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Abstract

Visual localization and mapping are important problems in Computer Vision with
widespread use in many applications like Augmented Reality (AR) and Robotics.
This problem has been extensively studied in the past decades, resulting in mature
solutions based on correspondences across images, well-understood projective
geometry, and 3D maps as sparse point clouds. Despite their complexity, such
systems struggle with challenges that arise from real-world data. Deep learning
offers a promising avenue to address these limitations and reach higher accuracy
and robustness.

One strain of research involves replacing specific components of the existing algo-
rithms with Deep Neural Networks (DNNs). While this has led to notable perfor-
mance improvements, it has also increased system complexity. Additionally, these
gains are often constrained because the components are trained with proxy objec-
tives that do not fully capture the ultimate goal of localization. Alternatively, some
research has focused on developing simpler black-box DNNs trained end-to-end to
replace these complex systems. They have the potential to learn stronger priors but
have so far demonstrated limited generalization and interpretability. The balance
between generalization and end-to-end training necessitates hybrid algorithms that
effectively combine learning capacity with our existing knowledge of 3D geometry.

In the first part of this thesis, we apply this hybrid design philosophy to the prevalent
paradigm that is based on 3D maps. We introduce two new algorithms for mapping
and localization, both based on the alignment of learned features across different
views. To facilitate progress in this research area, we also introduce a new benchmark
tailored for AR applications. In the second part, we explore the use of more compact
and interpretable 2D maps also used by humans. We demonstrate that end-to-end
training enables effectively learning to associate such maps with visual observations.
We first develop a new algorithm for localizing images within a 2D semantic map.
We then extend our approach to learn a new map representation optimized for visual
localization. We introduce an algorithm to construct these 2D maps from visual
inputs. Overall, this thesis makes a significant step towards localization and mapping
algorithms that integrate robust data-driven priors about the real world.





Résumé

La localisation et la cartograhie à partir d’images sont des problèmes importants
dans le domaine de la vision par ordinateur, avec de nombreuses applications telles
que la Réalité Augmentée et la robotique. Ce problème a été considérablement
étudié au cours des dernières décennies. Cela a abouti à des solutions matures
basées sur des correspondences entre images, la géométrie projective, et des carte
3D composées de nuages de points épars. Malgré leur complexité, ces systèmes ren-
contrent des difficultés face à certaines conditions défavorables que l’on trouve dans
le monde réel. L’apprentissage profond offre une voie prometteuse pour surmonter
ces limitations et atteindre une plus grande précision et robustesse.

Une approche dans ce domaine de recherche consiste à remplacer certains compo-
sants spécifiques des algorithmes existants par des réseaux neuronaux artificiels
profonds. Bien que cela ait conduit à des améliorations notables des performances,
cela a également augmenté la complexité des systèmes. De plus, ces gains sont
souvent limités car les composants sont entraı̂nés avec des objectifs de substitution
qui ne capturent pas pleinement l’objectif ultime de la localisation. Alternative-
ment, certaines recherches se sont concentrées sur le développement de réseaux
neuronaux plus simples et entraı̂nés de bout en bout pour remplacer ces systèmes
complexes. Cette approche peut potentiellement apprendre une modélisation a priori
du monde plus expressive. Son interprétabilité et sa capacité de généralisation en
dehors de la distribution d’entraı̂nement sont cependant limités. Ce compromis entre
généralisation et entraı̂nement de bout en bout requiert des algorithmes hybrides
combinent d’une meilleur manière la capacité d’apprentissage avec nos théories
existante de géométrie 3D.

Dans la première partie de cette thèse, nous appliquons cette philosophie au para-
digme dominant basé sur des cartes 3D. Nous proposons deux nouveaux algorithmes
pour la localisation and la cartographie visuelles, tous deux basés sur un aligne-
ment des caractéristiques locales au sein de plusieurs images. Pour favoriser les
progrès dans ce domaine de recherche, nous proposons un nouveau jeu de données
et test de performance spécifiquement conçu pour les applications de Réalité Aug-
mentée. Dans la deuxième partie, nous explorons l’utilisation de cartes 2D simi-



laires à celles utilisées par l’Homme et plus compactes et interprétable que les
nuages de points 3D. Nous démontrons que l’entraı̂nement de bout en bout permet
d’apprendre efficacement à associer ces cartes avec des observations visuelles. Nous
développons d’abord un nouvel algorithme pour localiser des images au sein d’une
carte sémantique 2D. Sur cette base, nous étendons notre approche pour apprendre
une nouvelle représentation de carte optimisée pour la localisation visuelle. Nous
proposons un nouvel algorithme pour construire ces cartes 2D à partir d’observations
visuelles. Cumulativement, cette thèse marque une avancée significative vers des
algorithmes de localisation et de cartographie basés sur de puissants modèles du
monde a priori dérivés des données réelles.
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C H A P T E R 1
Introduction

1.1. Localization and mapping

Image-based localization and mapping are two related problems in photogrammetry
and computer vision with widespread use in many applications. Localization, or
positioning, is concerned with estimating the location of a device in space given
measurements by on-device sensors. The location, or pose, is expressed with respect
to a given coordinate frame and can be represented by a 2-dimensional (2D) or 3-
dimensional (3D) position and possibly with an associated orientation. Localization
can be based on diverse technologies and sensors, including radio receivers, inertial
measurement units, laser scanners, or cameras. Relying on cameras offers several
benefits, as they are inexpensive, can now be found in most consumer devices, and
capture rich information about the environment. How to best make use of such
information brings new challenges, making image-based localization the focus of
this thesis.

Localization often requires a digital map, or representation, of the environment.
Humans commonly rely on 2D maps, which represent the Earth’s surface, to find
their way around. From paper maps to phone applications, such maps are ubiquitous
in our daily lives. Examples include planimetric maps, which show the location
and spatial arrangement of features, and topographic maps, which show the ground
relief and land cover. In the field of computer vision, maps often represent physical
properties of the environment in 3D, such as its geometric shape in the form of
surfaces. This often relies on computer-friendly data structures like point clouds or
meshes. 3D maps often carry additional information, whether it is physical, such as
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the appearance of each point in space, in the form of colors, or the material that it is
made of, or human-defined, like the semantic classification of each object.

Mapping is the process of estimating a map from raw sensor measurements. In
the case of visual mapping, measurements are images taken from different view-
points and at different points in time. Visual mapping often entails estimating the
calibration of the camera, which includes the pose of each image, as position and
orientation, and its intrinsic parameters, as zoom level, lens distortion, or color
profile. Visual mapping thus often involves the iterative or joint localization of the
images.

In the field of computer vision, mapping and localization are hence highly inter-
dependent. In this thesis, we focus on tackling these problem using images only. We
first calibrate the mapping images and estimate a map from them, which we can later
use to localize a new query image. Such process can be applied to environments of
various scales, such as a single room, a building, a city, or the entire world, with
various levels of spatial accuracy in map and camera poses, from millimeter to
meter.

1.2. Applications and challenges

Visual localization is useful in applications that require contextual information
related to a given location in the environment. In Augmented Reality (AR), the pose
of the device should be consistent both across time, to keep virtual content static, and
across devices, to share content between users. Similarly, in order to navigate to a
given goal, humans and autonomous robots need to know both their starting location
and a map of their environment. More generally, the camera calibration estimated
by the mapping process are required by multiple downstream computer visions tasks
like 3D reconstruction, 3D scene understanding, and novel view synthesis.

These applications bring diverse challenges. Mapping and localization algorithms
should be robust to changes that occur in the environment between times at which
mapping and query images are taken. This includes appearance changes due to
varying illumination conditions at different times of the day, times of the year,
or weather. Appearance changes also stem from motion blur due to fast motion
and occur when images are taken by camera with different imaging properties.
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Chapter 1: Introduction

Differently, structural changes in the 3D shape of the environment stem from
moving entities (living beings or motorized objects), cyclic natural phenomena
(leaves fall, snow melts), or irreversible changes (buildings are torn down or built).

Some environments are particularly challenging, such as those that exhibit no dis-
tinctive texture or objects — white rooms and deserts. The way images are taken
also brings challenges, such as large viewpoint differences between the images,
in terms of distance to the scene, rotation, or perspective change. Establishing a
map from a small number of images with extreme viewpoints is thus significantly
more difficult than when a large number of well-distributed images is available.
Finally, the scale at which such algorithms should operate can impose tight con-
straints on their efficiency, in terms of both information storage and computational
requirements.

1.3. Background and approaches

Various approaches to visual localization have been studied over the years. One
generally distinguishes the problems of place recognition and pose estimation. The
former is concerned with estimating a coarse location in a scalable manner. One
solution to this is image retrieval, which finds the mapping image that is most
similar to the query image [10, 74, 101, 139, 230, 238, 322]. The location accuracy
depends on the density of mapping images but these only need to be coarsely
located, for example using radio receivers like Global Navigation Satellite System
(GNSS). Differently, pose estimation is concerned with extrapolating beyond the
set of mapping viewpoints to accurately localize any image. This problem is much
more challenging and is the main focus of this thesis. Nonetheless, both problems
are often solved together as place recognition can restrict the search space of pose
estimation, which is especially beneficial in large-scale environments [138,198,233,
261, 262, 308, 323]. This is often called hierarchical localization.

Classical 3D geometry: The estimation of the 6-DoF (Degree of Freedom) pose
of an image is a long-standing problem in computer vision. It is nowadays tackled
by well-established algorithms based on 3D geometry and sparse 3D point clouds.
The core building block of these algorithms are image correspondences. These are
sets of pixels coordinates that correspond to the same 3D point observed in different
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images. During the mapping stage, given correspondences between mapping images
that observe the same part of the environment, specialized algorithms recover the
camera calibration and the 3D coordinates, generally as a sparse 3D point cloud.
These algorithms are often based on model fitting [68, 69, 95, 114, 212] and robust
least-squares optimization [117, 192, 324]. This process is known as Simultaneous
Localization and Mapping (SLAM) or Structure-from-Motion (SfM) depending on
the nature of the inputs — SLAM operates on video sequences [78, 152, 206, 213]
while SfM requires only unordered images [2, 108, 109, 236, 278, 294, 353]. To later
localize a query image, one establishes correspondences between query pixels and
3D points, from which a camera pose is fitted.

Since the camera calibration is a low-dimensional geometric model, one needs
only few correspondences to estimate it — 3 correspondences for an absolute
pose, 5 correspondences for a relative pose. As such, we generally match only a
subset of pixels instead of all of them for computational efficiency. In the most
common formulation, correspondences are established between a set of salient
points, also called keypoints. These are easy to find in different images and well-
distributed across each image, and thus often correspond to corners or blobs [116,
175,183,220,251,253]. Corresponding points are associated using visual descriptors.
This fingerprint is a high-dimensional vector that encodes the underlying image
content in the vicinity of a given point, often by aggregating statistics of the image
intensity [11, 29, 43, 183, 253]. Keypoints and descriptors are collectively called
local features. Correspondences can also be established implicitly by fitting the
geometric model to directly align the image intensity by minimizing a photometric
cost [18, 90, 91, 184]. This generally requires a good initial guess, as in SLAM, and
is thus less applicable to localization and SfM.

Alternative map representations: Humans often rely on 2D maps to interact
with their environments. Examples include planimetric maps, like floorplans for
indoors or OpenStreetMap [218] for outdoors, and topographic maps for natural
environments. 2D maps can only provide 2D positioning, which is sufficient for
many applications since the motion of beings and objects is often constrained to
the 2D surface of the Earth because of gravity. However, 2D maps have seen little
adoption for image-based machine applications, mostly because it is unclear how to
associate their features, which are geometric or semantic, with visual observations.
This is unlike LiDAR measurements that are by nature geometric.
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Chapter 1: Introduction

Feature-based localization and mapping with 3D sparse point clouds has been
extensively studied and developed for decades. It has reached a level of maturity
that makes it widely used in various industrial applications. While this problem can
be considered solved in the nominal scenarios, existing approaches struggle in the
most challenging scenarios described above. The emergence of machine learning
for computer vision offers opportunities to tackle them.

Deep learning: A machine learning algorithm can be trained to estimate an output
for a new input given a dataset of, in its supervised variant, input-output pairs. Deep
Neural Networks (DNNs) are a type of such algorithms that have recently seen the
fastest progress and adoption thanks to their impressive capability to learn complex
patterns from very large datasets. In the field of computer vision, deep learning
was first successfully applied to tasks that involve 2D images. Such tasks include
image classification [80, 156, 165], which classifies a foreground object into a set
of pre-defined classes, object detection [107, 242], which draws a bounding box
around each known object and classifies it, or semantic segmentation, which assigns
a semantic class to each pixel in the image [16, 181, 221].

Deep learning has been only later applied to problems involving 3D geometry, like
localization and mapping. One strain of research has studied how to improve spe-
cific components of the classical pipeline using DNNs. Such components include
keypoint detection [27, 81, 85, 245, 330], description [21, 203, 317, 364], match-
ing [177,263,365,371], model fitting [22,32,35,38,59,240], and even least-squares
optimization [71, 186, 311]. The resulting algorithms often exhibit a higher robust-
ness to challenging viewing conditions by replacing brittle heuristics with more
reliable priors learned from the training data. Such priors include, but are not limited
to, how appearance changes over time and viewpoints, what keypoints are the most
stable and reliable, what are likely motions between two images, or what shapes
indoor and outdoor environments often have.

Learned algorithms however bring additional challenges. Since their design and
training requires careful implementation and additional expertise, they undoubtedly
complexify the localization and mapping pipelines. The lack of interpretability
of DNNs also makes it harder to tune the different components such that they fit
together, often requiring the re-training of the subsequent ones. One would naturally
want to train all components jointly in an end-to-end manner. This is difficult due to
the complexity of the entire pipeline and to the fact that some steps, like keypoint
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and correspondence selection, are not differentiable or have derivatives that exhibit
high variance.

End-to-end learning: A second research strain has studied how to replace this
complex pipeline with a simpler DNN trained end-to-end. Mapping algorithms of
this kind include DeMon [333], which, given two images, regresses their relative
pose and the 3D structure that they observe. Localization algorithms of this kind
include DSAC [35], which learns to regress the 3D coordinate associated with each
pixel of a given query image. Such approaches have clear benefits: they are simpler
algorithms and can learn stronger priors from higher-level supervision. This makes
them more robust to challenging viewing conditions and less prone to catastrophic
failures.

Black-box neural networks however require large labeled training datasets which are
costly to acquire. They exhibit poor generalization outside the training distributions,
for example in terms of camera models, viewpoints, types of environments, or visual
changes [275]. They are generally less accurate than the classical algorithms and lack
flexibility and interpretability — they often cannot leverage partial prior information
about camera calibration, poses, or 3D structure. Localization algorithms often even
need to implicitly encode the map into their learnable parameters and thus cannot
generalize to new scenes [35, 149].

We hypothesize that these drawbacks often stem from a key issue: such approaches
generally do not leverage the extensive knowledge of 3D multi-view geometry
that we have collectively accumulated through decades of research. This includes
the process of image formation, the modeling of lens distortion, or how visual
observation relate to quantities like relative poses through epipolar geometry. Neural
networks thus need to re-discover this knowledge from scratch each time they are
trained. Because these learning algorithms are only statistical, rather than symbolic,
they can only approximate such knowledge within the training distribution with
no guarantees to generalize well outside of it. How to best leverage 3D geometry
within DNNs remains an open problem.

6



Chapter 1: Introduction

1.4. Contributions

In this thesis, we explore the combination of deep learning and 3D geometry for
problems related to visual localization and mapping. We argue that processes for
which we have reliable and universal mathematical models, like the formation of an
image, should rely on hard geometric rules and not be re-discovered by the learning
algorithm. Differently, phenomena that cannot be easily modeled mathematically,
like the representation and comparison of appearance or semantics information,
should be learned by the algorithms. This requires hybrid DNN architectures that
combine geometric and learning components. Optimal data-driven priors should be
learned to optimize the end task of localization or mapping. This requires DNNs
that can be trained with only high-level supervision by end-to-end backpropagation.
As we will see, one way to leverage geometry is as part of an optimization process
that is driven by the learned components.

In Part I, we apply this design strategy to the common paradigm that is based on
sparse correspondences and 3D point clouds. We derive two new algorithms for
mapping and localization that are both based on the alignment of learned features
across views. To track the progress in this area of research, we introduce a new
benchmark tailored at AR applications.

In Part II, we later note that end-to-end training enables the use of 2D semantic or
geometric maps by learning effective representations to associate visual observations
— task for which it was previously difficult to design effective heuristics. We first
derive a new algorithm to localize an image in 2D semantic maps. We then extend
it to learn new map representations that are tailored for visual localization. This
requires new algorithms to perform both mapping and localization with such maps.

We summarize the main contributions of this thesis:

Chapter 2: We augment SfM with a refinement process that optimizes 2D
keypoints or camera poses and 3D points to align deep features across multiple
views. Such features are sufficiently discriminative for a fine-grained alignment
but also robust to appearance and viewpoint changes. This refinement process
improves the accuracy and robustness of SfM with a small overhead. This chapter
is based on work published at ICCV 2021 [176] and TPAMI 2023 [266].
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Chapter 3: We leverage this feature alignment process for camera pose re-
finement. We design an algorithm that learns strong data priors by end-to-end
training from pixels to pose and exhibits exceptional generalization to new scenes
by separating model parameters and scene geometry. The resulting algorithm
learns features that can align images despite long-term appearances changes and
dynamic objects. It is surprisingly robust to poor initialization. This chapter is
based on work published at CVPR 2021 [268].

Chapter 4: AR is one of the primary applications of visual localization and
mapping but research on these problems is still mostly driven by unrealistic
benchmarks not representative of real-world AR scenarios. To bridge this gap, we
introduce a new dataset and benchmark based on diverse and large-scale scenes
recorded with head-mounted and hand-held AR devices along realistic trajectories.
The results offer new insights on current research and reveal promising avenues
for future work in the field of multi-sensor localization and mapping for AR. This
chapter is based on work published at ECCV 2022 [265].

Chapter 5: We make a first step towards leveraging 2D maps for visual localiza-
tion. As the gravity direction is often measured by inertial sensors, we reduce this
problem to estimating a 3-DoF pose. We then derive a learning algorithm that is
supervised only by camera poses and learns to perform semantic matching with a
wide range of map elements in an end-to-end manner. The algorithm can leverage
globally available maps from OpenStreetMap [218], enabling anyone to localize
anywhere such maps are available. This chapter is based on work published at
CVPR 2023 [264].

Chapter 6: We introduce a framework to learn abstract 2D maps that are optimal
for visual localization. We design an algorithm to build such maps from visual
observations by both ground-level and aerial cameras. It is trained to align maps
estimated from different inputs, supervised only with camera poses over tens of
millions of StreetView images. The resulting algorithm can resolve the location of
challenging image queries beyond the reach of traditional methods, outperforming
the approaches based on 3D point clouds by a large margin. This chapter is based
on work published at NeurIPS 2023 [267].
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Chapter 1: Introduction

1.5. Publications

This thesis builds from the following publications:

Pixel-Perfect Structure-from-Motion with Featuremetric Refinement
Philipp Lindenberger∗, Paul-Edouard Sarlin∗, Viktor Larsson, Marc Pollefeys
in International Conference on Computer Vision (ICCV) 2021
Best student paper award

Pixel-Perfect Structure-from-Motion with Featuremetric Refinement
Paul-Edouard Sarlin∗, Philipp Lindenberger∗, Viktor Larsson, Marc Pollefeys
in IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 2023

Back to the Feature:
Learning Robust Camera Localization from Pixels to Pose
Paul-Edouard Sarlin∗, Ajaykumar Unagar∗, Måns Larsson, Hugo Germain, Carl
Toft, Viktor Larsson, Marc Pollefeys, Vincent Lepetit, Lars Hammarstrand, Fredrik
Kahl, Torsten Sattler
in Computer Vision and Pattern Recognition (CVPR) 2021

LaMAR: Benchmarking Localization and Mapping for Augmented Reality
Paul-Edouard Sarlin∗, Mihai Dusmanu∗, Johannes L. Schönberger, Pablo Speciale,
Lukas Gruber, Viktor Larsson, Ondrej Miksik, Marc Pollefeys
in European Conference on Computer Vision (ECCV) 2022

OrienterNet: Visual Localization in 2D Public Maps with Neural Matching
Paul-Edouard Sarlin, Daniel DeTone, Tsun-Yi Yang, Armen Avetisyan, Julian
Straub, Tomasz Malisiewicz, Samuel Rota Bulo, Richard Newcombe, Peter
Kontschieder, Vasileios Balntas
in Computer Vision and Pattern Recognition (CVPR) 2023

SNAP: Self-Supervised Neural Maps
for Visual Positioning and Semantic Understanding
Paul-Edouard Sarlin, Eduard Trulls, Marc Pollefeys, Jan Hosang, Simon Lynen
in Advances in Neural Information Processing Systems (NeurIPS) 2023

The code associated with all publications is publicly available, ensuring that the re-
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sults are reproducible. Authors marked by * contributed equally to the corresponding
publication.

Throughout the PhD, I also contributed to 3 publications that are not included in
this thesis:

LightGlue: Local Feature Matching at Light Speed
Philipp Lindenberger, Paul-Edouard Sarlin, Marc Pollefeys
in International Conference on Computer Vision (ICCV) 2023

GeoCalib: Learning Single-image Calibration with Geometric Optimization
Alexander Veicht, Paul-Edouard Sarlin, Philipp Lindenberger, Marc Pollefeys
in European Conference on Computer Vision (ECCV) 2024

Structure-from-Motion from Pixel-wise Correspondences
Philipp Lindenberger, Paul-Edouard Sarlin, Marc Pollefeys
under review, 2023
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Part I.

Localization and Mapping
with 3D Maps
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C H A P T E R 2
Structure-from-Motion
with Featuremetric Refinement

Finding local features that are repeatable across multiple views is a cornerstone of
sparse 3D reconstruction. The classical image matching paradigm detects keypoints
per-image once and for all, which can yield poorly-localized features and propagate
large errors to the final geometry. In this chapter, we refine two key steps of
structure-from-motion by a direct alignment of low-level image information from
multiple views: we first adjust the initial keypoint locations prior to any geometric
estimation, and subsequently refine points and camera poses as a post-processing.
This refinement is robust to large detection noise and appearance changes, as it
optimizes a featuremetric error based on dense features predicted by a neural
network. This significantly improves the accuracy of camera poses and scene
geometry for a wide range of keypoint detectors, challenging viewing conditions,
and off-the-shelf deep features. Our system easily scales to large image collections,
enabling pixel-perfect crowd-sourced localization at scale.

2.1. Introduction

Sparse or dense 3D reconstructions of the environment can be built from images
using Structure-from-Motion (SfM), which associates observations across views to
estimate camera parameters and 3D scene geometry. Sparse reconstruction based
on matching local image features [30, 81, 85, 116, 183, 226, 245, 263] is the most
common due to its scalability and its robustness to appearance changes introduced
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Part I: Localization and Mapping with 3D Maps

featuremetric refinement

Structure
from

Motion

refined

Figure 2.1.: From sparse to dense. We improve the accuracy of sparse SfM by refining 2D
keypoints, camera poses, and 3D points using the direct alignment of deep features. This
featuremetric optimization leverages dense image information but can scale to scenes with
thousands of images. Such refinement results in subpixel-accurate reconstructions, even in
challenging conditions.

by varying devices, viewpoints, and temporal conditions found in crowdsourced
scenarios [2, 99, 123, 138, 171, 179, 237].

SfM assumes that sparse interest points [30, 81, 85, 116, 183, 245, 252, 330, 364]
can be reliably detected across views. It typically selects such points for each
image independently and relies on these initial detections for the remainder of
the reconstruction process. However, detecting keypoints from a single view is
inherently inaccurate due to appearance changes and discrete image sampling [105].
The advent of Convolutional Neural Network (CNN)s for detection has magnified
this issue, as they generally do not retain local image information and instead favor
global context.

Multi-view geometric optimization with bundle adjustment (BA) [4, 140, 324]
is commonly used to refine cameras and points using reprojection errors. Dus-
manu et al. [86] proposed to refine keypoint locations prior to SfM via an analogous
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Chapter 2: Structure-from-Motion with Featuremetric Refinement

Sparse feature matching SfM result

CNN

Dense features

Featuremetric
keypoint

adjustment

direct optimization

Featuremetric
bundle adjustment

raw
refined

Figure 2.2.: Refinement pipeline. Our refinement works on top of any SfM pipeline that is
based on local features. We perform a two-stage adjustment of keypoints and bundles. The
approach first refines the 2D keypoints only from tentative matches by optimizing a direct
cost over dense feature maps. The second stage operates after SfM and refines 3D points and
poses with a similar featuremetric cost.

geometric cost constrained with local optical flow. This can improve SfM, but has
limited accuracy and scalability.

In this chapter, we argue that local image information is valuable throughout the
SfM process to improve its accuracy. We adjust both keypoints and bundles, before
and after reconstruction, by direct image alignment [75, 90, 184] in a learned feature
space. Exploiting this locally-dense information is significantly more accurate
than geometric optimization, while deep, high-dimensional features extracted by
a CNN ensure wider convergence in challenging conditions. This formulation
elegantly combines globally-discriminative sparse matching with locally-accurate
dense details. It is applicable to both incremental [278, 295] and global [24, 58, 195]
SfM irrespective of the types of sparse or dense features.

We validate our approach in experiments evaluating the accuracy of both 3D structure
and camera poses in various conditions. We demonstrate drastic improvements
for multiple hand-crafted and learned local features using off-the-shelf CNNs.
The resulting system produces accurate reconstructions and scales well to large

15



Part I: Localization and Mapping with 3D Maps

scenes with thousands of images. In the context of visual localization, it can, in
addition to providing a more accurate map, also refine poses of single query images
with minimal overhead. We also study in details the sensitivity of the results to
various parameters and thus provide insights on how our system can be tuned to fit
different use cases and requirements. Finally, we demonstrate that our refinement
also improves the accuracy of mapping and localization with (semi-)dense image
correspondences and that it scales well to handle denser reconstructions.

For the benefit of the research community, our implementation is freely available as
an extension to COLMAP [278] and to the popular localization toolbox hloc [260,
261]. We believe that our featuremetric refinement can significantly improve the
accuracy of existing datasets [273] and push the community towards sub-pixel
accurate localization at large scale.

2.2. Related work

Image matching is at the core of SfM and visual SLAM, which typically rely on
sparse local features for their efficiency and robustness. The process i) detects a small
number of interest points, ii) computes their visual descriptors, iii) matches them
with a nearest neighbor search, and iv) verifies the matches with two-view epipolar
estimation and Random Sample Consensus (RANSAC). The correspondences then
serve for relative or absolute pose estimation and 3D triangulation. As keypoints
are sparse, small inaccuracies in their locations can result in large errors for the
estimated geometric quantities.

Differently, dense matching [64, 178, 247, 285, 303, 320, 327] considers all pixels
in each image, resulting in denser and more accurate correspondences. It has
been successful for constrained settings like optical flow [137, 302] or stereo depth
estimation [362], but is not suitable for large-scale SfM due to its high computational
cost due to many redundant correspondences. Several recent works [170, 246, 308,
377] improve the matching efficiency by first matching coarsely and subsequently
refining correspondences using a local search. This is however limited to image pairs
and thus cannot create point tracks required by SfM. To overcome this limitation,
these works group adjacent correspondences using a coarse grid, which impairs the
accuracy of SfM.
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Chapter 2: Structure-from-Motion with Featuremetric Refinement

Our work combines the best of both paradigms by leveraging dense local information
to refine sparse observations. It is inherently amenable to SfM as it can optimize all
locations over multiple views in a track simultaneously. We show that it can yield
highly-accurate reconstructions from even dense but imprecise correspondences.

Subpixel estimation is a well-studied problem in correspondence search. Common
approaches either upsample the input images or fit polynomials or Gaussian distri-
butions to local image neighborhoods [98, 125, 134, 183, 277]. With the widespread
interest in CNNs for local features, solutions tailored to 2D heatmaps have been
recently developed, such as learning fine local sub-heatmaps [132] or estimating
subpixel corrections with regression [65,312] or the soft-argmax [216,366]. Cleaner
heatmaps can also arise from aggregating predictions over multiple virtual views
using data augmentation [81].

Detections or local affine frames can be combined across multiple views with known
poses in a least-squares geometric optimization [89, 324]. Dusmanu et al. [86]
instead refine keypoints solely based on tentative matches, without assuming known
geometry. This geometric formulation exhibits remarkable robustness, but is based
on a local optical flow whose estimation for each correspondence is expensive
and approximate. We unify both keypoint and bundle optimizations into a joint
framework that optimizes a featuremetric cost, resulting in more accurate geometries
and a more efficient keypoint refinement.

Direct alignment optimizes differences in pixel intensities by implicitly defining
correspondences through the motion and geometry. It therefore does not suffer from
geometric noise and is naturally subpixel accurate via image interpolation. Direct
photometric optimization has been successfully applied to optical flow [18, 184],
visual odometry [75,90,91,150], SLAM [6,282], Multi-View Stereo (MVS) [79,82,
363], and pose refinement [283]. It generally fails for moderate displacements or
appearances changes, and is thus not suitable for large-baseline SfM. One notable
work by Woodford & Rosten [354] refines dense SfM+MVS models with a robust
image normalization. It focuses on dense mapping with accurate initial poses and
moderate appearance changes. Georgel et al. [96] instead estimate more accurate
relative poses by elegantly combining photometric and geometric costs. They show
that dense information can improve sparse estimation but their approach ignores
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appearance changes. Differently, our work improves the entire SfM pipeline starting
with tentative matches and addresses larger, challenging changes.

To improve on the weaknesses of photometric optimization, numerous recent works
align multi-dimensional image representations. Examples of this featuremetric
optimization include frame tracking with handcrafted [7, 223] or learned descrip-
tors [71,186,339,340,357], optical flow [9,57], MVS [367], and dense SfM in small
scenes [311]. Here we extend this paradigm to sparse SfM and propose an efficient
algorithm that scales to thousands of images. We show that learning task-specific
wide-context features is not necessary and demonstrate highly accurate refinements
with off-the-shelf features.

In conclusion, our work is the first to apply robust featuremetric optimization to a
large-scale sparse reconstruction problem and show significant benefits for visual
localization.

2.3. Background

Given N images {Ii} observing a scene, we are interested in accurately estimating
its 3D structure, represented as sparse points {Pj ∈ R3}, intrinsic parameters {Ci}
of the cameras, and the poses {(Ri, ti) ∈ SE(3)} of the images, represented as
rotation matrices and translation vectors.

A typical SfM pipeline performs geometric estimation from correspondences be-
tween sparse 2D keypoints {pu} observing the same 3D point from different views,
collectively called a track. Association between observations is based on matching
local image descriptors {du ∈ RD}, but the estimated geometry relies solely on the
location of the keypoints, whose accuracy is thus critical. Keypoints are detected
from local image information for each image individually, without considering
multiple views simultaneously. Subsequent steps of the pipeline discover additional
information about the scene, such as its geometry or its multi-view appearance. Two
approaches leverage this information to reduce the detection noise and refine the
keypoints.

Global refinement: Bundle adjustment [324] is the gold standard for refining
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Chapter 2: Structure-from-Motion with Featuremetric Refinement

structure and poses given initial estimates. It minimizes the total geometric error

EBA =
∑
j

∑
(i,u)∈T (j)

‖Π (RiPj + ti,Ci)− pu‖γ , (2.1)

where T (j) is the set of images and keypoints in track j, Π(·) projects to the
image plane, and ‖·‖γ is a robust norm [113]. This formulation implicitly refines
the keypoints while ensuring their geometric consistency. When available, it can
incorporate uncertainties in the location of the initial detections, but often requires
many of such observations to reduce the geometric noise. Operating on an existing
reconstruction, it cannot recover observations arising from noisy keypoints that are
matched correctly but discarded by the geometric verification.

Track refinement: To improve the accuracy of the keypoints prior to any geometric
3D estimation, Dusmanu et al. [86] optimize their locations over tentative tracks
formed by raw, unverified matches. They exploit the inherent structure of the match-
ing graph to discard incorrect matches without relying on geometric constraints.
Given two-view dense flow fields {Tv→u} between the neighborhoods of matching
keypoints u and v, this keypoint adjustment optimizes, for each tentative track j, the
multi-view cost

EjKA =
∑

(u,v)∈M(j)

‖pv + Tv→u[pv]− pu‖γ , (2.2)

whereM(i) denotes the set of matches that forms the track and [·] is a lookup with
subpixel interpolation. A deep neural network is trained to regress the flow of a
single point from two input patches and the flow field is interpolated from a sparse
grid. This dramatically improves the keypoint accuracy, but some errors remain as
the regression and the interpolation are only approximate.

Both bundle and keypoint adjustments are based on geometric observations, namely
keypoint locations and flow, but do not account for their respective uncertainties.
They thus require a large number of observations to average out the geometric noise
and their accuracy is in practice limited.
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2.4. Approach

Summarizing dense image information into sparse points is necessary to perform
global data association and optimization at scale. However, refining geometry is
an inherently local operation, which, we show, can efficiently benefit from locally-
dense pixels. Given constraints provided by coarse but global correspondences
or initial 3D geometry, the dense information only needs to be locally accurate
and invariant but not globally discriminative. While SfM typically discards image
information as early as possible, we instead exploit it in several steps of the process
thanks to direct alignment. Leveraging the power of deep features, this translates
into featuremetric keypoint and bundle adjustments that elegantly integrate into
any SfM pipeline by replacing their geometric counterparts. Figure 2.2 shows an
overview.

We first introduce the featuremetric optimization in Sec. 2.4.1. We then describe our
formulations of keypoint adjustment (KA), in Sec. 2.4.2, and bundle adjustment, in
Sec. 2.4.3, and analyze their efficiency.

2.4.1. Featuremetric optimization

Direct alignment: We consider the error between image intensities at two sparse
observations: r = Ii[pu]− Ij [pv]. Local image derivatives implicitly define a flow
from one point to the other through a gradient descent update:

Tv→u[pv] ∝ −
∂Ij
∂p

[pv]
> r . (2.3)

This flow can be efficiently computed at any location in a neighborhood around v,
without approximate interpolation nor descriptor matching. It naturally emerges
from the direct optimization of the photometric error, which can be minimized
with second-order methods in the same way as the aforementioned geometric costs.
Unlike the flow regressed from a black-box neural network [86], this flow can be
made consistent across multiple view by jointly optimizing the cost over all pairs of
observations.
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Learned representation: SfM can handle image collections with unconstrained
viewing conditions exhibiting large changes in terms of illumination, resolution, or
camera models. The image representation used should be robust to such changes and
ensure an accurate refinement in any condition. We thus turn to features computed
by deep CNNs, which can exhibit high invariance by capturing a large context,
yet retain fine local details. For each image Ii, we compute a D-dimensional, L2-
normalized feature map Fi ∈ RW×H×D at identical resolution. We use the same
representations for keypoint and bundle adjustments, requiring a single forward pass
per image. Our experiments show that multiple off-the-shelf dense local descriptors
can result in highly accurate refinements. However, our formulation can also be
applied to robust intensity representations, such as the normalized cross-correlation
(NCC) over local image patches [354].

2.4.2. Keypoint adjustment

Once local features are detected, described, and matched, we refine the keypoint
locations before geometrically verifying the tentative matches.

Track separation: Connected components in the matching graph define tentative
tracks – sets of keypoints that are likely to observe the same 3D point, but whose
observations have not yet been geometrically verified. Because a 3D point has
a single projection on a given image plane, valid tracks cannot contain multiple
keypoints detected in the same image. We can leverage this property to efficiently
prune out most incorrect matches using the track separation algorithm introduced
in [86]. This speeds up the subsequent optimization and reduces the noise in the
estimation.

Objective: We then adjust the locations of 2D keypoints belonging to the same
track j by optimizing its featuremetric consistency along tentative matches with the
cost

EjFKA =
∑

(u,v)∈M(j)

wuv
∥∥FI(u)[pu]− FI(v)[pv]

∥∥
γ
, (2.4)

where I(u) is the index of the image that contains the keypoint u. wuv is the
confidence of the correspondence (u, v), such as the similarity of its local feature
descriptors d>u dv. This allows the optimization to split tracks connected by weak
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correspondences, providing robustness to mismatches. The confidence is not based
on the dense features since these are not expected to disambiguate correspondences
at the global image level.

Efficiency: This direct formulation simply compares pre-computed features on
sparse points and is thus much more scalable than patch flow regression (Eq. (2.2)),
which performs a dense local correlation for each correspondence. All tracks are
optimized independently, which is very fast in practice despite the sheer number of
tentative matches.

Drift: Because of the lack of geometric constraints, the points are free to move
anywhere on the underlying 3D surface of the scene. The featuremetric cost biases
the updates towards areas with low spatial feature gradients and with better-defined
features. This can result in a large drift if not accounted for. Keypoints should
however remain repeatable w.r.t. unrefined detections to ensure the matchability of
new images, such as for visual localization. It is thus critical to limit the drift, while
allowing the refinement of noisier keypoints. For each track, we freeze the location
of the keypoint ū with highest connectivity, as in [86], and constrain the location pu
of each keypoint w.r.t. to its initial detection p0

u, such that
∥∥pu − p0

u

∥∥ ≤ K.

Once all tracks are refined, the geometric estimation proceeds, typically using
two-view epipolar geometric verification followed by incremental or global SfM.

2.4.3. Bundle adjustment

The estimated structure and motion can then be refined with a similar featuremetric
cost. Here keypoints are implicitly defined by the projections of the 3D points into
the 2D image planes, and only poses and 3D points are optimized.

Objective: We minimize for each track j the error between its observations and a
reference appearance f j :

EFBA =
∑
j

∑
(i,u)∈T (j)

∥∥Fi [Π (RiPj + ti,Ci)]− f j
∥∥
γ
. (2.5)
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Part I: Localization and Mapping with 3D Maps

The reference is selected at the beginning of the optimization and kept fixed from
then on. This reduces the drift of the points significantly, as also noted in [6], but is
more flexible than the common ray-based parametrization [90, 150, 354].

The reference is defined as the observation closest to the robust mean µ over all
initial observations f ju of the track:

f j = argmin
f∈{fju}

∥∥µj − f
∥∥ (2.6)

with µj = argmin
µ∈RD

∑
f∈{fju}

‖f − µ‖γ . (2.7)

This ensures robustness to outlier observations and accounts for the unknown
topology of the feature space.

Efficiency: Compared to the keypoint adjustment defined in Eq. (2.4), using a
reference feature reduces the number of residuals from O(N2) to O(N). On the
other hand, all tracks need to be updated simultaneously because of the interde-
pendency caused by the camera poses. To accelerate the convergence, we form a
reduced camera system based on the Schur complement and use embedded point
iterations [140]. The refinement generally converges within a few camera updates.

Cost map approximation: Unlike the keypoint adjustment, which can optimize
tracks independently, all bundle parameters are updated simultaneously. Given
D-dimension features, this involves residuals and Jacobian matrices of dimension
D and thus prohibitive memory requirements as often D=128. Loading from disk
all features at each optimization step also incurs large I/O costs. We dramatically
increase the efficiency by introducing an approximation based on precomputed
distance features.

Given the 2D reprojection pij = Π (RiPj + ti,Ci), the basic formulation loads in
memory the dense features Fi, interpolates them at pij , and compute the residuals
rij = Fi

[
pij
]
− f j for the cost Eij = ‖rij‖γ . To reduce the memory footprint,

we can exhaustively precompute patches of feature distances and treat them as one-
dimensional residuals r̄ij =

∥∥Fi − f j
∥∥ [pij]. The cost then becomes Ēij = γ(r̄ij).

Such distances only need to be computed once since the reference f j is kept fixed
throughout the optimization. This precomputed cost reduces the peak memory by a
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Chapter 2: Structure-from-Motion with Featuremetric Refinement

factor D. It is similar to the Neural Reprojection Error [106] introduced for camera
localization.

This approximation displaces the local minimum of the cost by at most 1 pixel but
most often by much less. It however degrades the correctness of the approximate
Hessian matrix that the Levenberg-Marquardt algorithm [167] relies on for fast
convergence. We found that also including the spatial derivatives in the residual
significantly improves the convergence. This simply amounts to augmenting the
scalar residual map with dense derivative maps:

r̃ij =
(∥∥Fi − f j

∥∥ ∂‖Fi−fj‖
∂x

∂‖Fi−fj‖
∂y

)> [
pij
]
. (2.8)

The approximation thus reduces the residual size from D to 3 with a marginal loss
of accuracy.

2.4.4. Implementation

Dense extractor: Our refinement can work with any off-the-shelf CNN that pro-
duces feature maps that are locally discriminative. These should be of the same
resolution as the input (stride 1) to enable subpixel accuracy. The radius of conver-
gence, or context, of such features depends on the amount of noise in the keypoints.
Most detectors like Scale-Invariant Feature Transform (SIFT) [183] have at most a
few pixels of error, while others like D2-Net [85] exhibit a much larger detection
noise. In our experiments, we use S2DNet [105] for dense feature extraction, as it
computes fine features very efficiently in only 4 convolutions, but also produce, if
required, deeper features with a larger context. These can then be combined into a
multi-level optimization scheme [90, 268, 339] that sequentially refines based on
coarse to fine features. The convergence can thus be adjusted depending on the
detector and on the image resolution. We show in Sec. 2.5.5 that other dense features
work well too.

Optimization: The optimization problems of both keypoint and bundle adjustments
are solved with the Levenberg-Marquardt [167] algorithm implemented by the Ceres
Solver [3]. Feature maps are stored as collections of 16×16 patches centered around
the initial keypoint detections. We thus constrain points to move at most K= 8
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Part I: Localization and Mapping with 3D Maps

pixels. The feature lookup is implemented as bicubic interpolation. We use the
Cauchy loss γ with a scale of 0.25. The robust mean in Eq. (2.7) is computed with
iteratively reweighted least squares [128] initialized with the non-robust mean.

2.5. Experiments

We evaluate our featuremetric refinement on various SfM tasks with several hand-
crafted and learned local features and show substantial improvements for all of
them. We first evaluate its accuracy on the tasks of triangulation and camera pose
estimation in Secs. 2.5.1 and 2.5.2, respectively. We then assess in Sec. 2.5.3 the
impact of the refinement on two-view and multi-view pose estimation for end-to-end
reconstruction in challenging conditions. We demonstrate in Sec. 2.5.4 that the
refinement also scales to and improves dense reconstruction obtained from pixel-
wise correspondences. Lastly, Sec. 2.5.5 analyzes the validity and scalability of our
design decisions through extensive ablation studies and sensitivity analyses.

2.5.1. 3D triangulation

We first evaluate the accuracy of the refined 3D structure given known camera poses
and intrinsics.

Evaluation: We use the ETH3D benchmark [283], which is composed of 13 indoor
and outdoor scenes and provides images with millimeter-accurate camera poses and
highly-accurate ground truth dense reconstructions obtained with a laser scanner. We
follow the protocol introduced in [86], in which a sparse 3D model is triangulated for
each scene using COLMAP [278] with fixed camera poses and intrinsics. Following
the original benchmark setup, we report the accuracy and completeness of the
reconstruction, in %, as the ratio of triangulated and ground-truth dense points that
are within a given distance of each other.

Baselines: We evaluate our featuremetric refinement with the hand-crafted lo-
cal features SIFT [183] and the learned ones SuperPoint [81], D2-Net [85], and
R2D2 [245], using the associated publicly available code repositories. We compare
our approach to the geometric optimization of [86], referred here as Patch Flow. We
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Figure 2.3.: Refinement on ETH3D Courtyard. In the top part, we show a top-down view
of the sparse point clouds triangulated with raw (in red •) and refined (in green •) keypoints.
The refined point clouds better fit the geometry of the scene, especially on planar walls. In
the lower part, we also show images in which points are colored as accurate (in green •) or
inaccurate (in red •) at 1cm for raw (left) and refined (right) point clouds.

re-compute the numbers provided in the original paper using the code provided by
the authors.

Results: Table 2.1 shows that our approach results in significantly more accurate
and complete 3D reconstructions compared to the traditional geometric SfM. It
is more accurate than Patch Flow, especially at the strict threshold of 1cm, and
exhibits similar completeness. The improvements are consistent across all local
features, both indoors and outdoors. The gap with Patch Flow is especially large
for SIFT, which already detects well-localized keypoints. This confirms that our
featuremetric optimization better captures low-level image information and yields
a finer alignment. Patch Flow is more complete for larger thresholds as it partly
solves a different problem by increasing the keypoint repeatability with its large
receptive field, while we focus on their localization. We show a qualitative example
in Fig. 2.3.
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2 3 4 5 6 7 8+

1mm

1cm

10cm

1m

raw
refined

3D triangulation error

track length

Lidar

Figure 2.4.: Triangulation errors vs. track length. The initial, unrefined output, based on
geometric BA, exhibits high errors for 3D points that are observed by few images (low track
length). Our refinement significantly reduces these errors and brings the accuracy of the
sparse point cloud close to the ground truth acquired by Lidar (2mm accuracy).

We show in Fig. 2.4 the distribution of triangulation errors for points observed by
different numbers of images (track length) for the Courtyard scene. Our refinement
provides the largest improvement for points with low track length, for which the
estimates of the traditional geometric BA are dominated by the noise of the keypoint
detection. For larger track lengths, the refined point cloud has an accuracy close to
the Faro Focus X 330 laser scanner from which the ground truth is computed.

2.5.2. Camera pose estimation

We now evaluate the impact of our refinement on the task of camera pose estimation
from a single image.

Evaluation: We follow the setup of [86] based on the ETH3D benchmark. For
each scene, 10 images are randomly selected as queries. For each of them, the
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Chapter 2: Structure-from-Motion with Featuremetric Refinement

100 101 102
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Recall [%]

raw refined

SfM features
ë Refinement

AUC (%)

1mm 1cm 10cm

• SIFT 16.92 56.08 81.65
ë Patch Flow 14.62 52.69 81.69
ë ours 25.38 60.22 84.07

• SuperPoint 15.38 51.20 82.33
ë Patch Flow 28.46 63.99 86.79
ë ours 40.00 71.97 86.86

• D2-Net 1.54 12.16 56.10
ë Patch Flow 16.92 54.70 75.16
ë ours 17.69 55.03 76.26

• R2D2 11.53 52.88 82.69
ë Patch Flow 25.38 61.42 84.14
ë ours 27.69 63.86 86.13

Table 2.2.: Camera pose estimation on the ETH3D dataset. We plot the cumulative
translation error (left) and report its AUC (right). Our refinement improves the accuracy
of the query camera poses for all local features, even when for SIFT, whose detections are
already well-localized. It is generally more accurate than Patch Flow.

remaining images, excluding the 2 most covisible ones, are used to triangulate a
sparse 3D partial model. Each query is then matched against its corresponding
partial model and the resulting 2D-3D matches serve to estimate its absolute pose
using LO-RANSAC+PnP [68] followed by a non-linear refinement. We compare
the 130 estimated query poses to their ground truth and report the area under the
curve (AUC) of the cumulative translation error up to 1mm, 1cm, and 10cm.

Refinement: Patch Flow performs multi-view optimization over each partial model
independently as well as over the matches between each query and its partial model.
Similarly, we first refine each partial model with featuremetric keypoint and bundle
adjustments. We then adjust each keypoint in the query image using its tentative 2D-
3D correspondences by minimizing the featuremetric error between its observation
in the query and the most similar observation of the respective 3D points. Refining
the query keypoints before RANSAC increases the number of inlier matches and
stabilizes the pose estimation in challenging scenarios where few 3D points are
matched.
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Part I: Localization and Mapping with 3D Maps

SuperPoint
ë Refinement

KA BA qKA qBA
AUC (%)

1mm 1cm 10cm

unrefined 15.38 51.20 82.33
ë refined X 16.15 53.34 82.49
ë refined X X 16.92 54.71 84.08
ë refined X X X 38.46 70.44 85.28
ë refined (full) X X X X 40.00 71.97 86.86

ë Patch Flow X X 28.46 63.04 86.65

Table 2.3.: Ablation study for camera pose estimation. The accuracy of the camera pose
is improved by refining the map (KA and BA) and by refining the query keypoints before (qKA)
and after (qBA) pose estimation. The largest improvement is brought by qKA. It increases the
number of inlier matches and the likelihood of finding the correct pose with RANSAC.

Once an initial pose is estimated with PnP+RANSAC, we refine it via a small
featuremetric bundle adjustment over the inlier correspondences. This optimizes
each query keypoint against the closest descriptor within the matched track. As
opposed to refining each query keypoint against all observations of the track, this
has the benefit of scaling linearly in the number of query keypoints and yields a
similar accuracy.

Results: The AUC and its cumulative plot are shown in Tab. 2.2. Our refinement
substantially improves the localization accuracy for all local features, including
SIFT, for which Patch Flow does not show any benefit. At all error thresholds,
the featuremetric optimization is consistently more accurate than its geometric
counterparts. The accuracy of SuperPoint is raised far higher than other detectors,
despite the high sparsity of the 3D models that it produces. This shows how more
accurate keypoint detections can result in much more accurate visual localization.

Ablation study: We analyze in Tab. 2.3 how the different kinds of adjustments
impact the accuracy of camera localization. All adjustments bring accuracy gains,
with the largest ones brought by refining the query keypoints prior to pose estimation.
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Chapter 2: Structure-from-Motion with Featuremetric Refinement

SfM features
(# keypoints)
ë Refinement

Task 1: Stereo Task 2: Multiview

AUC@K° AUC@5°@N

5° 10° 5 10 25

SuperPoint+SuperGlue (2k) 58.78 71.01 63.02 77.36 86.76
ë ours 65.89 76.51 68.87 82.09 89.73

SIFT (2k) 38.09 48.05 25.12 50.82 77.28
ë ours 40.59 50.87 28.01 53.59 79.49

D2-Net (4k) 16.83 22.40 16.52 33.07 49.35
ë ours 25.89 33.32 21.33 40.69 57.93

Table 2.4.: End-to-end structure-from-motion on the Phototourism dataset. The refine-
ment improves the accuracy of poses estimated by epipolar geometry (stereo) or a complete
SfM pipeline (multiview) with crowd-sourced imagery. Improvements are substantial for
both standard (SIFT) and recent (SuperGlue) matching configurations, especially when few
images N observe the scene.

2.5.3. End-to-end Structure-from-Motion

While the previous experiments precisely quantify the accuracy of the refinement,
they do not contain any variations of appearance or camera models. We thus turn to
crowd-sourced imagery and evaluate the benefits of our featuremetric optimization
in an end-to-end reconstruction pipeline.

Evaluation: We use the data, protocol, and code of the 2020 Image Matching
Challenge [143, 326]. It is based on large collections of crowd-sourced images
depicting popular landmarks around the world. Pseudo ground truth poses are
obtained with SfM [278] and used for two tasks. The stereo task evaluates relative
poses estimated from image pairs by decomposing their epipolar geometry. This is
a critical step of global SfM as it initializes its global optimization. The multiview
task runs incremental SfM for small subsets of images, making the SfM problem
much harder, and evaluates the final relative poses within each subset. For each task,
we report the AUC of the pose error at the threshold of 5°, where the pose error is the
maximum of the angular errors in rotation and translation. As the evaluation server
accepts at most correspondences, we cannot evaluate our method using the test data.
We instead test on a subset of the publicly available validation scenes, and tune the
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Part I: Localization and Mapping with 3D Maps

Figure 2.5.: Refined SfM tracks. We show patches centered around reprojections of 3x
3D points observed in 4 images of the St. Peter’s Square scene. Deep features and their
correlation maps with a reference are robust to scale or illumination changes, yet preserve
local details required for fine alignment. Points refined with our approach (in green •)
are consistent across multiple views while those of a standard SfM pipeline (in red •) are
misaligned because the initial keypoint detections (in blue •) are noisy.

RANSAC and matching parameters on the remaining scenes, as recommended by
the benchmark.

Baselines: We evaluate our refinement in combination with SIFT [183], D2-
Net [85], and SuperPoint+SuperGlue [81, 263]. We limit the number of detected
keypoints to 2k for computational reasons, but increase this number to 4k for D2-
Net as it otherwise performs poorly. In the stereo task, we adjust the keypoints
using the entire exhaustive tentative match graph (4950 pairs per scene). We use
LO-DEGENSAC [68, 70] for match verification, the ratio test for SIFT, and the
mutual check for SIFT and D2-Net. In the multiview task, we adjust keypoints for
each subset independently, considering only the matches between images in the
subset, and run our bundle adjustment after SfM.
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Chapter 2: Structure-from-Motion with Featuremetric Refinement

unrefined refined

Figure 2.6.: Triangulation with dense correspondences. We show reprojections of 3D
points triangulated with dense matching for two scenes (top and bottom) reconstructed with
(right) and without (left) refinement. The points are colored as accurate (in green •) or
inaccurate (in red •) wrt. the ground truth for a 1cm error threshold. The refinement yields
many more accurate points and can handle extremely dense reconstructions.

Results: Table 2.4 summarizes the results. For stereo, our featuremetric keypoint
adjustment significantly improves the accuracy of the two-view epipolar geometries
across all local features and despite the challenging conditions. In multiview setting,
it also improves the accuracy of the SfM poses, especially for small sets of images.
Featuremetric optimization is particularly effective in this situation, as geometric
optimization cannot fully suppress the detection noise due to the small number
of observations. We visualize tracks of a 5-image reconstruction in Fig. 2.5 and
highlight the accuracy of the refined SfM model.
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Chapter 2: Structure-from-Motion with Featuremetric Refinement

A B C D

Figure 2.7.: The keypoint adjustment increases the track length. We show image patches
centered around four observations of the same 3D point. The initial detected keypoints • are
all matched together. Due to the detection noise, the triangulation splits them into two short
tracks (A-B and C-D) with high reprojection errors •. The keypoint adjustment reduces the
detection noise ◦ and produces a single longer track with a low reprojection error •.

2.5.4. Dense image matching

We show that our refinement is also applicable to SfM with dense image matches
without any prior keypoint detection. This can improve the robustness of the
localization in situations for which detecting repeatable keypoints is challenging,
such as low illumination or textureless scenes.

Setup: Several recent works on dense matching [303, 328, 377] demonstrate that
they are also amenable to SfM with existing pipelines [278]. These works produce,
for each image pair, a set of correspondences between arbitrary subpixel image
coordinates, generally arranged as a semi-dense grid. Since SfM requires tracks
with a sufficient number of observations, these works partition each image into a
grid and assign to the same tracks all pairwise correspondences associated with the
same cells. This discretizes arbitrary image coordinates into the center of each cell.
A coarser grid reduces the number of tracks and allows the SfM process to scale to
large scenes, but the discretization introduces large errors in the estimated geometry.
Following the track building, we can run our keypoint and bundle adjustments in
the same way as for sparse correspondences. We evaluate triangulation and camera
pose estimation as in Secs. 2.5.1 and 2.5.2 by estimating correspondences with
LoFTR [303].
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SuperPoint
ë Refinement

Acc. (%) Compl. (%) track
length

AUC

1cm 2cm 1cm 2cm 1cm
K

A
vs

.B
A unrefined 18.42 32.23 0.06 0.49 4.17 51.20

ë Patch Flow [86] 37.00 55.18 0.15 0.93 5.24 63.53
ë F-KA 36.85 54.48 0.15 0.90 5.02 69.84
ë F-BA 43.65 62.44 0.18 1.06 4.17 67.61
ë F-KA+BA (full) 46.46 65.41 0.19 1.14 5.02 71.97

bo
nu

s w/ F-BA drift 47.93 66.52 0.20 1.17 5.02 64.51
Patch Flow + F-BA 46.30 65.22 0.19 1.13 5.24 -
higher resolution 47.67 65.39 0.21 1.21 5.12 73.42

Table 2.8.: Ablation study on the ETH3D dataset. i) Featuremetric keypoint and bundle
adjustments (KA and BA) both largely improve the triangulation (acc., completeness, track
length) and the localization accuracy (AUC). Patch Flow produces a longer track length
because of its larger receptive field but is less accurate. ii) Letting the BA drift by updating
reference features or increasing the image resolution both improve the triangulation, at the
expense of poorer localization and increased run time, respectively.

Results: We show the results in Tab. 2.5 for two level of discretization, fine and
coarse. The refinement improves on all metrics for both triangulation and local-
ization. It makes dense matching competitive with sparse features and even yields
more accurate camera poses at 10cm. Given such a large number of observations
and correspondences, PatchFlow would require prohibitively high run-times. Our
refinement handles well this high density. We show in Fig. 2.6 visualizations of the
3D points triangulated and colored by their accuracy at 1cm. The density of 3D
points is significantly higher than regular sparse keypoints.

2.5.5. Additional insights

Ablation study: Table 2.8 shows the performance of variants of our featuremetric
optimization on ETH3D in terms of triangulation (scene Facade only) and localiza-
tion (all scenes). Both keypoint and bundle adjustments bring improvements across
all metrics. Minor tuning can further improve some dimensions with trade-offs. The
keypoint adjustment is particularly effective at increasing the average track length
via the number of inlier correspondences. We show an example in Fig. 2.7.
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Figure 2.8.: Impact of the patch size. Smaller patches for each observation significantly
reduce memory requirements but can impair the accuracy of the refinement. Patches of size
10×10 offer a good trade-off with high accuracy and moderate memory consumption.
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Figure 2.9.: Impact of the image resolution. Increasing the image resolution increases the
triangulation accuracy, but at the cost of longer feature extraction time and higher VRAM
requirements. For all experiments on ETH3D, we used a maximum edge length of 1600px,
which is very close to saturating the accuracy while providing low run times.
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Figure 2.10.: Distribution of point movements. We show the cumulative distribution of the
distance traveled by the 2D keypoints during the featuremetric refinement of SuperPoint with
KA and BA. 60% of the points move by fewer than 2 pixels and 99% remain within 8 pixels of
the initial detections.

Patch size: Figure 2.10 shows how much our refinement displaces the detected
keypoints during the triangulation of SuperPoint on Courtyard using dense features
extracted from 1600×1066-pixel images. When using full feature maps without any
constraints in keypoint adjustment, most points are moved by more than 1 pixel,
but most often by less than 8 pixels. This confirms that storing the feature maps
as 16×16 patches is sufficient and rather conservative. We show in Fig. 2.8 the
accuracy of the triangulation for various patch sizes. Smaller 10×10 patches achieve
sufficient accuracy and require significantly less memory.

Image resolution The image resolution at which the dense features are extracted
has a large impact on the accuracy of the refinement. In Fig. 2.9 we quantify the
impact on both triangulation accuracy and run time for the ETH3D Courtyard scene
(38 images) using an NVIDIA RTX 1080 Ti GPU. The accuracy drops significantly
when the resolution is smaller than 1600×1066px, which amounts to 25% of the
full image resolution. Doubling the resolution to 3200×2132px yields noticeable
improvements, albeit significantly increases the extraction time and the consumption
of GPU VRAM. For a resolution of 1600×1066px, as used for all experiments
on ETH3D, S2DNet can extract features for 5 images per second. As a reference,
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Chapter 2: Structure-from-Motion with Featuremetric Refinement

extracting only fine-level S2DNet features (4 convolutions) from 3200×2132px
images requires around 10GB of GPU VRAM.

Dense features: We evaluate our refinement with different image representations,
including NCC-normalized intensity patches with fronto-parallel warping. We show
the results for triangulation in Tab. 2.6. Our final configuration, based on on the
dense features of S2DNet [105], performs best across all metrics.

Relying on compact features would easily reduce the memory footprint and the run
time of the refinement. To demonstrate these benefits, we show in Fig. 2.11 the
relationship between the dimension, the run time of the BA, and the triangulation
accuracy when retaining only the first k channels of the S2DNet features. Features
with fewer dimensions yield a faster refinement. The accuracy drops moderately but
we expect a smaller reduction with features explicitly trained for smaller dimensions.

Cost map approximation: We show experimentally that this approximation often
does not, or only minimally, impairs the accuracy of the refinement. Table 2.7
reports the results of the triangulation of SuperPoint features on the ETH3D dataset
averaged over indoor and outdoor scenes. The approximation reduces the accuracy
by less than 1% and does not alter the completeness. It however significantly
reduces the memory consumption of the bundle adjustment. Only optimizing the
feature distance yields a drop in accuracy, which is resolved by including the
derivatives. Note that the approximation is disabled in all previous experiments as
the corresponding scenes are sufficiently small.

Scalability: We run SfM on subsets of images of the Aachen Day-Night dataset
[273, 274, 372]. Figure 2.12 shows the run times of the refinement for subsets
of 10, 100 and 1000 images and Fig. 2.13 shows the contribution of each step.
The featuremetric refinement is one to two orders of magnitude faster than Patch-
Flow [86]. Precomputing cost maps reduces the peak memory requirement of the
bundle adjustment from 80GB to less than 10GB for 1000 images. As storing
feature maps only requires 50GB of disk space, this refinement can easily run on a
desktop PC. We thus refined the entire Aachen Day-Night v1.1 model, composed of
7k images, in less than 2 hours. Scene partitioning [278] could further reduce the
peak memory.
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Figure 2.11.: Impact of the feature dimensionality. Dense features computed by S2DNet
can be naively reduced to accelerate the featuremetric BA by 2 while incurring only a minor
drop of triangulation accuracy.
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Figure 2.12.: Run time depending on the number of images. We show the duration, in
logarithmic scale, of the refinement for varying numbers of images. Our refinement is more
than ten times faster than Patch Flow [86], whose run-time is dominated by the computation
of the pairwise flow, which scales quadratically.

Features F-KA F-BA

0% 20% 40% 60% 80% 100%

Relative run times for 1000 images:

Figure 2.13.: Contribution of each step to the run time. Thanks to our precomputed cost
patches, the featuremetric BA is fast. The KA amounts for the majority of the refinement time.
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2.6. Summary and outlook

Summary: In this chapter we argue that the recipe for accurate large-scale SfM
is to perform an initial coarse estimation using sparse local features, which are by
necessity globally-discriminative, followed by a refinement using locally-accurate
dense features. Since the dense feature only need to be locally-discriminative,
they can afford to capture much lower-level texture, leading to more accurate
correspondences. Through extensive experiments we show that this results in more
accurate camera poses and structure; in challenging conditions and for different
local features.

While we optimize against dense feature maps, we keep the sparse scene represen-
tation of SfM. This ensures not only that the approach is scalable but also that the
resulting 3D model is compatible with downstream applications, e.g., mapping for
visual localization. Since our refinement works well even with few observations, as
it does not need to average out the keypoint detection noise, it has the potential to
achieve more accurate results using fewer images.

We thus believe that our approach can improve the accuracy of the ground truth
poses of standard benchmark datasets, of which many are currently saturated. Since
this refinement is less sensitive to under-sampling, it enables benchmarking for
crowd-sourced scenarios beyond densely-photographed tourism landmarks.

Impact and limitations: While we have shown that this refinement can scale
to thousand of images, its memory footprint, in terms of both disk and RAM, is
significantly higher than conventional SfM. This limitations mainly stem from
the high dimensionality of the features employed. We believe that training more
compact features would make the refinement much more effective and incur only
a small drop of accuracy. This has been a clear obstacle to a wider adoption and
prohibits its integration in resource-constrained applications. Nevertheless, our work
has been found particularly useful by the research community interested in novel
view synthesis, which includes approaches like neural radiance fields [200], relies on
SfM to obtain camera calibration, and is highly sensitive to calibration errors [329].
Several follow-up works [121, 346, 370] have confirmed that our refinement is
highly beneficial in the sparse view setting beyond the datasets considered in our
evaluation. We have however found that the proposed refinement yields little to
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no improvements when views are densely sampled with high visual overlap, such
as for data recorded as videos. This scenario is unfortunately not covered by our
evaluation.

Additionally, because the refinement is based on a fairly complex system and re-
quires non-trivial engineering, we have so far not seen any follow-up work build on
top of and extend our approach. Lastly, the refinement is only partially robust to
appearance changes, thanks to the off-the-shelf features that we employ. Extreme
changes severely degrade the accuracy of the refinement. This scenario is unfortu-
nately not covered by our evaluation due to the lack of datasets that include both
long-term changes and highly-accurate ground truth. In Chapter 4, we introduce
a new dataset and benchmark to bridge this gap. To increase the robustness to
appearance changes, we study next in Chapter 3 how such features can be trained
end-to-end, at the cost of a lower pixel-level accuracy.
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C H A P T E R 3
Learning Robust
Camera Localization
from Pixels to Pose

Camera pose estimation in known scenes is a 3D geometry task recently tackled by
multiple learning algorithms. Many regress precise geometric quantities, like poses
or 3D points, from an input image. This either fails to generalize to new viewpoints
or ties the model parameters to a specific scene. In this chapter, we go Back to
the Feature: we argue that deep networks should focus on learning robust and
invariant visual features, while the geometric estimation should be left to principled
algorithms. We introduce PixLoc, a scene-agnostic neural network that estimates
an accurate 6-DoF pose from an image and a 3D model. Inspired by the results
presented in Chapter 2, our approach is based on the direct alignment of multiscale
deep features, casting camera localization as metric learning. PixLoc learns strong
data priors by end-to-end training from pixels to pose and exhibits exceptional
generalization to new scenes by separating model parameters and scene geometry.
The system can localize in large environments given coarse pose priors but also
improve the accuracy of sparse feature matching by jointly refining keypoints and
poses with little overhead.
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3D 
model

Localization
without
retraining

Feature 
Alignment

CNN

PixLoc
query

features
reference

R, t ?

Loss

Pose
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Figure 3.1.: Learning scene-agnostic localization. Deep neural networks should not have
to rediscover well-understood geometric principles. We only need to learn good features:
PixLoc is trained end-to-end to estimate the pose of an image by aligning deep features with
a reference 3D model via a differentiable optimization.

3.1. Introduction

State-of-the-art approaches to visual localization commonly rely on correspondences
between 2D pixel positions and 3D points in the scene [39,52,105,187,261,263,272,
306, 308, 318]. Such a formulation estimates the camera pose using a Perspective-
n-Point (PnP) solver [5, 40, 114, 154, 157] inside a RANSAC loop [23, 69, 95,
164]. These 2D-3D correspondences are traditionally computed by matching local
image features. Recent localization systems can handle large scenes with complex
geometry and appearance changes over time. They leverage deep neural networks
that learn to extract such features [32,81,85,226,245,280,361], to match them [226,
263], and to filter outlier correspondences [38, 161, 204, 263, 319].

Training a feature matching pipeline in an end-to-end manner is challenging and
unstable as its complexity hinders gradients propagation [32]. An alternative is to
train a Deep Neural Network (DNN) to regress geometric quantities such as camera
poses [20, 83, 147, 149, 163, 342, 378] or the 3D scene coordinate corresponding
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to each pixel [35–37, 39, 52, 53, 168, 291, 360]. While these approaches can be
trained end-to-end, they come with their own drawbacks. Absolute pose and co-
ordinate regression are scene-specific and require to be trained for or adapted to
new scenes [52, 53]. Generalization to new viewing conditions, e.g., localizing
night-time images when training only on daytime photos, and handling larger, more
complex scenes [280, 308] are open challenges for such approaches. Additionally,
absolute or relative pose regression has limited accuracy and often fails to generalize
to new viewpoints [275, 378]. While regressing poses relative to a set of reference
images [20, 83, 163, 378] is in theory scene-agnostic, generalization to strongly
differing scenes without a significant drop in pose accuracy [275, 378] has, to the
best of our knowledge, not been shown so far.

What hinders the generalization of existing end-to-end regression methods is that
they predict camera poses or 3D geometry solely from image information. In
practice, such quantities are often readily available. Pose priors can be obtained via
image retrieval or sensors such as GNSS. At the same time, the 3D scene geometry
is often provided as a by-product of the 3D reconstruction systems that generate the
training poses, e.g., with SfM or SLAM.

Inspired by direct image alignment [75, 90, 91, 223, 339, 340] and learned image
representations for outlier rejection [161], we argue that end-to-end visual local-
ization algorithms should focus on representation learning. Rather than devoting
model capacity and data to learn basic geometric relations or encode 3D maps, they
should rely on well-understood geometric principles and instead learn robustness to
appearance and structural changes.

In this chapter, we introduce a trainable algorithm, PixLoc, that localizes an image
by aligning it to an explicit 3D model of the scene based on dense features extracted
by a Convolutional Neural Network (CNN) (Fig. 3.1). By relying on classical
geometric optimization, the network does not need to learn pose regression itself,
but only to extract suitable features, making the algorithm accurate and scene-
agnostic. We train PixLoc end-to-end, from pixels to pose, by unrolling the direct
alignment and supervising only the pose. Given an initial pose obtained by image
retrieval, our formulation results in a simple localization pipeline competitive with
complex state-of-the-art approaches, even when the latter are trained specifically
per scene. PixLoc can also refine poses estimated by any existing approach as a
lightweight post-processing step. Through detailed experiments, we show that our
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Reference image Aligned query
pose change
24.2°/ 4.6m

pose change
20.5°/ 0.5m

Figure 3.2.: Alignment for localization. Although only based on local gradients, direct
alignment works well thanks to deep features, despite the coarse initial pose estimate and
strong appearance changes. Here points travel from crosses to colored dots.

method generalizes well to new scenes, e.g., from outdoor to indoor scenes, and
challenging viewing conditions. To the best of our knowledge, PixLoc is the first
end-to-end visual localization approach to exhibit such exceptional generalization.

3.2. Related work

Accurate visual localization commonly relies on estimating correspondences
between 2D pixel positions and 3D scene coordinates. Such approaches detect,
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Part I: Localization and Mapping with 3D Maps

describe [30, 183], and match [138, 171, 179, 272, 306, 368] local features, maintain
an explicit sparse 3D representation of the environment, and sometimes leverage
image retrieval [139, 322] to scale to large scenes [138, 198, 261, 274, 308, 323].
Recently, many of these components have been learned with great success [10, 81,
85, 204, 214, 238, 245, 263, 364], but often independently and not end-to-end due to
the complexity of such systems. Here we introduce a simpler alternative to feature
matching, finally enabling stable end-to-end training. Our solution can learn more
powerful priors than individual blocks, yet remains highly flexible and interpretable.

End-to-end learning for localization has recently received much attention. Com-
mon approaches encode the scene into a deep network by regressing from an
input image to an absolute pose [147, 149, 209, 239, 342] or 3D scene coordi-
nates [35, 39, 52, 53, 291]. Pose regression lacks geometric constraints and thus
does not generalize well to novel viewpoints or appearances [275, 280], while
coordinate regression is more robust. Both do not scale well due to the limited
network capacity [37,308] and require for each new scene either costly retraining or
adaptation [52, 53]. ESAC [37] improves the scalability by training an ensemble of
regressors, each specialized in a scene subset, but is still significantly less accurate
than feature-based methods in larger environments.

Differently, some approaches regress a camera pose relative to one or more training
images [20,83,163,378], often after an explicit retrieval step. They do not memorize
the scene geometry and are thus scene-agnostic, but, similar to absolute regressors,
are less accurate than feature-based methods [275,378]. Closer to ours, SANet [360]
takes the scene representation out of the network by regressing 3D coordinates from
an input 3D point cloud. Critically, all top-performing learnable approaches are at
least trained per-dataset, if not per-scene, and are limited to small environments [149,
291]. In this chapter, we demonstrate the first end-to-end learnable network that
generalizes across scenes, including from outdoor to indoor, and that delivers
performance competitive with complex pipelines on large real-world datasets, thanks
to a differentiable pose solver.

Learning camera pose optimization can be tackled by unrolling the optimizer
for a fixed number of steps [71, 186, 190, 311, 344, 357], computing implicit deriva-
tives [39, 44, 59, 145, 256], or crafting losses to mimic optimization steps [339, 340].
Multiple works have proposed to learn components of these optimizers [71,186,311],
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Chapter 3: Learning Robust Camera Localization from Pixels to Pose

with added complexity and unclear generalization. Some of these formulations opti-
mize reprojection errors over sparse points, while others use direct objectives for
(semi-)dense image alignment. The latter are attractive for their simplicity and
accuracy, but usually do not scale well. Like their classical counterparts [90, 150],
they also suffer from a small basin of convergence, limiting them to frame tracking
or point refinement, as seen in Chapter 2. In contrast, PixLoc is explicitly trained for
wide-baseline cross-condition camera pose estimation from sparse measurements
(Fig. 3.2). By focusing on learning good features, it shows good generalization yet
learns sensible data priors that shape the optimization objective.

3.3. PixLoc: from pixels to pose

Overview: PixLoc localizes by aligning query and reference images according to
the known 3D structure of the scene. The alignment consists of a few steps that
minimize an error over deep features predicted from the input images by a CNN
(Fig. 3.3). The CNN and the optimization parameters are trained end-to-end from
ground truth poses.

Motivation: In absolute pose and scene coordinate regression from a single image,
a deep neural network learns to i) recognize the approximate location in a scene,
ii) recognize robust visual features tailored to this scene, and iii) regress accurate
geometric quantities like pose or coordinates. Since CNNs can learn features that
generalize well across appearances and geometries, i) and ii) do not need to be
tied to a specific scene, and i) is already solved by image retrieval. On the other
hand, iii) is tackled by classical geometry using feature matching [68, 69, 95] or
image alignment [18, 90, 91, 184] and a 3D representation. We should thus focus
on learning robust and generic features, making the pose estimation scene-agnostic
and tightly constrained by geometry. The challenge lies in how to define good
features to localize. We solve this by making the geometric estimation differentiable
and supervise only the final pose estimate. Differently from pose or coordinate
regression, we assume that a 3D scene representation is available. This requirement
is easily met in practice since the reference poses are usually obtained by sparse or
dense 3D reconstruction.

49



Part I: Localization and Mapping with 3D Maps

Problem formulation: Our goal is to estimate the 6-DoF pose (R, t) ∈ SE(3)

of a query image Iq, where R is a rotation matrix and t is a translation vector in
the camera frame. We are given a 3D representation of the environment, such as a
sparse or dense 3D point cloud {Pi} and posed reference images {Ik}, collectively
called the reference data.

3.3.1. Localization as image alignment

Image Representation: The sparse alignment is performed over learned feature
representations of the images. We leverage CNNs and their ability to extract a
hierarchy of features at multiple levels. For each query image Iq and reference
image Ik, a CNN extracts a Dl-dimensional feature map Fl ∈ RWl×Hl×Dl at each
level l ∈ {L, . . . , 1}. Those have decreasing resolution and progressively encode
richer semantic information and a larger spatial context of the image. The features
are L2-normalized along the channels to improve their robustness and generalization
across datasets.

This learned representation, inspired by past works on handcrafted and learned
features for camera tracking [75, 186, 223, 311, 339, 344], is robust to large illu-
mination or viewpoint changes and provides meaningful gradients for successful
alignments despite poor initial pose estimates. In contrast, classical direct align-
ment [18, 90, 91, 184] operates on the original image intensity, which is not robust
to long-term changes encountered in common localization scenarios, and resorts to
Gaussian image pyramids, which still largely limits the convergence to frame-to-
frame tracking.

Direct alignment: The goal of the geometric optimization is to find the pose (R, t)

which minimizes the difference in appearance between the query image and each
reference image. For a given feature level l and each 3D point i observed in each
reference image k, we define a residual:

rik = Flq
[
piq
]
− Flk

[
pik
]
∈ RD , (3.1)

where piq = Π (RPi + t) is the projection of i in the query given its current pose
estimate and [·] is a lookup with sub-pixel interpolation. The total error over N
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Chapter 3: Learning Robust Camera Localization from Pixels to Pose

observations is
El(R, t) =

∑
i,k

wik ρ
(∥∥rik∥∥2

2

)
, (3.2)

where ρ is a robust cost function [113] with derivative ρ′ and wik is a per-residual
weight. This nonlinear least-squares cost is iteratively minimized from an initial
estimate (R0, t0) using the Levenberg-Marquardt (LM) algorithm [167, 194].

To maximize the convergence basin, we optimize each feature level successively,
starting with the coarsest level l=1, and initialize each with the result of the previous
level. Low-resolution feature maps are thus responsible for the robustness of the
pose prediction while finer features enhance its accuracy. Each pose update δ ∈ R6

is parametrized on the SE(3) manifold using its Lie algebra. We stack all residuals
into r ∈ RND and all weights into W = diagi,k

(
wik ρ

′) and write the Jacobian
and Hessian matrices as

Ji,k =
∂rik
∂δ

=
∂Fq
∂piq

∂piq
∂δ

and H = J>WJ . (3.3)

The update is computed by damping the Hessian and solving the linear system:

δ = − (H + λ diag (H))
−1

J>Wr , (3.4)

where λ, the damping factor, interpolates between the Gauss-Newton (λ=0) and
gradient descent (λ→∞) formulations and is usually adjusted at each iteration
using diverse heuristics [167, 192, 194]. Finally, the new pose is computed by
left-multiplication on the manifold as

[
R+ t+

]
= exp

(
δ∧
)> [R t

0 1

]
, (3.5)

where ·∧ is the skew operator. The optimization stops when the update δ is small
enough.

Infusing visual priors: The steps described above are identical to the classical
photometric alignment [18, 90, 184]. The CNN is however capable of learning
complex visual priors – we therefore would like to give it the ability to steer the
optimization towards the correct pose. To this end, the CNN predicts an uncertainty
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Part I: Localization and Mapping with 3D Maps

map Ul
k ∈ RWl×Hl

>0 along with each feature map. The pointwise uncertainties of
the query and reference images are combined into a per-residual weight as

wik = uiq u
i
k =

1

1 + Ul
q

[
piq
] 1

1 + Ul
k

[
pik
] ∈ [0, 1] . (3.6)

The weight is 1 if the 3D point projects into a location with low uncertainty in both
the query and the reference images. It tends to 0 as either of the location is uncertain.
Here wik is not explicitly supervised, but rather learned as to maximize the pose
accuracy. A similar formulation was applied to direct RGB-D frame tracking in a
concurrent work [357].

This weighting can capture multiple scenarios. First, the network can learn to be
uncertain when it cannot predict invariant features, e.g., because of domain shift,
similarly to an aleatoric uncertainty [148]. The uncertainty can also be high for
locations that can be well described by the CNN, but which consistently push the
optimization away from the correct pose by introducing local minima in the cost
landscape. This encompasses dynamic objects or repeated patterns and symmetries,
as shown in Figs. 3.4 and 3.7. The uncertainty is different for each level, as different
cues might be useful at different stages of the optimization.

Fitting the optimizer to the data: Levenberg-Marquardt is a generic optimization
algorithm that involves several heuristics, such as the choice of robust cost function
ρ or of the damping factor λ. Past works on learned optimization employ deep
networks to predict ρ′ [186], λ [186, 311], or even the pose update δ [71, 190],
from the residuals and visual features. We argue that this can greatly impair the
ability to generalize to new data distributions, as it ties the optimizer to the visual-
semantic content of the training data. Instead, it is desirable to fit the optimizer to
the distribution of poses or residuals but not to their semantic content. As such, we
propose to make λ a fixed model parameter and learn it by gradient descent along
with the CNN.

Importantly, we learn a different factor for each of the 6 pose parameters and for
each feature level, replacing the scalar λ by λl ∈ R6, parametrized by θl as

log10 λl = λmin + sigmoid (θl) (λmax − λmin) . (3.7)

This adjusts the curvature of the individual pose parameters during training, and
directly learns motion priors from the data. For example, when the camera is
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Input Image Learned Weighting uq
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Figure 3.4.: Good features to localize. PixLoc learns to ignore dynamic objects like cars
(top) or fallen leaves (bottom) and repeated patterns like the brick wall. It focuses on road
markings, silhouettes of trees, or prominent structures on buildings. See also Fig. 3.7.

mounted on a car or a robot that is mostly upright, we expect the damping for the
in-plane rotation to be large. In contrast, common heuristics treat all pose parameters
equally and do not permit a per-parameter damping. We show in Sec. 3.7 that the
learned damping parameters vary with the training data.

3.3.2. Learning from poses

As the CNN never sees 3D points, PixLoc can generalize to any 3D structure
available. This includes sparse SfM point clouds, dense depth maps from stereo or
RGBD sensors, meshes, Lidar scans, but also lines and other primitives.

53



Part I: Localization and Mapping with 3D Maps

Training: The optimization algorithm presented here is end-to-end differentiable
and only involves operations commonly supported by deep learning frameworks.
Gradients thus flow from the pose all the way to the pixels, through the feature and
uncertainty maps and the CNN. Thanks to the uncertainties and robust cost, PixLoc
is robust to incorrect 3D geometry and works well with noisy reference data like
sparse SfM models. During training, an imperfect 3D representation is sufficient –
our approach does not require accurate or dense 3D models.

Loss function: Our approach is trained by comparing the pose estimated at each
level (Rl, tl) to its ground truth (R̄, t̄). We minimize the reprojection error of the
3D points:

L =
1

L

∑
l

∑
i

∥∥Π (RlPi + tl)−Π
(
R̄Pi + t̄

)∥∥
γ
, (3.8)

where γ is the Huber cost. This loss weights the supervision of the rotation and
translation adaptively for each training example [147] and is invariant to the scale of
the scene, making it possible to train with data generated by SfM. To prevent hard
examples from smoothing the fine features, we apply the loss at a given level only
if the previous one succeeded in bringing the pose sufficiently close to the ground
truth. Otherwise, the subsequent loss terms are ignored.

3.3.3. Comparisons to existing approaches

PixLoc vs. sparse matching: Pose estimation via local feature matching comprises
multiple operations that are non-differentiable, such as keypoint and correspondence
selection or RANSAC. Bhowmik et al. [32] proposed a formulation based on
reinforcement learning, which suffers from high variance and thus requires a strong
pretraining. In contrast, our approach is extremely simple and converges well from
generic weights trained for image classification.

PixLoc vs. GN-Net: Von Stumberg et al. [339, 340] recently trained deep features
for cross-season localization via direct alignment. Their works focus on small-
baseline scenarios and require accurate pixelwise ground truth correspondences
and substantial hyperparameter tuning. In contrast, we leverage the power of

54



Chapter 3: Learning Robust Camera Localization from Pixels to Pose

Reference

img_02440_c0_1303398684847160us.jpg

Convergence basin
in query
10% at >277px

img_02800_c0_1289589882300952us.jpg

Figure 3.5.: Wide convergence. For a red point in the reference image (left), we highlight
in the query (right) the multilevel basin of attraction colored by the 2D gradient angle
∂Fq/∂pi

q
>rik. Deep features ensure a wide convergence despite appearance changes.

differentiable programming to match the test and training conditions and learn
additional strong priors from noisy data. We compare with their loss in Sec. 3.7.1.

3.4. Localization pipeline

PixLoc can be a competitive standalone localization module when coupled with
image retrieval, but can also refine poses obtained by previous approaches. It only
requires a 3D model and a coarse initial pose, which we now discuss.

Initialization: How accurate the initial pose should be depends on the basin of
convergence of the alignment. Features from a deep CNN with a large receptive
field ensure a large basin (Fig. 3.5). To further increase it, we apply PixLoc to
image pyramids, starting at the lowest resolution, yielding coarsest feature maps
of size W=16. To keep the pipeline simple, we select the initial pose as the pose
of the first reference image returned by image retrieval. This results in a good
convergence in most scenarios. When retrieval is not sufficiently robust and returns
an incorrect location, as in the most challenging conditions, one could improve the
performance by reranking using covisiblity clustering [261,272] or pose verification
with sparse [269, 368] or dense matching [308].
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Chapter 3: Learning Robust Camera Localization from Pixels to Pose

3D structure: For simplicity and unless mentioned, for both training and evaluation,
we use sparse SfM models triangulated from posed reference images using hloc [260,
261] and COLMAP [278, 281]. Given a subset of reference images, e.g. top-5
retrieved, we gather all the 3D points that they observe, extract multilevel features
at their 2D observations, and average them based on their confidence.

3.5. Experiments

We first compare against existing learning-based localization approaches and show
that PixLoc often performs better than those trained for each scene and generalizes
well across environments. We then compare PixLoc with state-of-the-art feature
matching pipelines on a large-scale benchmark and show that it delivers competitive
accuracy, but can also enhance them when used as a post-processing. Finally, we
provide insights into PixLoc through an ablation study.

Architecture: We employ a UNet feature extractor based on a VGG19 encoder
pretrained on ImageNet, and extract L=3 feature maps with strides 1, 4, and 16,
and dimensions Dl=32, 128, and 128, respectively. PixLoc is implemented in
PyTorch [224], extracts features for an image in around 100ms, and optimizes the
pose in 200ms to 1s depending on the number of points.

Training: We train two versions of PixLoc to demonstrate its ability to learn
environment-specific priors. The benefits of such priors are analyzed in Sec. 3.7.
One version is trained on the MegaDepth dataset [172], composed of crowd-sourced
images depicting popular landmarks around the world, and the other on the training
set of the Extended CMU Seasons dataset [14, 273, 318], a collection of sequences
captured by car-mounted cameras in urban and rural environments. The latter
dataset exhibits large seasonal changes with often only natural structures like trees
being visible in the images, which are challenging for feature matching. We sample
covisible image pairs and simulate the localization of one image with respect to the
other, given its observed 3D points. The optimization runs for 15 iterations at each
level and is initialized with the pose of the reference image.
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Chapter 3: Learning Robust Camera Localization from Pixels to Pose

3.5.1. Comparison to learned approaches

We first evaluate on the Cambridge Landmarks [149] and 7Scenes [291] datasets,
which are commonly used to compare learning-based approaches.

Evaluation: The two datasets contain 5 outdoor and 7 indoor scenes, respectively,
each composed of posed reference images and query images captured along different
trajectories and conditions. We report for each scene the median translation (cm)
and rotation (°) errors [149], as well as the average localization recall at (5cm, 5°)
for 7Scenes [291].

Baselines: We compare with multiple state-of-the-art learning-based ap-
proaches. Those trained per scene include 3D coordinate regression networks
DSAC* RGB [39] and HACNet [168], and CAMNet [83], which regresses a relative
pose following image retrieval. SANet [360] is scene-agnostic. All approaches,
including PixLoc, use 3D points from SfM and dense depth maps for Cambridge and
7Scenes, respectively. These depth maps were rendered by Brachmann et al. [39]
from a mesh built by integrating the noisy depth sensor measurements and are
aligned to the color images.

We report image retrieval with DenseVLAD [322] but not PoseNet and its variants
as they perform similarly [275]. We also compare with feature matching pipelines.
Active Search (AS) [272] performs global matching with SIFT [183]. InLoc [308]
and hloc [261] first perform image retrieval before matching features to the retrieved
images. The former matches dense deep descriptors and relies on a dense reference
3D model, while hloc matches SuperPoint [81] features with SuperGlue [263] and
builds a sparse 3D SfM reference point cloud. PixLoc, trained on MegaDepth, is
initialized with image retrieval obtained with either DenseVLAD [322] or an oracle,
which returns the reference image containing the largest number of inlier matches
found by hloc. This oracle shows the benefits of better image retrieval using a more
complex pipeline without ground truth information.

Results: The evaluation results are reported in Tab. 3.1. On outdoor data, PixLoc
consistently outperforms the only end-to-end scene-agnostic method, SANet, and
performs similarly to, or better than scene-specific approaches. It is competitive for
indoor scenes, despite being trained on outdoor Internet data only. This confirms
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Part I: Localization and Mapping with 3D Maps

that deep features are all we need for accurate localization and that they generalize
well despite end-to-end training. PixLoc performs comparably to the best feature
matching localizer hloc – a complex pipeline that integrates learned feature detection,
description, and matching. Localizing with the oracle prior only marginally improves
the performance, confirming that image retrieval can be sufficiently accurate for the
pose optimization to converge to the correct minimum. On 7Scenes, using dense
depth maps yields slightly more accurate poses than using the sparse SfM point
cloud.

3.5.2. Large-scale localization

We now evaluate on a large-scale, long-term localization benchmark [273] that
exhibits considerably more diversity in geometry and appearance than Cambridge
and 7Scenes.

Evaluation: The benchmark is composed of three datasets. The Aachen Day-
Night [273, 274] dataset is captured by handheld devices. The RobotCar [191, 273]
and the Extended CMU [14, 318] seasons datasets are captured by car-mounted
cameras across different seasons, weather, and times, in urban and rural areas. All
datasets have posed reference images, SfM models, and query images. We report
the localization recall at thresholds (25cm, 2°), (50cm, 5°), and (5m, 10°).

Baselines: Multiple past works [37, 275, 280, 308] report that end-to-end learning-
based methods cannot be stably trained on such large-scale datasets. The only
exception is ESAC [37], which reports results for Aachen only. We additionally
compare against image retrieval with DenseVLAD [322] and NetVLAD [10] and fea-
ture matching pipelines based on Active Search [272], D2-Net [85], S2DNet [105],
and hloc [261]. PixLoc is trained on MegaDepth (CMU) when evaluated on Aachen
(RobotCar and CMU). It is initialized by the weighted average [233] of the top-3
poses retrieved by NetVLAD for Aachen and top-1 for RobotCar and CMU. The
oracle prior is identical to Sec. 3.5.1.

Results: We report the results in Tab. 3.2. When the initial pose prior is provided
by image retrieval, PixLoc is a simple localization system that is more accurate than
ESAC, especially in the challenging condition of night. This improvement is not
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Chapter 3: Learning Robust Camera Localization from Pixels to Pose

brought by the significantly less accurate image retrieval. PixLoc is however less
robust than the feature matching pipelines, which is mostly due to the naive pose
prior, as our algorithm cannot converge if the retrieval returns the incorrect location.
Using the oracle prior partially bridges the gap, and makes PixLoc competitive on
driving datasets like CMU and RobotCar. It however lags behind on Aachen, where
the reference images are significantly sparser and the initial priors are therefore
much coarser. Naturally, this is challenging for direct alignment, irrespective of the
daytime or nighttime condition. PixLoc is nevertheless the only end-to-end trained
method that can scale to this large extent without requiring retraining.

3.5.3. Pose post-processing with PixLoc

We showed that too large baselines between query and reference images can cause
PixLoc to converge to an incorrect local minima. Naturally, PixLoc can also serve
as a post-processing step for any other localization pipeline.

Refinement in challenging conditions: We apply PixLoc to refine the poses
estimated by hloc in the previous localization experiment. We consider all 3D points
that have at least one inlier match. The results are shown in the last row of Tab. 3.2.
PixLoc brings consistent improvement on CMU, especially in the fine threshold,
with up to +2.4% recall. It also increases the pose accuracy at all thresholds on
RobotCar Night, which exhibits significant motion blur, a difficult condition for
sparse keypoint detection. However, no improvement can be observed on RobotCar
Day, while the refinement is detrimental on Aachen at 0.25m. This might be due to
inaccurate ground truth poses or camera intrinsics.

3.6. Convergence and initial pose

Convergence: The pose optimization in PixLoc tends to converge to spurious local
minima if the initial pose is too coarse, such as on the Aachen dataset, in which
reference images are sparse. Since the receptive field of the CNN is limited, the
convergence mostly depends on the initial 2D reprojection error, which accounts for
the rotation and translation errors and for the distance to the 3D structure. The exact
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Figure 3.6.: Impact of the initial pose on the Aachen dataset. The success of the pose
optimization decreases with larger initial reprojection errors, which vary significantly across
the 922 queries.

Initial pose
Aachen Day-Night CMU Seasons

Day Night Park

top-1 61.7 / 67.6 / 74.8 46.9 / 53.1 / 64.3 61.0 / 62.5 / 69.4
top-3 averaging 64.3 / 69.3 / 77.4 51.0 / 55.1 / 67.3 64.9 / 66.8 / 71.7
oracle prior 68.0 / 74.6 / 80.8 57.1 / 69.4 / 76.5 84.0 / 85.8 / 90.9

Table 3.3.: Selection of the initial pose. Averaging the poses of the top retrieved images
improves the convergence of PixLoc compared to simply selecting the pose of the first image.

density of reference images required for high success thus depends on the distance
to the scene.

We report in Fig. 3.6 the success rate for different initial reprojection errors and their
distribution for the oracle retrieval, with hloc as pseudo ground truth. Convergence
within 1 meter is observed for 80% of the cases only when the initial error is smaller
than 200 pixels and is significantly reduced for larger errors.

Initial pose: The 7Scenes and Cambridge datasets have reference poses with a
high density. In driving scenarios like in the RobotCar and CMU datasets, there
are no rotation changes between reference and query poses. In all these scenarios,
initializing PixLoc with the pose of the first retrieved image is therefore sufficient.

To improve the performance on the Aachen dataset, the results in Tab. 3.2 rely
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Figure 3.7.: Which features do matter? In driving scenarios (A-D), besides dynamic
objects such as cars, PixLoc learns to ignore (in blue) more subtle short-term entities like
snow (A), fallen leaves (B), trash bins (C), or shadows at all feature levels. Instead, it focuses
(in red) on poles, tree trunks, road markings, power lines, or building silhouettes. Repetitive
structures like windows or road cracks are often ignored at first but later on used for fine
alignment. Differently, when trained on urban scenes (E), it ignores trees as buildings are
more stable structures.

on additional filtering steps. We first cluster the top-3 retrieved reference images
based on their covisibility [261, 272] and only retain the images that belong to the
largest cluster. We then perform a weighted average of the reference poses [193],
where the weights are computed from the similarity of the global descriptors [233].
We compare in Tab. 3.3 the results obtained with this pose averaging and with the
top-1 retrieval. To further improve the convergence, one could also rerank based on
featuremetric error or initialize with poses randomly sampled around top-retrieved
poses.
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Figure 3.8.: Learned motion prior. Training on data recorded with 3-DoF car-mounted
cameras (CMU, in red) or with 6-DoF hand-held devices (MegaDepth, in blue) results in
different motion priors learned by the damping factor λ. Larger relative values indicate
smaller expected motion in the corresponding direction.

Training
dataset

Aachen (urban scenes like MD) CMU (natural scenes)

Day Night Urban Park

MD 68.0 / 74.6 / 80.8 57.1 / 69.4 / 76.5 78.3 / 81.8 / 94.6 72.5 / 75.5 / 90.3
CMU 54.4 / 62.6 / 74.3 46.9 / 54.1 / 68.4 91.9 / 93.4 / 95.8 84.0 / 85.8 / 90.9

Table 3.4.: Cross-dataset evaluation with oracle prior. Training and testing in different
environments does not perform as well as training for the target distribution. Task-specific
priors learned by PixLoc, like semantics and motion, are thus largely beneficial.

3.7. Benefits of training on different datasets

Semantic priors: The training datasets CMU and MegaDepth reflect different
scenarios, autonomous driving and tourism landmark photography, respectively.
Training on each one separately allows to learn task-specific priors and demonstrates
the ability of PixLoc to adapt to the environment. Each dataset depicts scenes
with different semantic elements (street-level landscapes and urban landmarks,
respectively) and different changes of conditions (weather and season for CMU,
cameras, occluders, and viewpoints for MegaDepth). Fig. 3.7 shows that the models
learn to ignore different unreliable elements depending on the training dataset. For
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Method
AUC

25cm 1m

• Photometric optimization 1.2 3.3
• + deep features (GN loss) 13.2 21.4
• + unroll (fixed damping λ) 49.2 67.0
• + confidence wi,k 53.3 72.5
• + learned λ (PixLoc-full) 59.8 79.0
•D=128→16 (PixLoc-light) 50.4 70.2

10 1 100

Translation error [m]
0

20

40

60

80
Recall [%]

Table 3.5.: Ablation study. Unrolling the optimizer and learning features, damping factor,
and confidences all contribute to the performance of PixLoc over classical photometric
alignment. Learning compact features as in past works [186, 339] results in a drop of
performance compared to high-dimensional representations.

example, tree silhouettes are reliable on CMU due to the small viewpoint changes,
but are ignored by the model trained on MegaDepth.

Motion priors: Cameras also exhibit different motions, as they are either car-
mounted or hand-held. Such priors are learned by the model through the damping
factors, which we visualize in Fig. 3.8. On CMU, the motion across query and
reference images is mostly a translation along the x and z axis of the camera, and
never along the y axis (fixed height above the ground plane) or a rotation around
the z axis (fixed roll). Differently, the motion on MegaDepth is more uniformly
distributed among the 6 DoF, resulting in similar factors. The relative scale between
the two sets of factors is irrelevant.

Evaluation: These learned priors have a noticeable impact on the performance, as
shown in Tab. 3.4. Training on CMU performs better than training on MegaDepth
when evaluating on a driving dataset like RobotCar. When evaluating on a totally
different environment like Aachen, it however still performs better than a scene-
specific approach like ESAC (shown in Tab. 3.2). PixLoc thus generalizes well
across scenarios but can also learn and exploit their specificities.
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3.7.1. Additional insights

Ablation study: We justify our design decisions by comparing different variants
of PixLoc. We have attempted to train our CNN with the Gauss-Newton (GN)
loss [339], but it fails to converge on our challenging training data despite extensive
hyperparameter tuning. We select difficult query-reference pairs in the CMU valida-
tion set and report the recall curve and its area (AUC) in Tab. 3.5. As can be seen,
all components significantly contribute to PixLoc’s performance.

Interpretability: Visualizing the weight maps uq learned by PixLoc helps us
discover what cues are useful or detrimental for localizing in which environ-
ments (Fig. 3.7). We show examples of successful and failed localization in Figs. 3.9
and 3.11 and Figs. 3.10 and 3.12, respectively.

3.8. Summary and outlook

Summary: In this chapter, we have introduced a simple solution to end-to-end
learning of camera pose estimation. In contrast to previous approaches that regress
geometric quantities, we do not try to teach a deep network basic geometric princi-
ples or 3D map encoding. Instead, we go Back to the Feature: we show that learning
robust and generic features is sufficient for accurate localization by leveraging clas-
sical image alignment with existing 3D maps. To the best of our knowledge, the
resulting system, PixLoc, is the first end-to-end trainable approach capable of being
deployed into new scenes widely differing from its training data without retraining
or fine-tuning. PixLoc achieves a pose accuracy competitive with significantly more
complex state-of-the-art pipelines. End-to-end training combined with uncertainty
modeling enables PixLoc to learn complex yet interpretable priors.

PixLoc learns which features and objects matter for robust, long-term localization.
Yet, it requires a good initialization to successfully localize. We thus see PixLoc as
a first step towards deep networks that learn and reason about long-term, extreme
changes of appearance and 3D structure. We believe that taking steps towards
human-level spatiotemporal understanding will ultimately lead to robust, reliable,
and accurate localization systems.
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Limitations: PixLoc relies on gradients of CNN features, which can only encode
a limited context. It is thus a local method and can fall into incorrect minima for
excessively large initial reprojection errors arising from large viewpoint changes.
Our approach is thus limited in terms of the viewpoint changes that it can handle.
PixLoc can also fail for large outliers ratios due prominent occluders and is more
sensitive to camera miscalibration.

More critically, we found that featuremetric errors are much less reliable to flag
failure cases than the inlier count typically estimated by RANSAC. We hypothesize
that, because they depend on the underlying image content, the featuremetric errors
learned by PixLoc cannot effectively distinguish correct and incorrect alignments
but only provide a local direction of minimization. Training such features to provide
an absolute scoring, such as in a RANSAC scheme, could improve their reliability –
but no experiment has confirmed this so far. Additionally, the optimization used in
PixLoc is rather slow when accounting for all levels and scales. These are significant
obstacles to the integration of PixLoc in a real-world system.

Impact: Given these limitations, PixLoc has had a relatively limited practical
impact. The refinement introduced in Chapter 2 is more suitable for most scenarios.
PixLoc has however inspired several lines of work that cast the estimation of a
relative pose between multiple sensor modalities as a feature alignment process. Fu
et al. [100] show that this can be used to refine the extrinsic calibration of cameras
and LiDAR measurements. Shi et al. [286] localize a ground-level image within a
satellite image. Our differentiable LM optimization is a critical component of both
approaches. Veicht et al. [337] repurpose this optimization for the task of single-
image camera calibration. PixLoc has also inspired other works that successfully
integrate this optimization into larger systems [314, 315].

As for the task of pose refinement, Solonets et al. [296] extend the basin of conver-
gence by explicitly controlling and annealing the smoothness of the features instead
of learning a feature pyramid. Trivigno et al. [325] show that generic features are
effective when a 3D model of the scene is available for rendering.
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Figure 3.9.: Successful localization on the CMU dataset. We show 5 challenging queries
with large initial errors and large cross-season appearance changes that are successfully
localized by PixLoc. We project 3D SfM points into the initial reference image (in green) and
into the query image using the estimated pose (in red). We show the features at the 3 different
levels, mapping them to RGB using PCA. We also show the confidence maps, where blue
pixels are ignored while red ones are more important for the optimization. Features useful
for localization are invariant across seasons and thus appear in similar colors.
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Figure 3.10.: Failure cases on the CMU dataset. We show examples for which the opti-
mization results in a large final error. This is often due to repeated elements or to a lack of
spatial context of the coarse features or a lack of distinctive elements. Natural scenes are
particularly challenging when tree trunks and vegetation cannot be easily distinguished.
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Figure 3.11.: Successful localization on the Aachen dataset. We show 5 challenging
queries with large initial errors and large day-night appearance changes that are successfully
localized by PixLoc. The reprojection and pose errors are computed with respect to the pose
estimated by hloc.
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Figure 3.12.: Failure cases on the Aachen dataset. Convergence to a local and incorrect
minima can be due to large appearance changes (row 1), occlusion (row 2), large viewpoint
change (row 3) or repeated structures on facades (rows 4 and 5).
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C H A P T E R 4
Benchmarking
Localization and Mapping
for Augmented Reality

Localization and mapping is the foundational technology for Augmented Reality
(AR) that enables sharing and persistence of digital content in the real world. While
significant progress has been made, researchers are still mostly driven by unrealistic
benchmarks not representative of real-world AR scenarios. These benchmarks
are often based on small-scale datasets with low scene diversity, captured from
stationary cameras, and lack other sensor inputs like inertial, radio, or depth data.
Furthermore, their ground truth (GT) accuracy is mostly insufficient to satisfy AR
requirements. To close this gap, we introduce LaMAR, a new benchmark with
a comprehensive capture and GT pipeline that co-registers realistic trajectories
and sensor streams captured by heterogeneous AR devices in large, unconstrained
scenes. To establish an accurate GT, our pipeline robustly aligns the trajectories
against laser scans in a fully automated manner. As a result, we publish a benchmark
dataset of diverse and large-scale scenes recorded with head-mounted and hand-held
AR devices. We extend several state-of-the-art methods to take advantage of the
AR-specific setup and evaluate them on our benchmark. The results offer new
insights on current research and reveal promising avenues for future work in the
field of localization and mapping for AR.
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Figure 4.1.: We revisit localization and mapping in the context of Augmented Reality by
introducing LaMAR, a large-scale dataset captured using AR devices (HoloLens 2, iPhone)
and laser scanners.

4.1. Introduction

Placing virtual content in the physical 3D world, persisting it over time, and sharing
it with other users are typical scenarios for AR. In order to reliably overlay virtual
content in the real world with pixel-level precision, these scenarios require AR
devices to accurately determine their 6-DoF pose at any point in time. While visual
localization and mapping is one of the most studied problems in computer vision, its
use for AR entails specific challenges and opportunities. First, modern AR devices,
such as mobile phones or the Microsoft HoloLens or MagicLeap One, are often
equipped with multiple cameras and additional inertial or radio sensors. Second,
they exhibit characteristic hand-held or head-mounted motion patterns. The on-
device real-time tracking systems provide spatially-posed sensor streams. However,
many AR scenarios require positioning beyond local tracking, both indoors and
outdoors, and robustness to common temporal changes of appearance and structure.
Furthermore, given the plurality of temporal sensor data, the question is often not
whether, but how quickly can the device localize at any time to ensure a compelling
end-user experience. Finally, as AR adoption grows, crowd-sourced data captured
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by users with diverse devices can be mined for building large-scale maps without a
manual and costly scanning effort. Crowd-sourcing offers great opportunities but
poses additional challenges on the robustness of algorithms, e.g., to enable cross-
device localization [84], mapping from incomplete data with low accuracy [34,278],
privacy-preservation of data [87, 103, 104, 290, 299], etc.

However, the academic community is mainly driven by benchmarks that are discon-
nected from the specifics of AR. They mostly evaluate localization and mapping
using single still images and either lack temporal changes [243, 291] or accu-
rate GT [149, 273, 308], are restricted to small scenes [19, 149, 283, 291, 343]
or landmarks [143, 279] with perfect coverage and limited viewpoint variability,
or disregard temporal tracking data or additional visual, inertial, or radio sen-
sors [49, 166, 273, 274, 305, 308].

Our first contribution is to introduce a large-scale dataset captured using AR
devices in diverse environments, notably a historical building, a multi-story office
building, and part of a city center. The initial data release contains both indoor and
outdoor images with illumination and semantic changes as well as dynamic objects.
Specifically, we collected multi-sensor data streams (images, depth, tracking, inertial
measurements, Bluetooth, WiFi) totaling more than 100 hours using head-mounted
HoloLens 2 and hand-held iPhone / iPad devices covering 45’000 square meters
over the span of one year (Fig. 4.1).

Second, we develop a GT pipeline to automatically and accurately register AR
trajectories against large-scale 3D laser scans. Our pipeline does not require any
manual labeling or setup of custom infrastructure (e.g., fiducial markers). Further-
more, the system robustly handles crowd-sourced data from heterogeneous devices
captured over longer periods of time and can be easily extended to support future
devices.

Finally, we present a rigorous evaluation of localization and mapping in the
context of AR and provide novel insights for future research. Notably, we show
that the performance of state-of-the-art methods can be drastically improved by
considering additional data streams generally available in AR devices, such as
radio signals or sequence odometry. Thus, future algorithms in the field of AR
localization and mapping should always consider these sensors in their evaluation
to show real-world impact.
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The LaMAR dataset, benchmark, GT pipeline, and the implementations of baselines
integrating additional sensory data are all publicly available at lamar.ethz.ch.
We hope that this will spark future research addressing the challenges of AR.

4.2. Related work

Image-based localization is classically tackled by estimating a camera pose from
correspondences established between sparse local features [29, 183, 199, 253] and a
3D Structure-from-Motion (SfM) [278] map of the scene [95,171,271]. This pipeline
scales to large scenes using image retrieval [11,47,139,241,244,321,322]. Recently,
many of these steps or even the end-to-end pipeline have been successfully learned
with neural networks [10, 81, 85, 136, 176, 203, 261, 263, 268, 280, 317, 364]. Other
approaches regress absolute camera pose [147,149,211] or scene coordinates [37,39,
169, 196, 197, 291, 335, 350]. However, all these approaches typically fail whenever
there is lack of context (e.g., limited field-of-view) or the map has repetitive elements.
Leveraging the sequential ordering of video frames [144, 201] or modelling the
problem as a generalized camera [122, 235, 273, 299] can improve results.

Radio-based localization: Radio signals, such as WiFi and Bluetooth, are spatially
bounded (logarithmic decay) [17, 120, 151], thus can distinguish similarly looking
(spatially distant) locations. Their unique identifiers can be uniquely hashed which
makes them computationally attractive (compared with high-dimensional image
descriptors). Several methods use the signal strength, angle, direction, or time of
arrival [56,73,227] but the most popular is model-free map-based fingerprinting [120,
151, 160], as it only requires to collect unique identifiers of nearby radio sources
and received signal strength. GNSS provides absolute 3-DoF positioning but is not
applicable indoors and has insufficient accuracy for AR scenarios, especially in
urban environments due to multi-pathing, etc.

Datasets and ground-truth: As shown in Tab. 4.1, many of the existing bench-
marks are captured in small-scale environments [76, 126, 291, 343], do not con-
tain sequential data [19, 60, 143, 274, 279, 283, 305, 308], lack characteristic hand-
held/head-mounted motion patterns [15, 191, 273, 352], or their GT is not accurate
enough for AR [149, 243]. None of these datasets contain WiFi or Bluetooth data.

76

https://lamar.ethz.ch/


Chapter 4: Benchmarking Localization and Mapping for Augmented Reality
da

ta
se

t
ou

t/i
nd

oo
r

ch
an

ge
s

sc
al

e
de

ns
ity

ca
m

er
a

m
ot

io
n

im
ag

in
g

de
vi

ce
s

ad
di

tio
na

ls
en

so
rs

gr
ou

nd
tr

ut
h

ac
cu

ra
cy

A
ac

he
n

[2
73

,2
74

]
�

�
×

�
�

�
st

ill
im

ag
es

D
SL

R
Sf

M
>

dm

Ph
ot

ot
ou

ri
sm

[1
43

]
×

�
�

�
�

�
st

ill
im

ag
es

D
SL

R
,p

ho
ne

Sf
M

∼
m

Sa
n

Fr
an

ci
sc

o
[6

0]
�

�
�

�
�

�
st

ill
im

ag
es

D
SL

R
,p

ho
ne

G
N

SS
Sf

M
+G

N
SS

∼
m

C
am

br
id

ge
[1

49
]

×
�

�
�

�
�

ha
nd

he
ld

m
ob

ile
Sf

M
>

dm

7S
ce

ne
s

[2
91

]
×

�
�

�
�

�
ha

nd
he

ld
m

ob
ile

de
pt

h
R

G
B

-D
∼

cm

R
IO

10
[3

43
]

×
�

�
�

�
�

ha
nd

he
ld

Ta
ng

o
ta

bl
et

de
pt

h
V

IO
>

dm

In
L

oc
[3

08
]

�
×

�
×

�
�

st
ill

im
ag

es
pa

no
ra

m
as

,p
ho

ne
lid

ar
m

an
ua

l+
lid

ar
>

dm

B
ai

du
m

al
l[

30
5]

�
×

�
�

�
�

st
ill

im
ag

es
D

SL
R

,p
ho

ne
lid

ar
m

an
ua

l+
lid

ar
∼

dm

N
av

er
L

ab
s

[1
66

]
�

�
�

�
�

�
ro

bo
t-

m
ou

nt
ed

fis
he

ye
,p

ho
ne

lid
ar

lid
ar

+S
fM

∼
dm

N
C

LT
[4

9]
�

�
�

�
�

�
ro

bo
t-

m
ou

nt
ed

w
id

e-
an

gl
e

lid
ar

,I
M

U
,G

N
SS

lid
ar

+V
IO

∼
dm

A
D

V
IO

[2
43

]
�

�
�

×
�

�
ha

nd
he

ld
ph

on
e,

Ta
ng

o
IM

U
,d

ep
th

,G
N

SS
m

an
ua

l+
V

IO
∼

m

E
T

H
3D

[2
83

]
×

�
�

�
�

�
ha

nd
he

ld
D

SL
R

,w
id

e-
an

gl
e

lid
ar

m
an

ua
l+

lid
ar

∼
m

m

L
aM

A
R

(o
ur

s)
�

�
×

3
lo

ca
tio

ns
45

’0
00

m
2

�
�

�
10

0
ho

ur
s

40
km

ha
nd

he
ld

he
ad

-m
ou

nt
ed

ph
on

e,
he

ad
se

t
ba

ck
pa

ck
,t

ro
lle

y
lid

ar
,I

M
U

,6
�

de
pt

h,
in

fr
ar

ed
lid

ar
+S

fM
+V

IO
au

to
m

at
ed

∼
cm

Ta
bl

e
4.

1.
:

O
ve

rv
ie

w
of

ex
is

tin
g

da
ta

se
ts

.
N

o
da

ta
se

t,
be

si
de

s
ou

rs
,e

xh
ib

its
at

th
e

sa
m

e
tim

e
sh

or
t-

te
rm

ap
pe

ar
an

ce
an

d
st

ru
ct

ur
al

ch
an

ge
s

du
e

to
m

ov
in

g
pe

op
le

,w
ea

th
er

,o
r

da
y-

ni
gh

tc
yc

le
s

,b
ut

al
so

lo
ng

-t
er

m
ch

an
ge

s
du

e
to

di
sp

la
ce

d
fu

rn
itu

re
or

co
ns

tr
uc

tio
n

w
or

k
.

de
vi

ce
m

ot
io

n
ty

pe
ca

m
er

as
ra

di
os

ot
he

rd
at

a
po

se
s

#
FO

V
fr

eq
.

re
so

lu
tio

n
sp

ec
s

M
6

tr
ol

le
y

6
11

3°
1-

3m
10

80
p

R
G

B
,s

yn
c

6
�

lid
ar

po
in

ts
+m

es
h

lid
ar

SL
A

M
V

L
X

ba
ck

pa
ck

4
90

°
1-

3m
10

80
p

R
G

B
,s

yn
c

�
lid

ar
po

in
ts

+m
es

h
lid

ar
SL

A
M

H
ol

oL
en

s2
he

ad
-m

ou
nt

ed
4

83
°

30
H

z
V

G
A

gr
ay

,G
S

6
�

To
F

de
pt

h/
IR

1H
z,

IM
U

he
ad

-t
ra

ck
in

g
iP

ad
/iP

ho
ne

ha
nd

-h
el

d
1

64
°

10
H

z
10

80
p

R
G

B
,R

S,
A

F
�

∗
lid

ar
de

pt
h

10
H

z,
IM

U
A

R
K

it

Ta
bl

e
4.

2.
:

Se
ns

or
sp

ec
ifi

ca
tio

ns
.O

ur
da

ta
se

th
as

vi
si

bl
e

lig
ht

im
ag

es
(g

lo
ba

ls
hu

tte
r

G
S,

ro
lli

ng
sh

ut
te

r
R

S,
au

to
-f

oc
us

A
F

),
de

pt
h

da
ta

(T
oF

,L
iD

A
R

),
ra

di
o

si
gn

al
s

(∗
,i

fp
ar

tia
l)

,d
en

se
Li

D
A

R
po

in
tc

lo
ud

s,
an

d
po

se
s

w
ith

in
tr

in
si

cs
fr

om
on

-d
ev

ic
e

tr
ac

ki
ng

.

77



Part I: Localization and Mapping with 3D Maps

The closest to our work are Naver Labs [166], NCLT [49] and ETH3D [283]. Both,
Naver Labs [166] and NCLT [49] are less accurate than ours and do not contain
AR specific trajectories or radio data. The Naver Labs dataset [166] also does not
contain any outdoor data. ETH3D [283] is highly accurate, however, it is only
small-scale, does not contain significant changes, or any radio data.

To establish ground-truth, many datasets rely on off-the-shelf SfM algorithms [278]
for unordered image collections [143, 143, 149, 243, 274, 305, 308, 343]. Pure SfM-
based GT generation has limited accuracy [34] and completeness, which biases
the evaluations to scenarios in which visual localization already works well. Other
approaches rely on RGB(-D) tracking [291,343], which usually drifts in larger scenes
and cannot produce GT in crowd-sourced, multi-device scenarios. Specialized
capture rigs of an AR device with a more accurate sensor (LiDAR) [49, 166]
prevent capturing of realistic AR motion patterns. Furthermore, scalability is
limited for these approaches, especially if they rely on manual selection of reference
images [305], laborious labeling of correspondences [274, 308], or placement of
fiducial markers [126]. For example, the accuracy of ETH3D [283] is achieved
by using single stationary LiDAR scan, manual cleaning, and aligning very few
images captured by tripod-mounted DSLR cameras. Images thus obtained are not
representative for AR devices and the process cannot scale or take advantage of
crowd-sourced data. In contrast, our fully automatic approach does not require any
manual labeling or special capture setups, thus enables light-weight and repeated
scanning of large locations.

4.3. Dataset

We first give an overview of the setup and content of our dataset.

Locations: The initial release of the dataset contains 3 large locations representative
of AR use cases: 1) HGE (18’000 m2) is the ground floor of a historical university
building composed of multiple large halls and large esplanades on both sides. 2)
CAB (12’000 m2) is a multi-floor office building composed of multiple small and
large offices, a kitchen, storage rooms, and 2 courtyards. 3) LIN (15’000 m2) is a
few blocks of an old town with shops, restaurants, and narrow passages. HGE and
CAB contain both indoor and outdoor sections with many symmetric structures.
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Figure 4.2.: The CAB location features 1-2) a staircase spanning 5 similar-looking floors,
3) large and small offices and meeting rooms, 4) long corridors, 5) large halls, and 6) outdoor
areas with repeated structures. This location includes the Facade, Courtyard, Lounge, Old
Computer, Storage Room, and Office scenes of the ETH3D [283] dataset.
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Figure 4.3.: The HGE location features a highly-symmetric building with 1-2) hallways,
3) long corridors, 4) two esplanades, and 5) a section of sidewalk. This location includes the
Relief, Door, and Statue scenes of the ETH3D [283] dataset.
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Figure 4.4.: The LIN location features large outdoor open spaces (top row), narrow
passages with stairs (middle row), and both residential and commercial street-level facades.

Data collection: We collected data using Microsoft HoloLens 2 and Apple iPad
Pro devices with custom raw sensor recording applications. 10 participants were
each given one device and asked to walk through a common designated area. They
were only given the instructions to freely walk through the environment to visit,
inspect, and find their way around. This yielded diverse camera heights and motion
patterns. Their trajectories were not planned or restricted in any way. Participants
visited each location, both during the day and at night, at different points in time
over the course of up to 1 year. In total, each location is covered by more than 100
sessions of 5 minutes. We did not need to prepare the capturing site in any way
before recording. This enables easy barrier-free crowd-sourced data collections.
Each location was also captured two to three times by NavVis M6 trolley or VLX
backpack mapping platforms, which generate textured dense 3D models of the
environment using laser scanners and panoramic cameras.

We show renderings of the resulting high-quality meshes along with trajectories of
the numerous AR sequences, each shown as a different color, for each location in
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in Figs. 4.2 to 4.4. Because spaces are actively used and managed, they undergo
significant appearance and structural changes over the year-long data recording. For
example, the front of the HGE building turned into a construction site and the indoor
furniture was rearranged. This is captured by the laser scans, which are aligned
based on elements that do not change, such as the structure of the buildings. We
show in Fig. 4.5 a visual comparison between scans captured at different points in
time.

Privacy: We paid special attention to comply with privacy regulations. Since the
dataset is recorded in public spaces, our pipeline anonymizes all visible faces and
licence plates.

Sensors: We provide details about the recorded sensors in Tab. 4.2. The HoloLens
has a specialized large field of view (FoV) multi-camera tracking rig (low resolution,
global shutter) [334], while the iPad has a single, higher-resolution camera with
rolling shutter and more limited FoV. All images are undistorted. We show samples
of these images in Fig. 4.6. We also recorded outputs of the real-time AR tracking
algorithms available on each device, which includes relative camera poses and
sensor calibration. All sensor data is registered into a common reference frame with
accurate absolute GT poses using the pipeline described in the next section.

4.4. Ground-truth generation

We estimate GT poses from the raw data from the different sensors. This process is
fully automated and does not require any manual alignment or annotation.

Overview: We start by aligning different sessions of the laser scanner by using
the images and the 3D LiDAR point cloud. When registered together, they form
the GT reference map, which accurately captures the structure and appearance of
the scene. We then register each AR sequence individually to the reference map
using local feature matching and relative poses from the on-device tracker. Finally,
all camera poses are refined jointly by optimizing the visual constraints within and
across sequences.

Notation: We denote iTj ∈ SE(3) the 6-DoF pose, encompassing rotation and
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Figure 4.5.: Long-term structural changes. LiDAR point clouds captured over a year
reveal the geometric changes that spaces undergo at different time scales: 1) very rarely
(construction work), 2-4) sparsely (displacement of furniture), or even 5-6) daily due to
regular usage (people, objects).
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Figure 4.6.: Sample of images from the different devices: NavVis M6, HoloLens2, phone.
Each column shows a different scene of the HGE location with large illumination changes.
NavVis and phone images are colored while HoloLens2 images are grayscale. NavVis images
are always perfectly upright, while the viewpoint and height of HoloLens2 and phone images
varies significantly. Despite the automatic exposure, phone images easily appear dark in
night-time low-light conditions.
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translation, that transforms a point in frame j to another frame i. Our goal is to
compute globally-consistent absolute poses wTi for all cameras i of all sequences
and scanning sessions into a common reference world frame w.

4.4.1. Ground-truth reference model

Each capture session S ∈ S of the NavVis laser-scanning platform is processed
by a proprietary inertial-LiDAR SLAM that estimates, for each image i, a pose
0T

S
i relative to the beginning of the session. The software filters out noisy LiDAR

measurements, removes dynamic objects, and aggregates the remainder into a
globally-consistent colored 3D point cloud with a grid resolution of 1cm. To
recover visibility information, we compute a dense mesh using the Advancing Front
algorithm [72].

Our first goal is to align the sessions into a common GT reference frame. We assume
that the scan trajectories are drift-free and only need to register each with a rigid
transformation wTS

0 . Scan sessions can be captured between extensive periods
of time and therefore exhibit large structural and appearance changes. We use a
combination of image and point cloud information to obtain accurate registrations
without any manual initialization. The steps are inspired by the reconstruction
pipeline of Choi et al. [63, 375].

Pair-wise registration: We first estimate a rigid transformation ATB for each
pair of scanning sessions (A,B) ∈ S2. For each image IAi in A, we select the r
most similar images (IBj )1≤j≤r in B based on global image descriptors [10, 139,
244], which helps the registration scale to large scenes. We extract sparse local
image features and establish 2D-2D correspondences {pAi ,pBj } for each image
pair (i, j). The 2D keypoints pi ∈ R2 are lifted to 3D, Pi ∈ R3, by tracing
rays through the dense mesh of the corresponding session. This yields 3D-3D
correspondences {PA

i ,P
B
j }, from which we estimate an initial relative pose [332]

using RANSAC [95]. This pose is refined with the point-to-plane Iterative Closest
Point (ICP) algorithm [255] applied to the pair of LiDAR point clouds.

We use state-of-the-art local image features that can match across drastic illumina-
tion and viewpoint changes [81, 245, 261]. Combined with the strong geometric
constraints in the registration, our system is robust to long-term temporal changes
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and does not require manual initialization. Using this approach, we have success-
fully registered building-scale scans captured at more than a year of interval with
large structural changes.

Global alignment: We gather all pairwise constraints and jointly refine all absolute
scan poses {wTS

0 } by optimizing a pose graph [111]. The edges are weighted with
the covariance matrices of the pair-wise ICP estimates. The images of all scan
sessions are finally combined into a unique reference trajectory {wTref

i }. The point
clouds and meshes are aligned according to the same transformations. They define
the reference representation of the scene, which we use as a basis to obtain GT for
the AR sequences.

Ground-truth visibility: The accurate and dense 3D geometry of the mesh allows
us to compute accurate visual overlap between two cameras with known poses and
calibration. Inspired by Rau et al. [241], we define the overlap of image i wrt. a
reference image j by the ratio of pixels in i that are visible in j:

O(i→ j) =

∑
k∈(W,H) 1

[
Πj(wTj ,Π

−1
i (wTi,p

i
k, zk)) ∈ (W,H)

]
αk

W ·H , (4.1)

where Πi projects a 3D point k to camera i, Π−1
i conversely backprojects it using

its known depth zk with (W,H) as the image dimensions. The contribution of
each pixel is weighted by the angle αk = cos(ni,k,nj,k) between the two rays. To
handle scale changes, it is averaged both ways i → j and j → i. This score is
efficiently computed by tracing rays through the mesh and checking for occlusion
for robustness.

This score O ∈ [0, 1] favors images that observe the same scene from similar
viewpoints. Unlike sparse co-visibility in an SfM model [238], our formulation is
independent of the amount of texture and the density of the feature detections. This
score correlates with matchability – we thus use it as GT when evaluating retrieval
and to determine an upper bound on the theoretically achievable performance of our
benchmark.
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Figure 4.7.: Sequence-to-scan alignment. We first estimate the absolute pose of each
sequence frame using image retrieval and matching. This initial localization prior is used
to obtain a single rigid alignment between the input trajectory and the reference 3D model
via voting. The alignment is then relaxed by optimizing the individual frame poses in a pose
graph based on both relative and absolute pose constraints. We bootstrap this initialization
by mining relevant image pairs and re-localizing the queries. Given these improved absolute
priors, we optimize the pose graph again and finally include reprojection errors of the visual
correspondences, yielding a refined trajectory.

4.4.2. Sequence-to-scan alignment

We now aim to register each AR sequence individually into the dense GT reference
model (see Fig. 4.7). Given a sequence of n frames, we introduce a simple algorithm
that estimates the per-frame absolute pose {wTi}1≤i≤n. A frame refers to an image
taken at a given time or, when the device is composed of a camera rig with known
calibration (e.g., HoloLens), to a collection of simultaneously captured images.

Inputs: We assume given trajectories {0Ttrack
i } estimated by a visual-inertial

tracker – we use ARKit for iPhone/iPad and the on-device tracker for HoloLens.
The tracker also outputs per-frame camera intrinsics {Ci}, which account for auto-
focus or calibration changes and are for now kept fixed.

Initial localization: For each frame of a sequence {Iquery
i }, we retrieve a fixed

number r of relevant reference images (I ref
j )1≤j≤r using global image descriptors.

We match sparse local features [81, 183, 245] extracted in the query frame to each
retrieved image I ref

j obtaining a set of 2D-2D correspondences {pq
i,k,p

ref
j,k}k. The

2D reference keypoints are lifted to 3D by tracing rays through the mesh of the
reference model, yielding a set of 2D-3D correspondencesMi,j := {pq

i,k,P
ref
j,k}k.
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We combine all matches per query frameMi = ∪rj=1Mi,j and estimate an initial
absolute pose wTloc

i using the (generalized) P3P algorithm [122] within a LO-
RANSAC scheme [68] followed by a non-linear refinement [278]. Because of
challenging appearance conditions, structural changes, or lack of texture, some
frames cannot be localized in this stage. We discard all poses that are supported by
a low number of inlier correspondences.

Rigid alignment: We next recover a coarse initial pose {wTinit
i } for all frames,

including those that could not be localized. Using the tracking, which is for now
assumed drift-free, we find the rigid alignment wTinit

0 that maximizes the consensus
among localization poses. This voting scheme is fast and effectively rejects poses
that are incorrect, yet confident, due to visual aliasing and symmetries. Each estimate

is a candidate transformation wTi
0 = wTloc

i

(
0T

track
i

)−1

, for which other frames
can vote, if they are consistent within a threshold τrigid. We select the candidate with
the highest count of inliers:

wTinit
0 = arg max

T∈{wTi
0}1≤i≤n

∑
1≤j≤n

1

[
dist

(
wTloc

j ,T · 0Ttrack
j

)
< τrigid

]
, (4.2)

where 1 [·] is the indicator function and dist (·, ·) returns the magnitude, in terms
of translation and rotation, of the difference between two absolute poses. We then
recover the per-frame initial poses as {wTinit

i := wTinit
0 · 0Ttrack

i }1≤i≤n.

Pose graph optimization: We refine the initial absolute poses by maximizing the
consistency of tracking and localization cues within a pose graph. The refined poses
{wTPGO

i } minimize the energy function

E({wTi}) =

n−1∑
i=1

CPGO

(
wT−1

i+1 wTi, i+1T
track
i

)
+

n∑
i=1

CPGO

(
wTi, wTloc

i

)
,

(4.3)
where CPGO (T1,T2) :=

∥∥Log
(
T1 T−1

2

)∥∥2

Σ,γ
is the distance between two absolute

or relative poses, weighted by covariance matrix Σ ∈ R6×6 and loss function γ.
Here, Log maps from the Lie group SE(3) to the corresponding algebra se(3).

We robustify the absolute term with the Geman-McClure loss function and anneal
its scale via a Graduated Non-Convexity scheme [359]. This ensures convergence
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in case of poor initialization, e.g., when the tracking exhibits significant drift, while
remaining robust to incorrect localization estimates. The covariance of the absolute
term is propagated from the preceding non-linear refinement performed during
localization. The covariance of the relative term is recovered from the odometry
pipeline, or, if not available, approximated as a factor of the motion magnitude.

This step can fill the gaps from the localization stage using the tracking information
and conversely correct for tracker drift using localization cues. In rare cases, the
resulting poses might still be inaccurate when both the tracking drifts and the
localization fails.

Guided localization via visual overlap: To further increase the pose accuracy, we
leverage the current pose estimates {wTPGO

i } to mine for additional localization
cues. Instead of relying on global visual descriptors, which are easily affected by
aliasing, we select reference images with a high overlap using the score defined in
Sec. 4.4.1. For each sequence frame i, we select r reference images with the largest
overlap and again match local features and estimate an absolute pose. These new
localization priors improve the pose estimates in a second optimization of the pose
graph.

Bundle adjustment: For each frame i, we recover the set of 2D-3D correspon-
dencesMi used by the guided re-localization. We now refine the poses {wTBA

i } by
jointly minimizing a bundle adjustment problem with relative pose graph costs:

E({wTi}) =

n−1∑
i=1

CPGO

(
wT−1

i+1 wTi, i+1T
track
i

)
+

n∑
i=1

∑
Mi,j∈Mi

∑
(pref

k ,P
q
k)∈Mi,j

∥∥∥Π(wTi,P
ref
j,k)− pq

i,k

∥∥∥2

σ2
,

(4.4)

where the second term evaluates the reprojection error of a 3D point Pref
j,k for

observation k to frame i. The covariance is the noise σ2 of the keypoint detection
algorithm. We pre-filter correspondences that are behind the camera or have an
initial reprojection error greater than σ τreproj. As the 3D points are sampled from
the LiDAR, we also optimize them with a prior noise corresponding to the LiDAR
specifications. We use the Ceres [3] solver.
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4.4.3. Joint global refinement

Once all sequences are individually aligned, we refine them jointly by leveraging
sequence-to-sequence visual observations. This is helpful when sequences observe
parts of the scene not mapped by the LiDAR. We first triangulate a sparse 3D model
from scan images, aided by the mesh. We then triangulate additional observations,
and finally jointly optimize the whole problem.

Reference triangulation: We estimate image correspondences of the reference
scan using pairs selected according to the visual overlap defined in Sec. 4.4.2. Since
the image poses are deemed accurate and fixed, we filter the correspondences using
the known epipolar geometry. We first consider feature tracks consistent with the
reference surface mesh before triangulating more noisy observations within LO-
RANSAC using COLMAP [278]. The remaining feature detections, which could
not be reliably matched or triangulated, are lifted to 3D by tracing through the mesh.
This results in an accurate, sparse SfM model with tracks across reference images.

Sequence optimization: We then add each sequence to the sparse model. We first
establish correspondences between images of the same and of different sequences.
The image pairs are again selected by highest visual overlap computed using the
aligned poses {wTBA

i }. The resulting tracks are sequentially triangulated, merged,
and added to the sparse model. Finally, all 3D points and poses are jointly optimized
by minimizing the joint pose-graph and bundle adjustment (Eq. (4.4)). As in
COLMAP [278], we alternate optimization and track merging. To scale to large
scenes, we subsample keyframes from the full frame-rate captures and only introduce
absolute pose and reprojection constraints for keyframes while maintaining all
relative pose constraints from tracking.

4.4.4. Ground-truth validation

Potential limits: Brachmann et al. [34] observe that algorithms generating pseudo-
GT poses by minimizing either 2D or 3D cost functions alone can yield noticeably
different results. We argue that there exists a single underlying, true GT. Reaching it
requires fusing large amounts of redundant data with sufficient sensors of sufficiently
low noise. Our GT poses optimize complementary constraints from visual and
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translation uncertainty [m] - 99.19% < 3.3cm
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translation uncertainty [m] - 97.71% < 3.3cm
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translation uncertainty [m] - 98.43% < 3.3cm

Figure 4.8.: Translation uncertainties of the ground truth camera centers for the CAB
(top), LIN (middle) and HGE (bottom) scenes. Left: The overhead map shows that the
uncertainties are larger in areas that are not well covered by the 3D scanners or where the
scene is further away from the camera, such as in long corridors and large outdoor space.
Right: The histogram of uncertainties shows that most images have an uncertainty far lower
than σt=3.33cm.
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Figure 4.9.: Qualitative renderings from the mesh. Top: We render images at the ground-
truth poses from the vertex-colored mesh (right) and compare them to the originals (left).
We show 6 HoloLens images in the first two rows and six phone images in the next two. We
overlay a regular grid to facilitate the comparison. Bottom: We show mosaics that combine
the originals (top-left, bottom-right) and the renderings (top-right, bottom-left).
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inertial measurements, guided by an accurate LiDAR-based 3D structure. Careful
design and propagation of uncertainties reduces the bias towards one of the sensors.
All sensors are factory- and self-calibrated during each recording by the respective
commercial, production-grade SLAM algorithms. We do not claim that our GT
is perfect but analyzing the optimization uncertainties sheds light on its degree of
accuracy.

Pose uncertainty: We estimate the uncertainties of the GT poses by inverting the
Hessian of the refinement. To obtain calibrated covariances, we scale them by the
empirical keypoint detection noise, estimated as σ=1.33 pixels for the CAB scene.
The maximum noise in translation is the size of the major axis of the uncertainty
ellipsoids, which is the largest eivenvalue σ2

t of the covariance matrices. Fig. 4.8
shows its distribution for the CAB scene. We retain images whose poses are correct
within 10cm with a confidence of 99.7%. For normally distributed errors, this
corresponds to a maximum uncertainty σt=3.33cm and discards 0.8% of all frames.
For visual inspection, we render images at the estimated GT camera poses using
the colored mesh. As shown in Fig. 4.9, they appear pixel-aligned with the original
images, supporting that the poses are accurate.

4.4.5. Selection of mapping and query sequences

We divide the set of sequences into two disjoint groups for mapping and localization.
Mapping sequences are selected such that they have a minimal overlap between
each other yet cover the area visited by all remaining sequences. This simulates
a scenario of minimal coverage and maximizes the number of localization query
sequences.

Algorithm: Let C(i, j)k be the coverage, a boolean that indicates whether the
image k of sequence i shares sufficient covisibility with at least one image is
sequence j. Here two images are deemed covisible if they co-observe a sufficient
number of 3D points in the final, full SfM sparse model [238] or according to the
ground truth mesh-based visual overlap. The coverage of sequence i with a set of
other sequences S = {j} is the ratio of images in i that are covered by at least one
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Figure 4.10.: Spatial distribution of sequences for the CAB (top), HGE (middle), and LIN
(bottom) locations. We show the ground truth trajectories overlaid on the LiDAR point clouds
along 3 orthogonal directions. All axes are in meters and z is aligned with the gravity. Left:
Types of devices among all registered sequences. Right: Map and query sequences selected
for evaluation. CAB spans multiple floors while HGE and LIN are mostly 2D but include a
range of ground heights. The space is well covered by both types of devices and sequences.
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image in S:

C(i,S) =
1

|i|
∑
k∈i

⋂
j∈S

C(i, j)k (4.5)

We seek to find the set of mapping sequencesM and remaining query sequences
Q = S\M that minimize the coverage between map sequences while ensuring that
each query is sufficiently covered by the map:

M∗ = arg min
1

|M|
∑
i∈M

C(i,M\{i})

such that C(i,M) > τ ∀i ∈ Q ,

(4.6)

where τ is the minimum query coverage. We ensure that query sequences are out
of coverage for at most t consecutive seconds, where t can be tuned to adjust the
difficulty of the localization and generally varies from 1 to 5 seconds. This problem
is combinatorial and without exact solution. We solve it approximately with a
best-first search that iteratively adds new images and checks for the feasibility of the
solution. At each step, we consider the query sequences that are the least covisible
with the current map.

Data distribution: We enforce that night-time sequences are not included in the
map, which is a realistic assumption for crowd-sourced scenarios. We do not enforce
an equal distribution of device types in either group but observe that this occurs
naturally. For the evaluation, mapping images are sampled at intervals of at most
2.5FPS, 50cm of distance, and 20°of rotation. This ensures a sufficient covisibility
between subsequent frames while reducing the computational cost of creating maps.
The queries are sampled every 1s/1m/20°and, for each device type, 1000 poses
are randomly selected out of those with sufficiently low uncertainty. The resulting
distributions are shown in Fig. 4.10.

4.5. Evaluation

We evaluate state-of-the-art approaches in both single-frame and sequence settings
and summarize our results in Fig. 4.11. All results are averaged across all locations.
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+4.6%
+4.8%

+17.5%+15.5% gap gap
AR localization recall (%) at 10cm, 1deg

Figure 4.11.: Main results. We show results for Fusion image retrieval with SuperPoint
local features and SuperGlue matcher on both HoloLens 2 and phone queries. We consider
several tracks: single-image / single-rig localization with / without radios and similarly for
sequence (10 seconds) localization. In addition, we report the percentage of queries with at
least 5% ground-truth overlap with respect to the best mapping image.

Single-frame: We first consider in Sec. 4.5.1 the classical academic setup of single-
frame queries (single image for phones and single rig for HoloLens 2) without
additional sensor. We then look at how radio signals can be beneficial. We also
analyze the impact of various settings: FoV, type of mapping images, and mapping
algorithm.

Sequence: Second, by leveraging the real-time AR tracking poses, we consider the
problem of sequence localization in Sec. 4.5.2. This corresponds to a real-world
AR application retrieving the content attached to a target map using the real-time
sensor stream from the device. In this context, we care not only about accuracy
and recall but also about the time required to localize accurately, which we call the
time-to-recall.

4.5.1. Single-frame localization

We first evaluate several algorithms representative of the state of the art in the
classical single-frame academic setup. We consider the hierarchical localization
framework with different approaches for image retrieval and matching. Each of them
first builds a sparse SfM map from reference images. For each query frame, we then
retrieve relevant reference images, match their local features, lift the reference key-
points to 3D using the sparse map, and finally estimate a pose with PnP+RANSAC.
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Hierarchical localization Query device

Retrieval Matching HL2 Phone

NetVLAD

SIFT+AdaLAM 48.3 / 63.7 38.0 / 54.8
DoG+SOSNet 52.3 / 67.3 37.9 / 55.4

R2D2 48.2 / 63.9 42.1 / 58.4
SP+SG 59.9 / 73.0 50.1 / 63.3

Fusion

SIFT+AdaLAM 51.2 / 67.9 38.5 / 56.9
DoG+SOSNet 55.2 / 71.2 39.3 / 57.4

R2D2 52.0 / 68.4 43.5 / 60.2
SP+SG 64.2 / 77.4 52.2 / 65.8
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Fusion retrieval
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Table 4.3.: Left: single-frame localization. We report the recall at (1◦, 10cm)/(5◦, 1m) for
baselines representative of the state of the art. Our dataset is challenging while most others
are saturated. There is a clear progress from SIFT but also large room for improvement.
Right: localization with radio signals. Increasing the number {5, 10, 20} of retrieved
images increases the localization recall at (1◦, 10cm). The best-performing visual retrieval
(Fusion, orange) is however far worse than the GT overlap. Filtering with radio signals
(blue) improves the performance in all settings.

We report the recall of the final pose at two thresholds [273]: 1) a fine threshold at
(1◦, 10cm), which we see as the minimum accuracy required for a good AR user
experience in most settings. 2) a coarse threshold at (5◦, 1m) to show the room for
improvement for current approaches.

We evaluate global descriptors computed by NetVLAD [10] and by a fusion [135]
of NetVLAD and APGeM [244], which are representative of the field [233]. We re-
trieve the 10 most similar images. For matching, we evaluate handcrafted SIFT [183],
SOSNet [317] as a learned patch descriptor extracted from DoG [183] keypoints,
and a robust deep-learning based joint detector and descriptor R2D2 [245]. SIFT
features are matched by AdaLAM [54] and the others by exact mutual nearest
neighbor search. We also evaluate SuperGlue [263] – a learned matcher based on
SuperPoint [81] features. To build the map, we retrieve neighboring images filtered
by frustum intersection from reference poses, match these pairs, and triangulate a
sparse SfM model using COLMAP [278].

We report the results in Tab. 4.3 (left). Even the best methods have a large gap
to perfect scores and much room for improvement. In the remaining ablation, we
solely rely on SuperPoint+SuperGlue [81, 263] for matching as it clearly performs
the best.
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Leveraging radio signals: In this experiment, we show that radio signals can be
used to constrain the search space for image retrieval. This has two main benefits:
1) it reduces the risk of incorrectly considering visual aliases, and 2) it lowers the
compute requirements by reducing that numbers of images that need to be retrieved
and matched. We implement this filtering as follows. We first split the scene into
a sparse 3D grid considering only voxels containing at least one mapping frame.
For each frame, we gather all radio signals in a ±2s window and associate them
to the corresponding voxel. If the same endpoint is observed multiple times in a
given voxel, we average the received signal strengths (RSSI) in dBm. For a query
frame, we similarly aggregate signals over the past 2s and rank voxels by their L2
distance between RSSIs, considering those with at least one common endpoint. We
thus restrict image retrieval to 2.5% of the map.

Table 4.3 (right) shows that radio filtering always improves the localization accuracy
over vanilla vision-only retrieval, irrespective of how many images are matches.
The upper bound based on the GT overlap, defined in Sec. 4.4.1, shows that there
is still much room for improvement for both image and radio retrieval. As the GT
overlap baseline is far from the perfect 100% recall, frame-to-frame matching and
pose estimation have also much room to improve.

Varying field-of-view: We study the impact of the FoV of the HoloLens 2 device
via two configurations: 1) Each camera in a rig is seen as a single-frame and
localized using LO-RANSAC + P3P. 2) We consider all four cameras in a frame
and localize them together using the generalized solver GP3P. With fusion retrieval,
SuperPoint, and SuperGlue, single images (1) only achieve 45.6% / 61.3% recall,
while using rigs (2) yields 64.2% / 77.4% (Tab. 4.3). Rig localization is thus highly
beneficial, especially in hard cases where single cameras face texture-less areas,
such as the ground and walls.

Mapping modality: We study whether the high-quality LiDAR mesh can be used
for localization. We consider two approaches to obtain a sparse 3D point cloud: 1)
By triangulating sparse visual correspondences across multiple views. 2) By lifting
2D keypoints in reference images to 3D by tracing rays through the mesh. Lifting
can leverage dense correspondences, which cannot be efficiently triangulated with
conventional multi-view geometry. We thus compare 1) and 2) with SuperGlue to 2)
with LoFTR [303], a state-of-the-art dense matcher. The results in Tab. 4.4 (right)
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Mapping images→ HL2 + Phone HD 360 Both

Image pairs from→ Retrieval
+ Poses

GT
overlap

Retrieval
+ Poses

Retrieval
+ PosesMatching Device

SP + SG HL2 64.2 / 77.4 64.2 / 77.3 70.1 / 83.6 64.1 / 77.5
Phone 52.2 / 65.8 52.9 / 66.3 47.4 / 64.9 60.6 / 72.1 60
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Table 4.4.: Impact of mapping. Left: Scenarios. Building the map with HD 360 images
from NavVis scanners, instead of or with dense AR sequences, does not consistently boost the
performance as they are usually sparser, do not fully cover each location, and have different
characteristics than AR images. Right: Modalities. Lifting 2D points to 3D using the LiDAR
mesh instead of triangulating with SfM is beneficial. This can also leverage dense matching,
e.g., with LoFTR.

Condition
CAB scene HGE scene LIN scene

Indoor Outdoor Indoor Outdoor Outdoor

day 66.5 / 74.7 73.9 / 88.1 52.7 / 65.9 43.0 / 64.3 71.2 / 82.5
night 30.3 / 44.8 18.8 / 40.6 47.9 / 59.4 12.1 / 33.6 38.6 / 55.6

Table 4.5.: Impact of the condition and environment on single-image phone localization.
During the day, localizing indoors can be more accurate (10cm threshold) but less robust (1m
threshold) than outdoors due to visual aliasing and a lack of texture. Night-time localization
is more challenging outdoors than indoors because of a larger drop of illumination.

show that the mesh brings some improvements. Points could also be lifted by dense
depth from multi-view stereo. We however did not obtain satisfactory results with a
state-of-the-art approach [345] as it cannot handle very sparse mapping images.

Mapping scenario: We study the accuracy of localization against maps built
from different types of images: 1) crowd-sourced, dense AR sequences; 2) curated,
sparser HD 360 images from the NavVis device; 3) a combination of the two. The
results are summarized in Tab. 4.4 (left), showing that the mapping scenario has
a large impact on the final numbers. On the other hand, image pair selection for
mapping matters little. Crowd-sourcing and manual scans can complement each
other well to address an imperfect scene coverage. We hope that future work can
close the gap between the scenarios to achieve better metrics from crowd-sourced
data without curation.
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Condition and environment: We now investigate the impact of different capture
conditions (day, night) and environment (indoor, outdoor) of the query images.
Query sequences are labeled as day or night based on the time and date of capture.
We manually annotate overhead maps into indoor and outdoor areas. We report the
results for single-image localization of phone images in Tab. 4.5.

In regular day-time conditions, outdoor areas exhibit distinctive texture and are
thus easier to coarsely localize in than texture-less, repetitive indoor areas. The
scene structure is however generally further away from the camera, so optimizing
reprojection errors yields less accurate camera poses.

Indoor scenes generally benefit from artificial light and are thus minimally affected
by the night-time drop of natural light. Outdoor scenes benefit from little artificial
light, mostly due to sparse street lighting, and thus widely change in appearance
between day and night. As a result, the localization performance drops to a larger
extent outdoors than indoors.

4.5.2. Sequence localization

In this section, inspired by typical AR use cases, we consider the problem of
sequence localization, which aims to align multiple consecutive frames using sensor
data aggregated over short time intervals.

Approach: Our baseline for this task is based on the ground-truthing pipeline
and has as such relatively high compute requirements. However, we are primarily
interested in demonstrating the potential performance gains by leveraging multiple
frames. First, we run image retrieval and single-frame localization, followed by a
first pose graph optimization (PGO) with tracking and localization poses. Then, we
do a second localization with retrieval guided by the poses of the first PGO, followed
by a second PGO. Finally, we run a pose refinement by considering reprojections
to query frames and tracking cost. We can also use radio signals to restrict image
retrieval throughout the pipeline. As previously, we consider the localization recall
but only of the last frame in each sequence, which is the one that influences the
current AR user experience in a real-time scenario.
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Figure 4.12.: Sequence localization. We report the localization recall at (1◦, 10cm) of
SuperPoint features with SuperGlue matcher as we increase the duration of each sequence.
The pipeline leverages both on-device tracking and absolute localization, as vision-only
(solid) or combined with radio signals (dashed). We show the time-to-recall (TTR) at 80%
for HL2 and at 70% for phone queries. Using radio signals reduces the TTR from over 10s to
1.40s and 3.58s, respectively.

Results: We evaluate various query durations and introduce the time-to-recall
metric as the sequence length (time) required to successfully localize X% (recall)
of the queries within (1◦, 10cm), or, in short, TTR@X%. Localization algorithms
should aim to minimize this metric to render retrieved content as quickly as possible
after starting an AR experience. Fig. 4.12 reports the results averaged over all loca-
tions. While the performance of current methods is not satisfactory yet to achieve
a TTR@90% under 10 seconds, using sequence localization leads to significant
gains of 20%. The radio signals improve the performance in particular with shorter
sequences and thus effectively reduce the time-to-recall.

Ablation: We ablate the different parts of our proposed sequence localization
pipeline on sequences of 20 seconds. We report in Tab. 4.6 the localization recall at
{1◦, 10cm} and {5◦, 1m} for both HoloLens 2 and Phone queries. The initial PGO
with tracking and absolute constraints already offers a significant boost in perfor-
mance compared to single-frame localization. We notice that the re-localization with
image retrieval guided by the PGO poses achieves much better results than the first
localization – this points to retrieval being a bottle-neck, not feature matching. Next,
the second PGO is able to leverage the improved absolute constraints and yields
better results. Finally, the pose refinement optimizing reprojection errors while also
taking into account tracking constraints further improves the performance, notably
at the tighter threshold.
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Device Radios
Steps

Loc. Init. PGO1 Re-loc. PGO2 BA

HL2
7 66.0 / 79.9 66.1 / 92.5 71.8 / 92.4 74.2 / 88.0 74.9 / 92.5 79.3 / 92.8
3 67.7 / 82.3 66.4 / 94.5 74.3 / 94.3 76.2 / 90.1 76.7 / 94.4 81.6 / 94.9

Phone
7 54.2 / 65.5 52.4 / 88.0 62.7 / 87.7 61.8 / 77.4 66.1 / 88.4 69.0 / 88.6
3 56.7 / 71.5 54.1 / 90.2 64.4 / 89.8 63.1 / 79.5 66.9 / 90.1 71.0 / 90.2

Table 4.6.: Ablation of the sequence localization. We report recall for the different steps
of the sequence localization pipeline for 10s sequences on the CAB location. The second
localization, guided by the poses of the first PGO, drastically improves over the initial
localization, especially when no radio signals are used. The final pose refinement optimizing
reprojection errors while also taking into account tracking constraints offers a significant
boost for the tighter threshold.

4.6. Summary and outlook

Summary: LaMAR is the first benchmark that faithfully captures the challenges
and opportunities of AR for visual localization and mapping. We first identified
several key limitations of current benchmarks that make them unrealistic for AR.
To address these limitations, we developed a new ground-truthing pipeline to accu-
rately and robustly register AR sensor streams in large and diverse scenes aided by
laser scans without any manual labeling or custom infrastructure. With this new
benchmark, initially covering 3 large locations, we revisited the traditional academic
setup and showed a large performance gap for existing state-of-the-art methods
when evaluated using more realistic and challenging data.

We implemented simple yet representative baselines to take advantage of the AR-
specific setup and we presented new insights that pave promising avenues for future
works. We showed the large potential of leveraging other sensor modalities like
radio signals, depth, or query sequences instead of single images. We also hope
to direct the attention of the community towards improving map representations
for crowd-sourced data and towards considering the time-to-recall metric, which is
currently largely ignored. We publicly release at lamar.ethz.ch the complete
LaMAR dataset, our ground-truthing pipeline, and the implementation of all base-
lines. The evaluation server and public leaderboard facilitates the benchmarking of
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new approaches to keep track of the state of the art. We hope this will spark future
research addressing the challenges of AR.

Limitations and impact: The large scale of LaMAR and its extensive coverage of
multiple challenges is also its weakness: the evaluation requires significantly more
compute resources than previous benchmarks and it is much harder to draw insights
from the data given its sheer size. Dividing the dataset into smaller evaluation units
could possibly make it easier to evaluate other tasks like image retrieval or SfM.

Because it includes only three scenes with relatively limited visual diversity, it is
unclear whether LaMAR dataset can be used for the training of learning algorithms,
for which the training data is currently the main bottleneck. As such, LaMAR has
had a relatively small impact of the development of new algorithms for multi-sensor
mapping and localization. We believe that the data could however be useful as
auxiliary training data for other tasks like monocular depth or normal estimation.

Finally, while the GT poses are more accurate than found in existing localization
datasets, they are not sufficiently accurate to evaluate high-accuracy algorithms like
visual-inertial SLAM. In order to increase the accuracy of the poses, we believe that
the GT pipeline should include inertial measurements and ground control points
measured by survey devices.
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C H A P T E R 5
Visual Localization
in 2D Public Maps
with Neural Matching

Humans can orient themselves in their 3D environments using simple 2D maps.
Differently, as seen in Part I, algorithms for visual localization mostly rely on
complex 3D point clouds that are expensive to build, store, and maintain over time.
We bridge this gap by introducing OrienterNet, a deep neural network that can
localize an image with sub-meter accuracy using the same 2D semantic maps that
humans use. OrienterNet estimates the location and orientation of a query image
by matching a neural Bird’s-Eye View with open and globally available maps from
OpenStreetMap, enabling anyone to localize anywhere such maps are available.
OrienterNet is supervised only by camera poses but learns to perform semantic
matching with a wide range of map elements in an end-to-end manner. To enable
this, we introduce a large crowd-sourced dataset of images captured across 12 cities
from the diverse viewpoints of cars, bikes, and pedestrians. OrienterNet generalizes
to new datasets and pushes the state of the art in both robotics and AR scenarios.

5.1. Introduction

As humans, we intuitively understand the relationship between what we see and
what is shown on a map of the scene we are in. When lost in an unknown area,
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Humans use 2D maps Existing algorithms:
3D point clouds

inputs

3-DoF 
(x, y, θ)

OrienterNet
neural map matching

OpenStreetMap

gravity

single
image

GPS

camera pose

Figure 5.1.: Towards human-like localization. Humans can easily orient themselves with
basic 2D maps while state-of-the-art algorithms for visual localization require complex 3D
cues. OrienterNet can localize an image using only compact maps from OpenStreetMap by
matching Bird’s-Eye View and neural maps.

we can accurately pinpoint our location by carefully comparing the map with our
surroundings using distinct geographic features.

Yet, algorithms for accurate visual localization are typically complex, as they rely
on image matching and require detailed 3D point clouds and visual descriptors [81,
138, 183, 187, 253, 261, 271]. Building 3D maps with LiDAR or photogrammetry [2,
99, 205,278, 294] is expensive at world scale and requires costly, freshly-updated
data to capture temporal changes in visual appearance. 3D maps are also expensive
to store, as they are orders of magnitude larger than basic 2D maps. This prevents
executing localization on-device and usually requires costly cloud infrastructure.
Spatial localization is thus a serious bottleneck for the large-scale deployment of
robotics and augmented reality devices. This disconnect between the localization
paradigms of humans and machines leads to the important research question of How
can we teach machines to localize from basic 2D maps like humans do?

This chapter introduces an approach that can localize single images and image
sequences with sub-meter accuracy given the same maps that humans use. These
planimetric maps encode only the location and coarse 2D shape of few important
objects but not their appearance nor height. Such maps are extremely compact,
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up to 104 times smaller in size than 3D maps, and can thus be stored on mobile
devices and used for on-device localization within large areas. We demonstrate
these capabilities with OpenStreetMap (OSM) [218], an openly accessible and
community-maintained world map, enabling anyone to localize anywhere for free.
This solution does not require building and maintaining costly 3D maps over time
nor collecting potentially sensitive mapping data.

Concretely, our algorithm estimates the 3-DoF pose, as position and heading, of a
calibrated image in a 2D map. The estimate is probabilistic and can therefore be
fused with an inaccurate GNSS prior or across multiple views from a multi-camera
rig or image sequences. The resulting solution is significantly more accurate than
consumer-grade GNSS sensors and reaches accuracy levels closer to the traditional
pipelines based on feature matching [261, 271].

Our approach, called OrienterNet, is a deep neural network that mimics the way hu-
mans orient themselves in their environment when looking at maps, i.e., by matching
the metric 2D map with a mental map derived from visual observations [180, 215].
OrienterNet learns to compare visual and semantic data in an end-to-end manner,
supervised by camera poses only. This yields accurate pose estimates by leveraging
the high diversity of semantic classes exposed by OSM, from roads and buildings to
objects like benches and trash cans. OrienterNet is also fast and highly interpretable.
We train a single model that generalizes well to previously-unseen cities and across
images taken by various cameras from diverse viewpoints – such as car-, bike-
or head-mounted, pro or consumer cameras. Key to these capabilities is a new,
large-scale training dataset of images crowd-sourced from cities around the world
via the Mapillary platform.

Our experiments show that OrienterNet substantially outperforms previous works
on localization in driving scenarios and vastly improves its accuracy in AR use
cases when applied to data recorded by Aria glasses. We believe that our approach
constitutes a significant step towards continuous, large scale, on-device localization
for AR and robotics.
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Map type SfM
SLAM

Satellite
images

OpenStreetMap
(OrienterNet)

What? 3D points
+features

pixel
intensity

polygons,
lines, points

Explicit geometry? 3D 7 2D
Visual appearance? 3 3 7

Freely available 7 7 3

Storage for 1 km2 42 GB 75 MB 4.8 MB
Size reduction vs SfM - 550× 8800×

Table 5.1.: Types of maps for visual localization. Planimetric maps from OpenStreetMap
consist of polygons and lines with metadata. They are publicly available for free and do not
store sensitive appearance information, as opposed to satellite images and 3D maps built with
SfM. They are also compact: a large area can be downloaded and stored on a mobile device.
We show that they encode sufficient geometric information for accurate 3-DoF localization.

5.2. Related work

We can localize an image in the world using several types of map representations: 3D
maps built from ground images, 2D overhead satellite images, or simpler planimetric
maps from OpenStreetMap. Table 5.1 summarizes their differences.

Mapping with ground-level images is the most common approach to date. Place
recognition via image retrieval provides a coarse localization given a set of reference
images [10,101,139,322]. To estimate centimeter-accurate 6-DoF poses, algorithms
based on feature matching require 3D maps [138,187,261,271]. These are composed
of sparse point clouds, which are commonly built with Structure-from-Motion
(SfM) [2,99,176,205,278,294] from sparse points matched across multiple views [30,
183,253]. The pose of a new query image is estimated by a geometric solver [40,114,
154] from correspondences with the map. While some works [306, 368] leverage
additional sensor inputs, such as a coarse GNSS location, gravity direction, and
camera height, recent localization systems are highly accurate and robust mostly
thanks to learned features [81, 85, 245, 263, 330].

This however involves 3D maps with a large memory footprint as they store dense
3D point clouds with high-dimensional visual descriptors. There is also a high
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risk of leaking personal data into the map. To mitigate this, some works attempt
to compress the maps [45, 48, 187] or use privacy-preserving representations for
the scene appearance [87, 210, 376] or geometry [297, 298]. These however either
degrade the accuracy significantly or are easily reverted [234].

Localization with overhead imagery reduces the problem to estimating a 3-DoF
pose by assuming that the world is mostly planar and that the gravity direction is
often given by ubiquitous onboard inertial sensors. A large body of work focuses
on cross-view ground-to-satellite localization. While more compact than 3D maps,
satellite images are expensive to capture, generally not free, and still heavy to store
at high resolution. Most approaches only estimate a coarse position through patch
retrieval [133, 287, 289, 379]. In addition, works that estimate an orientation are not
accurate [286, 288, 356], yielding errors of over several meters.

Other works rely on sensors that directly provide 3D metric information, such as 2D
intensity maps from LiDAR [28, 188] or radar [26, 313]. They all perform template
matching between 2D map and sensor overhead views, which is both accurate
and robust, but require expensive specialized sensors, unsuitable for consumer AR
applications. Our work shows how monocular visual priors can substitute such
sensors to perform template matching from images only.

Planimetric maps discard any appearance and height information to retain only
the 2D location, shape and type of map elements. OSM is a popular platform
for such maps as it is free and available globally. Given a query area, its open
API exposes a list of geographic features as polygons with metadata, including
fine-grained semantic information with over a thousand different object types. Past
works however design detectors for a single or few semantic classes, which lacks
robustness. These include building outlines [12, 13, 55, 66, 77, 338, 341], road
contours [97, 254] or intersections [189, 222, 358], lane markings [112, 225], street
furniture [51, 351], or even text [129].

Recent works leverage more cues by computing richer representations from map tiles
using end-to-end deep networks [259, 374]. They estimate only a coarse position as
they retrieve map tiles with global image descriptors. In indoor scenes, floor plans
are common planimetric maps used by existing works [130, 202]. They require
height or visibility information that is typically not available for outdoor spaces. Our
approach yields a significant step up in accuracy and robustness over all previous
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works by combining the constraints of projective geometry with the expressivity of
end-to-end learning, leveraging all semantic classes available in OSM.

5.3. Localizing single images in 2D maps

Problem formulation: In a typical localization scenario, we aim to estimate
the absolute 6-DoF pose of an image in the world. Under realistic assumptions,
we reduce this problem to estimating a 3-DoF pose ξ = (x, y, θ) consisting of
a location (x, y) ∈ R2 and heading angle θ ∈ (−π, π]. Here we consider a
topocentric coordinate system whose x-y-z axes correspond to the East-North-
vertical directions.

First, we can easily assume to know the direction of the gravity, an information
that humans naturally possess from their inner ear and that can be estimated by
the inertial unit embedded in most devices. We also observe that our world is
mostly planar and that the motion of people and objects in outdoor spaces is mostly
restricted to 2D surface. The precise height of the camera can always be estimated
as the distance to the ground in a local SLAM reconstruction.

Inputs: We consider an image I with known pinhole camera calibration. The
image is rectified via a homography computed from the known gravity such that
its roll and tilt are zero – its principal axis is then horizontal. We are also given
a coarse location prior ξprior. This can be a noisy GNSS position or a previous
localization estimate and can be off by over 20 meters. This is a realistic assumption
for a consumer-grade sensor in a multi-path environment like a urban canyon.

The map data is queried from OSM as a square area centered around ξprior and
whose size depends on how noisy the prior is. The data consists of a collection of
polygons, lines, and points, each of a given semantic class and whose coordinates
are given in the same local reference frame.

Overview – Figure 5.2: OrienterNet consists of three modules: 1) The image-
CNN extracts semantic features from the image and lifts them to an orthographic
Bird’s-Eye View (BEV) representation T by inferring the 3D structure of the scene.
2) The OSM map is encoded by the map-CNN into a neural map F that embeds
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Figure 5.2.: OrienterNet architecture. 1) From an input image I that is gravity-aligned,
we infer a mental map of the scene as a neural Bird’s-Eye View (BEV) T with confidence C.
2) From a coarse GNSS prior location ξprior, we query OpenStreetMap and compute a neural
map F. 3) Matching the BEV against the map yields a probability volume P over 3-DoF
camera poses. OrienterNet is trained end-to-end from pose supervision only.

semantic and geometric information. 3) We estimate a probability distribution over
camera poses ξ by exhaustively matching the BEV against the map.

5.3.1. Neural Bird’s-Eye View inference

Overview: From a single image I, we infer a BEV representation T ∈ RL×D×N
distributed on a L×D grid aligned with the camera frustum and composed of N -
dimensional features. Each feature on the grid is assigned a confidence, yielding a
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Figure 5.3.: OrienterNet predicts a pixel-wise distribution over scales that are mapped to
depths with the known camera calibration.

matrix C ∈ [0, 1]L×D. This BEV is akin to a mental map that humans infer from
their environment when self-localizing in an overhead map [180, 215].

Cross-modal matching between the image and the map requires extracting semantic
information from visual cues. It has been shown that monocular depth estimation
can rely on semantic cues [8] and that both tasks have a beneficial synergy [131,159].
We thus rely on monocular inference to lift semantic features to the BEV space.
Following past works that tackle semantic tasks [231,248,257], we obtain the neural
BEV in two steps: i) we transfer image features to a polar representation by mapping
image columns to polar rays, and ii) we resample the polar grid into a Cartesian
grid (Fig. 5.3).

Polar representation: A CNN Φimage first extracts a U×V feature map X ∈
RU×V×N from the image. We consider D depth planes sampled in front of the
camera with a regular interval ∆, i.e. with values {i ·∆|i ∈ {1 . . . D}}. Since the
image is gravity-aligned, each of the U columns in X corresponds to a vertical plane
in the 3D space. We thus map each column to a ray in the U×D polar representation
X̄ ∈ RU×D×N . We do so by predicting, for each polar cell (u, d), a probability
distribution αu,d ∈ [0, 1]V over the pixels in the corresponding image column:

X̄u,d =
∑
v

αu,d,vXu,v . (5.1)

Instead of directly regressing the distribution α over depths, we regress a distribution
S over scales that are independent from the camera calibration parameters. The
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scale is the ratio of object sizes in the 3D world and in the image [8] and is equal
to the ratio of the focal length f and depth. We consider a set of S log-distributed
scales

σ =
{
σmin (σmax/σmin)

i/S |i ∈ {0 . . . S}
}

. (5.2)

Φimage also predicts, for each pixel (u, v), a score vector Su,v ∈ RS whose elements
correspond to the scale bins σ. We then obtain the distribution αu,d for each depth
bin d as

αu,d,v = softmax
v

(Su,v [f/d·∆]) , (5.3)

where [·] denotes the linear interpolation.

This formulation is equivalent to an attention mechanism from polar rays to image
columns with scores resampled from linear depths to log scales. When the scale is
ambiguous and difficult to infer, visual features are spread over multiple depths along
the ray but still provide geometric constraints for well-localized map points [162].
Works tailored to driving scenarios [231, 248, 257] consider datasets captured by
cameras with identical models and directly regress α. They therefore encode the
focal length in the network weights, learning the mapping from object scale to
depth. Differently, our formulation can generalize to arbitrary cameras at test time
by assuming that the focal length is an input to the system.

BEV grid: We map the polar features to a Cartesian grid of size L×D via linear
interpolation along the lateral direction from U polar rays to L columns spaced by
the same interval ∆. The resulting feature grid is then processed by a small CNN
ΦBEV that outputs the neural BEV T and confidence C.

5.3.2. Neural map encoding

We encode the planimetric map into a W×H neural map F ∈ RW×H×N that
combines geometry and semantics.

Map data: OpenStreetMap [218] defines each map element as either a polygonal
area, multi-segment lines, or a single point. Each element is annotated with a set of
tags with standardized categories and labels according to a very rich hierarchy. We
group elements into a smaller set of classes that we list in Tab. 5.2, resulting in 7 types
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type classes

areas parking spot/lot, building, grass,
playground, park, forest, water

lines road, cycleway, pathway, busway,
fence, wall, hedge, kerb, building outline, tree row

nodes

parking entrance, street lamp, junction, traffic signal,
stop sign, give way sign, bus stop, stop area, crossing,

gate, bollard, gas station, bicycle parking, charging station,
shop, restaurant, bar, vending machine, pharmacy,
tree, stone, ATM, toilets, water fountain, bench,

waste basket, post box, artwork, recycling station,
clock, fire hydrant, pole, street cabinet

Table 5.2.: List of map classes derived from OpenStreeMap data and included in the map
rasters.

of areas, 10 types of lines, and 33 types of points (nodes). The accurate positioning
of these elements provides geometric constraints necessary for localization, while
their rich semantic diversity helps disambiguate different poses.

Preprocessing: We first rasterize the areas, lines, and points as a 3-channels image
with a fixed ground sampling distance ∆, e.g. 50 cm/pixel. This representation is
more informative and accurate than the naive rasterization of human-readable OSM
tiles performed in previous works [259, 374].

Encoding: We associate each class with an N -dimensional embedding that is
learned, yielding a W×H×3N feature map. It is then encoded into the neural
map F by a CNN Φmap, which extracts geometric features useful for localization.
F is not normalized as we let Φmap modulate its norm as importance weight in the
matching. Examples in Fig. 5.4 reveal that F often looks like a distance field where
we can clearly recognize distinctive features like corners or adjoining boundaries of
buildings.

Φmap also predicts a unary location prior Ω ∈ RW×H for each cell of the map. This
score reflects how likely an image is to be taken at each location. We rarely expect
images to be taken in, for example, rivers or buildings.
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Figure 5.4.: OrienterNet generalizes well across datasets. It handles different cameras,
street-level viewpoints, and cities unseen during training. Overlayed on the input maps, the
single-image predictions ( ) are close to the ground truth ( ) and more accurate than
the noisy GNSS (dot •). The model effectively leverages building corners and boundaries,
crosswalks, sidewalks, road intersections, trees, and other elements.
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5.3.3. Pose estimation by template matching

Probability volume: We estimate a discrete probability distribution over camera
poses ξ. This is interpretable and fully captures the uncertainty of the estimation.
As such, the distribution is multimodal in ambiguous scenarios. Figures 5.4 and 5.5
show various examples. This makes it easy to fuse the pose estimate with additional
sensors like GNSS. Computing this volume is tractable because the pose space
has been reduced to 3 dimensions. It is discretized into each map location and K
rotations sampled at regular intervals.

This yields a W×H×K probability volume P such that P (ξ|I,map, ξprior) = P[ξ].
It is the combination of an image-map matching term M and the location prior Ω:

P = softmax (M + Ω) . (5.4)

M and Ω represent image-conditioned and image-independent un-normalized log
scores. Ω is broadcasted along the rotation dimension and softmax normalizes the
probability distribution.

Image-map matching: Exhaustively matching the neural map F and the BEV
T yields a score volume M. Each element is computed by correlating F with T

transformed by the corresponding pose as

M[ξ] =
1

UZ

∑
p∈(U×Z)

F[ξ(p)]> (T�C) [p] , (5.5)

where ξ(p) transforms a 2D point p from BEV to map coordinate frame. The
confidence C masks the correlation to ignore some parts of the BEV space, such
as occluded areas. This formulation benefits from an efficient implementation by
rotating T K times and performing a single convolution as a batched multiplication
in the Fourier domain [26, 28].

Pose inference: We estimate a single pose by maximum likelihood: ξ∗ =

argmaxξ P (ξ|I,map, ξprior). When the distribution is mostly unimodal, we can
obtain a measure of uncertainty as the covariance of P around ξ∗ [26].
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5.4. Sequence and multi-camera localization

Single-image localization is ambiguous in locations that exhibit few distinctive
semantic elements or repeated patterns. Such challenge can be disambiguated by
accumulating additional cues over multiple views when their relative poses are
known. These views can be either sequences of images with poses from SLAM
or simultaneous views from a calibrated multi-camera rig. Figure 5.6 shows an
example of such difficult scenario disambiguated by accumulating predictions over
time. Different frames constrain the pose in different directions, e.g. before and
after an intersection. Fusing longer sequences yields a higher accuracy (Fig. 5.7).

Let us denote ξi the unknown absolute pose of view i and ξ̂ij the known relative
pose from view j to i. For an arbitrary reference view i, we express the joint
likelihood over all single-view predictions as

P (ξi|{Ij},map) =
∏
k

P (ξi ⊕ ξ̂ij |Ij ,map) , (5.6)

where ⊕ denotes the pose composition operator. This is efficiently computed by
warping each probability volume Pj to the reference frame i. We can also localize
each image of a continuous stream via iterative warping and normalization, like in
the classical Markov localization [41, 292].

5.5. Training a single strong model

Supervision: OrienterNet is trained in a supervised manner from pairs of single
images and ground truth (GT) poses. The architecture is differentiable and all
components are trained simultaneously by back-propagation. We simply maximize
the log-likelihood of the ground truth pose ξ: Loss = − logP (ξ|I,map, ξprior) =

− log P[ξ]. The tri-linear interpolation of P provides sub-pixel supervision.

Training dataset: We train a single model that generalizes to unseen locations
with arbitrary kinds of images. We collect images from the Mapillary platform,
which exposes the camera calibration, noisy GNSS measurement, and the 6-DoF
pose in a global reference frame, obtained with a fusion of SfM and GNSS. The
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input image single-frame sequence

#7#7 ∆ξ=11.75m∆ξ=11.75m ∆ξ=0.22m∆ξ=0.22m

• GPS

• single-frame

• sequence

• GT

#16#16 ∆ξ=23.54m∆ξ=23.54m ∆ξ=0.29m∆ξ=0.29m

Figure 5.6.: Multi-frame fusion resolves ambiguities. Semantic elements visible in a
single image are often not sufficient to fully disambiguate the camera pose. Fusing the
predictions over multiple frames collapses the multi-modal likelihood map to a single mode
with high accuracy, yielding here a final error of less than 30cm.

resulting Mapillary Geo-Localization (MGL) dataset includes 828k images from
12 cities in Europe and the US, captured by cameras that are handheld or mounted
on cars or bikes, with GT poses and OSM data. We show the spatial distribution of
the images in Fig. 5.8. Each city was divided into disjoint training and validation
areas, resulting in 826k training and 2k validation images. Models trained on
MGL generalize well to other datasets thanks to the diversity of cameras, locations,
motions, and maps. All images are publicly available under a CC-BY-SA license via
the Mapillary API. We believe that this dataset will significantly facilitate research
on visual geo-localization.

Implementation: Φimage and Φmap are U-Nets with ResNet-101 and VGG-16
encoders. ΦBEV has 4 residual blocks. We use S=32 scale bins, K=512 rotations.
The BEV has size L×D=32×32 m with resolution ∆=50 cm. For training, we
render maps W×H=128×128 m centered around points randomly sampled within
32 m of the GT pose. Localizing in such map takes 94 ms on an NVIDIA RTX 2080
GPU, with 37 ms for the BEV inference and 51 ms for the matching.
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Figure 5.7.: With AR data, sequence localization boosts the recall, which increases as we
fuse information from additional frames.

Model architecture
Position R@Xm Orientation R@X°

1m 3m 5m 1° 3° 5°

Retrieval (a) 2.02 15.21 24.21 4.50 18.61 32.48
Refinement (b) 8.09 26.02 35.31 14.92 36.87 45.19
OrienterNet - planar (c) 14.28 44.59 56.08 20.43 50.34 64.30
OrienterNet - full 15.78 47.75 58.98 22.14 52.56 66.32

Table 5.3.: OrienterNet outperforms existing architectures, which include: a) map tile
retrieval by matching global embeddings [259, 356], b) featuremetric refinement [286] from
an initial pose, and c) OrienterNet assuming a planar scene [286] instead of inferring
monocular depth. We report the position and orientation recall (R).

5.6. Experiments

We evaluate our single model for localization in the context of both driving and AR.
Figures 5.4 and 5.5 shows qualitative examples, while Fig. 5.6 illustrates the effec-
tiveness of multi-frame fusion. Our experiments show that: 1) OrienterNet is more
effective than existing deep networks for localization with 2D maps; 2) Planimetric
maps help localize more accurately than overhead satellite imagery; 3) OrienterNet
is significantly more accurate than an embedded consumer-grade GNSS sensor
when considering multiple views.

122



Chapter 5: Visual Localization in 2D Public Maps with Neural Matching

San Francisco Vilnius Avignon

Amsterdam Helsinki Le Mans

Berlin Toulouse Nantes

Montrouge Paris Milan

Figure 5.8.: Selected sequences of our MGL dataset across 12 cities. Screenshots taken
from the Mapillary platform browser.
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5.6.1. Understanding OrienterNet

Setup: We evaluate the design of OrienterNet on the validation split of our MGL
dataset. This ensures an identical distribution of cameras, motions, viewing con-
ditions, and visual features as the training set. We report recall of positions and
rotation errors at the three thresholds 1/3/5m and 1/3/5°.

Comparing model architectures: We compare OrienterNet to alternative architec-
tures trained on the same dataset: a) Map retrieval [356] replaces the BEV inference
and matching by a correlation of the neural map and with a global image embedding.
We predict a rotation by considering 4 different neural maps for the N-S-E-W direc-
tions. This formulation also regresses a probability volume and is trained identically
to OrienterNet. It mimics the retrieval of densely-sampled map patches [259] but
is significantly more efficient and practical. b) Featuremetric refinement [268, 286]
updates an initial pose by warping a satellite view to the image assuming that the
scene is planar, at a fixed height, and gravity-aligned. We replace the satellite
view by an OSM map tile. This formulation requires an initial orientation (dur-
ing both training and testing), which we sample within 45° of the ground truth.
c) OrienterNet (planar) replaces the occupancy by warping the image features with
a homography as in [286].

Analysis – Table 5.3: OrienterNet is significantly more accurate than all baselines
at all position and rotation thresholds. a) Map retrieval disregards any knowledge of
projective geometry and performs mere recognition without any geometric constraint.
b) Featuremetric refinement converges to incorrect locations when the initial pose
is inaccurate. c) Inferring the 3D geometry of the scene is more effective than
assuming that it is planar. This justifies our design decisions.

Which map elements are most important? We study in Fig. 5.9 the impact of
each type of map element on the final accuracy by dropping them from the input
map. The classes with the largest impact are buildings and road, which are also the
most common in areas covered by the training data.

Impact of the field of view (FoV): We study the impact of the FoV on the accuracy
by cropping the images in the horizontal direction to varying degrees. Figure 5.10

125



Part II: Leveraging 2D Maps

bu
ild

in
g

ro
ad

ou
tli

ne
pa

th
cy

cle
wa

y
gr

as
s

wa
ll

pa
rk

in
g

pa
rk

fo
re

st
wa

te
r

he
dg

e
tre

e
ke

rb
bu

sw
ay

fe
nc

e

0%

-2%

-5%
-10%

-20%
-30%
-40%

Re
la

tiv
e 

dr
op

 o
f r

ec
al

l

40
.9

23
.6

14
.5

12
.4

4.
4

2.
6

1.
4 0.
7

0.
5

0.
2

0.
2

0.
2

0.
1

0.
1

0.
1

0.
1

Figure 5.9.: Good semantics to localize. Removing different elements from the map reveals
how important they are for localization. Buildings, roads, footpaths, and cycleways are the
most useful semantic classes, likely because they are also the most frequent.

shows the results on the MGL validation set. Reducing the FoV decreases the
accuracy proportionally – a 50% smaller FoV results in half of the original accuracy.

Model interpretability: We visualize in Fig. 5.11 multiple internal quantities that
help us understand the predictions.

5.6.2. Application: robotics

Dataset: We consider the localization in driving scenarios with the KITTI
dataset [102], following the closest existing setup [286]. To evaluate the zero-
shot performance, we use their Test2 split, which does not overlap with the KITTI
and MGL training sets. Images are captured by cameras mounted on a car driving
in urban and residential areas and have GT poses from high-accuracy GNSS. We
augment the dataset with OSM maps.

Setup: We compute the position error along directions perpendicular (lateral) and
parallel (longitudinal) to the viewing axis [286] since the pose is generally less
constrained along the road. We report the recall at 1/3/5m and 1/3/5°. The original
setup [286] assumes an accurate initial pose randomly sampled within ±20m and
±10° of the GT. OrienterNet does not require such initialization but only a coarse
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Figure 5.10.: Impact of the field of view (FoV) on the localization recall with the MGL
validation set. Decreasing the FoV directly impairs the accuracy as fewer map elements are
visible in a single image.

position-only prior. For fair comparisons, we nevertheless restrict the pose space to
the same interval centered around the initial pose. We render 64×64 m map tiles
and resize the images such that their focal length matches the median of MGL.

Baselines: We report approaches based on satellite maps and trained by [286] on
KITTI. VIGOR [379] and DSM [288] both perform patch retrieval with global
descriptors but respectively estimate an additional position offset or the orientation.
We also evaluate the featuremetric refinement [268, 286] and baselines based on
OSM maps, described in Sec. 5.6.1. As each scene is visited by a single trajectory,
we cannot evaluate approaches based on 3D maps and image matching.

Results: Table 5.4 (a-b) shows that OrienterNet outperforms all existing approaches
based on both satellite and OSM maps, in all metrics. OrienterNet exhibits remark-
able zero-shot capabilities as it outperforms approaches trained on KITTI itself. The
evaluation also demonstrates that planimetric maps yield better localization, as re-
trieval and refinement approaches based on them outperform those based on satellite
images. The recall at 3m/3°is saturated to over 95% by fusing the predictions from
sequences of only 20 seconds.

Generalization: Table 5.4 (c-d) shows that training OrienterNet solely on KITTI
results in overfitting, as the dataset is too small to learn rich semantic representations.
Our larger MGL dataset alleviates this issue and enables cross-modal learning with

127



Part II: Leveraging 2D Maps

map image I depth α
give_waycrossing

bicycle_parking

gate
crossing

crossing

bus_stop_positioncrossing
crossingbus_stop_position

give_waycrossing
give_waylamp

pharmacybus_stop 0

1

di
st

an
t

cl
os

e

neural BEV T BEV confidence C

Figure 5.11.: End-to-end but interpretable. From only pose supervision, OrienterNet
learns to infer the 3D geometry of the scene via the depth planes α and the 2D occupancy
via the confidence C.

rich semantic classes. Pre-training on MGL and fine-tuning on KITTI yields the
best performance.

5.6.3. Application: augmented reality

We now consider the localization of head-mounted devices for augmented real-
ity (AR). We show that OrienterNet is more accurate than a typical embedded GNSS
sensor.

Dataset: There is no public benchmark that provides geo-aligned GT poses for
images captured with AR devices in diverse outdoor spaces. We thus recorded
our own dataset with Aria devices [92]. It exhibits patterns typical of AR with
noisy consumer-grade sensors and pedestrian viewpoints and motions. We include
two locations: i) Seattle (Downtown, Pike Place Market, Westlake), with high-rise
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City Setup Approach
Position R@Xm Orientation R@X°

1m 3m 5m 1° 3° 5°

Se
at

tle

single GPS 1.25 8.82 18.44 - - -
retrieval [259, 356] 0.88 3.81 5.95 2.83 8.36 12.96
OrienterNet 3.39 14.49 23.92 6.83 20.39 30.89

multi GPS 1.76 9.2 20.48 4.18 11.01 23.36
OrienterNet 21.88 61.26 72.92 33.86 72.41 83.93

D
et

ro
it

single GPS 3.96 27.75 51.33 - - -
retrieval [259, 356] 3.31 19.83 36.76 6.48 18.40 28.88
OrienterNet 6.26 32.41 51.76 15.53 39.06 54.41

multi GPS 4.09 31.36 53.41 13.48 37.84 55.24
OrienterNet 17.18 68.77 89.26 44.85 88.04 96.04

Table 5.5.: Localization of head-mounted devices for AR. With data from Aria glasses,
OrienterNet outperforms the map retrieval baseline and the embedded GNSS sensor in both
single- and multi-frame settings, in both cities. Multi-frame fusion does not filter out the high
noise of the GNSS but strongly benefits our approach.

buildings, and ii) Detroit (Greektown, Grand Circus Park), with city parks and lower
buildings. We record several image sequences per city, all roughly following the
same loop around multiple blocks. Each device is equipped with a consumer-grade
GNSS sensor, IMUs, grayscale SLAM cameras, and a front-facing RGB camera,
which we undistort to a pinhole model.

We obtained relative poses and gravity direction from an offline proprietary visual-
inertial SLAM system. We then computed pseudo-GT global poses by jointly
optimizing all sequences based on GNSS, SLAM constraints, and predictions of
OrienterNet. We selected query frames every 3 meters, resulting in 2153 frames
for Seattle and 2725 frames for Detroit. For each evaluation example, the map tile
is centered around the noisy GNSS measurement. Because of large differences in
GNSS accuracy due to urban canyons, we constrain the predictions within 64 m of
the measurement for Seattle and 24 m for Detroit.

Single-frame localization – Table 5.5: OrienterNet is consistently more accurate
than the GNSS, which is extremely noisy in urban canyons like Seattle because
of multi-path effects. The performance is however significantly lower than with
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driving data (Sec. 5.6.2), which highlights the difficulty of AR-like conditions and
the need for further research.

Multi-frame: We now fuse multiple GNSS signals or predictions of OrienterNet
over the same temporal interval of 10 consecutive keyframes, using imperfect rela-
tive poses from SLAM. The fusion more than doubles the accuracy of OrienterNet
but marginally benefits the GNSS sensor because of its high, biased noise, especially
in Seattle.

Comparison to feature matching: Algorithms based on 3D SfM maps require
mapping images, whose quality and density have a large impact on the localization
accuracy. Differently, OrienterNet can localize in areas not covered by such images
as long as OSM data is available. This makes any fair comparison difficult.

5.7. Summary and outlook

Summary: OrienterNet is the first deep neural network that can localize an im-
age with sub-meter accuracy within the same 2D planimetric maps that humans
use. OrienterNet mimics the way humans orient themselves in their environment
by matching the input map with a mental map derived from visual observations.
Compared to large and expensive 3D maps that machines have so far relied on,
such 2D maps are extremely compact and thus finally enable on-device localization
within large environments. OrienterNet is based on globally and freely available
maps from OpenStreetMap and can be used by anyone to localize anywhere in the
world.

We contribute a large, crowd-sourced training dataset that helps the model generalize
well across both driving and AR datasets. OrienterNet significantly improves over
existing approaches for 3-DoF localization, pushing the state of the art by a large
margin. This opens up exciting prospects for deploying power-efficient robots and
AR devices that know where they are without costly cloud infrastructures.

Impact and limitations: OrienterNet sparked interest in the open-source intel-
ligence community for its ability to estimate the location of any Internet image
that has a coarse location prior. Its accuracy is however far below the one of top
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players of GeoGuessr. Figures 5.12 and 5.13 show some failure cases. Localizing
an image or a sequence is challenging when the environments lacks distinctive
elements or when they are not registered in the map. The latter can occur when the
environment changes between the times at which the image is taken and the map
is last updated. This also occurs because the labeling of OSM is not homogeneous
and varies in different regions of the world, especially in areas with a low density
of population. For example, trees are not consistently always label in OSM. The
spatial accuracy of OSM is also unknown and likely poor in some areas. Overall,
this makes OrienterNet hardly reliable in practical applications. To bridge this gap,
we introduce in Chapter 6 an approach to estimate a new kind of map that is optimal
for visual localization, given only raw imagery.

In this part of the thesis, we have assumed that the gravity direction is known. Our
experiment assume a perfect gravity estimate and do not evaluate the impact of
an inaccurate gravity. This is mostly true when the gravity is given by inertial
measurements fused across time. When those are not available, one can use a deep
neural network to estimate the gravity [127,142,182,337], but with a lower accuracy.
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Figure 5.12.: Failure cases of single-image localization (1/2). Localizing a single image
often fails when the environment lacks distinctive elements, when they do not appear in
the map, or when such elements are repeated, making the pose ambiguous. Since OSM is
crowd-sourced, the level of detail of the map is not consistent and widely varies. For example,
trees are registered in some cities but not in others (last row).
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C H A P T E R 6
Self-Supervised Neural Maps
for Visual Positioning
and Semantic Understanding

Semantic 2D maps are commonly used by humans and machines for navigation
purposes, whether it’s walking or driving. However, these maps have limitations:
they lack detail, often contain inaccuracies, and are difficult to create and maintain,
especially in an automated fashion. Can we use raw imagery to automatically
create better maps that can be easily interpreted by both humans and machines? We
introduce SNAP, a deep network that learns rich neural 2D maps from ground-level
and overhead images. We train our model to align neural maps estimated from dif-
ferent inputs, supervised only with camera poses over tens of millions of StreetView
images. SNAP can resolve the location of challenging image queries beyond the
reach of traditional methods, outperforming the state of the art in localization by
a large margin. Moreover, our neural maps encode not only geometry and appear-
ance but also high-level semantics, discovered without explicit supervision. This
enables effective pre-training for data-efficient semantic scene understanding, with
the potential to unlock cost-efficient creation of more detailed maps.

6.1. Introduction

Semantic 2D maps such as Google Maps are ubiquitous in our daily lives, used by
billions of people. They offer compact, yet easily interpretable representations of
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Part II: Leveraging 2D Maps

SNAP
multi-view fusion

satellite aerial

street
view

multi-modal neural map

downstream tasks
visual positioning

semantic mapping

sensor data self-supervised learning

Figure 6.1.: We learn neural 2D maps from multi-modal imagery using camera poses.
SNAP outperforms the state of the art in visual positioning, and by solving localization as a
proxy task learns easily interpretable, high-level semantics through self-supervision alone,
without any semantic cues.

the world from a bird’s-eye view, allowing us to effectively navigate large outdoor
environments by foot or vehicle. By contrast, machines position themselves in the
real world through computer vision, which remains dominated by structure-based
approaches [135, 187, 228, 261, 270, 278] relying on basic hand-crafted [11, 183] or
learned [81, 177, 203, 245, 263, 330, 364] primitives, such as points or lines. These
approaches build 3D maps with Structure-from-Motion (SfM) and then localize
query images via 2D-3D registration. Their complexity and many components
(feature extraction and matching, bundle adjustment, pose refinement, etc.) make
it difficult to tune [143] or update [84] them, and to learn high-level priors end-to-
end [32, 38, 268]. They are also costly to store and generally not reusable for other
applications.

OrienterNet [264], as introduced in Chapter 5, instead learn planar, neural repre-
sentations from the same 2D semantic maps that humans use. These maps encode
scene geometry and semantics and can be used for visual positioning with sub-meter
accuracy. This approach is however limited to a few semantic classes, and the maps
it is based on can be inaccurate, costly to obtain, and difficult to maintain.

We argue that maps are most useful for figuring out where we are when they are
abstract enough to be robust to temporal changes, yet preserve enough geometric
and semantic information to yield high-quality correspondences with the physical
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posed inputs

aerial image
sequence

query
image

overhead 
encoder

ground-level
encoder

query encoder
neural map 
alignment

multi-modal mapping
partial map

final map

query
BEV

fuse

Figure 6.2.: Training architecture. We feed overhead and ground-level imagery to per-
stream encoders (Sec. 6.2.1) to produce 2D bird’s-eye-view neural maps, fused via cell-wise
max-pooling (Sec. 6.2.2). We also extract a ‘query’ neural map from a single ground-level
image with the same ground-level encoder. Given known poses, we train SNAP by simply
registering ‘query’ and ‘scene’ maps (Sec. 6.3).

world. Our work, SNAP, shows that, by learning 2D neural maps for localization,
meaningful semantics emerge without explicitly supervising them. These seman-
tics improve positioning accuracy and also make our maps usable for other tasks
(Fig. 6.1).

SNAP leverages the complementary strengths of different input modalities, like
ground-level and overhead imagery, by fusing them into a single 2D neural
map (Fig. 6.2). It can flexibly and efficiently integrate arbitrary combinations
of data captured at different points in time, which is key to continuously update
maps in a changing world. We train it end-to-end to estimate the pose of a query
image relative to the mapping images, by simply aligning their neural maps. This
kind of contrastive learning requires only sensor poses, which can be easily obtained
with photogrammetry [123, 153]. We train and evaluate SNAP on a dataset with
50M StreetView images* from 5 continents, orders-of-magnitude larger and more
diverse than comparable academic benchmarks.

Despite training only for a positioning objective, we observe that our neural maps
learn easily-interpretable, high-level semantics without the need for explicit semantic
cues (Fig. 6.8), and demonstrate that they provide an effective pretraining for
semantic understanding tasks by fine-tuning them on little labeled data. This can

* Analytical use of StreetView imagery was done with special permission from Google.
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Part II: Leveraging 2D Maps

potentially unlock cost-efficient creation of more detailed and richer maps, readable
by humans and machines alike, while providing state-of-the-art visual positioning.

Our main contributions are as follows. (i) We introduce a simple and lightweight
encoder to estimate bird’s-eye view maps from ground-level imagery, combining
principles from multi-view geometry with strong monocular cues. (ii) We fuse
different imaging modalities to integrate and benefit from complementary cues.
(iii) We show how to train our model by aligning neural maps in a contrastive
learning framework, using RANSAC to mine hard negatives. (iv) We outperform the
state of the art on visual positioning and register image queries beyond the reach of
traditional methods (Fig. 6.8). (v) We demonstrate that high-level semantics emerge
by learning to align neural maps, without any explicit supervision, and fine-tune
them on semantic understanding with few labels (Fig. 6.17).

6.2. Mapping the world with neural maps

We now formalize neural maps, and describe a neural network architecture to infer
them from raw sensor data. Our goal is to infer a more generic neural representation
that can encode both the geometry, semantics, and appearance of a given point in
the 2D world.

Problem formulation: For a 3D scene, such as a large outdoor environment, we
consider a local, 3D Cartesian coordinate system such that the z axis points upwards
along the gravity direction. A neural map M is defined over a regular grid that
partitions the xy plane into I×J square cells of size ∆. Each cell (i, j) is associated
with a D-dimensional feature Mij ∈ RD. To infer such neural map, we leverage
large quantities of raw imagery captured by diverse cameras.

Input modalities: Ground-level images are captured by cameras mounted on
StreetView cars or backpacks [62]. They are often part of a sequence of multi-
camera frames. As such, they are very unevenly distributed throughout space. Each
image offers a high resolution view of a small area, mainly limited by the occlusion
of static or dynamic objects like buildings or vehicles. On the other hand, overhead
images are captured by cameras mounted on planes or satellites. These images
benefit from high spatial coverage at a uniform but low resolution. Their visibility is
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Chapter 6: Self-Supervised Neural Maps

mostly affected by vertical occluders like trees. Ground-level and overhead images
capture different aspects of the environment and are thus complementary.

Assumptions: All images of either modality are calibrated and registered with
respect to the map coordinate system. Each image n follows a projection function
Πn : R3 → R2 that maps a 3D point in the world to a 2D point on the image plane.
Πn combines the camera pose wTn ∈ SE(3) and the camera calibration, including
lens distortions. Overhead images are ortho-rectified, such that world points along
the z axis project onto the same pixel coordinate. As this process relies on a coarse
digital surface model [93], fine details like poles are not rectified and may result in
artifacts, which SNAP can however learn to account for.

6.2.1. Fusing multi-modal representations

Each location in the world is observed by an arbitrary number of images for each
modality, captured at arbitrary points in time. We thus follow a late-fusion strategy
that first encodes each modality separately and only finally fuses them (Fig. 6.2).
This can flexibly adapt to the available inputs and efficiently handle arbitrary spatial
distributions of data.

Encoding: We design two encoders that each combine a subset of observations
n into a single-modality neural map Mn defined over the same grid as M. ΦOV

encodes a single tile of overhead orthoimagery, while ΦSV encodes a single image
or multiple covisible ground-level StreetView images, e.g., a multi-view sequence.
To best resolve the 3D information from perspective shots at arbitrary viewpoints,
ΦSV leverages both multi-view observations and monocular cues. We describe its
architecture in detail in Sec. 6.2.2. ΦOV, on the other hand, is a simple U-Net-style
CNN [250] that computes a feature for each pixel of the overhead orthoimage, which
is then resampled into the grid.

Fusion: We obtain the final neural map by fusing the set of encoded maps {Mn}
using a cell-wise max-pooling operation, i.e., Mij = maxn Mn

ij ∀ (i, j) ∈ I×J .
This can combine maps with different spatial extents, which is essential to scale to
large areas. The max aggregation picks the best estimate among all inputs for each
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Figure 6.3.: Ground-level encoder: combining multi-view geometry and monocular pri-
ors. We use a CNN to predict pixel-wise features and a monocular occupancy volume,
separately for each view. We then interpolate them over a column of 3D points (at predefined
heights), for each 2D cell. Finally, a simple MLP combines them into features Xk that are
pooled along the column, into a neural cell.

feature channel and thus handles partial observations, such as when the road surface
cannot be resolved in overhead images because it is occluded by trees.

6.2.2. Ground-level image encoder

We design a single module, ΦSV, that can arbitrarily encode one or multiple images,
ordered or not. ΦSV first fuses the image data into 3D space and later projects it
vertically into the map plane (Fig. 6.3). This design can handle arbitrary ground
geometries and accurately resolve the 2D location of overhanging 3D structures,
like street lights. The 3D fusion leverages both multi-view geometry and strong
monocular cues learned end-to-end. ΦSV can thus resolve objects that are observed
by a single image, while maximizing accuracy when multiple observations are
available.

Monocular inference: We consider an unordered set of N images {In}, N≥1.
Each image n is encoded independently by a CNN ΦI into a C-dimensional feature
image Fn ∈ RH×W×C . ΦI also estimates a pixel-wise depth Sn ∈ RH×W×D
as a score over D depth planes along the ray of each pixel. Sn is similar to a
frustum-aligned occupancy volume [231, 264] but contains unnormalized logits of a
depth distribution. Instead of regressing a single value, this encodes the full depth
uncertainty along the ray and thus allows ΦI to provide meaningful multi-modal
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Chapter 6: Self-Supervised Neural Maps

estimates. We distribute the depth planes uniformly in log space to correlate with
the uncertainty of monocular depth estimation [8, 264].

Multi-view fusion: To fuse information in 3D, we define K horizontal planes at
heights {zk}, which are uniformly distributed within a range of interest defined with
respect to the height of the camera [173, 284], e.g., from 4 m below to 8 m above.
For a 2D map cell (i, j) ∈ I×J , we consider its center point (x, y) and a column of
3D points {Pk = (x, y, zk)}. For each 3D point k, we define the subset of views
that best observe it as Nk ⊆ {1 . . . N}, e.g., those that are closest spatially. We
project the point to each of these views, obtain a 2D observation pnk = Πn (Pk), and
sample the corresponding feature image with bi-linear interpolation: Fnk = Fn [pnk ].
Given the depth dnk of Pk in the corresponding view, we also tri-linearily interpolate
a score from the depth prior: Snk = Sn [pnk , d

n
k ]. Intuitively, Snk is low if the 3D

point is in free space or is occluded in view n. Following common practice in
learned multi-view stereo [347, 362], we then compute feature consistency statistics,
as mean and variance (µk,σk) ∈ RC , weighted by the depth priors:

µk =
∑
n∈Nk

wnk Fnk and σk =
∑
n∈Nk

wnk (Fnk − µk)
2 with wnk = softmax

n∈Nk

Snk .

(6.1)
A Multi-Layer Perceptron (MLP) fuses this information into a feature Xk, which is
finally pooled across all points in the column, resulting in a neural map cell Mij :

Mij = max
k

Xk with Xk = MLP
([

µk, σk, max
n∈Nk

Snk

])
. (6.2)

Adding the maximum depth score differentiates free and occupied space when the
point is observed by a single image. This makes it possible to use the same model
for single images and sequences.

By tightly combining 3D geometry and representation learning, our approach lever-
ages both monocular priors and multi-view information, while past research on
2D mapping or 3D reconstruction typically relies on only one of the two. Com-
pared to expensive Transformers [331] or 3D CNNs [110], we show that a simpler,
lightweight MLP is effective at fusing multi-view information, inspired by [276].
Compared to top-down 2D CNNs that squash the vertical dimension [115, 249], this
MLP is more expressive and makes our neural maps equivariant to 2D translations
and rotations and invariant to translations along the vertical axis. Overall, this
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simple design enables scaling to very large scenes, which is critical to provide hard
negatives for contrastive learning and ultimately learn rich semantics.

6.3. Learning from pose supervision

Alignment as contrastive learning: We want neural maps to encode high-level se-
mantic information about the environment. Given recent advances in self-supervised
learning [50, 219], we hypothesize that this can emerge from learning distinctive
features that distinguish one location from another and that are invariant to view-
point and temporal appearance changes. Intuitively, good maps help us identify
where we are. More generally, good maps are such that we can unambiguously
align them when inferred from partial inputs. Consider neural maps MQ and MR

obtained from two disjoint subsets of inputs, the query Q and the reference R. In
camera pose estimation, Q corresponds to a single ground-level image and R to a
sequence of images with an aerial tile. Because our encoder is flexible, we can use
the same shared model to encode Q and R (Fig. 6.2). MQ is defined over a grid
GQ ∈ RI×J×2 in a local coordinate frame, e.g., aligned with the query camera,
where GQ

ij is the center point of cell (i, j), while MR is defined in the world frame.

We define a score function E(T; MQ,MR) : SE(2) → R that evaluates the
consistency between MQ and MR given an estimate of their 3-DoF relative pose
RTQ ∈ SE(2). To distinguish the ground-truth pose RT∗Q from K other, incorrect
poses {RTk

Q}, we want to increase E(RT∗Q) and decrease E(RTk
Q) (omitting MQ

and MR for brevity). This corresponds to a contrastive learning problem, for which
we minimize the InfoNCE loss [217]

Loss
(
MQ,MR

)
= − log

exp
(
E
(
RT∗Q

)
/τ
)

∑
k∈{∗,1...K} exp

(
E
(
RTk

Q

)
/τ
) , (6.3)

where τ is a learnable temperature parameter. Neural maps are trained end-to-end
and require only relative poses RT∗Q, which can be easily obtained at a large scale
using photogrammetry [123, 153].

Featuremetric pose scoring: A linear layer projects each neural map M to a
lower-dimensional, L2-normalized map M̄. This creates an information bottleneck
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that encourages compact features. The score E evaluates the consistency of two
neural maps as the similarity of each cell after warping:

E(RTQ) =
1

IJ

∑
(i,j)∈I×J

max
(
M̄

Q>
ij M̄

R
[
RTQ ·GQ

ij

]
, 0
)
, (6.4)

where RTQ transforms a grid point from coordinate frames Q to R and [·] interpo-
lates the map at this location. max clips negative scores to zero to reduce the impact
of outliers, as in robust optimization.

Negative sampling: A critical and well-studied aspect of contrastive learning
is the selection of negative samples [119, 316, 355]. Hard negatives should be
high-likelihood but incorrect predictions, so as to push the probability mass to the
ground truth. Random poses can be easily distinguished and exhaustive voting in
the 3-DoF pose space is computationally infeasible at high resolution [28, 94, 264].
Instead, we use RANSAC [95] to sample poses that are consistent with the predicted
features. We sample pairs of 2D-2D correspondences between all cells of both neural
maps and solve for the relative pose using the Kabsch algorithm [146]. Inspired
by PROSAC [67], we sample a correspondence between cells (i, j) and (k, l)

based on its feature similarity with probability Pijkl = softmax
ijkl

(
M̄

Q>
ij M̄

R
kl

/
τ
)

.

Unlike NG-RANSAC [38], gradients are propagated through the scoring rather
than the sampling and are thus much smoother. Because the sampling and scoring
mirror similar featuremetric errors, negative samples become harder as the learning
proceeds.

Inference-time alignment: SNAP can estimate the unknown 3-DoF relative pose
between any two neural maps. We estimate each map in the sensor coordinate
frame, establish tentative correspondences by matching their cells, sample pose
hypotheses, and select the pose with the highest score. This includes single-image
positioning, where the query map MQ covers the camera frustum. The vertical
pooling requires that the gravity direction is known, which is a reasonable assump-
tion for applications like Augmented Reality (AR) and robotics [187, 264, 368]. Our
framework also applies more generally to aligning any pair of inputs, including
sequence-to-sequence and aerial-to-ground registration, which is required in the
first place to pose mapping data in a common reference frame.
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6.4. Related work

Visual positioning is most commonly tackled with geometric approaches [138,
261, 271] that rely on point correspondences across images and sparse 3D point
clouds built with SfM [4, 278]. They then estimate the 6-DoF query pose with
a robust solver [25, 54, 67, 68, 70, 95] from correspondences with the reference
model or images. Such correspondences are most often estimated by sparse lo-
cal features [11, 183]. This process is complex and end-to-end back-propagation
is impractical [32]. Past works have thus focused on learning specific compo-
nents like feature extraction [81, 85, 88, 185, 203, 245, 317, 330, 348, 364], match-
ing [141, 177, 263, 303, 349, 365, 371, 373], and pose [268, 339] or point cloud
refinement [176]. Coarse GNSS location and gravity direction are commonly as-
sumed to be known [187, 306, 368]. In AR and robotics, the height of the camera
can be estimated as the distance to the ground in a local SLAM reconstruction [264].
These assumptions reduce the problem to 3-DoF estimation and make it more
amenable to end-to-end learning. MapNet [124] also learns end-to-end 3-DoF visual
mapping and localization but requires sequences of depth inputs. Recent works
leverage overhead instead of ground-level images [94, 286, 288, 356]. They easily
scale to large scenes but only in open-sky areas. Their accuracy is also limited
by the low resolution of aerial imagery. Our work combines the strengths of both
ground-level and overhead imagery by learning end-to-end how to best fuse them for
3-DoF positioning. Our differentiable pose estimation, based on RANSAC, is more
efficient [94, 124, 264], robust [288], and stable [32, 38] than previous approaches.

Semantic representations can largely benefit loop closure [280] and pose esti-
mation [319]. OrienterNet (Chapter 5) learns 3-DoF positioning end-to-end from
public 2D semantic maps that are more compact yet detailed enough for localization.
Its accuracy is however limited because these maps have low spatial accuracy and
are infrequently updated. It is also also restricted to few, explicit semantic classes
that are often not discriminative. Differently, [161] learns finer-grained semantic
classes for temporal and viewpoint consistency. Our work instead learns implicit
semantics from posed imagery by combining end-to-end self-supervised learning
with large amounts of data. This boosts the positioning accuracy and is an effective
pre-training for semantic tasks.
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Neural scene representation is an active topic of research. MLPs [200, 310]
and tokens [258] are compact but lack geometric inductive bias. 3D voxel grids
are more expressive and thus popular for reconstruction [33, 208, 229, 304, 380],
rendering [207, 309], and semantic perception [31, 46, 61, 331] but are expensive
to store and thus often restricted to small scenes. 2D grids, or Bird’s-Eye View
(BEV)s, are more compact and thus scale to larger outdoor scenes by compressing
the information along the vertical axis. Neural BEVs can be learned from images
for supervised semantic tasks [115, 173, 231, 249, 257], 3D reconstruction [229],
self-supervised view synthesis [284], and 3-DoF positioning [94, 124, 264]. These
approaches assume planar scenes or rely on monocular priors only, even if multiple
views are available. Instead, we combine these priors with multi-view fusion [276,
347, 362] to leverage information from image sequences and better resolve objects
in large scenes.

Self-supervised learning leverages unlabeled datasets to learn representations
useful for down-stream tasks. Many works focus on image- or pixel-level contrastive
learning for semantic tasks [50,118,119,217,232]. View synthesis from few images
typically learns lower-level representations [200, 284]. Some works [161, 300] learn
features for image matching across appearance changes. CoCoNets [158] learns
representations for 3D scenes but requires perfect, synthetic depth maps. We learn
high-level contrastive scene representations from posed images and show that it
translates to semantic mapping.

6.5. Experiments

Data: StreetView images are captured by rigs of 6 rolling-shutter cameras mounted
on cars or on backpacks worn by pedestrians [62], which results in a wide diversity
of viewpoints in street-level scenes. Multi-view ‘frames’ are captured synchronously
every ∼5m. Sequences are captured between 2017 and 2022. We build mapping
segments only from car sequences by partitioning each sequence into groups of
36 images that face either the left or right side of the road. We define each map
grid as a 64×16 m tile aligned with the segment mid-frame, in which we render an
aerial orthophoto with 20 cm ground sample distance. Query images are sampled
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Figure 6.4.: Large viewpoints and temporal differences. Left: The easy split contains
more car-mounted queries, and the hard split contains more backpack queries. This make
sense, as examples captured from backpacks are typically captured from sidewalks instead of
the road, which results in difficult localization scenarios across opposite views. Right: The
time difference between query and mapping images spans from a few days to a few years.
This yields challenging localization scenarios with large appearance and even structural
changes, e.g., due to construction work.

from different sequences, captured from cars or backpacks, based on their frustum
overlap, and are often taken years apart (Fig. 6.4).

We train with 2.5M segments and ∼50M queries from 11 cities across the world:
Barcelona, London, Paris (Europe), New York, San Francisco (North America), Rio
de Janeiro (South America), Manila, Singapore, Taipei, Tokyo (Asia), and Sydney
(Oceania), reserving some areas in each city for validation. We test on 6 different
cities (Amsterdam, Melbourne, Mexico City, Osaka, São Paulo, and Seattle), with 4k
queries per city. This covers 5 continents, while academic localization benchmarks
focus on tourism landmarks [143] or single cities in Europe or the US [265,273,372].

Training and implementation: In the ground-level encoder, ΦI is a U-Net [250]
with a BiT ResNet backbone [155], pre-trained as in [369], and an FPN de-
coder [174], initialized randomly. We consider two models with different backbones:
a ‘large’ R152×2 (353M parameters) and a ‘small’ R50×1 (84M parameters). ΦOV

is a similarly-defined R50×1+FPN. In multi-view fusion (Sec. 6.2.2) we use D=32
depth planes and K=60 height planes {zk} uniformly distributed within 12 m. Neu-
ral maps M and matching maps M̄ have dimensions 128 and 32, respectively, and
are defined over 64×16 m grids with 20 cm ground sample distance. Query BEVs
have a maximum depth of 16 m. At training time, neural maps are built from one
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Barcelona San Francisco Manila

Paris

New York Sydney London

Rio de Janeiro Singapore

Taipei Tokyo

Figure 6.5.: Spatial distribution of the training data. In each city, training examples are
sampled from the red areas while validation examples are sampled from the blue areas.
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Figure 6.6.: Single-image positioning with different maps. Localizing with our neural
maps yields a higher recall than established approaches based on feature matching (SfM +
X), especially for hard queries with low visual overlap. Neural maps are also more suitable
for positioning than semantic maps because they encode richer and thus more discriminative
information.

aerial tile and one SV segment, with each of the two randomly dropped, similarly
to dropout [301]. We use a subset of N=20 views, some of them at a ±60° angle,
which we empirically found provides a good coverage/memory trade-off.

6.5.1. Visual positioning

Setup: We build a map for each segment using all 36 views and evaluate the
3-DoF query pose in terms of position and orientation errors. While many academic
benchmarks use much larger mapping areas, we argue that GNSS and motion priors
often make this unnecessary for practical applications [187]. We slice the results by
difficulty in terms of query-scene overlap based on the distance between the query
and its closest map view, in position ∆t, and orientation ∆θ. We split in the data
into 3 groups: ‘easy’ (∆t<10 m and ∆θ<45°, ∼25% of the data), ‘hard’ (∆t>10 m
and ∆θ>60°, ∼25%), and ‘medium’ (the remaining ∼50%).
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Algorithm Inputs Easy (25%) Med. (50%) Hard (25%) All (100%)

SfM + SIFT [183] StreetView 47.0 / 54.4 24.9 / 29.9 7.6 / 9.7 27.1 / 32.1
+ SuperGlue [263] StreetView 63.0 / 71.1 38.0 / 44.4 13.1 / 16.1 39.2 / 45.2

OrienterNet [264] semantic 35.6 / 47.2 29.3 / 39.5 24.8 / 34.8 30.0 / 40.6

SNAP-large
ResNet-152×2

multi-modal 48.9 / 62.3 46.9/ 59.5 34.5 / 47.6 44.4 / 57.4
StreetView 45.8 / 58.4 43.9 / 56.0 29.5 / 41.7 41.0 / 53.2

aerial 27.4 / 40.6 25.3 / 37.5 20.8 / 32.3 24.8 / 37.1

SNAP-small
ResNet-50

multi-modal 45.2 / 59.0 41.9 / 54.8 29.6 / 42.0 39.9 / 52.9
StreetView 42.2 / 54.9 38.1 / 50.1 24.5 / 36.4 36.0 / 48.2

aerial 23.9 / 35.6 21.9 / 32.8 17.9 / 27.5 21.5 / 32.3

Table 6.1.: Single-image positioning. We report the area under the curve (AUC) of the
position and orientation errors up to thresholds (2.5 m/5°) and (5 m/10°). Our large and
small multi-modal models are more accurate than classical SfM + X approaches for medium
and hard queries, which matter most in practical applications. Fusing both StreetView and
aerial imagery is more accurate than using only one of them.

Baselines: We compare our approach to hloc [261], a state-of-the-art [265, 273]
structure-based 6-DoF localization system based on COLMAP [278], a popular
SfM framework, with correspondences estimated by either RootSIFT [11, 183] or
SuperPoint+SuperGlue [81, 263], a learned feature and matcher. Note that these
approaches can only leverage ground-level imagery. We match the query to all
map images, without using hloc’s retrieval component, and estimate the query’s
pose using RANSAC and a P2P solver with gravity constraint [307]. We evaluate
the 6-DoF pose projected to 3-DoF. We also evaluate OrienterNet [264], which
matches a query BEV with a semantic map. We re-implement and train it on
overhead semantic rasters derived from SfM points with semantic labels obtained
by fusing 2D image segmentations. Note that OrienterNet was originally trained
on OpenStreetMap [218], which has limited coverage of small objects. While our
rasters are noisy, they provide a consistent, global coverage of fine-grained classes
like tree, streetlight, poles, etc. We also evaluate versions of SNAP trained with only
either ground-level or aerial imagery – the latter is an extreme case of cross-view
localization, similar to [94].

Results: Fig. 6.6 and Tab. 6.1 show that SNAP outperforms the state of the art,
COLMAP with SuperPoint+SuperGlue, by a large margin: 25% relative. Structure-
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Figure 6.7.: Single-image positioning per platform. We plot the position and orientation
recall for queries taken by cameras mounted on either backpacks or cars.

based approaches are more accurate for easy queries but significantly worse for
hard ones. Using ground-level imagery is crucial in most localization scenarios and
performs ∼46% relative better than using aerial imagery, whereas our multi-modal
model performs ∼8% relative better than the StreetView-only variant.

Fig. 6.7 shows the recall for queries taken by cameras mounted on either backpacks
or cars. Backpack queries have a lower recall because they are typically taken from a
sidewalk and thus have larger viewpoint differences (Fig. 6.4). We show qualitative
examples of query successfully localized in Figs. 6.8 to 6.13.

Our framework is also efficient, as mapping takes 223 ms per segment and 6 ms per
aerial tile, estimating a query BEV takes 14 ms and localizing it takes 86 ms, on an
A100 GPU. In comparison, matching with SuperGlue takes 100ms per pair for 36
pairs per query, and is thus 36 times slower. Each tile of our matching maps has size
1.6 MB in fp16, while storing SuperPoint descriptors requires 5.3 MB on average.

Sequence to sequence alignment We have so far focused on the alignment of
single-image queries to maps built from multiple views, but SNAP can arbitrarily
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Chapter 6: Self-Supervised Neural Maps

align any pair of neural maps. We show two examples of sequence to sequence
alignment in Figs. 6.14 and 6.15. These maps are built from five views. For ease
of understanding, we lift our neural maps into 3D using LiDAR, color-coding each
LiDAR point with the neural map values of the cell it belongs to – note that this is
stricly for visualization purposes, and our algorithm does not rely on LiDAR.

Large-scale mapping: We can easily build large tiles by ‘stitching’ smaller neural
maps together via cell-wise max-pooling, similarly to how we fuse aerial and ground-
level neural maps. Starting from multiple sequences posed in a common reference
frame, Fig. 6.16 shows how neural maps are inferred for each of them and finally
combined together.

6.5.2. Design decisions

In this section, we explain our design decisions and support them with an ablation
study.

Constraints: Learning features that are discriminative requires sufficiently chal-
lenging negative pose samples. These arise from viewpoints that are visually similar
to the ground truth viewpoint, for example due to repeated patterns, lack of distinc-
tive features, or occlusions. In order to find sufficiently difficult negative samples in
a training example, the map should be as large as possible. The size of the map and
the number of mapping images are however limited by the amount of GPU memory
available. We therefore found it critical to find the right balance between the size
of the map, its spatial resolution, the number of views, and the batch size, as also
reported in [115].

We found that a simple and lightweight model that saves memory is beneficial over
a complex model that requires reducing the size of the map, the number of views, or
the batch size. We thus favor explicit constraints by geometry (camera projection,
3D occupancy) rather than flexible but heavy mechanisms like attention or 3D
convolutions. The effectiveness of our design shows that such complexity is not
required. This enables the training of high-capacity models with maps of 64×16 m,
at a resolution of 20 cm (∼25k cells per map), from 20 images, and within 20 GB of
GPU memory per example. Despite extensive memory optimizations, including the
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Alignment error: ∆t=0.5m, ∆R=0.33°

Figure 6.14.: Sequence-to-sequence alignment (1/2). We align a car sequence (red) to a
backpack sequence (blue) across opposite views. Notice how the neural maps (top right)
are clearly similar despite the large viewpoint difference, and can be easily aligned (bottom
right). In the bottom left we lift the neural map for the first sequence into 3D by coloring
a LiDAR point cloud with the RGB value of the grid cell it belongs to – note that this is
strictly for visualization purposes as SNAP does not rely on LiDAR. Notice how the semantics
learned by our model correspond to real scene features, such as the pole (in cyan, enclosed
in a black box).
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Alignment error: ∆t=0.3m, ∆R=0.05°

Figure 6.15.: Sequence-to-sequence alignment (2/2). We align two car scenes, the second
of which is heavily occluded due to a passing bus. Notice how the neural maps (top right)
are visually similar and can be easily aligned. The neural map for the first sequence clearly
shows a row of poles, which are occluded in the second sequence (black box). Our method is
robust and can align the sequences using road markings and building boundaries. On the
top right we plot an alignment heatmap by running exhaustive aligment in 3-DoF between
both neural maps (we max-pool over rotations, for ease of understanding): notice the clear
maximum (circled), with smaller maxima along the road. In the bottom left we lift the neural
map for the first sequence into 3D by coloring a LiDAR point cloud with the RGB value of
the grid cell it belongs to – note that this is strictly for visualization purposes as SNAP does
not rely on LiDAR.

159



Part II: Leveraging 2D Maps

fuse

2019 2022

aerial 2021 neural map tileinputs

Figure 6.16.: Building neural tiles. We combine an aerial view and car sequences captured
over multiple years into a single neural map that spans a large area. An arbitrary number of
inputs can be combined in such way.

use of gradient checkpointing and mixed-precision training, using larger maps for
training remains challenging.

Ground-level encoder: We consider four alternative designs for the ground-level
encoder ΦSV.

(a) Fixed-height plane. Instead of lifting the image information to 3D and pooling
it vertically, the geometry of the scene can be approximated from a ground
plane [1]. Driving applications commonly assume that this plane is horizontal
and at a fixed height below the camera [286]. We train a variant that aggregates
the multi-view information on a plane 2.5 m below the camera. This approach
can hardly resolve the spatial location of overhanging structures, like street
lights. It furthermore introduces distortions in the BEV if the image is not grav-
ity aligned, which is the case for many capture platforms (such as StreetView
backpacks or consumer phones), or the ground is not planar, as in many real
environments.

(b) No monocular occupancy. Multi-view stereo [347, 362] typically does not
explicitly leverage monocular geometry priors. We thus train a variant that
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Chapter 6: Self-Supervised Neural Maps

omits the weighting by occupancy scores. Image features are thus painted
identically along all depth planes for each ray and their mean and variance
across all views is fed to the fusion MLP. This model can only leverage the
bearing angles of point features (like poles) to disambiguate a pose but cannot
resolve the location of line features.

(c) No multi-view variance. SimpleBEV [115] simply averages feature volumes
obtained by painting image features along each ray. This corresponds to
removing both variance and monocular priors from SNAP, making it even
harder to resolve surfaces.

(d) Ray conditioning. Close to our approach, Sharma et al. [284] augment multi-
view fusion with monocular cues, but do so by conditioning each ray feature by
its 3D location, using an MLP that encodes the ray direction and camera-space
coordinate. This requires evaluating the MLP for each observation of each
point. Our approach, based on an occupancy volume, requires only performing
a tri-linear interpolation for each observation, which is significantly cheaper.
We train a variant based on this MLP conditioning, replacing the weighting by
occupancy score. It increases the memory requirement by 4, since we use 4
observing views per point (|Nk|=4). We thus need to halve the batch size and
the number of height planes.

We train all variants, including our model, for an identical number of steps. To save
compute resources, we train for fewer steps than in the main experiment (200k vs
400k) and we use the smaller ResNet-50 architecture with only ground-level inputs.
Tab. 6.2 shows that each of these variants yields a lower positioning accuracy than
our model.

Vertical pooling: In our design, the vertical pooling is performed with max pool-
ing. Tab. 6.3-top shows that average pooling is significantly less effective. We
hypothesize that averaging makes it harder to ignore features of points located in
empty space. We found that pooling with an attention mechanism [284] performs
similarly as max pooling despite the increase in computation. Harley et al. [115]
flatten the vertical elements with a space-to-depth (or pixel-shuffling) operation,
followed by an MLP. This makes the model sensitive to a translation along the
vertical axis, which rarely occurs in small driving datasets based on a few cars with
identical specifications, but matters for heterogeneous data captured by backpacks
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Variant Easy (25%) Med. (50%) Hard (25%) All (100%)

SNAP (StreetView-only) 39.8 / 51.8 36.5 / 47.2 22.3 / 32.3 34.0 / 44.9
Fixed-height plane (a) 34.0 / 45.4 29.6 / 39.8 18.6 / 28.0 28.2 / 38.6

No monocular occupancy (b) 29.8 / 41.7 26.1 / 37.3 16.1 / 25.7 24.7 / 35.8
No multi-view variance (c) 28.8 / 39.1 23.5 / 32.6 14.0 / 21.7 22.7 / 31.8

Ray conditioning (d) 11.9 / 22.5 8.7 / 17.4 4.5 / 10.1 8.6 / 17.1

Table 6.2.: Ablation study of the ground-level encoder. We report the single-image posi-
tioning AUC up to thresholds (2.5 m/5°) and (5 m/10°). Variant (a) aggregates the information
on an horizontal plane at a fixed height below the camera [1, 286]. This is insufficient for
overhanging objects, when ground footprints are occluded, or when the scene is not planar.
Variant (b) performs multi-view fusion without monocular priors [347, 362]. This makes
it impossible to resolve the depth of objects in the single-image query. Variant (c) further
drops the variance term and simply averages feature volumes [115]. This makes it harder to
resolve surfaces. Variant (d) replaces the occupancy volume by conditioning each observation
feature on the ray and distance using an MLP [284]. This is much more expensive and thus
constrains both batch size and scene size, which in turn lowers performance.

Component Operator Easy (25%) Med. (50%) Hard (25%) All (100%)

Vertical pooling
(StreetView-only)

max 39.8 / 51.8 36.5 / 47.2 22.3 / 32.3 34.0 / 44.9
average 32.4 / 43.6 29.1 / 39.3 17.8 / 27.2 27.3 / 37.6

Multi-modal fusion
(StreetView+aerial)

max 45.9 / 58.6 41.5 / 53.0 27.3 / 37.9 39.3 / 51.0
average 45.5 / 58.4 40.9 / 52.6 27.8 / 38.8 39.0 / 50.9

Table 6.3.: Ablation study on pooling operators. Top: In the ground-level encoder, pooling
the features vertically with the max operator performs much better than averaging, as
measured by single-image positioning AUC. Bottom: Fusing StreetView and aerial neural
maps with either max or average pooling performs comparably.
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Figure 6.17.: 2D Semantic mapping. Left: t-SNE visualization of the neural map features
learned by SNAP, colored by their ground-truth semantic class. SNAP discovers different
categories of objects common in outdoor urban scenes, which yields clearly distinguishable
clusters. Right: Given a small labeled dataset, training a tiny CNN classifier to predict such
classes from pre-trained features is more effective than training the entire SNAP model from
scratch, especially for small and infrequent objects.

and cars with widely different setups. We thus found that this approach yields a
lower performance than a simpler pooling. This also makes it impossible to adjust
the number of height planes at inference time.

Multi-modal fusion: Tab. 6.3-bottom shows that the choice of pooling operator
makes little difference when fusing neural maps inferred from StreetView and aerial
inputs.

6.5.3. Semantic mapping

We show that SNAP’s neural maps are an effective pre-training for 2D semantic
mapping.

Qualitative inspection: Existing approaches rely on ground truth 2D semantic
rasters derived from the segmentation of LiDAR 3D point clouds. These are manu-
ally labeled, which is too expensive to generate enough data to train from scratch
models that generalize across countries, sensors, seasons, and times of the day.

163



Part II: Leveraging 2D Maps

Existing datasets [31, 42] thus rarely span more than a few cities and overfit su-
pervised models to the local appearance. Instead, our self-supervised pre-training
learns better features from a much larger dataset of posed imagery, which is much
cheaper to acquire at scale. The information bottleneck forces SNAP to learn unified
representations for objects, like street crossings or lights, that look very different
across countries, and would require larger amounts of labeled data. Fig. 6.17-left
shows a 2D t-SNE [336] visualization of SNAP’s neural maps at points sampled
on a few types of objects common in street scenes, according to their ground-truth
semantic label. Points of the same class are clustered together. This clearly shows
that neural maps learn to distinguish these objects without any semantic supervision,
even if they are geometrically similar, e.g., tree vs pole.

Quantitative evaluation: To evaluate the pre-training, we train a tiny CNN to
predict semantic rasters from pre-trained neural maps, keeping SNAP frozen. We
compare this to training the entire model from scratch (with the same backbones
initialization [155, 369]). We derive 3k 64×16 m ground truth rasters from LiDAR
point clouds captured by StreetView cars in 84 cities across the world. We train
with 2k examples and report the recall of both approaches on 1k test examples
in Fig. 6.17-right. Pre-training consistently yields better results for every class,
with larger gains on more difficult/infrequent classes. While training from scratch
massively overfits to such small dataset, our neural maps encode enough information
to reach recalls over 70%. We show qualitative examples in Figs. 6.18 to 6.21.

Monocular priors: We visualize in Fig. 6.22 the occupancy predicted by SNAP as
depth and confidence maps. SNAP learns sensible priors over the geometry of street
scenes from only pose supervision.
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Figure 6.22.: Monocular depth priors learned by the ground-level encoder. For each
query image (1), we show: (2) the expected log-depth across all depth planes, from blue
(close) to red (distant); (3) the total score along each ray log

∑
i∈{1...D} expS [:, :, di],

which reflects how useful or confident the prediction is; (4) the resulting bird’s-eye view. The
predictions are sensible for areas close to the ground and for lower parts of objects and
buildings. Predictions in the sky and upper facades are not reliable because these areas are
never covered by the height planes {zk} of the point columns.
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6.6. Summary and outlook

Summary: We present SNAP, a novel approach to build semantic, 2D neural
maps from multi-modal inputs and train it by simply learning to align two neural
maps in a contrastive framework. This simple objective yields a model that can
localize queries beyond the reach of the state of the art in structure-based matching
by discovering high-level semantics from self-supervision. Our neural maps are
easily interpretable and provide an effective pre-training towards unlocking semantic
understanding at scale.

Limitations and outlook: Because this work is based on data owned by Google
and not publicly available, reproducing the results presented in this chapter will
be difficult. Our approach is not as accurate as approaches based on 3D maps
given easy queries closer to the mapping images (Fig. 6.6). We hypothesize this is
partly due to operating at lower image and map resolutions. It also assumes gravity
direction and a location prior, which are reasonable assumptions but restrict its use.

The semantic information learned by SNAP is limited because it is trained on
relatively small maps. There is so much more information in the world that could be
leveraged for a more robust localization. Examples include the type of businesses
visible in the streets and the appearance of their storefronts, the type of trees, the
shape and height of the buildings, or the name of public transport stations. We
believe that increasing the size of these maps will make the learning problem
significantly more challenging and push the model to learn some of these stronger
semantic cues.

One structural limitation of SNAP is that it cannot leverage visual information that
is distant and thus outside of the BEV. Its area is limited by the computational
resources available. There are multiple avenues for increasing it, such as introducing
some sparsity or a hierarchical representation that stores most of the information at
a coarser spatial resolution. This is left to future works.
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C H A P T E R 7
Conclusions

7.1. Summary

In the course of this thesis, we explored the challenges of combining deep learning
and 3D geometry for problems related to visual localization and mapping. Starting
with existing systems that rely on 3D maps, we derived new algorithms based on
the multi-view alignment of features learned by DNNs. Next, we studied how to
leverage more compact and interpretable 2D maps, with new algorithms based on
semantic maps and on neural maps estimated from raw imagery in an end-to-end
manner. We summarize the contributions of this thesis:

Chapter 2 showed that Structure-from-Motion can highly suffer from the lack
of accuracy inherent to single-view keypoint detection. To remedy this, we
introduced a refinement process that aligns deep features across multiple views.
Compared to photometric costs typical used in previous works, we found that
features learned by off-the-shelf DNNs are more robust to appearance changes
and provide a wider basin of convergence. We designed a system that leverages
them in an efficient and scalable manner.

Chapter 3 showed that such features can be learned end-to-end for the process
of pose refinement, resulting in higher robustness to temporal changes. The
resulting DNN is a new kind of localization approach that refines the pose of
the query image starting from a coarse initial estimate obtained, e.g., with image
retrieval. We rely on a differentiable optimization process such that the only
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learnable component is the CNN that predicts the features. This results in better
generalization, accuracy, interpretability, and can be applied to new scenes without
retraining.

Chapter 4 focused on a common application of localization and mapping:
Augmented Reality. We noted that existing academic benchmarks are not repre-
sentative of the typical data captured by AR devices. These benchmarks are often
based on small-scale datasets with low scene diversity, captured from stationary
cameras, and lack the diversity of sensor inputs that can be found on AR devices,
such as inertial, radio, or depth data. Since benchmarking is a critical aspect of
research that fuels progress in Computer Vision, we introduced a new benchmark
and associated dataset. Our evaluation showed the large potential of leveraging
other sensor modalities like radio signals and inertial measurements or temporal
sensor streams like image sequences instead of single images.

Chapter 5 jumped into the realm of 2D maps. We note that humans can easily
navigate their environment using 2D semantic maps but that algorithms have so
far been unable to leverage them effectively. We derived a new learning algorithm
that leverages knowledge of 3D geometry, in terms of both camera calibration
and gravity information, to localize an image with sub-meter accuracy within
the same 2D planimetric maps that humans use. It mimics the way humans
orient themselves in their environment by matching the input map with a mental
map derived from visual observations. We have shown that this algorithm can
successfully localize single images in environments with rich semantic features,
and can otherwise effectively leverage sequences of images.

Chapter 6 extended this paradigm to also learn the generation of better maps
to maximize the accuracy of visual positioning. This does not rely on semantic
maps but instead on raw imagery that is already available in many parts of the
world. We introduced an algorithms that fused multi-view information from both
ground-level and aerial imagery into rich neural maps. These maps encode not
only geometry and appearance but also high-level semantics, discovered without
explicit supervision. Consequently, we found that the resulting localization
algorithm resolve the location of challenging image queries beyond the reach
of existing approaches based on 3D maps. Moreover, this enables an effective
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pre-training for data-efficient semantic scene understanding, with the potential to
unlock cost-efficient creation of more detailed maps.

Throughout this thesis, I attempted to show that more careful handling of 3D
geometry, for example in terms of camera calibration or optimization, results in
substantial benefits over simpler alternatives that are based on black-box DNNs. I
also strove to show that leveraging geometry does not preclude end-to-end training.
Combining both helps learning stronger data-driven priors that optimized for the end-
task of localization and mapping, but also ensures that the algorithm can generalize
to new operating conditions. This requires a careful design such that the only
priors that are learned are those that cannot be easily modeled mathematically. This
enhances the interpretability of such algorithms and makes it easier to detect their
failure. This is a critical feature of any systems that aims to be applied to real-world
data and integrated in practical applications.

7.2. Outlook

The algorithms proposed in this thesis have advanced the robustness and accuracy
of visual localization and mapping with respect to the challenges mentioned in
Sec. 1.2. There is however ample room for building even more powerful algorithms
and tackling related tasks. We give here a non-exhaustive list of interesting research
directions.

Learning stronger 3D prior: The mapping algorithm presented in Chapter 2
improves the accuracy of the SfM and the localization algorithm presented in
Chapter 3 improves robustness to long-term visual and structural temporal changes.
They still struggle in the most critical conditions that arise, for example, from
very sparse views with low visual overlap or from extreme temporal and viewpoint
changes. These algorithms indeed still have very limited learning capacity. Tackling
these challenges requires additional priors about the shape and the regularities of
the real world.

We now know that DNN are increasingly good at inferring observations like monocu-
lar depth or surface normals, which are useful local single-image priors. How to best
integrate such priors into SfM and SLAM, ideally in an end-to-end training process,
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remains an open question. Additional higher-level priors could be leveraged: priors
about camera motions or distributions, about the planarity of surfaces, or about the
symmetry of common objects and structures. It is unclear how such priors can be
learned and leveraged as constraints within the existing optimization processes of
3D geometry.

Leveraging multi-sensor streams: As seen in Chapter 4, AR devices and robots
often carry additional onboard sensors besides cameras, such as depth sensors,
inertial measurement units, and radio receivers for GNSS, Bluetooth, and Wifi.
These sensors provide valuable information that is complimentary to images. They
are also available as long temporal streams. These opportunities are often overlooked
in existing benchmarks and algorithms. We have proposed simple approaches to
leverage them, which have already shown clear benefits.

There is a lot of room for further improvements. DNNs could be particularly
suitable for cross-modality data association and fusion. Since not all modalities are
always available, this requires flexible algorithms that can handle missing data and
heterogeneous inputs. Additionally, given the wide diversity of sensors, algorithms
should leverage prior sensor calibration parameters, which are often available. This
requires a tight integration with 3D geometry and physical models, which is in line
with the direction taken by this thesis.

Self-supervised 2D maps: Chapters 5 and 6 showed that comparing and fusing
data across visual viewpoints and semantic types is much easier in 2D than with
sparse 3D point clouds. This self-supervised scheme could be extended to additional
sensor modalities like LiDAR, radio data, or multi-spectral imagery. This could
enable learning maps with much richer information with a wider range of use cases
across remote sensing, robotics, or computer graphics. More practically, this could
also enable the automated update and improvement of 2D semantic maps with only
raw imagery. How to effectively turn our neural maps into compact semantic vector
elements remains an open research question.

We believe that the thoughtful combination of learning and 3D geometry will be a
valuable asset in solving these problems.
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[246] Ignacio Rocco, Relja Arandjelović, and Josef Sivic. Efficient Neighbourhood
Consensus Networks via Submanifold Sparse Convolutions. In Proc. of the
European Conf. on Computer Vision (ECCV), 2020.

[247] Ignacio Rocco, Mircea Cimpoi, Relja Arandjelović, Akihiko Torii, Tomas
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Acronyms
2D 2-dimensional

3D 3-dimensional

AR Augmented Reality

AUC area under the curve

BA bundle adjustment

BEV Bird’s-Eye View

CNN Convolutional Neural Network

DNN Deep Neural Network

DoF Degree of Freedom

FoV field of view

GN Gauss-Newton

GNSS Global Navigation Satellite System

GT ground truth

ICP Iterative Closest Point

KA keypoint adjustment

LiDAR Light Detection And Ranging

LM Levenberg-Marquardt

MVS Multi-View Stereo

OSM OpenStreetMap

PGO pose graph optimization

PnP Perspective-n-Point

RANSAC Random Sample Consensus

SfM Structure-from-Motion

SIFT Scale-Invariant Feature Transform

SLAM Simultaneous Localization and Mapping
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