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Abstract

The work presented in this thesis focuses on addressing modeling, optimization, and

�exibility analysis challenges which are encountered on di�erent conceptual scales within

the chemical and biological industry. By leveraging advancements in machine learning,

mathematical modeling, and optimization techniques, innovative data-driven and hybrid

approaches are introduced as alternatives to existing methods. These approaches provide

solutions to address challenges spanning from micro scale (i.e., kinetic modeling) to

macro scale (i.e., �owsheet optimization). Through these implementations, which are

created using concepts from the Process Systems Engineering �eld, decision-making

processes are supported in a digital manner, which can improve the understanding of a

system under study, and enhance its e�ciency and sustainability.

Mathematical modeling helps to guide experiments more e�ectively, to support pro-

cess monitoring and control tasks, to stabilize product quality, to increase consumer

safety, or to ease speci�c decision-making tasks for subject matter experts. Consid-

ering kinetic systems � a conceptually microscopically small scale � the construction

of accurate models can be challenging, especially with bioprocesses, due to complex

metabolic mechanisms and data scarcity. Chapter 2 tackles these challenges and pro-

poses a method for building models combining a mass balance backbone in form of a

canonical kinetic representation � thereby intrinsically incorporating expert knowledge �

with a scarce dataset. The �nal model structure and parameters that best describe the

studied system are automatically and simultaneously identi�ed by using a mathematical

programming approach. Following an incremental procedure, the integration of ordinary

di�erential equations is avoided. Numerical examples show that the proposed method

performs similarly to models based on arti�cial neural networks, even outperforming

them in some cases while providing an analytical, closed-form model. Such expressions

can be more easily and e�ciently optimized in existing algebraic modeling systems. The

resulting hybrid models can be physically interpreted since the intrinsically incorporated
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knowledge guides the structure of the model (due to the canonical formalism). In Chap-

ter 3, the entire work�ow is then extended to the use of symbolic regression approaches.

This chapter particularly targets the challenge when interpretable models for biopro-

cesses are sought in cases where little knowledge about the system is available. Classical

machine learning algorithms are gaining wide interest to simulate complex bioprocesses

that are hard to describe via �rst principles. They often rely on a priori assumptions of

the model structure and lead to mathematical expressions that are hard to interpret or

to further integrate into other platforms. Therefore, Chapter 3 proposes an alternative

approach based on symbolic regression to identify bioprocess models without assuming

a pre-de�ned model structure. Algebraic expressions for the kinetic rates are obtained

from measured data that only consists of concentration pro�les. The work�ow builds

up on the one presented in Chapter 2, which allows avoiding the iterative integration of

di�erential equations for the parameter estimation step. The proposed procedure was

found to slightly outperform neural network benchmarks. Moreso, the obtained alge-

braic expressions for the rate equations facilitate the model interpretation and enable

the direct application of optimization algorithms. Going from such a conceptually small

scale to a macro scale, the presented thesis addresses the challenges of globally optimiz-

ing process units and �owsheets through the use of surrogate models and state-of-the-art

optimization algorithms. Therefore, in Chapter 4, a strategy for the global optimization

of processes is proposed. In a �rst step, algebraic surrogates are built from rigorous

simulations via symbolic regression. The applied method provides a closed-form expres-

sion that, in a second step, can be optimized to global optimality using state-of-the-art

solvers. When predicting unseen test data, the algebraic models show a similar accuracy

level compared to traditional surrogates based on Gaussian processes. However, they

can be more easily optimized to global optimality due to their closed-form structure,

which allows the user to apply well-established global deterministic solvers. The capa-

bilities of the proposed approach are demonstrated in several case studies, ranging from

the meso scale (process units) to the macro scale (full �owsheets). Finally, by leveraging

surrogate modeling techniques, Chapter 5 provides a framework that allows to analyze

the �exibility of a production unit in cases when process constraints are di�cult to

model. Flexibility analyses are widespread in chemical engineering to quantify allowed

deviations from nominal conditions. Standard approaches to perform �exibility analysis

can be hard to apply if process constraints are di�cult to handle. This chapter focuses

on the computation of the traditional �exibility index in problems with complicating

constraints. In a �rst step, symbolic regression is used to build algebraic expressions of

the said complicating constraints. This allows, in a second step, to simplify the �exi-

bility analysis of complex process models by enabling the application of state-of-the-art
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deterministic solvers. This approach is applied to two di�erent case studies. The per-

formance is assessed in terms of model building time, predictive accuracy of the model,

and the time required to solve the �exibility formulations. Overall, this combination of a

deterministic formulation and data-driven models � a hybrid framework � provides a way

to analyze the process �exibility entailing complicating constraints. Finally, Chapter 6

summarizes the main �ndings, where limitations of the proposed methods are discussed,

and possible future research avenues are described.

The provided and discussed tools o�er alternative solutions that allow to model, ana-

lyze, and optimize systems under study, which subsequently support the decision-making

process for practitioners. Each of the chapters discusses how the applied surrogate and

hybrid frameworks can be useful to create applications that allow advancing digitaliza-

tion within the chemical and biological production industry.
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Zusammenfassung

Die vorliegende Dissertation fokussiert auf Herausforderungen in der Modellierung, Op-

timierung und der Flexibilitätsanalyse in der chemischen und biologischen Industrie.

Solche Herausforderungen können auf verschiedenen konzeptionellen bzw. physikalis-

chen Dimensionen auftreten. Aktuelle Fortschritte in der mathematischen Modellierung

und Optimierung werden genutzt, um datengetriebene und hybride Lösungsansätze

zu entwickeln, die Alternativen zu bereits existierenden Möglichkeiten darstellen. Die

Implementierung solcher neuen bzw. alternativen Ansätzen wird auf Konzepten der

Prozesssystemtechnik aufgebaut. Die vorgeschlagenen Methoden sollen bei der Bewäl-

tigung von Fragestellungen helfen, welche auf konzeptionell und physikalisch kleinen

(z.B. kinetische Modellierung) und grossen (z.B. Optimierung von gesamten Produk-

tionsprozessen) Dimensionen auftreten. Durch die Nutzung solcher Methoden wer-

den Entscheidungsprozesse auf digitale Weise unterstützt, das Verständnis eines unter-

suchten Systems verbessert und seine E�zienz und Nachhaltigkeit gesteigert.

Ein System mathematisch zu modellieren kann helfen Experimente e�ektiver zu planen,

Prozessüberwachungen zu unterstützen, die Produktqualität zu stabilisieren, die Ver-

brauchersicherheit zu erhöhen und fachspezi�sche Entscheidungen zu erleichtern. Bei

kinetischen Systemen � ein konzeptionell und physikalisch kleiner Massstab � kann die

Konstruktion von akkuraten Modellen eine Herausforderung darstellen. Dies tri�t ins-

besondere auf Bioprozesse zu, bei denen zum einen komplexe Sto�wechselmechanismen

auftreten, und zum anderen die Datensätze meist begrenzt sind. Diese Problematik

wird in Kapitel 2 der vorliegenden Arbeit aufgegri�en. Dabei wird eine eine Methode

zur Modellgenerierung besprochen, welche eine Massenbilanz in Form einer kanonisch-

kinetischen Darstellung mit einem kleinen verfügbaren Datensatz kombiniert. Experten-

wissen wird somit durch den benutzten kanonischen Formalismus und die damit verbun-

dene mathematische Grundstruktur in die Generierung des Modells miteinbezogen. Die

�nale Modellstruktur und die involvierten Parameter werden mit Hilfe eines mathe-
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matischen Optimierungsansatzes automatisch und simultan ermittelt. Durch die en-

twickelte mehrstu�ge Methode wird die iterative Integration von Di�erentialgleichungen

vermieden. Numerische Beispiele zeigen, dass die dadurch generierten Modelle ähnlich

gute oder sogar bessere Ergebnisse erzielen können wie Modelle, die auf künstlichen

neuronalen Netzwerken basieren. Im Gegensatz zu trainierten neuronalen Netzwerken

liefert die vorgestellte Methode jedoch analytische und geschlossene Gleichungen. Die

durch den vorgestellten Ablauf resultierenden hybriden Modelle können physikalisch

interpretiert werden, da sie auf der Grundstruktur der erwähnten kinetischen Darstel-

lung beruhen. Ein weiterer Vorteil solcher Modelle liegt darin, dass sie aufgrund der

geschlossenen Formulierung in bestehenden algebraischen Modellierungssystemen leicht

und e�zient optimiert werden können. Der in Kapitel 2 beschriebene Ablauf wird dann

in Kapitel 3 durch die Verwendung symbolischer Regressionsansätze erweitert. Dieses

Kapitel befasst sich zudem damit, interpretierbare Modelle für Bioprozesse zu gener-

ieren, bei welchen wenig oder gar kein Wissen über das vorliegende System vorhanden ist.

Klassische Algorithmen des maschinellen Lernens gewinnen zunehmend an Interesse, um

komplexe Bioprozesse zu simulieren, da sich diese Prozesse teils nur schwer durch erste

Prinzipien beschreiben lassen. Obwohl solche rein datenbasierte Methoden sehr hilfreich

sein können, beruhen sie oft auf a priori Annahmen über die Modellstruktur und/oder

führen zu mathematischen Ausdrücken, die schwer zu interpretieren oder in weitere Plat-

tformen zu integrieren sind. Daher wird in Kapitel 3 ein auf der symbolischen Regression

basierender alternativer Ansatz vorgeschlagen, um Modelle zu identi�zieren, ohne dass

dabei eine vorde�nierte Modellstruktur angenommen werden muss. Daraus resultieren

algebraische Ausdrücke für die Prozesskinetik, wobei lediglich gemessene Konzentra-

tionspro�le benötigt werden um die Modelle zu trainieren. Das Vorgehen baut auf der

in Kapitel 2 vorgestellten Methode auf und ermöglicht es wiederum, die iterative Inte-

gration von Di�erentialgleichungen zu vermeiden. Das vorgeschlagene Verfahren kann

Modelle generieren, welche die Benchmarks (neuronale Netzwerke) im Bezug auf die

Vorhersagegenauigkeit übertre�en. Darüber hinaus erleichtern die erhaltenen algebrais-

chen Ausdrücke die Modellinterpretation und ermöglichen die direkte Anwendung von

Optimierungsalgorithmen oder die Einbindung in weitere Plattformen. Kapitel 4 der vor-

liegenden Arbeit befasst sich mit den Herausforderungen der globalen Optimierung von

Prozesseinheiten und Fliessbildern durch die Kombination von approximativen Mod-

ellen und bekannten Optimierungsalgorithmen. Zudem wird eine konzeptionell und

physikalisch grössere Dimension betrachtet. Mittels symbolischer Regression werden

dabei in einem ersten Schritt Surrogatmodelle aus Simulationen erstellt. Diese Regres-

sionsmethode liefert dabei Ausdrücke in algebraischer Form. Bei der Vorhersage unge-

sehener Testdaten weisen diese algebraischen Modelle eine ähnliche Genauigkeit auf wie
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traditionelle Surrogate, die auf Gaussschen Prozessen basieren. Ein Vorteil der identi-

�zierten Surrogtmodelle in algebraischer Form ist jedoch, dass die Nutzung von beste-

henden und etablierten globalen deterministischen Optimierungsalgorithmen ermöglicht

wird. Die Anwendbarkeit der vorgeschlagenen Strategie wird in mehreren Fallstudien

demonstriert, welche von der Mesoskala (Prozesseinheiten) bis zur Makroskala (Fliesss-

chemata von ganzen Prozessen) reichen. Schliesslich wird in Kapitel 5 darauf einge-

gangen, wie Surrogatmodelle helfen können die Flexibilität einer Produktionseinheit

in Fällen zu analysieren, in denen Prozessbeschränkungen schwer zu modellieren sind.

Flexibilitätsanalysen sind in der chemischen Verfahrenstechnik weit verbreitet, um die

zulässigen Abweichungen von den Nennbedingungen zu quanti�zieren. Standardansätze

zur Durchführung von solchen Analysen sind in der Regel schwer anwendbar, wenn die

Prozessbeschränkungen mathematisch schwierig zu beschreiben oder zu handhaben sind.

Kapitel 5 konzentriert sich auf die Berechnung des traditionellen Flexibilitätsindexes bei

Problemen mit komplizierten Nebenbedingungen. Es werden in einem ersten Schritt

algebraische Ausdrücke für die besagten Nebenbedingungen identi�ziert, wodurch in

einem zweiten Schritt die Flexibilitätsanalyse vereinfacht und die Anwendung determin-

istischer Löser ermöglicht wird. Diese Methode wird auf zwei verschiedene Fallstudien

angewandt. Dabei werden die Zeit für die Modellerstellung, die Vorhersagegenauigkeit

des Modells und die für die Lösung der Flexibilitätsformulierungen erforderliche Zeit

genauer diskutiert. Insgesamt bietet die Kombination von datengetriebenen Modellen

mit einer deterministischen Problemformulierung � demnach gesamthaft ein hybrider

Ansatz � eine Möglichkeit zur Analyse der Flexibilität von Prozessen, die schwer zu

beschreibende Einschränkungen beinhalten. Abschliessend werden in Kapitel 6 die Re-

sultate dieser Arbeit zusammengefasst, wobei auch auf mögliche Themen für zukünftige

Forschungsfragen eingegangen wird.

Die entwickelten und beschriebenen Applikationen bieten allesamt alternative Lösungen,

welche es ermöglichen, die untersuchten Systeme zu modellieren, zu analysieren und

zu optimieren. Dadurch können Entscheidungsprozesse für verschiedenste Fragestel-

lungen in der chemischen und biologischen Produktion auf digitale Weise unterstützt

werden.
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Chapter 1

Introduction
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1.1 Digitalization in the chemical and biological sector

The industrial revolution is not merely a recent phenomenon but has roots that date back

to the 18th century (Petrillo et al., 2018). During these times, humanity was dealing with

the daily challenge of creating better goods while considering limited resources, growing

demand, and the impact on society and its environment (Beier et al., 2018; J. M. Müller

et al., 2018). These main challenges have not signi�cantly changed since then, and they

remain up until today. However, the tools that we are able to apply nowadays certainly

did change. After going through a second and third industrial revolution (Figure 1.1),

characterized by the applications of electricity and automation steps in the industry,

respectively, the term "Industry 4.0" sets another important milestone in this centuries-

lasting revolutionizing process (X. Chen et al., 2021; Communication-Promoters-Group-

of-the-Industry-Science, 2013). Within the fourth industrial revolution, Industry 4.0, an

initiative that emerged between 2011 and 2015, focuses on the application of advanced

technologies in the industrial sector (Philbeck & Davis, 2018). It is, however, not only

about integrating available technologies, but it also describes an entire concept of how

advanced tools can be used to create interactions and provide insights into how resources

can be used for a more e�cient and sustainable path to the future (Koh et al., 2019;

Lasi et al., 2014). In this entire concept, digitalization has become an important part

through which profound transformations are taking place, not only in the industrial sec-

tor, but also in our society (J. M. Müller et al., 2018; Rosen et al., 2015). Especially in

the past decades, the enhanced global interconnection brings new challenges and drives

competition in the markets, where the pace and extent of digital integration and the

application of advanced technologies have accelerated exponentially (Koh et al., 2019;

Zhou, 2013). Focusing speci�cally on the production sector of chemicals and biologics,

digitalization can help to enhance e�ciency and productivity by measuring, analyzing,

modeling, automating, and optimizing processes and integrating many tasks (Fantke

et al., 2021; Pantelides & Pereira, 2024). The digital transformation in the chemical

Revolution I
Introduction of water- and 

steam-powered mechanical
manufacturing

Revolution II
Introduction of

electrically-powered mass 
production

Revolution III
Application of

electronics and IT to
implement automation

Revolution IV
Integration of processes

and application of
cyber-physical systems

End of 18th century Start of 20th century Start of 1970s Today

Figure 1.1. Simpli�ed overview of the di�erent steps of the Industrial Revolution.
Adapted from Chen et al. (2021).
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industry was estimated to deliver between $310 billion to $550 billion in value between

2016 and 2025 (ABB, 2018; Accenture & WEF, 2017). Furthermore, a recent report

by the World Economic Forum (2022) describes the increasing importance of industrial

supply chain resilience or environmental sustainability during global disruptions, such

as the recent COVID-19 pandemic. It is mentioned that more than 70% of surveyed

manufacturing executives considered advanced analytics methods to be more important

than they have been some years earlier. The role of data, data-driven decision-making,

self-optimizing systems, and, in general, digital transformations are highlighted to be

key enablers for manufacturing environments to tackle highly complex future challenges.

Such digital transformations might occur in wide range of applications (Figure 1.2), from

a macro scale level (i.e., digital twins and optimization of entire production processes

or supply chains) down to a micro scale level (i.e., modeling of kinetics). To narrow

this down, this thesis will speci�cally focus on the modeling and optimization aspects

that might support such digital transformations in the chemical industry. In such a

multiscale and interdisciplinary environment, there is a clear need for tools that enable

a structured and tactical decision-making process. Pistikopoulos et al. (2021) describe

the scienti�c discipline of Process Systems Engineering (PSE) as a ��eld that focuses on

integrating scales and components to describe the physicochemical system via mathemat-

ical modeling, data analytics, design, optimization and control�. It therefore �provides

the 'glue' within the �eld of engineering and o�ers a scienti�c basis and computational

tools towards addressing future challenges such as in energy, environment, the 'industry

of tomorrow' and sustainability.�. With this very short description of PSE being an

enabler for improvements in industry, the reader is subsequently introduced to the role

and importance of PSE in more detail.
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Kinetics
Process units

Plants
Supply chains

micro meso macro
Physical dimension

Figure 1.2. Schematically visualized conceptual scales that are targeted within this
thesis. The concept was adapted from Ioannou et al. (2021).
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1.2 The role of Process Systems Engineering

PSE � a term proposed in 1982 in Kyoto that combined aspects from various engineering

disciplines (I. E. Grossmann & Westerberg, 2000; Pistikopoulos et al., 2021; Sargent,

2004) � plays a pivotal role in the digitalization of the chemical industry by integrat-

ing engineering principles with computational tools and data analytics (Sargent, 1967).

PSE focuses on designing e�cient systems, optimizing complex processes, and improving

operational performance in various industrial aspects. In the context of digitalization

within the chemical sector, PSE harnesses tools such as mathematical modeling, sim-

ulation, and optimization algorithms to address challenges across the chemical value

chain (Klatt & Marquardt, 2009; Pistikopoulos et al., 2021), and contributes to the en-

hancement of e�ciency, reliability, and sustainability in the chemical industry's digital

transformation journey (I. E. Grossmann & Harjunkoski, 2019). Sargent (2004) and

Stephanopoulos and Reklaitis (2011) provide a deeper insight into the history of PSE,

whereas Pistikopoulos et al. (2021) describe the perspective of the PSE �eld in the

future.

Sargent (1983) describes possible approaches for solving problems in the �eld of process

engineering, speci�cally within the context of modeling, design and control: One may

start formulating a considered problem mathematically and then use the mathematical

structure to create algorithms, or one may try to use engineering knowledge and insights

in order to solve the problem with physical intuition. In either of these ways described

by Sargent (1983), one special and pivotal role in such a problem-solving approach

is the use of modeling and optimization techniques (Figure 1.3). Pistikopoulos et al.

(2021) summarize this description by Sargent by mentioning the example of chemical and

biochemical engineers who work with unit operations for the production and puri�cation

of a speci�c product. There, practitioners might use several PSE techniques to design

and synthesise (Westerberg, 2004), operate (Venkatasubramanian, Rengaswamy, & Ka,

2003; Venkatasubramanian, Rengaswamy, Yin, & Ka, 2003), analyze (Wan et al., 2005),

and optimize (Biegler & Grossmann, 2004) such a process. Since Sargent's statements in

the 1980s, the toolbox to tackle problems in these �elds has been growing continuously,

which was greatly supported by advancements in modeling and data analytics (Bhosekar

& Ierapetritou, 2018; Qin, 2014; Reis & Saraiva, 2021), optimization (Alcántara Avila et

al., 2021; I. E. Grossmann, 2021), and machine learning (J. H. Lee et al., 2018; Perera et

al., 2019). The gained knowledge over those decades allows the creation of solutions for

optimal tactical decision-making in �elds like scheduling (Badejo & Ierapetritou, 2022;

Díaz-Madroñero et al., 2014), enterprise-wide optimization (I. Grossmann, 2005; I. E.
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Grossmann, 2012, 2014; Van De Berg et al., 2023; van de Berg, Petsagkourakis, et al.,

2023; van de Berg, Shah, & Del Rio Chanona, 2023; Q. Zhang & Grossmann, 2016), or

supply chain management and resource allocation (Barbosa-Póvoa, 2012; Berning et al.,

2004; Garcia & You, 2015; Guillén-Gosálbez, Mele, et al., 2006; Lasschuit & Thijssen,

2004; Nikolopoulou & Ierapetritou, 2012; Papageorgiou et al., 2001; Susarla & Karimi,

2011), even in the case of disruptions or general uncertainties (Applequist et al., 2000;

Guillén-Gosálbez, Badell, et al., 2006; Z. Li & Ierapetritou, 2008; Z. Li & Ierapetritou,

2008; Lin et al., 2004; Pistikopoulos, 1995).

Data preparation Model training

Predictions

Validate results

Model update

Optimization

Decision

Figure 1.3. Visualization of the interaction of modeling and optimization for decision-
making. The interconnections between the di�erent steps should not be regarded as
conclusive, where of course also other intermediate steps and shortcuts might be possible.
The �gure should give a general overview of how modeling and optimization might be
linked. The concept was adapted from Van Den Heuvel and Tamburri (2020).

1.3 State-of-the-art, challenges and research gaps

As our society develops, the demand for more sustainable and e�cient processes and

products from a greater variety is growing. Industry therefore faces challenges on many

technical and conceptual scales, reaching from understanding a material to e�ciently de-

sign experiments (Scotti et al., 2023) or intensify cell culture processes (Del Rio Chanona

et al., 2017; Kyriakopoulos et al., 2018; Potvin et al., 2012; D. Zhang, Dechatiwongse, del

Rio-Chanona, et al., 2015) up to improve process units and entire production processes

(Biegler et al., 1997; Edgar et al., 1988; I. E. Grossmann, 2021; R. Smith, 2005, 2016) or

supply chains (Garcia & You, 2015). To address these holistic challenges, mathematical

modeling and optimization techniques might be used as key enabling tools. Therefore,

the reader will subsequently be introduced to those topics in more detail.
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1.3.1 Mathematical modeling to understand chemical and biological

process systems

Mathematically representing and simulating a material or a chemical reaction is an im-

portant step in building industrial digital applications to support the understanding and

enable the optimization of production processes. Mathematical modeling can bring in-

sights into the material behavior and can help to understand the relationships between

the observed performance and the physical properties (Olson, 1997). Understanding a

material in detail subsequently enables the prediction of its behavior in di�erent con-

ditions, which consequently allows the optimization of a process to enhance its per-

formance (Scotti et al., 2023). Having a model of a system at hand also signi�cantly

contributes to accelerating the process development by reducing the need for expensive

and time-consuming experimental steps (Scotti et al., 2023). These savings are certainly

important in high-value production processes such as in the pharmaceutical industry,

where resources are scarce and expensive (Kroll, Hofer, Ulonska, et al., 2017; Mercier

et al., 2014; Von Stosch et al., 2021; Walsh, 2018), and where a vast number of new

products is rapidly developed (Narayanan et al., 2023). Several recent works highlight

the importance of modeling approaches across a wide range of applications within the

chemical and bioprocess industry: Filho et al. (2020), for example, describe the devel-

opment of a process model which supports the scale-up for an aerosol-assisted chemical

vapour deposition process. Another important aspect of modeling in industrial environ-

ments is given by Elnashaie and Elshishini (2022). The authors discuss reactor models

and how they can be used in the design, operation and optimization of industrial reac-

tors. They describe the concept of reactor modeling as a method to perform predictions

and analyses based on available data and information. Of course, these examples do not

give an exhaustive list where mathematical modeling is useful, but they should rather

give an overview of the importance of modeling as a tool that can support and enhance

the digital transformation in the chemical and bioprocess industry.

To classify a mathematical model, di�erent de�nitions have been proposed (Sansana

et al., 2021). In this work, models are conceptually classi�ed to belong to one of three

possible groups (Bonvin et al., 2016). On the one hand, a model might be built up from

knowledge. Such a model might be described by a mechanistic, or white-box model.

On the other hand, a model might be generated by using data-driven approaches, also

described by black-box models. The two classes might be mixed, leading to hybrid

models, which are sometimes also described by the term grey-box models (Glassey &

Von Stosch, 2018; von Stosch et al., 2014).
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Mechanistic modeling An example of a well-known mechanistic model with long-

lasting academic and industrial relevance was the description of enzymatic reactions by

Michaelis and Menten (1913). This work allowed studying and understanding biocat-

alytic reactions in depth in the subsequent decades, up until today (Cornish-Bowden,

2015; Johnson & Goody, 2011). In literature, many other works explore mathematical

biochemical models, for example, to analyze and understand intracellular signalling path-

ways (Klipp & Liebermeister, 2006) and metabolic mechanisms that drive the behavior

of the organism (Guillén-Gosálbez et al., 2013; Mercier et al., 2014; Petsagkourakis,

Sandoval, et al., 2020; D. Zhang et al., 2020), to describe the time-dynamic behavior of

a biochemical system (Voit, 2013), to study the cascade activities of proteins (Schoeberl

et al., 2002), or to even deepen the understanding in how diseases such as Alzheimer

progress (Götz et al., 2018) and how they could be treated (Scearce-Levie et al., 2020;

Van Dam & De Deyn, 2011). Of course, such modeling methods are not limited to

biological systems like the ones mentioned above, but they can also certainly be used

to study procedures like freeze drying (Srisuma et al., 2024) or chromatographic steps

(Hahn et al., 2023), to describe the production of viral particles for pharmaceutical

applications (Canova et al., 2023), or to model the kinetics of ammonia (Chehade &

Dincer, 2021) and methanol (Nestler et al., 2020) production units. Such methods of-

ten involve the mechanistic formulation of a model where the involved practitioner is

required to specify the behavior of the system and to de�ne some parameters, which

are subsequently estimated by using available experimental data. Sha et al. (2018),

Gosálbez et al. (2013) and Voit (2000) describe the steps and methods that might be

involved in setting up such mechanistic models for a biological system. The parameter

estimation steps � often also described by the term inverse problem or model calibration

(J. Sun et al., 2012) � might not always be a straightforward task, as the modeler might

face challenges like missing or noisy experimental data (Lillacci & Khammash, 2010),

multi-modal and nonlinear models (Rodriguez-Fernandez et al., 2006) or lack of robust-

ness in the estimation of parameters (Gábor & Banga, 2015; J. Sun et al., 2012). De

Carvalho Servia and Del Rio Chanona (2023b) describe several metrics that might be

considered when performing such a parameter estimation step, where they also analyse

the impact of the noise and the sampling frequency. According to Michalik et al. (2009),

there are mainly two approaches that can be used to estimate parameters in mechanistic

models, namely a sequential and a simultaneous approach. Both approaches often re-

quire a given mathematical structure of the model, where the involved model parameters

are estimated by using an appropriate loss function. Both approaches also show chal-

lenges that need to be overcome: In the sequential approach a modeler might encounter

the possibility of high computational e�orts or the occurrence of sti� ordinary di�eren-
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tial equations (ODEs), whereas, in the simultaneous approach, one might need to use

reformulation techniques such as orthogonal collocation (Carey & Finlayson, 1975) to

transform the dynamic equations into a large system of equations (Esposito & Floudas,

2000; Miró et al., 2012).

Data-driven modeling Instead of using mechanistically designed models, data-

driven approaches o�er a direct and e�cient way to model a process if the available

knowledge is limited (Taylor et al., 2021). Recent advances the �eld of machine learning

(ML) made it possible to create data-driven models for a wide range of applications.

Helleckes et al. (2023) and Lee et al. (2018) provide an overview of how ML models

might be useful for the bioprocess development or the general PSE �eld, respectively.

Data-driven models were already successfully applied several years ago, where, for exam-

ple, Willis et al. (1995) used arti�cial neural networks (ANNs) to model the relationships

between the measured data and the biomass concentration. Similarly, but more recent,

Gaussian processes (GP) were used to describe the growth of microbes (Tonner et al.,

2017). In an even more recent work by Del Rio Chanona et al. (2019), the authors

leveraged the predictive capabilities of GPs to model a wastewater treatment procedure

with algae and bacteria. Some researchers also used ML-based surrogate models to ap-

proximate mechanistic models: Renardy et al. (2018), for example, replaced mechanistic

simulations with a polynomial surrogate model to improve the computational e�ciency

of a given modeling approach (Gherman et al., 2023). A similar work was published

by Wang et al. (2019), who used a long short-term memory (LSTM) network to model

transduction pathways in cell-cycle progressions, where their proposed framework was

able to enhance the computational e�ciency by orders of magnitude compared to mech-

anistic modeling approaches. Further, Mowbray and colleagues (2021) o�er a deep dive

into the di�erent kinds of models that might be used as a black-box to model the system

under study. Of course, data-driven modeling strategies are not only of high interest in

the bio-related industry. Bishnu et al. (2023) recently published an overview about ap-

plications with data-driven modeling in process systems. In there, studies that leverage

data-driven strategies are showcased for the petrochemical production optimization (Min

et al., 2019), the prediction of catalyst saturation levels (Steurtewagen & Van Den Poel,

2020), and the modeling of hydrocracking processes (Elkamel et al., 1999).

Hybrid modeling With increasing popularity, hybrid modeling approaches are used

to bridge the gaps between such white and black-box models by combining mechanistic

and surrogate components (von Stosch et al., 2014). Mechanistic knowledge about the

system under study is complemented by the data-driven part that leverages available

process data. Tsopanoglou and Jiménez Del Val (Tsopanoglou & Jiménez Del Val, 2021)
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describe hybrid modeling strategies as an emerging key tool in the era of biopharma 4.0,

hence playing a pivotal role in advancing the digitalization within this industry. They

further provide an overview of the advantages and challenges of coupling mechanistic

and data-driven approaches, speci�cally within the pharmaceutical industry. Such hy-

brid approaches were used to solve a wide range of problems, like the modeling of speci�c

kinetics (S. Zhang et al., 2013) or entire biochemical process systems (Gnoth et al., 2007,

2008b; M. R. Mowbray et al., 2023). Hybrid models were also successfully applied in the

�eld of computational �uid dynamics (CFD): Mosavi et al. (2019) introduced a com-

bination of a network-based model with a CFD model to enhance the accuracy of �ow

characteristics predictions in bioreactors. In the �eld of biohydrogen production, a recent

publication by Pal et al. (2024) introduced a model based on a Bayesian neural network

(BNN) that allowed to accurately model the concentration evolution of involved species

in a photobioreactor. In another very recent work, De-Luca et al. (2024) developed

an ANN-based hybrid model to support the design and testing of operating conditions

during adeno-associated virus particle production, a �eld that has gained signi�cant in-

terest over the past few years (C. Li & Samulski, 2020). In many works published in this

area, ANN models are very commonly used as data-driven components, where Mahanty

(2023) and Agharafeie and colleagues (2023) provide an overview and a systematic lit-

erature review about applications of such hybrid neural models for biological process

systems. Of course, hybrid models are not solely used to model systems tinged with bi-

ological elements. Additional examples where hybrid models were successfully used are

given in the work by Azarpour et al. (2017), where the authors combined mechanistic

�rst principle models with ANNs to develop generic frameworks for modeling industrial

catalytic reactors that consider catalyst deactivation. A recent study by Lastrucci et al.

(2024) investigated the applicability of hybrid models based on physics-informed neural

networks (PINNs) for the design of industrial catalytic reactors. Using PINNs for solv-

ing ODEs, the authors achieved signi�cant speed improvements compared to classical

ODE solvers, while maintaining high levels of the system modeling accuracy. Further,

in the work by Chen and Ierapetritou (2020), a framework based on hybrid models was

developed that captures plant-model-mismatches, where the authors showcase the ad-

vantages of these modeling approaches in the context of pharmaceutical unit operations.

Furthermore, Quaghebeur and colleagues (2022) created a framework that introduces

data-driven components into existing mechanistic models of a water resource facility,

thereby being able to replace parts of the system that are hard to model. One impor-

tant aspect of hybrid models is that they can also be developed in a �exible manner,

allowing to customize the degree of hybridization. Narayanan and colleagues (2021), for

example, showcase this aspect of di�erent hybridization degrees (Figure 1.4) by com-
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paring the performance of di�erent hybrid models applied to a chromatographic case

study. The �exibility, transferability from one case study to another, the combination of

process knowledge with powerful data-driven components, and many more reasons are

making hybrid modeling approaches suitable for industrial applications, where several

companies mention their active development for production (Datahow AG, 2024; Merck

KGaA, 2024; Sartorius AG, 2024).

Available process knowledge
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Figure 1.4. Possible hybridization levels in the application of a hybrid model for the mod-
eling of a chromatographic process. The concept and �gure were adapted from Narayanan
et al. (2021). In addition to the mass balance of the species in solution, di�erent parts
of the model are replaced by data-driven components, leading to hybrid models with a
di�erent degree of hybridization.

No matter which kind of modeling approach � mechanistic, data-driven, or hybrid �

is chosen to identify a suitable representation for the system under study, two impor-

tant key steps need to be executed during the model identi�cation process. First, some

kind of model structure needs to be de�ned or identi�ed, and second, the involved

parameters need to be estimated, which brings the modeler back to either the simulta-

neous or sequential parameter estimation approach discussed before. Ideally, the model

structure and its parameters should be simultaneously determined since the choice of a

speci�c model structure limits the accuracy of the model and vice-versa. In the past few

years, many algorithms and approaches have been presented in the scienti�c community

that allow modeling a system without expert knowledge (so just relying on available

data), while returning a closed-form algebraic description that is interpretable (J. Lee

et al., 2024): Among others, the automated learning of algebraic models for optimization

(ALAMO) approach (Cozad et al., 2014; Wilson & Sahinidis, 2017), the sparse identi-

�cation of nonlinear dynamics (SINDy) approach (Brunton et al., 2016) with its recent

combination with an extended Kalman �lter (EKF-SINDy) (Rosafalco et al., 2024),

the algebraic learning via elastic net (ALVEN), the recently published LASSO-Clip-EN

(LCEN) by Seber and Braatz (2024), or the recently published Bayesian identi�cation of
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dynamic sparse algebraic models (BIDSAM) approach by Adeyemo and Bhattacharyya

(2024) were developed and successfully deployed in a variety of case studies. Without

going into too many details, the algorithms seek an appropriate surrogate model, where

model identi�cation and a parameter estimation step are combined, so the outputs of

the algorithms are closed-form mathematical equations. Since those methods rely on

some chosen sets of basis functions or mathematical expressions, and they usually do

not assume any knowledge about the process, they might lead to models that are hard

to interpret or may return structures that do not have a direct physical interpretation.

A slightly di�erent approach to search for a closed-form model for a process system is

based on the principles of genetic programming (Keane et al., 1993; Koza, 1994), where

mathematical equations are created as symbolic expression trees (Cozad and Sahinidis,

2018). Employing a de�ned search procedure � which is mainly stochastic � such a sym-

bolic regression (SR) approach simultaneously identi�es the mathematical structure of

the model while it also estimates the involved parameters. Due to this, such expression-

tree-based approaches only require a pool of allowed mathematical operators and some

measured data points. SR has been successfully applied in various �elds, for example,

to model a vacuum distillation column and a chemical reactor system (McKay et al.,

1997), to predict energy outputs from wind farms (Vladislavleva et al., 2013), to discover

physical relationships in an available dataset (Schmidt & Lipson, 2009), to discover new

catalysts (Weng et al., 2020), to model kinetics in catalytic systems (De Carvalho Servia

et al., 2024), to enhance the feasibility in which thermodynamic models can be applied

reliably (Kay et al., 2024), or to even recover psychological models for human informa-

tion processing (Hewson et al., 2023). SR was also included in commercial (i.e., Eureqa

(Schmidt & Lipson, 2009) or TuringBot (2023)) or open-source (i.e., PySR (Cranmer,

2020), the Bayesian machine scientist (Guimerà et al., 2020)) software. Although there

are many advanced modeling algorithms available, such as ANNs or GPs (M. Mowbray

et al., 2021), having a compact, closed-form mathematical model at hand might be ad-

vantageous, depending on the framework the model should be deployed in. One aspect

is that derivative-based, state-of-the-art and o�-the-shelf solvers can be used, which, if

global solvers are applied, can even guarantee global model-based optimality compared

to heuristics or stochastic solvers.

1.3.2 Mathematical optimization to enhance process performance

Besides mathematical modeling, optimization can serve as a powerful tool for a practi-

tioner to enhance process performance across various domains. At its core, mathematical

optimization entails the formulation of models that are solved to �nd the best possible

solution to a given problem within speci�ed constraints. In the realm of chemical pro-
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cesses, optimization techniques play a pivotal role in maximizing production e�ciency,

minimizing costs or emissions, and ensuring product quality.

Practitioners might make use of a wide range of methods to optimize a target objective

when an optimization problem is encountered. Usually, such an optimization problem

can be described by expression (1.1), where f(x, y, θ) is the de�ned objective function

that depends on some variables x (continuous in R, n-dimensional) and y (integer, in Z,
m-dimensional), and some given parameters θ. Additionally, it is common that optimiza-

tion problems require the inclusion of constraints in the form of equalities (h(x, y, θ) of

set I) or inequalities (g(x, y, θ) of set J), respectively, which might represent for example

process or safety limitations.

min
x,y

f(x, y, θ)

s.t. hi(x, y, θ) = 0, ∀i ∈ I

gj(x, y, θ) ≤ 0, ∀j ∈ J

x ∈ Rn, y ∈ Zm

(1.1)

Such optimization problems can be solved using mathematical programming approaches.

Depending on the nature of the objective and the constraints, a practitioner might use �

but is not limited to � linear programming (LP), nonlinear programming (NLP), mixed-

integer linear programming (MILP), or mixed-integer nonlinear programming (MINLP)

methods. Grossmann (2021), Cavazzuti et al. (2013), and Hillier and Lieberman (2010)

guide through these approaches from the scienti�c, PSE and operations research per-

spectives, respectively. To give some speci�c examples across the entire physical di-

mensions where such optimization approaches might be applied, the reader is referred

to the publication of Esposito and Floudas (2000), which discusses the application of

global optimization to estimate parameters in di�erential algebraic systems, to the work

of Grossmann and Halemane (1982) who describe the design of �exible chemical plants,

or the one of Duran and Grossmann (1986a) for insights into heat integration and op-

timization of chemical processes. Other interesting works that apply similar tools were

published by Liu and colleagues (1996), who tackle the problem of selecting processes

and planning expansions of a chemical complex, or by Esposito and Floudas (2002),

who investigate an isothermal reactor network synthesis using mathematical program-

ming. In a more recent publication by Lasschuit and Thijssen (2004), the authors use

an MINLP model to support the decision-making process for supply chain optimization

questions.
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By leveraging such optimization techniques, production processes can be streamlined,

energy consumption minimized, resource utilization maximized, and overall productivity

enhanced. This ultimately leads to improved pro�tability and competitiveness in the

dynamic landscape of the chemical industry (Dutta, 2016). Within this landscape, a

major challenge for practitioners is located in the operational optimization of existing

processes. Originally, process optimization relied on models that are based on engi-

neering knowledge, where such models provide closed-form descriptions that enable the

application of o�-the-shelf deterministic optimization algorithms (Bongartz & Mitsos,

2019; Haydary, 2019). However, as discussed above, developing such mechanistically

designed models might not be an easy task, depending on the problem structure. At

this point, some of the above-mentioned data-driven model-building approaches (i.e.,

the ALVEN (W. Sun & Braatz, 2020) or ALAMO (Cozad & Sahinidis, 2018) approach)

might be very useful tools that can be considered. Such approaches can be able to iden-

tify closed-form approximations for the process by taking observed data into account,

and therefore allow to bypass the development of mechanistic descriptions from scratch.

Hüllen et al. (2020), for example, successfully demonstrate how such a procedure can

be used to solve an optimization problem related to direct air capture (DAC). The au-

thors develop an optimization problem that would require algebraic equations and the

formulation of a large nonlinear programming problem. Instead, they combine poly-

nomial approximations with observed data and incorporate the model into the original

optimization problem. The main advantage of those tools compared to the mechanistic

description of the process is the possibility to develop a model in a relatively short time,

which can then also more easily be incorporated in an existing optimization framework.

However, these methods might constrain the model structure by relying on predeter-

mined monomials and transformations of the input variables, likely leading to less ac-

curate approximations and therefore representing a signi�cant drawback, depending on

the system under study.

As discussed in Section 1.3.1, data-driven models emerged to deal with modeling tasks

in which the underlying phenomena cannot be easily described. Within the optimization

landscape, data-driven methods have been used to build surrogates of mechanistic mod-

els that are hard to identify and/or optimize. For example, Jones et al. (1998) used a

response surface methodology for expensive multimodal functions and applied Bayesian

optimization to �nd the optimum solution. Other and more recent examples were given

by Quirante et al. (2015, 2018) and Quirante and Caballero (2016), where the authors

used surrogate models to optimize distillation columns and other units. Taking these out-

standing works as examples, the advantage of data-driven models is very well observable.
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Although showing great promises, what remains challenging is the fact that � depend-

ing on the system under study � incorporating such sophisticated modeling methods

into optimization frameworks might not be straightforward due to their intrinsic com-

plexity and nonlinearities. Nevertheless, several algorithmic frameworks were developed

that allow the incorporation of advanced machine learning models into an optimiza-

tion formulation. The team around Mitsos and colleagues (2009; 2019; 2020) developed

MeLON (Machine Learning models for Optimization) and MAiNGO (McCormick-based

Algorithm for mixed-integer Nonlinear Global Optimization), tailored algorithms that �

in a nutshell � allow to perform deterministic global optimization with data-driven mod-

els. A similar approach was developed by Ceccon et al. (2022), who presented OMLT

(optimization and machine learning toolkit), which allows to optimize trained ANNs or

gradient-boosted trees using the Python-based framework Pyomo (Bynum et al., 2021;

Hart et al., 2011). Boukouvala et al. (2017) introduced the algorithmic framework ARG-

ONAUT that allows to globally optimize general constrained grey-box problems using

the ANTIGONE (Misener & Floudas, 2014) solver. In a recent work, Paulson and Lu

(2022) proposed the COBALT (constrained Bayesian optimization of computationally

expensive grey-box models exploiting derivative information) algorithm for constrained

grey-box optimization problems, combining GP models with state-of-the-art optimizers

(2021).

In contrast to deploying advanced machine learning models for subsequent optimiza-

tion tasks, closed-form expressions � as the resulting models of the above-mentioned SR

approaches � have the advantage that they easily allow the use of deterministic opti-

mization algorithms (Androulakis et al., 1995; I. E. Grossmann, 1996; Ryoo & Sahinidis,

1995; E. M. B. Smith & Pantelides, 1997; Tawarmalani & Sahinidis, 2002; Zamora &

Grossmann, 1999). This is especially promising in the �eld of global optimization (GO),

where, in case the objective function or constraints are unavailable, deterministic opti-

mization is not possible since the algebraic expression of the function and therefore its

corresponding derivatives are not available. In such cases, other methods � for exam-

ple, derivative-free optimization algorithms and heuristic methods like the Nelder-Mead

method (Nelder & Mead, 1965), Bayesian optimization (Mo£kus, 1975; Shahriari et al.,

2016), di�erential evolution (Price, 2013), genetic algorithm (Holland, 1992; Mirjalili,

2019), particle swarm optimization (Bonyadi & Michalewicz, 2017; Kennedy & Eberhart,

2006), or simulated annealing (Hwang, 1988; Van Laarhoven & Aarts, 1987) � methods

might be applied (Bradford et al., 2018). The disadvantage of such methods is, however,

that they are not guaranteed to identify the global optimum, whereas deterministic GO

methods are guaranteed to identify the global solution � within a given ϵ-tolerance � in
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a �nite number of iterations (Androulakis et al., 1995; Horst & Tuy, 1996).

In the above-mentioned introduction to the �eld of optimization, one very important

aspect was not yet mentioned, which is the presence of uncertainty. Mostly, the real

world is a�ected by some kind of stochasticity, which means that the outcome of a

process is in�uenced by some uncertainty. In such cases, practitioners might make use of

approaches such as stochastic programming (SP) (Birge & Louveaux, 2011; Ierapetritou

& Pistikopoulos, 1994; Z. Li & Ierapetritou, 2012; Marti & Kall, 1995; Prekopa, 1995;

Shapiro et al., 2021) or robust optimization (RO) (Ben-Tal et al., 2009; Ben-Tal &

Nemirovski, 2002; Z. Li & Ierapetritou, 2008; Z. Li & Ierapetritou, 2008; Lin et al.,

2004) to account for uncertainties in a decision-making process. These methods are

building up on and leveraging the above-mentioned programming methods and enable

the development of strategies that can withstand variations in input parameters, market

conditions, or external factors. By incorporating uncertainty considerations into the

optimization framework, practitioners can make informed decisions that balance risk

and reward, leading to more sustainable and resilient operations in the chemical industry

(Sahinidis, 2004).

1.3.3 Consideration of uncertainty for �exible processes

Uncertainties pervade various stages, posing signi�cant challenges for practitioners in

di�erent industry-related �elds. These uncertainties can arise from diverse sources, in-

cluding variations in raw material properties (Shari�an et al., 2021), inherent complexity

in biochemical reactions (Mi²kovi¢ & Hatzimanikatis, 2011), or in �uctuations of envi-

ronmental conditions and product demands (Gabrielli et al., 2019). These variations or

disturbances can then propagate and be revealed in the process design and operation

phase (Pistikopoulos, 1995) or even in conceptually di�erent stages like supply chain and

scheduling activities (Ehrenstein et al., 2019; Ovalle et al., 2024). Managing uncertain-

ties � also considering di�erent scales � is crucial to ensure safety, process robustness,

and reliability (sarkis.etal_2023; I. E. Grossmann et al., 1983). If uncertainties are

not taken into account, designing and optimizing processes can lead to suboptimal or

infeasible solutions (I. E. Grossmann et al., 1983). Shimoni et al. (2014), for example,

describe the edge of failure in a pharmaceutical application. It describes a point, which,

if exceeded, could result in deviations that might have impact on the quality of the prod-

uct. Additional examples and an overview about how uncertainty might a�ect chemical

processes in design, optimization, control, and fault detection is given by Shari�an et al.

(Shari�an et al., 2021).

When a practitioner seeks an optimal design or operating solution, the identi�ed realiza-
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tion usually needs to meet a variety of requirements, where unconsidered perturbations

might signi�cantly impact the operability of the process. However, several challenges

in considering uncertainties in optimization problems are faced by practitioners, which

make the development of industrial applications di�cult. The lack of information on the

uncertainty of the data might be described as one of the major challenges in this �eld

(I. E. Grossmann et al., 2016). Other barriers are certainly the di�culty in determin-

ing the nature of the uncertainties (exogenous vs. endogenous), the choice of strategy

to prepare process systems to withstand variations due to uncertainty (robust/chance-

constrained optimization vs. stochastic programming), and also the immense computa-

tional power required to consider uncertainty in calculations (often orders of magnitude

larger than deterministic models) (I. E. Grossmann et al., 2016). Practitioners might

make use of di�erent approaches to consider uncertainties in their optimization prob-

lems, where the work published by Grossmann et al. (2017) o�ers a great overview

of recent advances and possible applications of both, robust optimization and stochas-

tic programming, within the landscape of the chemical industry. Sahinidis (2004) and

Diwekar (2020) o�er a more general overview of the application of stochastic program-

ming, robust optimization, and many other methods such as decomposition methods

(Dantzig & Wolfe, 1960), sampling-based approaches (Diwekar, 2020), fuzzy mathemat-

ical programming (Bellman et al., 1967; Zimmermann, 2001), or stochastic dynamic

programming (Bellman, 2010). In the published work by Sahinidis (2004), di�erent

applications are given to which these mentioned approaches were applied.

Uncertainty also comes into play when a process design should be implemented as �exibly

as possible (design stage, Figure 1.5), or when a �xed design should be assessed for its

�exibility (operational stage, Chapter 5). The �exibility of a process system describes

the ability of the system to adapt to changes in operating conditions or external factors

(I. E. Grossmann et al., 1983). Based on concepts that were usually mainly applied

during the process design phase (Pistikopoulos, 1995), a �exibility index was designed

by the PSE community � with pioneering works by Grossmann et al. (1983), Halemane

and Grossmann (1983), and Swaney and Grossmann (1985a, 1985b) � that allows to

assess the ability of a design to remain feasible against variations in the parameter values

during the operation. Alternatively, other metrics to quantify process �exibility were

described in the literature, where the resilience index (Morari et al., 1985), stochastic

design reliability (Kubic & Stein, 1988), or stochastic �exibility index (Pistikopoulos &

Mazzuchi, 1990; Straub & Grossmann, 1990, 1993) are well-known. A more detailed

overview of the �exibility index, its applications in the chemical industry, and how

it can be assessed will be given in Chapter 5.1. Although the description of process
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Figure 1.5. Schematically represented procedure to implement the most �exible design
of a process equipment.

�exibility was already established in the 1980s, there are still remaining challenges that

need to be addressed. One of the main issues is the computation of the �exibility

index when the process dynamics are complex (Ding & Ierapetritou, 2021), when the

constraints are hard to model, or when the only knowledge about the system consists of

observations of input and output data due to limited process understanding (Boukouvala

& Ierapetritou, 2012). In such cases, the �exibility index cannot be computed using

deterministic mathematical models, as the constraints are not available in a closed-form

algebraic manner. Some works were published where the authors showed an alternative

possibility to assess the �exibility of the process by estimating the feasible region. Mostly,

this is achieved by creating a function that evaluates the feasibility of the model for given

values of the decision variables and the parameters (Boukouvala & Ierapetritou, 2012;

Boukouvala et al., 2011; Metta et al., 2021), or by sampling approaches (Sachio et al.,

2023, 2024). These methods that model the feasible region, however, are conceptually

di�erent approaches compared to the described assessment of the originally described

calculation of the �exibility index (Halemane & Grossmann, 1983; Swaney & Grossmann,

1985a, 1985b). In other words, they approximate the feasibility function with a surrogate

and they do not rely on the original deterministic �exibility index, but rather they use

alternative �exibility metrices. Therefore, the challenge in computing the originally

described �exibility index remains unsolved in case of complex process dynamics or

hard-to-model constraints. One possibility to link the originally developed �exibility

index formulation with such complicating constraints is to use approaches that result

in closed-form algebraic models, which, as described above in Section 1.3.2, can be

straightforwardly incorporated into deterministic optimization problems, such as the

original �exibility index problem.
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1.4 Motivation and objectives

The motivation for this thesis stems from the need to address the modeling and opti-

mization challenges faced in the chemical and biological sector, which were introduced

above. Herein, surrogate and hybrid approaches are discussed that leverage advance-

ments in several areas of research, including machine learning, mathematical modeling,

and optimization. A general goal of this thesis is the development of solution approaches

for a wide range of modeling and optimization applications, where the provided frame-

works should serve as alternative methods to existing ones that target the support of the

design and optimization of chemical and biological processes. The following objectives

should be addressed within this work:

(1) The development of purely mechanistic models for chemical and biological systems

is a signi�cant challenge, not only due to a possible lack of knowledge about the system.

Even if a model can be developed, estimating the parameters of such a representation

might pose challenging tasks, as discussed previously. Furthermore, pure data-driven

models might face issues in interpretability and extrapolation. The �rst objective of

the thesis is therefore to design models that are based on expert knowledge or available

statistical prior information. However, instead of using a �xed structure of the model, it

should be identi�ed in parallel to the parameter estimation step. One advantage of such

a procedure is that the resulting expressions can be more easily interpreted due to the

conceptually incorporated knowledge. Further, such resulting models can be optimized

in existing algebraic modeling systems due to the closed-form expressions.

(2) The second objective of the thesis is to develop a framework that allows to per-

form a deterministic optimization of processes using closed-form surrogate models. The

framework should be able to build algebraic surrogates purely from data, which can

subsequently be optimized using well-established and o�-the-shelf deterministic solvers.

The advantage of such a procedure is that the modeling and optimization steps can be

decoupled, where the resulting models can be optimized in existing algebraic modeling

systems due to the obtained closed-form expressions.

(3) Lastly, this thesis focuses on the development of a framework that allows to analyze

the �exibility of processes using surrogate models. Algebraic surrogates � purely gener-

ated from data � should be incorporated into an optimization problem that can assess

the �exibility of an existing process. The advantage of such a hybrid framework is that

the modeling and optimization steps can be decoupled, while the �exibility analysis can

be performed with existing well-known deterministic solvers.

18



1.5 Research contributions and outline

The thesis is divided into several chapters which guide through various conceptual and

physical scales within the chemical and biological process systems value chain, from

modeling of reactions up to the optimization of production processes. The chapters

will highlight how mathematical tools can be used to contribute to the enhancement

of e�ciency, sustainability, and �exibility in the chemical industry while targeting the

above-mentioned objectives (Figure 1.6).

As discussed above, the accurate model construction might be not straightforward, es-

pecially with bioprocesses, due to complex metabolic mechanisms and data scarcity. In

Chapter 2 of this thesis, a modeling approach is discussed that uses a mechanistic mass

balance backbone in the form of a canonical kinetic representation, which is well-known

from the �eld of biochemical systems theory (BST). Together with observed data, an

incremental approach is used to perform a parameter estimation step while avoiding

complex integrations of ODEs. The obtained expressions can subsequently be more

easily interpreted and optimized in existing algebraic modeling systems than for exam-

ple purely data-driven models. This chapter therefore tackles the challenge of accurate

model construction, data scarcity and the need for interpretable models. Building on

Chapter 2, Chapter 3 of the thesis focuses on identifying suitable kinetic models for

bioprocesses. Compared to the second chapter, however, here, an approach is used that

identi�es models without assuming a pre-de�ned model structure. With this method,

kinetic rates are directly obtained from data and a two-step approach for the parameter

estimation step. The obtained algebraic expressions for the rate equations simplify the

model interpretation and subsequently allow the application of optimization algorithms.

Chapter 4 tackles the challenge of combining surrogate models with global optimization

of processes by building algebraic surrogates from data, which can subsequently be op-

Modeling

Chapter 2
Process modeling using

data and a mathematical
structure assumption

Modeling

Chapter 3
Process modeling using

data but no mathematical
structure assumption

Optimization

Chapter 4
Optimization of units

and production
processes

Operability

Chapter 5
Flexibility analysis of
units and production

processes

Figure 1.6. A schematic structure of the chapters of this thesis. The arrows below the
blocks represent the main topic touched throughout the corresponding chapter.
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timized using deterministic solvers. Deterministically optimizing a given system usually

requires algebraic descriptions of a process. The advantage is that these models can

easily be optimized due to their closed-form structure. On the other hand, it might not

be straightforward to write sophisticated surrogate models like ANNs or GPs in a closed-

form manner. After having optimized an existing production process for its operating

conditions, it could be analyzed for its �exibility. There might be many reasons why

standard approaches for analyzing the �exibility can be challenging to apply. In Chap-

ter 5 of this thesis, the traditional �exibility index is calculated using a hybrid approach,

in which complicating parts of the optimization model are replaced by algebraic surro-

gate models. This simpli�es the �exibility analysis of complex process models since,

although surrogate models are used, the application of deterministic solvers becomes

possible. This approach provides an alternative way to existing methods to analyze

the �exibility of processes entailing complicating constraints. Lastly, in Chapter 6, the

discussions of the previous chapters are summarized. The main �ndings are highlighted,

and the potential of the developed models and frameworks is discussed. The chapter

concludes with an outlook on future research directions and potential applications of the

developed models and frameworks.
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Chapter 2

Modeling via MINLP-based

symbolic regression of S-system

formalisms

This chapter is based on the following publication: Forster T., Vazquez D., Cruz-

Bournazou M. N., Butté A., Guillén-Gosálbez G. (2023). Modeling via MINLP-

based symbolic regression of S-system formalisms. Computers and Chemical En-

gineering, 170, 108108.
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Nomenclature for Chapter 2

Sets

E {e | e is a batch experiment}

I {i, j | i and j are species/components}

M {m | m is a node in the hidden layer of the neural network}

R {r | r is a chemical reaction}

U {u | u is a discrete/sampled time point}

R Real numbers

Parameters

fj,r Reaction rate order of species j in reaction r (used in the GMA)

gi,j Reaction rate order of species j in�uencing species i (production
term in S-system)

hi,j Reaction rate order of species j in�uencing species i (depletion
term in S-system)

kr Reaction rate constant of reaction r (used in GMA)

NP User-de�ned maximum number of non-zero parameters in the S-
system

Qi,in and Qi,out Material �ow into/out of a reactor

t0, tf Initial and �nal time

X0,i Initial concentration of metabolite/species i

µ Mean of a particular property

σ2 Variance of a particular property

w and b Weights and biases of the ANN

αi Production reaction rate constant of reaction r (used in S-system)

βi Depletion reaction rate constant of reaction r (used in S-system)

γi,r Stoichiometric coe�cient of species i in reaction r

Variables

Xi Concentration of metabolite/species i (used as continuous

variables in ODE expressions)

Xi,u Concentration of metabolite/species i at time tu
X̂i,u Model predictions of the concentration of

metabolite/species i at time tu
Ẋi,u Derivatives/slopes of metabolite/species i at time tu
ˆ̇Xi,u Model predictions of the derivatives/slopes of

metabolite/species i at time tu
X(i, u) Mean of the experimental data points of species i at time tu
t and tu Time and sampled time point
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2.1 Introduction

In recent years, model-based methods have gained increasing attention in the

chemical and pharmaceutical industries (Narayanan et al., 2019), �nding appli-

cations in process development, design, optimization, monitoring, and control.

Among other advantages, mathematical modeling techniques and simulations help

guide experiments more e�ectively and monitor/control processes in a predictive

manner, thereby reducing the associated development or process costs. These sav-

ings are particularly relevant in the biopharmaceutical industry, where resources

are scarce and expensive (Kroll, Hofer, Ulonska, et al., 2017; Mercier et al., 2014).

The modeling of biotechnological processes is particularly challenging due to the

di�culty of precisely describing the underlying metabolic mechanisms dictating

the microorganisms' behavior (Guillén-Gosálbez et al., 2013; Mercier et al., 2014;

Petsagkourakis, Sandoval, et al., 2020; D. Zhang et al., 2020). Since these path-

ways are nevertheless the critical enabler for producing therapeutic compounds,

they need to be modeled accurately so the associated process can be optimized

e�ectively (Narayanan et al., 2019). However, since parameter estimation requires

a model to which the parameters are �t, the fact that the behavior of the bio-

processes is not well understood directly a�ects the di�culty of the parameter

estimation step.

Ideally, �rst-principles models combining well-established equations with available

data (semi-empirical or deterministic) could support e�cient and cost-e�ective

development for therapeutic new drugs (von Stosch et al., 2014). The model-

building journey in bioprocesses often encompasses several steps, as described by

Gosalbez et al. (2013), and Voit (2000), from identifying the mass �ow structure

(stoichiometry) through selecting a kinetic representation and, �nally, estimating

the intrinsic parameters. Here, choosing a suitable kinetic formalism and cali-

brating it with experimental points are particularly challenging tasks involving

solving nonconvex dynamic optimization problems.

Parameter estimation for model building in dynamic systems can be solved either

sequentially or simultaneously (Michalik et al., 2009). Both approaches, which

often assume a given �xed mathematical structure, attempt to minimize a loss
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function, such as the squared residuals. In the sequential approach, the objective

function is calculated by integrating the di�erential model and comparing the

predictions to the observed values. The intrinsic model parameters are adjusted,

and the procedure is performed iteratively until convergence. Examples of such

a procedure can be seen in Bellman et al. (1967) and Kim et al. (1991). The

drawback of this approach is its high computational e�ort due to the need to

integrate ordinary di�erential equations (ODE) in every iteration.

Additionally, this approach can lead to systems that are hard to solve due to the

resulting sti� ODEs (Tjoa & Biegler, 1991). In the simultaneous approach, the pa-

rameter estimation task can be reformulated as a nonlinear programming (NLP)

problem. This reformulation can be performed by applying orthogonal collocation

methods (Esposito & Floudas, 2000), as shown in the case of bioprocesses in the

works of Gosálbez et al. (2013), Miró et al. (2012), Willis and von Stosch (2017),

and Burnak et al. (2020). This approach is also discussed in Bansal et al. (2003),

which covers formulations and algorithms for solving dynamic optimization prob-

lems. In summary, the simultaneous approach avoids the computational cost of

integrating ODEs at every iteration. However, this strategy requires solving com-

plex NLPs, for which �nding a good starting point might be challenging. Other

alternative approaches were proposed for model building of dynamic systems, like

the one by Brendel et al. (2006) based on a unifying incremental identi�cation

concept for the stepwise identi�cation of structured submodels in complex re-

action systems that aims to reduce the computational burden. We stress that

algorithms for model building that also optimize the model structure in addition

to its parameters are scarce, although there is increasing interest in developing

such approaches (Guillén-Gosálbez et al., 2013; Henriques et al., 2015; Wilson &

Sahinidis, 2019).

The mentioned methods often rely on mechanistic models that are hard to develop.

Notably, the exact equations describing the phenomena one wishes to model, par-

ticularly those dictating the kinetic behavior of a bioreactor, are often unknown.

As an alternative to mechanistic models, data-driven strategies allow studying

the system's behavior without relying on expert knowledge (Kahrs & Marquardt,

2007; Taylor et al., 2021). For example, Willis, Montague, and Peel (Willis et al.,

1995) used an arti�cial neural network (ANN) to model the relationships between

the measured online data and biomass concentration. More recently, mathemati-

cal programming methods were applied to build surrogate models, like the auto-

24



mated learning of algebraic models for optimization (ALAMO) approach (Wilson

& Sahinidis, 2017). This algorithm seeks an optimal surrogate model by solving

a mixed-integer linear programming (MILP) model. In a similar spirit, symbolic

regression (SR) uses expression trees to simultaneously identify the model struc-

ture and the values of its parameters (Cozad & Sahinidis, 2018; Neumann et al.,

2020). For dynamic systems, Brunton et al. (2016) proposed the sparse identi�-

cation of nonlinear dynamics (SINDy) algorithm, which was successfully applied

to di�erent systems, ranging from simple canonical systems to the �uid vortex

shedding behind an obstacle. This work was later extended by Rosafalco and

colleagues (2024), who combined with an extended Kalman �lter with the SINDy

(EKF-SINDy) approach. This led to an easy-to-impelement and computation-

ally e�cient system for identifying nonlinear systems. In recent work, Cozad

and Sahinidis (Cozad & Sahinidis, 2018) introduced a mixed-integer nonlinear

programming (MINLP) formulation to solve SR problems to global optimality.

Sun and Braatz (2020) developed an algorithm that combines nonlinear feature

generation followed by sparse regression to learn interpretable nonlinear models,

called algebraic learning via elastic net (ALVEN). These process models have the

advantage of only requiring data and, therefore, can be set up without any deep

knowledge of the system. However, they are hard to interpret and may return

values that are not consistent with the physical meaning of the data due to the

few mechanistic constraints imposed during training.

As a bridge between the discussed deterministic and data-driven methods, hybrid

modeling (also referred to as grey-box modeling) has recently gained popularity

as an appealing strategy to exploit the complementary strengths of both model-

ing paradigms. In essence, hybrid models combine a mechanistic backbone with

a surrogate component. The mechanistic backbone of the model is determined

a prior i on the basis of the knowledge available about the process. It reveals a

physical or empirical interpretation depending on the level of knowledge that is

included. On the contrary, the surrogate component is determined from the data

available. Hybrid modeling combines both extremes (von Stosch et al., 2014).

Hybrid approaches were used to solve a wide range of problems. Zhang, An-

droulakis and Ierapetritou (2013) proposed a hybrid kinetic mechanism where

quasi-steady-state species are separated from the kinetic ODEs and described by

a set of nonlinear algebraic equations. Boukouvala and Floudas (2017) presented

ARGONAUT, a framework for the global optimization of general nonlinear con-
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strained hybrid/grey-box models designed for problems with an objective function

and/or constraints without an explicit analytical expression, which are adequately

approximated by the algorithm.

With regards to hybrid models applied to chemical/biochemical systems, Azevedo

et al. (2019), Psichogios (1992), and Gnoth et al. (2007, 2008a, 2010) integrated

ANNs as a non-parametric component in kinetic models. Notably, complex ANN

architectures without regularizations relying on small datasets were shown to lead

to less accurate predictions in these applications (Pasupa & Sunhem, 2016). It

should be noted that, so far, there is no universal recipe for building hybrid models

for bioprocesses, which may di�er in the level of hybridization attained, i.e., the

amount and type of �rst principles and data-driving components they combine

(Narayanan, Luna, et al., 2021).

One way to improve the hybrid modeling of (bio)chemical reactions consists of us-

ing canonical mathematical formalisms �exible enough to represent a wide range

of systems. The idea here is to replace black-box surrogates with semi-empirical

models based on general foundations. Following this approach, some existing

general knowledge (even if limited) is added to constrain the output of the model

to �reasonable� results. A canonical formalism is a general mathematical rep-

resentation adaptable to many speci�c systems � via model calibration � that

provides a sound basis to build semi-empirical models based on a general theo-

retical framework. In a seminal work, Savageau introduced one such formalism,

the power-law representation (Savageau, 1969a, 1969b, 1970), which was later ex-

tended by Sorribas et al. (2007) and applied to model biochemical networks.

Despite their simplicity and versatility, canonical formalisms, particularly the

S-system approach, have often been used to model biochemical systems at the

molecular level, while their application to model bioprocesses at a larger scale is

yet to be explored.

This work introduces a method based on the S-system canonical formalism to

build dynamic models of bioprocesses, determining both the model structure and

its parameters and focusing on problems where only scarce data are available. In

essence, our approach combines a �rst-principles backbone based on mass bal-

ances with a canonical kinetic S-system formalism, whose structure and model

parameters are automatically identi�ed by solving an MINLP. This approach

signi�cantly tightens the search space by applying �rational� constraints to the
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structure of the model. The model training is performed following a two-stage

approach that simpli�es the calculations by avoiding the iterative integration of

di�erential equations. Numerical examples show that our method performs sim-

ilarly to models based on ANNs, while leading to a trained model based on a

compact, analytical canonical expression. The latter can be used for monitoring,

control, and optimization, among others.

The remainder of the paper is organized as follows: First, the problem statement

is detailed, followed by the methodology. Afterward, the case studies are intro-

duced, and the results are discussed. Finally, the conclusions of the work are

drawn.

2.2 Problem statement

Here we shall consider a typical reactor implementing a given reaction system, as

depicted in Figure 2.1.

Qi,in

Qi,out

V

Xi

Figure 2.1. Schematic representation of a generic reactor with input/output streams
Qi,in/Qi,out, considering a system volume V , and a concentration Xi of species i.

For a generic, ideally mixed, homogeneous, and isothermally operated reactor with

constant volume, the overall mass balance for species i ∈ I is shown in equation

(2.1):

dXi

dt
= Ẋ =

1

V
(Qi,in −Qi,out) +Rxni(X),∀i ∈ I (2.1)

where Qi,in, Qi,out and Rxni(X) denote the mass �ows in and out of the reactor

and the generation/depletion term, respectively, and
dXi

dt
(or Ẋ) refers to the

accumulation term. For a batch process, where no inlet nor outlet are considered,
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the mass balance reduces to the accumulation and generation terms:

dXi

dt
= Ẋ = Rxni(X),∀i ∈ I (2.2)

Where the Rxni(X) term is an unknown expression that depends on the state

variables X (e.g., species concentration). In this work, we approximate Rxni(X)

using ANNs and a canonical formalism tailored to the particular system.

Given a set of experimental observations X, the goal of the analysis is to �nd

Rxni(X) in equation (2.2) such that the mismatch between the model predictions

X̂ and the experimental observations is minimized. Note that, unlike the standard

parameter estimation problem where the model structure is known, we assume

that it is unknown but follows a given formalism. Therefore, we aim to �nd

both the rate expression and its parameters simultaneously instead of solving

a standard inverse problem with a de�ned structure, as discussed by Voit and

Almeida (2004) and Brendel et al. (2006). The section that follows introduces

our approach.

2.3 Methodology

We describe two alternative approaches to tackle the problem above, inspired

by the modeling ideas in Guillén-Gosálbez et al. (2013), the Ph.D. thesis of

Miró (2014), the work of Sorribas et al. (2010), and the decomposition methods

in Voit and Almeida (2004), Michalik et al. (2009), and Brendel et al. (2006).

Finally, we study the identi�ed model performance and compare it to a benchmark

model.

2.3.1 Modeling framework

In essence, our modeling approach relies on a backbone based on mass balances

coupled with a canonical component that predicts the reaction rate (genera-

tion/depletion term in the mass balance) from the state variables, whose values

vary over time. It is worth highlighting that this approach can provide a gen-

eral modeling structure, where the canonical part can be replaced by any kind

of formalism (i.e., an ANN, a GP, a Generalized Mass Action (GMA) expression,

etc.). Here we focus on a regular widespread ANN and the S-system representa-

tion. Other surrogates, e.g., GPs or deep learning methods, could also be used
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but are out of the scope of this work. Our method is based on an incremental

approach for model building, as shown in Figure 2.2, where the ODE integration

is avoided by �tting the slopes determined experimentally, as explained later in

the article.

First, the slopes are calculated for each pro�le. The polynomial approach de-

scribed in the manuscript Section 2.4.3 was applied to �t these slopes. However,

another approach might also be suitable. Second, a training dataset is set up,

where the input data consists of the experimental states, and the target data

consists of the calculated slopes. With this data at hand, both the ANN and the

S-system can be trained. The exact equations used for this training are described

below. Third, the trained model is incorporated into the ODE, which can then

be solved using speci�c initial conditions.

Backbone based on mass balances

The backbone of the model describes the mass balance equations for a generic

chemical reaction in a batch reactor, as given by equation (2.2). The genera-

tion/depletion term Rxni(X) is herein modelled following two approaches: ANN

and S-system.

Data-driven component based on neural network approximation

In the �rst approach, the Rxni(X) term is approximated using a shallow feed-

forward ANN as follows:

Rxni(X) ≈ ANNi(X), ∀i ∈ I (2.3)

WhereANNi(X) denotes the neural network that uses some independent variables

(i.e., the state variable/concentration of the species X) as input features. The

limitation of this approach, as already mentioned, is that it is entirely data-driven

and, thus, can lead to poor estimates, particularly when attempting extrapolation

outside of the training range. Furthermore, an additional limitation is that the

ANN is hard to interpret given its black-box nature. Hence, the following section

describes how, alternatively, a tailored canonical kinetic formalism can be used to

improve interpretability.

Canonical component based on an S-system

In the second approach, we rely on the biochemical systems theory (BST) to

�nd a suitable rate expression. For a very detailed review of BST, the reader is
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Gather experimental data and fit polynomials

Step 2: Building rate expressions from slopes 
and state variables

Step 3: Solving ODE model with the 
built rate expressions

ANN approach S-system approach

Step 1: Finding slopes of the ODE

Figure 2.2. Overview of the incremental approach for model building. After gathering
experimental data, a polynomial is �t from data points (one polynomial for each species
and experimental run). Slopes are obtained from this polynomial via di�erentiation and
then evaluated at the experimental time points (step 1). To train the models (ANN or
S-system), the collected states in red and the calculated slopes in green are used (step 2).
After training the models to predict the slopes from input states, they are incorporated
into an ODE which can be solved with appropriate initial conditions (step 3).
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referred to the work by Savageau (1969a, 1969b, 1970) and Voit (2013). BST uses

canonical models, which means that the model-building procedure follows well-

de�ned rules. Such models are built, for example, by applying approximation

theory (Voit, 2013). One such representation is the power-law approximation,

�rst presented by (1969a, 1969b, 1970). Following this representation, each of the

participating reactions involved in the generation term Rxni(X) in equation (2.2)

are described with an individual reaction rate νr. Furthermore, each νr depends

on the metabolite concentrations Xi of species i. The formalism is derived using

an approximation of a general kinetic function of a reaction r in logarithmic

coordinates, leading to the following expression:

νr(X1, X2, . . . , X|I|) ≈ kr
∏
j∈I

X
fj,r
j , ∀r ∈ R (2.4)

Where kr represents the rate constant of reaction r ∈ R, and fj,r represents the
reaction order of species j in�uencing species i in reaction r. By summing over

the |R| reactions and considering the stoichiometry γi,r of species i in reaction r,

we can state the GMA model as:

Ẋ =
∑
r∈R

γi,rνr =
∑
r∈R

(
γi,rkr

∏
j∈I

X
fj,r
j

)
, ∀i ∈ I (2.5)

By considering only two lumped terms, one for the species generation and one for

the species depletion, we obtain the so-called S-system representation, which was

�rst described in the mid-1980s (Savageau, 1985; Voit and Savageau, 1985):

Ẋi = αi

∏
j∈I

X
gi,j
j − βi

∏
j∈I

X
hi,j

j , ∀i ∈ I (2.6)

According to equation (2.6), the maximum possible number of parameters in the

S-system only depends on the number of species in the system. Hence, it is

de�ned a priori for the system under study. Where αi and βi represent the

production and depletion rate constants for species i. The exponents gi,j and hi,j

represent the reaction order of species j in�uencing species i for the production and

depletion reactions, respectively. Following the GMA or S-system formalism, a

given variable Xj will have a positive/enhancing e�ect on Xi if the exponent fi,j is

positive. Conversely, it will have a negative/inhibiting e�ect on Xi if the exponent

is negative. In case the exponent equals zero, variable Xj will not in�uence Xi.

31



This approach captures the evolution of the concentration of the metabolites and

how the metabolites interact among themselves. Hence, the generation term in

equation (2.2) is approximated using the aforementioned S-system, such that the

relationship shown in equation (2.6) can be speci�ed as follows:

Rxni(X) = αi

∏
j∈I

X
gi,j
j − βi

∏
j∈I

X
hi,j

j , ∀i ∈ I (2.7)

Compared to the ANN, the S-system approach presents the advantage of provid-

ing interpretable models based on a canonical formalism, where all the coe�cients

have some physical meaning. Note that including many potential interactions

between metabolites may lead to over�tted models with poor extrapolation capa-

bilities. Hence, the challenge is �nding a regulatory scheme capturing the main

interactions and providing good estimates, even during extrapolation. As dis-

cussed in the next section, we pose this task as an MINLP problem, which is

solved iteratively to provide candidate models with alternative regulatory inter-

actions, i.e., with alternative values of the S-system parameters.

2.3.2 Incremental approach for model building

It is worth mentioning that until now, the state variables Xi were considered

to be continuous in time (X did not depend on set U). For the subsequently

proposed incremental approach, the concentration data for the di�erent species

i ∈ I are collected by sampling from an ongoing reaction for each time point

u ∈ U resulting in an |U |-dimensional array of samples for each species i for the

di�erent time points Xi,u:

Xi,u =
[
Xi,0, Xi,1, Xi,2, . . . , Xi,|U |

]
, ∀i ∈ I

We then seek the rate expression that is able to predict the time-dependent evolu-

tion by just using the state variables at a given initial time t0. This rate expression

will be subsequently used to construct the overall model.

The model-building task for the S-system can �rst be posed as a general dynamic

optimization problem, where the sum of squared residuals (SSR) is minimized.

The problem can therefore be formulated as follows:
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min
β
SSR =

∑
i∈I

∑
u∈U

(
Xi,u − X̂i,u

)2
s.t. ˆ̇Xi,u = Rxni(Xj,u, β), ∀i ∈ I, j ∈ I, u ∈ U

X̂i,0 = Xi,0, ∀i ∈ I

X̂ ∈ R+, ˆ̇X ∈ R+

(2.8)

Where ˆ̇Xi,u represents the predicted slope variable of species i at time point tu

and X̂i,0 the initial conditions. The intrinsic model parameters β (weights/biases

of an ANN or reaction rate constants/exponents in the S-system) of the untrained

expression Rxni(X, β) are represented as trainable decision variables. Solving the

dynamic problem requires integrating the ODEs to obtain the objective function

value, which can be accomplished by following a sequential or simultaneous ap-

proach. To simplify the calculations, we follow the approach proposed by Michalik

et al. (2009) and Voit and Almeida (2004) to solve the dynamic model above,

which formulates the problem in the slopes space instead of the state variables

space. In essence, the idea here is to obtain the slopes from the dynamic pro�les

of the state variables and then use them to calibrate the kinetic model. This

strategy avoids integrating the dynamic system, as the slopes are experimentally

determined rather than predicted in-silico from the kinetic equations. The choice

of a speci�c rate expression Rxni(X, β) dictates the model type, leading to the fol-

lowing two alternative problems. The �rst includes the ANN as given in equation

(2.3):

min
ω,b

SSR =
∑
i∈I

∑
u∈U

(
Ẋi,u − ˆ̇Xi,u

)2
s.t.
[
ˆ̇Xi, . . . ,

ˆ̇X|I|

]
= ANN

([
Xi, . . . , X|I|

]
u
, ω, b

)
X̂ ∈ R+, ˆ̇X ∈ R+

(2.9)

The second problem formulation includes the S-system, as given in equation

(2.7):
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min
α,β,g,h

SSR =
∑
i∈I

∑
u∈U

(
Ẋi,u − ˆ̇Xi,u

)2
s.t. ˆ̇Xi,u = αi

∏
j∈I

X
gi,j
j,u − βi

∏
j∈I

X
hi,j

j,u , ∀i ∈ I, u ∈ U

αi ≤ αi ≤ αi, ∀i ∈ I
βi ≤ βi ≤ βi, ∀i ∈ I
gi,j ≤ gi,j ≤ gi,j, ∀i, j ∈ I

hi,j ≤ hi,j ≤ hi,j, ∀i, j ∈ I

α ∈ R+, β ∈ R+, g ∈ R, h ∈ R

X̂ ∈ R+, ˆ̇X ∈ R+

(2.10)

Parameters αi, βi and gi,j, hi,j of the S-system are decision variables in the NLP.

Upper and lower bounds on the parameters αi,βi and gi,j, hi,j (αi, βi, αi, and

βi, gi,j, hi,j, and gi,j, hi,j) are imposed. In contrast to the GMA, in the S-

system, the reaction rate constants αi and βi are de�ned to be positive. The

exponents gi,j, hi,j are considered to be real numbers between de�ned upper and

lower bounds.

A critical issue in equation (2.10) concerns the selection of the regulatory scheme,

de�ned by the set of non-zero parameters αi, βi and gi,j, hi,j. Here, we formulate

the task of �nding the most suitable regulatory structure as an MINLP, given by

(2.11).
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min
α,β,g,h,

yα,yβ,yg,yh

SSR =
∑
i∈I

∑
u∈U

(
Ẋi,u − ˆ̇Xi,u

)2
s.t. ˆ̇Xi,u = αi

∏
j∈I

X
gi,j
j,u − βi

∏
j∈I

X
hi,j

j,u , ∀i ∈ I, u ∈ U

∑
i∈I

(
yαi + yβi +

∑
j∈I

(ygi,j + yhi,j)

)
≤ NP

(1− ygi,j) + yαi ≥ 1, ∀i, j ∈ I
(1− yhi,j) + yβi ≥ 1, ∀i, j ∈ I
yαi · αi ≤ αi ≤ yαi · αi, ∀i ∈ I
yβi · βi ≤ βi ≤ yβi · βi, ∀i ∈ I
ygi,j · gi,j ≤ gi,j ≤ ygi,j · gi,j, ∀i, j ∈ I

yhi,j · hi,j ≤ hi,j ≤ yhi,j · hi,j, ∀i, j ∈ I

yα, yβ, yg, yh ∈ {0, 1}
α ∈ R+, β ∈ R+, g ∈ R, h ∈ R

X̂ ∈ R+, ˆ̇X ∈ R+

(2.11)

As in the NLP approach above, the parameters αi, βi and ygi,j, yhi,j of the S-

system are decision variables in the MINLP. Binary variables yαi, yβi and ygi,j,

yhi,j denote the existence of the model parameters (one if selected, and zero

otherwise), all of which must lie within a given interval (i.e., αi, βi, αi, and βi,

gi,j, hi,j, and gi,j, hi,j). The MINLP also constrains the maximum number of

parameters (NP ), which de�nes the model complexity. In model (2.11), binary

variables yα, yβ, yg and yh model the selection of parameters α and β in the S-

system. Accordingly, if metabolite i in�uences the reaction rate of species j, then

the corresponding binary variable is one, and it will be zero otherwise.

Overall, our model-building approach comprises three steps, as discussed next for

the two di�erent cases (i.e., ANN and S-system). A schematic overview of the

solution procedure is shown in Figure 2.3.

Step 1: Finding the slope variables of a pro�le

The solution method for models (2.9) and (2.11) is based on the incremental ap-

proach proposed by Michalik et al. (2009) and Voit and Almeida (2004). In
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Calculate error metrics

Use states to
calculate non-noisy

slopes

Polynomial fit through
states, calculation of

derivative to
approximate the slopes

Define 𝑁𝑃, ሶ𝑋𝑖,𝑢, 𝑋𝑖,𝑢, bounds, starting points of
decision variables and solve MINLP/NLP

Integrate model

Integrate in-silico models

Trained model
parameters

𝑋𝑖,𝑢 and ሶ𝑋𝑖,𝑢 of 
train/test set

ሶ𝑋𝑖,𝑢 of train set

𝑋𝑖,𝑢 of
test set

𝑋𝑖,𝑢 of
train set

Initial conditions
of train/test set

Without noiseWith noise

Sampling space

Figure 2.3. Flowchart of the proposed computational approach for the solution method
based on an incremental approach. Green-colored ellipsoidal blocks represent the results
of the task executed in the blue-colored squared blocks.

essence, we decouple the model training - �nding the expression rate in equa-

tion (2.9) and (2.11) - from the ODE integration to simplify the solution of the
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dynamic optimization problem. These slopes are determined as explained in Sec-

tion 2.4.3.

Step 2: Building the rate expression from the slopes and state variables

The ANN is trained using the states of all available species Xi,u as inputs and the

corresponding slopes Ẋi,u as target values (outputs). The ANN, therefore, predicts

the changes in concentration of all the species at a given time tu.

Applying the S-system approach, once the slopes are obtained, the MINLP in

equation (2.11) is formulated and solved, �nding the optimal values of αi, βi and

ygi,j, yhi,j, respectively. The MINLP can be solved for di�erent bounds on the

number of parameters, providing in each run a candidate model that can be later

on tested in the validation set, as discussed below. If all the binary variables are

�xed to a value of one, the MINLP becomes the NLP given by (2.10).

Step 3: Solving the ODE model with the built rate expressions

The trained ANN can be incorporated into the model backbone given by equation

(2.2), resulting in equation (2.12):

dXi

dt
= ANNi(Xi), ∀i ∈ I (2.12)

Likewise, the trained S-system shown in equation (2.7) can be incorporated into

the model backbone given by equation (2.2), resulting in equation (2.13).

dXi

dt
= αi

∏
j∈I

X
gi,j
j − βi

∏
j∈I

X
gi,j
j , ∀i ∈ I (2.13)

Since in equation (2.12) the weights ω and biases b, and in equation (2.13) the

parameters αi/βi are all known, these ODEs can be solved by using appropriate

initial conditions Xi,0 for every species i and considering the desired integration

period t = [t0, tf ]. It is worth to be mentioned that since from that point on-

wards we have a trained model available, we do not need the sampled/discrete

concentration data Xi,u points anymore. Therefore, the concentration of species

i is considered to be a continuous function of the time, which is further described

as Xi = Xi(t).
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2.3.3 Model performance

For assessing the performance of the models, an arbitrary set of initial conditions

can be used to integrate the ODE, where a simulated concentration pro�le is com-

pared to the experimental values. After training the models on dedicated training

runs, test runs were used to assess the model performance. A detailed description

of how the data splitting was achieved is shown in Section 2.4.2.

The performance is assessed via the root mean squared error (RMSE) and the

coe�cient of determination (R2), de�ned as in equations (2.14). These metrics

can be calculated for both the training and test sets, obtaining the training and

test errors, respectively.

RMSEstate =

√
1

n

∑
i∈I

∑
u∈U

(
X̂i,u −Xi,u

)2
(2.14a)

RMSEslope =

√
1

n

∑
i∈I

∑
u∈U

(
ˆ̇Xi,u − Ẋi,u

)2
(2.14b)

R2
state = 1− SSR

SST
= 1−

∑
i∈I
∑

u∈U

(
X̂i,u −Xi,u

)2
∑

i∈I
∑

u∈U
(
Xi,u −X i,u

)2 (2.14c)

R2
slope = 1− SSR

SST
= 1−

∑
i∈I
∑

u∈U

(
ˆ̇Xi,u − Ẋi,u

)2
∑

i∈I
∑

u∈U

(
Ẋi,u − Ẋ i,u

)2 (2.14d)

In these relationships, the predictions by the model are described by X̂i,u (or
ˆ̇Xi,u).

The experimental data points and the mean of the experimental data points of

the test set are described by Xi,u and X i,u (or Ẋi,u and Ẋ i,u), respectively. The

model predictions X̂i,u are calculated by using input data from the training or the

test set. In this work, the terms test set and test run are used interchangeably.

Variables SSR and SST denote the sum of squares of residuals and the total sum

of squares (proportional to the variance of the data), respectively.
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2.4 Case studies

2.4.1 Software implementation

All simulations were carried out on an AMD Ryzen-5 3600 CPU and 16 GB

of RAM. We used Matlab 2020a (The MathWorks Inc, 2020) to construct the

modeling environment, train the ANN, and plot the results. We used the General

Algebraic Modeling System (GAMS) (GAMS Development Corporation, 2020),

version 35.1.0, and SBB (Bussieck & Drud, 2001), version 32.2.0, to implement

and solve the MINLP for training the S-system, respectively.

2.4.2 Underlying ODE models for in-silico data generation

Several kinetic models were used in this study to test our approach. As described

in the subsequent sections, the di�erent case studies (CS) are of increasing com-

plexity, starting with a simple Monod reaction and �nally moving to a more

complex bioprocess in batch operation mode.

In the following, the case studies and their corresponding data generation pro-

cesses are described. The methods discussed above are applied to predict the

concentration pro�les in the reactors. The corresponding model parameters re-

quired for each case study are tabulated in the supplementary material Section A.1

Table A.1 to Table A.4. The initial conditions were generated by applying a Latin

Hypercube Sampling (LHS) design (data available in Table 2.1).

For the in-silico data generation, the underlying ODEs were solved numerically in

Matlab by using the built-in function ode15s. In order to simulate an operator's

measurement error (same for all the species), Gaussian white noise with a mean

µ = 0 and variance of σ2 = 0.075 was introduced. This leads to noisy training

and testing datasets. To this end, the Matlab built-in function normrnd was used.

Below, for each model, the applied initial conditions and the necessary parameters

are indicated. A Latin hypercube sampling (LHS) design method was used to draw

six training and six independent testing initial conditions. Additionally, the time

span for integration is stated below for each model individually. In the �ve case

studies, the same following settings were applied:

� The di�erent in-silico runs are generated by changing only the initial condi-

tions.
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� For the generation of the test set, some initial conditions (and, therefore,

also some states) exceed the trained feature space (i.e., extrapolation).

Case study I Consider a �rst case study as an example that is fully expressable

by the S-system formalism. It was inspired by and adjusted from Esposito et al.

(2000), shown in equation (2.15). The upper-case letters represent the concentra-

tions of X = {A,B,C,D}, where some constant reaction parameters are given by

kr for r = {1, 2, 3}.

dA

dt
= −k1A+ k2C

dB

dt
= −k1B + k2C

dC

dt
= k1A− k2C − k3C

dD

dt
= k3C

(2.15)

Case study II The second case study is a batch reaction, shown in equa-

tion (2.16), representing the isothermal Van-de-Vusse reaction (Floudas et al.,

1999).

A
k1−−→ B

k2−−→ C

2A
k3−−→ D

dA

dt
= −k1A+ 2k3A

2

dB

dt
= k1A− k2B

dC

dt
= k2B

dD

dt
= k3A

2

(2.16)

Case study IIIAs the third dataset, the following scheme given in equation (2.17)

is used, which represents the α-Pinene reaction (Floudas et al., 1999).

A
k1−−→ E

A
k2−−→ D
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A
k5−−→ C

C
k4−−→←−−
k7

D

D
k3−−→←−−
k6

B

dA

dt
= −(k1 + k2 + k5)A

dB

dt
= k3D − k6B

dC

dt
= k4C + k5A− k7D

dD

dt
= k2A+ k6B + k7C − (k3 + k4)D

dE

dt
= k1A

(2.17)

Case study IV In addition to the above-shown case studies, used to model

chemical reactions, the following case study represents a target protein production

by bacteria. B, S, and P represent the biomass, the substrate concentration, and

the product concentration, respectively, where these species are summarized in

the set X = {B, S, P}. The process is modeled in batch mode and adapted from

Turton et al. (2018).

dB

dt
= ϕB

dB

dt
= ΣB

dC

dt
= πB

(2.18)

The equations given in equation (2.18) are used to calculate the cell growth ϕ,

the substrate consumption rate Σ, and product formation rate π.

ϕ = ϕmax
S

KS + S

Ω1(A1, T, E1)

1 + Ω2(A2, T, E2)

(
1− B

Kϕ +B

)
Σ = − 1

YB,S

ϕ

π =
YP,S
YB,S

ϕ

(2.19)
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Yi,j represents the yield coe�cient of species j with respect to species i, Ω1,

Ω2 represent the reaction rate constants depending on the temperature T , the

temperature-independent pre-factors A1, A2, and the activation energies E1, E2,

and KS, Kϕ represent the inhibition constants.

Table 2.1. Data used for generating the training and test sets. The lower (Xlo
0 ) and

upper (Xup
0 ) bounds for the initial concentrations are indicated along with the initial (ti)

and �nal (tf ) times for the integration.

CS
Training Testing

X lo
0 Xup

0 ti tf X lo
0 Xup

0 ti tf

I [0.8,0.5,0,0] [3,2,0,0] 0 2 [0.2,0.1,0,0] [4.5,4,0,0] 0 2
II [5 5,0,0] [14,10,0,0] 0 1.2 [2,2,0,0] [16,12,0,0] 0 1.2
III [1.5,1.5,0,0,0] [14,11.5,0,0,1.2] 0 3 [0,0,0,0,0] [18,15,0,0,2] 0 3
IV [0.1,50,0] [0.4,90,0] 0 80 [0.1,30,0] [1,110,0] 0 80

2.4.3 Calculation of the slope variables

We apply our method to non-noisy and noisy datasets. The �rst step is to compute

the slopes used to build the regression model following two di�erent approaches,

as explained next.

Non-noisy dataset After having integrated the ODE system, the resulting con-

centration pro�les were considered as states Xi,u. The non-noisy slopes Ẋi,u are

calculated by inserting the state variables measured at given points in time into

the original in-silico model used to generate all the simulated experimental val-

ues.

Noisy dataset In-silico models/expressions are seldom available, so the slopes

need to be approximated from the dynamic pro�les as explained next. Notably,

for CSIV, a preprocessing step based on the Savitzky-Golay (SG) �lter is applied

to the state values Xi,u of the training runs, followed by a scaling procedure

considering the maximum training value. A detailed description of this scaling is

given in the supplementary material Section A.2.

To obtain the dynamic pro�le, a model of choice is �tted through the experimen-

tal data points. The calculated time pro�le can subsequently be derived, leading

to a derivatives pro�le over time. For this purpose, alternative models such as

exponential functions, regression splines, or simple polynomials could be chosen.

Without loss of generality, in this work, we used the polynomial shown in expres-

42



sion (2.20). Therefore, a polynomial ζi,u of de�ned order q is �tted in time t to

the state data points Xi,u of each di�erent species i and for each training run as

shown in equation (2.20). For CSI/II/IV order q = 5 and for CSIII order q = 4

was chosen. The order q can be regarded as a hyperparameter, which could be

tuned to reach better derivative values. There would be many ways to determine

the value of the polynomial order q. One possibility could be to assess a desired

�tting error metric (i.e., the RMSE or MAE) for di�erent values of q, choosing

the q value leading to the lowest �tting error. Cross-validation could also be used

to determine appropriate values of the polynomial order.

Xi,u ≈ ζi,u = pi,1 + pi,2tu + · · ·+ pi,q+1t
q
u (2.20)

Where pi,q are the unknown polynomial coe�cients, tu is the time at the measure-

ment point u, and ζi,u represents the time pro�le at time points u of the approx-

imated state variable of species i. A multi-linear regression approach provides

the polynomial coe�cients p in equation (2.20). By analytically di�erentiating

the polynomial, the coe�cients of the di�erentiated polynomial ζ̇i,u are found as

given in equation (2.21).

ζ̇i,u ≈ Ẋi,u (2.21)

This procedure was followed for all the dynamic pro�les generated for di�erent

experiments. Equation (2.21), therefore, provides approximated slopes Ẋi,u at

any required time point.

We shall next use the slopes information computed above to build the rate ex-

pression embedded in the dynamic model. It is worth to be mentioned that the

polynomial is not further used for any step after having obtained the derivative

variables at the given time point. This approach was used to calculate the deriva-

tives instead of, for example, using forward �nite derivatives. After obtaining the

derivatives, the ANN and the S-system are trained to predict a derivatives by

considering the state variables as input.
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2.4.4 ANN architecture

The output layer includes as many neurons as species available in the system.

The ANN architecture uses a two-layer network (one hidden layer, one output

layer), where the hidden layer includes only three neurons. The hidden layer

uses a tangential sigmoidal and the output layer a linear activation function.

A Bayesian regularization backpropagation approach (Foresee & Hagan, 1997;

MacKay, 1992; Rosa et al., 2020) is chosen as the training algorithm, setting an

upper bound of 100 training epochs. For this task, the deep learning toolbox of

Matlab was used.

2.5 Results

For each case study, we compared two approaches: In the �rst approach, we use

the ANN as the surrogate model to predict the slopes. In the second approach,

we �rst use the S-system considering all possible regulatory interactions between

species to predict the slopes, resulting in an NLP model. We then use the S-

system, considering di�erent levels of complexity by varying the maximum number

of parameters according to the model shown in equation (2.11). This leads to a

series of MINLP models di�ering in the NP values, generating models of di�erent

sizes. The stopping criteria for the MINLP problem are the settings of the solver

in GAMS (i.e., relative optimality gap, number of nodes, etc.), which are given in

detail in the supplementary material Section A.4.

It is worth mentioning that the applied model (S-system) can only �nd the ground-

truth model when it can be represented by an S-system formulation. However,

even if this is not possible (i.e., CSII-IV), the proposed approach still results

in an expression that can precisely explain and predict the system's behavior

under study. Interpretability is enhanced because each parameter in the S-system

model has a physical meaning related to how species interact with each other via

regulatory loops. Additionally, one could replace the S-system with the GMA

given in equation (2.5) or another model of choice.

To de�ne appropriate starting values for the parameters to be estimated with the

MINLP and NLP method, we applied the heuristic approach described in the

supplementary material Section A.3. The same starting values are then used to

initialize the NLP and the �rst MINLP. The chosen starting values are displayed
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in Tables A.5 and A.6. Each subsequent MINLP uses the optimal solution of the

previous MINLP to initialize the solver, where a new upper bound NP is set,

where NP is increased for every new MINLP candidate. A visualization of this

approach is given in Figure 2.4.

Initialize MINLP I 
and set 𝑁𝑃 = 𝑁𝑃1

Starting 
values

MINLP I 
solution

Initialize NLP and 
set

𝑁𝑃 = 2(𝑠2 + 𝑠)

NLP 
solution

Use solution to 
Initialize MINLP II 

and set 
𝑁𝑃 = 𝑁𝑃2 > 𝑁𝑃1

MINLP II 
solution

…

Figure 2.4. Visual representation of the model initialization for both, the NLP and
MINLP models.

As shown in this �gure, the �rst candidate MINLP is solved with a maximum

number of non-zero parameters of NP = NP1. After increasing the value for

NP , leading to NP = NP2 > NP1, the following model candidate is solved.

The largest possible value for NP is de�ned by the largest possible number of

parameters in the S-system given in equation (2.6), which corresponds to 2(s2+s),

where s is the number of species present in the system.

In what follows, we provide the errors in the test set for both approaches (ANN

and MINLP/NLP) for every case study. Note that models with lower training

errors in the slope-space might not necessarily perform better in the state-space,

as discussed in detail next. Table 2.2 and Table 2.3 summarize the obtained

results, while Tables A.8 to A.15 show additional calculated error metrics (R2 and

RMSE) for the non-noisy slope/state spaces and the noisy slope/state spaces. In

addition, Table A.16 and Table A.17 show the number of equations and variables

that describe the MINLP model that was solved and the required CPU time for

the solver.

As seen in Table 2.2 and Table 2.3, both methodologies provide similar perfor-

mance for most cases, except for the third case study without noise. If we focus

on the slope-space training error, the MINLP approach outperforms the ANN in

three out of eight cases in both the noisy and non-noisy datasets. However, if we

shift the focus to the state-space test RMSE values, the MINLP approach out-

performs the ANN in �ve out of eight cases. Note that a lower error in the training

set and a higher error in the test set do not necessarily indicate over�tting here be-
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Table 2.2. Error metrics for the di�erent approaches are shown for the four case studies based on non-
noisy data. For each case study, the best-performing approach in terms of state-space error is indicated
in bold text. The indicated slope space training error is not necessarily the best, but rather the one
corresponding to the best-performing model in the state space.

CS Method RMSE state test
b

RMSE slope test
a

Number of parameters

Modelc Underlying in-silico
d

I
ANN 2.23·10−2 8.14·10−1 55

10 (14)
MINLPe 3.27·10−4 8.66·10−12 14 (of NP=17)

II
ANN 6.97·10−1 3.91·10−1 55

9
MINLPe 2.58·10−1 4.93·10−1 11 (of NP=11)

III
ANN 8.84·10−4 4.78·10−4 83

18
MINLPe 1.77·10−1 3.55·10−2 21 (of NP=21)

IV
ANN 3.80·100 7.02·10−2 33

9
MINLPef 0.37·100 2.33·10−2 24 (of NP=24)

a Units: mol L−1 h−1 for CSI, II, III; g L−1 h−1 for CSIV.
b Units: mol L−1 for CSI, II, III; g L−1 for CSIV.
c Number of parameters in the model framework indicated by the column "method�. For the ANN, the
weights and biases are reported as the number of parameters. For the MINLP methods, the non-zero
rate constants and exponents provide the number of parameters (in brackets, the corresponding upper
bound, NP , is given).

d Number of parameters for chemical reactions: Number of rate constants (Tables A.1 to A.3) plus
the number of non-zero reaction orders. Number of parameters for bioprocess: Number of constant
parameters (Table A.4). The number given in parenthesis indicates the number of parameters that
would be used to express this in-silico model in an S-system. If no number is indicated, this in-silico
model cannot be fully described by an S-system.

e Only the best-performing model candidate of the MINLP approach in terms of state-space test error
is listed.

f NLP represents the MINLP approach, where all binaries are set to one, leading to the NLP candidate.

cause we are moving from the slope-space to the state-space (through integration).

On the other hand, the MINLP approach leads to models with fewer parameters,

in addition to being more interpretable. An example of the model predictions is

given in Figure 2.5, where the concentration pro�les of the MINLP and the ANN

approach are shown together with the observed data for CSI.

Figures A.1 and A.2 in the supplementary material Section A.7 provide further

details on the MINLP iterations and the match with experimental concentrations

(for the sake of simplicity, results are summarized in Table 2.2 and Table 2.3,

where details are shown in the supplementary material Section A.7). In general,

larger bounds on the maximum number of parameters allowed in the MINLP do

not necessarily result in larger S-system models. A visualization of this obser-

vation is given in Figure 2.6 for CSII. Applying the methodology to non-noisy

data (Figure 2.6 (a)) resulted in model candidates with maximum 13 parame-

ters, although 40 parameters would have been acceptable. For the noisy data
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(Figure 2.6 (b)), the same was observed only in the last iteration, where 35 pa-

rameters were chosen to be non-zero. Table A.8 to Table A.15 show that most

model candidates do not reach the maximum allowed number of parameters. This

is because the MINLP sometimes identi�es optimal solutions with fewer parame-

ters than the maximum allowable number, i.e., the constraint on the model size

is met as a strict inequality rather than equality. Over�tting can be avoided by
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Figure 2.5. The concentration pro�les of the four species in CSI are shown: The black
circles represent the observed data, the dashed green line shows the ANN prediction, and
the solid red line with dot markers displays the predictions by the S-system (at NP=12).

cross-validation, where the user runs several models for di�erent values of NP and

chooses the optimal value for NP such that a low test error is achieved. Moreover,

sometimes the best MINLP in state-space test error is identi�ed in the �rst iter-

ations, e.g., in the noisy CSI-III and non-noisy CSI examples, and sometimes it

emerges in the intermediate or �nal runs, e.g., in the non-noisy CSI, III, and IV

examples or the noisy CSIV example. Concerning the �t to experimental data, we

see how both approaches tend to predict well the concentrations pro�les, except

for some speci�c batches (for the ANN approach: non-noisy CSII batch 6, noisy

CSI batch 6, noisy CSII batch 1, 3, and 6 and for the S-system approach: noisy

CSI batch 2 and 4, noisy CSII batch 3, noisy CSIV batch 1) where the predictions

deviate more from the original observations. It is worth to be mentioned that the

above-indicated batches, where the ANN predictions deviate more from the origi-

nal observations, include stagnating pro�les. The ANN, therefore, seems to fail to

predict such events more often than the S-system formalism does. Concerning the
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Figure 2.6. Comparison of the RMSE in the slope-space for CSII for (a) non-noisy
data, and (b) noisy data. On the one hand, the training and test errors of the MINLP
are shown as solid green and red lines with markers, respectively. The corresponding
NLP training and test errors are shown as dashed-dotted lines (they are located on the
horizontal axis). The numbers in the plot show the number of chosen non-zero parameters
by the optimizer. The numbers in the plots indicate how many parameters the model
chooses to be non-zero during the training procedure. As expected, the training error
decreases by allowing more parameters to be non-zero. In (b) the testing error starts to
increase again after a certain point, indicating over�tting during model training.

number of parameters, the ANNs have the same size in the two datasets (same

architecture used for all calculations according to Section 2.4.4). In contrast, the

MINLP approach tends to lead to fewer parameters when noise is added, i.e., in

CSIV, where 24 parameters are used for the non-noisy dataset and 9 parameters

are used for the noisy dataset. The detailed models are provided in Tables A.18

to A.21 in Section A.8 of the supplementary information. As seen, the S-system

formulation results in compact models that could be used for further analyses and

optimization.

2.6 Conclusion

Here we investigated how to build models for bioprocesses combining a �rst-

principles backbone based on mass balances with a canonical kinetic S-system

formalism. We developed an MINLP formulation to automatically identify the

model structure and the values of its parameters, where binary variables denote

the topology/structure of the model. The model training was performed following

a two-stage approach, avoiding the iterative integration of di�erential equations.
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Table 2.3. Error metric of the di�erent approaches are shown for the four case studies based on
noisy data. For each case study, the best-performing approach in terms of state-space error is indicated
in bold text. The indicated slope space training error is not necessarily the best, but rather the one
corresponding to the best-performing model in the state space.

CS Method RMSE state test
b

RMSE slope test
a

Number of parameters

Modelc Underlying in-silico
d

I
ANN 1.83·10−1 3.14·10−1 55

10 (14)
MINLPe 1.51·10−1 3.99·10−1 12 (of NP=12)

II
ANN 4.87·10−1 2.15·100 55

9
MINLPe 3.24·10−1 2.49·100 17 (of NP=20)

III
ANN 1.93·10−1 8.49·10−2 83

18
MINLPe 2.55·10−1 1.24·10−1 15 (of NP=15)

IV
ANN 9.46·10−2 4.42·10−3 33

9
MINLPe 1.62·10−1 4.00·10−3 9 (of NP=9)

a Units: mol L−1 h−1 for CSI II, III; g L−1 h−1 for CSIV.
b Units: mol L−1 for CSI, II, III; g L−1 for CSIV.
c Number of parameters in the model framework indicated by the column �method�. For the ANN,
the weights and biases are reported as the number of parameters. For the MINLP methods, the non-
zero rate constants and exponents provide the number of parameters (in brackets, the corresponding
upper bound, NP , is given).

d Number of parameters for chemical reactions: Number of rate constants (Tables A.1 to A.3) plus
the number of non-zero reaction orders. Number of parameters for bioprocess: Number of constant
parameters (Table A.4). The number given in parenthesis indicates the number of parameters that
would be used to express this in-silico model in an S-system. If no number is indicated, this in-silico
model cannot be fully described by an S-system.

e Only the best-performing model candidate of the MINLP approach in terms of state-space test error
is listed.

We applied our method to a range of case studies to showcase its capabilities.

The presented approach performs similarly to models based on ANNs, even out-

performing them in some cases. However, it has the additional advantage of

leading to models based on a canonical form containing fewer parameters that

are easier to interpret and use in optimization frameworks. Notably, we found

that the ANN may fail to predict stagnating concentration pro�les in some cases.

Moreover, our approach is general enough to allow the data-driven part of the

model to be exchanged by any kind of formalism (i.e., ANN, GP, etc.). Overall,

having a model based on a canonical formalism would allow modelers to extract

information about the processes and generate further insight into its behavior. In

this context, the MINLP approach helps to adjust the complexity of the model

considering over�tting. Hence, our approach could help �nd a suitable process

model while simultaneously allowing practitioners to analyze the underlying for-

mulation more easily and use it in optimization studies.
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Chapter 3

Machine learning uncovers

analytical kinetic models of

bioprocesses

This chapter is based on the following publication: Forster T., Vazquez D., Müller

C., Guillén-Gosálbez G. (2024). Machine learning uncovers analytical kinetic

models of bioprocesses. Chemical Engineering Science, 300, 120606
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Nomenclature for Chapter 3

Sets

E {e | e is a symbolic mathematical expression}

I, J {i, j | i, j are set components}

U {u | u is discrete sample point}

Parameters

t0, tf Inital and �nal time

X0,i Initial concentration of metabolite/species i

µ Mean of a particular property

σ2 Variance of a particular property

γe Mathematical expression identi�ed by the BMS

θ Generic model parameters

Variables

BMSi and ANNi BMS or ANN models for species i

p Probability

Rxni Generic reaction term (production or consumption of species i)

Xi Concentration of metabolite/species i (used as continuous variables
in ODE expressions)

Xi,u Concentration of metabolite/species i at time tu
X̂i,u odel predictions of the concentration of metabolite/species i at

time tu
Ẋi,u Derivatives of metabolite/species i at time tû̇Xi,u Model predictions of the derivatives of metabolite/species i at time

tu
X̄i,u Mean of the experimental data points of species i at time tu
t and tu Time and sampled time point

ζi Function to smooth noisy concentration pro�le for species i

ζ̇i Derivative of function to approximate derivative pro�le for species
i

DL Description length (objective function of the BMS)
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3.1 Introduction

In recent years, modeling has gained signi�cant attention in the bioprocesses in-

dustry, spearheaded by the improvements in mathematical tools that can be used

for analysis and optimization (M. R. Mowbray et al., 2023; Narayanan, Seidler,

et al., 2021). Mathematical modeling can support scientists, engineers, or other

subject matter experts in designing experiments (Sadino-Riquelme et al., 2020),

predicting and monitoring processes (Del Rio Chanona, Wagner, et al., 2019;

Rivera et al., 2007), and reducing development and production costs (Narayanan,

Seidler, et al., 2021; Narayanan et al., 2020). Modeling complex bioprocesses,

however, is a challenging task, particularly when �rst principles formulations are

sought (Mercier et al., 2014; Petsagkourakis, Sandoval, et al., 2020; D. Zhang

et al., 2020). These models are nevertheless being increasingly demanded by

the market, in which the number of new products originating from bioprocesses

is increasing very rapidly (Narayanan et al., 2023). Bioprocess modeling requires

experimental measurements to calibrate an in-silico model by minimizing the mis-

match between experimental observations and in-silico predictions. A common

approach relies on well-established mathematical formalisms derived from �rst

principles, such as mass or energy balances. Kroll et al. (2017) provide a work-

�ow for the generation of mechanistic process models, where the authors start

from material balances for a certain target variable and expand the models in a

mechanistic manner with new states and interactions. They apply their method

to a mammalian cell culture process to model the viable cell count. A more recent

work by Sha et al. (2018) provides stoichiometric and kinetic models and some

commonly used mathematical approaches to describe cell systems.

An alternative to purely mechanistic modeling approaches are data-driven strate-

gies. These methods enable model building without relying on expert knowledge

(Kahrs & Marquardt, 2007; Taylor et al., 2021). Here, the structure of the model

is given by the surrogate modeling approach of choice. For example in the area

of process control, Willis et al. (1995) applied an arti�cial neural network (ANN)

to model the biomass concentration in a fermentation process. In a more recent

work, Tonner et al. (2017) used Gaussian process models to describe the micro-

bial growth in bioprocesses and interrogated the obtained models to investigate

perturbation e�ects in the systems under study. As a bridge between purely de-

terministic and purely data-driven methods, hybrid modeling approaches, where
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mechanistic knowledge is combined with a surrogate component, have also gained

popularity (von Stosch et al., 2014). This approach has been applied to a wide

range of problems in science and engineering. For example, Zhang et al. (2013)

proposed a hybrid kinetic mechanism where quasi-steady-state species are sepa-

rated from the kinetic ODEs. Gnoth et al. (2007, 2008a, 2010) integrated ANNs

in kinetic models to approximate unknown behaviors of the microorganisms. More

recently, hybrid frameworks for modeling bioprocesses have been put forward by

Zhang (2019), and Mowbray (2023) and colleagues. In earlier works of the au-

thors (Forster, Vázquez, Cruz-Bournazou, et al., 2023), a method for building

models that are based on canonical kinetic representations (i.e., S-system (Sav-

ageau, 1969a, 1969b, 1970)) was discussed, where observed concentration data

and a pre-de�ned canonical form for the rate expression were used to identify a

suitable model structure and simultaneously estimate its parameters.

A key point in all the modeling approaches above is to de�ne the model structure

whose parameters will be calibrated via parameter estimation methods. Ideally,

the model structure and its parameters should be simultaneously determined,

since the choice of a speci�c model structure limits the accuracy of the model.

However, in practice the model structure is �rst de�ned, hopefully through a mech-

anistic derivation of �rst principles, but sometimes through a surrogate formalism.

Once the structure is chosen, its parameters are calibrated by solving a param-

eter estimation problem where the parameters values are the decision variables

and the objective function is often given by the mismatch between in-silico and

experimental observations. Works that optimize both the model structure and its

parameters are quite scarce. A well-known example in the Process Systems Engi-

neering (PSE) literature is the ALAMO approach for the automated learning of

algebraic models (Wilson & Sahinidis, 2017). This algorithm creates closed-form

surrogate models by solving a mixed-integer nonlinear programming (MINLP)

problem where binary variables model the selection of speci�c algebraic terms

from a set of allowable functions and continuous ones the associated parameters.

Designed for dynamic systems, Brunton et al. (Brunton et al., 2016) proposed

the SINDy (Sparse Identi�cation of Nonlinear Dynamics) algorithm, which was

successfully applied to di�erent systems. By using sparse regression techniques,

SINDy provides the user with an appropriate rate model for the ODE. Sun and

Braatz (2020) developed an algorithm that combines nonlinear feature generation

followed by sparse regression to learn interpretable nonlinear models, called al-
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gebraic learning via elastic net (ALVEN). Other works, such as those by Willis

and von Stosch (2017), use a problem-tailored approach for extracting ODEs from

process data by formulating a hybrid semi-parametric modeling framework using

mixed integer programming and multivariate rational functions. These modeling

methods have the advantage of only requiring data and, therefore, can be set up

without any expert knowledge about the system. Nonetheless, they assume a set

of basis functions that must be combined linearly to form the algebraic expres-

sions sought, which constrains the feasible set of plausible mathematical models

that could explain given data.

Another approach for identifying closed-form expressions is symbolic regression

(SR), which is based on the principles of genetic programming (Keane et al., 1993;

Koza, 1994). In contrast to the main tools mentioned above, such as ALAMO,

SINDy, or ALVEN, SR methods represent mathematical equations as expression

trees (Cozad & Sahinidis, 2018). Employing a de�ned search procedure (i.e.,

mainly stochastic algorithms (Diveev & Shmalko, 2021) like a genetic algorithm

(Cranmer et al., 2020) or Markov-chain Monte Carlo (MCMC) (Guimerà et al.,

2020)), SR simultaneously identi�es the tree structure and involved parameters in

order to optimally represent observed data (Cozad & Sahinidis, 2018; Neumann

et al., 2020). While previous approaches speci�ed the basis functions, SR only

requires a pool of allowed operators, and the functions are created from the avail-

able pool and given data. SR has been successfully applied in various �elds, for

example, McKay et al. (1997) used an SR approach to model a vacuum distillation

column and a chemical reactor system. In a later work, the authors applied SR to

develop a model of a food extrusion process (McKay et al., 1999). Vladislavleva et

al. (2013) used an available software package named DataModeler (2023) to pre-

dict energy outputs of wind farms by considering weather data. Schmidt and Lip-

son (2009) discovered physical laws from experimental data using SR to identify

nonlinear relationships. In recent contributions, researchers used SR to discover

new perovskite catalysts (Weng et al., 2020) and to recover a variety of physical

expressions (Udrescu & Tegmark, 2019). Other works resulted in commercially

available SR software, such as Eureqa (Schmidt & Lipson, 2009) or TuringBot

(2023). Cranmer et al. (2020) implemented an open-source SR algorithm named

PySR (Cranmer, 2020) in Python that was applied to cosmology problems. Sim-

ilarly, Guimerà et al. (2020) developed the Bayesian machine scientist (BMS),

a SR algorithm based on an MCMC approach. These approaches were applied

55



in kinetic modeling for heterogeneous catalysis (De Carvalho Servia & Del Rio

Chanona, 2023a; De Carvalho Servia et al., 2024), process design (Ferreira, Pede-

monte, & Torres, 2019; Ferreira, Torres, & Pedemonte, 2019; Negri et al., 2022),

process optimization (Forster, Vázquez, & Guillén-Gosálbez, 2023a, 2023b) or to

model links between energy-related impacts and socioeconomic drivers (Vázquez

et al., 2022).

Here, we apply SR techniques for kinetic model building in bioprocesses. In

contrast to previous works that developed fully black-box or hybrid models based

on standard surrogates (e.g., ANN and GPs) (Del Rio Chanona, Wagner, et al.,

2019; Gnoth et al., 2010), here we apply SR to �nd a suitable kinetic expression

and associated parameters. Speci�cally, our approach combines the BMS with

a two-step decomposition algorithm inspired by the works of Miró (2014), Voit

and Almeida (2004), Michalik et al. (2009), and Brendel et al. (2006). The

goal is to identify reaction rates from observed concentration pro�les of species,

where the rate equation is determined via SR. De Carvalho Servia et al. (2024)

recently applied SR using pySR (Cranmer, 2020) for heterogeneously catalyzed

reactions. However, we here focus on bioprocesses and instead use the BMS

for SR (Guimerà et al., 2020). Numerical examples show that the BMS can

identify closed-form surrogate rate expressions that perform similarly compared

to ANN-benchmark models. Following the successful application of the BMS in

other problems, including the approximation of process simulations (Negri et al.,

2022), process optimization (Forster, Vázquez, & Guillén-Gosálbez, 2023a), and

the investigation of energy-related impacts and socioeconomic drivers in macro-

economic studies (Vázquez et al., 2022), here we show that it can also be used to

�nd kinetic expressions that explain given data precisely.

The remainder of this article is organized as follows: First, the problem statement

is described in detail. Subsequently, the proposed methodology is discussed. Af-

terward, the case studies are introduced, and the results are summarized. Finally,

the conclusions of the work are drawn.

3.2 Problem statement

Without loss of generality, in this work, we consider a generic ideal batch reactor

with constant volume V and di�erent species i ∈ I taking part in some reactions.

The mass balance of such a system can be described by expression (3.1). In this
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description, Xi might be the concentration of microbial cells or of a given species

in the bioreactor, andX = [X1, X2, . . . , Xi] represents the vector of all metabolite

concentrations. On the left-hand side of the equation, dXi/dt (or Ẋ), refers to

the accumulation term.

d

dt
Xi = Ẋi = Rxni (X) , ∀i ∈ I (3.1)

The Rxni(X) term represents an expression that is unknown to the modeler and

that depends on the concentration of all the species (state variables) collected

in vector X. This is a common situation arising in bioprocess development, be-

cause the underlying metabolic pathways in such systems can be very complex

(Guillén-Gosálbez et al., 2013; Mercier et al., 2014; Petsagkourakis, Sandoval,

et al., 2020; D. Zhang et al., 2020). This complexity is given by the potentially

large feedback loops between a wide range of species and the nonlinear nature of

these interactions. In this work, we will approximate Rxni(X) using a symbolic

regression method that generates an algebraic expression without assuming any

pre-de�ned structure of that reaction rate. Hence, here we do not rely on any

canonical formalism to derive the kinetic model.

The goal, then, is to �nd a suitable expression for Rxni(X) in equation (3.1) such

that the mismatch between the model predictions and the experimental observa-

tions is minimized. Note that in this work, we assume that neither the structure

of Rxni(X) nor the involved parameters are known, unlike in a standard parame-

ter estimation problem as discussed by Voit and Almeida (2004) or Brendel et al.

(2006). Therefore, herein, we aim to �nd both, the rate expressions and their pa-

rameters simultaneously by only using the available concentration measurements.

It is worth to mention that in the subsequently proposed approach, the modelling

of a rate in the form Rxni(X) for a species i is only possible for species that can

be measured in the sampled data. If no data is available for species i, a parame-

ter estimation and, therefore, a model building for such a species is not directly

possible. Such a case might be encountered if some species have a shorter lifetime

than the sampling frequency. Consequently, our modelling approach focuses on

species that can be sampled, not on non-sampled or hidden species. The section

that follows introduces our approach.
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3.3 Methodology

In time-series-related problems, the concentrations (subsequently also called states)

Xi are often considered to be continuous in time, i.e., Xi(t). However, usually only

discrete concentration values are available at the sampling times. Therefore, we

consider a discrete notation based on a series of time points u ∈ U . The complete

pro�le of one species i can therefore be described by expression (3.2).

Xi,u ∈
[
Xi,0, Xi,1, Xi,2, . . . , Xi,|U |

]
, ∀i ∈ I (3.2)

From such a sampled array, we are interested in searching for a suitable model for

the rate expression that can predict the time-dependent evolution by using the

initial conditions at time t0. This model-building task is typically formulated as a

general dynamic optimization problem. In such an optimization problem, the sum

of squared residuals (SSR) between the observed data point Xi,u and the model

prediction X̂i,u is minimized, by optimizing the values of some unknown model

parameters θ. The problem can therefore be formulated as given in expression

(3.3)

min
β
SSR =

∑
i∈I

∑
u∈U

(
Xi,u − X̂i,u

)2
s.t. ̂̇X i,u =Mi (Xj,u, θ) , ∀i ∈ I, j ∈ I, u ∈ U

X̂i,0 = Xi.0, ∀i ∈ I

X̂, ̂̇X ∈ R+

(3.3)

in equation (3.3), the predicted derivative ̂̇X i,u of species i at time point u is

calculated by a modelMi(X, θ) with some trainable parameters θ that well ap-

proximate the underlying reaction rate Rxni(X). The model building process to

approximate Rxni(X) ≈Mi(X, θ) is discussed below. The initial conditions Xi,0

are usually known values. However, �nding the concentration pro�les Xi,u for

a given system requires solving the ODEs, either simultaneously or sequentially.

The latter might lead to sti� ODEs and can therefore often make numerical inte-

gration very di�cult and ine�cient (Tjoa & Biegler, 1991). Moreover, e�ectively

handling the existence of binary variables in this approach would remain chal-
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lenging. Michalik et al. (Michalik et al., 2009) and Voit and Almeida (Voit &

Almeida, 2004) proposed alternative approaches to simplify the dynamic prob-

lem shown above based on a reformulation of the original model in the deriva-

tive space instead of the state space. This reformulation is given in expression

(3.4).

min
β
SSR =

∑
i∈I

∑
u∈U

(
Ẋi,u − ̂̇X i,u

)2
s.t. ̂̇X i,u =Mi (Xj,u, θ) , ∀i ∈ I, j ∈ I, u ∈ U

X̂i,0 = Xi.0, ∀i ∈ I

X̂, ̂̇X ∈ R+

(3.4)

To solve the problem given in expression (3.4), the derivatives Ẋi,u have to be

obtained from the discrete time pro�les of the observed state variables Xi,u.

Such derivates can then be subsequently used to train a suitable kinetic model

Mi (X, θ). This strategy avoids integrating the dynamic system in expression

(3.3), at the expense of performing the regression in the space of reaction rates,

which poses some challenges concerning the computation of derivatives leading

to low errors in the original dynamic space of state variables. This is because

the derivatives determined experimentally can be a�ected by experimental errors,

which may lead to good predictions in the reaction rates space but poor in the

original states variables space.

The method of choice follows an incremental approach for building the surrogate

model, as shown in Figure 3.1, where the details of the steps are given below in

Section 3.3.1.

The discussed procedure starts with collecting noisy concentration data Xi,u for

di�erent species i and times u. To smooth out the noise in the measurements,

a univariate function in time ζi(t) is �tted to the data. In the second step, this

identi�ed function ζi(t) can be derived analytically and the derivatives ζ̇i,u can

be evaluated at the experimental time points. Third, the state values Xi,u are

linked to the calculated derivatives ζ̇i,u by an appropriate model found via SR.

The model, therefore, approximates the Rxni(X) term given in equation (3.1).

Last, the trained models can be incorporated into a system of ODEs, which is
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Step 1: Gather experimental data and fit func�on

Step 2: Find deriva�ves of the data

Step 3: Build rate expressions by model training to
map the states to the deriva�ves

Step 4: Solve ODEs with included model expressions

𝑋𝑖,𝑢 𝑋𝑖 𝑡 ≈ 𝜁𝑖(𝑡)

Derive iden�fied fit: 
𝑑

𝑑𝑡
𝜁𝑖(𝑡)

Evaluate deriva�ve at 

experimental �me points 𝜁𝑖,𝑢

Integrate ODEs to get

predicted states 𝑋𝑖,𝑢

𝑋𝑖 ≈ 𝜁𝑖,𝑢 ← 𝐵𝑀𝑆𝑖(𝑋) 𝑋𝑖 ≈ 𝜁𝑖,𝑢 ← 𝐴𝑁𝑁𝑖(𝑋)or

Figure 3.1. Overview of the approach for building a rate expression. In the �rst step, a
function ζi(t) is �t to data points for each species i. The functions ζi(t) are then derived
analytically (step 2). In step 3, models (BMS or an ANN) are trained to map the states to
the calculated derivatives ζ̇i,u. Last, in step 4, the models are incorporated into a system
of ODEs which can be solved with appropriate initial conditions.
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solved using speci�c initial conditions. In the following subsection, these four

steps are discussed in more detail.

3.3.1 Incremental approach for model building

The procedure is schematically shown in Figure 3.1. There are several possible

ways to derive data numerically. A comparison of three possible methods to

derive a noisy sinusoidal signal is given in Figure 3.2. The simplest method is

the di�erentiation via forward �nite di�erences. The main disadvantage of this

approach is the ampli�cation of noise during the derivation process. Therefore, a

smoothing step is preferred before di�erentiating noisy data, for example using a

Savitzky-Golay �lter (Savitzky & Golay, 1964). Here, however, we used instead a

polynomial or a univariate BMS to �t a function ζi(t) to the noisy data, as given

in expression (3.5). The polynomial approach was successfully demonstrated in

an earlier work by the authors (Forster, Vázquez, Cruz-Bournazou, et al., 2023).

The symbolic �t using the univariate BMS was inspired by De Carvalho Seriva et

al. (2024), where the authors demonstrated an approach for �tting and deriving

the observed data. In the present work, we adapted this approach and use a

di�erent toolbox.

Xi (t) ≈ ζi =

pi,1 + pi,2t+ . . .+ pi,q+1t
q
u

BMSi(t)
, ∀i ∈ I (3.5)

In the case of the polynomial approach, the unknown parameters p have to be

regressed to the noisy data, while when using the BMS the structure and param-

eters are both to be found. Both, the polynomial and the algebraic expression

identi�ed by the BMS are univariate in time. In both cases, the resulting expres-

sions can subsequently be derived analytically, as given in equation (3.6). The

derivatives can be evaluated at the experimental time points tu, u ∈ U .

Ẋi (t) ≈ ζ̇i (t) =
d

dt
ζ (t) , ∀i ∈ I (3.6)

Steps 1 and 2: Fitting univariate function and estimating derivatives.

In the case of the polynomial approach, we de�ned a set of polynomial degrees

q ∈ Q. The di�erent polynomials are �t to the noisy data and the corresponding
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Bayesian information criteria (BICs) are calculated. The polynomial with the

lowest BIC is subsequently di�erentiated analytically as given above. In the case

of the univariate BMS, we de�ned a threshold for the coe�cient of determination

(R2). The BMS is trained with a given number of steps (discussed in more detail

below). If the R2-threshold is not reached, then the training steps are doubled.

This procedure is repeated for a given number of times at most. After that, the

identi�ed algebraic expression can be derived analytically. As shown in Figure 3.2

(b), the approximated derivatives are more accurately calculated by the smoothing

methods given in expressions (3.5) and (3.6) compared to forward �nite di�erence

di�erentiation. However, the �rst and last sample points might still comprise

some error even after applying such smoothing techniques. To reduce this noise

impact further, one possibility is to disregard the initial and last sample points

for the subsequently discussed model training, which is also used in other works

(Willis & von Stosch, 2017).

An in-depth analysis of how the derivative approximation methods perform under

di�erent noise levels and data set sizes is given in the supplementary information

Section B.1. The results summarized in Figure B.1 show that the symbolic es-

timation approach given in expression (3.5) seems to work well suited even in

presence of noise and scarce data sets.

Step 3: Building the rate expression. Rate expressions map some discrete

states Xi,u to the obtained derivatives ζ̇i,u. The identi�ed model, therefore, is

intended to predict the changes in concentration of the species at a given time.

To identify this model, we use an SR tool, the BMS. Upon model training, the

BMS identi�es an algebraic expression that approximates the reaction term as

given in expression (3.7). To benchmark our results, we compare them to those

from an ANN, as shown in expression (3.8). The reason for this choice is that

ANNs are generally regarded as good approximators (Psichogios & Ungar, 1992).

Additional details on the symbolic regression tool are discussed below in Sec-

tion 3.3.2.

Rxni (X) ≈Mi (X) = BMSi (X) , ∀i ∈ I (3.7)

Rxni (X) ≈Mbenchmark
i (X) = ANNi (X) , ∀i ∈ I (3.8)
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Figure 3.2. (a) Noisy measurements (circles) together with the underlying sinusoidal
ground truth (dashed line). (b) Comparison of numerical di�erentiation methods. The
dashed black line represents the cosinusoidal ground truth of the derivative (covered up
by the BMS approach). The blue pentagons with the solid line represent the derivatives
by forward �nite di�erences. The orange diamonds with the dotted line represent the
derivatives obtained by the polynomial approach discussed above. The green crosses with
the dashed-dotted line represent the derivatives of the BMS approach.

Step 4: Solving the ODE model with the built rate expressions. The fully

trained models can be incorporated into the ODE in expression (3.1), resulting in

the ODEs given in equation (3.9) for the BMS approach, and in equation (3.10)

for the ANN approach.

d

dt
Xi = BMSi (X) , ∀i ∈ I (3.9)

d

dt
Xi = ANNi (X) , ∀i ∈ I (3.10)

These ODEs can be solved for the initial conditions Xi,0, i ∈ I and considering an

integration period t = [t0, tf ].

3.3.2 Background to the Bayesian machine scientist

In this work, we do not assume any pre-de�ned model structure to search for

suitable rate expressions. Upon model training, the BMS returns an algebraic

closed-form expression, which can subsequently be incorporated into the system

of ODEs to be integrated. We now provide an overview of how the BMS works.
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For further information, the reader is referred to the original paper (Guimerà et al.,

2020). The algorithm identi�es a suitable mathematical expression by searching

through a space of expressions represented as symbolic trees. To perform the

search through this space of expressions, several allowable moves from an initial

tree can be done by the algorithm.

The space of possible mathematical expressions γ is described by E. Starting from

one symbolic representation γe, e ∈ E, we perform changes in the tree leading

to di�erent mathematical expressions. One example of such a tree evolution is

shown in Figure 3.3 (a). The addition of the two main terms in γ1 is replaced by

a multiplication, which leads to the expression γ2. A further replacement of the

addition in γ2 leads to the expression γ3, which explains the observed data points

(black circles) better than γ1 or γ2. Another adaptation would be the elementary

tree replacement (i.e., exchanging the complete sub-tree (β + δ) by another sub-

tree). For each resulting expression, a goodness-of-�t metric can be calculated.

The SR algorithm then proceeds to search the space of expressions, seeking the

expression with the best goodness of �t. This search is stochastic, as in other

evolutionary algorithms (Costa & Oliveira, 2001; Guimerà et al., 2020).

+

+ + ++ +

𝜸 𝟏

𝜸𝟐

𝜸𝒆

𝜸|𝑬|

𝑬

(a)

(b)
𝛾1

𝛾2

𝛾3

Figure 3.3. (a) Several equations are represented as symbolic trees. From γ1 =
(x1 + α)+(β + δ), a node replacement can be performed to reach γ2 = (x1 + α)×(β + δ).
A further node replacement can be done to obtain the equation γ3 = (x1 × α)× (β + δ).
The expression for γ3 (green line) ends in the best possible model to �t the data (black
circles) compared to γ1 (blue line) and γ2 (red line) in the lower part of the �gure. (b)
The space E of all possible expressions γe is schematically shown as a dashed polygon.

The BMS can provide closed-form algebraic expressions from data based on a set of

user-de�ned mathematical operations (i.e., addition, subtraction, multiplication,
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etc.). In the algorithm, a conditional probability p(γe|D) is assigned to each

expression γe, e ∈ E (the space of symbolic trees shown schematically in Figure 3.3

(b)) used to �t some data D, which is calculated according to Bayes Theorem

(Bishop, 2006; Murphy, 2013), given by equation (3.11):

p (γe|D) =
p (D|γe) p(γe)

p(D)
(3.11)

Where p(D) represents the marginal likelihood of some data D. p(D) is inde-

pendent of γe and therefore acts as a normalization constant. Marginalizing over

the parameters ϕe associated with expression γe (Murphy, 2013), the numerator

in expression (3.11) can be expressed as an integral over the space of all possi-

ble parameter values Φe (Guimerà et al., 2020). The description length DL (γe)
then describes the resulting integral (Guimerà et al., 2020; Hansen & Yu, 2001;

Murphy, 2013), given in equation (3.12).

DL (γe) = − log

[
1

p(D)

∫
Φe

dϕep(D|γe, ϕe)p(ϕe|γe)p(γe)
]

(3.12)

Computing the numerical value of the integral included in the description length is

challenging (Guimerà et al., 2020; Murphy, 2013). It has been shown (Grünwald,

2007; Murphy, 2013) that the entire metric can be approximated through the

Bayesian information criterion (BIC) and the prior of the corresponding symbolic

expression γe, as shown in expression (3.13)

DL (γe) ≈
BIC(γe)

2
− log (p (γe)) (3.13)

Therefore, the plausibility of observing an expression γe conditioned on some

data D is obtained by the description length DL(γe). In other words, during the

stochastic search, the description length (and therefore a metric for the plausi-

bility of observing an expression γe) serves as objective function which is being

minimized. As visible in expression (3.13), to compute the description length, the

prior knowledge about expression γe is required as p(γe). Guimerà et al. (2020)

used a pre-de�ned corpus of equations from Wikipedia. After parsing the pub-

licly available equations, the number of operations were counted that were present
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in the expression. Based on this information, they created distributional infor-

mation about operators in equations, which were subsequently used as the prior

distributions p(γe) (Guimerà et al., 2020).

According to Grünwald (2007), DL(γe) can be understood as an encoded length

of the expression γe (number of natural units). A Markov-chain Monte Carlo

(MCMC) (Hastings, 1970) algorithm is used to explore the space E of expressions,

where the number of MCMC iterations is de�ned by the user. After evaluating the

description length of each expression DL (γe) � which represents the goodness-of-

�t metric and therefore the objective function � the BMS keeps the most plausible

one, representing the expression with the shortest description length (the best

goodness-of-�t).

3.3.3 Model performance metrics

For assessing the performance of the models, an arbitrary set of initial conditions

can be used to integrate the ODE, comparing the simulated and experimental pro-

�les values. After training the models on dedicated training runs, separated test

runs were used to assess their performance. A detailed description of how the data

is generated and split into training and test sets is shown in Section 3.4.

The performance is assessed via the root mean squared error (RMSE) and the

coe�cient of determination (R2), de�ned as given in equations (3.14) and (3.15).

These metrics can be calculated for both the training and test sets, obtaining the

training and test errors, respectively. They can be calculated for the concentration

(state) space or the derivative space.

In these relationships, the predictions by the model are described by X̂i,u. The

experimental data points and the mean of the experimental data points of the

data are described by Xi,u and X̄i,u, respectively. Variables SSR and SST denote

the sum of squares of residuals and the total sum of squares (proportional to the

variance of the data), respectively. The error metrics in expressions (3.14) and

(3.15) can be calculated for the state and derivative variables.
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RMSE =

√
1

n

∑
i∈I

∑
u∈U

(
X̂i,u −Xi,u

)2
(3.14)

R2 = 1− SSR

SST
= 1−

∑
i∈I
∑

u∈U

(
X̂i,u −Xi,u

)2
∑

i∈I
∑

u∈U
(
Xi,u − X̄i,u

)2 (3.15)

3.3.4 Implementation details

All calculations were carried out on an Intel®Core� i7-8700 CPU and 16 GB

of RAM. To construct the sampling dataset, we used Python 3.10 with NumPy

v1.24.3 and pyDOE v0.3.8. For the BMS training, the hyperparameter values

are those given in the original article of the BMS (Guimerà et al., 2020), i.e.,

5% probability of root replacement, 45% probability of node replacement, and

50% probability of elementary tree replacement. The allowed unitary operations

included exp(x), log(x), x2, x3, and
√
x, while the binary operations consisted of

+, −, ÷, ×, xy. The maximum number of MCMC steps was chosen to be 104. The

neural network training was performed with Scikit-learn v1.0.2 (Pedregosa et al.,

2011). A grid search with a 3-fold cross-validation was performed to tune and �nd

appropriate hyperparameters for this benchmark model. Parameters considered

during the grid search were the hidden layer size, the activation function, the

learning rate, and the initial learning rate. Details of this grid search and the

settings of the �xed hyperparameters are given in Section B.3 of the supporting

information.

3.4 Case studies

Subsequently, two di�erent case studies are presented. We employed Latin hy-

percube sampling (LHS) together with the bounds given in Table 3.1 to generate

di�erent initial conditions, with each set of initial conditions representing a dif-

ferent batch. For each case study shown below, 13 batch runs were simulated in

total. From those, 10 batches were used to train the models and 3 were taken

as test batches. We added normally distributed noise (NumPy) with a mean of

µ = 0 and a variance of σ2 = 0.2 to the pro�les obtained from integrating the

di�erent batches to create more realistic data (more signi�cant noise level in lower

numerical ranges to resemble measurement errors). For the two case studies, sev-
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eral scenarios were considered, which are summarized in Figure 3.4. To study the

in�uence of the amount of data available, we generated pro�les with 40 and 20

time points per batch. It is worth to be mentioned that the time spans of the

subsequently introduced case studies are 80 hours and 180 hours, respectively. A

sampling rate of 20 points within this time frame results in one sample every two

hours and every approximately 9 hours. Indeed, it should be kept in mind that

a reduction of the sampling frequency will result in a reduction in accuracy of

the derivative approximation, which is discussed in more detail in the supporting

information Section B.1. To calculate the derivatives from the data, the polyno-

mial �t or symbolic regression �t, both described in expression (3.5), were used.

Hence, four di�erent scenarios for each case study were explored. The resulting

scenarios are described by the abbreviations Poly-20, Poly-40, SR-20, and SR-

40, depending on the number of points per batch and the method for derivative

approximation (3.4). As an example, CSI-Poly-40 describes the scenario of CSI

with the polynomial approach for the derivative calculation and 40 samples per

batch and species. The case studies are also collected and published on GitHub

(https://github.com/forstertim/insidapy).
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Figure 3.4. An overview of the organization of the case studies is shown schematically.
For each of the base case studies discussed below, batches with either 20 or 40 samples
were generated. Then, either the polynomial or symbolic regression approach was applied
to calculate the derivatives.
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3.4.1 Case study I

A bioprocess is considered where some bacteria produce a speci�c product while

consuming a substrate. The mass balances are given in expressions (3.16), where

the variables B, S, and P (all in g L−1) represent the biomass, substrate, and

product concentration, respectively. These species are summarized in the vector

X = {B, S, P}. The process is modeled in batch mode and was adapted from

Turton et al. (2018).

In these mass balances, ϕ (h−1) models the growth rate. Yi,j represents the yield

coe�cient of species j with respect to species i. The expressions Ω(A, T,EA) repre-

sent Arrhenius reaction rates that depend on the temperature T and temperature-

independent pre-factors and activation energies EA,1, EA,2, A1, and A2, respec-

tively. The parameters Ks and Kϕ represent the half-saturation constants. Data

was generated for the interval t = [0, 80] h. The values of the parameters are

given in Table B.3 of the supporting information. As mentioned in Section 3.3.1,

the �rst two and last �ve points (polynomial approach) or the �rst two and last

two points (BMS approach) were excluded for model training.

dB

dt
= ϕ ·B

dS

dt
= − 1

YB,S

· ϕ ·B

dP

dt
=
YP,S
YB,S

· ϕ ·B

with ϕ = ϕmax ·
S

KS + S
· Ω (A1, T, EA,1)

1 + Ω (A2, T, EA,2)
·
(
1− B

Kϕ +B

)
(3.16)

3.4.2 Case study II

Here, we focus on a bioprocess studied by Del Rio Chanona (2019). The system

of ODEs in expressions (3.17) is based on a Monod model, a Logistic model, and

a Luedeking-Piret model (D. Zhang, Dechatiwongse, Del Rio Chanona, et al.,

2015), where cell growth, cell decay, and substrate uptakes are considered. For

a detailed description, the reader is referred to the work of Del Rio Chanona

(2019).
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dB

dt
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C +KC
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P +KP

B − µdB
2

dC

dt
= −YC1

(
µ

N

N +KN

C

C +KC

P

P +KP

B − µdB
2

)
− YC2B

dN

dt
= −YN1

(
µ

N

N +KN

C

C +KC

P

P +KP

B − µdB
2

)
− YN2B

dP

dt
= −YP1

(
µ

N

N +KN

C

C +KC

P

P +KP

B − µdB
2

)
− YP2B

(3.17)

In this system, the variables B, C, N , and P represent the biomass, carbon, ni-

trogen, and phosphate concentrations, respectively (all in mgL−1). These species

are summarized in the vector X = {B,C,N, P}. The parameters KN , KC , and

KP represent the half-velocity coe�cient of the corresponding substrates, where

the parameters Yi1 and Yi2 are growth-dependent and growth-independent yield

coe�cients of the species i = C,N, P . The biomass growth and death are given

by µ and µd. The concentration of the biomass is divided by 1000 so that the orig-

inally reported parameter values can be used (D. Zhang, Dechatiwongse, Del Rio

Chanona, et al., 2015). The time window investigated corresponds to t = [0, 180]

h. The values of the parameters are given in Table B.4. As in CSI, the �rst two

and last �ve points (polynomial approach) or the �rst two and last two points

(BMS approach) were excluded for model training.

3.5 Results

Below, the results of the BMS are compared to the ones obtained with the ANN. A

summary of the obtained coe�cients of determination (R2) for the model training

and testing is given in Table 3.2. The performance metrics are displayed for the

Table 3.1. Lower and upper bounds used for generating the training and test sets. With
those bounds and a Latin Hypercube Sampling approach, di�erent initial conditions were
generated. These were used to solve the systems of ODEs in expressions (3.16) and (3.17)
to create di�erent batch runs.

CSI CSII

Species B S P B C N P

Lower bound 0.1 50 0 216 108 450 17

Upper bound 0.4 90 0 264 132 550 21

Unit g L−1 g L−1 g L−1 mgL−1 mgL−1 mgL−1 mgL−1
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di�erent scenarios (as visualized in Figure 3.4), while results are also depicted in

Figure 3.6 for CSI and Figure 3.7 for CSII. These plots show the calculated deriva-

tive values against the model predictions for both modeling approaches (BMS

and ANN). Additional results are given in Section B.5 of the supporting informa-

tion.

In general, both models achieve similar performance in both the derivative and

the state (concentration) space, with our approach often outperforming the ANN,

but not by much, as discussed next. Recall that the models should not only train

well in the derivative space but also after integration since we are interested in

predicting concentration pro�les. Therefore, we focus �rst on the model with best

performance in the state space of the unseen test batches (in Table 3.2, the highest

R2 value of the test set is highlighted in bold). The best-performing models are

identi�ed by the BMS in most scenarios, although the di�erences with the ANN

are small. The only exception where the ANN outperforms the BMS is in CSI-SR-

40, although also there, di�erences are marginal. In addition to the data given in

Table 3.2, Figure 3.5 shows one of the test batches results for the models identi�ed

in scenarios CSI-Poly-40 (top row) and CSI-Poly-20 (bottom row). As shown in

this �gure, the models are well able to predict the evolution of the concentration,

even if a lower sampling frequency was used (20 vs. 40 samples). From the results

shown in Table 3.2, having fewer data points per batch does not signi�cantly

impact the performance of the models. Also, there was no clear di�erence in

performance when comparing the two di�erentiation approaches.

Considering the reaction rates space, both models lead to very similar performance

in all scenarios. Interestingly, although trained only in the derivative space, both

models can predict well after integration. This would support the assumption

that the rate expressions can be well approximated by both models.

Although both models seem to perform similarly throughout the case studies,

there is one signi�cant advantage of using BMS. After identi�cation of the rate

expression, the model is provided in analytical form and can be, arguably, inter-

preted more easily than purely data-driven models. For CSI (CSI-Poly-40), the

most plausible expressions obtained by the BMS for the ODE system are given

in expressions (3.18)-(3.20) as an example. Additionally, the corresponding esti-

mated values of the parameters in expressions (3.18)-(3.20) are given in Table 3.3.

The identi�ed BMS models with the corresponding estimated model parameters
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Figure 3.5. The concentration pro�les of the three species in CSI are shown together
with the model predictions. The top row represents the scenario CSI-Poly-40, whereas the
bottom row represents the scenario CSI-Poly-20. The black circles represent the observed
noisy data, where the dotted line represents the underlying ground truth. The dashed
orange line represents the ANN prediction, whereas the blue solid line represents the
BMS predictions. It is worth mentioning the model predictions are only shown for the
experimental time points that were used for model training, since some initial and last
samples were removed from the training, as discussed in Section 3.3.1.
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Figure 3.6. The observed values are plotted against the model prediction values for CSI.
The columns represent the di�erent scenarios of the case study. The top row shows the
results obtained from the BMS predictions, whereas the bottom row shows the results
from the neural network. Blue circles represent the training data, whereas red diamonds
correspond to the test data. The black line represents the values where the observed value
corresponds to the model predictions.
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Figure 3.7. The observed values are plotted against the model prediction values for
CSII. The columns represent the di�erent scenarios of the case. The top row shows the
results obtained from the BMS predictions, whereas the bottom row shows the results
from the neural network. Blue circles represent the training data, whereas red diamonds
correspond to the test data. The black line represents the values where the observed value
corresponds to the model predictions.
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Table 3.2. The coe�cients of determination (R2, unitless) are shown for the training and
testing runs (notation: train/test) for the two case studies and their respective scenarios.
For each case scenario, the best-performing approach in terms of state-space performance
is indicated in bold text. The CPU times for the model training are indicated as mean
values of the times for training models of the di�erent species. In the ANN case, the
time for the grid search is included. The raw values of the CPU times are indicated in
Section B.5 of the supporting information.

CS Scenario

CPU model
State Derivativetraining [s]

BMS ANN BMS ANN BMS ANN

I

Poly-40 7271 88 0.961 / 0.999 0.837 / 0.986 0.995 / 0.995 0.992 / 0.994

SR-40 4132 88 0.977 / 0.900 0.959 / 0.990 0.979 / 0.990 0.982 / 0.988

Poly-20 5803 59 0.998 / 0.995 0.994 / 0.994 0.997 / 0.996 0.996 / 0.996

SR-20 8167 57 0.993 / 0.989 0.988 / 0.984 0.981 / 0.986 0.983 / 0.988

II

Poly-40 9384 130 1.000 / 1.000 0.996 / 0.998 0.995 / 0.995 0.958 / 0.989

SR-40 9275 162 1.000 / 1.000 0.997 / 0.999 0.995 / 0.997 0.973 / 0.993

Poly-20 2120 155 1.000 / 1.000 0.996 / 0.996 0.986 / 0.986 0.885 / 0.901

SR-20 4492 151 1.000 / 1.000 0.999 / 0.999 0.997 / 0.994 0.971 / 0.978

for the other scenarios are summarized in Section B.6 of the supporting informa-

tion.

dB

dt
= a0

(
(S ·B)

a1+
(

a2
a2+P

))
(3.18)

dS

dt
= a0 + a2 − a1

(
P +BS·a1

)
· S(

1
S·P )

a0

(3.19)

dP

dt
= −

(
a2 (B · P )a1

Sa0

)((a2
P

)
+

a0
S + (aS1 )

)
(3.20)

After the model training and the deployment for predicting the time dependency

of the concentration pro�les, one can analyze the obtained ODEs to gather some

Table 3.3. Parameter values of the most plausible algebraic models identi�ed by the
Bayesian machine scientist for each case study given in expressions (3.18)-(3.20).

Parameter

Rate equation for CSI

dB/dt dS/dt dP/dt

a0 4.164·10−3 5.343·10−2 -1.797·100

a1 8.285·10−1 2.072·10−2 4.059·10−1

a2 -1.086·10−1 2.302·10−2 4.175·10−3
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qualitative knowledge from those closed-form expressions. This will be shown with

the example of the biomass growth and the substrate consumption. It is worth to

be mentioned that this analysis is done on a conceptual and qualitative level to

extract some knowledge and trends about the underlying system.

Considering the growth of the biomass B in equation (3.18), all three species -

B, S, and P - seem to in�uence the change in biomass concentration. These

�ndings can be interpreted using the underlying ground truth model in (3.16),

which was used to generate the noisy data. In this underlying ground truth model

the product concentration P is not involved in the rate equation of the biomass.

Nevertheless, the BMS equation takes also P into account in (3.18). However,

taking a closer look at the exponent in this equation, namely a1 + (a2/(a2 + P )),

one can observe Monod-type similarities with an asymptotic behavior. The value

of this entire exponent converges towards a given value a2, which is displayed in

Figure 3.8 (a).

(b)
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Figure 3.8. (a) The exponent in equation (3.18) is shown as a function of the prod-
uct concentration P . In (b), the biomass growth ϕ · B given by the underlying system
in equation (3.16) is visualized as a function of the substrate concentration S and the
biomass concentration B. Additionally, in (b), two scenarios are highlighted by the blue
dashed (constant biomass of 0.02 g L−1) and black dotted-dashed lines (constant biomass
of 0.30 g L−1), for which the growth is shown as a univariate function of the substrate
concentration.

Although the BMS considers the product in the identi�ed model expression for

dB/dt, the e�ect of a change in P is more signi�cant in the beginning and becomes

less important throughout the reaction (when the product is formed, and its

concentration increases). In other words, the main in�uences on dB/dt result

from the part a0(S · B), for most of the reaction time, since the exponent has

more or less a similar value around ≈ 0.8 (Figure 3.8 (a)) during most of the

time, which is in-line with the underlying ground truth equation in (3.16) (no

impact of P ): Figure 3.8 (b) displays the true change of biomass (ϕ · B) as a
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function of the substrate and biomass concentrations. Considering two speci�c

values of the biomass (i.e., 0.02 g L−1 or 0.30 g L−1), the growth can be shown

as a function of the substrate. In case of low biomass availability (blue dashed

line), the growth seems to be less dependent on the substrate, whereas in case

more biomass is available (black dotted-dashed line), the substrate concentration

shows a greater impact on the growth. In such a case, as expected, as soon as

the substrate level drops, a signi�cant decrease in growth rate can be observed

(right part of Figure 3.8 (b) for the black dotted-dashed line). The predicted

time series pro�les by the BMS given in Figure 3.5 show a good accuracy also in

the beginning and at the end of the process operation, for which the mentioned

signi�cant drop in the growth needs to be captured. The BMS was able to describe

such trends without the need of chemical or biological background knowledge. If

the growth predicted by the BMS - the right-hand side of equation (3.18) - is

visualized (Figure 3.9), a similar trend can be observed, although slight numerical

discrepancies are observable compared to the underlying system in Figure 3.8

(b).
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Figure 3.9. The biomass growth identi�ed by the BMS equation is visualized as a func-
tion of the substrate concentration S and the biomass concentration B (for the indicated
concentration of the product). Similarly to Figure 3.8, two scenarios are highlighted by
the blue dashed (constant biomass of 0.02 g L−1) and black dotted-dashed lines (constant
biomass of 0.30 g L−1), for which the growth is shown as a univariate function of the
substrate concentration.

A similar analysis can be performed for example for the identi�ed equation of the

substrate consumption rate, given in (3.19). The BMS identi�ed an expression

where all state variables show an inhibiting in�uence on the rate of S. In other

words, the consumption of the substrate is enhanced by increasing the concentra-

tion of the other species in the system. Due to the closed-form availability of the

model, a deeper analysis of the rate equation is possible, which is showcased by a
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further decomposition of the identi�ed expression into individual terms, namely

h1, h2, and h3 given below. Compared to the pure ANN, this poses an advantage

since knowledge about a system can be extracted.

h1 = a2 + a0 (3.21)

h2 = a1 · P · S(1/(S·P ))a0 (3.22)

h3 = a1 ·BS·a1 · S(1/(S·P ))a0 (3.23)

Since h1 only consists of constants, this term is disregarded for the time being,

since no metabolite in�uences it. Considering the terms h2 and h3, it is observable

that the constant a1 and the part S(1/(S·P ))a0 is the same for both terms. In case

one is interested in the signi�cance of the individual parts, the numerical ratio of

the two terms will matter, since both terms, h2 and h3 have the same sign and

therefore the same impact on the consumption of the substrate. Creating such a

ratio ψ = h2/h3 = P/BSa1 will result in the following consumption rate of the

substrate (still disregarding h1):

dS/dt ≈ −a1 · P · S(1/(S·P ))a0 − a1 ·BS·a1 · S(1/(S·P ))a0 (3.24)

≈ −a1 · P · S(1/(S·P ))a0︸ ︷︷ ︸
h2

− a1 ·
P

ψ
· S(1/(S·P ))a0︸ ︷︷ ︸

h3

(3.25)

With this, one can observe that if ψ > 1, it results in a case where h3 < h2. On

the other hand, if ψ < 1, the case h3 > h2 is obtained. Visualizing the value of ψ

for di�erent ranges of the biomass and substrate concentration and a given value

of the product concentration (P ) in Figure 3.10, one can observe how the terms

change their numerical relevance compared to each other (which term has more

impact on the substrate concentration). With growing product concentration P ,

the value of ψ starts to grow as well (ψ >> 1), leading to higher contributes by

the term h2.

The obtained closed-form expressions models bring not only the advantage of

being able to extract some knowledge on the system's behavior. Due to the

algebraic form of the models, another useful bene�t is the possibility to calculate

the gradients analytically. This opens the opportunity to include these models for

example in deterministic optimization algorithms, where the objective functions

and constraints need to be available in closed-form manner (Bongartz & Mitsos,
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Figure 3.10. The contour plots of the numerical ratio ψ are shown for three di�erent
levels of the product concentration P , which are [0, 7.5, 15] g L−1. The colors of the
contour represent the value of ψ.

2019; Misener & Floudas, 2014; E. M. Smith & Pantelides, 1999; Tawarmalani &

Sahinidis, 2002).

Despite the above-discussed advantages the closed-form analytical equations pro-

vide, there are also disadvantages, where the high CPU times for the BMS model

training is one of the main drawbacks. Considering the averaged CPU times for

the BMS training in Table 3.2, the models required at least 35min (CSII-Poly-20)

and at most 156min (CSII-Poly-40). The exact CPU times are documented in

Section B.5 of the supporting information. As discussed in earlier works (Forster,

Vázquez, & Guillén-Gosálbez, 2023a; Negri et al., 2022; Vázquez et al., 2022),

the BMS in general requires signi�cantly more training time than the benchmark

surrogates (i.e., ANN and GP). This is because the latter are based on a �xed

canonical formalism and highly e�cient algorithms, such as the used Python pack-

ages Scikit-learn (Pedregosa et al., 2011). Also, the BMS algorithm was originally

designed by the authors to only allow the number of MCMC steps as a stopping

criterion (Guimerà et al., 2020). The evolution of the description length, given in

expression (3.13), is shown in Figure 3.11 as a function of the number of executed

MCMC steps.

To compare the case studies, the description lengths were scaled to a range be-

tween zero and one. For CSI, it can be observed in Figure 3.11 (top) that after

around 800 MCMC steps, the description length does not signi�cantly change. A

similar picture is observed in Figure 3.11 (bottom) for CSII, where the most signif-

icant decline in the description length was achieved in the �rst 2000 MCMC steps.
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Figure 3.11. The scaled mean description lengths are visualized for each MCMC step for
CSI (top) and CSII (bottom). The mean results from averaging the description lengths
of the di�erent BMS models obtained for each species of each scenario (Poly-40, SR-40,
Poly-20, SR-20).

The only exception can be observed in the scenario CSII-SR-40, where the descrip-

tion length declines gradually. These observations imply that the models identi�ed

after those steps perform similarly in terms of training predictions.

3.6 Conclusion

In this work, we investigated the use of machine learning to identify kinetic mod-

els of bioprocesses without assuming a pre-de�ned model structure. A symbolic

regression algorithm, the Bayesian machine scientist, was employed to generate

suitable models considering their error and level of similarity with a prede�ned

corpus of equations. The model training was performed following a two-step ap-

proach, thus avoiding the iterative integration of di�erential equations, by using

two methods to calculate derivatives, i.e., polynomial �tting and univariate sym-

bolic regression. Also, the in�uence of the sample size was studied. Our approach

was applied to two di�erent case studies to showcase its capabilities. Our method

performed slightly better than ANNs, while leading to analytical expressions that

can be more easily analyzed. However, the BMS leads to higher computational

times, which might be reduced in the future as symbolic regression algorithms

reach higher maturity levels. Future work should focus on guiding the SR al-

gorithm more e�ciently towards equations that are more likely to explain the
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data precisely, for example by using tailored standard kinetic equations during

the training of the SR algorithm.
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Chapter 4

Algebraic surrogate-based process

optimization using Bayesian

symbolic learning

This chapter is based on the following publications: Forster T., Vazquez D.,

Guillén-Gosálbez G. (2023a). Algebraic surrogate-based process optimization us-

ing Bayesian symbolic learning. AIChE Journal, e18110. and Forster T., Vazquez

D., Guillén-Gosálbez G. (2023b). Global optimization of symbolic surrogate pro-

cess models based on Bayesian learning. Computer Aided Chemical Engineering,

52, 1241-1246.
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Nomenclature for Chapter 4

Sets

E {e | e is a closed-form algebraic expression}

I {i | i is a decision variable and represents a process condition}

J {j | j is a parameter}

M {m | m is an equality constraint}

N {n | n is an inequality constraint}

R {r | r is a reactor, used for case study IV}

S {s | s is a sample consisting of an input vector ws and the corre-
sponding output os}

R Real numbers

Parameters

Φ Speci�ed process condition

Variables

f(x) Target process response depending on input variables x and process
speci�cations Φ

f and f Lower and upper bound of an observed response f

F (x) Surrogate model approximating f(x) only depending on input vari-
ables x

gn Inequality constraint n in an optimization problem

hm Equality constraint m in an optimization problem

os A response/output of a sample s

xi Process speci�cation/condition and decision variable i

xi and xi Lower and upper bound of decision variable i

x̃/f̃ or w̃s/õs Scaled variable/sample or normalized response/output

ze Closed-form algebraic expression

ws,i A sample s of a decision variable i
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4.1 Introduction

The optimization of process �owsheets is a fundamental problem in Process Sys-

tems Engineering, for which several approaches have been proposed to date. Origi-

nally, process optimization relied on mechanistic models based on some knowledge

of the system (Haydary, 2019). Such models provide a closed-form description that

enables the direct application of deterministic optimization algorithms, including

global optimization (GO) methods. One possible example of deterministic global

�owsheet optimization, the reader is referred to the work of Bongartz and Mitsos

(Bongartz & Mitsos, 2019).

Wherever complex systems are studied, a �rst-principles model is not easy to

design. Some authors proposed building tailored data-driven models, which can

simplify the optimization task. For example, Sun and Braatz (2020) introduced

ALVEN (Algebraic Learning Via Elastic Net) to identify a nonlinear interpretable

model for manufacturing data. Another widely known approach is ALAMO

(Cozad et al., 2014; Wilson & Sahinidis, 2017), which considers a range of ba-

sis functions to build algebraic models for given data. However, these methods

constrain the model structure because they rely on given monomials and transfor-

mations of the input variables, which can result in less accurate approximations.

More recently, data-driven (also referred to as black-box) models emerged to deal

with problems in which the underlying phenomena cannot be easily described.

They include (but are not limited to) classical regression models such as polyno-

mial regression (Ostertagová, 2012) and state-of-the-art machine learning (ML)

algorithms. Black-box models require little physical knowledge about the process

(Narayanan, Luna, et al., 2021). Moreover, with the latest ML packages/platforms

available, such as scikit-learn (Pedregosa et al., 2011), Tensor�ow (Abadi et al.,

2015), and PyTorch (Paszke et al., 2019) for python, the Matlab ML toolbox (The

MathWorks Inc, 2024), and even low-code/user-friendly alternatives like AutoML

(Guyon et al., 2017) and KNIME (Berthold et al., 2007), ML models can be

implemented quickly and reliably. However, despite being easy to build, they fol-

low a pre-determined structure (Cozad & Sahinidis, 2018) and may extrapolate

poorly. In the context of PSE, arti�cial neural networks (ANN) and Gaussian

processes (GP) were, for example, applied by Del Rio Chanona et al. (2019) to

simulate a wastewater biotreatment and by Gnoth et al. (2010) in a bioprocess

simulation.
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Data-driven approaches have also been applied to build surrogates of mechanistic

models that are hard to optimize. For example, Jones et al. (1998) introduced a

response surface methodology for expensive multimodal functions, where they ap-

plied Bayesian optimization. Following a similar approach, Quirante et al. (2015)

optimized distillation columns with surrogate models based on Kriging interpola-

tion. Later works (Quirante & Caballero, 2016; Quirante et al., 2018) extended

this methodology to replace other units with Kriging models (GP regression),

leading to a hybrid simulation-optimization modeling framework.

Optimizing standard data-driven ML models is not straightforward due to their

intrinsic complexity and nonlinearities (Mitsos et al., 2009; Schweidtmann & Mit-

sos, 2019). Here, the standard approach is to solve these models to local optimal-

ity. However, more recently, tailored deterministic GO algorithms for data-driven

models emerged. Notably, Schweidtmann and Mitsos (2019) introduced a global

optimization approach named MAiNGO (McCormick-based Algorithm for mixed-

integer Nonlinear global optimization) to optimize ANNs globally, which was later

extended to use GP models (Schweidtmann et al., 2021). It built on earlier works

that integrated machine learning models in optimization problems by applying the

created toolbox named MeLOn (Schweidtmann et al., 2020) (Machine Learning

models for Optimization). Ceccon et al. (2022) presented OMLT, an optimization

and machine learning toolkit to optimize trained ANNs or gradient-boosted trees.

Boukouvala et al. (2017) introduced a methodology for the global optimization

of constrained grey-box problems using Kriging models and derivative-free global

optimization and applied it to pressure swing adsorption. Later, Boukouvala and

Floudas (2017) presented the algorithmic framework ARGONAUT to globally

optimize general constrained grey-box problems using the ANTIGONE solver. A

parallel version named p-ARGONAUT was subsequently published by Beykal et

al.(2018). In a recent work, Paulson and Lu (2022) proposed the COBALT (con-

strained Bayesian optimization of computationally expensive grey-box models ex-

ploiting derivative information) algorithm for constrained grey-box optimization

problems, combining GP models with state-of-the-art optimizers (J. Paulson &

Lu, 2021).

It is important to note that the surrogates used in process optimization are approx-

imations of the original systems (e.g., mechanistic models) but are not rigorous

relaxations of the original model. In other words, they do not necessarily provide

rigorous bounds on the optimal solution of the original model. Hence, even if
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the surrogate is globally optimized, there is no guarantee that its global optimum

will be, in turn, the global optimum of the original model. Notwithstanding this

important observation, it is appealing to identify the global optimum of the surro-

gate as, if the surrogate is accurate enough, this would likely lie close to the global

optimum of the original model. In recent years, data-driven modeling based on

symbolic regression (SR) has been attracting growing interest. Often referred to as

genetic programming (Cozad & Sahinidis, 2018; Keane et al., 1993; Koza, 1994),

the goal here is to �nd closed-form mathematical expressions based on expression

trees using mainly evolutionary algorithms (Diveev & Shmalko, 2021), although

more recently deterministic MINLP methods were also applied (Cozad & Sahini-

dis, 2018). One of the advantages of this regression method is that it does not

necessarily assume a pre-determined model structure (e.g., in a multivariate re-

gression) or a set of alternative model structures (e.g., for the ALAMO approach).

SR was successfully applied in many di�erent �elds. For example, Tsionas and

Assaf (2020) applied SR to tourism research. McKay et al. (1997) used an SR

approach to model a vacuum distillation column and a chemical reactor system.

In a later work, McKay et al. (1999) applied SR to develop a model of a food

extrusion process. In the control area, Keane et al. (1993) proposed an approach

to approximate an impulse response for a linear time-invariant system. In a more

recent work by Schmidt and Lipson (2009), the authors discovered physical laws

from experimental data using SR to identify nonlinear relationships. In the cos-

mology �eld, Cranmer et al. (2020) applied SR to components of a trained graph

neural network to extract explicit physical relations.

The advantage of using algebraic surrogates is that, besides improving inter-

pretability, they enable the use of deterministic Global Optimization (GO) algo-

rithms (Androulakis et al., 1995; I. E. Grossmann, 1996; Ryoo & Sahinidis, 1995;

E. M. B. Smith & Pantelides, 1997; Tawarmalani & Sahinidis, 2002; Zamora &

Grossmann, 1999). Stochastic GO methods are mainly applied when the objective

function is unknown, meaning the algebraic expression of the function and its cor-

responding derivatives are not available, which prevents the use of deterministic

methods (Bradford et al., 2018). Such algorithms may �nd the global optimum;

however, they need an in�nite running time to guarantee global optimality (Ryoo

& Sahinidis, 1995). Simulated annealing (Hwang, 1988), genetic algorithms (Hol-

land, 1992), or particle swarm algorithms (Kennedy & Eberhart, 2006) are the

most widespread stochastic GO methods. On the other hand, deterministic GO
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methods are guaranteed to identify the global solution - within a given ϵ-tolerance

- in a �nite number of iterations (Androulakis et al., 1995; Horst & Tuy, 1996;

Schweidtmann et al., 2019, 2021). Typical deterministic GO methods are based

on spatial-branch-and-bound, while other approaches (Kesavan et al., 2004) ap-

plied alternative schemes inspired by the original outer approximation algorithm

by Duran and Grossmann (Duran & Grossmann, 1986b). For example, Bergamini

et al. (2005) presented a logic-based outer-approximation algorithm for MINLPs

showing some nonconvexities. Here, the master problem incorporates piece-wise

linear approximations of the nonlinear terms, so it yields a lower bound (when

minimizing). The algorithm is guaranteed to identify the global optimum within

a given tolerance for a su�cient enough number of iterations. State-of-the-art

solvers implementing such strategies include BARON (Sahinidis, 1996; Tawar-

malani & Sahinidis, 2005) and ANTIGONE (Misener & Floudas, 2014), which

mainly di�er in the bound tightening (Belotti et al., 2009; Puranik & Sahinidis,

2017) and relaxation methods implemented (Locatelli & Schoen, 2013; Misener &

Floudas, 2014; Tawarmalani & Sahinidis, 2002). Despite providing an optimality

gap within which the global optimum should fall, they require explicit, closed-

form mathematical expressions to be available (Bongartz et al., 2020). Therefore,

in the context of process optimization, such deterministic GO methods could be

applied if equation-oriented �owsheet models are at hand (Bongartz & Mitsos,

2019).

This work explores the use of SR coupled with state-of-the-art GO algorithms in

the context of process optimization. The most important reasons for this two-stage

approach are that the user does not have to make a priori assumptions about the

mathematical structure of the model and that, subsequently, well-established of-

the-shelf deterministic GO algorithms can be applied once the algebraic surrogate

is at hand. Focusing on an SR approach presented by Guimerà et al. (2020),

called the Bayesian machine scientist (BMS), we �rst derive algebraic regression

models of the desired processes. The BMS was already applied to some case

studies. The work by Negri et al. (2022) applied this regression method to

approximate process simulations. Vazquez et al. (2022) used it to model the

link between energy-related impacts and socioeconomic drivers. However, up to

now, the resulting equations were never used to simplify the global optimization

of those systems, which will be explored in the present work. After identifying

a suitably well-�tting model equation, available global deterministic solvers are
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used to search for the global optimum of the algebraic surrogate. We show the

advantages of this approach in several case studies covering unit operations and

full �owsheets. To our knowledge, this is the �rst work that applies SR to the

global optimization of process �owsheets, opening new avenues for the application

of algebraic surrogates in process optimization.

The remainder of the paper is organized as follows: First, the problem statement

is detailed, followed by the methodology. Afterward, the case studies are intro-

duced, and the results are discussed. Finally, the conclusions of the work are

drawn.

4.2 Problem statement

Here, without loss of generality, we shall consider an existing process operated

in a steady state. Known process parameters, for example, equipment size and

�ow rates, are described by ϕj, j ∈ J , where J is the set of known properties.

The decision variables are denoted by xi, where i ∈ I refers to the set of vari-

ables to be optimized. Therefore, there are |I| degrees of freedom to be varied

to optimize a user-de�ned target objective f(x, ϕ) (either minimized or maxi-

mized). For the sake of simplicity, the known parameters ϕ are subsequently

skipped from the notation, leaving the process described by the degrees of free-

dom, f(x). Additionally, unless otherwise indicated, in what follows, we will focus

on minimization problems. A schematic representation with an example is given

in Figure 4.1.
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Figure 4.1. In the top row (blue, solid squares), a schematic representation of a consid-
ered process is given with its degrees of freedom x, fully speci�ed process conditions and
equipment properties ϕ and a target objective f(x) that is required to be optimized. In
the bottom row, an example is given in the green dashed squares.

The goal of this work is two-fold: First, we wish to �nd a suitable expression
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F (x) that maps the inputs x su�ciently well to the target objective and therefore

approximates the response f(x) accurately. This mapping is described by the

closed-form surrogate expression F (x), which can be generated by various methods

discussed in the introduction. Herein, however, it should be identi�ed without

assuming a pre-de�ned model structure, which is achieved by relying on �exible

symbolic trees that include prior knowledge:

F (x) ≈ f(x)

s.t.x ≤ x ≤ x

x ∈ R

(4.1)

With R|I| being the domain of input variables. After being able to approximate

the studied process f(x) with an appropriate surrogate F (x), the main goal of

this work is to globally optimize the surrogate F (x) to �nd the values x∗. In

mathematical terms, such an optimization task can be formulated as a nonlinear

programming problem (NLP), as described in equation (4.2):

f ∗ =min
x
f(x)

s.t.gn(x) ≤ 0, ∀n ∈ N
hm(x) = 0, ∀m ∈M
x ≤ x ≤ x

x ∈ R|I|

(4.2)

Where x represents the aforementioned process conditions. Available inequality

constraints gn(x) and equality constraints hm(x) are also considered. These con-

straints represent, for instance, allowable operating ranges for equipment units,

such as maximum allowed �ow rates, or desired speci�cations, such as maximum

permitted emissions into the environment. The lower and upper bounds of the

decision variables are denoted by x and x, respectively. For example, we may be

interested in de�ning upper bounds on the temperatures and pressures or quality

speci�cations on product purity. The global optimization of chemical processes is

challenging due to the highly nonlinear and non-convex nature of the mechanistic

equations describing their behavior (e.g., Antoine equation, Arrhenius expression,

etc.). Moreover, commercial simulation software su�ers from numerical noise and
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convergence issues. At the same time, monolithic formulations implemented in

algebraic modeling systems are hard to initialize, and the implementation of the

equations themselves, e.g., mass and energy balances and thermodynamic equa-

tions, might not be trivial. A possible way to simplify the optimization is to

resort to surrogate models F (x) in which the original problem is approximated as

follows:

F ∗ =min
x
F (x)

s.t.gn(x) ≤ 0, ∀n ∈ N
hm(x) = 0, ∀m ∈M
x ≤ x ≤ x

x ∈ R|I|

(4.3)

Where we assume that model F is given in an algebraic form. Problem (4.3) could

then be solved for global optimality using state-of-the-art GO solvers. Hence, we

aim to construct an accurate representation of F (·) and globally optimize the

resulting problem.

4.3 Methodology

4.3.1 Modeling framework

We propose an approach to tackle the problem above that follows two main steps.

First, we build an algebraic surrogate model F (x) that approximates the objective

function computed from the detailed model (i.e., real process) f(x) su�ciently

well. To this end, we use symbolic regression tools that build algebraic expressions

from data without assuming any aprioristic model structure. Second, we solve the

surrogate model-based optimization problem using standard global optimization

packages.

Step 1: Data generation using process simulation

A schematic overview of the data generation process is given in Figure 4.2. In

order to gather the data required for the surrogate model generation, a �owsheet

of the desired case study is modeled using Aspen HYSYS. An objective function

f(x) is de�ned, which is computed from the values of the dependent variables,
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i.e., degrees of freedom, de�ned in the process model. To map inputs to outputs,

we de�ne the input variable ws,i, where s ∈ S refers to a given sample, and

i ∈ I refers to a degree of freedom, i.e., a feature of the surrogate model. The

output vector is denoted as f(ws), or fs in short. Therefore, the sampling matrix

is generated with the desired number of samples |S| using the Latin hypercube

sampling (LHS).

Remove 

point

Genera on of sampling space by LHS

Simulate owsheet

Store inputs

and outputs

Converged?

Sample � = 1

noyes

Dataset

Sampling complete? � = � + 1

yes

no

Figure 4.2. Schematic representation of the data collection procedure. Starting from
a sampling space de�ned by a Latin hypercube sampling approach, the vectors ws,i will
be sent to HYSYS. If the �owsheet does converge, the sample (consisting of the input
vector ws and the sampled output f(ws)) is stored. If the �owsheet does not converge,
the complete sample is removed, and the next input vector is sent to HYSYS. As soon as
the sampling is completed, the algorithm is terminated. It is worth to be mentioned that
the �nal dataset only consists of those samples where the �owsheet converged.

Step 2: Data pre-processing

Appropriate data treatment is required before training the model with the raw

data. Notably, data scaling and selection help improve the model's accuracy and

robustness (Arora, 2012; Elble & Sahinidis, 2012; A. C. Müller & Guido, 2017). A

schematic representation of the data treatment strategy is given in Figure 4.3. We

included a data selection step, where only samples that fall between the limits of a

user-de�ned range f ≤ f(ws) ≤ f were considered. The motivation for this is that
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the optimal solution might not lie close to samples showing poor performance in

terms of objective function values. After selecting the data for the model training,

our proposed framework includes a feature scaling step. Speci�cally, the values of

the input vector ws,i of each sample s are scaled to a range of user-de�ned values,

describing the resulting scaled vector as w̃s,i. Finally, the response value f(ws)

of each input vector is normalized within another user-de�ned range, where the

resulting response is described by f̃(ws). After having preprocessed the data, the

existing values are updated (to simplify notation):

ws,i ← w̃s,i and f(ws)← f̃(ws), ∀s ∈ S, i ∈ I (4.4)

The scaling and standardization steps support the model training: The maximum

likelihood estimator of the model parameters is obtained by solving a least-squares

problem (Guimerà et al., 2020). This can require an iterative procedure that relies

on the calculation of the Jacobian (Fletcher, 2000; Nocedal & Wright, 2006).

Scaling the data can bring the numerical values of the derivatives in the same

order of magnitude, simplifying the model training (Nocedal & Wright, 2006).

All three pretreatment steps (selection, scaling, normalization) do not need to be

performed concurrently.

Subsequent to the above-mentioned data treatment, the resulting dataset S is

split into two proper subsets:

STR ⊂ S and STE ⊂ S (4.5)

where STR and STE represent the training and test subsets, respectively. The

training subset is later used for model training, whereas the test subset is used

for model testing.

Step 3: Surrogate model generation

The goal here is to �nd an appropriate surrogate expression F (x) that maps the

input data x well to the corresponding objectives f(x). This work aims to show

the possibility of constructing a closed-form surrogate without assuming a pre-

de�ned mode structure. As mentioned previously, we apply SR to perform this

task, which represents mathematical expressions by a symbolic tree, as shown in
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Figure 4.4 (a).

The space of possible expressions is described by E. Starting from one symbolic

representation ze, e ∈ E one can perform changes in the tree that lead to a di�erent

mathematical expression. Such tree evolutions include but are not limited to

node replacement (i.e., changing the addition operator in Figure 4.4 by a division

operator) and elementary tree replacement (i.e., exchanging the complete sub-tree

(α − β) by another tree). For each resulting expression, a goodness-of-�t metric

can be calculated. The SR algorithm then searches for an expression leading to the

best goodness-of-�t metric, akin to other evolutionary algorithms. In this work,

we use the SR algorithm developed by Guimerà et al. (2020), the BMS, to simplify

the optimization of process �owsheets. The BMS provides a closed-form algebraic

expression from data based on a set of user-de�ned mathematical operations (i.e.,

Surrogate model genera on

Test setTraining set

Iden ed surrogate model

Data treatment andspli ng

D
a

ta
 

se
le

c
o

n

F
e

a
tu

re
 

sc
a

li
n

g

R
e

sp
o

n
se

 

n
o

rm
a

li
za

o
n

Dataset

Figure 4.3. Schematic representation of the data treatment and surrogate model gen-
eration procedure. In the �rst step, the user might choose to pretreat the data or not:
Data selection will reduce the number of samples. Feature scaling brings the inputs of the
sample matrix (e.g., the vectors ws,i) to the same range of numerical values. Response
normalization will bring the response values (e.g., the values of ws) to the same range of
numerical values. After the pretreatment, the data is split into a training and a test set,
where the training set is used to train the surrogate model. The result of this framework
is an identi�ed surrogate model in a closed-form algebraic expression.
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Figure 4.4. (a) Representation of the mathematical expression z(x, y) = (x+ y)(α− β)
as a symbolic tree. (b) The space E of all possible expressions ze is schematically shown
as a dashed polygon.

addition, subtraction, multiplication, etc.). We next provide an overview of how

the BMS works. For further information, the reader is referred to the original

paper (Guimerà et al., 2020). In the algorithm, a conditional probability p(ze|D)

for each expression ze, e ∈ E (the space of symbolic trees) to �t some data D is

calculated according to Bayes Theorem (Bishop, 2006; Murphy, 2013):

p(ze|D) =
p(D|ze)p(ze)

p(D)
(4.6)

In this expression (4.6), D represents the observed data, and p(D) is the marginal

likelihood of the data (independent of ze and therefore acting only as a normal-

ization constant). Using marginalization over the parameters θe associated with

expression ze (Murphy, 2013), the numerator in equation (4.6) can be expressed

as an integral over the space of all possible parameter values θe (Guimerà et al.,

2020). This resulting integral can be described by the so called description length

L(ze) (Guimerà et al., 2020; Hansen & Yu, 2001; Murphy, 2013):

L(ze) = − log [p(D|ze)p(ze)]

= − log

[∫
Θe

p(D|ze, θe)p(θe|ze)dθ
]

(4.7)

Computing precisely this integral is challenging (Guimerà et al., 2020; Murphy,

2013). However, under certain assumptions (Grünwald, 2007; Murphy, 2013), it

can be approximated by the Bayesian information criterion (BIC) and the prior

of the corresponding expression ze:
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L(ze) ≈
BIC(ze)

2
− log (p(ze)) (4.8)

Therefore, the plausibility of an expression ze conditioned on some data D is

obtained by the description length L(ze). According to Grünwald (2007), L(ze)

can be understood to describe the corresponding mathematical expression in terms

of 'number of natural units' (encoded length of the expression). The BMS uses an

MCMC (Hastings, 1970) algorithm to explore E, de�ned as the space of possible

closed-form expressions. To this end, the user can de�ne how many MCMC

iterations the BMS should perform. After evaluating the description length of

each expression, the BMS uses the most plausible one, representing the expression

with the shortest description length (the best goodness-of-�t).

Step 4: Optimization and validation

After identifying an appropriate surrogate model in the form of an algebraic ex-

pression F (x), the model shown in expression (4.3) is optimized to �nd the global

optimum F ∗. A schematic representation of this model-based optimization proce-

dure is given in Figure 4.5, where the simplest form of such an optimization can

be formulated as a box-constrained problem (with lower and upper bounds, x and

x, on the variables):

F ∗ = min
x
F (x)

x ≤ x ≤ x

x ∈ R|I|

If required, constraints can be added to this optimization problem � which might

include technical constraints on process units or simple mass balances � leading

to the formulation in equation (4.3). If challenging constraints are needed, they

could also be replaced with surrogate models embedded in the formulation. In this

work, the optimization is carried out using available state-of-the-art GO solvers

to identify the model-based global optimum F ∗ within a user-de�ned ϵ-tolerance.

The obtained solution x∗ is then sent to the rigorous mechanistic model to re-assess

the objective function (second block in Figure 4.5). From the rigorous simulation

outcome, the observed process response f ∗ = f(x∗) can be extracted. Using this

observed response f(x∗) and the model-based optimum F (x∗), a de�ned error

metric can be calculated, as discussed in Section 4.3.2. This metric indicates how

94



well the surrogate model F (x) is able to approximate the real process f(x) in the

optimal solution found.

Simulate with found solu on

Op mum

variables

�∗

Global op miza on
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� �∗

Observed objec ve � �∗

Figure 4.5. Schematic representation of the model-based optimization and model val-
idation procedure. By using the identi�ed surrogate model, an optimization problem is
formulated (might include constraints) and solved to global optimality. The identi�ed
minimizer x∗ is further sent to the �owsheet in HYSYS, where the observed response
f(x∗) is extracted. Lastly, the mismatch between the model-based optimum F (x∗) and
the observed response f(x∗) is calculated as a relative absolute error.

4.3.2 Performance and comparison metrics

Training and testing errors are obtained for both the training and test subsets

STR and STE using the root mean squared error (RMSE), mean absolute error

(MAE), and coe�cient of determination (R2), as follows:
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RMSE =

√
1

n

∑
s∈S

(f(ws)− F (ws))
2

MAE =
1

n

∑
s∈S

|f(ws)− F (ws)|

R2 = 1− SSR/SST = 1−
∑
s∈S

∑
s∈S(F (ws)− f(ws))

2∑
s∈S(f(ws)− µf )2

(4.9)

In the relationships in equation (4.9), the predictions by the model are described

by F (ws) using the given input vector ws of one sample s. The observed pro-

cess response and the mean of the observed process responses are described by

f(ws) and µf , respectively. As already mentioned, both, the model predictions

F (ws) and the observed response f(ws) are calculated by using input data from

the training or test set. Variables SSR and SST denote the sum of squares of

residuals and the total sum of squares (proportional to the variance of the data),

respectively. Similarly, the quality of the surrogate is measured by the relative

absolute error (RAE), given by (4.10), which quanti�es the mismatch between the

surrogate and the mechanistic model outcomes for a given solution x.

RAE =

∣∣∣∣f(x)− F (x)f(x)

∣∣∣∣ (4.10)

In addition to these error metrics, the time required for both the model training

and the model-based optimization is reported as central processing unit (CPU)

time. Lastly, both the solver and model status are reported.

4.3.3 Benchmarking and implementation details

We compare our results to those obtained using the MAiNGO algorithm (Bon-

gartz et al., 2020; Schweidtmann & Mitsos, 2019), which was also applied to the

global optimization of process �owsheets. We want to highlight that the intention

is not to claim the superiority of one methodology over the other but to have

a proven and rigorous benchmark for our approach. We train a GP using the

same training data and optimize it using MAiNGO. For a detailed description of

how MAiNGO operates, the reader is referred to the outstanding works by these

authors. We reference the implementation details from Schweidtmann and Mit-

sos (2019): MAiNGO represents a branch-and-bound optimization solver that is
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implemented in C++. The convex relaxations of the constraints and the objec-

tive are linearized with the use of sub-gradients. The resulting linear program is

solved by CPLEX. For upper bounding, the problem is locally optimized using the

SLSQP algorithm. All calculations were carried out on an Intel®Core�i7-8700

CPU and 16 GB of RAM. The software and corresponding versions are provided

next. To construct the sampling dataset, we used Python 3.8.11 with NumPy

v1.21.2 and pyDOE v0.3.8. The process �owsheet was simulated using Aspen

HYSYS v11. Python and HYSYS were linked through the COM interface. The

algorithm provided by Guimerà et al. (2020) was used to train the BMS, whereas

the GP training was performed using GPyTorch v1.6.0. The symbolic equation

generated by the BMS was globally optimized using the General Algebraic Model-

ing System (GAMS) (GAMS Development Corporation, 2022) v40.2.0 interfacing

with the BARON v22.7.23 and ANTIGONE (where explicitly mentioned) v41.3.0

solver. The trained GP was optimized using MAiNGO v0.5.0.

4.4 Case studies

4.4.1 Flowsheets for data generation

As described next, we solve several case studies (CS) of increasing complexity

regarding the number of degrees of freedom. For all CSs, a Latin hypercube

sampling (LHS) design method was used to sample the input vectors ws, con-

sidering 200 (CSI) or 1000 (CSII-IV) samples, for which 20% were used for the

test set. The time to collect these samples is reported in the supplementary in-

formation Section C.1. It is worth mentioning that the same dataset was used

to train di�erent models (for each CS). The indicated bounds were used to set

up the input vectors (Table 4.1). These input vectors were sent from Python to

HYSYS via the COM interface. The observed responses f(ws) were then retrieved

from Aspen-HYSYS. Below, each CS is brie�y discussed, where additional process

information/parameters are given in the supporting material.

CSI � Compressor plant The �rst case study is a compressor plant modeled

in Aspen-HYSYS, represented in Figure 4.6, as introduced by Schweidtmann and

Mitsos (2019). A pre-de�ned feed is split into two individual compressors. The

split ratio towards compressor one is denoted by b, resulting in the split ratio

towards compressor two taking a value 1 − b. Each compressor is modeled with

di�erent e�ciency curves, where the e�ciency varies depending on the inlet �ow.

97



Table 4.1. The lower and upper bounds for the variables are shown for each case study.
These values were used in order to set up the Latin hypercube sampling matrix. Addi-
tionally, they were applied as decision variable bounds for the subsequent optimization.
The order of the values xi and xi is given below for each individual case study.

CS Lower bound x Upper bound x

I 0.57 [−] 0.765 [−]

II 100 ◦C, 160 bar 400 ◦C, 230 bar

III 180 ◦C, 4500 kmol h−1, 0.001 [−],
1.25 [−], 35m3, 4500 kPa

240 ◦C, 6500 kmol h−1, 0.05 [−],
1.8 [−], 55m3, 5500 kPa

IV 0 [−], 0 [−], 230 ◦C, 230 ◦C,
230 ◦C, 160 bar , 160 bar, 160 bar

1 [−], 1 [−], 400 ◦C, 400 ◦C,
400 ◦C, 230 bar , 230 bar, 230 bar

After the compression, the outlets of the two compressors are mixed and sent

to the �nal outlet. Details about the �xed process parameters (i.e., feed �ow

rate, feed composition, compressor curves, compressor ratio, etc.) are given in

Chapter C.2. There is only one degree of freedom, i.e., the split fraction, so the

input vector reduces to a scalar de�ned as x = b. The goal is to minimize the total

duty required to operate the plant, where the measured response is consequently

described by f(x) = Q(x).

Feed

Split fraction Compressor 1

Compressor 2

Out

Figure 4.6. Process �owsheet of the compressor plant under study (case study I). The
decision variable, x = b, for the optimization problem is indicated in the green box.

CSII � Ammonia reactor The second CS represents a chemical reactor,

modeled as a multitubular plug �ow reactor implemented in Aspen-HYSYS (Fig-

ure 4.7). The inlet mass �ow is set to a speci�c value. The temperature T and

pressure P dictate the reaction rate. The reactor is operated under adiabatic

conditions with a pressure di�erence of 1 bar. The reactor properties (i.e., the

volume, the number of tubes, etc.) are given in the supplementary information

Section C.2. In this case study, the degrees of freedom, and therefore the decision

variables in the optimization problem, are the temperature and pressure of the

feed: x = [T, P ]. The goal is to maximize the outlet conversion XN2 of nitrogen
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to ammonia at the reactor outlet f(x) = XN2(x).

N2

H2
Temperature
Pressure

NH3

Figure 4.7. Process �owsheet of the ammonia reactor under study (case study II). The
decision variables for the optimization problem are indicated in the green box, x = [T, P ].

CSIII � Methanol plant The third numerical example optimizes a methanol

(MeOH) plant modeled in Aspen-HYSYS (Figure 4.8). Carbon dioxide and hydro-

gen are fed to the system and adjusted to the required pressure and temperature

before being sent to a multitubular plug �ow reactor. The reactor outlet goes

through two �ash drums and into a distillation column. Methanol is collected in

the distillate, while water is the main product at the bottom. The vapor streams

of the �ash drums are sent to a recycle stream (from the �rst �ash) and to a

purge (from both drums). The data used in the calculations is provided in the

supporting information Section C.2. The degrees of freedom to be optimized are

highlighted in green text in Figure 4.8: Reaction temperature, reaction pressure,

purge ratio of the splitter, reactor volume, hydrogen �ow rate, and re�ux ra-

tio of the distillation column. Therefore, the input vector can be described by:

x = [T, P, η, V, F, ζ]. The objective of this CS is to minimize the unitary cost

(UC) of methanol (x) = UC(x), considering a �xed CO2 �ow. The exact cal-

culation of the UC is provided in the supporting information Section C.2. We

note that for each sampling point for x, the MINLP model developed by Yee and

Grossmann (1990) (SYNHEAT) is solved to obtain the optimum heat exchanger

network (HEN) and, therefore, the optimum cost of the HEN.

CSIV � Ammonia reactor series The next case study considers a series

of multitubular ammonia reactors similar to the one de�ned in CS1 (Figure 4.9).

A pre-de�ned feed is sent to a splitter and divided into three di�erent streams.

The split fractions b1 and b2 (splits towards reactors 1 and 2) are the degrees of

freedom for the optimization problem. The third split fraction b3 is calculated

from the mass balance 1 = b1+b2+b3 and is therefore speci�ed. Additionally, the

temperatures (Tr) and pressure (Pr) for the di�erent reactors r ∈ R = {1, 2, 3}
are also degrees of freedom. The rest of the reactor properties (i.e., the volume,

the number of tubes, etc.) are fully de�ned and displayed in the supporting
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CO2

H2

MeOH

H2O

Flow

Purge

Temperature

Volume

Purge ratio

Pressure

Reflux ratio

Figure 4.8. Process �owsheet of the MeOH plant under study (case study III) adapted
from Vázquez et al. (2021). The decision variables for the optimization problem are
indicated in the green boxes, x = [T, P, η, V, F, ζ].

information Section C.2. Therefore, the decision variables for the optimization

process are the split fractions toward reactors 1 and 2, and the temperature and

pressures of the reactors: x = [b1, b2, T1, T2, T3, P1, P2, P3]. The objective of this

CS is to maximize the overall conversion of nitrogen to ammonia XN2 , described

by f(x) = X(x), where X denotes the overall conversion of the process. A simple

constraint is added to ensure the splits ful�ll the mass balance.

Feed

Split fraction 1

Temperature
Pressure

Out
Split fraction 2

Temperature
Pressure

Temperature
Pressure

Figure 4.9. Process �owsheet of the ammonia reactor series under study (case study
IV). The decision variables for the optimization problem are indicated in the green boxes,
x = [b1, b2, T1, T2, T3, P1, P2, P3].

4.4.2 Default properties of the training and optimization algorithm

We trained the BMS and the GP considering the parameters and settings shown

in Table 4.2. The BMS parameter values are those given in the original article

(Guimerà et al., 2020). Regarding the optimization, we applied BARON v20.4.14.
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The solver settings and conditions to optimize the trained BMS models are stated

in Table 4.2. In all four cases, the starting point for the decision variables was

set to the midpoint between the respective upper and lower bounds (4.1). All

other settings were set to the default values of the indicated solver version. For

optimizing the GP with MAiNGO, in CSII, III, and IV, the option of a pure

multi-start (with a maximum of 20 local searches) was additionally activated in

case the optimality gap could not be closed. This option will not guarantee global

optimality since the pure random multi-start is performed with individual local

optimizers. The starting points for the decision variables were chosen to be the

same as for BARON. All other settings were set to the default values of the

indicated solver version provided by the developers of MAiNGO.

Table 4.2. Settings and hyperparameters for the training and optimization of the Bayesian machine
scientist and the Gaussian process.

Model Settings CSI CSII CSIII CSIV

BMS MCMC iterations 18·103 60·103 20·103 40·103

training Allowed operations a exp(x), log(x), x2, x3,
√
x,+,−,÷,×, xa, |x|

Root replacement probability 0.05

Node replacement probability 0.45

Elementary tree replacement
probability

0.5

BARON Relative optimality gap 10−9 0 0 0

settings Node limits 106 106 108 106

Maximum wall clock time (reslim) 6·102 6·102 4·104 4·104

GP Training epochs 2·102 2·103 1·103 1.5·103

training Mean function Constant

Kernel Matern with n=5/2

Likelihood Gaussian

Optimizer Adam

Learning rate 0.1

MAiNGO ϵR
b ϵR =

[
10−1, 10−2, 10−3, 10−4

]
settings Max CPU b 16 500 s 5600 s 41 000 s 123 500 s

ϵR
c ϵR = 10−3

Max CPU c 3600 s

a The absolute function |x| was only applied to CSI-III.
b Relative optimality gaps and maximum allowed CPU times for inactive multi-start runs.
c Relative optimality gaps and maximum allowed CPU times for multi-start runs.
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4.5 Results

When discussing the results, we �rst shall focus on the model training and sub-

sequently on the model-based optimization performance. As mentioned in Sec-

tion 4.3.3 (benchmarking), the goal of this work was to show that it is possible

to model precisely and optimize process �owsheets e�ectively using symbolic re-

gression. We are not claiming that our approach is consistently superior but that

it is competitive and might become even more e�cient in the future with further

developments in symbolic regression. This �eld is currently evolving very rapidly.

We show that symbolic regression not relying on basis functions but rather on

�exible symbolic trees incorporating prior knowledge can precisely model process

�owsheets e�ectively. Although the BMS was previously applied in other works

(Negri et al., 2022; Vázquez et al., 2022), to the best of our knowledge, Bayesian

symbolic regression was never used to facilitate the global optimization of process

�owsheets. In this section, after comparing the performance of the proposed ap-

proach with the GP being optimized by MAiNGO, we brie�y describe how the

same work�ow can be followed using a linear basis function (LBF) model in the

optimization part in Section 4.5.2. However, in this work, we will not go into

a detailed analysis of the LBF approach but rather describe the advantages and

disadvantages of the method.

4.5.1 Model training

The model training and testing results are given in Table 4.3. A graphical repre-

sentation of the results from Table 4.3 is depicted in Figure 4.10, which shows the

observed versus predicted (OVP) values of both modeling approaches.

In general, both trained models can explain the variance in the data su�ciently

well when considering R2 > 0.85 as acceptance criteria. This acceptance level of

R2 > 0.85 was chosen by the authors based on experience. It could be further

�ne-tuned, which was, however, not the goal of this work and is therefore left

for future work. This is the case for all case studies (Table 4.3). Additionally,

the models are considered to perform similarly (compared to each other) if the

relative di�erence in R2 is below 5%, which is con�rmed in all CSs (0.4% for

CSI and II, 0.6% for CSIII, and 1.9% for CSIV). Throughout the CSs, it can

be observed that the ability to explain the training data variance decreases with

increasing dimensionality of the problems. The BMS was run using the number

102



Table 4.3. The training performance criteria are summarized for the Bayesian machine scientist (BMS)
and the Gaussian process (GP). Each row represents one case study (CS). The CPU time (in seconds)
needed for the model training is shown in the left part of the table. The error metrics (root mean squared
error, mean absolute error, coe�cient of determination) are shown for the training and testing data (format:
training/testing). The root mean square error (RMSE) and the mean absolute error (MAE) units are
given in the last column for each case study, where the coe�cient of determination (R2) is a unitless
quantity. The identi�ed algebraic expressions are indicated in Table 4.4, whereas the corresponding model
parameters are reported in Table 4.5.

Train CPU [s] RMSE MAE R2

BMS GP BMS GP BMS GP BMS GP

16500 12 0.152/0.152 0.010/0.013 0.117/0.117 0.005/0.007 0.996/0.996 1.000/1.000

5600 141 0.832/0.962 0.537/0.935 0.487/0.630 0.120/0.270 0.994/0.993 0.998/0.993

40600 6 0.017/0.014 0.002/0.009 0.011/0.010 0.002/0.006 0.954/0.970 0.999/0.989

123000 114 3.035/3.097 1.504/2.775 2.340/2.321 1.094/2.064 0.888/0.868 0.972/0.894

a Units for the case studies: kW (CSI), % (CSII), $/kg (CSIII), and % (CSIV)

of MCMC iterations indicated in Table 4.2 as the stopping criterion. This led

to CPU times of at least 5600 s in all the cases. In contrast, the GP could be

trained much faster, in around 6 to 141 s seconds, depending on the CS. This

fast training of the GP was expected, as there are highly e�cient algorithms

tailored to GPs, while the same is not true for symbolic regression. Besides, the

GP relies on a given mathematical formalism, while symbolic regression assumes

no pre-de�ned model structure. The RMSE and MAE of the BMS surrogate

414
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Figure 4.10. Observed vs. predicted (OVP) values for the di�erent case studies are
shown in the columns. The top row shows the OVP results obtained from the Bayesian
machine scientist (BMS) predictions, whereas the bottom row shows the OVP results from
the Gaussian process (GP) predictions. Blue points represent the training data, whereas
red points correspond to the test data. The black line represents the values where the
observed value corresponds to the model predictions.
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is similar to that provided by the GP in all the cases except for CSI, with the

R2 values being close to one in all the examples, excluding CSIV. The BMS

reached very similar errors in the training and the test sets. This shows that it is

well-regularized and, therefore, less prone to over�tting, in line with the authors'

expectations (Guimerà et al., 2020). The GP, on the other hand, showed a higher

discrepancy between the training and the test set. It is worth mentioning that

we did not tune the hyperparameters for training the GP. The model training

only aimed to get a su�ciently well-trained surrogate model that is appropriate

to be subsequently sent to the optimizer. The errors of the BMS indicated in

Table 4.3 correspond to the closed-form expression identi�ed to have the highest

plausibility and, therefore, the lowest description length. The models with the

lowest description length are reported in Table 4.4, whereas the corresponding

estimated parameter values are shown in Table 4.5. It is worth mentioning that

the training data was not always scaled, which explains the high di�erence in

orders of magnitude of the estimated parameters in Table 4.5.
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Table 4.5. Parameter values of the most plausible surrogate models (Table 4.4) identi�ed
by the Bayesian machine scientist for each case study (CS).

Parameter
CS

I II III IV

a0 -6.435·101 1.000·100 1.542·102 -4.304·100
a1 7.128·10−1 3.248·10−1 2.137·10−5 2.196·1010
a2 2.280·101 1.000·100 -2.495·100 2.712·10−1

a3 1.487·101 2.013·103 -1.384·100 1.504·10−4

a4 - 3.167·1059 1.000·100 1.451·100
a5 - -2.132·102 1.000·100 1.000·100
a6 - 1.056·10−2 -9.134·10−2 1.000·100
a7 - 2.177·10−1 -3.614·100 1.000·100
a8 - - 1.099·100 1.000·100
a9 - - 1.029·10−1 2.336·10−5

a10 - - -2.734·10−1 1.000·100
a11 - - -4.735·10−1 -1.519·100

The BMS �nds fairly complex expressions, including many nonlinear terms. The

rightmost column of Table 4.4 summarizes the inclusion (or exclusion) of certain

variables in the identi�ed equation. The BMS excludes ζ (re�ux ratio) in CSIII

and P1 (pressure in reactor 1) in CSIV. Therefore, according to the BMS, these

variables marginally in�uence the target process response f , so they are omitted.

This is a relevant piece of important information since the variables chosen by the

BMS will represent the decision variables of the subsequent optimization prob-

lem. For problems with low dimensionality, one can visualize the identi�ed model

together with the training data in a two- or three-dimensional plot. By doing so,

one might be able to guess where the optimum lies, as shown in Figure 4.11 for

CSI (a) and CSI (b, c).

4.5.2 Model-based optimization

The ability to identify the global optimum of the true model depends on the

accuracy of the surrogate model and the performance of the GO algorithm. For

example, as seen, the models for CSI and CSII displayed in Table 4.4 are able to

represent the training data precisely. As a result, the global optimum identi�ed

by BARON should lie near the global optimum of the original model, as shown

in Figure 4.11 (a) and (c). Since this is a model-based global optimization, the

optimum objective is only an approximation to the underlying system. Therefore,

a discrepancy between the training data and the optimum point is expected. This
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Figure 4.11. The training data (circles) is shown together with the model predictions
for case study I (a), and case study II (b,c). In (a), the Bayesian machine scientist (BMS)
predictions are shown as a black line. In (b), the surface represents the BMS predictions
projected onto the T −P -plane and presented by the contour lines. These projections are
shown in detail in (c). The identi�ed model-based optimum value is indicated as a red
circle in (a) and (c).

phenomenon is visible in Figure 4.11 (a). The same concept applies to higher

dimensions.

The full optimization results are reported in Table 4.6 (for the BMS approach),

Table 4.7, and Table 4.8 (for the GP approach), which we will discuss in detail.

BARON/ANTIGONE solved all the global optimality problems in around 1 s,

except for CSIV, which was optimized in 2 s. This emphasizes the considerable

advantage of having a closed-form expression at hand when globally optimizing

the surrogate. The solver returns to have found the global optimum for every case

study within the optimality gap chosen for all case studies (Table 4.2).

For the optimization with MAiNGO, we varied the optimality gap (ϵR) of MAiNGO

for the values (ϵR = [10−1, 10−2, 10−3, 10−4]. The maximum allowed CPU times

were set to the corresponding training time the BMS required in the CSs: 16 500 s

(CSI), 5600 s (CSII), 41 000 s (CSIII), and 123 500 s (CSIV). Multi-start was not

applied. With these settings, MAiNGO could only solve the �rst two examples

to global optimality (Table 4.7), while in the other two CSs, it failed to close the

lowest chosen optimality gap of ϵR = 10−1 within the maximum allowed CPU time

and reports a local solution instead. The reader is also referred to the supplemen-

tary material Section C.4, where we reported the complete results for the di�erent
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values of the relative optimality gap without a multi-start option.

For completeness, we additionally used a multi-start option in MAiNGO with a

maximum allowed CPU time of 3600 s and the default relative optimality gap of

ϵR = 10−3, where these results are shown in Table 4.8. It is observed that the

multi-start option leads to better solutions in terms of the objective function (and

CPU time). As mentioned above, the purpose of this manuscript was not to prove

the superiority of our proposed approach over MAiNGO. Therefore, we further

consider the best possible results that one can obtain by MAiNGO, which are

obtained by the multi-start results given in Table 4.8.

Moreover, both approaches, BARON and MAiNGO (multi-start), lead to simi-

lar solutions in terms of objective function value, except for the last case where

MAiNGO performs better despite following a simple multi-start approach that

fails to guarantee convergence to the global optimum of the surrogate.

Speci�cally, in the smallest problem (CSI), the two solvers identi�ed the same

model-based optimum value, where the RAE (mismatch between the model-based

optimum and the simulation) is zero in both cases. Slightly di�erent model-based

optima were identi�ed in CSII and CSIII. In CSII, solutions displaying conversions

of 31.46% and 31.03% were found by BARON and MAiNGO, respectively. In

CSIII, unitary cost values of 0.716 $/kg (BARON) and 0.709 $/kg (MAiNGO)

were found. Moreover, the RAEs were in a similar range of 6-7% for CSII, and

2% for CSIII. In the largest problem (CSIV), di�erent model-based optima were

identi�ed: 46.21% and 54.66% conversions were found by BARON and MAiNGO,

respectively. The �nal RAE, i.e., the mismatch between the objective function of

the surrogate at its optimum and the true value of the objective function at the

same point, is around 2% for the BMS-BARON approach, and around 9% in the

GP-MAiNGO approach.

It is worth mentioning that the maximum time limit of 3600 s for the optimiza-

tion in MAiNGO (multi-start) was never reached. In CSII, MAiNGO identi�ed

F (x∗GP ) = 31.03% to be the optimum of the surrogate model (reported to be a

feasible point due to the multi-start option), with an actual value in HYSYS of

f(x∗GP ) = 29.40%. On the other hand, the BMS-BARON approach led to an ac-

tual value in HYSYS of f(x∗BMS) = 29.31%. A similar result was observed in CSIII

(f(x∗GP ) = 0.720$/kg versus f(x∗BMS) = 0.727$/kg) and CSIV (f(x∗GP ) = 49.94%
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Table 4.6. The optimization performance criteria and results are summa-
rized for the Bayesian machine scientist. The results are shown for the dif-
ferent case studies individually (columns). In the �rst row, the optimization
direction is given. The CPU time (in seconds) needed for model-based opti-
mization is shown in the second row, followed by the model status obtained
from BARON/ANTIGONE. The solution x∗ found during the optimization
is evaluated in Aspen HYSYS to obtain f(x∗), which is then compared to
the value of the surrogate F (x∗) in the same point to determine the relative
absolute error (which measures the mismatch between the surrogate and the
original process model in the optimal solution found).

CSI CSII CSIII CSIV

Optimization direction min max min max

CPU Optimization 1 s 1 s 1 s 2 s

Model status Globally Globally Globally Globally

optimal optimala optimal optimal

F (x∗BMS) 413 kW 31.46% 0.716 $ kg−1 46.21%

x∗BMS 0.61 [−] 265 ◦C 209 ◦C 1 [−]

230 bar 5848 kmol h−1 0 [−]

0.001 [−] 400 ◦C

1.526 [−] 382 ◦C

55m3 311 ◦C

5497 kPa 195 bar

230 bar

230 bar

x∗ → HYSYS → f(x∗) 413 kW 29.31% 0.727 $ kg−1 47.03%

RAE 0% 7% 2% 2%

a BARON reported locally optimal solution. ANTIGONE, however, reports
globally optimal solution with the same values for x∗ as BARON reports.

versus f(x∗BMS) = 47.03%). The reason why MAiNGO is providing slightly better

solutions might be due to its better model training capabilities: The GP could

be trained to achieve lower training errors and high R2 values (Table 4.3). Con-

sidering, for example, Figure 4.10 and Figure 4.11, the GP is perfectly predicting

the training data (R2 = 1.000). Since we then use the trained model as objective

function in the optimization problem, the identi�ed model-based optimum will

most probably be closer to the observed one. A similar issue arises when consid-

ering an LBF model for the tasks described above. This approach can be a very

e�ective modeling technique for certain case studies. However, the modeler needs

to consider a variety of basis functions to reach a su�cient accuracy level. To show

the advantages and disadvantages of LBF vs. BMS, an LBF model was applied to

CSIV. The detailed results are given in the supporting information Section C.3.
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Table 4.7. The optimization performance criteria and results are summarized for the
Gaussian process without multi-start in MAiNGO. The results are shown for the dif-
ferent case studies individually (columns). The optimality gap was varied for ϵR =[
10−1, 10−2, 10−3, 10−4

]
, where only the results are reported where the lowest ϵR was

reached for the maximum allowed CPU time (16 500 s (CSI), 5600 s (CSII), 41 000 s
(CSIII), and 123 500 s (CSIV)). In the �rst row, the optimization direction is given. The
CPU time (in seconds) needed for model-based optimization is shown in the second row,
followed by the model status obtained. Rows four and �ve indicate CPU times and model
status. The solution x∗ found during the optimization is evaluated in Aspen HYSYS to
obtain f(x∗), which is then compared to the value of the surrogate F (x∗) in the same
point to determine the relative absolute error (which measures the mismatch between the
surrogate and the original process model in the optimal solution found).

CSI CSII CSIII CSIV

Optimization direction min max min max

CPU Optimization 7 s 4476 s 41 000 s 123 500 s

Model status Global Global Feasible Feasible

optimum optimum point point

F (x∗GP ) 413 kW 37.81% 0.714 $ kg−1 54.49%

x∗GP 0.61 [−] 276 ◦C 233 ◦C 1 [−]

198 bar 5750 kmol h−1 0 [−]

0.001 [−] 292 ◦C

1.250 [−] 334 ◦C

53m3 337 ◦C

5375 kPa 230 bar

200 bar

200 bar

x∗ → HYSYS → f(x∗) 413 kW 27.45% 0.729 $ kg−1 50.04%

RAE 0% 38% 2% 8%

In brief, a small set of basis functions ϕ of the input features x were chosen to

�t the model f(x) = wϕ(x). Using the least absolute shrinkage and selection

operator (LASSO) and cross-validation to tune the hyperparameter, we found an

R2 of 0.828 for the training and an R2 of 0.757 for the test data (vs. R2 values

of 0.888 and 0.868 for the BMS in training and testing, respectively). Although a

sparse expression can be generated, it performs worse than the BMS for our case

study. Furthermore, since the accuracy of the model is low, the optimization can

lead to signi�cant discrepancies between the optimal model output F (x∗) and the

process output f(x∗), shown in Table 4.10.

Note, however, that the quality of the BMS could be improved. For example,

the number of MCMC steps in the BMS training could be increased to let the
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Table 4.8. The optimization performance criteria and results are summarized for the
Gaussian process with multi-start in MAiNGO. The results are shown for the di�erent
case studies individually (columns). The optimality gap is chosen as the default value
of ϵR = 10−3 and the maximum CPU time was set to 3600 s. In the �rst row, the
optimization direction is given. The CPU time (in seconds) needed for model-based
optimization is shown in the second row, followed by the model status obtained. Rows
four and �ve indicate CPU times and model status. The solution x∗ found during the
optimization is evaluated in Aspen HYSYS to obtain f(x∗), which is then compared to
the value of the surrogate F (x∗) in the same point to determine the relative absolute error
(which measures the mismatch between the surrogate and the original process model in
the optimal solution found).

CSI CSII CSIII CSIV

Optimization direction min max min max

CPU Optimization 1 s 26 s 22 s 89 s

Model status Feasible Feasible Feasible Feasible

point point point point

F (x∗GP ) 413 kW 31.03% 0.709 $ kg−1 54.66%

x∗GP 0.61 [−] 261 ◦C 232 ◦C 1 [−]

224 bar 5861 kmol h−1 0 [−]

0.001 [−] 293 ◦C

1.250 [−] 334 ◦C

54m3 339 ◦C

5500 kPa 230 bar

206 bar

197 bar

x∗ → HYSYS → f(x∗) 413 kW 29.40% 0.720 $ kg−1 49.94%

RAE 0% 6% 2% 9%

algorithm further sample through the space of plausible expressions. Performing a

parameter tuning could further support the exploration of the space of expressions

(i.e., probabilities of evolutionary operations). Moreover, according to Guimerà et

al. (2020), the priors could be tailored to the speci�c problem at hand to improve

further the performance of the model training.

Table 4.9 shows the best solution for the training samples (BS). This solution

was compared to the ones of the BMS and the GP. Considering the model-based

solution F (x∗i ), for CSI, II, and III, the deviation of the BARON solution from the

best training point is similar to the one of the MAiNGO solution. For CSIV, this

deviation is slightly higher for the MAiNGO solution. This may happen due to

the larger dimension of this problem (8 decision variables), which leads to a lower

R2 (Table 4.3). Since a model-based optimization is performed, it might happen
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that the identi�ed optimum solution is not necessarily better than the sampling

points due to the mismatch between the surrogate and the true model.

Table 4.9. The identi�ed model-based optima F (x∗i ) for the BMS and the GP are
shown together with the identi�ed solution f(x∗) after inserting x∗ into HYSYS. The
best solution (BS) obtained by sampling the training data is also indicated. The relative
absolute error (RAE) between F (x∗i ) and f(x

∗
i ) is shown.

CSI CSII CSIII CSIV

Minimization Maximization Minimization Maximization

BMS GP BMS GP BMS GP BMS GP

F (x∗i ) 413 kW 413 kW 31.46% 31.03% 0.716 $ kg−1 0.709 $ kg−1 46.21% 54.66%

f(x∗i ) 413 kW 413 kW 29.31% 29.40% 0.727 $ kg−1 0.720 $ kg−1 47.03% 49.94%

BS 413 kW 29.31% 0.737 $ kg−1 48.58%

Finally, in this work, the impact of the size of the training dataset was studied

for one of the case studies. As shown in Table 4.9, the best sample found in the

training set is close to the optimal solution identi�ed with the optimized BMS and

GP models, and more so in the cases with a search space of lower dimension (e.g.,

gap between f(x∗i ) and F (x∗i ) is found <0.3% in CSI and II with one and two

decision variables, respectively, and <3.2% in CSIII and IV, with six and eight

variables, respectively). Moreover, considering the bounds on the optimization

variables displayed Table 4.1 and focusing on CSII, we repeated the calculations

for several training set sizes (Table 4.10, where the rows represent the di�erent

data set sizes of which 20% was used for the test set, as described in Section 4.4.1).

According to the results, surrogate optimization tends to lead to better solutions.

However, as expected, the quality of the best solution from the sampling improves

as we increase the number of samples. Moreover, Figure 4.12 shows the three-

dimensional plots of the corresponding BMS predictions together with the training

data.

For the expressions obtained with 200 and 400 samples, models with R2 values

lower than 0.85 were obtained in the test set (bold values in Table 4.10). According

to the acceptance criteria de�ned in Chapter 4.5.1 (i.e., R2 > 0.85), these models

are not performing well enough. All models obtained by the GP led to a testing

R2 > 0.85. Optimizing the obtained models led to the results shown in Table 4.11

(for the BMS) and Table 4.12 (multi-start MAiNGO).

In general, the optimizer used for the identi�ed BMS expressions (either BARON
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Table 4.10. The training performance criteria are summarized for the Bayesian machine
scientist (BMS) and the Gaussian process (GP) for CSII. Each row shows the number (No)
of samples (training plus testing) together with the CPU time needed for sampling this
data set. The CPU time (in seconds) required for the model training is also shown. The
error metrics (root mean squared error, mean absolute error, coe�cient of determination)
are shown for the training and testing data (format: training/testing). The units root
mean square error (RMSE) and the mean absolute error (MAE) units are percentages
(conversion), where the coe�cient of determination (R2) is a unitless quantity. Bold R2

are indicated where the corresponding BMS models ful�ll the acceptance criteria of having
a model that �ts the test data well enough (R2 > 0.85).

Sampling Training CPU RMSE MAE R2

No CPU BMS GP BMS GP BMS GP BMS GP

200 73 2388 9 1.504/2.252 0.930/0.794 0.961/1.318 0.333/0.322 0.981/0.957 0.993/0.995

400 130 3136 14 1.784/1.562 0.982/0.621 0.966/0.904 0.299/0.255 0.974/0.980 0.992/0.997

600 195 5290 60 0.824/0.973 0.599/1.478 0.465/0.481 0.158/0.370 0.994/0.993 0.997/0.983

800 257 5616 113 0.949/1.198 0.636/1.092 0.549/0.648 0.158/0.282 0.993/0.989 0.997/0.991

1000 600 5600 141 0.832/0.962 0.537/0.935 0.487/0.630 0.120/0.270 0.994/0.993 0.998/0.993

Figure 4.12. The training data (circles) is shown together with the BMS predictions
(surface) for case study II for the cases with 200 (most left) up to 1000 samples (most
right). The contour lines on the T−P -plane of the model predictions are shown as colored
lines.

or ANTIGONE) led to globally optimal solutions, except for the model identi�ed

using the dataset with 200 samples. Since a multi-start was used in MAiNGO,

feasible points were reported instead of the global solutions. It is again observed

that the GO of the BMS models is executed faster than the optimization of the

trained GPs. Additionally, the mismatches between the model-based optimal so-

lutions F (x∗i ) and the HYSYS outputs f(x∗i ) are generally higher than in the

solutions found with MAiNGO. Lastly, the surrogate approaches identi�ed solu-

tions that were better than the best training set sample in all cases except for the

case with 400 samples.

In the BMS model trained with 200 samples, BARON found a locally optimal

solution. The identi�ed x∗BMS was very close to the identi�ed global solution with

1000 samples. However, the corresponding solution x∗BMS led to a large mismatch
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between the HYSYS output f(x∗BMS) and F (x
∗
BMS). A visual reason for this is

reported in Figure 4.12 (model peak with 200 samples). This might indicate that

the training data set is too small for the BMS, leading to broad likelihoods in

the parameter space, which the authors of the BMS (Guimerà et al., 2020) also

discussed. Considering the optimization of the GP trained with 200 samples and

optimized with MAiNGO, the RAE was slightly smaller. Nevertheless, the iden-

ti�ed minimizer x∗GP led to a worse solution in HYSYS compared to the BMS

(27.22% vs. 29.24%). By increasing the size from 200 to 1000 samples, it is ob-

served that both approaches tend to identify optimal solutions better than the best

sample in the training set (bold values in Table 4.11 and Table 4.12). However,

the gap between the optimal solutions from surrogate optimization and sampling

does not change signi�cantly by varying the size of the training set.

Overall, for this case study, the sampling sizes can be regarded to be appropriate

for the model training and subsequent optimization.
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Table 4.11. The optimization performance criteria and results are summarized
for the Bayesian machine scientist for CSII. The results are shown for the di�erent
data sets. In the �rst row, the optimization direction is given. The CPU time (in
seconds) needed for model-based optimization is shown in the second row, followed
by the model status obtained from BARON (or ANTIGONE if indicated). The
solution x∗ found during the optimization is evaluated in Aspen HYSYS to obtain
f(x∗), which is then compared to the value of the surrogate F (x∗) in the same point
to determine the relative absolute error (which measures the mismatch between the
surrogate and the original process model in the optimal solution found). The best
training sample found (BS) is reported in the last row. Bold values show a HYSYS
output f(x∗) better or equal than BS.

Size of the dataset 200 400 600 800 1000

Optimization direction max max max max max

CPU Optimization 1 s 1 s a 2 s 1 s b 1 s

Model status Locally Globally Globally Globally Globally

optimal optimal a optimal optimal b optimal

F (x∗BMS) 68.85% 30.26% c 28.36% 29.58% c 31.46%

x∗BMS 266 ◦C 288 ◦C 273 ◦C 257 ◦C 265 ◦C

230 bar 230 bar 220 bar 230 bar 230 bar

x∗ → HYSYS → f(x∗) 29.24% 27.62% 28.38% 29.84% 29.31%

RAE 58% 9% 0% 1% 7%

BS 28.35% 28.94% 29.18% 29.59% 29.31%

a ANTIGONE (v41.3.0, rel. optim. gap: 10−9, max. CPU time: 600 s, node
limits: 106) closed the optimality gap. BARON reached the max CPU time of
600 s.

b ANTIGONE (v41.3.0, rel. optim. gap: 10−9, max. CPU time: 600 s, node
limits: 106) closed the optimality gap. BARON closed the optimality gap
(≈1 s) with local optimality.

c The same solution was obtained for ANTIGONE and BARON.

4.6 Conclusion

This work introduced a method for the global optimization of process models

based on algebraic expressions built from data via SR. Other approaches based

on ML algorithms are hardly interpretable and lead to complex formulations. In

contrast, our approach derives closed-form algebraic expressions in the space of

degrees of freedom using well-established mathematical operators and Bayesian

learning methods.

Numerical examples show that the algebraic models built by our method display

a similar level of accuracy as those constructed with GPs. However, they can

be more easily optimized to global optimality using state-of-the-art solvers than
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Table 4.12. The optimization performance criteria and results are summarized for the
Gaussian process with multi-start in MAiNGO for CSII. The results are shown for the
di�erent data sets. The optimality gap is chosen as the default value of ϵR = 10−3 and the
maximum CPU time was set to 5600 s (roughly the time required for training the BMS
models shown in Table 4.3). In the �rst row, the optimization direction is given. The
CPU time (in seconds) needed for model-based optimization is shown in the second row,
followed by the model status obtained. Rows four and �ve indicate CPU times and model
status. The solution x∗ found during the optimization is evaluated in Aspen HYSYS to
obtain f(x∗), which is then compared to the value of the surrogate F (x∗) in the same
point to determine the relative absolute error (which measures the mismatch between the
surrogate and the original process model in the optimal solution found). The best training
sample found (BS) is reported in the last row. Bold values show a HYSYS output f(x∗)
better or equal than BS.

Size of the dataset 200 400 600 800 1000

Optimization direction max max max max max

CPU Optimization 2 s 5 s 11 s 20 s 26 s

Model status Feasible Feasible Feasible Feasible Feasible

point point point point point

F (x∗GP ) 36.02% 33.96% 52.05% 33.15% 31.03%

x∗GP 282 ◦C 273 ◦C 262 ◦C 262 ◦C 261 ◦C

201 bar 230 bar 229 bar 225 bar 224 bar

x∗ → HYSYS → f(x∗) 27.22% 28.73% 29.44% 29.37% 29.40%

RAE 24% 15% 43% 11% 6%

BS 28.35% 28.94% 29.18% 29.59% 29.31%

GP models that cannot be globally optimized in short CPU times. Because the

algebraic surrogate is slightly less accurate, its global optimum is not guaranteed

to optimize the original model globally and might be outperformed by simple

multi-start strategies.

Although the BMS shows a very high computational time needed for training

and leads to less accurate models, this might change in the future as better SR

algorithms become available and a similar level of maturity is reached relative to

standard ML training methods, e.g., GP and ANNs. Moreover, having a closed-

form expression at hand, which could be tuned by appropriately modifying the

SR settings, could help in cases where the resulting optimization problem has to

be solved many times, as in real-time optimization problems.
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Chapter 5

Algebraic surrogate-based �exibility

analysis of process units with

complicating process

constraints

This chapter is based on the following publications: Forster T., Vazquez D.,

Moreno-Palancas I. F., Guillén-Gosálbez G. (2024a). Algebraic surrogate-based

�exibility analysis of process units with complicating process constraints. Comput-

ers and Chemical Engineering, 184, 108630. and Forster T., Vazquez D., Moreno-

Palancas I. F., Guillén-Gosálbez G. (2024b). Flexibility Analysis Using Surrogate

Models Generated via Symbolic Regression. Computer Aided Chemical Engineer-

ing, 53, 2791-2796.
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Nomenclature for Chapter 5

Sets

E {e | e is a symbolic mathematical expression}

G {g | g is a non-complicating constraint}

H {h | h is a complicating constraint}

I {i | i is a sample}

J {j | j is a constraint}

K {m | m is an uncertain parameter}

N {n | n is a control variable}

T Set of uncertain parameters that maintain the process feasible

R Real numbers

Parameters

d Design parameters of the process under consideration

M Big-M reformulation parameter

∆θmin
k and∆θmax

k Maximum upper and lower deviation from a nominal point of the
uncertain parameter k

θk and θk Lower and upper bounds of the uncertain parameter k

Variables

fj Process constraint

f̂g Non-complicating process constraint

f̃h Complicating process constraint

sj , sg, and sh Slack variables of constraints fj , f̂g, and f̃h
t Time

u Upper bound for the constraint fj
yj , yg, and yh Binary variable of constraints fj , f̂g, and f̃h
zn Control variable n

δ Scaled deviation from nominal point

θk Uncertain parameter k

θck Critical value of the uncertain parameter k

θNk Nominal operating point of the uncertain parameter k

γe Symbolic expression e

λj , λg, and λg Lagrange multiplier of constraints fj , f̂g, and f̃h
ωi Feature vector of sample i used for the model training

L Lagrange polynomial

DL Description length of Bayesian machine scientist
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5.1 Introduction

Uncertainty is always present in science and engineering. This uncertainty can

reveal itself in, for example, product demands (Petkov & Maranas, 1997), supply

chain and scheduling activities (Ehrenstein et al., 2019), and even in process

design and operation (Pistikopoulos, 1995). A broad overview of various aspects

of uncertainty, speci�cally in the Process Systems Engineering (PSE) �eld, is given

by the works by Sahinidis (2004), Li and Ierapetritou (2008), and Grossmann et

al. (2014). When uncertainty is not taken into account, designing and optimizing

process units assuming deterministic values for the uncertain parameters can lead

to suboptimal solutions or, in the worst case, to infeasibilities during operation

(Ben-Tal & Nemirovski, 2002; I. E. Grossmann et al., 1983; Z. Li et al., 2011).

Thus, it is common to embed uncertainty in the speci�cations of the problem, e.g.,

in the �eld of pharmaceutical development, the guidelines of the International

Council for Harmonisation of Technical Requirements for Pharmaceuticals for

Human Use (ICH) de�ne that critical quality attributes (CQAs) are valid within a

given acceptable range (FDA, 2010), even considering variations due to uncertain

input conditions.

Considering the e�ect of uncertainties in optimization problems during the early

design and operation of chemical plants is especially important for chemical pro-

cesses. This is because optimal solutions tend to meet process constraints and

quality requirements as deterministic inequalities or equalities, so any perturba-

tion over the nominal conditions may have strong implications on their feasibility.

There are two main mathematical methods in operations research to account for

uncertainties in optimization problems, namely stochastic programming (Birge &

Louveaux, 2011; Ierapetritou & Pistikopoulos, 1994; Z. Li & Ierapetritou, 2012;

Marti & Kall, 1995; Prekopa, 1995; Shapiro et al., 2021) and robust optimization

(Ben-Tal et al., 2009; Ben-Tal & Nemirovski, 2002; Z. Li & Ierapetritou, 2008;

Lin et al., 2004). Li and Grossmann (2021) considered chance-constrained pro-

gramming as another approach for optimization problems under uncertainty, yet

(arguably) it could also be regarded as a generalization of robust optimization, in

which distributions are speci�ed for the uncertainties and a level of probability is

de�ned to satisfy constraints (I. E. Grossmann et al., 2016).

The �exibility index is an alternative approach for accounting for uncertainties

that has been used mainly in process design (Pistikopoulos, 1995). Developed
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by the PSE community back in the 1980s (I. E. Grossmann et al., 1983; Hale-

mane & Grossmann, 1983; Swaney & Grossmann, 1985a, 1985b), its primary

goal is to assess the ability of a design to remain feasible against variations in

the parameter values during the plant operation (Boukouvala et al., 2010; I. E.

Grossmann et al., 1983). In essence, this is done by quantifying the feasibility

of a given design, which describes if a process is feasible or infeasible within a

given range. Mathematically, the feasibility function can be calculated by solving

a min-max-optimization problem, which will be discussed in detail later in this

work. Grossmann et al. (1983) geometrically interpret this feasibility function

as the depth of the feasible region since it quanti�es a deviation from the nomi-

nal constraints. Based on this concept, the authors describe the �exibility index

(I. E. Grossmann et al., 1983; Swaney & Grossmann, 1985a, 1985b), which char-

acterizes the size of the region of feasible operation (T ) in the space of uncertain

parameters. This region T should be a subset of the entire feasible region (Q.

Zhang et al., 2016). In other words, the �exibility index describes the maximum

range over which the involved uncertain parameters can vary (independently)

such that the process remains feasible (I. E. Grossmann et al., 1983; Pulsipher

et al., 2019). Alternatively, other metrics to quantify process �exibility were put

forward. Those methods include for example the resilience index (Morari et al.,

1985), and stochastic measures such as the design reliability (Kubic & Stein, 1988)

and the stochastic �exibility index (Pistikopoulos & Mazzuchi, 1990; Straub &

Grossmann, 1990, 1993). The stochastic �exibility index was developed to tackle

the limitation of the �exibility index to address discrete and continuous uncertain-

ties at the same time (Straub & Grossmann, 1990), or to use arbitrary probability

distribution of the uncertainties (Rogers & Ierapetritou, 2015b).

The �exibility index can be computed using deterministic mathematical models

(Pistikopoulos, 1995; Pulsipher et al., 2019) as long as process constraints are de-

scribed in a closed-form algebraic manner (Floudas et al., 2001; Ierapetritou, 2001;

Pistikopoulos & Ierapetritou, 1995; Straub & Grossmann, 1993). Speci�cally, the

main methods to quantify the �exibility index include vertex searches (I. E. Gross-

mann et al., 1983; Swaney & Grossmann, 1985a, 1985b), active set strategies with

KKT reformulations (I. E. Grossmann & Floudas, 1987), or branch-and-bound ap-

proaches (Ostrovsky et al., 1994) that were based on the evaluation of the lower

and upper bounds of the feasibility function. Since global optimality cannot be

guaranteed using local solvers for such bounding methods (Migdalas et al., 1998),
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a global optimization approach was developed using reformulation and relaxation

approaches for the feasible region (Floudas et al., 2001). We note that some of

these approaches rely on speci�c convexity assumptions (Goyal & Ierapetritou,

2002, 2003; I. E. Grossmann & Floudas, 1987).

When some constraints are not available in algebraic closed form, analyzing pro-

cess �exibility becomes much more complex and a straightforward computation of

the �exibility index with state-of-the-art deterministic solvers is not possible any-

more. This might happen, for instance, if the only knowledge about the system

consists of observations of input and output data due to limited process under-

standing (Boukouvala & Ierapetritou, 2012). Additionally, very complex under-

lying process dynamics (ordinary or partial di�erential equations) can be another

reason why constraints are di�cult to be derived in a closed-form manner (Ding &

Ierapetritou, 2021). Even if some knowledge about the process dynamics can be

described by di�erential equations that could be discretized (i.e., orthogonal collo-

cation on �nite elements (Carey & Finlayson, 1975)), �nding a solution might still

be challenging due to the size of the reformulated optimization problem.

Several works applied adaptive sampling techniques with Kriging interpolation

(Krige, 1951), also known as Gaussian process regression (Rasmussen & Williams,

2006), to perform �exibility analyses when dealing with situations where closed-

form models for process constraints are inexistent or challenging to be constructed

(Boukouvala & Ierapetritou, 2012; Boukouvala et al., 2011; Ding & Ierapetri-

tou, 2021; Rogers & Ierapetritou, 2015a, 2015b; Z. Wang & Ierapetritou, 2017).

Broadly speaking, these methods are used to approximate the feasibility function,

namely the function that evaluates the feasibility of the model for given values of

the decision variables and the parameters. Such data-driven strategies are appli-

cable to processes with non-convex feasible regions (Rogers & Ierapetritou, 2015a,

2015b). Similarly, other works substitute the Gaussian process models with neu-

ral networks (Metta et al., 2021). In a very recent work by Sachio et al. (2023),

the authors developed a highly �exible framework that performs a design space

identi�cation followed by a design space analysis. The researchers used a Sobol

sampling approach with a subsequent approximation of the design space by alpha

shapes, where the usage of alpha shapes was also successfully described in earlier

works for feasibility analysis (Banerjee & Ierapetritou, 2005). All the methods

mentioned in this paragraph approximate the feasibility function with a surrogate

and they do not rely on the original deterministic �exibility index, but rather they
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use alternative �exibility metrics.

Here, we shall develop an alternative approach for �exibility problems, focusing

on the computation of the �exibility index where challenging process dynamics

or hard-to-model process constraints are encountered. While more re�ned �ex-

ibility metrics have been proposed (Pistikopoulos & Mazzuchi, 1990; Straub &

Grossmann, 1990), we focus on the original �exibility index metric due to the

already existing methods for its computation applicable to analytical closed-form

models, into which we reformulate process models with complicating constraints

as explained later in the article. In the following, we use the term �complicating

constraints� to describe hardly accessible or completely inaccessible constraints,

that is, constraints that are either hard to model in algebraic form and/or hard

to handle in an optimization model. In essence, here we shall replace those con-

straints with algebraic surrogates built with a symbolic regression algorithm (SR).

These algebraic surrogates are hence subsequently incorporated into the original

�exibility analysis formulation, thereby simplifying the �exibility analysis. SR al-

gorithms aim to �nd the model structure and associated parameters that �t some

data. Compared to algorithms like ALAMO or ALVEN that restrict the search to

a speci�c set of functions, general SR approaches make use of symbolic expression

trees that can represent a very large number of plausible algebraic surrogate mod-

els (Cozad & Sahinidis, 2018). Here, the best model in the symbolic tree can be

identi�ed following di�erent approaches and applying some �tting criteria. These

include the formulation and solution of an MINLP problem (Cozad & Sahinidis,

2018), where binary variables encode the model structure and continuous ones its

parameters, or the application of stochastic search approaches (Cranmer et al.,

2020; Diveev & Shmalko, 2021; Guimerà et al., 2020). For example, Cranmer et

al. (2020) created the open-source algorithm PySR, a multi-population evolution-

ary algorithm, which is freely available in Python (Cranmer, 2020, 2023). There

are also algorithms that are available as proprietary software, such as Eureqa

(Schmidt & Lipson, 2009) or TuringBot (2023). To build the surrogate models in

this work, however, we use an SR method developed by Guimerà et al. (2020),

based on a Markov-chain Monte Carlo (MCMC) approach to identify the most

suitable closed-form expression to represent the available data. One of the ad-

vantages of SR is that it does not assume a predetermined model structure or a

reduced set of alternative model structures (e.g., like in the ALAMO approach

(Wilson & Sahinidis, 2017) or the above mentioned HDMR approach). The user
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only de�nes some allowable mathematical operations (i.e., addition, multiplica-

tion, subtraction, etc.) that are used in a symbolic tree to build plausible expres-

sions to explain given data. This symbolic tree can be seen as a superstructure

of mathematical expressions from which the most suitable one and its associated

parameters must be identi�ed using speci�c algorithms. SR was successfully ap-

plied in many di�erent �elds, such as distillation (Ferreira, Pedemonte, & Torres,

2019; Ferreira, Torres, & Pedemonte, 2019; McKay et al., 1997), food extrusion

process (McKay et al., 1999), process control (Keane et al., 1993), or the discovery

of physical laws (Cranmer et al., 2020; Schmidt & Lipson, 2009). Moreover, the

BMS was also previously applied by some of us to approximate process simulations

of carbon capture plants (Negri et al., 2022), to model the link between energy-

related impacts and socioeconomic drivers in macro-economic studies (Vázquez et

al., 2022), and for surrogate-based global optimization of process units and �ow-

sheets by coupling SR with deterministic global optimization (Forster, Vázquez,

& Guillén-Gosálbez, 2023a).

Our proposed approach represents an alternative way to handle complicating con-

straints in �exibility problems that does not rely on any discretization technique,

like those applied to di�erential equations, thereby avoiding the use of auxiliary

variables that increase the dimensionality of the optimization problem. Addition-

ally, no pre-de�ned model structure is assumed for the surrogate model replacing

the complicating constraints. Instead, an SR algorithm, the BMS, creates an al-

gebraic model from a set of samples of the functions describing the complicating

process constraints. We show the advantages of this approach in two case stud-

ies covering a chromatographic column of an antibody production process and a

bioethanol production in fed-batch operation mode. To the best of our knowledge,

this is the �rst work that combines SR with the initially de�ned �exibility index

problem, giving rise to a hybrid optimization problem where some constraints are

replaced with algebraic surrogates. In the end, the most appropriate approach to

quantify �exibility performance in the presence of complicating constraints will

depend on the problem at hand and the goal and scope of the analysis, including

the selection of the �exibility metric to be evaluated.

The remainder of this chapter is organized as follows: First, the problem state-

ment is described, followed by the methodology. Afterward, two case studies are

introduced, and the results are subsequently discussed. Finally, the conclusions

of the work are drawn.

123



5.2 Problem statement

Here, without loss of generality, we shall consider an existing process or process

unit, where a known and �xed process design (i.e., equipment dimensions) is given

by variables d. Additionally, there are K uncertain parameters θk, k ∈ K, which

have a given nominal value of θNk . Last, there are N control variables, with a value

zn, n ∈ N , that can be adjusted during the operation to regain feasibility.

Within this process, a set of J process constraints fj ∀j ∈ J (i.e., material bal-

ances, process or product speci�cations or restrictions, etc.) need to be considered,

as stated in equation (5.1):

fj (d, z, θ) ≤ 0, ∀j ∈ J (5.1)

For such a situation, we want to assess how far the uncertain parameters θ can

deviate from the nominal operating point θN , such that the process remains feasi-

ble, i.e., we are interested in the �exibility index problem as described later in the

next section. To quantify the �exibility of a process, the feasibility function given

in equation (5.2) must be assessed. To do so, the min-max-optimization problem

shown in equation (5.2) must be computed:

ψ (d, θ) = min
z

max
j∈J
{fj(d, z, θ)} (5.2)

In this expression, ψ (d, θ) represents the feasibility function for a given design d

and a realization of the uncertain parameters θ. However, some of the process

constraints fj, j ∈ J , might be very challenging to be evaluated, or might not

even be directly accessible as closed-form algebraic equations. As a consequence,

they cannot be directly included in the formulation given in equation (5.2). Com-

plicating constraints might be encountered in complex systems (i.e., involving

complex process dynamics, with complex unit operations hard to model mecha-

nistically).

Hence, we divide the set of constraints J into two proper subsets G ⊂ J and

H ⊂ J , as shown in equation (5.3). Set G contains process constraints f̂g, g ∈ G
that are non-complicating, i.e., clearly de�ned by an algebraic equation that can be
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easily incorporated into (5.2) and handled numerically in an e�cient manner. Set

H ⊂ J , on the other hand, contains complicating constraints, denoted by f̃h, h ∈
H, which cannot be incorporated directly into the model in a straightforward

manner. Note that whether one constraint should be considered complicating

or not might depend on the speci�c case and the numerical performance of the

standard approach.

f̂g (d, z, θ) ≤ 0, ∀g ∈ G
f̃h (d, z, θ) ≤ 0, ∀h ∈ H

(5.3)

The idea here is to replace the complicating constraints in equation (5.2) with

algebraic surrogate models that are constructed by solving an SR problem. Herein,

we shall identify such a surrogate model without assuming a pre-de�ned model

structure, as discussed next.

5.3 Methodology

For the sake of completeness, we will �rst present the �exibility index formulation

developed by Grossmann et al. (1983), Halemane and Grossmann (1983), and

Swaney and Grossmann (1985a, 1985b), which is taken as a basis to derive our

approach. The reader is referred to these works for more details and further

mathematical insights. For simplicity, during the subsequently shown derivation,

we use the set J to describe all the constraints, where we split this set into the two

subsets G andH - as shown in Section 5.2 - in the very end of the derivation. After

that, we describe how the surrogate models can be incorporated in the �exibility

formulation. Last, we discuss how to build these surrogate models and assess their

performance.

5.3.1 Fundamentals of feasibility and �exibility

Consider the formulation in equation (5.4) that aims to calculate the feasibility

function ψ(d, z, θ) of a given design d and a speci�c realization of θk, k ∈ K,

where some control variables zn, n ∈ N are present (I. E. Grossmann et al., 1983;

Halemane & Grossmann, 1983; Swaney & Grossmann, 1985a, 1985b):

ψ (d, θ) = min
z

max
j∈J
{fj(d, z, θ)} (5.4)

125



Using an upper bound u for the constraints fj, j ∈ J , we can reformulate the

min-max formulation into the following single-level problem:

ψ (d, θ) = min
z,u

u

s.t. fj (d, z, θ) ≤ u ∀j ∈ J
(5.5)

Formulation (5.5) seeks the smallest u such that each constraint fj results in a

value less or equal to u. Overall, a value of ψ (d, θ) ≤ 0 means the process is

feasible for a given realization of d and θ. On the other hand, ψ (d, θ) > 0 implies

that the process is infeasible for these speci�c values of d and θ.

The feasibility formulation seeks the worst value of ψ (d, θ) over the entire uncer-

tain parameters space θ ∈ T . This problem can be formulated as the following

tri-level optimization model, which provides the feasibility test function χ(d) given

in equation (5.6).

χ (d) = max
θ∈T

ψ (d, θ)

= max
θ∈T

min
z

max
j∈J
{fj(d, z, θ)}

(5.6)

In formulation (5.6), if χ (d) ≤ 0, the process is feasible for the entire space of the

uncertain parameters Θ. Using formulation (5.5) given above for the feasibility

function ψ (d, θ), the feasibility test problem in equation (5.6) can be reformulated

as a bilevel optimization problem shown in equation (5.7).

χ (d) = max
θ
ψ (d, θ)

s.t.ψ (d, θ) = min
z,u

u

s.t. = fj (d, z, θ) ≤ u, ∀j ∈ J
θ ∈ T

(5.7)

Grossmann et al. (1983) proposed an approach to quantify and identify the largest

possible uncertainty set θ ∈ T , such that the process is still feasible over the entire
range of θ. The authors described this as the �exibility index problem, which is

given in equation (5.8).
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FI = max
δ∈R≤0

δ

s.t.χ (d) = max
θ
ψ(d, θ) ≤ 0

(5.8)

Where FI represents the �exibility index, and δ should be a nonnegative real

number (R0≤). The newly introduced variable δ scales the uncertainty set T , which

is therefore subsequently denoted by T (δ). In other words, δ can be regarded as a

scaled deviation from a nominal point θN , such that the realization of θ results in

a feasible solution. The goal is to maximize the mentioned set T (δ), under which

there exists the possibility of recovering feasibility through the control variable z.

In their original work, Swaney and Grossmann (1985a, 1985b) showed that the

bilevel problem given in equation (5.8) can be reformulated. Instead of searching

for the largest possible set T (δ) by maximizing δ, the authors showed that it is

equivalent to looking for the minimum δ such that the solution is located precisely

on the boundary (ψ (d, θ) = 0). In other words, one is looking for the constraint

that is closest to the nominal operating point. This reformulation can therefore

be expressed as shown in equation (5.9).

FI = min
δ∈R0≤

δ

s.t.χ (d) = max
θ
ψ(d, θ) = 0

(5.9)

The �exibility index problem shown in equation (5.9) ensures that the feasibil-

ity function is precisely zero. Using the de�nition of the feasibility test problem

given in equation (5.7), the �exibility index problem can be reformulated as fol-

lows:

FI = min
δ∈R0≤

δ

s.t.χ (d) = max
θ
ψ (d, θ) = 0

s.t.ψ (d, θ) = min
z
u

fj (d, z, θ)− u+ sj = 0, ∀j ∈ J
θ ∈ T (δ)

(5.10)
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Where the inequality constraints of problem (5.7) are expressed as equality con-

straints using nonnegative slack variables, sj. The resulting �exibility index prob-

lem is challenging due to the non-di�erentiability of max-min-max (or min-max-

min) functions. To tackle this challenge, we can substitute the innermost opti-

mization problem with its Karush-Kuhn-Tucker (KKT) conditions (I. E. Gross-

mann et al., 2014). The Lagrange function L(d, θ) of this innermost problem can

be formulated as follows:

L(d, θ) = u+
∑
j

(λj (fj (d, z, θ)− u+ sj)) (5.11)

Where λj represents the Lagrange multipliers for constraint fj. Subsequently,

the corresponding stationary (5.12) and complementarity (5.13) conditions for

problem (5.10) therefore read as follows:

∂L(d, θ)
∂u

= 0 = 1−
∑
j

λj

∂L(d, θ)
∂zn

= 0 =
∑
j

λj
∂fj (d, z, θ)

∂zn
, ∀n ∈ N

∂L(d, θ)
∂λj

= 0 = fj (d, z, θ)− u+ sj, ∀j ∈ J

(5.12)

λjsj = 0, ∀j ∈ J
λj, sj ≥ 0, ∀j ∈ J

(5.13)

In 1987, Grossmann and Floudas (1987) described how problem (5.10) can be

reformulated into a mixed-integer nonlinear program (MINLP) by applying an

active set strategy where some constraints might be inactive in the optimal so-

lution. The usage of active set methods requires making discrete choices on the

complementarity conditions λjsj. Therefore, it is necessary to introduce binary

variables yj ∈ {0, 1} that establish whether a constraint is active (yj = 1) or

not (yj = 0). Furthermore, the KKT complementarity conditions are formulated

using the following two inequalities in equation (5.14).
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sj ≤M (1− yj) , ∀j ∈ J
λj ≤ yj, ∀j ∈ J

(5.14)

Where M represents a large enough parameter that acts as the upper bound for

the slack variables sj. Properly selecting M is one of the main drawbacks of this

method since it is hard to de�ne tight bounds for the Lagrange multipliers. If M

is too small, the solution obtained with the reformulation in equation (5.14) will

not coincide with the optimum of the original problem, since this value would act

as an active constraint. On the other hand, an excessively large M often causes

numerical instabilities (Cococcioni & Fiaschi, 2021). Consequently, its value must

be selected in accordance with the problem, which might not be easy. In addition

to the transformations mentioned above, another constraint could be added that

enforces the number of potential sets of active constraints to be lower or equal to

|N |+1, where |N | stands for the number of control variables z (1987). For speci�c
mathematical details, the reader is referred to the original work of Grossmann and

Floudas (1987), and the more recent works by Ochoa and Grossmann (2020) and

Pulsipher et al. (2019).

Although there are several options to describe the set T (δ), in this work, we

restrict our approach and the discussed case studies to a rectangular form of T (δ).

Therefore, the constraint θ ∈ T (δ) given in equation (5.10) can be expressed by

two inequality constraints shown in equation (5.15). The reader is referred to the

work of Pulsipher et al. (2019), which addresses the case of an ellipsoidal form of

T (δ).

θNk − δ∆θmin
k ≤ θk

θk ≤ θNk + δ∆θmax
k

(5.15)

Using the above-shown reformulation techniques and assumptions, the reformu-

lated �exibility index problem can be expressed as shown in equation (5.16).
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FI = min
δ
δ

s.t.fj (d, z, θ)− u+ sj = 0, ∀j ∈ J∑
j

λj = 1

∑
j

λj
∂fj (d, z, θ)

∂zn
= 0, ∀n ∈ N

sj ≤M (1− yj) , ∀j ∈ J
λj ≤ yj, ∀j ∈ J∑

j

yj ≤ |N |+ 1

θ ∈ T (δ)

λj ≥ 0, ∀j ∈ J
sj ≥ 0, ∀j ∈ J
δ ≥ 0

(5.16)

5.3.2 Flexibility index formulation with complicating constraints

As already said, here we de�ne as complicating constraints those that are either

hard to model explicitly or lead to complex expressions hard to handle numeri-

cally. Such a situation might arise, for example, in dynamic systems with con-

straints on temporal pro�les, or in process models with complex unit operations

whose behavior is hard to model mechanistically. In the former case, discretiza-

tion methods such as orthogonal collocation (Carey & Finlayson, 1975) might

be applied, but this will result in complex models posing numerical challenges

(i.e., convergence problems, entrapment in low-quality local optima, etc.). On the

contrary, by non-complicating constraints, we mean constraints that are directly

accessible as standard algebraic expressions. To be able to use the �exibility

index formulation in equation (5.16), we will follow the approach visualized in

Figure 5.1. Therefore, we introduce the two proper subsets G ⊂ J and H ⊂ J for

the non-complicating and complicating constraints, respectively. With this, the

original �exibility index problem given in equation (5.16) is reformulated as given

by (5.17), while inheriting the assumptions of (5.16). As stated in Section 5.2,

f̂g, g ∈ G represent the non-complicating constraints, whereas the complicating

constraints are denoted by f̃h, h ∈ H. Due to the introduction of the two subsets
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Figure 5.1. Overview of the discussed procedure in Sections 5.3.2 and 5.3.3. After the
constraints fj are de�ned (top left white box), which are subsequently split into compli-

cating (red, f̃h) and non-complicating (green, f̂g) constraints (top central box with blue
background). In step 1, the complicating constraints are approximated by using surro-
gate models. In step 2, the available algebraic information about the non-complicating
constraints are used (lower boxes in blue background). Last, the information is combined
to solve the �exibility index problem (right boxes with yellow background).

G and H, also the slack variables sj, the Lagrange multipliers λj, and the binary

variables yj must be split into the two respective subsets. This requires adjusting

the indices in formulations (5.16) and (5.17). It is worth mentioning that this

split of J into G and H, does not alter the total number of constraints involved in

the problem. As discussed in the introduction, a situation with complicating or

unknown constraints was also addressed in the works by Rogers and Ierapetritou

(2015a, 2015b), where the authors modelled the feasible region boundaries using

surrogate models. These trained surrogates could then be used to approximate the

stochastic �exibility index (Straub & Grossmann, 1993), which can consider prob-

abilistic information. The authors overcome the challenge of not having available

closed-form expressions for process constraints by using a Kriging binary classi�-

cation method, which allows to iteratively approximate the feasible region. With

the trained classi�cation models, the authors evaluated a range of uncertain pa-

rameter combinations and assessed if these realizations were either feasible or

infeasible. However, our approach di�ers from these works. First and foremost,

Rogers and Ierapetritou (2015a, 2015b) used their surrogate model to evaluate

the stochastic �exibility index (Straub & Grossmann, 1990), which measures the

probability of feasible operation, while we use the surrogate to incorporate it into
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the originally proposed deterministic �exibility index formulation (I. E. Gross-

mann et al., 1983; Halemane & Grossmann, 1983; Swaney & Grossmann, 1985a,

1985b). Hence, we quantify the original �exibility index, which measures the

maximum allowable perturbation of parameters within which the process remains

feasible, so probability information is not considered in the calculations. Second,

we do not use any classi�cation approach, but rather a regression approach. The

output of the surrogate model in our work is a continuous variable that deter-

mines the value of the constraint for given values of the decision variables and

parameters. Third, instead of approximating the entire feasible region with the

surrogate, we only approximate individual complicating constraints, while keeping

the non-complicating constraints in the formulation. To solve formulation (5.17),

the complicating constraints f̃h and their respective derivatives will be replaced

by algebraic surrogate models, as discussed next. In this manner, the structure

of the original �exibility index problem is kept.

FI = min
δ
δ

s.t.f̂g (d, z, θ)− u+ sg = 0, ∀g ∈ G
f̃h (d, z, θ)− u+ sh = 0, ∀h ∈ H∑

g

λg +
∑
h

λh = 1

∑
g

λg
∂f̂g (d, z, θ)

∂zn
+
∑
h

λh
∂f̃h (d, z, θ)

∂zn
= 0, ∀n ∈ N

sg ≤M (1− yg) , ∀g ∈ G
sh ≤M (1− yh) , ∀h ∈ H
λg ≤ yg, ∀g ∈ G
λh ≤ yh, ∀h ∈ H∑

g

yg +
∑
h

yh ≤ |N |+ 1

θ ∈ T (δ)

λg ≥ 0, λh ≥ 0, ∀g ∈ G, h ∈ H
sg ≥ 0, sh ≥ 0, ∀g ∈ G, h ∈ H
δ ≥ 0

(5.17)
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5.3.3 Incorporation of algebraic surrogate models for the complicating

constraints

We include algebraic models substituting the complicating constraints to solve

the �exibility formulation shown in equation (5.16) or (5.17) using state-of-the-

art deterministic solvers. To be able to use o�-the-shelf optimization solvers,

we follow the procedure described in Section 5.2 and graphically summarized

in Figure 5.1. The �rst step is the identi�cation of complicating constraints.

These constraints, described by f̃h, h ∈ H, are then separated from the other

non-complicating constraints as shown in Figure 5.1. Once separated, we use

a surrogate model approximation, Fh, as a simpli�cation for the complicating

constraints f̃h. The original �exibility index problem in equation (5.17) is therefore

reformulated into the hybrid expression (5.18) that combines the main backbone

of the �exibility index problem with a data-driven surrogate model de�ned for the

complicating constraints, as shown below.

FI = min
δ
δ

s.t.f̂g (d, z, θ)− u+ sg = 0, ∀g ∈ G
Fh (d, z, θ)− u+ sh = 0, ∀h ∈ H∑

g

λg +
∑
h

λh = 1

∑
g

λg
∂f̂g (d, z, θ)

∂zn
+
∑
h

λh
∂Fh (d, z, θ)

∂zn
= 0, ∀n ∈ N

sg ≤M (1− yg) , ∀g ∈ G
sh ≤M (1− yh) , ∀h ∈ H
λg ≤ yg, ∀g ∈ G
λh ≤ yh, ∀h ∈ H∑

g

yg +
∑
h

yh ≤ |N |+ 1

θ ∈ T (δ)

λg ≥ 0, λh ≥ 0, ∀g ∈ Gh ∈ H
sg ≥ 0, sh ≥ 0, ∀g ∈ G, h ∈ H
δ ≥ 0

(5.18)
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As visible in equation (5.18), the complicating constraint f̃h (d, z, θ) was replaced

by an adequate surrogate model Fh(d, z, θ). Other than that, expression (5.18)

does not di�er from expression (5.17).

5.3.4 Surrogate model building

This subsection explains the individual steps involved in the surrogate model

generation in detail. The model building follows a similar procedure as described

in a previous work by the authors (Forster, Vázquez, & Guillén-Gosálbez, 2023a),

where a situation is assumed that a mapping of the uncertain parameters to the

process response is possible. First, f̃h is evaluated at di�erent points. Second, SR

tools are applied to de�ne a constraint Fh from a closed-form algebraic surrogate

model that �ts the generated data points precisely (i.e., Fh approximates the given

process constraint f̃h accurately). Last, the performance of the obtained surrogate

model is assessed by suitable metrics.

Step 1: Data generation

A schematic overview of the data generation and model-building process is given

in Figure 5.2. We simulate the desired case study in Python by changing some

independent variables (degrees of freedom) and observing the response of the

dependent variables. To map these independent variables (also called the features

of the model) to the observed response (also called the target of the model), we

describe the feature vector wi = [z, θ], where i ∈ I refers to the set of samples.

The feature vector ωi consists of the control variables zn, n ∈ N and the uncertain

parameters θk, k ∈ K. The target vector is denoted as f̃h(wi), or f̃h,i in short.

Therefore, the sampling matrix is generated with the desired number of samples

|I| using, without generality loss, the Latin hypercube sampling (LHS).

The resulting dataset I is split into two proper subsets as shown in equation (5.19):

I = ITR ∪ ITE

ITR ∩ ITE = ∅
(5.19)

Where ITR and ITE represent the training and test subsets, respectively. The

training subset is later used for model training, whereas the test subset is used

for model testing.
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Figure 5.2. Schematic representation of the data generation and surrogate model build-
ing procedure.
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Step 2: Surrogate model building

After having prepared the data, we want to �nd an expression in form of a surro-

gate model Fh (d, z, θ) that accurately maps the above-described feature vector ωi

to the corresponding targets f̃h,i. Herein, since we apply an SR algorithm, we do

not need to de�ne any aprioristic assumption on the structure for Fh(d, z, θ). As

mentioned, SR aims to �nd a suitable mathematical expression for the observed

data by representing the appropriate expressions in a symbolic tree. An example

of such a search is schematically shown in Figure 5.3.
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Observed data

Figure 5.3. (a) The space E of all possible expressions γe is schematically shown as
a dashed polygon. (b) A representation of an initial mathematical expression γ (x) =
(x1 + x2) + (x3 + x4) as a symbolic tree (red). (c) A root node replacement is performed
(grey node) to reach the green symbolic expression in (c). Performing another node
replacement (grey node), the blue symbolic tree is reached (d), representing γ (x) =
(x1/x2) × (x3 + x4). The �tting visualization of the three expressions is shown in (e),
together with the observed data as circles.

Figure 5.3 (a) visualizes the space of all possible mathematical expressions γ,

which is described by E. Starting from one symbolic tree representation γe, e ∈ E,
we perform changes in the tree that lead to di�erent mathematical expressions.

One example of such a tree evolution is shown in Figure 5.3 (node replacement).

Another adaptation would be the elementary tree replacement (i.e., exchanging

the complete sub-tree (x3+x4) by another sub-tree). By doing this tree evolution,

a de�ned performance metric can be calculated for each resulting expression. This

metric should quantify how well the expression �ts the observed data. The SR

algorithm then proceeds to search the space of expressions, seeking the expression

with the best goodness of �t. This search is stochastic, as in other evolutionary
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algorithms (Costa & Oliveira, 2001; Guimerà et al., 2020).

As mentioned in the introduction, several SR algorithms are available to identify

algebraic surrogates. Without loss of generality, we use the approach developed

by Guimerà et al. (2020), the BMS, to simplify the complicating constraints

f̃h(d, z, θ). The BMS uses statistical prior information about the mathematical

operations in the equations, and it is straightforward to implement, working out-

of-the-box and allowing interconnection with the Python environment without

need of extensive coding. This easy implementation facilitates its application in

di�erent �elds and case studies. Moreover, we note that the BMS was already suc-

cessfully applied to build process models (Forster, Vázquez, & Guillén-Gosálbez,

2023a; Jog et al., 2023; Negri et al., 2022). The BMS can provide closed-form

algebraic expressions from data based on a set of user-de�ned mathematical oper-

ations (i.e., addition, subtraction, multiplication, etc.). We next provide a high-

level overview of how the BMS works. For further information, the reader is

referred to the original paper (Guimerà et al., 2020).

A conditional probability p(γe|D) is assigned to each expression γe that is used

to �t some data D. This probability is calculated according to Bayes Theorem

(Bishop, 2006; Murphy, 2013):

p (γe|D) =
p (D|γe) p(γe)

p(D)
(5.20)

Where p(D) represents the marginal likelihood of some data D. p(D) is indepen-

dent of γe and therefore only acts as a normalization constant. Marginalizing over

the parameters ϕe associated with expression γe (Murphy, 2013), the numerator

in equation (5.20) can be expressed as an integral over the space of all possible

parameter values Φe (Guimerà et al., 2020). This marginalization is then descried

by the description length DL (γe) (Guimerà et al., 2020; Hansen & Yu, 2001;

Murphy, 2013):

DL (γe) = − log [p (D|γe) p (γe)]

= − log

[∫
Φe

p (D|γe, ϕe) p (ϕe|γe) p (γ) dϕ
]

(5.21)
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The computation of this integral is challenging (Guimerà et al., 2020; Murphy,

2013). In literature it is stated (Grünwald, 2007; Murphy, 2013) that under certain

assumptions, the description length can be approximated through the Bayesian

information criterion (BIC) and the prior of the corresponding symbolic expression

γe:

DL (γe) ≈
BIC(γe)

2
− log (p (γe)) (5.22)

The description length, and, therefore, this �nal equation can be interpreted as the

plausibility of observing an expression γe, conditioned on some data D. According

to Grünwald (2007), DL(γe) can also be understood as an encoded length of the

expression γe (number of natural units).

In the applied SR approach (Guimerà et al., 2020), a Markov-chain Monte Carlo

(MCMC) (Hastings, 1970) algorithm is used to explore the space E of expressions,

where the number of MCMC iterations is de�ned by the user. After evaluating the

description length of each expression DL (γe), the BMS keeps the most plausible

one, representing the expression with the shortest description length (the best

goodness-of-�t).

5.3.5 Surrogate model performance

The performance of the surrogate model is assessed by calculating several metrics

for both the training and test data sets, STR and STE. Here, to this end, the root

mean squared error (RMSE), mean absolute error (MAE), and the coe�cient of

determination (R2) were used:

RMSE =

√
1

n

∑
a∈A

(
f̃h (wi)− Fh (wi)

)2
MAE =

1

n

∑
a∈A

∣∣∣f̃h(wi)− Fh(wi)
∣∣∣

R2 = 1− SSR

SST
= 1−

∑
a∈A

(
F (wi)− f̃h (wi)

)2
∑

a∈A

(
f̃h (wi)− µf̃h

)2
(5.23)

in equation (5.23), the predictions by the model are described by Fh(wi) using the
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given input vector wi of one sample i. The observed response f̃h and the mean of

the observed process responses are described by f̃h(wi) and µf̃h
, respectively. As

already mentioned, both the model predictions Fh(wi) and the observed response

f̃h(wi) are calculated by using input data from the training or test set. Variables

SSR and SST denote the sum of squares of residuals and the total sum of squares

(proportional to the variance of the data), respectively. In addition to these

performance metrics, the time required for both the model training and for solving

the �exibility index problem is reported as a central processing unit (CPU) time.

Lastly, both the solver and model status are reported.

5.3.6 Software implementation

All calculations were carried out on an Intel®Core�i7-8700 CPU and 16 GB of

RAM. We used Python v3.10 with NumPy v1.23.5, SciPy v1.9.3, and pyDOE

v0.3.8 to construct the sampling dataset. The algorithm provided by Guimerà et

al. (2020) was used to train the BMS. The symbolic equation generated by the

BMS was incorporated into the �exibility index problem, which was solved using

Pyomo (Bynum et al., 2021; Hart et al., 2011) v6.4.4 interfacing with the solver

BARON (Sahinidis, 1996) v22.7.23.

5.4 Case studies

Before introducing the case studies (CS), the reader is referred to the support-

ing information in Section D.1, where three motivational examples are provided.

These examples should give an intuition how the �exibility index calculations are

performed in easily visualizable examples. The �rst two motivational examples

do not include control variables, where the third one does.

We then apply the hybrid �exibility approach discussed above to two industrially

relevant CS. The �rst covers a protein-A chromatographic process; the second

is a bioprocess in fed-batch operation mode. The CS and corresponding data

generation processes are described in the following.

5.4.1 Fed-batch bioreactor for ethanol production (CSI)

We consider a bioreactor in a fed-batch operation mode. The model was taken

from the dynamic optimization examples demonstrated on APmonitor.com (Heden-

gren et al., 2014). A schematic representation of the reactor is given in Figure 5.4.
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The reactor is equipped with a liquid feed, an air supply (with a submerged aer-

ator), a heating/cooling jacket, and a temperature probe inside the reactor. In

the reactor, microorganisms grow and produce ethanol by consuming oxygen and

glucose. To describe the dynamic evolution of the species, the system of ODEs

given in expressions (5.26)-(5.42) is used together with the corresponding param-

eters indicated in Tables 5.1 and 5.2. One major goal is to that the �nal ethanol

concentration reaches at least a user-de�ned lower bound E. The control vari-

able here is the temperature of the cooling agent, that is, z = Tc. Furthermore,

the uncertain parameters θ are the glucose concentration in the feed (Sin) and the

temperature within the reactor (T ). The constraints of this problem can therefore

be formulated as given in expression (5.24).

Figure 5.4. Schematic representation of a bioreactor used in case study I.

The ethanol concentration needs to be assessed, which is not straightforward. We

add the �rst constraint to the set of complicating constraints H = {1}, namely,

we de�ne f̃1 = f1 = E − E. The other constraints are added to the set of non-

complicating constraints G = {2, 3, 4, 5, 6, 7}. As mentioned above, this could for

example be done by discretizing the di�erential equations appropriately (i.e., by

applying orthogonal collocation on �nite elements). However, one disadvantage

is that the dimensionality of the resulting optimization problem would be very

large due to the addition of many auxiliary variables (Carey & Finlayson, 1975;

Guillén-Gosálbez et al., 2013).

f1 :E − E ≤ 0 f2 :Tc − Tc ≤ 0

f3 :Tc − Tc ≤ 0 f4 :Sin − Sin ≤ 0

f5 :Sin − Sin ≤ 0 f6 :T − T ≤ 0

f7 :T − T ≤ 0 J :={1, 2, 3, 4, 5, 6, 7}

(5.24)
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To circumvent such possible limitations, the ethanol concentration at the reac-

tor outlet shall be modeled with the BMS. Therefore, F (Sin, T, Tc) represents a

trained BMS model that maps the features Sin, T , and Tc to the �nal ethanol con-

centration E in the reactor. Hence, the constraint f̃1 = E −E is reformulated by

using a closed-form algebraic expression, leading to F1 = E − F (Sin, T, Tc). The

formulation in equation (5.25) then provides the entire reformulated problem. It

is worth mentioning again that f̃1 describes the original complicating constraint,

whereas F1 describes the reformulated complicating constraint where a surrogate

equation is included to facilitate the calculations.

f1 :E − F (Sin, T, Tc) ≤ 0 f2 :Tc − Tc ≤ 0

f3 :Tc − Tc ≤ 0 f4 :Sin − Sin ≤ 0

f5 :Sin − Sin ≤ 0 f6 :T − T ≤ 0

f7 :T − T ≤ 0 H := {1},G := {2, 3, 4, 5, 6, 7}

(5.25)
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Speci�c growth rate µ = µmax
S

KSX + S

Oliq

KOX +Oliq

(
1−

E

Emax

)
1

1 + exp(−(100− S))
(5.26)

µmax = [(a1(T − k1))(1− exp (b1(T − k2)))]
2

Emax = Emax,b +
Emax,T

1− exp (−b2(T − k3))

qE = aEµ+ bE

Non-growth ethanol products bE = c1 exp

(
−AP1

T

)
− c2 exp

(
−AP2

T

)
(5.27)

Ethanol consumption qS =
µ

YXS
+

qE

YES
(5.28)

Oxygen consumption qO =
qO,max

YXO

Oliq

KOX +Oliq
(5.29)

Biomass deactivation Kd = Kdb +
KdT

1 + exp (−b3(T − k4))
(5.30)

Oxygen saturation Osat = Z
OgasRT

KH
(5.31)

Oxygen mass transfer kla = (kla)0(1.2)
(T − 20) (5.32)

Total volumes V = Vl + Vg (5.33)

Liquid volume
dVl

dt
= Q (5.34)

Total biomass
dXt

dt
= µXv +

Q

Vl
(Xt,in −Xt) (5.35)

Viable biomass
dXv

dt
= (µ−Kd)Xv +

Q

Vl
(Xv,in −Xv) (5.36)

Glucose
dS

dt
=

Q

Vl
(Sin − S)− qSXv (5.37)

Ethanol
dE

dt
=

Q

Vl
(Ein − E) + qEXv (5.38)

Liquid oxygen
dOliq

dt
=

Q

Vl
(Osat −Oliq) + kla(Osat −Oliq)− qOXv (5.39)

Gas oxygen
dOgas

dt
=

Fair

Vg
(Ogas,in −Ogas)−

Vlkla

Vg
(Osat−Oliq) + (OgasQ)/Vg

(5.40)

Temperature
dT

dt
=

Q

Vl(Tin − T )
−

Tref

Vl
Q+ qOXv

∆H

MWoρCp,br
−

KTAT (T − Tc)

VlρCp,br
(5.41)

textCoolingagent
dTc

dt
=

Fc

Vcj
(Tc,in − Tc) +

KTAT (T − Tc)

VcjρcCp,c
(5.42)
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The goal of the �exibility analysis is to quantify and identify the largest possible

uncertainty set θ ∈ T (δ), such that the process is still feasible over the entire range
of θ. In other words, one should assess how far the glucose inlet concentration

and the reactor's temperature can deviate from the nominal operating point such

that the process is still feasible (all the constraints still hold).

To �nd F , the ODE system given in expressions (5.26)-(5.42) was solved for

di�erent feature vectors ωi = [Sin, T, Tc], i ∈ I with |I| = 250 samples using

the explicit Runge-Kutta method of order 5 (Dormand & Prince, 1980). After

simulating for each ωi, the �nal ethanol concentration E was obtained. The

sampling procedure discussed above (Figure 5.2) was applied, where the upper

and lower bounds selected for the LHS are displayed in Table 5.3. The resulting

dataset A was randomly split to |ITR| = 200 training (80%) and |ITE| = 50 testing

(20%) samples.

To train the BMS, several unary (exp(x), log(x), x2, x3,
√
x) and binary (+,

−, ÷, ×, xy) operators were allowed to be selected. In addition, the number of

MCMC steps was �xed to 15 · 103. The model was allowed to contain up to eight

parameters.

5.4.2 Protein-A a�nity chromatography (CSII)

This case study consists of a loading process of antibodies onto a protein-A a�nity

chromatographic column. A schematic representation of the di�erent steps in

chromatography is given in Figure 5.5. First, the column is packed with the desired

material (resin). Second, an equilibration is performed, which makes the column

ready to be deployed. During the loading phase, the antibody mixture is added

to the top of the column. Depending on the loading time (tload), the antibody

concentration in the feed (cin), and the �owrate (Q), some of the product might

be lost. Subsequently, the washing step is used to collect the desired product.

Table 5.3. Upper and lower bounds for the features Sin, T , and Tc. The bounds were
used to create the samples for case study I by applying a Latin hypercube sampling
structure.

Feature Lower bound Upper bound Unit

Sin 0 20 g L−1

T 15 35 ◦C

Tc 20 40 ◦C
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The elution step terminates the entire operation.

∂c

∂t
= − Q

Acolϵ

∂c

∂x
+Dapp

(
∂2c

∂x2

)
− ζ ∂q

∂t
(5.43)

Dapp = V̂

(
dp
2

)
Q

Acolϵ
(5.44)

∂q

∂t
= km(q

∗ − q) (5.45)

q∗ =
Hc

1 +
Hc

qsat

(5.46)

km = kmax

(
C1 + (1− C1)

(
1− q

qsat

)C

2

)
(5.47)[

∂c

∂x

]
x=L

= 0 and

[
∂q

∂x

]
x=L

= 0 (5.48)

c(t = 0) = c0 and q(t = 0) = q0 (5.49)

LR =

∫ tload
0

c(x, t)dt∫ tload
0

cindt
≤ LR (5.50)

Q ≤ Q ≤ Q (5.51)

cin ≤ cin ≤ cin (5.52)

tload ≤ tload ≤ tload (5.53)

Figure 5.5. Schematic representation of the �ve di�erent steps in a chromatographic
procedure. The loading phase (marked by the dashed green area) is the step of interest
for this case study.
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We focus exclusively on the loading phase of the entire procedure. The loss ratio

(LR) is the relationship between the mass of the leaked product relative to the

total amount of proteins fed. With this, the deterministic constraints of the

problem can be formulated as given in equations (5.43)-(5.53), which was adapted

from (Baur et al., 2016), where the corresponding parameters were taken from the

same work (Baur et al., 2016) and Ding and Ierapetritou (2021).

The system given in equations (5.43)-(5.49) describes the partial di�erential equa-

tions (PDE) for the dynamic evolution of the concentration pro�les, which can be

expressed in terms of concentration in the liquid phase (c) and in the adsorbed

phase (q). The parameters of the PDE system are given in Table 5.4.

Q, cin, and tload are the adjustable �ow rate, the inlet antibody concentration, and

the loading time, respectively. Their lower and upper bounds are indicated by Q,

cin, tload, Q, cin, and tload, respectively, which are represented in equation (5.51)-

(5.53). LR represents the loss rate, which is the relationship between the mass

of leaked product relative to the total amount of product fed during the loading

phase. LR is a user-de�ned upper bound for the loss rate.

The entire system in expressions (5.43)-(5.53) can be rewritten more compactly,

as shown in equation (5.54).

f1 :LR− LR ≤ 0 f2 : Q−Q ≤ 0

f3 :Q−Q ≤ 0 f4 : cin − cin ≤ 0

f5 :cin − cin ≤ 0 f6 : tload − tload ≤ 0

f7 :tload − tload ≤ 0 J := {1, 2, 3, 4, 5, 6, 7}

(5.54)

This entire di�erential system in equation (5.43)-(5.49) and the integrals in equa-

tion (5.50) are not trivial - and computationally expensive - to be incorporated

into the optimization problem.

Again, one option would be to apply an appropriate discretization method to

the di�erential equations, which would increase the problem dimensionality and

potentially lead to convergence issues, as discussed in CSI. We, therefore, add

the �rst constraint to the set of complicating constraints H = {1}, describing
it by f̃1 = f1 = LR − LR. The other constraints are added to the set of non-

complicating constraints G = {2, 3, 4, 5, 6, 7}. A BMS model is used that maps
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the features cin, tload, and Q to LR. Hence, the constraint f̃1 = LR − LR

is reformulated by using a closed-form algebraic expression, leading to F1 =

F(cin, tload, Q) − LR. The entire reformulated constraints are then given by the

formulations shown in equation (5.55). Again, it is worth mentioning again that f̃1

describes the original complicating constraint, whereas F1 describes the reformu-

lated complicating constraint including the algebraic surrogate equation.

f1 :F(cin, tload, Q)− LR ≤ 0 f2 : Q−Q ≤ 0

f3 :Q−Q ≤ 0 f4 : cin − cin ≤ 0

f5 :cin − cin ≤ 0 f6 : tload − tload ≤ 0

f7 :tload − tload ≤ 0 H := {1}, G := {2, 3, 4, 5, 6, 7}

(5.55)

Here, the �exibility analysis aims to assess how far the inlet concentration of

the antibody and the loading time of the column can deviate from the nominal

operating point such that the process is still feasible (all the constraints still

hold).

To �nd a suitable model for F , the PDE system given in expessions (5.43)-

(5.49) was solved for several samples (|I| = 250 samples) of the feature vector

ωi = [cin,a, tload,a, Qa], i ∈ I. For each run, a spatial discretization along the col-

umn length with 100 grid points was performed using a �rst-order central �nite

di�erences method. Subsequently, the resulting system of ordinary di�erential

equations (ODE) was solved at each spatially discretized point using the explicit

Runge-Kutta method of order 5 (Dormand & Prince, 1980). After simulating for

each ωi, the concentration pro�le was obtained integrating expression (5.50), and

therefore a value for LR, could be numerically calculated. The number of spatial

discretization points was �xed at 100. The sampling procedure discussed above

(Figure 5.2) was applied, where upper and lower bounds for the LHS are displayed

in Table 5.5. The resulting dataset A was randomly split into |ITR| = 200 training

(80%) and |ITE| = 50 testing (20%) samples.

To train the BMS, several unary (exp(x), log(x), x2, x3,
√
x) and binary (+,

−, ÷, ×, xy) operators were allowed to be selected. In addition, the number of

MCMC steps was �xed to 20 · 103. The model was allowed to contain up to three

parameters.
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Table 5.4. Parameters used for the chromatography model discussed in case study II.
The corresponding model equations shown in equation (5.43)-(5.49) were adapted from
Baur et al. (2016). The parameters were taken from Baur et al. (2016) and Ding and
Ierapetritou (2021).

Parameter Physical meaning Value Unit

Lcol Column length 10 cm

Acol Crossectional area of the column 0.2 cm2

dp Average particle diameter 0.0044 cm

ϵ Void fraction 0.368 [−]

V̂ Intercept of reduced Van-Deemter equation 35.13 [−]

H Partition coe�cient 246.8 [−]

qsat Saturation concentration in the adsorbed phase 94.72 mgmL−1

kmax Maximum mass transfer rate 0.18 min−1

C1 Pore blockage coe�cient 1 0.6245 [−]

C2 Pore blockage coe�cient 2 2.071 [−]

c0 and q0 Initial values of the liquid and adsorbed phases 0 mgmL−1

Table 5.5. Upper and lower bounds for the features cin, tload, and Q. The bounds were
used to create the samples for case study II by applying a Latin hypercube sampling
structure.

Feature Lower bound Upper bound Unit

cin 0.5 2.2 mgmL−1

tload Jan 60 20 min

Q 0.001 20 mgmL−1

5.5 Results

5.5.1 Surrogate model generation

The results of the surrogate model training and testing for CSI and CSII are

given in Table 5.6. In addition, visualizations of the model performances are

shown in Figure 5.6, where predicted values are plotted against observed ones.

The corresponding closed-form expressions with the highest plausibility (lowest

description length), and their estimated parameters are shown in Table 5.7 and

Table 5.8.

In general, both trained models can explain the variance in the data su�ciently

well when considering R2 values greater than 0.9 as acceptance criteria, which

was taken as an orientative criterion based on earlier works (Forster, Vázquez,

& Guillén-Gosálbez, 2023a). The BMS was run using the maximum number of

MCMC iterations as the stopping criterion, as indicated in Section 5.4. This led
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Table 5.6. The training performance criteria are summarized for the Bayesian machine
scientist (BMS). Each row represents one case study (CS). The CPU time (in hours)
needed for the model training is shown in the left part of the table. The error metrics
(root mean squared error, mean absolute error, coe�cient of determination) are shown
for the training and testing data (format: training/testing). The identi�ed algebraic
expressions are indicated in Table 5.7, whereas the corresponding model parameters are
reported in Table 5.8.

CS CPU training RMSE MAE R2

I 0.8 h 0.467 / 1.811 g L−1 0.383 / 0.656 g L−1 0.996 / 0.913 [−]

II 2.7 h 0.014 / 0.012 [−] 0.009 / 0.008 [−] 0.998 / 0.998 [−]

to CPU times of 0.8 h for CSI and 2.7 h for CSII. The low discrepancy between

the R2 values of the training and testing results indicates that the BMS is well-

regularized and, therefore, less prone to over�tting, which is in line with the

authors' expectations (Guimerà et al., 2020).
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Figure 5.6. Observed vs. predicted (OVP) values for the two di�erent case studies are
shown. Blue points represent the training data, whereas red points correspond to the test
data. The black line represents the values where the observed value corresponds to the
model predictions.

In addition to the previous performance criterion (R2 > 0.9), Figure 5.6 shows

that the surrogate models perform satisfactorily both in the training and test sets,

where the model responses are very close to the outcome of the theoretical models.

However, what can be observed for CSII is that the risk of over or underprediction

increases for low values of LR (higher spread of the training and testing points

for values below around LR = 0.5). For CSI, one can �nd most data points

between 45 g L−1 and 80 g L−1, where only one training sample was at 0 g L−1.

150



This point resulted from the LHS sampling and was not removed for training the

BMS.

Regarding the surrogate models in Table 5.7, the BMS identi�ed nonlinear expres-

sions with all variables included as features. We recall that the model training

considers the control variables and the uncertain parameters as features (inputs

for the surrogates). This is required to adjust the control variables depending

on the realization of the uncertain parameters, as done in the �exibility index

problem.

The identi�ed surrogate expressions were then incorporated into the hybrid for-

mulation given in problem (5.18), as already discussed.

5.5.2 Incorporation of surrogate models in the �exibility index prob-

lem

The results of the case studies CSI and CSII are summarized in Table 5.9. Schematic

representations of these solutions are given in Figure 5.8.

Table 5.9 shows that in both case studies, the optimal control variable z∗ will

be chosen at one of the bounds (z∗ = 23.0 ◦C for CSI and z∗ = 4.0mL/min for

CSII). Additionally, the �rst constraint F1 was active in both cases. These are the

constraints that were modeled using the BMS surrogates. Active surrogate con-

straints were expected, since the control variable in�uences those constraints. In

other words, the optimizer tries to maximize the distance from the nominal oper-

ating point to a constraint. The F1 constraints (surrogates) are in�uenced by the

control variable. The optimizer adapts the control variable to shift the surrogate

constraint away from the nominal operating point. This is done until the control

variable cannot be adjusted anymore when it reaches its bound. In the chosen

scenarios, the control variable impacts only the surrogate constraints with the

relationship F1,CSI ∝ F(Sin, T, Tc) in CSI and F1,CSII ∝ F(cin, tload, Q) in CSII.

A visualization of how the control variable in�uences the surrogate constraints is

schematically given in Figure 5.7.

The resulting �exibility index δ∗ can for example be used to compare two process

designs in order to elucidate which one is more �exible. For example, a comparison

of two di�erent process designs for CSII is shown in the supplementary information

Section D.2. By using a longer and narrower column (design d2) compared to the
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Table 5.7. The most plausible closed-form expressions for each case study (CS) identi-
�ed by the Bayesian machine scientist (BMS) are shown. The corresponding estimated
parameter values are reported in Table 5.8. The variable descriptions for each case study
are given in Section 5.4.

CS Prediction target Identi�ed expression

I

E = E(Tc, Sin, T )

a1 +
a4 + Tc

Tc + a7

a3
T

(Sin + a1) + a7T
2
c

a0
((−Sin + a4a5)a1z = [Tc]

θ = [Sin, T ]

II

LR = LR(cin, Q, tload)

a0

 tloada

tload/cin
a1

0

tload+
a1

exp(ca0
in )


− a2(a0Q)a2

a0

(
Q

cin
+a1

)

z = [Q]

θ = [cin, tload]

Table 5.8. Parameter values of the most plausible surrogate model identi�ed by the
Bayesian machine scientist (BMS) for each case study (CS). The corresponding model
equations are given in Table 5.7.

Parameter

CS

I II

a0 1.411 0.894

a1 66.686 24.458

a2 1 -1.844

a3 4.123 -

a4 -17.508 -

a5 -1.922 -

a6 1 -

a7 -17.503 -

one given in Section 5.4.2 (design d1), the �exibility is reduced (δ∗d1 = 0.811 vs.

δ∗d2 = 0.389). The result is visualized in Figure D.4. Although such visualizations

as in Figure 5.7 cannot be done for higher dimensional case studies, the entire

procedure can be applied in the same manner.

For both case studies, decreasing the control variable - the cooling temperature

in Figure 5.7 (a) and the �ow rate in Figure 5.7 (b) - will increase the size of

the feasible region. Considering for example CSII, increasing the �ow rate would

decrease the time the antibodies would require to reach the column outlet. There-

fore, a larger amount of product will be lost, which increases the loss rate during

the loading phase. Keeping this fact in mind, one can observe that for lower �ow

rates, a higher loading time and higher antibody concentration would be possi-
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Table 5.9. Results summary of the case studies CSI and CSII.

CSI CSII

θN [10.0 g L−1, 30.0 ◦C] [1.5mgmL−1, 8.0min]

M 20 500

z and z 23.0 ◦C and 28 ◦C 4.0mL/min and 12.0mL/min

∆θmin
k , k ∈ K [1 g L−1, 1 ◦C] θNk − θk

∆θmax
k , k ∈ K [1 g L−1, 1 ◦C] θk − θNk
δ∗ 3.228 0.811

θ∗ [13.23 g L−1, 33.23 ◦C] [2.07mgmL−1, 13.67min]

z∗ 23.0 ◦C 4.0mL/min

Active constraints F1, f2 F1, f4
CPU 0.9 s 1.5 s

ble, meaning these uncertain parameters (tload and cin) can deviate more from a

nominal operating point, making the process feasible. This manifests in the larger

feasible region given in Figure 5.7 (b). Similar behavior can be observed for CSI.

The surrogate model predicts a higher ethanol production with a decreased jacket

temperature Tc. Therefore, the deviation on the reactor temperature and the feed

concentration can be larger such that the process remains feasible, which again

manifests in the higher feasible region visible in Figure 5.7 (a).

Figure 5.8 visualizes the results given in Table 5.9, where the surrogate and control

constraints are active. Having chosen a nominal operating point θN , the optimal

value of theta in the optimum is called critical theta θc (red circles in Figure 5.8),

which indicates the scaled distance at which the process will hit the �rst bound. In

other words, going beyond the set of parameters values θc ([13.23 g L−1, 33.23 ◦C]

for CSI and [2.07mgmL−1, 13.67min] for CSII), will lead to the violation of the

surrogate constraint, resulting in an infeasible process.

First, the �exibility problems were solved quickly, namely, 0.9 s and 1.5 s, for CSI

and CSII, respectively. Another advantage of having the algebraic surrogate comes

into play when the entire problem must be adapted for any reason. If, for example,

the nominal operating point has to be changed, no retraining of the surrogate

model is required since the training is decoupled from the �exibility index problem.

This makes the adjustment of nominal operating points or bounds very simple

because the solution time of the optimization problem is within seconds.
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Figure 5.7. Projection of the constraints onto the uncertain parameter plane for case
studies CSI (a) and CSII (b). The feasible region is shown in shaded light blue color. The
constraints in dashed lines represent the bounds of the un certain parameters. The solid
lines represent the surrogate constraint which can be in�uenced by the control variable
z. Decreasing the value of z increases the size of the feasible region.
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Figure 5.8. Graphical representation of the solution for the �exibility index problem
for CSI (a) and CSII (b). The feasible region is shown in shaded light blue color. The
constraints in dashed lines represent the bounds of the uncertain parameters. The solid
lines represent the surrogate constraint which can be in�uenced by the control variable
z. The chosen nominal operating point θN (blue diamond) lies within the set T (δ) (blue
box). As shown in Table 5.9, the surrogate constraints F1 are the active constraints,
which is why T (δ) touches F1 constraint (red circle).
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5.6 Conclusion

This work introduced a new approach to compute the �exibility index in problems

with complicating constraints. Our approach combines the originally described

deterministic formulation of the �exibility index problem with a symbolically re-

gressed surrogate model that simpli�es the modeling of the complicating con-

straints. The symbolic regression algorithm, the BMS, assumes no aprioristic

model structure, thereby enabling the accurate representation of process con-

straints hard to model and/or handle numerically. The resulting hybrid �exibility

approach was applied to protein-A chromatography and an ethanol production

process in fed-batch operation mode. The surrogate equations could accurately

reproduce the complicating constraints, as evidenced by their ability to explain

the data variance, making them suitable for simplifying such equations in the de-

terministic �exibility formulation. One drawback of the applied regression tool is

the signi�cant training time required for model building, which might be improved

in the future as faster SR algorithms become available. Nevertheless, having a

closed-form expression at hand pays o� in several aspects: The �rst is that global

solvers can be used, which can guarantee global optimality compared to heuristics

or stochastic solvers. Additionally, the surrogate model training is decoupled from

the �exibility index problem. This makes the study of di�erent process conditions

very simple because the solution time of the optimization problem is often within

seconds using existing approaches to compute the �exibility index of fully ana-

lytical process models. However, our method focuses on the traditional �exibility

index, so more complex �exibility metrics would require alternative methods. In

the end, the most suitable approach for a given �exibility problem will depend

on its features and the goal and scope of the analysis. Future work will focus on

exploring alternative symbolic regression algorithms and a wider range of appli-

cations within chemical engineering and beyond.
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Chapter 6

Conclusion and future research
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This chapter summarizes the main contributions and insights of the thesis and

re�ects on the objectives given in Section 1.4. Overall, this work represents alter-

native methods and procedures that support advancements in the Process Sys-

tems Engineering �eld and its application in the context of digitalization within

an industrial environment. This thesis has addressed the modeling and opti-

mization challenges encountered in the chemical and biological sector, by leverag-

ing advancements in machine learning, mathematical modeling, and optimization

techniques. The research presented herein contributes to bridging the gap be-

tween purely mechanistic and data-driven approaches, o�ering hybrid frameworks

that combine available knowledge with surrogate modeling and optimization tech-

niques. Through comprehensive case studies and analyses, the e�ectiveness and

applicability of the proposed methodologies were demonstrated, showcasing their

potential to support process modeling, optimization, and �exibility analysis tasks.

While the presented approaches exhibit promising results, there remains a subse-

quently discussed avenue for future investigations.

6.1 Conclusion and re�ection on the objectives

In Chapter 2, the model building procedure for chemical reactions and biopro-

cesses was investigated, where a mechanistic backbone based on a canonical for-

malism was used to create mass balances. A mixed-integer nonlinear programming

formulation to automatically identify the model structure and the values of its pa-

rameters was developed. Binary variables allowed to change the model topology

and therefore made it possible to tune the complexity of the resulting system of

ordinary di�erential equations. The model training was performed following a

two-stage approach. This allowed avoiding the iterative integration of di�eren-

tial equations, which is usually a major reason for high computational costs in

such sequential parameter estimation problems. It was found that the presented

approach performed similarly to models based on arti�cial neural networks, even

outperforming such purely data-driven methods in some cases. The presented

approach further had the additional advantage of leading to models containing

fewer parameters, which would also simplify a model interpretation. Hence, the

proposed approach combines model identi�cation with the ability to analyze the

underlying system more easily. Building up on Chapter 2, in Chapter 3 the identi-

�cation of kinetic models for bioprocesses was investigated, where no pre-de�ned

model structure was assumed to be available. A symbolic regression algorithm
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was employed to generate suitable models for the rate expressions. Similarly to

Chapter 2, the model training was performed following a two-step approach, thus

avoiding the iterative integration of di�erential equations. In this part of the the-

sis, di�erent derivative approximation methods were investigated as well. Also,

the in�uence of the number of available sampling points and the present noise

was studied. It was found that, even in the case of having scarce noisy datasets

available, a derivative approximation was well possible, which allowed to develop

appropriate kinetic models for the systems under study. Further, the proposed

method performed slightly better than arti�cial neural networks in most cases.

One advantage � similarly as in Chapter 2 � was that the presented method led to

analytical expressions that could be analyzed in detail. Such an ability to analyze

the model comes, however, with the high computational cost to train the symbol-

ically regressed closed-form expressions. The proposed approach was shown to be

general enough to be applied to a wide range of applications.

The �rst objective of this thesis given in Section 1.4 aimed to design compu-

tational models based on available knowledge while allowing for �exible model

structures and parameter estimations. As mentioned throughout Chapters 2 and

3, the development of purely mechanistic models and the subsequent parameter

estimation steps for chemical and biological systems is a signi�cant challenge due

to several reasons. As summarized above, it could be shown that, by combining

data, mathematical programming, and machine learning approaches, it was indeed

possible to tackle these challenges. The mixed-integer nonlinear programming ap-

proach in Chapter 2 helped to combine available knowledge about a system with

a parameter and model identi�cation procedure that can be �exibly adjusted by

the user. The symbolic regression algorithm in Chapter 3 generated suitable

models for the rate expressions based on the statistical prior information about

mathematical structures. Therefore, both methodologies tackle the mentioned ob-

jective of combining existing knowledge with �exible modeling frameworks that

allow to simultaneously identify the model structure and the involved parame-

ters. The tools provide a good balance between interpretability � due to the

identi�ed closed-form expressions � and performance. Furthermore, the presented

methodologies are very �exible, and can therefore be applied to a wide range of

systems, meaning, the core parts of the model identi�cation steps � the optimiza-

tion formulation for Chapter 2 and the symbolic regression for Chapter 3 � do
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not signi�cantly change from case study to case study. It can be concluded that

the proposed methodologies in Chapter 2 and Chapter 3 are hence representing

promising approaches that tackle the discussed objective. Linking the mentioned

�ndings back to the ongoing digitalization of the chemical and biological produc-

tion industry, the presented methodologies could address the �rst objective of this

thesis, and are valuable assets to support the understanding and development of

process systems.

Chapter 4 introduced a method for globally optimizing surrogate process models

using deterministic optimization frameworks. Symbolic regression allowed devel-

oping closed-form mathematical expressions, where the degrees of freedom repre-

sent the independent variables of the resulting algebraic equation. The obtained

models were found to reveal a similar level of accuracy as those constructed by

a purely data-driven approach with a Gaussian process. A major advantage of

the closed-form surrogate models was shown to be the fact that they can easily

be incorporated into optimization problems. The proposed work�ow allowed the

user to solve a surrogate model for global optimality using state-of-the-art solvers.

Solving the resulting surrogate-based optimization problem was shown to be more

straightforward and faster than globally optimizing a trained Gaussian process.

One major drawback was found in the relation of the model accuracy and the

accuracy of the optimal solution. The algebraic surrogate model identi�ed by the

symbolic regression was obtained to often be slightly less accurate compared to

the trained Gaussian process, due to the usually better interpolation capabilities

of the Gaussian process. Since the optimization is performed using the trained

surrogate model, the global optimum of a symbolically regressed model might be

less accurate and outperformed by multi-start local optimization strategies with

Gaussian processes. Another drawback of the symbolic regression was shown in a

very high computational time needed for training. However, having a closed-form

expression at hand was shown to be useful, since the surrogate model could be

easily incorporated into deterministic optimization frameworks, where also o�-

the-shelf solvers could be used.

The second objective of this thesis given in Section 1.4 aimed to develop frame-

works for global optimization using surrogate models. Speci�cally, simple, accu-

rate, and subsequently usable models should be developed purely from data. The

concept developed in Chapter 4 tackled this objective by designing a decoupled

modeling and optimization pipeline. Furthermore, since the methodology only
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relies on input-output data, the model-based optimization procedure was proven

to be highly �exible, where it was shown to be applicable to a variety of process

systems that range from a meso scale (single process units) up to macro scale (full

�owsheets). Hence, the objective could also be addressed regarding the transfer-

ability of the proposed framework. Since the optimization can be solved fast due

to the available o�-the-shelf deterministic solvers, such a framework could also be

helpful in cases where the optimization problem has to be iteratively solved many

times. This �nding makes the methodology also applicable for conceptually dif-

ferent applications than investigated in Chapter 4, such as real-time optimization

problems. In conclusion, the presented work�ow could address the second objec-

tive, and might be valuable in supporting the optimization of process systems for

which mechanistic models are hard or time-intensive to develop.

Chapter 5 introduced a new approach to compute the �exibility index in prob-

lems with complicating constraints. Due to the presence of such complicating

constraints, it was not possible to directly include those constraints in the origi-

nally described deterministic �exibility index problem, since they would need to

be available as closed-form expressions. The proposed methodology combined

the original formulation of the �exibility index problem with a symbolically re-

gressed surrogate model. The symbolic regression algorithm assumed no pre-

de�ned model structure to approximate the process constraints. This enabled

the accurate representation of constraints that are hard to model or handle nu-

merically. The resulting hybrid �exibility approach was applied to industrially

relevant processes, where the surrogate equations could accurately reproduce the

complicating constraints. One drawback of the applied regression tool was found

to be the high training time required for model building. Nevertheless � as it was

described in the objectives above � having a closed-form expression at hand pays

o� in several aspects.

The last objective of this thesis given in Section 1.4 aimed to analyze process

�exibility in case some process constraints are hard to model or even inaccessi-

ble. The framework developed in Chapter 5 supports decision-making in systems

where process constraints are hard to describe or where they are only describable

by measured input-output data. Chapter 5 contributed to this third objective by

introducing a method that allows to include surrogate models into the �exibility

index problem formulation. This way, a hybrid approach was generated that allows

assessing process �exibility even in cases with complicating process constraints.
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Furthermore, since the model training was decoupled from solving the �exibility

index, the proposed framework allows studying a variety of process conditions in

a short amount of time. Additionally, since the optimization problem formulation

does not need to be signi�cantly altered when studying a new process, the frame-

work is transferrable to a wide range of di�erent case studies. Hence, this objective

was successfully addressed by the presented methodology, which could potentially

be a valuable asset for practitioners in the chemical and biological industry that

allows to bypass the challenges of modeling hard-to-describe process constraints

in situations that require the assessment of a system's �exibility.

Overall, this thesis provides solutions to support the advancement of digitalization

through modeling, optimization, and analysis of chemical and biological processes

using surrogate and hybrid frameworks. Each chapter showcased the capabilities

of the proposed methodologies and pipelines through comprehensive case studies.

The e�ectiveness of the frameworks could be proven in diverse applications. This

thesis bridges the gap between purely mechanistic and purely data-driven ap-

proaches by o�ering hybrid frameworks that integrate available knowledge with

surrogate modeling and optimization techniques. These hybrid approaches not

only allow to bypass existing challenges that were discussed, but they also of-

fer alternative approaches in case existing methods are hard or not possible to

be applied. While the presented approaches exhibit promising results, future

research endeavors could build upon the present work, which will be discussed

subsequently.

6.2 Limitations and future research directions

Data availability The presented methodologies were evaluated using synthetic

data, as it is done very often in literature. The advantage is that a wide range of

case studies can be produced and assessed in a short amount of time. However,

the available data might not fully represent the complexity and variability of real-

world processes. Future research should focus on assessing the performance of the

proposed models and frameworks using industrial or real experimental data. This

would provide further insights into the applicability and robustness of the devel-

oped methodologies. Additionally, the in�uence of data scarcity should be further

explored. As mentioned in Chapter 2 and Chapter 3, there are many industrially

relevant scenarios where data is very limited. Although considered and mentioned
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above in this thesis, the impact of such a data-scarcity on the developed models

and frameworks should be further assessed in future research.

Mechanistic backbone models In Chapter 2, the S-system was used as a

mechanistic backbone for the model identi�cation. While the S-system was found

to be suitable for the investigated case studies, alternative mechanistic backbones

for di�erent systems were not investigated. Depending on the system under study,

adapting this core formalism could increase the accuracy and applicability of the

developed computational models. Future research should therefore focus on ex-

ploring alternative mechanistic backbones for di�erent chemical and biological

systems. Additionally, those models should be compared to other benchmarks

that were mentioned throughout this thesis, such as ALAMO, BIDSAM, ALVEN,

and others. Also, since the noise approximation method presented in Chapter 3

was not applied yet to the methodological framework given in Chapter 2 (MINLP

approach), this should be explored in future research in order to improve the

performance of the developed models in Chapter 2.

Hybrid framework comparison This thesis considered speci�c ways how hy-

brid models or frameworks might be developed. In Chapter 2, the expert knowl-

edge was included via a known formalism, such as the S-system. In Chapter 3,

prior mathematical/statistical information was included in the symbolic regres-

sion, and in Chapter 5, a hybrid framework was developed using surrogate models

and a deterministic optimization scheme. However, there are many other possi-

bilities to develop hybrid frameworks, where for example physics-informed neural

networks, transformer models, and other regression or classi�cation approaches

could be used for predicting the time-dependent concentration pro�les. Future

research should therefore focus on exploring such alternative hybrid frameworks

that can subsequently be compared to the methodologies presented in this the-

sis.

Surrogate-based optimization In Chapter 4, the algebraic surrogate mod-

els were globally optimized using deterministic solvers. Although compared to a

proven methodology, the presented framework should be assessed in more detail,

where for example the in�uence of higher dimensional inputs than presented in

the last case study of Chapter 4 should be explored. Another aspect that was not

investigated in this chapter was the use of multi-start local optimization in com-

bination with the identi�ed algebraic surrogate models. Future research should
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therefore focus on the comparison of the identi�ed global optimal solution with

multi-start local optimization strategies, where a variety of solvers could be used.

In addition to a more in-depth study of the proposed methodology with determin-

istic solvers, alternative optimization approaches � for example derivative-free op-

timization or meta heuristic methods such as simulated annealing, particle swarm

optimization, or genetic algorithms � could be compared to the performance of

the presented methodologies.

Integration into optimization and control frameworks The models iden-

ti�ed in Chapters 2 and 3 were just used for prediction studies of time series

concentration pro�les. However, future research should focus on integrating the

identi�ed models into comprehensive optimization, model-based control, or simi-

lar frameworks. This would allow to further exploit the potential of the developed

models and to support decision-making in steps that come after modeling the ki-

netic behavior. With this, it would be possible to further analyze the e�cacy of

the identi�ed models. Furthermore, it would allow to assess the general applicabil-

ity of such models for industrially relevant frameworks. Moreover, in Chapter 5, it

was not investigated how the hybrid �exibility index calculation presented could

be implemented in a larger optimization framework. Therefore, in future studies

it would be interesting to include the presented �exibility assessment approach in

an optimization problem, to, for example, calculate the best possible operating

point or to �nd the optimum performance of a process, while guaranteeing the

largest possible �exibility.

Symbolic regression algorithms In Chapters 3, 4, and 5, the Bayesian ma-

chine scientist was used as symbolic regression algorithm. This tool uses prior

knowledge that was gained from a corpus of mathematical equations, and there-

fore represents statistical information about the mathematical structure of the

obtained models. Future research should focus on comparing the used tool to

other symbolic regression algorithms that might or might not consider di�erent

prior knowledge. Insights from such a study might be useful to decide in which

situation which tool is more suitable. Furthermore, this thesis did not investigate

possible algorithmic improvements of the Bayesian machine scientist (i.e., CPU

times, search e�ciency, memory e�ciency, etc.). Future research should therefore

also focus on further developing this tool, not only in terms of computational

speed, but also considering speci�c chemical or biological information about the

system under study. This could help to guide the algorithm more e�ciently to-
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wards equations that are more likely to explain the data precisely. One possibility

to achieve this would be to, for example, use tailored kinetic equations during the

training of the symbolic models, which would restrict the search space e�ciently,

allowing for faster model identi�cation. Moreover, what was not investigated in

depth in the assessments of Chapter 2 and Chapter 3, was the the concept of sti�-

ness of the identi�ed algebraic models. Since in those chapters the model building

was performed in the derivative space, sti� ordinary di�erential equations might

be encountered. Therefore, it would be necessary to include sti�ness and stability

analyses in such a procedure, which might be the focus of future work. In addition

to these aspects, this thesis did not assess any improvements of the early stopping

criteria of the Bayesian machine scientist. As shown for example in Chapter 3, the

description length could be signi�cantly reduced in the beginning of the training,

where it was stagnating after that. Therefore, future research should focus on

further comparing how the models identi�ed along the training change in perfor-

mance. This could support the development of early stopping criteria and hence

improve the model identi�cation speed. Furthermore, since the Bayesian machine

scientist is stochastic in nature, the identi�ed models might be di�erent every

time the training is performed. Running the training multiple times for the same

training set would yield a distribution of model predictions, therefore generating

some kind of ensemble model, allowing to compute a prediction interval. In this

thesis, it was not investigated whether such a prediction interval might be useful

or not, which might be interesting for future research. Last, it was not investi-

gated whether the identi�ed parameters of a symbolic regression tool could be

re-estimated or improved by other methods (i.e., global optimization algorithms).

Such a parameter improvement might also be interesting to investigate and should

therefore be considered in future research.

By additionally addressing the above-mentioned considerations, future research

endeavors have the potential to further enhance the e�cacy and versatility of

the methodologies proposed, ultimately contributing to the advancement of pro-

cess modeling, optimization, and control in the chemical and biological indus-

try.
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Appendix A

Supplementary information of

Chapter 2

This part of the appendix contains the supplementary material of the article

given in Chapter 2. It is organized as follows. Section A.1 summarizes the param-

eters used for the in-silico data generation (ODE integration). Section A.2 shows

the procedure how we scaled the data for CSIV. The heuristic approach how we

chose the starting values for the solvers are summarized in Section A.3, where

the stopping criteria of the solver is given in Section A.4. Additional results and

information about the case studies conclusions are given in Sections A.5, A.6, and

A.7. For each individual model, the identi�ed model parameters are indicated

in Section A.8. Finally, Section A.9 includes an error comparison of the MINLP,

ANN, GP, and SINDy approaches.

A.1 Parameters for underlying in-silico models

Table A.1. Constant parameters used in CSI.

Parameter Value Unit

k1 5 h−1

k2 1 h−1

k3 2 h−1
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Table A.2. Reaction rate constants used in CSII.

Parameter Value Unit

k1 10 h−1

k2 1 h−1

k3 0.5 Lmol−1 h−1

Table A.3. Reaction rate constants used in CSIII.

Parameter Value Unit

k1 0.33384 h−1

k2 0.26687 h−1

k3 0.1494 h−1

k4 0.18957 h−1

k5 0.009598 h−1

k6 0.29425 h−1

k7 0.011932 h−1

Table A.4. Parameters used in CSIV.

Parameter Value Unit

ϕmax 0.25 h−1

KS 105.4 g L−1

A1 130 -

A2 3.8·1048 -

E1 12.4 kJmol−1

E2 298.6 kJmol−1

Kϕ 121.9 g L−1

YB,S 0.07 -

YP,S 0.167 -

A.2 Applied scaling for CSIV

For case study IV with noisy data, the sampled data points Xi,u were preprocessed

before using them for training the mentioned models. The state values of CSI-III

were not preprocessed.
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First, a Savitzky-Golay �lter (Savitzky & Golay, 1964) was used to denoise the

sampled training state data Xi,u, resulting in the �ltered state variables X̃i,u. To

perform the �ltering, we used a frame size of 7, and a polynomial order of 5. The

�ltered values X̃i,u were then further used for the training.

Second, we look for the maximum value of each species i in all the training

runs:

MXi = max
u∈U

X̃i,u, ∀i ∈ I (A.1)

Third, the �ltered state variables of each species X̃i,u were scaled with the maxi-

mum value available (MXi):

X∗
i,u =

X̃i,u

MXi

(A.2)

Where X∗
i,u rpresent ethe �ltered and scaled data points of species i, and time

point u.

A.3 Heuristics to choose starting values

Using the non-noisy datasets, we only considered if a species is being produced or

consumed over time. If a species i is produced, the corresponding reaction rate

constant for the production term αi is initialized with a value of one. If a species

is consumed, the corresponding reaction rate constant of the depletion term βi is

initialized with value one. All other parameters are initialized to zero.

The exponents were initialized to one when the corresponding species are involved

in a generation or depletion reaction. In CSI, we knew that the reaction starts

with species A and B and that both species were consumed, where species C

is �rst produced, then consumed, and D is only produced. Therefore, we chose

αi = [0, 0, 1, 1], and βi = [1, 1, 1, 0]. The exponents of the generation term, gC,A,

gC,B, gD,A, and gD,B are initialized to one, since we know that species C and

D must be originating from A and B (although not via a direct reaction). The

depletion exponents were initialized to one assuming a �rst-order reaction as fol-

lows: hA,A = hB,B = hC,C = 1 and hD,D = 0 since species D is not consumed

(according to the observed pro�les). This approach was implemented in CSI-III.

In CSIV, we initialized all rate constants (αi and βi) to one to account for pos-

sible generation/depletion reactions. The exponents were initialized to one for
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biomass production from substrate (gB,B, gB,S), product formation from biomass

consuming substrate (gP,B, gP,S), biomass death that might depend on all metabo-

lites (hB,B, hB,S, h
(2)), and substrate consumption by biomass accounting for the

amount of product already produced (hS,B, hS,S, h
S,P ).

Using the noisy datasets, the same heuristics as explained above were applied.

For CSIII and IV, the solver was unable to �nd a feasible solution. Therefore,

we proceeded as follows. For CSIII, we used the same initialization as provided

in the non-noisy case. However, we solved the optimization problem only for one

arbitrary training run. We used the found feasible solution as a new initial point

to solve the entire MINLP for all six training runs. For CSIV, we �rst reduced

the value of NP to only eight parameters for the �rst MINLP. Additionally, the

starting points were as follows: αi = [0, 0, 1], βi = [1, 1, 0], gP,B = hS,B = 1, and

hB,B = 1.

All these chosen initial values are given subsequently in Table A.5 and Table A.6.

Table A.5. Initial values chosen for the parameters to be estimated with the proposed method applied to
the non-noisy dataset.

Parameter Speciesa
CSI CSII CSIII CSIV

A B C D A B C D A B C D E B S P

αi - 0 0 1 1 0 1 1 1 0 0 1 1 1 1 1 1

βi - 1 1 1 0 1 1 0 0 1 1 0 0 0 1 1 1

gi,j

A 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
B 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0
C 1 1 0 0 1 0 0 0 1 1 0 0 0 1 1 0
D 1 1 0 0 1 0 0 0 1 1 0 0 0 - - -
E - - - - - - - - 1 0 0 0 0 - - -

hi,j

A 1 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1
B 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 1
C 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
D 0 0 0 0 0 0 0 0 0 0 0 0 0 - - -
E - - - - - - - - 0 0 0 0 0 - - -

a Column: species i, row: species j.
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Table A.6. Initial values chosen for the parameters to be estimated with the proposed method applied to
the noisy dataset.

Parameter Speciesa
CSI CSII CSIII CSIV

A B C D A B C D A B C D E B S P

αi - 0 0 1 1 0 1 1 1 0 0 1 1 1 0 0 1

βi - 1 1 1 0 1 1 0 0 1 1 0 0 0 1 1 0

gi,j

A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

B 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

C 1 1 0 0 1 1 0 0 1 0 0 0 0 1 0 0

D 1 1 0 0 1 1 0 0 1 0 0 0 0 - - -

E - - - - - - - - 1 0 0 0 0 - - -

hi,j

A 1 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0

B 0 1 0 0 1 1 0 0 0 1 0 0 0 1 0 0

C 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

D 0 0 0 0 0 0 0 0 0 0 0 0 0 - - -

E - - - - - - - - 0 0 0 0 0 - - -

a Column: species i, row: species j.

A.4 Stopping criteria of solver

Table A.7. Termination criteria used for the solver in GAMS. The options not mentioned
here were chosen to be the default values.

CS I II III IV

Relative optimality gap 0 0 0 0

Maximum runtime [s] 5000 5000 5000 600

Maximum iterations 1·106 1·106 1·108 1·106

Maximum nodes 1·106 1·106 1·106 1·106

A.5 Tabulated results

In this section we summarize the error metrics of each individual model.

195



T
a
b
le

A
.8
.

S
u
m
m
a
ry

o
f
th
e
m
o
d
el

p
er
fo
rm

a
n
ce

co
n
si
d
er
in
g
a
n
u
n
se
en

n
o
n
-n
o
is
y
te
st

se
t
(s
ta
te
-s
p
a
ce
).

T
h
e
R
M
S
E

va
lu
es

a
re

sh
ow

n
fo
r
th
e

S
-s
y
st
em

a
n
d
th
e
A
N
N
.
T
h
e
E
x
tr
-v
a
lu
e
in
d
ic
a
te
s
th
e
p
er
ce
n
ta
g
e
o
f
d
a
ta

p
o
in
ts

o
u
ts
id
e
th
e
tr
a
in
in
g
ra
n
g
e.

T
h
e
b
o
ld

va
lu
es

re
p
re
se
n
t
th
e
b
es
t
m
o
d
el

p
er
fo
rm

a
n
ce

fo
r
th
is
ca
se

st
u
d
y.

If
se
v
er
a
l
m
et
ri
cs

sh
ow

th
e
sa
m
e
p
er
fo
rm

a
n
ce

fo
r
th
e
S
-s
y
st
em

,
th
e
o
n
e
w
it
h
th
e
lo
w
es
t
n
u
m
b
er

o
f
p
a
ra
m
et
er
s
is

ch
o
se
n
a
s
th
e
b
es
t
m
o
d
el

(m
o
st

li
tt
le

co
m
p
le
x
it
y
).

F
o
r
th
e
S
-s
y
st
em

,
th
e
n
u
m
b
er

o
f
n
o
n
-n
eg
a
ti
v
e
p
a
ra
m
et
er
s
is
sh
ow

n
in

b
ra
ck
et
s
a
ft
er

th
e
er
ro
r

m
et
ri
c,
to
g
et
h
er

w
it
h
th
e
u
p
p
er

b
o
u
n
d
fo
r
th
e
m
a
x
im
u
m

n
u
m
b
er

o
f
p
a
ra
m
et
er
s
in

th
e
M
IN

L
P
(N

P
in

m
o
d
el
(2
.1
1
)
in

th
e
m
a
n
u
sc
ri
p
t)
.

C
S

E
x
tr

R
M
S
E
a

M
IN

L
P

N
L
P

A
N
N

I
0.
34

4.
3·
10

−
2

3
.3
·1
0
−
4

3.
3·
10

−
4

3.
3·
10

−
4

1.
7·
10

−
2

2.
2·
1
0−

2

(1
2/
12
)

(1
4
/
1
7
)

(1
4/
32
)

(1
4/
40
)

(1
6/
40
)

II
0.
16

2
.6
·1
0
−
1

3.
1·
10

−
1

3.
1·
10

−
1

3.
1·
10

−
1

3.
1·
10

−
1

3.
2·
10

−
1

7.
0·
1
0
−
1

(1
1
/
1
1
)

(1
3/
15
)

(1
3/
20
)

(1
3/
30
)

(1
3/
40
)

(1
9/
40
)

II
I

0.
28

5.
1·
10

−
1

2.
0·
10

−
1

1.
8·
10

−
1

1.
8·
10

−
1

1.
8·
10

−
1

1.
8·
10

−
1

1.
8·
10

−
1

1.
8·
10

0

8
.8
·1
0
−
4

(1
0/
10
)

(1
6/
16
)

(2
1/
21
)

(2
1/
24
)

(2
1/
30
)

(2
1/
40
)

(2
1/
60
)

(3
1/
60
)

IV
0.
35

1.
5·
10

0
1.
3·
10

0
1.
3·
10

0
1.
3·
10

0
1.
3·
10

0
1.
3·
10

0
3
.7
·1
0
−
1

3.
8·
1
0
0

(1
5/
15
)

(1
5/
17
)

(1
5/
19
)

(1
5/
21
)

(1
5/
23
)

(1
5/
24
)

(2
4
/
2
4
)

a
m
o
lL

−
1
fo
r
C
S
I,
II
,
II
I,
a
n
d
g
L
−
1
fo
r
C
S
IV

.

196



T
a
b
le

A
.9
.
S
u
m
m
a
ry

o
f
th
e
m
o
d
el
p
er
fo
rm

a
n
ce

co
n
si
d
er
in
g
a
n
u
n
se
en

n
o
n
-n
o
is
y
te
st

se
t
(d
er
iv
a
ti
v
e-
sp
a
ce
).

T
h
e
R
M
S
E

va
lu
es

a
re

sh
ow

n
fo
r
th
e

S
-s
y
st
em

a
n
d
th
e
A
N
N
.
T
h
e
E
x
tr
-v
a
lu
e
in
d
ic
a
te
s
th
e
p
er
ce
n
ta
g
e
o
f
d
a
ta

p
o
in
ts

o
u
ts
id
e
th
e
tr
a
in
in
g
ra
n
g
e.

T
h
e
b
o
ld

va
lu
es

re
p
re
se
n
t
th
e
b
es
t
m
o
d
el

p
er
fo
rm

a
n
ce

fo
r
th
is
ca
se

st
u
d
y.

If
se
v
er
a
l
m
et
ri
cs

sh
ow

th
e
sa
m
e
p
er
fo
rm

a
n
ce

fo
r
th
e
S
-s
y
st
em

,
th
e
o
n
e
w
it
h
th
e
lo
w
es
t
n
u
m
b
er

o
f
p
a
ra
m
et
er
s
is

ch
o
se
n
a
s
th
e
b
es
t
m
o
d
el

(m
o
st

li
tt
le

co
m
p
le
x
it
y
).

F
o
r
th
e
S
-s
y
st
em

,
th
e
n
u
m
b
er

o
f
n
o
n
-n
eg
a
ti
v
e
p
a
ra
m
et
er
s
is
sh
ow

n
in

b
ra
ck
et
s
a
ft
er

th
e
er
ro
r

m
et
ri
c,
to
g
et
h
er

w
it
h
th
e
u
p
p
er

b
o
u
n
d
fo
r
th
e
m
a
x
im
u
m

n
u
m
b
er

o
f
p
a
ra
m
et
er
s
in

th
e
M
IN

L
P
o
r
N
L
P
(N

P
in

m
o
d
el
(2
.1
1
)
in

th
e
m
a
n
u
sc
ri
p
t)
.

C
S

E
x
tr

R
M
S
E
a

M
IN

L
P

N
L
P

A
N
N

I
0.
34

4.
2·
10

−
1

1.
6·
10

−
1
1

1.
6·
10

−
1
1

1.
6·
10

−
1
1

1
.8
·1
0
−
1
2

1.
0·
1
00

(1
2/
12
)

(1
4/
17
)

(1
4/
32
)

(1
4/
40
)

(1
6
/
4
0
)

II
0.
16

7.
1·
10

−
1

5
.5
·1
0
−
1

5.
5·
10

−
1

5.
5·
10

−
1

5.
5·
10

−
1

5.
9·
1
0
−
1

6.
1·
1
00

(1
1/
11
)

(1
3
/
1
5
)

(1
3/
20
)

(1
3/
30
)

(1
3/
40
)

(1
9/
40
)

II
I

0.
28

3.
7·
10

−
1

1.
3·
10

−
1

1
.1
·1
0
−
1

1.
1·
10

−
1

1.
1·
10

−
1

1.
1·
10

−
1

1.
1·
10

−
1

1.
2·
1
0−

1

4.
0·
1
0−

1

(1
0/
10
)

(1
6/
16
)

(2
1
/
2
1
)

(2
1/
24
)

(2
1/
30
)

(2
1/
40
)

(2
1/
60
)

(3
1/
60
)

IV
0.
35

7.
9·
10

−
2

8
.2
·1
0
−
3

8.
2·
10

−
3

8.
2·
10

−
3

8.
2·
10

−
3

8.
2·
10

−
3

7.
9·
1
0−

2

4.
0·
1
0−

1

(1
5/
15
)

(1
5
/
1
7
)

(1
5/
19
)

(1
5/
21
)

(1
5/
23
)

(1
5/
24
)

(2
4/
24
)

a
m
o
lL

−
1
h
−
1
fo
r
C
S
I,
II
,
II
I,
a
n
d
g
L
−
1
h
−
1
fo
r
C
S
IV

.

197



T
a
b
le
A
.1
0
.
S
u
m
m
a
ry

o
f
th
e
m
o
d
el
p
er
fo
rm

a
n
ce

co
n
si
d
er
in
g
a
n
u
n
se
en

n
o
n
-n
o
is
y
te
st

se
t
(s
ta
te
-s
p
a
ce
).

T
h
e
R

2
-v
a
lu
es

a
re

sh
ow

n
fo
r
th
e
S
-s
y
st
em

a
n
d
th
e
A
N
N
.
T
h
e
E
x
tr
-v
a
lu
e
in
d
ic
a
te
s
th
e
p
er
ce
n
ta
g
e
o
f
d
a
ta

p
o
in
ts
o
u
ts
id
e
th
e
tr
a
in
in
g
ra
n
g
e.

T
h
e
b
o
ld
va
lu
es

re
p
re
se
n
t
th
e
b
es
t
m
o
d
el
p
er
fo
rm

a
n
ce

fo
r
th
is
ca
se

st
u
d
y.

If
se
v
er
a
l
m
et
ri
cs

sh
ow

th
e
sa
m
e
p
er
fo
rm

a
n
ce

fo
r
th
e
S
-s
y
st
em

,
th
e
o
n
e
w
it
h
th
e
lo
w
es
t
n
u
m
b
er

o
f
p
a
ra
m
et
er
s
is
ch
o
se
n
a
s
th
e

b
es
t
m
o
d
el
(m

o
st

li
tt
le
co
m
p
le
x
it
y
).

F
o
r
th
e
S
-s
y
st
em

,
th
e
n
u
m
b
er

o
f
n
o
n
-n
eg
a
ti
v
e
p
a
ra
m
et
er
s
is
sh
ow

n
in

b
ra
ck
et
s
a
ft
er

th
e
er
ro
r
m
et
ri
c,
to
g
et
h
er

w
it
h
th
e
u
p
p
er

b
o
u
n
d
fo
r
th
e
m
a
x
im
u
m

n
u
m
b
er

o
f
p
a
ra
m
et
er
s
in

th
e
M
IN

L
P
(N

P
in

m
o
d
el
(2
.1
1
)
in

th
e
m
a
n
u
sc
ri
p
t)
.

C
S

E
x
tr

R
2
a

M
IN

L
P

N
L
P

A
N
N

I
0.
34

0.
99
74

1
.0
0
0
0

1.
00
00

1.
00
00

0.
99
96

0.
99
93

(1
2/
12
)

(1
4
/
1
7
)

(1
4/
32
)

(1
4/
32
)

(1
6/
40
)

II
0.
16

0
.9
9
5
4

0.
99
34

0.
99
34

0.
99
34

0.
99
34

0.
99
29

0.
96
62

(1
1
/
1
1
)

(1
3/
15
)

(1
3/
20
)

(1
3/
30
)

(1
3/
40
)

(1
9/
40
)

II
I

0.
28

0.
97
08

0.
99
57

0.
99
65

0.
99
65

0.
99
65

0.
99
65

0.
99
65

0.
62
65

1
.0
0
0
0

(1
0/
10
)

(1
6/
16
)

(2
1/
21
)

(2
1/
24
)

(2
1/
30
)

(2
1/
40
)

(2
1/
60
)

(3
1/
60
)

IV
0.
35

0.
99
38

0.
99
49

0.
99
49

0.
99
49

0.
99
49

0.
99
49

0
.9
9
9
6

0.
95
84

(1
5/
15
)

(1
5/
17
)

(1
5/
19
)

(1
5/
21
)

(1
5/
23
)

(1
5/
24
)

(2
4
/
2
4
)

a
U
n
it
le
ss
.

198



T
a
b
le

A
.1
1
.

S
u
m
m
a
ry

o
f
th
e
m
o
d
el

p
er
fo
rm

a
n
ce

co
n
si
d
er
in
g
a
n
u
n
se
en

n
o
n
-n
o
is
y
te
st

se
t
(d
er
iv
a
ti
v
e-
sp
a
ce
).

T
h
e
R

2
-v
a
lu
es

a
re

sh
ow

n
fo
r
th
e

S
-s
y
st
em

a
n
d
th
e
A
N
N
.
T
h
e
E
x
tr
-v
a
lu
ea

in
d
ic
a
te
s
th
e
p
er
ce
n
ta
g
e
o
f
d
a
ta

p
o
in
ts
o
u
ts
id
e
th
e
tr
a
in
in
g
ra
n
g
e.

T
h
e
b
o
ld

va
lu
es

re
p
re
se
n
t
th
e
b
es
t
m
o
d
el

p
er
fo
rm

a
n
ce

fo
r
th
is
ca
se

st
u
d
y.

If
se
v
er
a
l
m
et
ri
cs

sh
ow

th
e
sa
m
e
p
er
fo
rm

a
n
ce

fo
r
th
e
S
-s
y
st
em

,
th
e
o
n
e
w
it
h
th
e
lo
w
es
t
n
u
m
b
er

o
f
p
a
ra
m
et
er
s
is

ch
o
se
n
a
s
th
e
b
es
t
m
o
d
el

(m
o
st

li
tt
le

co
m
p
le
x
it
y
).

F
o
r
th
e
S
-s
y
st
em

,
th
e
n
u
m
b
er

o
f
n
o
n
-n
eg
a
ti
v
e
p
a
ra
m
et
er
s
is
sh
ow

n
in

b
ra
ck
et
s
a
ft
er

th
e
er
ro
r

m
et
ri
c,
to
g
et
h
er

w
it
h
th
e
u
p
p
er

b
o
u
n
d
fo
r
th
e
m
a
x
im
u
m

n
u
m
b
er

o
f
p
a
ra
m
et
er
s
in

th
e
M
IN

L
P
(N

P
in

m
o
d
el
(2
.1
1
)
in

th
e
m
a
n
u
sc
ri
p
t)
.

C
S

E
x
tr

R
2
a

M
IN

L
P

N
L
P

A
N
N

I
0.
34

0.
97
94

1
.0
0
0
0

1.
00
00

1.
00
00

1.
00
00

0.
87
25

(1
2/
12
)

(1
4
/
1
7
)

(1
4/
32
)

(1
4/
32
)

(1
6/
40
)

II
0.
16

0.
99
96

0
.9
9
9
7

0.
99
97

0.
99
97

0.
99
97

0.
99
97

0.
96
69

(1
1/
11
)

(1
3
/
1
5
)

(1
3/
20
)

(1
3/
30
)

(1
3/
40
)

(1
9/
40
)

II
I

0.
28

0.
96
80

0.
99
57

0
.9
9
7
0

0.
99
70

0.
99
70

0.
99
70

0.
99
70

0.
99
68

0.
96
28

(1
0/
10
)

(1
6/
16
)

(2
1
/
2
1
)

(2
1/
24
)

(2
1/
30
)

(2
1/
40
)

(2
1/
60
)

(3
1/
60
)

IV
0.
35

0.
99
05

0
.9
9
9
9

0.
99
99

0.
99
99

0.
99
99

0.
99
99

0.
99
06

0.
75
81

(1
5/
15
)

(1
5
/
1
7
)

(1
5/
19
)

(1
5/
21
)

(1
5/
23
)

(1
5/
24
)

(2
4/
24
)

a
U
n
it
le
ss
.

199



T
a
b
le
A
.1
2
.
S
u
m
m
a
ry

o
f
th
e
m
o
d
el
p
er
fo
rm

a
n
ce

co
n
si
d
er
in
g
a
n
u
n
se
en

n
o
is
y
te
st

se
t
(s
ta
te
-s
p
a
ce
).

T
h
e
R
M
S
E

va
lu
es

a
re

sh
ow

n
fo
r
th
e
S
-s
y
st
em

a
n
d
th
e
A
N
N
.
T
h
e
E
x
tr
-v
a
lu
e
in
d
ic
a
te
s
th
e
p
er
ce
n
ta
g
e
o
f
d
a
ta

p
o
in
ts
o
u
ts
id
e
th
e
tr
a
in
in
g
ra
n
g
e.

T
h
e
b
o
ld

va
lu
es

re
p
re
se
n
t
th
e
b
es
t
m
o
d
el
p
er
fo
rm

a
n
ce

fo
r
th
is
ca
se

st
u
d
y.

If
se
v
er
a
l
m
et
ri
cs

sh
ow

th
e
sa
m
e
p
er
fo
rm

a
n
ce

fo
r
th
e
S
-s
y
st
em

,
th
e
o
n
e
w
it
h
th
e
lo
w
es
t
n
u
m
b
er

o
f
p
a
ra
m
et
er
s
is
ch
o
se
n
a
s
th
e
b
es
t

m
o
d
el

(m
o
st

li
tt
le

co
m
p
le
x
it
y
).

F
o
r
th
e
S
-s
y
st
em

,
th
e
n
u
m
b
er

o
f
n
o
n
-n
eg
a
ti
v
e
p
a
ra
m
et
er
s
is
sh
ow

n
in

b
ra
ck
et
s
a
ft
er

th
e
er
ro
r
m
et
ri
c,

to
g
et
h
er

w
it
h

th
e
u
p
p
er

b
o
u
n
d
fo
r
th
e
m
a
x
im
u
m

n
u
m
b
er

o
f
p
a
ra
m
et
er
s
in

th
e
M
IN

L
P
(N

P
in

m
o
d
el
(2
.1
1
)
in

th
e
m
a
n
u
sc
ri
p
t)

C
S

E
x
tr

R
M

S
E
a

M
IN

L
P

N
L
P

A
N
N

I
0.
3

1
.5
·1
0
−
1

6.
7·
10

2
2.
8·
10

−
1

3.
1·
10

−
1

-
3.
5·
10

−
1

1.
8·
1
0−

1

(1
2
/
1
2
)

(1
7/
17
)

(3
2/
32
)

(3
5/
40
)

(3
0/
40
)

II
0.
14

3.
9·
10

−
1

3
.2
·1
0
−
1

3.
6·
10

−
1

3.
6·
10

−
1

4.
1·
10

−
1

4.
9·
1
0−

1

(1
7/
17
)b

(2
0
/
2
0
)b

(3
0/
30
)b

(3
5/
40
)b

(3
0/
40
)

II
I

0.
28

2.
6·
10

−
1

2.
6·
10

−
1

2.
9·
10

−
1

2.
8·
10

−
1

2.
8·
10

−
1

2.
8·
10

−
1

1
.9
·1
0
−
1

(1
5/
15
)

(1
5/
24
)

(2
9/
30
)

(3
8/
40
)

(3
8/
60
)

(4
5/
60
)

IV
0.
35

2.
0·
10

−
1

1.
6·
10

−
1

1.
6·
10

−
1

1.
6·
10

−
1

1.
6·
10

−
1

7.
6·
10

−
1

9
.4
·1
0
−
2

(8
/8
)

(9
/9
)

(9
/1
5)

(9
/2
0)

(9
/2
4)

(2
4/
24
)

a
m
o
lL

−
1
fo
r
C
S
I,
II
,
II
I,
a
n
d
g
L
−
1
fo
r
C
S
IV

.
b
F
o
r
tw
o
b
a
tc
h
es

th
e
so
lv
er

re
su
lt
ed

in
N
a
N
p
re
d
ic
ti
o
n
s.

O
n
ly

fo
u
r
b
a
tc
h
es

co
n
si
d
er
ed

fo
r
er
ro
r
ca
lc
u
la
ti
o
n
.

200



T
a
b
le

A
.1
3
.

S
u
m
m
a
ry

o
f
th
e
m
o
d
el

p
er
fo
rm

a
n
ce

co
n
si
d
er
in
g
a
n
u
n
se
en

n
o
is
y
te
st

se
t
(d
er
iv
a
ti
v
e-
sp
a
ce
).

T
h
e
R
M
S
E

va
lu
es

a
re

sh
ow

n
fo
r
th
e

S
-s
y
st
em

a
n
d
th
e
A
N
N
.
T
h
e
E
x
tr
-v
a
lu
e
in
d
ic
a
te
s
th
e
p
er
ce
n
ta
g
e
o
f
d
a
ta

p
o
in
ts

o
u
ts
id
e
th
e
tr
a
in
in
g
ra
n
g
e.

T
h
e
b
o
ld

va
lu
es

re
p
re
se
n
t
th
e
b
es
t
m
o
d
el

p
er
fo
rm

a
n
ce

fo
r
th
is
ca
se

st
u
d
y.

If
se
v
er
a
l
m
et
ri
cs

sh
ow

th
e
sa
m
e
p
er
fo
rm

a
n
ce

fo
r
th
e
S
-s
y
st
em

,
th
e
o
n
e
w
it
h
th
e
lo
w
es
t
n
u
m
b
er

o
f
p
a
ra
m
et
er
s
is

ch
o
se
n
a
s
th
e
b
es
t
m
o
d
el

(m
o
st

li
tt
le

co
m
p
le
x
it
y
).

F
o
r
th
e
S
-s
y
st
em

,
th
e
n
u
m
b
er

o
f
n
o
n
-n
eg
a
ti
v
e
p
a
ra
m
et
er
s
is
sh
ow

n
in

b
ra
ck
et
s
a
ft
er

th
e
er
ro
r

m
et
ri
c,
to
g
et
h
er

w
it
h
th
e
u
p
p
er

b
o
u
n
d
fo
r
th
e
m
a
x
im
u
m

n
u
m
b
er

o
f
p
a
ra
m
et
er
s
in

th
e
M
IN

L
P
o
r
N
L
P
(N

P
in

m
o
d
el
(2
.1
1
)
in

th
e
m
a
n
u
sc
ri
p
t)
.

C
S

E
x
tr

R
M

S
E
a

M
IN

L
P

N
L
P

A
N
N

I
0.
3

5.
5·
10

−
1

5.
0·
10

−
1

4
.8
·1
0
−
1

4.
8·
10

−
1

5.
2·
1
0−

1

9.
9·
1
0−

1

(1
2/
12
)

(1
7/
17
)

(3
2
/
3
2
)

(3
5/
40
)

(3
0/
40
)

II
0.
14

3.
7·
10

0
3
.0
·1
0
0

3.
4·
10

0
3.
4·
10

0
3.
9·
1
00

3.
6·
1
00

(1
7/
17
)

(2
0
/
2
0
)

(3
0/
30
)

(3
5/
40
)

(3
0/
40
)

II
I

0.
28

2.
0·
10

−
1

2.
0·
10

−
1

1.
9·
10

−
1

1.
9·
10

−
1

1.
9·
10

−
1

1
.8
·1
0
−
1

4.
1·
1
0−

1

(1
5/
15
)

(1
5/
24
)

(2
9/
30
)

(3
8/
40
)

(3
8/
60
)

(4
5
/
6
0
)

IV
0.
35

7.
6·
10

−
3

5.
4·
10

−
3

5.
4·
10

−
3

5.
4·
10

−
3

5.
4·
10

−
3

5
.3
·1
0
−
3

8.
5·
1
0−

3

(8
/8
)

(9
/9
)

(9
/1
5)

(9
/2
0)

(9
/2
4)

(2
4
/
2
4
)

a
m
o
lL

−
1
h
−
1
fo
r
C
S
I,
II
,
II
I,
a
n
d
g
L
−
1
h
−
1
fo
r
C
S
IV

.

201



T
a
b
le
A
.1
4
.
S
u
m
m
a
ry

o
f
th
e
m
o
d
el
p
er
fo
rm

a
n
ce

co
n
si
d
er
in
g
a
n
u
n
se
en

n
o
is
y
te
st

se
t
(s
ta
te
-s
p
a
ce
).

T
h
e
R
2
-v
a
lu
es

a
re

sh
ow

n
fo
r
th
e
S
-s
y
st
em

a
n
d

th
e
A
N
N
.
T
h
e
E
x
tr
-v
a
lu
e
in
d
ic
a
te
s
th
e
p
er
ce
n
ta
g
e
o
f
d
a
ta

p
o
in
ts

o
u
ts
id
e
th
e
tr
a
in
in
g
ra
n
g
e.

T
h
e
b
o
ld

va
lu
es

re
p
re
se
n
t
th
e
b
es
t
m
o
d
el
p
er
fo
rm

a
n
ce

fo
r
th
is
ca
se

st
u
d
y.

If
se
v
er
a
l
m
et
ri
cs

sh
ow

th
e
sa
m
e
p
er
fo
rm

a
n
ce

fo
r
th
e
S
-s
y
st
em

,
th
e
o
n
e
w
it
h
th
e
lo
w
es
t
n
u
m
b
er

o
f
p
a
ra
m
et
er
s
is
ch
o
se
n
a
s
th
e

b
es
t
m
o
d
el
(m

o
st

li
tt
le
co
m
p
le
x
it
y
).

F
o
r
th
e
S
-s
y
st
em

,
th
e
n
u
m
b
er

o
f
n
o
n
-n
eg
a
ti
v
e
p
a
ra
m
et
er
s
is
sh
ow

n
in

b
ra
ck
et
s
a
ft
er

th
e
er
ro
r
m
et
ri
c,
to
g
et
h
er

w
it
h
th
e
u
p
p
er

b
o
u
n
d
fo
r
th
e
m
a
x
im
u
m

n
u
m
b
er

o
f
p
a
ra
m
et
er
s
in

th
e
M
IN

L
P
(N

P
in

m
o
d
el
(2
.1
1
)
in

th
e
m
a
n
u
sc
ri
p
t)
.

C
S

E
x
tr

R
2
a

M
IN

L
P

N
L
P

A
N
N

I
0.
3

0
.9
6
8
9

<
0

0.
89
57

0.
87
05

-
0.
83
11

0.
95
44

(1
2
/
1
2
)

(1
7/
17
)

(3
2/
32
)

(3
5/
40
)

(3
0/
40
)

II
0.
14

0
.9
8
9
6

0.
98
96

0.
98
7

0.
98
96

-
0.
98
81

0.
98
35

(1
7
/
1
7
)b

(2
0/
20
)b

(3
0/
30
)b

(3
5/
40
)b

(3
0/
40
)

II
I

0.
28

0.
99
28

0.
99
28

0.
99
06

0.
99
15

0.
99
15

0.
99
15

0
.9
9
5
9

(1
5/
15
)

(1
5/
24
)

(2
9/
30
)

(3
8/
40
)

(3
8/
60
)

(4
5/
60
)

IV
0.
35

0.
73
77

0.
83
47

0.
83
47

0.
83
47

0.
83
47

<
0

0
.9
4
3
9

(8
/8
)

(9
/9
)

(9
/1
5)

(9
/2
0)

(9
/2
4)

(2
4/
24
)

a
U
n
it
le
ss
.

b
F
o
r
tw
o
b
a
tc
h
es

th
e
so
lv
er

re
su
lt
ed

in
N
a
N
p
re
d
ic
ti
o
n
s.

O
n
ly

fo
u
r
b
a
tc
h
es

co
n
si
d
er
ed

fo
r
er
ro
r
ca
lc
u
la
ti
o
n
.

202



T
a
b
le
A
.1
5
.
S
u
m
m
a
ry

o
f
th
e
m
o
d
el
p
er
fo
rm

a
n
ce

co
n
si
d
er
in
g
a
n
u
n
se
en

n
o
is
y
te
st

se
t
(d
er
iv
a
ti
v
e-
sp
a
ce
).

T
h
e
R
2
-v
a
lu
es

a
re

sh
ow

n
fo
r
th
e
S
-s
y
st
em

a
n
d
th
e
A
N
N
.
T
h
e
E
x
tr
-v
a
lu
e
in
d
ic
a
te
s
th
e
p
er
ce
n
ta
g
e
o
f
d
a
ta

p
o
in
ts
o
u
ts
id
e
th
e
tr
a
in
in
g
ra
n
g
e.

T
h
e
b
o
ld
va
lu
es

re
p
re
se
n
t
th
e
b
es
t
m
o
d
el
p
er
fo
rm

a
n
ce

fo
r
th
is
ca
se

st
u
d
y.

If
se
v
er
a
l
m
et
ri
cs

sh
ow

th
e
sa
m
e
p
er
fo
rm

a
n
ce

fo
r
th
e
S
-s
y
st
em

,
th
e
o
n
e
w
it
h
th
e
lo
w
es
t
n
u
m
b
er

o
f
p
a
ra
m
et
er
s
is
ch
o
se
n
a
s
th
e

b
es
t
m
o
d
el
(m

o
st

li
tt
le
co
m
p
le
x
it
y
).

F
o
r
th
e
S
-s
y
st
em

,
th
e
n
u
m
b
er

o
f
n
o
n
-n
eg
a
ti
v
e
p
a
ra
m
et
er
s
is
sh
ow

n
in

b
ra
ck
et
s
a
ft
er

th
e
er
ro
r
m
et
ri
c,
to
g
et
h
er

w
it
h
th
e
u
p
p
er

b
o
u
n
d
fo
r
th
e
m
a
x
im
u
m

n
u
m
b
er

o
f
p
a
ra
m
et
er
s
in

th
e
M
IN

L
P
(N

P
in

m
o
d
el
(2
.1
1
)
in

th
e
m
a
n
u
sc
ri
p
t)
.

C
S

E
x
tr

R
2
a

M
IN

L
P

N
L
P

A
N
N

I
0.
3

0.
95
18

0.
95
94

0.
96
35

0
.9
6
3
6

0.
95
75

0.
84
33

(1
2/
12
)

(1
7/
17
)

(3
2/
32
)

(3
5
/
4
0
)

(3
0/
40
)

II
0.
14

0.
95
51

0
.9
7
0
6

0.
96
16

0.
96
16

0.
95
09

0.
95
69

(1
7/
17
)

(2
0
/
2
0
)

(3
0/
30
)

(3
5/
40
)

(3
0/
40
)

II
I

0.
28

0.
99
08

0.
99
08

0.
99
17

0.
99
15

0.
99
15

0
.9
9
2
1

0.
96
09

(1
5/
15
)

(1
5/
24
)

(2
9/
30
)

(3
8/
40
)

(3
8/
60
)

(4
5
/
6
0
)

IV
0.
35

0.
76
55

0.
88
08

0.
88
08

0.
88
08

0.
88
08

0
.8
8
5

0.
70
49

(8
/8
)

(9
/9
)

(9
/1
5)

(9
/2
0)

(9
/2
4)

(2
4
/
2
4
)

a
U
n
it
le
ss
.

203



A.6 Model sizes and CPU times

In the following, we indicate the number of equations and number of variables

that are required to fully describe the models. Additionally, the required CPU

time for the parameter estimation is indicated.

Table A.16. The number of equations and variables are shown that result from imple-
menting the model given in expression (2.11) in the manuscript. In the NLP case, all
binaries are set to one, which reduces the number of equations and variables compared to
the MINLP cases.

Dataset CS

MINLP NLP

Equations Variables Equations Variables

Non-noisy

I 619 586 506 545

II 427 394 314 353

III 1103 1052 932 991

IV 447 428 380 403

Noisy

I 619 586 506 545

II 427 394 314 353

III 1103 1052 932 991

IV 447 428 380 403

A.7 Results supplementary information

We next provide more detailed information on the iterations of the algorithm.

Again, the term NLP approach refers to the case of an MINLP where all binaries

are set to one. In this case, the model is solved according to the procedure shown

in Figure 2.4 in the manuscript.

Case Study I - Non-noisy dataset We start with non-noisy data. We �rst

solve the ANN and full-space NLP (NP=40), where in the latter formulation, 14

parameters are found to take a non-zero value. We then solve the MINLP starting

with NP1 = 12, which is expected to be too few parameters for �nding the true

underlying model (14 parameters would be needed in total if expressed by the

S-system). Therefore, the error in training (slope space) should be decreasing

after increasing the bound to at least NP=14, where the true underlying model

should be identi�able by the S-system. The training error should decrease until

reaching the next bound, which was set to NP2 = 17, where the true underlying

model should be identi�able. Since in practice, one would not know that exactly

14 parameters are required, we set NP2 = 17, instead of NP2 = 14 (same for
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Table A.17. Required CPU times (in seconds) of the solver are shown which were needed
for the parameter estimation. Times are indicated for each MINLP model candidate and
the NLP model. For the MINLP candidate models, the upper bound for the binary
variables (NP) is indicated in brackets. CPU times less than 10 seconds were reported
accordingly.

Dataset CS MINLP NLP

Non-noisy

I
152 < 10 < 10 < 10

< 10(12) (17) (32) (40)

II
81 < 10 < 10 < 10 < 10

< 10(11) (15) (20) (30) (40)

III
682 369 40 < 10 < 10 < 10 < 10

< 10(10) (16) (21) (24) (30) (40) (60)

IV
81 < 10 < 10 < 10 < 10 < 10

< 10(15) (17) (19) (21) (23) (24)

Noisy

I
41 275 < 10 < 10

< 10(12) (17) (32) (40)

II
21 1397 26 < 10

< 10(17) (20) (30) (40)

III
193 5012 853 18 < 10

< 10(15) (24) (30) (40) (60)

IV
126 < 10 < 10 < 10 < 10

< 10(8) (9) (15) (20) (24)
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NP1 = 12 instead of NP1 = 14).

We note that increasing the upper bound on the number of binaries (NP ) that

can be one in the MINLP does not necessarily imply that the optimal MINLP

solution will hit the said bound. In other words, the MINLP may decide to

select fewer parameters when increasing their number further does not result in

a lower error in the training set (slope space). For this reason, Figure A.1 shows

both the maximum allowed number of parameters and the actual number of non-

zero parameters. By looking at the kinetic expressions of the in-silico model in

Table A.1, it follows that the S-system should be able to model the non-noisy

data with zero error using 14 parameters in total. In practice, the solver �nds the

true expression for NP ≥ 14 (Table A.18 and Table A.19). On the contrary, the

ANN architecture requires 55 parameters to be estimated.

After integration of the trained models, the lowest state-space error in the test set

is obtained by the MINLP approach (i.e., 3.27·10−4 mol L−1), followed by the NLP

approach (i.e., 1.70·10−2 mol L−1) and the ANN approach (i.e., 2.22·10−2 mol L−1).

Table 2.2 in the manuscript and Table A.8 summarize these results.

20 30 40
Maximum allowed parameters (NP)

0.0

0.1

0.2

0.3

0.4

R
M

S
E

 (
D

er
iv

at
iv

es
) 

/ m
ol

/L
h

12

14 14 14

MINLP Training

MINLP Testing

NLP Training

NLP Testing

Figure A.1. The RMSE in the slope-space is shown for CSI as a function of di�erent
values for NP (maximum allowed non-zero parameters). Non-noisy data were used for
model training. On the one hand, the training and test errors of the MINLP are shown as
solid blue and orange lines with markers, respectively. The corresponding NLP training
and test errors are shown as dashed-dotted lines (overlapping in the plot). The numbers
in the plots indicate how many parameters the solver chooses to be non-zero during the
training procedure.

Case Study I - Noisy Dataset After integration of the trained models, the
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lowest state-space error in the test set is obtained by the MINLP approach (i.e.,

1.51 · 10−1 mol L−1), followed by the ANN approach (i.e., 1.83 · 10−1 mol L−1)

and the NLP approach (i.e., 3.51 · 10−1 mol L−1). Table 2.3 in the manuscript

and Table A.12 summarize these results, where it is emphasized that the MINLP

approaches lead to compact model expressions revealing only 12 parameters. The

NLP approach requires 35 parameters, while the ANN architecture requires 55

parameters to describe the trained model fully.

In contrast to the non-noisy data, the optimizer can further reduce the training

error if more parameters can be non-zero. However, allowing fewer parameters in

the model to be non-zero reduces the model complexity, thereby reducing the risk

of over�tting. As a conclusion, one can observe that the MINLP approach results

in a trained S-system that outperforms the predictive capabilities of the NLP or

ANN approach. Figure 2.5 in the manuscript shows a comparison of the MINLP

and the ANN model predictions.

In conclusion to this case study, it can be stated that the MINLP approach reveals

higher performances if the S-system can fully describe the underlying reaction

since the actual model is identi�ed. This is indeed the case for CSI.

Case Study II - Non-Noisy Dataset After performing the integration of the

trained models, the lowest state space error in the test set is obtained by the

MINLP approach (i.e., 2.58 · 10−1 mol L−1), followed by the NLP approach (i.e.,

3.18 · 10−1 mol L−1), and the ANN approach (i.e., 6.97 · 10−1 mol L−1). Table

2 in the manuscript and Table S8 summarize these results. The MINLP and

NLP approaches lead to compact model expressions that reveal only 11 and 13

parameters, respectively. The ANN architecture requires again 55 parameters to

fully describe the trained model.

For CSII, the S-system will not be able to model the behavior of species A without

error. Due to the nature of the model given in equation (2.13) in the manuscript,

only one depletion term can be described by an S-system. However, the ODE of

species A is characterized by two depletion terms. This is visible in Table A.9,

where the training error (slope space) cannot be decreased to zero. It is worth

mentioning that this does not directly indicate that the model will not predict

this species well. On the other hand, Species B, C, and D can be appropriately

modeled by the S-system. To summarize, it can be stated that the ANN approach
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achieves better predictive performance in those chemical reaction examples where

the S-system cannot fully describe the underlying in-silico model.

Case Study II - Noisy Dataset After training and integrating the S-system

with the MINLP formulation and the data of CSII, the slope space errors shown

in Figure 2.6 could be obtained. The lowest state space error in the test set is

obtained by the MINLP approach (i.e., 3.24 · 10−1 mol L−1), followed by the NLP

approach (i.e., 4.13·10−1 mol L−1) and the ANN approach (i.e., 4.87·10−1 mol L−1).

Table 2.3 in the manuscript and Table A.12 summarize these results, where it

is emphasized that the MINLP approaches lead to compact model expressions

revealing only 17 parameters. The NLP approach requires again 35 parameters,

where the ANN architecture needs again 55 parameters to describe the trained

model fully.

In contrast to the non-noisy data, the optimizer can further reduce the training

error if more parameters can be non-zero (Figure 2.6 (a) in the manuscript). How-

ever, allowing fewer parameters in the model to be non-zero reduces the model

complexity. Additionally, it increases the models' generalization ability and there-

fore reduces the chance of over�tting. This procedure is visible in Figure 2.6 (b)

in the manuscript, where the test error in slope space is �rst reduced and starts to

increase again when allowing more parameters to be non-zero. This clearly ful�lls

the expectation of over�tting models.

As a conclusion, one can observe that the ANN approach reveals the best per-

formance, where the MINLP approach results in a trained S-system model can-

didate that outperforms the predictive power of the NLP approach. However,

although the ANN approach shows better overall performance, the di�erence is

only marginal, where fewer parameters are required for the MINLP/NLP ap-

proaches to model the studied system. Having a compact canonical expression

(as it results from the proposed method) at hand makes it easier to perform subse-

quent tasks, such as an optimization. Since the performance is in a similar range,

the availability of a canonical model makes the presented approach more suitable

for later usage than the ANN.

Case Study III - Non-noisy dataset Case study III represents a chemical re-

action that reveals a slightly higher complexity than before. After model training

and integration, the lowest state-space error in the test set is obtained by the
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ANN approach (i.e., 8.84 · 10−4 mol L−1), followed by the MINLP approach (i.e.,

1.77 · 10−1 mol L−1) and the NLP approach (i.e., 1.83 mol L−1). Table 2.2 in the

manuscript and Table A.8 summarize these results, where it is emphasized that

the MINLP and NLP approaches lead to compact model expressions revealing

only 21 parameters each. The ANN architecture needs 83 parameters to fully

describe the trained model.

Case Study III - Noisy dataset After training and integrating the models on

noisy data, the lowest state space error in the test set is obtained by the ANN ap-

proach (i.e., 1.93 ·10−1 mol L−1), followed by the MINLP approach (i.e.,2.55 ·10−1

mol L−1) and the NLP approach (i.e., 2.77 · 10−1 mol L−1). Table 2.3 in the

manuscript and Table A.12 summarize these results, where it is emphasized that

the MINLP approaches lead to compact model expressions revealing only 15 pa-

rameters. The NLP approach requires again 40 parameters, where the ANN archi-

tecture needs again 83 parameters to fully describe the trained model.

Although the ANN approach shows better overall performance, the di�erence is

only marginal, as in CSII. Again, fewer parameters are required for the MINLP

approach making such a model more suitable for later applications.

Case Study IV - Non-Noisy Dataset Underlying systems of bioprocesses are

usually not described by the same kinetic power-law models used for chemical reac-

tions. However, in this work, the same S-system structure is applied for predicting

the concentration pro�les of a bioprocess. In this case, the MINLP approach show

better predictive performance than the ANN-based method.

After integration of the trained models, the lowest state-space error in the test set

is obtained by the NLP approach (i.e., 3.72 · 10−1 g L−1), followed by the MINLP

approach (i.e., 1.34 g L−1) and the ANN approach (i.e., 3.80 g L−1). Table 2.2 in

the manuscript and Table A.8 summarizes these results, where it is emphasized

that the MINLP/NLP approaches lead to compact model expressions revealing

only 17 parameters each. The ANN architecture requires in total 33 parameters

to fully describe the trained model.

Case Study IV - Noisy Dataset After training and integrating the S-system

with the MINLP formulation in the same manner as before, the lowest state-

space error in the test set is obtained by the ANN approach (i.e., 9.46 · 10−2

g L−1), followed by the MINLP approach (i.e., 1.62 · 10−1 g L−1) and the NLP
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approach (i.e., 7.58 · 10−1 g L−1). Table 2.3 in the manuscript and Table A.12

summarize these results, where it is emphasized that the MINLP/NLP approaches

lead to compact model expressions revealing only 9 parameters each. The ANN

architecture again requires in total 33 parameters to fully describe the trained

model.

The best performing MINLP model candidate is obtained at NP = 9. For two

given test batch runs, the corresponding concentration pro�le predictions of this

model candidate and the ANN model are shown in Figure A.2. One can observe

that the candidate model of the MINLP solution usually predicts a time lagging

pro�le. However, the shapes of the di�erent phases (growth of cells, stagnation,

substrate consumption, etc.) are well predicted.

Exp MINLP ANN
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Figure A.2. The concentration pro�les of the three species in CSIV (noisy data) are
shown: The black circles represent the observed data, the dashed orange line shows the
ANN prediction, and the solid blue line displays the predictions by the S-system (at
NP = 9). The subplots in the top row and bottom row represent two di�erent individual
test runs (unseen in model training).

Two critical factors can therefore be read from the obtained solution. First, one

can correctly describe the species' behavior and the entire bioprocess. Thus,

having such a formalism at hand, a modeler could extract information about the

micro- and macroscopic processes after training the system, further improving

process knowledge. Second, instead of using the full model resulting from the

NLP formalism, one would not reach the same predictive performance and lower
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model complexity as if the binary constraints are implemented.

A.8 Identi�ed model parameters

In the following Tables A.18 to A.21, additional information about the identi�ed

model parameters are given for each individual method.
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A.9 Comparison to Gaussian process and SINDy algorithm

In addition to the MINLP and the ANN approach, a GP was trained to predict

the slopes for CSI. The state space errors were assessed for the three di�erent

methods and shown in Table A.22.

Table A.22. Error metrics of the di�erent approaches are shown for the �rst case study
based on non-noisy and noisy data. The best-performing approach in terms of state-space
error is indicated in bold text. The units for the RMSE are mol L−1, where the R2 is
a unitless quantity. For the MINLP model, only the best-performing model candidate
of the MINLP approach in terms of state-space test error is listed (as done in the main
manuscript). Bold values indicate a the best performing model candidate for each type
of dataset.

CS Method
Non-noisy Noisy

State-space test RMSE/R2 State-space test RMSE/R2

I

ANN 2.2·10−2 / 0.9993 1.8·10−1 / 0.9544
MINLP 3.3·10−4 / 1.0000 1.5·10−1 / 0.9689

GP 3.7·10−5 / 1.0000 1.9·100 / <0

Speci�cally, the GP performs slightly better than the MINLP or the ANN in the

non-noisy state space (bold number in the table above). However, when using

noisy data, the GP results in larger RMSE values than the ANN or the MINLP

approaches.

Additionally, we applied the sparse identi�cation of nonlinear dynamics (SINDy)

algorithm (Brunton et al., 2016) as a reference to all of the case studies used in

the manuscript (noisy and also non-noisy datasets). For this, the python imple-

mentation PySINDy (Silva et al., 2020) was used. We used a sensitivity analysis

around the default values to �nd suitable values for alpha (regularization param-

eter) and threshold (minimum magnitude for a coe�cient in the weight vector) in

the sequentially thresholded least squares algorithm (STLSQ) settings. The com-

bination with the best R2 was chosen to be used. Table A.23 shows the results of

this comparison.

As demonstrated for these speci�c case studies, the MINLP approach performs

better for CSI and CSII in both cases for the non-noisy and the noisy datasets.

For CSIII (more species than in CSI-II), SINDy performs better in the absence of

noise. It also outperforms the MINLP method in CSIV.
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Table A.23. Error metrics of the di�erent approaches are shown for the case studies
based on non-noisy and noisy data. The best-performing approach in terms of state-space
error is indicated in bold text. The units for the RMSE are mol h−1, where the R2 is
a unitless quantity. For the MINLP model, only the best-performing model candidate
of the MINLP approach in terms of state-space test error is listed (as done in the main
manuscript). The used parameter values for �threshold� and �alpha� are shown in the last
two columns. Bold values indicate the best performing model candidate for each type of
dataset.

CS Method

Non-noisy Noisy Non-noisy Noisy

State-space State-space SINDy SINDy

test RMSE and test RMSE and threshold and threshold and

test R2 test R2 alpha alpha

I
SINDy 8.1·10−2 / 0.979 2.7·10−1 / 0.829 10−1 / 5·10−2 100 / 5·10−1

MINLP 3.3·10−4 / 1.000 1.5·10−1 / 0.969 � �

II
SINDy 3.8·10−1 / 0.954 5.2·10−1 / 0.963 10−1 / 101 10−1 / 10−1

MINLP 2.6·10−1 / 0.995 3.24·10−1 / 0.990 � �

III
SINDy 1.1·10−3 / 1.000 2.4·100 / -0.234 10−3/ 10−3 10−1 / 5·10−2

MINLP 1.8·10−1 / 0.997 2.55·10−1 / 0.993 � �

IV
SINDy 4.4·10−2 / 0.985 7.1·10−2 / 0.961 10−2 / 10−4 10−2 / 10−4

MINLP 0.37·100 / 1.000 1.62·10−1 / 0.835 � �
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Appendix B

Supplementary information of

Chapter 3

This part of the appendix contains the supplementary material of the article

given in Chapter 3. It is organized as follows. Sections B.1 and B.2 summarize an

in-depth analysis of derivative approximation methods. Section B.3 summarizes

details to the neural network architecture and the grid search performed to tune

the hyperparameters. Section B.4 shows the parameters used to generate the data

of the di�erent case studies. Section B.5 shows additional results and CPU times

for model training. Section B.6 summarizes the model equations and values of

the parameters that were identi�ed by the BMS. Section B.7 discusses the impact

of a di�erent noise distribution (uniform distribution). Section B.8 summarizes

background information about the case studies introduced in Chapter 3.

B.1 Comparison of derivative estimation methods

In the following section, we discuss the impact of the noise level and the number of

available data points in the time series of one state pro�le on the accuracy of the

derivative calculation. For this analysis, four di�erent approaches to derive noisy

data are applied to the sinusoidal test function shown in Figure 3.2 of the main

manuscript. These methods include a forward �nite di�erence (FD) approach, a

Savitzky-Golay �lter followed by forward �nite di�erence (SG-FD) approach, the

polynomial (Polynomial) approach, and the symbolic approach (BMS). The exact

procedures of the di�erent approaches are discussed in Section 3.3.1 of the main
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manuscript (symbolic and polynomial approaches) or below in Section B.2 (FD

and SG-FD approaches). The di�erent noise levels considered in this analysis were

1%, 2.5%, 5%, 10%, and 20%, where the noise of these levels were added to the

ground truth data. Additionally, the simulated state pro�les consisted of either 5,

10, 20, 50, or 100 data points. Since the true derivative of the underlying ground

truth is known, the mean squared error (MSE) and coe�cient of determination

(R2) were used as performance metrics to check how well the derivatives were

estimated. Figure B.1 summarizes the results of the analysis. Each of the heat

Noise level/%
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Polynomial
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Figure B.1. Performance (coe�cient of determination, R2) of the di�erent approaches
to derive noise state pro�les. Each subplot represents one method (FD: Forward �nite
di�erence, SG-FD: Savitzky-Golay �ltered forward �nite di�erence, Polynomial: Polyno-
mial �tting and analytical derivation, BMS: Symoblic �tting and analytical derivation).
On the x-axis of the heat maps, the di�erent noise levels are shown, where the y-axis
displays the number of data points per state pro�le. The brighter the color, the higher
the performance of the approach (more accurate estimation of the derivative pro�le).

maps show the results for one method, where the above-mentioned noise levels and

number of data points were considered. Starting with the FD approach, one can

observe that by increasing the noise level or decreasing the number of data points

results in a decreased accuracy of the numerically calculated derivatives. Applying

a pretreatment step by including a Savitzky-Golay �lter improves the accuracy of

the derivatives in case of noise presence (SG-FD). However, the �ltering might not

be su�cient to estimate the derivatives well enough, even if 100 data points are

available. This can be observed in the case of 10-20% noise in the SG-FD approach,

where the coe�cient of determination was obtained to be around 0.3 to 0.6. On

the other hand, a higher accuracy could be achieved by the polynomial or BMS

approach. Both methods lead to higher obtained R2-values compared to the SG-

FD approach. The BMS approach reaches very high accuracy, even in the case of a

relatively low number of data points and a high noise level present in the measured
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state space. In bioprocess applications, time series data of samples might be sparse

(i.e., if processes are executed without having online measurements in place).

Manually sampling from ongoing processes and prepare the samples for o�ine

measurement takes time and e�ort. All of these aspects might lead to a relatively

low sampling frequency. Considering this analysis summarized in Figure B.1, for

cases with high noise levels or scarce data sets, the symbolic derivative estimation

approach might therefore simplify the surrogate model identi�cation process and

boost the accuracy of the �nal models by removing noise more e�ectively.

B.2 Finite di�erence and Savitzky-Golay �lter

In the following, the FD and SG-FD approaches for the derivative estimation

are discussed in more detail. As mentioned in the manuscript, the methods are

implemented and available in Python.

Forward �nite di�erence

The forward �nite di�erence (FD) approach is implemented by using the following

approximation of the derivatives:

Ẋ(t) =
dX(t)

dt
≈ ∆X

∆t
=
X(t+ 1)−X(t)

∆t
(B.1)

Savitzky-Golay �ltered forward �nite di�erence

In the SG-FD approach, a Savitzky-Golay �lter is used to smooth the state pro�le

X (with time points u ∈ U) before deriving it. Details to the algorithm for the

smoothing process can be found elsewhere (Savitzky & Golay, 1964). Here, we

discuss how an appropriate combination of the window length w and polynomial

order d of the SG �lter are identi�ed. A pseudo-code is given in below in algorithm

1. First, sets for the di�erent polynomial orders d ∈ D and window lengths w ∈ W
are de�ned together with a weight factor α. The objective J combines the current

mean squared error (MSE) between the �ltered values and the noisy state pro�le

together with the total variation (V AR) as a weighted sum. For every order

d ∈ D and window length w ∈ W , an SG �lter is applied and the objective J

is calculated. For the best J identi�ed (J∗), the corresponding smoothed data

(X∗
smooth) is returned. After this �ltering, the forward �nite di�erence method

described above is applied.
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Algorithm 1: Procedure used to identify appropriate values for the polynomial
order and window length of the Savitzky-Golay �lter

Data: State pro�le Xu for every time step u ∈ U
1 Initialize Polynomial order d ∈ D, window size w ∈W , and weight factor α
2 Initialize Large values for MSE∗ and V AR∗

3 Initialize J∗ = αMSE∗ + (1− α)V AR∗

4 Initialize X as X∗
smooth

5 for Every d ∈ D do
6 for Every w ∈W do
7 if w > |U | or d ≥ w then
8 Continue with next w
9 end
10 Apply SG �lter with d,w → Xsmooth

11 Calculate MSE =
[∑|U |

u (Xsmooth,u −Xu)
2
]
/|U |

12 Calculate V AR =
∑|U |−1

u |Xsmooth,u+1 −Xsmooth,u|
13 Calculate J = αMSE + (1− α)V AR
14 if J < J∗ then
15 Update J∗ and X∗

smooth

16 end
17 end
18 end
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B.3 Neural network architecture

Table B.1. Hyperparameters varied during the grid search for tuning the ANN param-
eters.

Parameter Values

Hidden layer size (3,), (10,), (100,),

(3,3), (10,10), (100,100),

(100, 10), (100, 50),

[(i, j) for i in range(3, 10) for j in range(2, 7)]

Activation function logistic, relu, tanh

Regularization term 101, 100,10−1,10−2,10−3,10−4,10−5

Initial learning rate 10−1, 10−2, 10−3

Table B.2. Details to the �xed hyperparametes in the ANN architecture.

Parameter Values

Maximum iterations 15·103

Tolerance 10−4

Random state 0

Number of iterations with no change 10

Maximum function evaluations 15·103

Solver Adam

Learning rate Constant
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B.4 Case studies

Table B.3. Parameters used in CSI.

Parameter Value Unit

ϕmax 0.25 h−1

KS 105.4 g L−1

A1 130 [−]
A2 3.8·1048 [−]
E1 12.4 kJmol−1

E2 298.6 kJmol−1

Kϕ 121.9 g L−1

YB,S 0.07 [−]
YP,S 0.167 [−]

Table B.4. Parameters used in CSII.

Parameter Value Unit

µ 0.109 h−1

µd 0.0854 Lg−1 h−1

KC 0 mgL−1

KN 0.0086 mgL−1

KP 0 mgL−1

YC1 217 mgL−1

YC2 0.839 mg g−1 h−1

YN1 5.36 mgL−1

YN2 0.0559 mg g−1 h−1

YP1 2.74 mgL−1

YP2 0.00833 mg g−1 h−1

B.5 Additional error metrics and CPU times

Subsequently, additional results similar to those presented in Table 3.2 of the main

manuscript are given. In Table B.5, the root mean squared error (RMSE) of the

models are shown, where Table B.6 displays the mean absolute error (MAE).

Tables B.7 to B.9 summarize the raw data for the calculation of the mean CPU
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time displayed in Table 3.2 of the main manuscript.

Table B.5. The root mean squared error (RMSE) values are shown for the two case
studies and their respective scenarios.

CS
Derivative BMS BMS ANN ANN

method state RMSE derivative RMSE state RMSE derivative RMSE

I Poly-40 3.444 / 0.493 0.050 / 0.055 7.069 / 2.281 0.064 / 0.064

SR-40 2.559 / 5.940 0.101 / 0.077 3.428 / 1.840 0.093 / 0.083

Poly-20 0.810 / 1.419 0.045 / 0.056 1.602 / 1.552 0.052 / 0.054

SR-20 1.302 / 0.989 0.098 / 0.094 1.727 / 2.256 0.092 / 0.090

II Poly-40 4.798 / 4.589 0.389 / 0.399 28.486 / 19.548 1.178 / 0.602

SR-40 4.211 / 2.900 0.396 / 0.296 25.936 / 12.959 0.930 / 0.485

Poly-20 5.436 / 5.257 0.586 / 0.593 28.186 / 31.662 1.692 / 1.598

SR-20 2.067 / 2.312 0.232 / 0.366 17.841 / 12.404 0.780 / 0.703

Table B.6. The mean absolute error (MAE) values are shown for the two case studies
and their respective scenarios.

CS
Derivative BMS BMS ANN ANN

method state MAE derivative MAE state MAE derivative MAE

I Poly-40 1.227 / 0.270 0.030 / 0.032 2.377 / 0.964 0.037 / 0.039

SR-40 1.246 / 2.835 0.050 / 0.045 1.816 / 1.265 0.049 / 0.051

Poly-20 0.446 / 0.742 0.028 / 0.035 0.720 / 0.803 0.032 / 0.035

SR-20 0.759 / 0.905 0.054 / 0.051 0.883 / 1.133 0.049 / 0.051

II Poly-40 2.123 / 2.083 0.159 / 0.163 12.861 / 8.876 0.410 / 0.264

SR-40 1.332 / 1.261 0.103 / 0.098 11.122 / 5.406 0.267 / 0.160

Poly-20 2.291 / 2.205 0.261 / 0.266 11.476 / 13.645 0.641 / 0.597

SR-20 0.758 / 0.947 0.071 / 0.120 7.759 / 5.430 0.257 / 0.227
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Table B.7. CPU times in seconds for the BMS training are displayed for the di�erent
species (B: Biomass, S: Substrate, P : Product (CSI) and Phosphate (CSII), C: Carbon).

B S P B N C P Mean

CSI-Poly-40 6754 9581 5477 - - - - 7271

CSI-SR-40 2806 5228 4363 - - - - 4132

CSI-Poly-20 5232 5768 6408 - - - - 5803

CSI-SR-20 6405 9651 8444 - - - - 8167

CSII-Poly-40 - - - 13921 895 20725 1995 9384

CSII-SR-40 - - - 14786 3373 13498 5443 9275

CSII-Poly-20 - - - 3797 499 3123 1060 2120

CSII-SR-20 - - - 9947 951 4602 2466 4492

Table B.8. CPU times in seconds for the ANN training are displayed for the di�erent
species (B: Biomass, S: Substrate, P : Product (CSI) and Phosphate (CSII), C: Carbon).
The mean value column marked with * represents the mean of the training CPU times
including the grid search times displayed in Table B.9.

B S P B N C P Mean Mean*

CSI-Poly-40 1 0 0 - - - - 0 88

CSI-SR-40 0 0 0 - - - - 0 88

CSI-Poly-20 1 0 1 - - - - 1 59

CSI-SR-20 1 0 0 - - - - 0 57

CSII-Poly-40 - - - 0 0 0 0 0 130

CSII-SR-40 - - - 0 0 1 0 0 162

CSII-Poly-20 - - - 0 0 0 0 0 155

CSII-SR-20 - - - 3 0 0 0 1 151
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Table B.9. CPU times in seconds for the ANN grid search are displayed for the di�erent
species (B: Biomass, S: Substrate, P : Product (CSI) and Phosphate (CSII), C: Carbon).

B S P B N C P

CSI-Poly-40 131 259 134 - - - -

CSI-SR-40 128 263 135 - - - -

CSI-Poly-20 88 175 89 - - - -

CSI-SR-20 87 165 88 - - - -

CSII-Poly-40 - - - 441 187 222 190

CSII-SR-40 - - - 607 216 253 218

CSII-Poly-20 - - - 775 144 174 146

CSII-SR-20 - - - 777 135 157 135

B.6 Identi�ed BMS models

Table B.10. Most plausible rate equations identi�ed by the BMS for CSI in plain text
and Python format (i.e., ** representing 'to-the-power-of'). The corresponding values of
the estimated parameters are given in Table B.11.

Scenario
Rate of

Identi�ed expression in plain text
species

Poly-40 dB/dt (((x2*x1)**(a1+(a2/(a2+x3))))*a0)

dS/dt ((a0+(-(((x3+(x1**(x2*a1)))*a1))*(x2**(((a2/x3)/(x2*a2))**a0))))+a2)

dP/dt -((((a2*((x1*x3)**a1))/(x2**a0))*((a2/x3)+(a0/(x2+(a1**x2))))))

SR-40 dB/dt (((x2/(((a2**2)+(a0**(x2+x3)))/x3))**a1)*a2)

dS/dt (a2*(((exp(((x3*a0)**2))/a1)+(x1+(x2*a2)))*x2))

dP/dt ((x2/((x3*x2)+a1))*x3)

Poly-20 dB/dt (((a1*x3)*x2)**a0)

dS/dt ((((((x1*(x2**2))**a0)/(x3**a2))*a1)*a2)+a1)

dP/dt ((((x2**a0)*a1)*(x1+x3))**a0)

SR-20 dB/dt (((a2*x1)*x2)+a1)

dS/dt ((((a0+x3)*((x1*x2)*x2))**a0)*a1)

dP/dt (((x3*x1)**a0)*((a2*x2)**a1))
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Table B.11. Estimated parameter values to the models given in Table B.10. The
parameters ignored by the BMS are highlighted with bright grey cells. These parametes
are set to value 1 by the BMS and multiplied with the rest of the model. These parameters
are therefore not shown in the equations given in Table B.10.

Scenario Parameter

Rate equation

dB/dt dS/dt dP/dt

Poly-40 a0 4.164·10−3 5.343·10−2 -1.797·100

a1 8.285·10−1 2.072·10−2 4.059·10−1

a2 -1.086·10−1 2.302·10−2 4.175·10−3

SR-40 a0 1.307·100 9.575·10−2 1.000·100

a1 8.003·10−1 7.704·10−1 3.489·102

a2 2.460·104 -1.664·10−2 1.000·100

Poly-20 a0 7.882·10−1 3.609·10−1 8.955·10−1

a1 4.764·10−4 1.359·10−1 1.672·10−3

a2 1.000·100 -4.423·10−1 1.000·100

SR-20 a0 1.000·100 4.139·10−1 3.750·10−1

a1 1.612·10−2 -3.639·10−2 8.107·10−1

a2 1.389·10−3 1.000·100 2.394·10−3
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Table B.13. Estimated parameter values to the models given in Table B.12. The
parameters ignored by the BMS are highlighted with bright grey cells. These parametes
are set to value 1 by the BMS and multiplied with the rest of the model. These parameters
are therefore not shown in the equations given in Table B.12.

Scenario Parameter

Rate equation

dB/dt dS/dt dP/dt

Poly-40 a0 -1.161·100 -1.272·103 6.855·10−5

a1 -6.563·1023 1.000·100 7.913·10−4

a2 9.639·10−1 1.000·100 5.722·100

a3 5.184·1020 1.000·100 1.000·100

a4 1.000·100 -2.478·10−7 1.000·100

a5 1.707·10−1 -7.113·10−2 -1.419·100

a6 -5.692·10−1 1.000·100 1.000·100

a7 2.732·10−2 -1.044·102 -1.174·10−1

SR-40 a0 1.000·100 6.443·10−1 -1.430·10−1

a1 1.000·100 -1.011·102 1.000·100

a2 1.000·100 -6.896·101 -1.408·103

a3 1.836·106 -7.080·10−2 -1.775·102

a4 1.000·100 4.289·106 1.000·100

a5 3.424·103 -2.406·101 1.000·100

a6 -3.905·102 1.000·100 -2.688·10−2

a7 1.000·100 1.000·100 3.121·10−1

Poly-20 a0 1.000·100 1.000·100 1.000·100

a1 -3.943·10−15 1.000·100 9.732·100

a2 3.143·101 1.000·100 -1.386·100

a3 1.000·100 1.000·100 1.850·10−31

a4 1.000·100 1.000·100 1.000·100

a5 1.000·100 1.000·100 1.000·100

a6 1.000·100 -7.079·10−2 1.000·100

a7 5.119·100 1.000·100 1.000·100

SR-20 a0 1.000·100 1.000·100 1.000·100

a1 1.000·100 -7.038·10−2 1.000·100

a2 1.000·100 1.000·100 1.000·100

a3 -4.503·101 1.000·100 1.000·100

a4 7.940·10−4 1.000·100 3.797·103

a5 -1.041·100 1.000·100 -1.228·100

a6 1.000·100 1.000·100 -1.335·103

a7 5.460·103 1.000·100 1.000·100
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B.7 Impact of additive noise distribution

To compare the in�uence of the nature of the noise (i.e., its distribution), uni-

formly distributed noisy data was generated for the �rst case study given in Sec-

tion 3.4.1. The general procedure to generate the data was kept the same as

described in sections 3.4 and 3.4.1 (i.e., number of data points, number of batches

for training and testing, etc.), except that for the noise generation, the random

number generation was changed from the Python method numpy.random.normal

(for a normal distribution) to numpy.random.uniform (for a uniform distribution).

After the data generation, the same data pretreatment and training procedures are

followed. This investigation was only carried out for case study 1 (Section 3.4.1),

with 20 data points, and a symbolic regression di�erentiation for the derivative

approximation. Therefore, this scenario with the uniform noise distribution can

be compared to the scenario described by CSI-SR-20 in the main manuscript. As

prediction models, the BMS and a hyperparameter-tuned ANN are used. For the

training, all required steps were done as described in the manuscript, except that

here, scaled inputs were used for the ANN to further improve the performance

of the ANN, which was not required for the data that was displayed in the main

manuscript.

Table B.14 summarizes the model training and test prediction results, where the

model performances are also visualized in Figure B.2. To compare the impact of

the uniform noise to the normally distributed noise, the results of CSI-SR-20 are

included in Table B.14 as well, which originate from Table 3.2. Furthermore, Fig-

ure B.3 shows the time series pro�les of the observed data (black circles) together

with the BMS predictions (blue solid line), the ANN predictions (orange dashed

line), and the true underlying derivatives (black dotted line) of an unseen test

batch.

Table B.14. The coe�cients of determination (R2, unitless) are shown for the training
and testing runs (notation: train/test) for the base case study 1 and the two di�erent noise
generation possibilities (normal or uniform distribution). The best-performing approach
for each case in terms of state-space performance in the test set (unseen in training) is
indicated in bold text.

Noise BMS BMS ANN ANN

Distribution state R2 derivative R2 state R2 derivative R2

CSI-SR-20 normal 0.993 / 0.989 0.981 / 0.986 0.988 / 0.984 0.983 / 0.988

CSI-SR-20 uniform 0.983 / 0.991 0.964 / 0.981 0.979 / 0.984 0.966 / 0.971
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It is visible that for both noise distributions, the suggested approach using the

BMS, but also the ANN benchmark model, were able to capture the e�ects

after an appropriate pretreatment of the data (i.e., the derivative approxima-

tion).
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Figure B.2. The observed concentration values (left two �gures) and derivative values
(right two �gures) are plotted against the model predictions for CSI where uniform noise
was added to the data. Both, the ANN and BMS performances are displayed. Blue circles
represent the training data, whereas red diamonds correspond to the test data. The black
line represents the values where the observed value corresponds to the model prediction.

Considering the time series pro�le of a test batch prediction, the BMS and the

ANN were both able to capture the dynamics well, as observable in Figure B.3.

The regression is performed in the derivative space, where the data displayed in

Figure S3 is in the state space. This means, both, the identi�ed analytical expres-

sion by the BMS and the trained ANN could be well incorporated to estimate the

right-hand-side of the ODE system from the values of the state variables, and an

integration could be successfully performed, even for a test case which was not

included in the training of the models.

From these calculations one can conclude that changing from a normally to a

uniformly distributed additive noise, no signi�cant change in model performance

was observed, where predictions could still be made successfully.

B.8 Additional experimental information about the case

study

For CSI, the considered ground truth model given the ODE system (3.16) in Chap-

ter 3 is adapted from the example given by Turton et al. (2018). In this work, the

batch production of L-phenylalanine via fermentation with a mutant Brevibac-
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Figure B.3. The concentration pro�les of the three species in CSI are shown together
with the model predictions. The black circles represent the observed noisy data (uniform
noise distribution) of an unseen test batch (not used for model training). The dashed
orange line represents the ANN predictions, whereas the blue solid line represents the
BMS predictions. It is worth mentioning the model predictions are only shown for the
experimental time points that were used for model training, since some initial and last
samples were removed from the training, as discussed in the manuscript.

terium lactofermentum 2256 (ATCC No. 13869) was studied. The authors used

Monod kinetics to describe the dynamics of the system, which were adapted to

create the system given in system (3.16) of Chapter 3. For CSII, the considered

ground truth model given the ODE system (3.17) in Chapter 3 is based on the

work of Del Rio Chanona et al. (2019). In their work, the researchers described

these dynamics to be well suited for the bacterial system they studied. In the

following, additional information on the experimental settings are provided, while

the reader is also referred to the original work for further details (Del Rio Chanona,

Wagner, et al., 2019), in which an algae, bacteria, and algae-bacteria-consortium

wastewater treatment was studied:

The researchers conducted experiments using algae and bacteria. Alga Chlorella

vulgaris GY-H4 was sourced from the Institute of Hydrobiology, Chinese Academy

of Sciences, China, where the bacterium Bacillus subtilis was obtained from pre-

vious research conducted at Xiamen University. Prior to the experiments in syn-

thetic wastewater (SWW), the cells were precultured in BG-11 and Luria-Bertani

media, respectively. Subsequently, they were inoculated separately in both high

and low concentration SWW mediums.

The high concentration SWW initially contained the following ingredients (per

liter of distilled water): 500mg glucose, 1750mg NaHCO3, 727mg NaNO3, 83.3mg

KH2PO4, 7mg NaCl, 4mg CaCl2 · 2H2O, 75mg MgSO4 · 7H2O, 2.5mg FeSO4,
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20mg EDTA, 0.001 25mg ZnSO4, 0.0025mgMnSO4, 0.0125mg H3BO3, 0.0125mg

Co(NO3)2, 0.0125mg Na2MoO4, and 6.25·106 mg CuSO4. This resulted in

200mg L−1 dissolved organic carbon (DOC), 120mg L−1 total nitrogen (TN-NO3
� ),

and 19mg L−1 total phosphorus (TP-PO4
3� ). The low concentration SWW con-

tained the following ingredients (per liter of distilled water): 100mg glucose,

350mg NaHCO3, 115mg NaNO3, 13.2mg KH2PO4, 7mg NaCl, 4mg CaCl2 · 2H2O,

75mg MgSO4 · 7H2O, 2.5mg FeSO4, 20mg EDTA, 0.001 25mg ZnSO4, 0.0025mg

MnSO4, 0.0125mg H3BO3, 0.0125mg Co(NO3)2, 0.0125mg Na2MoO4, and

6.25·106 mg CuSO4. This resulted in 40mg L−1 DOC, 19mg L−1 TN-NO3
� , and

3mg L−1 TP-PO4
3� .

Bacterial experiments were performed in a 500mL ba�ed �ask containing 100mL

of SWW medium, where a cultivation at 28 ◦C and 200 rpm was performed for

8 d, with an initial inoculum size of 0.24 g L−1. Algal and algae-bacteria con-

sortium experiments were conducted in a 1L photobioreactor (PBR) equipped

with external light sources. The light intensity and the aeration rate were set to

300µmolm−2 s−1 and to 0.1 vvm with 2.5% CO2, respectively. The initial culture

volume was 800mL of SWW medium, and the incubation was done for 8 days

at 25 ◦C to 28 ◦C. The initial biomass concentration for the algal experiments

was 0.24 g L−1. In the consortium experiments, the same inoculum size of algae

and bacteria was added to the PBR, with a combined concentration of 0.48 g L−1.

The consortium was also cultivated in sterilized SWW with high and low con-

centrations of glucose (500 and 100 mgL−1), total nitrogen (TN-NO3
� 120 and

19mg L−1), and total phosphorus (TP-PO4
3� 19 and 3mg L−1), respectively. The

culture pH was maintained between 7 and 8. Liquid samples were collected from

the culture broth at speci�c time intervals to measure cell concentration, DOC,

TP, and TN.

To obtain the concentration pro�les, the biomass concentration was determined

by measuring the optical density at 680 nm and expressed as dry weight (g L−1).

The biomass was collected by centrifugation at 5000 rpm for 5min and then

washed three times with water treated by reverse osmosis. During the experi-

ments, carbon concentration was measured using a TOC analyzer (LiquiTOC II,

Elementar, Germany) from �ltered samples (0.45µm). Nitrate (NO3
� ) and phos-

phate (PO4
3� ) ions in the �ltered (0.20µm) wastewater were analysed using an

ion chromatograph (ICS-5000, Dionex, Italy).
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Appendix C

Supplementary information of

Chapter 4

This part of the appendix contains the supplementary material of the article given

in Chapter 4. It is organized as follows. Section C.1 summarizes the CPU times

needed to collect the initial samples. Section C.2 describes the case studies for the

in-silico data generation. Section C.3 shows the a possible application of a linear

basis function model (LBF). Section C.4 summarizes the sensitivity analysis for

the solver settings (relative optimality gap) of MAiNGO.

C.1 Sampling times

An initial dataset was sampled for each CS, which was split into training and

testing datasets. Table C.1 summarizes the time needed to perform this sampling.

CSIII shows a signi�cantly higher CPU time since the mentioned MINLP model

for an optimum heat exchanger network (SYNHEAT, (Yee & Grossmann, 1990))

is solved iteratively.

C.2 Case study descriptions

CSI - Compressor plant

A constant feed rate of 1000 kmol h−1 of a vapor mixture is fed to the mixer.

The composition of the feed was set to 78% nitrogen, 21% oxygen, and 1% of

argon. The feed temperature was set to 25 ◦C and 1 bar. The Peng-Robinson
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Table C.1. The recorded time needed to perform the initial sampling. Additionally, the
number of samples is indicated.

CS Number of samples Sampling time [min]

I 200 85
II 1000 10
III 1000 320
IV 1000 40

equation of state was used for the Aspen HYSYS calculations. The compressor

curves of the two compressors are given in Table C.2. Both compressors operate

in centrifugal mode with a single-MW curve input option. The pressure ratio of

both compressors is set to 1.5. The Schultz method is used as the polytropic

method.

Table C.2. Compressor curves of the implemented compressors in CSI.

Compressor 1 Compressor 2

Speed Volume �ow Head E�ciency Speed Volume �ow Head E�ciency

[rpm] [actm3/h] [m] [%] [rpm] [actm3/h] [m] [%]

5000

300 3100 74

3000

300 3100 68

550 2950 78 550 2950 72

850 2800 80 850 2800 74

1200 2350 79 1200 2350 73

1550 1550 68 1550 1550 62

1750 900 51 1750 900 45

7000

1300 4600 74

10000

1300 4600 68

1550 4500 78 1550 4500 72

1850 4250 80 1850 4250 74

2200 3750 79 2200 3750 73

2550 2600 68 2550 2600 62

9000

1950 5400 74

15000

1950 5400 68

2150 5250 78 2150 5250 72

2500 5000 80 2500 5000 74

2850 4300 79 2850 4300 73

3150 3300 68 3150 3300 62

11000

2800 6800 74

25000

2800 6800 68

3050 6650 78 3050 6650 72

3350 6400 80 3350 6400 74

3700 5800 79 3700 5800 73

4150 4700 68 4150 4700 62

CSII - Ammonia reator

The reactor was modeled as a plug �ow reactor in Aspen HYSYS. For the inte-

gration, 20 segments with a minimum step fraction of 1 · 10−6 was chosen. The
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catalyst was modeled with a diameter of 1 ·10−3m, sphericity of 1, solid density of

2500 kgm−3, and a solid heat capacity of 250 kJ kg−1K. The reactor tube length

was chosen to be 1.5m with 0.2m of diameter. One tube with a wall thickness of

5 · 10−3m was selected, where the tube packing has a void fraction of 0.33. The

feed entering the reactor consists of 100% vapor, where a constant molar �ow rate

of 2.242 · 10−4kgmol h−1 was chosen.

CSIII - Methanol plant

This case study was adapted from Vázquez et al. (2021), where the process

�owsheet is based on the works by VanDal and Bouallou (2013) and González-

Garay et al. (2019).

As thermodynamic packages, the Peng-Robinson and NRTL-ideal were applied in

Aspen HYSYS. We modeled the plant with a constant CO2 feed of 2,000 kmol/h

available at 25 ◦C and 1 bar. This stream is compressed to reach the reaction pres-

sure (optimization variable). The desired �nal pressure is in the range of 45 bar

to 55 bar. Hydrogen is fed at 30 bar and is compressed to reach the reaction pres-

sure. After being compressed, the two gases are mixed with the recycled stream,

and the resultant stream is heated to reach the desired reaction temperature. Two

main reactions occur in the reactor. The �rst one is the CO hydrogenation to pro-

duce methanol (R1), which is accompanied by the water-gas shift reaction (R2),

leading to the global reaction (R3), as shown below. The reaction equations are

given in Table C.3.

Table C.3. Participating reactions in the methanol production plant.

Reaction name Reaction equation

R1 CO2 + 2H2
−−→←−− CH3OH

R2 CO2 +H2
−−→←−− CO+H2O

R3 CO2 + 3H2
−−→←−− CH3OH+H2O

The reactor was modeled as a plug �ow reactor with a Cu�ZnO�Al2O3 catalyst.

The kinetic model developed by Bussche and Froment (1996) was used, whereas

alternative kinetic models could also have been used (Hu² et al., 2017; Pavli²i£

et al., 2020; Slotboom et al., 2020). The reactor outlet is cooled to 35 ◦C and

separated in a �ash unit. A recycle stream with recompression is implemented

to reach the reaction pressure. Part of the recycle stream, mainly containing

CO2, is purged. Before sending the bottom stream to a distillation column, the
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stream is depressurized to 2 bar and sent to another �ash unit. The distillation

column reveals a partial condenser operating at a head pressure of 1 bar. The

distillate product is methanol with a 99%, where the overhead, containing resid-

ual traces of CO2 and methanol, is sent to the purge. The bottom product is

wastewater.

As done in the work of Vázquez et al. (2021), the HEN design is optimized

based on the stream data of the Aspen HYSYS model. High-pressure steam

(40 bar, 250 ◦C) and cooling water (25 ◦C to 30 ◦C) are considered as utilities.

The minimum temperature di�erence was set to 10 ◦C. The equations used to

calculate the cost were based on the ones given by Sinnott and Towler (2020) and

read as follows. The calculation was performed as shown in the work of Vázquez

et al. (2021).

The Annual capital charge ratio (ACCR) is considered to be 20%. The capital

expense (CAPEX) is obtained as follows:

CAPEX = ISBL+OSBL+ CE + CC + CW

where ISBL is the inside battery limit, OSBL is the outside battery limit, CE

is the contingency expense, CC is the construction cost, and CW is the working

capital. The ISBL is calculated as follows:

ISBL =
∑
u∈U

UCu

With U being the set of process units in the �owsheet, and UCu is the cost of

each unit, de�ned as follows:

UCu = k(a+ bCn) · CEPCI
current

CEPCI2010
, ∀u ∈ U

Where the parameters k, a, b, and n depend on the process unit. The design

variable C is used in the correlations that estimate the purchase cost of the unit.

The Chemical Engineering Plant Cost Index (CEPCI) is then used to update

the cost data. As done in the work of Vázquez et al. (2021), we consider a value
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of 603.1 for the current one, corresponding to 2018, and a value of 532.9 for the

2010 one.

The other variables needed to assess the CAPEX are calculated as percentages

of the ISBL:

OSBL = 0.35 · ISBL
CE = 0.20 · (ISBL+OSBL)

CC = 0.30 · (ISBL+OSBL)

CW = 0.15 · (ISBL+OSBL)

Where the corresponding factors are given by Sinnott and Towler (2020). The

OPEX is calculated as the addition of the �xed costs of operation (FOC) and

the variable costs of operation (V OC).

OPEX = FOC + V OC

Where the FOC is calculated as follows:

FOC = Csalary + Csuperv + CSalOv + CMaint + CLand + CIns + CGenOv

The costs included in the FOC are the salary, supervision, salary overhead, main-

tenance, land, taxes and insurance, and general overhead cost, respectively. The

salary cost is obtained as follows:

Csalary = S ·NS ·OS

With S being the yearly salary of an operator, NS the number of shifts considered,

and OS is the number of operators per shift. The other costs are obtained as

percentages of the previous costs:
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Csuperv = 0.25 · Csalary

CSalOv = 0.45 · (Csalary + Csuperv)

CMaint = 0.03 · ISBL
CLand = 0.01(ISBL+OSBL)

CIns = 0.06 · Cwork

CGenOv = 0.64 · (Csalary + Csuperv + CSalOv + CMaint)

For the variable operation cost, we consider the following correlation:

V OC = CFeed + CUtil + CRes

With CUtil being the annual cost of the utilities, CFeed the annual cost of the

feeding, and CRes the cost of treating the residues generated.

The equipment data used to calculate the UC is shown in Table C.4. For the

�xed operation cost, the cost of the feeding material, and the utilities/residues,

the parameters shown in Table C.5 to Table C.7 are used.

Table C.4. Cost data for the process units.

Unit Design variable k a b n

Reactor Volume [m3] 4 61500 32500 0.8
Heat exchangers Area [m2] 1 28000 54 1.2
Process vessel Mass [kg] 4 17400 79 0.85
Trays Diameter [m] 1 130 440 1.8
Cooling tower Water cooled [L s−1] 2.5 170000 1500 0.9
Furnace Duty [MW] 2.5 80000 10900 0.8
Compressor Duty [kW] 2.5 580000 20000 0.6

Table C.5. FOC parameters.

Parameter Value

S 40000 $/operator
NS 3 shifts
OS 5 operator/shift

CSIV - Ammonia reactor series

The reactors were modeled as plug �ow reactors in Aspen HYSYS. For the inte-
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Table C.6. Parameters for CFeed.

Parameter Value Reference

Cost of hydrogen from electrolysis 5.240 ¿2015 kg−1 Parkinson et al., 2019
Cost of hydrogen from SMR with CCS 0.165 ¿2017 N−1m−3 Collodi et al., 2017
Cost of CO2 from DAC 95.50 $2018 t−1 Keith et al., 2018

Table C.7. Parameters for Cutil and CRes.

Parameter Value Reference

Cost of heating 12.1 $2018 GJ−1 Wernet et al., 2016
Cost of cooling water 0.03 $2018 m−3 Wernet et al., 2016

Gonzalez-Garay and Guillen-Gosalbez, 2018
Cost of electricity 94.5 $2018 MWh−1 Wernet et al., 2016

Gonzalez-Garay and Guillen-Gosalbez, 2018
Cost of treating waste water 1.50 $2018 m−3 Wernet et al., 2016

Gonzalez-Garay and Guillen-Gosalbez, 2018

gration, 20 segments with a minimum step fraction of 1 · 10−6 was chosen. The

catalyst was modeled with a diameter of 1 ·10−3 m, sphericity of 1, solid density of

2500 kgm−3, and a solid heat capacity of 250 kJ kg−1K. The reactor tube length

was chosen to be 1.5m with 0.2m of diameter. One tube with a wall thickness

of 5 · 10−3 m was selected, where the tube packing has a void fraction of 0.33.

The feed entering the plant (before the splitter) consists of 100% vapor, where

a constant molar �ow rate of 2.242 · 104 kgmol h−1 was chosen. The tempera-

ture and pressure of this stream were used as optimization variables since this

stream directly enters the �rst reactor after the splitter. The composition was

chosen to be 74% of hydrogen, 24.52% nitrogen, 1.46% ammonia, and 0.03% ar-

gon. The mixers between the reactors set the outlet pressure to the lowest inlet

pressure. Additional compressors after mixing (before reactors 2 and 3) adjust

the stream's pressure to the desired input pressure. Both compressors operate in

centrifugal mode with a single-MW curve input option. The Schultz method is

used as the polytropic method. Coolers (after the compressors) allow adjustment

of the inlet temperatures for reactors 2 and 3. A pressure drop over the coolers

was neglected.
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C.3 Comparison of linear basis function model to the Bayesian

machine scientist

This section summarizes the results of a sparse regression technique using a linear

basis function (LBF) model, which is compared to the proposed approach. LBF

also leads to closed-form and interpretable expressions, yet it performs worse in

our case studies, as discussed below. This might occur because the BMS algorithm

used in our framework searches in a much wider space of expressions since it does

not require any pre-assumed structure of the �nal model. This is a clear advantage

over the sparse regression methods, which assume a given model structure. How-

ever, the performance of both approaches will depend on the problem at hand. As

shown below, in our case, the BMS provides better solutions in terms of both the

accuracy of the surrogate and the quality of the �nal solution reported compared

with a standard sparse regression technique. In principle, a larger search space in

terms of plausible models should lead to better results, yet this might not always

be the case, as the BMS does not guarantee the global optimality of the identi�ed

solution.

Speci�cally for CSIV, we implemented an LBF model using Python 3.8.11 and

compared it with the BMS approach. We used the same input data x (i.e.,

[b1, b2, T1, T2, T3, P1, P2, P3]) and f(x) (conversion) used for training the BMS and

the GP shown in Chapter 4.

f(x) = w · ϕ(x)

Where f(x) represents the target outputs of the process, w the weights/parameters

of the model, and ϕ(x) describes the basis functions. The following nonlinear

transformations (basis functions) were used:

ϕ(x) =
[
x,
√
x, x2, x3, xixj

]
Since we considered eight input variables, the dimensions of x,

√
x, x2, x3 are [n×8]

each (for the n training samples). xixj represents the binary interactions (i.e.,

b1b2, b1T1, . . . P2P3), given by an array with dimensions [n× 28]. The dimensions

of ϕ(x), therefore, are [n×60]. Subsequently, we scaled the data using a standard
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scaler provided by sklearn 1.0. We then applied a LASSO regression to perform

feature selection. By varying the regularization parameter α and computing the

R2 value, we obtained the results in Figure C.1. Since at α = 10−3 the R2

value is not signi�cantly smaller than at α = 10−9, we chose this value for the

regression. Subsequently, a prediction with the identi�ed model results in the

observed vs. predicted graph shown in Figure C.1. The model performs worse

than the one identi�ed with the BMS considering the same performance metric

as in the manuscript (for the training: MAE = 2.948%, RMSE = 3.761%,

R2 = 0.828, and for the testing: MAE = 3.291%, RMSE = 4.207%, R2 = 0.757).

The parameter values are shown in Table C.8.

Table C.8. Regression parameters obtained by applying a LASSO approach with α =
10−3 to the above-described input data. Nonzero values are colored green, while zero cells
are colored orange.

ϕ 1 2 3 4 5 6 7 8 9 10

w -0.002 0 0 0 0 0 0 0 0 0

ϕ 11 12 13 14 15 16 17 18 19 20

w 0 0 0 0 0 0 -0.057 0 -0.685 -1.175

ϕ 21 22 23 24 25 26 27 28 29 30

w -2.193 -0.037 -0.014 0.037 -0.056 0 0.39 1.65 2.905 0

ϕ 31 32 33 34 35 36 37 38 39 40

w 0.25 0 0 0.412 0.269 0 0.366 0 0 0

ϕ 41 42 43 44 45 46 47 48 49 50

w 0 0.31 -0.049 0 0.18 0.284 0.069 -0.501 0.339 0.122

ϕ 51 52 53 54 55 56 57 58 59 60

w -0.001 0.061 -0.754 0 0 0 -0.476 0 0.385 0.111

The obtained algebraic function was then implemented in GAMS to perform the

same optimization as with the BMS expression, �nding a solution much better

than the one identi�ed with the LBF model, as shown in Table C.9. We know

that the LBF model performance depends on the basis functions chosen and that

a thorough cross-validation study would improve the results. However, a primary

advantage of using the BMS, a model with no pre-de�ned structure, is that such

as study is not needed.

We cannot claim that our approach will always be superior since this will be

case-dependent. However, it can undoubtedly behave better than other existing

approaches and is likely to perform even better in the future as more e�cient
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Figure C.1. (a) Obtained R2 results as a function of the regularization parameter α
(blue line). Additionally, the number of nonzero parameters w are shown as a function of
α (orange line). (b) Observed versus predicted values for the training (blue circles) and
test (red diamonds) set. The regression parameters w for the corresponding model are
given in Table C.8.

symbolic regression algorithms become available.

C.4 Sensitivity analysis for the optimality gap of MAiNGO

We varied the optimality gap (ϵR) of MAiNGO for the values ϵR = [10−1, 10−2,

10−3, 10−4]. The maximum allowed CPU times were set to the corresponding

training time the BMS required in the CSs: 16 500 s (CSI), 5600 s (CSII), 41 000 s

(CSIII), and 123 500 s (CSIV). Multi-start was not applied. The results are sum-

marized in Table C.10.

For CSI, the optimization led to the solution x∗GP = 0.61, with an objective

function value of F (x∗GP ) =413 kW for all values of ϵR. The maximum CPU time

needed was 7 s, which was reached for ϵR = 10−4. Our proposed approach led

to the same solution, as shown in the manuscript. Therefore, no di�erence was

observed by varying the tolerance for the optimality gap.

For CSII, in all cases of ϵR, the corresponding optimality gap could be closed up to

ϵR, leading to MAiNGO �nding a global optimum. The solutions were identi�ed

after 3053 s/4315 s/4364 s/4476 s for the di�erent ϵR. The same optimum solution

x∗GP = [276 ◦C, 198 bar] was identi�ed for all ϵR. The corresponding objective

function value (conversion of nitrogen) was F (x∗) = 37.8%. It is worth mentioning
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Table C.9. Results for the linear basis function model (LBFM) for CSIV. In the �rst row,
the optimization direction is given. The CPU time (in seconds) needed for model-based
optimization is shown in the second row, followed by the model status obtained from
BARON. The solution x∗ found during the optimization is evaluated in Aspen HYSYS
to obtain f(x∗), which is then compared to the value of the surrogate F (x∗) to determine
the relative absolute error (which measures the mismatch between the surrogate and
the original process model in the optimal solution found). The results for the proposed
procedure shown in the manuscript (labeled with CSIV - BMS) are additionally shown
for convenience.

CSIV - BMS CSIV - LBFM

Optimization direction Maximization Maximization

CPU Optimization 2 s 1 s
Model status Globally optimal Globally optimal

F (x∗
BMS) 46.21% 48.83%

x∗
BMS

1 [−] 0.6 [−]
0 [−] 0.3 [−]
400 ◦C 351 ◦C

382 ◦C 334 ◦C

311 ◦C 365 ◦C

195 bar 196 bar

230 bar 199 bar

230 bar 226 bar

x∗ → HYSYS→ f(x∗) 47.03% 39.79%

RAE 2% 28%

that in the manuscript Table 4.8 we reported the solution for a pure multi-start,

which is why MAiNGO returned a feasible solution, not a global optimum. With

our proposed approach, the solution was obtained to be x∗ = [265 ◦C, 230 bar],

leading to F (x∗BMS) = 31.5%. However, inserting both solutions (x∗BMS and x∗GP )

into HYSYS resulted in f(x∗BMS) = 29.3% for BARON and f(x∗GP ) = 27.5% for

MAiNGO. Therefore, considering this reported global optimum by MAiNGO, our

approach led to a better solution.

For CSIII, MAiNGO reached the maximum allowed CPU time of 41 000 s already

for ϵR = 10−1. Again, this was the same time the BMS needed for training.

MAiNGO returned a feasible point (not a global solution) with an objective func-

tion value of F (x∗GP ) = 0.714$ kg−1, where the corresponding optimum arguments

were x∗GP = [233 ◦C, 5750 kmol h−1, 0.001 [−], 1.250 [−], 53m3, 5375 kPa]. If this

solution was inserted into HYSYS f(x∗GP ) =0.729 $ kg−1 could be obtained. As

a comparison, the BARON approach led to the solution F (x∗BMS) =0.716 $ kg−1
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with the optimum arguments x∗BMS = [209 ◦C, 5848 kmol h−1, 0.001 [−],1.526 [−],
55m3, 5497 kPa]. If these values were inserted into HYSYS, the solution

f(x∗BMS) =0.727 $ kg−1 was obtained. Again, considering this reported global

optimum by MAiNGO, our approach led to a better solution.

For CSIV, MAiNGO reached the maximum allowed CPU time of 123 500 s for

ϵR = 10−2, where it returned a feasible point of x∗GP = [1 [−], 0 [−], 292 ◦C,

334 ◦C, 337 ◦C, 230 bar, 200 bar, 200 bar]. The optimal solution was found to

be F (x∗GP ) = 54.49% conversion. If this solution was inserted into HYSYS

f(x∗GP ) = 50.04% conversion could be obtained.

As a comparison, the BARON approach led to the solution F (x∗BMS) = 46.21%

with the optimum arguments x∗BMS = [1 [−], 0 [−], 400 ◦C, 382 ◦C, 311 ◦C, 195 bar,

230 bar, 230 bar]. If these values were inserted into HYSYS, the solution

f(x∗BMS) = 47.03% was obtained.
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Appendix D

Supplementary information of

Chapter 5

This part of the appendix contains the supplementary material of the article

given in Chapter 5. Section D.1 introduce the reader to the �exibility topic.

Section D.2 shows the application of the proposed approach for two di�erent

designs in CSII.

D.1 Motivational examples

Example description Three motivational examples (ME) are introduced. The

�rst linear example (ME-I) was inspired by the work of Pulsipher et al. (2019).

There are no variables z present to solve the �exibility problem. The nonlinear

example (ME-II) was adapted from Pulsipher et al. (2019), where again, no

control variables z are present. The last example (ME-III) was used by Ochoa and

Grossmann (2020), where control variables z are included to solve the �exibility

problem. The set of system constraints fj for the examples are shown in Table D.1,

together with the settings of the optimizers. To solve these problems, Pyomo

v6.4.4 was interfaced with the solvers CPLEX v41.3.0 (ME-I and ME-III) and

BARON v22.7.23 (ME-II). On the one hand, the examples were used to cross-

check the obtained results with a proven publication. On the other hand, they

illustrate the usage of the �exibility index as a quanti�cation metric to compare

systems.
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Table D.1. Constraints and properties used for the motivational examples.

ME-I ME-II ME-III

Reference
Original from Adapted from Original from

Pulsipher et al. (2019) Pulsipher et al. (2019) Ochoa and Grossmann (2020)

Type Linear Nonlinear Linear

z Not present Not present Variable

fj

f1 : θ1 + θ2 − 14 ≤ 0 f1 : 10.5θ1 − 500 + θ2 ≤ 0 f1 : z − θ1 + 2θ2 − 5 ≤ 0

f2 : θ1 − 2θ2 − 2 ≤ 0 f2 : 0.8θ1 − 100 + θ2 ≤ 0 f2 : −z −
θ1

3
−

θ2

2
− 3 ≤ 0

f3 : −θ1 ≤ 0 f3 : −2.4θ1 + 100− θ2 ≤ 0 f3 : z + θ1 − θ2 − 6 ≤ 0

f4 : −θ2 ≤ 0 f4 : −(θ1 − 42)2 + 37− θ2 ≤ 0 f4,5 : z ≤ z ≤ z

f6,7 : θ1 ≤ θ1 ≤ θ1
f8,9 : θ2 ≤ θ2 ≤ θ2

θk ∀k ∈ K [0; 0] [0; 0] [0; 0]

θk ∀k ∈ K [20; 20] [50; 100] [8; 5]

z and z - - [-8, 8]

Solver CPLEX BARON CPLEX

Relative
0 0 0optimality gap

Results for motivational examples The results of the linear and nonlinear

motivational examples ME-I and ME-II are summarized in Table D.2, where a

schematic representation is given in Figure D.1. Comparing the solutions of δ∗ in

Table D.2, ME-I reveals a lower �exibility than ME-II (δ∗ = 0.161 vs. δ∗ = 0.232).

For the two examples, maximum possible upper and lower deviations ∆θmk ax and

∆θmin
k were chosen that depend on the choice of the nominal operating point θNk

and the bounds (θk and θk) of the considered uncertain parameter θk. This was

done due to two reasons. First, the numerical ranges of the uncertain parameters

can be taken into consideration, which makes the comparison of the value of δ∗

more intuitive. Second, in a real world example, one usually does not have in-

formation about the allowed deviation ∆θmk ax or ∆θmk in. However, on the other

hand, the bounds of the uncertain parameters are more likely to be known, where

the operating point θN can be chosen by the modeler or process owner.

Problem (5.9) searches for the shortest distance from the nominal operating point

to the next possible constraint. Therefore, the set of parameters located on the

constraint closest to the nominal operating point is described by the critical uncer-

tain parameters θc. This concept can be schematically shown by considering the

projection of the constraints fj onto the uncertain parameter plane (Figure D.1).

In the above shown examples, the constraints are �xed and not in�uenced by any
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Table D.2. Results summary of the motivational examples ME-I and ME-II given in
Table D.1. A graphical representation of the examples is given in Figure D.1.

ME-I ME-II

Type Linear without control Nonlinear without control

θN [4.0, 5.0] [37.0, 43.0]

∆θmin
k , k ∈ K θNk − θk

∆θmax
k , k ∈ K θk − θNk

δ∗ 0.161 0.232

θ∗ [6.6, 7.4] [40.0, 33.0]

Active constraint f1 f4
CPU 0.4 s 0.9 s

f1 f2 f3 f4 Nominal θ Crit ical θ T( )δ
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0
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Figure D.1. Graphical representation of the motivational examples ME-I (a) and ME-II
(b). The linear and nonlinear constraints fj (dashed and solid lines) include the feasible
region, which is shown by the bright blue shaded area. The chosen nominal operating
point θN (blue diamond) is encountered by the set T (δ) (blue box). The box touches one
constraint at the critical point δc (red circle).

control variable z. If we consider constraints that are depending on such a control

variable z, as given in ME-III (Table D.1), the size of the feasible region changes

upon varying the value for z. This is indicated schematically in Figure D.2. By

solving the �exibility problem for such a system with control variables results in

searching for the closest constraint or bound that is either not in�uenced by a

control variable (and therefore can not be moved), or by reaching a constraint

that is controlled but the control variable has reached a lower or upper limit.

Figure D.3 shows a solution for ME-III. In this example, the closest constraint

independent of the control variable is the upper bound of θ2. Therefore, there

are several solutions for the critical θc, since T (δ) touches a line (represented by

the red circles in Figure D.3). It is worth noticing that constraint f3 was moved

251



0 5
θ1

0

2

4

6
θ

2

 θkBoundsf1 f2 f3

0 5
θ1

0 5
θ1

0 5
θ1

z=-3 z=-1 z=1 z=3

(a) (b) (c) (d)

Figure D.2. Projection of the constraints onto the θ1 − θ2-plane. The constraints
represent the system ME-III given in Table D.1. Increasing the value of z = −3 (a) up to
z = 3 (d), the size of the feasible region is reduced. It is worth mentioning that constraint
f2 moved to negative θ2-values in (b), (c), and (d), and is therefore not visible anymore
due to the limits of the plots.

as far downwards (lower y-axis-intersections) as needed until a corner of T (δ) hit

another bound (same in Figure D.2 (b), (c), and (d)).

D.2 Comparison of the �exibility in CSII

In addition to the design of the chromatographic column introduced in Section 5.4

(subsequently described by the design d1), we adapted the column length and

diameter to create another design d2. The di�erences between the two designs

are indicated in Table D.3. Everything else (i.e., upper, and lower bounds for the

sampling, process parameters, etc.) is the same for both designs.

Table D.3. Design parameters for the two designs of case study II.

Property Design d1 Design d2

Column length Lcol 10 cm 15 cm

Cross-sectional area of the column Acol 0.2 cm2 0.1 cm2

We followed the same procedure for the sampling, model building, and incorpo-

ration of the surrogate model into the �exibility index formulation for the design

d2, as given in Chapter 5.4. The results for the model building for the two de-

signs are compared in Table D.4. The identi�ed closed-form expressions for the

surrogate models and their estimated parameters are given in Table D.5 and Ta-

ble D.6.
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Figure D.3. Graphical representation of the solution for the �exibility index problem
for ME-III. The constraints fj (dashed and solid lines) include the feasible region, which
is shown by the bright blue shaded area. The chosen nominal operating point θN (blue
diamond) is encountered by the set T (δ) (blue box). The upper bound of θ2 (independent
of the control variable) is the constraint closest to the nominal operating point. T (δ)
therefore touches a line (red circles).

Table D.4. The training performance criteria are summarized for the Bayesian machine
scientist (BMS). Each row represents one design of the case study II. The CPU time (in
hours) needed for the model training is shown in the left part of the table. The error
metrics (root mean squared error, mean absolute error, coe�cient of determination) are
shown for the training and testing data (format: training/testing). The error units are
given in squared brackets. The identi�ed algebraic expressions are indicated in Table D.5,
whereas the corresponding model parameters are reported in Table D.6.

CS CPU training RMSE MAE R2

Design d1 2.7 h 0.014 / 0.012 [−] 0.009 / 0.008 [−] 0.998 / 0.998 [−]
Design d2 2.4 h 0.016 / 0.016 [−] 0.010 / 0.011 [−] 0.997 / 0.997 [−]
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Table D.5. The most plausible closed-form expressions for each design in case study
II identi�ed by the Bayesian machine scientist (BMS) are shown. The corresponding
estimated parameter values are reported in Table D.6.

CS Prediction target Identi�ed expression

d1

LR = LR(cin, Q, tload)

a0

 tloada

tload/cin
a1

0

tload+
a1

exp(ca0
in)


− a2(a0Q)a2

a0

(
Q

cin
+a1

)

z = [Q]

θ = [cin, tload]

d2

LR = LR(cin, Q, tload)

a

√
Qa2
tload

cinQ(t2load
+a0)

+a1

1
z = [Q]

θ = [cin, tload]

Table D.6. Parameter values of the most plausible surrogate model identi�ed by the
Bayesian machine scientist (BMS) for each case study (CS). The corresponding model
equations are given in Table D.5.

Parameter Design

d1 d2

a0 0.894 524.029
a1 24.458 0.02
a2 -1.844 7.325·107
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The most signi�cant di�erence between the two designs can be found in the ob-

tained �exibility index. A visualization of the result is given in Figure D.4. As

visible, the �exibility of the design d1 given in (a) of Figure D.4 (δ∗ = 0.811) is

signi�cantly larger than the one obtained for the design d2 (δ∗ = 0.389), shown

in Figure D.4 (b). Therefore, considering the �exibility of the two columns, one

can conclude that one should choose the design d1 (shorter column with a larger

cross-sectional area) to reach a more �exible process with respect to the studied

uncertain parameters.

Nominal θ Critical θ T( )δSurrogatefj≠1

0.5 1.0 1.5 2.0
c  / mg/mLin

2.5

5.0

7.5

10.0

12.5

15.0

t
 / 

m
in

lo
a
d

(a)

0.5 1.0 1.5 2.0
c  / mg/mLin

2.5

5.0

7.5

10.0

12.5

15.0

t
 / 

m
in

lo
a
d

(b)

Figure D.4. Graphical representation of the solution for the �exibility index problem
for the design d1 (a) and the design d2 (b) of case study II. The feasible region is shown
in shaded light blue color. The constraints in dashed lines represent the bounds of the
uncertain parameters. The solid lines represent the surrogate constraint which can be
in�uenced by the control variable z. The chosen nominal operating point θN (blue dia-
mond) is encountered by the set T (δ) (blue box). The surrogate constraints F1 are active
constraints (red circles).
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