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Abstract

In this Semester project, we explore the formation of domains in the self-organisation phase transition.
The domains are identifiable by a shift in the density wave by half a transverse pump wavelength, as
well as a phase jump in the light-field scattered from the illuminated region of the density lattice as
the transverse pump scans across the domain wall. We extend upon a theoretical proposal, proving
the concept for a one dimensional system with periodic boundary conditions, by simulating a trapped
Bose-Einstein condensate in two dimensions. To achieve domain formation, we implemented a scanning
transverse pump and the correct equations of motion in the limit of a narrow-waisted Gaussian beam
on top of the TorchGPE python package. For a transverse pump with the waist size of

√
2 times the

pump wavelength λ, we observe the formation of two long-lived domains starting from a cigar-shaped
cloud of length 156.45 λ by scanning with a frequency of 60 times the recoil frequency ωr. We confirm
a wide range of scanning frequency can lead to domain formation and a quick ramping speed leads to
stable self-organisation throughout the whole cloud. We also observe the formation of domains for a
larger waist size of 5 λ. In order to fully support an experimental realisation, more scenarios such as
different trap geometries and a running wave via an imbalanced pump need to be explored.
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1
Introduction

Cavity quantum electro dynamics with Bose-Einstein condensates have been a key platform to reaching
the strong coupling regime between atom and light due to collective ground state occupied [4]. Specif-
ically the transversely driven cavity exhibits infinite-range interaction mediated by cavity photons [8].
Driven by these infinite range interactions, the system exhibits a superradiant Dicke quantum phase
transition, which was experimentally first realised over a decade ago at ETH [2]. In the superfluid gas,
the phase transition induces the formation of a crystalline lattice as a critical pump power is crossed [2].
The phase transition spontaneously breaks Z2 symmetry, with atoms ordering on either even or odd
sites of a checkerboard lattice [2], pictured in figure 1.1a. While the flat condensate prohibits scattering
into the cavity, the lattice structure collectively enhances the process. The phase of the light-field is
also spontaneously broken and thus allows for a readout of the parity.

A recent proposal by T. Donner, M. Bonifacio and F. Piazza [3] introduces a novel pumping scheme
leading to tunable interactions. A red-detuned transverse pump is rapidly and periodically scanned
across the cloud in a single-mode dissipative cavity leading to an attractive time-averaged potential. A
visual depiction of the experimental scheme is given in figure 1.1b. While Atoms move on timescales
given by the recoil frequency of the pump, the dynamics of the light-field are determined by the dissipa-
tion rate of the cavity. Scanning over the cloud at frequencies above the cavity’s loss rate reestablishes
global order. Lower scanning frequencies give rise to a regime of tunable interactions. The transverse
drive beam shape determines the range and shape of interactions. By tightly focusing the waist we limit
the range of photon-mediated interactions in the gas. Due to effective short-range interactions, the sys-
tem can form domains scattering different phases of light after the phase transition. The Kibble-Zurek
mechanism describes the appearance of the domains.

(a) (b)

Figure 1.1: (a) The two possible atomic density checkerboard-lattices after the quantum phase transition are shown.
Figure taken from [2]. (b) A Bose-Einstein condensate is placed within a cavity, with the single mode ωc and dissipation
rate κ. A transverse beam with waist w and beam-shape Ω(r⃗, t) and single-mode ωL is periodically scanned across the
condensate. The inset shows the microscopic photon-mediated interaction between two atomic dipoles within the beam.

Figure taken from [3].
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In this semester project, we explore the formation of these domains using the TorchGPE Python pack-
age [6]. To this end we extend upon the existing package by implementing a moving transverse pump
and adjust the time-dependent potential simulated to match our needs. In contrast to the simula-
tions performed in the proposing work, simulating a 1D system with periodic boundary conditions, we
simulate a trapped Bose-Einstein condensate in 2D modelling the experimental setup. In the second
chapter we first go through the derivation of the renormalization of atomic contact-interaction from
3D to 2D. Next, we state the the mean-field equations of motion for the atomic wave function and
light-field, which are propagated in time. We show how the beam-shape tunes the interactions. We
end the chapter by intuitively explaining how the driving scheme leads to the formation of domains
and the necessary conditions. In Chapter 3 we first briefly describe the package used for simulating the
dynamics and show the extensions performed in this work. Through a tutorial we explain the individual
steps of a simulation. Next, we motivate the parameters chosen to simulate. Finally, we discuss various
simulations performed, showing the formation of domains, exploring the limits of varying the scanning
frequency, ramping speed and the effect of changing waist size. Lastly, we give an outlook on possible
future steps and scenarios to simulate to ensure a successful experiment in the laboratory.



2
Analytics

In this chapter we provide the analytical calculations of the effective interaction strength employed due
to the dimensional reduction of the simulation from 3D to 2D as well as the mean-field equations of
motion of the light-field α(t) and the matter wave function ψ(r, t) which is simulated in the program.
We end this chapter by giving an intuitive non-analytic description of the pumping scheme, which allows
for domains to form.

2.1. Effective interaction strength
Due to computational complexity, we perfrom simulations in 2D. The simulation effectively approxi-
mates the 3D picture in the case where the out-of-plane trapping frequency, i.e. ωz, is much larger than
the trapping frequencies in-plane ωx and ωy. We approximate 3D scattering theory in 2D by rescaling
contact-interactions, which can be done when the out-of-plane trapping frequency ωz is much larger
than the trapping frequencies in-plane ωx and ωy [9]. In the following section we show the derivation
of the effective atom-atom 2D contact interaction gaa,2D matching the 3d s-wave scattering length as,
based on two approaches resulting in a different scaling factors.

We start with the three-dimensional Gross-Pitaevskii equation (GPE):

iℏ
∂ψ3D(r, t)

∂t
= (− ℏ2

2m
∇2 +

mω2
z

2
z2 + Vtrap(x, y) +Ngaa,3D|ψ3D(r, t)|2)ψ3D(r, t), (2.1)

where gaa,3D = 4πℏ2as

m is the 3D contact interaction and Vtrap(x, y) is the trapping potential in transverse
direction. In the scenario of ωx, ωy ≪ ωz, we use the trial function ψ3D(r, t) ≈ ϕ2D(x, y, t)ψ⊥(z, t;σ(x, y,
t)), where σ(x, y, t) gives the extension of the BEC in the x-y plane. To maintain normalization, we
require both partial functions to be separately normalized. In the case of a harmonic trapping potential
[9] we find the 1D gaussian function,

ψ⊥(z, t;σ(x, y, t)) =
1

π1/4
√
σ(x, y, t)

exp

(
− z2

2σ2(x, y, t)

)
. (2.2)

In the approach of [9] the reduced contact-interaction is derived from the action-functional, whose
Euler-Lagrange equation is the 3D GPE,

S =

∫
dtdrψ∗

3D(r, t)[iℏ ∂
∂t

+
ℏ2

2m
− Vtrap(x, y)−

mω2
z

2
z2 − 1

2
gaa,3DN |ψ3D(r, t)|2]ψ3D(r, t). (2.3)

After inserting the trial function (2.2), we integrate the functional out in z to arrive at an effective 2D
functional. As in the full 3D picture the Euler-Lagrange equations of the effective 2D action functional
will give a 2D GPE, with rescaled contact interactions. The effective 2D Lagrangian is given by [9],

L2D = ϕ∗2D[iℏ
∂

∂t
+

ℏ2

2m
∇2

⊥ − Vtrap(x, y)−
Ngaa,3D√

2πσ
|ϕ2D|2 − ℏ2

2m
σ−2 − mω2

z

2
σ2]ϕ2D, (2.4)
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2.2. Equations of motion 4

and the Euler Lagrange equation for the extension in transverse direction ϕ2D(x, y, t) now reads as

iℏ
∂ϕ2D
∂t

= [− ℏ2

2m
∇2

⊥ + Vtrap(x, y) +
Ngaa,3D√

2πσ
|ϕ2D|2 + ℏ2

2m
σ−2 +

mω2
z

2
σ2]ϕ2D (2.5)

The experiments performed by the IMPACT team use bose-einstein condensates of Rb-87. These
condensates are formed by cooling an atomic dilute gas [1] and we can easily calculate that the 3D
contact interactions are weak in a sense that gaa,3DN ≪ 1. In this weak interaction regime, we can
take σ = az [9], with az being the harmonic oscillator length in z direction. With a harmonic trapping
potential in transverse direction, i.e. Vtrap(x, y) = m

2 (ω
2
xx

2 + ω2
yy

2), the Euler Lagrange equation for
ϕ2D reduces to

iℏ
∂ϕ2D
∂t

= [− ℏ2

2m
∇2

⊥ + Vtrap(x, y) +
gaa,3DN√

2πaz
|ϕ22D|+ ℏωz]ϕ2D. (2.6)

From this we can readoff that the rescaled interaction strength in 2D is

gaa,2D =
gaa,3D√
2πaz

=

√
8πℏ2as
maz

. (2.7)

This form of rescaling the contact interaction strength is the readily implemented in TorchGPE.

Alternatively, one can directly integrate out the 3D GPE in z, after replacing ψ3D(r, t) with the above
stated trial wave function (2.2), and arrive at an effective 2D GPE of the form [10]:

iℏ
∂ϕ2D
∂t

= [− ℏ2

2m
∇2

⊥ + Vtrap(x, y) +
Ngaa,3D√

3πaz
|ϕ2D|2]ϕ2D. (2.8)

We can immediately read off that the 3D interaction strength is renormalized by the factor
√
3π, giving

an effective 2D interaction strength of
gaa,2D =

gaa,3D√
3πaz

. (2.9)

We implemented this form of rescaling of interaction strength into the code and used it in all simulations
presented here in this report. We chose this renormalization to make our scattering lengths comparable
to the 1D scattering length employed in [3].

2.2. Equations of motion
In this section, we model the interaction between the atoms and the light-field. We start with the
mean-field description of the atoms using the Gross-Pitaevskii equation and describe all included terms.
We then show the light-field equations of motion. Through adiabatic field elimination we will bring the
latter field into a steady-state form. Inserting this back into the Matter-wave function we arrive at the
analytical equation propagated in time by the simulation.

The equation of motion for the matter wave function ψ(x, y, t) in 2D is given by the Gross-Pitaevskii
equation [3]:

iℏ
∂ψ(x, y, t)

∂t
= [− ℏ2

2m
∇2 + gaa,2D|ψ(x, y, t)|2 + Vtrap(x, y) + Vlat(x, y)]ψ(x, y, t) (2.10)

The first term gives the kinetic energy of the cloud and the second term in the above equation models
contact interactions between atoms in the cloud using the reduced interaction strength derived in the
section above. The third term is the trapping potential and the fourth contains the lattice potentials
formed by the transverse pump (TP), cavity photons and the interference of the two. Explicitly, the
trapping potential is harmonic and given by

Vtrap(x, y) =
ℏm
2

(ω2
xx

2 + ω2
yy

2) (2.11)
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The lattice potential formed by the light from the TP and in the cavity is given by:

Vlat(x, y) =ℏ
g(r)2
∆a

|α|2 + ℏ
h(r)2
∆a

+ ℏ
g(r)h(r)

∆a
(α(t) + α∗(t)) (2.12)

=ℏ
g20
∆a

cos2(kcx)|α|2 + ℏ
Ω2

p

∆a
Ω(x, y) · cos2(kpy) (2.13)

+ ℏ
Ωpg0
∆a

cos(kcx)
√
Ω(x, y) cos(kpy) · 2Re(α(t)) (2.14)

=ℏ|α|2 g
2
0

∆a
cos2(kcx) + VTPΩ(x, y) · cos2(kpy) (2.15)

+ ℏ
g0
√

Ω(x, y)VTP |∆a|/ℏ
∆a

cos(kcx) cos(kpy) · 2Re(α(t)), (2.16)

where ∆a is the atomic detuning of the TP and we express the transverse drive power, or in other
words the lattice depth of the standing wave, as VTP = ℏΩ2

p/|∆a|. The last reformulation of Vlat is
done here to arrive at an expression in terms of VTP , as this is the parameter one specifies in the code.
The cavity-mode forms a standing wave, g(r) = g0 cos(kcx), g0 being the cavity-atom coupling and
kc = 2π/λc being the modulus of the cavity-mode wave-vector. The TP, also being a standing wave,
has the mode-function h(r) = Ωp

√
Ω(x, y) cos(kpy), with the gaussian shape factor of the transverse

lattice being,

Ω(x, y) =
1

1 + ( λy
πw )2

exp

(
−2x2

w2 + ( λy
πw )2

)
. (2.17)

The waist of the beam is given by w. Since we define Ω(x, y) to be the mode function of the pump
lattice, the square root of Ω(x, y) defines the mode function of the entering pump beam.

We now move to the light field α(t) in the dissipative cavity with atoms. It is comprised of a dispersive
shift, a dissipative term and a self-consistent coupling term with the cloud plus an interaction term of
the cavity and pump photons with the cloud of atoms [8]:

iℏ
∂α(t)

∂t
=ℏ
(
−∆c − iκ+

ℏ
∆a

∫
drg(r)|ψ(r, t)|2

)
α(t) +

ℏ
∆a

∫
drg(r)h(r)|ψ(x, y, t)|2

=− ℏ(∆c + iκ)α(t) + ℏ
g20
∆a

α(t)

∫
dr cos2(kcx)|ψ(x, y, t)|2

+ ℏ
√
VTP |∆a|/ℏg0

∆a

∫
dr cos(kcx)

√
Ω(x, y) cos(kpy)|ψ(r, t)|2

where ∆c is the dispersive shift of the cavity frequency via the pump frequency, κ is the dissipation rate
of the cavity .

Since the evolution of the cavity field happens on timescales (on the order of 1/κ ≲ 1.1 ms) faster than
the atoms’ movement (on the order of 1/ωr ≈ 42 ms) we can assume the light field to always be in the
steady state. The steady-state solution of the light-field is found by setting it’s time evolution to zero:

αst(t) =

∫
drg(r)h(r)|ψ(x, y, t)|2

∆a(∆c + iκ−Bg20/∆a)
(2.18)

=

∫
drg0 cos(kcx)Ωp

√
Ω(x, y) cos(kpy)|ψ(x, y, t)|2

∆a(∆c + iκ−Bg20/∆a)
, (2.19)

where we introduce the bunching parameter B =
∫
dxdy|ψ|2 cos2(kcx) in the last step, which evaluates

the degree of overlap between the cloud wave function and the standing wave of the cavity mode. In
the fully condensed super-fluid phase B = 1/2 and will go to B = 1 in the super-radiant self-organised
phase. We insert the steady-state cavity light-field into the matter equation and arrive at a single
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coupled equation due to adiabatic field elimination:

iℏ
∂ψ(x, y, t)

∂t
= [− ℏ2

2m
∇2 + gaa,2D|ψ(x, y, t)|2 + Vtrap(x, y) + ℏ

g(r)2
∆a

|α|2 + ℏ
h(r)2
∆a

(2.20)

+ℏg(r)h(r) · 2∆c

∆2
a((∆c +Bg20/∆a)2 + κ2)

∫
dr’g(r′)h(r′)|ψ(x′, y′, t)|2]ψ(x, y, t). (2.21)

From the last term in the above equation, we can see that only atoms that are within the TP can
interact, as h(r) goes to zero far away from the waist of the beam. For this we should keep in mind that
the area of interaction is tunable via the gaussian shape factor Ω(x, y) of the pump lattice, contained
in the TP mode h(r) = Ωp

√
Ω(x, y) cos(kpy).

2.3. Domain-formation
We now intuitively describe the pumping scheme, proposed in [3], that allows for domains with different
symmetry breaking to form. In the case of static TP with an infinite waist, the atoms self-organise into
a checker-board lattice as a critical pump power is crossed. Hereby, a Z2 symmetry is broken as the
atoms organise onto either odd or even sites of the checker-board lattice created by the interference of
pump and cavity fields.

We have already established a difference in timescales between the dissipation of photons in the cavity
and movement of the atoms in the cloud, which allowed us to find a steady state of the light field. We
have also seen we can limit the range of interactions between atoms via the cavity light-field by reducing
the waist size of the TP. If we now scan the beam over the cloud, while quenching the pump power
over the critical value, we can see that due to the finite range of interactions the formation of domains
is conceivable if the cavity field dissipates faster than the movement of the TP. The necessity of finite
range interactions imposes the limit of the waist size being smaller than the size of the cloud, w ≪ L
in the direction of scanning. In the case where the scanning frequency is on the order of the cavity
detuning, the potential felt by the atoms due to the moving beam is analogous to a static beam with
infinite waist. In the red-detuned case, i.e. ∆a < 0 the atoms will feel an attractive potential towards
positions of the checkerboard lattice given by the interference term in line (2.16). The timescale of
atomic movements is given by the recoil frequency ωr. We can see that we require ωscan ≫ ωr in order
to prevent the back-action of the atomic density onto the light-field, which determines the phase of the
interference pattern determining the symmetry of the organisation lattice. In summary domains can
only form, if the following conditions are met

(1) w ≪ L (2.22a)
(2) ωr ≪ ωscan ≪ ∆c (2.22b)



3
Numerics

In this chapter we cover the code we used and created to simulate the Bose gas transversely driven in
a dissipative cavity and discuss various simulations performed. First, we give a qualitative description
of the simulation tool, TorchGPE [6] and show how the scanning pump was implemented in the existing
code. We briefly introduce the class we implemented that stores a density cut and plots it’s evolution
over time. Next, we show how the simulations are structured in the form of a tutorial. Finally, we
discuss select simulations and the effect of varying parameters towards the goal of finding domains.

3.1. GPE code - simulation setup
All simulations done in the course of this work are performed with a GPU accelerated GPE solver
TorchGPE [6], which we expanded on by implementing various pumping schemes. The solver uses
imaginary time evolution to reach the ground state. For real-time evolution the fourier-split-step method
is utilized, which alternately propagates the wave function in real-space and fourier-space. The system
simulated is a Rb-87 gas in a dispersive cavity, trapped harmonically with radio frequencies. The gas is
simulated on a Ngrid×Ngrid, with the cavity and pump field pre-evaluated at each step in the imaginary
or real-time evolution:

Rpump = X · cos(αp) + Y · sin(αp) (3.1)
Rcavity = X · cos(αc) + Y · sin(αc), (3.2)

(3.3)

where X and Y are matrices of the size Ngrid×Ngrid, giving the respective x- and y-coordinate at each
position in the grid, αp is the angle of the pump and αc is the angle of the cavity. In all simulations
we simulate a transverse pump by choosing αc = 0 and αp = π/2, reducing the pre-evaluated matrices
to Rpump = Y and Rcavity = X. The implementation of the modified dissipative cavity is given in the
appendix. The geometry of the simulation is pictured in figure 3.1.

3.2. Implementing the scanning pump
A feature that had to be implemented in the existing modules was the movement of the pump lattice.
In this section we briefly show and explain the implementation of this novel feature.

Initially the pump was always assumed to be at a fixed position in time and the pump field was axially
symmetric along the chosen pump axis, while being centered at the origin. The simplest implementa-
tion introduces time-dependent coordinates for the center of the transverse pump. The pre-evaluated
matrices for the pump field is shifted as X → X̃(t) = X − xoffset(t) and Y → Ỹ (t) = Y − yoffset(t).
By passing functions to the variables xoffset(t) and yoffset(t) the movement of the pump is fully con-
trollable in space and time.

Due to the geometry of the simulation, we let the pump beam move only along the cavity axis, the x-axis.
We implement a scanning function, which periodically sweeps over the cloud in the same direction. It’s
implementation in python is given by:

7



3.3. Implementing a density monitor 8

Figure 3.1: A cigar-shaped Bose-Einstein condensate (white) is trapped in a dispersive single-mode (blue) cavity
(silver along the x-axis), while being transversely pumped by a standing wave orthogonally (red) along the y-axis. The

beam is then periodically scanned from left to right over the cloud.

1 from scipy import signal
2 def offset_periodic_sweep(span=1, w_scan=1, t0=0):
3 return lambda t: -span/2 if t < t0 else span/2 *signal.sawtooth(w_scan * (t-t0), 1)

The parameters passed to the above function are the range of motion span, the scanning frequency
w_scan and the starting time of scanning t_0. Note, that the span is a length scale and the scanning
motion will range from -span/2 to +span/2 along the x- or y-axis.

3.3. Implementing a density monitor
The TorchGPE provides multiple possibilities to track the dynamics of the system and visualize the
results. In this section we describe the density monitor class we implemented.

While we can store the data of the cavity parameters, the lattice depth and complex light-field α,
we are not able to do the same for the density. For a grid of 211 × 211 points, the density of the
matter-wave function into a .csv format, takes up 3.4 MB of storage. Doing this for multiple snapshots
during a simulation is thus unfeasible. If we want to store the density for closer inspection, we do this
once at the end of a simulation, and we limit the region saved to the Thomas-Fermi diameter of the
cloud. In order to capture the time evolution of the density in a static image, we implemented the
class density_monitor, see appendix B, which temporarily stores the density cut along the horizontal
direction at a given height over time. After the simulation ends, the density monitor assembles the
density cuts into a figure as is plotted in ([3] figure 4 (a)). The domain is split into odd and even sites,
i.e integer and half-integer wavelengths, and shaded in blue and red respectively. An example can be
seen in figure 4.3. This type of plot allows for the quick evaluation of density-wave formation, as in the
self-organisation phase, the density is highly localised around the lattice sites, saturating the color.

3.4. Tutorial
In this subsection we present a step-by-step tutorial of the simulation script for a scanning pump run
leading to self-organisation. This will demonstrate how the numerical experiment is performed and the
data is obtained without detailing the specific code for utility functions.

First, we import various modules from TorchGPE and general python libraries and define physical
constants:

1 import os
2 import sys
3 sys.path.insert(1, "/home/kkirchner/sp_qg/gpe-main")
4

5 from gpe.bec2D import Gas
6 from gpe.bec2D.callbacks import CavityMonitor, Animation, DensityMonitor
7 from gpe.bec2D.potentials import Contact, DispersiveCavity, Trap
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8 from gpe.utils import parse_config
9 from gpe.utils.potentials import offset_periodic_sweep , offset_periodic_cos,

offset_periodic_triangle , offset_periodic_arccos , offset_cos, linear_ramp, tanh_ramp
10

11 import numpy as np
12 import torch
13 import matplotlib.pyplot as plt
14 from matplotlib import ticker
15 from scipy.constants import hbar
16 from tqdm.auto import tqdm
17 from datetime import datetime
18 from pathlib import Path
19 import pandas as pd
20 from scipy.constants import physical_constants
21

22 OMEGA_R = 23659.55675860723
23 A_BOHR = physical_constants["Bohr␣radius"][0]

The main module gpe.bec2D.Gas intializes the discretized grid and wavefunction as well as implement-
ing the imaginary and real time propagation. The gpe.bec2D.potentials class includes the potentials
of the GPE described in section 2.2 and gpe.utils.potentials encompasses helper functions such
as the movement and ramping function of the transverse drive. Data storing of the cavity and the
density of the wave function over time are found in gpe.bec2D.callbacks as well as an animation of
the cloud evolution in the cavity. We pre-define the recoil frequency given by ωr = ℏk2p/(2m), where
the pump wave-vector is defined over the frequency of the D2-line of Rb-87 and the atomic detuning
∆a = ωL − ωD2 as

kp =
2π×
λ

=
2π×

c(ωD2 +∆a)
.

We start the main function of the script by defining path variables for the working directory and data
directory as well as stamping the time for identifying runs, initializing random seeds and parsing the
configuration file.

24 if __name__ == "__main__":
25 dir_path = "/scratch3/kkirchner/domains_change_waist/"
26 save_folder = "tutorial"
27 plot_save_folder = os.path.join(dir_path, save_folder)
28

29 config = parse_config("configuration.yaml")
30

31 time = datetime.now().strftime("%d%m_%H-%M")
32 np.random.seed(config["random_seed"])
33 torch.manual_seed(config["random_seed"])

The configuration file a YAML file used to bundle inputs for various modules, and is read-in via the
parse_config function into a standard python dictionary. The configuration file, configuration.yaml,
for this tutorial is given by,

1 random_seed: 10032023
2 gas:
3 element: 87Rb
4 N_particles: 2e5
5 N_grid: !eval [2**11]
6 grid_size: 16e-5
7 adimensionalization_length: 780e-9
8 boundaries:
9 cavity_detuning: -10.5e6

10 lattice_depth: 4000
11 potentials:
12 contact:
13 a_s: 100
14 a_orth: 5.39e-7
15 trap:
16 omegax: 10
17 omegay: 100
18 cavity:
19 atomic_detuning: -76.6e9
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20 cavity_decay: 800e3
21 cavity_coupling: 1.95e6
22 cavity_angle: 0
23 pump_angle: !eval [pi/2]
24 waist: 780e-9
25 initial_wavefunction:
26 gaussian_sigma: 1e-6
27 propagation:
28 imaginary_time:
29 time_step: !eval [-1e-6j]
30 N_iterations: 20000
31 leave_progress_bar: False
32 real_time:
33 final_time: 1e-3
34 leave_progress_bar: False

It is important to note that all frequencies stated in configuration.yaml are multiplied in the TorchGPE
module by 2π to convert to angular frequencies. All length scales are adimensionalized by the
adimensionalization_length.

Next, we define the contact interaction, the harmonic trapping potential and initialize the Bose-gas
with a Gaussian wave-function. The aforementioned system of a gas with contact interactions in a
harmonic trap is propagated in imaginary time to reach the ground state, a Bose-Einstein condensate.
We determine the ground state to be reached if the condensate profile sufficiently matches the Thomas-
Fermi profile. In preparation for the scanning range of motion, we determine the grid indices along the
main-axes that mark the edge of Thomas-Fermi profile and the diameters. We visually check the state
of condensation by plotting the Thomas-Fermi profile and the density of the condensate. An example
image can be seen in figure 4.1b.

1 contact = Contact(**config["potentials"]["contact"])
2 trap = Trap(**config["potentials"]["trap"])
3

4 bec = Gas(**config["gas"], float_dtype=torch.float32, complex_dtype=torch.complex64)
5 bec.psi = torch.exp(-(bec.X**2 + bec.Y**2)/(2*(config["initial_wavefunction"]["

gaussian_sigma"] / bec.adim_length)**2))
6

7 bec.ground_state(potentials=[trap, contact], callbacks=[], **config["propagation"]["
imaginary_time"])

8

9 tf_ind_x, span, tf_ind_y, tf_diam_y = get_TF_diameter()
10 plot_density(bec, plot_save_folder, f"{time}_gs", tf_ind_x, tf_ind_y)
11

12 w_scan = 60 # [recoil frequency]
13 ramp_up_time = 5e-4 # [s]

Next, we declare variables for the starting and stopping times of the TP lattice depth ramping function
as well as the scanning frequency of the transverse drive. We initialise the cavity potential with the
aforementioned functions as well as static parameters from the configuration file, such atomic detuning,
dissipation rate, atom-light coupling, angle of the transverse pump and it’s waist size.

1 detuning = config["boundaries"]["cavity_detuning"]
2 lattice_depth = config["boundaries"]["lattice_depth"]
3 ramp = linear_ramp(0, ramp_up_start, lattice_depth, ramp_up_time)
4 offset_scan_x = offset_periodic_sweep(span, w_scan * OMEGA_R, 0)
5 cavity = DispersiveCavity(lattice_depth=ramp, cavity_detuning=detuning, waist_offset_x=

offset_scan_x, **config["potentials"]["cavity"])

Afterward, we initialise the monitor objects that store the cavity data, density cuts over time and
the animation class which bundles various parameters over the course of the evolution and afterwards
assembles the data in a gif format. We then specify the time-step and propagate the total system,
described by the equation 2.21, via split-step Fourier propagation. In a final step, we save the density
of the final step and the cavity data of each time-step to a csv file for further analysis and plot the
density from a top-down view as well as a density cut in a given range along a specified axis for quick
visual confirmation of self-organisation.
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1 animation = Animation(output_file=os.path.join(plot_save_folder, f"{time}" + ".mp4"),
cores=10, save_every=save_every_var, phase = False, density_cut=True, cavities=[
cavity])

2 cavity_monitor = CavityMonitor(cavity, save_every=1)
3 density_monitor = DensityMonitor(output_file=os.path.join(plot_save_folder, f"{time}" + "

.png"), y_cut_index = len(bec.y)//2, save_every=1, border_ind = tf_ind_x)
4

5 delta_t = 2*np.pi / (w_scan*OMEGA_R) / span / 2
6 bec.propagate(potentials=[trap, contact, cavity], callbacks=[cavity_monitor,

density_monitor, animation], time_step=delta_t, final_time=config["propagation"]["
real_time"]["final_time"])

7

8 plot_density(bec, plot_save_folder, f"{time}_scan", tf_ind_x, tf_ind_y)
9 save_density(bec, plot_save_folder, f"{time}_monitor", border_ind_x=tf_ind_x,

border_ind_y = tf_ind_y)
10 save_cavity(cavity_monitor, plot_save_folder, f"{time}_monitor")

3.5. Simulation parameters
The goal of this section is to motivate the choice of parameters of the tutorial and of the results obtained.
We will explain the choice of parameters for each of the separate modules of the system, in order of:
Grid parameters, cavity detuning and pump power, potentials, initial wave function and propagation
parameters.

The atoms simulated are 87Rb as this is the atom isotope used in the laboratory of the IMPACT
team. The number of atoms simulated, N_particles = 2× 105, are a reasonable choice for the current
experimental setup. The grid size is chosen to be larger than the Thomas-Fermi radii, which are
determined by the trapping frequencies, of the BEC and there is sufficient space to the border to mitigate
finite-size effects. The grid size is closely tied to the choice of N_grid, since it effects the resolution
of the density patterns we want to observe. The discretization value was chosen such that there are
approximately 10 points between the λp spacing of two density wave peaks. The adimensionalization
length, l = 780 nm, is chosen to be close to λp ≈ λc ≈ 780.4 nm.

The s-wave scattering length as is chosen to be 100 aB , which is the experimental value of Rb-87 [7].
We choose a trapping frequency in the z-direction (out-of-plane in the simulation) of 2π×400Hz, which
results in a harmonic oscillator length az =

√
ℏ/(mωz) ≈ 0.539µm. The in-plane trapping frequencies

were chosen in an experimentally feasible regime, in an attempt to make the cloud greatly spread out
along the cavity axis, while being in a regime ωx, ωy ≪ ωz. We thus chose only a small trapping
frequency in x, ωx = 100Hz, and an order of magnitude larger trapping frequency in y, ωy = 100Hz,
which further squeezes the cloud.

We choose a cavity detuning of ∆c = −2π × 0.5MHz, as this is slightly lower than the maximum
dispersive-shift Ng20/∆a ≈ −2π × ·10MHz bounding an unstable self-organisation phase from below
([2]). The maximum depth of the pump lattice is chosen after multiple trials until self-organisation was
achieved. We define self-organisation if the maximum modulus of |α(t)| is larger than one. The critical
pumping strength depends on the dissipation rate, cavity detuning and waist size to cloud length ratio.
The atomic detuning ∆a = −2π × 76.6GHz is given by the laser frequency and the D2-line of 87Rb.
The atom-light coupling g0 = 2π× 1.95MHz and is the first cavity’s Rabi-vacuum coupling [5]. For the
decay rate of photons in the cavity, we choose to match the value of cavity 2 of the IMPACT setup, of
κ ≈ 2π × ·800 kHz ≈ 212.5 ωr, which leaves a broader window for scanning below the dissipation rate.
As mentioned before, the cavity was chosen to lie along the x-direction and the transverse pump was
positioned orthogonally, i.e. along the y-direction. For individual simulations described in the following
section, specific parameters will be motivated and specified.

The cavity monitor saves the cavity’s parameters at every snapshot to allow for a greater resolution of
dynamics. However as the time step is decreased or the length of the simulation is increased, we rec-
ommend increasing the save_every parameter to avoid extremely large file sizes. The density monitor
saves a cut along a specified axis at a given position through the cloud after a given number of time
steps. This reduces the amount of data stored in a temporary folder while still allowing to observe the
formation of domains in a single image. During a run of 2 ms and a time step covering λ/2 in distance,
roughly 150000 time steps are performed. The assembly of all the density cuts towards a single image
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is inefficient as it is currently implemented. For this reason we increase the number of time steps, after
which the density is saved, to 9 or 113, greatly reducing the image assembly time. We did not notice
a visual loss of resolution in the image, when changing the density monitor’s save_every parameter
for the aforementioned values, given the number of time steps performed at ωscan = 60 ωr. For longer
simulations we recommend to further increase this parameter. Another possible option to speed up the
image creation, is to explore if the assembly of an image can be distributed to multiple threads.

As described in the tutorial, we first find the ground state of the Bose gas in the trap until it assumes the
Thomas-Fermi profile using imaginary time evolution. For the chosen trapping frequencies, sufficient
condensation was achieved after 20000 steps at an imaginary time step of −1i µs.



4
Results

In this chapter we present the results of select simulations showing the formation of domains. First, we
show the result of imaginary-time evolution, which condenses the cloud of atoms into a Bose-einstein
condensate. Next, we analyze the behaviour of the light-field and formation of domains with a smaller
time step. Afterwards, we test the conditions of domain formation, postulated in equation (2.22).
Finally, we vary physical parameters such as the ramping speed, and increasing the waist size.

4.1. Imaginary time-evolution
We start the simulation by condensing the Bose-gas in the trap into the ground state via imaginary-
time evolution. Figure 4.1a shows the density of the wave-function in the simulation grid, assuming a
cigar-shape. By looking at cuts through the middle of the cloud along the x-axis and y-axis, we can
see that the GPE wave function matches the Thomas-Fermi profile with slight deviation at the edges
of the cloud due to the healing length.

(a) (b)

Figure 4.1: (a) Shows the density of the condensed wave function. (b) Shows density cuts along the x-axis (blue) and
y-axis (orange). The dashed colored lines show the Thomas-Fermi profile along the same respective cut (red along x,

green along y). The determined length of the Thomas-Fermi diameter along the major axis is LTF = 156.45 λ.

4.2. Domain formation
We start this section by describing and analyzing a simulation, leading to domain formation. We then
go on to vary the time step, scanning frequency and waist size of the transverse pump.

We ramp the transverse pump power linearly, with a final value of 3000 Er and a ramping time of
tramp = 10/ωr ≈ 0.42ms. While in the 1D scenario [3] the power is ramped smoothly via a smooth tanh
function, whereas here we ramp linearly. The transverse lattice was swept over the cloud periodically
from left to right via the sawtooth function with a scanning frequency of 60 ωr. The diameter of the

13
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Thomas-Fermi profile along x in figure 4.1b is 156.45 λ. We set the range for the scanning function to
be 156 λ, i.e. we sweep over the full cloud. For the real time propagation we chose a time-step that
moves the beam by half a wave-length every step. This stroboscopic movement was chosen to reduce
simulation time, while still having a resolution of the cavity-field that is able to resolve a domain wall
spaced by λ/2. The waist of the transverse pump was w =

√
2 · 780 nm ≈ 1.1µm. This specific waist

size was chosen, such that the standing wave created has a waist size of λ. We propagate the system
for 2 ms, which roughly equals 452 periods of the beam scanning over the cloud at a frequency of 60 ωr.
This specific scanning frequency, is well above the recoil frequency while still being beneath the cavity
dissipation rate, which according to the results of [3] is well suited to establish domains, given we use a
similar cavity dissipation rate. Higher scanning frequencies would lead to shorter periods, which would
increase the number of time steps performed. The evolution of the density cut through the middle of
the cloud along x is made visible in figure 4.2a.

(a)

(b)

(c)

Figure 4.2: (a) The evolution of the density cut through the middle of the cloud is plotted over time. Red highlights
the density of even lattice sites, whereas blue highlights the odd lattice sites. The simulation parameters are:

ωscan = 60 ωr with waist w = 1.1 µm =
√
2λ, linear-ramp up to 3000 Er in 10/ωr ≈ 0.42 s at a cavity detuning of

∆c = −10.5Mhz. (b) The photon number (blue) and the phase (red) of the cavity light field plotted over 2 periods of
scanning over the cloud at the onset of self-organisation. The vertical dashed lines (grey) mark the beginning of a
period, i.e. where the center of the waist of the transverse pump is at the left edge of the cloud determined by the
Thomas-Fermi radius. The phase is manually set to the minimal value if the photon number is smaller than 0.1.

Although two distinct peaks appear, these are not the two domains. This can be verified in the light’s phase, which
remains the same. (c) The photon number and phase of the light-field plotted over 2 scanning periods at a later time. A

second domain with opposite parity has emerged in the left tail of the cloud, as visible in the phase. The phase is
manually set to the minimal value if the photon number is smaller than 0.1

In figure 4.2a we can observe an onset of self-organisation, defined here by the maximum photon number
per period to be greater than one, at 0.83ms, which starts in the middle of the cloud due to the higher
number of atoms participating in the overlap-integral of the interference term in Vlat. Interestingly,
this is after maximum depth of the transverse pump has already been achieved. We plot the cavity
light-field and it’s phase at the onset in figure 4.2b. The photon number significantly decreases as the
transverse pump crosses the domain wall, see figure 4.2c. This is expected as the domain wall is spaced
λ/2, a distance at which dipole radiation destructively interferes. Looking at the real-space density of
the bose gas, we can clearly observe the emergence of a domain wall at roughly −27.75 λ in figure 4.3b.
To the left of the domain wall, the cloud organises on odd lattice sites (spaced λ apart), whereas to the
right of the domain wall the density peaks on even lattice sites. Looking at the density cut along x at
y = 0.55 λ, we can see the opposite symmetry breaking due to the formation of a checkerboard lattice
throughout the distinct domains, visible in figure 4.3c.

We examine the stability of the self-organised phase by performing the same simulation for 10 ms. In the
density cut through the middle we can observe a stable domain wall after the onset of self-organisation.
We also look at the average photon number exiting the cavity per scanning period in figure 4.4. Here
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(a) (b) (c)

Figure 4.3: (a) The density of the cloud in the x-y plane is plotted after 2ms. Two distinct domains forming a
checkerboard lattice are visible with a domain wall formed at −27.75 λ. The simulation parameters were ωscan = 60 ωr,
w =

√
2λ, VTP = 3000 Er, tramp = 5ms, ∆c = −2π × 10.5MHz and ∆t = Tλ/(2LTF ), LTF = 156 λ. (b) The density

of the Bose-gas cut along the middle of the cloud against x. (c) The density of the Bose-gas cut along y = 0.55 λ of the
cloud against x. Here symmetry breaking of the domains is opposite to the cut along y = 0.05 λ in (a) as expected to

form a checkerboard lattice.

(a) (b)

Figure 4.4: (a) Two clear domains can be seen in the density cut through the cloud after an initial symmetry breaking.
The simulations parameters were ωscan = 60 ωr, w =

√
2λ, VTP = 3000 Er, tramp = 10/ωr, ∆c = −2π × 10.5MHz and

∆t = Tλ/(10LTF ), LTF = 156 λ. (b) The averaged photon number over a single scanning period,
⟨|α(t)|2⟩T =

∑⌊T/dt⌋
i=0 |α(i ·∆t)|2 , is plotted for each period in the course of 10ms. After the onset of the phase

transition, the average photon number per period starkly rises in combination with the formation of the density-wave
seen in figure (a). After roughly 5 ms the average photon number per period decreases.



4.2. Domain formation 16

the average photon number increases drastically as the cloud self-organizes and rounds out until roughly
5 ms. Thereafter, the mean photon number slightly decreases. This hints at the fact that atoms are
being dispersed from the strongly localised checkerboard lattice configuration.

4.2.1. Decreasing the time step

(a) (b)

Figure 4.5: (a) The evolution of the density cut for 2ms for ωscan = 60 ωr, w =
√
2λ, VTP = 3000 Er, tramp = 10/ωr,

∆c = −2π × 10.5MHz and ∆t = Tλ/(10LTF ), LTF = 156 λ (b) The photon number (blue) and phase (red) of the
light-field for the last full period. Five distinct domains are visible. The phase was set to the minimal value for |α|2 < 1

to remove fluctuations at the edge of the scanning region.

We run the same simulation as above, however with a 5 times smaller time step, i.e. in one ∆t the
beam moves λ/10 in distance. The result differs from the above simulation, see figure 4.5 and compare
with 4.2. Self-organisation sets in earlier, i.e. |αmax|2 ≥ 1 at t = 0.728ms. Secondly, over the course of
the simulation we can see the emergence of up to 5 distinct domains, see figure 4.5, compared to only 2
domains to the former simulation 4.2. As we lower the time step we expect the simulations to converge
towards the true ground state of the system. However as long as domains form for the larger time step,
we can conclude that domain formation is possible for a specific parameter set. For further simulations,
we took the largest sensible time step, i.e. moving the beam by half the wavelength per timestep, which
reduced the simulation time for the grid size of 211 to 1 hour.

4.2.2. Slow ramp

(a) (b)

Figure 4.6: (a) The evolution of the density cut for 2ms for ωscan = 60 ωr, w =
√
2λ, VTP = 3000 Er, tramp = 5ms,

∆c = −2π × 10.5MHz and ∆t = Tλ/(10LTF ), LTF = 156 λ. (b) The photon number (blue) and phase (red) of the
light-field for the last full period is plotted. The phase was set to the minimal value for |α|2 < 1 to remove fluctuations

at the edge of the scanning region. Three phase jumps are visible over the whole period.
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In the before mentioned simulations, we ramp the pump power within 0.42 ms. This is an order of
magnitude faster than usually performed in an experiment, where the ramping time is 5ms. [5]. We
run a simulation with parameters as described in figure 4.2, but increase the ramping time to 5ms. In
the density cut along x through the middle of the cloud we can identify a large domain sitting on integer
sites, and a small domain sitting on half-integer sites at around −47.5 λ. The edges of the cloud do
not self-organise even though there density modulations occur. In the phase of the light-field, we can
see that there is also a further jump in phase to the left of the already identified domains, although the
photon numbers are very low in comparison. While we do see the establishment of at least two domains,
the edges of the cloud do not self-organise. We conclude the quench of the lattice depth works better.

4.2.3. Varying the scanning frequency

(a) (b)

Figure 4.7: (a) Density of the real-space wave function after 2ms for simulation parameters ωscan = ωr, w = λ,
VTP = 3000 Er, tramp = 10/ωr, ∆c = −2π × 10.5MHz and ∆t = Tλ/(2LTF ), LTF = 156 λ. No self-organisation is

achieved. (b) The photon number (blue) and phase (red) of the light-field over the last full period.

(a) (b)

Figure 4.8: (a) The evolution of the density cut for 2ms for ωscan = 390 ωr, w =
√
2λ, VTP = 3000 Er,

tramp = 10/ωr, ∆c = −2π × 10.5MHz and ∆t = Tλ/(10LTF ), LTF = 156 λ (b) The photon number (blue) and phase
(red) of the light-field for the last full period. Five distinct domains are visible. The phase was set to the minimal value

for |α|2 < 0.01 to remove fluctuations at the edge of the scanning region.

Next, we test the condition (2.22a) of domain formation by varying the scanning frequency, while
keeping the waist size at 1.1µm and ramping to 3000 Er in 10/ωr. When scanning over the cloud at
a frequency of ωscan = ωr, the particles occupy higher density states and do not self organise, which
can be seen in figure 4.7 in both the scattered density of atoms and chaotic light-field. Due to the
pump moving on the time-scale of the atoms, the beam and atoms This validates the lower limit of the
scanning frequency, although the exact boundary has not been determined.
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Conversely, we probe the other limit of condition (2.22b) by scanning at a higher frequency than
the dissipation rate of the cavity. To be precise, we choose ωscan = 10 · κ1 ≈ 390 ωr ≪ ∆c, with
κ1 = 2π × ·147MHz being the dissipation of cavity 1 in the IMPACT group’s setup [5]. In fact, we
observe the formation of 4 domains, seen in figure 4.8. The faster scanning seems to facilitate the
formation of more domains, as the critical point is crossed in a shorter time frame as the pump sweeps
across the cloud. This validates the boundaries set for the scanning frequencies and demonstrating a
large window of scanning frequencies in which domains can form.

4.2.4. Increasing the waist size
We finally test the influence of changing the waist size of the transverse drive. So far we’ve only looked
at examples with w =

√
2 · λ which was chosen create a standing wave mode with a waist of λ such

that the beam width of the standing wave is λ. While this tight focussing is possible in an experiment,
demonstrating that broader waists can also lead to domain formation provides a window in which
experimental uncertainties of the waist size are tolerated.

(a)

(b)

(c)

Figure 4.9: (a) The evolution of the density cut through the middle of the cloud is plotted over time. The simulation
parameters are: ωscan = 60 ωr with waist w = 5λ, linear-ramp up to 300 Er in 0.5ms at a detuning of ∆c = −10.5Mhz.
(b) The photon number (blue) and the phase (red) of the cavity light field plotted over the last full period of scanning

over the cloud. The phase is manually set to the minimal value if the photon number is smaller than 0.1. (c) The
averaged photon number over a single scanning period, ⟨|α(t)|2⟩T =

∑⌊T/dt⌋
i=0 |α(i ·∆t)|2 , is plotted for each period in

the course of 2ms. We can see a stark rise in average photon number after the phase transition. The average photon
numbers then oscillate.

We increase the waist size to w = 5 λ, i.e. 3.9µm, while keeping the other parameters the same as for
the simulation shown in figure 4.2. The larger waist illuminates more atoms simultaneously, facilitating
self-organisation at lesser lattice depths, i.e. we ramp only to 300 Er. The critical power needed to
observe self-organisation for specific waist and cloud sizes has not yet been determined. In figure 4.9
we can see the formation of domains. The average photon number per period increases sharply after
the onset of the phase transition and then oscillates for the remainder of the simulation, which shows
that for the duration of the simulation the self-organised phase is stable and there is no drastic heating
present.

We want to conclude this chapter by stating that all simulations were performed at a specific cloud size
given by the trap geometry of ωx = 10Hz, ωy = 100Hz and ωz = 400Hz. For the case of w = 5 λ we
increased the trap frequency ωx to 20 Hz and 25 Hz, and to ωx = 20 Hz for a waist of w =

√
2 λ. In

neither case did we observe domain formation. Since we kept the ramp power the same, we saw that
increasing ωx lead to an earlier onset of the phase transition. The self-organisation was also unstable in
the sense that atoms were dispersing. A finer tuning of the pump power is needed to ensure we ramp
equivalently deep into the self-organised phase for different trap geometries.



5
Conclusion

The formation of domains in the self-organisation phase of a Bose-Einstein condensate in a far detuned
dissipative cavity was demonstrated for a 1D system with periodic boundary conditions in the theoretical
proposal [3]. This behaviour occurs due to the range of interactions being limited by the narrow waist
of the transverse pump, much smaller than the diameter of the cloud, and the quick scanning of the
transverse pump across the cloud, faster than the timescale of atomic motion. The effectively engineered
short-range interactions allow for domain formation. This phenomenon has not been observed in the
self-organisation phase due to the usual global range interactions. The simulations shown in this work
demonstrate domain formation for a trapped Bose-Einstein condensate in 2 dimensions. To this end, we
expanded upon the existing TorchGPE python package by implementing the scanning transverse pump
and the correct equations of motion in the limit of a narrow-waisted transverse drive. As far as we
know, this is the first time this behavior has been seen in a 2D simulation.

On top of observing domains in the self-organisation phase transition with the scanning pump protocol,
we varied various parameters, to test their influence towards the finding of domains. The time step that
propagates the pump by half a wavelength provides the minimal resolution of a possible domain wall
and we have seen various examples of domain formation. We observed that a faster ramping time of
0.42 ms lead to a more stable self-organisation throughout the whole cloud, due to the faster crossing of
the critical lattice depth while the transverse pump scans over the cloud. We validated that scanning
must occur at frequencies much larger than the recoil frequency and there is a large window for which
domains can occur, at least up to 390 ωr = 10 · κ1, the highest scanning frequency shown here. Lastly,
domains can also form for larger waists of the transverse pump beam of 5 λ for the specific frequencies
chosen.

For the waist of w = 5λ and w =
√
2 λ we increased the trapping frequency in x direction to ωx = 20

Hz and ωx = 25 Hz and respectively to ωx = 20 Hz. We did not observe domain formation as well as
stable self-organisation. In order to ramp equivalently deep into the phase transition, we will need to
ramp to lower powers as we increase the trapping frequencies. We should further explore different trap
geometries to identify a specific waist size needed for a given cloud size to form domains.

Following up on this work we should simulate the experimentally relevant case of an imbalanced pump,
the imbalance being between the in-going and reflected beam shape. It will be difficult to align the
transverse pump such that it remains perfectly overlapping while scanning across the cloud. Instead,
if the reflected beam has a larger waist than the incoming beam, the region of overlap will exhibit a
standing wave, whereas the outer regions will exhibit a running wave. To test this pumping scheme,
the imbalance pump would need to be implemented in the TorchGPE package, which only provides an
imbalanced pump in amplitude.
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A
Source Code: Dispersive Cavity with

Scanning Pump

1 from __future__ import annotations
2 from typing import Union, Callable
3

4 import scipy.constants as spconsts
5 import numpy as np
6 import torch
7

8 from ..utils.potentials import LinearPotential, NonLinearPotential,
any_time_dependent_variable , time_dependent_variable

9

10

11 class DispersiveCavity(NonLinearPotential):
12 """Transversally pumped dispersive cavity potential with scanning pump
13

14 Args:
15 lattice_depth (Union[float, Callable]): The lattice depth in units of the recoil

energy. It can be set to be either a constant or a function of time.
16 atomic_detuning (float): The atomic frequency detuning with respect to the pump.
17 cavity_detuning (Union[float, Callable]): The cavity's frequency detuning with

respect to the pump. It can be set to be either a constant or a function of time.
18 cavity_decay (float): The cavity's decay rate.
19 cavity_coupling (float): The coupling constant between the gas and the cavity.
20 cavity_angle (float, optional): The angle in the 2D plane of the cavity. Defaults to

:math:`0`
21 imbalance_factor (float, optional): The imbalance factor for the pumping beam.

Defaults to 1.
22 waist (float, optional): the waist of the gaussian beam. Defaults to infinity
23 waist_offset_x: (float, optional): the offset of the waist of the gaussian beam in x-

axis in units of adim. length. Defaults to 0
24 waist_offset_y: (float, optional): the offset of the waist of the gaussian beam in y-

axis in units of adim. length. Defaults to 0
25 """
26

27 def __init__(self, lattice_depth: Union[float, Callable], atomic_detuning: float,
cavity_detuning: Union[float, Callable], cavity_decay: float, cavity_coupling: float,
cavity_angle: float = 0, pump_angle: float = np.pi/3, imbalance_factor: float = 1,

waist: float = np.inf, waist_offset_x: Union[float, Callable] = 0, waist_offset_y:
Union[float, Callable] = 0):

28

29 super().__init__()
30

31 self.lattice_depth = lattice_depth
32 self.atomic_detuning = atomic_detuning
33 self.cavity_detuning = cavity_detuning
34 self.cavity_decay = cavity_decay
35 self.cavity_coupling = cavity_coupling
36 self.cavity_angle = cavity_angle
37 self.pump_angle = pump_angle
38 self.gamma = imbalance_factor

21
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39 self.waist = waist
40 self.adim_offset_x = waist_offset_x
41 self.adim_offset_y = waist_offset_y
42

43 def on_propagation_begin(self):
44 self.is_time_dependent = any_time_dependent_variable(
45 self.cavity_detuning, self.lattice_depth, self.adim_offset_x, self.adim_offset_y)
46

47 self._cavity_detuning = time_dependent_variable(self.cavity_detuning)
48 self._lattice_depth = time_dependent_variable(self.lattice_depth)
49 self._adim_offset_x = time_dependent_variable(self.adim_offset_x)
50 self._adim_offset_y = time_dependent_variable(self.adim_offset_y)
51

52 self.g0 = 2*np.pi*self.cavity_coupling
53 self._atomic_detuning = 2*np.pi*self.atomic_detuning
54 self.kappa = 2*np.pi*self.cavity_decay
55 self.freq_d2 = self.gas.d2_pulse
56 self.lambda_pump = 2*np.pi*spconsts.c / (self.freq_d2+self._atomic_detuning)
57 self.adim_lambda_pump = self.lambda_pump/self.gas.adim_length
58 self.k_pump = 2*np.pi/self.lambda_pump
59 self.adim_k_pump = 2*np.pi/self.adim_lambda_pump
60 self.Er = 0.5 * (spconsts.hbar*self.k_pump)**2 / self.gas.mass
61 self.U0 = self.g0**2 / self._atomic_detuning
62 self._adim_waist = self.waist / self.gas.adim_length
63

64 self.R_cavity = self.gas.X * np.cos(self.cavity_angle) + self.gas.Y * np.sin(self.
cavity_angle)

65 self.COS2 = torch.cos(self.adim_k_pump*self.R_cavity)**2
66 self.c1 = self.gas.N_particles*self.gas.dx*self.gas.dy
67 self.c3 = self.c1*self.U0
68 self.eta1_prefactor = np.sqrt(self.Er*np.abs(self._atomic_detuning)/spconsts.hbar) *

self.g0/self._atomic_detuning*0.5*(self.gamma+1/self.gamma)
69 self.eta2_prefactor = np.sqrt(self.Er*np.abs(self._atomic_detuning)/spconsts.hbar) *

self.g0/self._atomic_detuning*0.5*(self.gamma-1/self.gamma)
70 self._cavity_lattice = self.COS2 * self.U0 / self.gas.adim_pulse
71

72 def get_alpha(self, psi: torch.tensor, time: float = None):
73 """Return the intracavity field
74

75 Args:
76 psi (torch.tensor): The wave function of the gas
77 time (float, optional): The time at which to compute the intracavity field.

Defaults to None.
78

79 Returns:
80 float: The intracavity field :math:`\\alpha`
81 """
82 order1 = (torch.abs(psi)**2*self.COS*torch.sqrt(self._gaussian_profile)).sum()
83 order2 = (torch.abs(psi)**2*self.SIN*torch.sqrt(self._gaussian_profile)).sum()
84 bunching = (torch.abs(psi)**2*self.COS2).sum()
85 self._cavity_detuning_tilde = 2*np.pi * self._cavity_detuning(time)-self.c3*bunching
86 self.c6 = self.c2-self.c3*bunching
87

88 self.eta1 = np.sqrt(self._lattice_depth(time))*self.eta1_prefactor
89 self.eta2 = np.sqrt(self._lattice_depth(time))*self.eta2_prefactor
90

91 alpha = self.c1*(self.eta1*order1+1j*self.eta2*order2)/self.c6
92

93 return alpha
94

95 def potential_function(self, X: torch.tensor, Y: torch.tensor, psi: torch.tensor, time:
float = None):

96 R_pump = (self.gas.X - self._adim_offset_x(time)) * np.cos(self.pump_angle) + (self.
gas.Y - self._adim_offset_y(time)) * np.sin(self.pump_angle)

97 R_pump_orth = - (self.gas.X - self._adim_offset_x(time)) * np.sin(self.pump_angle) +
(self.gas.Y - self._adim_offset_y(time)) * np.cos(self.pump_angle)

98 self.COS = torch.cos(self.adim_k_pump*R_pump) * torch.cos(self.adim_k_pump*self.
R_cavity)

99 self.SIN = torch.sin(self.adim_k_pump*R_pump) * torch.cos(self.adim_k_pump*self.
R_cavity)

100 self._gaussian_profile = 1/(1+(self.adim_lambda_pump*R_pump/(np.pi*self._adim_waist
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**2))**2)* \
101 torch.exp(-2 * R_pump_orth**2/(self._adim_waist**2 + (self.adim_lambda_pump*

R_pump/(np.pi*self._adim_waist))**2))
102 self._pump_lattice = np.sign(self._atomic_detuning) * self.Er * torch.cos(self.

adim_k_pump*R_pump)**2 / (spconsts.hbar * self.gas.adim_pulse) * self.
_gaussian_profile

103

104 self.c2 = 2*np.pi*self._cavity_detuning(time)+1j*self.kappa
105 alpha = self.get_alpha(psi, time)
106

107 self.pump_lattice = self._lattice_depth(time) * self._pump_lattice
108 self.cavity_lattice = torch.abs(alpha)**2 * self._cavity_lattice
109 self.interaction = 2 * torch.sqrt(self._gaussian_profile) / self.gas.adim_pulse * (

self.eta1*self.COS*torch.real(alpha) + self.eta2*self.SIN*torch.imag(alpha))
110

111 return self.pump_lattice + self.cavity_lattice + self.interaction



B
Source code: Density monitor

1 import torch
2 import numpy as np
3 import numpy.ma as ma
4

5 import fcntl
6 import json
7 import warnings
8 import matplotlib.pyplot as plt
9 import tempfile

10 from os import path
11 import ffmpeg
12 from shutil import rmtree
13 from abc import ABCMeta
14 from matplotlib import ticker
15 from .potentials import DispersiveCavity
16 from ..utils.plotting import pi_tick_formatter
17 from matplotlib.gridspec import GridSpec
18 from ..utils import prompt_yes_no, enumerate_chunk
19 import atexit
20 import signal
21 import psutil
22 from ..utils.callbacks import Callback
23

24 class DensityMonitor(Callback):
25 """Callback monitoring the cut through the middle of the density in y.
26

27 During the simulation, the values of cavity detuning, pump strength and cavity field are
stored. Once the simulation is finished, the saved parameters are accessible via the
:py:attr:`gpe.bec2D.callbacks.CavityMonitor.alpha`, :py:attr:`gpe.bec2D.callbacks.
CavityMonitor.pump` and :py:attr:`gpe.bec2D.callbacks.CavityMonitor.cavity_detuning`
tensors.

28

29 Args:
30

31 dispersive_cavity (DispersiveCavity): The cavity to be monitored.
32 save_every (int): Optional. The number of epochs after which the parameters should be

saved. Defaults to 1.
33 """
34

35 def __init__(self, output_file, y_cut_index, save_every=1, border_ind=np.array([0, -1]))
-> None:

36 super().__init__()
37 self.save_every = save_every
38 self.output_file = output_file
39 self.output_folder = path.dirname(output_file)
40 self.y_cut_index = y_cut_index
41 self.start_ind = border_ind[0]
42 self.stop_ind = border_ind[1]
43 #: list(float): A list of the times at which the parameters were saved. It is a list

of lists, where each inner list contains the times for a single propagation. At
the end of the simulation, it is converted to a PyTorch tensor.

44 self.times = []

24
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45

46 if not path.exists(self.output_folder):
47 raise Exception("The␣output␣folder␣does␣not␣exist")
48 if path.exists(self.output_file):
49 if not prompt_yes_no("The␣specified␣file␣already␣exists.␣Are␣you␣sure␣you␣want␣to

␣overwrite␣it?␣Y/n", True):
50 raise Exception("The␣output␣file␣already␣exists")
51

52

53 def _register_run(self):
54 with open(path.join(path.expanduser("~"), ".density_cuts_cleanup.json"), 'a+') as

file:
55 fcntl.flock(file, fcntl.LOCK_EX) # Acquire exclusive lock
56 file.seek(0)
57 try:
58 existing_data = json.load(file)
59 except (json.JSONDecodeError, EOFError):
60 existing_data = {}
61 warnings.warn("The␣executions␣register␣file␣does␣not␣exist␣and␣it␣will␣be␣

created.␣If,␣before␣now,␣you␣have␣run␣the␣animation␣callback␣and␣the␣
process␣has␣been␣interrupted,␣there␣might␣be␣some␣leftover␣temporary␣
folders.␣Please,␣check␣the␣folder␣/tmp/␣and␣delete␣eventual␣temporary␣
folders␣manually.")

62

63 existing_data.setdefault(str(psutil.Process().pid), []).extend([self.temp_dir])
64 file.truncate(0)
65 file.seek(0)
66 json.dump(existing_data, file)
67 file.flush()
68 fcntl.flock(file, fcntl.LOCK_UN) # Release lock
69

70 def _deregister_run(self, pid=None, folder=None):
71 if pid is None:
72 pid = str(psutil.Process().pid)
73

74 with open(path.join(path.expanduser("~"), ".density_cuts_cleanup.json"), 'a+') as
file:

75 fcntl.flock(file, fcntl.LOCK_EX) # Acquire exclusive lock
76 file.seek(0)
77 try:
78 existing_data = json.load(file)
79 except (json.JSONDecodeError, EOFError):
80 existing_data = {}
81 if pid in existing_data:
82 if folder is not None:
83 self.clear_dir(folder)
84 existing_data[pid] = [f for f in existing_data[pid] if f != folder]
85 if len(existing_data[pid]) == 0:
86 del existing_data[pid]
87 else:
88 for f in existing_data[pid]:
89 self.clear_dir(f)
90 del existing_data[pid]
91 file.truncate(0)
92 file.seek(0)
93 json.dump(existing_data, file)
94 file.flush()
95 fcntl.flock(file, fcntl.LOCK_UN) # Release lock
96

97 def _clean_leftovers(self):
98 try:
99 with open(path.join(path.expanduser("~"), ".density_cuts_cleanup.json"), "r") as

f:
100 runs = json.load(f)
101 for key, value in runs.items():
102 if not psutil.pid_exists(int(key)):
103 self._deregister_run(key)
104 except (json.JSONDecodeError, FileNotFoundError):
105 return
106

107 def clear_dir(self, dir):
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108 if path.exists(dir):
109 rmtree(dir)
110

111 def on_propagation_begin(self):
112 self.tensor_index = 0
113

114 self.temp_dir = tempfile.mkdtemp()
115

116 # Register the temporary folder for deletion at exit and on SIGINT. Check if the
folder exists before deleting it to avoid errors

117

118 self._clean_leftovers()
119 self._register_run()
120

121 atexit.register(self.clear_dir, self.temp_dir)
122 signal.signal(signal.SIGINT, lambda sig, frame: (self.clear_dir(self.temp_dir), self.

_deregister_run(), signal.default_int_handler(signal.SIGINT, None)) )
123 signal.signal(signal.SIGTERM, lambda sig, frame: (self.clear_dir(self.temp_dir), self

._deregister_run(), signal.default_int_handler(signal.SIGTERM, None)) )
124

125

126 def on_epoch_end(self, epoch):
127 if epoch % self.save_every != 0:
128 return
129

130 time = epoch*self.propagation_params["time_step"]
131 self.times.append(time*1000)
132 torch.save(self.gas.density[self.y_cut_index, self.start_ind:self.stop_ind].to(torch.

float16), path.join(self.temp_dir, f"density_cut_{self.tensor_index}.torch"))
133

134 self.tensor_index += 1
135

136 def plot_density_trace(self):
137 mask_even = torch.zeros_like(self.gas.x.cpu()[self.start_ind:self.stop_ind])
138 mask_odd = torch.zeros_like(self.gas.x.cpu()[self.start_ind:self.stop_ind])
139

140 self.density_trace = torch.load(path.join(self.temp_dir, f"density_cut_0.torch"),
map_location="cpu")

141 for i in range(1, self.tensor_index):
142 density_cut = torch.load(path.join(self.temp_dir, f"density_cut_{i}.torch"),

map_location="cpu")
143 self.density_trace = torch.vstack((self.density_trace, density_cut))
144

145 x_values = self.gas.x.cpu()[self.start_ind:self.stop_ind].numpy()
146 mask_odd = np.array([0.25 <= np.mod(x, 1) < 0.75 for x in x_values])
147

148 # Apply masks to the density data
149 density_odd = ma.masked_array(self.density_trace.cpu().numpy(), mask=np.tile(mask_odd

, (len(self.times), 1)))
150 density_even = ma.masked_array(self.density_trace.cpu().numpy(), mask=~np.tile(

mask_odd, (len(self.times), 1)))
151

152 plt.rcParams.update({'font.size': 42})
153

154 fig, ax = plt.subplots(figsize=(4*10, 3*10), layout="constrained")
155

156 # Add even density mesh
157 mesh_even = ax.pcolormesh(x_values, self.times.cpu().numpy(), density_even, shading='

nearest', cmap="Blues")
158 colorbar_even = plt.colorbar(mesh_even, ax=ax, label="density")
159

160 # Add odd density mesh
161 mesh_odd = ax.pcolormesh(x_values, self.times.cpu().numpy(), density_odd, shading='

nearest', cmap="Reds")
162 colorbar_odd = plt.colorbar(mesh_odd, ax=ax)
163 colorbar_odd.set_ticks([]) # Remove ticks from the second colorbar
164

165 # Set axis labels
166 ax.set_xlabel(r"$x$␣[$\lambda$]␣cut␣at␣$y$␣=␣" + str(np.round(self.gas.y[self.

y_cut_index].item(), 3)) + r"␣$\lambda$")
167 ax.set_ylabel(r"time␣[ms]")
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168

169 ax.tick_params(width = 3, length = 10)
170 colorbar_even.ax.tick_params(width = 3, length = 10)
171 colorbar_even.outline.set_linewidth(3)
172 colorbar_odd.outline.set_linewidth(3)
173 for axis in ['top','bottom','left','right']:
174 ax.spines[axis].set_linewidth(3)
175

176 fig.savefig(self.output_file)
177

178 plt.rcParams.update({'font.size': 10})
179

180 print(f"Density␣trace␣saved␣to␣{self.output_file}")
181

182

183 def on_propagation_end(self):
184 self.times = torch.tensor(self.times)
185 self.plot_density_trace()
186 self.clear_dir(self.temp_dir)
187 self._deregister_run(folder=self.temp_dir)
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