legumain was assessed
using fluorescent microscopy of CT26 tumor cryosections. Images based on whole section
scans showed the occurrence of M2 macrophages (CD206 positive) along with extracellular
legumain in the tumor periphery as shown in 2.3. The negative control stained with
secondary antibody and without primary antibody is shown in Figure 2.12. Flow cytometry
yielded that 5.1 ± 1.9 percent of viable cells in tumor samples (n = 4 mice) were M2
macrophages. The gating strategy is shown in Figure 2.13.
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Figure 2.2: a mRNA levels of tissue from CT26 tumor-bearing mice (n = 6 mice, 1
sample each). Expression levels of Lgmn were quantified by RT-qPCR relative to Actb1,
Cyc1 and Atp5B. b Legumain activity in total lysate of dissected tissues from CT26
tumor-bearing mice (n = 4 mice, 1 sample each). Legumain activity was measured as the
conversion rate of the non-fluorescent substrate to the fluorescent product and normalized
to the sample protein content. Significance compared with muscle tissue was analyzed
with paired student’s t tests, without correction for multiple comparisons. Bars, means;
symbols, individual values; error bars, SD. *, p < 0.05; **, p < 0.01; a.u., arbitrary units.

2.3.2 Radiochemistry

Structures and reaction schemes for [11C]1 and [11C]2 are shown in Figure 2.4. The
respective compound molar activities ranged from 40.6 to 383.2 GBq/µmol and from 12.9
to 271.1 GBq/µmol across 11 and 13 productions, respectively. The radiochemical purity
was above 95 % for each production (Figures 2.14 and 2.15)

2.3.3 In vitro autoradiography with CT26 tumor slices

The binding of [11C]1 and [11C]2 to CT26 tumor tissue was characterized by in vitro
autoradiography with tumor slices. Figure 2.5 shows the heterogeneous binding of both
tracers in the tumor slices. The binding pattern was similar for the two tracers comparing
slices from the same tumor, indicating that the heterogeneity in binding was reproducible.
To characterize the mechanism of binding, additional slices were exposed to excess (4 µM)
unlabeled 1, added 15 min before and together with the tracers (blocking condition).
A reduction in signal under blocking condition would indicate saturable, i.e., specific,
binding of the tracer.

2.3.4 PET with CT26 tumor-bearing mice

Motivated by the in vitro heterogenous binding to the tumor slices and despite the
lack of its blocking, we evaluated [11C]1 and [11C]2 as PET tracers in vivo. Pilot PET
experiments in CT26 tumor-bearing mice indicated that the tumor/muscle ratios of both
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Figure 2.3: Representative fluorescence microscopy images of a CT26 tumor tissue slice.
Cryosection stained with polyclonal anti-legumain primary antibody (green), monoclonal
anti-CD206 primary antibody (purple; M2 macrophages) and DAPI (blue; nuclei). a
Complete section for overview. b Magnification of tumor periphery, corresponding to the
white frame in a.

Figure 2.4: Synthesis of a [11C]1 and b [11C]2.

tracers increased over time and only became constant ∼ 60 min post injection (p.i.), with
tumor TACs peaking later and then decreasing slower than muscle TACs (total n = 12;
one animal died during the scan). These data are not shown as some of these animals were
pre-treated for other research questions. Based on these scans, we chose scan times from
60 to 150 min p.i. for the detailed evaluation of the two tracers. The injected activity
(molar mass) at scan start of baseline scans from 60-150 min p.i. was 6.5-11.5 MBq
(4.6-11.7 nmol/kg, n = 4 animals) of [11C]1 and 11.1-13.3 MBq (45.1-59.5 nmol/kg, n = 3
animals) of [11C]2. The injected activity (molar mass) at scan start under blocking
conditions, i.e., with excess (4.2 µmol/kg) respective unlabeled compound from 60-150 min
p.i. was 13.4 and 16.3 MBq (21.2 and 12.7 nmol/kg, n = 2 animals) of [11C]1 and
5.3-14.3 MBq (17.5-35.9 nmol/kg, n = 3 animals) of [11C]2. The PET images averaged
from 60-150 min p.i. showed accumulation of radioactivity in the tumor periphery (Figures
2.6 and 2.17) besides high uptake in the abdomen. Co-injection of excess (4.2 µmol/kg)
respective unlabeled reference compound did not alter the result, in agreement with the
in vitro autoradiography results. Figures 2.7 and 2.8 show the time-activity curves (TAC)
of tumor, muscle (reference tissue) and liver as well as the tumor/muscle activity ratios of
all scans from 60-150 min p.i.. SUVs in tumor and muscle did not substantially change
over the duration of the scan. Blocking reduced the SUV of [11C]2 in tumor and muscle
(significant for muscle) but not in [11C]1. The respective tumor/muscle ratio was not
reduced by blocking for either tracer.
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Figure 2.5: In vitro autoradiography with CT26 tumor slices (representative slices from
3 mice out of 6 mice; slices of one tumor per row in a to d). a Slices incubated
with 4.0 nM [11C]1 (baseline condition) and b co-incubated with 4000 nM unlabeled
1 (blocking condition), in the same experiment. c Slices incubated with 4.0 nM [11C]2
(baseline condition) and d co-incubated with 4000 nM 1 (blocking condition), in the
same experiment. e Quantification for 6 slices per tracer and condition (6 mice in total).
Baseline and blocking conditions were compared with student’s t tests, without correction
for multiple comparisons. White symbols, median activity of the individual slices; red
symbols, mean of medians; red error bars, SD. ns, no significant difference.

2.3.5 Biodistribution after dissection

The distribution of [11C]1 and [11C]2 was furthermore determined from the dissected
tissues after euthanasia following the PET scans. The results are shown in Figures 2.9
(as SUV) and 2.10 (as percent injected dose per gram tissue, %ID/g). At 155 min p.i.,
liver uptake was highest among the analyzed tissues for both tracers, followed by spleen
and kidneys, tissues with high legumain expression [27]. Radioactivity was significantly
higher in tumor than muscle for both tracers. The resulting tumor/muscle ratios were
3.42 ± 0.47 for [11C]1 (n = 6) and 3.86 ± 0.63 for [11C]2 (n = 6) without significant
difference between the tracers. No significant difference was seen between baseline and
blocking conditions.

2.3.6 Tracer in vivo metabolism

To assess tracer metabolic stability in vivo, plasma, CT26 tumors and urine were collected
after euthanasia at 10 min (both tracers), 20 min ([11C]1) and 40 min ([11C]1) p.i.. Tumors
were homogenized, proteins were precipitated, and the supernatants were analyzed by re-
verse phase UPLC. The chromatograms are shown in Figure 2.16. The retention time (RT)
of both references (intact tracers) was 2.9 min. Plasma and tumor homogenates contained
a highly hydrophilic radiometabolite (RT 0.3 min) with higher concentration than the
parent tracers already 10 min p.i. For both tracers, an additional radiometabolite, slightly
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Figure 2.6: Representative PET images of CT26 tumor-bearing mice (60-150 min p.i.,
averaged) superimposed on CT (axial, coronal, as indicated). CT26 tumors on right
shoulder (arrow). a Mouse injected with [11C]1 and b co-injected with 4.2 µmol/kg 1. c
Mouse injected with [11C]2 and d co-injected with 4.2 µmol/kg 2. Crosshair indicates
image planes. Mouse weights and activity (mass) at injection: a 19.7 g, 49.7 MBq
(4.6 nmol/kg); b 18.9 g, 124.9.MBq (12.7 nmol/kg); c 18.8 g, 85.0 MBq (47.3 nmol/kg); d
22.2 g, 110.0 MBq (35.9 nmol/kg). PET, color bar and corresponding SUV are depicted
on the right. CT, gray scale. The TACs of tumor, muscle and liver are shown in Figures
2.7 and 2.8. PET images of all scanned mice are shown in Figure 2.17.

more polar than the parent tracer (RT: 2.6 min), did not exceed tracer concentrations
in plasma and tumor at the studied time points (Figure 2.16). At 40 min p.i. ( tested
for [11C]1 only), only the radiometabolite with RT 0.3 min was detectable in plasma and
tumor homogenate. [11C]1 and its two radiometabolites were detected in urine at all
analyzed time points, while for [11C]2 only the highly polar radiometabolite was detected
in urine at 10 min p.i.. These data indicate that both tracers are rapidly metabolized in
vivo. It should be noted that covalently bound tracer or covalently bound radiometabolite
would not be detected in the analyzed supernatant.

2.4 Discussion

We attempted to use a warhead-equipped inhibitor for the imaging of legumain by
PET. Previous approaches involved the legumain recognition motif Ala-Ala-Asn and
make use of the legumain proteolytic function with the aim of increased tracer uptake
and retention [58, 80, 118, 119, 159]. Both of our tracers [11C]1 and [11C]2 accumulated
peripherally in CT26 tumors. However, accumulation was not reduced by injection of
unlabeled reference compound in excess, which would have proven specific binding.

Our results show similarly high legumain mRNA expression in the kidney and CT26
tumor tissues, substantially higher than in muscle. High legumain levels in kidney and
CT26 tumors are in accordance with previous findings [27]. In addition to target expression,
we assessed target accessibility for our tracers. In vivo, legumain undergoes activation
in multiple steps which alters both its ligase and protease activity [35]. In the case of
our active-site targeting P1-Asn peptidomimetics, we estimated accessibility based on
legumain protease activity. In agreement with the expression results, protease activity
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Figure 2.7: Quantification based on PET scans with [11C]1. a TACs for baseline (n = 4
animals) and blocking (n = 2 animals) conditions, as indicated. See Figure 2.6 for details.
Circles, liver; squares, muscle; triangles, tumor. b Resulting SUV ratio tumor-to-muscle
over time for baseline and blocking conditions, as indicated. Shown are means with error
bars indicating SD (baseline) or individual values (blocking). Data from the scans shown
in Figures 2.6 and 2.17.

was high and at similar levels in kidney and tumor homogenates but negligible in muscle
homogenate. High contrast in PET imaging requires a high enough BP, which is given
by the ratio between Bmax and KD. The calculated Ki of 1 (2.77 nM) and 2 (4.36 nM)
and the tumor Bmax of 40.7 ± 19.1 pmol/mg fulfill this criterion [39]. Examples for
comparison are folate-receptor targeting with a KD of 2.09 nM at a Bmax of 14.7 pmol/mg
and PD-L1 targeting with a KD of 59.9 nM at a Bmax of 5.43 pmol/mg [102,135]. Based
on our estimated BP, high accumulation of our legumain-targeting PET tracers would be
expected in the CT26 tumors.

Indeed, both in vitro autoradiography and in vivo PET scans showed accumulation of
our tracers (or radiometabolites) in the tumor periphery where legumain-expressing pro-
tumorigenic M2 macrophages constituted a sizable proportion of the total cell population.
However, the lack of blocking by excess unlabeled reference compound both in vitro and
in vivo questions the specific binding of our tracers to legumain in tissues. Through their
electrophilic cyano-warhead, both 1 and 2 are engineered to act in reversible covalent
fashion on Cys-189 in the legumain catalytic triad [35]. In principle, cross reactivity
of the cyano-warhead with other cysteine proteases, such as cathepsin S, cathepsin B,
caspase 3, caspase 8, and ubiquitin-specific peptidase cannot be ruled out [47,107,138].
However, legumain is the only known asparagine-specific mammalian cysteine protease,
rendering legumain P1-Asn peptidomimetic structures unlikely to interact with other
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Figure 2.8: Quantification based on PET scans with [11C]2. a TACs for baseline (n = 3
animals) and blocking (n = 3 animals), as indicated. See Figure 2.6 for details. Circles,
liver; squares, muscle; triangles, tumor. b Resulting SUV ratio tumor-to-muscle over
time for baseline and blocking conditions, as indicated. Shown are means with error bars
indicating SD (baseline) or individual values (blocking). Data from the scans shown in
Figures 2.6 and 2.17.

proteases [184]. To counteract potentially slow kinetics of the covalent tracer binding, we
added a pre-incubation step with excess unlabeled 1 under blocking conditions to the
autoradiography protocol. However, this did not reduce tracer binding, indicating that
slow covalent binding to the target was not the cause for the lack of blocking. The lack of
blocking by excess unlabeled 1 may be the result of impaired accessibility of the target or
lack of covalent bond formation. Regarding legumain accessibility: legumain activity and
conformational stability are sensitive to the chemical milieu [35]. Specifically, legumain is
conformationally inactivated at neutral pH [35]. However, the slightly acidic conditions of
the tumor microenvironment likely stabilize active legumain [194]. Preserved activity in
our ex vivo activity assay indicates that legumain is conformationally stable with protease
activity in the target tissue. Regarding a potential lack of covalent bond: our tracers
would still bind to legumain, based on the target-specific P1-Asn peptidomimetic structure.
However, the overall affinity would be magnitudes weaker in the absence of the covalent
bond. The high Bmax observed in tumor and kidney may still allow some contrast in
imaging. In this scenario, blocking with 4 µM unlabeled compound (autoradiography)
may be inefficient and would require much higher concentrations. Our in vitro and in
vivo results would be in agreement with such a scenario. We can furthermore not rule
out competition for the binding to legumain by the many endogenous substrates [35]. A
final possible reason for the lack of blocking may be an underestimation of the target
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Figure 2.9: Biodistribution (SUV) after dissection at 155 min p.i. of the mice studied by
PET (Figures 2.6 to 2.8 and 2.17). a [11C]1 and b [11C]2. Blue bars, baseline conditions
(tracer only). Red bars, blocking conditions (tracer co-administered with excess 1(a) or
2(b)). Points, individual values; error bars, SD for n ≥ 3 or individual values for n = 2.
Significance between tumor and muscle with combined baseline and blocking SUV was
analyzed as indicated (horizontal lines above error bars) with student’s t tests, without
post hoc corrections for multiple comparisons; n = 6 for both tracers (combined baseline
and blocking). ****, p < 0.0001; ns, no significant differences between baseline and
blocking condition, for any tissue (only indicated for tumor). The same data is expressed
as %ID/g in Figure 2.10.

abundance in case the tracers bind to the zymogen as well and not only the activated
enzyme. In this case, the target could exceed the amount of blocking compound both in
vitro and in vivo, resulting in inefficient blocking.

In vivo, compounds [11C]1 and [11C]2 were rapidly metabolized, yielding a highly polar
radiometabolite which may have unspecifically accumulated in the tumor, not affected by
our blocking conditions. Given the structure of the two compounds, it is likely that they
are subject to O-[11C]demethylation by cytochrome P450 enzymes [190]. This process
yields reactive [11C]formaldehyde, which either binds to e.g., proteins, can be reduced
to [11C]methanol or oxidized to [11C]formic acid and eventually [11C]CO2 [90]. However,
we are not aware of any [11C]methylated PET tracer with accumulation of the released
[11C]formaldehyde (or its further metabolites) in the target region.

The poor metabolic stability is a substantial drawback of our tracers anyway, potentially
reducing their chance for specific binding. Before further investigating the binding mode
of our tracers, we aim to improve the metabolic stability by optimizing the chemical
structure. This will allow to address the binding mode(s) to the active enzyme and the
zymogen in vitro and in vivo in more detail. In this context, it is noteworthy, that none
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Figure 2.10: Biodistribution (%ID/g) after dissection at 155 min p.i. of the mice studied
by PET (Figures 2.6 to 2.8 and 2.17). a [11C]1 and b [11C]2. Blue bars, baseline conditions
(tracer only). Red bars, blocking conditions (tracer co-administered with excess 1(a) or
2(b)). Points, individual values; error bars, SD for n ≥ 3 or individual values for n = 2.
For both tracers (combined baseline and blocking) n = 6. %ID/g, percentage of injected
dose per gram tissue. The same data is expressed as SUV in Figure 2.9. For significance
indication see Figure 2.9.

of the previous studies with legumain-targeting PET tracers have shown blocking by
legumain inhibition in vivo [80, 118,119,159].

2.5 Conclusions

The CT26 tumor model provides high legumain expression and activity, ideal for the
development of legumain-targeting PET tracers of the P1-Asn peptidomimetic type. Two
such legumain-targeting tracers were synthesized with high radiochemical purity and molar
activity. For both tracers, radioactivity accumulated in the CT26 tumor. However, their
poor in vivo stability and the absence of a blocking effect dampen the prospects of the
developed tracers. Structural modifications to improve the in vivo stability will allow to
address the mechanism(s) of target binding and further development of legumain-targeting
PET tracers.
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2.6 Supplementary material

2.6.1 Legumain activity

Figure 2.11: Conversion rate of the non-fluorescent substrate to the fluorescent product
in total tissue lysate of dissected tissues from CT26 tumor-bearing mice (n = 4 mice, 1
sample each; tissues as indicated). Solid line, mean values; error bands, SD. a.u., arbitrary
units.

2.6.2 Fluorescence microscopy

Figure 2.12: Representative fluorescence microscopy images of a CT26 tumor tissue slice.
Cryosection stained with Alexa Fluor 488 IgG secondary antibody (green) and DAPI
(blue; nuclei). a Complete section for overview. b Magnification of tumor periphery,
corresponding to the white frame in a.
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2.6.3 Flow cytometry

Figure 2.13: Flow cytometry gating strategy of CT26 cells isolated from dissected tumors
or cultured in vitro. Unstained, unstained CT26 tumor cells exhibit no fluorescent dye
labeling; FMO, CT26 tumor cells stained solely with a viability dye; Tumor Cells, CT26
tumor cells stained with both a viability dye and anti-CD206 antibody; Cultured Cells,
cultured CT26 cells stained with both a viability dye and anti-CD206 antibody. Debris
Gate, based on k-means clustering of data points in channels FSC-A vs. SSC-A, data
points within the red circle are identified as cells. Singlet Gate, based on linear correlation
of data points in channels FSC-A vs. FSC-H, cells within the red parallelogram are
identified as individual, single cells. Live Cell Gate, based on minimum between two
Zombie Aqua channel intensity histogram maxima, single cells to the left of red separating
line are identified as viable. CD206+ Gate, based on minimum between two CD206
channel intensity histogram maxima, viable cells to the right of red separating line are
classified as M2 macrophages.
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2.6.4 RP HPLC chromatograms

Figure 2.14: Reverse phase HPLC chromatograms for purity and identity of 1 and 1
precursor. UV signal measured at 254 nm. Retention time and % of total integrated area
were determined. a, 1 precursor, Reg 1: 3.62 min (11.97 %), Reg 2: 3.73 min (88.03 %).
b, 1 reference, Reg 1: 4.32 min (98.91 %), Reg 2: 5.65 min (1.09 %). c, [11C]1, Reg 1:
4.38 min (100 %).
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Figure 2.15: Reverse phase HPLC chromatograms for purity and identity of 2 and 2
precursor. UV signal measured at 254 nm. Retention time and % of total integrated area
were determined. a, 2 precursor, Reg 1: 3.80 min (97.85 %), Reg 2: 4.07 min (2.15 %).
b, 2 reference, Reg 1: 4.33 min (1.59 %), Reg 2: 4.48 min (95.23 %), Reg 3: 5.68 min
(1.00 %), Reg 4: 5.80 min (2.18 %). c, [11C]2, Reg 1: 4.50 min (100 %).
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Figure 2.16: In vivo metabolism study with a [11C]1 and b [11C]2 in CT26 tumor-bearing
BALB/c mice. Reverse phase radio-UPLC analysis of tissue homogenate samples 10-
40 min p.i. (as indicated) of tracer. Proteins were precipitated before analysis. The
experiment was performed once for each timepoint compound combination. Reference,
tracer in formulated solution for intravenous injection (5 % EtOH in saline) kept at room
temperature for the indicated duration. Dashed line indicates parent compound peak.
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2.6.5 Identity 13C / 1H NMR, HRMS

N-[(1S)-3-amino-1-cyano-3-oxopropyl]-3-[4-(4-hydroxyphenyl)phenyl]sulfonyl-
2,2-dimethylpropanamide
13C NMR (101 MHz, (CD3)2CO) δ[ppm] 175.25, 171.46, 159.18, 146.82, 140.47, 131.10,
129.48, 129.09, 127.64, 119.30, 116.87, 64.82, 42.48, 38.69, 37.66, 25.96, 24.96.
HRMS (ESI+, m/z) calc. for C21H23N3Na1O5S1 452.1251 (M + Na) found 452.1248.

N-[(1S)-3-amino-1-cyano-3-oxopropyl]-3-[4-(4-
methoxyphenyl)phenyl]sulfonyl-2,2-dimethylpropanamide
13C NMR (101 MHz, (CD3)2CO) δ[ppm] 175.25, 161.35, 146.53, 140.72, 132.16, 129.40,
129.13, 127.84, 119.30, 115.42, 64.84, 55.74, 42.49, 38.69, 37.68, 25.97, 24.98.
HRMS (ESI+, m/z) calc. for C22H26N3O5S1 444.1588 (M + H) found 444.1590.

(2S)-N-[(1S)-3-amino-1-cyano-3-oxopropyl]-1-[4-(4-
hydroxyphenyl)phenyl]sulfonylpyrrolidine-2-carboxamide
13C NMR (101 MHz, (CD3)2CO) δ[ppm] 172.03, 170.77, 159.19, 146.45, 135.37, 130.99,
129.41, 129.33, 127.71, 119.24, 116.89, 63.17, 50.29, 38.18, 35.61, 31.38, 25.01.
HRMS (ESI+, m/z) calc. for C21H23N4O5S1 443.1384 (M + H) found 443.1387.

(2S)-N-[(1S)-3-amino-1-cyano-3-oxopropyl]-1-[4-(4-
methoxyphenyl)phenyl]sulfonylpyrrolidine-2-carboxamide
1H NMR (500 MHz, (CD3)2CO) δ[ppm] 8.38 (d, J = 8.9 Hz, 1H), 7.98-7.94 (m, 2H),
7.91-7.87 (m, 2H), 7.75-7.70 (m, 2H), 7.10-7.06 (m, 2H), 5.22 (dd, J = 14.6, 6.6 Hz, 1H),
4.18 (dd, J = 8.7 Hz, 3.4 Hz, 1H), 3.87 (s, 3H), 3.54-3.49 (m, 1H), 3.32-3.26 (m, 1H),
2.91 (dd, J = 6.4, 2.6 Hz, 2 H), 2.00-1.94 (m, 1H), 1.79-1.89 (m, 1H), 1.70-1.68 (m, 1H),
1.70-1.61 (m, 1H).
HRMS (ESI+, m/z) calc. for C22H25N4O5S1 457.1540 (M + H) found 457.1536.
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2.6.6 PET scans

Figure 2.17: Mouse PET images (60-150 min p.i., averaged) superimposed on CT (axial,
coronal, sagittal). CT26 tumors on right shoulder. Baseline condition, mouse injected
with [11C]1 or [11C]2. Blocking condition, tracer co-injected with 4.2 µmol/kg of the
respective unlabeled compound. Crosshairs indicate image planes (in tumor region). PET,
color bar for the corresponding SUV. CT, gray scale. MBq, activity at injection in MBq;
BWg, body weight in g; Duration, duration of the scan in min; Start_min, start of the
scan after injection in min; The TACs of tumor, muscle and liver are shown in Figures 2.7
and 2.8. 32





Chapter 3

Optimizing 11C-labeled P1-Asn
peptidomimetic PET tracers carrying a
cyano-warhead to target legumain in
the tumor microenvironment

Author Statement

Severin K. Lustenberger: Conceptualization, Methodology (performed all experi-
ments except 1H NMR acquisition and PET scans), Analysis (performed all data analysis),
Writing (wrote first draft and corrected version), Project administration; Björn Bar-
tels: Supervision, Materials/Data (precursor, reference compound, transfected HEK293
cells, 1H NMR data), Methodology (supported experimental planning), Analysis (sup-
ported data analysis), Writing (review), Conceptualization (development of legumain
inhibitor); Makar Pobiyakho: Methodology (supported experiments); Roger Schibli:
Supervision, Providing infrastructure, Writing (review); Claudia A. Castro Jaramillo:
Funding acquisition; Luca Gobbi: Supervision, Materials/Data (precursor, reference
compound, transfected HEK293 cells, 1H NMR data), Methodology (supported experi-
mental planning), Analysis (supported data analysis), Writing (review), Conceptualization
(development of legumain inhibitor); Linjing Mu: Supervision, Funding acquisition,
Methodology (supported experimental planning), Analysis (supported data analysis),
Writing (review), Project administration; Stefanie D. Krämer: Supervision, Funding
acquisition, Methodology (supported experimental planning), Analysis (supported data
analysis), Writing (review), Project administration

Funding: This work was funded by the Swiss Cancer Research foundation, KFS-4900-08-
2019

34
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3.1 Background

Legumain, a lysosomal cysteine endopeptidase, is overexpressed in various solid cancer
types, and its expression correlates with tissue invasion and metastasis [60,134,144,182,
201,203]. Tumor-associated macrophages (TAMs) of the pro-tumorigenic M2 phenotype
express legumain at high levels in human tumor tissue and human cell xenografts [147,179].
Similarly, primary and metastatic 4T1 mouse breast cancers are infiltrated by legumain-
expressing M2 TAMs [116]. A causal role of legumain in cancer progression is implicated
by several findings. For instance, the inhibition of M2 TAMs by legumain-activated
prodrugs led to tumor ablation in 4T1-tumor-bearing mice [116]. In another in vivo
study, specifically inhibiting legumain in TAM-dependent diffuse large B cell lymphomas
in human xenografted mice dampened tumor growth [179]. To monitor legumain levels
in vivo, several PET tracers have been explored [80, 118, 119, 159]. These PET tracers
rely on lysosomal targeting and subsequent intramolecular condensation triggered by
legumain cleavage, leading to lysosomal trapping. Legumain is expressed in its zymogen
form and undergoes activation through multiple steps at an acidic pH [35]. Its protease
function, which contributes to tumor progression, is only exhibited by its active form.
Consequently, PET tracers targeting legumain in its active form provide information
on the invasiveness and progression potential of a cancer lesion. Although established
tracers are specific for activated legumain, their detection capabilities are limited to the
intra-lysosomal space. However, in cancer legumain relocalizes peri- and intracellularly to
the extracellular space, the cellular surface and the nucleus [60, 72,115]. Considering the
pivotal role of non-lysosomal legumain, tracers that allow the detection of active legumain
independent of its localization may be preferable.

To detect activated legumain irrespective of its localization, we develop legumain-
targeting PET tracers that interact with the active site Cys-189 leading to the formation of
a covalent bond. In our previous study, we established the P1-Asn peptidomimetic legumain
PET tracers [11C]1 and [11C]2 (Figure 3.1) [120]. Those tracers were readily synthesized
with high radiochemical purity and molar activity and accumulated in legumain-positive
tumors. However, tracer accumulation was lower than expected based on legumain activity.
Both compounds were rapidly metabolized in vivo with high ratios of radiometabolite(s)
to parent tracer. In addition, competition with an excess of reference compound did
not reduce the radioactivity in the tumors, possibly as a result of the high signal from
radiometabolite(s) devoid of specific binding.

In an effort to assess the use of P1-Asn peptidomimetics with extended residence time
as legumain PET tracers, we have developed [11C]3, which is based on a scaffold with
improved microsomal stability and strong binding affinity to legumain (Figure 3.1) [101].
Taking into account the differences in legumain expression by M2 macrophages in tumors,
we implemented three tumor models with differing M2 contribution. We inoculated
immunodeficient mice with human MDA-MB-468 tumors, in which due to a lack of
T cell interaction, M2 contribution is reduced compared to immunocompetent mouse
tumor models [19]. We furthermore inoculated immunocompetent mice with mouse colon
carcinoma (CT26) tumor cells to achieve a higher M2 macrophage participation [32]. In a
third model, we administered low-dose decitabine to CT26 tumor-bearing mice, potentially
elevating M2 macrophage contribution compared to the untreated CT26 tumor-bearing
mice [38,214].
We established the radiolabeling of [11C]3, checked the metabolic stability, evaluated the
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affinity to mouse and human legumain in vitro and explored the use for in vivo PET
in tumor-bearing mice. To investigate whether tracer accumulation was related to M2
macrophages and activated legumain, we studied PET in the three tumor models with
different M2 macrophage levels.

Figure 3.1: Chemical structures of legumain-targeting P1-Asn peptidomimetics 1, 2
[120,138] and 3. The P1-Asn mimicking moiety is highlighted in blue.

3.2 Methods

3.2.1 Cell culture

The murine colon carcinoma cell line CT26.WT (ATCC CRL-2638) was obtained from
the American Type Culture Collection. Human breast carcinoma MDA-MB-468 cells
(ACC 738) were obtained from the Leibniz Institute DSMZ. CT26 cells were cultured
in Roswell Park Memorial Institute (RPMI) 1640 medium with GlutaMAX-I and 25
mM HEPES (Gibco, Life Technologies, US), and MDA-MB-468 cells were cultured in
Dulbecco’s Modified Eagle Medium (DMEM) with GlutaMAX and high glucose (Gibco,
Life Technologies, US). Both cell culture media were supplemented with 10 % fetal calf
serum (FCS, Life Technologies, US), 10 000 U/ml penicillin and streptomycin (PS, Gibco,
Life Technologies, US). Cells were maintained as described in [120].

3.2.2 Mouse tumor inoculation

Female BALB/c and BALB/c nude mice, obtained from Charles River Laboratories
(Sulzfeld, DE), were housed at 22 °C with a 12-hour light-dark cycle and had unlimited
access to food and water. At the age of 14 weeks, mice were inoculated subcutaneously in
the right shoulder region with either 8 * 105 CT26 cells or 4 * 106 MDA-MB-468 cells
resuspended in 100 µl matrigel (BD Biosciences, US). The studies were conducted 7-12
days post CT26 cell inoculation and 15-20 days post MDA-MB-468 cell inoculation when
tumors were clearly visible but no larger than 1.76 cm3.

3.2.3 Decitabine treatment

CT26 tumor-bearing mice were injected intraperitoneally with 1 mg/kg body weight
decitabine (CAY-11166-5, Cayman, US) in 200 µl phosphate-buffered saline, pH 7.4
(PBS, Gibco, Life Technologies, US) or PBS only (vehicle control) [200]. Intraperitoneal
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injections were performed on 4 consecutive days starting 3 days after CT26 cell inoculation.
Animals were scanned and dissected 3-7 days after the treatment ended.

3.2.4 Gene expression analysis

CT26 and MDA-MB-468 tumor tissues were dissected and washed with RNA preserving
solution (RNAlater, Thermo Fisher Scientific, US). For RNA extraction, tissue was
transferred to RNA extraction solution (TRIzol, Thermo Fisher Scientific, US) and
homogenized using a bead-mill system (Qiagen, DE). The homogenate was centrifuged
(12 000 * g, 10 min, 4 °C) and the uppermost phase was mixed with chloroform. After
centrifugation (same conditions as above), the aqueous phase was mixed with isopropanol
and incubated for 10 min. The samples were centrifuged (same conditions as above) and
the resulting pellet was washed with 75 % ethanol and centrifuged (8 000 * g, 5 min, 4 °C).
The wash was repeated, the sample pellets were centrifuged (15 000 * g, 2 min, 4 °C)
and left to dry for 1-2 h. The pellet was dissolved in RNAse-free water. Concentration
and quality of the RNA extract were determined using a microvolume spectrophotometer
(NanoDrop, Thermo Fisher Scientific, US). For reverse transcription, RNA extract was
incubated with wipeout buffer (QuantiTect Reverse Transcription kit, Qiagen, DE) for
2 min at 42 °C. Reverse transcriptase, reverse transcription buffer and reverse transcription
prime mix (QuantiTect Reverse Transcription kit, Qiagen, DE) were added and the solution
was incubated for 15 min at 42 °C followed by 3 min at 95 °C. Real-time quantitative
polymerase chain reaction (RT-qPCR) was performed using cDNA from previous step,
gene specific primers and qPCR Master Mix (GoTaq qPCR Master Mix, Promega, US).
Primers for qPCR were custom-made oligonucleotides (Microsynth, CH): mouse legumain
(Lgmn, NCBI Gene: 19141), forward 5'-GTG ATC AAC CGA CCT AAC G-3', reverse
5'-ATT CTC TGG AGT CAC ATC CTC-3'; human legumain (LGMN, NCBI Gene: 5641)
forward 5'ATA ATT ATA GGC ACC AGG CAG-3', reverse 5'-CAAC GAT CTG TTC
GTC AGG-3'; mouse cytochrome c1 (Cyc1, NCBI Gene: 66445), forward 5'-TAG CTA
AGG ATG TCG CCA C-3', reverse 5'-TCA ACA ACA TCT TGA GAC CCA-3'; human
cytochrome c1 (CYC1, NCBI Gene: 1537), forward 5'-TCT CTT CCT TGG ACC ACA
C-3', reverse 5'-GTC TTG AAC CTC CAC CTC C-3'; ATP synthase beta chain (Atp5b,
NCBI Gene: 8617357) forward 5'-GGT TCA TCC TGC CAG AGA CTA-3', reverse
5'-AAT CCC TCA TCG AAC TGG ACG-3'. On a real-time PCR system (Quantstudio 7
Flex, Thermo Fisher Scientific, US), 10 µl of total volume were run through 40 cycles with
hold stage temperature at 95 °C for 2 min and a PCR stage consisting of 95 °C for 15 s
(denaturation) and 60 °C for 60 s (annealing/extension). Melt curve stage was included
for quality control on a single well level. Normalization of Legumain to Cytochrome C1
or both ATP synthase beta chain and Cytochrome C1 was performed. To calculate the
standard deviation for each ratio error propagation according to Equation 3.1 was applied.
Data processing was performed in R (R-project) using open-source packages [160,209].

σR =
µA

µB

√
(
σA

µA

)2 + (
σB

µB

)2 (3.1)
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3.2.5 Legumain activity and estimation of binding potential

Inhibition of legumain in mouse tissue

Tissues were dissected and washed with assay buffer consisting of 20 mM citric acid,
60 mM Na2HPO4, 1 mM EDTA, 0.1 % (m/v) CHAPS, 4 mM DTT at pH 5.8. Tissue
was homogenized using a Polytron (Kinematica, US), and centrifuged at 19 000 * g, 4 °C
for 20 min to precipitate debris. Protein content of the lysate was determined using
the BCA assay, with bovine serum albumin for calibration [104]. Legumain activity was
measured with a fluorescence assay [87]. In brief, samples of tissue lysate with total
protein concentrations ranging from 3.06 to 15.69 mg/ml were prepared. The substrate
Z-Ala-Ala-Asn-AMC (Bachem, CH) was added to the samples and the fluorescence was
measured at excitation 340 nm and emission 460 nm every minute over 5 h. To calculate
the percentage inhibition, the slope of the initial linear increase in fluorescence was
determined and normalized from 0 to 100 % based on the highest fluorescence value for
each tissue type. Percentage inhibition was then calculated as described in Equation 3.2.

%Inhibition = (1− SlopewithInhib

SlopenoInhib
) ∗ 100 (3.2)

IC50

To obtain the conversion rate, the slope of the initial linear increase in fluorescence was
determined and normalized to the protein content of the tissue sample.
To determine the IC50 and the Ki of compound 3, a stock solution (2.10 mM in 3.3 %
DMSO, 6.5 % ethanol, 90.2 % saline) was diluted with assay buffer to get to concentrations
ranging 0.4 - 1 285.7 nM in the sample wells. Human and mouse recombinant legumain
(R&D Systems, US) were diluted to 0.14 ng/µl assay concentration. The IC50 was
determined based on the assay [27]. Data was normalized from 0 to 100 % based on the
highest fluorescence value for each type of legumain. A linear segment of the normalized
data was used to determine the slope of fluorescence vs. time. The mean of the slopes
for each type of legumain-inhibitor concentration was then used to determine the IC50

according to the Hill equation (Equation 3.3) [75] where Response is the measured slope
per inhibitor concentration, MinResponse is the minimum response set to 0, and MaxResponse

is the maximum slope determined by nonlinear regression.

Response = MinResponse+(MaxResponse−MinResponse)∗
IC50

IC50 + ConcentrationInhibitor
(3.3)

Bmax and BP

The density of legumain, corresponding to the maximal possible specific binding of
legumain-targeting tracer per mg protein in the tissue (Bmax in nmol/mg) was estimated
based on the measured legumain activity in comparison to recombinant mouse legumain
of known concentration (R&D Systems, US). To estimate the expected binding potential
(BP) of a tracer in the tissue with Equation 3.4, Bmax (nmol/mg) was transformed to
Bmax in nmol per 1 000 cm3 tissue (nM), assuming a protein content of mouse tissue of
0.23 g/cm3 [188], i.e., Bmax in nmol/mg was multiplied by 2.3 * 105 mg/l to get Bmax in
nM.
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BP =
Bmax(nM)

Ki(nM)
(3.4)

Ki in Equation 3.4 was estimated from the IC50 of the inhibitor, the substrate concentration
at which IC50 was determined, and the KM reported for human legumain, i.e., 25.7 µM [153]
according to the Cheng-Prusoff equation (Equation 3.5).

Ki =
IC50

1 + [S]
KM

(3.5)

All data processing was performed in R using open-source packages [209].

3.2.6 Radiochemistry

Generation of [11C]CH3OTf

Proton bombardment of a target filled with N2 fortified with 0.5 % O2 in a Cyclone 18/9
cyclotron (18-MeV, IBA, BE) afforded [11C]CO2 by 14N(p, α)11C nuclear reaction. For
the conversion to [11C]CH3I, nickel-based catalytic reduction of [11C]CO2 with hydrogen
was performed to form [11C]CH4, which was followed by iodination to afford [11C]CH3I.
[11C]CH3I was further converted to [11C]CH3OTf by passing through a silver triflate
column at elevated temperatures (190 °C).

Radiosynthesis

Approx. 1 mg precursor was dissolved in 500 µl acetone containing 3 µl 5 M NaOH. The
generated [11C]CH3OTf was bubbled into the solution with constant stirring followed by
incubation for 3 min at 70 °C. The reaction was quenched with 1.8 ml water and the
crude solution was injected into a semi-preparative HPLC column (Symmetry C18 Prep
Column 5 µm 7.8 * 50 mm, Waters, US). A solvent gradient of 80-20 % phosphoric acid
(0.1 % (v/v) in water) and 20-80 % acetonitrile over 10 min was applied. The flow rate
was 4 ml/min. The product was collected with the help of a UV detector and a radio
detector (Gabi Star, Elysia-Raytest, DE), diluted with water (8 ml) and purified using an
activated (5 ml ethanol, 10 ml water) C18 cartridge (Sep-Pak C18 light, Waters, US). The
cartridge was washed with 5 ml water and the product was eluted with 0.5 ml ethanol into
a sterile vial. 9.5 ml saline solution (NaCl 0.9 %, B.Braun, DE) was added to obtain an
isotonic product containing 5 % ethanol. Nitrogen was used as a propellant. For quality
control, HPLC was performed with 50 µl of the solution injected into a reverse phase
HPLC column (ACE 3 C18 3 µm 50 * 4.6 mm, ACE, UK). A solvent gradient was applied
with A (0.1 % phosphoric acid in water/acetonitrile 95/5) and B (water/acetonitrile 5/95)
from A/B 80/20 to 10/90 over 10 min. The flow rate was 1.2 ml/min. The molar activity
was determined based on linear regression with reference compound measured with a UV
detector (Gabi Star, Elysia-Raytest, DE) at 254 nm wavelength.

3.2.7 In vivo stability of [11C]3

Tracer (52.7 MBq, 24.1 nmol/kg for 10 min time point and 65.0 MBq, 7.8 nmol/kg for
45 min time point) was injected via lateral tail vein in CT26 tumor-bearing BALB/c
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mice. Animals were euthanized by decapitation under anesthesia by 2-3 % isoflurane in
oxygen/air (1/1) and tissues were dissected. Blood was collected, plasma was separated
for analysis, by centrifugation at 5 000 * g for 3 min. Tissue samples were homogenized in
matching volumes of PBS using a Polytron (Kinematica, US), and centrifuged at 5 000 * g,
4 °C for 5 min. In plasma, urine and tissue samples, proteins were precipitated with 2/3
volumes of ammonium sulfate in water (3M) and removed by centrifugation at 5 000 * g,
4 °C for 5 min. Supernatants were filtered through 0.45 µm pore size filters and analyzed
by column-switch radio HPLC according to the description in the literature [76]. A reverse
phase HPLC column (Luna 5u C18, 5 µm 4.6 * 250 mm, Phenomenex, US) was used. The
mobile phase was phosphoric acid (0.1 % (v/v) in water)/acetonitrile 50:50 over 15 min.

3.2.8 In vitro autoradiography

Dissected tissues and pellets from harvested cells were embedded in OCT compound
mounting medium (Avantor, US), cut to 20 µm slices with a cryotome, thaw-mounted on
microscopy slides and stored at -80 °C. Slices were thawed and submerged in MES buffer
(0.5 M, pH 5.5) containing 1 % (v/v) FCS for 2 h, followed by MES or MES with the
addition of reference compound (cold tracer, 4 µM) for 15 min. After this pre-conditioning,
the slices were incubated for 30 min with 4 nM [11C]tracer in MES (baseline conditions) or
in MES containing reference compound (cold tracer, 4 µM; blocking conditions). Tissues
were washed in MES (3 * 5 min) and in water (1 * 5 sec) and left to dry. The slices were
exposed to a photostimulable phosphor plate for 45-60 min and images were acquired using
a phosphoimager (BAS-5000, Fujifilm, JP). Images were cropped to rectangles including
tissue and background. For quantification, mean (tissues) or sum (cell pellets) of slice
activity based on gray-scale images (Figures 3.14 and 3.15) was calculated. To calculate
the standard deviation for each ratio error propagation according to Equation 3.1 was
applied. Image processing was done with open-source imaging software [173], python
community modules [69, 125,199] and R open-source packages [209].

3.2.9 PET/CT Scans

Tumor-bearing mice were anesthetized with 2-3 % isoflurane in oxygen/air (1/1) 10 min
prior to PET acquisition. PET/CT scans were performed on a small animal PET/CT
scanner (Super Argus, Sedecal, ES) with an axial field of view of 4.8 cm and a spatial
resolution of 1.6-1.7 mm (full width at half maximum) [61]. Respiratory rate was kept
at ∼ 60 min−1 through adjustment of isoflurane concentration and body temperature at
37 °C using heated air throughout the scan. PET scan was started and tracer was injected
1 min after scan start. PET data were acquired in list mode for dynamic analysis 0-60 min
p.i.. Anatomical information was obtained by CT following each PET acquisition. PET
data were reconstructed with 2D ordered-subsets expectation maximization (2D-OSEM)
protocol by applying random scatter correction and decay correction but no correction for
attenuation, and analyzed with PMOD v4.2 software (PMOD Technologies Ltd., Zurich,
Switzerland). Volumes of interest for the tumor, kidney and reference region (muscle) on
the contralateral side of the tumor were drawn manually in PMOD on the basis of the PET
and CT images. SUVs were calculated as the ratio of regional averaged radioactivity in
Becquerel per cubic centimeter and radioactivity at injection in Becquerel per gram body
weight. For ratios that were obtained based on two samples from the same animal, the
standard deviation was calculated directly from ratios. For ratio calculations where tissues
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from different animals had to be used to calculate individual ratios, error propagation
according to Equation 3.1 was applied to obtain standard deviation. Image analysis was
performed in python using community modules [15,69,82,117,125,212] and R open-source
packages [209]. All radioactivity was decay-corrected to the time point of injection to the
animal.

3.2.10 Biodistribution after dissection

Following PET and CT acquisition, tumor-bearing mice were euthanized through decapi-
tation still under anesthesia. Tissues were dissected and radioactivity determined with a
gamma counter (Wizard 3”, PerkinElmer, US). Data analysis was performed in R using
open-source packages [209].

3.2.11 Statistical analysis

Statistical differences in radiotracer uptake or SUV ratios were analyzed by two-tailed
paired or unpaired Student’s t test, as indicated. Differences with p < 0.05 were considered
significant. Average values are shown with standard deviations or data range for n < 3.

3.3 Results

3.3.1 Legumain inhibition by compound 3

Inhibition of legumain in mouse tissue

We first investigated the inhibitory potential of compound 3 at a concentration of 1000 nM
in tissue lysates with high legumain expression and recombinant human legumain. The
total lysates of CT26 tumors and kidneys from CT26 tumor-bearing mice (n = 4 mice,
1 sample each), as recently described ( [120]) showed a legumain inhibition of 84.78 %
± 5.04 % in tumor tissue lysate and 84.53 % ± 5.49 % in kidney tissue lysate. Human
recombinant legumain (n = 1) was inhibited 81.93 % (Figure 3.2).

IC50 of compound 3

The IC50 of compound 3 was determined with human and mouse recombinant legumain
and 10 µM fluorigenic legumain substrate Z-Ala-Ala-Asn-AMC. IC50 were 24.4 ± 1.7 nM
and 40.3 nM ± 6.9 nM, respectively (Figure 3.3). The calculated Ki of compound 3
based on Equation 3.5 were 18.2 ± 1.3 nM with human and 30.2 ± 5.1 nM with mouse
recombinant legumain.
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Figure 3.2: Inhibition of legumain activity was measured using the fluorescence of a
fluorogenic legumain substrate (10 µM) in mouse CT26 tumor tissue (a), mouse kidney
tissue (b) and human recombinant legumain (c). Legumain activity was measured in
tissues (n = 4) and human recombinant legumain (n = 1) in the presence (red) or absence
(blue) of 1000 nM compound 3. Symbols, mean data points; ribbons, SD; horizonal dotted
lines, 0 and 100 % activity relative to maximum value. Slopes to calculate legumain
activity were determined between the two vertical dashed lines.

Figure 3.3: IC50 of compound 3 toward human and mouse legumain. a Legumain
activity of recombinant human and mouse legumain was measured as the increase in
fluorescence of a fluorogenic legumain substrate (10 µM) over time. Colors represent
inhibitor concentrations as indicated in the Figure (n = 3 independent experiments).
Symbols, mean of data; ribbons, SD of data. Dotted lines, 0 and 100 % activity relative
to maximum value. Slopes to calculate legumain activity were determined between the
two vertical dashed lines. b IC50 plots based on a. Symbols, mean of slopes (n = 3);
error bars, SD of slopes. Dotted lines, minimum and maximum slope based on non-linear
fitting; solid lines, fit functions (Equation 3.3). Note that 0 nM is not covered by the
logarithmic range of the x-axis.

3.3.2 Radiochemistry

The reaction scheme for the synthesis of [11C]3 is shown in Figure 3.4. The molar activity
ranged from 44.0 to 920.7 GBq/µmol and the radiochemical purity was above 95 % for
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each production (Figure 3.13).

Figure 3.4: Synthesis of [11C]3.

3.3.3 In vivo stability of compound [11C]3

Our recently investigated legumain-targeting PET tracers, [11C]1 and [11C]2, were rapidly
metabolized in vivo with higher levels of a polar radiometabolite than parent tracer
already 10 min post injection (p.i.). As shown in Figure 3.5, [11C]3 was more stable in
vivo than [11C]1 and [11C]2 [120], with higher levels of parent tracer than radiometabolites
10 min p.i.. At 45 min p.i., [11C]3 was still detectable in plasma. No unbound tracer was
detectable in tumor homogenate 10 or 45 min p.i..

Figure 3.5: In vivo metabolism study with [11C]3 in CT26-tumor bearing BALB/c mice.
Reverse phase, column-switch radio HPLC analysis of tissue homogenate samples at
10 and 45 min p.i. of [11C]3, as indicated. Proteins were precipitated before analysis.
The experiment was performed once for each time point. Reference, tracer in formulated
solution for intravenous injection (5 % EtOH in saline) kept at room temperature for the
indicated duration. Dashed line, retention time of [11C]3; asterisk, method artifact peak.
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3.3.4 In vitro autoradiography with compound [11C]3

To characterize the binding of compound [11C]3 to legumain, irrespective of tissue-specific
factors, we conducted in vitro autoradiography on legumain-overexpressing HEK 293 cell
pellets. Pellet slices were incubated with 4.0 nM [11C]3 (baseline condition, n = 3), and
co-incubated with 4 µM unlabeled compound 3 (blocking condition, n = 3). Images
and quantification results are shown in Figure 3.6. To account for folding of the pellet
slices, we used the sum of activity of the tissue slice area (Figure 3.14) for quantification.
Blocking conditions reduced the binding of [11C]3 by 29 ± 13 % (p = 0.030) compared
to baseline conditions. Preincubation of cell pellets under acidic conditions to further
activate legumain did not have an effect both under baseline and blocking conditions (data
not shown). To investigate the binding of compound 3 in tissue, specifically, we performed
in vitro autoradiography using CT26 tumor, kidney, muscle and spleen slices (4 slices each
from 2 mice). Baseline and blocking conditions, identical to the ones used for cell pellet
autoradiography, were compared (Figure 3.7). Because there was less slice-folding and slice
areas varied across tissues, tissue slice area mean activities were used for quantification
(Figure 3.15). In the tissue autoradiography experiments, the total activity in organ
tissues correlated well with legumain expression based on the literature, with the highest
expression in the kidney, followed by spleen and lower expression in the muscle [27]. Under
blocking conditions, a 10 ± 8 % (p = 0.024) reduction in activity was observed in CT26
tumor tissue relative to baseline conditions. The blocking to baseline ratios in kidney
(0.97 ± 0.12), muscle (1.12 ± 0.12) and spleen (0.93 ± 0.14) were not significantly different
from 1. Furthermore, the tumor slices were subject to heterogeneous activity distribution,
which was conserved across slices from the same tumor.

Figure 3.6: In vitro autoradiography with legumain overexpressing HEK 293 cell pellet
slices (n = 3); a Slices incubated with 4.0 nM [11C]3 (baseline condition) and co-incubated
with 4 µM unlabeled compound 3 (blocking condition), in the same experiment. Scalebar,
red, high activity; blue, low activity. Note: Pellet slices were folded and partially
overlapping. b Quantification for the slices shown in a. Baseline (blue) and blocking (red)
conditions were compared with student’s t tests. Symbols, sum of activity of tissue slice
area; thin black bars, mean of sums; black error bars, SD.
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Figure 3.7: In vitro autoradiography with CT26 tumor, kidney, muscle and spleen slices (4
slices from 2 mice per tissue); a Slices incubated with 4.0 nM [11C]3 (baseline condition)
and co-incubated with 4 µM unlabeled compound 3 (blocking condition), in the same
experiment. Scalebar, red, high activity; blue, low activity. b Quantification of the slices
shown in a. Baseline (blue) and blocking (red) conditions were compared with student’s t
tests, without correction for multiple comparisons. Symbols, mean activity of tissue slice
area; thin black bars, mean of means; black error bars, SD. *, p < 0.05.

3.3.5 Legumain mRNA expression and activity

To assess legumain expression in the tumor models, we used qPCR. The comparison of
cultured CT26 cells (n = 1) to MDA-MB-468 cells (n = 1) showed a 9.67-fold higher
target expression in MDA-MB-468 cells (significance not tested). In the tumor tissue, the
image was inverted. CT26 tumor tissue (n = 6) had a 7.09 ± 7.01-fold (p = 0.031) higher
legumain expression than MDA-MB-468 tumor tissue (n = 8). In a separate experiment,
legumain expression ratios in tissues from decitabine-treated to PBS-treated mice with 4
samples each were 1.57 ± 0.66 (not significant) in kidney tissue, 3.00 ± 2.01 (p = 0.012)
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in CT26 tumor tissue and 1.29 ± 0.98 (not significant) in muscle tissue.

Legumain activity was compared in total lysate of dissected tissue from CT26 tumor-
bearing mice treated with PBS (vehicle) or low-dose decitabine and MDA-MB-468 tumor-
bearing mice. In contrast to the qPCR results, the legumain activity in CT26 tumor
tissue of PBS-treated mice (n = 2) was 47 ± 17 % (significance not tested) lower than in
MDA-MB-468 tumor tissue (n = 2). Between CT26 tumor tissue from PBS-treated mice
(n = 2) and decitabine-treated mice, a ratio of 1.26 ± 0.45 was found (significance not
tested).

The estimated density of active legumain (Bmax) and the theoretical, estimated binding
potential (BP), both calculated from the activity assay, are shown in Table 3.1. The Ki of
compound 3 experimentally determined with recombinant mouse legumain (30.2 ± 5.1 nM)
was used to calculate the BP (Equation 3.4). A protein density of 0.23 g per cm3 was
assumed for the tissue.

Table 3.1: Mouse legumain density and binding capacity of compound 3 in tissue.

Tissue Treatment Bmax
[pmol/mg] BP n (tissues)

CT26 Tumor PBS 8.54 ± 0.48 66.56 ± 12.57 2
CT26 Tumor Decitabine 6.79 ± 2.39 52.92 ± 10.00 4

MDA-MB-468 Tumor none 16.06 ± 5.10 125.20 ± 23.65 2
Kidney Decitabine 24.26 ± 10.38 189.10 ± 35.71 3

3.3.6 PET with tumor-bearing mice

Influence of tumor type and blocking

Having evaluated [11C]3 in vitro binding and in vivo stability, we proceeded with PET
imaging in mice. The injected activity (molar mass) of [11C]3 in CT26 tumor-bearing mice
was 8.2-10.1 MBq (2.26-4.15 nmol/kg, n = 3 animals), 7.5-9.0 MBq (1.24-6.58 nmol/kg,
n = 3 animals) in CT26 tumor-bearing mice co-injected with 4 µmol/kg compound 3
(blocking conditions) and 4.8-6.1 MBq (1.1-1.9 nmol/kg, n = 3 animals) in MBA-MB-468
tumor-bearing mice (Figure 3.8 and 3.9). The absence of co-injection with 4 µmol/kg
compound 3 is referred to as baseline conditions.

All tumors were clearly visible in the PET images (Figure 3.8). In agreement with
the tissue autoradiography, tracer accumulation was higher in the periphery of the CT26
tumors than in the core. Peripheral accumulation was absent in MDA-MB-468 tumors.
As observed in earlier studies with P1-Asn peptidomimetic tracers, all PET scans showed
high uptake in the abdomen [120]. In the PET, the SUV averaged over the duration of the
scan (0-60 min) from the images looked higher in CT26 tumors compared to MDA-MB-468
tumors (Figure 3.8). The time-activity-curves (TACs) are shown in Figure 3.10. When
analyzing the TACs of SUV ratio kidney-to-muscle for each animal a 8.17 ± 2.40 (n = 15,
p = 10−8) difference from 1 was found. The TACs ratio tumor-to-muscle was 1.27 ± 0.21
(n = 15, p = 2 ∗ 10−4). Evaluating the TACs of non-treated CT26 tumor-bearing mice
(n = 5) in comparison to MDA-MB-468 tumor-bearing mice (n = 3), the SUV ratio
CT26-to-MDA-MB-468 in tumors was 1.27 ± 0.30 (not significant) from 0-60 min and
1.25 ± 0.33 from 30-60 min (not significant). The SUV ratio tumor-to-muscle comparison
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of baseline (n = 10) to blocking (n = 5) conditions did not show a significant difference
over all time points or from 30-60 min alone. In contrast, the SUV ratio kidney-to-muscle
comparison of baseline (n = 10) to blocking (n = 5) conditions over all time points yielded
a significant difference of 1.78 ± 1.80 (p = 4 ∗ 10−5).

Influence of decitabine treatment in the CT26 tumor model

To assess the effect of low-dose decitabine treatment on [11C]3 accumulation, we injected
an activity (molar mass) of 11.8 and 12.2 MBq (8.16 and 4.37 nmol/kg, n = 2 animals) in
CT26 tumor-bearing, decitabine-treated mice. 9.4 and 10.2 MBq (2.10 and 2.56 nmol/kg,
n = 2 animals) of tracer were injected in PBS-treated mice. Under blocking conditions,
an excess of 4 µmol/kg compound 3 was co-injected in decitabine-treated mice injected
with an activity (molar mass) of 9.2 and 12.3 MBq (1.67 and 3.20 nmol/kg, n = 2
animals) (3.9). Data from non-treated mice were included as PBS-treated when evaluating
decitabine- vs PBS-treated mice. The SUV ratio decitabine-to-PBS including baseline and
blocking decitabine-treated (n = 4) and non-treated (n = 8) mice was not significantly
different from 1 in tumors or kidney (Figure 3.9 and 3.10). The tumors from decitabine-
treated mice were smaller than. Notably, no low-activity tumor core was present in the
decitabine-treated mice.

Figure 3.8: Representative PET images of tumor-bearing mice (0-60 min p.i., averaged)
superimposed on CT (coronal, axial as indicated). Tumors on right shoulder (arrow),
kidney (arrow). a CT26 tumor-bearing mouse injected with [11C]3 and b co-injected
with 4 µmol/kg compound 3. c MDA-MB-468 tumor-bearing mouse injected with [11C]3.
Crosshair indicates image planes. Mouse weights and activity at time of injection: a
18.3 g, 10.1 MBq (3.15 nmol/kg); b 18.9 g, 9.0 MBq (1.24 nmol/kg); c 18.6 g, 5.9 MBq
(1.91 nmol/kg). PET, color bars and corresponding SUV (averaged 0-60 min of scan) are
depicted at the bottom left (tumor) and right (kidney). CT, gray scale. The corresponding
TACs and TAC ratios are shown in Figure 3.10. PET images of all scanned mice are
shown in Figures 3.16 and 3.17.
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Figure 3.9: Representative PET images of CT26 tumor-bearing mice (0-60 min p.i.,
averaged) superimposed on CT (coronal, axial as indicated). Tumors on right shoulder
(arrow), kidney (arrow). a Vehicle-treated tumor-bearing mouse injected with [11C]3 and
b non-treated tumor-bearing mouse injected with [11C]3 and co-injected with 4 µmol/kg
compound 3. c Decitabine-treated tumor-bearing mouse injected with [11C]3 and d
co-injected with 4 µmol/kg compound 3. Crosshair indicates image planes. Mouse weights
and activity at time of injection: a 21.1 g, 9.4 MBq (2.10 nmol/kg); b 20.4 g, 8.2 MBq
(4.15 nmol/kg); c 19.5 g, 12.2 MBq (4.37 nmol/kg); d 19.1 g, 12.3 MBq (3.20 nmol/kg).
PET, color bars and corresponding SUV (averaged 0-60 min of scan) are depicted at
the bottom left (tumor) and right (kidney). CT, gray scale. The corresponding TACs
and TAC ratios are shown in Figure 3.10. PET images of all scanned mice are shown in
Figures 3.16 and 3.17.

48



CHAPTER 3 3.3.7 Radioactivity distribution in dissected tissues

Figure 3.10: Time-activity and time-activity ratio curves from PET scans with [11C]3.
a SUV ratios tissue-to-muscle, b SUV over time, c SUV ratios baseline-to-blocking over
time, d SUV over time, e SUV ratios decitabine-to-PBS over time, f SUV ratios MDA-
MB-468-to-CT26 tumor over time. Symbols, mean; error bars, SD for n ≥ 3 or value
range for n < 3. Conditions and number of samples as indicated. Dashed lines indicate
ratio of 1. The scans shown in Figure 3.8 and 3.9 are included in these data.

3.3.7 Radioactivity distribution in dissected tissues

Following the PET scans, animals were euthanized, and tissues dissected to determine the
distribution of [11C]3. The results are shown in Figures 3.11 (as SUV) and 3.12 (as percent
injected dose per gram tissue, %ID/g). At 65 min p.i., liver uptake was highest among
all analyzed tissues (data not shown). When analyzing the SUV ratio kidney-to-muscle
for each animal a 20.94 ± 10.32 (n = 15, p = 3 ∗ 10−6) difference from 1 was found.
Doing the same for the spleen, revealed a 4.16 ± 1.04 (n = 15, p = 1 ∗ 10−8) SUV ratio
spleen-to-muscle. Across tumor types and conditions, the SUV ratio tumor-to-muscle was
2.53 ± 0.66 (n = 15, p = 4 ∗ 10−7).

Influence of tumor type and blocking

Assessing the SUV ratio tumor-to-muscle for the specific tumor types separately, yielded
2.95 ± 0.37 in CT26 baseline (n = 5, p = 3 ∗ 10−4), 2.23 ± 0.31 MDA-MB-468 baseline
(n = 4, p = 0.004) and 2.74 ± 0.92 in CT26 blocking (n = 3, not siginificant). When
comparing non-treated CT26 tumor-bearing mice (n = 5) to MDA-MB-468 tumor-bearing
mice (n = 4), the SUV ratio CT26-to-MDA-MB-468 in tumors was 1.62 ± 0.35 (p = 0.002).
Comparing baseline (n = 10) to blocking (n = 5) conditions with CT26 non-treated,
PBS-treated and decitabine-treated mice taken together, a SUV ratio baseline-to-blocking
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of 0.97 ± 0.09 (not significantly different from 1) was found in the tumors. In contrast, the
SUV ratio baseline-to-blocking comparison in the spleen yielded a difference of 1.45 ± 0.15
(p = 0.003) and 3.14 ± 1.22 (p = 3 ∗ 10−6) in the kidney .

Influence of decitabine treatment in the CT26 tumor model

The SUV ratio decitabine-to-PBS including baseline and blocking decitabine treated
(n = 3) and non-treated (n = 8) mice was not significantly different from 1 in tumor,
kidney, and spleen.

Figure 3.11: Biodistribution (SUV) after dissection at 65 min p.i. of the mice studied by
PET (Figures 3.8 and 3.9). a SUV of tissues from tumor-bearing mice injected with [11C]3
(baseline conditions) or co-injected with 4 µmol/kg compound 3 (blocking conditions). b
Enlarged comparison between muscle and tumor tissue. c SUV ratios tumor-to-muscle.
Dashed line indicates ratio of 1. Error bars, SD (n ≥ 3); symbols, individual values
(n < 3). The same data is expressed as %ID/g in Figure 3.12.

Figure 3.12: Biodistribution (%ID/g) after dissection at 65 min p.i. of the mice studied
by PET (Figures 3.8 and 3.9). a %ID/g of tissues from tumor-bearing mice injected
with [11C]3 (baseline conditions) or co-injected with 4 µmol/kg compound 3 (blocking
conditions). b Enlarged comparison between muscle and tumor tissue. c %ID/g tissue
ratios tumor-to-muscle. Dashed line indicates ratio of 1. Error bars, SD (n ≥ 3); symbols,
individual values (n < 3). %ID/g, percentage of injected dose per gram tissue. The same
data is expressed as SUV in Figure 3.11. For significance indicators see Figure 3.11.
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3.4 Discussion

We developed the legumain PET tracer [11C]3, a P1-Asn peptidomimetic with strong
affinity for legumain and better in vivo stability than our previous legumain-targeting
tracers [11C]1 and [11C]2 [120]. [11C]3 accumulated in legumain-overexpressing cells and
tissues in vitro and was blockable with an excess of compound 3. Although quantifiable,
the blocking effect size was moderate. In agreement with the literature, tissue slices from
spleen and kidney showed higher total activity than muscle [27]. The CT26 tumor slice
autoradiographs showed an accumulation that was, as expected based on previous studies
and our legumain activity assays, between the kidney and muscle slices [120].

In PET and radioactivity measurements following the scans, [11C]3 accumulated more
in tumors, kidney and spleen than in the muscle. Moreover, we observed a blocking effect
when co-injecting [11C]3 with 4 µM 3 in kidney and spleen. This in vivo finding stands in
contrast to what was observed with the previously developed tracers [11C]1 and [11C]2
and may be due to the increased stability [120]. The calculated Ki of compound 3 for
human (18.2 ± 1.3 nM) and mouse (30.2 ± 5.1 nM) recombinant legumain are weaker than
typically expected for a tracer to be suitable for PET imaging. The high Bmax in the tumor
tissues should, however, still allow for an adequate BP in the 10-100 range. As to why we
did not observe a blocking effect in the tumors is unclear. Legumain is found extracellularly
in the tumor microenvironment, where it is involved in the degradation of the extracellular
matrix [35]. There may be competition with endogeneous substrates that are highly
expressed in the tumor microenvironment such as cathepsins and fibronectin [35,43,145].
Active legumain in the kidney and spleen may be in the presence of less such endogenous
substrates. One strategy to mitigate competition with endogenous substrates involves
the development of irreversible binders, such as alkyne compounds, rather than reversible
binders equipped with a cyano warhead like [11C]3 [101]. [11C]3 may be used in a context
where endogeneous substrates are less of a concern.

Interestingly, the CT26 tumors had discernable tracer accumulation hotspots, which
were conserved across cryosections from the same tumor. We observed such hotspots
during the investigation of [11C]1 and [11C]2 as well [120]. The two tumor types showed a
different tracer distribution. While in CT26, accumulation was higher in the periphery
than the core, the distribution was homogeneous throughout the MDA-MB-468 tumors.
The heterogeneity in tracer accumulation could be due to the presence of tertiary lymphoid
structures (TLS), commonly found in human cancers [174]. These peripheral clusters
of immune cells, are often populated by M2 macrophages, which would explain the
high tracer accumulation [142]. The accumulation in the tumor periphery as seen in
PET, further supports this hypothesis. The abrogated M2 macrophage contribution in
the MDA-MB-468 immunocompromised tumor model and the resulting reduced local
legumain expression could explain the lack of peripheral accumulation observed in PET
with MDA-MB-468 tumor-bearing mice. However, our approach does not allow for the
distinction between legumain expressed by macrophages and legumain stemming from
other sources. The SUV in CT26 tumors, based on the dissected tissue, was 62 ± 35 %
higher than in MDA-MB-468 tumors. This difference was not observed in the PET. There
is a visible trend in the TACs showing the PET to be more similar to the measurements
of the dissected tissue toward the end of the scan.

The discrepancy between legumain expression in cells and accumulation of legumain-
targeting tracers in vivo emphasizes the effect of the cellular environment on legumain
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expression. Monocultured cancer cells may exhibit a completely different expression
pattern in vitro than in vivo. To study the effect of the decitabine on the whole tu-
mor microenvironment, we treated CT26 tumor-bearing mice with a low-dose regimen
of decitabine. Decitabine treatment has been shown to increase M2 polarization in
macrophages [214]. Our application of a low-dose treatment regimen in mice as employed
by others [200], did neither alter legumain RNA expression in the tumors nor the accumu-
lation of [11C]3. Decitabine is a nucleoside analogue and might have a direct effect on the
tumor cells and other cell types in addition to M2 macrophages [38].

3.5 Conclusions

The newly developed legumain PET tracer [11C]3 showed high accumulation and blocking
in healthy tissues with high legumain expression, indicating specific targeting of legumain.
However, accumulation in the tumor was lower than expected and not blocked, potentially
resulting from legumain occupancy by endogenous substrates.
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3.6 Supplementary material

3.6.1 RP HPLC chromatograms

Figure 3.13: Reverse phase HPLC chromatograms for purity and identity. UV signal
measured at 254 nm. Retention time and, where applicable, % area were determined. a,
3 precursor 3.90 min, compound 3 reference 4.68 min. b, 3 reference 4.60 min (100 %). c,
[11C]3 4.83 min (100 %).

3.6.2 Autoradiography quantification masks

Figure 3.14: Tissue slice areas used for
quantification in Figure 3.6.
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Figure 3.15: Tissue slice areas used for quantification in Figure 3.7.
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3.6.3 Identity 1H NMR, HRMS

(2S)-N-[(1S)-3-amino-1-cyano-3-oxopropyl]-1-[1-[4-(4-
methoxyphenoxy)phenyl]cyclopropanecarbonyl]pyrrolidine-2-carboxamide
1H NMR (400 MHz, DMSO-d6) δ[ppm] 8.71 (d, J = 8.3, 1H); 7.61 (s, 1H); 7.25-7.18 (m,
2H), 7.17 (s, 1H); 7.04-6.91 (m, 4H); 6.88-6.80 (m, 2H); 4.91 (q, J = 7.3, 1H), 4.27 (dd, J
= 5.1, 8.73, 1H); 3.75 (s, 3H); 3.23-3.14 (m, 1H); 2.70 (dd, J = 15.4, J = 8.3, 1H); 2.61
(dd, J = 15.6, J = 6.3, 1H); 2.11-1.98 (m, 1H); 1.85-1.62 (m, 3H); 1.37-1.27 (m, 1H);
1.27-1.11 (m, 2H); 1.05-0.95 (m, 1H).
HRMS (ESI+, m/z) calc. for C26H29N4O5 477.2132 (M + H) found 477.2133.

(2S)-N-[(1S)-3-amino-1-cyano-3-oxopropyl]-1-[1-[4-(4-
hydroxyphenoxy)phenyl]cyclopropanecarbonyl]pyrrolidine-2-carboxamide
1H NMR (400 MHz, DMSO-d6) δ[ppm] 9.33 (s, 1H); 8.68 (d, J = 7.4, 1H); 7.60 (s, 1H);
7.22-7.12 (m, 2H); 6.90-6.84 (m, 2H) 6.84-6.73 (m, 4H); 4.91 (q, J = 7.4, 1H), 4.30-4.23
(m, 1H); 3.22-3.14 (m, 1H); 2.70 (dd, J = 15.9, J = 8.6, 1H); 2.60 (dd, J = 15.9, J = 7.1,
1H); 2.00-1.98 (m, 1H); 1.85-1.62 (m, 3H); 1.36-1.26 (m, 1H); 1.25-1.09 (m, 2H); 1.07-0.96
(m, 1H).
HRMS (ESI+, m/z) calc. for C25H27N4O5 463.1976 (M + H) found 463.1983.
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3.6.4 PET scans

Figure 3.16: Mouse PET images (0-60 min p.i., averaged) superimposed on CT (axial,
coronal, saggital). Tumors on right shoulder. Conditions as indicated. Baseline condition,
mouse injected with [11C]3; blocking condition, tracer co-injected with 4 µmol/kg of
compound 3. CT26 tumor-bearing mice (Scan ID: V3989, V3991, V3993, V3990, V3992,
V3994); PBS-treated CT26 tumor-bearing mice (Scan ID: V4180, V4183); decitabine-
treated CT26 tumor-bearing mice (Scan ID: V4179, V4181, V4182, V4184); MDA-MB-468
tumor-bearing mice (Scan ID: V4112, V4113, V4114). Crosshairs indicate image planes
(in tumor region). PET, color bar for the corresponding SUV; CT, gray scale. MBq,
activity at time of injection in MBq; BWg, body weight in g; Duration, duration of the
scan in min; Start_min, start of the scan after injection in min. The TACs of tumor,
muscle and kidney are shown in Figure 3.10. The same data sets as in Figure 3.17 are
shown. 56
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Figure 3.17: Mouse PET images (0-60 min p.i., averaged) superimposed on CT (axial,
coronal, saggital) as in Figure 3.16, with focus on left kidney. Tumors on right shoulder.
Conditions as indicated. Baseline condition, mouse injected with [11C]3; blocking condition,
tracer co-injected with 4 µmol/kg of compound 3. CT26 tumor-bearing mice (Scan ID:
V3989, V3991, V3993, V3990, V3992, V3994); PBS-treated CT26 tumor-bearing mice
(Scan ID: V4180, V4183); decitabine-treated CT26 tumor-bearing mice (Scan ID: V4179,
V4181, V4182, V4184); MDA-MB-468 tumor-bearing mice (Scan ID: V4112, V4113,
V4114). Crosshairs indicate image planes (in left kidney region). PET, color bar for the
corresponding SUV; CT, gray scale. MBq, activity at time of injection in MBq; BWg,
body weight in g; Duration, duration of the scan in min; Start_min, start of the scan
after injection in min. The TACs of tumor, muscle and kidney are shown in Figure 3.10.
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4.1 Background

Alzheimer’s disease (AD) is a neurodegenerative disorder that clinically manifests as
progressive cognitive decline. The risk of developing AD increases drastically with age,
leading to a prevalence of 10-30 % in the population > 65 years of age [123]. The pathology
of AD is characterized by neurofibrillary tangles and amyloid plaques, which are composed
of the microtubule protein tau and insoluble amyloid-β (Aβ) peptides, respectively [123].
Genome-wide association studies have pinpointed most AD risk genes to macrophages of
the brain, so-called microglia cells [42]. Legumain, a lysosomal cysteine endopeptidase, is
upregulated in microglia upon acute inflammation caused by experimental strokes [84]. In
AD mouse models, legumain expression correlates with microglial activation and disease
progression [204]. Legumain, along with β- and γ-secretases, is part of an enzyme family
involved in the processing of Aβ and tau [98]. Legumain, in the context of AD often called
δ-secretase, hydrolyzes peptide bonds c-terminally to asparagine residues [35]. In studies
examining brains from humans with AD, legumain was found to proteolytically cleave
both amyloid precursor protein (APP), the precursor of Aβ, and tau [218,219]. Moreover,
an age-related increase in legumain expression and activation was observed in wild-type
mice, along with high levels in brain tissue of 5xFAD, APP/PS1, and P301S transgenic
mouse strains [218]. Legumain-cleavage of tau and APP in such established, transgenic,
AD mouse models regulates the accumulation of Aβ plaques and tau tangles. The deletion
of legumain in these mice reduced disease pathology and alleviated the symptoms of AD,
suggesting a causal role of legumain in the pathogenesis of the disease [88,218,219].

In a landmark legumain inhibition study, the small molecule legumain ligand compound
11 reduced tau and APP cleavage, leading to reduced Aβ and tau pathology and restored
synaptic function in 5xFAD and P301S mice [217]. More recently, the same group has
optimized compound 11 to yield compound 11a, with improved oral bioavailability and in
vivo pharmacokinetic properties [112]. A different approach to legumain inhibition makes
use of P1-Asn peptidomimetic compounds, conceived and improved for applications in
cancer [41, 81, 108, 138, 139]. The orally bioavailable, blood-brain-barrier (BBB) penetrant
legumain inhibitor compound 18 has been developed based on the P1-Asn scaffold [101].
Compound 18 reduced the levels of cleaved tau fragments in P301L mice along with a
decrease in legumain activation in vivo. The BBB-penetrant legumain inhibitors compound
11, compound 11a and compound 18 are shown in Figure 4.1.

Particularly in the field of AD, imaging probes have long been employed for disease
diagnostics [98]. In addition to unspecific [18F]FDG imaging, PET tracers specifically
for Aβ and tau have been developed. 18F-labeled Aβ PET tracers such as florbetapir,
florbetaben and flutemetamol are clinically available and 11C-labeled Pittsburgh compound
B is frequently used in research [98]. To image tau, several PET tracers are in development,
of which flortaucipir has been approved for clinical use [98]. Despite regulatory approval
of these tracers, the use of Aβ plaques and tau tangles as biomarkers has been criticized
because both are considered necessary but not sufficient to cause AD [57,185,186]. This is
exemplified by the limited treatment success of therapies targeting Aβ and tau tangles [50].
Legumain, a key enzyme upstream of Aβ plaque and tau tangle formation, might be a
more suitable target for AD imaging. In recent years 18F- and 68Ga-labeled legumain
PET tracers based on lysosomal trapping have been developed [80,118,119,159]. These
nanoparticle-based tracers do, however, not cross the blood brain barrier likely due to
their size and hydrophilicity. To our knowledge, there is currently no BBB-penetrant
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legumain PET tracer available.

In this feasibility study, we focused on evaluating legumain expression and activity
in APP/PS1 transgenic mice, a well-established AD mouse model [20, 165]. The study
also centered on developing and optimizing methodologies for a potential BBB-penetrant
legumain PET tracer, based on the N -methylated compound 11, which has a reported
IC50 of 124 nM [217]. We synthesized [11C]CC11m by N -methylation of compound 11
with [11C]CH3OTf, and assessed its in vivo distribution using PET, complemented by
tissue analysis post-scan [24].

Figure 4.1: Chemical structures of likely BBB-penetrant legumain ligands. a Compound
18 [101], compound 11 [217], and compound 11a [112]. b Tracer [11C]CC11m based on
methylated compound 11.

4.2 Methods

4.2.1 Animal models

Animal studies were approved by the Zurich Cantonal Veterinary Office, Switzerland
(licenses ZH011/22 and ZH028/22), and conducted according to Swiss Animal Welfare
legislation. Studies were performed with B6C3-Tg(APPswe,PSEN1dE9)85Dbo/Mmjax,
hemizygous mice abbreviated as APP/PS1 transgenic and their littermates C57BL/6J
wild-type abbreviated as APP/PS1 wild-type, age 9-10 months. APP/PS1 mice were
ordered from The Jackson Laboratory (Bar Harbor, US) and bred in-house in our animal
facility. 3-4 months old BALB/cAnNCrl from Charles River Laboratories (Sulzfeld, DE)
are abbreviated as BALB/c mice. The BALB/c mouse that underwent PET imaging was
inoculated with a CT26 tumor because it was part of a different project (Chapter 2). All
animals were housed at 22 °C with a 12-hour light-dark cycle and unlimited access to food
and water.

4.2.2 Fluorescence microscopy

Brains were embedded in OCT compound mounting medium (Avantor, US), cut to
10 µm slices with a cryotome, thaw-mounted on microscopy slides and stored at -80 °C.
For fluorescent staining, slices were thawed, left to dry and washed (3 * 5 min) in
phosphate-buffered saline (PBS, gibco, Life Technologies, US). Tissue was encircled with
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a hydrophobic pen (Dako, DK) and fixed in 4 % paraformaldehyde in PBS for 10 min.
Tissue was washed (3 * 5 min) in tris-buffered saline with 0.1 % Tween (TBST) and
incubated in 5 % (w/v) powdered, skimmed milk in TBST on a benchtop rocker for 30 min.
All subsequent incubation steps were performed protected from light on a benchtop rocker.
Tissue was washed (3 * 5 min) in and permeabilized TBST and incubated with primary
antibodies in TBST for 120 min. Tissue was washed (3 * 5 min) in TBST and incubated
with secondary antibodies in TBST for 30 min. Tissue was washed (3 * 5 min) in TBST
and incubated with DAPI (BioLegend, US) 1:2 000 in TBST for 5 min. Tissue was washed
(1 * 5 min) and sections were left to dry for 30 min. Cover slip was mounted with mounting
medium (Mowiol, Kuraray, JP) and left to dry for 30 min. Slides were stored at 5 °C
for up to 4 weeks prior to image acquisition. For microglia staining, rat IBA1 targeting
primary antibody (MA5-38266, Thermo Fisher Scientific, US) 1:500 and goat Alexa Fluor
647 IgG secondary antibody (A21247, Thermo Fisher Scientific, US) 1:500 were used.
For legumain staining, rabbit legumain targeting primary antibody (bs-3907R, Bioss,
US) 1:100 and goat Alexa Fluor 488 IgG secondary antibody (A11008, Thermo Fisher
Scientific, US) 1:500 were used. Images were acquired on a widefield microscope (Leica
DMI6000B, DE). Image processing was done with open-source imaging software [173].

4.2.3 Gene expression analysis

Tissues were dissected and washed with RNA-preserving solution (RNAlater, Thermo
Fisher Scientific, US). For RNA extraction, tissue was transferred to RNA extraction
solution (TRIzol, Thermo Fisher Scientific, US) and homogenized using a bead-mill
system (Qiagen, DE). The homogenate was centrifuged (12 000 * g, 10 min, 4 °C) and the
uppermost phase was mixed with chloroform. After centrifugation (same conditions as
above), the aqueous phase was mixed with isopropanol and incubated for 10 min. The
samples were centrifuged (same conditions as above) and the resulting pellet was washed
with 75 % ethanol and centrifuged (8 000 * g, 5 min, 4 °C). The wash was repeated,
the sample pellets were centrifuged (15 000 * g, 2 min, 4 °C) and left to dry for 1-2 h.
The pellet was dissolved in RNAse-free water. Concentration and quality of the RNA
extract were determined using a microvolume spectrophotometer (NanoDrop, Thermo
Fisher Scientific, US). For reverse transcription, RNA extract was incubated with wipeout
buffer (QuantiTect Reverse Transcription kit, Qiagen, DE) for 2 min at 42 °C. Reverse
transcriptase, reverse transcription buffer and reverse transcription prime mix (QuantiTect
Reverse Transcription kit, Qiagen, DE) were added and the solution was incubated for
15 min at 42 °C followed by 3 min at 95 °C. Real-time quantitative polymerase chain
reaction (RT-qPCR) was performed using cDNA from the previous step, gene specific
primers and qPCR Master Mix (GoTaq qPCR Master Mix, Promega, US). Primers for
qPCR were custom-made oligonucleotides (Microsynth, CH): legumain (Lgmn, NCBI
Gene: 19141), forward 5’-GTG ATC AAC CGA CCT AAC G-3’, reverse 5’-ATT CTC
TGG AGT CAC ATC CTC-3’; Amyloid beta precursor protein (App, NCBI Gene: 11820),
forward 5’-TGA ACC AGT CTC TGT CCC T-3’, reverse 5’-TCT GAA GCA GCT CAT
CGA C-3’; GLE1 RNA export mediator (Gle1, NCBI Gene: 74412), forward 5’-CAA
ATG GAA CCC AGA GCA C-3’, reverse 5’-ACC CTT CCA CTT TGA TCG C-3’. On
a real-time PCR system (Quantstudio 7 Flex, Thermo Fisher Scientific, US), 10 µl of
total volume were run through 40 cycles with the hold stage temperature at 95 °C for
2 min and a PCR stage consisting of 95 °C for 15 s (denaturation) and 60 °C for 60 s
(annealing/extension). Melt curve stage was included for quality control on a single well
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level. Lgmn and App were normalized to Gle1. Data processing was performed in R using
open-source packages [209].

4.2.4 Protein expression analysis

Whole brains were dissected and perfused with RIPA buffer (25 mM Tris pH 7.4, 150 mM
NaCl, 1 % (v/v) Triton x-100, 0.5 % (m/v) sodium deoxycholate detergent, 0.1 %
(m/v) sodium dodecyl sulfate, protease inhibitor cOmpete tablets (Roche, CH), 1 mM
phenylmethylsulfonyl fluoride in water). For protein extraction, the tissue was chopped
and incubated for 2 h at 5 °C. The tissue lysate was centrifuged at 15 000 * g, 4 °C for
15 min. The supernatant underwent buffer exchange with PBS using 10K MWCO protein
concentrators (Thermo Fisher Scientific, US) and protein concentration determination with
Bradford reagent (Merck Millipore, US). For separation, 10 % acrylamide SDS gels were
prepared and loaded with 30 µg of protein and stained protein molecular weight standards
(Biorad, US). Electrophoresis took place under 200 V and 300 mA constant voltage for 1 h
15 min. The proteins were transferred to a PVDF membrane (Merck Millipore, US) under
wet conditions and 100 V, 350 mA constant voltage for 1 h. Membranes were blocked
in 5 % (w/v) powdered, skimmed milk in TBST for 45 min and incubated in primary
antibody in TBST at 5 °C over night. Membranes were washed (3 * 5 min) in TBST and
incubated with secondary antibody for 1 h. Membranes were washed (3 * 5 min) in TBST
and incubated with peroxide luminol solution (1.25 mM luminol, 0.2 mM p-coumaric
acid, 0.02 % (v/v) H2O2 in water) for 2 min. Protein bands were visualized based on
chemiluminescence and white light exposure using a ChemiDoc XRS (Biorad, US). Rabbit
legumain targeting primary antibody (bs-3907R, Bioss, US) 1:250, and rabbit anti-β-actin
primary antibody (A2066, Sigma-Aldrich, US) 1:500 were used. Secondary antibodies
were anti-rabbit HRP conjugated (A0545, MilliporeSigma, US) 1:2 000.

4.2.5 Legumain activity and estimation of binding potential

Tissues were dissected and washed with assay buffer consisting of 20 mM citric acid,
60 mM Na2HPO4, 1 mM EDTA, 0.1 % (m/v) CHAPS, 4 mM DTT at pH 5.8. Tissue
was homogenized using a Polytron (Kinematica, US), and centrifuged at 19 000 * g, 4 °C
for 20 min to precipitate debris. Protein content of the lysate was determined using
the BCA assay, with bovine serum albumin for calibration [104]. Legumain activity was
measured with a fluorescence assay [87]. In brief, a sample of tissue lysate with total a
protein concentration of ∼ 12 000 µg/ml was prepared. The substrate Z-Ala-Ala-Asn-AMC
(Bachem, CH) was added to the samples to reach a substrate concentration of 10 µM.
Fluorescence was measured at excitation 340 nm and emission 460 nm every minute
over 5 h. The activity was determined from the slope of the initial linear increase in
fluorescence and normalized to the protein content of the tissue sample. Data processing
was performed in R using open-source packages [209].
The density of legumain, corresponding to the maximal possible specific binding of
legumain-targeting tracer per mg protein in the tissue (Bmax in nmol/mg) was estimated
based on the measured legumain activity in comparison to recombinant mouse legumain of
known concentration (R&D Systems, US). To estimate the expected binding potential (BP)
of a tracer in tissue with Equation 4.1, Bmax (nmol/mg) was transformed to Bmax in nmol
per 1 000 cm3 tissue (nM), assuming a protein content of mouse tissue of 0.23 g/cm3 [188],
i.e., Bmax in nmol/mg was multiplied by 2.3 * 105 mg/l to get Bmax in nM.
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BP =
Bmax(nM)

Ki(nM)
(4.1)

Ki in Equation 4.1 was estimated from the IC50 of the inhibitor, the substrate concentration
at which IC50 was determined, i.e., 10 µM [139] and the KM reported for human legumain,
i.e., 25.7 µM [153] according to the Cheng-Prusoff equation (Equation 4.2).

Ki =
IC50

1 + [S]
KM

(4.2)

4.2.6 Radiochemistry

Generation of [11C]CH3OTf

Proton bombardment of a target filled with N2 fortified with 0.5 % O2 in a Cyclone 18/9
cyclotron (18-MeV, IBA, BE) afforded [11C]CO2 by 14N(p, α)11C nuclear reaction. For
the conversion to [11C]CH3I, nickel-based catalytic reduction of [11C]CO2 with hydrogen
was performed to form [11C]CH4, which was followed by iodination to afford [11C]CH3I.
[11C]CH3I was further converted to [11C]CH3OTf by passing through a silver triflate
column at elevated temperatures (190 °C).

Radiosynthesis

Approx. 1 mg precursor (Cayman, US) was dissolved in 500 µl 1,1,1,3,3,3-Hexafluoro-2-
propanol containing 3 µl 5 M NaOH. The generated [11C]CH3OTf was bubbled into the
solution with constant stirring followed by incubation for 5 min at 50 °C. The reaction was
quenched with water and the crude solution was injected into a semi-preparative HPLC
column (Symmetry C18 Prep Column 5 µm 7.8 * 50 mm, Waters, US). A solvent gradient
of 95-10 % trifluoroacetic acid (0.1 % (v/v) in water) and 5-90 % acetonitrile over 10 min
was applied. The flow rate was 4 ml/min. The product was collected with the help of a
UV detector and a radio detector (Gabi Star, Elysia-Raytest, DE), diluted with water
(8 ml) and purified using an activated (5 ml ethanol, 10 ml water) C18 cartridge (Sep-Pak
C18 light, Waters, US). The cartridge was washed with 5 ml water and the product was
eluted with 0.5 ml ethanol into a sterile vial. 9.5 ml saline solution (NaCl 0.9%, B.Braun,
DE) was added to obtain an isotonic product containing 5 % ethanol. Nitrogen was used
as a propellant. For quality control, HPLC was performed with 50 µl of the solution
injected into a reverse phase HPLC column (ACE 3 C18 3 µm 50 * 4.6 mm, ACE, UK).
A solvent gradient was applied with A (0.1 % trifluoroacetic acid in water/acetonitrile
95/5) and B (water/acetonitrile 5/95) from A/B 100/0 to 20/80 over 13 min. The flow
rate was 1.2 ml/min. The molar activity was determined based on linear regression with
reference compound measured with a UV detector (Gabi Star, Elysia-Raytest, DE) at
254 nm wavelength.

4.2.7 PET scans and biodistribution after dissection

Mouse was anesthetized with 2-3 % isoflurane in oxygen/air (1/1) 10 min prior to PET
acquisition. PET/CT scans were performed on a small-animal PET/CT scanner (Super
Argus, Sedecal, ES) with an axial field of view of 4.8 cm and a spatial resolution of
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1.6-1.7 mm (full width at half maximum) [61]. Respiratory rate was kept at ∼ 60 min−1

through adjustment of isoflurane concentration. Body temperature was kept at 37 °C
using heated air. Tracer was injected into tail vein at the indicated time point and dose,
and PET data were acquired in list mode. Anatomical information was obtained by CT
following each PET acquisition. PET data were reconstructed with 2D ordered-subsets
expectation maximization (2D-OSEM), applying random scatter correction and decay
correction but no correction for attenuation, and analyzed with PMOD v4.2 software
(PMOD Technologies Ltd., Zurich, Switzerland). SUVs were calculated as the ratio of
regional averaged radioactivity in Becquerel per cubic centimeter and injected radioactivity
in Becquerel per gram body weight, multiplied by 1 cm3 per g body weight. Image analysis
was performed in python using community modules [15,69,82,117,125,212] and R open-
source packages. All radioactivity was decay-corrected to the time point of injection to
the animal.

4.2.8 Statistical analysis

Statistical differences were analyzed by two-tailed unpaired Student’s t test, as indicated.
Differences with p < 0.05 were considered significant. Average values are shown with
standard deviations (SD), data range in case of n = 2, and individual values in case of
n = 1.

4.3 Results

4.3.1 Legumain and APP mRNA levels

To compare legumain and APP levels between APP/PS1 wild-type mice and APP/PS1
transgenic mice, we dissected whole-brain tissue from age-matched 10-month-old animals
and analyzed mRNA levels by qPCR (Figure 4.2). APP/PS1 transgenic mice (n = 5)
showed 2.85 ± 0.61-fold (p = 0.002) higher mRNA levels of APP, and 1.32 ± 0.19-fold
(p = 0.017) higher mRNA levels of legumain than wild-type controls (n = 7).

Figure 4.2: mRNA levels of brain tis-
sue from APP/PS1 transgenic and wild-
type mice. Expression levels of legumain
(Lgmn) and APP (App) were quantified
by RT-qPCR relative to Gle1. Fold-
change of transgenic (n = 5) compared to
wild-type (n = 7) is shown. Significance
was analyzed with unpaired student’s
t tests, without correction for multiple
comparisons. Bars, means; error bars,
SD. *, p < 0.05; **, p < 0.01.

4.3.2 Prolegumain and active legumain

Legumain is expressed as a zymogen (prolegumain) and activated through autocatalytic
cleavage [35]. We performed western blot analysis of whole-brain tissue lysates from
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wild-type (n = 4) and APP/PS1 transgenic (n = 4) mice at age 10 months to see if both
the prolegumain and the active form of legumain are present. As depicted in Figure 4.3,
prolegumain was detected at ∼ 56 kDa and the active form at ∼ 46 kDa. β-actin was used
as loading control. Furthermore, no difference in prolegumain or active legumain levels
between wild-type and APP/PS1 transgenic mice was observed by visual comparison.

Figure 4.3: Zymogen and active form of legumain in wild-type and APP/PS1 transgenic
mouse brain tissue lysate. Western blot with samples from wild-type (n = 4) and
APP/PS1 transgenic (n = 4) mice (10 months of age). Anti-LGMN (upper panel), probed
with polyclonal anti-legumain primary antibody; anti-β-actin (lower panel), probed with
polyclonal anti-β-actin primary antibody; molecular weight marker, as indicated; genotype,
as indicated; legumain form (zymogen or active), as indicated.

4.3.3 Legumain activity

To investigate legumain activity in APP/PS1 transgenic mice, we performed a legumain
activity assay with whole-brain tissue lysates from 10-month-old mice. Figure 4.4 shows
the measured conversion rate of non-fluorescent substrate to fluorescent product for brain
tissue of APP/PS1 transgenic mice (n = 1) in comparison to muscle tissue of BALB/c
wild-type mice (n = 12) and recombinant mouse legumain (n = 3). The estimated density
of legumain (Bmax) in brain tissue of APP/PS1 transgenic mice was 0.65 pmol/mg (n = 1)
and higher than in muscle tissue of BALB/c wild-type mice (∼ 0 pmol/mg, n = 12).
Assuming 0.23 g protein per cm3, the density of legumain corresponds to a Bmax of
149.5 nM. The Ki value of CC11m as calculated with Equation 4.2 from the IC50 of
124 nM [217] was 89.3 nM.

4.3.4 Fluorescence microscopy of legumain and activated mi-
croglia

Next, we wanted to qualitatively locate legumain and activated microglia cells in APP/PS1
transgenic mouse brain tissue in comparison to the wild-type. We performed fluorescence
microscopy on brain cryosections of APP/PS1 transgenic (n = 1 animal) and wild-type
(n = 1 animal) mice. As seen in Figure 4.5, microglia cells stained with anti-IBA1 antibody
(red) are abundant in both tissues. Intra- and extracellular legumain staining (green)
revealed larger clusters in APP/PS1 transgenic mouse brain tissue compared to wild-type.
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Figure 4.4: Conversion rate of the non-fluorescent substrate to the fluorescent product in
total tissue lysate of dissected tissues (as indicated) from 4-month-old BALB/c wild-type
(n = 12) mice, a 10-month-old APP/PS1 transgenic mouse (n = 1) and recombinant
mouse legumain (n = 3). The tissues were permeabilized with TBST. Solid line, mean
values; error bands, SD. a.u., arbitrary units.

Figure 4.5: Representative fluorescence microscopy images of mouse brain cryosections.
APP/PS1 transgenic mouse tissue stained with a monoclonal anti-IBA1 primary antibody
(red; activated microglia) or b polyclonal anti-legumain primary antibody (green); AP-
P/PS1 wild-type mouse tissue stained with c monoclonal anti-IBA1 primary antibody
(red; activated microglia) or d polyclonal anti-legumain primary antibody (green). Nuclei
were stained with DAPI and are shown in blue. Brain slices from one animal per group;
10 months of age.

4.3.5 Radiosynthesis of [11C]CC11m

[11C]CC11m was synthesized from commercially available compound 11 in a one-step reac-
tion (Figure 4.6). The compound molar activity was 26.2 GBq/µmol and the radiochemical
purity > 95 %.

4.3.6 PET/CT and biodistribution of [11C]CC11m after dissection

To assess the in vivo distribution of [11C]CC11m, we injected the tracer (9.45 MBq,
4.0 nmol/kg) into a 4-month-old BALB/c mouse and performed a PET scan. The mouse
was dissected after the scan to obtain the tissue distribution (Figure 4.7). The scan shows
high uptake in liver and kidneys and low uptake in the brain. Based on the biodistribution
after dissection, the standardized uptake value (SUV) ratio tissue-to-muscle was 10.5
for the liver, 5.2 for the kidneys and 2.8 for the spleen. Both kidney and spleen express
high levels of legumain in mice [27]. The brain SUV was 0.18 resulting in a SUV ratio
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Figure 4.6: Synthesis of [11C]CC11m.

brain-to-muscle of 1.3. The SUV ratio brain-to-blood was 0.5, which is higher than 0.05,
the approximate cerebral blood volume ratio in whole-brain tissue, and indicates that the
tracer can cross the BBB [109].

Figure 4.7: PET images and radioactivity distribution of [11C]CC11m in a BALB/c mouse
at 4 months of age. Mouse (19.8 g) injected with 9.45 MBq (4.0 nmol/kg) [11C]CC11m. a
PET images (0-60 min p.i., averaged from 0-60 min) superimposed on CT (axial, coronal,
sagittal as indicated). Crosshair indicates image planes. PET, color bar and corresponding
SUV are depicted on the bottom right. b Radioactivity distribution (SUV, left axis;
%ID/g, right axis) after dissection 65 min p.i.. Note that the mouse carried a CT26 tumor
as it was part of a different project (Chapter 2).

4.4 Discussion

In this pilot study, we evaluated the use of APP/PS1 transgenic mice for legumain-targeted
PET. Furthermore, we synthesized the likely BBB-penetrant legumain ligand [11C]CC11m
and assessed its distribution in vivo.

We found that legumain RNA expression was higher in APP/PS1 transgenic mice than
in wild-type controls at 10 months of age. Evidence suggests that legumain expression is
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also elevated in wild-type animals at this age [217]. Using western blotting, we detected
prolegumain (∼ 56 kDa), and one form of active legumain (∼ 46 kDa) in mouse brain
lysates from APP/PS1 transgenic and wild-type mice. The molecular weight of the
identified bands in the experiment is as expected based on the molecular weight of
both legumain species reported in the literature [28, 35]. Visually, the amount of both
prolegumain and active legumain was similar in wild-type and APP/PS1 transgenic mice,
indicating that the ratio of activated legumain to prolegumain is approx. equal. We did
not detect active legumain with a molecular weight of 36 kDa, as reported in mouse brain
tissue from APP/PS1 transgenic mice by other groups [202,218]. For the purpose of this
study, we consider this finding negligible because both 46 kDa and 36 kDa legumain show
identical protease activity [35].

Fluorescence microscopy of APP/PS1 brain slices showed a high abundance of activated
microglia as indicated by IBA1 staining. This is in accordance with the literature according
to which microglia activation is abundant in APP/PS1 mice [137]. The colocalization of
legumain and microglia cells has been observed by others, it remains to be elucidated
whether the legumain clusters in our fluorescence microscopy results are associated with
microglia cells [210].

We found legumain in whole-brain tissue lysates from APP/PS1 mice to cleave
fluorogenic substrate in vitro more efficiently than wild-type muscle tissue lysate from
4-month-old BALB/c mice. This indicates more active legumain in the brain than in
the muscle, potentially translating into a difference in the PET signal. A comparison of
whole-brain tissue lysates from APP/PS1 mice and wild-type mice was not conducted,
because no difference was expected based on the western blot. Using the experimentally
determined Bmax (149.5 nM) and the estimated Ki of CC11m (89.3 nM), we calculated
the binding potential according to Equation 4.1. The calculation resulted in a BP of 1.67,
which is rather low compared to established neuroimaging PET tracers [56].

The PET scan with a 4-month-old BALB/c mouse showed high uptake in liver and
kidneys. The biodistribution after dissection also revealed high uptake in the spleen which,
together with the kidney, is among the organs with the highest legumain expression [27].
From the image, the brain signal of [11C]CC11m is as high as in the muscle, indicating
brain uptake. However, brain uptake could better be investigated using a mouse model
with higher legumain expression in the brain.

Assessing the compound metabolization would be a crucial next step in the development
of the legumain-targeting tracer. Finally, compound 11 binds allosterically in addition to
binding to the active site [217]. An ideal tracer would bind exclusively to active legumain
to avoid a dilution effect, as only the active form possesses the disease relevant protease
activity and is present in significantly lower quantities than prolegumain [35]. To alleviate
this problem, further developments in legumain PET neuroimaging might build upon
BBB-penetrant P1-Asn peptidomimetics, which are specific for the active site of legumain
and have strong affinity [101].

4.5 Conclusions

We investigated the use of tracer [11C]CC11m with nanomolar binding affinity for in vivo
PET imaging of legumain in APP/PS1 transgenic mice. While APP/PS1 transgenic mice
express legumain in its active form in the brain, it is unclear as to whether the expression
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is high enough to be detected with PET. While there is tracer uptake in the brain, the
weak affinity in conjunction with the estimated Bmax yields a BP close to 1, which is too
low for PET imaging. Increasing tracer affinity and potentially adopting an animal model
with a higher Bmax would be paramount for the further studies. To specifically target
active legumain, the development of a BBB-penetrant legumain PET tracer based on
P1-Asn peptidomimetics would be more promising.
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CHAPTER 5 5.1 Background

5.1 Background

Cancer is among the principal causes of death in the developed world [49]. In recent
decades, cancer therapy has shifted from exclusively targeting the tumor cells to leveraging
the cells in the tumor microenvironment (TME). So-called immune checkpoint inhibitors
(ICIs) block co-inhibitory signals on cancer-killing T cells, thereby enabling the immune
system to attack the tumor [189]. The two T cell surface proteins cytotoxic T lymphocyte
antigen-4 (CTLA-4) and programmed cell death 1 (PD-1) along with its ligand PD-L1
are the targets of ICI therapy. CTLA-4 negatively regulates the activation of T cells
through competing with CD28 for the co-stimulatory ligands CD80 and CD86 on antigen
presenting cells [46,149]. PD-1 binds to PD-L1 and PD-L2, thereby inhibiting T cell activity.
Consequently, CTLA-4 and PD-1 can cause T cell exhaustion and dormancy [167,189].
Ipilimumab, a first-of-its-kind human anti-CTLA-4 monoclonal antibody, gained market
approval from the FDA in 2011 for the treatment of melanoma [198]. In long-term studies,
22 % of treated patients with advanced melanoma benefited from a minimum extension
of life span of 3 years [172]. In 2014, two fully human anti-PD1 mAbs pembrolizumab
and nivolumab became the first FDA-approved anti-PD1 drugs [62]. Nivolumab improved
survival from 42.1 % to 72.9 % in a group of patients in comparison to chemotherapy with
dacarbazine [206]. Pembrolizumab administered to non-small-cell lung carcinoma patients,
provided a 4.3-month increase in progression-free survival compared with platinum-
based tumor therapy [164]. However, inconsistent responses to ICI therapy remain a
persistent challenge. The overall response rate for various ICIs is ∼ 11 %, with patients
generally maintaining their level of responsiveness throughout the treatment process [33].
Combination therapies increase response rates to levels exceeding 60 %. Unfortunately,
the therapeutic success of such combination regimens is accompanied by toxicity-related
adverse effects [105,154]. A deeper understanding of the factors influencing ICI response
and adverse effect profiles may enable practitioners to refine therapies, thereby improving
response rates and mitigating adverse effects.

CD80, expressed on antigen presenting cells, plays a key role in ICI therapy through
its interaction with CD28 and CTLA-4. Furthermore, CD80 can dimerize with PD-L1,
extending the potential use to PD-1 targeting ICIs [221]. Clinically, high CD80 expression
has been associated with high survival rates in nasopharyngeal carcinoma and was more
frequently found in primary lesions compared to metastases of gastric carcinomas [26,100].
In recent years, several studies have identified CD80 as a biomarker for disease progression
and treatment response [7, 48, 171]. CD80 expression level detection is nonetheless absent
in current clinical practice. The clinical need for standardized methods to monitor the
expression and dynamics of such predictive biomarkers, has prompted the development of
non-invasive imaging methods [103,113].

Single-photon emission computed tomography (SPECT) imaging provides a non-
invasive tool to detect and monitor the expression of CD80 in patients prior to treatment
start and throughout the ICI therapy. In the past, our group has conducted proof-of-
concept studies to image CD80/CD86 using 111In-labeled belatacept in atherosclerosis, as
well as 64Cu-labeled abatacept in lipopolysaccharide-induced inflammation [126,187]. Both
abatacept and belatacept are fusion proteins that consist of the Fc region of immunoglobulin
IgG1 linked to the extracellular domain of CTLA-4 [1,2]. These molecules were specifically
designed for therapeutic use, relying on a long plasma half-life, which is unsuitable for
imaging purposes. Furthermore, CTLA-4-linked proteins bind to CD86 in addition to
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CD80.

To address these shortcomings, we developed the small recombinant protein CACM-1
based on the extracellular domain of CTLA-4, devoid of the Fc region and introduced
point mutations to improve the affinity and selectivity toward CD80 [24, 37]. In addition,
we developed a dimeric version of CACM-1, termed CACM-2 (Figure 5.1). Both proteins
were labeled with 99mTc for SPECT imaging. Herein, we present a detailed in vivo study
of 99mTc-labeled CACM-1 and CACM-2. We performed SPECT scans of CT26 mouse
colon carcinoma-bearing mice, which express CD80, with 99mTc-labeled CACM-1 and
CACM-2 and monitored the biodistribution of the radiotracers.

Figure 5.1: a Fc-fused, potency-optimized CTLA-4 moieties (green) [37]. b Affinity-
and selectivity-improved, His6-tagged (red) small recombinant protein CACM-1 (green,
monomer) and c CACM-2 (green, dimer).

5.2 Methods

5.2.1 Cell culture

The murine colon carcinoma cell line CT26.WT (ATCC CRL-2638) was obtained from
the American Type Culture Collection. The cells were cultured in Roswell Park Memorial
Institute (RPMI) 1640 medium with GlutaMAX-I and 25 mM HEPES (gibco, Life
Technologies, US). Culture medium was supplemented with 10 % fetal calf serum (FCS, Life
Technologies, US), 10 000 U/ml penicillin and streptomycin (PS, gibco, Life Technologies,
US) at 5 % CO2 and 37 °C. At 80-95 % confluence, cells were detached with 0.05 %
trypsin-EDTA solution (gibco, Life Technologies, US) and split 1 to 7 for sub-culture.

5.2.2 Mouse tumor inoculation

Animal studies were approved by the Zurich Cantonal Veterinary Office, Switzerland
(licenses ZH28/2018, ZH28/2022), and conducted in accordance with Swiss Animal
Welfare legislation. Female BALB/c and BALB/c nude mice, obtained from Charles River
Laboratories (Sulzfeld, DE), were housed at 22 °C with a 12-hour light-dark cycle and
had unlimited access to food and water. At the age of 14 weeks, mice were inoculated
subcutaneously in the right shoulder region with either 8 * 105 CT26 cells or 4 * 106

MDA-MB-468 cells re-suspended in 100 µl matrigel (BD Biosciences, US). The studies
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were conducted 7-12 days post CT26 cell inoculation and 15-20 days post MDA-MB-468
cell inoculation when tumors were clearly visible but no larger than 1.76 cm3.

5.2.3 Flow cytometry

CT26 tumors were dissected and washed with PBS, pH 7.4 (gibco, Life Technologies,
US). Tissue was chopped and incubated in 0.1 mg/ml DNAse I (11284932001, Roche,
CH) and 1 mg/ml collagenase IV (1704-019, gibco, US) in PBS at 37 °C, shaking for 2 h.
Tissue was homogenized using a micropipette and forced through a 70 µm cell strainer
(Corning, US). Single cell suspension was spun down at 500 * g for 5 min at 5 °C and
re-suspended in culture medium based on RPMI 1640 with GlutaMAX-I and 25 mM
HEPES (gibco, Life Technologies, US) supplemented with 10 % heat-inactivated FCS
and 10 000 U/ml penicillin and streptomycin (PS, gibco, Life Technologies, US). For
counting, cells were diluted 1:1 with 0.4 % trypan blue solution (gibco, US), transferred
to a counting chamber slide (Thermo Fisher Scientific, US) and inserted in an automated
cell counter (Countess, Thermo Fisher Scientific, US). 100 000 - 400 000 cells per well
were transferred to U-bottom 96-well plates (Greiner, AT) and spun down at 500 * g
for 5 min at 5 °C. After removal of the supernatant, the cells were re-suspended in cell
viability dye (Zombie Aqua, BioLegend, US) 1:1 000 in FACS buffer (2 mM EDTA in PBS
containing 2 % (v/v) FCS) for 15 min and washed with FACS buffer. For fixation, cells
were re-suspended in 1 % paraformaldehyde in FACS buffer and incubated for 10 min at
4 °C. After washing with FACS buffer, cells were re-suspended in Fc receptor blocking
solution (Trustain FcX) 1:500 in FACS buffer followed by 10 min of incubation at 4 °C.
Cells were washed with FACS buffer and incubated in FACS buffer containing antibody
for 45 min at 4 °C. Cells were washed with FACS buffer (2 x) and re-suspended in FACS
buffer. Measurements were performed on a flow cytometer (CytoFLEX S, Beckman
Coulter, US). Compensation beads (UltraComp eBeads Plus, Thermo Fisher Scientific,
US) were used to generate a compensation matrix for the given fluorophores. Isotype
controls, fluorescence-minus-one samples and unstained cells were used to assist gating.
FITC conjugated armenian hamster CD80-targeting antibody (104706, BioLegend, US)
1:500 in FACS buffer was used. Gating and data processing were performed in R using
open-source packages [3, 51–53,66,130,151].

5.2.4 Fluorescence microscopy

Dissected CT26 tumors were embedded in OCT compound mounting medium (Avantor,
US), cut to 10 µm slices with a cryotome, thaw-mounted on microscopy slides and stored
at -80 °C. For fluorescent staining, slices were thawed, left to dry and washed (3 * 5 min)
in phosphate-buffered saline (PBS, gibco, Life Technologies, US). Tissue was encircled
with a hydrophobic pen (Dako, DK) and fixed in 4 % paraformaldehyde in PBS for 10 min.
Tissue was washed (3 * 5 min) in PBS and incubated in 5 % (w/v) powdered, skimmed
milk in PBS on a benchtop rocker for 30 min. All subsequent incubation steps were
performed protected from light on a benchtop rocker. Tissue was washed (3 * 5 min)
in PBS and incubated with primary antibodies in PBS for 120 min. Tissue was washed
w(3 * 5 min) in PBS and incubated with secondary antibodies in PBS for 30 min. Tissue
was washed (3 * 5 min) in PBS and incubated with DAPI (BioLegend, US) 1:2 000 in
PBS for 5 min. Tissue was washed (1 * 5 min) and sections were left to dry for 30 min.
Cover slip was mounted with mounting medium (Mowiol, Kuraray, JP) and left to dry
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for 30 min. Slides were stored at 5 °C for up to 4 weeks prior to image acquisition. For
CD80 staining, rabbit CD80 targeting primary antibody (bs-2211R, Bioss, US) 1:100
and donkey Alexa Fluor 647 IgG secondary antibody (406414, BioLegend, US) 1:500
were used. Slides were scanned with a slide scanner (Pannoramic 250, 3DHistech, HU).
Software provided by the manufacturer was used for image processing (3DHISTECH’s
Slide Converter version 2.3.2 and SlideViewer version 2.6).

5.2.5 Surface plasmon resonance

Binding kinetics were investigated using dextran-treated amine chips on a surface plasmon
resonance (SPR) device (SPR-2, Sierra Sensors, DE). Ligands were immobilized using
immobilization buffer (0.01 % (m/v) Tween-20 in PBS). The chip was equilibrated with
5 injection rounds of 100 mM HCl each followed by immobilization buffer. Activation
of the chip was facilitated using 100 µl freshly prepared 1:1 mixture of 0.5 M 1-ethyl-
3-(3-dimethylaminopropyl)carbodiimide and 0.2 M N -Hydroxysuccinimide. Subsequent
injection of 20-40 µl 100 nM recombinant human CD80, mouse CD80, human CD86 or
mouse CD86 from R&D Sytems (US) resulted in a response unit (RU) change of 150-250.
Injection with 1 M ethanolamine deactivated unreacted chip surface. The protein-coated
chip was kept under continuous flow of running buffer (0.01 % (m/v) Tween-20 in 50 mM
trisaminomethane buffer, pH 7.4). Analytes were diluted with running buffer ∼ 10 000 x.
For the measurement, 100 µl of each dilution was injected with an injection rate of
25 µl/min over 240 s. Non-linear fitting based on Langmuir isotherm (Equation 5.1) and
analysis were performed in R using open-source packages [45,209].

Response =
Responsemax × Concentrationanalyte

KD + Concentrationanalyte
(5.1)

5.2.6 Protein expression and purification

HEK-293 cells were obtained from the German Collection of Microorganisms (DE) and
cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10 % fetal
calf serum (FCS), 2 mM glutamine, 100 units/ml penicillin, 100 µg/ml streptomycin and
0.25 µg/ml fungizone (BioConcept, CH) at 37 °C, 5 % CO2 and 95 % humidity. The
DNA designed (Genewiz, DE) sequence as shown in Figure 5.13 was cloned into the
HindIII/BamHI site of the mammalian expression vector pcDNA3.1(+) (Invitrogen, US)
and transfected in HEK-293 cells. The amino acid sequence with stronger affinity and
selectivity according to [37] is shown in 5.13. Clones were selected with Geneticin [64].
The proteins were separated from the medium using a Vivacell 250 filter with a cut off
10 000 MW (Sartorius DE). The proteins have a His6 tag at the C-terminal end of the
heavy chain for affinity purification via Ni-NTA agarose (Qiagen, NL) that was followed by
size exclusion chromatography using a Superdex 75 column (Cytiva, US). The respective
fractions were collected, pooled and stored at -20 °C. On the day of the experiment, the
proteins were thawed and 10 µl of indicated fractions were analyzed on a 4-15 % gel without
DTT (Figure 5.12). Laemmli buffer was added 1:1 and samples were incubated at 90 °C
for 6 min. PBS was used as the running buffer. CACM-1 and CACM-2 were confirmed by
comparison to a molecular weight marker (Biorad, US). Following confirmation, proteins
were concentrated by ultracentrifugation in 10 000 MW spin columns (Thermo Fisher
Scientific, US) at 2 000 * g for 20 min at 10 °C.
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5.2.7 99mTc production and radiolabeling

Using an established technetium labeling protocol, the His6-tagged recombinant proteins
were radiolabeled with 99mTc(I)-tricarbonyl with molar activity 12.1-28.1 GBq/µmol
[197]. To prepare 99mTc(I)-tricarbonyl, pertechnetate (99mTcO−

4 , 6 ml) eluted from a
commercial generator (37.85 GBq, Mallinckrodt, NL) was added to a tricarbonyl kit
(IsoLink, Mallinckrodt, NL) and heated to 95 °C for 20 min. The colorless, aqueous,
technetium solution (pH 10-11) was brought to pH 6.5 by adding buffer solution (1 M
HCl/0.6 M phosphate, 3/2 (v/v)). To perform the labeling, protein samples in PBS were
mixed with technetium solution and incubated at 37 °C for 1 h. For the quality control,
1 µl labeling mixture was added to 50 µl PBS and analyzed by HPLC. A C18 reverse phase
cartridge (Waters, US), UV detector (280 nm) and radiodetector were used. The mobile
phase consisted of acetonitrile and 0.1 % (v/v) trifluoroacetic acid (TFA) in Milli-Q water.
A solution gradient of 2-80 % acetonitrile and 98-20 % 0.1 % TFA over 5 min was applied.
The flow rate was set to 1 ml/min.

5.2.8 SPECT/CT scans

Tumor-bearing mice were constrained and injected with tracer only (baseline conditions),
and co-injected with 0.3 mg (0.750 µmol/kg, 0.375 µmol/kg) unlabeled reference com-
pound (blocking conditions). Prior to starting the scans, mice were anesthetized with
2 % isofluorane in oxygen/air (1/1). Respiratory rate was kept at ∼ 60 min−1 through
adjustment of isoflurane concentration and body temperature at 37 °C using heated air
throughout the scan. Tracer was injected into tail vein at the indicated time point and
dose. SPECT/CT scans were conducted with a four-head multiplexing multipinhole
camera (NanoSpect/CT, Bioscan, US). The acquisition time per view depended on the
injection-to-scan-time, resulting in varying scan times (Table 5.4). Anatomical information
was obtained by CT following each SPECT acquisition. SPECT data were reconstructed
with HiSPECT software (Scivis GmbH, DE), and images were generated with the Nu-
cline Software (Bioscan, US). Image analysis was performed in python using community
modules [69,82,117,125,212]. All radioactivity was decay-corrected to the time point of
injection to the animal. Note: Scans performed with animals post mortem are listed in
Table 5.4

5.2.9 Biodistribution after dissection

Following PET acquisition, tumor-bearing mice were euthanized through decapitation
under anesthesia. Tissues were dissected and radioactivity determined with a gamma
counter (Packard Cobra II Auto Gamma, PerkinElmer, US). To calculate the standard
deviation of ratios between proteins error propagation according to Equation 5.2 was
applied. Analysis was performed in R using open-source packages [209].

σR =
µA

µB

√
(
σA

µA

)2 + (
σB

µB

)2 (5.2)

5.2.10 Statistical analysis

Statistical differences in radiotracer uptake or SUV ratios were analyzed by two-tailed
paired or unpaired Student’s t test, as indicated. Differences with p < 0.05 were considered
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significant. Average values are shown with standard deviations and/or data range.

5.3 Results

5.3.1 CD80 expression in CT26 tumors

To determine the CD80 expression in CT26 tumors, we performed flow cytometry on cells
isolated from dissected tumors (n = 2). The percentages of CD80+ cells in the two samples
were 2.75 % and 4.00 %, respectively. The gating stategy is depicted in Figure 5.10. To
visualize CD80 expressing cells in the tissue, we performed fluorescence microscopy on
cryosections of CT26 tumors. Images based on whole section scans showed the occurrence
of CD80+ cells sporadically throughout the tissue (Figure 5.2). The negative control
stained with secondary antibody and without primary antibody is shown in Figure 5.11.

5.3.2 Fluorescence microscopy

Figure 5.2: Representative fluorescence microscopy images of a CT26 tumor tissue slice.
Cryosection stained with anti-CD80 primary antibody (purple; immune cells) and DAPI
(blue; nuclei). a Complete section for overview. b Magnification of tumor periphery,
corresponding to the white frame in a.

5.3.3 CACM-1 and CACM-2 radiolabeling with 99mTc

Radiolabeling of CACM-1 and CACM-2 with 99mTc was performed with 99mTc(I)-
tricarbonyl at 37 °C for 1h [197]. The process is depicted in Figure 5.3. Assuming
a molecular weight of 22 kDa (CACM-1) and 44 kDa (CACM-2), the molar activity was in
the range of 12.1-28.1 GBq/µmol. The radiochemical purity for both proteins was above
95 % (Figure 5.15).
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Figure 5.3: Conjugation procedure for 99mTc-CACM-1 and 99mTc-CACM-2.

Table 5.1: Dissociation constant (KD [nM]) of CACM-1 and CACM-2 to mCD80, mCD86,
hCD80 and hCD86. Determined by non-linear fit of SPR data according to Equation 5.1.
One sample each. Non-linear fits are shown in Figure 5.14.

mCD80 mCD86 hCD80 hCD86
CACM-1 45.8 831.8 3.6 62.2
CACM-2 10.3 1526.9 5.2 16.2

5.3.4 Surface plasmon resonance

By introducing point mutations to the CTLA-4 extracellular domain according to [37],
we aimed at improving the affinity of the proteins toward CD80 and simultaneously
weakening the affinity toward CD86. The affinities of CACM-1 and CACM-2 toward
mouse CD80 (mCD80), mouse CD86 (mCD86), human CD80 (hCD80), and human CD86
(hCD86) were determined using surface plasmon resonance (SPR). The data was fitted
to the Langmuir isotherm according to Equation 5.1. The fits as shown in 5.14 and the
resulting KD are listed in Table 5.1. Affinities toward hCD80 were stronger than toward
mCD80 for both proteins. CACM-2 showed a stronger affinity toward mCD86 compared
to CACM-1. CACM-1 had a 18-fold stronger affinity for mCD80 than for mCD86 and a
17-fold stronger affinity for hCD80 than for hCD86. In the case of CACM-1 the affinity
for mCD80 was 148-fold stronger than for mCD86 and 3-fold stronger for hCD80 than for
hCD86.
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Table 5.2: Activity and dose ranges of scanned animals injected with 99mTc-CACM-1
or 99mTc-CACM-2. Molecule, protein injected; Condition, baseline (radiotracer only) or
blocking (co-injection with excess protein); Time point, duration between injection and
scan start; Activity range, range of injected activity in MBq or individual value if n = 1;
Dose range, range of injected dose in nmol/kg or individual value if n = 1; n, number
of animals. Note: Time points in the range 20-24 h are indicated as 24 h. Details on
individual mice are listed in Table 5.4.

Molecule Condition Time point
[h]

Activity range
[MBq]

Dose range
[nmol/kg] n

CACM-1 Baseline 1 26.4 33.92 1
CACM-1 Baseline 4 6.1 - 26.4 7.10 - 37.46 4
CACM-1 Baseline 24 6.1 - 26.4 7.41 - 34.09 3
CACM-1 Block 4 5.4 34.44 1
CACM-1 Block 24 5.4 34.09 1
CACM-2 Baseline 1 22.9 28.56 1
CACM-2 Baseline 4 5.7 - 22.9 9.21 - 28.56 5
CACM-2 Baseline 24 5.7 - 22.9 9.46 - 27.51 3
CACM-2 Block 4 4.1 - 9.7 16.88 - 19.71 2
CACM-2 Block 24 5.1 18.04 1

5.3.5 SPECT with CT26 tumor-bearing mice

With the improved-affinity, 99mTc labeled CACM-1 and CACM-2, we performed SPEC-
T/CT scans in CT26 tumor-bearing mice. The scans were conducted at 1 h, 4 h, and 24 h
post injection (p.i.) of 99mTc-labeled CACM-1 or CACM-2 (baseline conditions). Where
indicated, the tracer injection was accompanied by a 300 µg co-injection of the respective
unlabeled protein (blocking conditions). The injected dose per time point (activity, molar
mass) for both proteins is summarized in Table 5.2. Representative SPECT images of
CT26 tumor-bearing mice injected with 99mTc-CACM-1 and 99mTc-CACM-2 are shown in
Figure 5.4 and 5.5, respectively. All SPECT images are shown in Figure 5.16. From 1 h
onward, there was high accumulation in the kidney and liver. At 4 h, activity accumu-
lated visibly in the tumor. However, 24 h p.i., the activity in the tumor was similar to
background (muscle) level. In the mice co-injected with 300 µg (0.75 µmol/kg) CACM-1,
accumulation in the tumor was comparable to the baseline scans at 4 h and absent at
24 h p.i.. In contrast to 99mTc-CACM-1 injected mice, 99mTc-CACM-2 did not accumulate
in the tumor at any time point (Figure 5.5). The activity was predominantly found in
the liver and kidney. Co-injection of 300 µg (0.325 µmol/kg) CACM-2 did not alter the
biodistribution of the tracer, as determined from the SPECT images. A panel of all scans
is shown in Figure 5.17. Notably, scans at the same time point and comparable injected
activity showed high interindividual heterogeneity in the tumor uptake (Figure 5.16 and
5.17).

5.3.6 Radioactivity distribution in dissected tissues

To further quantify the distribution of 99mTc-CACM-1 and 99mTc-CACM-2, we dissected
the tissues of CT26 tumor-bearing animals 1 h, 4 h and 24 h p.i.. Kidney and liver
tissue were excluded from the analysis due to SUV activity levels (> 50). Each animal
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Figure 5.4: Representative SPECT images of 99mTc-CACM-1 in CT26 tumor-bearing mice
(1, 4 and 24 h p.i., as indicated) superimposed on CT (axial, coronal). Tumors on shoulder
(arrow). a Injected with 99mTc-CACM-1 and b co-injected with CACM-1 (0.75 µmol/kg).
Mouse weights, activity at injection and scan duration: a 20.1 g, 26.4 MBq, 45 min
(33.9 nmol/kg, 1 h); 20.1 g, 6.1 MBq, 40 min (33.9 nmol/kg, 4 h); 20.8 g, 6.1 MBq,
133 min (32.8 nmol/kg, 24 h). b 19.8 g, 5.4 MBq, 40 min (34.4 nmol/kg, 4 h); 20.0 g,
5.4 MBq, 133 min (34.1 nmol/kg, 24 h). SPECT, color bars and corresponding SUV are
depicted at the bottom for each time point. CT, gray scale. SPECT images of all mice
injected with 99mTc-CACM-1 are shown in Figure 5.16.

was injected with 99mTc-labeled protein alone (baseline conditions) or co-injected with
unlabeled protein in excess (blocking conditions). The injected dose per time point
(activity, molar mass) for both proteins is summarized in Table 5.3.

Mice injected with 99mTc-CACM-1 were co-injected with 0.75 µmol/kg CACM-1
under blocking conditions. The results are shown in Figures 5.6 (as SUV) and 5.7 (as
percent injected dose per gram tissue, %ID/g). The SUV tumor-to-muscle ratio remained
consistently above 1 at all time points. Specifically, at 1 h p.i. (3.78 ± 0.75, p = 0.002,
n = 6 each tissue), 4 h p.i. (5.55 ± 0.66, p = 10−6, n = 6 each tissue), and 24 h p.i.
(4.56 ± 0.23, p = 4∗10−4, n = 3 each tissue). Additionally, the mean SUV spleen-to-muscle
ratio at 1 h, 4 h, and 24 p.i., including animals under baseline and blocking conditions
was 4.44 ± 1.48 (p = 10−10, n = 15 each tissue). The mean SUV blood-to-muscle ratio
was 1.51 ± 0.70 (n = 15 each tissue) and not significantly different from 1.

In the case of 99mTc-CACM-2, the mice were co-injected with 0.325 µmol/kg CACM-2
under blocking conditions. The results are shown in Figures 5.8 (as SUV) and 5.9 (as
percent injected dose per gram tissue, %ID/g). The SUV tumor-to-muscle ratio was
3.03 ± 0.68 at 1 h p.i. (p = 0.001, n = 7 each tissue), 4.86 ± 1.36 at 4 h p.i. (p = 0.003,
n = 6) and 5.56 ± 1.05 at 24 h p.i. (p = 0.005, n = 3 each tissue) and thus similar to
99mTc-CACM-1.
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Figure 5.5: Representative SPECT images of 99mTc-CACM-2 in CT26 tumor-bearing mice
(1, 4 and 24 h p.i., as indicated) superimposed on CT (axial, coronal). Tumors on shoulder
(arrow). a Injected with 99mTc-CACM-2 and b co-injected with CACM-2 (0.325 µmol/kg).
Mouse weights and activity at injection and scan duration: a 18.3 g, 22.9 MBq, 45 min
(28.6 nmol/kg, 1 h); 18.8 g, 5.7 MBq, 40 min (18.1 nmol/kg, 4 h); 18.3 g, 5.7 MBq,
116 min (18.6 nmol/kg, 24 h). b 17.3 g, 4.1 MBq, 40 min (19.7 nmol/kg, 4 h); 18.9 g,
5.1 MBq, 133 min (18.0 nmol/kg, 24 h). SPECT, color bars and corresponding SUV are
depicted at the bottom for each time point. CT, gray scale. SPECT images of all mice
injected with 99mTc-CACM-2 are shown in Figure 5.17.

The SUV spleen-to-tumor ratio of 99mTc-CACM-2 (2.94 ± 0.64, n = 16) was higher
(p = 2 ∗ 10−10) than in 99mTc-CACM-1 (0.96 ± 0.27, n = 15) including all time points and
baseline as well as blocking conditions. Similarly, the mean SUV blood-to-muscle ratio
was higher (p = 8 ∗ 10−7) in 99mTc-CACM-2 (7.66 ± 3.15, n = 16) than in 99mTc-CACM-1
(1.51 ± 0.70, n = 15) when all time points and baseline as well as blocking conditions
were included.

Blocking the respective tracer in excess had no significant impact on the SUV at the
tested time point (4 h, n = 3 each).
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Table 5.3: Activity and dose ranges of animals injected with 99mTc-CACM-1 or 99mTc-
CACM-2 and subsequently dissected to determine the activity distribution. Molecule,
protein injected; Condition, baseline (radiotracer only) or blocking (co-injection with
excess protein); Time point, duration between injection and euthanasia; Activity range,
range of injected activity in MBq or individual value if n = 1; Dose range, range of injected
dose in nmol/kg or individual value if n = 1; n, number of animals. Details on individual
mice are listed in Table 5.4. Note: Time points in the range 20-24 h are indicated as 24 h.

Molecule Condition Time point
[h]

Activity range
[MBq]

Dose range
[nmol/kg] n

CACM-1 Baseline 1 3.2 - 6.5 32.62 - 38.96 6
CACM-1 Baseline 4 6.0 - 6.7 33.92 - 36.27 3
CACM-1 Baseline 24 5.5 - 6.5 37.88 - 38.52 3
CACM-1 Blocking 4 5.9 - 6.1 36.27 - 39.41 3
CACM-2 Baseline 1 2.6 - 6.5 16.88 - 18.83 6
CACM-2 Baseline 4 6.3 - 6.6 18.13 - 19.48 3
CACM-2 Baseline 24 6.1 - 6.2 17.94 - 19.82 3
CACM-2 Blocking 1 3.0 17.22 1
CACM-2 Blocking 4 5.2 - 5.7 18.04 - 18.23 3
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Figure 5.6: Biodistribution (SUV) of 99mTc-CACM-1 after dissection at 1 h (a), 4 h (b),
and 24 h (c) p.i. of CT26 tumor-bearing mice. Mice studied by SPECT at 4 h and 24 h
p.i. (Figure 5.4) were included. Blue bars, baseline conditions (tracer only). Red bars,
blocking conditions (tracer co-administered with 0.75 µmol/kg CACM-1). Significance
between each tissue and muscle with combined baseline and blocking SUV compared using
student’s paired t tests with Bonferroni correction is indicated by asterisks. Significance
between baseline and blocking SUV using student’s unpaired t tests without corrections
for multiple comparisons is indicated by crosses. Error bars, SD; *, p ≤ 0.05; **, p ≤ 0.01;
***, p ≤ 0.001; ****, p ≤ 0.0001; x, p ≤ 0.05; xx, p ≤ 0.01; a, n = 6; b, n = 3 (baseline),
n = 3 (blocking); c, n = 3. SUV, standardized uptake value. The same data is expressed
as %ID/g in Figure 5.7. Note: Kidney and liver SUV were > 50 and not included in the
plots.
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Figure 5.7: Biodistribution (%ID/g) of 99mTc-CACM-1 after dissection at 1 h (a), 4 h (b),
and 24 h (c) p.i. of CT26 tumor-bearing mice. Mice studied by SPECT at 4 h and 24 h
p.i. (Figure 5.4) were included. Blue bars, baseline conditions (tracer only). Red bars,
blocking conditions (tracer co-administered with 0.75 µmol/kg CACM-1). Error bars, SD;
%ID/g, percentage of injected dose per gram tissue. The same data is expressed as SUV
in Figure 5.6. For significance see Figure 5.6. Note: Kidney and liver %ID/g were > 50
and not included in the plots.
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Figure 5.8: Biodistribution (SUV) of 99mTc-CACM-2 after dissection at 1 h (a), 4 h (b),
and 24 h (c) p.i. of CT26 tumor-bearing mice. Mice studied by SPECT at 4 h and 24 h
p.i. (Figure 5.4) were included. Blue bars, baseline conditions (tracer only). Red bars,
blocking conditions (tracer co-administered with 0.325 µmol/kg CACM-2). Significance
between each tissue and muscle with combined baseline and blocking SUV compared using
student’s paired t tests with Bonferroni correction is indicated by asterisks. Significance
between baseline and blocking SUV using student’s unpaired t tests without corrections
for multiple comparisons is indicated by crosses. Error bars, SD; *, p ≤ 0.05; **, p ≤ 0.01;
***, p ≤ 0.001; ****, p ≤ 0.0001; x, p ≤ 0.05; a, n = 6 (baseline), n = 1 (blocking); b,
n = 3 (baseline), n = 3 (blocking); c, n = 3. SUV, standardized uptake value. The same
data is expressed as %ID/g in Figure 5.9. Note: Kidney and liver SUV were > 50 and
not included in the plots.
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Figure 5.9: Biodistribution (%ID/g) of 99mTc-CACM-2 after dissection at 1 h (a), 4 h (b),
and 24 h (c) p.i. of CT26 tumor-bearing mice. Mice studied by SPECT at 4 h and 24 h
p.i. (Figure 5.4) were included. Blue bars, baseline conditions (tracer only). Red bars,
blocking conditions (tracer co-administered with 0.325 µmol/kg CACM-2). Error bars,
SD; %ID/g, percentage of injected dose per gram tissue. The same data is expressed as
SUV in Figure 5.8. For significance see Figure 5.8. Note: Kidney and liver SUV were
> 50 and not included in the plots.

5.4 Discussion

We have used the two novel proteins CACM-1 and CACM-2, previously developed by our
group, for 99mTc SPECT imaging of CD80-expressing immune cells in CT26 tumor-bearing
mice. Both proteins had yielded promising results in vitro [24]. CACM-1 and CACM-2
possessed strong affinity toward CD80 and selectivity over CD86. The SPECT scans
and ex vivo biodistribution showed accumulation in the tumor compared to muscle tissue.
However, other tissues were similarly high and administering unlabeled protein in excess
did not alter the SUV. We confirmed the presence of CD80-expressing cells in CT26
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tumors, as reported before by our group, by immunohistochemistry and flow cytometry.

Both proteins exhibited high renal and hepatic uptake. The His6 tag used for protein
purification and labeling in CACM-1 and CACM-2 has been shown to increase liver uptake
in SPECT imaging tracers [79]. The small size of CACM-1 and CACM-2 (22 kDa and
44 kDa, respectively) might also contribute to the high kidney uptake due to excretion
and reabsorption in the proximal tubules as it is commonly observed with such antibody
fragments [196]. In contrast, negligible kidney uptake was reported for 64Cu-abatacept,
with a molecular weight of 92 kDa [1,24].

While a SUV tumor-to-muscle ratio of > 3 across time points and for both 99mTc-
CACM-1 and 99mTc-CACM-2 is indicative of successful CD80-targeting, the inability to
block the 99mTc-labeled proteins with unlabeled proteins in excess opens up the question of
binding specificity. One reason might be a high expression of CD80 leading to the inability
of the unlabeled protein to block the labeled protein at the target site. This explanation
cannot be ruled out due to the small amount of blocker (∼ 20 times more unlabeled than
labeled tracer). Determining the total density of receptors (Bmax) experimentally would
be necessary to elucidate this finding.

Moreover, the enhanced permeability and retention (EPR) effect, which suggests an
increased and non-specific accumulation of macromolecules in tumor tissue, might be
involved [124]. An increased SUV blood-to-muscle ratio in 99mTc-CACM-2 compared to
99mTc-CACM-1 indicates impaired extravasation in the case of 99mTc-CACM-2 possibly
due to the larger size.

Another explanation for the weak signal might be the molar activity range of 12.1-
28.1 GBq/µmol, which led to small amounts of injected activity and in turn high scattering
in SPECT, especially at 24 h p.i.. Low molar activity has been identified as an issue by
others performing biomolecule-based 99mTc imaging [21].

99mTc is a widely used radionuclide for SPECT imaging and can be obtained from a
99Mo/99mTc generator [89]. Our straightforward radiolabeling procedure makes use of the
purification His6 tag that is present CACM-1, CACM-2, and many other recombinantly
produced proteins [78]. For 99mTc-CACM-1, the highest SUV tumor-to-muscle ratio was
reached 4 h p.i., putting it in alignment with the half life of 99mTc, which is ∼ 6 h [16].
Despite these promising results, low tumor uptake, high kidney and hepatic uptake and
the inability to block the tracer with unlabeled protein in excess, prompt the need for
further optimization of the proteins.

5.5 Conclusions

The CT26 tumor model provides a suitable platform for the in vivo evaluation of CD80-
targeting proteins. The proteins CACM-1 and CACM-2 labeled with 99mTc can be used
for SPECT imaging of CD80-expressing immune cells. The high SUV tumor-to-tissue
ratio of 99mTc-CACM-1 renders it a more suitable candidate for further development than
99mTc-CACM-2. Further studies are needed to assess the binding specificity of the proteins
and to optimize the biodistribution profile.
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5.6 Supplementary material

5.6.1 Flow cytometry

Figure 5.10: Flow cytometry gating strategy of CT26 cells isolated from dissected tumors
or cultured in vitro. Unstained, unstained CT26 tumor cells exhibit no fluorescent dye
labeling; FMO, CT26 tumor cells stained solely with a viability dye; Tumor cells, CT26
tumor cells stained with both a viability dye and anti-CD80 antibody; Cultured cells,
cultured CT26 cells stained with both a viability dye and anti-CD80 antibody. Debris
Gate, based on k-means clustering of data points in channels FSC-A vs. SSC-a, data
points within the red circle are identified as cells. Singlet Gate, based on linear correlation
of data points in channels FSC-A vs. FCS-H, cells within the red parallelogram are
identified as individual, single cells. Live Cell Gate, based on minimum between two
Zombie Aqua channel intensity histogram maxima, single cells to the left of red separating
line are identified as viable. CD80+ Gate, based on minimum between two CD80 channel
intensity histogram maxima, viable cells to the right of red separating line are classified
as CD80-expressing immune cells.
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5.6.2 Fluorescence microscopy

Figure 5.11: Representative fluorescence microscopy images of a CT26 tumor tissue slice.
Cryosection stained with Alexa Fluor 647 IgG secondary antibody (purple) and DAPI
(blue; nuclei). a Complete section for overview. b Magnification of tumor periphery,
corresponding to the white frame in a.

5.6.3 Protein production and purification

Figure 5.12: Analysis of products CACM-1 and CACM-2. a Fractionation SEC chro-
matogram with indication of fractions used for down-stream processing. A, CACM-2; B,
CACM-1. The fractions were pooled and analyzed by SDS-PAGE. Note: Ticklabels were
added after the chromatogram was recorded to improve readability. b SDS-PAGE gel of
the pooled fractions right before radiolabeling. Lanes B, CACM-1; Lanes A, CACM-2.
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Figure 5.13: Amino acid sequence of CACM-1 and CACM-2. The signaling peptide is
highlighted.

5.6.4 SPR

Figure 5.14: Analyte concentration vs. SPR response of CACM-1 and CACM-2 to
mouse CD80 (mCD80), mouse CD86 (mCD86), human CD80 (hCD80) and human CD86
(hCD86). Symbols, data points; solid lines, non-linear fits; dotted lines, minimum and
maximum response. Note: Each data point represents one measurement.
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5.6.5 RP HPLC chromatograms

Figure 5.15: Reverse phase HPLC chromatograms of 99mTc-CACM-1 and 99mTc-CACM-
2. UV signal measured at 280 nm. Retention time and, where applicable, % area were
determined. a, 99mTc-CACM-1 2.07 min (97.75 %). b, 99mTc-CACM-2 2.10 min (95.00 %).
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5.6.6 SPECT scans

Figure 5.16: SPECT images of 99mTc-CACM-1 in CT26 tumor-bearing mice (1, 4 and
24 h p.i., as indicated) superimposed on CT (axial, coronal, saggital). CT26 tumors on
shoulder. Baseline condition, mouse injected with 99mTc-CACM-1. Blocking condition,
tracer co-injected with 0.75 µmol/kg CACM-1. Crosshairs indicate image planes (in tumor
region). PET, color bar for the corresponding SUV; CT, gray scale. MBq, activity at
injection in MBq; BWg, body weight in g; Start_min, start of the scan after injection in
min.
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Figure 5.17: SPECT images of 99mTc-CACM-2 in CT26 tumor-bearing mice (1, 4 and
24 h p.i., as indicated) superimposed on CT (axial, coronal, saggital). CT26 tumors on
shoulder. Baseline condition, mouse injected with 99mTc-CACM-2. Blocking condition,
tracer co-injected with 0.325 µmol/kg CACM-2. Crosshairs indicate image planes (in
tumor region). PET, color bar for the corresponding SUV; CT, gray scale. MBq, activity
at injection in MBq; BWg, body weight in g; Start_min, start of the scan after injection
in min.
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5.6.7 Detailed information on mice

Table 5.4: Detailed information on mice that were summarized in Table 5.2 and 5.3. ID,
unique identifier; Molecule, protein injected; Condition, baseline (radiotracer only) or
blocking (radiotracer with excess protein); Time point, duration between injection and
scan start or euthanasia in case of biodistribution; Activity, injected activity in MBq;
Dose, injected dose in nmol/kg; Scan duration, duration of the scan in min; Experiment,
type of experiment (SPECT or biodistribution).

ID Molecule Condition Time point
[min]

Activity
[MBq]

Dose
[nmol/kg]

Scan duration
[min] Experiment

1077 CACM-1 Baseline 60 26.4 33.92 45 SPECT
1078 CACM-2 Baseline 60 22.9 28.56 45 SPECT
1079 CACM-1 Baseline 240 26.4 33.92 45 SPECT
1080 CACM-2 Baseline 240 22.9 28.56 45 SPECT
1081 CACM-1 Baseline 240 10.4 7.10 45 SPECT
1082 CACM-2 Baseline 240 22.9 9.21 45 SPECT
1083 CACM-1 Baseline 1200 26.4 34.09 60 SPECT
1084 CACM-2 Baseline 1200 22.9 27.51 67 SPECT
1085 CACM-1 Baseline 1200 10.4 7.41 112 SPECT
1086 CACM-2 Baseline 1320 22.9 9.46 60 SPECT
1087 CACM-1 Baseline 240 15.9 37.46 40 SPECT
1088 CACM-2 Baseline 240 19.8 16.55 45 SPECT
1089 CACM-2 Baseline 240 16.8 17.57 45 SPECT
1094 CACM-2 Blocking 240 9.7 16.88 45 SPECT
1278 CACM-1 Baseline 240 6.1 33.92 40 SPECT
1279 CACM-1 Blocking 240 5.4 34.44 40 SPECT
1280 CACM-2 Baseline 240 5.7 18.13 40 SPECT
1281 CACM-2 Blocking 240 4.1 19.71 40 SPECT
1282 CACM-1 Baseline 1440 6.1 32.78 133 SPECT
1283 CACM-1 Blocking 1440 5.4 34.09 133 SPECT
1284 CACM-2 Baseline 1440 5.7 18.63 116 SPECT
1285 CACM-2 Blocking 1440 5.1 18.04 133 SPECT
1_1 CACM-1 Baseline 60 6.1 35.89 not applicable Biodis
1_2 CACM-1 Baseline 60 6.5 32.62 not applicable Biodis
1_3 CACM-1 Baseline 60 6.1 37.46 not applicable Biodis
2_1 CACM-1 Baseline 240 6.7 33.92 not applicable Biodis
2_2 CACM-1 Baseline 240 6.5 34.61 not applicable Biodis
2_3 CACM-1 Baseline 240 6.0 36.27 not applicable Biodis
3_1 CACM-1 Blocking 240 6.1 36.86 not applicable Biodis
3_2 CACM-1 Blocking 240 6.0 36.27 not applicable Biodis
3_3 CACM-1 Blocking 240 5.9 39.41 not applicable Biodis
4_1 CACM-1 Baseline 1440 6.5 38.52 not applicable Biodis
4_2 CACM-1 Baseline 1440 6.5 37.88 not applicable Biodis
4_3 CACM-1 Baseline 1440 5.5 38.09 not applicable Biodis
5_1 CACM-2 Baseline 60 6.5 17.13 not applicable Biodis
5_2 CACM-2 Baseline 60 6.3 18.83 not applicable Biodis
5_3 CACM-2 Baseline 60 6.3 17.85 not applicable Biodis
6_1 CACM-2 Baseline 240 6.6 19.48 not applicable Biodis
6_2 CACM-2 Baseline 240 6.5 18.13 not applicable Biodis
6_3 CACM-2 Baseline 240 6.3 18.63 not applicable Biodis
7_1 CACM-2 Blocking 240 5.2 18.04 not applicable Biodis
7_2 CACM-2 Blocking 240 5.3 18.23 not applicable Biodis
7_3 CACM-2 Blocking 240 5.7 18.04 not applicable Biodis
8_1 CACM-2 Baseline 1440 6.1 17.94 not applicable Biodis
8_2 CACM-2 Baseline 1440 6.2 18.83 not applicable Biodis
8_3 CACM-2 Baseline 1440 6.1 19.82 not applicable Biodis
9_1 CACM-2 Baseline 60 2.6 18.23 not applicable Biodis
9_2 CACM-2 Baseline 60 3.1 17.57 not applicable Biodis
9_3 CACM-2 Baseline 60 3.0 16.88 not applicable Biodis
12_1 CACM-2 Blocking 60 3.0 17.22 not applicable Biodis
10_1 CACM-1 Baseline 60 3.4 35.51 not applicable Biodis
10_2 CACM-1 Baseline 60 3.3 38.96 not applicable Biodis
10_3 CACM-1 Baseline 60 3.2 36.46 not applicable Biodis
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6.1 Background
Preclinical experiments are an essential part of PET tracer development. Autoradiography
has long been used to evaluate the specificity and distribution of tracers ex vivo and in
vitro [106]. To investigate tracer binding on a cellular level, microautoradiography can be
used in parallel with immunohistochemical (IHC) methods well established in molecular
biology. This can yield valuable information about the types of cells the tracer colocalizes
with [158]. However, the two methods remain separate because the respective samples are
differently prepared and comparison is thus limited.

In 2012, single-cell uptake of [18F]fluorodeoxyglucose (FDG) was studied in vitro
using a novel method termed radioluminescence microscopy (RLM) [157]. The original
setup consisted of human ovarian cancer cells growing on a CdWO4 scintillator plate and
installed on a light-sensitive microscope. The γ-rays resulting from the annihilation of the
emitted β-particles by the FDG would cause radioluminescence, i.e. produce visible light.
The scintillator was used to further reduce the travel distance of β-particles. The light
would be detected by the microscope, focusing on the scintillator surface [157]. RLM has
been used in combination with fluorescence imaging in several studies [91, 92,157].

The technique has since successfully been used and optimized in multiple in vitro
studies and could be applied to other common PET isotopes such as 11C , 68Ga, 64Cu and
124I. [59, 94, 96,155,156,176–178]. Furthermore, direct comparisons of ex vivo tissue from
mice injected with 89Zr-rituximab using storage-phosphor autoradiography and RLM have
indicated superior resolution in RLM [136]. More recently, an RLM-based method was
used to study patient-derived tumor organoids and correlate FDG uptake, live-dead stains
and hematoxylin and eosin stains [92]. These examples show the versatility of RLM and
its potential in augmenting established methods.

In preclinical tracer development, the combination of RLM with fluorescence mi-
croscopy specifically, would allow for a more comprehensive analysis of tracer binding
and distribution on a cellular level. Cell-type specific tracer binding is crucial for the
development of tracers in applications like immunoPET, where markers are expressed by
a subpopulation of cells in the target tissue [208]. In current practice, the study of tracers
in the context of other targets simultaneously under a fluorescence-capable microscope,
requires the tracer to be fluorescently labeled. Antibodies and antibody fragments used
as tracers for immunoPET can often be coupled to a fluorescent dye for colocalization
studies. However, the coupling may be challenging and the resulting change in structure
could influence the PKPD properties of the tracer. Furthermore, commercially available,
fluorescently labeled antibodies typically lack a metal chelator for radiolabeling, which can
lead to a disparity between the tracer and the antibody used for fluorescence imaging [170].
Labeling small molecule tracers with fluorescent dyes is even more problematic, due to
the large size of fluorescent dyes relative to the molecule [63]. Combining the PET tracer
per se with fluorescently labeled antibodies specific for other targets of interest in the
same RLM session circumvents these issues.

In this proof-of-concept study, we aim to show that RLM can be included in a standard
IHC staining workflow with the goal of contemporaneous image acquisition of tracer
and IHC stain. A conceptual sketch is shown in Figure 6.1. We fluorescently labeled
mouse colon carcinoma (CT26) tissue cryosections with a PE/Cy5 conjugated anti-F4/80
antibody and subsequently incubated the tissue with CD80-targeting 64Cu-NODAGA-
abatacept [187]. F4/80 is a macrophage specific marker and CD80 is differentially expressed
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on various immune cells including macrophages. We acquired radioluminescence and fluo-
rescence images of the stained tissues concurrently using a light-sensitive bioluminescence
microscope and qualitatively assessed colocalization of the two markers. Furthermore, we
explore the setup of an affordable, lensless RLM instrument for future studies [97].

Figure 6.1: Conceptual sketch of the combined radioluminescence and fluorescence mi-
croscopy setup. A tissue slice is stained with one or more fluorescent antibodies and
subsequently incubated with a radiolabeled tracer. The tissue is then imaged with a
microscope capable of low-light image acquisition (for RLM) and fluorescence imaging.

6.2 Methods

6.2.1 Cell culture

The murine colon carcinoma cell line CT26.WT (ATCC CRL-2638) was obtained from
the American Type Culture Collection. The cells were cultured in Roswell Park Memorial
Institute (RPMI) 1640 medium with GlutaMAX-I and 25 mM HEPES (gibco, Life
Technologies, US) supplemented with 10 % fetal calf serum (FCS, Life Technologies, US),
10 000 U/ml penicillin and streptomycin (PS, gibco, Life Technologies, US) at 5 % CO2

and 37 °C. At 80-95 % confluence, cells were detached with 0.05 % trypsin-EDTA solution
(gibco, Life Technologies, US) and split 1 to 7 for sub-culture.

6.2.2 Mouse tumor inoculation

Animal studies were approved by the Zurich Cantonal Veterinary Office, Switzerland
(license ZH28/2018), and conducted according to Swiss Animal Welfare legislation. Female
BALB/c mice (Charles River Laboratories, Sulzfeld, DE) were housed at 22 °C with a
12-hour light-dark cycle and unlimited access to food and water. At the age of 14 weeks,
the mice were inoculated subcutaneously in the right shoulder region with 8 * 105 CT26
cells re-suspended in 100 µl Matrigel (BD Biosciences, US). Tumors where excised 7-12
days after CT26 cell inoculation when tumors were clearly visible but no larger than
1.76 cm3. Animals were decapitated under anesthesia prior to dissection.
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6.2.3 64Cu production, abatacept chelator conjugation and label-
ing

64Cu was produced via the 64Ni(p,n)64Cu nuclear reaction. Abatacept (Bristol-Myers
Squibb, US) conjugated with p-SCN-Benzyl-NODAGA (CheMatech MDT, France) was
added to a 1:1 mix of ammonium acetate buffer (0.5 M, pH 5.5) and 64CuCl2 (1093 MBq)
in 400 µl 0.1 M HCl and incubated at 37 °C for 30 min [34]. The resulting molar activity of
64Cu-NODAGA-abatacept was 45.2 ± 1.0 GBq/µmol. For quality control, the mixture was
diluted with phosphate-buffered saline (PBS, gibco, Life Technologies, US) and analyzed
by HPLC with a H2O/MeOH gradient as mobile phase. A C18 reverse phase cartridge
(Waters, US), UV detector (280 nm) and radiodetector were used.

6.2.4 IHC workflow integrated with RLM

Dissected CT26 tumors were embedded in OCT compound mounting medium (Avantor,
US), cut to 10 µm slices with a cryotome, thaw-mounted on cover slips (porcine skin
gelatin coated) and stored at -80 °C. Slices were thawed, treated with acetone (2 min),
methanol (5 min) and washed (3 * 5 min) with PBS. The dried tissue was encircled with
a hydrophobic pen (Dako, DK) and incubated with immunomix containing 1 % donkey
serum, 1 % BSA, 0.05 % sodium azide and 0.1 % Triton X-100 in PBS for 1 h. All
subsequent incubation steps were performed protected from light on a benchtop rocker.
Tissue was washed (3 * 5 min) in PBS and incubated with PE/Cy5 conjugated rat
anti-mouse F4/80 antibody (123111, Biolegend, US) 1:100 in PBS for 4 h at 4 °C. The
tissue was washed (3 * 5 min) in PBS, 64Cu-NODAGA-abatacept in a volume of 100 µl
was added and followed by a 20 min incubation. The tissue was washed (3 * 5 min)
and left to dry for ∼ 10 min. The 10 x 10 x 0.5 mm CdWO4 scintillator plates (MTI
Corporation, US) were mounted with mounting medium (Mowiol, Kuraray, JP) on the
tissue. Images were acquired on an bioluminescence microscope (LV200, Olympus, JP).
Image processing was done with open-source imaging software [173].

6.3 Results

The workflow for the combined RLM and IHC staining method is shown in Figure 6.2.
In brief, tumors were excised from CT26 tumor-bearing mice and cryosectioned. The
sections were mounted on a cell-adherence-treated cover slip. A standard IHC protocol
with PE/Cy5 conjugated F4/80 antibody (1:100) was followed by the addition of 64Cu-
NODAGA-abatacept. The slices were then imaged using a light-sensitive bioluminescence
microscope. A detailed description of the IHC workflow integrated with RLM can be
found in Section 6.2.4. The experiment was conducted in three different locations spanning
two days. First, cryosections were prepared at ETH in Zürich, then IHC and radiotracer
staining followed at PSI in Villigen and finally, the RLM imaging was conducted over 2
days at the Bioimaging Center of the University of Geneva. Samples were measured to
ensure the radio activity was below the legally allowed maximum for transfer using public
transport.

Three different concentrations of abatacept were used for the experiments. The
measured activity, abatacept concentration, abatacept-to-radionuclide-ratio and molar
activity prior to adding the solution to the tissue are shown in Table 6.1. The activity
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Figure 6.2: Overview of IHC staining workflow integrated with RLM.

measured on the slides after incubation with the radiotracer was < 0.4 MBq for each slide.
The bright-field, radioluminescence and fluorescence images are shown in Figures 6.3, 6.4
and 6.5.

Table 6.1: Conditions of radiotracer incubation with CT26 tissue cryosections.

Measured activity
[MBq]

Abatacept conc.
[uM]

Abatacept-to-
radionuclide-ratio

Molar activity
[GBq/µmol]

44.86 10 183 44.60
23.44 5 201 46.36
4.71 1 201 44.50

The fluorescence images are brighter in the center than on the image edge and had
high background signal. To evaluate the difference in the radioluminescence signal due
to different 64Cu-NODAGA-abatacept concentrations, we compared regions in the core
of the tissue, that were incubated with either 10 µM or 1 µM tracer (Figure 6.3) and
acquired radioluminescence images with 20 s exposure time. The signal of these regions
∼ 1 d after incubation was comparable in the fluorescence images, but visibly weaker in
the 1 µM compared to the 10 µM 64Cu-NODAGA-abatacept sample.

The tissue boundaries as defined by the bright-field images, were clearly visible in the
fluorescence and radioluminescence (10 s exposure) channels 6.4.
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Figure 6.3: Comparison of fluorescence and radioluminescence in CT26 tumor tissue
at different tracer concentrations. Tissue stained with 64Cu-NODAGA-abatacept and
fluorescent anti-F4/80 antibody with PE/Cy5 1 d prior to measurement a, b 10 µM,
44.86 MBq and c, d 1 µM, 4.71 MBq of 64Cu-NODAGA-abatacept. a, c show red
fluorescence channel, b and d show bioluminescence channel for radioactivity. Exposure
time in the bioluminescence channel was 20 s.

Figure 6.4: Edge of tissue discerned by bright-field, fluorescence and radioluminescence.
Tissue stained with 5 µM 64Cu-NODAGA-abatacept (23.44 MBq) and fluorescent anti-
F4/80 with PE/Cy5 6 h pior to measurement. a bright-field channel, b red fluorescence
channel, c bioluminescence channel for radioactivity. Exposure time in the bioluminescence
channel was 10 s.

The composit image of radioluminescence and fluorescence showed a qualitative overlap
of the two signals 6.5. However, no colocalization was found within the tissue between the
fluorescence and radioluminescence signal upon quantitative analysis (data not shown).
The averaged radioluminescence image (120 frames, 20 s exposure each) did not show
heterogenous tracer uptake (Figure 6.5).

To explore the use of a lensless RLM setup as proposed by Klein et al. [97], we acquired
a Raspberry Pi 4 compact computer and camera module for a total of ∼ 90 CHF (Figure
6.6). Open-source software modules are written in Python and are easily adaptable
for imaging needs [97]. The camera lens needs to be manually removed prior to image
acquisition.

6.4 Discussion

We combined radioluminescence microscopy with IHC staining in a standard IHC protocol.
The method was tested on CT26 tumor cryosections stained with a PE/Cy5 conjugated anti-
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Figure 6.5: Colocalization of fluorescence and radioluminescence. Tissue stained with
5 µM 64Cu-NODAGA-abatacept (23.44 MBq) and fluorescent anti-F4/80 with PE/Cy5
1 d pior to measurement. a red fluorescence channel, b bioluminescence channel for
radioactivity (exposure time was 20 s), c composite image of a and b, d bioluminescence
channel for radioactivity. The image (d) is a result of averaging the signal over 120 frames
of 20 s exposure time each.

F4/80 antibody targeting macrophages and subsequently incubated with 64Cu-NODAGA-
abatacept targeting CD80. The radioluminescence signal was clearly visible in the tissue
along with the fluorescence signal and marked the tissue boundaries. The signal intensity
was dependent on the concentration of the radiotracer.

Implementing RLM in our IHC staining workflow was straightforward. We used cover
slips instead of glass slides to reduce the distance between lense and scintillator surface.
One might also use tissue sections on glass slides depending on the microscope used.
Adding the radiotracer staining step right before mounting of the scintillator plate was
not time critical and can be done subsequently to the fluorescent staining. We do not
expect interference of the fluorescence signal with the radioluminescence channel during
image acquisition due to the lack of a light source needed for fluorescence. Interference
from the radioluminescence in the fluorescence channel is likely negligible because of a
combination of very dim intensity of the radioluminescence signal and short acquisition
times in fluorescence imaging.

RLM was developed primarily with single cell imaging in dishes and microfluidics
in mind. In cell culture settings, where cells are sparsely seeded, spatial resolutions of
20-25 µm have been achieved [136]. Imaging tissue is more challenging due to the higher
cell density. However, a comparison of autoradiography and RLM ex vivo on tissue slices
and correlations with fluorescence stainings of patient-derived tumor organoids show the
potential of RLM in the field of tracer development [92,136]. To achieve a sufficient spatial
resolution for tissue imaging, the travel distance of the β-particles prior to annihilation
should be as short as possible. To improve spatial resolution, Lu2O3:Eu instead of CdWO4

scintillators could be used [176]. For tracer development, RLM could be used to identify
cell populations and tissue regions on cryosections with high tracer binding and correlate
the findings with IHC stainings.

Abatacept has strong affinity for CD80 and CD86, expressed on antigen-presenting cells,
and F4/80 is typically found on macrophages [18,77,129]. Therefore, we expected to see
clearly distinguishable, high 64Cu-NODAGA-abatacept regions in the radioluminescence
images that correlate with the anti-F4/80 fluorescence signal. While both channels
showed accumulation on the tissue, we did not obtain a heterogeneous image but rather
a homogeneously distributed radioluminescence signal. This is most prominent in the
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Figure 6.6: Essential equipment needed for a lensless RLM setup according to Klein et
al. [97]. Raspberry Pi 4 compact computer and camera module acquired for a total of
∼ 90 CHF. Lense can be removed from the camera module to allow for direct imaging on
the CMOS detector.

averaged image shown in Figure 6.5, where hot spots were visible. The exposure time was
≥ 20 s, which is longer than the recommended < 1 s usually used in RLM studies [94].
To get a discernable signal, it is recommended to capture multiple frames, each with an
exposure time of 10-100 ms, process each frame separately and then combine them. RLM
image reconstruction algorithms such as ionization track analysis have been developed
specifically for this purpose [8]. The radioluminescence imaging lacked specificity due to
the concentration of the tracer being much higher than the KD of ∼ 2 nM [187]. The
washing step prior to mounting the scintillator may have been insufficient to remove
unbound tracer and alleviate the problem of unspecific binding. Lower concentrations of
64Cu-NODAGA-abatacept should be used to test specificity in blocking studies with non-
radioactive Cu-NODAGA-abatacept in excess. Furthermore, the treatment of the tissue
for IHC staining might have had an impact on radiotracer binding. Control experiments
with cryosections that were not stained with the anti-F4/80 antibody should be conducted
to assess the impact of the staining on tracer binding.

The fluorescence images were bright in the center and dark toward the edges. This
is likely due to instrument limitations. The Olympus LV200 that was used for this
experiment is primarily a bioluminescence microscope and lacks capabilities that one
would expect from a fluorescence microscope. For instance, samples are illuminated using
a transillumination source leading to high background as visible in our images. As an
alternative, a microscope setup specifically designed for RLM has been proposed and used
with single cell and organoid samples [92,94,95]. The drawback of such custom solutions is
that they require expertise in optics and electronics and are not readily available. Recently,
a lensless microscope for radioluminescence imaging based on off-the-shelf parts for a
price of 100 USD has been evaluated in in vitro tracer uptake studies [97]. For such
a lensless microscope, the samples are placed directly on the CMOS detector without
the need for a scintillator or a lense. We have acquired the necessary equipment for
such a setup and will evaluate its performance in future studies. There are multiple
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projects revolving around fluorescence imaging using a compact computer and camera
module [25, 143]. However, these projects typically employ bandpass filters and use
lenses, between sensor and samples, preventing their direct implementation for RLM.
Alternatively, fluorescence could potentially be imaged in conjunction with RLM through
use of the built-in Bayer array or coating the CMOS pixels with a bandpass filter [93].
Through the use of open-source software, the acquisition settings could easily be adapted
to a RLM and fluorescence imaging combined setup. Further adjustments for use with
stained tissue would be necessary.

6.5 Conclusions

As a proof-of-concept, we have included radioluminescence microscopy of 64Cu-NODAGA-
abatacept into an IHC staining workflow with PE/Cy5 conjugated anti-F4/80 antibody.
The subsequently acquired images using a light-sensitive bioluminescence microscope
showed a homogeneous radioluminescence signal. The fluorescence images likely suffered
from high unspecific binding and high background signal. Future experiments should
address the high background by using lower tracer concentrations in the range of the KD,
and assess specific binding in blocking studies. The field of RLM is rapidly evolving and
the use of a lensless RLM setup could be a cost-effective alternative to be applied for
simultaneous imaging of radioluminescence and fluorescence in cryosections.

6.6 Supplementary material

6.6.1 Quality Control

Figure 6.7: Reverse phase HPLC chro-
matograms of 64Cu-NODAGA-abatacept.
Retention time and, where applicable, %
area were determined. 64Cu-NODAGA-
abatacept 5.1 min (99 %).
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The immune system has gained attention in different fields of therapy. Among the
most widespread diseases of the developed world, cancer and AD have been identified as
immune-related [42,49,68, 123]. The immune system is a result of innate mechanisms and
adaptation to external stimuli. This leads to inter-individual heterogeneity in immune
responses, that need to be taken into account when developing therapies [132].

Molecular imaging using PET and SPECT allows to visualize and quantify immune-
relevant components based on their molecular properties. Radiotracers can be developed
to target specific proteins that are up- or down-regulated in the tissue of interest to
visualize changes in the immune response. This allows for the detailed characterization
and tailored treatment approaches for patients suffering from immune-related diseases [10].

The complex interplay between different cell types embedded in an extracellular milieu
is characteristic for the TME [11]. Specifically immune cells play a crucial role in the
development and progression of many tumor types. The inhibition of the immune response
through cells such as macrophages by means of their polarization toward an M2-type
phenotype is associated with a poor prognosis. M2 macrophages offer a plethora of different
potential targets that have been causally linked to tumor progression [110]. The asparagine
endopeptidase legumain is one such target that is overexpressed by immunosuppressive M2
macrophages [179]. Based on P1-Asn peptidomimetic inhibitors, we have embarked on a
journey to develop legumain-targeting radiotracers for PET imaging. In our first approach,
we have developed [11C]1 and [11C]2, two strong-affinity radiotracers. However, [11C]1
and [11C]2 lacked in vivo stability and were not blockable with the respective unlabeled
compound in excess. Based on a modified structure of the P1-Asn peptidomimetic scaffold,
we introduced [11C]3, with improved in vivo stability. [11C]3 showed blocking in the kidney
and spleen, tissues with high legumain expression, indicating specificity. Accumulation
in the tumor was low and could not be blocked. The specificity of the tracer in other
tissues than the tumor led us to conclude that there is some tumor inherent property that
prevents legumain-specific tracer accumulation. The large set of endogenous substrates of
legumain and their differential expression in tumors compared to healthy tissue may offer
an explanation for this observation [35,182].

In AD, legumain expression has been closely linked to the generation of Aβ plaques and
neurofibrillary tangles, the two main hallmarks of the disease [123]. Legumain is highly
expressed in activated microglia, the tissue-resident macrophages of the brain [84,204].
There is a high demand for PET tracers in the setting of AD. Current approaches for
legumain imaging are not BBB penetrant [80,118,119,159]. The development of legumain-
specific inhibitors for the brain has yielded compounds that ameliorate the pathology in
AD mouse models [112,217]. Our attempt to develop the legumain-targeting radiotracer
[11C]CC11m based on these compounds is a first step to image legumain in the brain.
In using APP/PS1 mice, a well-established AD mouse model, we showed that legumain
is highly expressed in the brain of these mice. However, brain legumain activity was
only marginally higher than in the control tissue and might not be sufficient for PET
tracer development. The stability of [11C]CC11m remains to be elucidated and the affinity
will need to be improved if this route is pursued. Alternatively, one could, based on the
P1-Asn peptidomimetic tracers that we have developed and the published, structurally
similar inhibitors, develop a legumain PET tracer for the brain [101]. In any case, the
conducted pilot study would also have to be supplemented by PET studies comparing
APP/PS1 transgenic and wild-type mice.
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The development of legumain-targeting radiotracers in AD and cancer shows many
commonalities. Competition with endogenous substrates is a major challenge in the
development of legumain PET tracers and may also be a concern in other scenarios. To
alleviate this problem, one possible attempt is to develop irreversible inhibitors. 18F-
labeling might be valid option for the corresponding PET tracers, as the molecules already
contain fluorine atoms [101]. Another approach would be to develop molecules with
sub-nanomolar affinity to outcompete endogenous substrates. One such molecule is the
endogenous inhibitor cystatin M/E which possesses a reported Ki of 1.6 ± 0.5 pM [9]. It
is commercially available, could readily be labeled with 99mTc and potentially used for
SPECT imaging. It is most likely not BBB-penetrant and would therefore be applied in
the context of cancer.

An important consideration that is biologically relevant but not yet fully understood
is the role of the legumain localization intra- and pericellularly. Legumain is located in
lysosomes at a high concentration including in healthy tissue [182]. Therefore, targeting
legumain irrespective of its localization will lead to high background signal. If the role
of extracellular and cytosolic legumain turns out to be especially important in cancer
progression, one could develop tracers that are not lysosome penetrant. For example,
molecules that cannot penetrate cellular membranes due to their size or charge could be
used to specifically target extracellular legumain. Another aspect to be taken into account
is the role of active legumain. For the development of therapeutic legumain inhibitors, it
is less relevant if both pro- and active legumain are targeted. For the development of a
PET tracer, it is crucial to target active legumain, as the pro-enzyme is not relevant for
the pathology, will distort the signal and is present in high concentrations also in healthy
tissue. Legumain activity measurements with tissue samples as the ones performed in our
projects, may thus form an integral step in legumain PET tracer development. Legumain
is currently being investigated preclinically in the context of cancer, AD and other diseases
and the success of some inhibitors coupled with data from human samples might spark
the initiation of clinical trials in the near future, amplifying the need for nuclear imaging
tracers [153].

M1-polarized macrophages express the co-stimulatory molecule CD80 in the TME [12].
CD80 acts as a modulator of T cell activity and is of clinical relevance in ICI-based cancer
immunotherapy [48,191]. In an effort to detect and monitor CD80 expression in vivo, we
have evaluated the use of small recombinant proteins based on the extracellular domain of
CD80-binding CTLA-4 99mTc-CACM-1 and 99mTc-CACM-2 for SPECT imaging in CT26
tumor-bearing mice. Both tracers showed accumulation in the tumor. However, high
uptake in the liver and kidney and the absence of a blocking effect with the unlabeled
compound leaves room for further optimization. Incorporating a modified His-tag might
improve pharmacokinetics with regard to hepatic uptake [79]. Renal uptake is a challenging
issue often encountered in the development of antibody fragments [196]. Although there
exist several strategies to mitigate this issue, the improvement strategy will inevitably
be specific to the tracer in question [44]. For CACM-1 and CACM-2, the use of 99mTc is
preferable as the physical half life aligns well with the pharmacokinetics of the tracers.

RLM offers the potential to augment existing methods of biological evaluation for tracer
development by bridging the gap between autoradiography and IHC methods. It can be
applied to many different isotopes and both small and large molecule radiotracers [157]. We
showed the straightforward incorporation in the immunohistochemical staining workflow
and offered a qualitative readout in conjunction with fluorescence microscopy as a proof-
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of-concept. Furthermore, we suggested the implementation of an existing lensless imaging
system for RLM with tissue samples [97]. The setup would be cost-effective but would
require several adjustments to be applicable to radioluminescence and fluorescence on
tissue samples. The implementation of RLM in the tracer development pipeline of a given
laboratory is largely dependent on the existing equipment and the fluorescence microscopy
requirements.

In this dissertation, we have focused on PET and SPECT tracer development for
monitoring legumain and CD80 in cancer and other immune-related conditions. Molecular
imaging of targets that are linked to immune-related conditions, offers the possibility
for multi-use tracers that can be applied in the clinical setting. This could greatly
accelerate the development process of suitable tracers to the benefit of the patient. As
companion diagnostics, which are increasingly a requirement for the regulatory approval
of therapeutics, such radiotracers are key for a personalized treatment approach [122,193].
CD80 and legumain are two prominent targets that assume a critical role in understanding
the immune response in cancer, AD and beyond.
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