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Abstract

The work presented in this thesis focuses on addressing modeling, optimization, and
flexibility analysis challenges which are encountered on different conceptual scales within
the chemical and biological industry. By leveraging advancements in machine learning,
mathematical modeling, and optimization techniques, innovative data-driven and hybrid
approaches are introduced as alternatives to existing methods. These approaches provide
solutions to address challenges spanning from micro scale (i.e., kinetic modeling) to
macro scale (i.e., flowsheet optimization). Through these implementations, which are
created using concepts from the Process Systems Engineering field, decision-making
processes are supported in a digital manner, which can improve the understanding of a

system under study, and enhance its efficiency and sustainability.

Mathematical modeling helps to guide experiments more effectively, to support pro-
cess monitoring and control tasks, to stabilize product quality, to increase consumer
safety, or to ease specific decision-making tasks for subject matter experts. Consid-
ering kinetic systems — a conceptually microscopically small scale — the construction
of accurate models can be challenging, especially with bioprocesses, due to complex
metabolic mechanisms and data scarcity. Chapter [2| tackles these challenges and pro-
poses a method for building models combining a mass balance backbone in form of a
canonical kinetic representation — thereby intrinsically incorporating expert knowledge —
with a scarce dataset. The final model structure and parameters that best describe the
studied system are automatically and simultaneously identified by using a mathematical
programming approach. Following an incremental procedure, the integration of ordinary
differential equations is avoided. Numerical examples show that the proposed method
performs similarly to models based on artificial neural networks, even outperforming
them in some cases while providing an analytical, closed-form model. Such expressions
can be more easily and efficiently optimized in existing algebraic modeling systems. The

resulting hybrid models can be physically interpreted since the intrinsically incorporated
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knowledge guides the structure of the model (due to the canonical formalism). In Chap-
ter B] the entire workflow is then extended to the use of symbolic regression approaches.
This chapter particularly targets the challenge when interpretable models for biopro-
cesses are sought in cases where little knowledge about the system is available. Classical
machine learning algorithms are gaining wide interest to simulate complex bioprocesses
that are hard to describe via first principles. They often rely on a priori assumptions of
the model structure and lead to mathematical expressions that are hard to interpret or
to further integrate into other platforms. Therefore, Chapter [3] proposes an alternative
approach based on symbolic regression to identify bioprocess models without assuming
a pre-defined model structure. Algebraic expressions for the kinetic rates are obtained
from measured data that only consists of concentration profiles. The workflow builds
up on the one presented in Chapter [2] which allows avoiding the iterative integration of
differential equations for the parameter estimation step. The proposed procedure was
found to slightly outperform neural network benchmarks. Moreso, the obtained alge-
braic expressions for the rate equations facilitate the model interpretation and enable
the direct application of optimization algorithms. Going from such a conceptually small
scale to a macro scale, the presented thesis addresses the challenges of globally optimiz-
ing process units and flowsheets through the use of surrogate models and state-of-the-art
optimization algorithms. Therefore, in Chapter [ a strategy for the global optimization
of processes is proposed. In a first step, algebraic surrogates are built from rigorous
simulations via symbolic regression. The applied method provides a closed-form expres-
sion that, in a second step, can be optimized to global optimality using state-of-the-art
solvers. When predicting unseen test data, the algebraic models show a similar accuracy
level compared to traditional surrogates based on Gaussian processes. However, they
can be more easily optimized to global optimality due to their closed-form structure,
which allows the user to apply well-established global deterministic solvers. The capa-
bilities of the proposed approach are demonstrated in several case studies, ranging from
the meso scale (process units) to the macro scale (full flowsheets). Finally, by leveraging
surrogate modeling techniques, Chapter [5] provides a framework that allows to analyze
the flexibility of a production unit in cases when process constraints are difficult to
model. Flexibility analyses are widespread in chemical engineering to quantify allowed
deviations from nominal conditions. Standard approaches to perform flexibility analysis
can be hard to apply if process constraints are difficult to handle. This chapter focuses
on the computation of the traditional flexibility index in problems with complicating
constraints. In a first step, symbolic regression is used to build algebraic expressions of
the said complicating constraints. This allows, in a second step, to simplify the flexi-

bility analysis of complex process models by enabling the application of state-of-the-art
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deterministic solvers. This approach is applied to two different case studies. The per-
formance is assessed in terms of model building time, predictive accuracy of the model,
and the time required to solve the flexibility formulations. Overall, this combination of a
deterministic formulation and data-driven models — a hybrid framework — provides a way
to analyze the process flexibility entailing complicating constraints. Finally, Chapter [§]
summarizes the main findings, where limitations of the proposed methods are discussed,

and possible future research avenues are described.

The provided and discussed tools offer alternative solutions that allow to model, ana-
lyze, and optimize systems under study, which subsequently support the decision-making
process for practitioners. Each of the chapters discusses how the applied surrogate and
hybrid frameworks can be useful to create applications that allow advancing digitaliza-

tion within the chemical and biological production industry.






Zusammenfassung

Die vorliegende Dissertation fokussiert auf Herausforderungen in der Modellierung, Op-
timierung und der Flexibilitdtsanalyse in der chemischen und biologischen Industrie.
Solche Herausforderungen konnen auf verschiedenen konzeptionellen bzw. physikalis-
chen Dimensionen auftreten. Aktuelle Fortschritte in der mathematischen Modellierung
und Optimierung werden genutzt, um datengetriebene und hybride Losungsansitze
zu entwickeln, die Alternativen zu bereits existierenden Mdoglichkeiten darstellen. Die
Implementierung solcher neuen bzw. alternativen Ansitzen wird auf Konzepten der
Prozesssystemtechnik aufgebaut. Die vorgeschlagenen Methoden sollen bei der Bewdl-
tigung von Fragestellungen helfen, welche auf konzeptionell und physikalisch kleinen
(z.B. kinetische Modellierung) und grossen (z.B. Optimierung von gesamten Produk-
tionsprozessen) Dimensionen auftreten. Durch die Nutzung solcher Methoden wer-
den Entscheidungsprozesse auf digitale Weise unterstiitzt, das Verstdndnis eines unter-

suchten Systems verbessert und seine Effizienz und Nachhaltigkeit gesteigert.

Ein System mathematisch zu modellieren kann helfen Experimente effektiver zu planen,
Prozessiiberwachungen zu unterstiitzen, die Produktqualitit zu stabilisieren, die Ver-
brauchersicherheit zu erhéhen und fachsperzifische Entscheidungen zu erleichtern. Bei
kinetischen Systemen — ein konzeptionell und physikalisch kleiner Massstab — kann die
Konstruktion von akkuraten Modellen eine Herausforderung darstellen. Dies trifft ins-
besondere auf Bioprozesse zu, bei denen zum einen komplexe Stoffwechselmechanismen
auftreten, und zum anderen die Datensdtze meist begrenzt sind. Diese Problematik
wird in Kapitel 2] der vorliegenden Arbeit aufgegriffen. Dabei wird eine eine Methode
zur Modellgenerierung besprochen, welche eine Massenbilanz in Form einer kanonisch-
kinetischen Darstellung mit einem kleinen verfiigbaren Datensatz kombiniert. Experten-
wissen wird somit durch den benutzten kanonischen Formalismus und die damit verbun-
dene mathematische Grundstruktur in die Generierung des Modells miteinbezogen. Die

finale Modellstruktur und die involvierten Parameter werden mit Hilfe eines mathe-
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matischen Optimierungsansatzes automatisch und simultan ermittelt. Durch die en-
twickelte mehrstufige Methode wird die iterative Integration von Differentialgleichungen
vermieden. Numerische Beispiele zeigen, dass die dadurch generierten Modelle dhnlich
gute oder sogar bessere Ergebnisse erzielen kénnen wie Modelle, die auf kiinstlichen
neuronalen Netzwerken basieren. Im Gegensatz zu trainierten neuronalen Netzwerken
liefert die vorgestellte Methode jedoch analytische und geschlossene Gleichungen. Die
durch den vorgestellten Ablauf resultierenden hybriden Modelle kénnen physikalisch
interpretiert werden, da sie auf der Grundstruktur der erwdhnten kinetischen Darstel-
lung beruhen. Ein weiterer Vorteil solcher Modelle liegt darin, dass sie aufgrund der
geschlossenen Formulierung in bestehenden algebraischen Modellierungssystemen leicht
und effizient optimiert werden konnen. Der in Kapitel 2] beschriebene Ablauf wird dann
in Kapitel |3 durch die Verwendung symbolischer Regressionsanséitze erweitert. Dieses
Kapitel befasst sich zudem damit, interpretierbare Modelle fiir Bioprozesse zu gener-
ieren, bei welchen wenig oder gar kein Wissen {iber das vorliegende System vorhanden ist.
Klassische Algorithmen des maschinellen Lernens gewinnen zunehmend an Interesse, um
komplexe Bioprozesse zu simulieren, da sich diese Prozesse teils nur schwer durch erste
Prinzipien beschreiben lassen. Obwohl solche rein datenbasierte Methoden sehr hilfreich
sein kénnen, beruhen sie oft auf a priori Annahmen iiber die Modellstruktur und/oder
fiihren zu mathematischen Ausdriicken, die schwer zu interpretieren oder in weitere Plat-
tformen zu integrieren sind. Daher wird in Kapitel [3]ein auf der symbolischen Regression
basierender alternativer Ansatz vorgeschlagen, um Modelle zu identifizieren, ohne dass
dabei eine vordefinierte Modellstruktur angenommen werden muss. Daraus resultieren
algebraische Ausdriicke fiir die Prozesskinetik, wobei lediglich gemessene Konzentra-
tionsprofile bendtigt werden um die Modelle zu trainieren. Das Vorgehen baut auf der
in Kapitel 2| vorgestellten Methode auf und ermoglicht es wiederum, die iterative Inte-
gration von Differentialgleichungen zu vermeiden. Das vorgeschlagene Verfahren kann
Modelle generieren, welche die Benchmarks (neuronale Netzwerke) im Bezug auf die
Vorhersagegenauigkeit iibertreffen. Dariiber hinaus erleichtern die erhaltenen algebrais-
chen Ausdriicke die Modellinterpretation und erméglichen die direkte Anwendung von
Optimierungsalgorithmen oder die Einbindung in weitere Plattformen. Kapitel dder vor-
liegenden Arbeit befasst sich mit den Herausforderungen der globalen Optimierung von
Prozesseinheiten und Fliessbildern durch die Kombination von approximativen Mod-
ellen und bekannten Optimierungsalgorithmen. Zudem wird eine konzeptionell und
physikalisch grossere Dimension betrachtet. Mittels symbolischer Regression werden
dabei in einem ersten Schritt Surrogatmodelle aus Simulationen erstellt. Diese Regres-
sionsmethode liefert dabei Ausdriicke in algebraischer Form. Bei der Vorhersage unge-

sehener Testdaten weisen diese algebraischen Modelle eine dhnliche Genauigkeit auf wie
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traditionelle Surrogate, die auf Gaussschen Prozessen basieren. Ein Vorteil der identi-
fizierten Surrogtmodelle in algebraischer Form ist jedoch, dass die Nutzung von beste-
henden und etablierten globalen deterministischen Optimierungsalgorithmen ermdoglicht
wird. Die Anwendbarkeit der vorgeschlagenen Strategie wird in mehreren Fallstudien
demonstriert, welche von der Mesoskala (Prozesseinheiten) bis zur Makroskala (Fliesss-
chemata von ganzen Prozessen) reichen. Schliesslich wird in Kapitel |5 darauf einge-
gangen, wie Surrogatmodelle helfen konnen die Flexibilitdt einer Produktionseinheit
in Féllen zu analysieren, in denen Prozessbeschriankungen schwer zu modellieren sind.
Flexibilitdtsanalysen sind in der chemischen Verfahrenstechnik weit verbreitet, um die
zuldssigen Abweichungen von den Nennbedingungen zu quantifizieren. Standardansitze
zur Durchfithrung von solchen Analysen sind in der Regel schwer anwendbar, wenn die
Prozessbeschriankungen mathematisch schwierig zu beschreiben oder zu handhaben sind.
Kapitel [5| konzentriert sich auf die Berechnung des traditionellen Flexibilitétsindexes bei
Problemen mit komplizierten Nebenbedingungen. Es werden in einem ersten Schritt
algebraische Ausdriicke fiir die besagten Nebenbedingungen identifiziert, wodurch in
einem zweiten Schritt die Flexibilitdtsanalyse vereinfacht und die Anwendung determin-
istischer Loser ermoglicht wird. Diese Methode wird auf zwei verschiedene Fallstudien
angewandt. Dabei werden die Zeit fiir die Modellerstellung, die Vorhersagegenauigkeit
des Modells und die fiir die Losung der Flexibilitdtsformulierungen erforderliche Zeit
genauer diskutiert. Insgesamt bietet die Kombination von datengetriebenen Modellen
mit einer deterministischen Problemformulierung — demnach gesamthaft ein hybrider
Ansatz — eine Moglichkeit zur Analyse der Flexibilitdt von Prozessen, die schwer zu
beschreibende Einschrankungen beinhalten. Abschliessend werden in Kapitel [6] die Re-
sultate dieser Arbeit zusammengefasst, wobei auch auf mogliche Themen fiir zukiinftige

Forschungsfragen eingegangen wird.

Die entwickelten und beschriebenen Applikationen bieten allesamt alternative Losungen,
welche es ermdglichen, die untersuchten Systeme zu modellieren, zu analysieren und
zu optimieren. Dadurch kénnen Entscheidungsprozesse fiir verschiedenste Fragestel-
lungen in der chemischen und biologischen Produktion auf digitale Weise unterstiitzt

werden.
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Chapter 1

Introduction



1.1 Digitalization in the chemical and biological sector

The industrial revolution is not merely a recent phenomenon but has roots that date back
to the 18" century (Petrillo et al.,2018). During these times, humanity was dealing with
the daily challenge of creating better goods while considering limited resources, growing
demand, and the impact on society and its environment (Beier et al., [2018; J. M. Miiller
et al., 2018). These main challenges have not significantly changed since then, and they
remain up until today. However, the tools that we are able to apply nowadays certainly
did change. After going through a second and third industrial revolution (Figure ,
characterized by the applications of electricity and automation steps in the industry,
respectively, the term "Industry 4.0" sets another important milestone in this centuries-
lasting revolutionizing process (X. Chen et al., 2021, Communication-Promoters-Group-
of-the-Industry-Science, [2013). Within the fourth industrial revolution, Industry 4.0, an
initiative that emerged between 2011 and 2015, focuses on the application of advanced
technologies in the industrial sector (Philbeck & Davis, 2018])). It is, however, not only
about integrating available technologies, but it also describes an entire concept of how
advanced tools can be used to create interactions and provide insights into how resources
can be used for a more efficient and sustainable path to the future (Koh et al., 2019;
Lasi et al., [2014). In this entire concept, digitalization has become an important part
through which profound transformations are taking place, not only in the industrial sec-
tor, but also in our society (J. M. Miiller et al., |2018; Rosen et al., [2015). Especially in
the past decades, the enhanced global interconnection brings new challenges and drives
competition in the markets, where the pace and extent of digital integration and the
application of advanced technologies have accelerated exponentially (Koh et al., 2019;
Zhou, [2013)). Focusing specifically on the production sector of chemicals and biologics,
digitalization can help to enhance efficiency and productivity by measuring, analyzing,
modeling, automating, and optimizing processes and integrating many tasks (Fantke
et al., 2021; Pantelides & Pereira, 2024). The digital transformation in the chemical

Revolution |l {
Introduction of
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Application of i é Integration of processes
electronics and IT to and application of

; implement automation i
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i Introduction of water-and | i
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Figure 1.1.

Simplified overview of the

Adapted from Chen et al. (2021).

different steps of the Industrial Revolution.




industry was estimated to deliver between $310 billion to $550 billion in value between
2016 and 2025 (ABB, 2018; Accenture & WEF, [2017). Furthermore, a recent report
by the World Economic Forum (2022) describes the increasing importance of industrial
supply chain resilience or environmental sustainability during global disruptions, such
as the recent COVID-19 pandemic. It is mentioned that more than 70% of surveyed
manufacturing executives considered advanced analytics methods to be more important
than they have been some years earlier. The role of data, data-driven decision-making,
self-optimizing systems, and, in general, digital transformations are highlighted to be
key enablers for manufacturing environments to tackle highly complex future challenges.
Such digital transformations might occur in wide range of applications (Figure, from
a macro scale level (i.e., digital twins and optimization of entire production processes
or supply chains) down to a micro scale level (i.e., modeling of kinetics). To narrow
this down, this thesis will specifically focus on the modeling and optimization aspects
that might support such digital transformations in the chemical industry. In such a
multiscale and interdisciplinary environment, there is a clear need for tools that enable
a structured and tactical decision-making process. Pistikopoulos et al. (2021) describe
the scientific discipline of Process Systems Engineering (PSE) as a “field that focuses on
integrating scales and components to describe the physicochemical system via mathemat-
ical modeling, data analytics, design, optimization and control”. 1t therefore “provides
the ‘glue’ within the field of engineering and offers a scientific basis and computational
tools towards addressing future challenges such as in energy, environment, the “industry
of tomorrow’ and sustainability.”. With this very short description of PSE being an
enabler for improvements in industry, the reader is subsequently introduced to the role

and importance of PSE in more detail.

>

P
Supply phains

X

Plants

Process units
——
Kinetics @ h

Physical dimension
micro meso macro
]

Figure 1.2. Schematically visualized conceptual scales that are targeted within this
thesis. The concept was adapted from Ioannou et al. (2021).

Conceptual scale




1.2 The role of Process Systems Engineering

PSE — a term proposed in 1982 in Kyoto that combined aspects from various engineering
disciplines (I. E. Grossmann & Westerberg, 2000; Pistikopoulos et al., |2021; Sargent,
2004) — plays a pivotal role in the digitalization of the chemical industry by integrat-
ing engineering principles with computational tools and data analytics (Sargent, 1967)).
PSE focuses on designing efficient systems, optimizing complex processes, and improving
operational performance in various industrial aspects. In the context of digitalization
within the chemical sector, PSE harnesses tools such as mathematical modeling, sim-
ulation, and optimization algorithms to address challenges across the chemical value
chain (Klatt & Marquardt, 2009; Pistikopoulos et al., 2021), and contributes to the en-
hancement of efficiency, reliability, and sustainability in the chemical industry’s digital
transformation journey (I. E. Grossmann & Harjunkoski, 2019)). Sargent (2004) and
Stephanopoulos and Reklaitis (2011)) provide a deeper insight into the history of PSE,
whereas Pistikopoulos et al. (2021) describe the perspective of the PSE field in the

future.

Sargent (1983) describes possible approaches for solving problems in the field of process
engineering, specifically within the context of modeling, design and control: One may
start formulating a considered problem mathematically and then use the mathematical
structure to create algorithms, or one may try to use engineering knowledge and insights
in order to solve the problem with physical intuition. In either of these ways described
by Sargent (1983), one special and pivotal role in such a problem-solving approach
is the use of modeling and optimization techniques (Figure . Pistikopoulos et al.
(2021) summarize this description by Sargent by mentioning the example of chemical and
biochemical engineers who work with unit operations for the production and purification
of a specific product. There, practitioners might use several PSE techniques to design
and synthesise (Westerberg, 2004)), operate (Venkatasubramanian, Rengaswamy, & Ka,
2003; Venkatasubramanian, Rengaswamy, Yin, & Ka, 2003)), analyze (Wan et al., 2005),
and optimize (Biegler & Grossmann, |[2004) such a process. Since Sargent’s statements in
the 1980s, the toolbox to tackle problems in these fields has been growing continuously,
which was greatly supported by advancements in modeling and data analytics (Bhosekar
& lerapetritou, 2018; Qin, 2014; Reis & Saraiva, 2021)), optimization (Alcantara Avila et
al.; 2021} I. E. Grossmann, 2021)), and machine learning (J. H. Lee et al.,[2018; Perera et
al.;2019). The gained knowledge over those decades allows the creation of solutions for
optimal tactical decision-making in fields like scheduling (Badejo & Ierapetritou, 2022;

Diaz-Madrotiero et al., 2014), enterprise-wide optimization (I. Grossmann, 2005; 1. E.
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Grossmann, 2012 2014} Van De Berg et al., 2023} van de Berg, Petsagkourakis, et al.,
2023; van de Berg, Shah, & Del Rio Chanona, [2023; Q. Zhang & Grossmann, 2016]), or
supply chain management and resource allocation (Barbosa-Po6voa, [2012; Berning et al.,
2004 Garcia & You, 2015} Guillén-Gosalbez, Mele, et al., 2006; Lasschuit & Thijssen,
2004; Nikolopoulou & Ierapetritou, 2012} Papageorgiou et al., 2001} Susarla & Karimi,
2011)), even in the case of disruptions or general uncertainties (Applequist et al., 2000;
Guillén-Gosalbez, Badell, et al., 2006} Z. Li & lerapetritou, 2008, Z. Li & lerapetritou,
2008; Lin et al., [2004; Pistikopoulos, [1995]).

[ Model update ] I Decision l
(¢ = =
—@ o —
P [
o | >
[ Data preparation ] [ Model training ] [ Validate results ] [ Optimization ]

Figure 1.3. Visualization of the interaction of modeling and optimization for decision-
making. The interconnections between the different steps should not be regarded as
conclusive, where of course also other intermediate steps and shortcuts might be possible.
The figure should give a general overview of how modeling and optimization might be
linked. The concept was adapted from Van Den Heuvel and Tamburri (2020).

1.3 State-of-the-art, challenges and research gaps

As our society develops, the demand for more sustainable and efficient processes and
products from a greater variety is growing. Industry therefore faces challenges on many
technical and conceptual scales, reaching from understanding a material to efficiently de-
sign experiments (Scotti et al., 2023) or intensify cell culture processes (Del Rio Chanona
et al., 2017, Kyriakopoulos et al.;[2018; Potvin et al., 2012, D. Zhang, Dechatiwongse, del
Rio-Chanona, et al., |[2015) up to improve process units and entire production processes
(Biegler et al.,|1997; Edgar et al.,|1988; I. E. Grossmann, 2021; R. Smith, 2005, 2016|) or
supply chains (Garcia & You, 2015). To address these holistic challenges, mathematical
modeling and optimization techniques might be used as key enabling tools. Therefore,

the reader will subsequently be introduced to those topics in more detail.



1.3.1 Mathematical modeling to understand chemical and biological
process systems

Mathematically representing and simulating a material or a chemical reaction is an im-
portant step in building industrial digital applications to support the understanding and
enable the optimization of production processes. Mathematical modeling can bring in-
sights into the material behavior and can help to understand the relationships between
the observed performance and the physical properties (Olson, |1997). Understanding a
material in detail subsequently enables the prediction of its behavior in different con-
ditions, which consequently allows the optimization of a process to enhance its per-
formance (Scotti et al., 2023). Having a model of a system at hand also significantly
contributes to accelerating the process development by reducing the need for expensive
and time-consuming experimental steps (Scotti et al., [2023)). These savings are certainly
important in high-value production processes such as in the pharmaceutical industry,
where resources are scarce and expensive (Kroll, Hofer, Ulonska, et al., 2017; Mercier
et al., [2014; Von Stosch et al., [2021; Walsh, [2018), and where a vast number of new
products is rapidly developed (Narayanan et al., [2023). Several recent works highlight
the importance of modeling approaches across a wide range of applications within the
chemical and bioprocess industry: Filho et al. (2020), for example, describe the devel-
opment of a process model which supports the scale-up for an aerosol-assisted chemical
vapour deposition process. Another important aspect of modeling in industrial environ-
ments is given by Elnashaie and Elshishini (2022). The authors discuss reactor models
and how they can be used in the design, operation and optimization of industrial reac-
tors. They describe the concept of reactor modeling as a method to perform predictions
and analyses based on available data and information. Of course, these examples do not
give an exhaustive list where mathematical modeling is useful, but they should rather
give an overview of the importance of modeling as a tool that can support and enhance

the digital transformation in the chemical and bioprocess industry.

To classify a mathematical model, different definitions have been proposed (Sansana
et al., 2021)). In this work, models are conceptually classified to belong to one of three
possible groups (Bonvin et al., 2016)). On the one hand, a model might be built up from
knowledge. Such a model might be described by a mechanistic, or white-box model.
On the other hand, a model might be generated by using data-driven approaches, also
described by black-box models. The two classes might be mixed, leading to hybrid
models, which are sometimes also described by the term grey-box models (Glassey &
Von Stosch, [2018; von Stosch et al., 2014]).



Mechanistic modeling An example of a well-known mechanistic model with long-
lasting academic and industrial relevance was the description of enzymatic reactions by
Michaelis and Menten (1913). This work allowed studying and understanding biocat-
alytic reactions in depth in the subsequent decades, up until today (Cornish-Bowden,
2015; Johnson & Goody, 2011)). In literature, many other works explore mathematical
biochemical models, for example, to analyze and understand intracellular signalling path-
ways (Klipp & Liebermeister, |2006) and metabolic mechanisms that drive the behavior
of the organism (Guillén-Gosalbez et al., 2013} Mercier et al., 2014; Petsagkourakis,
Sandoval, et al., 2020; D. Zhang et al., [2020]), to describe the time-dynamic behavior of
a biochemical system (Voit, 2013), to study the cascade activities of proteins (Schoeberl
et al., 2002), or to even deepen the understanding in how diseases such as Alzheimer
progress (Gotz et al., [2018) and how they could be treated (Scearce-Levie et al., 2020f
Van Dam & De Deyn, [2011). Of course, such modeling methods are not limited to
biological systems like the ones mentioned above, but they can also certainly be used
to study procedures like freeze drying (Srisuma et al., 2024)) or chromatographic steps
(Hahn et al., [2023)), to describe the production of viral particles for pharmaceutical
applications (Canova et al., [2023), or to model the kinetics of ammonia (Chehade &
Dincer, [2021) and methanol (Nestler et al., 2020) production units. Such methods of-
ten involve the mechanistic formulation of a model where the involved practitioner is
required to specify the behavior of the system and to define some parameters, which
are subsequently estimated by using available experimental data. Sha et al. (2018),
Gosalbez et al. (2013)) and Voit (2000) describe the steps and methods that might be
involved in setting up such mechanistic models for a biological system. The parameter
estimation steps — often also described by the term inverse problem or model calibration
(J. Sun et al., 2012)) — might not always be a straightforward task, as the modeler might
face challenges like missing or noisy experimental data (Lillacci & Khammash, 2010)),
multi-modal and nonlinear models (Rodriguez-Fernandez et al.,|2006) or lack of robust-
ness in the estimation of parameters (Gabor & Banga, 2015; J. Sun et al., [2012). De
Carvalho Servia and Del Rio Chanona (2023b)) describe several metrics that might be
considered when performing such a parameter estimation step, where they also analyse
the impact of the noise and the sampling frequency. According to Michalik et al. (2009)),
there are mainly two approaches that can be used to estimate parameters in mechanistic
models, namely a sequential and a simultaneous approach. Both approaches often re-
quire a given mathematical structure of the model, where the involved model parameters
are estimated by using an appropriate loss function. Both approaches also show chal-
lenges that need to be overcome: In the sequential approach a modeler might encounter

the possibility of high computational efforts or the occurrence of stiff ordinary differen-



tial equations (ODEs), whereas, in the simultaneous approach, one might need to use
reformulation techniques such as orthogonal collocation (Carey & Finlayson, 1975) to
transform the dynamic equations into a large system of equations (Esposito & Floudas,
2000; Miré et al., [2012)).

Data-driven modeling Instead of using mechanistically designed models, data-
driven approaches offer a direct and efficient way to model a process if the available
knowledge is limited (Taylor et al., 2021)). Recent advances the field of machine learning
(ML) made it possible to create data-driven models for a wide range of applications.
Helleckes et al. (2023) and Lee et al. (2018) provide an overview of how ML models
might be useful for the bioprocess development or the general PSE field, respectively.
Data-driven models were already successfully applied several years ago, where, for exam-
ple, Willis et al. (1995)) used artificial neural networks (ANNs) to model the relationships
between the measured data and the biomass concentration. Similarly, but more recent,
Gaussian processes (GP) were used to describe the growth of microbes (Tonner et al.,
2017). In an even more recent work by Del Rio Chanona et al. (2019)), the authors
leveraged the predictive capabilities of GPs to model a wastewater treatment procedure
with algae and bacteria. Some researchers also used ML-based surrogate models to ap-
proximate mechanistic models: Renardy et al. (2018)), for example, replaced mechanistic
simulations with a polynomial surrogate model to improve the computational efficiency
of a given modeling approach (Gherman et al., 2023). A similar work was published
by Wang et al. (2019), who used a long short-term memory (LSTM) network to model
transduction pathways in cell-cycle progressions, where their proposed framework was
able to enhance the computational efficiency by orders of magnitude compared to mech-
anistic modeling approaches. Further, Mowbray and colleagues (2021)) offer a deep dive
into the different kinds of models that might be used as a black-box to model the system
under study. Of course, data-driven modeling strategies are not only of high interest in
the bio-related industry. Bishnu et al. (2023]) recently published an overview about ap-
plications with data-driven modeling in process systems. In there, studies that leverage
data-driven strategies are showcased for the petrochemical production optimization (Min
et al., 2019)), the prediction of catalyst saturation levels (Steurtewagen & Van Den Poel,
2020)), and the modeling of hydrocracking processes (Elkamel et al., |1999).

Hybrid modeling With increasing popularity, hybrid modeling approaches are used
to bridge the gaps between such white and black-box models by combining mechanistic
and surrogate components (von Stosch et al., [2014). Mechanistic knowledge about the
system under study is complemented by the data-driven part that leverages available

process data. Tsopanoglou and Jiménez Del Val (Tsopanoglou & Jiménez Del Val, 2021))



describe hybrid modeling strategies as an emerging key tool in the era of biopharma 4.0,
hence playing a pivotal role in advancing the digitalization within this industry. They
further provide an overview of the advantages and challenges of coupling mechanistic
and data-driven approaches, specifically within the pharmaceutical industry. Such hy-
brid approaches were used to solve a wide range of problems, like the modeling of specific
kinetics (S. Zhang et al., [2013)) or entire biochemical process systems (Gnoth et al., 2007,
2008b; M. R. Mowbray et al.;[2023). Hybrid models were also successfully applied in the
field of computational fluid dynamics (CFD): Mosavi et al. (2019) introduced a com-
bination of a network-based model with a CFD model to enhance the accuracy of flow
characteristics predictions in bioreactors. In the field of biohydrogen production, a recent
publication by Pal et al. (2024) introduced a model based on a Bayesian neural network
(BNN) that allowed to accurately model the concentration evolution of involved species
in a photobioreactor. In another very recent work, De-Luca et al. (2024) developed
an ANN-based hybrid model to support the design and testing of operating conditions
during adeno-associated virus particle production, a field that has gained significant in-
terest over the past few years (C. Li & Samulski, [2020)). In many works published in this
area, ANN models are very commonly used as data-driven components, where Mahanty
(2023) and Agharafeie and colleagues (2023)) provide an overview and a systematic lit-
erature review about applications of such hybrid neural models for biological process
systems. Of course, hybrid models are not solely used to model systems tinged with bi-
ological elements. Additional examples where hybrid models were successfully used are
given in the work by Azarpour et al. (2017), where the authors combined mechanistic
first principle models with ANNs to develop generic frameworks for modeling industrial
catalytic reactors that consider catalyst deactivation. A recent study by Lastrucci et al.
(2024) investigated the applicability of hybrid models based on physics-informed neural
networks (PINNs) for the design of industrial catalytic reactors. Using PINNs for solv-
ing ODEs, the authors achieved significant speed improvements compared to classical
ODE solvers, while maintaining high levels of the system modeling accuracy. Further,
in the work by Chen and Ierapetritou (2020), a framework based on hybrid models was
developed that captures plant-model-mismatches, where the authors showcase the ad-
vantages of these modeling approaches in the context of pharmaceutical unit operations.
Furthermore, Quaghebeur and colleagues (2022)) created a framework that introduces
data-driven components into existing mechanistic models of a water resource facility,
thereby being able to replace parts of the system that are hard to model. One impor-
tant aspect of hybrid models is that they can also be developed in a flexible manner,
allowing to customize the degree of hybridization. Narayanan and colleagues (2021), for

example, showcase this aspect of different hybridization degrees (Figure by com-



paring the performance of different hybrid models applied to a chromatographic case
study. The flexibility, transferability from one case study to another, the combination of
process knowledge with powerful data-driven components, and many more reasons are
making hybrid modeling approaches suitable for industrial applications, where several
companies mention their active development for production (Datahow AG, 2024; Merck
KGaA, [2024; Sartorius AG, [2024)).
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Figure 1.4. Possible hybridization levels in the application of a hybrid model for the mod-
eling of a chromatographic process. The concept and figure were adapted from Narayanan
et al. (2021). In addition to the mass balance of the species in solution, different parts
of the model are replaced by data-driven components, leading to hybrid models with a
different degree of hybridization.

No matter which kind of modeling approach — mechanistic, data-driven, or hybrid —
is chosen to identify a suitable representation for the system under study, two impor-
tant key steps need to be executed during the model identification process. First, some
kind of model structure needs to be defined or identified, and second, the involved
parameters need to be estimated, which brings the modeler back to either the simulta-
neous or sequential parameter estimation approach discussed before. Ideally, the model
structure and its parameters should be simultaneously determined since the choice of a
specific model structure limits the accuracy of the model and vice-versa. In the past few
years, many algorithms and approaches have been presented in the scientific community
that allow modeling a system without expert knowledge (so just relying on available
data), while returning a closed-form algebraic description that is interpretable (J. Lee
et al.;|2024): Among others, the automated learning of algebraic models for optimization
(ALAMO) approach (Cozad et al., 2014; Wilson & Sahinidis, [2017)), the sparse identi-
fication of nonlinear dynamics (SINDy) approach (Brunton et al., 2016) with its recent
combination with an extended Kalman filter (EKF-SINDy) (Rosafalco et al., 2024),
the algebraic learning via elastic net (ALVEN), the recently published LASSO-Clip-EN
(LCEN) by Seber and Braatz (2024), or the recently published Bayesian identification of
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dynamic sparse algebraic models (BIDSAM) approach by Adeyemo and Bhattacharyya
(2024) were developed and successfully deployed in a variety of case studies. Without
going into too many details, the algorithms seek an appropriate surrogate model, where
model identification and a parameter estimation step are combined, so the outputs of
the algorithms are closed-form mathematical equations. Since those methods rely on
some chosen sets of basis functions or mathematical expressions, and they usually do
not assume any knowledge about the process, they might lead to models that are hard
to interpret or may return structures that do not have a direct physical interpretation.
A slightly different approach to search for a closed-form model for a process system is
based on the principles of genetic programming (Keane et al.,|1993; Koza, 1994), where
mathematical equations are created as symbolic expression trees (Cozad and Sahinidis,
2018). Employing a defined search procedure — which is mainly stochastic — such a sym-
bolic regression (SR) approach simultaneously identifies the mathematical structure of
the model while it also estimates the involved parameters. Due to this, such expression-
tree-based approaches only require a pool of allowed mathematical operators and some
measured data points. SR has been successfully applied in various fields, for example,
to model a vacuum distillation column and a chemical reactor system (McKay et al.,
1997), to predict energy outputs from wind farms (Vladislavleva et al., 2013)), to discover
physical relationships in an available dataset (Schmidt & Lipson, |2009), to discover new
catalysts (Weng et al., 2020), to model kinetics in catalytic systems (De Carvalho Servia
et al., 2024)), to enhance the feasibility in which thermodynamic models can be applied
reliably (Kay et al., 2024), or to even recover psychological models for human informa-
tion processing (Hewson et al., 2023). SR was also included in commercial (i.e., Eureqa
(Schmidt & Lipson, [2009) or TuringBot (2023))) or open-source (i.e., PySR (Cranmer,
2020)), the Bayesian machine scientist (Guimera et al., 2020)) software. Although there
are many advanced modeling algorithms available, such as ANNs or GPs (M. Mowbray
et al., 2021)), having a compact, closed-form mathematical model at hand might be ad-
vantageous, depending on the framework the model should be deployed in. One aspect
is that derivative-based, state-of-the-art and off-the-shelf solvers can be used, which, if
global solvers are applied, can even guarantee global model-based optimality compared

to heuristics or stochastic solvers.
1.3.2 Mathematical optimization to enhance process performance

Besides mathematical modeling, optimization can serve as a powerful tool for a practi-
tioner to enhance process performance across various domains. At its core, mathematical
optimization entails the formulation of models that are solved to find the best possible

solution to a given problem within specified constraints. In the realm of chemical pro-
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cesses, optimization techniques play a pivotal role in maximizing production efficiency,

minimizing costs or emissions, and ensuring product quality.

Practitioners might make use of a wide range of methods to optimize a target objective
when an optimization problem is encountered. Usually, such an optimization problem
can be described by expression , where f(x,y,6) is the defined objective function
that depends on some variables  (continuous in R, n-dimensional) and y (integer, in Z,
m-dimensional), and some given parameters 6. Additionally, it is common that optimiza-
tion problems require the inclusion of constraints in the form of equalities (h(x,y,6) of
set I) or inequalities (g(z,y, 6) of set J), respectively, which might represent for example
process or safety limitations.
min - f(,y,0)
sit. hi(x,y,0)=0, Viel
gj(z,y,0) <0, VjelJ
reR" yezZ™

(1.1)

Such optimization problems can be solved using mathematical programming approaches.
Depending on the nature of the objective and the constraints, a practitioner might use —
but is not limited to — linear programming (LP), nonlinear programming (NLP), mixed-
integer linear programming (MILP), or mixed-integer nonlinear programming (MINLP)
methods. Grossmann (2021), Cavazzuti et al. (2013), and Hillier and Lieberman (2010)
guide through these approaches from the scientific, PSE and operations research per-
spectives, respectively. To give some specific examples across the entire physical di-
mensions where such optimization approaches might be applied, the reader is referred
to the publication of Esposito and Floudas (2000), which discusses the application of
global optimization to estimate parameters in differential algebraic systems, to the work
of Grossmann and Halemane (1982) who describe the design of flexible chemical plants,
or the one of Duran and Grossmann (1986al) for insights into heat integration and op-
timization of chemical processes. Other interesting works that apply similar tools were
published by Liu and colleagues (1996), who tackle the problem of selecting processes
and planning expansions of a chemical complex, or by Esposito and Floudas (2002},
who investigate an isothermal reactor network synthesis using mathematical program-
ming. In a more recent publication by Lasschuit and Thijssen (2004), the authors use
an MINLP model to support the decision-making process for supply chain optimization

questions.
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By leveraging such optimization techniques, production processes can be streamlined,
energy consumption minimized, resource utilization maximized, and overall productivity
enhanced. This ultimately leads to improved profitability and competitiveness in the
dynamic landscape of the chemical industry (Dutta, 2016)). Within this landscape, a
major challenge for practitioners is located in the operational optimization of existing
processes. Originally, process optimization relied on models that are based on engi-
neering knowledge, where such models provide closed-form descriptions that enable the
application of off-the-shelf deterministic optimization algorithms (Bongartz & Mitsos,
2019; Haydary, 2019). However, as discussed above, developing such mechanistically
designed models might not be an easy task, depending on the problem structure. At
this point, some of the above-mentioned data-driven model-building approaches (i.e.,
the ALVEN (W. Sun & Braatz, 2020) or ALAMO (Cozad & Sahinidis, 2018]) approach)
might be very useful tools that can be considered. Such approaches can be able to iden-
tify closed-form approximations for the process by taking observed data into account,
and therefore allow to bypass the development of mechanistic descriptions from scratch.
Hiillen et al. (2020), for example, successfully demonstrate how such a procedure can
be used to solve an optimization problem related to direct air capture (DAC). The au-
thors develop an optimization problem that would require algebraic equations and the
formulation of a large nonlinear programming problem. Instead, they combine poly-
nomial approximations with observed data and incorporate the model into the original
optimization problem. The main advantage of those tools compared to the mechanistic
description of the process is the possibility to develop a model in a relatively short time,
which can then also more easily be incorporated in an existing optimization framework.
However, these methods might constrain the model structure by relying on predeter-
mined monomials and transformations of the input variables, likely leading to less ac-
curate approximations and therefore representing a significant drawback, depending on

the system under study.

As discussed in Section [I.3.1] data-driven models emerged to deal with modeling tasks
in which the underlying phenomena cannot be easily described. Within the optimization
landscape, data-driven methods have been used to build surrogates of mechanistic mod-
els that are hard to identify and/or optimize. For example, Jones et al. (1998)) used a
response surface methodology for expensive multimodal functions and applied Bayesian
optimization to find the optimum solution. Other and more recent examples were given
by Quirante et al. (2015, 2018) and Quirante and Caballero (2016]), where the authors
used surrogate models to optimize distillation columns and other units. Taking these out-

standing works as examples, the advantage of data-driven models is very well observable.
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Although showing great promises, what remains challenging is the fact that — depend-
ing on the system under study — incorporating such sophisticated modeling methods
into optimization frameworks might not be straightforward due to their intrinsic com-
plexity and nonlinearities. Nevertheless, several algorithmic frameworks were developed
that allow the incorporation of advanced machine learning models into an optimiza-
tion formulation. The team around Mitsos and colleagues (2009; [2019; 2020)) developed
MeLON (Machine Learning models for Optimization) and MAINGO (McCormick-based
Algorithm for mixed-integer Nonlinear Global Optimization), tailored algorithms that —
in a nutshell — allow to perform deterministic global optimization with data-driven mod-
els. A similar approach was developed by Ceccon et al. (2022), who presented OMLT
(optimization and machine learning toolkit), which allows to optimize trained ANNs or
gradient-boosted trees using the Python-based framework Pyomo (Bynum et al., 2021}
Hart et al., 2011). Boukouvala et al. (2017)) introduced the algorithmic framework ARG-
ONAUT that allows to globally optimize general constrained grey-box problems using
the ANTIGONE (Misener & Floudas, [2014) solver. In a recent work, Paulson and Lu
(2022) proposed the COBALT (constrained Bayesian optimization of computationally
expensive grey-box models exploiting derivative information) algorithm for constrained
grey-box optimization problems, combining GP models with state-of-the-art optimizers
(2021).

In contrast to deploying advanced machine learning models for subsequent optimiza-
tion tasks, closed-form expressions — as the resulting models of the above-mentioned SR
approaches — have the advantage that they easily allow the use of deterministic opti-
mization algorithms (Androulakis et al., (1995} I. E. Grossmann, [1996; Ryoo & Sahinidis,
1995 E. M. B. Smith & Pantelides, [1997; Tawarmalani & Sahinidis, 2002} Zamora &
Grossmann, 1999). This is especially promising in the field of global optimization (GO),
where, in case the objective function or constraints are unavailable, deterministic opti-
mization is not possible since the algebraic expression of the function and therefore its
corresponding derivatives are not available. In such cases, other methods — for exam-
ple, derivative-free optimization algorithms and heuristic methods like the Nelder-Mead
method (Nelder & Mead, [1965)), Bayesian optimization (Moc¢kus, 1975; Shahriari et al.,
2016)), differential evolution (Price, 2013), genetic algorithm (Holland, |1992; Mirjalili,
2019)), particle swarm optimization (Bonyadi & Michalewicz, [2017; Kennedy & Eberhart,
2006)), or simulated annealing (Hwang, [1988; Van Laarhoven & Aarts, 1987)) — methods
might be applied (Bradford et al.,[2018)). The disadvantage of such methods is, however,
that they are not guaranteed to identify the global optimum, whereas deterministic GO

methods are guaranteed to identify the global solution — within a given e-tolerance — in

14



a finite number of iterations (Androulakis et al., [1995; Horst & Tuy, 1996).

In the above-mentioned introduction to the field of optimization, one very important
aspect was not yet mentioned, which is the presence of uncertainty. Mostly, the real
world is affected by some kind of stochasticity, which means that the outcome of a
process is influenced by some uncertainty. In such cases, practitioners might make use of
approaches such as stochastic programming (SP) (Birge & Louveaux, |2011; Ierapetritou
& Pistikopoulos, [1994} Z. Li & lerapetritou, [2012; Marti & Kall, [1995; Prekopa, 1995}
Shapiro et al., 2021) or robust optimization (RO) (Ben-Tal et al., 2009; Ben-Tal &
Nemirovski, 2002, Z. Li & lerapetritou, 2008 Z. Li & lerapetritou, 2008} Lin et al.,
2004) to account for uncertainties in a decision-making process. These methods are
building up on and leveraging the above-mentioned programming methods and enable
the development of strategies that can withstand variations in input parameters, market
conditions, or external factors. By incorporating uncertainty considerations into the
optimization framework, practitioners can make informed decisions that balance risk
and reward, leading to more sustainable and resilient operations in the chemical industry
(Sahinidis, 2004]).

1.3.3 Consideration of uncertainty for flexible processes

Uncertainties pervade various stages, posing significant challenges for practitioners in
different industry-related fields. These uncertainties can arise from diverse sources, in-
cluding variations in raw material properties (Sharifian et al.,[2021)), inherent complexity
in biochemical reactions (Migkovi¢ & Hatzimanikatis, [2011), or in fluctuations of envi-
ronmental conditions and product demands (Gabrielli et al.; 2019). These variations or
disturbances can then propagate and be revealed in the process design and operation
phase (Pistikopoulos, [1995]) or even in conceptually different stages like supply chain and
scheduling activities (Ehrenstein et al., 2019; Ovalle et al., [2024). Managing uncertain-
ties — also considering different scales — is crucial to ensure safety, process robustness,
and reliability (sarkis.etal 2023; I. E. Grossmann et al., [1983). If uncertainties are
not taken into account, designing and optimizing processes can lead to suboptimal or
infeasible solutions (I. E. Grossmann et al., [1983]). Shimoni et al. (2014)), for example,
describe the edge of failure in a pharmaceutical application. It describes a point, which,
if exceeded, could result in deviations that might have impact on the quality of the prod-
uct. Additional examples and an overview about how uncertainty might affect chemical
processes in design, optimization, control, and fault detection is given by Sharifian et al.
(Sharifian et al., 2021).

When a practitioner seeks an optimal design or operating solution, the identified realiza-
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tion usually needs to meet a variety of requirements, where unconsidered perturbations
might significantly impact the operability of the process. However, several challenges
in considering uncertainties in optimization problems are faced by practitioners, which
make the development of industrial applications difficult. The lack of information on the
uncertainty of the data might be described as one of the major challenges in this field
(I. E. Grossmann et al., [2016). Other barriers are certainly the difficulty in determin-
ing the nature of the uncertainties (exogenous vs. endogenous), the choice of strategy
to prepare process systems to withstand variations due to uncertainty (robust/chance-
constrained optimization vs. stochastic programming), and also the immense computa-
tional power required to consider uncertainty in calculations (often orders of magnitude
larger than deterministic models) (I. E. Grossmann et al., 2016). Practitioners might
make use of different approaches to consider uncertainties in their optimization prob-
lems, where the work published by Grossmann et al. (2017) offers a great overview
of recent advances and possible applications of both, robust optimization and stochas-
tic programming, within the landscape of the chemical industry. Sahinidis (2004) and
Diwekar (2020]) offer a more general overview of the application of stochastic program-
ming, robust optimization, and many other methods such as decomposition methods
(Dantzig & Wolfe, [1960), sampling-based approaches (Diwekar, 2020), fuzzy mathemat-
ical programming (Bellman et al., 1967; Zimmermann, 2001), or stochastic dynamic
programming (Bellman, [2010). In the published work by Sahinidis (2004)), different

applications are given to which these mentioned approaches were applied.

Uncertainty also comes into play when a process design should be implemented as flexibly
as possible (design stage, Figure , or when a fixed design should be assessed for its
flexibility (operational stage, Chapter [5). The flexibility of a process system describes
the ability of the system to adapt to changes in operating conditions or external factors
(I. E. Grossmann et al., |1983). Based on concepts that were usually mainly applied
during the process design phase (Pistikopoulos, 1995), a flexibility index was designed
by the PSE community — with pioneering works by Grossmann et al. (1983]), Halemane
and Grossmann (1983), and Swaney and Grossmann (1985a, |1985b]) — that allows to
assess the ability of a design to remain feasible against variations in the parameter values
during the operation. Alternatively, other metrics to quantify process flexibility were
described in the literature, where the resilience index (Morari et al., [1985), stochastic
design reliability (Kubic & Stein, 1988), or stochastic flexibility index (Pistikopoulos &
Magzzuchi, [1990; Straub & Grossmann, [1990) [1993)) are well-known. A more detailed
overview of the flexibility index, its applications in the chemical industry, and how

it can be assessed will be given in Chapter Although the description of process
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Figure 1.5. Schematically represented procedure to implement the most flexible design
of a process equipment.

flexibility was already established in the 1980s, there are still remaining challenges that
need to be addressed. Omne of the main issues is the computation of the flexibility
index when the process dynamics are complex (Ding & lerapetritou, 2021)), when the
constraints are hard to model, or when the only knowledge about the system consists of
observations of input and output data due to limited process understanding (Boukouvala
& lerapetritou, [2012)). In such cases, the flexibility index cannot be computed using
deterministic mathematical models, as the constraints are not available in a closed-form
algebraic manner. Some works were published where the authors showed an alternative
possibility to assess the flexibility of the process by estimating the feasible region. Mostly,
this is achieved by creating a function that evaluates the feasibility of the model for given
values of the decision variables and the parameters (Boukouvala & Terapetritou, 2012}
Boukouvala et al., 2011 Metta et al., 2021), or by sampling approaches (Sachio et al.,
2023, [2024). These methods that model the feasible region, however, are conceptually
different approaches compared to the described assessment of the originally described
calculation of the flexibility index (Halemane & Grossmann, 1983; Swaney & Grossmann,
19854, 1985b). In other words, they approximate the feasibility function with a surrogate
and they do not rely on the original deterministic flexibility index, but rather they use
alternative flexibility metrices. Therefore, the challenge in computing the originally
described flexibility index remains unsolved in case of complex process dynamics or
hard-to-model constraints. Omne possibility to link the originally developed flexibility
index formulation with such complicating constraints is to use approaches that result
in closed-form algebraic models, which, as described above in Section [[.3.2] can be
straightforwardly incorporated into deterministic optimization problems, such as the

original flexibility index problem.
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1.4 Motivation and objectives

The motivation for this thesis stems from the need to address the modeling and opti-
mization challenges faced in the chemical and biological sector, which were introduced
above. Herein, surrogate and hybrid approaches are discussed that leverage advance-
ments in several areas of research, including machine learning, mathematical modeling,
and optimization. A general goal of this thesis is the development of solution approaches
for a wide range of modeling and optimization applications, where the provided frame-
works should serve as alternative methods to existing ones that target the support of the
design and optimization of chemical and biological processes. The following objectives
should be addressed within this work:

(1) The development of purely mechanistic models for chemical and biological systems
is a significant challenge, not only due to a possible lack of knowledge about the system.
Even if a model can be developed, estimating the parameters of such a representation
might pose challenging tasks, as discussed previously. Furthermore, pure data-driven
models might face issues in interpretability and extrapolation. The first objective of
the thesis is therefore to design models that are based on expert knowledge or available
statistical prior information. However, instead of using a fixed structure of the model, it
should be identified in parallel to the parameter estimation step. One advantage of such
a procedure is that the resulting expressions can be more easily interpreted due to the
conceptually incorporated knowledge. Further, such resulting models can be optimized

in existing algebraic modeling systems due to the closed-form expressions.

(2) The second objective of the thesis is to develop a framework that allows to per-
form a deterministic optimization of processes using closed-form surrogate models. The
framework should be able to build algebraic surrogates purely from data, which can
subsequently be optimized using well-established and off-the-shelf deterministic solvers.
The advantage of such a procedure is that the modeling and optimization steps can be
decoupled, where the resulting models can be optimized in existing algebraic modeling

systems due to the obtained closed-form expressions.

(3) Lastly, this thesis focuses on the development of a framework that allows to analyze
the flexibility of processes using surrogate models. Algebraic surrogates — purely gener-
ated from data — should be incorporated into an optimization problem that can assess
the flexibility of an existing process. The advantage of such a hybrid framework is that
the modeling and optimization steps can be decoupled, while the flexibility analysis can

be performed with existing well-known deterministic solvers.

18



1.5 Research contributions and outline

The thesis is divided into several chapters which guide through various conceptual and
physical scales within the chemical and biological process systems value chain, from
modeling of reactions up to the optimization of production processes. The chapters
will highlight how mathematical tools can be used to contribute to the enhancement
of efficiency, sustainability, and flexibility in the chemical industry while targeting the
above-mentioned objectives (Figure [L.6).

As discussed above, the accurate model construction might be not straightforward, es-
pecially with bioprocesses, due to complex metabolic mechanisms and data scarcity. In
Chapter [2] of this thesis, a modeling approach is discussed that uses a mechanistic mass
balance backbone in the form of a canonical kinetic representation, which is well-known
from the field of biochemical systems theory (BST). Together with observed data, an
incremental approach is used to perform a parameter estimation step while avoiding
complex integrations of ODEs. The obtained expressions can subsequently be more
easily interpreted and optimized in existing algebraic modeling systems than for exam-
ple purely data-driven models. This chapter therefore tackles the challenge of accurate
model construction, data scarcity and the need for interpretable models. Building on
Chapter [2| Chapter [3] of the thesis focuses on identifying suitable kinetic models for
bioprocesses. Compared to the second chapter, however, here, an approach is used that
identifies models without assuming a pre-defined model structure. With this method,
kinetic rates are directly obtained from data and a two-step approach for the parameter
estimation step. The obtained algebraic expressions for the rate equations simplify the
model interpretation and subsequently allow the application of optimization algorithms.
Chapter ] tackles the challenge of combining surrogate models with global optimization

of processes by building algebraic surrogates from data, which can subsequently be op-

Chapter2 {  Chapter3 } {  Chapter4 " Chapter5
i Process modeling using i i Process modeling using i i Optimization of units i Flexibility analysis of
i dataand a mathematical | i data but no mathematical | : and production i units and production
structure assumption | i structure assumption | : processes i processes
hi '~ 0 s (*
Modeling > Modeling > | Optimization > Operability >

Figure 1.6. A schematic structure of the chapters of this thesis. The arrows below the
blocks represent the main topic touched throughout the corresponding chapter.
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timized using deterministic solvers. Deterministically optimizing a given system usually
requires algebraic descriptions of a process. The advantage is that these models can
easily be optimized due to their closed-form structure. On the other hand, it might not
be straightforward to write sophisticated surrogate models like ANNs or GPs in a closed-
form manner. After having optimized an existing production process for its operating
conditions, it could be analyzed for its flexibility. There might be many reasons why
standard approaches for analyzing the flexibility can be challenging to apply. In Chap-
ter [5] of this thesis, the traditional flexibility index is calculated using a hybrid approach,
in which complicating parts of the optimization model are replaced by algebraic surro-
gate models. This simplifies the flexibility analysis of complex process models since,
although surrogate models are used, the application of deterministic solvers becomes
possible. This approach provides an alternative way to existing methods to analyze
the flexibility of processes entailing complicating constraints. Lastly, in Chapter [6] the
discussions of the previous chapters are summarized. The main findings are highlighted,
and the potential of the developed models and frameworks is discussed. The chapter
concludes with an outlook on future research directions and potential applications of the

developed models and frameworks.
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Chapter 2

Modeling via MINLP-based
symbolic regression of S-system

formalisms

This chapter is based on the following publication: Forster T., Vazquez D., Cruz-
Bournazou M. N., Butté A., Guillén-Gosalbez G. (2023). Modeling via MINLP-
based symbolic regression of S-system formalisms. Computers and Chemical En-
gineering, 170, 108108.
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Nomenclature for Chapter
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fj,r
Gij
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(67

Bi
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Variables

{e | e is a batch experiment}

{i,j | i and j are species/components}

{m | m is a node in the hidden layer of the neural network}
{r | r is a chemical reaction}

{u | u is a discrete/sampled time point}

Real numbers

Reaction rate order of species j in reaction 7 (used in the GMA)
Reaction rate order of species j influencing species ¢ (production
term in S-system)

Reaction rate order of species j influencing species i (depletion
term in S-system)

Reaction rate constant of reaction r (used in GMA)

User-defined maximum number of non-zero parameters in the S-
system

Material flow into/out of a reactor

Initial and final time

Initial concentration of metabolite/species i

Mean of a particular property

Variance of a particular property

Weights and biases of the ANN

Production reaction rate constant of reaction r (used in S-system)
Depletion reaction rate constant of reaction r (used in S-system)
Stoichiometric coefficient of species 4 in reaction r

Concentration of metabolite/species 7 (used as continuous
variables in ODE expressions)

Concentration of metabolite/species i at time ¢,

Model predictions of the concentration of

metabolite /species i at time t,,

Derivatives/slopes of metabolite/species i at time t,

Model predictions of the derivatives/slopes of
metabolite/species i at time t,,

Mean of the experimental data points of species ¢ at time t,
Time and sampled time point
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2.1 Introduction

In recent years, model-based methods have gained increasing attention in the
chemical and pharmaceutical industries (Narayanan et al., 2019), finding appli-
cations in process development, design, optimization, monitoring, and control.
Among other advantages, mathematical modeling techniques and simulations help
guide experiments more effectively and monitor/control processes in a predictive
manner, thereby reducing the associated development or process costs. These sav-
ings are particularly relevant in the biopharmaceutical industry, where resources
are scarce and expensive (Kroll, Hofer, Ulonska, et al., 2017, Mercier et al., 2014)).
The modeling of biotechnological processes is particularly challenging due to the
difficulty of precisely describing the underlying metabolic mechanisms dictating
the microorganisms’ behavior (Guillen-Gosalbez et al., 2013; Mercier et al., 2014;
Petsagkourakis, Sandoval, et al., 2020; D. Zhang et al., 2020). Since these path-
ways are nevertheless the critical enabler for producing therapeutic compounds,
they need to be modeled accurately so the associated process can be optimized
effectively (Narayanan et al., 2019). However, since parameter estimation requires
a model to which the parameters are fit, the fact that the behavior of the bio-
processes is not well understood directly affects the difficulty of the parameter

estimation step.

Ideally, first-principles models combining well-established equations with available
data (semi-empirical or deterministic) could support efficient and cost-effective
development for therapeutic new drugs (von Stosch et al., 2014). The model-
building journey in bioprocesses often encompasses several steps, as described by
Gosalbez et al. (2013), and Voit (2000)), from identifying the mass flow structure
(stoichiometry) through selecting a kinetic representation and, finally, estimating
the intrinsic parameters. Here, choosing a suitable kinetic formalism and cali-
brating it with experimental points are particularly challenging tasks involving

solving nonconvex dynamic optimization problems.

Parameter estimation for model building in dynamic systems can be solved either
sequentially or simultaneously (Michalik et al., [2009). Both approaches, which

often assume a given fixed mathematical structure, attempt to minimize a loss
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function, such as the squared residuals. In the sequential approach, the objective
function is calculated by integrating the differential model and comparing the
predictions to the observed values. The intrinsic model parameters are adjusted,
and the procedure is performed iteratively until convergence. Examples of such
a procedure can be seen in Bellman et al. (1967) and Kim et al. (1991)). The
drawback of this approach is its high computational effort due to the need to
integrate ordinary differential equations (ODE) in every iteration.

Additionally, this approach can lead to systems that are hard to solve due to the
resulting stiff ODEs (Tjoa & Biegler,[1991). In the simultaneous approach, the pa-
rameter estimation task can be reformulated as a nonlinear programming (NLP)
problem. This reformulation can be performed by applying orthogonal collocation
methods (Esposito & Floudas, 2000), as shown in the case of bioprocesses in the
works of Gosélbez et al. (2013), Mir6 et al. (2012]), Willis and von Stosch (2017),
and Burnak et al. (2020). This approach is also discussed in Bansal et al. (2003),
which covers formulations and algorithms for solving dynamic optimization prob-
lems. In summary, the simultaneous approach avoids the computational cost of
integrating ODEs at every iteration. However, this strategy requires solving com-
plex NLPs, for which finding a good starting point might be challenging. Other
alternative approaches were proposed for model building of dynamic systems, like
the one by Brendel et al. (2006) based on a unifying incremental identification
concept for the stepwise identification of structured submodels in complex re-
action systems that aims to reduce the computational burden. We stress that
algorithms for model building that also optimize the model structure in addition
to its parameters are scarce, although there is increasing interest in developing
such approaches (Guillén-Gosalbez et al., 2013; Henriques et al., 2015; Wilson &
Sahinidis, 2019).

The mentioned methods often rely on mechanistic models that are hard to develop.
Notably, the exact equations describing the phenomena one wishes to model, par-
ticularly those dictating the kinetic behavior of a bioreactor, are often unknown.
As an alternative to mechanistic models, data-driven strategies allow studying
the system’s behavior without relying on expert knowledge (Kahrs & Marquardt,
2007; Taylor et al., |2021)). For example, Willis, Montague, and Peel (Willis et al.,
1995) used an artificial neural network (ANN) to model the relationships between
the measured online data and biomass concentration. More recently, mathemati-
cal programming methods were applied to build surrogate models, like the auto-
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mated learning of algebraic models for optimization (ALAMO) approach (Wilson
& Sahinidis, 2017). This algorithm seeks an optimal surrogate model by solving
a mixed-integer linear programming (MILP) model. In a similar spirit, symbolic
regression (SR) uses expression trees to simultaneously identify the model struc-
ture and the values of its parameters (Cozad & Sahinidis, [2018; Neumann et al.,
2020). For dynamic systems, Brunton et al. (2016)) proposed the sparse identifi-
cation of nonlinear dynamics (SINDy) algorithm, which was successfully applied
to different systems, ranging from simple canonical systems to the fluid vortex
shedding behind an obstacle. This work was later extended by Rosafalco and
colleagues (2024), who combined with an extended Kalman filter with the SINDy
(EKF-SINDy) approach. This led to an easy-to-impelement and computation-
ally efficient system for identifying nonlinear systems. In recent work, Cozad
and Sahinidis (Cozad & Sahinidis, [2018) introduced a mixed-integer nonlinear
programming (MINLP) formulation to solve SR problems to global optimality.
Sun and Braatz (2020) developed an algorithm that combines nonlinear feature
generation followed by sparse regression to learn interpretable nonlinear models,
called algebraic learning via elastic net (ALVEN). These process models have the
advantage of only requiring data and, therefore, can be set up without any deep
knowledge of the system. However, they are hard to interpret and may return
values that are not consistent with the physical meaning of the data due to the

few mechanistic constraints imposed during training.

As a bridge between the discussed deterministic and data-driven methods, hybrid
modeling (also referred to as grey-box modeling) has recently gained popularity
as an appealing strategy to exploit the complementary strengths of both model-
ing paradigms. In essence, hybrid models combine a mechanistic backbone with
a surrogate component. The mechanistic backbone of the model is determined
a priori on the basis of the knowledge available about the process. It reveals a
physical or empirical interpretation depending on the level of knowledge that is
included. On the contrary, the surrogate component is determined from the data
available. Hybrid modeling combines both extremes (von Stosch et al., 2014).
Hybrid approaches were used to solve a wide range of problems. Zhang, An-
droulakis and Terapetritou (2013) proposed a hybrid kinetic mechanism where
quasi-steady-state species are separated from the kinetic ODEs and described by
a set of nonlinear algebraic equations. Boukouvala and Floudas (2017) presented
ARGONAUT, a framework for the global optimization of general nonlinear con-
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strained hybrid /grey-box models designed for problems with an objective function
and/or constraints without an explicit analytical expression, which are adequately
approximated by the algorithm.

With regards to hybrid models applied to chemical /biochemical systems, Azevedo
et al. (2019), Psichogios (1992), and Gnoth et al. (2007, 2008a, [2010)) integrated
ANNS as a non-parametric component in kinetic models. Notably, complex ANN
architectures without regularizations relying on small datasets were shown to lead
to less accurate predictions in these applications (Pasupa & Sunhem, 2016). It
should be noted that, so far, there is no universal recipe for building hybrid models
for bioprocesses, which may differ in the level of hybridization attained, i.e., the
amount and type of first principles and data-driving components they combine
(Narayanan, Luna, et al., [2021)).

One way to improve the hybrid modeling of (bio)chemical reactions consists of us-
ing canonical mathematical formalisms flexible enough to represent a wide range
of systems. The idea here is to replace black-box surrogates with semi-empirical
models based on general foundations. Following this approach, some existing
general knowledge (even if limited) is added to constrain the output of the model
to “reasonable” results. A canonical formalism is a general mathematical rep-
resentation adaptable to many specific systems — via model calibration — that
provides a sound basis to build semi-empirical models based on a general theo-
retical framework. In a seminal work, Savageau introduced one such formalism,
the power-law representation (Savageau, [1969a, [1969b, 1970), which was later ex-
tended by Sorribas et al. (2007) and applied to model biochemical networks.
Despite their simplicity and versatility, canonical formalisms, particularly the
S-system approach, have often been used to model biochemical systems at the
molecular level, while their application to model bioprocesses at a larger scale is
yet to be explored.

This work introduces a method based on the S-system canonical formalism to
build dynamic models of bioprocesses, determining both the model structure and
its parameters and focusing on problems where only scarce data are available. In
essence, our approach combines a first-principles backbone based on mass bal-
ances with a canonical kinetic S-system formalism, whose structure and model
parameters are automatically identified by solving an MINLP. This approach
significantly tightens the search space by applying “rational” constraints to the
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structure of the model. The model training is performed following a two-stage
approach that simplifies the calculations by avoiding the iterative integration of
differential equations. Numerical examples show that our method performs sim-
ilarly to models based on ANNs, while leading to a trained model based on a
compact, analytical canonical expression. The latter can be used for monitoring,

control, and optimization, among others.

The remainder of the paper is organized as follows: First, the problem statement
is detailed, followed by the methodology. Afterward, the case studies are intro-
duced, and the results are discussed. Finally, the conclusions of the work are

drawn.

2.2 Problem statement

Here we shall consider a typical reactor implementing a given reaction system, as
depicted in Figure [2.1

Qiin ——P»

Xi

.. — Qj,out

Figure 2.1. Schematic representation of a generic reactor with input/output streams
Qi,in/Qi,out, considering a system volume V, and a concentration X; of species i.

For a generic, ideally mixed, homogeneous, and isothermally operated reactor with

constant volume, the overall mass balance for species i € [ is shown in equation

ED):

dX;
dt

. 1
=X = V(Qz,zn - Qi,out) + RJ}RZ(X),\V/Z = (21)

where Q;in, Qiowt and Rxn;(X) denote the mass flows in and out of the reactor

and the generation/depletion term, respectively, and = (or X ) refers to the

accumulation term. For a batch process, where no inlet nor outlet are considered,
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the mass balance reduces to the accumulation and generation terms:

dX;
dt

= X = Reny(X),Vi € I (2.2)

Where the Rxn;(X) term is an unknown expression that depends on the state
variables X (e.g., species concentration). In this work, we approximate Rxn;(X)
using ANNs and a canonical formalism tailored to the particular system.

Given a set of experimental observations X, the goal of the analysis is to find
Rzxn;(X) in equation such that the mismatch between the model predictions
X and the experimental observations is minimized. Note that, unlike the standard
parameter estimation problem where the model structure is known, we assume
that it is unknown but follows a given formalism. Therefore, we aim to find
both the rate expression and its parameters simultaneously instead of solving
a standard inverse problem with a defined structure, as discussed by Voit and
Almeida (2004) and Brendel et al. (2006). The section that follows introduces
our approach.

2.3 Methodology

We describe two alternative approaches to tackle the problem above, inspired
by the modeling ideas in Guillén-Gosalbez et al. (2013)), the Ph.D. thesis of
Mir6 (2014), the work of Sorribas et al. (2010), and the decomposition methods
in Voit and Almeida (2004), Michalik et al. (2009)), and Brendel et al. (2006).
Finally, we study the identified model performance and compare it to a benchmark
model.

2.3.1 Modeling framework

In essence, our modeling approach relies on a backbone based on mass balances
coupled with a canonical component that predicts the reaction rate (genera-
tion/depletion term in the mass balance) from the state variables, whose values
vary over time. It is worth highlighting that this approach can provide a gen-
eral modeling structure, where the canonical part can be replaced by any kind
of formalism (i.e., an ANN, a GP, a Generalized Mass Action (GMA) expression,
etc.). Here we focus on a regular widespread ANN and the S-system representa-
tion. Other surrogates, e.g., GPs or deep learning methods, could also be used
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but are out of the scope of this work. Our method is based on an incremental
approach for model building, as shown in Figure where the ODE integration
is avoided by fitting the slopes determined experimentally, as explained later in
the article.

First, the slopes are calculated for each profile. The polynomial approach de-
scribed in the manuscript Section was applied to fit these slopes. However,
another approach might also be suitable. Second, a training dataset is set up,
where the input data consists of the experimental states, and the target data
consists of the calculated slopes. With this data at hand, both the ANN and the
S-system can be trained. The exact equations used for this training are described
below. Third, the trained model is incorporated into the ODE, which can then
be solved using specific initial conditions.

Backbone based on mass balances

The backbone of the model describes the mass balance equations for a generic
chemical reaction in a batch reactor, as given by equation (2.2)). The genera-
tion/depletion term Raxn;(X) is herein modelled following two approaches: ANN
and S-system.

Data-driven component based on neural network approximation
In the first approach, the Rxn;(X) term is approximated using a shallow feed-
forward ANN as follows:

Where AN N;(X) denotes the neural network that uses some independent variables
(i.e., the state variable/concentration of the species X) as input features. The
limitation of this approach, as already mentioned, is that it is entirely data-driven
and, thus, can lead to poor estimates, particularly when attempting extrapolation
outside of the training range. Furthermore, an additional limitation is that the
ANN is hard to interpret given its black-box nature. Hence, the following section
describes how, alternatively, a tailored canonical kinetic formalism can be used to
improve interpretability.

Canonical component based on an S-system
In the second approach, we rely on the biochemical systems theory (BST) to
find a suitable rate expression. For a very detailed review of BST, the reader is
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Gather experimental data and fit polynomials

X

Step 2: Building rate expressions from slopes
and state variables
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Step 3: Solving ODE model with the
built rate expressions

=

ax(t)
T = X(t) = Rxn(X)

Figure 2.2. Overview of the incremental approach for model building. After gathering
experimental data, a polynomial is fit from data points (one polynomial for each species
and experimental run). Slopes are obtained from this polynomial via differentiation and
then evaluated at the experimental time points (step 1). To train the models (ANN or
S-system), the collected states in red and the calculated slopes in green are used (step 2).
After training the models to predict the slopes from input states, they are incorporated
into an ODE which can be solved with appropriate initial conditions (step 3).
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referred to the work by Savageau (1969al (1969bl (1970) and Voit (2013). BST uses
canonical models, which means that the model-building procedure follows well-
defined rules. Such models are built, for example, by applying approximation
theory (Voit, 2013). Omne such representation is the power-law approximation,
first presented by (1969a;, 1969bl [1970)). Following this representation, each of the
participating reactions involved in the generation term Rxn;(X) in equation ({2.2))
are described with an individual reaction rate v,. Furthermore, each v, depends
on the metabolite concentrations X; of species i. The formalism is derived using
an approximation of a general kinetic function of a reaction r in logarithmic

coordinates, leading to the following expression:

ve(X1, Xo, . X))~k [[ X7, wreR (2.4)

jer
Where k, represents the rate constant of reaction r € R, and f;, represents the
reaction order of species j influencing species ¢ in reaction r. By summing over

the |R| reactions and considering the stoichiometry ;, of species i in reaction r,
we can state the GMA model as:

X=> vyim=)_ (71@ HX{) . Yiel (2.5)

r€R r€R jer

By considering only two lumped terms, one for the species generation and one for
the species depletion, we obtain the so-called S-system representation, which was
first described in the mid-1980s (Savageau, 1985; Voit and Savageau, 1985):

Xi=o [[ X0 - ][ X7, Viel (2.6)

jel jeI

According to equation , the maximum possible number of parameters in the
S-system only depends on the number of species in the system. Hence, it is
defined a priori for the system under study. Where «; and S; represent the
production and depletion rate constants for species . The exponents g; ; and h; ;
represent the reaction order of species j influencing species ¢ for the production and
depletion reactions, respectively. Following the GMA or S-system formalism, a
given variable X; will have a positive/enhancing effect on X if the exponent f; ; is
positive. Conversely, it will have a negative/inhibiting effect on X; if the exponent
is negative. In case the exponent equals zero, variable X; will not influence X;.
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This approach captures the evolution of the concentration of the metabolites and
how the metabolites interact among themselves. Hence, the generation term in
equation is approximated using the aforementioned S-system, such that the
relationship shown in equation can be specified as follows:

Ron(X) = o [[ X7 = i [[ X7, Viel (2.7)

jel jel

Compared to the ANN, the S-system approach presents the advantage of provid-
ing interpretable models based on a canonical formalism, where all the coefficients
have some physical meaning. Note that including many potential interactions
between metabolites may lead to overfitted models with poor extrapolation capa-
bilities. Hence, the challenge is finding a regulatory scheme capturing the main
interactions and providing good estimates, even during extrapolation. As dis-
cussed in the next section, we pose this task as an MINLP problem, which is
solved iteratively to provide candidate models with alternative regulatory inter-
actions, i.e., with alternative values of the S-system parameters.

2.3.2 Incremental approach for model building

It is worth mentioning that until now, the state variables X; were considered
to be continuous in time (X did not depend on set U). For the subsequently
proposed incremental approach, the concentration data for the different species
1 € I are collected by sampling from an ongoing reaction for each time point
u € U resulting in an |U|-dimensional array of samples for each species i for the
different time points X ,:

Xiu = [Xi,07Xi,17Xi,2» e ;Xi,\U\] , Viel

We then seek the rate expression that is able to predict the time-dependent evolu-
tion by just using the state variables at a given initial time ¢y. This rate expression
will be subsequently used to construct the overall model.

The model-building task for the S-system can first be posed as a general dynamic
optimization problem, where the sum of squared residuals (SSR) is minimized.
The problem can therefore be formulated as follows:
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$.6.X;0 = Reny(X;, 8), Viel,jeluelU (2.8)

Xi,() — X@(), \V/Z € I
X eR*, X eRY

Where )A(w represents the predicted slope variable of species i at time point t,
and X, the initial conditions. The intrinsic model parameters 3 (weights,/biases
of an ANN or reaction rate constants/exponents in the S-system) of the untrained
expression Rxn;(X, 3) are represented as trainable decision variables. Solving the
dynamic problem requires integrating the ODEs to obtain the objective function
value, which can be accomplished by following a sequential or simultaneous ap-
proach. To simplify the calculations, we follow the approach proposed by Michalik
et al. (2009) and Voit and Almeida (2004) to solve the dynamic model above,
which formulates the problem in the slopes space instead of the state variables
space. In essence, the idea here is to obtain the slopes from the dynamic profiles
of the state variables and then use them to calibrate the kinetic model. This
strategy avoids integrating the dynamic system, as the slopes are experimentally
determined rather than predicted in-silico from the kinetic equations. The choice
of a specific rate expression Rxn;(X, ) dictates the model type, leading to the fol-
lowing two alternative problems. The first includes the ANN as given in equation

E3):

IBIbII SSR = Z Z (qu — )A(zu>2

i€l uelU

S.t. [);Vzay)gm} = ANN([XZ”XUdu?wvb) (29)
X eR*, X eRY

The second problem formulation includes the S-system, as given in equation

E7):
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. 2 2
min SSR=1"%" (Xu - Xu>

i€l uelU

st. X, = o [[ X0 -8 ][ X)w, VYielLueU

jel jeI

Bi <Bi <G, Viel (2.10)
9ij < Gij < Gijy Vi,J €I

hij < hij <h, Vijel

acRTBcRT,gcR,heER

X eR", X eRY

Parameters «, §; and g; ;, h;; of the S-system are decision variables in the NLP.
Upper and lower bounds on the parameters «;,; and g;j, hi; (s, Bi, @, and
Bi, Gij, hij, and g, m) are imposed. In contrast to the GMA, in the S-
systg, the reaction rate constants «; and (; are defined to be positive. The
exponents g; j, h; ; are considered to be real numbers between defined upper and
lower bounds.

A critical issue in equation (2.10) concerns the selection of the regulatory scheme,
defined by the set of non-zero parameters oy, 5; and g; ;, h; ;. Here, we formulate
the task of finding the most suitable regulatory structure as an MINLP, given by
(2.11]).
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. 2 2
i SSR=323 (K Xu)

yo,yB,yg,yh i€l uel
st X, = o [[ X80 - s [ X)w, YielLueU
jer jer
Z (yOéi +yBi + Z (ygi; + yh”)> < NP
il jeI

(1-ygij) +yo; > 1, Vijel

(1 —=yhiy) +yBi>1, Vijel (2.11)
ya; - <o Sya;-ag, Viel

yBi- Bi < Bi <ypi-Bi, Viel

Y9ij " 91 < 9ig < YGij - Gig, Vi, J €T

yhij - hij < hij <uyhij-hij, Vi,jel

yo,yB,yg,yh € {0,1}
acR",BeRT,ge R LER

X eR*, X eRY

As in the NLP approach above, the parameters «;, 8; and yg, ;, yh;; of the S-
system are decision variables in the MINLP. Binary variables ya;, y3; and yg; ;,
yh;; denote the existence of the model parameters (one if selected, and zero
otherwise), all of which must lie within a given interval (i.e., a, Bi, @i, and Bi,
9ij, hij, and 7, m) The MINLP also constrains the maximum number of

parameters (N P), which defines the model complexity. In model ({2.11)), binary
variables ya, y5, yg and yh model the selection of parameters a and [ in the S-

system. Accordingly, if metabolite ¢ influences the reaction rate of species j, then
the corresponding binary variable is one, and it will be zero otherwise.

Overall, our model-building approach comprises three steps, as discussed next for
the two different cases (i.e., ANN and S-system). A schematic overview of the

solution procedure is shown in Figure [2.3

Step 1: Finding the slope variables of a profile
The solution method for models (2.9) and (2.11)) is based on the incremental ap-
proach proposed by Michalik et al. (2009) and Voit and Almeida (2004). In
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Figure 2.3. Flowchart of the proposed computational approach for the solution method

based on an incremental approach. Green-colored ellipsoidal blocks represent the results
of the task executed in the blue-colored squared blocks.

essence, we decouple the model training - finding the expression rate in equa-
tion (2.9) and (2.11) - from the ODE integration to simplify the solution of the
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dynamic optimization problem. These slopes are determined as explained in Sec-

tion 2431

Step 2: Building the rate expression from the slopes and state variables
The ANN is trained using the states of all available species X; , as inputs and the
corresponding slopes Xm as target values (outputs). The ANN; therefore, predicts
the changes in concentration of all the species at a given time ¢,.

Applying the S-system approach, once the slopes are obtained, the MINLP in
equation (2.11]) is formulated and solved, finding the optimal values of «;, 8; and
Y9i i, yhij, respectively. The MINLP can be solved for different bounds on the
number of parameters, providing in each run a candidate model that can be later
on tested in the validation set, as discussed below. If all the binary variables are
fixed to a value of one, the MINLP becomes the NLP given by (2.10).

Step 3: Solving the ODE model with the built rate expressions
The trained ANN can be incorporated into the model backbone given by equation

(2.2), resulting in equation (2.12)):

dX;
dt

= ANNy(X;), Viel (2.12)

Likewise, the trained S-system shown in equation (2.7) can be incorporated into
the model backbone given by equation (2.2)), resulting in equation (2.13)).
dX; . .
=a [ X -s ][ X vier (2.13)

jel jeI

Since in equation the weights w and biases b, and in equation the
parameters «;/f; are all known, these ODEs can be solved by using appropriate
initial conditions X, for every species 7 and considering the desired integration
period ¢ = [to,tf]. It is worth to be mentioned that since from that point on-
wards we have a trained model available, we do not need the sampled/discrete
concentration data X;, points anymore. Therefore, the concentration of species

1 is considered to be a continuous function of the time, which is further described
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2.3.3 Model performance

For assessing the performance of the models, an arbitrary set of initial conditions
can be used to integrate the ODE, where a simulated concentration profile is com-
pared to the experimental values. After training the models on dedicated training
runs, test runs were used to assess the model performance. A detailed description
of how the data splitting was achieved is shown in Section [2.4.2]

The performance is assessed via the root mean squared error (RMSFE) and the
coefficient of determination (R?), defined as in equations (2.14). These metrics
can be calculated for both the training and test sets, obtaining the training and

test errors, respectively.

RMSEyare = % 3 (Xu - Xw>2 (2.14a)

iel uelU
1 o . 2
RMSE e = |~ 33 (Xu - Xu> (2.14b)
n i€l uelU
2
R2t . = SS_R 1 Zze[ ZueU ( ML) (2 14(3)
state — 5 .
SST Zzel EuEU ( szu)
2
SSR ZzEI ZuEU X%u
Rslope - SS—T =1- ( ) (214d)

Sier Suer (¥ = Xi)

In these relationships, the predictions by the model are described by )A(w (or )A(W)
The experimental data points and the mean of the experimental data points of
the test set are described by X;, and X, (or qu and }Zu), respectively. The
model predictions X'i,u are calculated by using input data from the training or the
test set. In this work, the terms test set and test run are used interchangeably.
Variables SSR and SST denote the sum of squares of residuals and the total sum
of squares (proportional to the variance of the data), respectively.
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2.4 Case studies

2.4.1 Software implementation

All simulations were carried out on an AMD Ryzen-5 3600 CPU and 16 GB
of RAM. We used Matlab 2020a (The MathWorks Inc, 2020) to construct the
modeling environment, train the ANN, and plot the results. We used the General
Algebraic Modeling System (GAMS) (GAMS Development Corporation, [2020)),
version 35.1.0, and SBB (Bussieck & Drud, 2001), version 32.2.0, to implement
and solve the MINLP for training the S-system, respectively.

2.4.2 Underlying ODE models for in-silico data generation

Several kinetic models were used in this study to test our approach. As described
in the subsequent sections, the different case studies (CS) are of increasing com-
plexity, starting with a simple Monod reaction and finally moving to a more
complex bioprocess in batch operation mode.

In the following, the case studies and their corresponding data generation pro-
cesses are described. The methods discussed above are applied to predict the
concentration profiles in the reactors. The corresponding model parameters re-
quired for each case study are tabulated in the supplementary material Section
Table[A.T]to Table[A.4 The initial conditions were generated by applying a Latin
Hypercube Sampling (LHS) design (data available in Table [2.1).

For the in-silico data generation, the underlying ODEs were solved numerically in
Matlab by using the built-in function ode15s. In order to simulate an operator’s
measurement error (same for all the species), Gaussian white noise with a mean
p = 0 and variance of 02 = 0.075 was introduced. This leads to noisy training
and testing datasets. To this end, the Matlab built-in function normrnd was used.
Below, for each model, the applied initial conditions and the necessary parameters
are indicated. A Latin hypercube sampling (LHS) design method was used to draw
six training and six independent testing initial conditions. Additionally, the time
span for integration is stated below for each model individually. In the five case
studies, the same following settings were applied:

e The different in-silico runs are generated by changing only the initial condi-

tions.
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e For the generation of the test set, some initial conditions (and, therefore,

also some states) exceed the trained feature space (i.e., extrapolation).

Case study I Consider a first case study as an example that is fully expressable
by the S-system formalism. It was inspired by and adjusted from Esposito et al.
(2000), shown in equation . The upper-case letters represent the concentra-
tions of X = {A, B,C, D}, where some constant reaction parameters are given by

k. for r = {1,2,3}.

dA
— = —kA+ kC

il 14+ Ko

B

g—:—lﬁB+kQC

gg (2.15)
— =kA—k,C — kC

dt 1 2 3

dD

ey TG

a P

Case study II The second case study is a batch reaction, shown in equa-
tion (2.16)), representing the isothermal Van-de-Vusse reaction (Floudas et al.,

1999).

A, E,C

29A =2, D
dA
o J A+ 2k A2
o7 14 + 2K3
dB
—:kflA—l{QB
dt (2.16)
© B
a2
dD
T kg A?
dt 3

Case study III As the third dataset, the following scheme given in equation ([2.17))
is used, which represents the a-Pinene reaction (Floudas et al., 1999).

AN E
A2.D

40



A B,

kq
Cz—D
kr
k3
Dz=—B
ke
dA
— = —(k1+ ka+ k5)A
7 (k14 kg + ks5)
dB
— = k3D — k¢B
i 3 6
d
d—(; = kaC' + ks A — kzD (2.17)
dD
i koA + k¢ B + k7C — (k3 + k4)D
dE
— =kA
e~

Case study IV In addition to the above-shown case studies, used to model
chemical reactions, the following case study represents a target protein production
by bacteria. B, S, and P represent the biomass, the substrate concentration, and
the product concentration, respectively, where these species are summarized in
the set X = {B, S, P}. The process is modeled in batch mode and adapted from
Turton et al. (2018)).

dB
2 _ B

i

dB

@B wp 2.18
7 (2.18)
iC

~ _ B

a

The equations given in equation (2.18) are used to calculate the cell growth ¢,
the substrate consumption rate ¥, and product formation rate 7.

¢_¢ S Ql(AlvTvEl) <1_ B )
T K4+ S 14 Qo (A, T, Ey) K,+ B
1
Y= —— 2.19
YB,S¢ (2.19)
_ Yps
- YB,S¢
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Y; ; represents the yield coefficient of species j with respect to species 7, ),
2, represent the reaction rate constants depending on the temperature 7', the
temperature-independent pre-factors A;, A,, and the activation energies F;, Es,
and Kg, K, represent the inhibition constants.

Table 2.1. Data used for generating the training and test sets. The lower (X}°) and
upper (X;7) bounds for the initial concentrations are indicated along with the initial (¢;)
and final (¢f) times for the integration.

Training Testing
cs Xl xyr t iy Xl xgr ti ty
I [0.8,0.5,0,0] [3,2,0,0] 0 2 |[0201,00 [45400 0 2
II [5 5,0,0] [14,10,0,0] 0 12| [2,200] [16,12,00] 0 1.2
I [1.5,1.5,0,0,0] [14,11.5,0,0,1.2] O 3 [0,0,0,0,0] [18,15,0,0,2] 0 3
v [0.1,50,0] [0.4,90,0] 0 80 [0.1,30,0] [1,110,0] 0 80

2.4.3 Calculation of the slope variables

We apply our method to non-noisy and noisy datasets. The first step is to compute
the slopes used to build the regression model following two different approaches,
as explained next.

Non-noisy dataset After having integrated the ODE system, the resulting con-
centration profiles were considered as states X;,. The non-noisy slopes Xw are
calculated by inserting the state variables measured at given points in time into
the original in-silico model used to generate all the simulated experimental val-
ues.

Noisy dataset In-silico models/expressions are seldom available, so the slopes
need to be approximated from the dynamic profiles as explained next. Notably,
for CSIV, a preprocessing step based on the Savitzky-Golay (SG) filter is applied
to the state values X;, of the training runs, followed by a scaling procedure
considering the maximum training value. A detailed description of this scaling is
given in the supplementary material Section

To obtain the dynamic profile, a model of choice is fitted through the experimen-
tal data points. The calculated time profile can subsequently be derived, leading
to a derivatives profile over time. For this purpose, alternative models such as
exponential functions, regression splines, or simple polynomials could be chosen.
Without loss of generality, in this work, we used the polynomial shown in expres-
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sion (2.20). Therefore, a polynomial (;, of defined order ¢ is fitted in time ¢ to
the state data points X;, of each different species ¢ and for each training run as
shown in equation (2.20)). For CSI/II/TV order ¢ = 5 and for CSIII order g = 4
was chosen. The order ¢ can be regarded as a hyperparameter, which could be
tuned to reach better derivative values. There would be many ways to determine
the value of the polynomial order ¢q. One possibility could be to assess a desired
fitting error metric (i.e., the RMSE or M AE) for different values of ¢, choosing
the ¢ value leading to the lowest fitting error. Cross-validation could also be used
to determine appropriate values of the polynomial order.

Xiw = G = Ppig + Pigty + -+ + Digt] (2-20)

Where p; , are the unknown polynomial coefficients, ¢, is the time at the measure-
ment point u, and (;,, represents the time profile at time points u of the approx-
imated state variable of species ¢. A multi-linear regression approach provides
the polynomial coefficients p in equation (2.20). By analytically differentiating
the polynomial, the coefficients of the differentiated polynomial Qu are found as
given in equation (2.21)).

i = Xin (2.21)

This procedure was followed for all the dynamic profiles generated for different
experiments. Equation (2.21), therefore, provides approximated slopes Xm at
any required time point.

We shall next use the slopes information computed above to build the rate ex-
pression embedded in the dynamic model. It is worth to be mentioned that the
polynomial is not further used for any step after having obtained the derivative
variables at the given time point. This approach was used to calculate the deriva-
tives instead of, for example, using forward finite derivatives. After obtaining the
derivatives, the ANN and the S-system are trained to predict a derivatives by
considering the state variables as input.
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2.4.4 ANN architecture

The output layer includes as many neurons as species available in the system.
The ANN architecture uses a two-layer network (one hidden layer, one output
layer), where the hidden layer includes only three neurons. The hidden layer
uses a tangential sigmoidal and the output layer a linear activation function.
A Bayesian regularization backpropagation approach (Foresee & Hagan, [1997;
MacKay, 1992; Rosa et al., 2020)) is chosen as the training algorithm, setting an
upper bound of 100 training epochs. For this task, the deep learning toolbox of
Matlab was used.

2.5 Results

For each case study, we compared two approaches: In the first approach, we use
the ANN as the surrogate model to predict the slopes. In the second approach,
we first use the S-system considering all possible regulatory interactions between
species to predict the slopes, resulting in an NLP model. We then use the S-
system, considering different levels of complexity by varying the maximum number
of parameters according to the model shown in equation (2.11]). This leads to a
series of MINLP models differing in the N P values, generating models of different
sizes. The stopping criteria for the MINLP problem are the settings of the solver
in GAMS (i.e., relative optimality gap, number of nodes, etc.), which are given in
detail in the supplementary material Section

It is worth mentioning that the applied model (S-system) can only find the ground-
truth model when it can be represented by an S-system formulation. However,
even if this is not possible (i.e., CSII-IV), the proposed approach still results
in an expression that can precisely explain and predict the system’s behavior
under study. Interpretability is enhanced because each parameter in the S-system
model has a physical meaning related to how species interact with each other via
regulatory loops. Additionally, one could replace the S-system with the GMA
given in equation or another model of choice.

To define appropriate starting values for the parameters to be estimated with the
MINLP and NLP method, we applied the heuristic approach described in the
supplementary material Section [A.3] The same starting values are then used to
initialize the NLP and the first MINLP. The chosen starting values are displayed
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in Tables and [A.6] Each subsequent MINLP uses the optimal solution of the
previous MINLP to initialize the solver, where a new upper bound NP is set,
where NP is increased for every new MINLP candidate. A visualization of this
approach is given in Figure 2.4

Use solution to

Initialize MINLP | MINLP | Initialize MINLP I MINLP 11
| and set NP = NP, solution and set solution
Starting NP = NP, > NP,
values

Initialize NLP and
G
NP = 2(s? +5)

Figure 2.4. Visual representation of the model initialization for both, the NLP and
MINLP models.

As shown in this figure, the first candidate MINLP is solved with a maximum
number of non-zero parameters of NP = NP,. After increasing the value for
NP, leading to NP = NP, > NP, the following model candidate is solved.
The largest possible value for NP is defined by the largest possible number of
parameters in the S-system given in equation , which corresponds to 2(s*+s),
where s is the number of species present in the system.

In what follows, we provide the errors in the test set for both approaches (ANN
and MINLP/NLP) for every case study. Note that models with lower training
errors in the slope-space might not necessarily perform better in the state-space,
as discussed in detail next. Table and Table summarize the obtained
results, while Tables to show additional calculated error metrics (R? and
RM SE) for the non-noisy slope/state spaces and the noisy slope/state spaces. In
addition, Table and Table show the number of equations and variables
that describe the MINLP model that was solved and the required CPU time for
the solver.

As seen in Table and Table both methodologies provide similar perfor-
mance for most cases, except for the third case study without noise. If we focus
on the slope-space training error, the MINLP approach outperforms the ANN in
three out of eight cases in both the noisy and non-noisy datasets. However, if we
shift the focus to the state-space test RMSFE values, the MINLP approach out-
performs the ANN in five out of eight cases. Note that a lower error in the training
set and a higher error in the test set do not necessarily indicate overfitting here be-
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Table 2.2. Error metrics for the different approaches are shown for the four case studies based on non-
noisy data. For each case study, the best-performing approach in terms of state-space error is indicated
in bold text. The indicated slope space training error is not necessarily the best, but rather the one
corresponding to the best-performing model in the state space.

Number of parameters

CS Method RMSEState testb RMSEslope test? Modelc Underlying in-silicod

ANN 2.23.1072 8.14-107* 55
I MINLP® 3.27-107* 8.66-10~'2 14 (of NP=17) 10 (14)
- ANN 6.97-107* 3.91.107* 55 9
MINLP*® 2.58-107! 4.93.107! 11 (of NP=11)
- ANN 8.84-107* 4.78.107* 83 18
MINLP® 1.77-107! 3.55-1072 21 (of NP=21)
ANN 3.80-10° 7.02:1072 33
IV yvNLpe 0.37-10° 2.33-102 24 (of NP=24) 9

2 Units: mol L' h™! for CSI, II, II; gL. "' h~! for CSIV.

b Units: mol L~" for CSI, II, III; g L~! for CSIV.

¢ Number of parameters in the model framework indicated by the column "method”. For the ANN, the
weights and biases are reported as the number of parameters. For the MINLP methods, the non-zero
rate constants and exponents provide the number of parameters (in brackets, the corresponding upper
bound, NP, is given).

4 Number of parameters for chemical reactions: Number of rate constants (Tables to plus
the number of non-zero reaction orders. Number of parameters for bioprocess: Number of constant
parameters (Table . The number given in parenthesis indicates the number of parameters that
would be used to express this in-silico model in an S-system. If no number is indicated, this in-silico
model cannot be fully described by an S-system.

¢ Only the best-performing model candidate of the MINLP approach in terms of state-space test error
is listed.

f NLP represents the MINLP approach, where all binaries are set to one, leading to the NLP candidate.

cause we are moving from the slope-space to the state-space (through integration).
On the other hand, the MINLP approach leads to models with fewer parameters,
in addition to being more interpretable. An example of the model predictions is
given in Figure 2.5 where the concentration profiles of the MINLP and the ANN
approach are shown together with the observed data for CSI.

Figures and in the supplementary material Section provide further
details on the MINLP iterations and the match with experimental concentrations
(for the sake of simplicity, results are summarized in Table and Table
where details are shown in the supplementary material Section . In general,
larger bounds on the maximum number of parameters allowed in the MINLP do
not necessarily result in larger S-system models. A visualization of this obser-
vation is given in Figure for CSII. Applying the methodology to non-noisy
data (Figure (a)) resulted in model candidates with maximum 13 parame-
ters, although 40 parameters would have been acceptable. For the noisy data
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(Figure (b)), the same was observed only in the last iteration, where 35 pa-
rameters were chosen to be non-zero. Table [A.§ to Table show that most
model candidates do not reach the maximum allowed number of parameters. This
is because the MINLP sometimes identifies optimal solutions with fewer parame-
ters than the maximum allowable number, i.e., the constraint on the model size

is met as a strict inequality rather than equality. Overfitting can be avoided by
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Figure 2.5. The concentration profiles of the four species in CSI are shown: The black
circles represent the observed data, the dashed green line shows the ANN prediction, and
the solid red line with dot markers displays the predictions by the S-system (at N P=12).

cross-validation, where the user runs several models for different values of NP and
chooses the optimal value for NP such that a low test error is achieved. Moreover,
sometimes the best MINLP in state-space test error is identified in the first iter-
ations, e.g., in the noisy CSI-III and non-noisy CSI examples, and sometimes it
emerges in the intermediate or final runs, e.g., in the non-noisy CSI, 111, and TV
examples or the noisy CSIV example. Concerning the fit to experimental data, we
see how both approaches tend to predict well the concentrations profiles, except
for some specific batches (for the ANN approach: non-noisy CSII batch 6, noisy
CSI batch 6, noisy CSII batch 1, 3, and 6 and for the S-system approach: noisy
CSI batch 2 and 4, noisy CSII batch 3, noisy CSIV batch 1) where the predictions
deviate more from the original observations. It is worth to be mentioned that the
above-indicated batches, where the ANN predictions deviate more from the origi-
nal observations, include stagnating profiles. The ANN, therefore, seems to fail to
predict such events more often than the S-system formalism does. Concerning the
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Figure 2.6. Comparison of the RMSE in the slope-space for CSII for (a) non-noisy
data, and (b) noisy data. On the one hand, the training and test errors of the MINLP
are shown as solid green and red lines with markers, respectively. The corresponding
NLP training and test errors are shown as dashed-dotted lines (they are located on the
horizontal axis). The numbers in the plot show the number of chosen non-zero parameters
by the optimizer. The numbers in the plots indicate how many parameters the model
chooses to be non-zero during the training procedure. As expected, the training error
decreases by allowing more parameters to be non-zero. In (b) the testing error starts to
increase again after a certain point, indicating overfitting during model training.

number of parameters, the ANNs have the same size in the two datasets (same
architecture used for all calculations according to Section . In contrast, the
MINLP approach tends to lead to fewer parameters when noise is added, i.e., in
CSIV, where 24 parameters are used for the non-noisy dataset and 9 parameters
are used for the noisy dataset. The detailed models are provided in Tables
to in Section of the supplementary information. As seen, the S-system
formulation results in compact models that could be used for further analyses and

optimization.

2.6 Conclusion

Here we investigated how to build models for bioprocesses combining a first-
principles backbone based on mass balances with a canonical kinetic S-system
formalism. We developed an MINLP formulation to automatically identify the
model structure and the values of its parameters, where binary variables denote
the topology /structure of the model. The model training was performed following
a two-stage approach, avoiding the iterative integration of differential equations.

48



Table 2.3. Error metric of the different approaches are shown for the four case studies based on
noisy data. For each case study, the best-performing approach in terms of state-space error is indicated
in bold text. The indicated slope space training error is not necessarily the best, but rather the one
corresponding to the best-performing model in the state space.

b Number of parameters
CS Method RMSEstate test” RMSEiope test?

Model® Underlying in-silico?
ANN 1.83-107! 3.14-107* 55
I MINLP® 1.51-1071 3.99-107* 12 (of NP=12) 10 (14)
- ANN 4.87-.107* 2.15-10° 55 9
MINLP® 3.24.107! 2.49-10° 17 (of NP=20)
- ANN 1.93-107! 8.49-1072 83 18
MINLP® 2.55-107" 1.24-1071 15 (of NP=15)
ANN 9.46-1072 4.42.1073 33
IV yviINLpe 1.62-10 4.00-1073 9 (of NP=9) 9

2 Units: mol L™ h™?* for CSI II, III; gL "' h~! for CSIV.

b Units: mol L~! for CSI, II, III; g L.=' for CSIV.

¢ Number of parameters in the model framework indicated by the column “method”. For the ANN],
the weights and biases are reported as the number of parameters. For the MINLP methods, the non-
zero rate constants and exponents provide the number of parameters (in brackets, the corresponding
upper bound, NP, is given).

4 Number of parameters for chemical reactions: Number of rate constants (Tables to plus
the number of non-zero reaction orders. Number of parameters for bioprocess: Number of constant
parameters (Table . The number given in parenthesis indicates the number of parameters that
would be used to express this in-silico model in an S-system. If no number is indicated, this in-silico
model cannot be fully described by an S-system.

¢ Only the best-performing model candidate of the MINLP approach in terms of state-space test error
is listed.

We applied our method to a range of case studies to showcase its capabilities.

The presented approach performs similarly to models based on ANNs, even out-
performing them in some cases. However, it has the additional advantage of
leading to models based on a canonical form containing fewer parameters that
are easier to interpret and use in optimization frameworks. Notably, we found
that the ANN may fail to predict stagnating concentration profiles in some cases.
Moreover, our approach is general enough to allow the data-driven part of the
model to be exchanged by any kind of formalism (i.e., ANN, GP, etc.). Overall,
having a model based on a canonical formalism would allow modelers to extract
information about the processes and generate further insight into its behavior. In
this context, the MINLP approach helps to adjust the complexity of the model
considering overfitting. Hence, our approach could help find a suitable process
model while simultaneously allowing practitioners to analyze the underlying for-

mulation more easily and use it in optimization studies.
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Chapter 3

Machine learning uncovers
analytical kinetic models of

bioprocesses

This chapter is based on the following publication: Forster T.. Vazquez D., Miiller
C., Guillen-Gosalbez G. (2024). Machine learning uncovers analytical kinetic
models of bioprocesses. Chemical Engineering Science, 300, 120606

ol


https://www.sciencedirect.com/science/article/pii/S0009250924009060
https://www.sciencedirect.com/science/article/pii/S0009250924009060
https://www.sciencedirect.com/science/article/pii/S0009250924009060

Nomenclature for Chapter

Sets
E
I,J
U

Parameters
to,t¢
Xo,i

I

02

Ve
0

Variables

p
RZL"IZZ'

{e | e is a symbolic mathematical expression}
{i,7 | i,j are set components}
{u | u is discrete sample point}

Inital and final time

Initial concentration of metabolite/species 4
Mean of a particular property

Variance of a particular property
Mathematical expression identified by the BMS
Generic model parameters

BMS or ANN models for species i

Probability

Generic reaction term (production or consumption of species 7)
Concentration of metabolite/species i (used as continuous variables
in ODE expressions)

Concentration of metabolite/species i at time ¢,

odel predictions of the concentration of metabolite/species i at
time t,

Derivatives of metabolite/species i at time ¢,

Model predictions of the derivatives of metabolite/species i at time
ty

Mean of the experimental data points of species ¢ at time t,,
Time and sampled time point

Function to smooth noisy concentration profile for species i
Derivative of function to approximate derivative profile for species
i

Description length (objective function of the BMS)
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3.1 Introduction

In recent years, modeling has gained significant attention in the bioprocesses in-
dustry, spearheaded by the improvements in mathematical tools that can be used
for analysis and optimization (M. R. Mowbray et al., 2023; Narayanan, Seidler,
et al., 2021)). Mathematical modeling can support scientists, engineers, or other
subject matter experts in designing experiments (Sadino-Riquelme et al., |2020)),
predicting and monitoring processes (Del Rio Chanona, Wagner, et al., |2019;
Rivera et al., 2007), and reducing development and production costs (Narayanan,
Seidler, et al., |2021; Narayanan et al., 2020). Modeling complex bioprocesses,
however, is a challenging task, particularly when first principles formulations are
sought (Mercier et al., [2014; Petsagkourakis, Sandoval, et al., 2020; D. Zhang
et al., [2020). These models are nevertheless being increasingly demanded by
the market, in which the number of new products originating from bioprocesses
is increasing very rapidly (Narayanan et al., 2023). Bioprocess modeling requires
experimental measurements to calibrate an in-silico model by minimizing the mis-
match between experimental observations and in-silico predictions. A common
approach relies on well-established mathematical formalisms derived from first
principles, such as mass or energy balances. Kroll et al. (2017) provide a work-
flow for the generation of mechanistic process models, where the authors start
from material balances for a certain target variable and expand the models in a
mechanistic manner with new states and interactions. They apply their method
to a mammalian cell culture process to model the viable cell count. A more recent
work by Sha et al. (2018) provides stoichiometric and kinetic models and some

commonly used mathematical approaches to describe cell systems.

An alternative to purely mechanistic modeling approaches are data-driven strate-
gies. These methods enable model building without relying on expert knowledge
(Kahrs & Marquardt, 2007; Taylor et al., [2021)). Here, the structure of the model
is given by the surrogate modeling approach of choice. For example in the area
of process control, Willis et al. (1995) applied an artificial neural network (ANN)
to model the biomass concentration in a fermentation process. In a more recent
work, Tonner et al. (2017) used Gaussian process models to describe the micro-
bial growth in bioprocesses and interrogated the obtained models to investigate
perturbation effects in the systems under study. As a bridge between purely de-
terministic and purely data-driven methods, hybrid modeling approaches, where
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mechanistic knowledge is combined with a surrogate component, have also gained
popularity (von Stosch et al., 2014). This approach has been applied to a wide
range of problems in science and engineering. For example, Zhang et al. (2013))
proposed a hybrid kinetic mechanism where quasi-steady-state species are sepa-
rated from the kinetic ODEs. Gnoth et al. (2007, 2008a, [2010)) integrated ANNs
in kinetic models to approximate unknown behaviors of the microorganisms. More
recently, hybrid frameworks for modeling bioprocesses have been put forward by
Zhang (2019), and Mowbray (2023) and colleagues. In earlier works of the au-
thors (Forster, Vazquez, Cruz-Bournazou, et al., 2023), a method for building
models that are based on canonical kinetic representations (i.e., S-system (Sav-
ageau, 1969a), [1969b, [1970)) was discussed, where observed concentration data
and a pre-defined canonical form for the rate expression were used to identify a

suitable model structure and simultaneously estimate its parameters.

A key point in all the modeling approaches above is to define the model structure
whose parameters will be calibrated via parameter estimation methods. Ideally,
the model structure and its parameters should be simultaneously determined,
since the choice of a specific model structure limits the accuracy of the model.
However, in practice the model structure is first defined, hopefully through a mech-
anistic derivation of first principles, but sometimes through a surrogate formalism.
Once the structure is chosen, its parameters are calibrated by solving a param-
eter estimation problem where the parameters values are the decision variables
and the objective function is often given by the mismatch between in-silico and
experimental observations. Works that optimize both the model structure and its
parameters are quite scarce. A well-known example in the Process Systems Engi-
neering (PSE) literature is the ALAMO approach for the automated learning of
algebraic models (Wilson & Sahinidis, 2017)). This algorithm creates closed-form
surrogate models by solving a mixed-integer nonlinear programming (MINLP)
problem where binary variables model the selection of specific algebraic terms
from a set of allowable functions and continuous ones the associated parameters.
Designed for dynamic systems, Brunton et al. (Brunton et al., 2016) proposed
the SINDy (Sparse Identification of Nonlinear Dynamics) algorithm, which was
successfully applied to different systems. By using sparse regression techniques,
SINDy provides the user with an appropriate rate model for the ODE. Sun and
Braatz (2020)) developed an algorithm that combines nonlinear feature generation
followed by sparse regression to learn interpretable nonlinear models, called al-
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gebraic learning via elastic net (ALVEN). Other works, such as those by Willis
and von Stosch (2017)), use a problem-tailored approach for extracting ODEs from
process data by formulating a hybrid semi-parametric modeling framework using
mixed integer programming and multivariate rational functions. These modeling
methods have the advantage of only requiring data and, therefore, can be set up
without any expert knowledge about the system. Nonetheless, they assume a set
of basis functions that must be combined linearly to form the algebraic expres-
sions sought, which constrains the feasible set of plausible mathematical models
that could explain given data.

Another approach for identifying closed-form expressions is symbolic regression
(SR), which is based on the principles of genetic programming (Keane et al., [1993;
Koza, |1994). In contrast to the main tools mentioned above, such as ALAMO,
SINDy, or ALVEN, SR methods represent mathematical equations as expression
trees (Cozad & Sahinidis, 2018). Employing a defined search procedure (i.e.,
mainly stochastic algorithms (Diveev & Shmalko, 2021) like a genetic algorithm
(Cranmer et al., 2020) or Markov-chain Monte Carlo (MCMC) (Guimera et al.,
2020)), SR simultaneously identifies the tree structure and involved parameters in
order to optimally represent observed data (Cozad & Sahinidis, [2018; Neumann
et al., 2020). While previous approaches specified the basis functions, SR only
requires a pool of allowed operators, and the functions are created from the avail-
able pool and given data. SR has been successfully applied in various fields, for
example, McKay et al. (1997)) used an SR approach to model a vacuum distillation
column and a chemical reactor system. In a later work, the authors applied SR to
develop a model of a food extrusion process (McKay et al.,|1999)). Vladislavleva et
al. (2013) used an available software package named DataModeler (2023)) to pre-
dict energy outputs of wind farms by considering weather data. Schmidt and Lip-
son (2009) discovered physical laws from experimental data using SR to identify
nonlinear relationships. In recent contributions, researchers used SR to discover
new perovskite catalysts (Weng et al., 2020) and to recover a variety of physical
expressions (Udrescu & Tegmark, 2019)). Other works resulted in commercially
available SR software, such as Eureqa (Schmidt & Lipson, 2009) or TuringBot
(2023). Cranmer et al. (2020) implemented an open-source SR algorithm named
PySR (Cranmer, 2020) in Python that was applied to cosmology problems. Sim-
ilarly, Guimera et al. (2020) developed the Bayesian machine scientist (BMS),
a SR algorithm based on an MCMC approach. These approaches were applied
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in kinetic modeling for heterogeneous catalysis (De Carvalho Servia & Del Rio
Chanona, 2023a; De Carvalho Servia et al., 2024), process design (Ferreira, Pede-
monte, & Torres, [2019; Ferreira, Torres, & Pedemonte, 2019; Negri et al., |2022),
process optimization (Forster, Vazquez, & Guillén-Gosalbez, 2023a;, 2023b) or to
model links between energy-related impacts and socioeconomic drivers (Vazquez
et al., 2022).

Here, we apply SR techniques for kinetic model building in bioprocesses. In
contrast to previous works that developed fully black-box or hybrid models based
on standard surrogates (e.g., ANN and GPs) (Del Rio Chanona, Wagner, et al.,
2019; Gnoth et al., 2010), here we apply SR to find a suitable kinetic expression
and associated parameters. Specifically, our approach combines the BMS with
a two-step decomposition algorithm inspired by the works of Mir6 (2014), Voit
and Almeida (2004), Michalik et al. (2009), and Brendel et al. (2006]). The
goal is to identify reaction rates from observed concentration profiles of species,
where the rate equation is determined via SR. De Carvalho Servia et al. (2024)
recently applied SR using pySR. (Cranmer, 2020) for heterogeneously catalyzed
reactions. However, we here focus on bioprocesses and instead use the BMS
for SR (Guimera et al., [2020). Numerical examples show that the BMS can
identify closed-form surrogate rate expressions that perform similarly compared
to ANN-benchmark models. Following the successful application of the BMS in
other problems, including the approximation of process simulations (Negri et al.,
2022), process optimization (Forster, Vazquez, & Guillén-Gosélbez, 2023a), and
the investigation of energy-related impacts and socioeconomic drivers in macro-
economic studies (Vazquez et al., 2022)), here we show that it can also be used to

find kinetic expressions that explain given data precisely.

The remainder of this article is organized as follows: First, the problem statement
is described in detail. Subsequently, the proposed methodology is discussed. Af-
terward, the case studies are introduced, and the results are summarized. Finally,
the conclusions of the work are drawn.

3.2 Problem statement

Without loss of generality, in this work, we consider a generic ideal batch reactor
with constant volume V' and different species ¢ € I taking part in some reactions.
The mass balance of such a system can be described by expression (3.1)). In this
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description, X; might be the concentration of microbial cells or of a given species
in the bioreactor, and X = [X7, Xs,..., X;] represents the vector of all metabolite
concentrations. On the left-hand side of the equation, dX;/dt (or X), refers to

the accumulation term.

%Xi =X, = Ron; (X), Viel (3.1)
The Rxn;(X) term represents an expression that is unknown to the modeler and
that depends on the concentration of all the species (state variables) collected
in vector X. This is a common situation arising in bioprocess development, be-
cause the underlying metabolic pathways in such systems can be very complex
(Guillén-Gosalbez et al., [2013; Mercier et al., 2014; Petsagkourakis, Sandoval,
et al., 2020; D. Zhang et al., [2020). This complexity is given by the potentially
large feedback loops between a wide range of species and the nonlinear nature of
these interactions. In this work, we will approximate Rxn;(X) using a symbolic
regression method that generates an algebraic expression without assuming any
pre-defined structure of that reaction rate. Hence, here we do not rely on any

canonical formalism to derive the kinetic model.

The goal, then, is to find a suitable expression for Rzn;(X) in equation such
that the mismatch between the model predictions and the experimental observa-
tions is minimized. Note that in this work, we assume that neither the structure
of Rxn;(X) nor the involved parameters are known, unlike in a standard parame-
ter estimation problem as discussed by Voit and Almeida (2004) or Brendel et al.
(2006). Therefore, herein, we aim to find both, the rate expressions and their pa-
rameters simultaneously by only using the available concentration measurements.
It is worth to mention that in the subsequently proposed approach, the modelling
of a rate in the form Rxn;(X) for a species 7 is only possible for species that can
be measured in the sampled data. If no data is available for species 7, a parame-
ter estimation and, therefore, a model building for such a species is not directly
possible. Such a case might be encountered if some species have a shorter lifetime
than the sampling frequency. Consequently, our modelling approach focuses on
species that can be sampled, not on non-sampled or hidden species. The section
that follows introduces our approach.
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3.3 Methodology

In time-series-related problems, the concentrations (subsequently also called states)
X; are often considered to be continuous in time, i.e., X;(¢). However, usually only
discrete concentration values are available at the sampling times. Therefore, we
consider a discrete notation based on a series of time points © € U. The complete
profile of one species i can therefore be described by expression ({3.2)).

Xiu € [Xi,OaXi,laXi,Qa e ,Xi,|U|] , Viel (3.2)

From such a sampled array, we are interested in searching for a suitable model for
the rate expression that can predict the time-dependent evolution by using the
initial conditions at time ty. This model-building task is typically formulated as a
general dynamic optimization problem. In such an optimization problem, the sum
of squared residuals (SSR) between the observed data point X;, and the model
prediction )A(“L is minimized, by optimizing the values of some unknown model
parameters . The problem can therefore be formulated as given in expression
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N2
min SSR = Z Z (Xz‘,u - Xz‘,u)
p i€l uelU
Stleu:MZ (ij,e), \4) E[, ] EI, uelU (33)
Xio= X0, Viel

X, X eR*

in equation , the predicted derivative )A(“L of species ¢ at time point wu is
calculated by a model M;(X,6) with some trainable parameters 6 that well ap-
proximate the underlying reaction rate Rzn;(X). The model building process to
approximate Rxn;(X) ~ M;(X,0) is discussed below. The initial conditions X
are usually known values. However, finding the concentration profiles X;, for
a given system requires solving the ODEs, either simultaneously or sequentially.
The latter might lead to stiff ODEs and can therefore often make numerical inte-
gration very difficult and inefficient (Tjoa & Biegler, |1991)). Moreover, effectively
handling the existence of binary variables in this approach would remain chal-
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lenging. Michalik et al. (Michalik et al., [2009) and Voit and Almeida (Voit &
Almeida, 2004)) proposed alternative approaches to simplify the dynamic prob-
lem shown above based on a reformulation of the original model in the deriva-
tive space instead of the state space. This reformulation is given in expression

)

min SSR = ; ; (K- )A'g,u)z

5t Xju=M;(X;u,0), Viel, jel, ueclU (3.4)
Xio= X0, Viel

X, X eR*

To solve the problem given in expression , the derivatives XW have to be
obtained from the discrete time profiles of the observed state variables X, ,,.
Such derivates can then be subsequently used to train a suitable kinetic model
M, (X,0). This strategy avoids integrating the dynamic system in expression
(3.3), at the expense of performing the regression in the space of reaction rates,
which poses some challenges concerning the computation of derivatives leading
to low errors in the original dynamic space of state variables. This is because
the derivatives determined experimentally can be affected by experimental errors,
which may lead to good predictions in the reaction rates space but poor in the
original states variables space.

The method of choice follows an incremental approach for building the surrogate
model, as shown in Figure 3.1} where the details of the steps are given below in

Section

The discussed procedure starts with collecting noisy concentration data X, for
different species i and times u. To smooth out the noise in the measurements,
a univariate function in time (;(t) is fitted to the data. In the second step, this
identified function (;(¢) can be derived analytically and the derivatives Qu can
be evaluated at the experimental time points. Third, the state values X;, are
linked to the calculated derivatives Q"m by an appropriate model found via SR.
The model, therefore, approximates the Rxn;(X) term given in equation (3.1]).
Last, the trained models can be incorporated into a system of ODEs, which is
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Step 1: Gather experimental data and fit function

Xi,u

X;(t) = §(t)

Step 2: Find derivatives of the data

Derive identified fit: :—t(i ®

v

Evaluate derivative at
experimental time points ¢; ,

L

| Step 3: Build rate expressions by model training to |

| map the to the derivatives |
X~ éi,u < BMS;(X) or X, ~ Zi,u < ANN;(X)
I__ —_ T = = = T = T = J
| Step 4: Solve ODEs with included model expressions |
|« ZN |
—Xl(t) = BMSl(X) / \
Cét /./ \
| = X:(t) = ANN;(X) 7 Y |
dt i ]
g /
| oA
\ /
Integrate ODEs to get \'\ ’
| predicted states X, ,, o |

Figure 3.1. Overview of the approach for building a rate expression. In the first step, a
function (;(t) is fit to data points for each species i. The functions (;(¢) are then derived
analytically (step 2). In step 3, models (BMS or an ANN) are trained to map the states to
the calculated derivatives C“L Last, in step 4, the models are incorporated into a system

of ODEs which can be solved with appropriate initial conditions.
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solved using specific initial conditions. In the following subsection, these four
steps are discussed in more detail.

3.3.1 Incremental approach for model building

The procedure is schematically shown in Figure 3.1 There are several possible
ways to derive data numerically. A comparison of three possible methods to
derive a noisy sinusoidal signal is given in Figure [3.2 The simplest method is
the differentiation via forward finite differences. The main disadvantage of this
approach is the amplification of noise during the derivation process. Therefore, a
smoothing step is preferred before differentiating noisy data, for example using a
Savitzky-Golay filter (Savitzky & Golay, 1964). Here, however, we used instead a
polynomial or a univariate BMS to fit a function (;(¢) to the noisy data, as given
in expression . The polynomial approach was successfully demonstrated in
an earlier work by the authors (Forster, Vazquez, Cruz-Bournazou, et al., 2023).
The symbolic fit using the univariate BMS was inspired by De Carvalho Seriva et
al. (2024)), where the authors demonstrated an approach for fitting and deriving
the observed data. In the present work, we adapted this approach and use a
different toolbox.

i1+ piot+ ...+ p; tg )
Xi(f)m = QT Prattfu g e g (3.5)
BMS;(t)

In the case of the polynomial approach, the unknown parameters p have to be
regressed to the noisy data, while when using the BMS the structure and param-
eters are both to be found. Both, the polynomial and the algebraic expression
identified by the BMS are univariate in time. In both cases, the resulting expres-
sions can subsequently be derived analytically, as given in equation . The
derivatives can be evaluated at the experimental time points ¢,,, u € U.

X;(t)~G() = % (t), Viel (3.6)

Steps 1 and 2: Fitting univariate function and estimating derivatives.
In the case of the polynomial approach, we defined a set of polynomial degrees
q € Q. The different polynomials are fit to the noisy data and the corresponding
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Bayesian information criteria (BICs) are calculated. The polynomial with the
lowest BIC is subsequently differentiated analytically as given above. In the case
of the univariate BMS, we defined a threshold for the coefficient of determination
(R?). The BMS is trained with a given number of steps (discussed in more detail
below). If the R?-threshold is not reached, then the training steps are doubled.
This procedure is repeated for a given number of times at most. After that, the
identified algebraic expression can be derived analytically. As shown in Figure [3.2
(b), the approximated derivatives are more accurately calculated by the smoothing
methods given in expressions and compared to forward finite difference
differentiation. However, the first and last sample points might still comprise
some error even after applying such smoothing techniques. To reduce this noise
impact further, one possibility is to disregard the initial and last sample points
for the subsequently discussed model training, which is also used in other works
(Willis & von Stosch, 2017).

An in-depth analysis of how the derivative approximation methods perform under
different noise levels and data set sizes is given in the supplementary information
Section The results summarized in Figure show that the symbolic es-
timation approach given in expression seems to work well suited even in
presence of noise and scarce data sets.

Step 3: Building the rate expression. Rate expressions map some discrete
states X;, to the obtained derivatives Qu The identified model, therefore, is
intended to predict the changes in concentration of the species at a given time.
To identify this model, we use an SR tool, the BMS. Upon model training, the
BMS identifies an algebraic expression that approximates the reaction term as
given in expression (3.7). To benchmark our results, we compare them to those
from an ANN, as shown in expression . The reason for this choice is that
ANNSs are generally regarded as good approximators (Psichogios & Ungar, 1992).
Additional details on the symbolic regression tool are discussed below in Sec-

tion 3.3.21

Ran; (X))~ M; (X)=BMS;(X), Viel (3.7)

Ran; (X) ~ Mbenchmark (X — ANN; (X), Viel (3.8)
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Figure 3.2. (a) Noisy measurements (circles) together with the underlying sinusoidal
ground truth (dashed line). (b) Comparison of numerical differentiation methods. The
dashed black line represents the cosinusoidal ground truth of the derivative (covered up
by the BMS approach). The blue pentagons with the solid line represent the derivatives
by forward finite differences. The orange diamonds with the dotted line represent the
derivatives obtained by the polynomial approach discussed above. The green crosses with
the dashed-dotted line represent the derivatives of the BMS approach.

Step 4: Solving the ODE model with the built rate expressions. The fully
trained models can be incorporated into the ODE in expression , resulting in
the ODEs given in equation for the BMS approach, and in equation (3.10)
for the ANN approach.

d
d .
o Xi=ANN;(X), Viel (3.10)

These ODEs can be solved for the initial conditions X;,¢ € I and considering an

integration period ¢ = [to, tf].
3.3.2 Background to the Bayesian machine scientist

In this work, we do not assume any pre-defined model structure to search for
suitable rate expressions. Upon model training, the BMS returns an algebraic
closed-form expression, which can subsequently be incorporated into the system
of ODEs to be integrated. We now provide an overview of how the BMS works.
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For further information, the reader is referred to the original paper (Guimera et al.,
2020). The algorithm identifies a suitable mathematical expression by searching
through a space of expressions represented as symbolic trees. To perform the
search through this space of expressions, several allowable moves from an initial
tree can be done by the algorithm.

The space of possible mathematical expressions 7 is described by E. Starting from
one symbolic representation ~.,e € E, we perform changes in the tree leading
to different mathematical expressions. One example of such a tree evolution is
shown in Figure (a). The addition of the two main terms in -, is replaced by
a multiplication, which leads to the expression 5. A further replacement of the
addition in 7, leads to the expression 73, which explains the observed data points
(black circles) better than ;1 or ;. Another adaptation would be the elementary
tree replacement (i.e., exchanging the complete sub-tree (5 + §) by another sub-
tree). For each resulting expression, a goodness-of-fit metric can be calculated.
The SR algorithm then proceeds to search the space of expressions, seeking the
expression with the best goodness of fit. This search is stochastic, as in other
evolutionary algorithms (Costa & Oliveira, [2001; Guimera et al., 2020).

=+ +B+6) y2=E&+a)x(B+8 y3=(xxa)x(B+9)

Figure 3.3. (a) Several equations are represented as symbolic trees. From 1 =
(1 4+ @)+ (B + §), a node replacement can be performed to reach v2 = (1 + ) X (8 + 9).
A further node replacement can be done to obtain the equation v3 = (z1 X a) x (8 + 9).
The expression for 3 (green line) ends in the best possible model to fit the data (black
circles) compared to v1 (blue line) and 72 (red line) in the lower part of the figure. (b)
The space E of all possible expressions 7. is schematically shown as a dashed polygon.

The BMS can provide closed-form algebraic expressions from data based on a set of
user-defined mathematical operations (i.e., addition, subtraction, multiplication,
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etc.). In the algorithm, a conditional probability p(q.|D) is assigned to each
expression 7., e € F (the space of symbolic trees shown schematically in Figure
(b)) used to fit some data D, which is calculated according to Bayes Theorem
(Bishop, 2006; Murphy, 2013), given by equation ([3.11]):

p (D) p(7e)
p(D)

p (7| D) = (3.11)

Where p(D) represents the marginal likelihood of some data D. p(D) is inde-
pendent of v, and therefore acts as a normalization constant. Marginalizing over
the parameters ¢, associated with expression 7. (Murphy, |2013)), the numerator
in expression can be expressed as an integral over the space of all possi-
ble parameter values @, (Guimera et al., 2020). The description length DL (7.)
then describes the resulting integral (Guimera et al., 2020; Hansen & Yu, 2001}
Murphy, [2013)), given in equation (3.12)).

DL (7.) = —log {]ﬁ/@ dgep(D|Ve, Pe)P(Pe|ve)D(Ve) (3.12)

Computing the numerical value of the integral included in the description length is
challenging (Guimera et al., 2020; Murphy, 2013). It has been shown (Griinwald,
2007; Murphy, 2013) that the entire metric can be approximated through the
Bayesian information criterion (BIC') and the prior of the corresponding symbolic
expression 7., as shown in expression (3.13))

BIC(7.
DL (30) = P10

—log (p (7e)) (3.13)
Therefore, the plausibility of observing an expression 7. conditioned on some
data D is obtained by the description length DL(7.). In other words, during the
stochastic search, the description length (and therefore a metric for the plausi-
bility of observing an expression -.) serves as objective function which is being
minimized. As visible in expression , to compute the description length, the
prior knowledge about expression 7, is required as p(7.). Guimera et al. (2020))
used a pre-defined corpus of equations from Wikipedia. After parsing the pub-
licly available equations, the number of operations were counted that were present
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in the expression. Based on this information, they created distributional infor-
mation about operators in equations, which were subsequently used as the prior
distributions p(v.) (Guimera et al., [2020).

According to Griinwald (2007), DL(7.) can be understood as an encoded length
of the expression 7. (number of natural units). A Markov-chain Monte Carlo
(MCMC) (Hastings, [1970)) algorithm is used to explore the space E of expressions,
where the number of MCMC iterations is defined by the user. After evaluating the
description length of each expression DL () — which represents the goodness-of-
fit metric and therefore the objective function — the BMS keeps the most plausible
one, representing the expression with the shortest description length (the best
goodness-of-fit).

3.3.3 Model performance metrics

For assessing the performance of the models, an arbitrary set of initial conditions
can be used to integrate the ODE, comparing the simulated and experimental pro-
files values. After training the models on dedicated training runs, separated test
runs were used to assess their performance. A detailed description of how the data
is generated and split into training and test sets is shown in Section

The performance is assessed via the root mean squared error (RMSE) and the

coefficient of determination (R?), defined as given in equations (3.14)) and (3.15).

These metrics can be calculated for both the training and test sets, obtaining the
training and test errors, respectively. They can be calculated for the concentration
(state) space or the derivative space.

In these relationships, the predictions by the model are described by XZ-M. The
experimental data points and the mean of the experimental data points of the
data are described by X;, and Xz}u: respectively. Variables SSR and SST denote
the sum of squares of residuals and the total sum of squares (proportional to the
variance of the data), respectively. The error metrics in expressions and
can be calculated for the state and derivative variables.
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RMSE = % > (Xu - Xi,u)2 (3.14)

i€l uelU
N 2
7 SSR 1 Zie[ ZUEU <Xi,u - Xz}u) (3.15)
— _— = — — 3 .
SST ZZEI ZUEU (X7/7u - szu)

3.3.4 Implementation details

All calculations were carried out on an Intel®Core” i7-8700 CPU and 16 GB
of RAM. To construct the sampling dataset, we used Python 3.10 with NumPy
v1.24.3 and pyDOE v0.3.8. For the BMS training, the hyperparameter values
are those given in the original article of the BMS (Guimera et al., 2020), i.e.,
5% probability of root replacement, 45% probability of node replacement, and
50% probability of elementary tree replacement. The allowed unitary operations
included exp(z), log(z), 2, x3, and y/x, while the binary operations consisted of
+, —, =, x, Y. The maximum number of MCMC steps was chosen to be 10*. The
neural network training was performed with Scikit-learn v1.0.2 (Pedregosa et al.,
2011). A grid search with a 3-fold cross-validation was performed to tune and find
appropriate hyperparameters for this benchmark model. Parameters considered
during the grid search were the hidden layer size, the activation function, the
learning rate, and the initial learning rate. Details of this grid search and the
settings of the fixed hyperparameters are given in Section of the supporting

information.

3.4 Case studies

Subsequently, two different case studies are presented. We employed Latin hy-
percube sampling (LHS) together with the bounds given in Table to generate
different initial conditions, with each set of initial conditions representing a dif-
ferent batch. For each case study shown below, 13 batch runs were simulated in
total. From those, 10 batches were used to train the models and 3 were taken
as test batches. We added normally distributed noise (NumPy) with a mean of
i = 0 and a variance of 02 = 0.2 to the profiles obtained from integrating the
different batches to create more realistic data (more significant noise level in lower

numerical ranges to resemble measurement errors). For the two case studies, sev-
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eral scenarios were considered, which are summarized in Figure [3.4] To study the
influence of the amount of data available, we generated profiles with 40 and 20
time points per batch. It is worth to be mentioned that the time spans of the
subsequently introduced case studies are 80 hours and 180 hours, respectively. A
sampling rate of 20 points within this time frame results in one sample every two
hours and every approximately 9 hours. Indeed, it should be kept in mind that
a reduction of the sampling frequency will result in a reduction in accuracy of
the derivative approximation, which is discussed in more detail in the supporting
information Section To calculate the derivatives from the data, the polyno-
mial fit or symbolic regression fit, both described in expression (3.5]), were used.
Hence, four different scenarios for each case study were explored. The resulting
scenarios are described by the abbreviations Poly-20, Poly-40, SR-20, and SR-
40, depending on the number of points per batch and the method for derivative
approximation . As an example, CSI-Poly-40 describes the scenario of CSI
with the polynomial approach for the derivative calculation and 40 samples per
batch and species. The case studies are also collected and published on GitHub
(https://github.com /forstertim /insidapy).

( Case studies | and Il )
( Each with 13 batches (10 train, 3 test) )

( Each batch with |U]|

time points (samples) per species

Data generation

(o) 1
= 1
2 Csl-Poly-40 CSI-SR-40 CSl-Poly-20 CSI-SR-20
Y Csli-Poly-40 CSII-SR-40 CSlI-Poly-20 CSlI-SR-20 :
wv

Figure 3.4. An overview of the organization of the case studies is shown schematically.
For each of the base case studies discussed below, batches with either 20 or 40 samples
were generated. Then, either the polynomial or symbolic regression approach was applied
to calculate the derivatives.
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3.4.1 Case study I

A bioprocess is considered where some bacteria produce a specific product while
consuming a substrate. The mass balances are given in expressions , where
the variables B, S, and P (all in gL.™!) represent the biomass, substrate, and
product concentration, respectively. These species are summarized in the vector
X = {B,S,P}. The process is modeled in batch mode and was adapted from
Turton et al. (2018]).

In these mass balances, ¢ (h™!) models the growth rate. Y;; represents the yield
coefficient of species j with respect to species i. The expressions (A, T, E4) repre-
sent Arrhenius reaction rates that depend on the temperature 7" and temperature-
independent pre-factors and activation energies E4 1, Ea2, A1, and A, respec-
tively. The parameters K and K, represent the half-saturation constants. Data
was generated for the interval ¢ = [0,80] h. The values of the parameters are
given in Table [B.3] of the supporting information. As mentioned in Section [3.3.1]
the first two and last five points (polynomial approach) or the first two and last
two points (BMS approach) were excluded for model training.

dB
Y
ds 1
- __ - . 4-B
dt V.5 ¢
dP  Yps 5B (3.16)
dt  Yps
, S Q (A, T,Es1) B
th = Pmax * . : (1 —
With ¢ = Gmas - 7= 1+ Q (A, T, Er) K, + B

3.4.2 Case study II

Here, we focus on a bioprocess studied by Del Rio Chanona (2019)). The system
of ODEs in expressions is based on a Monod model, a Logistic model, and
a Luedeking-Piret model (D. Zhang, Dechatiwongse, Del Rio Chanona, et al.,
2015)), where cell growth, cell decay, and substrate uptakes are considered. For
a detailed description, the reader is referred to the work of Del Rio Chanona
(2019).
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In this system, the variables B, C', N, and P represent the biomass, carbon, ni-
trogen, and phosphate concentrations, respectively (all in mg L™!). These species
are summarized in the vector X = {B,C, N, P}. The parameters Ky, K¢, and
Kp represent the half-velocity coefficient of the corresponding substrates, where
the parameters Y;; and Y, are growth-dependent and growth-independent yield
coefficients of the species i = C, N, P. The biomass growth and death are given
by @ and p4. The concentration of the biomass is divided by 1000 so that the orig-
inally reported parameter values can be used (D. Zhang, Dechatiwongse, Del Rio
Chanona, et al., 2015). The time window investigated corresponds to t = [0, 180]
h. The values of the parameters are given in Table As in CSI, the first two
and last five points (polynomial approach) or the first two and last two points
(BMS approach) were excluded for model training.

3.5 Results

Below, the results of the BMS are compared to the ones obtained with the ANN. A
summary of the obtained coefficients of determination (R?) for the model training
and testing is given in Table 3.2 The performance metrics are displayed for the

Table 3.1. Lower and upper bounds used for generating the training and test sets. With
those bounds and a Latin Hypercube Sampling approach, different initial conditions were
generated. These were used to solve the systems of ODEs in expressions and
to create different batch runs.

CSI CSII
Species B S P B C N P
Lower bound 0.1 50 0 216 108 450 17
Upper bound 0.4 90 0 264 132 550 21
Unit gL™' gL' gL' mgL' mgL™' mgL?!' mgL™*
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different scenarios (as visualized in Figure , while results are also depicted in
Figure [3.6)for CSI and Figure [3.7]for CSIL. These plots show the calculated deriva-
tive values against the model predictions for both modeling approaches (BMS
and ANN). Additional results are given in Section of the supporting informa-

tion.

In general, both models achieve similar performance in both the derivative and
the state (concentration) space, with our approach often outperforming the ANN],
but not by much, as discussed next. Recall that the models should not only train
well in the derivative space but also after integration since we are interested in
predicting concentration profiles. Therefore, we focus first on the model with best
performance in the state space of the unseen test batches (in Table the highest
R? value of the test set is highlighted in bold). The best-performing models are
identified by the BMS in most scenarios, although the differences with the ANN
are small. The only exception where the ANN outperforms the BMS is in CSI-SR-
40, although also there, differences are marginal. In addition to the data given in
Table Figure 3.5 shows one of the test batches results for the models identified
in scenarios CSI-Poly-40 (top row) and CSI-Poly-20 (bottom row). As shown in
this figure, the models are well able to predict the evolution of the concentration,
even if a lower sampling frequency was used (20 vs. 40 samples). From the results
shown in Table having fewer data points per batch does not significantly
impact the performance of the models. Also, there was no clear difference in
performance when comparing the two differentiation approaches.

Considering the reaction rates space, both models lead to very similar performance
in all scenarios. Interestingly, although trained only in the derivative space, both
models can predict well after integration. This would support the assumption
that the rate expressions can be well approximated by both models.

Although both models seem to perform similarly throughout the case studies,
there is one significant advantage of using BMS. After identification of the rate
expression, the model is provided in analytical form and can be, arguably, inter-
preted more easily than purely data-driven models. For CSI (CSI-Poly-40), the
most plausible expressions obtained by the BMS for the ODE system are given
in expressions (3.18)-(3.20) as an example. Additionally, the corresponding esti-

mated values of the parameters in expressions (3.18))-(3.20) are given in Table
The identified BMS models with the corresponding estimated model parameters
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Figure 3.5. The concentration profiles of the three species in CSI are shown together
with the model predictions. The top row represents the scenario CSI-Poly-40, whereas the
bottom row represents the scenario CSI-Poly-20. The black circles represent the observed
noisy data, where the dotted line represents the underlying ground truth. The dashed
orange line represents the ANN prediction, whereas the blue solid line represents the
BMS predictions. It is worth mentioning the model predictions are only shown for the
experimental time points that were used for model training, since some initial and last
samples were removed from the training, as discussed in Section m
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Figure 3.6. The observed values are plotted against the model prediction values for CSI.
The columns represent the different scenarios of the case study. The top row shows the
results obtained from the BMS predictions, whereas the bottom row shows the results
from the neural network. Blue circles represent the training data, whereas red diamonds
correspond to the test data. The black line represents the values where the observed value
corresponds to the model predictions.
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Figure 3.7. The observed values are plotted against the model prediction values for
CSII. The columns represent the different scenarios of the case. The top row shows the
results obtained from the BMS predictions, whereas the bottom row shows the results
from the neural network. Blue circles represent the training data, whereas red diamonds
correspond to the test data. The black line represents the values where the observed value
corresponds to the model predictions.
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Table 3.2. The coefficients of determination (R?, unitless) are shown for the training and
testing runs (notation: train/test) for the two case studies and their respective scenarios.
For each case scenario, the best-performing approach in terms of state-space performance
is indicated in bold text. The CPU times for the model training are indicated as mean
values of the times for training models of the different species. In the ANN case, the
time for the grid search is included. The raw values of the CPU times are indicated in
Section of the supporting information.

CPU model
CS  Seenario training [s] State Derivative
BMS ANN BMS ANN BMS ANN
Poly-40 7271 88 0.961 / 0.999 0.837 / 0.986 0.995 / 0.995 0.992 / 0.994
SR-40 4132 88 0.977 / 0.900 0.959 / 0.990 0.979 / 0.990 0.982 / 0.988
I Poly-20 5803 59 0.998 / 0.995 0.994 / 0.994 0.997 / 0.996 0.996 / 0.996
SR-20 8167 57 0.993 / 0.989 0.988 / 0.984 0.981 / 0.986 0.983 / 0.988
Poly-40 9384 130 1.000 / 1.000 0.996 / 0.998 0.995 / 0.995 0.958 / 0.989
SR-40 9275 162 1.000 / 1.000 0.997 / 0.999 0.995 / 0.997 0.973 / 0.993
I Poly-20 2120 155 1.000 / 1.000 0.996 / 0.996 0.986 / 0.986 0.885 / 0.901
SR-20 4492 151 1.000 / 1.000 0.999 / 0.999 0.997 / 0.994 0.971 / 0.978

for the other scenarios are summarized in Section of the supporting informa-

tion.

% — ag ((5 . B)“ﬁ(&)) (3.18)
% =ap+ay—a; (P+B¥™). s(s7)” (3.19)

After the model training and the deployment for predicting the time dependency
of the concentration profiles, one can analyze the obtained ODEs to gather some

Table 3.3. Parameter values of the most plausible algebraic models identified by the
Bayesian machine scientist for each case study given in expressions (3.18))-(3.20).

Rate equation for CSI

Parameter ;5 ds/dt dP/dt
ao 4.164-107®  5.343-1072  -1.797-10°
ay 8.285-1071  2.072-1072 4.059-107!
as -1.086-107'  2.302-:107%2 4.175-1073
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qualitative knowledge from those closed-form expressions. This will be shown with
the example of the biomass growth and the substrate consumption. It is worth to
be mentioned that this analysis is done on a conceptual and qualitative level to
extract some knowledge and trends about the underlying system.

Considering the growth of the biomass B in equation , all three species -
B, S, and P - seem to influence the change in biomass concentration. These
findings can be interpreted using the underlying ground truth model in ,
which was used to generate the noisy data. In this underlying ground truth model
the product concentration P is not involved in the rate equation of the biomass.
Nevertheless, the BMS equation takes also P into account in (3.18). However,
taking a closer look at the exponent in this equation, namely a; + (ay/(as + P)),
one can observe Monod-type similarities with an asymptotic behavior. The value
of this entire exponent converges towards a given value aq, which is displayed in

Figure (a).

(a) (b) 00  Growth1072h~! 48 ---- B=0.020g/L
[ e — —— B=0.300g/L
0.8 ~a .
o . & \.\'\ M3 lc
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Figure 3.8. (a) The exponent in equation is shown as a function of the prod-
uct concentration P. In (b), the biomass growth ¢ - B given by the underlying system
in equation is visualized as a function of the substrate concentration S and the
biomass concentration B. Additionally, in (b), two scenarios are highlighted by the blue
dashed (constant biomass of 0.02gL~!) and black dotted-dashed lines (constant biomass
of 0.30gL "), for which the growth is shown as a univariate function of the substrate
concentration.

Although the BMS considers the product in the identified model expression for
dB/dt, the effect of a change in P is more significant in the beginning and becomes
less important throughout the reaction (when the product is formed, and its
concentration increases). In other words, the main influences on dB/dt result
from the part ag(S - B), for most of the reaction time, since the exponent has
more or less a similar value around =~ 0.8 (Figure (a)) during most of the
time, which is in-line with the underlying ground truth equation in (3.16]) (no
impact of P): Figure (b) displays the true change of biomass (¢ - B) as a
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function of the substrate and biomass concentrations. Considering two specific
values of the biomass (i.e., 0.02gL~! or 0.30gL™'), the growth can be shown
as a function of the substrate. In case of low biomass availability (blue dashed
line), the growth seems to be less dependent on the substrate, whereas in case
more biomass is available (black dotted-dashed line), the substrate concentration
shows a greater impact on the growth. In such a case, as expected, as soon as
the substrate level drops, a significant decrease in growth rate can be observed
(right part of Figure (b) for the black dotted-dashed line). The predicted
time series profiles by the BMS given in Figure show a good accuracy also in
the beginning and at the end of the process operation, for which the mentioned
significant drop in the growth needs to be captured. The BMS was able to describe
such trends without the need of chemical or biological background knowledge. If
the growth predicted by the BMS - the right-hand side of equation (3.18]) - is
visualized (Figure , a similar trend can be observed, although slight numerical
discrepancies are observable compared to the underlying system in Figure |3.8

(b).
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Figure 3.9. The biomass growth identified by the BMS equation is visualized as a func-
tion of the substrate concentration S and the biomass concentration B (for the indicated
concentration of the product). Similarly to Figure two scenarios are highlighted by
the blue dashed (constant biomass of 0.02gL™") and black dotted-dashed lines (constant
biomass of 0.30gL™'), for which the growth is shown as a univariate function of the
substrate concentration.

A similar analysis can be performed for example for the identified equation of the
substrate consumption rate, given in (3.19). The BMS identified an expression
where all state variables show an inhibiting influence on the rate of S. In other
words, the consumption of the substrate is enhanced by increasing the concentra-
tion of the other species in the system. Due to the closed-form availability of the
model, a deeper analysis of the rate equation is possible, which is showcased by a
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further decomposition of the identified expression into individual terms, namely
hi, ho, and hsz given below. Compared to the pure ANN, this poses an advantage
since knowledge about a system can be extracted.

hl = a9 + Qo (321)
hy = ay - P - SU/(S-FD® (3.22)
hs = ay - BS . g/ (S-P)% (3.23)

Since hy only consists of constants, this term is disregarded for the time being,
since no metabolite influences it. Considering the terms hy and hs, it is observable
that the constant a; and the part S(/(5 )% ig the same for both terms. In case
one is interested in the significance of the individual parts, the numerical ratio of
the two terms will matter, since both terms, hy and hs have the same sign and
therefore the same impact on the consumption of the substrate. Creating such a
ratio ¢ = hy/hs = P/B%% will result in the following consumption rate of the
substrate (still disregarding h4):

dS/dt ~ —ay - P SU/SP _ g pSan . gU/SP) (3.24)
~ ay - PSSP g . gU/(s-P)y (3.25)
ha ~ .
h3

With this, one can observe that if ¢ > 1, it results in a case where hy < hy. On
the other hand, if ¢ < 1, the case hg > hs is obtained. Visualizing the value of ¥
for different ranges of the biomass and substrate concentration and a given value
of the product concentration (P) in Figure one can observe how the terms
change their numerical relevance compared to each other (which term has more
impact on the substrate concentration). With growing product concentration P,
the value of ¥ starts to grow as well (¢ >> 1), leading to higher contributes by
the term h,.

The obtained closed-form expressions models bring not only the advantage of
being able to extract some knowledge on the system’s behavior. Due to the
algebraic form of the models, another useful benefit is the possibility to calculate
the gradients analytically. This opens the opportunity to include these models for
example in deterministic optimization algorithms, where the objective functions

and constraints need to be available in closed-form manner (Bongartz & Mitsos,
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Figure 3.10. The contour plots of the numerical ratio ¢ are shown for three different
levels of the product concentration P, which are [0, 7.5, 15] gL™!. The colors of the
contour represent the value of 1.

2019; Misener & Floudas, 2014; E. M. Smith & Pantelides, [1999; Tawarmalani &
Sahinidis, 2002).

Despite the above-discussed advantages the closed-form analytical equations pro-
vide, there are also disadvantages, where the high CPU times for the BMS model
training is one of the main drawbacks. Considering the averaged CPU times for
the BMS training in Table[3.2] the models required at least 35 min (CSII-Poly-20)
and at most 156 min (CSII-Poly-40). The exact CPU times are documented in
Section of the supporting information. As discussed in earlier works (Forster,
Vazquez, & Guillen-Gosélbez, 2023a; Negri et al., [2022; Vazquez et al., 2022),
the BMS in general requires significantly more training time than the benchmark
surrogates (i.e., ANN and GP). This is because the latter are based on a fixed
canonical formalism and highly efficient algorithms, such as the used Python pack-
ages Scikit-learn (Pedregosa et al., . Also, the BMS algorithm was originally
designed by the authors to only allow the number of MCMC steps as a stopping
criterion (Guimera et al., 2020). The evolution of the description length, given in
expression , is shown in Figure as a function of the number of executed
MCMC steps.

To compare the case studies, the description lengths were scaled to a range be-
tween zero and one. For CSI, it can be observed in Figure [3.11] (top) that after
around 800 MCMC steps, the description length does not significantly change. A
similar picture is observed in Figure (bottom) for CSII, where the most signif-
icant decline in the description length was achieved in the first 2000 MCMC steps.
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Figure 3.11. The scaled mean description lengths are visualized for each MCMC step for
CSI (top) and CSII (bottom). The mean results from averaging the description lengths
of the different BMS models obtained for each species of each scenario (Poly-40, SR-40,
Poly-20, SR-20).

The only exception can be observed in the scenario CSII-SR-40, where the descrip-
tion length declines gradually. These observations imply that the models identified
after those steps perform similarly in terms of training predictions.

3.6 Conclusion

In this work, we investigated the use of machine learning to identify kinetic mod-
els of bioprocesses without assuming a pre-defined model structure. A symbolic
regression algorithm, the Bayesian machine scientist, was employed to generate
suitable models considering their error and level of similarity with a predefined
corpus of equations. The model training was performed following a two-step ap-
proach, thus avoiding the iterative integration of differential equations, by using
two methods to calculate derivatives, i.e., polynomial fitting and univariate sym-
bolic regression. Also, the influence of the sample size was studied. Our approach
was applied to two different case studies to showcase its capabilities. Our method
performed slightly better than ANNs, while leading to analytical expressions that
can be more easily analyzed. However, the BMS leads to higher computational
times, which might be reduced in the future as symbolic regression algorithms
reach higher maturity levels. Future work should focus on guiding the SR al-
gorithm more efficiently towards equations that are more likely to explain the
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data precisely, for example by using tailored standard kinetic equations during
the training of the SR algorithm.
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Chapter 4

Algebraic surrogate-based process
optimization using Bayesian

symbolic learning

This chapter is based on the following publications: Forster T., Vazquez D.,
Guillen-Gosalbez G. (2023a). Algebraic surrogate-based process optimization us-
ing Bayesian symbolic learning. AIChE Journal, e18110. and Forster T., Vazquez
D., Guillén-Gosalbez G. (2023b)). Global optimization of symbolic surrogate pro-
cess models based on Bayesian learning. Computer Aided Chemical Engineering,
52, 1241-1246.
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{e | e is a closed-form algebraic expression}

{i | i is a decision variable and represents a process condition}

{j | j is a parameter}

{m | m is an equality constraint}

{n | n is an inequality constraint}

{r | r is a reactor, used for case study IV}

{s | s is a sample consisting of an input vector w, and the corre-
sponding output o4}

Real numbers

Specified process condition

Target process response depending on input variables x and process
specifications ®

Lower and upper bound of an observed response f

Surrogate model approximating f(x) only depending on input vari-
ables z

Inequality constraint n in an optimization problem

Equality constraint m in an optimization problem

A response/output of a sample s

Process specification/condition and decision variable i

Lower and upper bound of decision variable 4

Scaled variable/sample or normalized response/output
Closed-form algebraic expression

A sample s of a decision variable ¢
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4.1 Introduction

The optimization of process flowsheets is a fundamental problem in Process Sys-
tems Engineering, for which several approaches have been proposed to date. Origi-
nally, process optimization relied on mechanistic models based on some knowledge
of the system (Haydary, 2019). Such models provide a closed-form description that
enables the direct application of deterministic optimization algorithms, including
global optimization (GO) methods. One possible example of deterministic global
flowsheet optimization, the reader is referred to the work of Bongartz and Mitsos
(Bongartz & Mitsos, 2019)).

Wherever complex systems are studied, a first-principles model is not easy to
design. Some authors proposed building tailored data-driven models, which can
simplify the optimization task. For example, Sun and Braatz (2020) introduced
ALVEN (Algebraic Learning Via Elastic Net) to identify a nonlinear interpretable
model for manufacturing data. Another widely known approach is ALAMO
(Cozad et al., [2014; Wilson & Sahinidis, 2017), which considers a range of ba-
sis functions to build algebraic models for given data. However, these methods
constrain the model structure because they rely on given monomials and transfor-
mations of the input variables, which can result in less accurate approximations.
More recently, data-driven (also referred to as black-box) models emerged to deal
with problems in which the underlying phenomena cannot be easily described.
They include (but are not limited to) classical regression models such as polyno-
mial regression (Ostertagova, 2012) and state-of-the-art machine learning (ML)
algorithms. Black-box models require little physical knowledge about the process
(Narayanan, Luna, et al., 2021). Moreover, with the latest ML packages/platforms
available, such as scikit-learn (Pedregosa et al., 2011)), Tensorflow (Abadi et al.,
2015), and PyTorch (Paszke et al.,2019) for python, the Matlab ML toolbox (The
MathWorks Inc, 2024)), and even low-code/user-friendly alternatives like AutoML
(Guyon et al., 2017) and KNIME (Berthold et al., 2007), ML models can be
implemented quickly and reliably. However, despite being easy to build, they fol-
low a pre-determined structure (Cozad & Sahinidis, 2018) and may extrapolate
poorly. In the context of PSE, artificial neural networks (ANN) and Gaussian
processes (GP) were, for example, applied by Del Rio Chanona et al. (2019) to
simulate a wastewater biotreatment and by Gnoth et al. (2010) in a bioprocess

simulation.
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Data-driven approaches have also been applied to build surrogates of mechanistic
models that are hard to optimize. For example, Jones et al. (1998) introduced a
response surface methodology for expensive multimodal functions, where they ap-
plied Bayesian optimization. Following a similar approach, Quirante et al. (2015)
optimized distillation columns with surrogate models based on Kriging interpola-
tion. Later works (Quirante & Caballero, 2016; Quirante et al., [2018]) extended
this methodology to replace other units with Kriging models (GP regression),
leading to a hybrid simulation-optimization modeling framework.

Optimizing standard data-driven ML models is not straightforward due to their
intrinsic complexity and nonlinearities (Mitsos et al., 2009; Schweidtmann & Mit-
sos, |2019)). Here, the standard approach is to solve these models to local optimal-
ity. However, more recently, tailored deterministic GO algorithms for data-driven
models emerged. Notably, Schweidtmann and Mitsos (2019) introduced a global
optimization approach named MAiINGO (McCormick-based Algorithm for mixed-
integer Nonlinear global optimization) to optimize ANNs globally, which was later
extended to use GP models (Schweidtmann et al., 2021)). It built on earlier works
that integrated machine learning models in optimization problems by applying the
created toolbox named MeLOn (Schweidtmann et al., 2020) (Machine Learning
models for Optimization). Ceccon et al. (2022) presented OMLT, an optimization
and machine learning toolkit to optimize trained ANNs or gradient-boosted trees.
Boukouvala et al. (2017) introduced a methodology for the global optimization
of constrained grey-box problems using Kriging models and derivative-free global
optimization and applied it to pressure swing adsorption. Later, Boukouvala and
Floudas (2017) presented the algorithmic framework ARGONAUT to globally
optimize general constrained grey-box problems using the ANTIGONE solver. A
parallel version named p-ARGONAUT was subsequently published by Beykal et
al.(2018). In a recent work, Paulson and Lu (2022) proposed the COBALT (con-
strained Bayesian optimization of computationally expensive grey-box models ex-
ploiting derivative information) algorithm for constrained grey-box optimization
problems, combining GP models with state-of-the-art optimizers (J. Paulson &
Lu, 2021]).

It is important to note that the surrogates used in process optimization are approx-
imations of the original systems (e.g., mechanistic models) but are not rigorous
relaxations of the original model. In other words, they do not necessarily provide
rigorous bounds on the optimal solution of the original model. Hence, even if
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the surrogate is globally optimized, there is no guarantee that its global optimum
will be, in turn, the global optimum of the original model. Notwithstanding this
important observation, it is appealing to identify the global optimum of the surro-
gate as, if the surrogate is accurate enough, this would likely lie close to the global
optimum of the original model. In recent years, data-driven modeling based on
symbolic regression (SR) has been attracting growing interest. Often referred to as
genetic programming (Cozad & Sahinidis, 2018; Keane et al., [1993; Koza, [1994)),
the goal here is to find closed-form mathematical expressions based on expression
trees using mainly evolutionary algorithms (Diveev & Shmalko, [2021)), although
more recently deterministic MINLP methods were also applied (Cozad & Sahini-
dis, 2018). One of the advantages of this regression method is that it does not
necessarily assume a pre-determined model structure (e.g., in a multivariate re-
gression) or a set of alternative model structures (e.g., for the ALAMO approach).
SR was successfully applied in many different fields. For example, Tsionas and
Assaf (2020)) applied SR to tourism research. McKay et al. (1997) used an SR
approach to model a vacuum distillation column and a chemical reactor system.
In a later work, McKay et al. (1999) applied SR to develop a model of a food
extrusion process. In the control area, Keane et al. (1993) proposed an approach
to approximate an impulse response for a linear time-invariant system. In a more
recent work by Schmidt and Lipson (2009), the authors discovered physical laws
from experimental data using SR to identify nonlinear relationships. In the cos-
mology field, Cranmer et al. (2020) applied SR to components of a trained graph
neural network to extract explicit physical relations.

The advantage of using algebraic surrogates is that, besides improving inter-
pretability, they enable the use of deterministic Global Optimization (GO) algo-
rithms (Androulakis et al., [1995; 1. E. Grossmann, [1996; Ryoo & Sahinidis, |1995;
E. M. B. Smith & Pantelides, [1997; Tawarmalani & Sahinidis, 2002} Zamora &
Grossmann, 1999). Stochastic GO methods are mainly applied when the objective
function is unknown, meaning the algebraic expression of the function and its cor-
responding derivatives are not available, which prevents the use of deterministic
methods (Bradford et al., 2018). Such algorithms may find the global optimum;
however, they need an infinite running time to guarantee global optimality (Ryoo
& Sahinidis, 1995). Simulated annealing (Hwang, [1988)), genetic algorithms (Hol-
land, [1992), or particle swarm algorithms (Kennedy & Eberhart, 2006) are the
most widespread stochastic GO methods. On the other hand, deterministic GO
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methods are guaranteed to identify the global solution - within a given e-tolerance
- in a finite number of iterations (Androulakis et al., [1995; Horst & Tuy, [1996;
Schweidtmann et al., [2019, 2021). Typical deterministic GO methods are based
on spatial-branch-and-bound, while other approaches (Kesavan et al., |2004) ap-
plied alternative schemes inspired by the original outer approximation algorithm
by Duran and Grossmann (Duran & Grossmann, [1986b). For example, Bergamini
et al. (2005) presented a logic-based outer-approximation algorithm for MINLPs
showing some nonconvexities. Here, the master problem incorporates piece-wise
linear approximations of the nonlinear terms, so it yields a lower bound (when
minimizing). The algorithm is guaranteed to identify the global optimum within
a given tolerance for a sufficient enough number of iterations. State-of-the-art
solvers implementing such strategies include BARON (Sahinidis, 1996; Tawar-
malani & Sahinidis, 2005) and ANTIGONE (Misener & Floudas, 2014), which
mainly differ in the bound tightening (Belotti et al., 2009; Puranik & Sahinidis,
2017) and relaxation methods implemented (Locatelli & Schoen, 2013; Misener &
Floudas, 2014; Tawarmalani & Sahinidis, 2002). Despite providing an optimality
gap within which the global optimum should fall, they require explicit, closed-
form mathematical expressions to be available (Bongartz et al., [2020). Therefore,
in the context of process optimization, such deterministic GO methods could be
applied if equation-oriented flowsheet models are at hand (Bongartz & Mitsos,
2019).

This work explores the use of SR coupled with state-of-the-art GO algorithms in
the context of process optimization. The most important reasons for this two-stage
approach are that the user does not have to make a priori assumptions about the
mathematical structure of the model and that, subsequently, well-established of-
the-shelf deterministic GO algorithms can be applied once the algebraic surrogate
is at hand. Focusing on an SR approach presented by Guimera et al. (2020),
called the Bayesian machine scientist (BMS), we first derive algebraic regression
models of the desired processes. The BMS was already applied to some case
studies. The work by Negri et al. (2022) applied this regression method to
approximate process simulations. Vazquez et al. (2022) used it to model the
link between energy-related impacts and socioeconomic drivers. However, up to
now, the resulting equations were never used to simplify the global optimization
of those systems, which will be explored in the present work. After identifying
a suitably well-fitting model equation, available global deterministic solvers are
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used to search for the global optimum of the algebraic surrogate. We show the
advantages of this approach in several case studies covering unit operations and
full flowsheets. To our knowledge, this is the first work that applies SR to the
global optimization of process flowsheets, opening new avenues for the application
of algebraic surrogates in process optimization.

The remainder of the paper is organized as follows: First, the problem statement
is detailed, followed by the methodology. Afterward, the case studies are intro-
duced, and the results are discussed. Finally, the conclusions of the work are

drawn.

4.2 Problem statement

Here, without loss of generality, we shall consider an existing process operated
in a steady state. Known process parameters, for example, equipment size and
flow rates, are described by ¢;,j € J, where J is the set of known properties.
The decision variables are denoted by x;, where ¢ € I refers to the set of vari-
ables to be optimized. Therefore, there are |I| degrees of freedom to be varied
to optimize a user-defined target objective f(x,¢) (either minimized or maxi-
mized). For the sake of simplicity, the known parameters ¢ are subsequently
skipped from the notation, leaving the process described by the degrees of free-
dom, f(z). Additionally, unless otherwise indicated, in what follows, we will focus
on minimization problems. A schematic representation with an example is given

in Figure 4.1
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Figure 4.1. In the top row (blue, solid squares), a schematic representation of a consid-
ered process is given with its degrees of freedom z, fully specified process conditions and
equipment properties ¢ and a target objective f(z) that is required to be optimized. In
the bottom row, an example is given in the green dashed squares.

The goal of this work is two-fold: First, we wish to find a suitable expression
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F(z) that maps the inputs x sufficiently well to the target objective and therefore
approximates the response f(z) accurately. This mapping is described by the
closed-form surrogate expression F'(z), which can be generated by various methods
discussed in the introduction. Herein, however, it should be identified without
assuming a pre-defined model structure, which is achieved by relying on flexible
symbolic trees that include prior knowledge:

F(z) =~ f(z)
stx<zx<T (4.1)
reR

With RFI being the domain of input variables. After being able to approximate
the studied process f(x) with an appropriate surrogate F'(x), the main goal of
this work is to globally optimize the surrogate F'(z) to find the values z*. In
mathematical terms, such an optimization task can be formulated as a nonlinear

programming problem (NLP), as described in equation (4.2):

f*=min f(z)
st.gn(x) <0, VneN
hon(z) =0, Yme M (4.2)
r<x<T

r e R

Where x represents the aforementioned process conditions. Available inequality
constraints g, (x) and equality constraints h,,(x) are also considered. These con-
straints represent, for instance, allowable operating ranges for equipment units,
such as maximum allowed flow rates, or desired specifications, such as maximum
permitted emissions into the environment. The lower and upper bounds of the
decision variables are denoted by z and Z, respectively. For example, we may be
interested in defining upper bounds on the temperatures and pressures or quality
specifications on product purity. The global optimization of chemical processes is
challenging due to the highly nonlinear and non-convex nature of the mechanistic
equations describing their behavior (e.g., Antoine equation, Arrhenius expression,

etc.). Moreover, commercial simulation software suffers from numerical noise and
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convergence issues. At the same time, monolithic formulations implemented in
algebraic modeling systems are hard to initialize, and the implementation of the
equations themselves, e.g., mass and energy balances and thermodynamic equa-
tions, might not be trivial. A possible way to simplify the optimization is to
resort to surrogate models F'(x) in which the original problem is approximated as
follows:

F* =min F(z)
s.t.gn(z) <0, VneN
h(z) =0, VYme M (4.3)
z<zr<T
z € R

Where we assume that model F'is given in an algebraic form. Problem could
then be solved for global optimality using state-of-the-art GO solvers. Hence, we
aim to construct an accurate representation of F(-) and globally optimize the
resulting problem.

4.3 Methodology

4.3.1 Modeling framework

We propose an approach to tackle the problem above that follows two main steps.
First, we build an algebraic surrogate model F'(z) that approximates the objective
function computed from the detailed model (i.e., real process) f(z) sufficiently
well. To this end, we use symbolic regression tools that build algebraic expressions
from data without assuming any aprioristic model structure. Second, we solve the
surrogate model-based optimization problem using standard global optimization
packages.

Step 1: Data generation using process simulation

A schematic overview of the data generation process is given in Figure In
order to gather the data required for the surrogate model generation, a flowsheet
of the desired case study is modeled using Aspen HYSYS. An objective function
f(z) is defined, which is computed from the values of the dependent variables,
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i.e., degrees of freedom, defined in the process model. To map inputs to outputs,
we define the input variable w,;, where s € S refers to a given sample, and
1 € I refers to a degree of freedom, i.e., a feature of the surrogate model. The
output vector is denoted as f(wy), or fs in short. Therefore, the sampling matrix
is generated with the desired number of samples |S| using the Latin hypercube
sampling (LHS).

A

Generation of sampling space by LHS

v

|| Sample s = 1 ||

:
@

Simulate flowsheet

| | Converged? | |
yes no
v
P Remove
Store inputs point
and outputs

v v
| | Sampling complete? | Iﬂ)_,l | s=s+1 | |—
yes*

( . )

Figure 4.2. Schematic representation of the data collection procedure. Starting from
a sampling space defined by a Latin hypercube sampling approach, the vectors w, ; will
be sent to HYSYS. If the flowsheet does converge, the sample (consisting of the input
vector w, and the sampled output f(ws)) is stored. If the flowsheet does not converge,
the complete sample is removed, and the next input vector is sent to HYSYS. As soon as
the sampling is completed, the algorithm is terminated. It is worth to be mentioned that
the final dataset only consists of those samples where the flowsheet converged.

Step 2: Data pre-processing

Appropriate data treatment is required before training the model with the raw
data. Notably, data scaling and selection help improve the model’s accuracy and
robustness (Arora, 2012; Elble & Sahinidis, 2012; A. C. Miiller & Guido, 2017). A
schematic representation of the data treatment strategy is given in Figure [1.3] We
included a data selection step, where only samples that fall between the limits of a
user-defined range f < f(w,) < f were considered. The motivation for this is that
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the optimal solution might not lie close to samples showing poor performance in
terms of objective function values. After selecting the data for the model training,
our proposed framework includes a feature scaling step. Specifically, the values of
the input vector w,; of each sample s are scaled to a range of user-defined values,
describing the resulting scaled vector as ;. Finally, the response value f(ws)
of each input vector is normalized within another user-defined range, where the
resulting response is described by f(ws). After having preprocessed the data, the
existing values are updated (to simplify notation):

ws; — Ws; and  f(ws) f(ws), Vse S,iel (4.4)

The scaling and standardization steps support the model training: The maximum
likelihood estimator of the model parameters is obtained by solving a least-squares
problem (Guimera et al.,|[2020)). This can require an iterative procedure that relies
on the calculation of the Jacobian (Fletcher, 2000; Nocedal & Wright, 2006).
Scaling the data can bring the numerical values of the derivatives in the same
order of magnitude, simplifying the model training (Nocedal & Wright, 2006).
All three pretreatment steps (selection, scaling, normalization) do not need to be

performed concurrently.

Subsequent to the above-mentioned data treatment, the resulting dataset S is
split into two proper subsets:

ST c S and S™ cS (4.5)

STR STE

where and represent the training and test subsets, respectively. The
training subset is later used for model training, whereas the test subset is used

for model testing.

Step 3: Surrogate model generation

The goal here is to find an appropriate surrogate expression F'(x) that maps the
input data x well to the corresponding objectives f(z). This work aims to show
the possibility of constructing a closed-form surrogate without assuming a pre-
defined mode structure. As mentioned previously, we apply SR to perform this
task, which represents mathematical expressions by a symbolic tree, as shown in
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Figure [4.4] (a).

The space of possible expressions is described by E. Starting from one symbolic
representation z.,e € F one can perform changes in the tree that lead to a different
mathematical expression. Such tree evolutions include but are not limited to
node replacement (i.e., changing the addition operator in Figure by a division
operator) and elementary tree replacement (i.e., exchanging the complete sub-tree
(ov — ) by another tree). For each resulting expression, a goodness-of-fit metric
can be calculated. The SR algorithm then searches for an expression leading to the
best goodness-of-fit metric, akin to other evolutionary algorithms. In this work,
we use the SR algorithm developed by Guimera et al. (2020), the BMS, to simplify
the optimization of process flowsheets. The BMS provides a closed-form algebraic
expression from data based on a set of user-defined mathematical operations (i.e.,

A
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Surrogate model generation

Figure 4.3. Schematic representation of the data treatment and surrogate model gen-
eration procedure. In the first step, the user might choose to pretreat the data or not:
Data selection will reduce the number of samples. Feature scaling brings the inputs of the
sample matrix (e.g., the vectors ws,;) to the same range of numerical values. Response
normalization will bring the response values (e.g., the values of ws) to the same range of
numerical values. After the pretreatment, the data is split into a training and a test set,
where the training set is used to train the surrogate model. The result of this framework
is an identified surrogate model in a closed-form algebraic expression.
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Figure 4.4. (a) Representation of the mathematical expression z(z,y) = (z + y)(a — )
as a symbolic tree. (b) The space E of all possible expressions z. is schematically shown
as a dashed polygon.

addition, subtraction, multiplication, etc.). We next provide an overview of how
the BMS works. For further information, the reader is referred to the original
paper (Guimera et al., 2020). In the algorithm, a conditional probability p(z.|D)
for each expression z.,e € E (the space of symbolic trees) to fit some data D is
calculated according to Bayes Theorem (Bishop, 2006; Murphy, [2013)):

p(D|ze)p(ze)

S 03)

(4.6)
In this expression ({4.6]), D represents the observed data, and p(D) is the marginal
likelihood of the data (independent of z, and therefore acting only as a normal-
ization constant). Using marginalization over the parameters 6, associated with
expression z. (Murphy, 2013), the numerator in equation can be expressed
as an integral over the space of all possible parameter values 6, (Guimera et al.,

2020)). This resulting integral can be described by the so called description length
L(z.) (Guimera et al., |[2020; Hansen & Yu, 2001; Murphy, 2013):

L(ze) = —log [p(D]ze)p(z)]

4.7
= —log [/@ P(D|ze, 0c)p(0e| 2 )dO (47)

Computing precisely this integral is challenging (Guimera et al., [2020; Murphy,
2013). However, under certain assumptions (Griinwald, [2007; Murphy, 2013), it
can be approximated by the Bayesian information criterion (BIC) and the prior
of the corresponding expression z.:
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BIC(z.)

L(z.) =~ 5

— log (p(2c)) (4.8)
Therefore, the plausibility of an expression z. conditioned on some data D is
obtained by the description length L(z.). According to Griinwald (2007)), L(z.)
can be understood to describe the corresponding mathematical expression in terms
of 'number of natural units’ (encoded length of the expression). The BMS uses an
MCMC (Hastings, [1970) algorithm to explore F, defined as the space of possible
closed-form expressions. To this end, the user can define how many MCMC
iterations the BMS should perform. After evaluating the description length of
each expression, the BMS uses the most plausible one, representing the expression
with the shortest description length (the best goodness-of-fit).

Step 4: Optimization and validation

After identifying an appropriate surrogate model in the form of an algebraic ex-
pression F'(x), the model shown in expression (4.3)) is optimized to find the global
optimum F*. A schematic representation of this model-based optimization proce-
dure is given in Figure [4.5] where the simplest form of such an optimization can
be formulated as a box-constrained problem (with lower and upper bounds, z and
Z, on the variables):

F* = min F(z)

xT

r<x<T

z € RV

If required, constraints can be added to this optimization problem — which might
include technical constraints on process units or simple mass balances — leading
to the formulation in equation . If challenging constraints are needed, they
could also be replaced with surrogate models embedded in the formulation. In this
work, the optimization is carried out using available state-of-the-art GO solvers
to identify the model-based global optimum F* within a user-defined e-tolerance.
The obtained solution z* is then sent to the rigorous mechanistic model to re-assess
the objective function (second block in Figure [£.5). From the rigorous simulation
outcome, the observed process response f* = f(z*) can be extracted. Using this
observed response f(z*) and the model-based optimum F(z*), a defined error
metric can be calculated, as discussed in Section [4.3.2] This metric indicates how

94



well the surrogate model F'(x) is able to approximate the real process f(x) in the
optimal solution found.

C Identified surrogate model )
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Figure 4.5. Schematic representation of the model-based optimization and model val-
idation procedure. By using the identified surrogate model, an optimization problem is
formulated (might include constraints) and solved to global optimality. The identified
minimizer z* is further sent to the flowsheet in HYSYS, where the observed response
f(z™) is extracted. Lastly, the mismatch between the model-based optimum F(z*) and
the observed response f(z*) is calculated as a relative absolute error.

4.3.2 Performance and comparison metrics

Training and testing errors are obtained for both the training and test subsets
STE and STF using the root mean squared error (RMSE), mean absolute error
(MAE), and coefficient of determination (R?), as follows:
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sES
MAE =~ 3 f(w,) ~ Fluw)| (49)
seS
RQ -1 SSR/SST -1 Z ZSGS(F<wS) - f(ws))2

20y o (f(w) = )2

In the relationships in equation , the predictions by the model are described
by F'(ws) using the given input vector ws of one sample s. The observed pro-
cess response and the mean of the observed process responses are described by
f(ws) and gy, respectively. As already mentioned, both, the model predictions
F(ws) and the observed response f(w;s) are calculated by using input data from
the training or test set. Variables SSR and SST denote the sum of squares of
residuals and the total sum of squares (proportional to the variance of the data),
respectively. Similarly, the quality of the surrogate is measured by the relative
absolute error (RAE), given by (4.10), which quantifies the mismatch between the
surrogate and the mechanistic model outcomes for a given solution x.

f(z) - F(z)

e (4.10)

RAE - |

In addition to these error metrics, the time required for both the model training
and the model-based optimization is reported as central processing unit (CPU)
time. Lastly, both the solver and model status are reported.

4.3.3 Benchmarking and implementation details

We compare our results to those obtained using the MAINGO algorithm (Bon-
gartz et al., 2020; Schweidtmann & Mitsos, 2019), which was also applied to the
global optimization of process flowsheets. We want to highlight that the intention
is not to claim the superiority of one methodology over the other but to have
a proven and rigorous benchmark for our approach. We train a GP using the
same training data and optimize it using MAINGO. For a detailed description of
how MAINGO operates, the reader is referred to the outstanding works by these
authors. We reference the implementation details from Schweidtmann and Mit-
sos (2019): MAINGO represents a branch-and-bound optimization solver that is

96



implemented in C++4. The convex relaxations of the constraints and the objec-
tive are linearized with the use of sub-gradients. The resulting linear program is
solved by CPLEX. For upper bounding, the problem is locally optimized using the
SLSQP algorithm. All calculations were carried out on an Intel®Core™i7-8700
CPU and 16 GB of RAM. The software and corresponding versions are provided
next. To construct the sampling dataset, we used Python 3.8.11 with NumPy
v1.21.2 and pyDOE v0.3.8. The process flowsheet was simulated using Aspen
HYSYS v11. Python and HYSYS were linked through the COM interface. The
algorithm provided by Guimera et al. (2020]) was used to train the BMS, whereas
the GP training was performed using GPyTorch v1.6.0. The symbolic equation
generated by the BMS was globally optimized using the General Algebraic Model-
ing System (GAMS) (GAMS Development Corporation, 2022) v40.2.0 interfacing
with the BARON v22.7.23 and ANTIGONE (where explicitly mentioned) v41.3.0
solver. The trained GP was optimized using MAINGO v0.5.0.

4.4 Case studies

4.4.1 Flowsheets for data generation

As described next, we solve several case studies (CS) of increasing complexity
regarding the number of degrees of freedom. For all CSs, a Latin hypercube
sampling (LHS) design method was used to sample the input vectors ws, con-
sidering 200 (CSI) or 1000 (CSII-IV) samples, for which 20% were used for the
test set. The time to collect these samples is reported in the supplementary in-
formation Section [C.I] It is worth mentioning that the same dataset was used
to train different models (for each CS). The indicated bounds were used to set
up the input vectors (Table . These input vectors were sent from Python to
HYSYS via the COM interface. The observed responses f(ws) were then retrieved
from Aspen-HYSYS. Below, each CS is briefly discussed, where additional process

information /parameters are given in the supporting material.

CSI — Compressor plant The first case study is a compressor plant modeled
in Aspen-HYSYS, represented in Figure [4.6] as introduced by Schweidtmann and
Mitsos (2019)). A pre-defined feed is split into two individual compressors. The
split ratio towards compressor one is denoted by b, resulting in the split ratio
towards compressor two taking a value 1 — b. Each compressor is modeled with
different efficiency curves, where the efficiency varies depending on the inlet flow.
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Table 4.1. The lower and upper bounds for the variables are shown for each case study.
These values were used in order to set up the Latin hypercube sampling matrix. Addi-
tionally, they were applied as decision variable bounds for the subsequent optimization.
The order of the values x; and Z; is given below for each individual case study.

CS Lower bound x Upper bound

I 0.57 [-] 0.765 [—]

II 100°C, 160 bar 400°C, 230 bar

III  180°C, 4500 kmolh~1!, 0.001 [-], 240°C, 6500 kmolh~—1, 0.05 [-],
1.25[—], 35m?, 4500 kPa 1.8[—], 55 m3, 5500 kPa

v 0[], 0[—], 230°C, 230°C, 1[-], 1[-], 400°C, 400°C,

230°C, 160 bar , 160 bar, 160 bar 400 °C, 230 bar , 230 bar, 230 bar

After the compression, the outlets of the two compressors are mixed and sent
to the final outlet. Details about the fixed process parameters (i.e., feed flow
rate, feed composition, compressor curves, compressor ratio, etc.) are given in
Chapter [C.2] There is only one degree of freedom, i.e., the split fraction, so the
input vector reduces to a scalar defined as x = b. The goal is to minimize the total
duty required to operate the plant, where the measured response is consequently
described by f(z) = Q(z).

Split fraction Compressor 1

Feed Out

Compressor 2

Figure 4.6. Process flowsheet of the compressor plant under study (case study I). The
decision variable, x = b, for the optimization problem is indicated in the green box.

CSII — Ammonia reactor The second CS represents a chemical reactor,
modeled as a multitubular plug flow reactor implemented in Aspen-HYSYS (Fig-
ure . The inlet mass flow is set to a specific value. The temperature 7" and
pressure P dictate the reaction rate. The reactor is operated under adiabatic
conditions with a pressure difference of 1bar. The reactor properties (i.e., the
volume, the number of tubes, etc.) are given in the supplementary information
Section In this case study, the degrees of freedom, and therefore the decision
variables in the optimization problem, are the temperature and pressure of the
feed: = = [T, P]. The goal is to maximize the outlet conversion Xy, of nitrogen
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to ammonia at the reactor outlet f(x) = Xy, ().

N
o
Hy
Temperature
Pressure

Figure 4.7. Process flowsheet of the ammonia reactor under study (case study II). The
decision variables for the optimization problem are indicated in the green box, z = [T, P].

CSIIT — Methanol plant The third numerical example optimizes a methanol
(MeOH) plant modeled in Aspen-HYSYS (Figure[1.8). Carbon dioxide and hydro-
gen are fed to the system and adjusted to the required pressure and temperature
before being sent to a multitubular plug flow reactor. The reactor outlet goes
through two flash drums and into a distillation column. Methanol is collected in
the distillate, while water is the main product at the bottom. The vapor streams
of the flash drums are sent to a recycle stream (from the first flash) and to a
purge (from both drums). The data used in the calculations is provided in the
supporting information Section The degrees of freedom to be optimized are
highlighted in green text in Figure Reaction temperature, reaction pressure,
purge ratio of the splitter, reactor volume, hydrogen flow rate, and reflux ra-
tio of the distillation column. Therefore, the input vector can be described by:
x = [T,P,n,V,F,(]. The objective of this CS is to minimize the unitary cost
(UC) of methanol (x) = UC(z), considering a fixed CO, flow. The exact cal-
culation of the UC is provided in the supporting information Section [C.2] We
note that for each sampling point for x, the MINLP model developed by Yee and
Grossmann (1990) (SYNHEAT) is solved to obtain the optimum heat exchanger
network (HEN) and, therefore, the optimum cost of the HEN.

CSIV — Ammonia reactor series The next case study considers a series
of multitubular ammonia reactors similar to the one defined in CS1 (Figure [4.9).
A pre-defined feed is sent to a splitter and divided into three different streams.
The split fractions by and by (splits towards reactors 1 and 2) are the degrees of
freedom for the optimization problem. The third split fraction b3 is calculated
from the mass balance 1 = by + by + b3 and is therefore specified. Additionally, the
temperatures (7,.) and pressure (P,) for the different reactors r € R = {1,2,3}
are also degrees of freedom. The rest of the reactor properties (i.e., the volume,
the number of tubes, etc.) are fully defined and displayed in the supporting
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Figure 4.8. Process flowsheet of the MeOH plant under study (case study III) adapted
from Véazquez et al. (2021). The decision variables for the optimization problem are
indicated in the green boxes, z = [T, P,n,V, F, (].

information Section [C.2] Therefore, the decision variables for the optimization
process are the split fractions toward reactors 1 and 2, and the temperature and
pressures of the reactors: x = [by, by, T1, To, T3, P1, P, P3]. The objective of this
CS is to maximize the overall conversion of nitrogen to ammonia Xy;,, described
by f(z) = X(x), where X denotes the overall conversion of the process. A simple
constraint is added to ensure the splits fulfill the mass balance.
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Figure 4.9. Process flowsheet of the ammonia reactor series under study (case study
IV). The decision variables for the optimization problem are indicated in the green boxes,
xr = [bl, bQ7 T1,T2,T3, }Dl7 PQ, P3]

4.4.2 Default properties of the training and optimization algorithm

We trained the BMS and the GP considering the parameters and settings shown
in Table The BMS parameter values are those given in the original article
(Guimera et al., 2020)). Regarding the optimization, we applied BARON v20.4.14.
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The solver settings and conditions to optimize the trained BMS models are stated
in Table In all four cases, the starting point for the decision variables was
set to the midpoint between the respective upper and lower bounds . All
other settings were set to the default values of the indicated solver version. For
optimizing the GP with MAINGO, in CSII, III, and IV, the option of a pure
multi-start (with a maximum of 20 local searches) was additionally activated in
case the optimality gap could not be closed. This option will not guarantee global
optimality since the pure random multi-start is performed with individual local
optimizers. The starting points for the decision variables were chosen to be the
same as for BARON. All other settings were set to the default values of the
indicated solver version provided by the developers of MAINGO.

Table 4.2. Settings and hyperparameters for the training and optimization of the Bayesian machine
scientist and the Gaussian process.

Model Settings CSI CSII CSIII CS1V
BMS MCMC iterations 18-10° 60-10° 20-10° 40-10°
training Allowed operations * exp(z),log(x), 22, 2%, Vo, +, —, +, X, 2%, |z|

Root replacement probability 0.05

Node replacement probability 0.45

Elementary tree replacement 0.5

probability '
BARON  Relative optimality gap 1077 0 0 0
settings Node limits 10° 10° 108 10°

Maximum wall clock time (reslim) 6-102 6-10° 4-10* 4-10*
GP Training epochs 2-102 2-10% 1-10% 1.5-10%
training Mean function Constant

Kernel Matern with n=>5/2

Likelihood Gaussian

Optimizer Adam

Learning rate 0.1
MAINGO er P er = [1071,1072,107°,107"]
settings Max CPU 16500 5600 s 41000s 1235005

€Rr © €ER = 1073

Max CPU ¢ 3600 s

# The absolute function |x| was only applied to CSI-III.
b Relative optimality gaps and maximum allowed CPU times for inactive multi-start runs.
¢ Relative optimality gaps and maximum allowed CPU times for multi-start runs.
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4.5 Results

When discussing the results, we first shall focus on the model training and sub-
sequently on the model-based optimization performance. As mentioned in Sec-
tion [4.3.3] (benchmarking), the goal of this work was to show that it is possible
to model precisely and optimize process flowsheets effectively using symbolic re-
gression. We are not claiming that our approach is consistently superior but that
it is competitive and might become even more efficient in the future with further
developments in symbolic regression. This field is currently evolving very rapidly.
We show that symbolic regression not relying on basis functions but rather on
flexible symbolic trees incorporating prior knowledge can precisely model process
flowsheets effectively. Although the BMS was previously applied in other works
(Negri et al., 2022; Vazquez et al., [2022)), to the best of our knowledge, Bayesian
symbolic regression was never used to facilitate the global optimization of process
flowsheets. In this section, after comparing the performance of the proposed ap-
proach with the GP being optimized by MAINGO, we briefly describe how the
same workflow can be followed using a linear basis function (LBF) model in the
optimization part in Section However, in this work, we will not go into
a detailed analysis of the LBF approach but rather describe the advantages and
disadvantages of the method.

4.5.1 Model training

The model training and testing results are given in Table [£.3] A graphical repre-
sentation of the results from Table [4.3]is depicted in Figure which shows the
observed versus predicted (OVP) values of both modeling approaches.

In general, both trained models can explain the variance in the data sufficiently
well when considering R? > 0.85 as acceptance criteria. This acceptance level of
R? > 0.85 was chosen by the authors based on experience. It could be further
fine-tuned, which was, however, not the goal of this work and is therefore left
for future work. This is the case for all case studies (Table [4.3). Additionally,
the models are considered to perform similarly (compared to each other) if the
relative difference in R? is below 5%, which is confirmed in all CSs (0.4% for
CSI and II, 0.6% for CSIII, and 1.9% for CSIV). Throughout the CSs, it can
be observed that the ability to explain the training data variance decreases with
increasing dimensionality of the problems. The BMS was run using the number
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Table 4.3. The training performance criteria are summarized for the Bayesian machine scientist (BMS)
and the Gaussian process (GP). Each row represents one case study (CS). The CPU time (in seconds)
needed for the model training is shown in the left part of the table. The error metrics (root mean squared
error, mean absolute error, coefficient of determination) are shown for the training and testing data (format:
training/testing). The root mean square error (RMSE) and the mean absolute error (M AE) units are
given in the last column for each case study, where the coefficient of determination (R2) is a unitless
quantity. The identified algebraic expressions are indicated in Table [£:4] whereas the corresponding model
parameters are reported in Table @

Train CPU [s] RMSE MAE R?

BMS GP BMS GP BMS GP BMS GP
16500 12 0.152/0.152  0.010/0.013  0.117/0.117  0.005/0.007 0.996/0.996  1.000,/1.000
5600 141 0.832/0.962 0.537/0.935 0.487/0.630 0.120/0.270 0.994/0.993  0.998,/0.993
40600 6 0.017/0.014  0.002/0.009  0.011/0.010 0.002/0.006 0.954/0.970  0.999/0.989

123000 114  3.035/3.097 1.504/2.775 2.340/2.321 1.094/2.064 0.888/0.868 0.972/0.894

# Units for the case studies: kW (CSI), % (CSII), $/kg (CSIII), and % (CSIV)

of MCMC iterations indicated in Table as the stopping criterion. This led
to CPU times of at least 5600s in all the cases. In contrast, the GP could be
trained much faster, in around 6 to 141s seconds, depending on the CS. This

fast training of the GP was expected, as there are highly efficient algorithms

tailored to GPs, while the same is not true for symbolic regression. Besides, the

GP relies on a given mathematical formalism, while symbolic regression assumes
no pre-defined model structure. The RMSE and MAE of the BMS surrogate
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Figure 4.10. Observed vs. predicted (OVP) values for the different case studies are
shown in the columns. The top row shows the OVP results obtained from the Bayesian
machine scientist (BMS) predictions, whereas the bottom row shows the OVP results from
the Gaussian process (GP) predictions. Blue points represent the training data, whereas
red points correspond to the test data. The black line represents the values where the
observed value corresponds to the model predictions.
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is similar to that provided by the GP in all the cases except for CSI, with the
R? values being close to one in all the examples, excluding CSIV. The BMS
reached very similar errors in the training and the test sets. This shows that it is
well-regularized and, therefore, less prone to overfitting, in line with the authors’
expectations (Guimera et al., 2020). The GP, on the other hand, showed a higher
discrepancy between the training and the test set. It is worth mentioning that
we did not tune the hyperparameters for training the GP. The model training
only aimed to get a sufficiently well-trained surrogate model that is appropriate
to be subsequently sent to the optimizer. The errors of the BMS indicated in
Table correspond to the closed-form expression identified to have the highest
plausibility and, therefore, the lowest description length. The models with the
lowest description length are reported in Table [4.4] whereas the corresponding
estimated parameter values are shown in Table [1.5] It is worth mentioning that
the training data was not always scaled, which explains the high difference in
orders of magnitude of the estimated parameters in Table [4.5]
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Table 4.5. Parameter values of the most plausible surrogate models (Table identified
by the Bayesian machine scientist for each case study (CS).

CS
Parameter I I I v
ao -6.435-10'  1.000-10° 1.542:102  -4.304-10°
aq 7.128-10!  3.248-10~! 2.137-107°  2.196-10%°
as 2.280-10! 1.000-10°  -2.495.10° 2.712.10~!
as 1.487-10! 2.013-10°  -1.384-10°  1.504-10~*
aq - 3.167-10°°  1.000-10° 1.451-10°
as - -2.132:102  1.000-10° 1.000-10°
ag - 1.056-1072  -9.134-10~2  1.000-10°
ar - 2.177-10~'  -3.614-10°  1.000-10°
as - - 1.099-10° 1.000-10°
ag - - 1.029-107!  2.336-10~°
ao - - -2.734-107'  1.000-10°
an - - -4.735-10~!  -1.519-10°

The BMS finds fairly complex expressions, including many nonlinear terms. The
rightmost column of Table summarizes the inclusion (or exclusion) of certain
variables in the identified equation. The BMS excludes ¢ (reflux ratio) in CSIII
and Py (pressure in reactor 1) in CSIV. Therefore, according to the BMS, these
variables marginally influence the target process response f, so they are omitted.
This is a relevant piece of important information since the variables chosen by the
BMS will represent the decision variables of the subsequent optimization prob-
lem. For problems with low dimensionality, one can visualize the identified model
together with the training data in a two- or three-dimensional plot. By doing so,
one might be able to guess where the optimum lies, as shown in Figure for
CSI (a) and CSI (b, ¢).

4.5.2 Model-based optimization

The ability to identify the global optimum of the true model depends on the
accuracy of the surrogate model and the performance of the GO algorithm. For
example, as seen, the models for CSI and CSII displayed in Table are able to
represent the training data precisely. As a result, the global optimum identified
by BARON should lie near the global optimum of the original model, as shown
in Figure [£.11] (a) and (c). Since this is a model-based global optimization, the
optimum objective is only an approximation to the underlying system. Therefore,
a discrepancy between the training data and the optimum point is expected. This
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Figure 4.11. The training data (circles) is shown together with the model predictions
for case study I (a), and case study II (b,c). In (a), the Bayesian machine scientist (BMS)
predictions are shown as a black line. In (b), the surface represents the BMS predictions
projected onto the T'— P-plane and presented by the contour lines. These projections are
shown in detail in (¢). The identified model-based optimum value is indicated as a red
circle in (a) and (c).

phenomenon is visible in Figure [£.11] (a). The same concept applies to higher

dimensions.

The full optimization results are reported in Table (for the BMS approach),
Table , and Table (for the GP approach), which we will discuss in detail.
BARON/ANTIGONE solved all the global optimality problems in around 1s,
except for CSIV, which was optimized in 2s. This emphasizes the considerable
advantage of having a closed-form expression at hand when globally optimizing
the surrogate. The solver returns to have found the global optimum for every case
study within the optimality gap chosen for all case studies (Table .

For the optimization with MAiNGO, we varied the optimality gap (eg) of MAINGO
for the values (eg = [1071,1072,1073,107%]. The maximum allowed CPU times
were set to the corresponding training time the BMS required in the CSs: 16500
(CSI), 5600s (CSIT), 41000s (CSIII), and 123500s (CSIV). Multi-start was not
applied. With these settings, MAINGO could only solve the first two examples
to global optimality (Table , while in the other two CSs, it failed to close the
lowest chosen optimality gap of ez = 107! within the maximum allowed CPU time
and reports a local solution instead. The reader is also referred to the supplemen-
tary material Section [C.4] where we reported the complete results for the different
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values of the relative optimality gap without a multi-start option.

For completeness, we additionally used a multi-start option in MAINGO with a
maximum allowed CPU time of 3600s and the default relative optimality gap of
er = 1073, where these results are shown in Table It is observed that the
multi-start option leads to better solutions in terms of the objective function (and
CPU time). As mentioned above, the purpose of this manuscript was not to prove
the superiority of our proposed approach over MAINGQO. Therefore, we further
consider the best possible results that one can obtain by MAINGO, which are
obtained by the multi-start results given in Table [4.8]

Moreover, both approaches, BARON and MAINGO (multi-start), lead to simi-
lar solutions in terms of objective function value, except for the last case where
MAINGO performs better despite following a simple multi-start approach that
fails to guarantee convergence to the global optimum of the surrogate.

Specifically, in the smallest problem (CSI), the two solvers identified the same
model-based optimum value, where the RAFE (mismatch between the model-based
optimum and the simulation) is zero in both cases. Slightly different model-based
optima were identified in CSII and CSIII. In CSII, solutions displaying conversions
of 31.46% and 31.03% were found by BARON and MAINGO, respectively. In
CSIII, unitary cost values of 0.716 $/kg (BARON) and 0.709 $/kg (MAINGO)
were found. Moreover, the RAESs were in a similar range of 6-7% for CSII, and
2% for CSIII. In the largest problem (CSIV), different model-based optima were
identified: 46.21% and 54.66% conversions were found by BARON and MAINGO,
respectively. The final RAE, i.e., the mismatch between the objective function of
the surrogate at its optimum and the true value of the objective function at the
same point, is around 2% for the BMS-BARON approach, and around 9% in the
GP-MAINGO approach.

It is worth mentioning that the maximum time limit of 3600s for the optimiza-
tion in MAINGO (multi-start) was never reached. In CSII, MAINGO identified
F(z§p) = 31.03% to be the optimum of the surrogate model (reported to be a
feasible point due to the multi-start option), with an actual value in HYSYS of
f(z&p) = 29.40%. On the other hand, the BMS-BARON approach led to an ac-
tual value in HYSYS of f(2%,,5) = 29.31%. A similar result was observed in CSIII
(f(z&p) = 0.7208/kg versus f(z%,,5) = 0.727$/kg) and CSIV (f(z}p) = 49.94%
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Table 4.6. The optimization performance criteria and results are summa-
rized for the Bayesian machine scientist. The results are shown for the dif-
ferent case studies individually (columns). In the first row, the optimization
direction is given. The CPU time (in seconds) needed for model-based opti-
mization is shown in the second row, followed by the model status obtained
from BARON/ANTIGONE. The solution z* found during the optimization
is evaluated in Aspen HYSYS to obtain f(z*), which is then compared to
the value of the surrogate F'(z*) in the same point to determine the relative
absolute error (which measures the mismatch between the surrogate and the
original process model in the optimal solution found).

CSI CSII CSIII CSIV
Optimization direction min max min max
CPU Optimization 1s 1s 1s 2s
Model status Globally  Globally Globally Globally
optimal optimal® optimal optimal
F(zsms) 413kW  31.46%  0.7168kg™'  46.21%
TBMS 0.61[—] 265°C 209°C 1[-]
230bar 5848 kmolh™! 0[]
0.001 [—] 400°C
1.526 [—] 382°C
55m? 311°C
5497 kPa 195 bar
230 bar
230 bar

z* = HYSYS — f(z") 413kW  2931%  0.7278kg™!  47.03%

RAE 0% 7% 2% 2%

# BARON reported locally optimal solution. ANTIGONE, however, reports
globally optimal solution with the same values for ™ as BARON reports.

versus f(x5,,5) = 47.03%). The reason why MAINGO is providing slightly better
solutions might be due to its better model training capabilities: The GP could
be trained to achieve lower training errors and high R? values (Table [4.3). Con-
sidering, for example, Figure [1.10] and Figure the GP is perfectly predicting
the training data (R?* = 1.000). Since we then use the trained model as objective
function in the optimization problem, the identified model-based optimum will
most probably be closer to the observed one. A similar issue arises when consid-
ering an LBF model for the tasks described above. This approach can be a very
effective modeling technique for certain case studies. However, the modeler needs
to consider a variety of basis functions to reach a sufficient accuracy level. To show
the advantages and disadvantages of LBF vs. BMS, an LBF model was applied to
CSIV. The detailed results are given in the supporting information Section
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Table 4.7. The optimization performance criteria and results are summarized for the
Gaussian process without multi-start in MAINGO. The results are shown for the dif-
ferent case studies individually (columns). The optimality gap was varied for egr =
[107',1072,107%,107*], where only the results are reported where the lowest ez was
reached for the maximum allowed CPU time (16500s (CSI), 5600s (CSII), 41000s
(CSIII), and 123500s (CSIV)). In the first row, the optimization direction is given. The
CPU time (in seconds) needed for model-based optimization is shown in the second row,
followed by the model status obtained. Rows four and five indicate CPU times and model
status. The solution z* found during the optimization is evaluated in Aspen HYSYS to
obtain f(x*), which is then compared to the value of the surrogate F(z*) in the same
point to determine the relative absolute error (which measures the mismatch between the
surrogate and the original process model in the optimal solution found).

CSI CSII CSIII CSIV
Optimization direction min max min max
CPU Optimization 7s 4476 s 41000s 123 500s
Model status Global Global Feasible Feasible
optimum  optimum point point
F(zgp) 413kW  37.81% 0.714$ kg * 54.49 %
Top 0.61 [—] 276°C 233°C 1[-]
198bar 5750 kmolh™* 0[]
0.001 [—] 292°C
1.250 [—] 334°C
53m® 337°C
5375 kPa 230 bar
200 bar
200 bar

" - HYSYS — f(z*)  413kW  27.45%  0.7298kg™"  50.04%
RAE 0% 38% 2% 8%

In brief, a small set of basis functions ¢ of the input features x were chosen to
fit the model f(z) = w¢(x). Using the least absolute shrinkage and selection
operator (LASSO) and cross-validation to tune the hyperparameter, we found an
R? of 0.828 for the training and an R? of 0.757 for the test data (vs. R? values
of 0.888 and 0.868 for the BMS in training and testing, respectively). Although a
sparse expression can be generated, it performs worse than the BMS for our case
study. Furthermore, since the accuracy of the model is low, the optimization can
lead to significant discrepancies between the optimal model output F(z*) and the
process output f(z*), shown in Table

Note, however, that the quality of the BMS could be improved. For example,
the number of MCMC steps in the BMS training could be increased to let the
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Table 4.8. The optimization performance criteria and results are summarized for the
Gaussian process with multi-start in MAINGO. The results are shown for the different
case studies individually (columns). The optimality gap is chosen as the default value
of eg = 1072 and the maximum CPU time was set to 3600s. In the first row, the
optimization direction is given. The CPU time (in seconds) needed for model-based
optimization is shown in the second row, followed by the model status obtained. Rows
four and five indicate CPU times and model status. The solution z* found during the
optimization is evaluated in Aspen HYSYS to obtain f(x*), which is then compared to
the value of the surrogate F'(z*) in the same point to determine the relative absolute error
(which measures the mismatch between the surrogate and the original process model in
the optimal solution found).

CS1I CSII CSIII CS1Vv
Optimization direction min max min max
CPU Optimization 1s 26's 22s 89s
Model status Feasible Feasible Feasible Feasible
point point point point
F(ztp) 413kW  31.03%  0.709$kg™'  54.66%
THp 0.61[—] 261 °C 232°C 1[-]
224bar 5861 kmolh™! 0[]
0.001[—] 293°C
1.250 [—] 334°C
54 m® 339°C
5500 kPa 230 bar
206 bar
197 bar

z* — HYSYS — f(z*) 413kW  29.40% 0.720$ kg™ " 49.94%
RAE 0% 6% 2% 9%

algorithm further sample through the space of plausible expressions. Performing a
parameter tuning could further support the exploration of the space of expressions
(i.e., probabilities of evolutionary operations). Moreover, according to Guimera et
al. (2020)), the priors could be tailored to the specific problem at hand to improve
further the performance of the model training.

Table shows the best solution for the training samples (BS). This solution
was compared to the ones of the BMS and the GP. Considering the model-based
solution F'(x}), for CSI, II, and III, the deviation of the BARON solution from the
best training point is similar to the one of the MAINGO solution. For CSIV, this
deviation is slightly higher for the MAiINGO solution. This may happen due to
the larger dimension of this problem (8 decision variables), which leads to a lower
R? (Table . Since a model-based optimization is performed, it might happen
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that the identified optimum solution is not necessarily better than the sampling
points due to the mismatch between the surrogate and the true model.

Table 4.9. The identified model-based optima F(z;) for the BMS and the GP are
shown together with the identified solution f(z*) after inserting z* into HYSYS. The
best solution (BS) obtained by sampling the training data is also indicated. The relative
absolute error (RAE) between F(x;) and f(z7) is shown.

CSI CSII CSIII CSIV
Minimization Maximization Minimization Maximization
BMS GP BMS GP BMS GP BMS GP

F(z}) 413kW 413kW  31.46% 31.03% 0.716$kg™" 0.709$kg™" 46.21% 54.66%
f(xr) 413kW  413kW  29.31% 29.40% 0.7278kg™' 0.7208kg™" 47.03% 49.94%
BS 413kW 29.31% 0.737$kg ! 48.58 %

Finally, in this work, the impact of the size of the training dataset was studied
for one of the case studies. As shown in Table [£.9] the best sample found in the
training set is close to the optimal solution identified with the optimized BMS and
GP models, and more so in the cases with a search space of lower dimension (e.g.,
gap between f(z}) and F(z}) is found <0.3% in CSI and II with one and two
decision variables, respectively, and <3.2% in CSIII and IV, with six and eight
variables, respectively). Moreover, considering the bounds on the optimization
variables displayed Table [4.1| and focusing on CSII, we repeated the calculations
for several training set sizes (Table , where the rows represent the different
data set sizes of which 20% was used for the test set, as described in Section [4.4.1)).
According to the results, surrogate optimization tends to lead to better solutions.
However, as expected, the quality of the best solution from the sampling improves
as we increase the number of samples. Moreover, Figure [4.12| shows the three-
dimensional plots of the corresponding BMS predictions together with the training
data.

For the expressions obtained with 200 and 400 samples, models with R? values
lower than 0.85 were obtained in the test set (bold values in Table[£.10]). According
to the acceptance criteria defined in Chapter [4.5.1] (i.e., R* > 0.85), these models
are not performing well enough. All models obtained by the GP led to a testing
R? > 0.85. Optimizing the obtained models led to the results shown in Table
(for the BMS) and Table (multi-start MAINGO).

In general, the optimizer used for the identified BMS expressions (either BARON
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Table 4.10. The training performance criteria are summarized for the Bayesian machine
scientist (BMS) and the Gaussian process (GP) for CSIL. Each row shows the number (No)
of samples (training plus testing) together with the CPU time needed for sampling this
data set. The CPU time (in seconds) required for the model training is also shown. The
error metrics (root mean squared error, mean absolute error, coefficient of determination)
are shown for the training and testing data (format: training/testing). The units root
mean square error (RMSFE) and the mean absolute error (M AF) units are percentages
(conversion), where the coefficient of determination (R?) is a unitless quantity. Bold R?
are indicated where the corresponding BMS models fulfill the acceptance criteria of having
a model that fits the test data well enough (R? > 0.85).

Sampling Training CPU RMSE MAEFE R?
No CPU BMS GP BMS GP BMS GP BMS GP
200 73 2388 9 1.504/2.252 0.930/0.794 0.961/1.318 0.333/0.322 0.981/0.957 0.993/0.995

400 130 3136 14 1.784/1.562 0.982/0.621 0.966/0.904 0.299/0.255 0.974/0.980 0.992/0.997
600 195 5290 60 0.824/0.973 0.599/1.478 0.465/0.481 0.158/0.370 0.994/0.993 0.997/0.983
800 257 5616 113 0.949/1.198 0.636/1.092 0.549/0.648 0.158/0.282 0.993/0.989 0.997/0.991
1000 600 5600 141 0.832/0.962 0.537/0.935 0.487/0.630 0.120/0.270 0.994/0.993 0.998/0.993

200 400 600 800 1000

Figure 4.12. The training data (circles) is shown together with the BMS predictions
(surface) for case study II for the cases with 200 (most left) up to 1000 samples (most
right). The contour lines on the T'— P-plane of the model predictions are shown as colored
lines.

or ANTIGONE) led to globally optimal solutions, except for the model identified
using the dataset with 200 samples. Since a multi-start was used in MAINGO,
feasible points were reported instead of the global solutions. It is again observed
that the GO of the BMS models is executed faster than the optimization of the
trained GPs. Additionally, the mismatches between the model-based optimal so-
lutions F'(z}) and the HYSYS outputs f(z}) are generally higher than in the
solutions found with MAINGO. Lastly, the surrogate approaches identified solu-
tions that were better than the best training set sample in all cases except for the

case with 400 samples.

In the BMS model trained with 200 samples, BARON found a locally optimal
solution. The identified 27,,4 was very close to the identified global solution with
1000 samples. However, the corresponding solution z7,,¢ led to a large mismatch
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between the HYSYS output f(z},,s) and F(z5,,¢). A visual reason for this is
reported in Figure (model peak with 200 samples). This might indicate that
the training data set is too small for the BMS, leading to broad likelihoods in
the parameter space, which the authors of the BMS (Guimera et al., 2020) also
discussed. Considering the optimization of the GP trained with 200 samples and
optimized with MAINGO, the RAFE was slightly smaller. Nevertheless, the iden-
tified minimizer zfp led to a worse solution in HYSYS compared to the BMS
(27.22% vs. 29.24%). By increasing the size from 200 to 1000 samples, it is ob-
served that both approaches tend to identify optimal solutions better than the best
sample in the training set (bold values in Table and Table [£.12)). However,
the gap between the optimal solutions from surrogate optimization and sampling
does not change significantly by varying the size of the training set.

Overall, for this case study, the sampling sizes can be regarded to be appropriate
for the model training and subsequent optimization.
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Table 4.11. The optimization performance criteria and results are summarized
for the Bayesian machine scientist for CSII. The results are shown for the different
data sets. In the first row, the optimization direction is given. The CPU time (in
seconds) needed for model-based optimization is shown in the second row, followed
by the model status obtained from BARON (or ANTIGONE if indicated). The
solution z* found during the optimization is evaluated in Aspen HYSYS to obtain
f(z™), which is then compared to the value of the surrogate F'(z*) in the same point
to determine the relative absolute error (which measures the mismatch between the
surrogate and the original process model in the optimal solution found). The best
training sample found (BS) is reported in the last row. Bold values show a HYSYS
output f(z*) better or equal than BS.

Size of the dataset 200 400 600 800 1000
Optimization direction max max max max max
CPU Optimization 1s 1s?® 28 1s P 1s
Model status Locally Globally Globally Globally Globally
optimal optimal ® optimal  optimal ® optimal
F(zars) 68.85% 30.26% ¢ 28.36% 29.58% ¢ 31.46%
Thurs 266°C  288°C  273°C  257°C  265°C

230bar  230bar 220 bar 230 bar 230 bar
x* — HYSYS — f(z*) 29.24% 2762% 2838% 29.84%  29.31%
RAE 58 % 9% 0% 1% 7%
BS 28.35% 28.94%  29.18%  29.59%  29.31%

* ANTIGONE (v41.3.0, rel. optim. gap: 107°, max. CPU time: 600s, node
limits: 10°) closed the optimality gap. BARON reached the max CPU time of
600s.

> ANTIGONE (v41.3.0, rel. optim. gap: 107°, max. CPU time: 600s, node
limits: 10°) closed the optimality gap. BARON closed the optimality gap
(=~1s) with local optimality.

¢ The same solution was obtained for ANTIGONE and BARON.

4.6 Conclusion

This work introduced a method for the global optimization of process models
based on algebraic expressions built from data via SR. Other approaches based
on ML algorithms are hardly interpretable and lead to complex formulations. In
contrast, our approach derives closed-form algebraic expressions in the space of
degrees of freedom using well-established mathematical operators and Bayesian

learning methods.

Numerical examples show that the algebraic models built by our method display
a similar level of accuracy as those constructed with GPs. However, they can
be more easily optimized to global optimality using state-of-the-art solvers than
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Table 4.12. The optimization performance criteria and results are summarized for the
Gaussian process with multi-start in MAINGO for CSII. The results are shown for the
different data sets. The optimality gap is chosen as the default value of e = 107 and the
maximum CPU time was set to 5600s (roughly the time required for training the BMS
models shown in Table . In the first row, the optimization direction is given. The
CPU time (in seconds) needed for model-based optimization is shown in the second row,
followed by the model status obtained. Rows four and five indicate CPU times and model
status. The solution z* found during the optimization is evaluated in Aspen HYSYS to
obtain f(x*), which is then compared to the value of the surrogate F(z*) in the same
point to determine the relative absolute error (which measures the mismatch between the
surrogate and the original process model in the optimal solution found). The best training
sample found (B.S) is reported in the last row. Bold values show a HYSYS output f(z™)
better or equal than BS.

Size of the dataset 200 400 600 800 1000
Optimization direction max max max max max
CPU Optimization 2s 58 11s 20s 26s
Model status Feasible Feasible Feasible Feasible Feasible
point point point point point
F(zgp) 36.02% 3396% 52.05% 33.15% 31.03%
Top 282°C 273°C 262°C 262°C 261°C

201 bar 230 bar 229 bar 225 bar 224 bar

z* — HYSYS — f(z*) 27.22% 28.73% 29.44% 29.37% 29.40%
RAE 24% 15 % 43% 11% 6 %
BS 28.35% 2894% 29.18% 29.59%  29.31%

GP models that cannot be globally optimized in short CPU times. Because the
algebraic surrogate is slightly less accurate, its global optimum is not guaranteed
to optimize the original model globally and might be outperformed by simple

multi-start strategies.

Although the BMS shows a very high computational time needed for training
and leads to less accurate models, this might change in the future as better SR
algorithms become available and a similar level of maturity is reached relative to
standard ML training methods, e.g., GP and ANNs. Moreover, having a closed-
form expression at hand, which could be tuned by appropriately modifying the
SR settings, could help in cases where the resulting optimization problem has to

be solved many times, as in real-time optimization problems.
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Chapter 5

Algebraic surrogate-based flexibility
analysis of process units with
complicating process

constraints

This chapter is based on the following publications: Forster T., Vazquez D.,
Moreno-Palancas 1. F., Guillén-Gosalbez G. (2024al). Algebraic surrogate-based
flexibility analysis of process units with complicating process constraints. Comput-
ers and Chemical Engineering, 184, 108630. and Forster T., Vazquez D., Moreno-
Palancas [. F., Guillén-Gosalbez G. (2024b)). Flexibility Analysis Using Surrogate
Models Generated via Symbolic Regression. Computer Aided Chemical Engineer-
ing, 53, 2791-2796.
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{e | e is a symbolic mathematical expression}
{g | ¢ is a non-complicating constraint}

{h | h is a complicating constraint}

{i ] iis a sample}

{j | 7 is a constraint}

{m | m is an uncertain parameter}

{n | n is a control variable}

Set of uncertain parameters that maintain the process feasible

Real numbers

Design parameters of the process under consideration
Big-M reformulation parameter

Maximum upper and lower deviation from a nominal point of the

uncertain parameter k
Lower and upper bounds of the uncertain parameter k

Process constraint

Non-complicating process constraint

Complicating process constraint

Slack variables of constraints f;, fg, and fh

Time

Upper bound for the constraint f;

Binary variable of constraints f;, fg, and ]?h

Control variable n

Scaled deviation from nominal point

Uncertain parameter k

Critical value of the uncertain parameter k

Nominal operating point of the uncertain parameter k
Symbolic expression e

Lagrange multiplier of constraints f;, fg, and fh
Feature vector of sample ¢ used for the model training
Lagrange polynomial

Description length of Bayesian machine scientist
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5.1 Introduction

Uncertainty is always present in science and engineering. This uncertainty can
reveal itself in, for example, product demands (Petkov & Maranas, 1997)), supply
chain and scheduling activities (Ehrenstein et al., 2019), and even in process
design and operation (Pistikopoulos, [1995). A broad overview of various aspects
of uncertainty, specifically in the Process Systems Engineering (PSE) field, is given
by the works by Sahinidis (2004), Li and Terapetritou (2008), and Grossmann et
al. (2014). When uncertainty is not taken into account, designing and optimizing
process units assuming deterministic values for the uncertain parameters can lead
to suboptimal solutions or, in the worst case, to infeasibilities during operation
(Ben-Tal & Nemirovski, |2002; 1. E. Grossmann et al., [1983; Z. Li et al., 2011).
Thus, it is common to embed uncertainty in the specifications of the problem, e.g.,
in the field of pharmaceutical development, the guidelines of the International
Council for Harmonisation of Technical Requirements for Pharmaceuticals for
Human Use (ICH) define that critical quality attributes (CQAs) are valid within a
given acceptable range (FDA, |2010)), even considering variations due to uncertain
input conditions.

Considering the effect of uncertainties in optimization problems during the early
design and operation of chemical plants is especially important for chemical pro-
cesses. This is because optimal solutions tend to meet process constraints and
quality requirements as deterministic inequalities or equalities, so any perturba-
tion over the nominal conditions may have strong implications on their feasibility.
There are two main mathematical methods in operations research to account for
uncertainties in optimization problems, namely stochastic programming (Birge &
Louveaux, 2011} Ierapetritou & Pistikopoulos, [1994; Z. Li & lerapetritou, 2012;
Marti & Kall, [1995; Prekopa, [1995; Shapiro et al., 2021)) and robust optimization
(Ben-Tal et al., 2009; Ben-Tal & Nemirovski, [2002; Z. Li & lerapetritou, 2008;
Lin et al., 2004). Li and Grossmann (2021) considered chance-constrained pro-
gramming as another approach for optimization problems under uncertainty, yet
(arguably) it could also be regarded as a generalization of robust optimization, in
which distributions are specified for the uncertainties and a level of probability is
defined to satisfy constraints (I. E. Grossmann et al., 2016).

The flexibility index is an alternative approach for accounting for uncertainties
that has been used mainly in process design (Pistikopoulos, |1995). Developed
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by the PSE community back in the 1980s (I. E. Grossmann et al., |1983; Hale-
mane & Grossmann, 1983; Swaney & Grossmann, |1985al [1985b)), its primary
goal is to assess the ability of a design to remain feasible against variations in
the parameter values during the plant operation (Boukouvala et al., 2010; 1. E.
Grossmann et al., |1983). In essence, this is done by quantifying the feasibility
of a given design, which describes if a process is feasible or infeasible within a
given range. Mathematically, the feasibility function can be calculated by solving
a min-max-optimization problem, which will be discussed in detail later in this
work. Grossmann et al. (1983 geometrically interpret this feasibility function
as the depth of the feasible region since it quantifies a deviation from the nomi-
nal constraints. Based on this concept, the authors describe the flexibility index
(I. E. Grossmann et al., [1983; Swaney & Grossmann, [1985a), [1985b]), which char-
acterizes the size of the region of feasible operation (7)) in the space of uncertain
parameters. This region 7' should be a subset of the entire feasible region (Q.
Zhang et al., 2016). In other words, the flexibility index describes the maximum
range over which the involved uncertain parameters can vary (independently)
such that the process remains feasible (I. E. Grossmann et al., [1983; Pulsipher
et al., 2019). Alternatively, other metrics to quantify process flexibility were put
forward. Those methods include for example the resilience index (Morari et al.,
1985)), and stochastic measures such as the design reliability (KKubic & Stein, [1988)
and the stochastic flexibility index (Pistikopoulos & Mazzuchi, [1990; Straub &
Grossmann, {1990, 1993)). The stochastic flexibility index was developed to tackle
the limitation of the flexibility index to address discrete and continuous uncertain-
ties at the same time (Straub & Grossmann, 1990), or to use arbitrary probability
distribution of the uncertainties (Rogers & lerapetritou, 2015b)).

The flexibility index can be computed using deterministic mathematical models
(Pistikopoulos, [1995; Pulsipher et al., 2019) as long as process constraints are de-
scribed in a closed-form algebraic manner (Floudas et al., 2001 Ierapetritou, 2001}
Pistikopoulos & Terapetritou, [1995; Straub & Grossmann, [1993). Specifically, the
main methods to quantify the flexibility index include vertex searches (I. E. Gross-
mann et al., [1983; Swaney & Grossmann, 1985a, [1985h)), active set strategies with
KKT reformulations (I. E. Grossmann & Floudas, |1987)), or branch-and-bound ap-
proaches (Ostrovsky et al., [1994)) that were based on the evaluation of the lower
and upper bounds of the feasibility function. Since global optimality cannot be
guaranteed using local solvers for such bounding methods (Migdalas et al., 1998),
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a global optimization approach was developed using reformulation and relaxation
approaches for the feasible region (Floudas et al., 2001). We note that some of
these approaches rely on specific convexity assumptions (Goyal & Ierapetritou,
2002, 2003; 1. E. Grossmann & Floudas, [1987)).

When some constraints are not available in algebraic closed form, analyzing pro-
cess flexibility becomes much more complex and a straightforward computation of
the flexibility index with state-of-the-art deterministic solvers is not possible any-
more. This might happen, for instance, if the only knowledge about the system
consists of observations of input and output data due to limited process under-
standing (Boukouvala & Ierapetritou, 2012). Additionally, very complex under-
lying process dynamics (ordinary or partial differential equations) can be another
reason why constraints are difficult to be derived in a closed-form manner (Ding &
TIerapetritou, 2021)). Even if some knowledge about the process dynamics can be
described by differential equations that could be discretized (i.e., orthogonal collo-
cation on finite elements (Carey & Finlayson, [1975)), finding a solution might still
be challenging due to the size of the reformulated optimization problem.

Several works applied adaptive sampling techniques with Kriging interpolation
(Krige, 1951), also known as Gaussian process regression (Rasmussen & Williams,
2006), to perform flexibility analyses when dealing with situations where closed-
form models for process constraints are inexistent or challenging to be constructed
(Boukouvala & lerapetritou, 2012; Boukouvala et al., 2011} Ding & lerapetri-
tou, 2021; Rogers & Terapetritou, [2015al [2015b; Z. Wang & lerapetritou, 2017).
Broadly speaking, these methods are used to approximate the feasibility function,
namely the function that evaluates the feasibility of the model for given values of
the decision variables and the parameters. Such data-driven strategies are appli-
cable to processes with non-convex feasible regions (Rogers & Ierapetritou, |2015al,
2015b)). Similarly, other works substitute the Gaussian process models with neu-
ral networks (Metta et al., 2021). In a very recent work by Sachio et al. (2023)),
the authors developed a highly flexible framework that performs a design space
identification followed by a design space analysis. The researchers used a Sobol
sampling approach with a subsequent approximation of the design space by alpha
shapes, where the usage of alpha shapes was also successfully described in earlier
works for feasibility analysis (Banerjee & lerapetritou, 2005). All the methods
mentioned in this paragraph approximate the feasibility function with a surrogate
and they do not rely on the original deterministic flexibility index, but rather they
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use alternative flexibility metrics.

Here, we shall develop an alternative approach for flexibility problems, focusing
on the computation of the flexibility index where challenging process dynamics
or hard-to-model process constraints are encountered. While more refined flex-
ibility metrics have been proposed (Pistikopoulos & Mazzuchi, 1990; Straub &
Grossmann, [1990), we focus on the original flexibility index metric due to the
already existing methods for its computation applicable to analytical closed-form
models, into which we reformulate process models with complicating constraints
as explained later in the article. In the following, we use the term “complicating
constraints” to describe hardly accessible or completely inaccessible constraints,
that is, constraints that are either hard to model in algebraic form and/or hard
to handle in an optimization model. In essence, here we shall replace those con-
straints with algebraic surrogates built with a symbolic regression algorithm (SR).
These algebraic surrogates are hence subsequently incorporated into the original
flexibility analysis formulation, thereby simplifying the flexibility analysis. SR al-
gorithms aim to find the model structure and associated parameters that fit some
data. Compared to algorithms like ALAMO or ALVEN that restrict the search to
a specific set of functions, general SR approaches make use of symbolic expression
trees that can represent a very large number of plausible algebraic surrogate mod-
els (Cozad & Sahinidis, 2018). Here, the best model in the symbolic tree can be
identified following different approaches and applying some fitting criteria. These
include the formulation and solution of an MINLP problem (Cozad & Sahinidis,
2018), where binary variables encode the model structure and continuous ones its
parameters, or the application of stochastic search approaches (Cranmer et al.,
2020; Diveev & Shmalko, [2021; Guimera et al., [2020). For example, Cranmer et
al. (2020)) created the open-source algorithm PySR, a multi-population evolution-
ary algorithm, which is freely available in Python (Cranmer, 2020, 2023). There
are also algorithms that are available as proprietary software, such as Eureqa
(Schmidt & Lipson, 2009) or TuringBot (2023). To build the surrogate models in
this work, however, we use an SR method developed by Guimera et al. (2020),
based on a Markov-chain Monte Carlo (MCMC) approach to identify the most
suitable closed-form expression to represent the available data. One of the ad-
vantages of SR is that it does not assume a predetermined model structure or a
reduced set of alternative model structures (e.g., like in the ALAMO approach
(Wilson & Sahinidis, 2017) or the above mentioned HDMR approach). The user
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only defines some allowable mathematical operations (i.e., addition, multiplica-
tion, subtraction, etc.) that are used in a symbolic tree to build plausible expres-
sions to explain given data. This symbolic tree can be seen as a superstructure
of mathematical expressions from which the most suitable one and its associated
parameters must be identified using specific algorithms. SR was successfully ap-
plied in many different fields, such as distillation (Ferreira, Pedemonte, & Torres,
2019; Ferreira, Torres, & Pedemonte, 2019; McKay et al., [1997), food extrusion
process (McKay et al.,[1999), process control (Keane et al.,[1993)), or the discovery
of physical laws (Cranmer et al., 2020; Schmidt & Lipson, 2009). Moreover, the
BMS was also previously applied by some of us to approximate process simulations
of carbon capture plants (Negri et al., [2022)), to model the link between energy-
related impacts and socioeconomic drivers in macro-economic studies (Vazquez et
al., [2022)), and for surrogate-based global optimization of process units and flow-
sheets by coupling SR with deterministic global optimization (Forster, Vazquez,
& Guillén-Gosalbez, 2023a).

Our proposed approach represents an alternative way to handle complicating con-
straints in flexibility problems that does not rely on any discretization technique,
like those applied to differential equations, thereby avoiding the use of auxiliary
variables that increase the dimensionality of the optimization problem. Addition-
ally, no pre-defined model structure is assumed for the surrogate model replacing
the complicating constraints. Instead, an SR algorithm, the BMS, creates an al-
gebraic model from a set of samples of the functions describing the complicating
process constraints. We show the advantages of this approach in two case stud-
ies covering a chromatographic column of an antibody production process and a
bioethanol production in fed-batch operation mode. To the best of our knowledge,
this is the first work that combines SR with the initially defined flexibility index
problem, giving rise to a hybrid optimization problem where some constraints are
replaced with algebraic surrogates. In the end, the most appropriate approach to
quantify flexibility performance in the presence of complicating constraints will
depend on the problem at hand and the goal and scope of the analysis, including
the selection of the flexibility metric to be evaluated.

The remainder of this chapter is organized as follows: First, the problem state-
ment is described, followed by the methodology. Afterward, two case studies are
introduced, and the results are subsequently discussed. Finally, the conclusions
of the work are drawn.
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5.2 Problem statement

Here, without loss of generality, we shall consider an existing process or process
unit, where a known and fixed process design (i.e., equipment dimensions) is given
by variables d. Additionally, there are K uncertain parameters 0,, k € K, which
have a given nominal value of Y. Last, there are N control variables, with a value
Zn,n € N, that can be adjusted during the operation to regain feasibility.

Within this process, a set of J process constraints f; Vj € J (i.e., material bal-
ances, process or product specifications or restrictions, etc.) need to be considered,
as stated in equation (5.1)):

fi(d,z,0) <0, VjelJ (5.1)

For such a situation, we want to assess how far the uncertain parameters 6 can
deviate from the nominal operating point 0V, such that the process remains feasi-
ble, i.e., we are interested in the flexibility index problem as described later in the
next section. To quantify the flexibility of a process, the feasibility function given
in equation ((5.2) must be assessed. To do so, the min-max-optimization problem
shown in equation ({5.2) must be computed:

Y (d,8) = minmax {f;(d, z,6) } (5.2)

z  ged

In this expression, ¥ (d, #) represents the feasibility function for a given design d
and a realization of the uncertain parameters #. However, some of the process
constraints f;,7 € J, might be very challenging to be evaluated, or might not
even be directly accessible as closed-form algebraic equations. As a consequence,
they cannot be directly included in the formulation given in equation . Com-
plicating constraints might be encountered in complex systems (i.e., involving
complex process dynamics, with complex unit operations hard to model mecha-
nistically).

Hence, we divide the set of constraints .J into two proper subsets G C J and
H C J, as shown in equation (5.3). Set G contains process constraints fg, ge G
that are non-complicating, i.e., clearly defined by an algebraic equation that can be

124



easily incorporated into and handled numerically in an efficient manner. Set
H C J, on the other hand, contains complicating constraints, denoted by fh, h e
H, which cannot be incorporated directly into the model in a straightforward
manner. Note that whether one constraint should be considered complicating
or not might depend on the specific case and the numerical performance of the
standard approach.

£,(d,2,0)<0, Ygei s
Fald,2,0)<0, YheH '

The idea here is to replace the complicating constraints in equation (5.2) with
algebraic surrogate models that are constructed by solving an SR problem. Herein,
we shall identify such a surrogate model without assuming a pre-defined model
structure, as discussed next.

5.3 Methodology

For the sake of completeness, we will first present the flexibility index formulation
developed by Grossmann et al. (1983), Halemane and Grossmann (1983)), and
Swaney and Grossmann (1985al [1985b), which is taken as a basis to derive our
approach. The reader is referred to these works for more details and further
mathematical insights. For simplicity, during the subsequently shown derivation,
we use the set J to describe all the constraints, where we split this set into the two
subsets G and H - as shown in Section [5.2]- in the very end of the derivation. After
that, we describe how the surrogate models can be incorporated in the flexibility
formulation. Last, we discuss how to build these surrogate models and assess their

performance.
5.3.1 Fundamentals of feasibility and flexibility

Consider the formulation in equation (5.4) that aims to calculate the feasibility
function ¥(d, z,0) of a given design d and a specific realization of 0,k € K,

where some control variables z,,n € N are present (I. E. Grossmann et al., [1983;
Halemane & Grossmann, 1983; Swaney & Grossmann, 1985a, |1985b):

Y (d, ) = minmax {f;(d, z,0)} (5.4)

z  ged
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Using an upper bound wu for the constraints f;,7 € J, we can reformulate the

min-max formulation into the following single-level problem:

¥ (d,0) = minu
= (5.5)
st. fi(d,z,0)<u VjelJ

Formulation seeks the smallest u such that each constraint f; results in a
value less or equal to u. Overall, a value of ¢ (d,0) < 0 means the process is
feasible for a given realization of d and 6. On the other hand, v (d,0) > 0 implies
that the process is infeasible for these specific values of d and 6.

The feasibility formulation seeks the worst value of 1 (d, #) over the entire uncer-
tain parameters space # € T. This problem can be formulated as the following
tri-level optimization model, which provides the feasibility test function x(d) given
in equation (5.6]).

x (d) = max) (d. 9)

= e 2,00}

(5.6)

In formulation (5.6)), if x (d) < 0, the process is feasible for the entire space of the
uncertain parameters ©. Using formulation given above for the feasibility
function v (d, #), the feasibility test problem in equation (5.6 can be reformulated
as a bilevel optimization problem shown in equation (5.7)).

X (d) = mgLX¢ (d,0)

s.t.1 (d,0) = rgltnu (5.7)

s.t.=fij(d,z,0) <u, VjelJ
0eT

Grossmann et al. (1983) proposed an approach to quantify and identify the largest
possible uncertainty set # € T', such that the process is still feasible over the entire
range of #. The authors described this as the flexibility index problem, which is

given in equation (j5.8)).
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FI = max 6

§€R<g (5.8)
s.t.x (d) = m;xxt/}(d, 0) <0

Where F'I represents the flexibility index, and ¢ should be a nonnegative real
number (Ro<). The newly introduced variable ¢ scales the uncertainty set 7', which
is therefore subsequently denoted by 7' (J). In other words, § can be regarded as a
scaled deviation from a nominal point 8V, such that the realization of @ results in
a feasible solution. The goal is to maximize the mentioned set 7'(§), under which
there exists the possibility of recovering feasibility through the control variable z.
In their original work, Swaney and Grossmann (1985a), 1985b|) showed that the
bilevel problem given in equation can be reformulated. Instead of searching
for the largest possible set T'(§) by maximizing J, the authors showed that it is
equivalent to looking for the minimum ¢ such that the solution is located precisely
on the boundary (¢ (d,0) = 0). In other words, one is looking for the constraint
that is closest to the nominal operating point. This reformulation can therefore
be expressed as shown in equation (5.9)).

FI = min ¢

§ERy< (5.9)
sty (d) = meaxv,b(d, 0)=0

The flexibility index problem shown in equation (5.9)) ensures that the feasibil-
ity function is precisely zero. Using the definition of the feasibility test problem
given in equation (5.7), the flexibility index problem can be reformulated as fol-

lows:

FI = min §

5€R0§

sty (d) = mgaxw (d,8) =0
s.t.1 (d,0) = minwu (5.10)

fi(d,2,0) —u+s; =0, VjeJ
6 eT(5)
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Where the inequality constraints of problem are expressed as equality con-
straints using nonnegative slack variables, s;. The resulting flexibility index prob-
lem is challenging due to the non-differentiability of max-min-max (or min-max-
min) functions. To tackle this challenge, we can substitute the innermost opti-
mization problem with its Karush-Kuhn-Tucker (KKT) conditions (I. E. Gross-
mann et al., [2014). The Lagrange function £(d, ) of this innermost problem can
be formulated as follows:

L(d,0) —u+z (fj(d,z,0) —u+s;)) (5.11)

Where A, represents the Lagrange multipliers for constraint f;. Subsequently,
the corresponding stationary (5.12) and complementarity (5.13)) conditions for
problem ([5.10) therefore read as follows:

0L(d,0) _0_1_2/\

C Ou
0L(d,0) _ af- (d, z,0)
5. —0= 0=> N—L 22 VneN (5.12)
%:O:fj(d,z,Q)—uvsz, Vield
j

Njs; =0, VjelJd (5.13)

Aj,s; >0, Vield
In 1987, Grossmann and Floudas (1987) described how problem can be
reformulated into a mixed-integer nonlinear program (MINLP) by applying an
active set strategy where some constraints might be inactive in the optimal so-
lution. The usage of active set methods requires making discrete choices on the
complementarity conditions A;s;. Therefore, it is necessary to introduce binary
variables y; € {0,1} that establish whether a constraint is active (y; = 1) or
not (y; = 0). Furthermore, the KKT complementarity conditions are formulated
using the following two inequalities in equation ((5.14)).
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si<M(1—vy;), Vjeld (5.14)
A<y, Vied

Where M represents a large enough parameter that acts as the upper bound for
the slack variables s;. Properly selecting M is one of the main drawbacks of this
method since it is hard to define tight bounds for the Lagrange multipliers. If M
is too small, the solution obtained with the reformulation in equation ([5.14)) will
not coincide with the optimum of the original problem, since this value would act
as an active constraint. On the other hand, an excessively large M often causes
numerical instabilities (Cococcioni & Fiaschi, 2021). Consequently, its value must
be selected in accordance with the problem, which might not be easy. In addition
to the transformations mentioned above, another constraint could be added that
enforces the number of potential sets of active constraints to be lower or equal to
|N|+1, where | N| stands for the number of control variables z (1987)). For specific
mathematical details, the reader is referred to the original work of Grossmann and
Floudas (1987), and the more recent works by Ochoa and Grossmann (2020) and
Pulsipher et al. (2019).

Although there are several options to describe the set 7'(d), in this work, we
restrict our approach and the discussed case studies to a rectangular form of 7°(0).
Therefore, the constraint 6 € T(d) given in equation can be expressed by
two inequality constraints shown in equation . The reader is referred to the
work of Pulsipher et al. (2019)), which addresses the case of an ellipsoidal form of
T(6).

Oy — SAGT™ < 6,

5.15
O < 0) + A0 (5:15)

Using the above-shown reformulation techniques and assumptions, the reformu-
lated flexibility index problem can be expressed as shown in equation (/5.16]).
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FI:méincS
st.fi(d,z,0) —u+s;=0, Vjel

ZAjzl

ZAafJ 426 _o ynen
0z

n

SjSM(]_—yj), VJEJ

(5.16)
>y <INJ+1
J
0eT(0)
Aj>0, Vjeld
SjZO, VJEJ
0>0

5.3.2 Flexibility index formulation with complicating constraints

As already said, here we define as complicating constraints those that are either
hard to model explicitly or lead to complex expressions hard to handle numeri-
cally. Such a situation might arise, for example, in dynamic systems with con-
straints on temporal profiles, or in process models with complex unit operations
whose behavior is hard to model mechanistically. In the former case, discretiza-
tion methods such as orthogonal collocation (Carey & Finlayson, [1975) might
be applied, but this will result in complex models posing numerical challenges
(i.e., convergence problems, entrapment in low-quality local optima, etc.). On the
contrary, by non-complicating constraints, we mean constraints that are directly
accessible as standard algebraic expressions. To be able to use the flexibility
index formulation in equation (5.16)), we will follow the approach visualized in
Figure 5.1} Therefore, we introduce the two proper subsets G C J and H C J for
the non-complicating and complicating constraints, respectively. With this, the
original flexibility index problem given in equation is reformulated as given
by (5.17), while inheriting the assumptions of (5.16). As stated in Section [5.2]
fg, g € G represent the non-complicating constraints, whereas the complicating
constraints are denoted by ﬁ, h € H. Due to the introduction of the two subsets
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Figure 5.1. Overview of the discussed procedure in Sections and After the
constraints f; are defined (top left white box), which are subsequently split into compli-
cating (red, f) and non-complicating (green, f,) constraints (top central box with blue
background). In step 1, the complicating constraints are approximated by using surro-
gate models. In step 2, the available algebraic information about the non-complicating
constraints are used (lower boxes in blue background). Last, the information is combined
to solve the flexibility index problem (right boxes with yellow background).

G and H, also the slack variables s;, the Lagrange multipliers A;, and the binary
variables y; must be split into the two respective subsets. This requires adjusting
the indices in formulations and . It is worth mentioning that this
split of J into G and H, does not alter the total number of constraints involved in
the problem. As discussed in the introduction, a situation with complicating or
unknown constraints was also addressed in the works by Rogers and lerapetritou
(2015al 2015b)), where the authors modelled the feasible region boundaries using
surrogate models. These trained surrogates could then be used to approximate the
stochastic flexibility index (Straub & Grossmann, |1993)), which can consider prob-
abilistic information. The authors overcome the challenge of not having available
closed-form expressions for process constraints by using a Kriging binary classifi-
cation method, which allows to iteratively approximate the feasible region. With
the trained classification models, the authors evaluated a range of uncertain pa-
rameter combinations and assessed if these realizations were either feasible or
infeasible. However, our approach differs from these works. First and foremost,
Rogers and lerapetritou (2015a, 2015b) used their surrogate model to evaluate
the stochastic flexibility index (Straub & Grossmann, [1990), which measures the
probability of feasible operation, while we use the surrogate to incorporate it into
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the originally proposed deterministic flexibility index formulation (I. E. Gross-
mann et al., 1983} Halemane & Grossmann, 1983 Swaney & Grossmann, [1985a),
1985b)). Hence, we quantify the original flexibility index, which measures the
maximum allowable perturbation of parameters within which the process remains
feasible, so probability information is not considered in the calculations. Second,
we do not use any classification approach, but rather a regression approach. The
output of the surrogate model in our work is a continuous variable that deter-
mines the value of the constraint for given values of the decision variables and
parameters. Third, instead of approximating the entire feasible region with the
surrogate, we only approximate individual complicating constraints, while keeping
the non-complicating constraints in the formulation. To solve formulation (5.17),
the complicating constraints ﬁ and their respective derivatives will be replaced
by algebraic surrogate models, as discussed next. In this manner, the structure
of the original flexibility index problem is kept.

F]:méincs
s.t.fg(d,z,H)—u—i—sg:O, Vg e G
fa(d,z,0) —u+s,=0, VheH

Z)\ngZ)\h:l

af, (d, z,0) afy (d, z,0)
ZA e ;)\h—:(], ¥n e N

Zn, 8,2”
SgSM(l—yg), VgGG
sn<M(1—yn), YheH (5.17)
)\gﬁyg, Vg e G
A <wyn, VheH

Dy + > un < INJ+1
g h

6 eT(6)

N >0, M>0, VgeG heH
$g >0, s,>0, YgeG heH
0>0
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5.3.3 Incorporation of algebraic surrogate models for the complicating
constraints

We include algebraic models substituting the complicating constraints to solve

the flexibility formulation shown in equation (5.16]) or (5.17)) using state-of-the-

art deterministic solvers. To be able to use off-the-shelf optimization solvers,
we follow the procedure described in Section and graphically summarized
in Figure The first step is the identification of complicating constraints.
These constraints, described by fh,h € H, are then separated from the other
non-complicating constraints as shown in Figure Once separated, we use
a surrogate model approximation, Fj,, as a simplification for the complicating
constraints ﬁ The original flexibility index problem in equation ((5.17)) is therefore
reformulated into the hybrid expression that combines the main backbone
of the flexibility index problem with a data-driven surrogate model defined for the

complicating constraints, as shown below.

F]:méiné

s.t.fg(d,z,e)—u+$g:0, Vg € G
Fn(d,z,0) —u+s,=0, VYheH

Z)\g+2)\h:1

af, ( d z 9) OF}, (d, z,0)
E Ng— E Ny 7 N
d h 0z, 0, Vne

SQSM(1_99>7 VgeG

sp <M(1—wy,), VheH (5.18)
Ag <Yy, VgeEG

A< yn, VheH

Zyg+zyh§|N|+1
g h

0T ()

Ag >0, M2>0, VgeGhe H
5>0, s,>0, VgeG,hecH
§>0
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As visible in equation ({5.18)), the complicating constraint i (d, z,0) was replaced
by an adequate surrogate model Fj(d, z,60). Other than that, expression ({5.18])
does not differ from expression (5.17).

5.3.4 Surrogate model building

This subsection explains the individual steps involved in the surrogate model
generation in detail. The model building follows a similar procedure as described
in a previous work by the authors (Forster, Vazquez, & Guilléen-Gosalbez, 2023a),
where a situation is assumed that a mapping of the uncertain parameters to the
process response is possible. First, J,th is evaluated at different points. Second, SR
tools are applied to define a constraint Fj, from a closed-form algebraic surrogate
model that fits the generated data points precisely (i.e., F, approximates the given
process constraint fh accurately). Last, the performance of the obtained surrogate
model is assessed by suitable metrics.

Step 1: Data generation

A schematic overview of the data generation and model-building process is given
in Figure 5.2l We simulate the desired case study in Python by changing some
independent variables (degrees of freedom) and observing the response of the
dependent variables. To map these independent variables (also called the features
of the model) to the observed response (also called the target of the model), we
describe the feature vector w; = [z, 0], where ¢ € I refers to the set of samples.
The feature vector w; consists of the control variables z,,n € N and the uncertain
parameters 0,k € K. The target vector is denoted as ﬁ(wi), or ﬁ” in short.
Therefore, the sampling matrix is generated with the desired number of samples
|I| using, without generality loss, the Latin hypercube sampling (LHS).

The resulting dataset [ is split into two proper subsets as shown in equation (5.19)):

[ =1y

[TR ) [TE — @ (519)

Where I7% and I7F represent the training and test subsets, respectively. The
training subset is later used for model training, whereas the test subset is used
for model testing.
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Figure 5.2. Schematic representation of the data generation and surrogate model build-
ing procedure.
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Step 2: Surrogate model building

After having prepared the data, we want to find an expression in form of a surro-
gate model F}, (d, z, ) that accurately maps the above-described feature vector w;
to the corresponding targets fh, Herein, since we apply an SR algorithm, we do
not need to define any aprioristic assumption on the structure for Fy(d, z,0). As
mentioned, SR aims to find a suitable mathematical expression for the observed
data by representing the appropriate expressions in a symbolic tree. An example
of such a search is schematically shown in Figure 5.3

Figure 5.3. (a) The space F of all possible expressions ~. is schematically shown as
a dashed polygon. (b) A representation of an initial mathematical expression vy (z) =
(z1 + @2) + (z3 + z4) as a symbolic tree (red). (c) A root node replacement is performed
(grey node) to reach the green symbolic expression in (¢). Performing another node
replacement (grey node), the blue symbolic tree is reached (d), representing ~y (z) =
(z1/z2) X (z3 + z4). The fitting visualization of the three expressions is shown in (e),
together with the observed data as circles.

Figure (a) visualizes the space of all possible mathematical expressions -,
which is described by E. Starting from one symbolic tree representation v,,e € E,
we perform changes in the tree that lead to different mathematical expressions.
One example of such a tree evolution is shown in Figure (node replacement).
Another adaptation would be the elementary tree replacement (i.e., exchanging
the complete sub-tree (x3+x4) by another sub-tree). By doing this tree evolution,
a defined performance metric can be calculated for each resulting expression. This
metric should quantify how well the expression fits the observed data. The SR
algorithm then proceeds to search the space of expressions, seeking the expression
with the best goodness of fit. This search is stochastic, as in other evolutionary
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algorithms (Costa & Oliveira, 2001} Guimera et al., 2020).

As mentioned in the introduction, several SR algorithms are available to identify
algebraic surrogates. Without loss of generality, we use the approach developed
by Guimera et al. (2020), the BMS, to simplify the complicating constraints
ﬁ(d,z,@). The BMS uses statistical prior information about the mathematical
operations in the equations, and it is straightforward to implement, working out-
of-the-box and allowing interconnection with the Python environment without
need of extensive coding. This easy implementation facilitates its application in
different fields and case studies. Moreover, we note that the BMS was already suc-
cessfully applied to build process models (Forster, Vazquez, & Guillén-Gosalbez,
2023a; Jog et al., [2023; Negri et al., [2022). The BMS can provide closed-form
algebraic expressions from data based on a set of user-defined mathematical oper-
ations (i.e., addition, subtraction, multiplication, etc.). We next provide a high-
level overview of how the BMS works. For further information, the reader is
referred to the original paper (Guimera et al., 2020).

A conditional probability p(v.|D) is assigned to each expression 7. that is used
to fit some data D. This probability is calculated according to Bayes Theorem
(Bishop, 2006; Murphy, 2013):

p (D) p(e)
p(D)

p (el D) = (5.20)

Where p(D) represents the marginal likelihood of some data D. p(D) is indepen-
dent of 7, and therefore only acts as a normalization constant. Marginalizing over
the parameters ¢, associated with expression 7, (Murphy, |2013)), the numerator
in equation (5.20)) can be expressed as an integral over the space of all possible
parameter values ®, (Guimera et al., 2020). This marginalization is then descried
by the description length DL (v.) (Guimera et al., 2020; Hansen & Yu, [2001;
Murphy, [2013)):

DL () = —log[p(D]ve) p(7e)]

= —log [/@ P (Dlye, ¢e) p(elve) p(v)do (5.21)
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The computation of this integral is challenging (Guimera et al., [2020; Murphy,
2013). In literature it is stated (Griinwald, [2007; Murphy, [2013) that under certain
assumptions, the description length can be approximated through the Bayesian
information criterion (BIC) and the prior of the corresponding symbolic expression

Ve

BIC (7.
DL ('76) ~ %

—log (p (7e)) (5.22)
The description length, and, therefore, this final equation can be interpreted as the
plausibility of observing an expression 7., conditioned on some data D. According
to Griinwald (2007), DL(7.) can also be understood as an encoded length of the
expression 7, (number of natural units).

In the applied SR approach (Guimera et al., 2020), a Markov-chain Monte Carlo
(MCMC) (Hastings, [1970) algorithm is used to explore the space E of expressions,
where the number of MCMC iterations is defined by the user. After evaluating the
description length of each expression DL (7.), the BMS keeps the most plausible
one, representing the expression with the shortest description length (the best
goodness-of-fit).

5.3.5 Surrogate model performance

The performance of the surrogate model is assessed by calculating several metrics
for both the training and test data sets, ST and ST#. Here, to this end, the root
mean squared error (RM SE), mean absolute error (M AFE), and the coefficient of
determination (R?) were used:

RMSE = %Z (fh (w;) — Fy (wz-)>2

a€A

1
MAE:EZ

acA

R SS_R 4 EaeA (F(w1> - fh(wz)>2
Saen (Fulw) —z)

Fulws) = Fi(w;)

(5.23)

in equation ((5.23)), the predictions by the model are described by Fj,(w;) using the
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given input vector w; of one sample 7. The observed response fh and the mean of
the observed process responses are described by fh(wz) and 7, respectively. As
already mentioned, both the model predictions F},(w;) and the observed response
fh(wz) are calculated by using input data from the training or test set. Variables
SSR and SST denote the sum of squares of residuals and the total sum of squares
(proportional to the variance of the data), respectively. In addition to these
performance metrics, the time required for both the model training and for solving
the flexibility index problem is reported as a central processing unit (CPU) time.
Lastly, both the solver and model status are reported.

5.3.6 Software implementation

All calculations were carried out on an Intel®Core™i7-8700 CPU and 16 GB of
RAM. We used Python v3.10 with NumPy v1.23.5, SciPy v1.9.3, and pyDOE
v(.3.8 to construct the sampling dataset. The algorithm provided by Guimera et
al. (2020) was used to train the BMS. The symbolic equation generated by the
BMS was incorporated into the flexibility index problem, which was solved using
Pyomo (Bynum et al., 2021; Hart et al., 2011) v6.4.4 interfacing with the solver
BARON (Sahinidis, |1996|) v22.7.23.

5.4 Case studies

Before introducing the case studies (CS), the reader is referred to the support-
ing information in Section [D.1] where three motivational examples are provided.
These examples should give an intuition how the flexibility index calculations are
performed in easily visualizable examples. The first two motivational examples
do not include control variables, where the third one does.

We then apply the hybrid flexibility approach discussed above to two industrially
relevant CS. The first covers a protein-A chromatographic process; the second
is a bioprocess in fed-batch operation mode. The CS and corresponding data
generation processes are described in the following.

5.4.1 Fed-batch bioreactor for ethanol production (CSI)

We consider a bioreactor in a fed-batch operation mode. The model was taken
from the dynamic optimization examples demonstrated on APmonitor.com (Heden-
gren et al., 2014). A schematic representation of the reactor is given in Figure
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The reactor is equipped with a liquid feed, an air supply (with a submerged aer-
ator), a heating/cooling jacket, and a temperature probe inside the reactor. In
the reactor, microorganisms grow and produce ethanol by consuming oxygen and
glucose. To describe the dynamic evolution of the species, the system of ODEs
given in expressions ([5.26)-(5.42)) is used together with the corresponding param-
eters indicated in Tables and One major goal is to that the final ethanol
concentration reaches at least a user-defined lower bound E£. The control vari-
able here is the temperature of the cooling agent, that is, z = T,.. Furthermore,
the uncertain parameters 6 are the glucose concentration in the feed (S;,) and the
temperature within the reactor (7"). The constraints of this problem can therefore
be formulated as given in expression (|5.24)).

Temperature

Cooling
medium

Figure 5.4. Schematic representation of a bioreactor used in case study I.

The ethanol concentration needs to be assessed, which is not straightforward. We
add the first constraint to the set of complicating constraints H = {1}, namely,
we define ﬁ = fi = E — E. The other constraints are added to the set of non-
complicating constraints G = {2,3,4,5,6,7}. As mentioned above, this could for
example be done by discretizing the differential equations appropriately (i.e., by
applying orthogonal collocation on finite elements). However, one disadvantage
is that the dimensionality of the resulting optimization problem would be very
large due to the addition of many auxiliary variables (Carey & Finlayson, 1975;
Guillén-Gosalbez et al., 2013)).

fi:E-E<0 fol, —T.<0

ik fu:Sin (5.24)
f5Szn_Szn§O fGI_TSO

f- T —T<0 J:={1,2,3,4,5,6,7}
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To circumvent such possible limitations, the ethanol concentration at the reac-
tor outlet shall be modeled with the BMS. Therefore, F'(S;,,T,T.) represents a
trained BMS model that maps the features S;,,, T, and T, to the final ethanol con-
centration FE in the reactor. Hence, the constraint fl = FE — F is reformulated by
using a closed-form algebraic expression, leading to Fy = E — F(S;,,T,T,). The
formulation in equation then provides the entire reformulated problem. It
is worth mentioning again that fvl describes the original complicating constraint,
whereas F} describes the reformulated complicating constraint where a surrogate
equation is included to facilitate the calculations.

fl E_F(SWL;T7TC)§O f2:£_Tc§0

Js Ja:im (5.25)
f5Szn_Sln§O fGI_TSO

f- T—-T<0 H = {1},G ={2,3,4,5,6,7}
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S Otiq E
U= lUmaz 1— (5.26)
KsX + S Kox + Oyiq Emaz /) 1+ exp(—(100 — 95))
trmaz = [(a1(T — k1)) (1 — exp (b1 (T — k2)))]?
Emaz T
Emaz = Emaz y
P T exp (—ba(T — k3))
qg = app+bE
—A —A
bg = c1exp ( TPl) — co exp ( TP2) (5.27)
H qE
g = 2 I8 5.28
Yxs Ygs (5.28)
40,max OL
g = e (5.29)
Yxo Kox + Ouig
Kar
Kqg=Kg + 5.30
4= K e (b (T — ) (5:30)
OgasRT
Osat = 2922~ (5.31)
Ky
kja = (kja)o(1.2)(T — 20) (5.32)
V=V+V, (5.33)
v,
—t = 5.34
% (5.34)
dXy Q
— =uX — (Xtin — X 5.35
dt HAy + V.l( t, t) ( )
dXy Q
= — Kgq) Xy —(Xv,in — Xv 5.36
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dOyi
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(5.40)
aT Tre AH KrAp(T — T,
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The goal of the flexibility analysis is to quantify and identify the largest possible
uncertainty set 6 € T'(9), such that the process is still feasible over the entire range
of 6. In other words, one should assess how far the glucose inlet concentration
and the reactor’s temperature can deviate from the nominal operating point such
that the process is still feasible (all the constraints still hold).

To find F, the ODE system given in expressions (5.26)-(5.42) was solved for
different feature vectors w; = [Si,,T,T.],i € I with |I| = 250 samples using
the explicit Runge-Kutta method of order 5 (Dormand & Prince, 1980)). After
simulating for each w;, the final ethanol concentration E was obtained. The
sampling procedure discussed above (Figure was applied, where the upper
and lower bounds selected for the LHS are displayed in Table The resulting
dataset A was randomly split to [IT#| = 200 training (80%) and |I7*| = 50 testing
(20%) samples.

To train the BMS, several unary (exp(z), log(z), 2%, 2%, \/z) and binary (+,
—, =, X, z¥) operators were allowed to be selected. In addition, the number of
MCMC steps was fixed to 15 - 103. The model was allowed to contain up to eight

parameters.
5.4.2 Protein-A affinity chromatography (CSII)

This case study consists of a loading process of antibodies onto a protein-A affinity
chromatographic column. A schematic representation of the different steps in
chromatography is given in Figure[5.5] First, the column is packed with the desired
material (resin). Second, an equilibration is performed, which makes the column
ready to be deployed. During the loading phase, the antibody mixture is added
to the top of the column. Depending on the loading time (t;,4q4), the antibody
concentration in the feed (¢;;,), and the flowrate (@), some of the product might
be lost. Subsequently, the washing step is used to collect the desired product.

Table 5.3. Upper and lower bounds for the features S;,, T, and T.. The bounds were
used to create the samples for case study I by applying a Latin hypercube sampling
structure.

Feature Lower bound Upper bound Unit

Sin 0 20 gL™!
T 15 35 °C
T. 20 40 °C
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The elution step terminates the entire operation.

de  Q Oc app [ O7C dq
o~ Ageor P (a_ £n (5:43)
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i *_ 4
5 = k(¢ —a) (5.45)
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[@] _0 and {@} ~0 (5.48)
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load t dt _
LR = M <T (5.50)
foload Czndt
Q<Q<Q (5.51)
tioad < tioad < tioad (5.53)
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Figure 5.5. Schematic representation of the five different steps in a chromatographic
procedure. The loading phase (marked by the dashed green area) is the step of interest

for this case study.

146



We focus exclusively on the loading phase of the entire procedure. The loss ratio
(LR) is the relationship between the mass of the leaked product relative to the
total amount of proteins fed. With this, the deterministic constraints of the
problem can be formulated as given in equations (5.43)-(5.53)), which was adapted
from (Baur et al., |2016)), where the corresponding parameters were taken from the
same work (Baur et al., 2016) and Ding and Terapetritou (2021)).

The system given in equations (5.43)-(5.49)) describes the partial differential equa-
tions (PDE) for the dynamic evolution of the concentration profiles, which can be
expressed in terms of concentration in the liquid phase (¢) and in the adsorbed
phase (¢). The parameters of the PDE system are given in Table

Q, cin, and t;,.q are the adjustable flow rate, the inlet antibody concentration, and
the loading time, respectively. Their lower and upper bounds are indicated by @,
Cin» tioad; Q, G, and Zjoaq, Tespectively, which are represented in equation (5.51))-
. LR represents the loss rate, which is the relationship between the mass
of leaked product relative to the total amount of product fed during the loading
phase. LR is a user-defined upper bound for the loss rate.

The entire system in expressions ([5.43)-(5.53)) can be rewritten more compactly,
as shown in equation (5.54)).

fLR—TR<0 frQ-Q<0
: __<0 :Cin_cingo
fo@-Q= fa o (5.54)
J5 :Cin — Cin <0 J6 * tioad — tioaa < 0
f7 :tload_@go J = {1,2,3,4,5,6,7}

This entire differential system in equation (5.43))-(5.49) and the integrals in equa-
tion (5.50) are not trivial - and computationally expensive - to be incorporated
into the optimization problem.

Again, one option would be to apply an appropriate discretization method to
the differential equations, which would increase the problem dimensionality and
potentially lead to convergence issues, as discussed in CSI. We, therefore, add
the first constraint to the set of complicating constraints H = {1}, describing
it by ]71 = fi = LR — LR. The other constraints are added to the set of non-
complicating constraints G = {2,3,4,5,6,7}. A BMS model is used that maps
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the features c¢;,, tioaq, and @ to LR. Hence, the constraint fvl = LR — LR
is reformulated by using a closed-form algebraic expression, leading to F; =
F(Cins tioad, Q) — LR. The entire reformulated constraints are then given by the
formulations shown in equation (5.57]). Again, it is worth mentioning again that fi
describes the original complicating constraint, whereas F; describes the reformu-
lated complicating constraint including the algebraic surrogate equation.

fi :F(Cins troaas @) = LR < 0 f:Q-Q<0

: —_<O ZCin—CmSO
fo@-Q= o (5.55)
J5 :Cin — Cin <0 J6 * tioad — tioaa < 0
f7 tioad — tioaa < 0 H={1},G:={2,3,4,5,6,7}

Here, the flexibility analysis aims to assess how far the inlet concentration of
the antibody and the loading time of the column can deviate from the nominal
operating point such that the process is still feasible (all the constraints still

hold).

To find a suitable model for F, the PDE system given in expessions (5.43)-
(5.49) was solved for several samples (|I| = 250 samples) of the feature vector
Wi = [Cin.a, tioad.as Qa)s @ € I. For each run, a spatial discretization along the col-
umn length with 100 grid points was performed using a first-order central finite
differences method. Subsequently, the resulting system of ordinary differential
equations (ODE) was solved at each spatially discretized point using the explicit
Runge-Kutta method of order 5 (Dormand & Prince, 1980). After simulating for
each w;, the concentration profile was obtained integrating expression , and
therefore a value for LR, could be numerically calculated. The number of spatial
discretization points was fixed at 100. The sampling procedure discussed above
(Figure was applied, where upper and lower bounds for the LHS are displayed
in Table[5.5] The resulting dataset A was randomly split into |I7%| = 200 training
(80%) and |I7F| = 50 testing (20%) samples.

To train the BMS, several unary (exp(z), log(z), x2, 2%, \/r) and binary (+,
—, +, X, a¥) operators were allowed to be selected. In addition, the number of
MCMC steps was fixed to 20 - 103. The model was allowed to contain up to three

parameters.
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Table 5.4. Parameters used for the chromatography model discussed in case study II.
The corresponding model equations shown in equation — were adapted from
Baur et al. (2016). The parameters were taken from Baur et al. (2016) and Ding and
Terapetritou (2021)).

Parameter Physical meaning Value Unit
Lot Column length 10 cm

Acol Crossectional area of the column 0.2 cm?

dp Average particle diameter 0.0044 cm

€ Void fraction 0.368 -]

1% Intercept of reduced Van-Deemter equation 35.13 -]

H Partition coefficient 246.8 -]

Qsat Saturation concentration in the adsorbed phase 94.72 mgmL ™!
Kmaz Maximum mass transfer rate 0.18 min !
C1 Pore blockage coefficient 1 0.6245 [—]

Co Pore blockage coefficient 2 2.071 -]

co and qo Initial values of the liquid and adsorbed phases 0 mgmL~!

Table 5.5. Upper and lower bounds for the features cin, tioad, and Q. The bounds were
used to create the samples for case study II by applying a Latin hypercube sampling
structure.

Feature Lower bound Upper bound Unit

Cin 0.5 2.2 mgmL ™!
tioad Jan 60 20 min
Q 0.001 20 mgmL ™!

5.5 Results

5.5.1 Surrogate model generation

The results of the surrogate model training and testing for CSI and CSII are
given in Table 5.6 In addition, visualizations of the model performances are
shown in Figure [5.6] where predicted values are plotted against observed ones.
The corresponding closed-form expressions with the highest plausibility (lowest
description length), and their estimated parameters are shown in Table and
Table 5.8

In general, both trained models can explain the variance in the data sufficiently
well when considering R? values greater than 0.9 as acceptance criteria, which
was taken as an orientative criterion based on earlier works (Forster, Véazquez,
& Guillén-Gosalbez, [2023a). The BMS was run using the maximum number of
MCMUC iterations as the stopping criterion, as indicated in Section This led
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Table 5.6. The training performance criteria are summarized for the Bayesian machine
scientist (BMS). Each row represents one case study (CS). The CPU time (in hours)
needed for the model training is shown in the left part of the table. The error metrics
(root mean squared error, mean absolute error, coefficient of determination) are shown
for the training and testing data (format: training/testing). The identified algebraic
expressions are indicated in Table [5.7] whereas the corresponding model parameters are

reported in Table

CS CPU training RMSE MAE R?
I 0.8h 0.467 / 1.811 gL.™'  0.383 / 0.656 gL.™*  0.996 / 0.913 []
II 2.7h 0.014 / 0.012 [—] 0.009 / 0.008 [-]  0.998 / 0.998 [—]

to CPU times of 0.8h for CSI and 2.7h for CSII. The low discrepancy between
the R? values of the training and testing results indicates that the BMS is well-
regularized and, therefore, less prone to overfitting, which is in line with the
authors’ expectations (Guimera et al., 2020)).

@ training ¢ testing

1 Csl csill

_, 80 0.8 1
ke ¢ —_—
6 ~
S 60 A L 0.6
8 o
a 2
< | o
g 40 3 0.4
g 5
§ 20 2 0.2 o
5 ° C

0 0.0 1

0 20 40 60 80 0.0 0.2 0.4 0.6 0.8
Predicted max product / g/L Predicted loss rate / [-]

Figure 5.6. Observed vs. predicted (OVP) values for the two different case studies are
shown. Blue points represent the training data, whereas red points correspond to the test
data. The black line represents the values where the observed value corresponds to the
model predictions.

In addition to the previous performance criterion (R? > 0.9), Figure shows
that the surrogate models perform satisfactorily both in the training and test sets,
where the model responses are very close to the outcome of the theoretical models.
However, what can be observed for CSII is that the risk of over or underprediction
increases for low values of LR (higher spread of the training and testing points
for values below around LR = 0.5). For CSI, one can find most data points
between 45¢L~! and 80gL~!, where only one training sample was at 0gL~!.
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This point resulted from the LHS sampling and was not removed for training the
BMS.

Regarding the surrogate models in Table[5.7] the BMS identified nonlinear expres-
sions with all variables included as features. We recall that the model training
considers the control variables and the uncertain parameters as features (inputs
for the surrogates). This is required to adjust the control variables depending
on the realization of the uncertain parameters, as done in the flexibility index
problem.

The identified surrogate expressions were then incorporated into the hybrid for-
mulation given in problem ((5.18]), as already discussed.

5.5.2 Incorporation of surrogate models in the flexibility index prob-
lem

The results of the case studies CST and CSIT are summarized in Table[5.9 Schematic
representations of these solutions are given in Figure [5.8

Table [5.9| shows that in both case studies, the optimal control variable z* will
be chosen at one of the bounds (z* = 23.0°C for CSI and z* = 4.0mL/min for
CSII). Additionally, the first constraint F; was active in both cases. These are the
constraints that were modeled using the BMS surrogates. Active surrogate con-
straints were expected, since the control variable influences those constraints. In
other words, the optimizer tries to maximize the distance from the nominal oper-
ating point to a constraint. The F} constraints (surrogates) are influenced by the
control variable. The optimizer adapts the control variable to shift the surrogate
constraint away from the nominal operating point. This is done until the control
variable cannot be adjusted anymore when it reaches its bound. In the chosen
scenarios, the control variable impacts only the surrogate constraints with the
relationship Fy csr o< F(Sin, T, Te.) in CST and Fy cs1r X F(Cins tioad, @) in CSIL
A visualization of how the control variable influences the surrogate constraints is
schematically given in Figure 5.7

The resulting flexibility index 0* can for example be used to compare two process
designs in order to elucidate which one is more flexible. For example, a comparison
of two different process designs for CSII is shown in the supplementary information
Section By using a longer and narrower column (design ds) compared to the
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Table 5.7. The most plausible closed-form expressions for each case study (CS) identi-
fied by the Bayesian machine scientist (BMS) are shown. The corresponding estimated
parameter values are reported in Table The variable descriptions for each case study

are given in Section

CS Prediction target Identified expression

E = E(T¢, Sin, T)

as+Te a3 2 o
I — (Sin 1o~
. a1 + Tota T (Sin +a1) + a7 T¢ ((=Sin + asas)a:
LR = LR(Cin7 Q7 tload) 7% ( U'Q +a1)
II 2 =[Q] ao | e a1
— . a, al exn(c%0)
0= [Czn, tload} ( 0 )tload+exp(c?£)

Table 5.8. Parameter values of the most plausible surrogate model identified by the
Bayesian machine scientist (BMS) for each case study (CS). The corresponding model
equations are given in Table

CS
Parameter I I
ag 1.411 0.894
ai 66.686  24.458
a2 1 -1.844
as 4.123 -
aq -17.508 -
as -1.922 -
ag 1 -
ar -17.503 -

one given in Section (design dy), the flexibility is reduced (J; = 0.811 vs.
03, = 0.389). The result is visualized in Figure[D.4 Although such visualizations
as in Figure cannot be done for higher dimensional case studies, the entire

procedure can be applied in the same manner.

For both case studies, decreasing the control variable - the cooling temperature
in Figure 5.7 (a) and the flow rate in Figure (b) - will increase the size of
the feasible region. Considering for example CSII, increasing the flow rate would
decrease the time the antibodies would require to reach the column outlet. There-
fore, a larger amount of product will be lost, which increases the loss rate during
the loading phase. Keeping this fact in mind, one can observe that for lower flow
rates, a higher loading time and higher antibody concentration would be possi-
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Table 5.9. Results summary of the case studies CSI and CSII.

CSI CsII
o~ [10.0gL™*, 30.0°C] [1.5mgmL™", 8.0 min|
M 20 500
zand Z 23.0°C and 28°C 4.0mL/min and 12.0 mL/min
NG ke K [1gL~1, 1°C] 0r — O
NG ke K [1gL™, 1°C] O — O
5" 3.228 0.811
0 [13.23gL71, 33.23°C] [2.07mgmL~", 13.67 min]
z" 23.0°C 4.0mL/min
Active constraints Fy, f2 Fi, fa
CPU 0.9s 1.5s

ble, meaning these uncertain parameters (t;,.q and ¢;;,) can deviate more from a
nominal operating point, making the process feasible. This manifests in the larger
feasible region given in Figure (b). Similar behavior can be observed for CSI.
The surrogate model predicts a higher ethanol production with a decreased jacket
temperature 7T,.. Therefore, the deviation on the reactor temperature and the feed
concentration can be larger such that the process remains feasible, which again
manifests in the higher feasible region visible in Figure (a).

Figure[5.8|visualizes the results given in Table[5.9] where the surrogate and control
constraints are active. Having chosen a nominal operating point 6, the optimal
value of theta in the optimum is called critical theta 6° (red circles in Figure ,
which indicates the scaled distance at which the process will hit the first bound. In
other words, going beyond the set of parameters values 6¢ ([13.23g L1, 33.23°C]
for CST and [2.07mgmL ", 13.67 min| for CSIT), will lead to the violation of the

surrogate constraint, resulting in an infeasible process.

First, the flexibility problems were solved quickly, namely, 0.9s and 1.5s, for CSI
and CSII, respectively. Another advantage of having the algebraic surrogate comes
into play when the entire problem must be adapted for any reason. If, for example,
the nominal operating point has to be changed, no retraining of the surrogate
model is required since the training is decoupled from the flexibility index problem.
This makes the adjustment of nominal operating points or bounds very simple
because the solution time of the optimization problem is within seconds.
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Figure 5.7. Projection of the constraints onto the uncertain parameter plane for case
studies CSI (a) and CSII (b). The feasible region is shown in shaded light blue color. The
constraints in dashed lines represent the bounds of the un certain parameters. The solid
lines represent the surrogate constraint which can be influenced by the control variable
z. Decreasing the value of z increases the size of the feasible region.
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Figure 5.8. Graphical representation of the solution for the flexibility index problem
for CSI (a) and CSII (b). The feasible region is shown in shaded light blue color. The
constraints in dashed lines represent the bounds of the uncertain parameters. The solid
lines represent the surrogate constraint which can be influenced by the control variable
z. The chosen nominal operating point #~ (blue diamond) lies within the set 7'(5) (blue
box). As shown in Table the surrogate constraints Fi are the active constraints,
which is why T'(§) touches Fi constraint (red circle).
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5.6 Conclusion

This work introduced a new approach to compute the flexibility index in problems
with complicating constraints. Our approach combines the originally described
deterministic formulation of the flexibility index problem with a symbolically re-
gressed surrogate model that simplifies the modeling of the complicating con-
straints. The symbolic regression algorithm, the BMS, assumes no aprioristic
model structure, thereby enabling the accurate representation of process con-
straints hard to model and/or handle numerically. The resulting hybrid flexibility
approach was applied to protein-A chromatography and an ethanol production
process in fed-batch operation mode. The surrogate equations could accurately
reproduce the complicating constraints, as evidenced by their ability to explain
the data variance, making them suitable for simplifying such equations in the de-
terministic flexibility formulation. One drawback of the applied regression tool is
the significant training time required for model building, which might be improved
in the future as faster SR algorithms become available. Nevertheless, having a
closed-form expression at hand pays off in several aspects: The first is that global
solvers can be used, which can guarantee global optimality compared to heuristics
or stochastic solvers. Additionally, the surrogate model training is decoupled from
the flexibility index problem. This makes the study of different process conditions
very simple because the solution time of the optimization problem is often within
seconds using existing approaches to compute the flexibility index of fully ana-
lytical process models. However, our method focuses on the traditional flexibility
index, so more complex flexibility metrics would require alternative methods. In
the end, the most suitable approach for a given flexibility problem will depend
on its features and the goal and scope of the analysis. Future work will focus on
exploring alternative symbolic regression algorithms and a wider range of appli-
cations within chemical engineering and beyond.
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Chapter 6

Conclusion and future research
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This chapter summarizes the main contributions and insights of the thesis and
reflects on the objectives given in Section Overall, this work represents alter-
native methods and procedures that support advancements in the Process Sys-
tems Engineering field and its application in the context of digitalization within
an industrial environment. This thesis has addressed the modeling and opti-
mization challenges encountered in the chemical and biological sector, by leverag-
ing advancements in machine learning, mathematical modeling, and optimization
techniques. The research presented herein contributes to bridging the gap be-
tween purely mechanistic and data-driven approaches, offering hybrid frameworks
that combine available knowledge with surrogate modeling and optimization tech-
niques. Through comprehensive case studies and analyses, the effectiveness and
applicability of the proposed methodologies were demonstrated, showcasing their
potential to support process modeling, optimization, and flexibility analysis tasks.
While the presented approaches exhibit promising results, there remains a subse-

quently discussed avenue for future investigations.

6.1 Conclusion and reflection on the objectives

In Chapter 2| the model building procedure for chemical reactions and biopro-
cesses was investigated, where a mechanistic backbone based on a canonical for-
malism was used to create mass balances. A mixed-integer nonlinear programming
formulation to automatically identify the model structure and the values of its pa-
rameters was developed. Binary variables allowed to change the model topology
and therefore made it possible to tune the complexity of the resulting system of
ordinary differential equations. The model training was performed following a
two-stage approach. This allowed avoiding the iterative integration of differen-
tial equations, which is usually a major reason for high computational costs in
such sequential parameter estimation problems. It was found that the presented
approach performed similarly to models based on artificial neural networks, even
outperforming such purely data-driven methods in some cases. The presented
approach further had the additional advantage of leading to models containing
fewer parameters, which would also simplify a model interpretation. Hence, the
proposed approach combines model identification with the ability to analyze the
underlying system more easily. Building up on Chapter 2] in Chapter [3|the identi-
fication of kinetic models for bioprocesses was investigated, where no pre-defined
model structure was assumed to be available. A symbolic regression algorithm
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was employed to generate suitable models for the rate expressions. Similarly to
Chapter 2] the model training was performed following a two-step approach, thus
avoiding the iterative integration of differential equations. In this part of the the-
sis, different derivative approximation methods were investigated as well. Also,
the influence of the number of available sampling points and the present noise
was studied. Tt was found that, even in the case of having scarce noisy datasets
available, a derivative approximation was well possible, which allowed to develop
appropriate kinetic models for the systems under study. Further, the proposed
method performed slightly better than artificial neural networks in most cases.
One advantage — similarly as in Chapter 2] - was that the presented method led to
analytical expressions that could be analyzed in detail. Such an ability to analyze
the model comes, however, with the high computational cost to train the symbol-
ically regressed closed-form expressions. The proposed approach was shown to be
general enough to be applied to a wide range of applications.

The first objective of this thesis given in Section aimed to design compu-
tational models based on available knowledge while allowing for flexible model
structures and parameter estimations. As mentioned throughout Chapters [2] and
Bl the development of purely mechanistic models and the subsequent parameter
estimation steps for chemical and biological systems is a significant challenge due
to several reasons. As summarized above, it could be shown that, by combining
data, mathematical programming, and machine learning approaches, it was indeed
possible to tackle these challenges. The mixed-integer nonlinear programming ap-
proach in Chapter [2| helped to combine available knowledge about a system with
a parameter and model identification procedure that can be flexibly adjusted by
the user. The symbolic regression algorithm in Chapter 3| generated suitable
models for the rate expressions based on the statistical prior information about
mathematical structures. Therefore, both methodologies tackle the mentioned ob-
jective of combining existing knowledge with flexible modeling frameworks that
allow to simultaneously identify the model structure and the involved parame-
ters. The tools provide a good balance between interpretability — due to the
identified closed-form expressions — and performance. Furthermore, the presented
methodologies are very flexible, and can therefore be applied to a wide range of
systems, meaning, the core parts of the model identification steps — the optimiza-
tion formulation for Chapter [2| and the symbolic regression for Chapter [3| — do

159



not significantly change from case study to case study. It can be concluded that
the proposed methodologies in Chapter 2| and Chapter [3] are hence representing
promising approaches that tackle the discussed objective. Linking the mentioned
findings back to the ongoing digitalization of the chemical and biological produc-
tion industry, the presented methodologies could address the first objective of this
thesis, and are valuable assets to support the understanding and development of
process systems.

Chapter {] introduced a method for globally optimizing surrogate process models
using deterministic optimization frameworks. Symbolic regression allowed devel-
oping closed-form mathematical expressions, where the degrees of freedom repre-
sent the independent variables of the resulting algebraic equation. The obtained
models were found to reveal a similar level of accuracy as those constructed by
a purely data-driven approach with a Gaussian process. A major advantage of
the closed-form surrogate models was shown to be the fact that they can easily
be incorporated into optimization problems. The proposed workflow allowed the
user to solve a surrogate model for global optimality using state-of-the-art solvers.
Solving the resulting surrogate-based optimization problem was shown to be more
straightforward and faster than globally optimizing a trained Gaussian process.
One major drawback was found in the relation of the model accuracy and the
accuracy of the optimal solution. The algebraic surrogate model identified by the
symbolic regression was obtained to often be slightly less accurate compared to
the trained Gaussian process, due to the usually better interpolation capabilities
of the Gaussian process. Since the optimization is performed using the trained
surrogate model, the global optimum of a symbolically regressed model might be
less accurate and outperformed by multi-start local optimization strategies with
Gaussian processes. Another drawback of the symbolic regression was shown in a
very high computational time needed for training. However, having a closed-form
expression at hand was shown to be useful, since the surrogate model could be
easily incorporated into deterministic optimization frameworks, where also off-

the-shelf solvers could be used.

The second objective of this thesis given in Section aimed to develop frame-
works for global optimization using surrogate models. Specifically, simple, accu-
rate, and subsequently usable models should be developed purely from data. The
concept developed in Chapter {4 tackled this objective by designing a decoupled
modeling and optimization pipeline. Furthermore, since the methodology only
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relies on input-output data, the model-based optimization procedure was proven
to be highly flexible, where it was shown to be applicable to a variety of process
systems that range from a meso scale (single process units) up to macro scale (full
flowsheets). Hence, the objective could also be addressed regarding the transfer-
ability of the proposed framework. Since the optimization can be solved fast due
to the available off-the-shelf deterministic solvers, such a framework could also be
helpful in cases where the optimization problem has to be iteratively solved many
times. This finding makes the methodology also applicable for conceptually dif-
ferent applications than investigated in Chapter [4], such as real-time optimization
problems. In conclusion, the presented workflow could address the second objec-
tive, and might be valuable in supporting the optimization of process systems for
which mechanistic models are hard or time-intensive to develop.

Chapter [ introduced a new approach to compute the flexibility index in prob-
lems with complicating constraints. Due to the presence of such complicating
constraints, it was not possible to directly include those constraints in the origi-
nally described deterministic flexibility index problem, since they would need to
be available as closed-form expressions. The proposed methodology combined
the original formulation of the flexibility index problem with a symbolically re-
gressed surrogate model. The symbolic regression algorithm assumed no pre-
defined model structure to approximate the process constraints. This enabled
the accurate representation of constraints that are hard to model or handle nu-
merically. The resulting hybrid flexibility approach was applied to industrially
relevant processes, where the surrogate equations could accurately reproduce the
complicating constraints. One drawback of the applied regression tool was found
to be the high training time required for model building. Nevertheless — as it was
described in the objectives above — having a closed-form expression at hand pays
off in several aspects.

The last objective of this thesis given in Section aimed to analyze process
flexibility in case some process constraints are hard to model or even inaccessi-
ble. The framework developed in Chapter [5| supports decision-making in systems
where process constraints are hard to describe or where they are only describable
by measured input-output data. Chapter [5| contributed to this third objective by
introducing a method that allows to include surrogate models into the flexibility
index problem formulation. This way, a hybrid approach was generated that allows
assessing process flexibility even in cases with complicating process constraints.
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Furthermore, since the model training was decoupled from solving the flexibility
index, the proposed framework allows studying a variety of process conditions in
a short amount of time. Additionally, since the optimization problem formulation
does not need to be significantly altered when studying a new process, the frame-
work is transferrable to a wide range of different case studies. Hence, this objective
was successfully addressed by the presented methodology, which could potentially
be a valuable asset for practitioners in the chemical and biological industry that
allows to bypass the challenges of modeling hard-to-describe process constraints
in situations that require the assessment of a system’s flexibility.

Overall, this thesis provides solutions to support the advancement of digitalization
through modeling, optimization, and analysis of chemical and biological processes
using surrogate and hybrid frameworks. Each chapter showcased the capabilities
of the proposed methodologies and pipelines through comprehensive case studies.
The effectiveness of the frameworks could be proven in diverse applications. This
thesis bridges the gap between purely mechanistic and purely data-driven ap-
proaches by offering hybrid frameworks that integrate available knowledge with
surrogate modeling and optimization techniques. These hybrid approaches not
only allow to bypass existing challenges that were discussed, but they also of-
fer alternative approaches in case existing methods are hard or not possible to
be applied. While the presented approaches exhibit promising results, future
research endeavors could build upon the present work, which will be discussed
subsequently.

6.2 Limitations and future research directions

Data availability The presented methodologies were evaluated using synthetic
data, as it is done very often in literature. The advantage is that a wide range of
case studies can be produced and assessed in a short amount of time. However,
the available data might not fully represent the complexity and variability of real-
world processes. Future research should focus on assessing the performance of the
proposed models and frameworks using industrial or real experimental data. This
would provide further insights into the applicability and robustness of the devel-
oped methodologies. Additionally, the influence of data scarcity should be further
explored. As mentioned in Chapter [2| and Chapter (3| there are many industrially
relevant scenarios where data is very limited. Although considered and mentioned
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above in this thesis, the impact of such a data-scarcity on the developed models
and frameworks should be further assessed in future research.

Mechanistic backbone models In Chapter 2] the S-system was used as a
mechanistic backbone for the model identification. While the S-system was found
to be suitable for the investigated case studies, alternative mechanistic backbones
for different systems were not investigated. Depending on the system under study,
adapting this core formalism could increase the accuracy and applicability of the
developed computational models. Future research should therefore focus on ex-
ploring alternative mechanistic backbones for different chemical and biological
systems. Additionally, those models should be compared to other benchmarks
that were mentioned throughout this thesis, such as ALAMO, BIDSAM, ALVEN,
and others. Also, since the noise approximation method presented in Chapter
was not applied yet to the methodological framework given in Chapter [2{ (MINLP
approach), this should be explored in future research in order to improve the
performance of the developed models in Chapter

Hybrid framework comparison This thesis considered specific ways how hy-
brid models or frameworks might be developed. In Chapter [2| the expert knowl-
edge was included via a known formalism, such as the S-system. In Chapter
prior mathematical /statistical information was included in the symbolic regres-
sion, and in Chapter 5| a hybrid framework was developed using surrogate models
and a deterministic optimization scheme. However, there are many other possi-
bilities to develop hybrid frameworks, where for example physics-informed neural
networks, transformer models, and other regression or classification approaches
could be used for predicting the time-dependent concentration profiles. Future
research should therefore focus on exploring such alternative hybrid frameworks
that can subsequently be compared to the methodologies presented in this the-

sis.

Surrogate-based optimization In Chapter [4] the algebraic surrogate mod-
els were globally optimized using deterministic solvers. Although compared to a
proven methodology, the presented framework should be assessed in more detail,
where for example the influence of higher dimensional inputs than presented in
the last case study of Chapter [4 should be explored. Another aspect that was not
investigated in this chapter was the use of multi-start local optimization in com-
bination with the identified algebraic surrogate models. Future research should
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therefore focus on the comparison of the identified global optimal solution with
multi-start local optimization strategies, where a variety of solvers could be used.
In addition to a more in-depth study of the proposed methodology with determin-
istic solvers, alternative optimization approaches — for example derivative-free op-
timization or meta heuristic methods such as simulated annealing, particle swarm
optimization, or genetic algorithms — could be compared to the performance of
the presented methodologies.

Integration into optimization and control frameworks The models iden-
tified in Chapters [2| and [3] were just used for prediction studies of time series
concentration profiles. However, future research should focus on integrating the
identified models into comprehensive optimization, model-based control, or simi-
lar frameworks. This would allow to further exploit the potential of the developed
models and to support decision-making in steps that come after modeling the ki-
netic behavior. With this, it would be possible to further analyze the efficacy of
the identified models. Furthermore, it would allow to assess the general applicabil-
ity of such models for industrially relevant frameworks. Moreover, in Chapter [5 it
was not investigated how the hybrid flexibility index calculation presented could
be implemented in a larger optimization framework. Therefore, in future studies
it would be interesting to include the presented flexibility assessment approach in
an optimization problem, to, for example, calculate the best possible operating
point or to find the optimum performance of a process, while guaranteeing the
largest possible flexibility.

Symbolic regression algorithms In Chapters and 5] the Bayesian ma-
chine scientist was used as symbolic regression algorithm. This tool uses prior
knowledge that was gained from a corpus of mathematical equations, and there-
fore represents statistical information about the mathematical structure of the
obtained models. Future research should focus on comparing the used tool to
other symbolic regression algorithms that might or might not consider different
prior knowledge. Insights from such a study might be useful to decide in which
situation which tool is more suitable. Furthermore, this thesis did not investigate
possible algorithmic improvements of the Bayesian machine scientist (i.e., CPU
times, search efficiency, memory efficiency, etc.). Future research should therefore
also focus on further developing this tool, not only in terms of computational
speed, but also considering specific chemical or biological information about the
system under study. This could help to guide the algorithm more efficiently to-
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wards equations that are more likely to explain the data precisely. One possibility
to achieve this would be to, for example, use tailored kinetic equations during the
training of the symbolic models, which would restrict the search space efficiently,
allowing for faster model identification. Moreover, what was not investigated in
depth in the assessments of Chapter [2]and Chapter 3] was the the concept of stiff-
ness of the identified algebraic models. Since in those chapters the model building
was performed in the derivative space, stiff ordinary differential equations might
be encountered. Therefore, it would be necessary to include stiffness and stability
analyses in such a procedure, which might be the focus of future work. In addition
to these aspects, this thesis did not assess any improvements of the early stopping
criteria of the Bayesian machine scientist. As shown for example in Chapter 3} the
description length could be significantly reduced in the beginning of the training,
where it was stagnating after that. Therefore, future research should focus on
further comparing how the models identified along the training change in perfor-
mance. This could support the development of early stopping criteria and hence
improve the model identification speed. Furthermore, since the Bayesian machine
scientist is stochastic in nature, the identified models might be different every
time the training is performed. Running the training multiple times for the same
training set would yield a distribution of model predictions, therefore generating
some kind of ensemble model, allowing to compute a prediction interval. In this
thesis, it was not investigated whether such a prediction interval might be useful
or not, which might be interesting for future research. Last, it was not investi-
gated whether the identified parameters of a symbolic regression tool could be
re-estimated or improved by other methods (i.e., global optimization algorithms).
Such a parameter improvement might also be interesting to investigate and should
therefore be considered in future research.

By additionally addressing the above-mentioned considerations, future research
endeavors have the potential to further enhance the efficacy and versatility of
the methodologies proposed, ultimately contributing to the advancement of pro-
cess modeling, optimization, and control in the chemical and biological indus-
try.
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Appendix A

Supplementary information of

Chapter

This part of the appendix contains the supplementary material of the article
given in Chapter [2| Tt is organized as follows. Section summarizes the param-
eters used for the in-silico data generation (ODE integration). Section shows
the procedure how we scaled the data for CSIV. The heuristic approach how we
chose the starting values for the solvers are summarized in Section where
the stopping criteria of the solver is given in Section [A.4] Additional results and
information about the case studies conclusions are given in Sections and
For each individual model, the identified model parameters are indicated
in Section Finally, Section includes an error comparison of the MINLP,
ANN, GP, and SINDy approaches.

A.1 Parameters for underlying in-silico models

Table A.1. Constant parameters used in CSI.

Parameter Value Unit

kq 5 h—!
ko 1 h—!
ks 2 h—!

191



Table A.2. Reaction rate constants used in CSII.

Parameter Value Unit
ky 10 h—!
ko 1 h—!
ks 0.5 Lmol 'h?!

Table A.3. Reaction rate constants used in CSIII.

Parameter Value Unit

k, 0.33384 h!
ko 0.26687 h~!
ks 0.1494 h—!
ky 0.18957  h~!
ks 0.009598 h~!
ke 0.29425 h!
ke 0.011932 h!

Table A.4. Parameters used in CSIV.

Parameter Value Unit

Pmaz 0.25 h!
Kg 105.4 gLt
Ay 130 -
Ay 3.8.10%8
E, 124  kJmol™!
E, 298.6  kJmol™*
Ky 121.9 gL™!

Y55 0.07 -

Yr g 0.167 -

)

A.2 Applied scaling for CSIV

For case study IV with noisy data, the sampled data points X, were preprocessed
before using them for training the mentioned models. The state values of CSI-III
were not preprocessed.
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First, a Savitzky-Golay filter (Savitzky & Golay, [1964) was used to denoise the
sampled training state data X; ,, resulting in the filtered state variables X“L To
perform the filtering, we used a frame size of 7, and a polynomial order of 5. The
filtered values )N(i,u were then further used for the training.

Second, we look for the maximum value of each species ¢ in all the training

runs:

MX; = magf(i,u, Viel (A1)
ue

Third, the filtered state variables of each species f(m were scaled with the maxi-
mum value available (M Xj;):

k . XZ,’[L
e MX,

(A.2)

Where X7, rpresent ethe filtered and scaled data points of species i, and time

point wu.

A.3 Heuristics to choose starting values

Using the non-noisy datasets, we only considered if a species is being produced or
consumed over time. If a species i is produced, the corresponding reaction rate
constant for the production term «; is initialized with a value of one. If a species
is consumed, the corresponding reaction rate constant of the depletion term f; is
initialized with value one. All other parameters are initialized to zero.

The exponents were initialized to one when the corresponding species are involved
in a generation or depletion reaction. In CSI, we knew that the reaction starts
with species A and B and that both species were consumed, where species C
is first produced, then consumed, and D is only produced. Therefore, we chose
a; =[0,0,1,1], and 3; = [1,1,1,0]. The exponents of the generation term, gc 4,
gc.B, 9p.a, and gp p are initialized to one, since we know that species C and
D must be originating from A and B (although not via a direct reaction). The
depletion exponents were initialized to one assuming a first-order reaction as fol-
lows: haa = hpp = hcc = 1 and hp p = 0 since species D is not consumed
(according to the observed profiles). This approach was implemented in CSI-III.
In CSIV, we initialized all rate constants («; and f3;) to one to account for pos-
sible generation/depletion reactions. The exponents were initialized to one for

193



biomass production from substrate (9p 5, g5.s), product formation from biomass
consuming substrate (gpp, gp,s), biomass death that might depend on all metabo-
lites (hp.p, hp.s, h?), and substrate consumption by biomass accounting for the
amount of product already produced (hs g, hss, h>F).

Using the noisy datasets, the same heuristics as explained above were applied.
For CSIII and IV, the solver was unable to find a feasible solution. Therefore,
we proceeded as follows. For CSIII, we used the same initialization as provided
in the non-noisy case. However, we solved the optimization problem only for one
arbitrary training run. We used the found feasible solution as a new initial point
to solve the entire MINLP for all six training runs. For CSIV, we first reduced
the value of NP to only eight parameters for the first MINLP. Additionally, the
starting points were as follows: a; = [0,0,1], 5; = [1,1,0], gps = hs s = 1, and
hpp =1

All these chosen initial values are given subsequently in Table[A.5]and Table[A.6]

Table A.5. Initial values chosen for the parameters to be estimated with the proposed method applied to
the non-noisy dataset.

CSI CSII CSIII CSI1vV

Parameter Species®

; - o 1 1 o0 1 1 1 o O 1 1 1 1 1 1
B - i 1 1 0 1 1 0 0O 1 1 O 0O 0 1 1 1
A o 0 0o 0 0 0 0O 0O OO O O O 1 1 0

B O 0 o 0 1 1 0 O 1 1 0O O 0O 0 0 O

Gis C 11 0 o0 1 0 0O O 1 1 0 0 0 1 1 0
' D i 1 0 0o 1 o0 O O 1 1 o O O - - -
E - - - -4 - <4 - -1 0 0 0 0 - - -

A 1 0 0 0 1 O O O O O O O O 1 1 1

B O 1.0 0 O 1 0 O 0O O O 0 o0 1 1 1

hi C O 0 1 0 0O 0O O O O O O O O 0 0 o0
D o 0o 0o o o 0 0 0O 0 0 0 0 O - - -

E - - - - - < - - 0 0 O O O - - -

& Column: species i, row: species j.
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Table A.6. Initial values chosen for the parameters to be estimated with the proposed method applied to
the noisy dataset.

CSI CSII CSIII CSIV

Parameter Species®

a; - o 0o 1 1 0 1 1 1 0 0 1 1 1 0 0 1
B; : 1 1 1 0 1 1 0 0 1 1 0 0 0 1 1 0
A O 0 0 0 0 0 0 O 0 O 0 0 O 0 0
B o0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
" C 1 1.0 0 1 1 0 0 1 0 0 0 0 1 0 0
D 1 1.0 0 1 1 0 0 1 0 0 0 0 - - -
E - - - - - - - -1 0 0 0 0 - - -
A 1 00 0 1 1 0 0 1 0 0 0 0 1 0 0
B o1 0 0 1 1 0 0 0 1 0 0 0 1 0 0
hj C o0 1 0 0O 0 0 O 0O O 0 O 0 0 0 O
D o0 0 0 0 0 0 0 0 0 0 0 0 - - -
E - - - - - - - - 0 0 0 0 0 - - -

& Column: species i, row: species j.
)

A.4 Stopping criteria of solver

Table A.7. Termination criteria used for the solver in GAMS. The options not mentioned
here were chosen to be the default values.

CS I II 111 IV
Relative optimality gap 0 0 0 0

Maximum runtime [s] 5000 5000 5000 600
Maximum iterations 1-10 1.106 1-10% 1.108
Maximum nodes 1-106 1.10% 1.106 1.10°

A.5 Tabulated results

In this section we summarize the error metrics of each individual model.
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A.6 Model sizes and CPU times

In the following, we indicate the number of equations and number of variables
that are required to fully describe the models. Additionally, the required CPU
time for the parameter estimation is indicated.
Table A.16. The number of equations and variables are shown that result from imple-
menting the model given in expression (2.11) in the manuscript. In the NLP case, all

binaries are set to one, which reduces the number of equations and variables compared to
the MINLP cases.

MINLP NLP

Dataset CS Equations Variables Equations Variables

I 619 586 506 545
11 427 394 314 353

Non-noisy 111 1103 1052 932 991
v 447 428 380 403

I 619 586 506 545

11 4927 394 314 353

Noisy 111 1103 1052 932 991
v 447 428 380 403

A.7 Results supplementary information

We next provide more detailed information on the iterations of the algorithm.
Again, the term NLP approach refers to the case of an MINLP where all binaries
are set to one. In this case, the model is solved according to the procedure shown
in Figure 2.4]in the manuscript.

Case Study I - Non-noisy dataset We start with non-noisy data. We first
solve the ANN and full-space NLP (N P=40), where in the latter formulation, 14
parameters are found to take a non-zero value. We then solve the MINLP starting
with NP, = 12, which is expected to be too few parameters for finding the true
underlying model (14 parameters would be needed in total if expressed by the
S-system). Therefore, the error in training (slope space) should be decreasing
after increasing the bound to at least N P=14, where the true underlying model
should be identifiable by the S-system. The training error should decrease until
reaching the next bound, which was set to NP, = 17, where the true underlying
model should be identifiable. Since in practice, one would not know that exactly
14 parameters are required, we set NP, = 17, instead of NP, = 14 (same for
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Table A.17. Required CPU times (in seconds) of the solver are shown which were needed
for the parameter estimation. Times are indicated for each MINLP model candidate and
the NLP model. For the MINLP candidate models, the upper bound for the binary
variables (NP) is indicated in brackets. CPU times less than 10 seconds were reported
accordingly.

Dataset CS MINLP NLP
152 <10 <10 <10
I a2 an 320 (o) <10
81 <10 <10 <10 <10
I (1) (15 (200  (30)  (40) <10

Non-noisy 632 369 40 <10 <10 <10 <10

O 10y (@6) (21) (24) (30) (40) (60) <10
81 <10 <10 <10 <10 <10

Vo oas) an a9 @) 23 (@) <10
4 275 <10 <10
I 12 a7 (32) (40 <10
21 1397 26 <10
I a7 (200 (30) (40) <10
Noisy 193 5012 853 18 < 10
UL (15) (24) (30) (40) (60) <10
126 <10 <10 <10 <10
Vow @ ) @) @ <10

205



NP, =12 instead of NP, = 14).

We note that increasing the upper bound on the number of binaries (N P) that
can be one in the MINLP does not necessarily imply that the optimal MINLP
solution will hit the said bound. In other words, the MINLP may decide to
select fewer parameters when increasing their number further does not result in
a lower error in the training set (slope space). For this reason, Figure shows
both the maximum allowed number of parameters and the actual number of non-
zero parameters. By looking at the kinetic expressions of the in-silico model in
Table [A.]] it follows that the S-system should be able to model the non-noisy
data with zero error using 14 parameters in total. In practice, the solver finds the
true expression for NP > 14 (Table and Table [A.19). On the contrary, the
ANN architecture requires 55 parameters to be estimated.

After integration of the trained models, the lowest state-space error in the test set
is obtained by the MINLP approach (i.e., 3.27-10~* mol L), followed by the NLP
approach (i.e., 1.70-1072 mol L™!) and the ANN approach (i.e., 2.22:1072 mol L™1).
Table in the manuscript and Table summarize these results.

0.4 - —&— MINLP Training
MINLP Testing
S === NLP Training
E 0.3 NLP Testing
n
[
=
g 0.2+
@
a
% 12
s 0.1+
4
14 14 14
00 -== = mmmm e e
20 30 40

Maximum allowed parameters (NP)

Figure A.1. The RMSFE in the slope-space is shown for CSI as a function of different
values for NP (maximum allowed non-zero parameters). Non-noisy data were used for
model training. On the one hand, the training and test errors of the MINLP are shown as
solid blue and orange lines with markers, respectively. The corresponding NLP training
and test errors are shown as dashed-dotted lines (overlapping in the plot). The numbers
in the plots indicate how many parameters the solver chooses to be non-zero during the
training procedure.

Case Study I - Noisy Dataset After integration of the trained models, the
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lowest state-space error in the test set is obtained by the MINLP approach (i.e.,
1.51 - 107! molL7!), followed by the ANN approach (i.e., 1.83 - 107* mol L™})
and the NLP approach (i.e., 3.51 - 107! molL~!). Table in the manuscript
and Table summarize these results, where it is emphasized that the MINLP
approaches lead to compact model expressions revealing only 12 parameters. The
NLP approach requires 35 parameters, while the ANN architecture requires 55
parameters to describe the trained model fully.

In contrast to the non-noisy data, the optimizer can further reduce the training
error if more parameters can be non-zero. However, allowing fewer parameters in
the model to be non-zero reduces the model complexity, thereby reducing the risk
of overfitting. As a conclusion, one can observe that the MINLP approach results
in a trained S-system that outperforms the predictive capabilities of the NLP or
ANN approach. Figure in the manuscript shows a comparison of the MINLP
and the ANN model predictions.

In conclusion to this case study, it can be stated that the MINLP approach reveals
higher performances if the S-system can fully describe the underlying reaction
since the actual model is identified. This is indeed the case for CSI.

Case Study II - Non-Noisy Dataset After performing the integration of the
trained models, the lowest state space error in the test set is obtained by the
MINLP approach (i.e., 2.58 - 107! mol L ™!), followed by the NLP approach (i.e.,
3.18 - 107! molL7!), and the ANN approach (i.e., 6.97 - 10~* molLL~!). Table
2 in the manuscript and Table S8 summarize these results. The MINLP and
NLP approaches lead to compact model expressions that reveal only 11 and 13
parameters, respectively. The ANN architecture requires again 55 parameters to
fully describe the trained model.

For CSII, the S-system will not be able to model the behavior of species A without
error. Due to the nature of the model given in equation (2.13]) in the manuscript,
only one depletion term can be described by an S-system. However, the ODE of
species A is characterized by two depletion terms. This is visible in Table
where the training error (slope space) cannot be decreased to zero. It is worth
mentioning that this does not directly indicate that the model will not predict
this species well. On the other hand, Species B, C, and D can be appropriately
modeled by the S-system. To summarize, it can be stated that the ANN approach
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achieves better predictive performance in those chemical reaction examples where
the S-system cannot fully describe the underlying in-silico model.

Case Study II - Noisy Dataset After training and integrating the S-system
with the MINLP formulation and the data of CSII, the slope space errors shown
in Figure [2.6| could be obtained. The lowest state space error in the test set is
obtained by the MINLP approach (i.e., 3.24- 107! mol L), followed by the NLP
approach (i.e., 4.13-107* mol L™!) and the ANN approach (i.e., 4.87-107 mol L!).
Table in the manuscript and Table summarize these results, where it
is emphasized that the MINLP approaches lead to compact model expressions
revealing only 17 parameters. The NLP approach requires again 35 parameters,
where the ANN architecture needs again 55 parameters to describe the trained
model fully.

In contrast to the non-noisy data, the optimizer can further reduce the training
error if more parameters can be non-zero (Figure|2.6|(a) in the manuscript). How-
ever, allowing fewer parameters in the model to be non-zero reduces the model
complexity. Additionally, it increases the models’ generalization ability and there-
fore reduces the chance of overfitting. This procedure is visible in Figure (b)
in the manuscript, where the test error in slope space is first reduced and starts to
increase again when allowing more parameters to be non-zero. This clearly fulfills
the expectation of overfitting models.

As a conclusion, one can observe that the ANN approach reveals the best per-
formance, where the MINLP approach results in a trained S-system model can-
didate that outperforms the predictive power of the NLP approach. However,
although the ANN approach shows better overall performance, the difference is
only marginal, where fewer parameters are required for the MINLP/NLP ap-
proaches to model the studied system. Having a compact canonical expression
(as it results from the proposed method) at hand makes it easier to perform subse-
quent tasks, such as an optimization. Since the performance is in a similar range,
the availability of a canonical model makes the presented approach more suitable
for later usage than the ANN.

Case Study III - Non-noisy dataset Case study III represents a chemical re-
action that reveals a slightly higher complexity than before. After model training
and integration, the lowest state-space error in the test set is obtained by the
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ANN approach (i.e., 8.84 - 107% mol L), followed by the MINLP approach (i.e.,
1.77 - 107! mol L) and the NLP approach (i.e., 1.83 mol L!). Table [2.2]in the
manuscript and Table summarize these results, where it is emphasized that
the MINLP and NLP approaches lead to compact model expressions revealing
only 21 parameters each. The ANN architecture needs 83 parameters to fully
describe the trained model.

Case Study III - Noisy dataset After training and integrating the models on
noisy data, the lowest state space error in the test set is obtained by the ANN ap-
proach (i.e., 1.93-107! mol L '), followed by the MINLP approach (i.e.,2.55-107"
mol L) and the NLP approach (i.e., 2.77 - 107! molL~!). Table in the
manuscript and Table summarize these results, where it is emphasized that
the MINLP approaches lead to compact model expressions revealing only 15 pa-
rameters. The NLP approach requires again 40 parameters, where the ANN archi-
tecture needs again 83 parameters to fully describe the trained model.

Although the ANN approach shows better overall performance, the difference is
only marginal, as in CSII. Again, fewer parameters are required for the MINLP
approach making such a model more suitable for later applications.

Case Study IV - Non-Noisy Dataset Underlying systems of bioprocesses are
usually not described by the same kinetic power-law models used for chemical reac-
tions. However, in this work, the same S-system structure is applied for predicting
the concentration profiles of a bioprocess. In this case, the MINLP approach show
better predictive performance than the ANN-based method.

After integration of the trained models, the lowest state-space error in the test set
is obtained by the NLP approach (i.e., 3.72- 107! gL.™1), followed by the MINLP
approach (i.e., 1.34 gL.™!) and the ANN approach (i.e., 3.80 g L.™!). Table in
the manuscript and Table summarizes these results, where it is emphasized
that the MINLP/NLP approaches lead to compact model expressions revealing
only 17 parameters each. The ANN architecture requires in total 33 parameters
to fully describe the trained model.

Case Study IV - Noisy Dataset After training and integrating the S-system
with the MINLP formulation in the same manner as before, the lowest state-
space error in the test set is obtained by the ANN approach (i.e., 9.46 - 1072
gL™1), followed by the MINLP approach (i.e., 1.62 - 107! gL™!) and the NLP
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approach (i.e., 7.58 - 1071 gL=!). Table in the manuscript and Table
summarize these results, where it is emphasized that the MINLP /NLP approaches
lead to compact model expressions revealing only 9 parameters each. The ANN
architecture again requires in total 33 parameters to fully describe the trained

model.

The best performing MINLP model candidate is obtained at NP = 9. For two
given test batch runs, the corresponding concentration profile predictions of this
model candidate and the ANN model are shown in Figure One can observe
that the candidate model of the MINLP solution usually predicts a time lagging
profile. However, the shapes of the different phases (growth of cells, stagnation,

substrate consumption, etc.) are well predicted.

O Exp —— MINLP ANN
1.5 1.5 1.5

1.2 1
1.0 1

= =

20.8 20.8

(2]
0.5

0.2 1

0.0
0.4

0.3 1

0.2 1

B/glL
S/glL
P /gL

0.1

T T 0.0

00 T T T T
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Figure A.2. The concentration profiles of the three species in CSIV (noisy data) are
shown: The black circles represent the observed data, the dashed orange line shows the
ANN prediction, and the solid blue line displays the predictions by the S-system (at
NP =9). The subplots in the top row and bottom row represent two different individual
test runs (unseen in model training).

Two critical factors can therefore be read from the obtained solution. First, one
can correctly describe the species’ behavior and the entire bioprocess. Thus,
having such a formalism at hand, a modeler could extract information about the
micro- and macroscopic processes after training the system, further improving
process knowledge. Second, instead of using the full model resulting from the
NLP formalism, one would not reach the same predictive performance and lower
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model complexity as if the binary constraints are implemented.

A.8 Identified model parameters

In the following Tables to additional information about the identified
model parameters are given for each individual method.
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A.9 Comparison to Gaussian process and SINDy algorithm

In addition to the MINLP and the ANN approach, a GP was trained to predict
the slopes for CSI. The state space errors were assessed for the three different
methods and shown in Table [A.22]

Table A.22. Error metrics of the different approaches are shown for the first case study
based on non-noisy and noisy data. The best-performing approach in terms of state-space
error is indicated in bold text. The units for the RMSE are molL™!, where the R? is
a unitless quantity. For the MINLP model, only the best-performing model candidate
of the MINLP approach in terms of state-space test error is listed (as done in the main
manuscript). Bold values indicate a the best performing model candidate for each type

of dataset.
Non-noisy Noisy
€S Method  giate space test RMSE/R?  State-space test RMSE/R?
ANN 2.2:1072 / 0.9993 1.8-1071 / 0.9544
1  MINLP 3.3:10~* / 1.0000 1.5-10~' / 0.9689
GP 3.7-107% / 1.0000 1.9-10° / <0

Specifically, the GP performs slightly better than the MINLP or the ANN in the
non-noisy state space (bold number in the table above). However, when using
noisy data, the GP results in larger RM SFE values than the ANN or the MINLP
approaches.

Additionally, we applied the sparse identification of nonlinear dynamics (SINDy)
algorithm (Brunton et al., 2016) as a reference to all of the case studies used in
the manuscript (noisy and also non-noisy datasets). For this, the python imple-
mentation PySINDy (Silva et al., 2020 was used. We used a sensitivity analysis
around the default values to find suitable values for alpha (regularization param-
eter) and threshold (minimum magnitude for a coefficient in the weight vector) in
the sequentially thresholded least squares algorithm (STLSQ) settings. The com-
bination with the best R? was chosen to be used. Table [A.23 shows the results of

this comparison.

As demonstrated for these specific case studies, the MINLP approach performs
better for CSI and CSII in both cases for the non-noisy and the noisy datasets.
For CSIII (more species than in CSI-IT), SINDy performs better in the absence of
noise. It also outperforms the MINLP method in CSIV.
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Table A.23. Error metrics of the different approaches are shown for the case studies
based on non-noisy and noisy data. The best-performing approach in terms of state-space
error is indicated in bold text. The units for the RMSE are molh™!, where the R? is
a unitless quantity. For the MINLP model, only the best-performing model candidate
of the MINLP approach in terms of state-space test error is listed (as done in the main
manuscript). The used parameter values for “threshold” and “alpha” are shown in the last
two columns. Bold values indicate the best performing model candidate for each type of

dataset.
Non-noisy Noisy Non-noisy Noisy
State-space State-space SINDy SINDy
CS Method (o5t RMSE and test RMSE and  threshold and  threshold and
test R? test R? alpha alpha
SINDy 8.1-1072 / 0.979 2.7-107% / 0.829 107 / 51072 10° / 5.107*
I MINLP  3.3-107% / 1.000 1.5-10~' / 0.969 - -
SINDy 3.8:107" / 0.954 5.2:107' / 0.963 10~ /10! 107! /107!
II  MINLP  2.6:107' / 0.995 3.24.10' / 0.990 - -
SINDy  1.1-107® / 1.000  2.4-10° / -0.234 1073/ 1073 107 /51072
I MINLP  1.8107' /0.997  2.55-107' / 0.993 - -
SINDy  4.4.107% / 0.985 7.1-1072% / 0.961 1072 /107 1072 /107
IV MINLP  0.37-10° / 1.000 1.62:107" / 0.835 - -
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Appendix B

Supplementary information of

Chapter

This part of the appendix contains the supplementary material of the article
given in Chapter [3] It is organized as follows. Sections and summarize an
in-depth analysis of derivative approximation methods. Section summarizes
details to the neural network architecture and the grid search performed to tune
the hyperparameters. Section shows the parameters used to generate the data
of the different case studies. Section shows additional results and CPU times
for model training. Section summarizes the model equations and values of
the parameters that were identified by the BMS. Section discusses the impact
of a different noise distribution (uniform distribution). Section sumimarizes
background information about the case studies introduced in Chapter [3]

B.1 Comparison of derivative estimation methods

In the following section, we discuss the impact of the noise level and the number of
available data points in the time series of one state profile on the accuracy of the
derivative calculation. For this analysis, four different approaches to derive noisy
data are applied to the sinusoidal test function shown in Figure of the main
manuscript. These methods include a forward finite difference (FD) approach, a
Savitzky-Golay filter followed by forward finite difference (SG-FD) approach, the
polynomial (Polynomial) approach, and the symbolic approach (BMS). The exact
procedures of the different approaches are discussed in Section of the main
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manuscript (symbolic and polynomial approaches) or below in Section (FD
and SG-FD approaches). The different noise levels considered in this analysis were
1%, 2.5%, 5%, 10%, and 20%, where the noise of these levels were added to the
ground truth data. Additionally, the simulated state profiles consisted of either 5,
10, 20, 50, or 100 data points. Since the true derivative of the underlying ground
truth is known, the mean squared error (M SFE) and coefficient of determination
(R?) were used as performance metrics to check how well the derivatives were
estimated. Figure [B.T] summarizes the results of the analysis. Each of the heat

1.0 R? 0.0

SG-FD Polynomlal BMS

Number of datapoints

10 20 10 20 10 20 1 25 5 10 20
Noise Ievel/%

Figure B.1. Performance (coefficient of determination, R?) of the different approaches
to derive noise state profiles. Each subplot represents one method (FD: Forward finite
difference, SG-FD: Savitzky-Golay filtered forward finite difference, Polynomial: Polyno-
mial fitting and analytical derivation, BMS: Symoblic fitting and analytical derivation).
On the x-axis of the heat maps, the different noise levels are shown, where the y-axis
displays the number of data points per state profile. The brighter the color, the higher
the performance of the approach (more accurate estimation of the derivative profile).

maps show the results for one method, where the above-mentioned noise levels and
number of data points were considered. Starting with the FD approach, one can
observe that by increasing the noise level or decreasing the number of data points
results in a decreased accuracy of the numerically calculated derivatives. Applying
a pretreatment step by including a Savitzky-Golay filter improves the accuracy of
the derivatives in case of noise presence (SG-FD). However, the filtering might not
be sufficient to estimate the derivatives well enough, even if 100 data points are
available. This can be observed in the case of 10-20% noise in the SG-FD approach,
where the coefficient of determination was obtained to be around 0.3 to 0.6. On
the other hand, a higher accuracy could be achieved by the polynomial or BMS
approach. Both methods lead to higher obtained R?-values compared to the SG-
FD approach. The BMS approach reaches very high accuracy, even in the case of a
relatively low number of data points and a high noise level present in the measured
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state space. In bioprocess applications, time series data of samples might be sparse
(i.e., if processes are executed without having online measurements in place).
Manually sampling from ongoing processes and prepare the samples for offline
measurement takes time and effort. All of these aspects might lead to a relatively
low sampling frequency. Considering this analysis summarized in Figure for
cases with high noise levels or scarce data sets, the symbolic derivative estimation
approach might therefore simplify the surrogate model identification process and
boost the accuracy of the final models by removing noise more effectively.

B.2 Finite difference and Savitzky-Golay filter

In the following, the FD and SG-FD approaches for the derivative estimation
are discussed in more detail. As mentioned in the manuscript, the methods are
implemented and available in Python.

Forward finite difference
The forward finite difference (FD) approach is implemented by using the following
approximation of the derivatives:

_dX(t)  AX  X(t+1)— X(t)
AN At

X (1) (B.1)
Savitzky-Golay filtered forward finite difference

In the SG-FD approach, a Savitzky-Golay filter is used to smooth the state profile
X (with time points u € U) before deriving it. Details to the algorithm for the
smoothing process can be found elsewhere (Savitzky & Golay, [1964). Here, we
discuss how an appropriate combination of the window length w and polynomial
order d of the SG filter are identified. A pseudo-code is given in below in algorithm
[} First, sets for the different polynomial orders d € D and window lengths w € W
are defined together with a weight factor a. The objective J combines the current
mean squared error (M SE) between the filtered values and the noisy state profile
together with the total variation (VAR) as a weighted sum. For every order
d € D and window length w € W, an SG filter is applied and the objective J
is calculated. For the best J identified (J*), the corresponding smoothed data
(X;

smooth

) is returned. After this filtering, the forward finite difference method
described above is applied.
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Algorithm 1: Procedure used to identify appropriate values for the polynomial
order and window length of the Savitzky-Golay filter

Data: State profile X, for every time step u € U

Initialize Polynomial order d € D, window size w € W, and weight factor «
Initialize Large values for MSE* and V AR*
Initialize J* = aMSE* + (1 — a)VAR®
Initialize X as X ..
for Every d € D do
for Fvery w € W do
if w> |U| or d > w then
‘ Continue with next w
end
Apply SG filter with d, w = Xgmnooth
Calculate MSE = {ZLW(Xsmoothm — XU)Q] /|U]
Calculate VAR = ZLU‘_HXsmooth,u—‘rl - Xsmooth,u|
Calculate J = aMSE + (1 —a)VAR
if J < J* then
Update J* and X .\
end
end
end
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B.3 Neural network architecture

Table B.1. Hyperparameters varied during the grid search for tuning the ANN param-

eters.

Parameter Values

Hidden layer size (3,), (10,), (100,),
(3,3), (10,10), (100,100),
(100, 10), (100, 50),

Activation function
Regularization term

Initial learning rate

[(i,7) for ¢ in range(3, 10) for j in range(2, 7)]
logistic, relu, tanh

10', 10°,1071,1072,1073,1074,107°

1071, 1072, 1073

Table B.2. Details to the fixed hyperparametes in the ANN architecture.

Parameter Values
Maximum iterations 15-103
Tolerance 10~
Random state 0

Number of iterations with no change 10

Maximum function evaluations 15-103
Solver Adam
Learning rate Constant
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B.4 Case studies

Table B.3. Parameters used in CSI.

Parameter Value Unit

Pmas 0.25 h—!

Kg 105.4 gLt

Ay 130 (-]

A, 3.8.10%%  [-]

Ey 12.4 kJmol
E, 298.6 kJ mol !
K, 121.9 gL™!
Yp.s 0.07 (-]

Yp.s 0.167 (]

Table B.4. Parameters used in CSII.

Parameter Value Unit

W 0.109 h—!

11 0.0854 Lg 'h-!
Ke 0 mg L1
Ky 0.0086 mgL~!
Kp 0 mgL~!
Yo 217 mgL~!
Yoo 0.839 mgg 'h™!
Y1 5.36 mgL~!
Yo 0.0559 mgg 'h™!
Y 2.74 mg L1
Ypo 0.00833 mgg 'h~!

B.5 Additional error metrics and CPU times

Subsequently, additional results similar to those presented in Table[3.2]of the main
manuscript are given. In Table the root mean squared error (RMSE) of the
models are shown, where Table displays the mean absolute error (MAE).
Tables B.7 to [B.9 summarize the raw data for the calculation of the mean CPU
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time displayed in Table of the main manuscript.

Table B.5. The root mean squared error (RMSE) values are shown for the two case

studies and their respective scenarios.

Derivative BMS BMS ANN ANN
CS method state RMSE derivative RMSE state RMSE  derivative RMSE
| Poly-40 3.444 / 0.493 0.050 / 0.055 7.069 / 2.281 0.064 / 0.064
SR-40 2.559 / 5.940 0.101 / 0.077 3.428 / 1.840 0.093 / 0.083
Poly-20 0.810 / 1.419 0.045 / 0.056 1.602 / 1.552 0.052 / 0.054
SR-20 1.302 / 0.989 0.098 / 0.094 1.727 / 2.256 0.092 / 0.090
1I Poly-40 4.798 / 4.589 0.389 / 0.399 28.486 / 19.548 1.178 / 0.602
SR-40 4.211 / 2.900 0.396 / 0.296 25.936 / 12.959 0.930 / 0.485
Poly-20 5.436 / 5.257 0.586 / 0.593 28.186 / 31.662 1.692 / 1.598
SR-20 2.067 / 2.312 0.232 / 0.366 17.841 / 12.404 0.780 / 0.703
Table B.6. The mean absolute error (M AFE) values are shown for the two case studies
and their respective scenarios.
Derivative BMS BMS ANN ANN
CS method state MAE derivative MAE state MAE derivative MAE
1 Poly-40 1.227 / 0.270 0.030 / 0.032 2.377 / 0.964 0.037 / 0.039
SR-40 1.246 / 2.835 0.050 / 0.045 1.816 / 1.265 0.049 / 0.051
Poly-20 0.446 / 0.742 0.028 / 0.035 0.720 / 0.803 0.032 / 0.035
SR-20 0.759 / 0.905 0.054 / 0.051 0.883 / 1.133 0.049 / 0.051
1I Poly-40 2.123 / 2.083 0.159 / 0.163 12.861 / 8.876 0.410 / 0.264
SR-40 1.332 / 1.261 0.103 / 0.098 11.122 / 5.406 0.267 / 0.160
Poly-20 2.291 / 2.205 0.261 / 0.266 11.476 / 13.645 0.641 / 0.597
SR-20 0.758 / 0.947 0.071 / 0.120 7.759 / 5.430 0.257 / 0.227
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Table B.7. CPU times in seconds for the BMS training are displayed for the different
species (B: Biomass, S: Substrate, P: Product (CSI) and Phosphate (CSII), C: Carbon).

B S P B N C P Mean

CSI-Poly-40 6754 9581 5477 - - - - 7271
CSI-SR-40 2806 5228 4363 - - - - 4132
CSI-Poly-20 5232 5768 6408 - - - - 5803
CSI-SR-20 6405 9651 8444 - - - - 8167
CSII-Poly-40 - - - 13921 895 20725 1995 9384
CSII-SR-40 - - - 14786 3373 13498 5443 9275
CSII-Poly-20 - - - 3797 499 3123 1060 2120
CSII-SR-20 - - - 9947 951 4602 2466 4492

Table B.8. CPU times in seconds for the ANN training are displayed for the different
species (B: Biomass, S: Substrate, P: Product (CSI) and Phosphate (CSII), C: Carbon).
The mean value column marked with * represents the mean of the training CPU times
including the grid search times displayed in Table [B-9]

B S P B N C P Mean Mean*
CSI-Poly40 1 0O O - - - - 0 88
CSI-SR-40 o 0 0 - - - - 0 88
CSI-Poly-20 1 0 1 - - - - 1 59
CSI-SR-20 1 0 0 - - - 0 57
CSIl-Poly-40 - - - 0 0 0 O 0 130
CSII-SR-40 - - - 0 0 1 0 0 162
CSIl-Poly-20 - - - 0 0 0 O 0 155
CSII-SR-20 - - - 3 0 0 O 1 151
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Table B.9. CPU times in seconds for the ANN grid search are displayed for the different
species (B: Biomass, S: Substrate, P: Product (CSI) and Phosphate (CSII), C: Carbon).

B S P B N C P

CSI-Poly-40 131 259 134 - - - -
CSI-SR-40 128 263 135 - - - -
CSI-Poly-20 88 175 &9 - - - -
CSI-SR-20 87 165 88 - - - -

CSII-Poly-40 - - - 441 187 222 190
CSII-SR-40 - - - 607 216 253 218
CSII-Poly-20 - - - 775 144 174 146
CSII-SR-20 - - - 77T 135 157 135

B.6 Identified BMS models

Table B.10. Most plausible rate equations identified by the BMS for CSI in plain text

and Python format (i.e.,

** representing 'to-the-power-of’). The corresponding values of

the estimated parameters are given in Table [B.11}]

. Rate of ) o .
Scenario Species Identified expression in plain text
Poly-40 dB/dt (((x2*x1)**(al+(a2/(a2+x3))))*a0)
ds/dt ((a04(-(((x3+(x1**(x2*al)))*al)) *(x2**(((a2/x3)/(x2*a2))**a0))))+a2)
dp/dt -((((a2*((x1*x3)**al)) /(x2**a0))*((a2/x3)+(a0/ (x2+(al**x2))))))
SR-40 dB/dt (((x2/(((a2*¥*2)+(a0**(x2+x3))) /x3))**al)*a2)
dS/dt (a2*(((exp(((x3*a0)**2))/al)+(x1+(x2*a2)))*x2))
dP/dt ((x2/((x3*x2)+al))*x3)
Poly-20 dB/dt (((a1*x3)*x2)**a0)
dS/dt ((((((x1*(x2*¥*2))**a0) / (x3**a2))*al)*a2)+al)
dP/dt ((((x2**a0)*al)*(x14+x3))**a0)
SR-20 dB/dt (((a2*x1)*x2)+al)
dS/dt ((((a0+x3)*((x1*x2)*x2))**a0)*al)
dP/dt (((x3*x1)**a0)*((a2*x2)**al))
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Table B.11. Estimated parameter values to the models given in Table The
parameters ignored by the BMS are highlighted with bright grey cells. These parametes
are set to value 1 by the BMS and multiplied with the rest of the model. These parameters
are therefore not shown in the equations given in Table [B.10}

Rate equation

Scenario Parameter

dB/dt dS/dt dP/dt
Poly-40 ag 4.164-1073  5.343.1072  -1.797-10°
ai 8.285-10~1  2.072:1072  4.059-10~!
as -1.086-10"1  2.302:1072  4.175-103
SR-40 ao 1.307-10°  9.575-10~2  1.000-10°
ay 8.003-10"1  7.704-.107!  3.489-102
as 2.460-10*  -1.664-10~2  1.000-10°
Poly-20 ao 7.882:1071  3.609-10~! 8.955.10!
ar 4.764-107*  1.359-107' 1.672-1073
as 1.000-10°  -4.423-10~!  1.000-10°
SR-20 ao 1.000-10°  4.139-10~!  3.750-10~!
ai 1.612-1072 -3.639-10~2 8.107-10°!
as 1.389-1073 1.000-10°  2.394.10~3
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Table B.13. Estimated parameter values to the models given in Table The
parameters ignored by the BMS are highlighted with bright grey cells. These parametes
are set to value 1 by the BMS and multiplied with the rest of the model. These parameters
are therefore not shown in the equations given in Table [B.12}

Rate equation

Scenario Parameter
dB/dt ds/dt dP/dt
Poly-40 ao -1.161-10° -1.272:10°  6.855-107°
a1 -6.563-10%3 1.000-10° 7.913.107%
as 9.639-101 1.000-10° 5.722-10°
as 5.184-10%° 1.000-10° 1.000-10°
a4 1.000-10° -2.478-1077  1.000-10°
as 1.707-107¢ -7.113-1072  -1.419-10°
ag -5.692-107¢ 1.000-10° 1.000-10°
ar 2.732.1072 -1.044-102 -1.174-107¢
SR-40 ao 1.000-10° 6.443-107'  -1.430-1071
a1 1.000-10° -1.011-102 1.000-10°
as 1.000-10° -6.896-10" -1.408-10°
as 1.836-10° -7.080-1072  -1.775-10?
a4 1.000-10° 4.289-10° 1.000-10°
as 3.424.10° -2.406-10* 1.000-10°
ag -3.905-102 1.000-10° -2.688-1072
ar 1.000-10° 1.000-10° 3.121-107*
Poly-20 ap 1.000-10° 1.000-10° 1.000-10°
a1 -3.943-107%  1.000-10° 9.732-10°
as 3.143-10" 1.000-10° -1.386-10°
as 1.000-10° 1.000-10° 1.850-1073!
a4 1.000-10° 1.000-10° 1.000-10°
as 1.000-10° 1.000-10° 1.000-10°
as 1.000-10° -7.079-1072  1.000-10°
ar 5.119-10° 1.000-10° 1.000-10°
SR-20 ao 1.000-10° 1.000-10° 1.000-10°
a 1.000-10° -7.038-1072  1.000-10°
as 1.000-10° 1.000-10° 1.000-10°
as -4.503-10! 1.000-10° 1.000-10°
a4 7.940-10~% 1.000-10° 3.797-10%
as -1.041-10° 1.000-10° -1.228-10°
as 1.000-10° 1.000-10° -1.335-10°
ar 5.460-10° 1.000-10° 1.000-10°
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B.7 Impact of additive noise distribution

To compare the influence of the nature of the noise (i.e., its distribution), uni-
formly distributed noisy data was generated for the first case study given in Sec-
tion The general procedure to generate the data was kept the same as
described in sections [3.4] and (i.e., number of data points, number of batches
for training and testing, etc.), except that for the noise generation, the random
number generation was changed from the Python method numpy.random.normal
(for a normal distribution) to numpy.random.uniform (for a uniform distribution).
After the data generation, the same data pretreatment and training procedures are
followed. This investigation was only carried out for case study 1 (Section ,
with 20 data points, and a symbolic regression differentiation for the derivative
approximation. Therefore, this scenario with the uniform noise distribution can
be compared to the scenario described by CSI-SR-20 in the main manuscript. As
prediction models, the BMS and a hyperparameter-tuned ANN are used. For the
training, all required steps were done as described in the manuscript, except that
here, scaled inputs were used for the ANN to further improve the performance
of the ANN, which was not required for the data that was displayed in the main

manuscript.

Table [B.14] summarizes the model training and test prediction results, where the
model performances are also visualized in Figure [B.2] To compare the impact of
the uniform noise to the normally distributed noise, the results of CSI-SR-20 are
included in Table [B.14] as well, which originate from Table 3.2l Furthermore, Fig-
ure shows the time series profiles of the observed data (black circles) together
with the BMS predictions (blue solid line), the ANN predictions (orange dashed
line), and the true underlying derivatives (black dotted line) of an unseen test
batch.

Table B.14. The coefficients of determination (R?, unitless) are shown for the training
and testing runs (notation: train/test) for the base case study 1 and the two different noise
generation possibilities (normal or uniform distribution). The best-performing approach
for each case in terms of state-space performance in the test set (unseen in training) is
indicated in bold text.

Noise BMS BMS ANN ANN
Distribution state R? derivative R? state R? derivative R?2
CSI-SR-20 normal 0.993 / 0.989 0.981 / 0.986 0.988 / 0.984 0.983 / 0.988
CSI-SR-20 uniform 0.983 / 0.991 0.964 / 0.981 0.979 / 0.984 0.966 / 0.971
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It is visible that for both noise distributions, the suggested approach using the
BMS, but also the ANN benchmark model, were able to capture the effects
after an appropriate pretreatment of the data (i.e., the derivative approxima-

tion).
@ Training ¢ Testing
3 <
= 75{BMS ANN 2 BMS ANN
S g 07
S 2
[0} [
o
£ 25 = 727
o o
o c
() [}
g O-I T T T 'g) '
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© Predicted concentrations / g/L Predicted derivatives / g/L

Figure B.2. The observed concentration values (left two figures) and derivative values
(right two figures) are plotted against the model predictions for CSI where uniform noise
was added to the data. Both, the ANN and BMS performances are displayed. Blue circles
represent the training data, whereas red diamonds correspond to the test data. The black
line represents the values where the observed value corresponds to the model prediction.

Considering the time series profile of a test batch prediction, the BMS and the
ANN were both able to capture the dynamics well, as observable in Figure [B.3
The regression is performed in the derivative space, where the data displayed in
Figure S3 is in the state space. This means, both, the identified analytical expres-
sion by the BMS and the trained ANN could be well incorporated to estimate the
right-hand-side of the ODE system from the values of the state variables, and an
integration could be successfully performed, even for a test case which was not
included in the training of the models.

From these calculations one can conclude that changing from a normally to a
uniformly distributed additive noise, no significant change in model performance
was observed, where predictions could still be made successfully.

B.8 Additional experimental information about the case

study

For CSI, the considered ground truth model given the ODE system ({3.16)) in Chap-
ter [3|is adapted from the example given by Turton et al. (2018). In this work, the
batch production of L-phenylalanine via fermentation with a mutant Brevibac-
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Figure B.3. The concentration profiles of the three species in CSI are shown together
with the model predictions. The black circles represent the observed noisy data (uniform
noise distribution) of an unseen test batch (not used for model training). The dashed
orange line represents the ANN predictions, whereas the blue solid line represents the
BMS predictions. It is worth mentioning the model predictions are only shown for the
experimental time points that were used for model training, since some initial and last
samples were removed from the training, as discussed in the manuscript.

terium lactofermentum 2256 (ATCC No. 13869) was studied. The authors used
Monod kinetics to describe the dynamics of the system, which were adapted to
create the system given in system of Chapter [3| For CSII, the considered
ground truth model given the ODE system in Chapter |3| is based on the
work of Del Rio Chanona et al. (2019). In their work, the researchers described
these dynamics to be well suited for the bacterial system they studied. In the
following, additional information on the experimental settings are provided, while
the reader is also referred to the original work for further details (Del Rio Chanona,
Wagner, et al., [2019), in which an algae, bacteria, and algae-bacteria-consortium
wastewater treatment was studied:

The researchers conducted experiments using algae and bacteria. Alga Chlorella
vulgaris GY-HJ was sourced from the Institute of Hydrobiology, Chinese Academy
of Sciences, China, where the bacterium Bacillus subtilis was obtained from pre-
vious research conducted at Xiamen University. Prior to the experiments in syn-
thetic wastewater (SWW), the cells were precultured in BG-11 and Luria-Bertani
media, respectively. Subsequently, they were inoculated separately in both high
and low concentration SWW mediums.

The high concentration SWW initially contained the following ingredients (per
liter of distilled water): 500 mg glucose, 1750 mg NaHCO3, 727 mg NaNO3, 83.3 mg
KHyPO,, 7Tmg NaCl, 4mg CaCl,-2H,0, 75mg MgSO,-7H50, 2.5mg FeSOy,
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20mg EDTA, 0.001 25 mg ZnSQOy, 0.0025 mg MnSO4, 0.0125 mg H;BO3, 0.0125 mg
Co(NOj3)z, 0.0125mg NayMoOy, and 6.25-10° mg CuSO,. This resulted in
200 mg L~! dissolved organic carbon (DOC), 120 mg L~ total nitrogen (TN-NO3 ),
and 19mgL~" total phosphorus (TP-PO4*"). The low concentration SWW con-
tained the following ingredients (per liter of distilled water): 100mg glucose,
350 mg NaHCO3, 115 mg NaNO3, 13.2mg KH,PO,, 7mg NaCl, 4 mg CaCl, - 2 H,O,
75mg MgSQOy - 7H»0, 2.5 mg FeSO,, 20mg EDTA, 0.001 25 mg ZnSOy, 0.0025 mg
MnSOy, 0.0125mg H3BOj;, 0.0125mg Co(NOj)s, 0.0125mg NayMoO,, and
6.25-10° mg CuSO,. This resulted in 40 mg L™ DOC, 19mgL~! TN-NO;3~, and
3mgL~!' TP-PO,* .

Bacterial experiments were performed in a 500 mL baffled flask containing 100 mL
of SWW medium, where a cultivation at 28°C and 200 rpm was performed for
8d, with an initial inoculum size of 0.24gL~!. Algal and algae-bacteria con-
sortium experiments were conducted in a 1L photobioreactor (PBR) equipped
with external light sources. The light intensity and the aeration rate were set to
300 pmol m~2s~! and to 0.1 vvm with 2.5% COs,, respectively. The initial culture
volume was 800 mL of SWW medium, and the incubation was done for 8 days
at 25°C to 28°C. The initial biomass concentration for the algal experiments
was 0.24gL~!. In the consortium experiments, the same inoculum size of algae
and bacteria was added to the PBR, with a combined concentration of 0.48 g L =1,
The consortium was also cultivated in sterilized SWW with high and low con-
centrations of glucose (500 and 100 mgL™1), total nitrogen (TN-NO3~ 120 and
19mg L), and total phosphorus (TP-PO4*" 19 and 3mg L"), respectively. The
culture pH was maintained between 7 and 8. Liquid samples were collected from
the culture broth at specific time intervals to measure cell concentration, DOC,
TP, and TN.

To obtain the concentration profiles, the biomass concentration was determined
by measuring the optical density at 680 nm and expressed as dry weight (gL™1).
The biomass was collected by centrifugation at 5000 rpm for 5min and then
washed three times with water treated by reverse osmosis. During the experi-
ments, carbon concentration was measured using a TOC analyzer (LiquiTOC II,
Elementar, Germany) from filtered samples (0.45 pm). Nitrate (NO3 ) and phos-
phate (PO4*") ions in the filtered (0.20 pm) wastewater were analysed using an
ion chromatograph (ICS-5000, Dionex, Italy).
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Appendix C

Supplementary information of

Chapter

This part of the appendix contains the supplementary material of the article given
in Chapter |4l It is organized as follows. Section summarizes the CPU times
needed to collect the initial samples. Section describes the case studies for the
in-silico data generation. Section shows the a possible application of a linear
basis function model (LBF). Section summarizes the sensitivity analysis for
the solver settings (relative optimality gap) of MAINGO.

C.1 Sampling times

An initial dataset was sampled for each CS, which was split into training and
testing datasets. Table summarizes the time needed to perform this sampling.
CSIII shows a significantly higher CPU time since the mentioned MINLP model
for an optimum heat exchanger network (SYNHEAT, (Yee & Grossmann, 1990))
is solved iteratively.

C.2 Case study descriptions

CSI - Compressor plant

A constant feed rate of 1000 kmolh™! of a vapor mixture is fed to the mixer.
The composition of the feed was set to 78% nitrogen, 21% oxygen, and 1% of
argon. The feed temperature was set to 25°C and 1bar. The Peng-Robinson
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Table C.1. The recorded time needed to perform the initial sampling. Additionally, the
number of samples is indicated.

equation of state was used for the Aspen HYSYS calculations. The compressor
curves of the two compressors are given in Table [C.2] Both compressors operate
in centrifugal mode with a single-MW curve input option. The pressure ratio of
both compressors is set to 1.5. The Schultz method is used as the polytropic

CS Number of samples

Sampling time [min]

I
II
II1
v

200
1000
1000
1000

85
10
320
40

method.
Table C.2. Compressor curves of the implemented compressors in CSI.
Compressor 1 Compressor 2
Speed Volume flow Head Efficiency Speed Volume flow Head Efficiency
[rpm] [actm?® /h] [m] [%] [rpm] [actm?® /h] [m] [%]
300 3100 74 300 3100 68
550 2950 78 550 2950 72
850 2800 80 850 2800 74
5000 1200 2350 79 3000 1200 2350 73
1550 1550 68 1550 1550 62
1750 900 51 1750 900 45
1300 4600 74 1300 4600 68
1550 4500 78 1550 4500 72
7000 1850 4250 80 10000 1850 4250 74
2200 3750 79 2200 3750 73
2550 2600 68 2550 2600 62
1950 5400 74 1950 5400 68
2150 5250 78 2150 5250 72
9000 2500 5000 80 15000 2500 5000 74
2850 4300 79 2850 4300 73
3150 3300 68 3150 3300 62
2800 6800 74 2800 6800 68
3050 6650 78 3050 6650 72
11000 3350 6400 80 25000 3350 6400 e
3700 5800 79 3700 5800 73
4150 4700 68 4150 4700 62

CSII - Ammonia reator
The reactor was modeled as a plug flow reactor in Aspen HYSYS. For the inte-
gration, 20 segments with a minimum step fraction of 1-107% was chosen. The
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catalyst was modeled with a diameter of 1-107%m, sphericity of 1, solid density of
2500 kg m~2, and a solid heat capacity of 250kJ kg™ K. The reactor tube length
was chosen to be 1.5m with 0.2m of diameter. One tube with a wall thickness of
5-1073m was selected, where the tube packing has a void fraction of 0.33. The
feed entering the reactor consists of 100% vapor, where a constant molar flow rate
of 2.242 - 10~*kgmol h~! was chosen.

CSIII - Methanol plant

This case study was adapted from Vazquez et al. (2021)), where the process
flowsheet is based on the works by VanDal and Bouallou (2013) and Gonzélez-
Garay et al. (2019).

As thermodynamic packages, the Peng-Robinson and NRTL-ideal were applied in
Aspen HYSYS. We modeled the plant with a constant CO, feed of 2,000 kmol /h
available at 25°C and 1 bar. This stream is compressed to reach the reaction pres-
sure (optimization variable). The desired final pressure is in the range of 45 bar
to 55 bar. Hydrogen is fed at 30 bar and is compressed to reach the reaction pres-
sure. After being compressed, the two gases are mixed with the recycled stream,
and the resultant stream is heated to reach the desired reaction temperature. Two
main reactions occur in the reactor. The first one is the CO hydrogenation to pro-
duce methanol (R1), which is accompanied by the water-gas shift reaction (R2),
leading to the global reaction (R3), as shown below. The reaction equations are

given in Table

Table C.3. Participating reactions in the methanol production plant.

Reaction name Reaction equation
R2 CO5 + Hy (:> CO + H>0
R3 COz + 3Hy; = CH30H + H,0

The reactor was modeled as a plug flow reactor with a Cu—ZnO—Al,O3 catalyst.
The kinetic model developed by Bussche and Froment (1996) was used, whereas
alternative kinetic models could also have been used (Hus et al., 2017 Pavligi¢
et al., 2020; Slotboom et al., 2020). The reactor outlet is cooled to 35°C and
separated in a flash unit. A recycle stream with recompression is implemented
to reach the reaction pressure. Part of the recycle stream, mainly containing
COs, is purged. Before sending the bottom stream to a distillation column, the
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stream is depressurized to 2 bar and sent to another flash unit. The distillation
column reveals a partial condenser operating at a head pressure of 1bar. The
distillate product is methanol with a 99%, where the overhead, containing resid-
ual traces of COy and methanol, is sent to the purge. The bottom product is

wastewater.

As done in the work of Vazquez et al. (2021), the HEN design is optimized
based on the stream data of the Aspen HYSYS model. High-pressure steam
(40 bar, 250°C) and cooling water (25°C to 30°C) are considered as utilities.
The minimum temperature difference was set to 10°C. The equations used to
calculate the cost were based on the ones given by Sinnott and Towler (2020)) and
read as follows. The calculation was performed as shown in the work of Vazquez
et al. (2021)).

The Annual capital charge ratio (ACCR) is considered to be 20%. The capital
expense (CAPEX) is obtained as follows:

CAPEX =ISBL+OSBL+CE+CC+CW

where I.SBL is the inside battery limit, OSBL is the outside battery limit, CE
is the contingency expense, C'C' is the construction cost, and C'W is the working
capital. The ISBL is calculated as follows:

ISBL = Z uc,

uelU

With U being the set of process units in the flowsheet, and UC,, is the cost of
each unit, defined as follows:

EP Icurrent
UC, = k(a+bC") - CCESC[M , VueU

Where the parameters k,a,b, and n depend on the process unit. The design
variable C is used in the correlations that estimate the purchase cost of the unit.
The Chemical Engineering Plant Cost Index (CEPCI) is then used to update
the cost data. As done in the work of Véazquez et al. (2021)), we consider a value
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of 603.1 for the current one, corresponding to 2018, and a value of 532.9 for the
2010 one.

The other variables needed to assess the CAPFEX are calculated as percentages

of the ISBL:

OSBL =0.35 - ISBL
CE =0.20-(ISBL+ OSBL)
CC =0.30- (ISBL + OSBL)
CW =0.15- (ISBL + OSBL)

Where the corresponding factors are given by Sinnott and Towler (2020). The
OPEX is calculated as the addition of the fixed costs of operation (FOC) and
the variable costs of operation (VOC).

OPEX = FOC +VOC

Where the FOC is calculated as follows:

FOC — Csalary + Csuperv + CSalOv + CMaint + CLand + Clns + CGenOv

The costs included in the FFOC' are the salary, supervision, salary overhead, main-
tenance, land, taxes and insurance, and general overhead cost, respectively. The
salary cost is obtained as follows:

cealary = 5. NS - 08

With S being the yearly salary of an operator, N.S the number of shifts considered,
and OS is the number of operators per shift. The other costs are obtained as
percentages of the previous costs:
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Osurerv — () 95 . Csalary
CSalOv _ () 45 (Csalary + Csupery)
cMaint — .03 - ISBL
ctend = 0.01(ISBL + OSBL)
' =0.06 - CV
CGenOv _ (64 . (Csalary 4 Csuperv (SalOv + C«Maint)

For the variable operation cost, we consider the following correlation:

VOC — CFeed 4 CUtil 4 CRes

With CU¥ being the annual cost of the utilities, C¥*? the annual cost of the

feeding, and CF° the cost of treating the residues generated.

The equipment data used to calculate the UC' is shown in Table For the
fixed operation cost, the cost of the feeding material, and the utilities/residues,
the parameters shown in Table to Table are used.

Table C.4. Cost data for the process units.

Unit Design variable k a b n

Reactor Volume [m?] 4 61500 32500 0.8
Heat exchangers Area [m?] 1 28000 54 1.2
Process vessel Mass [kg] 4 17400 79 0.85
Trays Diameter [m] 1 130 440 1.8
Cooling tower Water cooled [Ls™!] 2.5 170000 1500 0.9
Furnace Duty [MW] 2.5 80000 10900 0.8
Compressor Duty [kW] 2.5 580000 20000 0.6

Table C.5. FOC parameters.

Parameter Value
S 40000 $/operator
NS 3 shifts
oS 5 operator /shift

CSIV - Ammonia reactor series
The reactors were modeled as plug flow reactors in Aspen HYSYS. For the inte-
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Table C.6. Parameters for e,

Parameter Value Reference
Cost of hydrogen from electrolysis 5.240 €015 kg~ ! Parkinson et al., 2019
Cost of hydrogen from SMR with CCS  0.165 €507 N"'m™3  Collodi et al., 2017
Cost of COy from DAC 95.50 $5015 t 71 Keith et al., 2018

Table C.7. Parameters for C**"! and O,

Parameter Value Reference

Cost of heating 12.1 $9015 GJ ! Wernet et al., 2016

Cost of cooling water 0.03 $9015 m 3 Wernet et al., [2016
Gonzalez-Garay and Guillen-Gosalbez, 2018

Cost of electricity 94.5 $2018 MWh ! Wernet et al., [2016
Gonzalez-Garay and Guillen-Gosalbez, 2018

Cost of treating waste water ~ 1.50 $2913 m™> Wernet et al., 2016

Gonzalez-Garay and Guillen-Gosalbez, 2018

gration, 20 segments with a minimum step fraction of 1-107® was chosen. The
catalyst was modeled with a diameter of 1-107 m, sphericity of 1, solid density of
2500kg m~2, and a solid heat capacity of 250kJ kg~ K. The reactor tube length
was chosen to be 1.5m with 0.2m of diameter. One tube with a wall thickness
of 5-107% m was selected, where the tube packing has a void fraction of 0.33.
The feed entering the plant (before the splitter) consists of 100% vapor, where
a constant molar flow rate of 2.242 - 10* kgmolh™! was chosen. The tempera-
ture and pressure of this stream were used as optimization variables since this
stream directly enters the first reactor after the splitter. The composition was
chosen to be 74% of hydrogen, 24.52% nitrogen, 1.46% ammonia, and 0.03% ar-
gon. The mixers between the reactors set the outlet pressure to the lowest inlet
pressure. Additional compressors after mixing (before reactors 2 and 3) adjust
the stream’s pressure to the desired input pressure. Both compressors operate in
centrifugal mode with a single-MW curve input option. The Schultz method is
used as the polytropic method. Coolers (after the compressors) allow adjustment
of the inlet temperatures for reactors 2 and 3. A pressure drop over the coolers
was neglected.
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C.3 Comparison of linear basis function model to the Bayesian

machine scientist

This section summarizes the results of a sparse regression technique using a linear
basis function (LBF) model, which is compared to the proposed approach. LBF
also leads to closed-form and interpretable expressions, yet it performs worse in
our case studies, as discussed below. This might occur because the BMS algorithm
used in our framework searches in a much wider space of expressions since it does
not require any pre-assumed structure of the final model. This is a clear advantage
over the sparse regression methods, which assume a given model structure. How-
ever, the performance of both approaches will depend on the problem at hand. As
shown below, in our case, the BMS provides better solutions in terms of both the
accuracy of the surrogate and the quality of the final solution reported compared
with a standard sparse regression technique. In principle, a larger search space in
terms of plausible models should lead to better results, yet this might not always
be the case, as the BMS does not guarantee the global optimality of the identified
solution.

Specifically for CSIV, we implemented an LBF model using Python 3.8.11 and
compared it with the BMS approach. We used the same input data x (i.e.,
[b1, b2, Th, Ty, T3, Py, P5, P3]) and f(x) (conversion) used for training the BMS and
the GP shown in Chapter [4]

f(@) = w-(x)

Where f(x) represents the target outputs of the process, w the weights/parameters
of the model, and ¢(x) describes the basis functions. The following nonlinear

transformations (basis functions) were used:

¢<l’) = [SC, \/57 1'2, 1'37 .CQSCJ]

3 are [nx§]

Since we considered eight input variables, the dimensions of z,\/x, 22, =
each (for the n training samples). x;z; represents the binary interactions (i.e.,
bibay, b1 T}, ... PoPs), given by an array with dimensions [n x 28]. The dimensions

of ¢(z), therefore, are [n x 60]. Subsequently, we scaled the data using a standard
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scaler provided by sklearn 1.0. We then applied a LASSO regression to perform
feature selection. By varying the regularization parameter o and computing the
R? value, we obtained the results in Figure [C.1] Since at a = 1073 the R?
value is not significantly smaller than at o« = 107, we chose this value for the
regression. Subsequently, a prediction with the identified model results in the
observed vs. predicted graph shown in Figure The model performs worse
than the one identified with the BMS considering the same performance metric
as in the manuscript (for the training: MAFE = 2.948%, RMSE = 3.761%,
R? = (.828, and for the testing: MAE = 3.291%, RMSE = 4.207%, R? = 0.757).
The parameter values are shown in Table

Table C.8. Regression parameters obtained by applying a LASSO approach with o =
1073 to the above-described input data. Nonzero values are colored green, while zero cells
are colored orange.

o) 1 2 3 4 5 6 7 8 9 10
w  -0.002 0 0 0 0 0 0 0 0 0
o) 11 12 13 14 15 16 17 18 19 20
w 0 0 0 0 0 0 -0.057 0 -0.685  -1.175
(o) 21 22 23 24 25 26 27 28 29 30
w -2193 -0.037 -0.014 0.037 -0.056 0 0.39 1.65 2.905 0
(o) 31 32 33 34 35 36 37 38 39 40
w 0.25 0 0 0.412  0.269 0 0.366 0 0 0
o) 41 42 43 44 45 46 47 48 49 50
w 0 0.31 -0.049 0 0.18 0.284 0.069  -0.501 0.339 0.122
o) 51 52 53 54 55 56 57 58 59 60
w -0.001 0.061 -0.754 0 0 0 -0.476 0 0.385 0.111

The obtained algebraic function was then implemented in GAMS to perform the
same optimization as with the BMS expression, finding a solution much better
than the one identified with the LBF model, as shown in Table We know
that the LBF model performance depends on the basis functions chosen and that
a thorough cross-validation study would improve the results. However, a primary
advantage of using the BMS, a model with no pre-defined structure, is that such
as study is not needed.

We cannot claim that our approach will always be superior since this will be
case-dependent. However, it can undoubtedly behave better than other existing
approaches and is likely to perform even better in the future as more efficient
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Figure C.1. (a) Obtained R? results as a function of the regularization parameter o
(blue line). Additionally, the number of nonzero parameters w are shown as a function of
a (orange line). (b) Observed versus predicted values for the training (blue circles) and
test (red diamonds) set. The regression parameters w for the corresponding model are

given in Table @

symbolic regression algorithms become available.

C.4 Sensitivity analysis for the optimality gap of MAINGO

We varied the optimality gap (eg) of MAINGO for the values ex = [1071, 1072,
1073,107*. The maximum allowed CPU times were set to the corresponding
training time the BMS required in the CSs: 16 500s (CSI), 5600s (CSII), 41000s
(CSIII), and 123500s (CSIV). Multi-start was not applied. The results are sum-
marized in Table

For CSI, the optimization led to the solution zf,, = 0.61, with an objective
function value of F'(z},p) =413kW for all values of eg. The maximum CPU time
needed was 7s, which was reached for ez = 10~*. Our proposed approach led
to the same solution, as shown in the manuscript. Therefore, no difference was
observed by varying the tolerance for the optimality gap.

For CSII, in all cases of e, the corresponding optimality gap could be closed up to
g, leading to MAINGO finding a global optimum. The solutions were identified
after 3053 s/4315s/43645/4476 s for the different €. The same optimum solution
xrgp = [276°C, 198 bar] was identified for all eg. The corresponding objective
function value (conversion of nitrogen) was F'(z*) = 37.8%. It is worth mentioning
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Table C.9. Results for the linear basis function model (LBFM) for CSIV. In the first row,
the optimization direction is given. The CPU time (in seconds) needed for model-based
optimization is shown in the second row, followed by the model status obtained from
BARON. The solution z* found during the optimization is evaluated in Aspen HYSYS
to obtain f(x*), which is then compared to the value of the surrogate F'(z*) to determine
the relative absolute error (which measures the mismatch between the surrogate and
the original process model in the optimal solution found). The results for the proposed
procedure shown in the manuscript (labeled with CSIV - BMS) are additionally shown
for convenience.

CSIV - BMS CSIV - LBFM

Optimization direction Maximization Maximization
CPU Optimization 2s 1s
Model status Globally optimal Globally optimal
F(zhss) 46.21 % 48.83 %
1] 0.6[-]
0[] 0.3[-]
400°C 351°C
- 382°C 334°C
BMS 311°C 365°C
195 bar 196 bar
230 bar 199 bar
230 bar 226 bar
x* — HYSYS — f(z*) 47.03 % 39.79%
RAFE 2% 28%

that in the manuscript Table 4.8 we reported the solution for a pure multi-start,
which is why MAINGO returned a feasible solution, not a global optimum. With
our proposed approach, the solution was obtained to be z* = [265°C, 230 bar],
leading to F'(z},,5) = 31.5%. However, inserting both solutions (z%,,¢ and x§p)
into HYSY'S resulted in f(2%,,5) = 29.3% for BARON and f(zfp) = 27.5% for
MAiINGO. Therefore, considering this reported global optimum by MAiINGO, our
approach led to a better solution.

For CSIII, MAINGO reached the maximum allowed CPU time of 41 000s already
for eg = 107!, Again, this was the same time the BMS needed for training.
MAINGO returned a feasible point (not a global solution) with an objective func-
tion value of F(z%p) = 0.714$kg ™", where the corresponding optimum arguments
were %, = [233°C, 5750 kmol h™!, 0.001 [~], 1.250 [], 53m®?, 5375 kPa]. If this
solution was inserted into HYSYS f(z%p) =0.729$kg " could be obtained. As
a comparison, the BARON approach led to the solution F(x%,,4) =0.716$kg ™"
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with the optimum arguments a7%,,s = [209 °C, 5848 kmolh~*, 0.001 [—],1.526 [—],
55m?, 5497kPa]. If these values were inserted into HYSYS, the solution
f(z%5) =0.727$kg™" was obtained. Again, considering this reported global
optimum by MAiINGO, our approach led to a better solution.

For CSIV, MAINGO reached the maximum allowed CPU time of 123500s for
er = 1072, where it returned a feasible point of z},, = [1[—], 0[], 292°C,
334°C, 337°C, 230bar, 200 bar, 200bar|. The optimal solution was found to
be F(zfp) = 54.49% conversion. If this solution was inserted into HYSYS
f(z&p) = 50.04% conversion could be obtained.

As a comparison, the BARON approach led to the solution F'(z%,,s) = 46.21%
with the optimum arguments z%,,4 = [1 [—], 0[], 400°C, 382°C, 311°C, 195 bar,
230 bar, 230bar|. If these values were inserted into HYSYS, the solution
f(xgpms) = 47.03% was obtained.
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Appendix D

Supplementary information of

Chapter

This part of the appendix contains the supplementary material of the article
given in Chapter Section introduce the reader to the flexibility topic.
Section shows the application of the proposed approach for two different
designs in CSII.

D.1 Motivational examples

Example description Three motivational examples (ME) are introduced. The
first linear example (ME-I) was inspired by the work of Pulsipher et al. (2019).
There are no variables z present to solve the flexibility problem. The nonlinear
example (ME-IT) was adapted from Pulsipher et al. (2019)), where again, no
control variables z are present. The last example (ME-III) was used by Ochoa and
Grossmann (2020)), where control variables z are included to solve the flexibility
problem. The set of system constraints f; for the examples are shown in Table
together with the settings of the optimizers. To solve these problems, Pyomo
v6.4.4 was interfaced with the solvers CPLEX v41.3.0 (ME-I and ME-III) and
BARON v22.7.23 (ME-II). On the one hand, the examples were used to cross-
check the obtained results with a proven publication. On the other hand, they
illustrate the usage of the flexibility index as a quantification metric to compare
systems.
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Table D.1. Constraints and properties used for the motivational examples.

ME-I ME-II ME-III
Original from Adapted from Original from
Reference Pulsipher et al. (2019) Pulsipher et al. (2019) Ochoa and Grossmann (2020)
Type Linear Nonlinear Linear
z Not present Not present Variable
f1:01+02,—14<0 f1:10.561 — 500 + 02 < 0 friz—01+20,—5<0
f2:01—202—2<0 f2:0.801 —1004+62 <0 fgz—z—%—%—SgO
fi f3:—601 <0 f3:—2.4601 +100—62 <0 fa:iz4+601—02—6<0
fa:—02<0 fa:—(01—42)24+37—02 <0 fas:12<2<%

f6,7?Q1 Sel §Q1
fg,9:05 <02 <0y

O Vke K [0; 0] [0; 0] [0; 0]
0 VkeK [20; 20] [50; 100] 8; 5]
zand z - - [-8, 8]
Solver CPLEX BARON CPLEX
Relative

optimality gap 0 0 0

Results for motivational examples The results of the linear and nonlinear
motivational examples ME-I and ME-II are summarized in Table where a
schematic representation is given in Figure [D.I] Comparing the solutions of 6* in
Table[D.2] ME-I reveals a lower flexibility than ME-IT (6* = 0.161 vs. §* = 0.232).
For the two examples, maximum possible upper and lower deviations Af;"ax and
AJM" were chosen that depend on the choice of the nominal operating point 62
and the bounds (8, and 6}) of the considered uncertain parameter 6,. This was
done due to two reasons. First, the numerical ranges of the uncertain parameters
can be taken into consideration, which makes the comparison of the value of *
more intuitive. Second, in a real world example, one usually does not have in-
formation about the allowed deviation Af;"ax or Af"in. However, on the other
hand, the bounds of the uncertain parameters are more likely to be known, where
the operating point 0% can be chosen by the modeler or process owner.

Problem searches for the shortest distance from the nominal operating point
to the next possible constraint. Therefore, the set of parameters located on the
constraint closest to the nominal operating point is described by the critical uncer-
tain parameters #°. This concept can be schematically shown by considering the
projection of the constraints f; onto the uncertain parameter plane (Figure .
In the above shown examples, the constraints are fixed and not influenced by any
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Table D.2. Results summary of the motivational examples ME-I and ME-II given in
Table A graphical representation of the examples is given in Figure

ME-I ME-II
Type Linear without control  Nonlinear without control
oN [4.0, 5.0] [37.0, 43.0]
At ke K 0N -0,
Ager, ke K O —0F
5* 0.161 0.232
0* [6.6, 7.4] [40.0, 33.0]
Active constraint f1 fa
CPU 0.4s 0.9s
100 ==
1] (a) D (b)
bt \\
\\\\
12 1 80 - S~
~
10 - ~
6 60 =
o~ o~
S . 4 >
. R 40 A
/”
4 1 -
’/
”-
2 i //”’ 20 |
0 =7
T T o - T T T I‘
5 10 15 10 20 30 40 50
91 91
—fy ==fy e f3 f4 ¢ Nominal & e Critical @ — T(0)

Figure D.1. Graphical representation of the motivational examples ME-I (a) and ME-II
(b). The linear and nonlinear constraints f; (dashed and solid lines) include the feasible
region, which is shown by the bright blue shaded area. The chosen nominal operating
point 6% (blue diamond) is encountered by the set T'(5) (blue box). The box touches one
constraint at the critical point 6¢ (red circle).

control variable z. If we consider constraints that are depending on such a control
variable z, as given in ME-III (Table , the size of the feasible region changes
upon varying the value for z. This is indicated schematically in Figure |D.2| By
solving the flexibility problem for such a system with control variables results in
searching for the closest constraint or bound that is either not influenced by a
control variable (and therefore can not be moved), or by reaching a constraint
that is controlled but the control variable has reached a lower or upper limit.
Figure [D.3] shows a solution for ME-III. In this example, the closest constraint
independent of the control variable is the upper bound of 65. Therefore, there
are several solutions for the critical 6, since T'(d) touches a line (represented by
the red circles in Figure . It is worth noticing that constraint f3 was moved
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Figure D.2. Projection of the constraints onto the 61 — fz-plane. The constraints
represent the system ME-III given in Table Increasing the value of z = —3 (a) up to
z = 3 (d), the size of the feasible region is reduced. It is worth mentioning that constraint
f2 moved to negative 0s-values in (b), (c), and (d), and is therefore not visible anymore
due to the limits of the plots.

as far downwards (lower y-axis-intersections) as needed until a corner of T'(0) hit
another bound (same in Figure (b), (c¢), and (d)).

D.2 Comparison of the flexibility in CSII

In addition to the design of the chromatographic column introduced in Section
(subsequently described by the design d;), we adapted the column length and
diameter to create another design ds. The differences between the two designs
are indicated in Table . Everything else (i.e., upper, and lower bounds for the
sampling, process parameters, etc.) is the same for both designs.

Table D.3. Design parameters for the two designs of case study II.

Property Design d; Design d»
Column length L.y 10cm 15cm
Cross-sectional area of the column A.y; 0.2 cm? 0.1 cm?

We followed the same procedure for the sampling, model building, and incorpo-
ration of the surrogate model into the flexibility index formulation for the design
ds, as given in Chapter The results for the model building for the two de-
signs are compared in Table The identified closed-form expressions for the
surrogate models and their estimated parameters are given in Table [D.5] and Ta-

ble [D.6
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Figure D.3. Graphical representation of the solution for the flexibility index problem
for ME-III. The constraints f; (dashed and solid lines) include the feasible region, which
is shown by the bright blue shaded area. The chosen nominal operating point 8~ (blue
diamond) is encountered by the set T'(§) (blue box). The upper bound of 8, (independent
of the control variable) is the constraint closest to the nominal operating point. 7'(J)
therefore touches a line (red circles).

Table D.4. The training performance criteria are summarized for the Bayesian machine
scientist (BMS). Each row represents one design of the case study II. The CPU time (in
hours) needed for the model training is shown in the left part of the table. The error
metrics (root mean squared error, mean absolute error, coefficient of determination) are
shown for the training and testing data (format: training/testing). The error units are
given in squared brackets. The identified algebraic expressions are indicated in Table[D-5]
whereas the corresponding model parameters are reported in Table

CS CPU training RMSE MAE R2
Design d; 2.7h 0.014 / 0.012 [-] 0.009 / 0.008 [-] 0.998 / 0.998 [—]
Design d, 2.4h 0.016 / 0.016 [-] 0.010 / 0.011 [-] 0.997 / 0.997 [—]
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Table D.5. The most plausible closed-form expressions for each design in case study
IT identified by the Bayesian machine scientist (BMS) are shown. The corresponding
estimated parameter values are reported in Table @

CS Prediction target Identified expression
LR = LR(CinaQytload) —%(%-ﬁh)
il z = [Q] @o tioad/Cin fLoad a
9 = [Cina tload] (ao ! )tload+ p(C?nO)
LR = LR(Cina Q7 tload)
tQa2
load
da 2 =[Q] cn@(Fgaton)

0= [Cina tload]

Table D.6. Parameter values of the most plausible surrogate model identified by the
Bayesian machine scientist (BMS) for each case study (CS). The corresponding model

equations are given in Table

Parameter Design
dy d
ap 0.894 524.029
a1 24.458 0.02
as -1.844  7.325-107
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The most significant difference between the two designs can be found in the ob-
tained flexibility index. A visualization of the result is given in Figure As
visible, the flexibility of the design d; given in (a) of Figure (0* = 0.811) is
significantly larger than the one obtained for the design dy (6* = 0.389), shown
in Figure (b). Therefore, considering the flexibility of the two columns, one
can conclude that one should choose the design d; (shorter column with a larger
cross-sectional area) to reach a more flexible process with respect to the studied

uncertain parameters.

St —— Surrogate ¢ Nominal 8 o Critical 8 —T(0)
1 1(a) 1 1 (b)
15.0 ! I 15.0 11 I
1 | 1 |
1 | 1 |
1 1 | |
125 T 1 125 ! 1 1
1 I 1 |
1 I 1 |
£ 10.0 11 ] £ 10.0 1 1
£ 1 I 1S 1 |
- 1 I ~ 1 1
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Figure D.4. Graphical representation of the solution for the flexibility index problem
for the design di (a) and the design da (b) of case study II. The feasible region is shown
in shaded light blue color. The constraints in dashed lines represent the bounds of the
uncertain parameters. The solid lines represent the surrogate constraint which can be
influenced by the control variable z. The chosen nominal operating point 6% (blue dia-
mond) is encountered by the set T(d) (blue box). The surrogate constraints F; are active
constraints (red circles).
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