

How to assess a mayor network change?

The case of the E-Bike City

Presentation

Author(s):

Axhausen, Kay W. (D)

Publication date:

2024-10-21

Permanent link:

https://doi.org/10.3929/ethz-b-000700818

Rights / license:

In Copyright - Non-Commercial Use Permitted

Preferred citation style

Axhausen, K.W. (2024) How to assess a mayor network change: The case of the ebike city?, *MSc class*, Kyoto University, Kyoto, October 2024.

•

How to assess a mayor network change: The case of the ebike city?

KW Axhausen

IVT

ETH

Zürich

An e-bike-city? Daily practise today

Where do we go now?

Where do we go now?

Visions, academic visions?

Visions, academic visions for (local) authorities?

	Algorythm	Object
Idea	Developer/academic	Designer
Prototype	First coder	Workshop/engineer
Product	Software engineer	Factory/team
Transmission	Consultant	Firm
Filter	Advisor	Advisor
Decision shaper	Executive	Excutive
User/ decision maker	Sovereign	Sovereign

Shrinking "road" - Switzerland (1950)

Scherer, 2004

Shrinking "road" - Switzerland (2000)

Calculation of Hansen-accessibility (log sum)

Calculation of Hansen-accessibility

$$E_i = \sum_{k_{ij}=0}^{k_{ij} < k_{\text{max}}} X_j f(k_{ij})$$

```
Erreichbarkeit von Ort i aus
Ausgangsort i
Zielort j
Gelegenheiten am Ort j
Generalisierte Kosten des Widerstands zwischen i und j
Gewichtungsfunktion
```

Hansen-accessibility – roads (1950)

Hansen-accessibility – roads (1950)(2000)

Impacts

CH: Quality- and inflation adjusted price of mid-class saloon

Switzerland: Pkm change since the MZ 1994

Dilemma today

- Higher accessibility improves productivity and increases social capital
- Higher accessibility (lower generalised cost) increases
 - car ownership
 - transport demand and with it
 - GHG emissions
 - Congestion
 - encourages WFH (and lower transit use)
 - invites sprawl

What were the past visions?

Radical dreams: Le Corbusier's City radieuse

Past radical dreams: Lloyd Wright's Usonia

Past radical dreams, realised: «Autogerechte Stadt»

Kyoto University 24/10

Past radical dreams, realised: Motorways

Kyoto University 24/10

Past radical dreams: Buchanan's two-level central London

Can we escape? Nearly fixed urban network capacity =

Ways out?

History: Modal split in France (all distance bands)

Which visions are we discussing?

A managed/co-ordinated one

A managed/co-ordinated one: Pricing

- Mobility pricing
 - Two-part tariffs for infrastructure
 - Option fee
 - Pay-as-you-go for usage
 - Congestion pricing
 - (Demand responsive) parking pricing
 - GHG (CO₂) pricing
 - Local emissions pricing

A managed/co-ordinated one: Public transport

- MaaS improved shared mobility with
 - Demand responsive pricing

A managed/co-ordinated one? Comparison of MOBIS GC

An automated one? First robust cost estimates

Structure of the pkm full costs for today's usage levels

An electrical autonomous one,

An electrical autonomous one,

Note: These are optimistic estimates of how many CO2 emissions can be avoided through technology.

A car free/reduced one,

A car free/reduced one,

- a 15 min city?
- a net-zero CO₂ city?
- an e-Bike city?

An e-bike city?

The idea of an e-bike city

- e-bike/transit are the core modes of the city / metro area
- 50% of road space for slow vehicles (e-bike, bike etc.)
- Integration with shared services for large demands and demand variations
- Maintaining of current accessibility levels (for all)

EBikeCity: A first visualisation

EBikeCity: A first visualisation

Kyoto University 24/10

The idea of an e-bike city: A brief video

How to asses these changes?

How to asses these changes?

- MATSim
- Agent-based co-evolutionary equilibrium
- Open-source (Github) (linkedIn)
- Core: Mode, destination, route, on-demand services

Study area

City of Zurich Entire Perimeter Synthetic Population Transport Network

Kyoto University 24/10

Network stats after SNMan redesign

Metric		Today	ebikecity	Change
avg shortest path for cars	km	5.463	7.412	35.7%
avg shortest path for bicycles	km	5.391	5.334	-1.1%
avg shortest path for bicycles with VoD indicators	km	4.824	3.661	-24.1%
avg norm. betweenness centrality for cars	-	0.00506	0.01303	157.5%
avg normalized betweenness centrality for bicycles	, _	0.00367	0.00354	-3.5%
road space general travel lanes	km²	3.7564	2.0257	-46.1%
road space parking	km²	0.8040	0.2188	-72.8%
road space dedicated public transport	km²	0.3962	0.3962	0.0%
road space cycling infrastructure	km²	0.6816	3.1340	359.8%

Comparison with MATSim & current mode choice

Metric			Before rea	llocation	After rea	Relative difference (%)	
			All trips	Start/End within City of Zurich	All trips	Start/End within City of Zurich	All trips
Mode share (trip- based)	Car	%	31.56	21.62	30.03	16.12	-4.85
	Public transport	%	17.90	34.42	18.54	36.62	+3.58
	Bike	%	9.38	9.95	10.27	13.34	+9.49
Mode share (pkm- based)	Car	%	48.82	37.67	47.59	34.03	-2.52
	Public transport	%	24.94	41.35	25.85	43.03	+3.65
	Bike	%	4.43	4.96	4.93	6.70	+11.29
Person- km	Car	x10 ⁶	37.35	7.62	37.51	7.40	+0.44
	Public transport	x10 ⁶	19.08	8.37	20.37	9.36	+6.78
	Bike	x10 ⁶	3.39	1.00	3.89	1.46	+14.78

Car accessibilites

Bike accessibilites

How to asses these changes?

- Changes in activity schedules
- Current mode choice ?
- SP mode choice ?
- How to integrate "Working from home"?
- How to integrate e-shopping?
- Mobility impaired (who, where, how much are they impaired)

Short term loosers & winners

- Future generations
- Current and future cyclists and micro-mobility
- Current and future pedestrians
- (Urban public transport users fewer stops, more services & lines)
- Urban residents (and property owners)
- Mobility impaired
- (Poor) suburban in-commuters
- Urban car users
- (Urban consumers)

Questions?

- www.ivt.ethz.ch
- ebikecity.baug.ethz.ch/
- ebis.ethz.ch/

www.ebikecity.ch

Selection of relevant IVT papers

- Ballo, L., L. Meyer de Freitas, A. Meister and K.W. Axhausen (2023) The E-Bike City as a radical shift towards zero-emission transport: Sustainable? Equitable? Desirable?, *Journal of Transport Geography*, **111**, 103663.
- Ballo, L., A. Sallard, L. Meyer de Freitas and K.W. Axhausen (2024) Is "small" infrastructure the next factory for accessibility? Evaluating the regional accessibility effects of a cycling-centric transport policy in Zurich, Arbeitsberichte Verkehrs- und Raumplanung, 1888, IVT, ETH Zurich, Zurich.
- Heinonen, S., A. Meister, L. Meyer de Freitas, L. Schwab, J. Roth, T. Götschi, B. Hintermann and K.W. Axhausen (2023) The e-biking in Switzerland (EBIS) study: Methods and dataset, paper presented at the 102nd Annual Meeting of the Transportation Research Board (TRB 2023), Washington, D.C., January 2023.
- Meyer de Freitas, L. and K.W. Axhausen (2023) Evaluating willingness-to-pay for cycling infrastructure in Switzerland, paper presented at the 7th Annual Meeting of the Cycling Research Board (CRBAM), Wuppertal, October 2023.
- Meyer de Freitas, L. and K.W. Axhausen (2024) The influence of individual physical capabilities for cycling adoption: Understanding its influence and modeshift potentials, *Transportation Research Part A: Policy and Practice*, 185, 104105.