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Abstract

This thesis presents new results for the theory of local complexity in distributed com-
putation and builds bridges to other areas of theoretical computer science and discrete
mathematics, such as parallel, distributed, and sublinear algorithms, descriptive combi-
natorics, and finitary factors.

We begin the thesis with an extended introduction to the area of local algorithms, par-
ticularly focusing on recent complexity-theoretic developments. We hope this text could
serve as a useful resource for a broader audience, especially newcomers to the field and
researchers in adjacent areas.

Next, the thesis presents our new technical results in two parts. The first part contributes
to our understanding of the possible complexities of local problems. Specifically, we
classify the complexities of local problems on concrete graph families, with a focus on
trees and grids. We also present new algorithms for fundamental problems, such as
network decomposition and the Lovász local lemma.

The second part of the thesis builds and explores connections from local complexity
to other fields: We apply techniques from local algorithms to classify the complexities
of problems in the local computation model of sublinear algorithms. We extend local
algorithms for network decompositions to weighted graphs, leading to new parallel and
distributed algorithms for several graph problems. Finally, we explore the connection
between local algorithms, descriptive combinatorics, and finitary factors, yielding new
results in these fields.
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Abstrakt

Diese Dissertation präsentiert neue Ergebnisse zur Landschaft der lokalen Komplexität in
der verteilten Berechnung und baut Brücken zu anderen Bereichen der theoretischen In-
formatik und diskreten Mathematik, wie parallele, verteilte und sublineare Algorithmen,
beschreibende Kombinatorik und endliche Faktoren.

Wir beginnen die Dissertation mit einer ausführlichen Einführung in den Bereich der
lokalen Algorithmen, insbesondere unter Berücksichtigung der jüngsten komplexitäts-
theoretischen Entwicklungen. Wir hoffen, dass dieser Text als nützliche Ressource für
ein breiteres Publikum dient, insbesondere für Neulinge auf dem Gebiet und Forscher in
angrenzenden Bereichen.

Als Nächstes präsentiert die Dissertation unsere neuen technischen Ergebnisse in zwei
Teilen. Der erste Teil trägt zu unserem Verständnis der möglichen Komplexitäten lokaler
Probleme bei. Insbesondere klassifizieren wir die Komplexitäten lokaler Probleme an
konkreten Graphenfamilien, mit einem Fokus auf Bäume und Gitter. Wir präsentieren
auch neue und verbesserte Algorithmen für grundlegende Probleme, wie Netzwerkzer-
legung und das Lovász’sche lokale Lemma.

Der zweite Teil der Dissertation baut Verbindungen von der lokalen Komplexität zu ex-
ternen Feldern auf und erforscht diese: Wir wenden Techniken aus lokalen Algorithmen
an, um die Komplexitäten von Problemen im lokalen Berechnungsmodell sublinearer Al-
gorithmen zu klassifizieren. Wir erweitern lokale Algorithmen für Netzwerkzerlegungen
auf gewichtete Graphen, was zu neuen parallelen und verteilten Algorithmen für ver-
schiedene Graphenprobleme führt. Schließlich erforschen wir die Verbindung zwischen
lokalen Algorithmen, beschreibender Kombinatorik und endlichen Faktoren, was zu neuen
Ergebnissen in diesen Bereichen führt.
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Preface

The thesis is organized into two parts. The first part – Chapters 1 to 3 – contains a
survey of the past work in the area of local algorithms, also containing some proofs. I
wrote it in the hope that I would later add a few pictures and post it online so that
it could be helpful, e.g., as a material for reading groups on local algorithms. I would
greatly appreciate any feedback on this part of the thesis.

This first part is divided into three chapters: In Chapter 1, we explain how the theory of
local algorithms is extremely clean if we disregard polylogarithmic factors. In Chapter 2,
we put together a number of results in the area to give a more or less self-contained
proof of the remarkable classification theorem of local problems with sublogarithmic
local complexity on bounded degree graphs. In Chapter 3, we briefly discuss connections
and applications of local algorithms to other areas of computer science and discrete
mathematics.

The next part of the thesis begins with Chapter 4 which overviews some new results
related to the area of local algorithms. These results are small pieces fitting into the big
picture presented in the first three chapters and in Chapter 4, we discuss how exactly
those small pieces fit there.

The presented technical results are divided into two parts. First, in Chapters 5 to 7,
we focus on results that are related to the fundamental theory of local algorithms. We
present three results based on the following three papers:

Chapter 5 presents results from the following paper:

Václav Rozhoň, Bernhard Haeupler, and Christoph Grunau. A simple
deterministic distributed low-diameter clustering. In Symposium on
Simplicity in Algorithms (SOSA), pages 166–174. SIAM, 2023

Chapter 6 presents results from the following paper:

Sebastian Brandt, Christoph Grunau, and Václav Rozhoň. General-
izing the sharp threshold phenomenon for the distributed complexity
of the Lovász local lemma. In Proceedings of the 39th Symposium on
Principles of Distributed Computing, pages 329–338, 2020

1



2 CONTENTS

Chapter 7 presents results from the following paper:

Christoph Grunau, Václav Rozhoň, and Sebastian Brandt. The land-
scape of distributed complexities on trees and beyond. In Proceedings
of the 2022 ACM Symposium on Principles of Distributed Computing,
pages 37–47, 2022

The remaining Chapters 8 to 10 can be seen as applying the principles and techniques
of local algorithms to other related areas.

Chapter 8 presents results from the following paper:

Sebastian Brandt, Christoph Grunau, and Václav Rozhoň. The ran-
domized local computation complexity of the Lovász local lemma. In
Proceedings of the 2021 ACM Symposium on Principles of Distributed
Computing, pages 307–317, 2021

Additionally, Chapter 8 contains a proof of a result proven in the paper covered in
Chapter 7 that more closely fits into the topic of Chapter 8.

Chapter 9 presents results from the following paper:

Václav Rozhoň, Michael Elkin, Christoph Grunau, and Bernhard Hae-
upler. Deterministic low-diameter decompositions for weighted graphs
and distributed and parallel applications. In 2022 IEEE 63rd Annual
Symposium on Foundations of Computer Science (FOCS), pages 1114–
1121. IEEE, 2022

Chapter 10 presents results from the following paper:

Sebastian Brandt, Yi-Jun Chang, Jan Grebík, Christoph Grunau, Vá-
clav Rozhoň, and Zoltán Vidnyánszky. Local problems on trees from the
perspectives of distributed algorithms, finitary factors, and descriptive
combinatorics. In 13th Innovations in Theoretical Computer Science
Conference (ITCS 2022). Schloss Dagstuhl-Leibniz-Zentrum für Infor-
matik, 2022

During his doctoral studies, the author has also coauthored other papers related to the
local/distributed/parallel algorithms [170, 184, 185, 80, 274, 69, 129, 172, 273, 173] and
some other papers [101, 271, 187, 190, 229, 189, 196, 186].



CHAPTER 1

Local Complexity Fundamentals

In the first chapter, we introduce local algorithms and local problems in Section 1.1. We
then carefully discuss the appropriate formal definitions in Section 1.2. The following
sections Sections 1.3 to 1.5 discuss the basic theory of local algorithms and aim to convey
that we are after a very clean, fundamental, and robust concept. Finally, Section 1.6
surveys some known results for concrete local problems.

1.1 First Example

Consider a very long, oriented cycle that we want to properly color with as few colors as
possible. Two colors are enough if the number of vertices n is even, otherwise we need
3 colors. However, there is something uneasy about the 2-coloring solution even when it
is possible – the solution lacks any flexibility. A decision to color any particular vertex
red implies how all other vertices are going to be colored. This can be bad for all kinds
of reasons, typically when we want to design a coloring algorithm that is in some way
parallel or distributed. This lack of flexibility goes away if we try to color the circle with
3 colors. Now, coloring one vertex red still implies that its neighbors are not red, but
other vertices can have an arbitrary color.

Imagine that there is a computer in every vertex of the cycle and neighboring computers
can communicate. The computers are trying to solve the coloring problem together. How
many rounds of communication are needed until each computer outputs its color?

It is possible to convince oneself that in the case of 2-coloring, at least around n/2 rounds
are necessary even if n is even. But what about the 3-coloring scenario? Can we solve it
in 10 rounds of communication? Or O(log n)? Or is it similarly hard to 2-coloring?

Before we answer this question, let us note that we need to be a bit careful about how
we specify the computational model. There are two reasonable possibilities:

1. Randomized algorithms: Every computer has a coin that it can use to sample
independent random bits.

3



4 Local Complexity Fundamentals

Random selection

Unselect if you have neighbors

Fill in the gaps

Figure 1.1: An example local algorithm that colors a long cycle, a small part of which
is shown. First, every vertex flips a coin and selects itself with probability 1/2. Second,
a vertex unselects itself whenever a neighbor is selected. Third, selected vertices color
themselves red and each selected vertex is then responsible for coloring the subsequent
vertices until the next selected one with alternating colors.

2. Deterministic algorithms: Every computer starts with a unique identifier (think of
a MAC address) that has O(log n) bits.

The unique identifiers in case of deterministic algorithms are needed since otherwise
deterministic algorithms would be extremely weak – in our example of a cycle, every
computer sees the same local neighborhoods and without an additional way of breaking
the symmetry all vertices then have to output the same color just because of the symmetry
of the cycle.

Going back to our problem, let’s see a randomized algorithm for 3-coloring a cycle with
round complexity O(log n): That is, it finishes after O(log n) rounds of exchanging mes-
sages. This algorithm serves as an example that nontrivial algorithms are indeed possible,
though we will see a better one for this problem later.

Our algorithm has two phases. In the first phase, every computer flips a coin and selects
itself with probability 1/2 (top picture in Figure 1.1). Subsequently, it asks its neighbors
whether they are also selected. If at least one neighbor is selected, the vertex unselects
itself (middle picture).

What are the lengths of the runs of unselected vertices between consecutive surviving
selected vertices? They are only O(log n), with 1 − 1/ poly(n) probability (we will call
this guarantee as “with high probability” later on). This is because if we split the cycle
into pieces of consecutive triples of vertices, every node in the middle of a triple has
a probability 1/8 of being a surviving selected node, independently of what happens
outside its triple. Using Chernoff bounds, we thus conclude that the probability of a run
of ℓ consecutive vertices surviving decreases exponentially with ℓ.

We are now ready for the second phase of the algorithm. In this second phase, every
selected vertex is responsible for coloring the part of the cycle until the next selected
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vertex. Specifically, it colors itself red and then colors the following vertices by alter-
nating blue and green colors, until we reach the next selected vertex (bottom picture in
Figure 1.1). Our algorithm properly colors the oriented cycle with 3 colors in O(log n)
rounds.

Surprisingly, the best algorithm for the 3-coloring problem has a much better, albeit not
constant complexity of O(log∗ n).1 However, instead of focusing on specific algorithms,
this text is trying to give a bit more general understanding of what is going on here.
For example, it turns out that if you construct any algorithm with complexity O(log n)
for any reasonable problem defined on the cycle as we just did, there is a general theory
that turns this algorithm into a new deterministic O(log∗ n)-round algorithm for the very
same problem (Theorem 2.30). Clearly, something interesting is going on here!

1.2 Formal Definitions

In this section we formally define local problems and algorithms.

Local problems: We will be mostly interested in the so-called local problems. These
are the problems on graphs such that if the solution is incorrect, we can find out by
looking at a small neighborhood of one vertex.

Given a graph G and its node u ∈ V (G), the ball BG(u, r)
2 around u of radius r is the

subgraph of nodes around u up to distance r. More generally, an r-hop neighborhood is
a graph with one highlighted node v such that the radius of that graph measured from
v is at most r.

Definition 1.1 (A local problem). Local problem3 Π with checkability radius r is formally
a triplet (S, r,P). Here, S is a finite set of allowed labels and each P is a set of “allowed”
S-colored r-hop neighborhoods. A solution to Π in a graph G is an assignment of a color
from S to every vertex of G such that for every u ∈ V (G) we have BG(u, r) ∈ P.

For example, 3-coloring is a local problem for S = {R, G, B}, r = 1, and P containing
all properly colored 1-hop neighborhoods. On the other hand, a non-example of a local
problem is coloring an input graph on n vertices with n colors: the local problem should
not have different constraints for graphs of different size. Of course, while the theory of
local algorithms is simplest for local problems as we defined them, the applications of
local algorithms are not limited to local problems.

Local algorithms: There are two equivalent ways of thinking about local algorithms4

1The function log∗ n measures how many times we need to take the logarithm of n until we get a
value of size at most 2, i.e., log∗ 22 = 1, log∗ 22

2

= 2 and so on.
2We sometimes write B(u, r) when G is clear from context.
3Our definition is a simplified variant of the definition of the so-called locally checkable labeling

problem by Naor and Stockmeyer [258], discussed later in Section 2.5.
4In the literature, these algorithms are often referred to as “distributed algorithms in the LOCAL
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Figure 1.2: This picture shows the two fundamentally different, yet equivalent ways of
understanding local algorithms.
Left: A t(n)-round local algorithm is a distributed protocol where in each round, each
node can send any message to any of its neighbors. The computers starts with the
knowledge of their unique identifier (or a random string).
Right: A local algorithm with round complexity t(n) is a function that maps various
t(n)-hop neighborhoods into output labels. Applying this function to every vertex of the
input graph always has to solve our problem. For example, if our problem is a coloring
problem, the first two local neighborhoods in above table need to be mapped to different
colors, as the identifier labelings are compatible.
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and both of them are important (see Figure 1.2). An intuitive, algorithmic definition was
already sketched in Section 1.1: We assume that there is a computing device at every
node. For simplicity, these devices are assumed to have unbounded computational power,
thus excluding Turing machines from the definitions. A t(n)-round local algorithm is a
protocol where these devices communicate for t(n) rounds using the edges of the input
graph to send messages. At the beginning, the device in each node starts only with the
information about its identifier/random string and the size of the graph, n. When the
protocol finishes, each device outputs its part of the solution (e.g., its color).

It will be also helpful to understand an alternative, equivalent definition that extracts the
essence of what we are measuring with local algorithms. In this alternative definition,
a local algorithm with round complexity t(n) is simply a function that we can apply to
every ball B(u, t(n)) of the input graph to compute the output at a given node u. Let
us state it now formally.

Definition 1.2 (Local algorithm). A local algorithm A with a round complexity of t(n)
is a function that accepts two inputs: firstly, the value n, and secondly, a labeled t(n)-hop
neighborhood of a certain node u.

When we use this second definition, running a local algorithm on an input graph G
simply means coloring each node u ∈ V (G) with the output of An(BG(u, t(n))). Solving
a problem Π on G simply means that after running A on G, all output colors satisfy
constraints P.

Moreover, in the case of deterministic local algorithms, we assume that the nodes of
the input graph are additionally labeled with unique identifiers from the range [nO(1)] =
{1, 2, . . . , nO(1)}.5 In the case of randomized local algorithms, we assume that the nodes
of the input graph are labeled with infinite bit strings. Solving a problem then means
solving it with overall error probability at most 1/nO(1), if the bit strings are sampled
independently randomly.6

We notice that if there is a deterministic local algorithm solving some problem with round
complexity t(n), there is also a randomized local algorithm solving the same problem with
the same round complexity. This is because in the randomized algorithm, each node can
simply generate a random identifier from range [nC ]: The probability that these identifiers
are not unique, i.e., some two nodes have the same identifier, is at most n2 · 1

nC . Choosing
C large enough, this error probability can made as small as any polynomial function of
n.

model of computing”. We use the shorter and less formal term “local algorithm” for better readability.
5While assuming polynomial-range identifiers may look a bit arbitrary, we will see in Chapter 2 that

the notion of deterministic algorithms is very robust. We simply need a way of breaking the symmetry
of the input graph.

6Formally-minded readers may feel uneasy about the definitions not specifying the constant in the
nO(1) expressions. We will see later in Theorem 2.20 that the exact constant in the definition typically
does not matter. Formally, when we say that there is a local algorithm, it means that for every C there
is an algorithm in the setup where the size of identifiers/error probability is nC .
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Finally, we remark that we can talk about local algorithms solving problems on graphs
with additional structure (e.g. directed graphs) or on concrete graph classes. For exam-
ple, in our introductory example from Section 1.1, it makes sense to think of all definitions
relative not to the class of all graphs but to the class of graphs that are oriented paths.
One interesting setup that we discuss mostly in Chapter 2 is the class of bounded-degree
graphs. There, we fix some constant ∆ and analyze the class of graphs of degree at most
∆.

Equivalence of the two definitions: Let’s see a proof sketch of why the two definitions
are equivalent. On the one hand, let’s say we are given a function A that looks at t(n)-
hop neighborhoods and we want to construct a t(n)-round message-passing protocol.
Consider running a protocol where in the i-th round, each vertex u sends its neighbors
everything there is to know about the ball B(u, i): How the graph looks like and what
are the identifiers/random strings at every node. Each node v can then internally use
this information to learn everything there is to know about the ball B(u, i + 1). After
t(n) rounds of communication, each vertex v knows its t(n)-hop neighborhood B(v, t(n)).
The vertices then stop communicating, and each one applies the function A locally to its
ball.

On the other hand, assume that we have a t(n)-round communication protocol and want
to turn it into a function A that takes t(n)-hop neighborhood as inputs. We notice that
if we know the t(n)-hop neighborhood B(u, t(n)) of a node u, we can simulate the first
round of the protocol in that ball and get to know the state of all vertices in B(u, t(n)−1)
after the first round. Continuing like this inductively, we conclude that starting with the
knowledge of B(u, t(n)), we can learn the state of the protocol at the center node u after
t(n) rounds.

There are two different but equivalent ways of understanding local algo-
rithms.
1. They are message-passing protocols running for some number of
rounds.
2. The solution is such that the output at each node is a function of its
neighborhood.

Importantly, it will be very helpful for us to keep both definitions in our mind: When we
design local algorithms, the message-passing definition is more helpful as it is natural to
think as “first, we run the protocol A1, then the protocol A2”. On the other hand, when
we prove lower bounds, the formal definition of Theorem 1.2 is easier to use. When we
think of applications to distributed/parallel algorithms, the protocol-design definition is
preferable since this is how the actual parallel/distributed algorithms are implemented.
In some other applications, like applications to descriptive combinatorics, the formal
definition is perhaps a bit more natural.
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1.3 Sequential vs Distributed Local Complexity

This section presents one of the most fundamental results for local algorithms. Currently,
it may be very unclear what kind of problems can be solved with a local algorithm of
round complexity, say, poly log n. This will become much clearer, since we will next see
that, up to poly log n, the model of local algorithms is the same as the model of so-called
sequential local algorithms that are much easier to understand.

The case of maximal independent set: As an example, let’s think of a concrete prob-
lem known as the maximal independent set problem. In this local problem, every node
must be labeled either selected or unselected. The constraint is that each selected
node should not neighbor any other selected node, while each unselected node should
neighbor at least one selected node7.

Is there a local algorithm constructing a maximal independent set in a polylogarithmic
number of rounds? This is not clear at all! The answer to this question is positive,
and perhaps the simplest algorithm is the randomized algorithm of Luby [239, 6]. This
algorithm in fact served as the foundational example that later led Linial [236] to define
local algorithms. But Luby’s algorithm is a non-trivial algorithm8 and just by staring at
the maximal independent set problem, it is quite unclear whether a fast local algorithm
exists, or not.

This stands in stark contrast with the “sequential” world: If we do not care about all
vertices outputting the answer “at once”, we can compute a maximal independent set
with the following simple algorithm: Choose any order of vertices and iterate over them
in that order. Whenever you consider a vertex u, look at its neighbors, and if at least
one of them is already selected, mark u as unselected. Else, mark u as selected.

Here is a curious property of the above algorithm: We can still think of it as a “local”
algorithm. Indeed, each node makes its decision by examining its 1-hop neighborhood.
The only difference is that the algorithm is a sequential local algorithm where we iterate
over nodes in an arbitrary order, not a distributed local algorithm9 as we defined it in
Theorem 1.2 where all nodes have to output the answer at once.

A fundamental result of local complexity is the fact that these two definitions are equally
powerful, up to polylogarithmic factors. Hence, in the concrete example of the maximal
independent set, you should not think of this problem as “easy” because of a clever
algorithm like Luby’s, you should think of it as easy because of the above simple sequential
algorithm.

7This is a much easier problem than the maximum independent set problem where we additionally
maximize the number of selected nodes.

8We can briefly describe the algorithm: It has O(logn) phases and in each phase, every vertex chooses
a random number. If its number is the largest among its neighbors, the vertex goes in the independent
set and is removed from future iterations, together with its neighbors.

9We sometimes use the name distributed local algorithm to stress that we are talking about a local
algorithm and not a sequential local one.
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The distributed round complexity of any problem equals its sequential
local complexity, up to poly log(n).

Formal definition of sequential local algorithms: We next make this principle
formal. We need to start by defining a general sequential local algorithm. Here is a
definition of a deterministic algorithm, made slightly more powerful than the maximal-
independent-set algorithm by allowing the output of each node to be not just the final
color, but also additional information that future vertices can read off the node.

Definition 1.3 (Sequential local algorithms). A sequential local algorithm of local com-
plexity t(n) is a function A defined on labeled t(n)-hop neighborhoods. Its output for a
neighborhood B(u, t(n)) around a node u is a pair (s, t), with s being the output at u and
t being additional information stored at u. An input neighborhood to A has some nodes
labeled by these pairs.

Running a sequential local algorithm means iterating over the vertices in some order and
each time applying A to produce the answer at that vertex. When we run A on a node v,
the algorithm has access to all already produced pairs (s, t) at the vertices of B(u, t(n))
on which A has already been run. Solving a problem with a sequential local algorithm
means that regardless of the order in which we choose the vertices, this process results in
a solution to the problem.

Notice that we do not require unique identifiers in the definition; we will see later in
Theorem 2.7 that they are not needed for local problems. We can also define (oblivious)
randomized algorithms where first an adversary chooses an order in which we iterate
over vertices; then we sample random bits in each vertex and run our sequential local
algorithm. We will next prove the following theorem by Ghaffari, Kuhn, and Maus [165].
10

Theorem 1.4 (Ghaffari et al. [165]). Let A be a deterministic (randomized) sequen-
tial local algorithm with local complexity t(n). Then, there is a deterministic (or ran-
domized, respectively) distributed local algorithm simulating A with round complexity
Õ(t(n) · log3(n)).11

We note that it is known that there are local problems such that their sequential and
distributed local complexity differ by a factor of Ω(log n/ log logn). [148]

Network decompositions: A crucial tool that we will rely on in this section and the
next one is the concept of a network decomposition. Network decomposition is a clustering
of the input graph into clusters of small diameter12 (see Figure 1.3).

10Some version of this theorem was implicitly understood in the late 80s and led to the development
of algorithms for network decompositions [13, 237].

11We use Õ(t(n)) to denote the complexity O(t(n) · logO(1) t(n)).
12A diameter of a graph G is defined as maxu,v dG(u, v) where dG(u, v) is the distance between u and
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Figure 1.3: This picture shows a network decomposition with c = 2 color classes and
d = 2 diameter. It also shows how network decomposition is used to convert an input
sequential local algorithm (of local complexity 1) into a distributed local algorithm in
Theorem 1.4.
Left: The color classes of the network decompositions are ordered as (red, blue). We
iterate over the color classes and in one iteration, we consider each cluster separately
and simulate an input sequential local algorithm in it (see the node ordering). When the
algorithm is simulated in blue clusters, it has access to the output of neighboring red
vertices.
Right: The partial simulations of the sequential local algorithm in each cluster are con-
sistent with a single run of that algorithm over all vertices.

Definition 1.5 (Network decomposition). A (c, d)-network decomposition of a graph G
is a coloring of G with c colors. We require that vertices of each color induce a graph
such that each of its connected components (that we call clusters) has diameter at most
d.

We defer the discussion about the existence of network decompositions to Section 1.5.
For now, we will simply state the guarantees of the currently best deterministic network
decomposition construction.

Theorem 1.6 ([172]). There is a deterministic local algorithm that outputs a (O(log n),
O(log n · log log log n))-network decomposition in Õ(log3 n) rounds.

Proof of Theorem 1.4: Armed with the above algorithm for network decomposition,
let us prove Theorem 1.4.

Proof of Theorem 1.4. An important concept employed throughout this text is working
within the power graph: Given a graph G and a parameter r, we define the power graph
Gr to be the graph with V (Gr) = V (G) where two vertices are connected if their distance
in Gr is at most r.

We start with a sequential local algorithm A of complexity t(n). We will work in the
power graph Gt(n) and construct a network decomposition in it with c, d′ = Õ(log n) via

v in G.
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Theorem 1.6. Consider this network decomposition in the context of the original graph G:
We constructed clusters of actual diameter d ≤ t(n) ·d′ = Õ(t(n) · log n) in G. Moreover,
two clusters from the same color class have distance at least t(n)+ 1 in G. Finally, since
every communication round in Gr can be simulated in r communication rounds in G,
the round complexity of constructing our network decomposition is Õ(t(n) · log3 n) by
Theorem 1.6.

We will now use our clustering to simulate A. We will simulate an order of iterating over
the vertices where we first iterate over all the vertices in the first color class, then all the
vertices in the second color class, and so on. For a fixed color class, we will arbitrarily
simulate the algorithm A in each cluster C independently of all other clusters of the same
color.

Notice that every two clusters C1, C2 of the same color i are far enough so that A run
on a vertex u ∈ C1 never has a vertex u′ ∈ C2 in its t(n)-hop neighborhood. Hence,
simulations in different clusters of i-th color do not interact in any way. Our simulation
is thus a faithful simulation of iterating over the vertices of G in a certain order and
running the sequential algorithm A on them.

Finally, let us discuss how the simulation of A is implemented with a local algorithm.
Think of a message-passing protocol with c phases where in the i-th phase, each cluster
C of color i first chooses a leader node, e.g., the node with the smallest identifier. This
node collects all information about the output of A so far up to the distance t(n) from
C. Then, the leader node internally simulates A on C and sends the result of that
simulation back to all nodes in C. All this can be done in number of rounds proportional
to the diameter of C and t(n). Thus, the overall round complexity of the simulation is
c · Õ(t(n) · log n) = Õ(t(n) · log2 n).

1.4 Derandomization

By now, we understand that the sequential local complexity is closely related to the dis-
tributed round complexity. However, we still do not understand the power of randomness.
There might be scenarios where a problem’s randomized (sequential or distributed) local
complexity is significantly lower than its deterministic (sequential or distributed) com-
plexity. Interestingly, this never happens for local problems. Distributed local algorithms
for them can be derandomized with poly log(n) slowdown in round complexity13.

Any local problem has the same deterministic and randomized round
complexity, up to poly log(n).

13It is important to restrict ourselves to local problems. Otherwise, consider the following silly coun-
terexample problem: We are to mark some vertices of the input graph so that at least n/3 but at most
2n/3 vertices are marked. Using randomness, this can be solved in 0 round complexity: every vertex
simply flips a coin. But imagine trying to solve the problem deterministically: If the input graph has no
edges, we are pretty screwed!
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Before proving this result, let us contemplate how it fits into the big picture. Thus far, we
have seen six plausible definitions of how to measure the local complexity of a problem.
There are the following three different ways of thinking about it, and for each one of
them, we can define both the deterministic and the randomized complexity:

1. (distributed protocol) There are computers at nodes, we design a message-passing
protocol, and we measure the number of rounds of this protocol.

2. (distributed local complexity) Output at each node is a function of its local neigh-
borhood.

3. (sequential local complexity) We iterate over the nodes in an arbitrary order and
settle each output at a node by looking at its local neighborhood.

We now understand that all of these definitions are equivalent, up to poly log(n) and for
local problems.

Formal statement of derandomization: Formally, we will prove the following state-
ment by Ghaffari, Harris, and Kuhn [166], using the derandomization method of condi-
tional expectations.

Theorem 1.7 (Ghaffari et al. [166]). Let Π be any local problem of randomized round
complexity t(n). Then, its deterministic sequential local complexity is O(t(n)).

Proof. We are given a randomized local algorithm A with round complexity t(n) for a
local problem Π = (S,P) with checkability radius r. We will next describe a deterministic
sequential local algorithm that writes an infinite sequence of bits into each node u of the
input graph G so that if we then simulate A with these bits, it solves Π.

For a vertex u ∈ V (G), define the failure indicator X(u) as the indicator random variable
for the event that if we run A with truly random bits, it fails at u at solving the local
problem Π = (S,P). By failure at u we mean that B(u, r) ̸∈ P. We notice that X(u)
depends only on the output of A at an r-hop neighborhood of u, and thus it ultimately
depends only on random bits in the (r + t(n))-hop neighborhood of u. Moreover, the
probability of failure at u is less than 1/n by A being a randomized algorithm solving Π.
This implies that E

[∑
u∈V (G)X(u)

]
< 1.

Next, we will consider the following sequential local algorithm. We iterate over the nodes
in an arbitrary order, and whenever it is a node uk’s turn, we fix the random bits B(uk)
at this node to a value b(uk) such that

E

 ∑
v∈V (G)

X(v)
∣∣∣ ∀i ∈ [k] : B(ui) = bi


≤ E

 ∑
v∈V (G)

X(v)
∣∣∣ ∀i ∈ [k − 1] : B(ui) = bi

 .
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In words, we set the random bits so that the expected number of errors does not increase.

First, such a value b(uk) of random bits at uk definitely exists, since the right-hand side
of the above inequality simply averages over many possible instantiations of B(uk) (that
is, we rely on the law of total expectation). Second, we can compute this value of random
bits by looking only at the (r + t(n))-hop neighborhood of uk, since the values Xv for v
outside of B(uk, r + t(n)) are independent of the choice of random bits at uk.

After this sequential algorithm with local complexity (r+ t(n)) finishes, we have set the
random bits at every vertex u ∈ V (G) in a way that makes

E

 ∑
u∈V (G)

X(u)
∣∣∣∀i ∈ [n] : B(ui) = bi

 < 1.

But all values X(u) are now deterministic, so we conclude that no failure occurs if we
run A with these bits.

Finally, after this derandomization procedure is run, we also have to run A. We will defer
the discussion of how to combine two sequential local algorithms into one to Theorem 1.9
that shows how to construct a sequential local algorithm with local complexity O(t(n))
that simulates first running the derandomization procedure and then running A with the
bits computed by that procedure.

Putting Theorems 1.4 and 1.8 together, we get the following derandomization theorem
for (distributed) local algorithms.

Theorem 1.8 (Ghaffari et al. [166]). Let Π be any local problem of checkability r and
randomized round complexity t(n). Then, its deterministic distributed local complexity is
Õ(t(n) · log3 n).

Conversely, it’s known that for some local problems, the gap between randomized and
deterministic local complexity can be as large as Ω(log n/ log log n) [28].

Leftover: composing sequential algorithms: We will briefly discuss how two se-
quential local algorithms run one after the other can be composed into a single one of
larger local complexity.

Lemma 1.9 (Ghaffari et al. [165, Observation 2.1, Lemma 2.2]). Let A1,A2 be two
deterministic (randomized) sequential local algorithms with local complexities t1(n), t2(n).
Then, there is a single deterministic (randomized, respectively) sequential local algorithm
A of complexity 2(t1(n)+ t2(n))

14 that simulates the output of first running A1, and then
running A2 on the output of A1.

14In general, k local sequential algorithms can be simulated with complexity 2
∑k

i=1 ti(n).
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Proof. We would like A to work as follows: We iterate over the nodes and when it is
the turn of a node u, we first simulate A1 for all nodes in B(u, t2(n)). Then, we use the
computed information to simulate A2 at u to compute the final output at u.

The only difficulty is that once u simulates A1 for a node v ∈ B(u, t2(n)), we cannot
simulate A1 at v again in the future since we want to have the guarantee that all sim-
ulations of A1 taken together correspond to a consistent iteration over the nodes of the
input graph and running A1 on them.

To implement this idea, A additionally stores at u the output of simulations of A1

within B(u, t2(n)). The final local complexity of A will be max (t1(n) + t2(n), 2t2(n)):
A starts by looking at its 2t2(n)-hop neighborhood and fixing the answers of A1 for nodes
v ∈ B(u, t2(n)) at which A1 was already simulated in the past. Only then we simulate
A1 for the rest of the nodes in B(u, t2(n)) and run A2 after that.

1.5 Network Decompositions

Let us recall the definition of a network decomposition:

Definition 1.10 (Network decomposition). A (c, d)-network decomposition of a graph
G is a coloring of G with c colors. We require that vertices of each color induce a graph
such that each of its connected components (that we call clusters) has diameter at most
d.

Let us now discuss constructions of network decompositions15: the missing piece in proof
of Theorems 1.4 and 1.8.

Existence of network decompositions: First of all, it is unclear whether network
decomposition of the input graph, say with parameters c, d = O(log n) always exists.
Let’s first confirm this by constructing it using the following folklore sequential ball-
carving algorithm.

Theorem 1.11 (Ball-carving algorithm). An (O(log n), O(log n))-network decomposi-
tion exists for any graph G.

Proof. We will show how to construct the first color class of the network decomposition.
In particular, we will find a family of vertex-sets C = {C1, C2, . . . , Ct}, where we call
each Ci ⊆ V (G) a cluster, such that:

1. The clusters are not adjacent; i.e., there is no edge uv ∈ E(G) with u ∈ Ci, v ∈ Cj ,
i ̸= j,

2. each cluster Ci has diameter O(log n),

15In the literature, one can very often encounter numerous variants of network decompositions with
names like low-diameter clusterings, padded decompositions, or sparse neighborhood covers.
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3. at least n/2 vertices are clustered, i.e.,
∣∣⋃t

i=1Ci

∣∣ ≥ n/2.

We can then construct the desired network decomposition by simply repeating this pro-
cess log2 n times and always removing the clustered vertices from the graph until every
vertex is clustered.

To construct C in one phase, iterate over the vertices of G in an arbitrary order. Each time
we are at a vertex u, we consider the balls B(u, 0), B(u, 1), . . . of increasing radius around
it. In particular, think of gradually growing larger and larger balls around u, and once
the size of the ball does not at least double, i.e., once we have |B(u, i+1)| ≤ 2 · |B(u, i)|
for the first time, we let B(u, i) be the next cluster of C. Additionally, we remove all
vertices from the boundary B(u, i+1)\B(u, i) from G until the end of the phase. These
vertices then survive to the next clustering phase.

To analyze this algorithm, first notice that no two clusters are adjacent, since after
growing each cluster, we delete its boundary (Item 1).

Moreover, all balls have diameter O(log n): This is because the volume of each ball
B(u, i) grows exponentially as |B(u, i)| ≥ 2i which implies that B(u, 1 + log2 n) would
have to contain more than n vertices (Item 2).

Finally, we cluster at least half of the vertices, because by definition, whenever a ball stops
growing, we have |B(u, i+1) \B(u, i)| ≤ |B(u, i)|, so the number of vertices unclustered
because of the ball around u can be charged to the number of vertices clustered around
the same vertex (Item 3).

Deterministic distributed algorithms: There is a long line of work on deterministic
algorithms for constructing network decompositions [13, 262, 276, 170, 87, 272, 275,
172]. The currently fastest deterministic algorithm for network decomposition of Akbari,
Coiteux-Roy, d’Amore, Gall, Lievonen, Melnyk, Modanese, Pai, Renou, Rozhoň, et al.
[4] that we stated in Theorem 1.6.

Perhaps the simplest poly log n-round algorithm is the algorithm of Rozhoň and Ghaffari
[276] and its variant by Rozhoň et al. [275]. They both need O(log7 n) rounds and
construct clusters with diameter O(log3 n). We will next explain the construction from
[276] that additionally provides clusters with only a weaker guarantee of small weak-
diameter. A weak-diameter of a cluster C is defined as maxu,v∈C dG(u, v), as opposed to
the (strong-) diameter which is defined as maxu,v∈C dG[C](u, v). That is, a cluster with
small weak diameter can be even disconnected. Small weak diameter is sufficient for our
applications and we will discuss after the proof how one can turn it into a strong-diameter
guarantee in a black box way.

Theorem 1.12 (Distributed ball-carving algorithm). There is a local algorithm with
O(log7 n) round complexity that constructs a network decomposition with c = O(log n)
colors and d = O(log3 n) weak-diameter.
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Proof. Similarly to Theorem 1.11, we show how to construct a family of clusters C =
{C1, C2, . . . , Ct} such that:

1. No two clusters are adjacent,

2. each cluster Ci has weak-diameter O(log3 n),

3. at least n/2 vertices are clustered.

Recall that in deterministic local algorithms, every vertex starts with a unique b =
O(log n)-bit identifier. Our algorithm has b phases. At the beginning of the algorithm,
we start with a clustering C0 that contains each node of G as a trivial one-vertex cluster.
Each cluster C in our clustering is assigned an identifier id(C) which is a unique b-bit
string; at the beginning, the identifier of a cluster is set to be the identifier of its unique
vertex.

This clustering evolves during the following b phases, with some vertices changing a
cluster and some vertices being deleted from Ci. We will prove that after each phase
i ∈ [b], the clustering Ci has the following guarantees:

1. Consider the graph Gi = G[
⋃

C∈Ci C], i.e., the graph induced by vertices that
were not deleted. Consider any connected component of Gi. All clusters in this
connected component agree on the first i bits of their unique identifier.

2. Each cluster C ∈ Ci has weak-diameter O(i · log2 n).

3. |V (Gi)| ≥ n− i · n
2b .

Plugging i = b, the inductive guarantees of Items 1 to 3 reduce to the final desired
guarantees of Items 1 to 3. Thus, we only need to show how one phase of the algorithm
makes sure that if we start with the guarantees for some i, they also hold for i+ 1.

At the beginning of each phase i+ 1 ∈ [b], we classify each cluster in Ci as either active
or inactive, where a cluster C is active if and only if the (i+ 1)-th bit in id(C) is equal
to zero.

Next, we run a variant of the ball-carving algorithm from Theorem 1.7 with t = 10b log2 n
steps. In each step of this algorithm, each vertex u from some inactive cluster first checks
whether it neighbors with a vertex that is currently part of an active cluster. If there are
more such neighboring vertices, u chooses an arbitrary such vertex v ∈ C and proposes
to join C.

Next, each cluster C collects how many vertices u proposed to join C. If there are at least
|C|/(2b) such vertices, then C decides to grow: All the vertices that proposed to C leave
their original cluster and join C. On the other hand, if less than |C|/(2b) proposed to
join C, all these vertices are deleted and will not participate in the rest of the algorithm;
after the deletion, the cluster C is neighboring only with nodes from other active clusters
and thus it does not grow anymore in the rest of the phase. This finishes the description
of the phase.
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Figure 1.4: This picture illustrates the second phase of the algorithm from Theorem 1.12,
in a simple example graph. Left: At the beginning of the second phase, the clusters are
already separated according to their first bit, i.e., if the identifier starts with 1, the cluster
is in the top connected component, while if the identifier starts with 0, the corresponding
cluster is in one of the two bottom connected components. In the second phase, a cluster
is active (blue) if its second bit in the identifier is 0, and inactive (red) otherwise. In
the first step of this phase, each red vertex proposes to join an arbitrary neighboring
blue cluster, provided that there is one (the arrows in the picture). The active cluster
than either decides to grow (cluster 1001) or the vertices that proposed to it are deleted
(cluster 1011).
Middle: In the second step, each red vertex again proposes to join an arbitrary neigh-
boring blue cluster.
Right: The picture shows the resulting clustering after the second phase is finished. Note
that the only two adjacent clusters (1011 and 1001) will be separated in the following,
third, phase, as their identifiers differ on the third position.
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To analyze the ball growing of phase i+1, we first check that each cluster stops growing
during the algorithm. Otherwise, it would have to contain more than

(1 + 1/(2b))10b log2 n > n

nodes. In particular, the weak-diameter of each active cluster grows additively by at
most t = O(log2 n), while the weak-diameter of each inactive cluster does not increase.
This proves Item 2.

Next, consider any connected component K of Gi. The clusters in K already agree on
the first i bits of their identifier at the beginning of the phase i+1. Recall that all active
clusters stop growing during the phase and delete their boundary with inactive clusters.
Thus in Gi+1, the component K further splits into connected components K1,K2, . . .
such that for each component Ki we have that either all of its clusters are active or all
are inactive. We conclude that clusters in each connected component of Gi+1 agree on
the first i+ 1 bits in their identifier as needed in Item 1.

Finally, whenever a cluster C stops growing, we delete at most |C|/(2b) nodes. Thus,
during the phase we delete at most n/(2b) nodes which proves Item 3.

Finally, we discuss the running time of the algorithm. The clusters have diameter
O(log3 n) so each growing step can be implemented with that round complexity. There
are t = O(log2 n) steps, b = O(log n) phases, and we need to repeat the overall algorithm
c = log2 n times. We conclude that the overall round complexity is O(log7 n).

Next, let us show how we can combine our current knowledge of local algorithms to
construct a local algorithm for network decomposition with c, d = O(log n).

Corollary 1.13. There is a local algorithm with O(log9 n) round complexity that con-
structs a network decomposition with c = O(log n) colors and d = O(log n) diameter.

Proof. We observe that the algorithm from Theorem 1.11 can be seen as a sequence of
O(log n) sequential local algorithms per Theorem 1.3, each one with local complexity
O(log n). Using Theorem 1.9, we can thus view it as a single sequential local algorithm
of local complexity O(log2 n).

Thus, we can use Theorem 1.4 to convert this algorithm into a local algorithm. While we
phrased the guarantees of Theorem 1.4 using the best available network decomposition
algorithm, we can plug in Theorem 1.12 instead; the reduction holds even if we use a
network decomposition with a weak-diameter guarantee.

Let us briefly go back to the observation from Theorem 1.13 that Theorem 1.11 can be
viewed as a sequential local algorithm. This observation helps us to appreciate network
decomposition as the “complete” problem for turning sequential local algorithms into
distributed ones: On the one hand, network decomposition allows us to do this task via
Theorem 1.4; on the other hand, any way of proving that theorem leads to a distributed
algorithm for network decomposition via the proof of Theorem 1.13.
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Randomized distributed algorithms: There is a classic randomized algorithm by
Linial and Saks [237] that constructs an (O(log n), O(log n))-network decomposition in
O(log2 n) distributed rounds. Let us sketch its beautiful variant by Miller, Peng, and Xu
[255] also known as the MPX algorithm:

In their algorithm, every vertex independently chooses a random head start sampled from
an exponential distribution; that is, a head start of each node is 0 with probability 1/2, 1
with probability 1/4, and so on. Next, we run the breadth-first-search algorithm from all
nodes at once with those head starts. That is, we first choose some number T = O(log n)
such that with high probability, no node samples a head start larger than T . Then,
we simulate a run of breadth-first search from an additional virtual node u0 which is
connected to every other node u with an oriented edge of length T − head start(u). All
vertices reached by the breadth-first search from the same starting node u form one
cluster. The output of the algorithm are only those vertices such that all their neighbors
are from the same cluster.

One can prove that the output clustering from this algorithm contains at least a con-
stant fraction of all vertices and uses disjoint clusters of diameter O(log n), with high
probability.

1.6 Bounds for Concrete Problems

In the last section of this chapter, we briefly survey known results for some concrete
well-known local problems. While the technology developed in this section often auto-
matically provides a poly log n-round deterministic algorithm for a given problem, we
can try to improve the complexity further: For many problems, we can get randomized
algorithms with complexities closer to poly log log n. Typically, we want to understand
the complexity as the function of both the number of vertices n, and the maximum degree
∆.

Many concrete results use certain general techniques. Randomized local algorithms
with poly log log n dependency typically use the shattering framework (see Section 2.2)
[48, 133, 92]. Deterministic local algorithms with poly log n rounds often rely on local
rounding techniques [198, 134, 200, 158, 129]. Many state-of-the-art lower boundsare
proven using the technique of round elimination (see Sections 2.1 and 2.2 or survey of
Suomela [288]) [75, 73, 22, 30, 76, 36, 26].

Maximal independent set: The maximal independent set problem is one of the most
prominent problems in the area of local, distributed, parallel, or sublinear algorithms.
The seminal randomized Luby’s algorithm [239, 6] with O(log n) round complexity ini-
tiated a long line of work on the problem [239, 6, 257, 43, 150, 22, 153]. The currently
fastest deterministic algorithm by Ghaffari and Grunau [153] combines ideas related
to network decompositions and local rounding techniques to achieve round complexity
Õ(log2 n). On the lower bound side, Balliu et al. [22] used round elimination to show
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that the deterministic local complexity of maximal independent set is Ω(log n/ log log n).
Thus, there is still a gap in our understanding:

Problem 1.14. Is there a deterministic Θ̃(log n)-round algorithm for maximal indepen-
dent set? 16

On the randomized side, there is a randomized local algorithm for the problem by Ghaffari
[150] using the shattering approach and the best deterministic algorithm for the maximal
independent set. With the currently best deterministic algorithm, its round complexity
is O(log∆) + Õ(log3 log n).

This complexity is very close to optimal: Balliu et al. [22] use round elimination to
give a lower bound of Ω( log logn

log log logn) for randomized algorithms, on a graph with ∆ =

Ω( log logn
log log logn). Next, a lower bound of Kuhn, Moscibroda, and Wattenhofer [227] says that

the local complexity of maximal independent set is Ω( log∆
log log∆). Thus, one cannot hope for

an algorithm with round complexity O(log∆)+o( log logn
log log logn), or even o(∆)+o( log logn

log log logn).

Maximal Matching: Maximal matching can be seen as a special case of the maximal
independent set problem on the line graph, i.e., the graph constructed from an input
graph G that has E(G) as the vertex set and it contains an edge whenever two original
edges of G share a vertex. There is a long line of work on the problem [203, 178, 150, 22,
153, 38, 115]; the currently fastest local algorithms are a bit faster than the algorithms
for maximal independent set. The deterministic complexity is Õ(log4/3 n) by [153] and
the fastest randomized algorithm of Ghaffari [150] has complexity O(log∆+log4/3 log n).
On the other hand, the lower bounds of Balliu et al. [22] for maximal independent set
also apply to matching.

Vertex coloring: Linial’s coloring algorithm [236] that we will discuss more in-depth
later in Section 2.1 provides a coloring of graphs of degree at most ∆ with ∆+ 1 many
colors in O(∆2 + log∗ n) time. There is a long line of work trying to improve this com-
plexity: [239, 6, 104, 175, 236, 290, 216, 257, 261, 226, 224, 281, 45, 47, 42, 48, 201, 92, 49,
248, 247, 158, 153, 225]. The fastest known deterministic algorithm in the regime of large
∆ is either the algorithm of Ghaffari and Kuhn [158] with O(log n · log2∆) complexity,
or the Õ(log2 n)-round algorithm of Ghaffari and Grunau [153]. The fastest randomized
algorithm in this regime is by Chang et al. [92] and uses the shattering framework: Its
randomized round complexity is Õ((log logn)2). If we want the dependency on n to
be only O(log∗ n), then the fastest algorithm is the algorithm of Fraigniaud, Heinrich,
and Kosowski [136] with complexity O(

√
∆ log∆ + log∗ n). The following problem is

well-known in the local algorithms community.

Problem 1.15. Is there a O(poly log∆+log∗ n)-round local algorithm for ∆+1 coloring?

16This text lists some open problems. For a different list, see [289].
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There is a long line of work on numerous variants of the coloring problem, in particular
on ∆-coloring (i.e., local Brooks’ theorem) [169], defective colorings [102, 139], frugal
coloring [102], fractional colorings [33], arboricity-dependent coloring [45], weak coloring
[224, 23, 24] and other variants.

Edge coloring: When allowing 2∆−1 colors, the proper edge coloring problem becomes
a special case of ∆+1 vertex coloring on line graphs, making the results for that problem
applicable. There is a long line of work on 2∆− 1 edge coloring trying to improve upon
the state of the art for ∆+1 vertex coloring [29, 37, 167]. As a highlight, Balliu et al. [37]
provided a O(poly log∆+ log∗ n)-round algorithm for it, thus resolving Problem 1.15 in
this special case.

Another natural target is ∆ + 1 edge coloring guaranteed by Vizing’s theorem. There
is a long line of work on the problem [90, 183, 182, 64, 66, 65]; the fastest algorithms
of Bernshteyn [64], Bernshteyn and Dhawan [66] have deterministic poly(∆ log n) local
complexity.

Spanners: Given a graph G, its subgraph H is a spanner with stretch α if for every two
nodes u, v we have dG(u, v) ≤ dH(u, v) ≤ dG(u, v). It is known that for any k there is
always a spanner with stretch 2k − 1 and n1+1/k edges [9]. The task is to construct a
spanner with similar parameters with a local algorithm.

This problem is a nice example of a non-local problem (certifying whether a subgraph
H is a spanner has checkability radius Ω(n) in general) where it is still meaningful to
ask about its local complexity. It is known that the deterministic local complexity of
constructing a spanner with stretch 2k− 1 with O(kn1+1/k) edges is O(k) [53, 117]. For
k = poly log n, we can deterministically construct spanners with poly log n stretch and
n+ n/ poly log n edges in poly log n deterministic rounds [122, 69].

Other problems: There are many other problems studied in the literature: Approx-
imation to covering or packing integer linear programs [165], approximate maximum
matching and flows [259, 12, 135, 112], dominating sets and set covers [287, 177, 118],
low out-degree orientations [44, 162], and many others.



CHAPTER 2

The Sublogarithmic Regime

In the previous chapter, we gained a good understanding of the fundamentals of local
complexity – in essence, if we care about the complexities up to poly log n, there are
several equivalent definitions of it with sequential local algorithms being a particularly
helpful model for designing algorithms.

In this chpater, we will restrict our attention to bounded degree graphs and local problems
of sublogarithmic complexity. Something remarkable is going to happen: We will see that
while, a priori, we would expect all kinds of problem complexities, there are only three
distinctive classes of local problems. This sharp threshold phenomenon is a consequence
of remarkable results known as speedup theorems.

As a rough roadmap for the rest of the chapter, we are going to give a more or less
self-contained proof of the following Theorem 2.1 in it, with Section 2.1 focusing on the
symmetry-breaking regime, Section 2.2 focusing on the Lovász-local-lemma regime, and
Section 2.3 focusing on showing that there are gaps in between the regimes.

Theorem 2.1 (Classification of local problems with o(log n) complexity on bounded
degree graphs). Let us fix any ∆ and the class of graphs of degree at most ∆. Then, any
local problem with randomized round complexity o(log n) has one of the following three
round complexities.

1. Order-invariant regime: The problem has O(1) deterministic and randomized round
complexity.

2. Symmetry-breaking regime: The deterministic and randomized round complexity
of the problem lies between Ω(log log∗ n) and O(log∗ n) (both the deterministic and
the randomized complexity is the same function).

3. Lovász-local-lemma regime: The problem has deterministic round complexity
between Ω(log n) and Õ(log4 n). Its randomized round complexity is between
Ω(log log n) and Õ(log4 log n).

23
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2.1 The Symmetry-Breaking Regime

In the bounded-degree regime, the problems of maximal independent set or the closely
related problem of (∆ + 1)-coloring play a bit similar role to network decomposition, as
we will see in Theorem 2.5. These problems are known as symmetry-breaking problems.
This section shows that the round complexity of these problems is Θ(log∗ n) on bounded-
degree graphs.

Basic symmetry breaking problems like maximal independent set and
∆ + 1 coloring are closely related. Their round complexity on bounded
degree graphs is Θ(log∗ n).

2.1.1 Fast Coloring Algorithm and its Implications

We will first discuss a classical local coloring algorithm of Linial [236] improving upon
earlier work [104, 175]. This algorithm colors a graph of degree at most ∆ with O(∆2)
many colors in O(log∗ n) rounds. We will later see in Theorem 2.5 that this implies that
on bounded-degree graphs, the local complexity of maximal independent set and ∆+ 1
coloring is O(log∗ n). We will only analyze a weaker version of Linial’s algorithm here,
see e.g. [236, 174] for the full proof.

Theorem 2.2 (Linial [236]). The deterministic round complexity of constructing a col-
oring with O(∆2) many colors is O(log∗ n).

Partial proof. We will only prove a weaker result where the polynomial dependency in
∆ in the round complexity is replaced by exponential dependency.

Recall that every vertex starts with a unique identifier. In particular, we view these
identifiers as an input coloring with nO(1) many colors. Next, we will show how in one
round, we can use a color reduction procedure to turn an input coloring that uses 2k

colors into a coloring with 2O(∆·log k) many colors.

At the beginning of one color reduction procedure, each vertex u holds a k-bit string su
that translates into its color from [2k] (see Figure 2.1). The vertex sends this color to all
its neighbors. After u receives d ≤ ∆ strings of its neighbors, s1, s2, . . . , sd, it does the
following. For each received si, the node u identifies an index ji where si differs from its
own bit string su. Such an index exists since we assumed that we started with proper
coloring. The new color of u is defined as the concatenation s′u = j1◦su[j1]◦· · ·◦jd◦sd[jd].
That is, the vertex u simply remembers only the values of bits of su on the positions
where those values show that su differs from its neighbors. We observe that no two
neighboring vertices can end up with the same string. Moreover, if we write s′u in binary,
it has only O(∆ · log k) many bits.

We will now iterate this procedure O(log∗ n) times. A brief calculation shows that we
end up with 2O(∆ log∆) colors.
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1011100101011111

0011000001011111

1011100100100011

1001011011100111 (0, 0), (2, 1), (4, 0) (2, 0), (13, 1)

(0, 1)

(4, 1), (13, 0)

Figure 2.1: One step of the simple color-reduction algorithm from the proof of Theo-
rem 2.2.
Left: We represent the current color of each vertex as a bit string. Each pair of vertices
finds a position where the respective bit strings differ.
Right: The new color of each vertex only encodes the values of the original bit strings in
these important positions.

Actual Linial’s algorithm uses the same strategy as in the above proof, but it uses a more
clever encoding in every color-reduction step using the so-called cover-free families that
we define next.

Definition 2.3. Given a ground set [k′], a family of sets S1, . . . , Sk ⊆ [k′] is called a ∆-
cover free family if for each set of indices i0, i1, . . . , i∆ ∈ [k], we have Si0 \

(
∪∆j=1Sij

)
̸= ∅.

That is, no set in the family is a subset of the union of some ∆ other sets.

A generalization of our partial proof says that in one round, one can turn a proper
k-coloring into a proper k′-coloring, whenever a ∆-cover free family of size k over [k′]
exists. Theorem 2.2 then follows from the following statement on the existence of cover-
free families, proof of which we omit.

Theorem 2.4 ([221, 126] or [174, Lemma 1.19, 1.20]). For any k,∆, there exists a
∆-cover free family of size k on a ground set of size k′ = O(∆2 log k). Moreover, if
∆ ≥ k1/3, it exists for k′ = O(∆2).

Simulation of sequential local algorithms: We notice that graph coloring can be
seen as a special case of network decomposition discussed in Chapter 1 where each cluster
has diameter 0. In particular, coloring with a small number of colors allows us to turn
sequential local algorithms into distributed local ones similarly to Theorem 1.4.

Theorem 2.5. Let A be a sequential local algorithm with local complexity t(n). Then, we
can turn it into a distributed local algorithm of round complexity O(∆O(t(n))+t(n)·log∗ n).
If the sequential algorithm is deterministic, so is the distributed one.

Proof. We follow the outline of the proof of Theorem 1.4 that simulated sequential local
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algorithms using network decompositions. To simulate a sequential local algorithm A
of local complexity t(n), we first construct a coloring of Gt(n) with O

(
∆2(Gt(n))

)
col-

ors1 using Linial’s algorithm from Theorem 2.2. That algorithm needs O (t(n) · log∗ n)
rounds where we multiply by t(n) because one round of communication in Gt(n) can
be simulated in t(n) rounds in G. Subsequently, we iterate over all colors and simu-
late the sequential algorithm A as in Theorem 1.4. That simulation takes additional
O(∆2(Gt(n))) = ∆O(t(n)) rounds.

As a corollary of Theorem 2.5, we get that maximal independent set or ∆ + 1-coloring
can be constructed in O(log∗ n) rounds on bounded-degree graphs.

Corollary 2.6. Sequential local algorithms with local complexity O(1) (such as algorithms
for the maximal independent set or ∆+1 coloring) can be simulated with round complexity
O(log∗ n) on bounded degree graphs.

Understanding unique identifiers: Let us now discuss the unique identifiers from the
range [nO(1)] in the definition of deterministic algorithms. We will use our understanding
of coloring to see that the strength of the model of deterministic algorithms remains the
same even if the identifiers come from a much larger range like [2n] or [22

n
]. Moreover,

we will understand why identifiers are not needed in the definition of sequential local
algorithms.

The following theorem will use an instance of a fooling argument, variants of which we
will enjoy employing later on. To motivate it, notice that it is a bit awkward that the
definition of a local algorithm talks about globally unique identifiers. We will next “fool” a
given deterministic local algorithm solving a local problem by supplying to it a distance
coloring (i.e., coloring of the power graph) with nO(1) many colors instead of unique
identifiers. The algorithm still has to work since a failure of the algorithm for input
distance coloring would imply a failure for input unique identifiers.

Theorem 2.7. Let A be a deterministic local algorithm of round complexity t(n) for a
local problem Π. Then, given any s = nω(1), there is a deterministic local algorithm A′
solving Π in O(t(n) · log∗n(s)) rounds2 and assumes that the identifiers are from range [s].

Similarly, let A be a sequential local algorithm of local complexity t(n) for a local problem
Π in a model of sequential local algorithms where each node has additionally a unique
identifier from [nO(1)]. Then there is a sequential local algorithm A′ of complexity O(t(n))
in the standard model of sequential local algorithms without any identifiers.

Proof. Let A be a deterministic algorithm of round complexity t(n) solving a local prob-
lem Π with local checkability r in the model where the unique identifiers are from [nO(1)]

1The notation ∆(G) stands for the maximum degree of G.
2Here, log∗n(s) returns how many times we need to take the logarithm of s, until its value drops below

n, i.e., log∗n(2
n) = 1, log∗n(2

2n) = 2 and so on.
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(the constant in the exponent is assumed to be large enough). We construct a new algo-
rithm A′ that works in the less powerful model with identifiers from [s] as follows. We
first compute a coloring of the power graph G2(t(n)+r) with nO(1) many colors, then we
simulate A with that coloring as identifiers.

In particular, the coloring is constructed by iterating color reductions of Linial’s algorithm
of Theorem 2.2. Recall that each color reduction reduces the range of color exponentially,
thus after log∗n(s) rounds, we reduce the input coloring with colors from [s] to a coloring
with colors of size at most O(∆2(G2(t(n)+r))) = nO(1).

Next, we prove that A′ is correct. Assume that A′ fails to solve Π at a node u. Notice
that this failure depends only on the (t(n)+r)-hop neighborhood of u where the coloring
constructed by A′ uses unique colors. In particular, we can extend this coloring of
B(u, t(n)+ r) to a labeling of every node of the input graph with unique identifiers. The
original algorithm A fails to solve Π at u for these identifiers, a contradiction with A
being correct.

The proof of the second claim in the theorem is very similar and, in fact, easier, since
∆+1-coloring has constant sequential local complexity and thus Linial’s color reductions
are not needed.

As a helpful corollary of the second part of Theorem 2.7, we can now see that any
deterministic local algorithm A solving some local problem can be converted into a
deterministic sequential algorithm of the same asymptotic local complexity. This was
actually not clear until now since our definition of deterministic sequential algorithms in
Theorem 1.3 did not contain input unique identifiers.

2.1.2 Lower bound for coloring via round elimination

Finally, let us prove that the log∗ n dependency for constructing maximal independent
sets or colorings is necessary.

Theorem 2.8 (Naor [257], Linial [236]). The local complexity of computing ∆+1 coloring
is Ω(log∗ n), even on graphs that are oriented paths.

There are several known proofs of this theorem [257, 236]; we will use the proof of Linial
[236] framed in the language of a powerful technique known as the round elimination (see
[288] for an introduction to it). In essence, given a local problem Π, round elimination
is an automated technique that defines a problem Π′ such that the round complexity of
the fastest algorithm for Π′ is exactly one round smaller than the round complexity of
the fastest algorithm for Π (unless its complexity was already zero). This is very helpful
for proving lower bounds: If we start with some problem Π and argue that even after t
rounds of round elimination, the problem Π′ that we ended up with is not solvable in
zero rounds, we infer that the local complexity of Π is at least t.
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Preparations for the lower bound: We will prove the lower bound in the extremely
simple setup where we are promised that the input graph is an oriented path, i.e., the
setup from Section 1.1. The lower bound will be for deterministic algorithms, so each
node starts with a unique identifier. We will make a further restriction on the identifiers,
we require that the input labeling with identifiers is increasing; that is, if for every
oriented edge e = uv going from u to v, we have ID(u) < ID(v).

Next, let us discuss local algorithms. It will be helpful to think about them as functions
in the spirit of Theorem 1.2. A subtlety we need to be careful about is that in one step
of round elimination, we don’t want to directly convert a t-round local algorithm (that
sees 2t + 1 vertices) to a t − 1 round algorithm (that sees 2t − 1 vertices). Instead,
we want to convert an algorithm that sees t vertices to an algorithm that sees t − 1
vertices. To this end, we define an edge-centered (t + 1/2)-round algorithm A to be a
local algorithm such that for an edge e = uv, the input to A is the ball B(uv, t − 1)
defined as B(u, t − 1) ∪ B(v, t − 1). The output of A is a label for the edge e. For
example, 1/2-round local algorithm run on e has access to the two identifiers ID(u) and
ID(v) and it maps the two identifiers to a label of e.

One half-round reduction: Here comes the heart of the proof; we will show that any
given t-round local algorithm for coloring vertices with k colors can be converted to a
((t− 1/2))-round algorithm for coloring edges with 2k colors.

Lemma 2.9. Assume that for t > 0 we are given a node-centered t-round deterministic
local algorithm A that outputs a proper coloring with k colors on oriented paths with
increasing unique identifiers. Then, there is an edge-centered ((t−1/2))-round algorithm
A′ that properly colors the edges with 2k colors in the same setup. Similarly, edge-centered
(t+ 1/2)-round algorithms can be converted into node-centered t-round algorithms.

Proof. We will only discuss the conversion of a node-centered algorithm into an edge-
centered one, the other case is very similar.

Given a t-round algorithm A, we define a (t− 1/2)-round edge-centered algorithm A′ as
follows (see Figure 2.2): Given an edge e = uv so that A′ has access to B(uv, t− 1), we
let A′ to consider all possible identifiers of the unique node x ∈ B(v, t)\B(uv, t−1), i.e.,
the only node that A sees but A′ doesn’t. For each possible value of the identifier ID(x)
of x (we also consider the option that we are at the end of the path and the vertex x
does not exist), the algorithm A′ simulates A and records the color that A outputs. The
final output of A′ is a subset of [k] that contains each color c ∈ [k] whenever there is an
identifier that makes A output c. We can encode the set with k bits, i.e., we can view
this set of original colors as a new color from the range [2k]. This finishes the description
of A′.

Our task is to prove that A′ returns a proper coloring of edges. Here is what this question
reduces to: Consider any increasing labeling of the oriented path with identifiers and
consider any three consecutive nodes u, v, w (see Figure 2.3). We again let x be the
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A′

2 3 5 9 10 11 15 17 18

5 9 10 11 13

A

5 9 10 11 12

A

...

{ }

Figure 2.2: The definition of the 1.5-round algorithmA′ derived from a 2-round algorithm
A: The algorithm A′ considers all compatible one-node extensions of its neighborhood
containing 4 nodes to 5-node-neighborhoods. It considers all possible answers that A
returns for those neighborhoods (the picture shows that the red and the blue color are
two of those possible answers). The color returned by A′ is simply the set of all colors
that A returns for some extension (in the picture, it is the set containing the red and the
blue color).
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A′

2 3 5 9 10 11 15 17 18
u v w x y

A′

C1 C2

Figure 2.3: The situation from the proof of correctness of A′: We need to argue that
the two colors C1, C2 are different. To do so, we define c to be the color that A outputs
on the input (5, 9, 10, 11, 15). By definition, we have c ∈ C1. On the other hand, if
c ∈ C2, we get an existence of an identifier ID′(y) such that A returns c on the input
(9, 10, 11, 15, ID′(y)). But then we consider the input (5, 9, 10, 11, 15, ID′(y)) and notice
that A returns colors two consecutive vertices with the same color c, a contradiction with
its correctness.

unique node in B(v, t) \ B(uv, t − 1) and y the subsequent neighbor of x. Consider the
new colors C1, C2 ∈ [2k] that A′ outputs on the two edges uv and vw. We need to prove
that the two colors C1, C2 are different. We do that by focusing on the original color
c ∈ [k] that A outputs at v.

On one hand, notice that c ∈ C1 because the edge-centered algorithm A′ run at uv
considers the actual identifier ID(x) as a possibility and thus includes c in C1.

On the other hand, assume for contradiction that c ∈ C2. That would imply that there
is a certain identifier ID′(y) that makes the output of A at w to be the color c. But
now consider changing the valid increasing labeling of identifiers that we started with by
letting the identifier of y be equal to ID′(y). Let’s look at all the nodes in B(vw, t). The
identifiers on them are still a valid increasing identifier sequence.3 But after extending
B(vw, t) and its identifiers to a path on n vertices labeled with increasing identifiers, A
fails to solve k-coloring on that graphs since it outputs the same color c at both v and
w, a contradiction.

We can now prove Theorem 2.8 as follows: Assuming an t = o(log∗ n)-round algorithm
for 3-coloring of oriented paths, we apply Theorem 2.9 2t times until we end up with
a 0-round algorithm A0 that colors oriented paths with less than n colors. But such
A0 is simply a function mapping an input identifier from range [nO(1)] to a color in the
smaller range [n]. Using the pigeonhole principle, we can find two identifiers that A0

maps to the same color and argue that if these two identifiers happen to be present at
two neighboring nodes, A0 fails to output proper coloring. 4

3This is the place in the argument where we need increasing and not just unique identifiers: With
unique identifiers, the leftmost and rightmost node of B(vw, t) could now have the same identifier.

4Round elimination may used both to prove lower bounds and to construct algorithms. In particular,
it can be used to derive that the round complexity of 3-coloring paths in 1

2
log∗ n±O(1) [278].
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2.2 The Lovász Local Lemma Regime

We will next discuss Lovász local lemma, a very expressible local problem closely related
to the third regime of problems from Theorem 2.1.

Definition of Lovász local lemma: Lovász local lemma is the following very general
local problem 5. The problem is formally defined for bipartite graphs in which nodes
of one part are labeled as random variables and the nodes of the other part are labeled
as bad events. We denote the maximum degree of random variable nodes as ∆r.v. and
the maximum degree of bad event nodes as ∆b.e.. Each node u labeled as a random
variable is additionally labeled with a probability space Ωu. To simplify discussions, we
will without loss of generality assume that each probability space is an infinite list of
random bits (i.e., it is the uniform distribution on [0, 1]). Next, each node v labeled as
a bad event that neighbors with nodes u1, . . . , ud with d ≤ ∆b.e. is additionally labeled
with an event Ev on the space

∏d
i=1Ωui .

Often, it is useful to work only with a graph induced by bad-event nodes where two bad-
event nodes are connected if they share a common random variable. In that case, we will
talk about the dependency-graph formulation of Lovász local lemma and use ∆ to denote
its maximum degree. On the other hand, the setup with a bipartite graph with both
bad-event nodes and random-variable nodes will be denoted as the variable-event-graph.

The crucial ingredient to the Lovász local lemma is a requirement on the bad events
that, roughly speaking, says that we can use the union bound in the dependency-graph
neighborhood of every bad event Ev and conclude that with positive probability, neither
Ev, nor its neighboring bad events occur. Namely, in the tight version of Lovász local
lemma, we are given a promise 6 that each bad event Ev has probability at most p where
p is defined by the following Lovász local lemma criterion:

p · (∆ + 1) ≤ 1/e. (2.1)

A foundational result of Erdős and Lovász [125] is that even in the tight formulation, it
is always possible to solve any instance of the local lemma problem, by which we mean
that one can instantiate random variables so that no bad event occurs.

A C-relaxed (or just polynomially-relaxed) version of Lovász local lemma, which is a bit
more relevant to our applications, only requires that

p ·∆C ≤ 1 (2.2)

This section will show both fast algorithms and lower bounds for the polynomially-relaxed
Lovász local lemma.

5The Lovász-local-lemma problem does not quite satisfy the requirements for the local problem as we
defined it in Theorem 1.1, but, morally speaking, it can be seen as such.

6Our definition of a local problem from Theorem 1.1 does not allow “promises” on input labels. To
turn local lemma into a proper instance of a local problem, we can postulate that if the promise is not
satisfied, the local solution around the node is not bound by any constraints.
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Lovász local lemma is a very versatile and expressible local problem. Its
deterministic round complexity on bounded degree graphs is Θ(poly log n),
and its randomized complexity Θ(poly log log n).

2.2.1 Fast Algorithms for the Local Lemma

We first discuss how to solve any instance of the local lemma with a fast deterministic
local algorithm. To this end, we will start with a randomized algorithm that we later
derandomize by Theorem 1.8. In a breakthrough result in the area of constructive algo-
rithms for the local lemma, Moser and Tardos [256] presented an algorithm for it in the
tight formulation. Moreover, they presented a parallel variant of their algorithm that can
be interpreted as a local algorithm with round complexity O(log2 n). This complexity
was later improved by Chung et al. [102] to O(log n) rounds on bounded degree graphs.
Plugging their result to Theorem 1.8, we obtain the following theorem.

Theorem 2.10. The deterministic round complexity of solving any instance of the tight
version of Lovász local lemma on bounded degree graphs is Õ

(
log4(n)

)
.

Even faster randomized algorithm: Next, we will show that there is an even expo-
nentially faster randomized algorithm for the relaxed version of the local lemma. We will
discuss the algorithm of Fischer and Ghaffari [133] with round complexity poly log log n
which is based on the technique of shattering, a successful technique (cf. Section 1.6)
that goes back to the work on algorithmic local lemma by Beck [54].

The idea is as follows. Our algorithm will have two phases. In the first phase, we use
a sequential local algorithm with constant complexity to do the following. Given an
instance of the local lemma, the algorithm fixes most of the random variables in such
a way that most bad events are satisfied (i.e., all random variables relevant for that
bad event are fixed and it does not occur). The fraction of fixed random variables and
satisfied events is in particular 1−1/∆O(1). The price for this outcome is that remaining,
unfixed, bad events have their probability slightly increased from 1/∆C to 1/∆C′ for some
C ′ < C.

Fortunately, we have an additional guarantee on the unfixed bad events. Due to the
very small locality of the algorithm in the first phase, we can use an independence-
like argument to show that the size of the connected components of unfixed bad events
is O(∆O(1) log n), with high probability (see Figure 2.4). We also say that the graph
shatters into small components. We can thus run the best deterministic algorithm from
Theorem 2.10 as the second phase of the algorithm, to solve the remaining instance of the
C ′-relaxed local lemma. This second phase takes poly log (∆ log n) rounds which is also
the round complexity of the overall algorithm.7 We will now make the above discussion
formal.

7Our example algorithm from Section 1.1 can be seen as a simple shattering algorithm.
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Figure 2.4: This picture shows an example variable-event graph corresponding to an
instance of Lovász local lemma; the circles represent bad events and squares represent
random variables. The picture shows the situation after the first phase of Fischer-Ghaffari
algorithm (Theorem 2.11). Most random variables are set to a fixed value (grey squares).
A small proportion of the random variables remains unset (red squares) and the bad
events neighboring with an unset random variable (red circles) form connected compo-
nents of diameter O(log n).

Theorem 2.11 (First phase of Fischer and Ghaffari [133]). There is a randomized se-
quential local algorithm A of constant local complexity that gets as input a variable-event
graph of an instance of C-relaxed Lovász local lemma for large enough C. The algorithm
fixes some bits of each random variable to concrete values so that conditioned on those
fixed bits, we have the following two properties:

1. Each bad event has probability at most 1/(3∆).

2. Up to 1/ poly(n) error probability, the residual dependency graph induced by bad
events with non-zero probability has connected components of size O(∆3 log n).

Proof. The algorithm A is defined as follows. We iterate over the random variables and
for each random-variable node u with neighboring bad-event nodes v1, . . . , vd, we perform
the following process. We sample the random bits of Ωu one by one. While we do that, we
consider the probabilities of neighboring bad events P (Ei) for each 1 ≤ i ≤ d. The first
time it happens that for some i we have P (Ei) > 1/(6∆), i.e., the bad-event probability
crosses the dangerous threshold of 1/(6∆), we stop sampling and do the following.

We label u, together with all other random variables neighboring vi as frozen (if more
vi’s jumped over the dangerous threshold at the same time, we do this to all of them).
We never sample bits of frozen random variables in the future. In particular, we stop
sampling bits of u and continue with the next unfrozen random variable in the arbitrary
order of our sequential local algorithm. This finishes the description of the algorithm.

To see that each bad event has probability at most 1/(3∆) during any point throughout
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the algorithm, we notice that if an event E of probability P (E) = p depends on a single
bit of randomness b, we have, by Markov’s inequality, that P (E|b = 0), P (E|b = 1) ≤ 2p.
That is, the bad event probability in our process never increases multiplicatively by a
factor larger than 2, which together with the definition of the dangerous threshold implies
the desired bound.

To understand the size of connected components in the residual dependency graph (i.e.,
components of bad-event nodes of non-zero probability after we set the random bits),
consider any fixed set S of bad-event nodes with the following two properties:

1. (independence) no two nodes v1, v2 ∈ S are neighboring in the dependency graph
G,

2. (connectivity) S is connected in G6.

We will next prove that with high probability, no such set S of size Ω(log n) survives to
the residual graph.

First, we use the independence property to prove that the probability that all nodes in
a fixed set S crossed the dangerous threshold during our process is exponentially small
in the number of nodes |S|. Let us contemplate the behavior of the algorithm A with
respect to any bad-event node v ∈ S and the random variables u1, . . . , ud neighboring
v in the variable-event graph. We note that if bits b1, . . . , bk−1 were already sampled
and bk is sampled next, we have Ebk [P (Ev|b1, . . . , bk)] = P (Ev|b1, . . . , bk−1). Hence,
viewing P (Ev) as a random variable that depends on bits sampled from Ωu, u ∈ V (G),
we conclude that its expectation is at most 1/∆C and we can thus use Markov’s inequality
to conclude that the probability of P (Ev) crossing the dangerous threshold is at most
6∆
∆C = 6/∆C−1. Moreover, we notice that if we first set the randomness of nodes in
V ′ = V (G) \ (u1 ∪ · · · ∪ ud) to whatever values, we can still make above argument and
conclude that for all ways of setting Ωu = ωu for all u ∈ V ′ we have

P (Ev|∀u ∈ V ′ : Ωu = ωu) ≤ 6/∆C−1.

Since we assumed that S is an independent set of bad-event nodes in the dependency
graph, we can thus inductively prove that the probability of all nodes in S crossing the
dangerous threshold is at most

(
6

∆C−1

)|S|.
We next count the number of possible sets S of size t that satisfy the connectivity
property: Each such S can be specified by fixing any node u ∈ S, and then specifying
how one can walk for 2(|S| − 1) steps in G6 so that the walk defines a spanning tree of
G6[S]. Hence, the number of sets S of size t is at most n · (2∆6)2(t−1). We can thus
upper bound the existence of some connected surviving set S of size t as

n · (2∆)12t ·
(

6

∆C−1

)t

.

Choosing C = O(1) and t = O(log n) large enough, we conclude that the size of this
expression is at most 1/nO(1).
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Finally, for t = O(log n) from the above argument, consider any connected subset S of
G of size at least (2∆)3 · t and assume that S survived to the residual dependency graph.
Then, we can find its subset S′ ⊆ S of size at least |S′| ≥ t where S′ is independent in
G3, yet S′ is connected in G4. To see this, consider a greedy algorithm that starts with
S′ = {u} for arbitrary u ∈ S, iterates through vertices of S and while we still can add
at least one node v ∈ S to S′ and keep the independence property, we choose any v with
distance 4 to S′ and add it to S′. One can see that the final set S′ has to be connected
in G4. Also, |S′| ≥ t because adding a vertex to S′ disqualifies at most (2∆3) vertices to
be added to S′ in the future.

If all nodes of S survived to the residual dependency graph, it means that every node
in S′ has to have a neighboring node that crossed the dangerous threshold. The set S′

thus gives rise to a set S′′ of size |S′′| = |S′| ≥ t of nodes that all crossed the dangerous
threshold. Moreover, by S′ being independent in G3, we conclude that S′′ is independent
in G. Since S′ was connected in G4, S′′ is connected in G6. The set S′′ thus satisfies the
requirements of a set that, as we have proven, does not occur in the residual graph with
high probability and we can thus conclude the same for the original connected set S.

Putting Theorem 2.11 (simulated as a distributed algorithm by Theorem 2.5) together
with Theorem 2.10, we conclude that the following result holds.

Theorem 2.12 (Fischer and Ghaffari [133]). There exists a constant C such that the
randomized round complexity of any instance of the C-relaxed Lovász local lemma on
bounded-degree graphs is Õ

(
log4 log n

)
.

The complexity can be improved to O(∆/ log∆+min(log4(∆ log n), log5 log n)) by com-
bining results of Fischer and Ghaffari [133] with the recent result of Davies [116]. It is
unknown whether there is an algorithms with better dependency on ∆.

Problem 2.13. Is there a randomized local algorithm for relaxed Lovász local lemma
with round complexity O(poly log∆ + poly log log n)?

Conjecture of Chang and Pettie [88]: We note that Chang and Pettie [88, Conjecture
1] conjecture that any instance of the relaxed local lemma can be solved with randomized
O(log log n) complexity.

Problem 2.14 (Chang-Pettie Conjecture). Is it true that the randomized round complex-
ity of C-relaxed Lovász Local Lemma for some large enough C is Θ(log log n) on bounded
degree graphs?

We will see later in Section 2.3.2 that the randomized round complexity O(log log n)
implies the deterministic round complexity of O(log n) via Theorem 2.21.

Self-contained algorithm: A bit unfortunate property of Theorem 2.12 is that it
relies on the randomized entropy-compression algorithms from Moser and Tardos [256]
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or Chung et al. [102]. However, we can prove Theorem 2.12 also in a self-contained way:
First, we observe that after the first phase of the Fischer-Ghaffari algorithm finished,
each surviving bad event simply collects the whole connected component of the residual
graph; then we solve the problem in each residual component by applying the standard,
existential, Lovász local lemma. This new randomized algorithm has complexity O(log n)
on bounded degree graphs since this is the maximum diameter of residual components,
with high probability. We can derandomize this algorithm using Theorem 1.8 and use
the resulting deterministic algorithm instead of the algorithm of Chung et al. [102] in
the second phase of our shattering algorithm. This way, we get a simpler and more
self-contained algorithm. Its downside is a worse value of C and a worse dependence of
round complexity on ∆.

2.2.2 Lower Bound via Round Elimination

Next, we will show that the deterministic local complexity of solving a certain specific
instance of Lovász local lemma is Ω(log n). Later, we will prove in Theorem 2.21 that
this also implies a randomized lower bound of Ω(log log n), thus showing that the round
complexity of Fischer-Ghaffari algorithm from Theorem 2.12 is close to tight.

The problem we choose for the lower bound is sinkless orientation. We will define the
problem only on trees of degree at most ∆ where it is already hard. The task is to
orient all the edges of the input tree so that no node is a sink, which is defined as a node
such that all ∆ neighboring edges point towards it (nodes of degree less than ∆ are not
constrained in any way).

Sinkless orientation can be seen as a specific instance of the local lemma: orienting each
edge randomly corresponds to a random variable at each edge. Then, a vertex becoming
a sink corresponds to a bad event of probability 2−∆. For large enough ∆, this is much
smaller than the polynomial criterion 1/∆C from (2.2) which makes this problem a valid
instance of the local lemma. We will next prove the following theorem.

Theorem 2.15 (Brandt et al. [73]). For any constant ∆, the sinkless orientation problem
has deterministic round complexity Ω(log n) on the class of trees of degree at most ∆.

Preparations: As in Theorem 2.8, we will want to replace the uniqueness of identifiers
with local constraints that imply that they are unique. In the proof of Theorem 2.8,
we worked with identifiers that were monotonically increasing (which implied they were
unique), this time we will work with identifiers that are consistent with a so-called ID
graph [222, 40, 83]. 8

Definition 2.16 (ID graph). Given a parameter ∆, an ID graph H is a graph on a set
[n] that we associate with unique identifiers. Every edge of the graph is colored with one

8The usual usage of round elimination is for randomized algorithms instead of using the ID graph,
but this would require a longer setup and more calculations.
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of ∆ many colors and we write Hi for the graph induced by the i-th color. We require
that:

1. The girth of H, i.e., the length of the shortest cycle in H, is at least γ log∆ n for
some fixed γ > 0.

2. Each independent set of each Hi has less than n/∆ vertices.

Such a graph exists, which can be proven using the same argument as how one proves
that high-girth high-chromatic graphs exist [83, 222].

We will fix any ID graph and work in a model relative to that ID graph. Here is what
that means. First, we will assume that the input graph G is always a tree of degree at
most ∆ such that its edges are, moreover, properly ∆-colored on the input (i.e., each
vertex is incident to edges of different colors). Additionally, we require that if two nodes
u, v neighbor in G with an edge of color i, then their identifiers ID(u), ID(v) neighbor
in Hi.

We notice that this is a local constraint on input identifiers that does not imply they
are unique. However, notice that whenever two vertices u, v ∈ V (G) have the same
identifier, we can consider the path between u and v in G and how it maps to a walk in
H that starts in ID(u) and finishes in ID(v) = ID(u). The proper edge-coloring of G
implies that the walk never goes from x ∈ V (H) to y ∈ V (H) and then back to x in the
subsequent step. This implies that the walk contains a cycle, thus the distance of u and
v is at least as large as the girth of H. That is, the identifiers are unique up to a large
distance which is pretty much the same as them being unique (cf. Theorem 2.7).

Similarly to the lower bound of Theorem 2.8, we will work with node-centered and edge-
centered algorithms. For node-centered algorithms, solving sinkless orientation means
that the algorithm outputs one of ∆ many input edge colors at each node. Outputting a
color i means that u decides that the edge of the color i goes outwards from u. The local
constraint on this output vertex-coloring is that no two neighboring nodes should select
the same edge going in between. We will call this variant of the problem edge-grabbing.
On the other hand, edge-centered algorithms will solve the sinkless orientation as we
described the problem: Each edge simply outputs how it is oriented and we have a local
constraint at each vertex, requiring that it has at least one outgoing edge.

Round elimination: We proceed with performing the actual round elimination. Notice
that the spirit of the following proof is very similar to the proof of Theorem 2.9.

Lemma 2.17. Assume that we are given a node-centered deterministic t-round local algo-
rithm A of round complexity at most t ≤ log∆ n −1 that solves the edge-grabbing problem
on trees of degree at most ∆ relative to some fixed ID graph H. Then, there is a t− 1/2-
round edge-centered deterministic local algorithm A′ that solves sinkless orientation in
the same setup.
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u v

A A

A′

B(u, t)
B(v, t)

B(uv, t− 1)

Figure 2.5: The picture shows the definition of the algorithm A′ for t = 2. Notice that
our setup is a large ∆-regular tree with edges colored with ∆ colors. The algorithm A′
has access only to the identifiers in B(uv, t− 1) (the intersection of the red and the blue
ball). To decide on the orientation of the edge uv, the algorithm considers all possible
identifier extensions of B(uv, t − 1) to B(u, t) (the red ball), and if at least one such
extension makes A run at u grab the edge uv, A′ orients that edge towards v. We
analogously orient this edge towards u if at least one extension of B(uv, t− 1) to B(v, t)
(the blue ball) makes A run at v grab the edge uv.
We notice that it cannot happen that A′ wants to orient the edge uv in both directions:
that would imply the existence of an identifier-labeling of B(uv, t) on whichA is incorrect.

Similarly, t+1/2-round edge-centered algorithm for sinkless orientation implies a t-round
node-centered algorithm for edge-grabbing.

Proof. We prove just the first part of the statement, the proof of the second part is
similar, and doing it is a good exercise.

We start with any node-centered algorithm A with round complexity t that solves the
edge-grabbing problem. We define the edge-centered algorithm A′ of round complexity
t − 1/2 as follows. For an edge e = uv, the algorithm first considers all the possible
extensions of the (known) ball B(uv, t−1) to the ball B(u, t) that is known to A when it
is run on u. By an extension, we mean first how the graph looks like (e.g., maybe some
vertices on the boundary of B(uv, t − 1) turn out to be leaves), and second, what the
identifiers are (they have to be consistent with H). We consider all valid extensions and
if at least one of them leads to A grabbing the edge uv from u, then A′ orients the edge
uv as going from u to v. After this is done, the algorithm makes an analogous reasoning
for v; again, whenever at least one extension of B(uv, t − 1) to B(v, t) decides to grab
the edge uv, A′ orients it from v to u. If no vertex ever decides to grab uv, A′ decides
to orient it arbitrarily. This finishes the description of A′ (see Figure 2.5).
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To make sure that A′ is well-defined, we need to prove that it never happens that there
is an extension of B(uv, t − 1) to both B(u, t) and B(v, t) such that A run on B(u, t)
decides to grab the edge uv and run on B(v, t), it decides to grab the edge vu. Notice
that putting the two extensions B(u, t), B(v, t) together, the graph B(uv, t) has at most
n nodes and its identifiers respect H.9 We observe that on this labeled graph, A would
fail to solve edge-grabbing, a contradiction with its correctness. Thus, A′ is well-defined.

Moreover, the algorithm A′ solves sinkless orientation: For any node u of full degree ∆,
the original algorithm A decided to grab a certain edge uv. When we run A′ on uv, A′
will by definition orient this edge from u to v, thus u cannot be a sink.

Finishing the proof: Let us finish the proof of Theorem 2.15.

Proof of Theorem 2.15. Consider an input graph G which is a branching tree with ε log n
layers and every non-leaf vertex has degree ∆. Note that for small enough ε > 0, the
girth property of the ID graph implies that any labeling of G with identifiers from [n] that
respects a fixed ID graph H has unique identifiers. On the other hand, G has O

(
∆ε logn

)
nodes, so the range from which the identifiers are coming is |V (G)|O(1). Therefore, a
deterministic local algorithm for sinkless orientation on G implies a local algorithm for
that problem on G with identifiers consistent with H.

But Theorem 2.17 shows that any o(log n)-round algorithm that works relative to H can
be sped up to 0 round complexity. A 0-round algorithm A0 is simply a function that
maps an input identifier to one of ∆ many colors, i.e., which edge the vertex decides to
grab. We can thus think of A0 as a coloring of H with ∆ many colors. But notice that for
any such vertex coloring, we can consider the largest color class i that has at least n/∆
colors. Then, we use the independence property of ID graphs from Theorem 2.16 to infer
that the set of vertices of color i cannot be independent in Hi, i.e., there is an edge uv in
H where both u and v, as well as the edge uv are colored by the color i. We thus found
two vertices that may be neighboring in the input graph G and the algorithm A0 decides
to grab the edge connecting them from both endpoints of that edge, a contradiction with
A0 being correct.

Sinkless orientation as the “simplest hard problem” : Notice that if we formulate
sinkless orientation as an instance of Lovász local lemma, the bad event probability is
equal to 2−∆, that is, the bad event probability is exponentially small compared to the
polynomial guarantee in the relaxed criterion of (2.2). It turns out that this is the
threshold where an instance of the local lemma is still “hard”.

Theorem 2.18 ([73, 78, 79]). On one hand, there is an instance of Lovász local lemma
(namely sinkless orientation) with the criterion p · 2∆ ≤ 1 that has deterministic round
complexity Ω(log n). On the other hand, any instance of Lovász local lemma with the
criterion p · 2∆ < 1 has deterministic round complexity O(log∗ n).

9This part of the argument needs to work with the ID graph instead of unique identifiers.
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A similar threshold phenomenon holds also if we work in the variable-event graph.

Theorem 2.19 ([133, Theorem 3.5], [61, Corollary 1.8]). On one hand, there is an
instance of Lovász local lemma10 with the criterion p ·∆∆b.e.

r.v. ≤ 1 has deterministic round
complexity Ω(log n). On the other hand, any instance of Lovász local lemma with the
criterion p ·∆∆b.e.

r.v. < 1 has deterministic round complexity O(log∗ n).

2.3 Speedups and Slowdowns

The following section covers speedup and slowdown theorems which are at the heart of
why we understand that there are sharp thresholds in the local complexities in Theo-
rem 2.1.

The elegant idea behind speedups and slowdowns is that we can simply “lie” to algorithms
about the size of the input graph, an idea closely related to the fooling argument we have
already seen in the proof of Theorem 2.7. To understand this technique, it may be useful
to briefly recall that in Theorem 1.2, we defined a local algorithm as a function that takes
two inputs. Firstly, it is n, the size of the input graph, and secondly, it is a t(n)-hop
neighborhood of a vertex that is additionally labeled by unique identifiers or random
strings. We will use the notation An to denote the algorithm A when the first input
is n, i.e., we will view A as a sequence of functions A1,A2, . . . In this section, we will
contemplate what happens if we run An on a graph of size n′ ̸= n. If n′ > n, we are
“speeding up” A, while if n′ < n, we are “slowing it down”.

2.3.1 Slowdowns

Let’s first see why slowdowns may be useful. As a first application, let us recall that we
defined deterministic and randomized round complexities in Theorem 1.1 by requiring
unique identifiers from the range [nO(1)] or error probability at most 1/nO(1). We will
next see that for algorithms with sufficiently small round complexity, we can replace
nO(1) by n in the definition without changing its strength. For deterministic algorithms,
this complements Theorem 2.7 that shows how to replace very large identifiers with
polynomially-sized ones. This follows by plugging in f(n) = nO(1) into the following
slowdown theorem.

Theorem 2.20 (Chang, Kopelowitz, and Pettie [94]). Let f be any increasing function
with f(n) ≥ n, let Π be any local problem, and let us use tf(n)(n) to denote the deter-
ministic (randomized) round complexity of solving Π if the input identifiers are from the
range f(n) (the error probability is required to be 1/f(n), respectively). Then,

tn(n) ≤ tf(n)(n) ≤ tn(f(n)).

10The instance is sinkless orientation on trees where one color class has degree ∆r.v. and the other
has degree ∆b.e.. One formulates it as an instance of the local lemma by letting each vertex of one color
class grab a random outgoing edge. The proof that this variant of sinkless orientation is still hard seems
to be missing in the literature.
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The theorem holds for local complexities defined with respect to any subclass of graphs
closed on adding isolated vertices. 11

Proof. We will prove just the deterministic version of the theorem. Notice that tn(n) ≤
tf(n)(n) follows directly from our assumption f(n) ≥ n and the definition: any algorithm
expecting identifiers from the range [f(n)] certainly works if they happen to be from the
smaller range [n].

Next, consider any deterministic algorithmA that solves Π if the identifiers are from [n] in
round complexity t(n). Our goal is to turn it into an algorithm A′ with round complexity
t′(n) that works if the identifiers are from [f(n)]. Think of A as a sequence A1,A2, . . .
for each n ∈ N. We define A′ by setting for each n that A′n := Af(n). That is, we “lie” to
the algorithm A, telling it that the size of the graph is larger (namely f(n)) than what
it actually is (namely n). Since the round complexity of A on f(n)-sized instances is
t(f(n)), for the complexity of A′ on n-sized instances we have t′(n) = t(f(n)).

Moreover, since Af(n) assumes that the unique identifiers are from [f(n)], A′n also as-
sumes that the unique identifiers from [f(n)], making it a well-defined algorithm for the
definition of local algorithm where identifiers are supposed to be from [f(n)] on instances
of size n.

Finally, we claim that A′ is a correct algorithm. To see this, suppose that A′n fails to solve
Π on some graph G with n vertices labeled with unique identifiers from [f(n)]. Then, we
go back to A and run it on a graph G′ defined as G together with f(n) − n additional
isolated vertices, all labeled with unique identifiers from [f(n)]. We notice that since Π
is a local problem, a failure in G implies a failure in G′, and we get a contradiction with
A being correct.

As an example of a non-local problem where the range of identifiers matters, consider the
leader-election problem12 where exactly one node of the input graph is to be selected. If
the identifiers are from [n], we can simply select the node with identifier 1. Otherwise,
there is no local algorithm for it on the empty graph.

A similar argument to the proof of Theorem 2.20 can be used to prove another sleep-
well-at-night result: any local algorithm A with round complexity t(n) solving some local
problem can be turned into an algorithm A′ of round complexity t′(n) ≤ t(n) which is a
non-decreasing function of n.

The randomized version of Theorem 2.20 turns out to be particularly interesting. Chang
et al. [94] used it to show that any randomized algorithm can be derandomized, if we
appropriately slow down its complexity. 13

11Looking at the proof, it is hard to come up with a reasonable class of graphs where the theorem
does not apply.

12This is a fundamental problem in the broader area of distributed computing. The maximal inde-
pendent set problem can be seen as a local variant of this problem.

13Their technique is similar to Adelman’s theorem, i.e., BPP ⊆ P/poly. See [11, Theorem 7.14].
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Theorem 2.21 (Chang et al. [94]). If a local problem Π has randomized round complexity
t(n), its deterministic round complexity is t

(
2O(n2)

)
.

The theorem holds for any class of graphs closed on adding isolated vertices.

Proof. Let A be a randomized local algorithm with error 1/nO(1) and round complexity
t(n) solving Π. We start by applying Theorem 2.20 with f(n) = 2O(n2) to slow down A
to complexity t

(
2O(n2)

)
while pushing the error probability down to 2−Ω(n2). We still

call this new algorithm A.

The deterministic algorithm A′ for Π will work as follows. Let C be such that the unique
identifiers are coming from [nC ]. We will use a certain function h (a hash function that
we soon specify) that maps each identifier from [nC ] to an infinite bit string. We define
A′ as follows: It first uses h to map each input identifier to an infinite bit string, and
next it simulates A using each bit string as the string of random bits.

To construct the function h that makes A′ correct, we simply choose a random one and
notice that on any concrete graph, A′ fails to solve Π with probability at most 2−Ω(n2)

with the randomness over the choice of h. This is because on any concrete graph, A′ with
random h is equivalent to running A. But notice that the number of distinct graphs on
n vertices labeled with polynomial identifiers is 2O(n2) · (nC)n = 2O(n2). Hence, we can
union-bound over all of them and still get a positive probability that random h works. We
thus conclude that for some h, A′ is a valid deterministic algorithm for Π, as needed.

As a nice corollary, we are getting a very precise understanding of what is happening
for the randomized round complexity of Lovász local lemma: On one hand, we have
seen a randomized algorithm with round complexity poly log log(n) (Theorem 2.12) that
used a deterministic algorithm with round complexity poly log(n) (Theorem 2.10) as a
subroutine. But we can now see that any poly log log(n) round randomized algorithm
would imply a poly log(n)-round deterministic one via Theorem 2.21. A similar observa-
tion applies not just for the local lemma, but for many other problems with randomized
algorithms based on shattering (see Section 1.6). This explains why in local complexity
deterministic algorithms are a big deal – not only they are used as subroutines of ran-
domized algorithms, but we in fact understand that to make progress in the randomized
world, progress in the deterministic world is necessary.

2.3.2 Speedups

While slowdowns are very useful, the real fun starts when we try to speed up algorithms
by lying to them that the size of the graph is smaller than it actually is. In fact, what
can possibly go wrong if we tell an algorithm that the size of the graph is constant, i.e.,
we claim that n = O(1)? As it turns out, not much! One potential problem is that the
algorithm may find out that its t(n)-hop neighborhood contains more than n nodes and
“crash”. The other problem is that the algorithm now requires very small identifiers (if we
started with a deterministic algorithm) or that the failure probability of the algorithm
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increased to constant (if we started with a randomized one). This is where our story
connects with our discussions of coloring and Lovász local lemma.

Theorem 2.22 (Chang and Pettie [88], Chang et al. [94]). Let A be a local algorithm for
a local problem Π with round complexity t(n) = o(log n). Then there is a local algorithm
A′ solving Π such that

1. If A was deterministic, so is A′ and its round complexity is O(log∗ n).

2. If A was randomized, so is A′ and its round complexity is the same as the random-
ized complexity of solving relaxed Lovász local lemma, i.e., it is Õ

(
log4 log(n)

)
.

The theorem holds for the class of bounded degree graphs and any of its subclasses closed
on taking subgraphs and adding isolated vertices. More generally, for round complexities
defined relative to a subclass of bounded degree graphs of restricted growth, the complexity
t(n) needs to be such that we always have |B(u, t(n))| = o(n) for any node u.

Proof. Let Π be a local problem with a checkability radius of r and A be a deterministic
(randomized) local algorithm for Π. We will assume that the identifiers are coming from
a range [nC ] (alternatively, the failure probability is 1/nC) for sufficiently large C. We
will view A as a sequence A1,A2, . . . , and we start by choosing n0 to be a large enough
constant so that

∆0 +∆1 + · · ·+∆t(n0)+r ≤ n0. (2.3)

We notice that such an n0 exists by the requirement t(n) = o(log n). Our algorithm A′
will simulate An0 for any input n (for n < n0 we define A′n = An).

Let us first handle the case of deterministic algorithms (see Figure 2.6). There, A′ needs
to supply identifiers to its simulation of An0 . This is done as follows. We compute a
(∆(G′) + 1)-coloring of the power graph G′ = G2(t(n0)+r) such that the number of colors
used is ∆(G′) + 1 = ∆O(t(n0)+r) ≤ nC

0 where we used that C is large enough. We use
those colors as identifiers for our simulation of An0 . This finishes the description of A′.

On one hand, the round complexity of the overall algorithm is O(log∗ n) on bounded-
degree graphs. On the other hand, suppose that A′ fails to solve the problem Π at some
node u. We notice that (2.3) yields that the (t(n0) + r)-hop neighborhood of u contains
at most n0 nodes. Moreover, this neighborhood is colored by A′ with unique colors from
the range [nC

0 ]. Recall that An0 is defined on neighborhoods with at most n0 nodes
labeled with identifiers from [nC

0 ]. Thus the algorithm A′ is well-defined. Additionally, a
failure of A′ at u would imply a failure of A on a neighborhood of size at most n0 labeled
with some unique identifiers from [nC

0 ]. Adding isolated vertices to that neighborhood to
make its size n0, we reach a contradiction with An0 being correct on n0-sized instances.

We handle the case of randomized algorithms similarly: We again try to simulate An0

for large enough n0. We notice that we do not need to supply any identifiers in the
simulation. However, if we simply simulate A, we fail to solve Π at any fixed vertex u



44 The Sublogarithmic Regime
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Figure 2.6: To speed up an algorithm A, we tell it that the size of the graph is some
constant n0, whatever the true size n is. In this case, the round complexity of the algo-
rithm becomes 2 (see the smaller ball in the picture) and we assume that the checkability
radius of the local problem solved by A is 1.
The algorithm A assumes that the identifiers are unique numbers of size up to n

O(1)
0 .

Since n≫ n0, we cannot supply such identifiers. However, we notice that if A is supplied
with n

O(1)
0 -sized identifiers that are unique only in every ball of radius 3 (see the larger

ball in the picture), the algorithm still has to work since. This is because a failure of A
around some node u implies a failure of A on the graph B(u, 3) which has size at most
n0 and is labeled with unique identifiers.
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with probability 1/nC
0 as this is the failure probability of An0 . Thus, we instead formulate

the process of simulating A as an instance of Lovász local lemma on a new variable-event
graph G′ as follows. Any original vertex u of the input graph G will be thought of as
two new vertices in G′. One vertex, ur.v, is a random-variable vertex, and it corresponds
to the random string at u. The other vertex, ub.e., corresponds to the event that if we
run An0 at u and use the random strings sampled from the random-variable vertices
vr.v. ∈ B(ub.e., t(n0)), An0 fails to solve Π at u.

We notice that the event at ub.e. depends only on the (t(n0) + r)-hop neighborhood of u
in G. Thus the degree of this local-lemma instance (in the sense of its dependency-graph
formulation) is at most ∆0 + ∆1 + · · · + ∆t(n0)+r which is in turn at most n0 by (2.3).
On the other hand, the probability of each bad event is at most 1/nC

0 . We can thus
formulate the simulation of An0 as an instance of a C-relaxed local lemma. For large
enough C, we can then apply Theorem 2.12 to solve that instance.

Finally, we notice that both in the deterministic and the randomize case, we can generalize
the requirement t(n) = o(log n) to requiring that t satisfies for each u that |B(u, t(n))| =
o(n).

We note that in the statement of Theorem 2.22, we do not literally require t(n) = o(log n)
(or |B(u, t(n))| = o(n)), it should just be that for some large enough n0, we have t(n0) ≤
ε log n0, where ε is some small constant which is a function of ∆, r, and C.

Additional intuition yielded by the proof: The proof of Theorem 2.22 tells us a
bit more: Basically, it allows us to think of local problems with deterministic round
complexity o(log n) or, equivalently, O(log∗ n), as “those problems that can be solved
in a constant number of rounds, after we compute a distance coloring”. Moreover, the
problems with randomized round complexity o(log n) or, equivalently poly log log n, can
be thought of as “those problems that we can view as an instance of the local lemma”.

Problems with deterministic round complexity o(log n) can be, in fact,
solved in constantly many rounds, after a suitable coloring used as “fake
identifiers” is computed.
Problems with randomized round complexity o(log n) can be formulated
as instances of relaxed Lovász local lemma.

Speedup below log∗ n: We will next sketch how one can speed up algorithms with round
complexity o(log log∗ n) to complexity O(1). Why the weird complexity o(log log∗ n)?
The following speedup argument relies more on the volume than on the radius14, so
the importance of radius o(log log∗ n) is that the number of nodes the algorithm sees
is ∆o(log log∗ n) = o(log∗ n). The log∗ n volume is then the right threshold for which

14Compare with Theorem 3.2 classifying volume complexities where we have o(log∗ n) speedup instead.
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we can argue that any deterministic algorithm can be turned into a drastically simpler
order-invariant algorithm.

An order-invariant algorithm is a deterministic local algorithm with an additional re-
striction: it does not have direct access to the identifiers written on the nodes; it only
knows their order, meaning that it can only compare their relative size. For example, in
the setup of Theorem 2.8 where we worked with an oriented path with increasing labels,
an order-invariant algorithm would see the same input order at every vertex. This al-
ready shows that order-invariant algorithms struggle to solve interesting local problems
on graphs that are paths.

Theorem 2.23 (Naor and Stockmeyer [258], Chang et al. [94]). Let A be a deterministic
local algorithm for a local problem Π with round complexity o(log log∗ n). Then, there is
a deterministic local algorithm A′ solving Π with local complexity O(1).

The theorem holds for any subclass of bounded-degree graphs closed on taking subgraphs
and adding isolated nodes.

Proof Sketch. We will sketch how any deterministic local algorithm A with round com-
plexity t(n) = o(log log∗ n) can be turned into an order-invariant algorithm A′, using
the hypergraph Ramsey theorem15. Consider the set B = [nO(1)] of identifiers and any
of its subsets S of size (2∆)t(n) = o(log∗ n). Here, the function (2∆)t(n) upper bounds
the maximum number of nodes in any t(n)-hop neighborhood. We say that the type
of S is the list of all possible t(n)-hop neighborhoods, together with their labeling with
identifiers from S, where for each labeled graph on this list we record the output of A
when being run on that labeled neighborhood.

We note that the number of types is relatively small, only roughly 22
O(log∗ n)2 . For r the

checkability radius of Π, we want to find a medium-sized set M ⊆ B of size (2∆)t(n)+r =
o(log∗ n) such that all subsets S ⊆ M have the same type (i.e., the same color in the
terminology of Ramsey’s theorem). The known bounds for hypergraph Ramsey numbers
[181, §1, Theorem 2] allow us to conclude that B is large enough to always contain such
a set M .

With such a set M at hand, we next define the order-invariant algorithm A′ for Π as
follows: given an input order on vertices, the algorithm chooses an arbitrary set S ⊆M
and outputs the answer that A would give if the vertices were labeled with identifiers
from S in the following way: The order induced by the identifiers from S has to be the
same as the actual input order. It does not matter which S ⊆ M we choose since they
all have the same type. This finishes the description of A′.

To see that A′ is valid, we assume for contradiction that it fails for some input order on
vertices at some vertex u. Consider that input order on vertices in the (t(n) + r)-hop
neighborhood of u. Replace this input order with identifiers from M such that they

15Recall that in hypergraph Ramsey theorem we have a big set B, we color its small subsets S and
we want to find a medium-sized set M such that all its small subsets S ⊆ M have the same color.
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induce the same order. The original algorithm A behaves the same as the new algorithm
A′ when it sees only the identifiers from M : hence, A also fails. After adding isolated
nodes to this neighborhood, we reach a contradiction.

Finally, let us contemplate the proof of Theorem 2.22 again. The only reason why we
could speedup o(log n)-round deterministic algorithm only to O(log∗ n) instead of O(1)
was the necessity to compute a coloring that served as “fake” identifiers supplied to the
simulation of an algorithm An0 . But for order-invariant algorithms, this is not necessary.
We can simply give An0 exactly the same order as the order that appears on input; thus
order-invariant algorithms can be sped up to complexity O(1), as needed.

Tower-sized identifiers: We can wonder what would happen if we wanted to make the
above proof of Theorem 2.23 work for all deterministic local algorithms, not just those
that encounter only o(log∗ n) vertices. This would force us to change the small-set size
from o(log∗ n) to n in the proof. Since the hypergraph Ramsey numbers grow roughly
as a tower function of the small-set size, this means that to make the proof work, we
would have to start with unique identifiers from the range which is contains numbers as
large as the tower function of n. The rest of the proof then goes through and allows us
to speed up o(log n)-round algorithms to O(1)-round order-invariant algorithms.

This observation nicely complements Theorem 2.7: While it is true that exponentially-,
doubly-exponentially-, etc. sized identifiers have the same power as polynomially-sized
ones, there is a transition somewhere around tower-function-sized identifiers. From then
on, deterministic algorithms of o(log n) complexity with such huge identifiers can be
turned into order-invariant ones. In other words, the identifiers are so large that no
algorithm can extract any meaningful information from them other than their relative
order. 16

2.4 Classification of Local Problems

We can now put all the pieces together and prove Theorem 2.1. Let’s restate it here for
convenience.

Theorem 2.1 (Classification of local problems with o(log n) complexity on bounded
degree graphs). Let us fix any ∆ and the class of graphs of degree at most ∆. Then, any
local problem with randomized round complexity o(log n) has one of the following three
round complexities.

16Order-invariant algorithms stop being “useless” once we start considering Ω(logn) round complex-
ities. Problems like sinkless orientation can be solved deterministically in O(logn) rounds even in the
order-invariant model since we can orient edges towards leaves. In general, at O(logn) complexity, de-
terministic algorithms stop being extremely reliant on identifiers for symmetry breaking since they start
seeing irregularities in the input graph that can sometimes break the symmetry instead. In particular,
the local neighborhood can no longer look like an expanding regular tree without leaves anymore.
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1. Order-invariant regime: The problem has O(1) deterministic and randomized round
complexity.

2. Symmetry-breaking regime: The deterministic and randomized round complexity
of the problem lies between Ω(log log∗ n) and O(log∗ n) (both the deterministic and
the randomized complexity is the same function).

3. Lovász-local-lemma regime: The problem has deterministic round complexity
between Ω(log n) and Õ(log4 n). Its randomized round complexity is between
Ω(log log n) and Õ(log4 log n).

Proof. Let Π be any local problem of randomized local complexity t(n) = o(log n). We
can use Theorem 2.22 to formulate Π as an instance of Lovász local lemma. This instance
is then solved either with the deterministic Õ(log4 n)-round algorithm from Theorem 2.10,
or the randomized Õ(log4 log n)-round algorithm from Theorem 2.12.

Next, let us assume that the randomized round complexity of Π is even o(log log n).
Then, we can use the derandomization of Theorem 2.21 to conclude that the deterministic
round complexity is o(log n). This allows us to use the speedup theorem of Theorem 2.23
to conclude that the deterministic round complexity of Π is O(log∗ n). Moreover, we
notice that for any increasing function t(n) = O(log∗ n), we have t(2O(n2)) = O(t(n));
this means that the derandomization from Theorem 2.21 tells us that randomized and
deterministic round complexities of Π are the same.

Finally, assume that the randomized local complexity of Π is even o(log log∗ n). Then,
we can use Theorem 2.23 to find an order-invariant constant-round local algorithm for
Π via Theorem 2.23.

Local problems with complexities below o(log n) are of three types:
1. Those that can be solved in constant rounds by order-invariant al-

gorithms,
2. those that are roughly as hard as the basic symmetry-breaking prob-

lems such as coloring or maximal independent set,
3. those that can be viewed as instances of Lovász local lemma.

Improvements to Theorem 2.1: Can we improve Theorem 2.1? The conjecture of
Chang and Pettie [88] (Problem 2.14) suggests that in the local lemma regime, we may
get rid of the polynomial gap between the lower and upper bounds. According to our
current knowledge, there could be a local problem with deterministic and randomized
round complexities td(n), tr(n) for any td(n) = Ω(log n), td(n) = Õ(log4 n), tr(n) =
Ω(log log n), tr(n) = Õ(log4 log n), and td(n) = O(tr(2

n)), where the last constraint
follows from Theorem 2.20.

On the other hand, it is known [20] that the (extremely narrow) regime between
Ω(log log∗ n) and O(log∗ n) is densely populated by certain (artificial) local problems.
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2.4.1 Sequential local complexities

Let us now discuss how sequential local complexities fit into the picture painted by
Theorem 2.1. We will first observe that the first two classes from our classification
in Theorem 2.1, i.e., O(1) and O(log∗ n) round complexities, are equal to the class of
problems solvable with the sequential local complexity is O(1).

Theorem 2.24. On bounded degree graphs, local problems with round complexity
O(log∗ n) are exactly those whose sequential local complexity is O(1).

Proof sketch. On one hand, consider any local problem with constant sequential local
complexity. We can use Theorem 2.5 to simulate it with a distributed local algorithm in
O(log∗ n) rounds.

On the other hand, consider any local problem Π with local checkability r solvable in
O(log∗ n) round complexity. Recall that the proof of Theorem 2.22 says that Π can in
fact be solved with a local algorithm A of round complexity t = O(1) on any graph
G if we are provided a proper coloring of a suitable power graph G2(t+r). Recall that
(∆ + 1)-coloring has sequential local complexity O(1), meaning that we can construct a
sequential local algorithm of constant complexity for Π.

Next, we will show how our distributed speedup theorems imply speedups in the sequen-
tial world.

Theorem 2.25. Let A be a sequential local algorithm solving a local problem Π on
bounded degree graphs. Assume that either

1. A is deterministic and its sequential local complexity is o(log log n),

2. or A is randomized and its sequential local complexity is o(log log log n).

Then, there is a distributed local algorithm A′ that solves Π in O(log∗ n) round complexity.

Proof. If A is a deterministic sequential algorithm of local complexity t(n) = o(log log n),
we can simulate it with a distributed local algorithm via Theorem 2.5. We get a deter-
ministic algorithm with local complexity ∆O(t(n)) +O(t(n) log∗ n) = logo(1) n = o(log n).
Such an algorithm is then sped up to O(log∗ n) complexity using Theorem 2.22.

Similarly, if A is randomized sequential algorithm of local complexity o(log log log n),
Theorem 2.5 implies that we get a randomized distributed local algorithm with
logo(1) log n = o(log log n) round complexity. Such an algorithm can then be deran-
domized by Theorem 2.21 into a deterministic algorithm of local complexity o(log n)
which is in turn sped up to O(log∗ n) using Theorem 2.22.

Finally, we sketch how one can construct very fast sequential local algorithms for instances
of the local lemma.
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Theorem 2.26. Let Π be a C-relaxed Lovász local lemma for sufficiently large C. Then,
its deterministic sequential local complexity is Õ(log4 log n) and its randomized sequential
local complexity is Õ(log4 log logn)17, on bounded degree graphs.

Proof Sketch. To prove the first part of the theorem, we consider the randomized dis-
tributed local algorithm for local lemma from Theorem 2.12. We turn it into a determin-
istic sequential local algorithm of the same complexity by the derandomization result of
Theorem 1.7.

To prove the second part of the theorem, we notice that our randomized distributed local
algorithm from Theorem 2.12 can certainly be implemented in the model of randomized
sequential local algorithms. Recall that the algorithm reduces an instance of the local
lemma to instances on graphs of size O(log n), as proven in Theorem 2.11. Then, the
best deterministic algorithm is applied to those instances to finish the job. While The-
orem 2.11 is stated as reducing from C-relaxed local lemma with some large C to local
lemma with condition p ≤ 1/(3∆), we can generalize it to show that starting with a very
large C ′, we can reduce an instance of C ′-relaxed local lemma to C-relaxed local lemma
for C that is still arbitrarily large.

This allows us to run the deterministic sequential algorithm with complexity Õ(log4 log n)
constructed in the first part of the proof instead of using the deterministic O(poly log n)-
round algorithm from Theorem 2.10. The final randomized sequential local complexity
is thus Õ(log4 log logn).

We note that for problems like sinkless orientation for which an O(log log n)-round ran-
domized algorithm is known [166], the proofs of above Theorems 2.25 and 2.26 imply
tight bounds of Θ(log log n) and Θ(log log log n) deterministic and randomized sequen-
tial local complexity on bounded degree graphs. In the case of sinkless orientation, the
same bounds are also known even on unbounded degree graphs [166]. If the conjecture of
Chang and Pettie [88] (Problem 2.14) is true, then there is no gap between Theorems 2.25
and 2.26.

We also note that Theorems 2.25 and 2.26 show that while one can turn randomized
distributed local algorithms into sequential deterministic ones via Theorem 1.7, it is not
possible to turn randomized sequential local algorithms into deterministic sequential local
ones, without loss in their local complexity.

Putting everything together, we get the following refined classification theorem that also
includes sequential local complexities.

Theorem 2.27 (Refined classification of local problems). Let us fix any ∆ and any class
of graphs G of degree at most ∆ that is closed under taking subgraphs and adding isolated

17It is an interesting exercise to open up the proof that the randomized sequential local complexity of
local lemma is Θ(poly log log logn) and try to think of theorems we have seen so far that do not go into
that proof.
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nodes. Let t(n) be a function such that for any node u in some graph in G we have
|B(u, t(n))| = o(n).

Then, any local problem with randomized round complexity at most t(n) has one of the
following three complexities.

1. Order-invariant regime: The problem has O(1) deterministic (or randomized) round
complexity and sequential local complexity.

2. Maximal-independent-set / Coloring regime: The deterministic and randomized
round complexity of the problem lies between Ω(log log∗ n) and O(log∗ n) (both the
deterministic and the randomized complexity is the same function). Moreover, the
sequential local complexity is O(1).

3. Lovász-local-lemma regime: The problem has the following complexities:

(a) deterministic round complexity is between Ω(log n) and Õ(log4 n),

(b) randomized round complexity and deterministic sequential local complexity is
between Ω(log log n) and Õ(log4 log n),

(c) randomized sequential local complexity is between Ω(log log log n) and Õ(log4 log logn).

Moreover, if any graph from the class satisfies that for any node u, we have |B(u, r)| =
2O(r0.249), then there are no local problems in the third class of problems.

The last part of the theorem follows by applying Theorem 2.22: We know that every local
problem in the local-lemma regime can be solved with a deterministic local algorithm
of round complexity Õ(log4 n); since 2(Õ(log4 n))

0.249

= o(n), the speedup to O(log∗ n)
complexity can be applied. If the conjecture of Chang and Pettie [88] (Problem 2.14) is
true, we can get rid of the polynomial slack in the local-lemma regime complexities and
the whole local-lemma class of problems is then empty for the class of subexponential
growth graphs (see Section 2.5).

Problem 2.28. Can local problem solvable with deterministic sequential local complex-
ity o(log n) be sped up to poly log log n deterministic sequential complexity (i.e., to the
local-lemma regime)? What about problems with randomized sequential local complexity
o(log n)?

2.5 Classification of Local Problems for Concrete Graph
Classes

This section compiles results from a long line of work trying to extend the classification
of local problems on bounded-degree graphs, i.e., Theorem 2.1, to more specific graph
classes. For some simple graph classes, we now have an almost complete understanding
of the local complexity classes that go even beyond the log n local complexity threshold.
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Locally checkable labeling problems: The theorems below are proven for the so-
called locally checkable labeling problems. These are local problems that additionally
allow one of the finitely many input colors on each node of the input graph. For example,
a list coloring is an example of a locally checkable labeling problem.

Definition 2.29. A locally checkable labeling problem (LCL) Π is formally a quintuple
(Sin, Sout, r,∆,P). Here, Sin is the finite set of input labels, Sout is the finite set of out-
put labels, and P is the set of allowed neighborhoods: Each neighborhood has maximum
degree ∆, radius r, and each node is labeled with a label from Sin and Sout. Given an
input graph of degree at most ∆ and any input coloring of its nodes with Sin, the task
is to find an output coloring by colors from Sout so that the r-hop neighborhood of each
node is in P.

We did not have to distinguish between our definition of a local problem from Theorem 1.1
and the locally checkable labelings since, in the general graph classes like the class of all
graphs or all bounded-degree graphs, it is straightforward to encode input labels as a
part of the input graph. We thus chose the simpler definition that also allowed us to talk
about local problems even outside of the setup of bounded-degree graphs. In the following
theorems, especially for very restrictive classes like paths or grids, the difference between
the two definitions matters, since the possibility of allowing inputs may substantially
enlarge the number of possible local problems.

In the following theorems, we will always implicitly assume that they are for solvable
locally checkable labelings, i.e., for problems where the solution is always guaranteed to
exist. Otherwise, the problem does not have a well-defined local complexity class.

Computational aspect: We note that an additional dimension for all classification
results below is the computational complexity of the classification problem, where the
input is a description of locally checkable labeling, and the output is which class it belongs
to. On the one hand, it is known that the classification problem is decidable on paths,
albeit PSPACE-hard [21]. On the other hand, the classification problem is undecidable
even for grids [77]. The decidability on trees is open; see Problem 2.34. We will not
discuss this dimension in the following theorem statements for brevity.

Remarks: We list the concrete classification theorems below. Unless stated otherwise,
the deterministic and the randomized round complexity of the problem is always the
same. We are always citing papers proving results specific to the given graph class, for
example, general speedup and slowdown theorems of Chang and Pettie [88], Chang et al.
[94] are as a rule of thumb always an important part of the proof. Also, not all the papers
we cite prove a part of the given theorem. Some of them only provide building blocks,
analyze the computational complexity of the classification, etc.

List of known classifications: Let us now list known classification theorems on con-
crete graph classes.
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Theorem 2.30 (Classification of local problems on paths [77, 21]). Any solvable locally
checkable labeling problem on oriented or unoriented paths with inputs has one of the
following round complexities:

1. O(1),

2. Θ(log∗ n),

3. Θ(n).

Theorem 2.31 (Classification of local problems on grids [258, 77, 94, 188]). Any solv-
able locally checkable labeling problem on d-dimensional oriented grids18 has one of the
following local complexities:

1. O(1),

2. Θ(log∗ n),

3. Θ(n1/d).

We note that on unoriented grids, the full classification is not known [188].

Theorem 2.32 (Classification of local problems on bounded-degree rooted trees [31, 97]).
Any solvable locally checkable labeling problem on bounded-degree rooted trees19 has one
of the following round complexities:

1. O(1),

2. Θ(log∗ n),

3. Θ(log n),

4. Θ(n1/k) for some k ∈ N.

Theorem 2.33 (Classification of local problems on bounded-degree trees [254, 88, 20,
85, 27, 188, 34, 25, 235]). Any solvable locally checkable labeling problem on trees has one
of the following local complexities:

1. O(1),

2. Θ(log∗ n),

3. Θ(log log n) randomized, Θ(log n) deterministic,

4. Θ(log n) (both randomized and deterministic),

5. Θ(n1/k) for some k ∈ N.

18The edges of the input grid are consistently oriented.
19Edges are oriented such that every vertex has at most one ingoing edge.
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Problem 2.34. Given an input locally checkable labeling problem on bounded-degree
trees, is it decidable which class in Theorem 2.33 it belongs to?

More Classifications: It is an intriguing question of how far these classifications can
be extended, see e.g. the recent work extending the theory to minor-closed classes [86]
or extending the theory to unbounded-degree graphs [234].

Another interesting class is the class of subexponential growth graphs, i.e., the class
of bounded degree graphs where for every ε > 0 we can find r such that |B(u, r)| ≤
(1+ ε)r 20. In this class of graphs, we can apply Theorem 2.22 to speed up deterministic
algorithms of complexity O(log n) (instead of o(log n)) to O(log∗ n). If the conjecture
of [88] (Problem 2.14) is true, this has an interesting corollary: the local lemma regime
from the classification theorem of Theorem 2.1 would then not be present in this class
of graphs and there would only two classes of local problems there (see Theorem 2.27).
This leads to the following special case of Problem 2.14:

Problem 2.35. Is there a C such that all instances of the C-relaxed Lovász local lemma
can be solved with round complexity Θ(log∗ n) on any class of graphs of subexponential
growth?

Some implications of a positive answer to this problem are known [111, 65].

20Formally, this is a family of classes, with one class for each possible dependency r = r(ε).



CHAPTER 3

Applications

While the previous two chapters, Chapters 1 and 2, discussed the general theory of
local algorithms, the following chapter considers various popular models of distributed,
parallel, or sublinear algorithms, as well as the field of descriptive combinatorics, and
briefly discusses how techniques from local algorithms can help there, discussing a few
cherry-picked examples per section. These sections are heavily influenced by the author’s
particular interests; a different author would choose different applications.

3.1 Distributed Computing (CONGEST)

The CONGEST model [264] is a model of distributed computing that is extremely tightly
connected to local algorithms1 Starting from the definition of a local algorithm as a
message-passing protocol between nodes in a graph, the CONGEST model adds an ad-
ditional requirement that each message is supposed to be small. In particular, it should
fit into O(log n) bits. For example, a node can send its unique identifier in one round.

Some local algorithms in the literature are stated as CONGEST algorithms since a num-
ber of local algorithms are readily implemented in the CONGEST model. However, not
all of them. As an example, for local algorithms, it is often useful that each node can
collect all the information from its local neighborhood and perform a local computa-
tion on it. However, in the CONGEST model, even just collecting the size of a 2-hop
neighborhood of every node can take Ω(n) rounds.

For example, counting for each node the number of triangles that contain it is a trivial
problem for local algorithms but a very complex problem in the CONGEST model, where
it requires polynomially many rounds [95, 89]. As another example, coloring the graph
G2 with ∆(G)2 + 1 colors in the CONGEST model is a substantially more complicated
problem [197] than with local algorithms and coloring the graph G3 with a reasonable

1Local algorithms are often referred to as “distributed algorithms in the LOCAL model of distributed
computing”.
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number of colors is probably hopeless in the CONGEST model (given a candidate coloring
of G3, we cannot even check quickly whether it is correct).

The general derandomization technique of Ghaffari et al. [166] from Theorem 1.8 is not
directly applicable to the CONGEST model, since computing conditional expectations in
a neighborhood of a node requires collecting a lot of information from that neighborhood.
However, the general approach is still helpful, and it was used to derandomize concrete
problems like maximal independent set [84] or ∆+ 1-coloring [41].

It is an interesting question for which classes of graphs the definitions of local and CON-
GEST algorithms coincide for local problems. It is known that this is the case for local
problems on trees [32].

3.2 Local Computation Algorithms and the Volume Model

The model of local computation algorithms [277, 8], often denoted as LCA, is a model of
sublinear algorithms closely related to the local model. We will first explain its variant,
known as the Volume model by Rosenbaum and Suomela [270]. This model is very
similar to local algorithms, but we measure the volume instead of the radius. A volume
algorithm run at a node u starts with a set S0 = {u} and in the i-th step, the algorithm
can pick a node ui ∈ Si and an arbitrary index 1 ≤ j ≤ d where d is the degree of ui.
Then, it learns the identifier of the j-th neighbor v of ui. We then set Si+1 = Si ∪ {v}.
The volume complexity of the algorithm is the number of queries it makes until it decides
to finish and output the label for u.

In particular, we note that for graphs of maximum degree ∆, any t(n)-round local al-
gorithm can be turned into a volume algorithm of complexity (2∆)t(n) as the volume
algorithm at u can simply query all the nodes in the t(n)-hop neighborhood of u [263].

A local computational algorithm may have several definitions. The stateless local com-
putation algorithm is defined as follows: we start with the definition of the volume model
and add the additional requirement that the nodes start with unique identifiers from the
range [n], even for randomized algorithms. In each query, the algorithm can additionally
ask for the node with the identifier j for any 1 ≤ j ≤ n. The node ui with identifier j is
then added to the set of already seen nodes Si. That is, the algorithm can use additional
global queries that are, however, “blind”.

It is unclear whether global queries can help with solutions to local problems. We know
that they do not help for very fast randomized local computation algorithms [179].

Problem 3.1. Is there a local problem that distinguishes (either randomized or deter-
ministic) Local computation algorithms and Volume models with respect to a natural class
of graphs?

As an example problem considered in the LCA model, there is a long line of work on
local computation algorithms for maximal independent set and related problems [259,
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297, 260, 57, 277, 8, 232, 150, 269, 163, 152] culminating with the randomized algorithm
of Ghaffari [152] with volume complexity poly(∆ log n).

For constant degree graphs, we can try to prove classification results similar to the clas-
sification of local problem complexities from Theorem 2.1. We have some understanding
of the volume complexities of the three important local complexity classes from Theo-
rem 2.1:

Theorem 3.2 ([263, 127, 270, 188, 81]). In the class of bounded-degree graphs, each local
problem satisfies the following:

1. If its round complexity is O(1) (order-invariant regime), then its randomized/deterministic
volume complexity is O(1).

2. If its randomized/deterministic round complexity is ω(1) and O(log∗ n) (maximal
independent set / coloring regime), its randomized/deterministic volume complexity
is Θ(log∗ n).

3. If its randomized local complexity is ω(log∗ n) but o(log n) (Lovász local lemma
regime), its randomized volume complexity is between Ω(

√
log n) and O(log n).

We note that as far as we know, all local problems in the local-lemma regime have
randomized volume complexity of Θ(log n). In particular, sinkless orientation has this
randomized volume complexity [81].

Problem 3.3 (See Conjecture 1.3 in [81]). Is it true on bounded degree graphs that local
problems from the local-lemma regime have randomized volume complexity Θ(log n)?

We also note that in the model of deterministic volume complexity where the identifiers
come from exponential, instead of polynomial range, we can prove that only the volume
complexities O(1),Θ(log∗ n),Θ(n) are possible [81]. The same could be the case also for
the standard, polynomial-range, identifiers.

Problem 3.4. Are there any local problems such that their deterministic volume com-
plexity (with polynomial-sized identifiers) on bounded degree graphs is ω(log∗ n) but o(n)?

Equivalently, we could have asked whether there is a local problem whose deterministic
volume complexity is different for polynomial-sized and exponential-sized identifiers.

3.3 PRAM

PRAM is a classical model of parallel algorithms studied extensively in the past 40 years
[215]. It simplifies the complexity of practical parallel computing by assuming a simple
model of a machine with multiple processors sharing a common memory. There are two
complexity measures: work, i.e., the total number of instructions made by all processors
together throughout the execution, and depth, i.e., the number of rounds necessary to
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finish the computation in the case that the machine is equipped with as many processors
as the algorithm requires.

Many techniques developed for distributed and local algorithms are useful in the design
of parallel algorithms. As an example application for a local problem, Ghaffari and Hae-
upler [156] develop a randomized algorithm for maximal independent set on the so-called
EREW variant of the PRAM model with the optimal depth O(log n) and O(m log2 n)
work, building on top of the local maximal independent set algorithm of Ghaffari [150].

As another example application for a non-local problem, we note that one can generalize
deterministic local algorithms for network decompositions discussed in Section 1.5 to get
various clustering results for weighted undirected graphs like the following one.

Theorem 3.5 (Deterministic low-diameter clustering [272]). Let G be a graph and w its
nonnegative weights. Then, there is a parallel algorithm with Õ(m + n) work and Õ(1)
depth such that, given a parameter R > 0, it splits vertices of G into clusters such that

1. Each cluster has weighted diameter Õ(R),

2. The total weight of edges that cross between different clusters is at most 1
R

∑
e∈E(G)w(e).

Variants of this clustering result can be used for the design of deterministic parallel algo-
rithms for the approximate shortest path problem or various metric embedding problems
[274, 272].

3.4 MPC

The final parallel model we discuss is the model of Massively parallel computing (MPC)
[217], the theoretical model behind the popular programming framework MapReduce
and its variants. While the previous PRAM model focuses on the total work done by
processors and ignores the cost of communication, the MPC model ignores the work done
by processors and focuses on the communication cost.

Concretely, let us explain the so-called low-memory regime of MPC: At the beginning of
any graph algorithm, the edges of the input graph are split into many machines, each
capable of storing O(nε) bits in its memory. In one round, each machine can perform an
arbitrary computation on its edges, and then it sends arbitrary information to any of its
neighbors (the total information sent and received per machine is O(nε)). We measure
the number of rounds until the solution is computed.

Chang, Fischer, Ghaffari, Uitto, and Zheng [93] constructed a randomized massively par-
allel algorithm for ∆+1-coloring that works in O(log log log n) rounds by simulating the
fastest randomized local algorithm for coloring of round complexity poly log log n (see
Chapter 3) with exponential speedup. This result is complemented by the work of Ghaf-
fari, Kuhn, and Uitto [168] that showed that this result cannot be improved, conditioned
on a certain conjecture. Notice how understanding where the three logarithms are coming
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from requires an extensive understanding of coloring with local algorithms: The way we
arrive at this complexity is that, first, starting with the trivial constant-round sequential
local algorithm for coloring, we turn it into a deterministic distributed poly log n-round
local algorithm using the general translation of Theorem 1.4. Next, this algorithm can be
turned into an exponentially faster randomized algorithm using the shattering technique
[92]. Finally, this randomized algorithm is simulated, again with exponential speedup,
in the massively parallel model.

There is also a work aiming to extend the classification of local problems to the massively
parallel algorithms model [82, 35].

3.5 Descriptive Combinatorics

Descriptive combinatorics [230, 245, 180, 119, 243, 140, 220, 244, 106, 108, 111, 60] is an
area at the intersection of combinatorics, measure theory, and set theory (see e.g. the
following surveys [219, 265, 63]). It studies combinatorial objects like graphs that arise
when one manipulates uncountably-infinite large objects equipped with measure. The
main object of interest is a measurable graph. Instead of a formal definition, let us discuss
a particular example.

Consider a circle, i.e., a set of points of distance 1 from the origin of the plane R2. A
rotation of this circle by 1 radian counterclockwise induces a graph G0: We can draw
an oriented edge from each point v on the circle to the point v′ that v maps to by the
rotation. This graph has uncountably many connected components, each of which is a
doubly-infinite oriented path. Moreover, the Lebesgue measure on the circle is telling us
which subsets of vertices of G0 we are “allowed” to talk about. The graph G0, together
with the measure on top of it, is an example of a measurable graph.

“Solving” a local problem Π on some measurable graph G now means that we label the
vertices of G with labels from Π. On one hand, we want all local constraints to be
satisfied (almost) everywhere. On the other hand, the set of vertices labeled with the
same label should be measurable. Specifying this idea formally leads to several possible
definitions of what a solution is, like measurable solutions, Borel measurable solutions,
or Baire measurable solutions, all of which are studied in descriptive combinatorics.

There is a close connection between local algorithms and the area of descriptive combina-
torics. Although this was to some extent understood earlier (see Elek and Lippner [121],
Lovász [238, Chapter 23.3]), it was only a breakthrough paper of Bernshteyn [60] that
first realized the full power of the connection. We invite the reader to read the recent
survey of Bernshteyn [63] that covers the connection in depth, here we will only mention
a few known results.

For the class of bounded degree graphs, we understand that local problems solvable in
O(log∗ n) rounds admit Borel solutions [60]. Problems that one can formulate as an
instance of the local lemma (i.e., problems with o(log n) randomized complexity) admit
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measurable and Baire-measurable solutions [60].

Sometimes, we understand that a class of local problems defined using the language of
descriptive combinatorics exactly coincides with a class of problems defined using the
language of local algorithms: On Cayley graphs, problems solvable in O(log∗ n) rounds
are exactly those allowing so-called continuous solutions [61, 147]. On regular trees, local
problems with complexity O(log n) are exactly those allowing Baire-measurable solutions
[83]. Finally, and this is perhaps the most easily understandable example, local problems
solvable on the graph G0 defined above are exactly those for which we have an o(n)-round
local algorithm on oriented paths [184, Section 2].

When it comes to concrete problems, many recent results from descriptive combinatorics
are using techniques that are, by now, familiar to readers of this text: Network decom-
position [68], Lovász local lemma [60, 61, 111, 67, 68], derandomizations [61, 185], ID
graphs [83, 80], and others.

This connection also led to progress for local algorithms. For example, Bernshteyn [64]
used ideas from a measurable Vizing theorem of Grebík and Pikhurko [183] to construct
a fast local algorithm for (∆+ 1)-edge coloring problem. Brandt et al. [83] generalized a
lower bound of Marks [244] to develop a new lower bound technique for local algorithms:
This technique gives a different (and similarly simple) lower bound proof of Theorem 2.15
and leads to the currently only known example of a problem on trees with an unknown
round-elimination-based proof.

3.6 Other Models

There are many more models of local/distributed/parallel/sublinear computation that
are, in one way or another, related to local algorithms. In many of these models, it
not only makes sense to try to solve concrete problems but often, one can also hope
that the theory of local algorithms, such as the classification of the local problems on
bounded-degree graphs, can be extended similarly to, e.g., Theorem 3.2.

Uniform algorithms: One favorite model of the author is the model of uniform local
complexity. In this model, a randomized local algorithm does not know the size of the
input graph, n. It simply looks at larger and larger neighborhoods of a given vertex,
until it decides that it has seen enough to compute the output label at the node. This
model was independently studied by local algorithms community [223] and community
of probabilists [212, 207, 286] where it is known as finitary factors of i.i.d.

It can be seen as a more powerful version of classical local algorithms in the o(log n)
regime. This is because there are certain local problems such that their solution requires
a few nodes to see the whole graph, while most of the nodes can output their solution
after seeing their O(1)-radius neighborhood [185]. On the other hand, local problems
solvable by uniform local algorithms still often admit measurable solutions defined in
descriptive combinatorics [184, 185, 83]. Thus, uniform local algorithms can be seen as
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interpolating between the extremely clean picture painted by the classification of o(log n)-
round algorithms (Theorem 2.1), and the much less well-understood complexity classes
coming from descriptive combinatorics.

The connection between classical local algorithms and uniform ones would be much
cleaner if the following problem was resolved:

Problem 3.6. Is there a C and a uniform randomized local algorithm on bounded degree
graphs for C-relaxed Lovász local lemma such that after poly log log(1/ε) rounds, at least
1− ε fraction of nodes know the solution?

Other models: There are many more models of locality studied in the literature. Let
us list a sample of them. The list includes the averaged local complexity [131, 46, 99, 39]
(closely connected to uniform algorithms), online local model [2, 98, 3], dynamic local
model [2, 3], local mending model [251, 252], supported local model [279, 222], quantum
local model [149, 142, 103, 3], awake complexity [99, 160], energy complexity [91, 96,
161], local certification [176, 137, 138, 132], finitely dependent colorings [205, 208], or
computable combinatorics [266].

Final Remarks

This text aims to present the area of local algorithms in a way that highlights what the
author sees as its key aspect: Unlike typical subareas of computer science and discrete
mathematics that are usually unified by a set of useful techniques and important results,
the area of local algorithms extends beyond this norm. We have a clean theory of the
model that leads to a clear complexity-theoretical picture. In this sense, local complexity
can be viewed as a nascent counterpart to more established areas like communication
complexity. Some of the results presented in the last chapter indicate that the theory has
the potential for diverse extensions and applications. The author encourages the reader
to identify and explore the next one.
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CHAPTER 4

Overview of New Results Proven in the Thesis

This section briefly overviews the results proven in the thesis and explains how they
fit into the big picture presented earlier in Chapters 1 to 3. We hope that various
techniques employed in these results show the richness of techniques used in the area of
local algorithms.

4.1 Theory of Local Algorithms

The next three chapters will discuss new results related to the theory of local algorithms.

4.1.1 A Simple Deterministic Distributed Low-Diameter Clustering

In Chapter 5, we discuss a simple deterministic algorithm for network decomposition, a
fundamental problem discussed extensively in Sections 1.3 to 1.5. The chapter is based
on a paper of Rozhoň et al. [275].

More concretely, we present a local algorithm that proves the following theorem (recall
the definition of network decomposition from Theorem 1.5):

Theorem 4.1 (cf. Theorem 5.4). There exists a deterministic local algorithm that con-
structs a network decomposition with O(log n) color classes and diameter O(log3 n). The
algorithm has round complexity O(log7 n).

There are numerous other deterministic constructions of network decompositions, some
of which [272, 172] improve upon Theorem 4.1. However, we believe that together with
a closely related construction by [276], our construction is perhaps the simplest and
hopefully useful for presentations in classes, especially if the algorithm of Miller et al.
[255] is presented first. If the reader plans to read beyond this section, we invite them to
read Chapter 5.

The construction can be seen as a deterministic variant of the beautiful randomized
clustering algorithm by Miller et al. [255]. This randomized algorithm is sketched in
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Section 1.5, simply speaking, every node chooses a head-start from an exponential dis-
tribution, then we simulate running breadth-first-search from all nodes at once.

In the deterministic variant of this algorithm, we have O(log n) phases, one for each bit
in the identifier. In the very first phase, we first split the vertices based on their most
significant identifier bit into red and blue nodes. Then we start increasing head-starts of
red nodes. After each increase, we simulated the breadth-first-search with those head-
starts and see how much the red clusters grew. If a red cluster did not grow by a sufficient
amount, we stop increasing its head-start and delete the final layer by which the cluster
grew. By an argument similar to ball-carving, we delete only a small fraction of nodes.
By an argument similar to the analysis of the algorithm of Miller et al. [255], the red
clusters are separated from the remaining blue nodes. Iterating this process for each bit
in the identifier, we construct the first clustering of the final network decomposition from
Theorem 4.1.

4.1.2 Generalizing the Sharp Threshold Phenomenon for the Dis-
tributed Complexity of the Lovász Local Lemma

In Chapter 6, we prove that there is a curious sharp threshold phenomenon related to the
complexity of Lovász local lemma. This result is stated as Theorem 2.18 in Section 2.2
and put into context in Section 2.2. This chapter is based on the paper of Brandt et al.
[79].

Let us restate Theorem 2.18 next for convenience:

Theorem 2.18 ([73, 78, 79]). On one hand, there is an instance of Lovász local lemma
(namely sinkless orientation) with the criterion p · 2∆ ≤ 1 that has deterministic round
complexity Ω(log n). On the other hand, any instance of Lovász local lemma with the
criterion p · 2∆ < 1 has deterministic round complexity O(log∗ n).

We note that the first part of the theorem follows from the lower bound for sinkless
orientation by Brandt et al. [73] discussed in Section 2.2. We prove the second part of
the theorem, building on an earlier paper of Brandt et al. [78] who proved the conjecture
for the case when each random variable has rank at most 3, using the following elegant
sequential local algorithm (that can be turned into a distributed one by Theorem 2.5).

The algorithm iterates through random variables and fixes them to some values while
preserving the following invariant. In order to define the invariant, each edge of the
dependency graph is assigned two non-negative values, one for each endpoint of the
edge, that sum up to 1. When fixing a random variable, the algorithm is also allowed
to change these “book-keeping” values. The invariant now states that for any node v in
the dependency graph, the product of the deg(v) values around v multiplied by p is an
upper bound for the conditional probability of the event Ev associated with node v to
occur (where we naturally condition on the already-fixed random variables being fixed
as prescribed by the (partial) value assignments performed by the algorithm so far). If
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this invariant is preserved, then, after all variables are fixed, each event Ev occurs with
probability at most 2deg(v) · p ≤ p2∆ < 1, and therefore with probability 0, as desired.

Surprisingly, always being able to fix a random variable so that the invariant is preserved
is equivalent to proving the convexity of a certain complicated set. Brandt et al. [78]
were able to prove the convexity in the case where ranks are at most 3 where one can
have an explicit understanding of the set. On the other hand, in Chapter 6 we prove
that the set is convex always using a more subtle convex-geometrical argument.

We believe that Theorem 2.18 is an interesting example of the richness of techniques
applied in the area of local algorithms. A priori, it is quite surprising that a substantial
part of its proof engages in convex geometry.

4.1.3 The Landscape of Distributed Complexities on Trees and Beyond

In Chapter 7, we prove several speedup theorems that form a part of the classification
theorems for trees (Theorem 2.33) and grids (Theorem 2.31). This chapter is based on
the paper of Grunau et al. [188].

Let us restate the theorem classifying the local problems on trees here for convenience.

Theorem 2.33 (Classification of local problems on bounded-degree trees [254, 88, 20,
85, 27, 188, 34, 25, 235]). Any solvable locally checkable labeling problem on trees has one
of the following local complexities:

1. O(1),

2. Θ(log∗ n),

3. Θ(log log n) randomized, Θ(log n) deterministic,

4. Θ(log n) (both randomized and deterministic),

5. Θ(n1/k) for some k ∈ N.

The theorem is a result of a substantial number of papers working their way through
various complexity regimes. In Chapter 7 we prove what was the final missing piece
in the theorem: a gap between constant and sub-iterated-logarithm complexities. This
improves upon the o(log log∗ n) speedup discussed in Section 2.3.

Theorem 4.2 (Cf. Theorem 7.1). Let ∆ be any fixed positive integer. Any locally
checkable problem on bounded degree trees with round complexity o(log∗ n) has, in fact,
round complexity O(1).

Our approach is based on the round elimination technique [74], a highly successful tech-
nique for proving local lower bounds. However, there is a twist to it: The standard use
case for applying round elimination has been to prove lower bounds for some concrete,
fixed problem such as maximal matching or Lovász local lemma [73, 74, 22, 26]. We
provide a novel application of round elimination by showing that, perhaps surprisingly,
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it can also be used to prove gap results, which are results that reason about all local
problems on a given graph class.

More precisely, we show that with the tool of round elimination at hand, there is a way
to prove Theorem 4.2, which proceeds as follows. We start with any problem Π for
which there exists a randomized algorithm A that solves Π in t(n) = o(log∗ n) rounds,
with probability 1− 1/poly(n). We fix some sufficiently large number n0 of nodes, and
apply bullet point and apply round elimination framework T = t(n) times to get a 0-
round algorithm A(T ) for a certain problem Π(T ). By analyzing the development of the
(local) failure probabilites of the algorithms appearing during the T applications of round
elimination, we can show that algorithm A(T ) still has a large probability of success, and
the fact that A(T ) is a 0-round algorithm enables us to infer that Π(T ) is in fact so easy
that it can be solved with a deterministic 0-round algorithm.

Finally, we run the round-elimination framework back T times to obtain a deterministic
T -round algorithm for the original problem Π. Due to fixing the number of nodes to n0,
the obtained T -round algorithm is only guaranteed to produce a correct output on n0-
node trees; however, due to the nature of 0-round algorithms and the precise definition
of the round elimination process (which are both independent of the number of nodes
of the input graph), the obtained algorithm can be shown to also work on trees with an
arbitrary number of nodes, with precisely the same, constant, runtime T (n0) = O(1).

Similarly to trees, we also settle the final missing piece in the classification of local
problems on oriented grids, restated next for convenience.

Theorem 2.31 (Classification of local problems on grids [258, 77, 94, 188]). Any solv-
able locally checkable labeling problem on d-dimensional oriented grids1 has one of the
following local complexities:

1. O(1),

2. Θ(log∗ n),

3. Θ(n1/d).

Namely, we prove the following theorem, improving upon the o( d
√
log∗ n) speedup from

[88].

Theorem 4.3 (Cf. Theorem 7.2). Let d be a fixed positive constant. Any LCL problem
(i.e., a local problem with inputs) on a d-dimensional oriented grid with local complexity
o(log∗ n) has, in fact, local complexity O(1).

1The edges of the input grid are consistently oriented.
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4.2 Bridging Local Algorithms to Other Areas

Next, we discuss the results presented in Chapters 8 to 10. These chapters present new
results related to extensions of the local algorithms theory to other models and appli-
cations of local algorithms. In particular, we will show bridges to the areas of the local
computation algorithms and the related volume complexity measure (see Section 3.2),
parallel algorithms and the distributed algorithms in the congest model (see Sections 3.1
and 3.3), and descriptive combinatorics and finitary factors (see Sections 3.5 and 3.6).

4.2.1 The Randomized Local Computation Complexity of the Lovász
Local Lemma

In Chapter 8, we analyze the volume complexity model using the techniques from local
algorithms. We prove that the volume complexity of sinkless orientation is Θ(log n) as
well as a part of the classification of local problems in the volume model in Theorem 3.2.
It is based mainly on the paper of Brandt et al. [81], with a part from the paper of [188]
covered in the previous chapter that fits more into this chapter.

Our main contribution is extending the classification of volume complexities that we
restate here for convenience.

Theorem 3.2 ([263, 127, 270, 188, 81]). In the class of bounded-degree graphs, each local
problem satisfies the following:

1. If its round complexity is O(1) (order-invariant regime), then its randomized/deterministic
volume complexity is O(1).

2. If its randomized/deterministic round complexity is ω(1) and O(log∗ n) (maximal
independent set / coloring regime), its randomized/deterministic volume complexity
is Θ(log∗ n).

3. If its randomized local complexity is ω(log∗ n) but o(log n) (Lovász local lemma
regime), its randomized volume complexity is between Ω(

√
log n) and O(log n).

Our contribution is to show the following general speedup theorem.

Theorem 4.4 (Cf. Theorem 8.2). For any locally checkable labeling problem Π on con-
stant degree graphs, if there is a randomized volume algorithm that solves Π and has a
volume complexity of o(

√
log n), then there is also a deterministic volume algorithm for

Π with a volume complexity of O(log∗ n).

To prove that result, we consider the deterministic volume model where the identifiers
can come from an exponential instead of a polynomial range. The result then follows
from two observations. First, a variant of the Chang-Pettie speedup [88] presented in
Theorem 2.22 shows that any volume algorithm with a probe complexity of o(n) that
works with exponential identifiers can be sped up to have a probe complexity of Θ(log∗ n).
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Second, a variant of the Chang-Kopelowitz-Pettie derandomization [94] covered in Theo-
rem 2.21 shows that any randomized algorithm with probe complexity o(

√
log n) can be

derandomized to give a deterministic o(n)-probe algorithm that works with exponential
identifiers.

We also prove the following result by an adaptation of an argument from [258].

Theorem 4.5 (Cf. Theorem 8.3). On constant degree graphs, there does not exist a local
checkable labeling problem with a deterministic or randomized volume complexity between
ω(1) and o(log∗ n).

We get a bit better understanding of volume complexities for certain important local
problems. In particular, we settle the volume complexity of sinkless orientation.

Theorem 4.6 (Cf. Theorem 8.1). The randomized volume complexity of the local lemma
(see Section 2.2) on constant degree graphs is Θ(log n). The upper bound holds for the
polynomially-relaxed version of the problem (see Section 2.2), while the lower bound holds
even for the exponential criterion p ≤ 2−∆ since this lower bound holds for the sinkless
orientation problem.

To prove an Ω(log n) lower bound for the sinkless orientation problem, we use similar ideas
to the proof of Theorem 8.2. However, we notice that the fact that one can prove the lower
bound for sinkless orientation with respect to an ID graph (discussed in Section 2.2) allows
us to conclude that any deterministic algorithm with o(log n) volume using polynomial
identifiers can be sped up to O(log∗ n) local complexity. However, this contradicts the
local lower bound for sinkless orientation [73].

4.2.2 Deterministic Low-Diameter Decompositions for Weighted Graphs
and Distributed and Parallel Applications

In Chapter 9, we use the techniques from local algorithms to construct parallel algorithms
for various clustering problems (see Theorem 3.5 for an example). This work implies new
parallel algorithms for metric embedding problems like the low stretch spanning tree
problem.

The chapter gives deterministic parallel and distributed algorithms for various clustering
results in weighted graphs. The main message is that once you can deterministically
and efficiently compute (1 + 1/ poly(log n))-approximate distances in undirected graphs
in your favorite parallel/distributed model, you can also deterministically and efficiently
solve various clustering problems. Since clusterings are very basic objects and approxi-
mate distances can efficiently and deterministically be computed in various parallel and
distributed models, our clustering results directly imply efficient deterministic algorithms
for various problems.

Let us give an example result proven in that chapter.
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Theorem 4.7 (Cf. Theorem 9.1). Let G be a weighted graph. We are given a set of
terminals Q ⊆ V (G) and a parameter R > 0 such that for every v ∈ V (G) we have
d(Q, v) ≤ R. Also, a precision parameter 0 < ε < 1 is given. There is a deterministic
distributed and parallel algorithm outputting a partition C of the vertices into clusters and
a subset of terminals Q′ ⊆ Q with the following properties:

1. Each cluster C ∈ C contains exactly one terminal q ∈ Q′. Moreover, for any v ∈ C
we have dG[C](q, v) ≤ (1 + ε)R.

2. For the set Ebad of edges connecting different clusters of C we have

|Ebad| = Õ

(
1

εR

)
·
∑

e∈E(G)

ℓ(e).

The PRAM variant of the algorithm has work Õ(m) and depth Õ(1). The CONGEST
variant of the algorithm runs in Õ(

√
n+ Diameter(G)) rounds.

This theorem is proven using techniques developed for deterministic local algorithms for
network decompositions, a problem discussed in Section 1.5. However, the arguments
used in the proof are substantially more complicated. Instead of growing balls by con-
sidering their neighborhoods, the algorithm for above theorem uses as a subroutine a
parallel algorithm of Rozhoň et al. [274] for the (1 + ε)-approximate shortest path prob-
lem on undirected graphs (that algorithm, in fact, also uses as subroutines algorithms
extending local algorithms for network decompositions).

An example application of this result is a deterministic parallel algorithm for the low-
stretch spanning tree problem.

Theorem 4.8 (Deterministic Low-Stretch Spanning Tree, cf. Theorem 9.2). Let G be a
weighted graph. Each edge e has moreover a nonnegative importance µ(e). There exists
a deterministic parallel and distributed algorithm which outputs a spanning tree T of G
such that

∑
e={u,v}∈E(G)

µ(e)dT (u, v) = Õ

 ∑
e={u,v}∈E(G)

µ(e)dG(u, v)

 . (4.1)

The PRAM variant of the algorithm has work Õ(m) and depth Õ(1). The CONGEST
variant of the algorithm runs in Õ(

√
n+ Diameter(G)) rounds.

4.2.3 Local Problems on Trees from the Perspectives of Distributed
Algorithms, Finitary Factors, and Descriptive Combinatorics

In Chapter 10, we use the techniques from local algorithms and descriptive combinatorics
to understand how the two are connected for tree graphs. We prove a number of results
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connecting the two fields in the regime where the input graph is a regular tree.

First, the chapter introduces the ID graph technique that we discussed in Section 2.2.
This technique was also applied in Chapter 8 to prove lower bounds in the volume
model and also found further applications in descriptive combinatorics [80]. The original
motivation of developing the technique was to adapt a lower bound for sinkless orientation
by Marks [244]. His result in fact proves a stronger result than the well-known Ω(log n)
deterministic lower bound – it proves that there is no so-called Borel solution for it.
While his technique is conceptually simple, it relies on the celebrated Borel determinacy
by Martin [246], a result known to be provable only with proofs that rely on the existence
of large uncountable infinities. We show in Chapter 10 that one can in fact recover a
simple Ω(log n) lower bound for sinkless orientation using his technique with the use of
the ID graph. We also generalize Marks’ technique to prove new local lower bounds that
are interesting mainly because they are the only known examples of local problems on
trees for which we miss a round-elimination lower bound.

Second, the chapter proves a fundamental link between local algorithms and descriptive
combinatorics, proving the following theorem:

Theorem 4.9 (Informal version of Theorem 10.56). On regular trees, a local problem
has round complexity O(log n) if and only if it admits a Baire measurable solution.

We will postpone the formal definition of the Baire measurable solution to Theorem 10.10.
Here, we recall that we have informally introduced the measurable graph in Section 3.5.
A Baire measurable solution on a measurable graph is a solution that fails on a small set
of vertices of that measurable graph. In particular, it fails only on a so-called meager
set; this is a standard topological definition of a “small” set.

Third, the chapter proves a number of results connected to the relation of local algo-
rithms, uniform local algorithms (see Section 3.6), and classes from descriptive combi-
natorics. For example, it proves that the descriptive class of so-called Borel solutions is
incomparable with classes from local algorithms, or shows how uniform local algorithms
can be used to refine the classification of local problems on trees from Theorem 2.33.

4.2.4 Remarks on Notation

We remark that the following chapters sometimes use a bit different notation than the
informal discussions so far. They often talk about “algorithms in the LOCAL model”
while so far we have discussed “local algorithms”, and similarly they use the shorthands
VOLUME and LCA for the volume and local computation algorithm model from Sec-
tion 3.2. They also use the shorthand “LCL problem” instead of “locally checkable labeling
problem” we have used so far. Sometimes, we need to somewhat refine our definitions
of local algorithms, complexities, or problems; the increased precision in definitions is
important e.g. when proving round-elimination lower bounds.



CHAPTER 5

A Simple Deterministic Distributed Low-Diameter Clustering

5.1 Introduction

This chapter focuses on distributed graph algorithms, particularly on the fundamen-
tal problem of deterministic and local ways to compute network decompositions and
low-diameter clusterings, which cluster at least half of the nodes in a given graph into
non-adjacent clusters with small diameter. In particular, the chapter describes a dras-
tically simplified efficient deterministic distributed construction for computing such a
low-diameter clustering with polylogarithmic diameter in polylogarithmic rounds of the
distributed CONGEST model.

Starting with the seminal work of Luby [239] from the 1980’s, fast and simple O(log n)-
round randomized distributed algorithms are known for many fundamental symmetry
breaking problems like maximal independent set (MIS) or ∆+ 1 vertex coloring. For a
long time, this was in stark contrast with the state-of-the-art deterministic algorithms.
For multiple decades, it was a major open problem in the area of distributed graph
algorithms to get deterministic algorithms with round complexity poly log(n) for such
problems, e.g., MIS or ∆ + 1 vertex coloring. A recent breakthrough of Rozhoň and
Ghaffari [276] managed to resolve this open problem.

In their work, the authors presented the first polylogarithmic-round deterministic al-
gorithm for network decompositions using a (weak-diameter version of) low-diameter
clusterings. Network decomposition is the object we get by repeatedly finding a low di-
ameter clustering and removing all the nodes in the clustering, until no node remains. See
Section 5.1.1 for the formal definitions. It was long known that low-diameter clusterings
is the up-to-then-missing fundamental tool required for a large class of LOCAL determin-
istic distributed algorithms. The clustering construction of [276] directly implied, among
others, first efficient distributed algorithms for MIS (together with the work of [84]) and
∆+1 vertex coloring (together with the work of [41]) in the standard bandwidth-limited
CONGEST model of distributed computing.

71
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The main difference in the natural low-diameter clustering problem defined above and the
weaker version solved in [276] is that clusters are not necessarily connected or induce a low
low-diameter subgraph on their own but instead have low weak-diameter. A cluster has
weak-diameter at most D if any two nodes in the cluster are connected by a path of length
at most D in the original graph G instead of within the cluster itself. Hence, a cluster may
even be disconnected. While the weak-diameter guarantee is enough for derandomizing
local computations without bandwidth limitations, including MIS and ∆ + 1-coloring,
the original – strong-diameter – clustering stated above is clearly the natural and right
object to ask for: It is strictly stronger, easier to define, easier to use in applications,
and requires less and simpler objects and notation. Indeed, in distributed models with
bandwidth limitations, such as the standard CONGEST model in which message sizes are
restricted, it is not sufficient that clusters have small weak-diameter but one also needs
to guarantee that there exist so-called low-depth Steiner trees connecting the nodes of
each cluster. The collection of these Steiner-trees must furthermore satisfy additional
low-congestion guarantees, i.e., each edge or each node in the graph is not used by too
many trees (as a Steiner node). Algorithms must also be able to compute the Steiner
forest of a weak-diameter clustering efficiently. Lastly, there are several applications,
e.g., low-stretch spanning trees, where strong-diameter clusterings are strictly required
and the weak-diameter guarantee does not suffice [272]. This motivated the later works
of [87, 272] to give low-diameter clustering algorithms with strong-diameter guarantees,
typically first building a weak-diameter clustering and then using this weak-diameter
clustering either for communication or using it as a starting point for building a strong-
diameter clustering out of it recursively. This multi-step process still requires to define
and maintain Steiner forests for weak-diameter clusterings during intermediate steps.

In this work, we show that there is a much simpler and more direct way to get strong-
diameter guarantees by designing a natural clustering process that combines key ideas
from [276] and [272].

5.1.1 Preliminaries: Distributed CONGEST Model and Low-Diameter
Clusterings

We will now briefly introduce the standard model for distributed message-passing al-
gorithms – the CONGEST model of distributed computing [264] (cf. Section 3.1) and
also give the definitions of clustering that we use (see Chapter 9 or Section 1.5 for more
discussion).

CONGEST : Throughout the chapter, we work with the CONGEST model, which is the
standard distributed message-passing model for graph algorithms [264]. The network is
abstracted as an n-node undirected graph G = (V,E) where each node v ∈ V corresponds
to one processor in the network. Communications take place in synchronous rounds. Per
round, each node sends one O(log n)-bit message to each of its neighbors in G. We also
consider the relaxed variant of the model where we allow unbounded message sizes, called
LOCAL . At the end of the round, each node performs some computations on the data
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it holds, before we proceed to the next communication round.

We capture any graph problem in this model as follows: Initially, the network topology
is not known to the nodes of the graph, except that each node v ∈ V knows its own
unique O(log n)-bit identifier. It also knows a suitably tight (polynomial) upper bound
on the number n of nodes in the network. At the end of the computation, each node
should know its own part of the output, e.g., in the graph coloring problem, each node
should know its own color.

Whenever we say that there is “an efficient distributed algorithm”, we mean that there is
a CONGEST algorithm for the problem with round complexity poly(log n).

Low Diameter Clustering: The main object of interest that we want to construct is
a so-called low diameter clustering, which we formally define after introducing a bit of
notation. Throughout the whole chapter we work with undirected unweighted graphs and
write G[U ] for the subgraph of G induced by U ⊆ V (G). We use dG(u, v) to denote the
distance of two nodes u, v ∈ V (G) in G. We also simplify the notation to d(u, v) when G is
clear from context and generalize it to sets by defining dG(U,W ) = minu∈U,w∈W dG(u,w)
for U,W ⊆ V (G). The diameter of G is defined as maxu,v∈V (G) dG(u, v).

We use the term clustering of G to denote any set of disjoint vertex subsets of G. A low
diameter clustering is a clustering with additional properties:

Definition 5.1 (Low Diameter Clustering). A low diameter clustering C with diameter
D of a graph G is a clustering of G such that:

1. No two clusters C1 ̸= C2 ∈ C are adjacent in G, i.e., d(C1, C2) ≥ 2.

2. For every cluster C ∈ C, the diameter of G[C] is at most D.

Similarly, we define a low diameter clustering with weak-diameter at most D by replacing
the condition (2) with he requirement that for each cluster C ∈ C and any two nodes
u, v ∈ C we have dG(u, v) ≤ D.

Whenever we construct a low diameter clustering, we additionally want it to cover as
many nodes as possible. Usually, we want to cover at least half of the nodes of G, or
formally, we require that

∣∣⋃
C∈C C

∣∣ ≥ n/2. Sometimes, it is also necessary to generalize
(1) and require a larger separation of the clusters, but this is not considered in this
chapter.

Let us now remind the reader of a formal definition of network decomposition (we use a
bit different notation from Theorem 1.5).

Definition 5.2 (Network Decomposition). A network decomposition with C colors and
diameter D is a coloring of nodes with colors 1, 2, . . . , C such that each color induces a
low-diameter clustering of diameter D.
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Notice that whenever we can construct a low-diameter clustering with diameter D that
covers at least n/2 nodes, we get a network decomposition by repeatedly constructing a
low diameter clustering and removing it from the graph. This way, we achieve a network
decomposition with C = O(log n) and diameter D. Since virtually all deterministic
constructions of network decomposition work this way, we focus on constructing low-
diameter clusterings from now on.

The reason why network decomposition is a useful object is that it corresponds to the
canonical way of using clusterings in distributed computing. To give an example, we
show how to use it to solve the maximal independent set problem in the less restrictive
LOCAL model.

Given access to a network decomposition, we iterate over the C color classes and gradually
build independent sets I1 ⊆ I2 ⊆ · · · ⊆ IC where IC is maximal. In the i-th step, each
cluster K of the low-diameter clustering induced by the i-th color computes a maximal
independent set in the graph induced by all the nodes in K that are not neighboring a
node in Ii−1 and we define Ii by adding these independent sets to Ii−1. The set IC is
clearly maximal. Computing the maximal independent set inside one cluster K can be
done in O(D) rounds of the LOCAL model as follows: One node of the cluster collects all
the information about G[K] and its neighborhood in G, then locally computes a maximal
independent set, and afterwards broadcasts the solution to the nodes in the cluster.
Hence, the overall algorithm has round complexity O(CD). Hence, given a network
decomposition with C,D = poly(log n), one can compute a maximal independent set
in poly(log n) rounds. Note that this brute-force approach for computing a maximal
independent set critically relies on the fact that the LOCAL model does not restrict the
size of messages.

In the more restrictive CONGEST model, computing a maximal independent set inside a
low diameter cluster becomes nontrivial, but one can use the deterministic MIS algorithm
of [84] with round complexity O(D · poly(log n)) where D is the diameter of the input
graph.

5.1.2 Comparison with Previous Work

We summarize the work on deterministic distributed low-diameter clusterings in the
CONGEST model in Table 5.1.

There are three highlighted rows in the table, besides our result we highlight the work of
[276] and [272]; The algorithm of this chapter combines ideas from both of these papers.

Let us now go through the rows of the table. The first two rows, together with the
related results of [262, 159, 157] represent the results before the work of [276] and are
not relevant to our chapter.

Next, there is the work of [276] and an improved variant of it by [170]. These were the
first deterministic efficient constructions of low diameter clusterings, however, they suffer
from only providing a weak-diameter guarantee.
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Paper Frac. clustered Diameter Strong? rounds

[13] 2−Ω(
√

log n log log n) 2O(
√

log n log log n) ✓ 2O(
√

log n log log n)

[151] 2−Ω(
√

log n) 2O(
√

log n) ✓ 2O(
√

log n)

[276] 1/2 O(log3 n) × O(log7 n)

[170] 1/2 O(log2 n) × O(log4 n)

[87] 1/2 O(log2 n) ✓ O(log10 n)

[87] 1/2 O(log3 n) ✓ O(log7 n)

[272] 1/2 O(log2 n) ✓ O(log4 n)

[172] Ω(1/ log logn) O(logn) ✓ Õ(log2(n))

[172] 1/2 O(logn · log log logn) ✓ Õ(log2(n))

this 1/2 O(log3 n) ✓ log6(n)

Table 5.1: This table shows the previous work on distributed deterministic algorithms
for low-diameter clusterings. We highlighted the three results relevant for this chapter.

Next, the work of [87] and [272] use the algorithm of [170] as a black blox and use addi-
tional ideas on top of the weak-diameter algorithm to create strong-diameter clusterings.
The row with [272] is highlighted because our algorithm uses an idea similar to theirs.

Finally, a very recent algorithm of [172] manages to bring down the diameter of the
clusters as well as the round complexity, with a very different technique than [276].
However, their algorithm is very complicated.

By far the simplest efficient algorithm from those in the table is the one from [276]. We
show that with a small modification to their algorithm in the spirit of the algorithm of
[272], we can get a very simple algorithm computing strong-diameter clusters. Formally,
we show the following result.

Theorem 5.3. There is a deterministic distributed algorithm that outputs a clustering
C of the input graph G consisting of separated clusters of diameter O(log3 n) such that
at least n/2 nodes are clustered. The algorithm runs in O(log6 n) CONGEST rounds.

Recall that by repeatedly applying above result we get the following corollary.

Corollary 5.4. There is a deterministic distributed algorithm that outputs a network
decomposition with C = O(log n) colors and diameter D = O(log3 n). The algorithm
runs in O(log7 n) CONGEST rounds.

Comparison of our algorithm with [276]:

We now give a high-level explanation of the algorithm of [276] and afterwards compare
it to our algorithm.

In the algorithm of [276], we start with a trivial clustering where every node is a cluster.
Every cluster inherits the unique identifier from the starting node. During the algorithm,
a cluster can grow, shrink and some vertices are deleted from the graph and will not be
part of the final output clustering. In the end, the nonempty clusters cluster at least n/2
nodes and their weak-diameter is O(log3 n).

More concretely, the algorithm consists of b = O(log n) phases where b is the number of
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bits in the node identifiers. In phase i, we split clusters into red and blue clusters based
on the i-th bit in their identifier; the goal of the phase is to disconnect the red from the
blue clusters by deleting at most n/(2b) nodes in the graph.

Here is how this is done. The i-th phase consists of O(b log n) steps. In general red
clusters can only grow and blue clusters can only shrink. More concretely, in each step
every node in a blue cluster neighboring with a red cluster proposes to join an arbitrary
neighboring red cluster. Now, for a given red cluster C, if the total number of proposing
blue nodes is at least |C|/(2b), then C decides to grow by adding all the proposing blue
nodes to the cluster. Otherwise, the proposing nodes are deleted which results in C not
being adjacent to any other blue nodes until the end of the phase.

One can see that the number of deleted nodes per phase is only n/(2b) in total, as
needed. On the other hand, each cluster can grow only O(b log n) times until it has
more than n nodes, which implies that the weak-diameter of each cluster grows only by
O(b log n) = O(log2 n) per phase.

This concludes the description of the algorithm of [276]. Note that the clusters from
their algorithm only have small weak-diameter since the nodes in a cluster can leave it
in the future and the cluster may then even disconnect.

Our strong-diameter algorithm: To remedy the problem with the weak-diameter
guarantee, we change the algorithm of [276] as follows: Instead of clusters, we will think
in terms of their centers that we call terminals. Given a set of terminals Q such that
Q is R-ruling, i.e., for every u ∈ V (G) we have dG(Q, u) ≤ R, we can always construct
a clustering with strong-diameter R by running a breadth first search from Q. Hence,
keeping a set of terminals is equivalent to keeping a set of strong-diameter clusters.

Our algorithm starts with the trivial clustering where Q = V (G). During the algorithm,
we keep a set of terminals Q and in each of the b phases we delete at most n/(2b) nodes
and make some nodes of Q nonterminals such that those remaining terminals with their
i-th bit equal to 0 are in a different component than those that have their i-th bit equal
to 1 (see Figure 5.2). Moreover, we want that if at the beginning of the phase the set
Q is R-ruling, then it is R+O(b log n)-ruling at the end of the phase (cf. the O(b log n)
increase in weak-diameter in the algorithm of [276]).

At the beginning of each phase, we run a breadth first search from the set Q, which gives
us a clustering with strong diameter R (see the left picture in Figure 5.3). We in fact
think of each cluster as a rooted tree of radius R.

We then implement the same growing process as [276], but with a twist: whenever a blue
node v proposes to join a red cluster, the whole subtree rooted at v proposes instead
of just v (see the middle picture in Figure 5.3). This is because rehanging/deleting the
whole subtree does not break the strong-diameter guarantee of blue clusters. If a blue
node joins a red cluster, it stops being a terminal.

The only new argument that needs to be done is that the diameter of red clusters does
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not grow a lot, which is trivial in the algorithm of [276] and follows by a simple argument
in our algorithm.

We note that the algorithm of [272] also keeps track of terminals. However, to separate the
red and blue terminals in one phase their algorithm relies on computing global aggregates,
which can only be done efficiently on a low-diameter input graph.

5.2 Clustering Algorithm

In this section we prove Theorem 5.5 given below, which is a more precise version of
Theorem 5.3.

Theorem 5.5 (Clustering Theorem). Consider an arbitrary n-node network graph G =
(V,E) where each node has a unique b = O(log n)-bit identifier. There is a deterministic
distributed algorithm that, in O(log6 n) rounds in the CONGEST model, finds a subset
V ′ ⊆ V of nodes, where |V ′| ≥ |V |/2, such that the subgraph G[V ′] induced by the set V ′

is partitioned into non-adjacent disjoint clusters of diameter O(log3 n).

Qi Qi+1

Figure 5.2: The figure shows one phase of the algorithm from Theorem 5.5. The left
figure contains a 3-ruling set of terminal nodes Qi that we start with at the beginning
of phase i. We split Qi into red and blue terminals according to the (i + 1)-th bit of
their identifiers. Then, we implement one phase of the algorithm. As a result, some of
the nodes are deleted (grey) and some blue terminals stop being terminals. The set of
remaining terminals Qi+1 is on one hand 6-ruling, on the other hand the blue terminals
in Qi+1 are separated from the red terminals.

We start by describing the algorithm outline of Theorem 5.5. The construction has b =
O(log n) phases, corresponding to the number of bits in the identifiers. For i ∈ [0, b− 1],
we denote by Vi the set of living vertices at the beginning of phase i. Initially, all nodes
are living and therefore V0 = V . In each phase, at most |V |/(2b) nodes die. Dead nodes
remain dead and will not be contained in V ′. Some of the alive nodes are terminals. We
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V
propose

0

F0

F1

Figure 5.3: This figure explains one step of the algorithm of Theorem 5.5, namely it
shows what happens between the middle and the right picture of Figure 5.2. The left
picture illustrates the beginning of the phase where we compute a BFS forest F0 from the
set Q of terminals. In the first (and any other) step (the middle picture) we construct
a set V propose

0 . Some proposals are accepted and the respective blue nodes join red
clusters, while some proposals are rejected and respective blue nodes are deleted (the
right picture).

denote the set of terminals at the beginning of phase i by Qi. Initially, all living nodes
are terminals and therefore Q0 = V .

Slightly abusing the notation, we let Vb and Qb denote the set of living vertices and
terminals at the end of phase b−1, respectively. We define V ′ to be the final set of living
nodes, i.e., V ′ = Vb, and each connected component of G[V ′] will contain exactly one
terminal in Qb.

For stating the key invariants the algorithm satisfies, we need the following standard
definition of a ruling set:

Definition 5.6 (Ruling set). We say that a subset Q ⊆ V (G) is R-ruling in G if every
node v ∈ V (G) satisfies dG(Q, v) ≤ R.

Construction invariants: The construction is such that, for each i ∈ [0, b], the following
three invariants are satisfied:

1. Ruling Invariant: Qi is Ri-ruling in G[Vi] for Ri = i ·O(log2 n).

2. Separation Invariant: Let q1, q2 ∈ Qi be two nodes in the same connected compo-
nent of G[Vi]. Then, the identifiers of q1 and q2 coincide in the first i bits.

3. Deletion Invariant: |Vi| ≥
(
1− i

2b

)
|V |.

Note that setting V0 = Q0 = V indeed results in the invariant being satisfied for i = 0.
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In the end, we set V ′ = Vb. The deletion invariant for i = b states that |V ′| ≥ |V |/2.
The separation invariant implies that each connected component of G[V ′] contains at
most one node of Qb. Together with the ruling invariant, which states that Qb is Rb-
ruling in G[V ′] for Rb = O(log3 n), this implies that each connected component of G[V ′]
has diameter O(log3 n). Next, in Section 5.2.1 we present the outline of one phase.
Afterwards, in Section 5.2.2 we prove the correctness of the algorithm and analyse the
CONGEST complexity.

5.2.1 Outline of One Phase

In phase i, we compute a sequence of rooted forests F0, F1, . . . , Ft in t = 2b2 = O(log2 n)
steps. At the beginning, F0 is simply a BFS forest in G[Vi] from the set Qi. At the end,
we set Vi+1 = V (Ft) and Qi+1 is the set of roots of the forest Ft.

Let j ∈ {0, 1, . . . , t − 1} be arbitrary. We now explain how Fj+1 is computed given Fj .
In general, each node contained in Fj+1 is also contained in Fj , i.e., V (Fj+1) ⊆ V (Fj),
and each root of Fj+1 is also a root in Fj . We say that a tree in Fj is a red tree if the
(i+ 1)-th bit of the identifier of its root is 0 and otherwise we refer to the tree as a blue
tree. Also, we refer to a node in a red tree as a red node and a node in a blue tree as a
blue node. Each red node in Fj will also be a red node in Fj+1. Moreover, the path to
its root is the same in both Fj and Fj+1. Each blue node in Fj can (1) either be a blue
node in Fj+1, in which case the path to its root is the same in both Fj and Fj+1, (2) be
deleted and therefore not be part of any tree in Fj+1, (3) become a red node in Fj+1.

Let V propose
j be the set which contains each node v which (1) is a blue node in Fj , and

(2) v is the only node neighboring a red node (in the graph G) in the path from v to its
root in Fj . For a node v ∈ V propose

j , let Tv be the subtree rooted at v with respect to Fj .
Note that it directly follows from the way we defined V propose

j that v is the only node in
Tv which is contained in V propose

j .

Each node in V propose
j proposes to an arbitrary neighboring red tree in Fj . Now, a given

red tree T in Fj decides to grow if

∑
v∈V propose

j :

v proposes to T

|V (Tv)| ≥
|V (T )|
2b

.

If T decides to grow, then it accepts all the proposals it received, and otherwise T declines
all proposals it received. We now set

V (Fj+1) = V (Fj) \

 ⋃
v∈V propose

j ,

the proposal of v was declined

V (Tv)

 .
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Each node in V (Fj+1) \ V propose
i has the same parent in Fj+1 and Fj , or is a root in

both Fj+1 and Fj . Each node in V (Fj+1) ∩ V propose
j , i.e., each node whose proposal got

accepted by some red tree T in Fj , changes its parent to be an arbitrary neighboring
node in the tree T . Note that if a red tree T decides to grow, then the corresponding
tree in Fj+1 contains at least

(
1 + 1

2b

)
|V (T )| vertices. Moreover, if T does not decide to

grow, then T is also a tree in Fj+1 and is not neighboring with any blue tree in Fj+1.
This follows from the fact that each blue node neighboring a red tree either becomes a
red node or gets deleted.

We now have fully specified how the rooted forests F0, F1, . . . , Ft are computed and recall
that in the end we set Vi+1 = V (Ft) and Qi+1 is the set of roots of the forest Ft.

5.2.2 Analysis

For each j ∈ {0, 1, . . . , t} and u ∈ V (Fj), we define dj(u) as the length of the path from u
to its root in Fj . Note that as F0 is a BFS forest, for any neighboring nodes w, v ∈ V (F0)
it holds that d0(w) ≤ d0(v) + 1.

Claim 5.7 (Ruling Claim). For every i ∈ {0, 1, . . . , t}, the following holds:

Blue Property: Every blue node in Fj satisfies dj(u) = d0(u).

Red Property: Every red node in Fj satisfies dj(u) ≤ d0(u) + 2j.

In particular, this implies that Invariant (I) is preserved.

Proof. The blue property directly follows from the fact that for any blue node the path
to its root in Fj is the same as the path to its root in F0. We prove the red property by
induction on j. The base case j = 0 trivially holds.

For the induction step, consider an arbitrary j ∈ {0, 1, . . . , t − 1}. We show that the
statement holds for j + 1 given that it holds for j.

Consider an arbitrary red node u in Fj+1. We have to show that dj+1(u) ≤ d0(u)+2(j+1).
If u is also a red node in Fj , then we can directly use induction. Hence, it remains to
consider the case u is a blue node in Fj .

In that case, there exists a node v ∈ V propose
j such that u ∈ V (Tv) and the proposal of

v was accepted. In particular, v’s parent in Fj+1 is some neighboring node w which is
part of some red tree in Fj (see Figure 5.4).

The path from u to its root r in Fj+1 can be decomposed into a path from u to v, an
edge from v to w and a path from w to its root r.

The path from u to v in Fj+1 is the same as the path from u to v in F0 and therefore
of length d0(u) − d0(v). The path from w to r in Fj+1 is the same as the path from w
to r in Fj and therefore has a length of dj(w) with dj(w) ≤ d0(w) + 2j according to the
induction hypothesis. Moreover, we noted above that because w and v are neighbors, we
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u

w
v

r

Figure 5.4: The figure shows the situation in the proof of Theorem 5.7. The path from
u to r splits into three parts: from u to v, then to w, then to r. The length of each part
is upper bounded separately.

have d0(w) ≤ d0(v)+ 1. Hence, we can upper bound the length of the path from u to its
root in Fj+1 by

dj+1(u) ≤ (d0(u)− d0(v)) + 1 + (d0(w) + 2j) ≤ d0(u) + 2(j + 1)

which finishes the induction proof. It remains to prove the last part of the claim. To
that end, assume that the ruling invariant is satisfied for i, i.e., Qi is Ri-ruling in G[Vi]
for Ri = i ·O(log2 n). Then, every node u in V (Ft) = Vi+1 satisfies

dG[Vi+1](Qi+1, u) ≤ dt(u) ≤ d0(u) + 2t ≤ i ·O(log2 n) +O(log2 n) = (i+ 1)O(log2 n)

and therefore the ruling invariant is satisfied for i+ 1.

Claim 5.8. (Separation Claim) No red node in Ft is neighboring a blue node in Ft. In
particular, this implies that Invariant (II) is preserved.

Proof. We observed during the algorithm description that each red tree that decides to
grow grows by at least a (1 + 1

2b)-factor in a given step. Our choice of t = 2b2 implies
that

(
1 +

1

2b

)t

=

((
1 +

1

2b

)2b
)(t/2b)

> 2t/2b = 2b ≥ n,

and therefore each tree eventually stops growing. However, once a tree decides not
to grow, it is not neighboring with any blue node and therefore no red node in Ft is
neighboring a blue node in Ft. In particular, this implies that each connected component
of G[Vi+1] = G[V (Ft)] either entirely consists of blue nodes in Ft or entirely consists of
red nodes in Ft. As the (i+ 1)-th bit of the identifier of each red root in Ft is 0 and the
(i + 1)-th bit of the identifier of each blue root in Ft is 1, we get that each connected
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component of G[Vi+1] either contains no node in Qi+1 with the (i + 1)-th bit of the
identifier being 0 or no node in Qi+1 with the (i + 1)-th bit of the identifier being 1,
which implies that the separation invariant is preserved.

Claim 5.9 (Deletion Claim). It holds that |Vi+1| = |V (Ft)| ≥
(
1− 1

2b

)
|V (F0)| ≥ |Vi| −

|V |
2b . In particular, this implies that Invariant (III) is preserved.

Proof. A node u got deleted in step i, i.e., u ∈ V (Fj) \ V (Fj+1), because of some tree T
in Fj which decided to stop growing, as

∑
v∈V propose

j : v proposes to T

|V (Tv)| <
|V (T )|
2b

.

We blaim this tree T for deleting u. Note that T only receives blaim in step j and at
most |V (T )|

2b deleted nodes blaim T . During the algorithm description, we observed that
T is not neighboring any blue node in Fj+1 and therefore T is also a tree in Ft. Hence,
each deleted node in V (F0) \ V (Ft) can blaim one tree T in Ft for being deleted in such
a way that each such tree gets blaimed by at most 1

2b |V (T )| nodes, which directly proofs
the claim.

Proof of Theorem 5.5. The algorithm has O(log n) phases, with each phase consisting of
O(log2 n) steps. It directly follows from the ruling claim that each step can be executed in
O(log3 n) CONGEST rounds. Hence, we can compute V ′ in O(log6 n) CONGEST rounds,
which together with the previous discussion finishes the proof of Theorem 5.5.



CHAPTER 6

Sharp Threshold Phenomenon for the Lovász Local Lemma

6.1 Introduction

This chapter discusses Lovász Local lemma (LLL). 1 The Lovász Local Lemma is a
celebrated result from 1975 due to Erdős and Lovász [125], with applications in many
types of problems such as coloring, scheduling or satisfiability problems [5, 54, 102, 113,
114, 124, 192, 231, 256]. While we already discussed the lemma in Section 2.2, let us
state its dependency-graph variant here again and more formally.

Lovász Local Lemma (LLL) 1. Let {X1, . . . , Xm} be a set of mutually independent
random variables and E1, . . . , En probabilistic events that depend on the Xi. For each Ei,
let vbl(Ei) denote the random variables Ei depends on. We say that Ei and Ej share a
random variable if vbl(Ei) ∩ vbl(Ej) ̸= ∅. Assume that there is some p < 1 such that for
each 1 ≤ i ≤ n, we have P (Ei) ≤ p , and let ∆ be a positive integer such that each Ei
shares a random variable with at most ∆ other Ej (where j ̸= i). Then, if 4p∆ ≤ 1, there
exists an assignment of values to the random variables such that none of the events Ei
occurs.2

Brandt, Maus and Uitto [78] showed that if we restrict the random variables to affect at
most 3 events each (which they call rank at most 3), then under the criterion p2∆ < 1,
there is a deterministic LLL algorithm with a complexity of O(poly∆ + log∗ n). They
conjectured that this behavior also holds without their restriction on the variables.

Conjecture 6.1 ([78], rephrased). There is a (deterministic) distributed algorithm that
solves the LLL problem in time O(∆2 + log∗ n) under the criterion p2∆ < 1.

In this work, we prove Conjecture 6.1, by providing such a deterministic algorithm. This
gives a first (unrestricted) answer to the aforementioned question about the relation

1Based on a paper by: Sebastian Brandt, Christoph Grunau, Václav Rozhoň.
2We note that the LLL criterion 4p∆ ≤ 1 guaranteeing the existence of the desired variable assign-

ment is not optimal and has been subject to improvements by Spencer [284] and Shearer [282].
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between the LLL criterion and the complexity of the LLL: a sharp transition occurs
at the criterion p2∆ < 1, where the complexity of the LLL drops from Ω(log logn)
randomized, resp. Ω(log n) deterministic, to O(∆2+log∗ n). Moreover, our upper bound
is tight on bounded-degree graphs due to the Ω(log∗ n) lower bound by Chung, Pettie and
Su [102]. Finally, as is the nature of upper bounds for the LLL, our result immediately
implies the same upper bound for all problems that can be phrased as an LLL problem
with criterion p2∆ < 1, such as certain hypergraph edge-coloring problems or orientation
problems in hypergraphs (see [78]).

Previous Techniques: Our work builds on techniques developed in [78]. In their
work, Brandt, Maus and Uitto obtain an O(∆2+log∗ n)-round LLL algorithm under the
criterion p2∆ < 1 for the case of variables of rank at most 3. In the following, we give
an informal overview of their approach.

The basic idea of the algorithm is to go sequentially through all variables and fix them
to some values one by one while preserving a certain invariant that makes sure that
the final assignment avoids all events. In order to define the invariant, each edge of the
dependency graph is assigned two non-negative values, one for each endpoint of the edge,
that sum up to at most 2. When fixing a random variable, the algorithm is also allowed
to change these “book-keeping" values. The invariant now states that for any node v in
the dependency graph, the product of the deg(v) values around v multiplied by p is an
upper bound for the conditional probability of the event Ev associated with node v to
occur (where we naturally condition on the already-fixed random variables being fixed
as prescribed by the (partial) value assignments performed by the algorithm so far). If
this invariant is preserved, then, after all variables are fixed, each event Ev occurs with
probability at most 2deg(v) · p ≤ p2∆ < 1, and therefore with probability 0, as desired.

Brandt, Maus and Uitto do not only show that such a sequential process preserving the
invariant at all times exists (even if the order in which the random variables have to be
fixed are chosen adversarially), but also that it can be made to work in a local manner: in
order to fix a random variable, the algorithm only needs to know the random variables and
edge values in a small local neighborhood. This allows to process random variables that
affect events that are sufficiently far from each other in the dependency graph in parallel.
By adding an O(log∗ n)-round preprocessing step to the algorithm where a 2-hop node
coloring with O(∆2) colors is computed in the dependency graph, the sequential fixing
process can then be parallelized by iterating through the color classes in a standard way,
yielding the desired runtime of O(∆2 + log∗ n) rounds. We will provide a more detailed
overview of the algorithm from [78] in Section 6.1.1.

The crucial, and rather surprising, observation making the algorithm work is that in each
step in which a random variable is fixed, the existence of a value for that random variable
that preserves the invariant is guaranteed if a certain function is shown to be convex on
some domain. Hence, proving the existence of the desired algorithm is reduced to solving
an analytical problem for a fixed function f , providing a very intriguing connection
between distributed algorithms and analysis. To be precise, Brandt, Maus und Uitto show
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that for any integer r ≥ 2, there is a fixed function fr : ∆→ R on some domain ∆ ⊂ Rr−1

satisfying the following property: if fr is convex, then for any rank-r random variable,
there is a value that this variable can be fixed to such that the invariant is preserved.
By proving the convexity of f3(a, b) = 4+ 1/2 · (ab− 2a− 2b−

√
ab(4− a)(4− b)), they

prove the desired upper bound for the case of variables of rank at most 3.3

One of the main problems with extending this proof to arbitrary ranks is that the function
is only given in an indirect way, by a characterization of the set of points in Rr that lie
below and on the function. No closed-form expression describing fr is known for any
r > 3, and the relatively compact form of the function for the case r = 3 is arguably
due to the cancellation of certain terms that do not cancel out in higher dimensions. In
fact, none of the ways to obtain f3 from the characterization of the mentioned point set
seems to yield any closed-form expression if adapted to higher dimensions, and even if a
closed-form expression for all fr were found in some way, it is far from clear that proving
convexity of these functions would be feasible.

New Techniques: We overcome this obstacle by showing that, perhaps surprisingly,
even without any analytical access to the functions fr, we can infer their convexity for
all r. In the following we give an informal overview of our approach. Our main idea is to
prove convexity of fr—or equivalently, convexity of the set bounded by fr from below—
by finding a so-called locally supporting hyperplane for each point q on fr. More precisely,
for each such q, we want to find a number of vectors such that the following two properties
hold:

1. The affine subspace of Rr spanned by the vectors and containing q is a hyperplane,
i.e., an affine subspace of dimension r − 1.

2. In an ε-ball around q, the hyperplane is contained in the set consisting of all points
on and below fr.

These properties ensure convexity of fr in q; however, a priori it is completely unclear
how to find such vectors. In order to obtain these vectors, we consider the combinatorial
description of the points on and below fr that is tightly connected to the aforementioned
invariant: Consider a hyperedge of rank r and write two non-negative values that sum up
to at most 2 on each edge of the skeleton of the hyperedge (i.e., a clique induced by the
hyperedge) one value for each endpoint of the edge. For each endpoint of the hyperedge
multiply the r−1 values belonging to the endpoint, and consider the r-dimensional vector
obtained by collecting the resulting products. The points that can be generated in this
way are exactly the (non-negative) points that lie on or below fr.

For each such point q′, call the tuple of the Θ(r2) values written on the edges that
generate q′ in the above description a generator of q′; a point can have (and usually has)
more than one generator. Roughly speaking, we find the desired vectors for a point q
by picking an arbitrary generator and, for each edge e in the skeleton of the hyperedge,

3Taking care of the case of rank-1 and rank-2 variables is comparably easy.
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computing the vector by which q changes if we subtract some small ε from one value
on e and add it to the other. A crucial insight is that it is fine to pick such a large
set of Θ(r2) ≫ r − 1 vectors: due to the specific construction, one can show that the
affine subspace spanned by these Θ(r2) vectors and containing q is (r − 1)-dimensional.
Moreover, the redundancy contained in this choice enables us to prove Item 2 by finding,
for each q′ on the hyperplane in an ε-ball around q, a way to write q′ − q as a linear
combination of r − 1 of these vectors that satisfies certain desirable properties.

Note that we will use terminology that does not refer to the convexity of the function fr
as we do not make use of this function from an analytical perspective. Instead, we will
aim for the equivalent goal of showing that the set bounded by fr from below is convex,
by making use of its combinatorial description.

6.1.1 The Reduction

In this section, we will give a detailed explanation of the argumentation presented in [78]
that reduces proving the existence of an O(∆2 + log∗ n)-round distributed deterministic
LLL algorithm under the criterion p2∆ < 1 to showing that a certain family of sets or
functions is convex. The blueprint for such an algorithm A is given as follows.

Consider an instance of the LLL, given by a set {X1, . . . , Xm} of mutually independent
random variables and a set of events that depend on the random variables. Consider the
dependency graph G = (V,E) of this instance, and denote the event associated with a
vertex v by Ev, and the maximum degree of G by ∆. Let p be a parameter such that
each event occurs with probability at most p, and assume that p2∆ < 1, i.e., fix the LLL
criterion to p2∆ < 1. As any two events that depend on the same variable are neighbors
of each other in G, we can create for each random variable Xi a hyperedge that has the
nodes v such that Ev depends on Xi as endpoints. Technically, the hyperedges are not
part of G, but for simplicity, we might consider them as such.

Algorithm A starts by computing a 2-hop coloring with O(∆2) colors in Õ(∆)+O(log∗ n)
rounds, by applying the coloring algorithm by Fraigniaud, Heinrich and Kosowski [136]
to G2, i.e., to the graph obtained by connecting any two nodes of distance at most 2 in
G by an edge. Then, it iterates through the colors one by one, and each time a color c is
processed, each node v of color c fixes each incident random variable (i.e., each random
variable whose corresponding hyperedge is incident to v) that has not been fixed so far.
We will see that in order to fix all incident random variables of a node in a suitable way,
O(1) rounds suffice, and as there are O(∆2) colors, algorithm A runs in O(∆2 + log∗ n)
rounds.

The challenging part is to fix the random variables in a manner such that the produced
final assignment is correct, i.e., such that none of the events occurs under the assignment.
To this end, during the fixing process the authors keep track of, roughly speaking, how
favorable or unfavorable the variable fixings performed so far were for the nodes (regard-
ing avoiding the associated event), by assigning two values to each edge. More precisely,
they assign a non-negative value φv

e to each pair (e, v) ∈ E × V for which e is incident
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to v. We can imagine the two values φu
e and φv

e to be written on edge e; each time a
random variable Xi is fixed by a node, the node also updates the values that are written
on the edges in the skeleton of the hyperedge corresponding to Xi.

The purpose of these edge values w.r.t. obtaining a correct output in the end of the
process is to define a property P ∗ that is kept as an invariant during the fixing process
and guarantees that the final assignment avoids all events. Consider an arbitrary point
in the fixing process where some random variables X1, . . . , Xℓ already have been fixed
to some values x1, . . . , xℓ, respectively. Property P ∗ is satisfied if the following two
conditions hold.

1. φu
e + φv

e ≤ 2 for each edge e = {u, v}.

2. P (Ev | X1 = x1, . . . , Xℓ = xℓ) ≤ p ·
∏

e∋v φ
v
e for each node v.

If Property P ∗ is satisfied when all variables have been fixed, then for each event Ev
we have a bound of p ·

∏
e∋v φ

v
e ≤ p2∆ < 1 for the probability that Ev occurs, which

implies that Ev does not occur since the probability of it occurring can only be 0 or 1. By
initializing each value φv

e to 1, the authors make sure that P ∗ is satisfied when algorithm
A starts. The crucial insight in [78] is that there is always a way to preserve Property
P ∗ each time a random variable is fixed if a certain function or set is convex. For the
precise statement, the authors introduce the notion of a representable triple.

Definition 6.2 (Definition 3.3 of [78]). A triple (a, b, c) ∈ R3
≥0 is called representable if

there are values a1, a2, b1, b3, c2, c3 ∈ [0, 2] such that a1 ·a2 = a, b1 ·b3 = b, c2 ·c3 = c, a1+
b1 ≤ 2, a2+c2 ≤ 2, and b3+c3 ≤ 2. Let Srep = {(a, b, c) ∈ R3

≥0 | (a, b, c) is representable}
denote the set of all representable triples.

Using this definition, the authors prove the following statement for the case of rank-3
random variables (which we give in a reformulated version using the notion of convexity
instead of the concept of “incurvedness" used in [78]).

If [0, 2]3 \ Srep is a convex set, then there is a way to fix any given random variable Xi

of rank at most 3 at any point in time during the algorithm (or, more generally, for
any arbitrary fixing of already fixed random variables such that Property P ∗ is satisfied)
such that Property P ∗ is preserved. Moreover, the only information required to fix Xi is
the set of values φv

e written on the edges e that belong to the skeleton of the hyperedge
corresponding to Xi. We refer to [78, Section 3.3] for the details of the proof.

Hence, in algorithm A, each node v that has the task to fix all its incident unfixed random
variables can simply collect all edge values written on edges between nodes in its inclusive
1-hop neighborhood, and then go through its incident random variables one by one, each
time finding a value for the random variable in question that preserves Property P ∗. As
the sequential fixing does not require any communication after obtaining the required
edge values, fixing all incident unfixed variables of a node can be done in O(1) rounds.
Moreover the local nature of P ∗ and the fact that the set of edge values required and
rewritten by a node during the fixing does not intersect with the set of analogous edge
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values for a node in distance at least 3 ensures that any two nodes with the same color in
the computed 2-hop coloring can perform the variable fixing in parallel. This concludes
the description of the reduction.

As already noted by the authors, the definitions and proofs (for the reduction to the
convexity statement) generalize straightforwardly to the case of random variables of
arbitrary rank. However, showing that the convexity of the respective set indeed holds for
higher dimensions remained unanswered in [78]; and indeed, even given our resolution,
it remains unclear and would be interesting to see whether their analytical approach
can feasibly be extended to higher dimensions than 3. To be precise, their approach
extends in the following way: to prove the existence of the deterministic algorithm in the
case that each random variable affects at most r events, it suffices to prove that the set
S
(r)
non := [0, 1]r \S(r)

rep is convex, where S
(r)
rep is the set of all representable tuples, which are

tuples that can be generated by some generator, as defined below.

Definition 6.3 (generator). We call a vector (aij)i ̸=j∈[r] with r(r − 1) coordinates a
generator if for each i ̸= j we have 0 ≤ aij ≤ 1 and aij + aji ≤ 1. The generator
(aij)i ̸=j∈[r] generates the r-dimensional tuple (a1, . . . , ar) with ai =

∏
j∈[r]\{i} aij for i ∈

[r]. We call a generator non-zero, if none of its coordinates is 0. We use a shorthand
notation and denote the generator (aij)i ̸=j∈[r] simply as (aij).

Note that if (aij) is a non-zero generator, then aij < 1 for each i ̸= j ∈ [r].

Definition 6.4 (representable tuples). A tuple (a1, . . . , ar) ∈ Rr
≥0 is called representable

if there exists a generator (aij) that generates it. Let S
(r)
rep = {(a1, . . . , ar) ∈ Rr

≥0
|(a1, . . . , ar) is representable } denote the set of all representable tuples.

Note that S
(3)
rep ̸= Srep, as we require aij + aji ≤ 1 instead of aij + aji ≤ 2. We consider

this scaled version, as this makes the proof cleaner later on: note that [0, 1]3 \S(3)
rep being

convex directly implies that [0, 2]3 \ Srep is convex as the latter is just a scaled variant
of the former set. In the following, we drop the superscripts when clear from context
and we denote with Srep the set of representable tuples with respect to the scaled down
version and Snon as the set of points in [0, 1]r which are not representable. Our main
contribution is the proof of the following theorem.

Theorem 6.5. For every r ≥ 2, S(r)
non is convex.

This settles Conjecture 6.1 as described above.

6.2 Proving convexity

In this section we prove that set Snon is convex, omitting two longer proofs that are
postponed to Section 6.3 and Section 6.4.
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6.2.1 Notation

We work with the standard Euclidean space Rm where distances are measured with the
Euclidean norm; 0 and 1 denote the vectors (0, 0, . . . , 0)T and (1, 1, . . . , 1)T , respectively.
We define B(x,R) := {y ∈ Rm, ∥x− y∥ ≤ R} as the closed ball around x with radius R.
A subset S ⊆ Rm is open if for any x ∈ S, there exists R > 0 such that B(x,R) ⊆ S. A
subset S ⊆ Rm is closed if Rm \S is open. A set S ⊆ Rm is bounded if there exists R > 0
such that S ⊆ B(0, R). A set S is compact if it is closed and bounded. Equivalently,
S is compact if every sequence x1, x2, . . . with each xi ∈ S has a subsequence xs(i) that
converges to some x ∈ S. The subset [0, 1]m ⊆ Rm is compact. The interior of a set S is
an open subset of S and defined as So = {x ∈ S, ∃R > 0 : B(x,R) ⊆ S}. The boundary of
a set S is defined as ∂S = {x ∈ Rm,∀R > 0 : B(x,R)∩ S ̸= ∅ and B(x,R)∩ (Rm \ S) ̸=
∅}. A set S is path-connected if for any x, y ∈ S there exists a continuous function
f : [0, 1]→ S such that f(0) = x and f(1) = y.

A hyperplane H ⊂ Rm is an affine subspace of dimension m− 1. Equivalently, it is a set
of points H = {x ∈ Rm, hTx = b} for some vector h ∈ Rm \ {0} and b ∈ R. A weakly
supporting hyperplane for S intersecting y ∈ ∂S is a hyperplane H = {x ∈ Rm, hTx = b}
with hT y = b and hT z ≥ b for any z ∈ S. Finally, a weakly locally supporting hyperplane
for S intersecting y ∈ ∂S is a hyperplane H = {x ∈ Rm, hTx = b} with hT y = b satisfying
the following property: there exists an ε > 0 such that for any z ∈ S ∩ B(y, ε) we have
hT z ≥ b.

6.2.2 Proof

Convexity of a set can be verified in several equivalent ways. As we outlined in Section 6.1,
we rely on the “supporting hyperplane formulation”, i.e., a set is convex if for each
boundary point we can find a hyperplane such that the whole set lies on one side of
the hyperplane. Moreover, for connected sets, it is enough to prove that each such
hyperplane is “locally” supporting as formalized in the following theorem, which is stated
in a more general form in [295] (Theorem 4.10 there).

Theorem 6.6. Let S ⊆ Rr be an open and path-connected set in Rr. The set S ⊆ Rr is
convex if for every point y contained in the boundary of S, there exists a weakly locally
supporting hyperplane with respect to S going through y.

Note that Theorem 6.6 can only be used to prove convexity of open sets and thus cannot
directly applied to establish the convexity of Snon. Instead, we use Theorem 6.6 to first
establish convexity of the interior of Snon, which is an open set and which we denote by
So

non. Once we have established the convexity of So
non, we prove the convexity of Snon by

induction on the dimension r. To prove convexity of So
non, we need to show that So

non is
path-connected and that for every boundary point of So

non, there exists a weakly locally
supporting hyperplane going through the boundary point. We now prove the former,
using the following simple observation, which will be used in several other proofs.
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Observation 6.7. Let a = (a1, . . . , ar) be a representable tuple. Then any tuple a′ with
0 ≤ a′i ≤ ai for all i ∈ [r] is also representable.

Proof. Consider a generator (aij) of a. For any i, pick some j ̸= i and set a′ij = aij ·
a′i
ai
≤ 1.

Set all other values in (a′ij) equal to the corresponding value in (aij). (a′ij) is a valid
generator generating the tuple a′.

Now, we are ready to prove that So
non is path-connected.

Lemma 6.8. The set So
non is path-connected.

Proof. For any u, u′ ∈ So
non, consider the vector u′′ ∈ Rr with u′′i = max{ui, u′i} > 0 for

every i ∈ [r]. Note that the union of the two segments between u and u′′ and between
u′′ and u′ is a path. Moreover, any tuple on this path is contained in (0, 1)r and either
dominates u or u′. Hence, by Observation 6.7, each tuple on the path is in So

non.

Next, we need to understand the boundary between Srep and Snon. To do so, it will be
helpful to prove that Srep is closed. As Srep ⊆ [0, 1]r is bounded, this is equivalent to
show that Srep is compact.

Lemma 6.9. The set Srep is compact.

Proof. The set Srep is defined as an image of a continuous function that maps each
generator (Theorem 6.3) from the compact set of all generators to the corresponding
representable tuple. Hence, it is compact as an image of a compact set under continuous
function is always compact.

Next, we set up the notion of maximal tuples.

Definition 6.10 (domination and maximal tuples). Let a = (a1, . . . , ar) and a′ =
(a′1, . . . , a

′
r) be two representable tuples. We say that a′ weakly dominates a if a′i ≥ ai for

all i ∈ [r], and a′ ̸= a. Moreover, we say that a′ strongly dominates a if a′i > ai for all
i ∈ [r]. We call a representable tuple a maximal if there is no representable tuple a′ that
weakly dominates a.

Intuitively, maximal tuples are forming the boundary between Srep and Snon and this is
indeed what we prove.

Lemma 6.11. Let x ∈ Rr be contained in ∂Snon. Then, there either exists i ∈ [r] such
that xi ∈ {0, 1} or x is a maximal representable tuple.

We defer the easy, yet slightly technical proof, together with proofs of a few other tech-
nical lemmas, to Section 6.3. Our main technical contribution is a proof that a locally
supporting hyperplane can be found for any maximal tuple a.
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Lemma 6.12. For each maximal representable tuple a, there exists a locally supporting
hyperplane for So

non intersecting a.

The non-trivial proof of the above lemma is deferred to Section 6.4. As a corollary, we
infer that the whole set So

non is convex.

Corollary 6.13. The set So
non is convex.

Proof. By Theorem 6.6 it suffices to provide a weakly locally supporting hyperplane for
any a ∈ ∂Snon. By Theorem 6.11, any a ∈ ∂Snon is either a maximal representable tuple
and hence the existence of the supporting hyperplane follows from Theorem 6.12, or we
have ai = 0 or ai = 1, respectively, for some i. But then the hyperplane {x ∈ Rr : eTi x =
0} or {x ∈ Rr : − eTi x = −1}, respectively, is a weakly (locally) supporting hyperplane
for So

non intersecting a.

The proof of Theorem 6.5 now easily follows.

Proof of Theorem 6.5. We prove the statement by induction on r. For r = 2, the
statement trivially holds. Now, let r ≥ 3 arbitrary and assume that S

(r−1)
non is con-

vex. Let x ̸= y ∈ S
(r)
non and α ∈ (0, 1) be arbitrary. We need to show that for

z := αx + (1 − α)y we have z ∈ S
(r)
non. As S

(r)
rep is a closed set (Theorem 6.9), there

exists some ε with 0 < ε < min(α, 1 − α) such that x′ = (1 − ε)x + εy ̸∈ S
(r)
rep and,

hence, x′ ∈ S
(r)
non since the whole segment {βx + (1 − β)y, 0 < β < 1} is contained in

[0, 1]r, and y′ := (1− ε)y+ εx ∈ S
(r)
non. Furthermore, there exists an α′ ∈ (0, 1) such that

z = α′x′ + (1− α′)y′.

If x′, y′ ∈ So
non

(r), then, by Theorem 6.13, it follows that z ∈ So
non

(r) and we are done.
Otherwise, x′ ̸∈ So

non
(r) or y′ ̸∈ So

non
(r). Without loss of generality, assume that x′ ̸∈

So
non

(r). Since x′ ̸∈ S
(r)
non, Theorem 6.11 implies that there exists some i ∈ [r] with x′i ∈

{0, 1}. Our choice of ε > 0 now implies that either xi = yi = zi = 1 or xi = yi = zi = 0.

In the first case, as x is not representable, there exists some j ∈ [r] \ {i} with xj > 0.
Therefore, zj > 0 and as zi = 1, any generator of z would need to have zij = 1 and
zji > 0, a contradiction with zij + zji ≤ 1. Hence, z ∈ S

(r)
non.

In the second case, assume without loss of generality that i = r. Let x̃, ỹ, z̃ ∈ [0, 1]r−1

be equal to the vectors x, y and z restricted to the first r − 1 coordinates. We have
x̃, ỹ ∈ S

(r−1)
non , since otherwise taking their generator and augmenting it by zeros would

generate x or y, respectively. As z̃ is a convex combination of x̃ and ỹ, the induction
hypothesis implies that z̃ ∈ S

(r−1)
non and therefore z ∈ S

(r)
non, which concludes the induction

step.
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6.3 Technical preparation

In this section we prove several technical results that are needed for the proof. First, we
prove the equivalence of the notions of weak and strong dominance. To this end, we first
show a simple “continuity” statement that shows that for any representable tuple a, one
can increase all but one of its coordinates a little bit at the expense of decreasing the
remaining one.

Lemma 6.14. Let (a1, . . . , ar) be a representable tuple with ai > 0 for each i ∈ [r]. For
each k ∈ [r], there exist an ε > 0 and a ξ > 0 such that for all t with 0 < t < ε, the tuple
a′ defined by a′k = ak − t and a′i = ai + ξt for i ̸= k is also representable.

Proof. Let (aij) be a generator of (a1, . . . , ar). As ai > 0 for each i ∈ [r], (aij) is a
non-zero generator. Now, for some δ > 0, consider (bij) with

bij =


aij − δ if i = k

aij + δ if j = k

aij otherwise

for each i ̸= j ∈ [r]. We have bij + bji = aij + aji ≤ 1 for each i, j ∈ [r], i ̸= j.
Furthermore, if we choose δ such that 0 < δ < ε′ := mini ̸=j∈[r]min(aij , 1 − aij) < 1, we
have 0 ≤ bij ≤ 1 for each i, j ∈ [r], i ̸= j. In that case, (bij) is a valid generator that
generates a tuple (b1, . . . , br) such that:

bk =
∏
j ̸=k

bkj =
∏
j ̸=k

(akj − δ) ≥

∏
j ̸=k

akj

− δf((aij)) = ak − δf((aij))

for some function f with f((aij)) > 0. Note that such a function f exists, as δ < 1 and
therefore δe ≤ δ for each e ≥ 1. For each i ∈ [r] \ {k}, we have:

bi =
∏
j ̸=i

bij = (aik + δ) ·
∏

j /∈{i,k}

aij = ai + δ ·
∏

j /∈{i,k}

aij

≥ ai + δ ·
∏
j ̸=i

aij = ai + δai

Set t = δ·f((aij)), ξ = 1
f((aij))

mini∈[r] ai > 0 and ε = ε′·f((aij)) > 0. Now, consider some
arbitrary t with 0 < t < ε. The definition of ε implies that 0 < δ = t

f((aij))
< ε

f((aij))
= ε′.

Thus, we can represent a tuple (b1, . . . , br) with bk ≥ ak − δf((aij)) ≥ ak − t = a′k and
bi ≥ ai + δ · ai ≥ ai + ξ · t = a′i for i ̸= k. This tuple dominates the tuple a′. As a′i ≥ 0
for each i ∈ [r], Observation 6.7 implies that we can represent a′.
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Now we are ready to show that if a tuple is weakly dominated by some other tuple, it is
also strongly dominated by (a potentially different) one.

Corollary 6.15 (strong vs weak domination). Let a = (a1, . . . , ar) be a representable
tuple such that for all i ∈ [r] we have 0 < ai < 1. If there exists a representable tuple that
weakly dominates a, then there also exists a representable tuple that strongly dominates
a.

Proof. Let (a′1, . . . , a
′
r) be a representable tuple that weakly dominates a. Note that we

have a′i > 0 for each i ∈ [r]. Let k ∈ [r] such that a′k > ak. According to Theorem 6.14,
there exists ε > 0 and ξ > 0 such that for all 0 < t < ε, the tuple (a′1 + ξt, . . . , a′k−1 +
ξt, a′k − t, a′k+1 + ξt, . . . , a′r + ξt) is representable. For t small enough, this tuple strictly
dominates the tuple (a1, . . . , ar).

We are now ready to prove Theorem 6.11.

Proof of Theorem 6.11. We show the contrapositive. Let x ∈ Rr such that xi /∈ {0, 1}
for each i ∈ [r] and x is not a maximal representable tuple. We show that this implies
the existence of a ball B(x, ε) around x with radius ε > 0 such that either B(x, ε) ⊆ Snon
or B(x, ε) ∩ Snon = ∅, which in turn implies x ̸∈ ∂Snon.

For x /∈ [0, 1]r there is clearly such a ball. Otherwise, we have x ∈ (0, 1)r, as we assume
that for each i ∈ [r], xi /∈ {0, 1}. If x ∈ Srep, but x is not maximal representable,
there is a representable tuple that weakly dominates x and as x ∈ (0, 1)r, Theorem 6.15
provides a representable tuple that strongly dominates x. Hence, there exists some
ε > 0 such that the tuple (x1 + ε, . . . , xr + ε) is a representable tuple. This implies
that for ε′ = min(ε,mini∈[r] xi) we have B(x, ε′) ⊆ Srep due to Observation 6.7 and,
hence, B(x, ε′) ∩ Snon = ∅ as needed. Finally, in the case x ∈ (0, 1)r ∩ Snon Theorem 6.9
implies that the complement of Srep is open which in turn implies the existence of an
ε > 0 so that B(x, ε) ∩ Srep = ∅. For ε′ = min(ε,mini∈[r]min(xi, 1 − xi)) we then have
B(x, ε′) ⊆ [0, 1]r \ Srep = Snon, as needed.

6.4 Construction of hyperplanes

In this section we prove our main technical contribution: Theorem 6.12 that states that
for each maximal tuple we can find a locally weakly supporting hyperplane for the set
Snon. First, we give an informal proof of this result for the case r = 3, which captures
the intuition behind the general proof for all r that we give later.

6.4.1 Informal outline for r=3

Our main observation is that finding a locally supporting hyperplane comes down to
proving that a certain set of tuples in the neighbourhood of a is representable. In this
section, we denote the tuples, more intuitively, as triples. So, we now focus on how to
generate triples similar to a.
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Generating more triples: Given a representable triple a ∈ (0, 1)3 generated by the
generator (aij), what other triples close to a are representable? Certainly, all the triples
that a dominates. Besides, we can play with the generator itself. Adding α12 to a12 and
subtracting it from a21 gives us again a valid generator that generates triples of the form

(a13(a12 + α12), (a21 − α12)a23, a31a32) = a+ α12 (a13,−a23, 0)

I.e., it generates triples on the line

a+ α12(a13,−a23, 0) = a+ α12w12, α12 ∈ R

for |α12| small enough. Similarly, by adding α13 to a13 and subtracting it from a31, we
can generate triples on the line

a+ α13(a12, 0,−a32) = a+ α13w13, α13 ∈ R

and by adding α23 to a23 and subtracting it from a32, we can generate triples on the line

a+ α23(0, a21,−a31) = a+ α23w23, α23 ∈ R

in some neighborhood around the triple a. We call the three lines ℓ1, ℓ2 and ℓ3.

Since all components of the generator of a are nonzero, these three lines define an affine
subspace of dimension at least two. Later we prove that if a is a maximal representable
triple, then the three lines lie on a common plane. The plane spanned by ℓ1, ℓ2 and ℓ3
then becomes an obvious suspect for the supporting hyperplane we wish to find!

In fact, we prove that not only triples on the lines ℓ1, ℓ2 and ℓ3 are representable, given
that they lie in some small neighborhood around the maximal representable triple a,
but any triple a′ in the affine span of the three lines is representable, provided that
a′ ∈ B(a, ε) for some positive ε that depends on a. This finishes our proof, as we can
now find a weakly locally supporting hyperplane for each maximal representable triple
a.

We now prove that for maximal triples all three lines lie in a common plane and all triples
in that plane are representable (if they are close enough to a).

Claim 6.16. For a maximal triple a, the affine hull of ℓ1, ℓ2 and ℓ3 is a plane.

Assume the contrary. Then, there exist α12, α13, α23 ∈ R, such that (1, 1, 1) = α12w12 +
α13w13 + α23w23. Now, change the values of (aij) proportional to the values of α to
obtain the generator (a′ij) with

a′12 = a12 + ξα12, a′21 = a21 − ξα12;

a′13 = a13 + ξα13, a′31 = a31 − ξα13;

a′23 = a23 + ξα23, a′32 = a32 − ξα23.
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Intuitively, we expect these changes to give us a generator of a′ = a+ξα12w12+ξα13w13+
ξα23w23 = a+ ξ · (1, 1, 1). This is almost the case:

a′ =
(
a′12a

′
13, a

′
21a
′
23, a

′
31a
′
32

)
= ((a12 + ξα12)(a13 + ξα13), (a21 − ξα12)(a23 + ξα23),

(a31 − ξα13)(a32 − ξα23))

= (a12a13, a21a23, a31a32) + ξα12(a13,−a23, 0)
+ ξα13(a12, 0,−a32) + ξα23(0, a21,−a31)
+ ξ2(α12α13,−α12α23, α13α23)

= a+ ξα12w12 + ξα13w13 + ξα23w23

+ ξ2(α12α13,−α12α23, α13α23)

= a+ ξ(1, 1, 1) + ξ2(α12α13,−α12α23, α13α23)

Choosing ξ > 0 small enough, we conclude that the triple a+ξ/2·(1, 1, 1) is representable
and therefore a is not maximal, a contradiction!

Generating triples on the plane: We are given a maximal triple a and some a′ in
the affine hull of ℓ1, ℓ2 and ℓ3 that is sufficiently close to a. We need to prove that a′

is representable. To do so, we first note that as a′ is contained in the affine hull, there
exist α12, α13 and α23 such that a′ = a + α12w12 + α13w13 + α23w23. Now, we employ
the same strategy as above and observe that we can change the generator of a as follows

a′12 = a12 + α12, a′21 = a21 − α12;

a′13 = a13 + α13, a′31 = a31 − α13;

a′23 = a23 + α23, a′32 = a32 − α23,

so as to generate the triple

((a12 + α12)(a13 + α13), (a21 − α12)(a23 + α23),

(a31 − α13)(a32 − α23))

= (a12a13, a21a23, a31a32) + α12(a13,−a23, 0) + α13(a12, 0,−a32)
+ α23(0, a21,−a31) + (α12α13,−α12α23, α13α23)

= a+ α12w12 + α13w13 + α23w23 + (α12α13,−α12α23, α13α23)

= a′ + (α12α13,−α12α23, α13α23)

The term (α12α13,−α12α23, α13α23) is important now. We require (α12α13,−α12α23, α13α23) ≥
0 to prove that a′ is a representable triple. This property does not hold for every choice
of the coefficients α12, α13, α23. However, as w12, w13 and w23 are linearly dependent, we
have a certain flexibility to choose the α’s. In particular, one can choose the α’s in such
a way that at most 2 of them are non-zero.
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It turns out that it is indeed always possible to choose the α’s in such a way that
(α12α13,−α12α23, α13α23) ≥ 0. To see why, observe that the first coordinate of the
quadratic term is negative if and only if out of the two numbers a12 and a13 (recall that
a1 = a12a13), one is increased and one is decreased. This holds analogously also for the
other coordinates. So, we show how to generate a′ such that this does not happen.

First, one can observe that a′ does not dominate a or vice versa: if this was the case,
one could obtain a contradiction by showing that a is not a maximal representable triple
similarly to the proof of Theorem 6.16. Thus, we can assume that there exist i ̸= j ∈ [3]
such that ai < a′i and aj > a′j . Assume (without loss of generality) that a1 < a′1, a2 > a′2
and a3 ≥ a′3. In that case, we first fix α23 = 0. As a2 ≥ a′2 and a3 ≥ a′3, one can show
that a′ lies in the span of ℓ1 and ℓ2, thus one can write

a′ = a+ α12w12 + α13w13

= a+ α12(a13,−a23, 0) + α13(a12, 0,−a32)
= (a1 + α12a13 + α13a12, a2 − α12a23, a3 − α13a32).

Since a′2 < a2, we have α12 > 0. Similarly, since a′3 ≤ a3, we have α13 ≥ 0. Together
with α23 = 0, we get (α12α13,−α12α23, α13α23) ≥ 0, as needed.

This concludes the proof outline for r = 3. For general r, the last step is slightly more
tricky: generally, we set αij = 0 if both ai and aj needs to be increased or both needs to
be increased. Additionally, if ak needs to be increased, αij(wij)k is non-negative for all
i < j and if ak needs to be decreased, αij(wij)k is non-positive for all i < j. Moreover,
for general r, augmenting the generator according to the α-values might lead to negative
higher order terms. However, these are always dominated by the quadratic increase in a
neighborhood around a.

6.4.2 Construction of hyperplanes, in general

We start by defining “movement vectors”, analogues to vectors w12, w13, w23 from Sec-
tion 6.4.1, that correspond to “allowed movements” that we may make to construct
representable tuples in the vicinity of a representable tuple a.

Definition 6.17 (movement vectors). Let a ∈ (0, 1)r be a maximal tuple and (aij)i ̸=j∈[r]
an arbitrary (nonzero) generator of a. For each i ̸= j ∈ [r], we define wij as the r-
dimensional vector such that for each k ∈ [r],

(wij)k =


ai
aij

if k = i ,
−aj
aji

if k = j ,

0 otherwise .

Similarly to Section 6.4.1, we now define the span of the movement vectors Ha that we
later prove to be a hyperplane for the case of maximal representable tuples.
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Definition 6.18. We define Ha := {a+
∑

i ̸=j∈[r] αijwij | αij ∈ R for all i ̸= j ∈ [r]}.

Observation 6.19. Ha is an affine subspace with a dimension at least r − 1.

Proof. Consider the r − 1 vectors w12, w13, . . . , w1r. Among those r − 1 vectors, w1j is
the only vector with a non-zero j-th coordinate. Hence, the r − 1 vectors are linearly
independent.

The next lemma corresponds to Theorem 6.16 of the informal outline.

Lemma 6.20. Let a ∈ (0, 1)r be a maximal tuple and q ∈ R≥0 be a non-negative vector
such that there exists some index k ∈ [r] with qk > 0. Then, a+ q /∈ Ha.

Proof. We show that the existence of such a vector q would contradict the fact that a
is a maximal tuple. Thus, for the sake of contradiction, assume that there exists a non-
negative vector q and some k ∈ [r] such that qk > 0 and a + q ∈ H. Thus, there exist
αij ’s such that q =

∑
i ̸=j∈[r] αijwij . For δ > 0, consider (a′ij) with a′ij = aij+δ ·(αij−αji)

for i ̸= j ∈ [r]. Note that

a′ij + a′ji = (aij + δ · (αij − αji)) + (aji + δ · (αji − αij)) = aij + aji ≤ 1.

Thus, for δ small enough, (a′ij) is a valid generator. Let a′ denote the tuple that (a′ij)
generates. Then, for each i ∈ [r], we get:

a′i =
∏
j ̸=i

(aij + δ(αij − αji))

=
∏
j ̸=i

aij +

∑
ℓ ̸=i

δ(αiℓ − αℓi)
∏

j /∈{i,ℓ}

aij

−O(δ2)

= ai +

∑
ℓ̸=i

δ(αiℓ − αℓi)
ai
aiℓ

−O(δ2)

= ai +

∑
ℓ̸=i

δ(αiℓ(wiℓ)i + αℓi(wℓi)i)

−O(δ2)

= ai + δ

∑
ℓ̸=j

αℓj(wℓj)i

−O(δ2)

= (a+ δq)i −O(δ2)

Thus, there exists some constant c ≥ 0, such that for each sufficiently small δ > 0, there
is a non-negative representable tuple b with b(δ) := a+δq−cδ2 ·1. Theorem 6.14 implies
the existence of some ξ > 0 such that for each sufficiently small t > 0, we can represent
the tuple b′(δ, t) with b′(δ, t)k = b(δ) − t and b′(δ, t)i = b(δ) + ξt for each i ̸= k. In
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particular, we can choose δ > 0 small enough such that for t = (qk/2)δ, the tuple b′(δ, t)
is representable and furthermore:

b′(δ, t)k = b(δ)k − t = ak + δqk − cδ2 − t = ak + δ(qk/2)− cδ2 > ak

and for i ̸= k,

b′(δ, t)i = b(δ)i + ξt = ai + δqi − c · δ2 + ξt ≥ ai − c · δ2 + ξ(qk/2)δ > ai

which contradicts the maximality of a.

Corollary 6.21. For any maximal representable tuple a, the set Ha defines a hyperplane.
That is, there exist h ∈ Rr \ {0} and b ∈ R such that Ha = {x ∈ Rr : hTx = b}.
Furthermore, one can choose h such that h ≥ 0.

Proof. The set Ha defines an affine subspace of dimension at least r− 1 (Theorem 6.19)
and of dimension at most r − 1, because a+ 1 /∈ Ha according to Theorem 6.20. Thus,
Ha is an affine subspace of dimension r − 1. Hence, there exist h ∈ Rr \ {0} and b ∈ R
such that Ha = {x ∈ Rr : hTx = b}. Assume that there exist two indices i ̸= j ∈ [r] such
that hi > 0 and hj < 0. This would imply the existence of a non-zero vector q ≥ 0 with
hT q = 0. As a ∈ Ha and hTa = b we would get hT (a+ q) = b. However, as q is non-zero
and q ≥ 0, a + q /∈ Ha according to Theorem 6.20, a contradiction. Thus, either h ≥ 0
or h ≤ 0. As {x ∈ Rr : hTx = b} = {x ∈ Rr : (−h)Tx = −b}, this proves the lemma.

The next lemma lies at the heart of our argument.

Lemma 6.22. For any maximal representable tuple a and any a′ ∈ Ha, there exist values
α′ij ∈ R for i ̸= j ∈ [r] with a′ = a +

∑
i ̸=j∈[r] α

′
ijwij such that for each k ∈ [r], either

α′ij(wij)k ≤ 0 for each i ̸= j ∈ [r] or α′ij(wij)k ≥ 0 for each i ̸= j ∈ [r].

Proof. Let a′ ∈ Ha be arbitrary. Let b ∈ Ha a vector such that for each i ∈ [r], either
ai ≤ bi ≤ a′i or a′i ≤ bi ≤ ai and there exist values βij ∈ R for i ̸= j ∈ [r] such that
b = a +

∑
i ̸=j∈[r] βijwij . Furthermore, for each k ∈ [r], either βij(wij)k ≤ 0 for each

i ̸= j ∈ [r] or βij(wij)k ≥ 0 for each i ̸= j ∈ [r]. Note that such a vector b always exists,
as setting b = a and all the βij ’s to 0 would fulfill all the criteria. We choose b in such
a way that the number of coordinates that b and a′ disagree with is minimal. Note that
showing b = a′ is equivalent to the statement of the lemma. For the sake of contradiction,
assume that this is not the case.

As a′, b ∈ Ha, we also have a + (a′ − b) ∈ Ha and a + (b − a′) ∈ Ha. If a′i ≥ bi for all
i ∈ [r], then a′−b is a non-zero vector with a′−b ≥ 0. Hence, according to Theorem 6.20,
a + (a′ − b) /∈ Ha, a contradiction. Similarly, a′i ≤ bi for all i ∈ [r] would also lead to
a contradiction. Thus, we can conclude that there exist two indices k, ℓ ∈ [r] such that
bk < a′k and bℓ > a′ℓ. Now, consider the vector c = a+

∑
i ̸=j∈[r] γijwij where for i ̸= j ∈ [r]
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we define

γij =

{
βkℓ +min

(
(a′k−bk)
(wkℓ)k

,
(bℓ−a′ℓ)
(wℓk)ℓ

)
if i = k and j = ℓ

βij otherwise

We show that c contradicts the assumption that b is a vector that agrees with a′ on the
maximum number of coordinates, among the vectors satisfying the properties stated in
the beginning. We start by showing that for each coordinate m ∈ [r], we either have
γij(wij)m ≤ 0 for each i ̸= j ∈ [r] or γij(wij)m ≥ 0 for each i ̸= j ∈ [r]. As we assume
that this property holds for the vector b, we only need to show it for the coordinates k
and ℓ.

Recall that we have either ai ≤ bi ≤ a′i or a′i ≤ bi ≤ ai and that bk < a′k. This implies
that ak ≤ bk < a′k. In particular, this implies that βij(wij)k ≥ 0 for each i ̸= j ∈ [r].
Thus, it remains to show that γkℓ(wkℓ)k ≥ 0, which is the case as (wkℓ)k > 0 implies
βkℓ ≥ 0 and therefore also γkℓ ≥ 0, as min

(
(a′k−bk)
(wkℓ)k

,
(bℓ−a′ℓ)
(wℓk)ℓ

)
≥ 0. Proceeding in the same

manner, we get that bℓ > a′ℓ implies that a′ℓ < bℓ ≤ aℓ. In particular, this implies that
βij(wij)ℓ ≤ 0 for each i ̸= j ∈ [r]. Thus, it remains to show that γkl(wkℓ)ℓ ≤ 0, which is
the case as (wkℓ)ℓ ≤ 0 and γkℓ ≥ 0.

Next, we show that for each i ∈ [r], we either have ai ≤ ci ≤ a′i or ai ≥ ci ≥ a′i. As
bi = ci for each i ∈ [r] \ {k, ℓ}, we only need to show it for the coordinates k and ℓ. We
have:

ak ≤ bk ≤ bk +min

(
(a′k − bk)

(wkℓ)k
,
(bℓ − a′ℓ)

(wℓk)ℓ

)
(wkℓ)k

≤ bk +
(a′k − bk)

(wkℓ)k
(wkℓ)k = a′k

and

aℓ ≥ bℓ ≥ bℓ +min

(
(a′k − bk)

(wkℓ)k
,
(bℓ − a′ℓ)

(wℓk)ℓ

)
(wkℓ)ℓ

≥ bℓ +
(bℓ − a′ℓ)

(wℓk)ℓ
(wkℓ)ℓ = a′ℓ

and therefore ak ≤ ck ≤ a′k and aℓ ≥ cℓ ≥ a′ℓ, as desired. In the second line, we used
the fact that (wkℓ)ℓ = −(wℓk)ℓ ≤ 0. Furthermore, note that if min

(
(a′k−bk)
(wkℓ)k

,
(bℓ−a′ℓ)
(wℓk)ℓ

)
=

(a′k−bk)
(wkℓ)k

, then ck = a′k, and otherwise cℓ = a′ℓ. Therefore, c and a′ differ in a smaller
number of coordinates than b and a′, which is a contradiction.

We will use the following corollary of the above statement.
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Corollary 6.23. Let c = maxi∈[r] 1/ai. For each unit vector v ∈ Rr with a + v ∈ Ha,
there exist αij’s with v =

∑
i ̸=j∈[r] αijwij such that for each k ∈ [r], either αij(wij)k ≤ 0

for each i ̸= j ∈ [r] or αij(wij)k ≥ 0 for each i ̸= j ∈ [r] and furthermore, |αij | ≤ c, for
each i ̸= j ∈ [r].

Proof. Let v ∈ Rr be a unit vector with a+ v ∈ Ha. According to Theorem 6.22, there
exist αij ’s such that v =

∑
i ̸=j∈[r] αijwij and for each k ∈ [r], either αij(wij)k ≤ 0 for

each i ̸= j ∈ [r] or αij(wij)k ≥ 0 for each i ̸= j ∈ [r]. We show that |αij | ≤ c for each
i ̸= j ∈ [r]. For the sake of contradiction, assume there exist k ̸= ℓ ∈ [r] such that
|αkℓ| > c. This implies

|αkℓ(wkℓ)k| =
∣∣αkℓ

ak
akℓ

∣∣ > 1

ak
· ak
akℓ

> 1

and therefore:

∣∣vk∣∣ = ∣∣ ∑
i ̸=j∈[r]

αij(wij)k
∣∣ = ∑

i ̸=j∈[r]

∣∣αij(wij)k
∣∣ ≥ ∣∣αkℓ(wkℓ)k

∣∣ > 1

The second inequality follows as for each i ̸= j ∈ [r], αij(wij)k has the same sign. This
is a contradiction as v is a unit vector and therefore |vk| ≤ 1.

The main theorem now follows by carefully checking that the quadratic terms appearing
when we generate a′ are always positive.

Theorem 6.24. For any maximal representable tuple a, there exists an ε > 0 such that
for any a′ ∈ Ha ∩B(a, ε), a′ is representable.

Proof. Note that it is sufficient to prove the existence of an ε > 0, such that for any
unit vector v ∈ Rr with a + v ∈ Ha and every 0 ≤ δ < ε, the tuple aδ := a + δv is
representable. As v is a unit vector with a + v ∈ Ha, according to Theorem 6.23, there
exist αij ’s such that v = a +

∑
i ̸=j∈[r] αijwij and, moreover, for each k ∈ [r], we either

have αij(wij)k ≤ 0 for each i ̸= j ∈ [r] or αij(wij)k ≥ 0 for each i ̸= j ∈ [r], and
|αij | ≤ c := maxi∈[r]1/ai. We have aδ := a + δv = a +

∑
i ̸=j∈[r](δαij)wij . Consider

now (aδij) with aδij = aij + δ(αij − αji). Note that aδij + aδji = aij + aji ≤ 1 for each δ.
Furthermore, for each δ ≥ 0 and i ̸= j ∈ [r], |aδij − aij | ≤ δ(|αij |+ |αji|) ≤ 2δc. As c only
depends on a, there exists some ε′ > 0, independent of v, such that for each 0 ≤ δ ≤ ε′,
(aδij) is a valid generator.

Next, we show that there exists some 0 < ε < ε′, again independent of v, such that for
each 0 ≤ δ ≤ ε, (aδij) generates a tuple with each coordinate being at least as large as
the corresponding coordinate in aδ. This implies that aδ is representable, hence proving
the claim. To that end, note that for an arbitrary k ∈ [r] we have
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aδk =
∏
j ̸=k

aδkj =
∏
j ̸=k

(akj + δ · (αkj − αjk))

= ak +
∑
ℓ̸=k

δ · (αkℓ − αℓk)
∏

j /∈{k,ℓ}

akj

+ δ2
∑
ℓ′ ̸=k

∑
ℓ′′ ̸∈{k,ℓ′}

(αkℓ′ − αℓ′k) · (αkℓ′′ − αℓ′′k)
∏

j /∈{k,ℓ′,ℓ′′}

akj

+ δ3
∑
ℓ′ ̸=k

∑
ℓ′′ ̸∈{k,ℓ′}

∑
ℓ′′′ ̸∈{k,ℓ′,ℓ′′}

(αkℓ′ − αℓ′k) · (αkℓ′′ − αℓ′′k)

· (αkℓ′′′ − αℓ′′′k)
∏

j /∈{k,ℓ′,ℓ′′,ℓ′′′}

akj + . . .

First, we take a look at the term linear in δ. We get:∑
ℓ̸=k

δ · (αkℓ − αℓk)
∏

j /∈{k,ℓ}

akj =
∑
ℓ̸=k

δ ·
(
αkℓ

ak
akℓ

+ αℓk
−ak
akℓ

)
=
∑
ℓ̸=k

δαkℓ(wkℓ)k + δαℓk(wℓk)k =
∑
i ̸=j

δαij(wij)k = δvk

Next, we find a lower bound for the quadratic term. Note that for each ℓ′ ̸= ℓ′′ ∈ [r]\{k},
we have:

(αkℓ′ − αℓ′k) · (αkℓ′′ − αℓ′′k)

=

(
αkℓ′(wkℓ′)k

akℓ′

ak
+ αℓ′k(wℓ′k)k

akℓ′

ak

)
·
(
αkℓ′′(wkℓ′′)k

akℓ′′

ak
+ αℓ′′k(wℓ′′k)k

akℓ′′

ak

)
≥ 0

as for all i ̸= j ∈ [r] αij(wij)k ≥ 0, or for all i ̸= j ∈ [r] αij(wij)k ≤ 0. Thus, each
summand in the quadratic term is non-negative. Let us define

u := max
ℓ′ ̸=ℓ′′∈[r]\{k}

(αkℓ′ − αℓ′k) · (αkℓ′′ − αℓ′′k) ≥ 0

We can lower bound the quadratic term by:

δ2
∑
ℓ′ ̸=k

∑
ℓ′′ ̸∈{ℓ′,k}

(αkℓ′ − αℓ′k) · (αkℓ′′ − αℓ′′k)
∏

j /∈{k,ℓ′,ℓ′′}

akj ≥ δ2 · u · ak

Next, we find a lower bound for each higher order term. Each such higher order term is
the sum of expressions with the following form:

δt
t∏

s=1

(αkℓs − αℓsk)
∏

j /∈{k,ℓ1,...,ℓt}

akj
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≥ −
∣∣δt t∏

s=1

(αkℓs − αℓsk)
∏

j /∈{k,ℓ1,...,ℓt}

akj
∣∣

≥ −δt · u · (2c)t−2 ≥ −u · δ3 · (2c)r

for some distinct ℓ1, . . . , ℓt ∈ [r] \ {k} and some t ∈ N with t ≥ 3. As there are at most
2r such terms, we can conclude that:

aδk =
∏
j ̸=k

aδkj ≥ ak + δvk + δ2 · u · ak − 2r(u · δ3 · (2c)r)

= a′(δ)k + uδ2(ak − δ · 2r · (2c)r) ≥ a′(δ)k

for δ ≤ ak
2r·(2c)r := ε′′ with ε′′ only depending on the tuple (a1, . . . , an) and not the vector

v. Setting ε = min(ε′, ε′′), we can conclude that for each δ with 0 ≤ δ ≤ ε, a′(δ) is a
representable tuple. This concludes the proof.

Lemma 6.25. For each maximal representable tuple a, there exists a weakly locally sup-
portive hyperplane for So

non containing a.

Proof. According to Theorem 6.21, there exist h ∈ Rr with h ≥ 0 and b ∈ R such that
Ha = {x ∈ Rr : hTx = b}. As a ∈ Ha, we have hTa = b. Let ε′ > 0 such that for each
a′ ∈ Ha ∩ B(a, ε′), a′ is a representable tuple. According to Theorem 6.24, such an ε′

exists. We set ε = min(ε′,mini∈[r] ai) > 0. Let a′′ ∈ B(a, ε) with hTa′′ ≤ b. As hTa′′ ≤ b,
there exists some δ ≥ 0 such that hTa′ = b with a′ := a′′+ δh. As hT (a− a′) = b− b = 0
and a′ − a′′ = δh, we can write a− a′′ = (a− a′) + (a′ − a′′) with (a− a′)T (a′ − a′′) = 0.
Thus, we can conclude that ||a − a′|| ≤ ||a − a′′|| ≤ ε. Hence, a′ ∈ Ha ∩ B(a, ε) and
therefore a′ is a representable tuple. As h ≥ 0, a′′ = a′ − δh ≥ 0 is also a representable
tuple and therefore a′′ ∈ Srep. Thus, a′′ /∈ So

non, as desired.



CHAPTER 7

The Landscape of Distributed Complexities on Trees and Beyond

7.1 Introduction

This chapter proves the following theorem.

Theorem 7.1 (Informal version of Theorem 7.19). Let ∆ be any fixed positive integer.
Any locally checkable labeling problem on trees with maximum degree at most ∆ with
LOCAL complexity o(log∗ n) has, in fact, LOCAL complexity O(1).

Our method, in a nutshell: Our approach is based on the round elimination tech-
nique [74], a highly successful technique for proving local lower bounds. In essence, round
elimination is an explicit process that takes an LCL Π on trees as input and returns an
LCL Π′ with complexity exactly one round less. More precisely:

(1) If there is a T -round randomized algorithm A for Π, then there is also a (T − 1)-
round randomized algorithm A′ for Π′ such that the (local) failure probability of
A′ is bounded by a reasonable function of the (local) failure probability of A.

(2) If we have a (T − 1)-round algorithm A′ for Π′, we can use it to construct a T -
round algorithm A for the original problem Π; if A′ is deterministic, then A is
deterministic as well.

So far, in the literature, the standard use case for applying round elimination has been
to prove lower bounds for some concrete, fixed problem such as maximal matching or
Lovász local lemma [73, 74, 22, 26]. We provide a novel application of round elimination
by showing that, perhaps surprisingly, it can also be used to prove gap results, which are
results that reason about all LCLs on a given graph class. More precisely, we show that
with the tool of round elimination at hand, there is an elegant way to prove Theorem 7.1,
which roughly proceeds as follows.

We start with any problem Π for which there exists a randomized algorithm A that solves
Π in T (n) = o(log∗ n) rounds, with probability 1 − 1/ poly(n). We fix some sufficiently
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large number n0 of nodes, and apply bullet point (1) T = T (n0) times to get a 0-round
algorithm A(T ) for a certain problem Π(T ). By analyzing the development of the (local)
failure probabilites of the algorithms appearing during the T applications of (1), we can
show that algorithm A(T ) still has a large probability of success, and the fact that A(T )

is a 0-round algorithm enables us to infer that Π(T ) is in fact so easy that it can be solved
with a deterministic 0-round algorithm. Finally, we apply bullet point (2) T times to
obtain a deterministic T -round algorithm for the original problem Π. Due to fixing the
number of nodes to n0, the obtained T -round algorithm is only guaranteed to produce a
correct output on n0-node trees; however, due to the nature of 0-round algorithms and
the precise definition of the round elimination process (which are both independent of the
number of nodes of the input graph), the obtained algorithm can be shown to also work
on trees with an arbitrary number of nodes, with precisely the same, constant runtime
T (n0) = O(1).

Unfortunately, the known approach for analyzing the change of (local) failure probability
in bullet point (1) considers only the restricted setting of regular graphs and LCLs without
inputs1 (which usually suffices when proving a lower bound for a concrete LCL). One
of our technical contributions is to develop an extension that also works in the general
setting of irregular graphs and LCLs with inputs, which might be of independent interest.

We also prove the following theorem.

Theorem 7.2. [Informal version of Theorem 7.20] Let d be a fixed positive constant.
Any LCL on a d-dimensional oriented grid with local complexity o(log∗ n) has, in fact,
local complexity O(1).

7.2 Preliminaries

We use classical graph-theoretical notation, e.g. we write G = (V,E) for an unoriented
graph. A half-edge is a pair h = (v, e), where v ∈ V , and e ∈ E is an edge incident to v.
We denote the set of half-edges of G by H = H(G), i.e., H = {(v, e) | v ∈ e, v ∈ V, e ∈ E}.
Furthermore, for every vertex v′, we denote the set of half-edges (v, e) ∈ H where v = v′

by H[v′], and for every edge e′, we denote the set of half-edges (v, e) ∈ H where e = e′ by
H[e′]. Often we assume that G additionally carries a labeling of vertices or half-edges.
We use BG(u, r) to denote the ball of radius r around a node u in G and we call it
the r-hop neighborhood of u. When talking about half-edges in BG(u, r), we mean all
half-edges (v, e) such that v ∈ BG(u, r). For example, BG(u, 0) contains all half-edges
incident to u.

The reader should keep in mind that our setting is graphs of maximum degree bounded by
some constant ∆. This is sometimes explicitly stated (or it is implied by the constraints)

1We say that an LCL is an LCL without inputs if the correctness of a solution does not depend on
input labels in the graph (such as lists in a list coloring problem). In the general setting, an LCL allows
the correctness to depend on input labels (though we might emphasize this by using the term LCL with
inputs).
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but most of the time it is tacitly assumed. Of special interest to us will be the class of
all trees with maximum degree at most ∆, which we denote by T . Similarly, we denote
the class of all forests with maximum degree at most ∆ by F . Moreover, for any positive
integer n, any set N of positive integers, and any G ∈ {F , T }, we will use Gn, resp. GN ,
to denote the class of members of G with n nodes, resp. with a number of nodes that is
contained in N .

Local Model and LCL Problems

In this section, we define our main model of computation and discuss the problem class
considered in this work. Our main model of computation is the LOCAL model [236]
extensively discussed in previous chapters. Yet, we will need to discuss some aspects
again, as our following proofs rely on definitions being very precies.

The class of problems considered in this work are LCL problems (or LCLs, for short),
which were introduced by Naor and Stockmeyer [258]. In their seminal paper, Naor and
Stockmeyer provided a definition for LCL problems where input and output labels were
assigned to nodes, and remarked that a similar definition can be given for edge-labeling
problems. A modern definition that captures both kinds of LCL problems (and their
combinations) assigns labels to half-edges (instead of vertices or edges). Before we can
provide this definition, we need to define some required notions.

A half-edge labeling of a graph G (with labels from a set Σ) is a function f : H(G)→ Σ.
A Σin-Σout-labeled graph is a triple (G, fin, fout) consisting of a graph G and two half-
edge labelings fin : H(G) → Σin and fout : H(G) → Σout of G. We analogously define a
Σin-labeled graph by omitting fout.

We can now define an LCL problem as follows.

Definition 7.3 (LCL problem). An LCL problem Π is a quadruple (Σin,Σout, r,P) where
Σin and Σout are finite sets, r is a positive integer, and P is a finite collection of Σin-Σout-
labeled graphs. A correct solution for an LCL problem Π on a Σin-labeled graph (G, fin)
is given by a half-edge labeling fout : H(G) → Σout such that, for every node v ∈ V (G),
the triple (BG(v, r), f

′
in, f

′
out) is isomorphic to a member of P, where f ′in and f ′out are the

restriction of fin and fout, respectively, to BG(v, r).

Intuitively, the collection P provides the constraints of the problem by specifying how a
correct output looks locally, depending on the respective local input. From the definition
of a correct solution for an LCL problem it follows that members of P that have radius
> r can be ignored. Also the finiteness of P automatically implies that we are restricting
ourselves to graphs of degree at most ∆ for some constant ∆.

The main tool in our proof of Theorem 7.1, the round elimination technique, applies (di-
rectly) only to a subclass of LCL problems: roughly speaking, it is required that the local
correctness constraints specified by P can be translated into node and edge constraints,
i.e., correctness constraints that can be verified by looking at the label configurations on
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each edge and around each node. The definition of this subclass of LCL problems is given
in the following. Note that, despite the complicated appearance, the definition is actually
quite intuitive: essentially, in order to define the LCL problem, we simply specify a set
of label configurations that are allowed on an edge, a set of label configurations that are
allowed around a node, and an input-output label relation that specifies for each input
label which output label is allowed at the same half-edge.

Definition 7.4 (Node-edge-checkable LCL problem). A node-edge-checkable LCL Π is
a quintuple (ΣΠ

in,Σ
Π
out, NΠ, EΠ, gΠ), where ΣΠ

in and ΣΠ
out are finite sets, EΠ is a collec-

tion of cardinality-2 multisets {B1,B2} with B1,B2 ∈ ΣΠ
out, NΠ = (N 1

Π,N 2
Π, . . . ) con-

sists of collections N i
Π of cardinality-i multisets {A1, . . . ,Ai} with A1, . . . ,Ai ∈ ΣΠ

out, and
gΠ : ΣΠ

in → 2Σ
Π
out is a function that assigns to each label from ΣΠ

in a subset of the labels of
ΣΠ
out. A correct solution for a node-edge-checkable LCL Π on a ΣΠ

in-labeled graph (G, fin)
is given by a half-edge labeling fout : H(G)→ ΣΠ

out such that

1. for every node v ∈ V (G), the multiset consisting of the labels assigned by fout to
the half-edges in H[v] is contained in N deg(v)

Π ,

2. for every edge e ∈ E(G), the multiset consisting of the labels assigned by fout to the
half-edges in H[e] is contained in EΠ, and

3. for every half-edge h ∈ H(G), the label fout(h) is contained in the label set
gΠ(fin(h)).

We call NΠ the node constraint of Π and EΠ the edge constraint of Π. Moreover, we call
the elements {A1, . . . ,Ai} of N i

Π node configurations and the elements {B1,B2} of EΠ
edge configurations (of Π). In a LOCAL algorithm solving a node-edge-checkable problem
Π, each node is supposed to output a label for each incident half-edge such that the induced
global half-edge labeling is a correct solution for Π.

Even though the round elimination technique can be applied directly only to node-edge-
checkable LCL problems, the results we obtain apply to all LCL problems. The reason
for this is that for each LCL problem Π there exists a node-edge-checkable LCL problem
Π′ such that the time complexities of Π and Π′ differ only by an additive constant, as
we show in Lemma 7.7. This fact suffices to lift our results for node-edge-checkable LCL
problems to general LCL problems: in particular, the existence of an LCL problem with
time complexity in ω(1) and o(log∗ n) would imply the existence of a node-edge-checkable
LCL problem with the same complexity constraints, leading to a contradiction.

Before stating and proving Lemma 7.7, we formally define the local failure probability of
an algorithm solving a node-edge-checkable LCL, and the complexity of an LCL problem.

Definition 7.5 (Local failure probability). Let Π = (ΣΠ
in,Σ

Π
out, NΠ, EΠ, gΠ) be some

node-edge-checkable LCL problem. We say that a half-edge labeling fout : H(G) → Σout

is incorrect on some edge e = {u, v} of graph (G, fin) if
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1. {fout((u, e)), fout((v, e))} /∈ EΠ, or

2. fout((u, e)) /∈ gΠ(fin((u, e))) or fout((v, e)) /∈ gΠ(fin((v, e))).

Similarly, we say that fout is incorrect at some node v if

1. {fout(h)}h∈H[v] /∈ N
deg(v)
Π , or

2. fout(h) /∈ gΠ(fin(h)) for some h ∈ H[v].

We say that an algorithm A fails on some edge e, resp. at some node v, if the output
produced by A is incorrect on e, resp. at v. Furthermore, we say that a (randomized)
algorithm A has local failure probability p on some graph G if p is the smallest (real)
number such that, for each edge e and node v in G, the probability that A fails on e,
resp. at v, is upper bounded by p. Moreover, for each n, the local failure probability of
A on some class of n-node graphs is the maximum of the local failure probabilities of
A on the graphs in the class. (In contrast, the definition of (global) failure probability
is as commonly used, i.e., we say that A has (global) failure probability p = p(n) if the
(worst-case) probability that A does not produce a correct solution for Π is upper bounded
by p and p is minimal under this constraint.)

The LOCAL complexity of a (node-edge-checkable or common) LCL is simply the mini-
mum complexity of an algorithm A that solves it on all graphs.

Definition 7.6 (Complexity of an LCL problem). The determinstic (round) complexity
of an LCL Π is the function T : N → N ∪ {0} satisfying that for each n ∈ N, there
exists a deterministic algorithm An solving Π in T (n) rounds on all n-node graphs G
with each half-edge labeled with a label from Σin, but no deterministic algorithm solving
Π in T (n)− 1 rounds on this class of graphs. The randomized (round) complexity of an
LCL Π is defined analogously, where deterministic algorithms are replaced by randomized
algorithms with a (global) failure probability of at most 1/n.

When we talk about the complexity of an LCL on trees, we further restrict the above
definition to graphs that are trees (and similarly for other graph classes).

Now we are ready to state and prove the following lemma, which ensures that we can
restrict attention to node-edge-checkable LCLs.

Lemma 7.7. For any LCL problem Π, there exists a node-edge-checkable LCL problem
Π′ such that (in both the randomized and deterministic LOCAL model) the complexities
of Π and Π′ on trees (and on forests) are asymptotically the same.

Proof. Suppose Π = (Σin,Σout, r,P) is an LCL. We create a node-edge-checkable LCL
Π′ = (ΣΠ′

in ,Σ
Π′
out,NΠ′ , EΠ′ , gΠ′) as follows:

• ΣΠ′
in = Σin.

• ΣΠ′
out contains all possible labelings of r-hop neighborhoods of a node, each neigh-

borhood has marked a special half-edge, each vertex and each edge has an order on
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incident half-edges and each half-edge is labeled with a label from Σout, moreover,
the labeling by Σout has to be accepted by P.

• NΠ′ contains such sets S = {σ1, . . . , σd} with σi ∈ ΣΠ′
out such that there exists an

r-hop neighborhood N of a node u of degree d together with each node and each
edge having an order on incident half edges and such that half-edges have labels
from Σout such that we can assign labels from S to half-edges around u in such a
way that each σi assigned to (u, ei) describes N with the special half-edge of σi
being ei.

• EΠ′ is defined analogously to NΠ′ , but we require an existence of a neighborhood
of an edge e that is consistent from the perspective of labels from ΣΠ′

out assigned to
(u, e) and (v, e).

• gΠ′ maps each label τ ∈ Σin to the set of labels σ ∈ ΣΠ′
out such that the special

half-edge of σ is labeled by τ .

Suppose we have a valid solution of Π. Then, in r rounds each half-edge can decide on its
Π′-label by encoding its r-hop neighborhood, including port numbers of each vertex and
each edge that give ordering on its half-edges, into a label from ΣΠ′

out. The constraints
NΠ′ , EΠ′ , gΠ′ will be satisfied.

On the other hand, suppose we have a valid solution for Π′. In 0-rounds, each half-edge
(v, e) can label itself with the label on the special half-edge in its Π′-label f ′out((v, e)).
We claim that the Π-labeling we get this way around a half-edge (u, e) is isomorphic to
the Σin-labeling described by the label fout((v, e)), hence the new labeling is a solution
to Π′. To see this, consider running a BFS from (v, e). The node constraints NΠ′ and
the edge constraints EΠ′ are ensuring that the labels from ΣΠ′

out of visited half-edges are
describing compatible neighborhoods, while the function g ensures that the description
of Σin labels in the r-hop neighborhood of u by the labels from ΣΠ′

out agrees with the
actual Σin labeling of the r-hop neighborhood of u. As the label f ′out((v, e)) needs to be
accepted by P, we get that P accepts the r-hop neighborhood of u, as needed.

It is crucial that the way in which we define the node-edge-checkable LCL problem Π′ in
Lemma 7.7 guarantees that the considered (input-labeled) graph class remains the same
as for Π (and does not turn into a graph class with a promise on the distribution of the
input labels, which would be the result of the straightforward approach of defining Π′ by
encoding the input labels contained in a constant-sized ball in Π in a single input label in
Π′, and doing the same for output labels). If this property was not guaranteed, it would
be completely unclear (and perhaps impossible) how to extend the round elimination
framework of [74] to our setting with input labels.

7.2.1 Order-Invariant Algorithms

In this section, we formally define the notion of an order-invariant algorithm and in-
troduce further computational models of interest. We also show that oftentimes order-
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invariant algorithms can be sped up to improve the round/probe complexity, both in the
LOCAL and the VOLUME model.

Definition 7.8 (Order-invariant LOCAL algorithm [258]). A deterministic T (n)-round
LOCAL algorithm A is called order-invariant if the following holds: Consider two assign-
ments of distinct identifiers to nodes in BG(v, T (n)) denoted by µ and µ′. Assume that
for all u,w ∈ BG(v, T (n)) it holds that µ(u) > µ(w) if and only if µ′(u) > µ′(w). Then,
the output of A on the set of half-edges H[v] will be the same in both cases.

7.3 The Local Model Gap on Trees

In this section we prove the ω(1)− o(log∗ n) gap for LCLs on trees in the LOCAL model.
We do so by proving Theorem 7.19 (which is the slightly more formal version of Theo-
rem 7.1) by explicitly designing, for any given (node-edge-checkable) LCL problem Π with
complexity o(log∗ n), a constant-round algorithm. A very rough outline of our approach
is to generate from Π a sequence of node-edge-checkable LCL problems of decreasing
randomized local complexities (where we allow the local failure probability to grow along
the problems in the sequence), find a problem in the sequence that can be solved in 0
rounds with a reasonably low local failure probability, show that there exists a 0-round
deterministic algorithm for that problem, and turn this algorithm into a constant-round
algorithm for Π by going back up the sequence of problems and arguing that the de-
terministic complexities increase slowly along the sequence in this direction. While the
round elimination framework [74, 22] provides a blueprint how to generate a suitable
sequence, it unfortunately only does so for LCLs on regular trees without inputs. We
provide an extension of the framework that also works for LCLs on irregular trees (or
forests) with inputs.

We will start in Section 7.3.1 by extending the definition of the round elimination problem
sequence to the setting with inputs (and taking care of a technical issue). In Section 7.3.2,
we will carefully bound the evolution of failure probabilities along a sequence of algo-
rithms with decreasing runtimes that solve the problems in the defined problem sequence.
Section 7.3.3 takes care of the reverse step, i.e., showing that the deterministic complexi-
ties of the problems in the problem sequence do not increase fast when traversed towards
Π. Finally, in Section 7.3.4, we will put everything together and prove Theorem 7.19.

7.3.1 The Problem Sequence

Similarly to the approach in [74], we define, for any node-edge-checkable LCL problem Π,
two node-edge-checkable problems R(Π) and R(Π). The problems in the aforementioned
sequence are then obtained by iteratively applying R(R(·)), starting with Π.

Definition 7.9 (R(Π)). Let Π = (ΣΠ
in,Σ

Π
out,NΠ, EΠ, gΠ) be a node-edge-checkable LCL

problem. We define a new node-edge-checkable LCL problem R(Π) = (Σ
R(Π)
in ,Σ

R(Π)
out ,
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NR(Π), ER(Π), gR(Π)) by specifying the five components. We start by setting Σ
R(Π)
in := ΣΠ

in

and Σ
R(Π)
out := 2Σ

Π
out, i.e., the input label set of R(Π) is simply the input label set of Π,

and the output label set of R(Π) is the power set of the output label set of Π. Next, we
define gR(Π) by setting gR(Π)(ℓ) := 2gΠ(ℓ) for any label ℓ ∈ ΣΠ

in, i.e., intuitively speaking,
in problem R(Π) an input label ℓ on some half-edge requires that the output label on the
same half-edge is a subset of the set of output labels that were allowed in Π on a half-edge
with input label ℓ.

We define the edge constraint ER(Π) of R(Π) as the set of all cardinality-2 multisets
{B1,B2} such that B1,B2 ∈ Σ

R(Π)
out and, for all b1 ∈ B1, b2 ∈ B2, we have {b1, b2} ∈ EΠ.

Finally, we define the node constraint NR(Π) of R(Π) as follows. For each integer i ≥ 1,
define N i

R(Π) as the set of all cardinality-i multisets {A1, . . . ,Ai} such that A1, . . . ,Ai ∈
Σ
R(Π)
out and there exists some selection (a1, . . . , ai) of labels from A1 × · · · × Ai such that
{a1, . . . , ai} ∈ N i

Π.

Note that our definition of R(Π) differs slightly from the usual definition of R(Π) as
given in, e.g., [26] (beyond the obvious differences due to the fact that we consider LCL
problems with input labels): our definition does not remove so-called “non-maximal”
configurations. Removing such configurations can be beneficial when trying to determine
the complexity of specific problems, but is not required (or helpful) in our setting, where
we want to argue about the complexity of many problems at once.

Definition 7.10 (R(Π)). The problem R(Π) differs from R(Π) only in the node and edge
constraints; for the remaining three parameters we set ΣR(Π)

in := Σ
R(Π)
in , ΣR(Π)

out := Σ
R(Π)
out ,

and gR(Π) := gR(Π).

We define the node constraint NR(Π) of R(Π) as follows. For each integer i ≥ 1, define

N i
R(Π)

as the set of all cardinality-i multisets {A1, . . . ,Ai} such that A1, . . . ,Ai ∈ Σ
R(Π)
out

and, for all (a1, . . . , ai) ∈ A1 × · · · × Ai, we have {a1, . . . , ai} ∈ N i
Π. Moreover, we define

the edge constraint ER(Π) of R(Π) as the set of all cardinality-2 multisets {B1,B2} such

that B1,B2 ∈ Σ
R(Π)
out and there exists some selection (b1, b2) of labels from B1 × B2 such

that {b1, b2} ∈ EΠ.

Note that, although the function R(·) can take any arbitrary node-edge-checkable LCL
problem as argument, we will use as arguments only problems that are of the form R(Π)
for some node-edge-checkable LCL problem Π.

Recall that T , resp. F , denotes the class of all trees, resp. forests, of maximum degree
at most ∆. Before turning to the analysis of the evolution of the aforementioned failure
probabilities, there is a technical issue we have to discuss. A crucial argument in said
analysis is, roughly speaking, that if you consider some (sufficiently small) neighborhood
of a node (or edge), and a set of extensions of this neighborhood via different edges
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leaving the neighborhood2, then there must also be a graph in the considered graph class
that (simultaneously) contains all extensions of the set (together with the neighborhood).
Here the term “considered graph class” describes the input graph class restricted to the
members that are consistent with the knowledge of the nodes about the number n of
nodes, i.e., in particular if all nodes are aware of the exact value of n (as they are in our
definition of the LOCAL model), then the considered graph class contains only n-node
graphs. Now, if the input graph class is T , it follows that the aforementioned crucial
argument does not hold in general: if all extensions in the considered set “conclude” the
tree (i.e., do not have leaving edges except those connecting them to the considered initial
neighborhood) and the combined number of nodes in the initial neighborhood and the
considered extensions does not happen to be precisely n, then there is no n-node tree
that contains the neighborhood together with all considered extensions.

We solve this issue by proving our main theorem first for the class F of forests (which do
not have the aforementioned issue as the number of nodes3 in some maximal connected
component is not known to the nodes) in Theorem 7.18 and then lifting it to T in
Theorem 7.19 by showing that, for node-edge-checkable LCL problems, a complexity of
o(log∗ n) on trees implies a complexity of o(log∗ n) on forests. Lemma 7.11 provides this
relation between trees and forests; in Sections 7.3.2 and 7.3.3 we will then exclusively
work with forests. Note that the complexity of any LCL problem Π on F is trivially at
least as large as its complexity on T as T is a subclass of F .

Lemma 7.11. Let Π be some node-edge-checkable LCL problem that has deterministic,
resp. randomized, complexity o(log∗ n) on T . Then the deterministic, resp. randomized,
complexity of Π on F is in o(log∗ n).

Proof. Let A be a (deterministic or randomized) algorithm solving Π on T in T (n) ∈
o(log∗ n) rounds (and observe that the existence of A (even if it is randomized) implies
that a correct global solution exists). We design a new algorithm A′ solving Π on F in
o(log∗ n) rounds. Algorithm A′ proceeds as follows on any n-node input forest G′ ∈ F ,
where, for any node u, we denote the (maximal) connected component containing u by
Cu and the number of nodes in Cu by |Cu|.

First, each node collects its (2T (n2) + 2)-hop neighborhood in G′. Then, based on the
collected information, each node u determines whether there exists a node v in Cu such
that the (T (n2) + 1)-hop neighborhood of v contains all of Cu.

If such a node v exists, then each node in Cu is aware of the whole component Cu and
can simply choose the same solution for Π on Cu (by mapping component Cu (including
unique identifiers or random bits) in some arbitrary, but fixed, deterministic fashion to

2An extension via some leaving edge is simply a possibility of how the graph could continue for
the next hop beyond the respectively chosen leaving edge that is consistent with (some graph in) the
considered graph class.

3We remark that the issue does not occur in the variant of the LOCAL model in which nodes are only
aware of some upper bound on the number of nodes, but we believe that it is important to ensure that
the correctness of (our) results does not depend on such minor details in the model specification.
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some correct solution), and then output the part of the solution it is responsible for.
Note that this requires all nodes in Cu to be distinguishable from each other (so that
each node knows which part of the solution on Cu it is responsible for); for determin-
istic algorithms this is guaranteed by the unique identifiers, for randomized algorithms
it is guaranteed with probability at least 1 − 1/n2 by having each node interpret its
first ⌈4 log n⌉ random bits as an identifier (which guarantees uniqueness of the created
identifiers with probability at least 1− 1/n2).

If no such node v exists, then u simply executes A with input parameter4 n2 (and each
node in Cu will do likewise). In this case, due to the fact that no (T (n2) + 1)-hop node
neighborhood fully contains Cu, it holds for each node v in Cu that the (T (n2) + 1)-hop
neighborhood of v in G′ is isomorphic to the (T (n2)+1)-hop neighborhood of some node
w in some n2-node tree G ∈ T . Hence, if A′ fails on some node v in Cu or on some
edge incident to v, then A fails on some node w in some n2-node tree, or on some edge
incident to w. Since the failure probability of A on n2-node trees is at most 1/n2, it
holds for any node w in any n2-node tree that the probability that A fails on w or an
edge incident to w is at most 1/n2. It follows for each node v in Cu that the probability
that A′ fails on v or an edge incident to v is at most 1/n2.

Now, a union bound over all components Cu of the first kind (“such a node v exists”) and
all nodes in components Cu of the second kind (“no such node v exists”) yields that A′
fails with probability at most 1/n. Note that if A is deterministic, then all of the above
failure probabilities are 0, and A′ is deterministic as well.

For the runtime of A′, observe that in either of the two considered cases, the initial
collection of u’s (2T (n2) + 2)-hop neighborhood suffices to compute u’s output in A′.
Since T (n) ∈ o(log∗ n) implies 2T (n2) + 2 ∈ o(log∗ n), it follows that the runtime of A′,
and therefore also the complexity of Π on F , is in o(log∗ n).

7.3.2 From Harder to Easier Problems

Recall that, for any set N of positive integers, FN denotes the class of forests with a
number of nodes that is contained in N . The goal of this section is to prove the following
theorem.

Theorem 7.12. Let Π be a node-edge-checkable LCL problem and A a randomized algo-
rithm solving Π on F with runtime T (n) and local failure probability at most p ≤ 1.5 Let
N be the set of all positive integers n satisfying T (n) + 2 ≤ log∆ n. Then, there exists
a randomized algorithm A′ solving R(R(Π)) on FN with runtime max{0, T (n)− 1} and

4Recall that each node receives as input a parameter representing the number of nodes. Note that
nothing prevents us from executing an algorithm using an input parameter that does not represent the
correct number of nodes.

5Note that (bounds on) local failure probabilities such as p also (possibly) depend on the number n
of nodes; however, for better readability we will omit this dependency.
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local failure probability at most Sp1/(3∆+3), where

S = (10∆(|ΣΠ
in|+max{|ΣΠ

out|, |Σ
R(Π)
out |}))4∆

T (n)+1
.

In other words, we want to show, roughly speaking, that we can solve R(R(Π)) at least
one round faster than Π if we allow the indicated increase in the local failure probability
of the randomized algorithm solving the problem.

For the proof of Theorem 7.12, we will make use of an approach that is an extension of
the approach known for the setting of LCLs on regular trees without inputs (see, e.g.,
[22, 26, 36]). More specifically , we will explicitly define an algorithm A′ (depending
on A) that satisfies the properties stated in Theorem 7.12. While in the regular setting
without inputs, the possibilities how the input graph could continue beyond the view of
a node v differ only in the random bits of the nodes beyond v’s view, the irregularity and
inputs in our setting require us to first perform a simulation step in the definition of A′
that simulates all possible topologies and inputs that a node could encounter (not too
far) beyond its view before considering the randomness contained in each such extension
defined by the combination of topology and inputs. As we show, the resulting more
complex definition of A′ still allows us to give an upper bound on the increase of the
local failure probability from A to A′ that suffices for our purposes.

It should be noted that, due to the fact that we consider a large class of LCL problems at
once (and not a single fixed LCL problem, in which case certain simplification techniques
might be applicable), the increase in the number of output labels from Π to R(R(Π))
is doubly exponential. Since the bound on the local failure probability of A′ depends
(superlinearly) on the number of output labels of Π, and, ultimately, we want to apply
Theorem 7.12 iteratively (starting with Π), we cannot apply Theorem 7.12 more than
Θ(log∗ n) times before the local failure probability grows too large. This provides a
(different) explanation why we cannot extend the ω(1)− o(log∗ n) gap further with our
approach (which also follows from the fact that there are problems with complexity
Θ(log∗ n)).

Note that we will define A′ for all forests from F , but will prove the guarantee on the
local failure probability of A′ only for the forests in FN . Also recall that, for any node
u in a graph G, we denote the r-hop neighborhood of u in G by BG(u, r). By abuse
of notation, we will use BG(u, r) both for all the information contained in the r-hop
neighborhood of u (i.e., the topology, inputs, and random bits) and for the respective
subgraph of G (including input information, but no random bits).

Deriving A′: Let A be a randomized algorithm for some node-edge-checkable LCL
problem Π with runtime T = T (n). If T = 0, we can simply let A′ simulate A, and
then, for each half-edge h, transform the intermediate output ℓ ∈ ΣΠ

out returned by A on
h into the final output {{ℓ}} ∈ Σ

R(R(Π))
out on h. By construction, A′ fails on some edge,

resp. node, if and only if A fails on the same edge, resp. node; since p ≤ Sp1/(3∆+3) for



114 The Landscape of Distributed Complexities on Trees and Beyond

the S specified in Theorem 7.12, it follows that A′ satisfies the properties required in
Theorem 7.12. Hence, we will assume in the following that T ≥ 1.

In order to derive A′ from A, we first derive an “intermediate” algorithm A1/2 for R(Π)
from A, and then we derive A′ from A1/2. As we will show later, A1/2 solves R(Π)
(on FN ) with a moderately increased local failure probability (and, intuitively speaking,
very slightly reduced runtime) compared to A; a similar moderate increase in local failure
probability (and slight decrease in runtime) is incurred when going from A1/2 to A′.

Deviating from the usual convention that nodes are the entities performing the computa-
tion, we will assume for A1/2 that the edges of the input forest perform the computation.
This is not in contradiction with the definition of the LOCAL model as A1/2 is only a
construct defined for the design of A′; the actual computation in A′ is performed by the
nodes. Algorithm A1/2 proceeds as follows.

Each edge e = {u, v} in the input forest G ∈ F first collects all information (i.e., the
topology, inputs, and random bits) contained in the union BG(e, T − 1/2) := BG(u, T −
1) ∪BG(v, T − 1) of the (T − 1)-hop neighborhoods of u and v. Then, e determines the
output label ℓ′ it outputs on half-edge (u, e) as follows, depending on some parameter
0 < K ≤ 1 that we will choose later. Label ℓ′ is simply the set of all labels ℓ such that
there exists an input forest G′ ∈ F (including input labels) and an edge e′ in G′ such that
BG′(e′, T−1/2) ∼= BG(e, T−1/2) and the probability that the node u′ corresponding to u
in the isomorphism outputs ℓ on (u′, e′) according to A is at least K, conditioned on the
assumption that the random bits in BG′(e′, T − 1/2) are the same as in BG(e, T − 1/2).
Here, the isomorphism is w.r.t. the topology and the input labels. In other words, in
A1/2, edge e outputs on (u, e) the set of all labels ℓ for which the probability that, in
A, node u outputs ℓ on (u, e), conditioned on the random bits that e has collected, is at
least K for at least one possible extension of (the topology and input labels of) the graph
beyond the (T −1/2)-hop view of e. Edge e computes the output label on half-edge (v, e)
analogously. This concludes the description of A1/2; in the following we derive A′ from
A1/2 in a fashion dual to how we derived A1/2 from A.

In A′, each node u first collects all information contained in BG(u, T −1). Then, for each
incident edge e, node u determines the output label ℓ′′ it outputs on half-edge (u, e) as
follows, depending on some parameter 0 < L ≤ 1 that we will choose later. Label ℓ′′ is
simply the set of all labels ℓ′ such that there exists an input forest G′′ ∈ F and a node
u′′ in G′′ such that BG′′(u′′, T − 1) ∼= BG(u, T − 1) and the probability that the edge
e′′ corresponding to e in the isomorphism outputs ℓ′ on (u′′, e′′) according to A1/2 is at
least L, conditioned on the assumption that the random bits in BG′′(u′′, T − 1) are the
same as in BG(u, T − 1). In other words, in A′, node u outputs on (u, e) the set of all
labels ℓ′ for which the probability that, in A1/2, edge e outputs ℓ′ on (u, e), conditioned
on the random bits that u has collected, is at least L for at least one possible extension
of (the topology and input labels of) the graph beyond the (T − 1)-hop view of u. This
concludes the description of A′.

In the following, for all forests in FN , we bound the local failure probability of A1/2,
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depending on (the bound on) the local failure probability of A. We start by proving two
helper lemmas. For any edge e, resp. node u, let p∗e, resp. p∗u, denote the probability that
A1/2 fails at edge e, resp. node u. Moreover, for graphs G, G′, let fin, resp. f ′in, be the
functions that, for each half-edge in G, resp. G′, return the input label of the half-edge.
Finally, we will use A(h) and A1/2(h) to denote the labels that A and A1/2, respectively,
output on some half-edge h.

Lemma 7.13. Let e = {u, v} be an arbitrary edge in an arbitrary forest G ∈ FN . It
holds that p∗e ≤ ps/(K2), where s = (3|ΣΠ

in|)2∆
T+1.

Proof. Consider an arbitrary assignment of random bits in BG(e, T −1/2) for which A1/2

fails on e, i.e., for which

1. the cardinality-2 multiset of labels that A1/2 outputs on (u, e) and (v, e) is not
contained in ER(Π)

, i.e., {A1/2((u, e)),A1/2((v, e))} /∈ ER(Π), or

2. we have A1/2((u, e)) /∈ gR(Π)(f
′
in((u, e))) or A1/2((v, e)) /∈ gR(Π)(f

′
in((v, e))).

First, consider the case that Condition 1 is satisfied. Then, by the definition of R(Π),
there are two labels ℓu ∈ A1/2((u, e)), ℓv ∈ A1/2((v, e)) such that {ℓu, ℓv} /∈ EΠ. More-
over, by the definition of A1/2, there is a forest G′ ∈ FN containing6 BG(e, T − 1/2)
such that |V (G′)| = |V (G)| and, conditioned on the already fixed random bits in
BG′(e, T − 1/2) = BG(e, T − 1/2), the probability that A, when executed on G′, re-
turns ℓu on (u, e) and ℓv on (v, e) is at least K2. Note that we use here that the input
graph is a forest: in order to be able to simply multiply the two probabilities of ℓu being
returned on (u, e) and ℓv being returned on (v, e) (which are both lower bounded by K),
we require that those two probabilities are independent (which is guaranteed if the input
graph is a forest, as then BG′(u, T ) \BG′(e, T − 1/2) and BG′(v, T ) \BG′(e, T − 1/2) are
disjoint). Note further that we use that G ∈ FN (which implies that the number of nodes
in BG(e, T − 1/2) is sufficiently small compared to |V (G)|) to guarantee the property
|V (G′)| = |V (G)|, and that this property is needed because the lemma statement relating
the probabilities p∗e and p (which technically speaking are functions of the number n of
nodes) is supposed to hold for any fixed n. Finally, note that this is a place where it is
crucial that we consider forests, not trees, as on trees is might be the case that no graph
G′ as described exists: if the two extensions beyond BG(e, T − 1/2) that are responsible
for the containment of ℓu in A1/2((u, e)) and of ℓv in A1/2((v, e)) both have no edges
leaving the respective extension except those connecting them to BG(e, T − 1/2), and
the total number of nodes in the union of BG(e, T − 1/2) and those two extensions does
not happen to be precisely n, then those two extensions cannot appear simultaneously if
we assume the input graph to be an n-node tree.

Now consider the case that Condition 2 is satisfied. Then, by the definition of R(Π),
6For better readability, we refrain from using the mathematically precise term “isomorphism” in the

following, and instead identify isomorphic objects with each other, e.g., we consider BG(e, T − 1/2) to
be a subgraph of G′ if it is isomorphic to some subgraph of G′.
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there is some label ℓu ∈ A1/2((u, e)) satisfying ℓu /∈ gΠ(f
′
in((u, e))) or some label ℓv ∈

A1/2((v, e)) satisfying ℓv /∈ gΠ(f
′
in((v, e))). With an analogous argumentation to the

one used in the previous case, we obtain that there is a forest G′ ∈ FN containing
BG(e, T − 1/2) such that |V (G′)| = |V (G)| and the probability that A, when executed
on G′, fails on e is at least K.

Since 0 < K ≤ 1, we can conclude that in either case the probability (conditioned
on the already fixed random bits in BG′(e, T − 1/2)) that, in G′, A fails on e is at
least K2. Observe that the output of A on the two half-edges belonging to e depends
only on BG′(e, T + 1/2) = BG′(u, T ) ∪ BG′(u, T ). Given the fixed topology and input
in BG′(e, T − 1/2), there are at most s := (3|ΣΠ

in|)2∆
T+1 different possibilities for the

topology and input in BG′(e, T +1/2): there are at most 2∆T nodes in BG′(e, T +1/2) \
BG′(e, T − 1/2), and for each of the ∆ possible ports of such a node, there are at most
3 possibilities regarding topology (being connected to a node in BG′(e, T − 1/2), being
connected to a node outside of BG′(e, T + 1/2), or non-existing due to the degree of the
node being too small) and at most |ΣΠ

in| possibilities regarding the input label on the
half-edge corresponding to that port. Let B denote the set of different balls of the form
BG′(e, T + 1/2) (for some G′) that contain BG(e, T − 1/2). As shown above, |B| ≤ s.

Now, forget the fixing of the random bits in BG(e, T − 1/2). By the above discussion,
it follows that there is some ball B ∈ B (and therefore also some forest G′) containing
BG(e, T − 1/2) such that the probability that A, when executed on B (or G′), fails
on e is at least (p∗e/s) · K2. Since this probability is upper bounded by p, we obtain
p∗e ≤ ps/(K2), as desired.

Lemma 7.14. Let u be an arbitrary node in an arbitrary forest G ∈ FN . It holds that
p∗u ≤ p+ |ΣΠ

out|∆K + ps∆
K , where s = (3|ΣΠ

in|)2∆
T+1.

Proof. Let e1, . . . , edeg(u) denote the edges incident to u. Moreover, let p
(1)
u denote the

probability that
{A1/2((u, ei))}1≤i≤deg(u) /∈ N deg(u)

R(Π) and p
(2)
u the probability that there exists some 1 ≤

i ≤ deg(u) satisfying A1/2((u, ei))} /∈ gR(Π)(fin((u, ei))). Since those two conditions
together cover all cases in which A1/2 fails at u, we have p∗u ≤ p

(1)
u + p

(2)
u . We start by

bounding p
(1)
u .

Observe that correctness at u, for both A and A1/2, depends only on BG(u, T ). Given
the topology and input in BG(u, T ) (which is already fixed since we are considering
some fixed graph G), we call, for each label ℓ ∈ ΣΠ

out and each 1 ≤ i ≤ deg(u), an
assigment of random bits in BG(u, T ) bad for the pair (ℓ, i) if A((u, ei)) = ℓ and ℓ /∈
A1/2((u, ei)) (under this assignment). Observe that the definition of A1/2 ensures, for
each fixed assignment of random bits in BG(ei, T − 1/2), that if ℓ /∈ A1/2((u, ei)) under
this assignment7, then the probability that A((u, ei)) = ℓ (conditioned on the fixed
assignment in BG(ei, T − 1/2)) is smaller than K. Hence, (prior to fixing any random

7Note that A1/2((u, ei)) is uniquely determined after fixing the random bits in BG(ei, T − 1/2).
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bits) for each pair (ℓ, i) ∈ ΣΠ
out × {1, . . . ,deg(u)}, the probability that an assignment

of random bits in BG(u, T ) is bad for (ℓ, i) is smaller than K. It follows by a union
bound that the probability that an assignment of random bits is bad for some pair
(ℓ, i) ∈ ΣΠ

out × {1, . . . ,deg(u)} is upper bounded by |ΣΠ
out| ·∆ ·K.

Now, consider an arbitrary assignment of random bits in BG(u, T ) such that {A1/2((u, ei))

}1≤i≤deg(u) /∈ N deg(u)
R(Π) under this assignment. We argue that then A fails at u or there is

some pair (ℓ, i) ∈ ΣΠ
out×{1, . . . ,deg(u)} such that the assignment is bad for (ℓ, i): indeed,

if there is no such pair and A does not fail at u, then, for each 1 ≤ i ≤ deg(u), we have
A((u, ei)) ∈ A1/2((u, ei)), which (combined again with the correctness of A at u) would
imply, by the definition ofN deg(u)

R(Π) , that {A1/2((u, ei))}1≤i≤deg(u) ∈ N
deg(u)
R(Π) , contradicting

the stated property of the considered assignment. We conclude that p(1)u ≤ p+|ΣΠ
out|·∆·K.

Next, we bound p
(2)
u . By a union bound, it follows from the definition of p(2)u that there

is some 1 ≤ i ≤ deg(u) such that the probability that A1/2((u, ei)) /∈ gR(Π)(fin((u, ei)))

is at least p
(2)
u / deg(u) ≥ p

(2)
u /∆.

Consider an arbitrary assignment of random bits in BG(ei, T−1/2) such thatA1/2((u, ei)) /∈
gR(Π)(fin((u, ei))). Then, by the definition of R(Π), there is some label ℓ ∈ A1/2((u, ei))
satisfying ℓ /∈ gΠ(fin((u, ei))). Moreover, by the definition of A1/2, there is some
ball BG′(u, T ) (in some forest G′ ∈ FN satisfying |V (G′)| = |V (G)|) containing
BG(ei, T − 1/2) such that, conditioned on the already fixed random bits in BG′(ei, T −
1/2) = BG(ei, T − 1/2), the probability that A, when executed on BG′(u, T ) (or G′),
returns ℓ on (u, ei) is at least K. Note that since ℓ /∈ gΠ(fin((u, ei))), returning ℓ on
(u, ei) implies that A fails at u.

As already established in the proof of Lemma 7.13, there are at most s := (3|ΣΠ
in|)2∆

T+1

different possibilities for the topology and input of a ball BG′(ei, T + 1/2) containing
BG(ei, T−1/2), which implies the same bound on the number of different balls BG′(u, T )
containing BG(ei, T−1/2). Analogously to before (and forgetting the fixing of the random
bits in BG(ei, T − 1/2)), we obtain that there is some ball BG′(u, T ) (in some forest G′

satisfying |V (G′)| = |V (G)|) containing BG(ei, T − 1/2) such that the probability that
A, when executed on BG′(u, T ) (or G′), fails at u is at least ((p

(2)
u /∆)/s) ·K. Since this

probability is upper bounded by p, we obtain p
(2)
u ≤ ps∆/K, which implies

p∗u ≤ p+ |ΣΠ
out|∆K +

ps∆

K
, (7.1)

as desired.

By using Lemmas 7.13 and 7.14 and choosing K suitably, we now give an upper bound
on the local failure probability of A1/2 on FN .

Lemma 7.15. Algorithm A1/2 has local failure probability at most 2∆(s+ |ΣΠ
out|)p1/3 on

FN , where s = (3|ΣΠ
in|)2∆

T+1.
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Proof. Choose the parameter in the definition of A1/2 as K := p1/3. Then, by
Lemma 7.14, for each node u in the input forest G, we obtain

p∗u ≤ p+ |ΣΠ
out|∆p1/3 + s∆p2/3 ≤ 2∆(s+ |ΣΠ

out|)p1/3 ,

and, by Lemma 7.13, for each edge e in G, we obtain

p∗e ≤ sp1/3 ≤ 2∆(s+ |ΣΠ
out|)p1/3 .

The lemma statement follows by the definition of local failure probability.

Next, we prove an analogous statement to Lemma 7.15 relating the local failure probabil-
ities of A1/2 and A′. For any edge e, resp. node u, let p′e, resp. p′u, denote the probability
that A′ fails at edge e, resp. node u.

Lemma 7.16. If A1/2 has local failure probability at most p∗ ≤ 1 on FN , then A′ has
local failure probability at most 3(s+|ΣR(Π)

out |)(p∗)1/(∆+1) on FN , where s = (3|ΣΠ
in|)2∆

T+1.

Proof. We start by obtaining analogous statements to Lemmas 7.13 and 7.14. By simply
exchanging the roles of nodes and edges8 and reducing the radii of the considered balls
by 1/2 (as well as using parameter L instead of K, and using Σ

R(Π)
out instead of ΣΠ

out),
we directly obtain analogous proofs resulting in the following two statements, (assuming
the stated upper bound p∗ on the local failure probability of A1/2):

1. For any node u in the input forest G, we have p′u ≤ p∗s/(L∆).

2. For any edge e in G, we have p′e ≤ p∗ + |ΣR(Π)
out | · 2L+ p∗ · 2s/L.

Note that, compared to Lemmas 7.13 and 7.14, each 2 has been replaced by ∆ and vice
versa, simply because the roles of edges (that end in 2 nodes) and nodes (that “end” in
at most ∆ edges) are reversed in the analogous proofs. Also observe that, technically,
the expression for s that we obtain in the new proofs is (3|ΣΠ

in|)∆·∆
(T−1)+1 ; however, since

this is upper bounded by the original expression for s, the obtained statements also hold
for the original s = (3|ΣΠ

in|)2∆
T+1 (which we will continue to use).

Now, analogously to the choice of K = p1/(2+1) in the proof of Lemma 7.15, set L :=
(p∗)1/(∆+1). We obtain, for each edge e in G,

p′e ≤ p∗ + |ΣR(Π)
out | · 2(p∗)1/(∆+1) + 2s(p∗)∆/(∆+1)

≤ 3(s+ |ΣR(Π)
out |)(p∗)1/(∆+1) ,

and, for each node u in G,

p′u ≤ s(p∗)1/(∆+1) ≤ 3(s+ |ΣR(Π)
out |)(p∗)1/(∆+1) .

Again, the lemma statement follows by the definition of local failure probability.
8Note that, as usual for round elimination, all proofs also directly extend to hypergraphs. Hence,

exchanging the roles of nodes and edges is very natural: a node v of degree deg(v) simply becomes a
hyperedge containing deg(v) endpoints, while an edge becomes a node of degree 2.
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Combining Lemmas 7.15 and 7.16, we are finally ready to prove Theorem 7.12.

Proof of Theorem 7.12. Let S be as specified in the theorem, and let A′ be as derived
before. As already argued during the definition of A′, if the runtime T = T (n) of A is
0, then A′ satisfies the stated properties regarding runtime and local failure probability.
Hence, assume in the following that T ≥ 1.

From the definition of A′, it follows directly that the runtime of A′ is T − 1. It remains
to show that A′ has local failure probability at most Sp1/(3∆+3) on FN . We start by
showing that A′ has local failure probability at most S′p1/(3∆+3) on FN , where

S′ := 3 · ((3|ΣΠ
in|)2∆

T+1
+ |ΣR(Π)

out |)

·(2∆((3|ΣΠ
in|)2∆

T+1
+ |ΣΠ

out|))1/(∆+1) .

Indeed, if p satisfies 2∆((3|ΣΠ
in|)2∆

T+1
+ |ΣΠ

out|)p1/3 ≤ 1, then this is a direct consequence
of Lemmas 7.15 and 7.16. If p does not satisfy the given condition, then the straightfor-
ward combination of Lemmas 7.15 and 7.16 does not work, as the condition p∗ ≤ 1 in
Lemma 7.16 is not satisfied. However, in this case, i.e., if 2∆((3|ΣΠ

in|)2∆
T+1

+|ΣΠ
out|)p1/3 >

1, we obtain S′p1/(3∆+3) > 1, which trivially implies that A′ has local failure probability
at most S′p1/(3∆+3).

Now, the theorem statement follows from the fact that S′ ≤ S, which in turn follows
from

S′ = 3 · ((3|ΣΠ
in|)2∆

T+1
+ |ΣR(Π)

out |)

· (2∆((3|ΣΠ
in|)2∆

T+1
+ |ΣΠ

out|))1/(∆+1)

≤ (9(|ΣΠ
in|+ |Σ

R(Π)
out |))2∆

T+1 · (6∆(|ΣΠ
in|+ |ΣΠ

out|))2∆
T+1

≤ (10∆(|ΣΠ
in|+max{|ΣΠ

out|, |Σ
R(Π)
out |}))2∆

T+1

· (10∆(|ΣΠ
in|+max{|ΣΠ

out|, |Σ
R(Π)
out |}))2∆

T+1

= (10∆(|ΣΠ
in|+max{|ΣΠ

out|, |Σ
R(Π)
out |}))4∆

T+1

= S .

7.3.3 From Easier to Harder Problems

In this section, we prove the following lemma, which, in a sense, provides a counterpart
to Theorem 7.12: it states that the time needed to solve some problem Π is not much
larger than the time needed to solve R(R(Π)). It is a simple extension of one direction
of [74, Theorem 4.1] to the case of graphs with inputs. We note that the lemma also
holds for randomized algorithms (with essentially the same proof), but we will only need
the deterministic version.
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Lemma 7.17. Let Π be a node-edge-checkable LCL problem and let A be a deterministic
algorithm solving R(R(Π)) in T (n) rounds, for some function T (on some arbitrary class
of graphs). Then there exists a deterministic algorithm A′ solving Π in T (n)+ 1 rounds.

Proof. We will define A′ as follows, depending on A.9

For each half-edge h, let A(h) denote the output label that A outputs at h. In A′, each
node v starts by computing A(h) for each half-edge h = (w, e) such that w is a neighbor
of or identical to v and e is an edge incident to v. As, in A, each neighbor of v computes
its output in T (n) rounds, v can compute all mentioned A(h) in T (n) + 1 rounds, by
simulating A. Node v will decide on its output solely based on the information collected
so far, which implies that the runtime of A′ is T (n) + 1.

For choosing its output, v proceeds in two steps (computed without gathering any further
information). In the first step, for each incident edge e = {v, w}, node v chooses, in some
deterministic fashion, a label L(v,e) ∈ A((v, e)) and a label L(w,e) ∈ A((w, e)) such that
{L(v,e), L(w,e)} ∈ ER(Π). Such a pair of labels exists, by the definition of ER(R(Π)) (and the

fact that A correctly solves R(R(Π))). Moreover, the definition of N deg(v)

R(R(Π))
implies that

the multiset {L(v,e′)}e′∋v is contained in N deg(v)
R(Π) , and the definition of gR(R(Π)) implies

that L(v,e) ∈ gR(Π)(i(v,e)) and L(w,e) ∈ gR(Π)(i(w,e)) where i(v,e), i(w,e) ∈ ΣΠ
in denote the

input labels assigned to (v, e) and (w, e), respectively. Note also that since the labels
L(v,e) and L(w,e) are chosen in a deterministic fashion, depending only on A((v, e)) and
A((w, e)), node v and node w will compute the same label L(v,e) and the same label
L(w,e). We conclude that labeling each half-edge h with label Lh yields a correct solution
for R(Π).

In the second step, v computes the final output for each half-edge incident to v, in a
fashion analogous to the first step. More precisely, for each incident edge e, node v chooses
a final output label ℓ(v,e) ∈ L(v,e) such that the multiset {ℓ(v,e′)}e′∋v is contained in
N deg(v)

Π . Such labels ℓ(v,e) exist, by the definition ofN deg(v)
R(Π) (and the fact that the labeling

assigning Lh to each half-edge h correctly solves R(Π)). Moreover, the definition of ER(Π)

implies that, for any edge e = {v, w}, the multiset {ℓ(v,e), ℓ(w,e)} is contained in EΠ, and
the definition of gR(Π) implies that, for any half-edge (v, e), we have ℓ(v,e) ∈ gΠ(i(v,e)).

We conclude that labeling each half-edge h with label ℓh yields a correct solution for Π.
It follows that A′ solves Π in T (n) + 1 rounds, as desired.

7.3.4 Proving the Gap

In this section, we will finally prove our main result that on forests or trees, any LCL
problem with complexity o(log∗ n) can be solved in constant time. We will first take care
of the case of forests.

9Note that the A and A′ considered here are not the same as the ones considered in Section 7.3.2.
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Theorem 7.18. Let Π be an arbitrary LCL problem that has (deterministic or random-
ized) complexity o(log∗ n) on F . Then Π can be solved in constant time on F (both
deterministically and randomized).

Proof. Observe that, by Lemma 7.7, it suffices to prove the theorem for node-edge-
checkable LCL problems. Hence, assume in the following that Π is node-edge-checkable
(and has deterministic or randomized complexity o(log∗ n) on F).

Observe further that if each node independently chooses an identifier (of length O(log n)
bits) uniformly at random from a set of size n3, then the probability that there are two
nodes that choose the same identifier is at most 1/n, by a union bound over all pairs of
nodes. Hence, a deterministic algorithm solving Π in o(log∗ n) rounds can be transformed
into a randomized algorithm with the same runtime and a failure probability of at most
1/n by having each node create its own identifier from its random bits before executing
the deterministic algorithm. Thus, we can assume that the o(log∗ n)-round algorithm for
Π guaranteed in the theorem is randomized and fails with probability at most 1/n. Let
A denote this algorithm, and observe that the bound of 1/n on the failure probability of
A implies that also the local failure probability of A is bounded by 1/n.

Let T (n) denote the runtime of A on the class of n-node forests from F . Let n0 be a
sufficiently large positive integer; in particular, we require that

T (n0) + 2 ≤ log∆ n0, (7.2)

2T (n0) + 5 ≤ log∗ n0, (7.3)

and (
(S∗)2 · (log n0)

2∆
)(3∆+3)T (n0)

< n0 (7.4)

where S∗ := (10∆(|ΣΠ
in| + log n0))

4∆T (n0)+1 . Since T (n) ∈ o(log∗ n) (and ∆ and ΣΠ
in are

fixed constants), such an n0 exists. Moreover, for simplicity, define f(·) := R(R(·)), and
recall that Fn0 denotes the class of all forests from F with n0 nodes. Repeatedly applying
f(·), starting with Π, yields a sequence of problems Π, f(Π), f2(Π), . . . . Our first goal
is to show that there is a 0-round algorithm solving fT (n0)(Π) on Fn0 with small local
failure probability, by applying Theorem 7.12 repeatedly.

Recall that for any integer i ≥ 0, we have Σ
R(f i(Π))
out = 2Σ

fi(Π)
out and Σ

R(R(f i(Π)))
out =

2Σ
R(fi(Π))
out , by definition. This implies that for any 0 ≤ i ≤ T (n0), we have

max{|Σf i(Π)
out |, |Σ

R(f i(Π))
out |} ≤ 22

. .
.
2Σ

Π
out

where the power tower is of height 2T (n0) + 3. By (7.3), we obtain that

max{|Σf i(Π)
out |, |Σ

R(f i(Π))
out |} ≤ log n0 for all 0 ≤ i ≤ T (n0). (7.5)
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Recall that S∗ = (10∆(|ΣΠ
in|+log n0))

4∆T (n0)+1 and note that ΣfT (n0)(Π)
in = Σ

fT (n0)−1(Π)
in =

. . . = ΣΠ
in. By the above discussion, we conclude that when applying Theorem 7.12 to

problem f i(Π) for some 0 ≤ i ≤ T (n0), then the parameter S in the obtained upper bound
Sp1/(3∆+3) (in Theorem 7.12) is upper bounded by S∗. Hence, by applying Theorem 7.12
T (n0) times, each time using the upper bound S∗p1/(3∆+3) (instead of Sp1/(3∆+3) with
the respective S from Theorem 7.12), we obtain that there exists a randomized algorithm
A∗ solving fT (n0)(Π) on Fn0 in 0 rounds with local failure probability p∗ at most

S∗ · (S∗)1/(3∆+3) · (S∗)1/(3∆+3)2 · . . . · (S∗)1/(3∆+3)T (n0)−1

· 1/(n0)
1/(3∆+3)T (n0)

= (S∗)
∑T (n0)−1

i=0 (1/(3∆+3)i) · 1/(n0)
1/(3∆+3)T (n0)

≤ (S∗)2 · 1/(n0)
1/(3∆+3)T (n0)

< 1/(log n0)
2∆

≤ 1/
(
Σ
fT (n0)(Π)
out

)2∆
,

where the second-to-last inequality follows from (7.4), and the last inequality from (7.5).
Note that (7.2) guarantees the applicability of Theorem 7.12 to the graph class Fn0 for
our purposes. Moreover, we can assume that A∗ outputs only labels from Σ

fT (n0)(Π)
out

(even if it fails), as otherwise we can turn A∗ into such an algorithm (with the same
runtime and a smaller or equally small local failure probability) by simply replacing each
label that A∗ outputs at some node and is not contained in Σ

fT (n0)(Π)
out by some arbitrary

label from Σ
fT (n0)(Π)
out .

Our next step is to show that the obtained bound on the local failure probability p∗ of A∗
implies that there exists a deterministic algorithm solving fT (n0)(Π) on Fn0 in 0 rounds.
To this end, let I be the set of all tuples I = (i1, . . . , ik) consisting of k ∈ {1, . . . ,∆}
labels from ΣΠ

in, and O the set of all tuples O = (o1, . . . , ok) consisting of k ∈ {1, . . . ,∆}
labels from Σ

fT (n0)(Π)
out . We say that I = (i1, . . . , ik), resp. O = (o1, . . . , ok), is the input

tuple, resp. output tuple, of some node v if deg(v) = k and, for each 1 ≤ j ≤ k, we
have that ij is the input label assigned to, resp. the output label returned by A∗ at, the
half-edge incident to v corresponding to port j at v.

Since the runtime of A∗ is 0 rounds, any node v chooses its output tuple solely based on
its random bit string and its input tuple. We now define a function Adet : I → O (that
will constitute the desired deterministic algorithm) as follows. Consider an arbitrary
tuple I = (i1, . . . , ik) ∈ I and let v be a node with input label I. Since A∗ outputs only

labels from Σ
fT (n0)(Π)
out and k ≤ ∆, there are at most

(
Σ
fT (n0)(Π)
out

)∆
different possibilities

for the output tuple of v. Hence, there exists a tuple O ∈ O that v outputs with

probability at least 1/
(
Σ
fT (n0)(Π)
out

)∆
(when executing A∗). Fix such an O arbitrarily,

and set Adet(I) = O. This concludes the description of Adet. Note that the definition of
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Adet is independent of the choice of v (under the given restrictions) as the only relevant
parameters are the input tuple at v (which is fixed) and the random bit string at v (which
comes from the same distribution for each node).

We claim that for any two (not necessarily distinct) configurations I, I ′ ∈ I, and
any two (not necessarily distinct) labels o ∈ Adet(I) and o′ ∈ Adet(I

′), we have
{o, o′} ∈ EfT (n0)(Π). For a contradiction, assume that there are two configurations
I = (i1, . . . , ik), I

′ = (i′1, . . . , i
′
k′) from I and two labels o ∈ Adet(I) and o′ ∈ Adet(I

′)
satisfying {o, o′} /∈ EfT (n0)(Π). Let O = (o1, . . . , ok) and O′ = (o′1, . . . , o

′
k′) be the tuples

that I and I ′, respectively, are mapped to by Adet, i.e., Adet(I) = O and Adet(I
′) = O′.

Let j ∈ {1, . . . , k} and j′ ∈ {1, . . . , k′} be two ports/indices such that oj = o and o′j′ = o′.
Consider a forest (with n0 nodes) containing two adjacent nodes v, v′ such that I is the
input tuple of v, I ′ is the input tuple of v′, and the edge e := {v, v′} corresponds to port
j at v and to port j′ at v′. By the definition of Adet, we know that, when executing A∗,
the probability that v outputs o on half-edge (v, e) and the probability that v′ outputs o′

on half-edge (v′, e) are each at least 1/
(
Σ
fT (n0)(Π)
out

)∆
. Since these two events are inde-

pendent (as one depends on the random bit string of v and the other on the random bit
string of v′), it follows that the probability that the output on edge e is {o, o′} is at least

1/
(
Σ
fT (n0)(Π)
out

)2∆
. Now, {o, o′} /∈ EfT (n0)(Π) yields a contradiction to the fact the local

failure probability of A∗ is strictly smaller than 1/
(
Σ
fT (n0)(Π)
out

)2∆
, proving the claim.

Observe that for any configuration I = (i1, . . . , ik) from I, we also have that

1. Adet(I) (or, more precisely, the unordered underlying multiset) is contained in
N k

fT (n0)(Π)
, and

2. for each port 1 ≤ j ≤ k, the entry from Adet(I) corresponding to port j is contained
in gfT (n0)(Π)(ij),

as otherwise for each node v with input tuple I, algorithm A∗ would fail at v with prob-

ability at least 1/
(
Σ
fT (n0)(Π)
out

)∆
, yielding again a contradiction to the aforementioned

upper bound on the local failure probability of A∗. By the above discussion, we conclude
that the output returned by Adet is correct at each node and each edge, and therefore
Adet constitutes a deterministic 0-round algorithm solving fT (n0)(Π) on Fn0 .

By definition, algorithm Adet is simply a function from I to O. Hence, while technically
Adet has been defined only for forests from Fn0 , we can execute Adet also on forests with
an arbitrary number of nodes and it will still yield a correct output. We conclude that
Adet constitutes a deterministic 0-round algorithm solving fT (n0)(Π) on F .

Now, we can simply apply Lemma 7.17 T (n0) times, starting with fT (n0)(Π), and obtain
that there exists a deterministic algorithm solving Π on F in T (n0) rounds (which implies
the existence of a randomized algorithm solving Π on F in T (n0) rounds, using the
same argument as in the beginning of the proof). As n0 is a fixed positive integer
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(depending only on ∆ and Π), it follows that Π can be solved in constant time on F
(both deterministically and randomized).

Now, by combining Theorem 7.18 with Lemma 7.11 and Lemma 7.7 (which guarantees
that Lemma 7.11, which is stated for node-edge-checkable LCL problems, can be applied),
we obtain our main result as a corollary.

Theorem 7.19 (Formal version of Theorem 7.1). Let Π be an arbitrary LCL problem
that has (deterministic or randomized) complexity o(log∗ n) on T . Then Π can be solved
in constant time on T (both deterministically and randomized).

7.4 Speedup in Grids

In this section we prove that on d-dimensional oriented grids, any o(log∗ n)-round LOCAL
algorithm for an LCL problem Π (with input labels) can be turned into a LOCAL algo-
rithm for Π with a round complexity of O(1). An oriented d-dimensional grid is a grid
where each edge is labeled with a label from [d] that says which dimension this edge cor-
responds to. Moreover, all edges corresponding to the same dimension are consistently
oriented. The grid is assumed to be toroidal, that is, without boundaries. We believe,
but do not prove, that the same result can be shown also for non-toroidal grids, that is,
grids with boundaries. From now on fix a dimension d.

Theorem 7.20. There is no LCL problem Π with a randomized/deterministic LOCAL
complexity between ω(1) and o(log∗ n) in d-dimensional oriented grids for d = O(1).

The proof of the speedup is a relatively simple extension of an argument of Suomela in
the paper of Chang and Pettie [94]. There, the argument is proven for LCLs without
inputs on unoriented grids. It shows that every o(log∗ n)-round algorithm can be even
sped up to a 0-round algorithm. This is not the case anymore with inputs, which makes
the proof slightly more involved.

The high-level idea of the proof is the following. First, we observe that a LOCAL al-
gorithm on oriented grids implies a PROD-LOCAL algorithm with the same asymptotic
complexity. A PROD-LOCAL algorithm is defined as follows.

Definition 7.21 (PROD-LOCAL model). An algorithm in the PROD-LOCAL model is
defined as an algorithm in the LOCAL model, but it expects that each node u ∈ V (G) for G
an oriented grid gets an ordered sequence of d identifiers id1(u), . . . , idd(u) ∈ [nO(1)], one
for each dimension of the input grid G. We require that the i-th identifier idi(u), idi(v)
of two nodes u, v is the same if and only if the two nodes have the same i-th coordinate
in G.

An order-invariant PROD-LOCAL model is defined as follows. We say that two identifier
assignments are order-indistinguishable in some neighborhood around a node u if for any
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two nodes v, w in that neighborhood of u and any i, j ∈ [d], the i-th identifier of one
node is either smaller than the j-th identifier of the other node in both ID assignments
or larger in both ID assignments. Then, an order-invariant t(n)-round PROD-LOCAL
algorithm outputs the same value at the half edges of a node in case two ID assignments
are order-indistinguishable in its t(n)-hop neighborhood.

We have the following fact:

Proposition 7.22. If an LCL Π allows has local deterministic/randomized complexity
t(n) in the LOCAL model, it has complexity t(n) in the PROD-LOCAL model.

Proof. By result of [94], a t(n) round randomized algorithm in the local model implies
a t(2O(n2)) round deterministic algorithm. This implies that we can turn an O(log∗ n)-
rounds randomized algorithm into O(log∗ n)-rounds deterministic one.

Each of the d identifiers of a node are bounded by nc for some fixed constant c in the
PROD-LOCAL model. Assigning each node the identifier I =

∑d
i=1 Ii ·nc(i−1), where (Ii)

is its i-th identifier results in globally unique identifiers from a polynomial range. This
allows simulation of the deterministic LOCAL algorithm in the PROD-LOCAL model as
needed.

Next, we argue that an o(log∗ n)-round PROD-LOCAL algorithm can be turned into
an order-invariant PROD-LOCAL algorithm. To show the existence of such an order-
invariant algorithm, we use a Ramsey theory based argument very similar to the one in
Section 8.6 and [94].

Proposition 7.23. If there is a t(n) = o(log∗ n) round PROD-LOCAL algorithm for an
LCL Π, then there is also an order-invariant PROD-LOCAL algorithm with the same
round complexity.

Proof. The algorithm A of local complexity t(n) can be seen as a function that maps
(2t(n) + 1) × (2t(n) + 1) sized grids with edges consistently oriented and labeled with
numbers from [d]. Moreover, each vertex has a d-tuple of its identifiers and each half-edge
a label from Σin. The function A maps this input to an output label for each half-edge
incident to a given node. Let R(p,m, c) be defined as in the previous section and let H
be a hypergraph on nO(1) nodes, each representing an identifier.

1. Assume we have a t(n)-hop neighborhood already labeled without assigned identi-
fiers and we want to assign the identifiers. There are at most p = d · (2t(n) + 1)
numbers to assign.

2. Assume we have a t(n) + r-hop neighborhood already labeled without assigned
identifiers and we want to assign the identifiers. There are at most m = d ·(2(t(n)+
r) + 1) numbers to assign. Here, r is the local checkability radius of the problem.

3. The number z is defined to be the number of possible input neighborhoods not
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labeled with identifiers. We have z ≤ |Σin|2d(2t(n)+1)d . Note that the extra 2d-
factor in the exponent comes from the fact that we label half-edges.

4. Finally, c is the number of colors such that each color encodes a distinct function
which takes as input one of the z possible neighborhoods labeled with Σin inputs.
Moreover, for each such neighborhood we fix a given permutation on p elements π.
The function outputs a tuple of d output labels from Σout, one entry corresponding
to each half-edge incident to a vertex. Hence, for the number of such colors c we
have c = |Σout|dp!z.

We color each p-edge T of H by the following color out of c colors: we consider all of the z
possible ways of labeling the t(n)-hop neighborhood with labels from Σin and all p! ways
of how one can assign a set of p different identifiers of T to that neighborhood (we think
of T as a sorted list on which we apply π and then in this order we fill in identifiers to the
t(n)-hop neighborhood). For each such input (out of p! · z possible) we now apply A to
that neighborhood and record the output from Σd

out. This gives one of c possible colors.
We now use the bound log∗R(p,m, c) = p + log∗m + log∗ c + O(1) as in the previous
section. Hence, as we assume t(n) = o(log∗ n), this implies |V (H)| ≥ R(p,m, c), and
therefore there exists a set S ⊆ V (H) of m distinct IDs such that all p-sized subsets
T ⊆ S have the same color.

We now define the new algorithm A′ as follows. Let N be a neighborhood from the
order-invariant PROD-LOCAL model; take an arbitrary p-sized subset T ⊆ S and label
N with identifiers from T by the permutation π given by the order on N that we got.
Then, apply A on this input.

First, this algorithm is well defined as it does not matter which T we pick, the algorithm
always answers the same because every T ⊆ S is colored by the same color. Second, the
algorithm is correct, since for any (t(n)+r)-hop neighborhood that has at most m vertices
we can choose some way of assigning identifiers from S (S = m) to that neighbourhood
and A′ answers the same as what A would answer with this assignment of identifiers for
all nodes within the local checkability radius.

Once we have the order-invariant algorithm with a round complexity of o(log∗ n), an
easy adaptation of the proof for Theorem 8.27 implies that we can turn it into an order-
invariant PROD-LOCAL algorithm with a round complexity of O(1). However, because
of the oriented-grid, we get a local order on the vertices for free, so we can turn the
order-invariant PROD-LOCAL algorithm into an (order-invariant) LOCAL algorithm, thus
finishing the proof.

Proposition 7.24. If an LCL Π has complexity o(n1/d) in the order-invariant PROD-LOCAL
model, it has deterministic/randomized/deterministic order-invariant local complexity
O(1) in the LOCAL model.

Proof. This is an argument very similar to [88]. Let A be the algorithm in the
PROD-LOCAL model. We choose n0 large enough and run A “fooled” into thinking
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that the size of the grid is n0. As the order on the identifiers, choose the order where
two identifiers idi(u), idj(v) have idi(u) < idj(v) if and only if either i < j or i = j and
v is further than u in the i-th coordinate (the notion of “further than” is given by the
orientation of the grid). A standard argument as in [88] shows that if n0 is chosen large
enough, the “fooled” algorithm needs to be correct, as otherwise A would be incorrect
when being run on grids of size n0.

Theorem 7.20 follows by application of Theorems 7.22 to 7.24.
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CHAPTER 8

The Randomized Local Computation Complexity of the Lovász Local
Lemma

8.1 Introduction

As our main contribution, we show in this chapter that the randomized LCA complexity
of the distributed Lovász local lemma (LLL) is Θ(log n). See Section 8.6 for the informal
discussions of the volume complexity (VOLUME ) and the local computation algorithms
(LCA ). Formal definitions are given later in Section 8.2.

Theorem 8.1. The randomized LCA complexity of the distributed LLL on constant degree
graphs is Θ(log n). The upper bound holds for the polynomial criterion p ≤ (e∆)−c for
some c = O(1), while the lower bound holds even for the exponential criterion p ≤ 2−∆.

In fact, for the minimally more restrictive criterion p < 2−∆, the distributed LLL can
already be solved in O(log∗ n) rounds in the LOCAL model [78, 79], which implies also
a probe complexity of O(log∗ n) in the LCA model [127]. Second, we show the following
general speedup theorem.

Theorem 8.2. For any LCL Π, if there is a randomized LCA algorithm that solves Π
and has a probe complexity of o(

√
log n), then there is also a deterministic LCA algorithm

for Π with a probe complexity of O(log∗ n).

We also show the following theorem in Section 8.6.

Theorem 8.3. There does not exist an LCL with a deterministic VOLUME complexity
between ω(1) and o(log∗ n).

Our Method in a Nutshell

Let us first informally present the high-level ideas of our proofs.

129
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The Gap Result of Theorem 8.2:

We start to describe the high-level idea of the proof that there is no LCL with a random-
ized/deterministic LCA /VOLUME complexity between ω(log∗ n) and o(

√
log n). This is

the conceptually simplest result and it works by directly adapting ideas known from the
LOCAL model. The main trick is to consider the deterministic VOLUME model where
the identifiers can come from an exponential instead of a polynomial range (cf. Section
7.1 in [270]). The result then follows from two observations. First, a variant of the
Chang-Pettie speedup [88] shows that any VOLUME algorithm with a probe complexity
of o(n) that works with exponential IDs can be sped up to have a probe complexity of
Θ(log∗ n). Second, a variant of the Chang-Kopelowitz-Pettie derandomization [94] shows
that any randomized algorithm with probe complexity o(

√
log n) can be derandomized

to give a deterministic o(n)-probe algorithm that works with exponential IDs. The root
comes from the exponential IDs: during the argument we apply a union bound over all
bounded degree n-node graphs equipped with unique IDs from an exponential range.

The LLL Complexity of Theorem 8.1:

The upper bound can directly be proven by adapting the LLL algorithm of [? ] for the
LOCAL model to the VOLUME model. To prove an Ω(log n) lower bound, we prove a
corresponding lower bound of Ω(log n) for the Sinkless Orientation Problem, which can
be seen as an instance of the distributed LLL. To prove this lower bound, we use the
same high-level proof idea as described in the previous paragraph. However, to get a tight
Ω(log n) lower bound we need additional ideas. More concretely, the number

√
log n is an

artifact of a union bound over 2O(n2) many non-isomorphic ID-labeled graphs. As we show
the Sinkless Orientation lower bound on bounded-degree trees, it is actually sufficient to
union bound over all non-isomorphic ID-labeled bounded-degree trees. As the number of
non-isomorphic unlabeled trees is 2O(n), we already made progress. However, this itself is
still not enough as we need identifiers from an exponential range to speed the algorithm
up to Θ(log∗ n) and there are 2O(n2) many ways to assign unique exponential IDs. Note
that even if we would assign IDs from a polynomial range, there still would be 2O(n logn)

ways to do it, which would only allow to hope for an Ω(log n/ log logn) bound.

To circumvent this issue we borrow an idea from a parallel paper [83] where the tech-
nique of ID graphs is developed to overcome a different issue. The idea is as follows: we
will work in the deterministic model with exponential IDs. However, we promise that
the ID assignment satisfies certain additional properties. More concretely, we construct
a so-called ID graph (which is not to be confused with the actual input graph). Each
node in the ID graph corresponds to one of the exponentially many IDs. Moreover, the
maximum degree of the ID graph is constant and two nodes in the input graph that are
neighbors can only be assigned IDs that are neighbors in the ID graph. Having restricted
the ID assignment in this way, it turns out that we only need to union bound over 2O(n)

different ID-labeled trees. Hence, a o(log n) randomized VOLUME algorithm would imply
a o(n) deterministic VOLUME algorithm that works on graphs with exponential IDs that
satisfy the constraints imposed by the ID graph. Unfortunately, due to this additional
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restriction, we cannot simply speed-up the algorithm to the Θ(log∗ n) complexity. How-
ever, it turns out that the famous round elimination lower bound for Sinkless Orientation
from [73] works even relative to an ID graph (the formal proof is in fact simpler as one
does not pass through a randomized model). This finishes the lower bound proof for the
VOLUME model. This directly leads to the same lower bound for the LCA model by a
result of [179].

8.2 Preliminaries

We need to state the following formal definitions.

Definition 8.4 (LCA model [277] [8]). In the LCA model, each node is assigned a unique
ID from the set [n]. Moreover, each node is equipped with a port numbering of its edges
and each node might have an additional input labeling. The LCA algorithm needs to
answer queries. That is, given a vertex/edge, it needs to output the local solution of the
vertex/edge in such a way that combining the answers of all vertices/edges constitutes
a valid solution. To answer a query, the algorithm can probe the input graph. A probe
consists of an integer i ∈ [n] and a port number and the answer to the probe is the local
information associated with the other endpoint of the edge corresponding to the specific
port number of the vertex with ID i. The answer to a query is only allowed to depend on
the input graph itself and possibly a shared random bit string in case of randomized LCA
algorithms. The complexity of an LCA algorithm is defined as the maximum number of
probes the algorithm needs to perform to answer a given query, where the maximum is
taken over all input graphs and all query vertices/edges. A randomized LCA algorithm
needs to produce a valid complete output (obtained by answering the query for each vertex)
with probability 1− 1/nc for any desirably large constant c.

Definition 8.5 (VOLUME model [270]). The VOLUME model is very similar to the
LCA model and hence we only discuss the differences. The IDs in the VOLUME model
are from the set {1, 2, . . . ,poly(n)}, as in the LOCAL model, instead of [n]. Moreover,
a VOLUME model algorithm is confined to probe a connected region. In the case of
randomized VOLUME algorithms, each node has a private source of random bits which
is considered as part of the local information and is therefore returned together with the
ID of a given vertex. We note that the shared randomness of the LCA model is strictly
stronger than the private randomness of the VOLUME model and therefore the LCA model
is strictly more powerful than the VOLUME model.

The following is a well-known fact that follows from a straightforward simulation idea.

Lemma 8.6 (Parnas-Ron reduction, [263]). Any LOCAL algorithm with a round com-
plexity of t(n) can be converted into an LCA /VOLUME algorithm with a probe complexity
of ∆O(t(n)), where ∆ denotes the maximum degree of the input graph.

The following lemma is a restatement of Theorem 3 in [179].
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Lemma 8.7. Suppose that there is a randomized LCA algorithm with probe complexity
t(n) that solves an LCL Π. Then there is a randomized LCA algorithm with probe com-
plexity t′(n) = t(poly(n)) that solves Π, does not perform any far probes, and works even
if the unique identifiers come from a polynomial range (instead of from [n]). This also
holds if we restrict ourselves to trees.

We use this lemma to extend a lower bound that we prove for the VOLUME model to
LCA algorithms (that are allowed to perform far probes).

We also need to use the following lemma which informally states that far probes are of
no use for deterministic LCA algorithms with a small probe complexity.

Theorem 8.8 (Theorem 1 in [179]). Any LCL problem that can be solved in the LCA
model deterministically with probe complexity t(n) can be solved with a deterministic
round complexity of t′(n) = t(nlogn) in the LOCAL model provided t(n) = o(

√
log n).

For our purposes, we actually need a slightly stronger version of Theorem 8.8 which is,
in fact, what the proof of Theorem 8.8 in [179] gives.

Theorem 8.9. Any LCL problem that can be solved in the LCA model deterministically
with probe complexity t(n) can be solved deterministically with a probe complexity of
t′(n) = t(nlogn) in the VOLUME model provided t(n) = o(

√
log n).

8.3 Warm-up: Speedup of Randomized Algorithms in LCA

In this section we prove Theorem 8.2 that we restate here for convenience.

Theorem 8.2. For any LCL Π, if there is a randomized LCA algorithm that solves Π
and has a probe complexity of o(

√
log n), then there is also a deterministic LCA algorithm

for Π with a probe complexity of O(log∗ n).

In fact, we show that the resulting deterministic LCA algorithm with a probe complexity
of O(log∗ n) can also be turned into a VOLUME algorithm with the same probe complex-
ity. The following lemma is proven with a similar argument as Theorem 3 in [94].

Lemma 8.10 (Derandomization in LCA ). If there exists a randomized LCA algorithm
A with a probe complexity of t(n) = o(

√
log n) for a given LCL Π, then there also exists

a deterministic VOLUME algorithm A′ for Π with a probe complexity of o(n) and where
the identifiers are from [2O(n)].

Proof. Let r be the local checkability radius of Π. First, we apply Theorem 8.7 to convert
the algorithm A into one having the same asymptotic complexity but which does not
use any far probes and assumes only identifiers from a polynomial range. Without loss
of generality, we can assume that A works in a setting where, instead of being assigned
an identifier, each node has access to a private random bit string (in other words, A



8.3. Warm-up: Speedup of Randomized Algorithms in LCA 133

works in the VOLUME model with the addition of shared randomness). This is justified
as, with access to private randomness in each node, the algorithm can generate unique
identifiers with probability 1− 1/poly(n), as the first O(log n) random bits of each node
are unique with probability 1− 1/poly(n).

Next, let Gn denote the set of all n-node graphs (up to isomorphism) of maximum degree
∆ with each vertex labeled with a unique identifier from [2O(n)] and where each vertex
has an input label from the finite set of input labels from the given LCL. The number
of unlabeled graphs of maximum degree at most ∆ is 2O(n logn) as it can be described
by O(n · ∆ · log n) bits of information. Next, for a fixed n-node graph, the number of
its labelings with identifiers from [2O(n)] is upper bounded by (2O(n))n = 2O(n2) and
the number of distinct input label assignments is upper bounded by 2O(n). Hence, the
number of (labeled) graphs in Gn is strictly smaller than some suitably chosen N =
2O(n logn) · 2O(n2) · 2O(n) = 2O(n2).

Now, let ρ : [2O(n)]→ {0, 1}N be a function that maps each ID to a stream of bits, chosen
uniformly at random from the space of all such functions. Similarly, let ρ∗ be a bit string
chosen uniformly at random from {0, 1}N. Consider the algorithm Aρ,ρ∗ solving Π on all
graphs G ∈ Gn that is defined as follows. First, Aρ,ρ∗ (internally) maps each identifier
Iv it sees (at some node v) in G to a bit string by applying the function ρ, and then
it simulates algorithm A, where the private random bit string that A has access to in
each node v is given by ρ(Iv), the shared random bit string is given by ρ∗, and the input
parameter given to A describing the number of nodes is set to N . Equivalently, this can
be seen as running A (with randomness provided by ρ and ρ∗) on the graph H obtained
from G by adding N − n isolated nodes (where we are only interested in the output of
A on the nodes of H that correspond to nodes in G).

Since, on N -node graphs, A provides a correct output with probability at least 1− 1/N ,
and ρ and ρ∗ are chosen uniformly at random, we see that, for every G ∈ Gn, the
probability that Aρ,ρ∗ fails on G is at most 1/N . Since the number of graphs in Gn is
strictly smaller than N , it follows that there are a function ρdet : [2

O(n)] → {0, 1}N and
a bit string ρ∗det ∈ {0, 1}N such that Aρdet,ρ

∗
det

does not fail on any graph in Gn.

As the runtime of Aρdet,ρ
∗
det

is equal to the runtime of A on N -node graphs, we can
conlude that Aρdet,ρ

∗
det

is a deterministic VOLUME algorithm with probe complexity
t(N) = o(

√
logN) = o(

√
log 2O(n2)) = o(n), as desired.

Similarly, the next lemma is a variant of Theorem 6 in [94] and the discussion in Section
7.1 in [270].

Lemma 8.11 (Speedup in VOLUME with exponential identifiers). If there exists a deter-
ministic VOLUME algorithm A for an LCL Π = (Σin,Σout, r,P) with a probe complexity
of o(n) that works with unique identifiers from [2O(n)], then there also is a deterministic
VOLUME algorithm A′ for Π with a probe complexity of O(log∗ n).
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Proof. Let n0 be a big enough constant. The algorithm A′ does the following on a given
input graph G with maximum degree ∆: first, it uses the algorithm of Even et al. [127]
to construct a coloring of the power graph Gn0+r—the graph with the vertex set of G
and where two nodes are connected by an edge iff they have a distance of at most n0 + t
in the graph G—with ∆n0+r + 1 = 2O(n0) colors with a probe complexity of O(log∗ n).
Then we interpret those colors as identifiers and run the algorithm A on G but we tell
the algorithm that the input graph has n0 nodes instead of n. The query complexity of
A′ is O(log∗ n · o(n0)) = O(log∗ n).

To see that A′ produces a valid output, note that if A′ fails at a node u, we may consider
all the nodes that were needed for the simulation of A in the r-hop neighborhood of u
together with their neighbors—the number of such nodes is bounded by ∆·∆r ·o(n0) < n0,
by choosing n0 large enough. But as all those nodes are labeled by unique identifiers
from [2O(n0)], we can get a graph of size n0 on which the original algorithm A fails, a
contradiction.

Theorem 8.2 now follows from Theorems 8.10 and 8.11.

We remark that by using polynomial instead of exponential identifiers in Theorem 8.10,
we would get that a randomized LCA /VOLUME algorithm of complexity t(n) =
o(log n/ log logn) can be derandomized to a deterministic algorithm with complexity
t(2O(n logn)) = o(n). The term 2O(n logn) comes from a union bound over all n-node graphs
of maximum degree ∆ labeled with polynomial-sized unique identifiers. This is the rea-
son for the segment between the complexity pairs [log n, log log n] and [n, log n/ log log n]
(cf. Section 1.2 and Figure 2 in [270] that does not differentiate between Θ(log n) and
Θ(log n/ log logn)).

8.4 The Volume Lower Bound for Sinkless Orientation

In this section, we prove the lower bound of Theorem 8.1. We prove it by providing the
respective lower bound for the Sinkless Orientation problem on trees.

Theorem 8.12. There is no randomized LCA algorithm with probe complexity o(log n)
for the problem of Sinkless Orientation or ∆-coloring, even if the input graph is a tree with
a precomputed ∆-edge coloring. In particular, the LCA complexity of LLL is Ω(log n),
even in the regime p ≤ 2−∆.

The general idea of the proof is the same as in Section 8.3: we want to derandomize the
assumed o(log n)-probe randomized algorithm for Sinkless Orientation to a deterministic
o(n)-probe VOLUME algorithm, this time restricting what constitutes a valid ID assign-
ment. We then reduce the problem of showing that such a VOLUME algorithm does
not exist to the problem of showing that there does not exist a nontrivial deterministic
LOCAL algorithm for Sinkless Orientation. We will explain later in more detail what
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we mean by nontrivial. Finally, we conclude the proof by showing that such a LOCAL
algorithm does not exist.

As we saw in Section 8.3, a direct application of the derandomization by Chang-
Kopelowitz-Pettie allows us only to argue that an o(

√
log n)-probe algorithm leads to

an o(n)-probe deterministic algorithm, so we need to do better. There are two obstacles
to obtaining a union bound over 2O(n) graphs in Theorem 8.10:

1. the number of n-node graphs of maximum degree ∆ is bounded only by 2O(n logn),

2. the number of ways of labeling n objects with labels from [2O(n)] is 2O(n2).

To get an Ω(log n) lower bound, both terms need to be improved to 2O(n).

This is easy with the first term – in fact, the whole lower bound works even if we restrict
ourselves to trees. The number of trees with maximum degree ∆ can easily be upper
bounded by ∆O(n) and an even stronger upper bound of 2.96n is known.

The issue is with the second bullet point—the number of labelings of n objects with
labels from range 2O(n) clearly cannot be improved from 2O(n2).

To decrease the number of possibilities, we need to restrict our space of labelings of a tree
with unique identifiers in such a way that the number of possibilities drops to 2O(n), yet
this restriction should not make it easier to solve Sinkless Orientation in the VOLUME
model. This is done by the ID graph technique developed in a parallel paper [83] for a
different purpose. An ID graph H is a graph that states which pairs of identifiers are
allowed for a pair of neighboring nodes of the input tree. In our case, one should think
about it as a high-girth high chromatic number graph on 2O(n) nodes with each node
representing an identifier. The girth of the graphs is at least Θ(n) and its chromatic
number at least ∆ (i.e., the maximum degree of the input graph). Our definition is a
little subtler due to the fact that we work on edge-colored trees where arguments are
usually easier.

ID graph: We now define the ID graph, prove that the number of labelings of n-
node trees consistent with it is bounded by 2O(n) in Theorem 8.18, and then prove
Theorem 8.19. Each vertex of the ID graph can be considered as an identifier that will
later be used to provide IDs to the considered input graph.

Definition 8.13 (ID graph). Let R and ∆ be positive integers. An ID graph H =
H(R,∆) is a collection of graphs H1, H2, . . . ,H∆ such that the following hold:

1. For all i, j satisfying 1 ≤ i, j ≤ ∆ : V (Hi) = V (Hj); we use V (H) to denote the
set of vertices in H, that is, V (H) = V (H1),

2. |V (H)| = ∆10R,

3. ∀v ∈ V (H), ∀1 ≤ i ≤ ∆ : 1 ≤ degHi
(v) ≤ ∆10,

4. girth(H) ≥ 10R,
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5. Any independent set of Hi has less than |V (H)|/∆ vertices.

Lemma 8.14 (ID graph existence). There exists an ID graph H = H(R,∆) for all
sufficiently large R,∆ > 0.

This lemma is proved in a parallel paper [83] developing the technique for a different
purpose.

As there are possibly many ID graphs that satisfy the given conditions, from now on,
whenever we write H(R,∆), we mean the lexicographically smallest ID graph H(R,∆).

Definition 8.15 (Proper H-labeling of a ∆-edge-colored tree). Let T be a tree having a
maximum degree of at most ∆ and whose edges are properly colored with colors from [∆].
A proper H-labeling of T with an ID graph H is a labeling h : V (T ) → V (H) of each
vertex u ∈ V (T ) with a vertex h(u) ∈ V (H) such that whenever u, v ∈ V (T ) are incident
to a common edge colored with color c ∈ [∆], then h(u) and h(v) are neighboring in Hc.

Definition 8.16 (Solving an LCL relative to H). When we say that a deterministic
VOLUME or LOCAL algorithm for an LCL Π works relative to an ID graph H, we mean
that the algorithm works if the unique node identifiers are replaced by a proper H(n,∆)-
labeling for instances of size n and with maximum degree at most ∆.

We also say that an algorithm works relative to ID graphs {Hn}n∈N if it works for every
n-node input graph that is H-labeled by Hn.

Observation 8.17. If a deterministic local algorithm A solves a problem Π of checkability
radius t in r rounds (in case of the LOCAL model) or with r probes (in case of the volume
model) with ∆O(r)-sized identifiers, then it also solves Π relative to H(t+ r,∆).

Proof. The validity of A depends on all possible ways of labeling an (r + t)-hop neigh-
borhood of a vertex u with identifiers, as the correctness of the output at u depends only
on the outputs given by A at each vertex v in u’s t-hop neighborhood (by the definition
of an LCL problem), and each such output depends only on the r-hop neighborhood of
the respective node v. But the set of allowed labelings relative to H(t+ r,∆) is a subset
of all labelings with unique identifiers.

Lemma 8.18. The number of non-isomorphic n-node trees with maximum degree ∆ =
O(1) that are labeled with a proper ∆-edge coloring and an H-labeling for H = H(n,∆),
is 2O(n).

Proof. There are 2O(n) non-isomorphic unrooted trees on n vertices. Additionally, there
are at most ∆n−1 ways of assigning edge colors from the set [∆] once the tree is fixed.
Hence, there are 2O(n) non-isomorphic trees labeled with edge colors.

For any such tree T , pick an arbitrary vertex u in it. There are |V (H)| = ∆O(n) ways
of labeling u with a label from H (Property 2 in Theorem 8.13). Once u is labeled with



8.4. The Volume Lower Bound for Sinkless Orientation 137

a label h(u) ∈ V (H), we can construct the labeling of the whole tree T by gradually
labeling it, vertex by vertex, always labeling a node whose neighbor was labeled already.
Every time we label a new node v with the label h(v) ∈ V (H) such that v is adjacent
to an already labeled node w via an edge of color c, we have poly(∆) possible choices
for the label of v, since this is the degree of h(w) in Hc (Property 3 in Theorem 8.13).
Hence, the total number of H-labelings of T is 2O(n).

Putting everything together, the number of non-isomorphic trees labeled by edge colors
from [∆] and IDs from H is 2O(n).

The following lemma is analogous to Theorem 8.10, i.e., the derandomization from [94],
but working relative to the ID graph and only on the set of trees allows us to derandomize
a randomized VOLUME algorithm with probe complexity t(n) to obtain a deterministic
VOLUME algorithm with probe complexity t(2O(n)), while the original construction only
obtains a deterministic VOLUME algorithm with probe complexity t(2O(n2)).

Lemma 8.19 (From randomized LCA to deterministic VOLUME relative to an ID graph).
If there exists a randomized LCA algorithm with probe complexity t(n) = o(log n) for
Sinkless Orientation on trees with maximum degree ∆ = O(1) that are properly ∆-edge
colored, then there also exists a deterministic VOLUME algorithm for Sinkless Orientation
on trees with maximum degree ∆ = O(1) that are properly ∆-edge colored with probe
complexity o(n) relative to ID graphs {H(n,∆)}n≥n0 where n0 is a large enough constant.

Proof. We omit the proof as it can be proven in the exact same way as Theorem 8.10,
except that now we tell the randomized algorithm that the number of nodes is N = 2O(n)

instead of N = 2O(n2) as we need to union bound over a smaller number of labeled graphs.
One also needs to make use of the fact that all the IDs in an n-node H(n,∆)-labeled
graph are unique, which follows from the fact that the girth of H(n,∆) is strictly larger
than n.

Hardness of Deterministic Sinkless Orientation relative to an ID graph: We
now prove that there cannot be a deterministic local algorithm with volume complexity
o(n) that works with exponential IDs, even when those IDs satisfy constraints defined
by an ID graph H(n,∆).

To do so, we first show that an o(n)-probe VOLUME algorithm implies that there exists
some constant n∗ ∈ N and a deterministic LOCAL algorithm that solves Sinkless Ori-
entation on an (infinite) properly H(n∗,∆)-labeled tree in strictly less than n∗ rounds.
This is an analogue of Theorem 8.11.

Lemma 8.20. If there exists a deterministic VOLUME algorithm A that solves Sinkless
Orientation on n-node trees with maximum degree ∆ = O(1) that are properly ∆-edge
colored relative to H(n,∆) and with a probe complexity of f(n) ≤ n/(3∆) for all large
enough n, then there exists a constant n∗ and a deterministic LOCAL algorithm A′ that
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solves Sinkless Orientation on all (possibly infinite) trees with maximum degree ∆ that
are properly ∆-edge colored and H(n∗,∆)-labeled in fewer than n∗ rounds.

Proof. Consider running the algorithm A for fixed n∗ and ∆ such that f(n∗) ≤ n∗/(3∆)
on any tree T having a maximum degree of ∆ that is properly ∆-edge colored and
H(n∗,∆)-labeled. We now prove that A solves the Sinkless Orientation problem on T .
If not, then there exists a node u such that either all the edges are oriented towards u or
u has a neighbor v such that the outputs of u and v are inconsistent. Consider now the
set S consisting of the at most 2 · (n∗/3∆) vertices that A probes in order to compute
the answer for both u and v. The set S ∪N(S) has at most ∆ · |S| < n∗ vertices. If we
run A on G[S ∪ N(S)], it will fail, too, since the two runs of A on T and T [S ∪ N(S)]
are identical. Appending a non-zero number of vertices to the vertices from N(S) and
labeling them so that the final labeling is still a H(n∗,∆)-labeling gives a graph T ′ on
exactly n∗ nodes that is properly H(n∗,∆)-labeled such that A fails on T ′. This is a
contradiction with the correctness of A on n∗-node trees.

Hence, we get a deterministic VOLUME algorithm for Sinkless Orientation that performs
at most n∗/(3∆) probes and that works for any H(n∗,∆)-labeled tree T . This directly
implies that there exists a LOCAL algorithm with a round complexity of at most n∗/(3∆)
that solves Sinkless Orientation on any H(n∗,∆)-labeled tree T , as needed.

Finally, the following theorem is a simple adaptation of the lower bound for Sinkless
Orientation in the LOCAL model via round elimination in [73]).

Theorem 8.21. The deterministic complexity of Sinkless Orientation in the LOCAL
model relative to H(k,∆) is at least k.

This theorem is proved Section 2.2. Finally, we can put all the pieces together to prove
Theorem 8.12.

Proof of Theorem 8.12. We first apply the derandomization of Theorem 8.19 to deduce
the existence of a deterministic algorithm with o(n) probes, relative to {H(n,∆)}n∈N.
Afterwards, we use Theorem 8.20 to conclude that there is an r > 0 and a deterministic
local algorithm that solves sinkless orientation in less than r rounds relative to an ID
graph H(r,∆), which is finally shown to be impossible by Theorem 8.21.

Remark 8.22. One can check that we actually prove the existence of some ε = ε(∆) > 0
such that any randomized LCA algorithm for sinkless orientation needs at least ε log n
probes for all n ≥ n0.

8.5 Upper Bound for LLL on Constant Degree Graphs

In this section, we complement the lower bound by proving the following matching upper
bound result.
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Theorem 8.23. There exists a fixed constant c such that the randomized LCA /VOLUME
complexity of the LLL on constant degree graphs under the polynomial criterion p(e∆)c ≤
1 is O(log n).

Proof. The result follows by a slight adaptation of the LOCAL algorithm of [? ] to the
VOLUME model. In particular, Fischer and Ghaffari show how to shatter a constant-
degree graph in O(log∗ n) rounds of the LOCAL model. By shattering, we mean that their
algorithm fixes the values for a subset of the random variables such that the following
two properties are satisfied.

1. The probability of each bad event conditioned on the previously fixed random
variables is upper bounded by ∆−Ω(c).

2. Consider the graph induced by all the nodes whose corresponding bad event has
a non-zero probability of occurring. The connected components in this graph all
have a size of O(log n) with probability 1− 1/ poly(n).

Note that the shattering procedure – denoted as the pre-shattering phase – directly
implies a randomized VOLUME algorithm with probe complexity O(log n · ∆O(log∗ n).
To see why, note that we can determine the state of all random variables after the pre-
shattering phase that a given bad event depends on with a probe complexity of ∆O(log∗ n)

by applying the Parnas-Ron reduction to the O(log∗ n) round LOCAL algorithm. This in
turn allows us to find the connected component of a given node with O(log n ·∆O(log∗ n))
probes, as long as the connected component has a size of O(log n), which happens with
probability 1−1/poly(n). Afterwards, one can find a valid assignment of all the random
variables in the connected component in a brute-force centralized manner. Note that the
standard LLL criterion ep(∆ + 1) ≤ 1 guarantees the existence of such an assignment.

To improve the probe complexity to O(log n), we show how to adapt the pre-shattering
phase such that it runs in O(1) LOCAL rounds while still retaining the two properties
stated above. Once we have shown this, the aforementioned VOLUME simulation directly
proves Theorem 8.23. The pre-shattering phase of [? ] works by first computing a 2-
hop-coloring with ∆2+1 colors, where a 2-hop coloring is a coloring that assigns any two
nodes having a distance of at most 2 a different color. Once this coloring is computed, the
algorithm iterates through the constantly many color classes and fixes in each iteration
a subset of the random variables. Each random variable will be set with probability
1−∆−Ω(c), even when fixing the randomness outside the c1-hop neighborhood for some
fixed constant c1 ≥ 2 not depending on c adversarially. The only step that takes more
than constant time is the computation of the coloring. Instead of computing the coloring
deterministically, we instead assign each node one out of ∆c′ colors for some fixed positive
constant c′ ≫ 1, independently and uniformly at random. We say that a node fails if its
chosen color is not unique in its 2-hop neighborhood. Note that a given node fails with
probability at most 1/∆Ω(c′). We then postpone the assignment of each random variable
that affects any of the failed nodes. For all the other random variables, we run the same
process as described in [? ] by iterating through the poly(∆) = O(1) color classes in
O(1) rounds of the LOCAL model. The pre-shattering phase of [? ] still deterministically
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guarantees that each bad event occurs with probability 1 − ∆−Ω(c) conditioned on the
random variables set in the pre-shattering phase. Moreover, each bad event that does
not correspond to a failed node occurs with probability 0 after the pre-shattering partial
assignment with probability at least 1−∆−Ω(c), independent of the randomness outside
the c1-hop neighborhood. An application of Theorem 8.24 therefore guarantees that
by choosing c and c′ large enough, each connected component after the pre-shattering
phase has a size of O(log n) with high probability in n, thus concluding the proof of
Theorem 8.23.

Lemma 8.24 (The Shattering Lemma, cf. with Lemma 2.3 of [? ]). Let G = (V,E) be
a graph with maximum degree ∆ = O(1). Consider a process which generates a random
subset B ⊆ V where Pr[v ∈ B] ≤ ∆−c1 , for some constant c1 ≥ 1, independent on
the randomness of nodes outside the c2-hop neighborhood of v, for all v ∈ V , for some
constant c2 ≥ 1. Then, with probability at least 1−n−c3 , for any constant c3 < c1−4c2−2,
we have that each connected component of G[B] has size O(log n).

8.6 The Volume Model Gap

In this section, we show that a deterministic or randomized VOLUME algorithm (LCA )
with a probe complexity of o(log∗ n) implies a deterministic VOLUME algorithm (LCA
) with a probe complexity of O(1). We first show the speed-up only for deterministic
VOLUME algorithms and later discuss how to extend the result to the full generality.

Definition 8.25. For an arbitrary S ⊆ N, we define

TuplesS = {(id, deg, in) : id ∈ S, deg ∈ [∆], in : [deg] 7→ Σin}

and for i ∈ N, we define

Tuplesi,S = {(t1, t2, . . . , ti) : for every j ∈ [i], tj ∈ TupleS}.

For a given i ∈ N and ℓ ∈ [2], let

t(ℓ) =

((idℓ1, deg1, in1), (id
ℓ
2, deg2, in2), . . . , (id

ℓ
i , degi, ini)) ∈ Tuplesi,N

be arbitrary. We say that the tuples t(1) and t(2) are almost identical if for every j1, j2 ∈
[i], id1j1 < id2j2 implies id2j1 < id2j2 , id

1
j1

> id1j2 implies id2j1 > id2j2 and id1j1 = id1j2 implies
id2j1 = id2j2 .

A tuple in TuplesS can encode the local information of a node v, including its ID,
its degree and the input assigned to each of its incident half-edges, i.e., in(k) is the
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input assigned to the k-th half edge. We denote with tv the tuple that encodes the local
information of v. A tuple in Tuplesi,S can be used to encode all the information (modulo
the number of nodes of the input graph) that a node knows about the input graph after
having performed i− 1 probes. The notion of almost identical tuples will be helpful for
defining the notion of order-invariance for the VOLUME model.

The notion of an order-invariant algorithm (cf. Chapter 7) naturally extends to algo-
rithms in the VOLUME model.

Definition 8.26. (Order-invariant VOLUME algorithm) We say that A is order invariant
if for every n ∈ N and i ∈ [T (n) + 1], fn,i(t) = fn,i(t

′) for every t, t′ ∈ Tuplesi,S with t
and t′ being almost identical.

We will use the following basic speed-up result for order-invariant algorithms in both the
LOCAL and the VOLUME model.

Theorem 8.27 (Speed-up of order-invariant algorithms (cf. [94])). Let A be an order-
invariant algorithm solving a problem Π in f(n) = o(log n) rounds of the LOCAL model
or with f(n) = o(n) probes of the VOLUME model. Then, there is an order-invariant
algorithm solving Π in O(1) rounds of the LOCAL model or, equivalently, O(1) probes in
the VOLUME model.

Proof. The result for the LOCAL model is proven in [94]. The proof for the VOLUME
model follows in the exact same manner. We provide it here for completeness. Let n0 be a
fixed constant such that ∆r+1 ·(T (n0)+1) ≤ n0/∆. We now define a VOLUME algorithm
A′ with probe complexity T ′(n) = min(n, T (n0)) = O(1) as follows. For n ∈ N and
i ∈ [T ′(n) + 1], we define fA

′
n,i = fAmin(n,n0),i

. It remains to show that A′ indeed solves Π.
For the sake of contradiction, assume that this is not the case. This implies the existence
of a Σin-labeled graph (G, fin) on n ≥ n0 nodes (with IDs from a polynomial range, port
assignments, and no isolated nodes) such that A′ "fails" on (G, fin). Put differently,
there exists a node v such that A′ produces a mistake in the r-hop neighborhood of v.
The r-hop neighborhood of v consists of at most ∆r+1 vertices. To answer a given query,
A′ "sees" at most T (n0) + 1 nodes. Hence, to compute the output of all the nodes in
the r-hop neighborhood of v, A′ "sees" at most ∆r+1(T (n0) + 1) ≤ n0

∆ many nodes. We
denote the set consisting of those nodes as V visible. Now, let (G′, f ′in) be a Σin-labeled
graph on n′ nodes (with IDs from a polynomial range, port assignments, and no isolated
nodes) such that every u ∈ V visible is also contained in G′, with its degree being the
same in both graphs, as well as the input assigned to each of its incident half edges. The
assigned ID can be different, however, the relative orders of the IDs assigned to nodes in
V visible in G and G′ are the same. As ∆r+1(T (n0) + 1) ≤ n0

∆ , such a (G′, f ′in) exists. As
A is order invariant, so is A′. Moreover, fA′

n,i = fA
′

n′,i for any i. Hence, it follows that A′
assigns the same output to all the half-edges in the r-hop neighborhood of v in G and
G′. Therefore, A′ also fails on the graph G′. From the way we defined A′, this directly
implies that A also fails on G, a contradiction with the assumption that A is a correct
algorithm. This finishes the proof.



142 The Randomized Local Computation Complexity of the Lovász Local Lemma

Theorem 8.3. There does not exist an LCL with a deterministic VOLUME complexity
between ω(1) and o(log∗ n).

Proof. Consider some LCL Π = (Σin,Σout, r,P). Let A be a VOLUME model algorithm
with a probe complexity of T (n) = o(log∗ n) that solves Π. We show that this implies
the existence of a VOLUME model algorithm that solves Π and has a probe complexity
of O(1). To do so, we first show that we can turn A into an order-invariant algorithm
with the same probe complexity. Once we have shown this, Theorem 8.27, which shows a
speed-up result for order-invariant algorithms, implies that there also exists a VOLUME
model algorithm for Π with a probe complexity of O(1), as needed.

We start by proving the lemma below, which, informally speaking, states that there
exists a sufficiently large set Sn ⊆ [n] such that A is order-invariant as long as the IDs it
"encounters" are from the set Sn. The proof adapts a Ramsey-theoretic argument first
introduced in [258] and further refined in [94] in the context of the LOCAL model to the
VOLUME model.

Lemma 8.28. There exists a n0 ∈ N such that the following holds for every n ≥ n0.
There exists a set Sn ⊆ [n] of size (T (n) + 1) ·∆r+1 such that for every i ∈ [T (n) + 1]
and t, t′ ∈ Tuplesi,Sn it holds that fn,i(t) = fn,i(t

′) if t and t′ are almost identical.

Proof. Consider an n ∈ N. We denote with H a complete (T (n)+1)-uniform hypergraph
on n nodes. Each node in H corresponds to a (unique) ID in the set {1, 2, . . . , n}. For
each hyperedge X ⊆ {1, 2, . . . , n} we define a function fX .

The input to fX is a tuple t = (t1, . . . , tT (n)+1) ∈ TuplesT (n)+1,[T (n)+1]. For j ∈ [T (n)+1],
let tj = (idj , degj , inj). We define a new tuple tXj = (idXj , degj , inj), where idXj is the
idj-th smallest element in X. We now define

fX(t) = (fn,1(t
X
1 ), fn,2(t

X
1 , tX2 ), . . . , fn,T (n)+1(t

X
1 , tX2 , . . . , tXT (n)+1)).

We now prove two things. First, we show that for n being sufficiently large, there exists
a set Sbig

n ⊆ [n] of size (T (n) + 1) · ∆r+1 + T (n) + 1 such that for any two hyperedges
X,Y ⊆ Sbig

n , fX = fY . This will follow by Ramsey Theory and an upper bound on the
number of possible different functions fX . Second, let Sn be the set one obtains from
Sbig
n by discarding the T (n) + 1 largest elements of Sbig

n . We show that Sn satisfies the
conditions of Theorem 8.28.

For the Ramsey-theoretic argument, we start by upper bounding the total number of
possible functions. Note that |Tuples[T (n)+1]| ≤ (T (n) + 1) · ∆ · |Σin|∆ and there-
fore the possible number of inputs to the function fX is |TuplesT (n)+1,[T (n)+1]| ≤(
(T (n) + 1) ·∆ · |Σin|∆

)T (n)+1
= T (n)O(T (n)). Note that the output of fX is con-

tained in the set
(
×T (n)

i=1 ([i]× [∆])
)
× (Σout)

[∆] and therefore there are at most

(T (n) · ∆)T (n) · |Σout|∆ = T (n)O(T (n)) possible outputs. Hence, there exist at most
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(
T (n)O(T (n))

)T (n)O(T (n))

different possible functions. Let R(p,m, c) denote the smallest
number such that any p-uniform complete hypergraph on R(p,m, c) nodes with each
hyperedge being assigned one of c colors contains a monochromatic clique of size m. It
holds that log∗(R(p,m, c)) = p+ log∗m+ log∗ c+O(1) [88].

Setting p = T (n)+1, m = (T (n)+1)·∆r+1+T (n)+1 and c =
(
T (n)O(T (n))

)T (n)O(T (n))

, we
can conclude that H contains a set Sbig

n ⊆ [n] of size m such that for any two hyperedges
X,Y ⊆ Sbig

n , fX = fY as long as log∗(n) ≥ T (n)+1+log∗m+log∗ c+O(1), which is the
case for sufficiently large n as T (n) = o(log∗ n), log∗m = o(T (n)) and log∗ c = o(T (n)).

Now, let Sn be the set one obtains form Sbig
n by discarding the T (n) + 1 largest el-

ements from Sbig
n . Let i ∈ [T (n) + 1] and t(ℓ) = ((idℓ1, deg1, in1), (idℓ2, deg2, in2),

. . . , (idℓi , degi, ini)) ∈ Tuplesi,Sn for ℓ ∈ [2] such that t(1) and t(2) are almost identi-
cal. It remains to show that fn,i(t

(1)) = fn,i(t
(2)). For ℓ ∈ [2], let Xℓ ⊆ Sbig

n such that
{idℓ1, idℓ2, . . . , idℓi} contains the |{idℓ1, idℓ2, . . . , idℓi}|-th lowest elements of Xℓ. Now, let
t = (t1, t2, . . . , tT (n)+1) ∈ ST (n)+1,[T (n)+1] such that for every j ∈ [i], tXℓ

j = (idℓj , degj , inj)

. Note that it follows from the way we defined X1 and X2 and the fact that t(1) and t(2)

are almost identical that such a tuple t exists. As Xℓ ⊆ Sbig
n , we have fX1(t) = fX2(t).

In particular, this implies that

fn,i(t
(1)) = fn,i(t

X1

1 , tX
1

2 , . . . , tX
1

i )

= fn,i(t
X2

1 , tX
2

2 , . . . , tX
2

i ) = fn,i(t
(2)),

which finishes the proof.

We now construct an order-invariant algorithm A′ with probe complexity T ′(n) =
max(O(1), T (n)) = o(log∗ n). Note that it is easy to make A′ order-invariant for every
input graph having fewer than n0 nodes. For n ≥ n0, we have T ′(n) = T (n) and for every
i ∈ {1, 2, . . . , T ′(n)} and tuple t = ((id1, deg1, in1), (id2, deg2, in2) , . . . , (idi, degi, ini))
∈ Tuplesi,N, we define

fA
′

n,i(t) = fAn,i(t
′) =

(id′1, deg1, in1), (id
′
2, deg2, in2), . . . , (id

′
i, degi, ini))

where id′1, . . . , id
′
i is chosen in such a way that {id′1, . . . , id′i} contains the |{id′1, . . . , id′i}|-

th smallest elements of Sn and t and t′ are almost identical. It is easy to verify that A′
is indeed order-invariant.

It remains to show that A′ indeed solves Π. For the sake of contradiction, assume that
this is not the case. This implies the existence of a Σin-labeled graph (G, fin) on n nodes
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(with each node having a unique ID from a polynomial range, a port assignment, and G
does not have any isolated nodes) such that A′ "fails" on (G, fin). Put differently, there
exists a node v such that A′ produces a mistake in the r-hop neighborhood of v. The
r-hop neighborhood of v consists of at most ∆r+1 vertices. To answer a given query,
A′ "sees" at most T (n) + 1 nodes. Hence, to compute the output of all the half-edges
in the r-hop neighborhood of v, A′ "sees" at most ∆r+1(T (n) + 1) ≤ |Sn| many nodes.
We denote this set of nodes by V visible. Even if the IDs of nodes outside of V visible are
changed, A′ still fails around v. Moreover, as A′ is order-invariant, changing the IDs
of the nodes in V visible in a manner that preserves the relative order does not change
the fact that A′ fails around v. Hence, we can find a new assignment of IDs such that
each node in V visible is assigned an ID from the set Sn such that A′ still fails around v.
However, from the way we defined A′ and the property that Sn satisfies, it follows that A′
and A produce the same output in the r-hop neighborhood around v. This contradicts
the fact that A is a correct algorithm.

We already argued in the preliminaries that Theorem 8.3 also implies that there does
not exist an LCL with a deterministic LCA complexity between ω(1) and o(log∗ n).

As noted in [270], the derandomization result by [94] can be used to show that randomness
does not help (up to an additive constant in the round/probe complexity) in the LOCAL
and VOLUME model for complexities in O(log∗ n), and the same is true for the LCA
model.

Hence, we obtain the following more general theorem.

Theorem 8.29. There does not exist an LCL with a randomized/deterministic LCA
/VOLUME complexity between ω(1) and o(log∗ n).



CHAPTER 9

Deterministic Network Decompositions for Weighted Graphs with
Applications

9.1 Introduction

This chapter gives deterministic parallel & distributed algorithms for low-diameter clus-
terings in weighted graphs. These results generalize the algorithms for network decom-
position that we have discussed in Section 1.5. An example is the following theorem.

Theorem 9.1. [A corollary of Theorem 9.30] Let G be a weighted graph. We are given a
set of terminals Q ⊆ V (G) and a parameter R > 0 such that for every v ∈ V (G) we have
d(Q, v) ≤ R. Also, a precision parameter 0 < ε < 1 is given. There is a deterministic
distributed and parallel algorithm outputting a partition C of the vertices into clusters and
a subset of terminals Q′ ⊆ Q with the following properties:

1. Each cluster C ∈ C contains exactly one terminal q ∈ Q′. Moreover, for any v ∈ C
we have dG[C](q, v) ≤ (1 + ε)R.

2. For the set Ebad of edges connecting different clusters of C we have

|Ebad| = Õ

(
1

εR

)
·
∑

e∈E(G)

ℓ(e).

The PRAM variant of the algorithm has work Õ(m) and depth Õ(1). The CONGEST
variant of the algorithm runs in Õ(

√
n+HopDiam(G)) rounds.

Our result above is in fact quite model-independent as we essentially reduce the prob-
lem to poly(log n) (1 + 1/ poly(log n))-approximate distance computations. The final
complexities then follow from the recent work of [274] where the authors give efficient
deterministic parallel and distributed approximate shortest path algorithms in PRAM
and CONGEST .

145
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Low-Stretch Spanning Trees: As a straightforward corollary of the clustering result
in Theorem 9.1, we obtain an efficient deterministic parallel and distributed algorithm
for computing low-stretch spanning trees. Low-stretch spanning trees were introduced
in a seminal paper by Alon et al. [7], where they were shown useful for the online
k-server problem. The algorithm of [7] constructed spanning trees with average stretch
exp(

√
log n log logn). In a subsequent work Bartal [50, 51] and Fakchraenphol et al. [128]

showed that one can get logarithmic stretch if one allows the trees to use edges that are
not present in the original graph. In [123] it was shown that the original problem of low-
stretch spanning trees admits a solution with polylogarithmic stretch. That bound was
later improved to a nearly-logarithmic bound in [1]. These constructions have important
applications to the framework of spectral sparsification [285].

In the distributed setting the problem was studied in [55]. However, the latter algorithm
relies on the computation of exact distances. Our approach, on the other hand, only relies
on approximate distance computations that, unlike exact distances, can be computed
with near-optimal parallel and distributed complexity [274]. Hence, we are able to present
the first distributed and parallel algorithm for this problem that provides polylogarithmic
stretch, polylogarithmic depth and near-linear work.

Theorem 9.2 (Deterministic Low-Stretch Spanning Tree). Let G be a weighted graph.
Each edge e has moreover a nonnegative importance µ(e). There exists a deterministic
parallel and distributed algorithm which outputs a spanning tree T of G such that

∑
e={u,v}∈E(G)

µ(e)dT (u, v) = Õ

 ∑
e={u,v}∈E(G)

µ(e)dG(u, v)

 . (9.1)

The PRAM variant of the algorithm has work Õ(m) and depth Õ(1). The CONGEST
variant of the algorithm runs in Õ(

√
n+HopDiam(G)) rounds.

Note that plugging in µ(e) := µ′(e)/ℓ(e) into (9.1) and using dG(u, v) ≤ ℓ(e), we also get
the following similar guarantee of

∑
e={u,v}∈E(G)

µ′(e) · dT (u, v)
ℓ(e)

= Õ

 ∑
e={u,v}∈E(G)

µ′(e)


The stretch is optimal up to polylogarithmic factors.

ℓ1 Embedding: Embeddings of networks in low dimensional spaces like ℓ1-space are a
basic tool with a number of applications. For example, the parallel randomized approx-
imate shortest path algorithm of [233] uses ℓ1-embeddings as a crucial subroutine. By
using our clustering results, we can use an approach similar to the one from [52] to obtain
an efficient deterministic parallel and distributed algorithm for ℓ1-embedding.
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Theorem 9.3 (ℓ1-Embedding). Let G be a weighted graph. There exists a deterministic
parallel and distributed algorithm which computes an embedding in Õ(1)-dimensional ℓ1-
space with distortion Õ(1). The PRAM variant of the algorithm has work Õ(m) and depth
Õ(1). The CONGEST variant of the algorithm runs in Õ(

√
n+HopDiam(G)) rounds.

Other Applications: Since low-diameter clusterings are an important subroutine for
numerous problems, there are many other more standard applications for problems like
(h-hop) Steiner trees or Steiner forests, deterministic variants of tree embeddings, prob-
lems in network design, etc. [56, 193] We do not discuss these applications here due
to space constraints. We also note that the distributed round complexities of our algo-
rithms are almost-universally-optimal. We refer the interested reader to [171, 194] for
more details regarding the notion of universal optimality.

9.1.1 Our Techniques and Contributions

We give a clean interface for various distributed clustering routines in weighted graphs
that allows to give results in different models (distributed and parallel).

Simple Deterministic Strong-Diameter Network Decomposition in CONGEST
:

In the previous section, we mentioned that the state-of-the-art strong-diameter network
decomposition algorithm of [87] runs in O(log11 n) CONGEST rounds and produces clus-
ters with diameter D = O(log2 n).

Our first result improves upon their algorithm by giving an algorithm with the same
guarantees running in O(log5 n) CONGEST rounds.

Theorem 9.4. There is a deterministic CONGEST algorithm computing a network de-
composition with C = O(log n) clusterings such that each cluster has strong-diameter
O(log2 n). The algorithm runs in O(log5 n) CONGEST rounds.

Note that the round complexity of our algorithm matches the complexity of the weak-
diameter algorithm of [170]. This is because both our result and the result of [87] use
the weak-diameter algorithm of [170] as a subroutine.

We prove Theorem 9.4 in Section 9.2 and the technical overview of our approach is
deferred to Section 9.2.1. Here, we only note that on a high-level our algorithm can
be seen as a derandomization of the randomized algorithm of [255]. That is, instead of
clusters, the algorithm operates with nodes and assigns “head starts” to them in a careful
manner.

Simple Blurry Ball Growing Procedure:

The blurry ball growing problem is defined as follows: given a set S and distance param-
eter D, we want to find a superset Ssup ⊇ S such that the following holds. First, for any
v ∈ Ssup we have dG[Ssup](S, v) ≤ D, that is, the set S “does not grow too much”. On the
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other hand, in the randomized variant of the problem we ask for each edge e to be cut
by Ssup with probability O(ℓ(e)/D), while in the deterministic variant of the problem
we ask for the total number of edges cut to be at most O(

∑
e∈E(G) ℓ(e)/D).

Here is a simple application of this problem: suppose that we want to solve the low-
diameter clustering problem where each edge needs to be cut with probability ℓ(e)/D
and clusters should have diameter Õ(D). Assume we can solve the separated clustering
problem, that is, we can construct a clustering C such that the clusters are D-separated
and their diameter is Õ(D). To solve the former problem, we can simply solve the blurry
ball growing problem with S =

⋃
C∈C C and Dblurry = D/3. This way, we “enlarge” the

clusters of C only by a nonsignificant amount, while achieving the edge cutting guarantee.

The blurry ball growing problem was defined and its randomized variant was solved in
[56, Theorem 3.1]. Since blurry ball growing is a useful subroutine in our main clustering
result, we generalize their result by giving an efficient algorithm solving the deterministic
variant. Furthermore, we believe that our approach to solving that problem is simpler:
we require the approximate distance oracle to be (1 + 1/ log n)-approximate instead of(
1 +

(
log logn
logn

)2)
-approximate.

Theorem 9.5. Given a weighted graph G, a subset of its nodes S and a parameter
D > 0, there is a deterministic algorithm computing a superset Ssup ⊇ S such that
maxv∈Ssup dG[Ssup](S, v) ≤ D, and moreover,

∑
e∈E(G)∩(Ssup×(V (G)\Ssup))

ℓ(e) = O

 ∑
e∈E(G)

ℓ(e)/D

 .

The algorithm uses O(logD) calls to an (1 + 1/ logD)-approximate distance oracle.

Our deterministic algorithm is a standard derandomization of the following simple ran-
domized algorithm solving the randomized variant of the problem. The randomized
algorithm is based on a simple binary search idea: in each step we flip a fair coin and
decide whether or not we “enlarge” the current set Si by adding to it all nodes of distance
at most roughly D/2i. We start with S0 = S and the final set Slog2 D = Ssup. Hence, we
need O(logD) invocations of the approximate distance oracle. We prove a more general
version of Theorem 9.5 in Section 9.3 and give more intuition about our approach in
Section 9.3.1.

Main Contribution: A General Clustering Result:

We will now state a special case of our main clustering result. The clustering problem
that we solve generalizes the already introduced low-diameter clustering problem that
asks for a partition of the vertex set into clusters such that only a small amount of
edges is cut. In our more general clustering problem we are also given a set of terminals
Q ⊆ V (G) as input. Moreover, we are given a parameter R such that Q is R-ruling. Each
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cluster of the final output clustering has to contain at least one terminal. Moreover, one
of these terminals should (1 + ε)R-rule its cluster.

We note that in order to get the classical low-diameter clustering with parameter D as
an output of our general result, it suffices to set Q = V (G), R = D and ε = 1/2.

A more general version of Theorem 9.1 is proven in Section 9.4. The intuition behind the
algorithm is explained in Section 9.4.1. Here, we note that the algorithm combines the
clustering idea of the algorithm from Theorem 9.4 and uses as a subroutine the blurry
ball growing algorithm from Theorem 9.5.

Another corollary of our general clustering result is the following theorem.

Theorem 9.6. [A corollary of Theorem 9.30] We are given an input weighted graph G,
a distance parameter D and each node v ∈ V (G) has a preferred radius r(v) > 0.

There is a deterministic distributed algorithm constructing a partition C of G that splits
V (G) into two sets V good ⊔ V bad such that

1. Each cluster C ∈ C has diameter Õ(D).

2. For every node v ∈ V good such that v is in a cluster C we have BG(v, r(v)) ⊆ C.

3. For the set V bad of nodes we have∑
v∈V bad

r(v) =
1

2D
·
∑

v∈V (G)

r(v).

The algorithm needs Õ(1) calls to an (1 + 1/ poly log n)-approximate distance oracle.

One reason why we consider each node to have a preferred radius is that it allows us
to deduce Theorem 9.1 from our general theorem by considering the subdivided graph
where each edge is split by adding a node “in the middle of it”, with a preferred radius
of ℓ(e).

Let us now compare the clustering of Theorem 9.6 with the D-separated clustering that
we already introduced. Recall that in the D-separated clustering problem, we ask for
clusters with radius Õ(D) and require the clusters to be D-separated. Moreover, only
half of the nodes should be unclustered.

In our clustering, we can choose r(v) = D for all nodes v ∈ V (G), we again get clusters of
diameter Õ(D) and only half of the nodes are bad. The difference with the D-separated
clustering is that we cluster all the nodes, but we require the good nodes to be “D-
padded”.

This is a slightly weaker guarantee then requiring the clusters to be D-separated: we
can take any solution of the D-separated problem, and enlarge each cluster by adding all
nodes that are at most D/3 away from it. We mark all original nodes of the clusters as
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good and all the new nodes as bad. Moreover, each remaining unclustered node forms its
own cluster and is marked as bad. This way, we solve the special case of Theorem 9.6 with
the padding parameter D/3. We do not know of an application of D-separated clustering
where the slightly weaker D-padded clustering of Theorem 9.6 does not suffice. However,
we also use a different technique to solve the D-separated problem.

Theorem 9.7. We are given a weighted graph G and a separation parameter D > 0.
There is a deterministic algorithm that outputs a clustering C of D-separated clusters of
diameter Õ(D) such that at least n/2 nodes are clustered.

The algorithm needs Õ(1) calls to an (1 + 1/poly log(n))-approximate distance oracle
computing approximate shortest paths from a given set up to distance Õ(D).

The algorithm is based on the ideas of the weak-diameter network decomposition result
of [276] and the strong-diameter network decomposition of [87]. Since shortest paths up
to distance D can be computed in unweighted graphs by breadth first search, we get
as a corollary that we can compute a separated strong-diameter network decomposition
in unweighted graphs. No Õ(D)-round deterministic CONGEST algorithm for separated
strong-diameter network decomposition was known.

Corollary 9.8. [D-separated strong-diameter network decomposition] We are given an
unweighted graph G and a separation parameter D > 0. There is a deterministic algo-
rithm that outputs O(log n) clusterings {C1, . . . , CO(logn)} such that

1. Each node u ∈ V (G) is contained in at least one clustering Ci.

2. Each clustering Ci consists of D-separated clusters of diameter Õ(D).

The algorithm needs Õ(D) CONGEST rounds.

9.1.2 Roadmap

The chapter is structured as follows. In Section 9.1.2 we define some basic notions and
models that we work with in the chapter. Section 9.2 contains the proof of Theorem 9.4.
We believe that an interested reader should understand Section 9.2 even after she skips
Section 9.1.2. In Section 9.3, we prove a general version of Theorem 9.5 and the main
clustering result that generalizes Theorem 9.1 is proven in Section 9.4.

Preliminaries

In this preliminary section, we first explain the terminology used in the chapter. Then, we
review the notation we use to talk about clusterings and the distributed models we work
with. Finally, we explain the language of distance oracles that we use throughout the
chapter to make our result as independent on a particular choice of a distributed/parallel
computational model as possible.
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Basic Notation:

A weighted graph G is an unweighted graph together with a weight (or length) function
ℓ. This function assigns each edge e ∈ E(G) a polynomially bounded nonnegative weight
ℓ(e) ≥ 0. We will assume that all lengths are polynomially bounded, i.e., ℓ(e) ≤ nC for
some absolute constant C. This implies that each weight can be encoded by O(log n) bits.
We denote by dG(u, v) the weight (i.e., length) of the shortest path between two nodes
u, v ∈ V (G). We sometimes drop the subscript when the graph is clear from context
and write just d(u, v). The distance function naturally extends to sets by d(A,B) =
mina∈A,b∈B d(a, b) and we also write d(u, S) instead of d({u}, S).

We say that H is a subgraph of a weighted graph G and write H ⊆ G if V (H) ⊆ V (G),
E(H) ⊆ E(G) and for every e ∈ E(H), ℓH(e) = ℓG(e). Given a weighted graph G, a
weighted rooted (sub)forest in G is a forest F which is a subgraph of G. Moreover, each
component of F contains a special node – a root – that defines a natural orientation of
edges of F towards a unique root. By dF (u, v) we mean the distance in the unoriented
graph F , i.e., dF is a metric. For any v ∈ V (F ) we denote by rootF (v) the unique root
node in V (F ) that lies in the same component of F as v. We also use the shorthand
dF (v) = dF (rootF (v), v). A ball BG(u, r) ⊆ V (G) is a set of nodes consisting of those
nodes v ∈ V (G) with dG(u, v) ≤ r.

Weight, Radius and Delay Functions:

Sometimes we need nonnegative and polynomially bounded functions that assign each
vertex or edge of a given graph such that their domain is the set V (G), E(G) or a subset.
One should think of these functions as parameters of the nodes (edges) of the input graph
in the sense that during the algorithms, each node u starts with an access to the value
of these functions at u.

There are three functions that we need:

1. A function µ assigning each vertex v (edge e) of a given graph a weight µ(v) (µ(e));
we use µ(U) :=

∑
u∈U µ(u).

2. A function r assigning each vertex v of a given graph a preferred radius r(v).

3. A function del assigning a subset of nodes Q a delay ; For a subset Q′ ⊆ Q, we
define ddel(Q

′, v) := minq∈Q′ del(q) + d(q, v).

Clustering Notation:

Next, we define the notation that is necessary for stating our clustering results.

Cluster A cluster C is simply a subset of nodes of V (G). We use diam(C) to denote the
diameter of a cluster C, i.e., the diameter of the graph G[C]. When we construct a
cluster C, we are also often constructing a (small diameter) tree TC with V (TC) =
C. In Section 9.2 we use a result from [170] that constructs so-called weak-diameter
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clusters. A weak-diameter cluster is a cluster C together with a (small diameter)
tree TC such that V (TC) ⊇ C.

Padding A node v ∈ C is r-padded in the cluster C of a graph G if it is the case that
BG(v, r) ⊆ C.

Separation Suppose we have two disjoint clusters C1, C2. We say that they are D-
separated in G if dG(C1, C2) ≥ D.

Clustering and Partition A clustering C is a family of disjoint clusters. If the clus-
tering covers all nodes of G, that is, if

⋃
C∈C C = V (G), we refer to the clustering

as a partition.

The diameter diam(C) of a clustering C is defined as diam(C) = maxC∈C diam(C).
A clustering C is D-separated if every two clusters C1 ̸= C2 ∈ C are D-separated.

Cover A cover {C1, C2, . . . , Cq} is a collection of clusterings or partitions.

Computational Models

CONGEST Model [264]:

We are given an undirected graph G also called the “communication network”. Its vertices
are also called nodes and they are individual computational units, i.e., they have their own
processor and private memory. Communication between the nodes occurs in synchronous
rounds. In each round, each pair of nodes adjacent in G exchange an b = O(log n)-bit
message. Nodes perform arbitrary computation between rounds. Initially, nodes only
know their unique O(log n)-bit ID and the IDs of adjacent nodes in case of deterministic
algorithms. In case of randomized algorithms, every node starts with a long enough
random string containing independently sampled random bits. Each node also starts
with a polynomial upper bound on the number of nodes, n.

Unless stated otherwise, we always think of G as a weighted graph, where the weights
are provided in a distributed manner.

In all our results, in each round, each node v can run an algorithm whose PRAM work is
at most Õ(deg(v)) and depth at most Õ(1). Note that this allows the model to compute
e.g. simple aggregation operations of the messages received by the neighbors such as
computing the minimum or the sum.

Oracle Definition:

Except of simple local communication and computation captured by the above CONGEST
model, our algorithms can be stated in terms of simple primitives such as computing
approximate shortest paths or aggregating some global information. To make our results
more model-independent and more broadly applicable, we abstract these primitives away
as calls to an oracle. We next define the oracles used in the chapter.
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Definition 9.9 (Approximate Distance Oracle ODist
ε,D ). This oracle is parameterized by

a distance parameter D > 0 and a precision parameter ε ≥ 0.

The input to the oracle consists of three parts. First, a weighted graph H ⊆ G. Second,
a subset S ⊆ V (H). Third, for each node s ∈ S a delay del(s). If the third input is not
specified, set del(s) = 0 for every s ∈ S.

The output is a weighted forest F ⊆ H rooted at some subset S′ ⊆ S. The output has to
satisfy the following:

1. For every v ∈ V (F ), del(rootF (v)) + dF (v) ≤ (1 + ε)dH,del(S, v) ≤ (1 + ε)D.

2. For every v ∈ V (H), if dH,del(S, v) ≤ D, then v ∈ V (F ).

Definition 9.10 (Forest Aggregation Oracle OForest-Agg
D ). The input consists of two

parts. First, a weighted and rooted forest F ⊆ G with dF (v) ≤ D for every v ∈ V (F ).
Second, an integer value xv ∈ {0, 1, . . . ,poly(n)} for every node v ∈ V (F ). The oracle
can be used to compute a sum or a minimum. If we compute a sum, the oracle outputs
for each node v ∈ V (F ) the two values

∑
v∈A(v) xv and

∑
v∈D(v) xv, where A(v) and

D(v) denote the set of ancestors and descendants of v in F , respectively. Computing the
minimum is analogous.

Definition 9.11 (Global Aggregation Oracle OGlobal-Agg). The input consists of an in-
teger value xv ∈ {0, 1, . . . ,poly(n)} for every node v ∈ V (G). The output of the oracle
is
∑

v∈V (G) xv.

Whenever we say e.g. that “the algorithm runs in T steps, with each oracle call having
distance parameter at most D and precision parameter ε”, we mean that the algorithm
runs in T CONGEST rounds, and in each CONGEST round the algorithm performs at
most one oracle call. Moreover, when the oracle is parameterized by a distance parameter
or/and a precision parameter, then the distance parameter is at most D and the precision
parameter is at most ε .

Compilation to Distributed and Parallel Models:

The theorem below is a direct consequence of the deterministic approximate shortest
path paper of [274]. They show that the approximate distance oracle with precision
parameter ε = 1/ poly log(n) can be implemented in the bounds claimed in bullet points
1 to 4. We note that the results 2 to 4 follow from the theory of universal-optimality
in the CONGEST model [299, 164]. The bullet point 5 follows from the fact that the
distance oracle in unweighted graphs can be implemented by breadth first search.

Theorem 9.12. Suppose that for a given problem there is an algorithm that runs in
T = poly log(n) steps, with each oracle call having precision parameter ε = 1/poly log(n).
Then, the problem can be solved in the following settings with the following bounds on the
complexity.
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1. In PRAM , there is a deterministic algorithm with Õ(m + n) work and poly log n
depth.

2. In CONGEST , there is a deterministic algorithm with Õ(HopDiam(G) +
√
n)

rounds. [154]

3. In CONGEST , there is a deterministic algorithm for any minor-free graph family
with Õ(HopDiam(G)) rounds (the hidden constants depend on the family). [155]

4. If ShortcutQuality(G) ≤ no(1), there is a randomized algorithm in the CONGEST
model with no(1) rounds. See [195] for the definition of ShortcutQuality(G) and
the proof.

5. If only the distance oracle ODist
ε,D is used and the graph is unweighted, there is a

deterministic CONGEST algorithm with Õ(D) rounds, even for ε = 0.

9.2 Strong-Diameter Clustering in Polylogarithmic Number
of Rounds

In this section, we present an algorithm clustering a constant fraction of the vertices into
non-adjacent clusters of diameter O(log2 n) in O(log4 n) CONGEST rounds.

Theorem 9.13. Consider an unweighted n-node graph G where each node has a unique
b = O(log n)-bit identifier. There is a deterministic algorithm computing a 2-separated
O(log2 n)-diameter clustering C with |

⋃
C∈C C| ≥ n/3 in O(log4 n) CONGEST rounds.

Note that in the above theorem, 2-separated clustering is equivalent to positing that the
clusters of C are not adjacent.

Our algorithm is quite simple and in some aspects similar to the deterministic distributed
clustering algorithm of [276]. Let us explain the main difference. During their algorithm,
one works with a set of clusters that expand or shrink and which progressively become
more and more separated. In our algorithm, we instead focus on potential cluster centers.
These centers preserve a “ruling property” that asserts that every node is close to some
potential cluster center. This in turn implies that running a breadth first search from the
set of potential cluster centers always results in a set of (not necessarily separated) small
diameter clusters. This way, we make sure that the final clusters have small strong-
diameter, whereas in the algorithm of [276] the final clusters have only small weak-
diameter.

An important downside compared to their algorithm is that we rely on global coordi-
nation. To make everything work, we hence need to start by using the state-of-the-art
algorithm for weak-diameter clustering. This allows us to use global coordination inside
each weak-diameter cluster and run our algorithm in each such cluster in parallel. This
is the reason why our algorithm needs O(log4 n) CONGEST rounds. In fact, the main
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routine runs only in O(log3 n) rounds, but first we need to run the fastest determinis-
tic distributed algorithm for weak-diameter clustering from [170] that needs O(log4 n)
rounds which dominates the round complexity.

9.2.1 Intuition and Proof Sketch of the Main Algorithm

Our algorithm runs in b phases; one phase for each bit in the b-bit node identifiers. During
each phase, up to n

3b of the nodes are removed and declared as unclustered. Hence, at
most n

3 nodes are declared as unclustered throughout the b phases, with all the remaining
nodes being clustered.

We set G0 = G and define Gi+1 as the graph one obtains from Gi by deleting all the
nodes from Gi which are declared as unclustered during phase i. Besides removing nodes
in each phase i, the algorithm works with a set of potential cluster centers Qi. Initially,
all the nodes are potential cluster centers, that is, Q0 = V (G). During each phase, some
of the potential cluster centers stop being potential cluster centers. At the end, each
potential cluster center will in fact be a cluster center. More precisely, each connected
component of Gb contains exactly one potential cluster center and the diameter of each
connected component of Gb is O(log2 n).

For each i ∈ {0, 1, . . . , b}, the algorithm maintains two invariants. The ruling invariant
states that each node in Gi has a distance of at most 6ib to the closest potential cluster
center in Qi. The separation invariant states that two potential cluster centers u and v
can only be in the same connected component of Gi if the first i bits of their identifiers
coincide. Note that this condition is trivially satisfied at the beginning for i = 0 and for
i = b it implies that each connected component contains at most one potential cluster
center.

The goal of the i-th phase is to preserve the two invariants. To that end, we partition
the potential cluster centers in Qi based on the (i+1)-th bit of their identifiers into two
sets QR

i and QB
i . In order to preserve the separation invariant, it suffices to separate

the nodes in QR
i from the nodes in QB

i . One way to do so is as follows: Each node in
Gi clusters itself to the closest potential cluster center in Qi. In that way, each node is
either part of a red cluster with a cluster center in QR

i or a blue cluster with a cluster
center in QB

i . Now, removing all the nodes in blue clusters neighboring a red cluster
would preserve both the separation invariant as well as the ruling invariant. However,
the number of removed nodes might be too large.

In order to ensure that at most n
3b nodes are deleted, we do the following: for each node

v, let diff(v) = di(Q
R
i , v)− di(Q

B
i , v). We now define Kj = {v ∈ Vi : diff(v) = j} and let

j∗ = argminj∈{0,2,4,...,6b−2} |Kj ∪Kj+1|. Then, we declare all the nodes in Kj∗ ∪Kj∗+1

as unclustered. Moreover, each blue potential cluster center v with diff(v) < j∗− 1 stops
being a potential cluster center.

We remark that the described algorithm cannot efficiently be implemented in the dis-
tributed CONGEST model. The reason is that deciding whether a given index j is
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good or not requires global coordination. In particular, the communication prim-
itive we need can be described as follows: each node v is assigned O(b) numbers
{xv,j ∈ {0, 1} : j ∈ {0, 2, 4, . . . , 6b−2}} with xv,j = 1 if v would be removed if j = j∗ and
0 otherwise. Now, each node has to learn

∑
v∈V (G) xv,j for each j ∈ {0, 2, 4, . . . , 6b− 2}.

We denote by Ocount the oracle for this communication primitive. By formalizing the
high-level overview, we then obtain the following theorem.

Theorem 9.14. Consider an unweighted n-node graph G where each node has a unique b-
bit identifier. There is a deterministic algorithm computing a 2-separated O(b2)-diameter
clustering C with |

⋃
C∈C C| ≥ (2/3)n in O(b3) CONGEST rounds and performing O(b)

oracle calls to Ocount.

We note that the theorem does not assume b = O(log n).

Before giving a formal proof of Theorem 9.14 in Section 9.2.3, we first show formally how
one can use it to proof Theorem 9.13.

9.2.2 Anylysis of the Strong Clustering Algorithm

Proof of Theorem 9.13. The algorithm starts by computing a clustering Cweak = {Cweak
1 ,

Cweak
2 , . . . , Cweak

N } with weak-diameter O(log2 n) such that Cweak clusters at least half
of the nodes. This can be computed in O(log4 n) CONGEST rounds by invoking the
following theorem from [170].

Theorem 9.15 (Restatement of Theorem 2.2 in [170]). Consider an arbitrary n-node
graph G where each node has a unique b = O(log n)-bit identifier. There is a determin-
istic algorithm that in O(log4 n) rounds of the CONGEST model computes a 2-separated
clustering C such that |

⋃
C∈C C| ≥ n/2. For each cluster C, the algorithm returns a tree

TC with diameter O(log2 n) such that C ⊆ V (TC). Each vertex in G is in O(log n) such
trees.

Now, for each i ∈ [N ], let Cstrongi denote the clustering one obtains by invoking The-
orem 9.14 with input graph G[Cweak

i ]. Then, the algorithm returns the clustering
Cstrong =

⋃n
i=1 C

strong
i .

We first show that Cstrong is a 2-separated clustering with diameter O(log2 n) clustering
at least (1/3)n nodes.

First, the clustering Cstrong is 2-separated: This directly follows from the fact that Cweak

is 2-separated and for i ∈ [N ], Cstrongi is 2-separated. Moreover, the clustering has
diameter O(log2 n): This follows from the fact that each cluster in Cweak

i has diameter
O(b2) and b = O(log n).

It remains to show that |
⋃

C∈Cstrong C| ≥ n/3. We have

|
⋃

C∈Cstrong

C| =
N∑
i=1

|
⋃

C∈Cstrong
i

C| ≥
N∑
i=1

2|Cweak
i |
3

=
2

3
|
⋃

C∈Cweak

C|
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≥ 2

3

1

2
n =

1

3
n

where the first inequality follows from the guarantees of Theorem 9.14 and the second
follows from the guarantees of Theorem 9.15.

Finally, we discuss an efficient CONGEST implementation of the algorithm: For every
i ∈ [N ], we need to show that we can compute Cstrongi in O(log3 n) CONGEST rounds
in each cluster Cweak

i ∈ Cweak. Moreover, the communication capacity in each round is
limited: For the computation inside Cweak

i , we can use the full capacity of O(log n) bits
along edges contained in G[Cweak

i ], but only a single bit for edges contained in the tree
TCweak

i
, and no communication for all other edges. The reason why we have the capacity

of one bit per edge of TCweak
i

is that by Theorem 9.15, each node of G and hence each
edge of G is contained in O(log n) different trees TC , hence by assuming without loss of
generality that b is large enough, each edge can allocate one bit per tree it is in.

According to Theorem 9.14, for i ∈ [N ], we can compute Cstrongi in O(b3) = O(log3 n)
CONGEST rounds together with performing O(b) = O(log n) oracle calls to Ocount in
G[Cweak

i ]. The CONGEST rounds use only edges of G[Cweak
i ], so we only need to discuss

the implementation of the calls to Ocount. To that end, we will use the following variant
of [170, Lemma 5.1]. 1

Lemma 9.16 (A variant of the “pipelining” Lemma 5.1 from [170]). Consider the fol-
lowing problem. Let T be a rooted tree of depth d. Each node u has k m-bit numbers
x1u, x

2
u, . . . , x

k
u. In one round of communication, each node can send a b-bit message,

b ≤ m, to all its neighbors in T . There is a protocol such that in O(d+ km/b) message-
passing rounds on T performs the following operations:

1. Broadcast: the root of T , r, sends x1r , . . . , x
k
r to all nodes in T .

2. Sum: The root r computes the value of
∑

u∈T xiu mod 2O(m) for every 1 ≤ i ≤ k.

In our case, to implement Ocount we first use the sum operation and afterwards the
broadcast operation from the statement of Theorem 9.16 on the tree TCweak

i
. Note that

we use the following parameters: d9.16 = O(log2 n) since this is the diameter of TCweak
i

by Theorem 9.15; k9.16 = O(log n) since we need to aggregate O(log n) different sums;
m9.16 = O(log n) as this is the size of the messages we are broadcasting; b9.16 = 1
as this is the capacity of the channel. Therefore, the oracle Ocount is implemented in
O(d9.16 + k9.16m9.16/b9.16) = O(log2 n) rounds. We need to call it O(log n) times, hence
the overall round complexity is O(log3 n), as desired.

1The Lemma 5.1 in [170] proves this result only for k = 1, but the generalization for bigger k is
straightforward.



158 Deterministic Network Decompositions for Weighted Graphs with Applications

9.2.3 Proof of the Clustering Theorem

In this section, we formalize the proof sketch given in Section 9.2.1.

Proof of Theorem 9.14. The algorithm computes two sequences V0 := V (G) ⊇ V1 ⊇
. . . ⊇ Vb and Q0 := V (G) ⊇ Q1 ⊇ . . . ⊇ Qb. For i ∈ {0, 1, . . . , b}, we define Gi = G[Vi]
and di = dGi . Besides Qi ⊆ Vi, the following three invariants will be satisfied:

1. Separation Invariant: Let u, v ∈ Qi be two nodes that are contained in the same
connected component in Gi. Then, the first i bits of the identifiers of u and v agree.

2. Ruling Invariant: For every node v ∈ Vi, di(Qi, v) ≤ 6ib.

3. Deletion Invariant: We have |Vi| ≥ n− in
3b .

It is easy to verify that setting V0 = Q0 = V (G) results in the three invariants being
satisfied for i = 0. For i = b, the separation invariant implies that every connected
component in Gb contains at most one vertex in Qb. Together with the ruling invariant,
this implies that the diameter of every connected component in Gb is O(b2). Moreover, the
deletion invariant states that |Vb| ≥ n− bn

3b = (2/3)n. Hence, the connected components
of Gb define a 2-separated clustering in G with diameter O(b2) that clusters at least
(2/3)n of the vertices, as desired.

Let i ∈ {0, 1, . . . , b−1}. It remains to describe how to compute (Vi+1, Qi+1) given (Vi, Qi)
while preserving the three invariants.

Our algorithm makes sure that the following three properties are satisfied. First, let
u, v ∈ Qi be two arbitrary nodes that are contained in the same connected component in
Gi and whose identifiers disagree on the (i+1)-th bit. Then, at least one of them is not
contained in Qi+1 or u and v end up in different connected components in Gi+1. Second,
for every node v ∈ Vi+1, di+1(Qi+1, v) ≤ di(Qi, v) + 6b. Third, |Vi \ Vi+1| ≤ n

3b , i.e., the
algorithm ‘deletes’ at most n

3b many nodes.

Note that satisfying these three properties indeed suffices to preserve the invariants. Let
Qi = QB

i ⊔ QR
i with QB

i containing all the nodes in Qi whose (i + 1)-th bit in their
identifier is 0. We compute (Vi+1, Qi+1) from (Vi, Qi) as follows:

1. For j ∈ {0, 1, . . . , 6b−1}, let Kj
i = {u ∈ Vi : diffi(u) = j} with diffi(u) = di(Q

R
i , u)−

di(Q
B
i , u)

2. j∗ = argminj∈{0,2,4,...,6b−2} |K
j
i ∪Kj+1

i |

3. Vi+1 = Vi \ (Kj∗

i ∪Kj∗+1
i )

4. Qi+1 = Qi \ (
⋃j∗+1

j=0 Kj
i )

We first show that computing (Qi+1, Vi+1) in this way indeed satisfies the three properties
stated above. Afterwards, we show that we can compute (Qi+1, Vi+1) given (Qi, Vi) in
O(b2) CONGEST rounds and using the oracle Ocount once. It directly follows from the
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pigeonhole principle that |Kj∗

i ∪ Kj∗+1
i | ≤ n

3b and therefore |Vi \ Vi+1| ≤ n
3b . Hence, it

remains to verify the other two properties.

Claim 9.17. Let u, v ∈ Qi be two arbitrary nodes that are contained in the same con-
nected component in Gi and whose identifiers disagree on the (i+1)-th bit. Then, either
at least one of them is not contained in Qi+1 or u and v end up in different connected
components in Gi+1.

Proof. We assume without loss of generality that u ∈ QR
i and v ∈ QB

i . Furthermore,
assume that u, v ∈ Qi+1. We need to show that u and v are in different connected
components in Gi+1. To that end, consider an arbitrary u-v-path ⟨u = w1, w2, . . . , v =
wk⟩ in Gi. From the definition of diffi and the fact that u ∈ QR

i and v ∈ QB
i ∩Qi+1, it

follows that diffi(u) < 0 and diffi(v) > j∗ + 1. Together with the fact that |diffi(wℓ) −
diffi(wℓ+1)| ≤ 2 for every ℓ ∈ [k − 1], we get that there exists an ℓ ∈ {2, 3, . . . , k − 1}
with diffi(wℓ) ∈ {j∗, j∗+1}. For this ℓ, wℓ /∈ Vi+1 and therefore the u-v-path is not fully
contained in Gi+1. Since we considered an arbitrary u-v-path, this implies that u and v
are in different connected components in Gi+1, as desired.

Claim 9.18. For every u ∈ Vi+1, di+1(Qi+1, u) ≤ di(Qi, u) + 6b.

Proof. Consider any u ∈ Vi+1 and recall that diffi(u) = di(Q
R
i , u) − di(Q

B
i , u). As

u /∈ Kj∗

i ∪Kj∗+1
i , either diffi(u) < j∗ or diffi(u) > j∗ + 1.

1. diffi(u) < j∗: Consider a shortest path from QR
i to u. Note that any node v on

this path also satisfies diffi(v) < j∗.

Therefore, the path is fully contained in Gi+1. Moreover, QR
i ⊆ Qi+1 and therefore

di+1(Qi+1, u) ≤ di(Q
R
i , u)

≤ di(Qi, u) + max(0, diffi(u)) ≤ di(Qi, u) + 6b,

as needed.

2. diffi(u) > j∗+1: Consider a shortest path from QB
i to u. Note that any node v on

this path also satisfies diffi(v) > j∗ + 1. In particular, the path is fully contained
in Gi+1. Also, the start vertex v′ ∈ QB

i of the path satisfies diffi(v
′) > j∗ + 1 and

thus it is contained in Qi+1. Hence,

di+1(Qi+1, u) ≤ di(Q
B
i , u) = di(Qi, u) ≤ di(Qi, u) + 6b,

as needed.

First, each node v computes the two values min(di(Q
R
i , v), 6(i+1)b) and min(di(Q

B
i , v), 6(i+

1)b). This can be done in O(b2) CONGEST rounds by computing a BFS forest from
both QRi and QBi up to distance 6(i + 1)b. As di(Qi, v) ≤ 6ib, it holds for each
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j ∈ {0, 1, . . . , 6b − 1} that diffi(u) := di(Q
R
i , v) − di(Q

B
i , v) = j if and only if

min(di(Q
R
i , v), 6(i + 1)b) −min(di(Q

B
i , v), 6(i + 1)b) = j. Thus, a node can decide with

no further communication whether it is contained in Kj
i . Now, one can use the oracle

Ocount to compute j∗. Given j∗, each node can decide whether it is contained in Vi+1

and Qi+1, as needed.

Hence, the overall algorithm runs in O(b3) CONGEST rounds and invokes the oracle
Ocount O(b) times.

9.3 Blurry Ball Growing

The blurry ball growing problem asks for the following: in its simplest variant (random-
ized, edge-cutting), we are given a set S and a distance parameter D. The goal is to
construct a superset Ssup of S with Ssup ⊆ BG(S,D) such that every edge e of length ℓ(e)
is “cut” by Ssup (that is, neither contained in Ssup, nor in V (G) \ Ssup) with probability
O(ℓ(e)/D).

This section is dedicated to prove Theorem 9.19 that generalizes Theorem 9.5 that we
restate here for convenience.

Theorem 9.5. Given a weighted graph G, a subset of its nodes S and a parameter
D > 0, there is a deterministic algorithm computing a superset Ssup ⊇ S such that
maxv∈Ssup dG[Ssup](S, v) ≤ D, and moreover,

∑
e∈E(G)∩(Ssup×(V (G)\Ssup))

ℓ(e) = O

 ∑
e∈E(G)

ℓ(e)/D

 .

The algorithm uses O(logD) calls to an (1 + 1/ logD)-approximate distance oracle.

First, in Section 9.3.1, we sketch a proof for the randomized edge-cutting variant of
the problem. The main result, Theorem 9.19, is proven in Section 9.3.2. Finally, in
Section 9.3.3 we derive simple corollaries of Theorem 9.19 used later in the paper.

9.3.1 Intuition and Proof Sketch

We will sketch a proof of the randomized variant of Theorem 9.5 (change the guarantee
on the sum of the lengths of edges cut to the individual guarantee that each edge e
is cut with probability O(ℓ(e)/D)). First, note that it is easy to solve the blurry ball
growing problem using an exact distance oracle: one can simply pick a number D ∈ [0, D)
uniformly at random and define Ssup := {u : d(S, u) ≤ D}. From now on, let e = {u, v}
be an arbitrary edge with du ≤ dv for du := d(S, u) and dv := d(S, v). Choosing D as
above, we indeed have

P(e is cut by Ssup) = P(D ∈ [du, dv))
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=
|[0, D) ∩ [du, dv)|

D
≤ ℓ(e)/D,

as needed.

What happens if we only have access to a (1 + ε)-approximate distance oracle, i.e., if
we define Ssup = {u : d̃(S, u) ≤ D} with d̃ being (1 + ε)-approximate? The calculation
above would only give

P(e is cut by Ssup) = P(D ∈ [d̃(S, u), d̃(S, v)))

≤ P(D ∈ [du, dv + εD)) ≤ ℓ(e)/D + ε.

This bound is only sufficient for edges of length Ω(εD).

To remedy this problem, let us consider the algorithm ExactBlur given below. ExactBlur
only performs a binary decision in each of the O(logD) recursion levels. This allows
us later to straightforwardly generalise it to the more complicated approximate and
deterministic setting.

Algorithm 1 Simple Randomized Blurry Ball Growing with Exact Distances
Procedure ExactBlur(S,D)
if D ≤ 1 then

return S
else

Sbig = {u : d(S, u) ≤ D/2}
if (fair coin comes up heads) then

return ExactBlur(S,D/2)
else

return ExactBlur(Sbig, D/2)
end if

end if

If all of the edges of G had length 1 and D was a power of two, the algorithm ExactBlur
would actually be the same as the simple uniformly sampling algorithm discussed above.
In that case, it would correspond to sampling the value of D bit by bit, starting with
the most significant bit. However, in general the two procedures are somewhat different.
Assume that u ∈ S, u is the only neighbor of some v ̸∈ S and ℓ({u, v}) = 2D/3.
With probability 1, v ̸∈ ExactBlur(S,D). That is, the probability of {u, v} being cut is
1 > ℓ({u, v})/D.

However, we will now (informally) prove that Algorithm 1 nevertheless satisfies P (e is cut) =
O(ℓ(e)/D).

Proof (informal). Let p be the probability of e being cut, p1 the probability of e being
cut provided that the coin comes up heads (we decide not to grow) and p2 the probability
that e is cut if the coin comes up tails; we have p = (p1 + p2)/2.
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Recall that we want to prove (by induction) that p ≤ Cℓ(e)/D for some C > 0. In
particular, we are going to show that

p ≤ 10(1 + 1middle(e))ℓ(e)/D. (9.2)

Here, 1middle is the indicator of whether 0 < du ≤ dv < D − 1, i.e., u is not in S and v
is sufficiently close to S.

To prove the bound (9.2), first consider the case du, dv < D/2. We have, by induction,
that p1 ≤ 10(1 + 1middle(e))ℓ(e)/(D/2), while p2 = 0. Here we are using the fact that if
1middle(e) = 1 in the recursive call, it is also certainly equal to one now. We get

p = p1/2 + p2/2 = p1/2 ≤ 10(1 + 1middle(e))ℓ(e)/D,

as needed. An analogous argument works if du, dv ≥ D/2.

It remains to analyze the case du < D/2 ≤ dv. First, note that we can assume that
ℓ(e) ≤ D/10 and therefore 1middle(e) = 1. Moreover, in all of the subsequent recursive
calls it will be the case that either u ∈ Srec, or, on the other hand, d(Srec, v) ≥ Drec.
Thus, 1middle(e) = 0 during all of the subsequent recursive calls.

The fact that currently 1middle(e) = 1 but 1middle(e) = 0 in the recursive call allows us
to conclude that

p =
p1 + p2

2
≤ 10 · 1 · ℓ(e)/(D/2) + 10 · 1 · ℓ(e)/(D/2)

2
(9.3)

= 10(1 + 1)ℓ(e)/D = 10(1 + 1middle)ℓ(e)/D, (9.4)

as needed.

Our main result Theorem 9.19 is a generalization of Algorithm 1 and the above analysis.
First, the analysis can also be made to work with approximate distances. One difference
is that we multiply D by (1−ε)/2 and not by 1/2 in the recursive call, to account for the
errors we make when computing the set Sbig. By setting ε = O(1/ log(D)), the errors
accumulated over the O(logD) iterations do not explode.

Second, we solve a deterministic variant of the problem where the objective is to minimize
the (weighted) sum of edges that are cut. We achieve this by derandomizing the random
choices in Algorithm 1. For that, it comes in handy that the algorithm samples just
one bit in every iteration: in essence, the basic idea of the deterministic variant of the
algorithm is that it computes in every step which choice makes the expected number of
edges being cut smaller.

9.3.2 General Result

The main result of this section is Theorem 9.19. It solves the general blurry ball growing
problem discussed in Section 9.1. We now define this general version of the problem. In
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particular, we generalize the guarantee for edges to guarantees for input balls: every node
v wants the ball B(v, r(v)) to end up fully in Ssup or V (G)\Ssup. Our algorithm outputs
a set V bad which contains all the nodes for which this condition fails (and potentially
even nodes for which the condition is satisfied). In the randomized version, we show
that each node v is contained in V bad with probability O(r(v)/D). In the deterministic
version, we show that the (weighted) number of nodes in V bad is sufficiently small. We
note that explicitly outputting a set of “bad” nodes is needed for the applications later
on and we anyways have to track certain quantities (e.g. whether a node can potentially
become bad) to derandomize the algorithm.

Theorem 9.19 (Deterministic And Randomized Blurry Ball Growing Problem). Con-
sider the following problem on a weighted input graph G. The input consists of:

1. A set S ⊆ V (G).

2. Each node v ∈ V (G) has a preferred radius r(v).

3. In the deterministic version, each node v ∈ V (G) additionally has a weight µ(v).

4. A distance parameter D > 0.

The output is a set Ssup with S ⊆ Ssup ⊆ V (G) together with a set V bad ⊆ V (G) such
that

1. for every v ∈ Ssup, dG[Ssup](S, v) ≤ D,

2. for every v ∈ V good := V (G)\V bad, B(v, r(v)) ⊆ Ssup or B(v, r(v)) ⊆ V (G)\Ssup,

3. in the deterministic version, µ(V bad) = O(
∑

v∈V (G) µ(v) r(v)/D)

4. and in the randomized version, Pr[v ∈ V bad] = O(r(v)/D) for every v ∈ V (G).

There is an algorithm which returns a pair (Ssup, V bad) satisfying the above properties
in O(log(D) + 1) steps. The algorithm performs all oracle calls with precision parameter
ε = 1

log(n) and distance parameter no larger than D.

Proof of Theorem 9.19: Let us first give some intuition about Algorithm 2. The set
Sbig corresponds to the set of the same name in Algorithm 1. The trees TSbig , TV \Sbig give
us, informally speaking, the approximate distance from the cut Sbig× (V (G)\Sbig). The
set V unsafe contains all the nodes which can potentially be cut by the set Ssup returned
at the end. At the beginning we set V unsafe = V (G), while in the leaf of the recursion
we return V bad = V unsafe. We postpone the intuitive discussion about the set V middle.
However, note that the randomized version “ignores” the set V middle. It is only necessary
as an input to the deterministic algorithm. However, we still use the set V middle to analyze
the randomized version. Finally, the potential Φ1 (Φ2) in the deterministic version of
Algorithm 2 can be seen as a pessimistic estimator for the expected number of nodes
(according to their weight) which will be labeled as bad at the end of the algorithm, i.e.,
which are contained in V bad, if the coin comes up heads (tails).
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Algorithm 2 The Blurry Ball Growing Algorithm
Procedure Blur(S,D, V unsafe, V middle)
Works with an arbitrary precision parameter ε ∈ [0, 0.1].
if D ≤ 1 then

return (S, V unsafe)
else

TS ← ODist
ε,D/2(S)

Sbig = V (TS)
TSbig ← ODist

ε,D (Sbig)

TV \Sbig ← ODist
ε,D (V (G) \ Sbig)

V unsafe
1 = V unsafe ∩

(
{v ∈ V (TSbig) : dT

Sbig (v) ≤ (1 + ε)r(v)} ∪{v ∈ V (G) : r(v) >

D/10}

)

V unsafe
2 = V unsafe ∩

(
{v ∈ V (TV \Sbig) : dT

V \Sbig (v) ≤ (1 + ε)r(v)} ∪{v ∈

V (G) : r(v) > D/10}

)
V ′middle = V middle \ (V unsafe

1 ∩ V unsafe
2 ∩ {v ∈ V (G) : r(v) ≤ D/10})

∀i ∈ {1, 2} : Φi =
∑

v∈V unsafe
i : r(v)≤D/10(1 + 1V ′middle(v))µ(v)r(v)

if (randomized and fair coin comes up heads) or (deterministic and Φ1 ≤ Φ2) then
return Blur(S, (1− ε)D/2, V unsafe

1 , V ′middle)
else

return Blur(Sbig, (1− ε)D/2, V unsafe
2 , V ′middle)

end if
end if
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Proof. We invoke the deterministic/randomized recursive procedure of Algorithm 2 with
precision parameter ε = 1

log(n) . We let (Ssup, V bad) = Blur(S,D, {v ∈ V (G) : r(v) >

0}, V (G)).

We need to prove that the four properties in the theorem statement are satisfied. The
proof is structured as follows. Theorem 9.20 implies that the first property is satisfied.
Theorem 9.21 implies that the second property is satisfied. In the randomized version,
Theorem 9.25 gives that Pr[v ∈ V bad] ≤ 20r(v)

D(1−ε)max(0,log(2D)) for every v ∈ V (G). For
x ∈ [0, 0.5], it holds that 1− x ≥ e−2x. Hence, for n being larger than a fixed constant,
we have

Pr[v ∈ V bad] ≤ 20r(v)

D(1− ε)max(0,log(2D))

≤ 20r(v)

De
−2max(0,log(2D))

log(n)

= O(r(v)/D).

In the deterministic version, Theorem 9.26 gives that

µ(V bad) ≤ 10

D(1− ε)max(0,log2(2D))

∑
v∈V (G)

µ(v)r(v)

= O

 ∑
v∈V (G)

µ(v)r(v)/D

 ,

where we again assume that n is a large enough constant. The recursion depth of the
Blur-procedure is O(logD). Hence, it is easy to see that running the procedure takes
O(log(D) + 1) steps and all oracle calls are performed with precision parameter ε =

1
log(n) and distance parameter no larger than D. This finishes the proof, modulo proving
Theorems 9.20, 9.21, 9.25 and 9.26, which we will do next.

Claim 9.20. Let (Ssup, .) = Blur(S,D, ., .). For every v ∈ Ssup, we have dG[Ssup](S, v) ≤
D.

Proof. We prove the statement by induction on the recursion depth. For the base
case D ≤ 1, we have Ssup = S and therefore the statement trivially holds. Next,
consider the case D > 1. We either have (Ssup, .) = Blur(S, (1 − ε)D/2, ., .) or
(Ssup, .) = Blur(Sbig, (1 − ε)D/2, ., .). In the first case, the induction hypothesis gives
that for any v ∈ Ssup we have dG[Ssup](S, v) ≤ (1 − ε)D/2 ≤ D, as desired. In the
second case, the induction hypothesis states that there exists a vertex u ∈ Sbig with
dG[Ssup](u, v) ≤ (1− ε)D/2. However, from the way Sbig is defined, properties of ODist,
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and the fact that Sbig ⊆ Ssup, it follows that dG[Ssup](S, u) ≤ (1 + ε)D/2. Hence, by
using the triangle inequality, we obtain

dG[Ssup](S, v) ≤ dG[Ssup](S, u) + dG[Ssup](u, v)

≤ (1 + ε)D/2 + (1− ε)D/2 ≤ D,

which finishes the proof.

Claim 9.21. Let (Ssup, V bad) = Blur(S,D, V unsafe, .) for some V unsafe ⊆ V (G). For
every v ∈ V unsafe, if B(v, r(v)) ∩ Ssup ̸= ∅ and B(v, r(v)) \ Ssup ̸= ∅, then v ∈ V bad.

Proof. We prove the statement by induction on the recursion depth. For the base case
D ≤ 1, we have V bad = V unsafe and therefore the statement trivially holds. Next,
consider the case D > 1. Let v ∈ V unsafe and assume that B(v, r(v)) ∩ Ssup ̸= ∅ and
B(v, r(v)) \ Ssup ̸= ∅. We have to show that this implies v ∈ V bad.

We either have (Ssup, .) = Blur(S, (1 − ε)D/2, V unsafe
1 , .) or (Ssup, .) = Blur(Sbig, (1 −

ε)D/2, V unsafe
2 , .).

We first consider the case (Ssup, .) = Blur(S, (1 − ε)D/2, V unsafe
1 , .). By assumption,

B(v, r(v)) ∩ Ssup ̸= ∅. Let u ∈ Ssup. By Theorem 9.20, dG(S, u) ≤ dG[Ssup](S, u) ≤
(1 − ε)D/2 ≤ D/2. Thus, u ∈ Sbig according to the second property of the distance
oracle ODist. Hence, Ssup ⊆ Sbig and therefore there exists a vertex u ∈ Sbig with
dG(v, u) ≤ r(v). If r(v) > D/10, then v ∈ V unsafe

1 and it follows by induction that
v ∈ V bad. If r(v) ≤ D/10, then dG(S

big, v) ≤ r(v) ≤ D/10 ≤ D. Hence, the second
property of ODist implies that v ∈ V (TSbig) and the first property of ODist implies that
dT

Sbig (v) ≤ (1 + ε)dG(S
big, v) ≤ (1 + ε)r(v) which together with v ∈ V unsafe implies that

v ∈ V unsafe
1 . It follows by induction that v ∈ V bad.

It remains to consider the case (Ssup, .) = Blur(Sbig, (1− ε)D/2, V unsafe
2 , .). By assump-

tion, B(v, r(v))\Ssup ̸= ∅ and as Sbig ⊆ Ssup therefore also B(v, r(v))\Sbig ̸= ∅. Hence,
dG(V (G) \ Sbig, v) ≤ r(v). If r(v) > D/10, then v ∈ V unsafe

2 and it follows by induction
that v ∈ V bad. If r(v) ≤ D/10, then dG(V (G) \ Sbig, v) ≤ r(v) ≤ D/10 ≤ D. Hence,
the second property of ODist implies that v ∈ V (TV \Sbig) and the first property of ODist

implies that dT
V \Sbig (v) ≤ (1 + ε)dG(V (G) \ Sbig, v) ≤ (1 + ε)r(v) which together with

v ∈ V unsafe implies that v ∈ V unsafe
2 . It follows by induction that v ∈ V bad.

Definition 9.22. We refer to the tuple (S,D, V middle) as a valid input if every v ∈
V (G) \ V middle is either very close or very far (or both), defined as follows.

1. very close: dG(S, v) ≤ (1 + ε)r(v)

2. very far: maxu∈BG(v,(1+ε)r(v)) dG(S, u) ≥ D
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Claim 9.23. Assume (S,D, V middle) is a valid input. Then, both (S, (1−ε)D/2, V ′middle)
and (Sbig, (1− ε)D/2, V ′middle) are valid inputs.

Proof. Let v ∈ V (G) \ V ′middle. To show that (S, (1 − ε)D/2, V ′middle) is a valid input,
it suffices to show that one of the following holds:

1. dG(S, v) ≤ (1 + ε)r(v)

2. maxu∈BG(v,(1+ε)r(v)) dG(S, u) ≥ (1− ε)D/2

To show that (Sbig, (1− ε)D/2, V ′middle) is a valid input, it suffices to show that one of
the following holds:

1. dG(S
big, v) ≤ (1 + ε)r(v)

2. maxu∈BG(v,(1+ε)r(v)) dG(S
big, u) ≥ (1− ε)D/2

First, consider the case that v ∈ V (G) \ V middle. As (S,D, V middle) is a valid input ,
dG(S, v) ≤ (1+ε)r(v) or maxu∈BG(v,(1+ε)r(v)) dG(S, u) ≥ D. If dG(S, v) ≤ (1+ε)r(v), then
also dG(S

big, v) ≤ (1 + ε)r(v) as S ⊆ Sbig. Now, assume maxu∈BG(v,(1+ε)r(v)) dG(S, u) ≥
D ≥ (1− ε)D/2. Hence, there exists w ∈ BG(v, (1+ ε)r(v)) with dG(S,w) ≥ D and thus

max
u∈BG(v,(1+ε)r(v))

dG(S
big, u) ≥ dG(S

big, w)

= min
sbig∈Sbig

dG(s
big, w)

≥ min
sbig∈Sbig

dG(S,w)− dG(S, s
big)

= dG(S,w)− max
sbig∈Sbig

dG(S, s
big)

≥ D − (1 + ε)D/2

= (1− ε)D/2,

as desired. It remains to consider the case v ∈ V middle. Hence, v ∈ V middle \ V ′middle

and therefore v ∈ V unsafe
1 ∩ V unsafe

2 and r(v) ≤ D/10. As v ∈ V unsafe
1 and r(v) ≤ D/10,

dT
Sbig (v) ≤ (1 + ε)r(v) and therefore dG(S

big, v) ≤ (1 + ε)r(v), which already finishes
the proof that (Sbig, (1 − ε)D/2, V ′middle) is a valid input. As v ∈ V unsafe

2 and r(v) ≤
D/10, dT

V \Sbig (v) ≤ (1 + ε)r(v). Hence, dG(V \ Sbig, v) ≤ (1 + ε)r(v) and therefore
BG(v, (1 + ε)r(v)) ∩ V \ Sbig ̸= ∅. As every w ∈ V \ Sbig satisfies dG(S,w) ≥ D/2 ≥
(1− ε)D/2, we have maxu∈BG(v,(1+ε)r(v)) dG(S, u) ≥ (1− ε)D/2, which finishes the proof
that (S, (1− ε)D/2, V ′middle) is a valid input.

Claim 9.24. Assume (S,D, V middle) is a valid input. For every v ∈ V unsafe
1 ∩ V unsafe

2

with r(v) ≤ D/10, we have v ∈ V middle.
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Proof. Let v ∈ V unsafe
1 ∩ V unsafe

2 with r(v) ≤ D/10. We have to show that v ∈ V middle.
As (S,D, V middle) is a valid input, it suffices by Theorem 9.22 to show that dG(S, v) >
(1 + ε)r(v) and maxu∈BG(v,(1+ε)r(v)) dG(S, u) < D. As v ∈ V unsafe

1 and r(v) ≤ D/10,
dG(S

big, v) ≤ dT
Sbig (v) ≤ (1 + ε)r(v). Therefore,

max
u∈BG(v,(1+ε)r(v))

dG(S, u)

≤ dG(S, v) + (1 + ε)r(v)

≤ max
u∈Sbig

dG(S, u) + dG(S
big, v) + (1 + ε)r(v)

≤ (1 + ε)(D/2) + 2(1 + ε)r(v)

< D,

as needed. As v ∈ V unsafe
2 and r(v) ≤ D/10, dG(V (G) \ Sbig, v) ≤ dT

V \Sbig (v) ≤ (1 +

ε)r(v). Hence,

dG(S, v) ≥ dG(S, V \ Sbig)− dG(V \ Sbig, v)

≥ D/2− (1 + ε)r(v) > (1 + ε)r(v),

which finishes the proof.

Claim 9.25 (Randomized Lemma). Let (., V bad) = Blurrand(S, D, {v ∈ V (G) : r(v) >

0}, V (G)) for D > 0. For every v ∈ V (G), Pr[v ∈ V bad] ≤ 20r(v)

D(1−ε)max(0,log2(2D)) .

Proof. Consider the following more general claim: Let (., V bad) = Blurrand(S,D, V unsafe, V middle)
with (S,D, V middle) being a valid input and {v ∈ V unsafe : r(v) = 0} = ∅. For a vertex
v ∈ V (G), we define pv,S,D,V unsafe,V middle = Pr[v ∈ V bad]. Then,

pv,S,D,V unsafe,V middle ≤

{
(1+1

V middle (v))10r(v)

D(1−ε)max(0,log2(2D)) if v ∈ V unsafe

0 if v /∈ V unsafe

We prove the more general claim by induction on the recursion depth. The base case D ∈
(0, 1] directly follows as (1+1

V middle (v))10r(v)

D(1−ε)max(0,log2(2D)))
≥ 10r(v)/D ≥ 1 as long as r(v) ≥ 1. Next,

consider the case D > 1. Let p := pv,S,D,V unsafe,V middle , p1 := pv,S,(1−ε)D/2,V unsafe
1 ,V ′middle

and p2 := pv,Sbig,(1−ε)D/2,V unsafe
2 ,V ′middle . From the algorithm definition, we have

p = p1/2 + p2/2.

By Theorem 9.23, both (S, (1−ε)D/2, V ′middle) and (Sbig, (1−ε)D/2, V ′middle) are valid
inputs. Hence, by induction we obtain for i ∈ {1, 2} that
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pi ≤



2 · (1 + 1V ′middle(v))10r(v)

D(1− ε)(1− ε)max(0,log2((1−ε)D))

≤ 2 · (1 + 1V ′middle(v))10r(v)

D(1− ε)max(0,log2(2D))

if v ∈ V unsafe
i

0 if v /∈ V unsafe
i

First, if v /∈ V unsafe, then v /∈ V unsafe
1 ∪ V unsafe

2 and therefore p = 0.5p1 + 0.5p2 =
0.5 · 0 + 0.5 · 0 = 0, as desired.

From now on, assume that v ∈ V unsafe. Note that we can furthermore assume that
r(v) ≤ D/10 as otherwise we claim p ≤ 1 which trivially holds. First, consider the case
that v ∈ V unsafe

1 ∩ V unsafe
2 . As r(v) ≤ D/10, Theorem 9.24 implies that v ∈ V middle and

together with the algorithm description it follows that v ∈ V middle \ V ′middle.

Hence,

p ≤ 0.5p1 + 0.5p2 ≤ 2 · 0.5 · 2 · (1 + 1V ′middle(v))10r(v)

D(1− ε)max(0,log2(2D))

=
(1 + 1V middle(v))10r(v)

D(1− ε)max(0,log2(2D))
,

as desired.

It remains to consider the case v /∈ V unsafe
1 ∩ V unsafe

2 . By induction, this implies p1 = 0
or p2 = 0 and therefore

p ≤ 0.5p1 + 0.5p2 ≤ 0.5
2 · (1 + 1V ′middle(v))10r(v)

D(1− ε)max(0,log2(2D))

=
(1 + 1V middle(v))10r(v)

D(1− ε)max(0,log2(2D))
,

which finishes the proof.

Claim 9.26 (Deterministic Lemma). Let (., V bad) = Blurdet(S, D, {v ∈ V (G) : r(v) >
0}, V (G)) for D > 0. Then, µ(V bad) ≤ 10

D(1−ε)max(0,log2(2D))

∑
v∈V (G) µ(v)r(v).

Proof. Consider the following more general claim: Let (., V bad) = Blurdet(S,D, V unsafe, V middle)
with (S,D, V middle) being a valid input and {v ∈ V unsafe : r(v) = 0} = ∅. Then,

µ(V bad) ≤ 1

(1− ε)max(0,log2(2D))

( ∑
v∈V unsafe,r(v)≤D/10

(1+
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1V middle(v))
µ(v)r(v)

D
+

∑
v∈V unsafe : r(v)>D/10

µ(v)

)
.

We prove the more general claim by induction on the recursion depth. The base case
D ∈ (0, 1] trivially holds as for every v ∈ V (G), r(v) = 0 or r(v) ≥ 1 > D/10. Next,
consider the case D > 1. Assume that Φ1 ≤ Φ2. In particular, 2Φ1 ≤ Φ1 + Φ2 and
therefore

2
∑

v∈V unsafe
1 : r(v)≤D/10

(1 + 1V ′middle(v))µ(v)r(v)

≤
2∑

i=1

∑
v∈V unsafe

i : r(v)≤D/10

(1 + 1V ′middle(v))µ(v)r(v)

=
∑

v∈V unsafe
1 ∪V unsafe

2 : r(v)≤D/10

(1 + 1V ′middle(v))µ(v)r(v)+

∑
v∈V unsafe

1 ∩V unsafe
2 : r(v)≤D/10

(1 + 1V ′middle(v))µ(v)r(v)

≤
∑

v∈V unsafe : r(v)≤D/10

(1 + 1V ′middle(v))µ(v)r(v)+

∑
v∈V unsafe

1 ∩V unsafe
2 : r(v)≤D/10

1V middle\V ′middle(v)µ(v)r(v)

=
∑

v∈V unsafe : r(v)≤D/10

(1 + 1V middle(v))µ(v)r(v),

where the second inequality follows from the following three facts: First, V unsafe
1 ∪

V unsafe
2 ⊆ V unsafe. Second, as (S,D, V middle) is a valid input, Theorem 9.24 states that for

every v ∈ V unsafe
1 ∩V unsafe

2 with r(v) ≤ D/10, we have v ∈ V middle. Third, it directly fol-
lows from the algorithm description that there exists no v ∈ (V unsafe

1 ∩V unsafe
2 )∩V ′middle =

∅ with r(v) ≤ D/10.

Now, let D′ := (1− ε)D/2. From the induction hypothesis, it follows that

µ(V bad) ≤ 1

(1− ε)max(0,log2(2D
′))

( ∑
v∈V unsafe

1 ,r(v)≤D′/10

(1+

1V ′middle(v))
µ(v)r(v)

D′
+

∑
v∈V unsafe

1 : r(v)>D′/10

µ(v)
)

≤ 1

(1− ε)max(0,log2(2D
′))

( ∑
v∈V unsafe

1 ,r(v)≤D/10

(1+
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1V ′middle(v))
µ(v)r(v)

D′
+

∑
v∈V unsafe

1 : r(v)>D/10

µ(v)
)

≤ 1

(1− ε)max(0,log2(2D))

(
2

∑
v∈V unsafe,r(v)≤D/10

(1+

1V ′middle(v))
µ(v)r(v)

D
+

∑
v∈V unsafe

1 : r(v)>D/10

µ(v)
)

≤ 1

(1− ε)max(0,log2(2D))

( ∑
v∈V unsafe,r(v)≤D/10

(1+

1V middle(v))
µ(v)r(v)

D
+

∑
v∈V unsafe : r(v)>D/10

µ(v)
)
,

as desired. The case Φ2 < Φ1 follows in the exact same manner and is therefore omitted.

9.3.3 Corollaries

In this section we show how the rather general Theorem 9.19 implies the solution to
the edge variant of the blurry growing problem from Theorem 9.5. In particular, we
prove here Theorem 9.29 that solves both the randomized and deterministic version of
the problem.

Definition 9.27 (Subdivided Graph). Let G be a weighted graph. The subdivided graph
Gsub of G is defined as the weighted graph that one obtains from G by replacing each
edge e = {u, v} ∈ E(G) with one new vertex ve and two new edges {u, ve} and {ve, v}.
Moreover, we define ℓGsub

(u, ve) = 0 and ℓGsub
(ve, v) = ℓG(u, v) where we assume that u

has a smaller ID than v.

Lemma 9.28 (Simulation of the Subdivided Graph). Assume that some problem P
defined on a weighted graph H can be solved in T steps and with performing all oracle
calls with precision parameter ε and distance parameter no larger than D for arbitrary
T > 0, ε and D. Now, assume that the weighted input (and communication) graph is G.
Then, we can solve the problem P on the weighted graph Gsub in O(T ) steps performing
all oracle calls with precision parameter ε and distance parameter no larger than D.

Proof. For each new vertex w that subdivides the edge {u, v} ∈ E(G), the node w is
simulated by the node u (where we assume that u has a smaller ID than v). That is, if w
wants to send a message to v, then u sends that message to v. Similarly, if v wants to send
a message to w, then v sends the message to u instead. The node u also performs all the
local computation that w would do. As w has exactly two neighbors, our computational
model only allows it to perform Õ(1) (P)RAM operations in each step and therefore each
node in the original graph only needs to do additional work proportional to its degree and
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which can be performed with depth Õ(1). Hence, each node can efficiently simulate all
the new nodes that it has to simulate. It remains to discuss how to simulate the oracles
in the graph Gsub with the oracles for the original graph G. The global aggregation
oracle in Gsub can be simulated in G as follows: first, each node computes the sum of
the values of all the nodes it simulates (including its own value), which can efficiently
be done in PRAM. Then, one can use the aggregation oracle in G to sum up all those
sums, which is equal to the total sum of all the node values in Gsub. For the forest
aggregation oracle, let Fsub be a rooted forest in Gsub. Now, let F be the rooted forest
with V (F ) = V (Fsub)∩V (G) and which contains each edge {u, v} ∈ E(G) if both {u,w}
and {w, v} are contained in the forest Fsub. Moreover, the set of roots of F is given by
all the roots in Fsub that are vertices in G together with all vertices in G whose parent
in Fsub is a root. Note that for every node v ∈ V (F ), dF (v) ≤ dFsub

(v) ≤ D. Moreover,
it is easy to see that the aggregation on Fsub can be performed in O(1) steps using only
aggregations on F as an oracle. Finally, one can also simulate the distance oracle ODist

ε,D

in Gsub in O(1) steps and only performing one oracle call to ODist
ε,D in G.

It is easy to deduce the specific version for edges from the above Theorem 9.19 and the
fact that we can efficiently simulate an algorithm on the subdivided graph.

Corollary 9.29. Consider the following problem on a weighted input graph G. The input
consists of the following.

1. A set S ⊆ V (G).

2. In the deterministic version, each edge e ∈ E(G) has a weight µ(e).

3. A distance parameter D > 0.

The output is a set Ssup with S ⊆ Ssup ⊆ V (G). Let Ebad denote the set consisting of
those edges having exactly one endpoint in Ssup, then Ssup satisfies

1. for every v ∈ Ssup, dG[Ssup](S, v) ≤ D,

2. in the deterministic version, µ(Ebad) = O(
∑

e∈E(G) µ(e) ℓ(e)/D)

3. and in the randomized version, Pr[e ∈ Ebad] = O(ℓ(e)/D) for every e ∈ E(G).

There is an algorithm that solves the problem above in O(log(D) + 1) steps, performing
all oracle calls with precision parameter ε = 1

log(n) and distance parameter no larger than
D.

Proof. Run the algorithm of Theorem 9.19 on the subdivided graph with input r(ve) =
ℓ(e) and µ(ve) = µ(e) for every edge e ∈ E. For all other vertices in the subdivided
graph set r(v) = 0 and µ(v) = 0.
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9.4 A General Clustering Result

In this section we prove our main clustering result Theorem 9.30. For the application
to low stretch spanning trees in Theorem 9.42, it is important that the result works by
essentially only having access to an approximate distance oracles and that it works even
if we start with an input set of terminals and require that each final cluster contains at
least one such terminal. We note that the algorithm of our main result Theorem 9.30
uses the blurry ball growing algorithm of Section 9.3 as a subroutine. Since our main
result Theorem 9.30 is rather general, we start by sketching a simpler version of our
result in Section 9.4.1. Afterwards, we prove Theorem 9.30 in Section 9.4.2. Finally, we
derive useful corollaries of Theorem 9.30 in Section 9.4.3.

9.4.1 Intuition and Proof Sketch

We now sketch the proof of Theorem 9.1 – a corollary of the general result Theorem 9.30.
Theorem 9.1 was discussed in Section 9.1, we restate it here for convenience.

Theorem 9.1. [A corollary of Theorem 9.30] Let G be a weighted graph. We are given a
set of terminals Q ⊆ V (G) and a parameter R > 0 such that for every v ∈ V (G) we have
d(Q, v) ≤ R. Also, a precision parameter 0 < ε < 1 is given. There is a deterministic
distributed and parallel algorithm outputting a partition C of the vertices into clusters and
a subset of terminals Q′ ⊆ Q with the following properties:

1. Each cluster C ∈ C contains exactly one terminal q ∈ Q′. Moreover, for any v ∈ C
we have dG[C](q, v) ≤ (1 + ε)R.

2. For the set Ebad of edges connecting different clusters of C we have

|Ebad| = Õ

(
1

εR

)
·
∑

e∈E(G)

ℓ(e).

The PRAM variant of the algorithm has work Õ(m) and depth Õ(1). The CONGEST
variant of the algorithm runs in Õ(

√
n+HopDiam(G)) rounds.

Our approach to prove Theorem 9.1 is somewhat similar to the one taken in Section 9.2
to derive our strong-diameter clustering result. As in the proof of Theorem 9.13, we
solve it by repeatedly solving the following problem O(log n) times: in the i-th iteration,
we split the still active terminals Qi ⊆ Q based on the i-th bit in their identifier into a
set of blue terminals QBi and a set of red terminals QRi . Then, we solve the following
“separation” problem:

In that problem, we are given a set Qi that is Ri-ruling in Gi for Ri = (1+ε/ poly log n)iR.
We want to select a subset Qi+1 = QRi+1⊔QBi+1 of Qi = QRi ⊔QBi and cut a small fraction
of edges in Gi to get a new graph Gi+1 such that the following three properties hold:

1. Separation Property: The sets QRi+1 and QBi+1 are disconnected in Gi+1.
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2. Ruling Property: The set Qi+1 is (1 + ε/ poly log n)Ri-ruling in Gi+1.

3. Cut Property: The number of edges cut is at most Õ
(

1
εR

)
·
∑

e∈E(G) ℓ(e).

If we can solve this partial problem, then we simply repeat it O(log n) times going bit
by bit and obtain an algorithm proving Theorem 9.1 (cf. the reduction of Theorem 9.30
to Theorem 9.32 in the general proof in Section 9.4.2).

Our solution that achieves the three properties above is more complicated than the proof
of Theorem 9.13 in Section 9.2: we need to be more careful because we only have access
to approximate distances and also because we want to cluster all of the vertices.

We start by computing an approximate shortest path forest F with the active terminals
Qi being the set of roots. We define the set of blue nodes UB and red nodes UR as the
set of the nodes such that the root of their tree in F is in QBi and QRi , respectively.

What happens if we cut all edges between UB and UR and define QRi+1 = QRi and
QBi+1 = QBi ? The separation and the ruling property will be clearly satisfied. However,
we do not have any guarantees on the number of edges cut, hence the cut property is not
necessarily satisfied.

To remedy this problem, we use the tool of blurry ball growing developed in Section 9.3.
In particular, we choose one of the two colors (which one we discuss later). Let us name
it A and define WA as the set of nodes returned by the blurry ball growing procedure
from Theorem 9.29 starting from UA with distance parameter D = ε/ poly log n ·R.

Let us note that by the properties of Theorem 9.29, if we now delete all the edges
between WA and UA \WA (here, A ∈ {R,B} \A), the cut property would be satisfied.
For QAi+1 = QAi and QAi+1 = QAi \WA, we also get the separation property. The problem
is the ruling property. Hence, the set QAi+1 may fail to be (1 + ε/ poly log n)R-ruling in
the respective component of Gi+1.

The final trick that we need is to realize that, although we are not done yet, we still made
some progress, which allows us to set up a recursion: if we choose A to be the color class
such that |UA| ≥ |V (G)|/2, for at least half of the nodes, in particular those in WA, we
can now safely say that they will belong to a connected component containing a node
from QA in the final partition. For the nodes in UA \WA we do not know yet, however,
we can simply solve the problem there recursively.

This recursion works as follows. We will recurse on the graph Grec = G[UA \ WA].
The set of terminals QArec in the recursive problem is simply QAi ∩ V (Grec). The set of
terminals QArec contains every node u ∈ V (Grec) such that the parent of u in the forest F
is contained in WA. To reflect the fact that u is not a terminal in the original problem,
we introduce the notion of delays – see Section 9.1.2 for their definition. The delay of u
is (roughly) set to the computed approximate distance to QA. This means that in the
recursive call, the shortest path forest starting from QArec behaves as if it started from
QA, modulo small errors in distances of order εR/poly log n that we inflicted by using
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approximate distances and by using blurry ball growing to obtain the set WA.

When we return from the recursion, the nodes of Grec are split into those belonging to
terminals in Q′Rrec and Q′Brec. We define Q′A = Q′Arec and Q′A = QA. We also mark the
nodes of WA as belonging to terminals in A.

To finish the i-th iteration, we define QRi+1 = Q′R and QBi+1 = Q′B. We cut all edges
between the nodes belonging to terminals in Q′R and Q′B. This definition of Qi+1

preserves the separation property.

Moreover, one can check that in every recursive step we distort the distances multiplica-
tively by 1 + ε/ poly log(n) and additively by ε/ poly log(n) · R. This implies that the
ruling property is satisfied. Similarly, the cut property is satisfied since each recursive
step contributes only Õ

(
1
εR

)
·
∑

e∈E(G) ℓ(e) to the final number of edges cut.

9.4.2 Main Proof

We are now ready to state and prove our main clustering result. As before in Section 9.3,
we first consider a version where the goal is to minimize the number of vertices v whose
ball of radius r(v) is not fully contained in one of the clusters. Later, the edge cutting
version follows as a simple corollary.

Moreover, as written above, the theorem allows each terminal to be assigned a delay.
Allowing these delays helps us with solving the clustering problem recursively and the
delays are also convenient when we apply our clustering result to efficiently compute
low-stretch spanning trees.

The final algorithm invokes the blurry ball growing procedure a total of O(log2 n) times,
each time with parameter D. That’s the reason why the ruling guarantee at the end
contains an additive O(log2 n)D term.

In the simplified version presented above, we set D equal to εR/poly(log n).

Theorem 9.30. Consider the following problem on a weighted input graph G. The input
consists of the following.

1. A weighted subgraph H ⊆ G.

2. Each node v ∈ V (H) has a preferred radius r(v).

3. In the deterministic version, each node v ∈ V (H) additionally has a weight µ(v).

4. There is a set of center nodes Q ⊆ V (H), with each center node q ∈ Q having a
delay del(q) ≥ 0.

5. There is a parameter R such that for every v ∈ V (H) we have dH,del(Q, v) ≤ R.

6. There are two global variables D > 0 and ε ∈
[
0, 1

log2(n)

]
.
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The output consists of a partition C of H, a set Q′ ⊆ Q and two sets V good⊔V bad = V (H)
such that

1. each cluster C ∈ C contains exactly one node q′C in Q′,

2. for each C ∈ C and v ∈ C, we have dH[C],del(q
′
C , v) ≤ (1 + ε)O(log2 n)dH,del(Q, v) +

O(log2 n)D,

3. for every v ∈ V good, BH(v, r(v)) ⊆ C for some C ∈ C and

4. in the deterministic version, µ(V bad) = O(log(n) ·
∑

v∈V (H) µ(v)r(v)/D)

and in the randomized version, for every v ∈ V (H) : P[v ∈ V bad] = O(log(n)r(v)/D).

There is an algorithm that solves the problem above in O(log3 n) steps, perform-
ing all oracle calls with precision parameter ε and distance parameter no larger than
(1 + ε)O(log2 n)R+O(log2 n)D.

Proof. Recall that b denotes the number of bits in the node-IDs of the input graph. The
algorithm computes a sequence of weighted graphs H = H0 ⊇ H1 ⊇ . . . ⊇ Hb with
V (Hi) = V (H) for i ∈ {0, 1, . . . , b}, a sequence of centers Q = Q0 ⊇ Q1 ⊇ Q2 ⊇ . . . ⊇ Qb

and a sequence of good nodes V = V good
0 ⊇ V good

1 ⊇ V good
2 ⊇ . . . ⊇ V good

b . Moreover,
V good := V good

b , V bad := V (G)\V good and V bad
i := V \V good

i . The connected components
of Hb will be the clusters of the output partition C and there will be exactly one node in
Q′ := Qb contained in each cluster of C.

The following invariants will be satisfied for every i ∈ {0, 1, . . . , b}:

1. Separation Invariant: Let u, v ∈ Qi be two nodes contained in the same connected
component of Hi. Then, the first i bits of the IDs of u and v coincide.

2. Ruling Invariant: For every v ∈ V (H), we have

dHi,del(Qi, v) ≤ (1 + ε)i·O(logn)dH,del(Q, v)

+

i·O(logn)∑
j=1

(1 + ε)j

 3D.

3. Good Invariant: For every v ∈ V good
i , BHi(v, r(v)) = BH(v, r(v)).

4. Bad Invariant (Deterministic): µ(V bad
i ) = i ·O(

∑
v∈V (H) µ(v)r(v)/D).

(Randomized): For every v ∈ V (H) : P[v ∈ V bad
i ] = i ·O(r(v)/D).

It is easy to verify that setting H0 = H, Q0 = Q and V good
0 = V (H) results in all of the

invariants being satisfied for i = 0. For i = b, the separation invariant implies that each
cluster of C (that is, a connected component of Hb) contains at most one node in Q′ = Qb.
Together with the ruling invariant, this implies that every cluster C ∈ C contains exactly
one node q′C in Q′ such that for each node v ∈ C, it holds that
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dH[C],del(q
′
C , v) = dHb,del(Qb, v)

≤ (1 + ε)b·O(logn)dH,del(Q, v) +

b·O(logn)∑
j=1

(1 + ε)j

 3D

= (1 + ε)O(log2 n)dH,del(Q, v) +

O(log2 n)∑
j=1

O(1)

 3D

= (1 + ε)O(log2 n)dH,del(Q, v) +O(log2 n)D,

where we used that ε ≤ 1
log2(n)

.

Furthermore, it follows from the good invariant that for every v ∈ V good = V good
b ,

BH(v, r(v)) = BHb
(v, r(v)). In particular, all vertices in BH(v, r(v)) are contained in the

same connected component in Hb and therefore BH(v, r(v)) ⊆ C for some cluster C ∈ C.
For the deterministic version, the bad invariant implies

µ(V bad) = µ(V bad
b ) = b ·O(

∑
v∈V (H)

µ(v)r(v)/D)

= O

log(n)
∑

v∈V (H)

µ(v)r(v)/D

 .

For the randomized version, the bad invariant implies that for every v ∈ V (H),

P[v ∈ V bad] = P[v ∈ vbadb ] = b ·O(r(v)/D) = O(log(n)r(v)/D).

Hence, we output a solution satisfying all the criteria.

Let i ∈ {0, 1, . . . , b−1}. It remains to describe how to compute (Hi+1, Qi+1, V
good
i+1 ) given

(Hi, Qi, V
good
i ) while preserving the invariants.

In each phase, we split Qi = QRi ⊔QBi according to the i-th bit in the unique identifier of
each node. Then, we apply Theorem 9.32 with HL9.32 = Hi, Q

R
L9.32 = QRi , Q

B
L9.32 = QBi

and RL9.32 = (1 + ε)O(log2 n)R + O(log2 n)D. In the randomized version we set the
recursion depth parameter iL9.32 = ⌈log2(D)⌉.

Note that the input is valid as for every v ∈ V (HL9.32) we have

dHL9.32,del(QL9.32, v) = dHi,del(Qi, v) ≤ (1 + ε)i·O(logn)dH,del(Q, v)
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+

i·O(logn)∑
j=1

(1 + ε)j

 3D ≤ RL9.32,

where the first inequality follows from the ruling invariant. Finally, we set Hi+1 =
H ′L9.32, Qi+1 = Q′RL9.32 ⊔Q′BL9.32 and V good

i+1 = V good
i ∩ (V good)L9.32.

Claim 9.31. Computing (Hi+1, Qi+1, Vgood,i+1) from (Hi, Qi, Vgood,i) as written above
preserves the four invariants.

Proof. We start with the separation invariant. Let u, v ∈ Qi+1. Assume that u and v
are in the same connected component of Hi+1. In particular, this implies that u and v
are also in the same connected component of Hi and therefore the separation invariant
for i implies that the first i bits of the IDs of u and v coincide. Moreover, the separation
property of Theorem 9.32 together with our assumption that u and v are in the same
connected component of Hi+1 := H ′L9.32 implies that the first i + 1 bits of the IDs of
u and v coincide, as desired. Next, we check that the ruling invariant is satisfied. The
ruling property of Theorem 9.32 implies that for every v ∈ V (Hi+1) we have

dHi+1,del(Qi+1, v) = dH′
L9.32,del(Q

′R
L9.32 ∪Q′BL9.32, v)

≤ (1 + ε)2(iL9.32+1)dHL9.32,del(Q
R
L9.32 ∪QBL9.32, v)

+

iL9.32∑
j=1

(1 + ε)2j

 3D

≤ (1 + ε)O(logn)dHi,del(Qi, v) +

O(logn)∑
j=1

(1 + ε)j

 3D

≤ (1 + ε)O(logn)
(
(1 + ε)i·O(logn)dH,del(Q, v)

+

i·O(logn)∑
j=1

(1 + ε)j

 3D
)
+

O(logn)∑
j=1

(1 + ε)j

 3D

= (1 + ε)(i+1)·O(logn)dH,del(Q, v) +

(i+1)·O(logn)∑
j=1

(1 + ε)j

 3D.

Hence, the ruling property is preserved. To check that the good invariant is preserved,
consider an arbitrary node v ∈ V good

i+1 . We have to show that BH(v, r(v)) is fully contained
in one of the connected components of Hi+1.

First, v ∈ V good
i+1 directly implies v ∈ V good

i and therefore the good invariant implies that
BHi(v, r(v)) = BH(v, r(v)). Second, v ∈ (V good)L9.32 together with the good property of
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Theorem 9.32 implies that

BHi+1(v, r(v)) = BH′
L9.32

(v, r(v)) = BHL9.32(v, r(v)) = BHi(v, r(v)).

Hence, BHi+1(v, r(v)) = BH(v, r(v)), as needed.

It remains to check the bad property. For the deterministic version, we have

µ(V bad
i+1 ) ≤ µ(V bad

i ) + µ(V bad
L9.32)

≤ i ·O

 ∑
v∈V (H)

µ(v)r(v)/D

+O

 ∑
v∈V (H)

µ(v)r(v)/D


≤ (i+ 1) ·O

 ∑
v∈V (H)

µ(v)r(v)/D

 .

For the randomized version, we have for every v ∈ V (H)

P[v ∈ V bad
i+1 ] ≤ P[v ∈ V bad

i ] + P[v ∈ V bad
L9.32]

≤ i ·O(r(v)/D) +

(
1

2⌈log(D)⌉ +
1

D

)
O(r(v))

≤ (i+ 1) ·O(r(v)/D),

as needed.

Each of the O(log n) invocations of the algorithm of Theorem 9.32 takes O(log2 n) steps,
and all oracle calls are performed with precision parameter ε and distance parameter no
larger than (1+ε)O(logn)RL9.32+

(∑O(logn)
j=1 (1 + ε)2j

)
3D = (1+ε)O(log2 n)R+O(log2 n)D.

This finishes the proof of Theorem 9.30.

Lemma 9.32. Consider the following problem on a weighted input graph G. The input
consists of the following.

1. A weighted subgraph H ⊆ G.

2. Each node v ∈ V (H) has a preferred radius r(v).

3. In the deterministic version, each node v ∈ V (H) additionally has a weight µ(v).

4. There is a recursion depth parameter i ∈ N0. In the randomized version i is part of
the input. In the deterministic version we define i = 1 + ⌊log(

∑
v∈V (H) µ(v)r(v))⌋

if
∑

v∈V (H) µ(v)r(v) > 0 and i = 0 otherwise.
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5. There are sets Q = QR ⊔ QB ⊆ V (H) with each center q ∈ Q having a delay
del(q) ≥ 0.

6. There is a parameter R such that for every v ∈ V (H) we have dH,del(Q, v) ≤ R.

7. There are two global variables D > 0 and ε ∈
[
0, 1

log(n)

]
.

The output consists of two sets Q′R ⊆ QR and Q′B ⊆ QB, a weighted graph H ′ ⊆ H with
V (H ′) = V (H) together with a partition V (H) = V good ⊔ V bad such that

1. Separation Property: For each connected component C of H ′, Q′R ∩ C = ∅ or
Q′B ∩ C = ∅.

2. Ruling Property: For every v ∈ V (H ′), dH′,del(Q
′R∪Q′B, v) ≤ (1+ε)2(i+1)dH,del(Q, v)+(∑i

j=1(1 + ε)2j
)
3D.

3. Good Property: For every v ∈ V good, BH′(v, r(v)) = BH(v, r(v)).

4. Bad Property, Deterministic Version: µ(V bad) ≤
(
1− 1

2i

)
O(
∑

v∈V (H) µ(v)r(v)/D).
Randomized Version: For every v ∈ V (H), P[v ∈ V bad] = ( 1

2i
+

1−2−i

D )O(r(v)).

There is an algorithm that solves the problem above in O((i + 1)(log(D) + 1)) steps,
performing all oracle calls with precision parameter ε and distance parameter no larger
than (1 + ε)2iR+

(∑i
j=1(1 + ε)2j

)
3D.

Proof. We will first consider the special, base case with i = 0. Then, we analyse the
general case.

Base Case: : We start with the base case i = 0.

Let F be the weighted and rooted forest returned by ODist
ε,R (H,Q, del). Note that we are

allowed to perform this oracle call as the distance parameter R satisfies R ≤ (1+ ε)0R+(∑0
j=1(1 + ε)2j

)
3D. Moreover, as for every v ∈ V (H), dH,del(Q, v) ≤ R, the second

property of the distance oracle ensures that V (F ) = V (H).

For A ∈ {R,B}, we define

UA = {v ∈ V (F ) = V (H) : rootF (v) ∈ QA}.

Note that V (H) = UR ⊔ UB as for every v ∈ V (F ), rootF (v) ∈ Q = QR ⊔ QB. The
output now looks as follows: We set Q′R = QR∩UR and Q′B = QB∩UB. We obtain the
graph H ′ from H by deleting every edge with one endpoint in UB and the other endpoint
in UR. We set V bad = {v ∈ V (H) : r(v) > 0} and V good = V (H) \ V bad.

We now verify that all the four properties from the theorem statement are satisfied.
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Separation property: Let C be a connected component of H ′. As we obtained H ′

from H by deleting every edge with one endpoint in UB and one endpoint in UR, we
directly get that C ⊆ UB or C ⊆ UR. If C ⊆ UB, then C ∩ Q′R = ∅ and if C ⊆ UR,
then C ∩Q′B = ∅.

Ruling property: Let v ∈ V (H ′). From the way we defined H ′, it directly follows that
every edge in the forest F is also contained in H ′ i.e., E(F ) ⊆ E(H ′). As rootF (v) ∈
Q′R ∪Q′B, it therefore follows that

dH′,del(Q
′R ∪Q′B, v) ≤ dH′,del(rootF (v), v) ≤ del(rootF (v)) + dF (v).

The first property of the distance oracle directly states that del(rootF (v)) + dF (v) ≤
(1 + ε)dH,del(v) and therefore combining the inequalities implies

dH′,del(Q
′R ∪Q′B, v) ≤ (1 + ε)dH,del(v)

≤ (1 + ε)2(0+1)dH,del(Q, v) +

 0∑
j=1

(1 + ε)2j

 3D,

as needed.

Good property: We have V good = {v ∈ V (H) : r(v) = 0} and for every node v with
r(v) = 0 it trivially holds that BH′(v, r(v)) = BH(v, r(v)).

Bad property: For the deterministic case, note that by definition i = 0 implies∑
v∈V (H) µ(v)r(v) = 0. Hence, for every v ∈ V (H) with r(v) > 0, we have

µ(v) = 0. As V bad = {v ∈ V (H) : r(v) > 0}, we therefore have µ(V bad) = 0 =
(1 − 1

20
)O(
∑

v∈V (H) µ(v)r(v)/D). For the randomized case, v ∈ V bad implies r(v) > 0,
but then P [v ∈ V bad] = 1 ≤ ( 1

20
+ 1−2−0

D )O(r(v)).

Recursive Step: Now, assume i > 0. We compute the sets UR and UB in the same
way as in the base case. The recursive step is either a red step or a blue step. In the
randomized version, we flip a fair coin to decide whether the recursive step is a red
step or a blue step. In the deterministic version, the recursive step is a red step if∑

u∈UR µ(u)r(u) ≥
∑

u∈UB µ(u)r(u) and otherwise it is a blue step. Set A = R and
Ā = B if the step is a red step and otherwise set A = B and Ā = R.

We invoke the deterministic/randomized version of Theorem 9.19 with input GT9.19 =
H,ST9.19 = UA and DT9.19 = D. After the invocation, we set WA = Ssup

T9.19 and
V bad
i = (V bad)T9.19.

We next perform a recursive call with inputs Hrec, irec, Qrec = QRrec ⊔ QBrec, delrec and
Rrec, which are defined below. (The preferred radii, weights, and parameters D and ε
will be the same)



182 Deterministic Network Decompositions for Weighted Graphs with Applications

We set Hrec = H[V (H) \WA]. For the randomized version, we set irec = i − 1. For
the deterministic version, it follows from the way we decide whether it is a red/blue step
that ∑

v∈V (Hrec)

µ(v)r(v) =
∑

v∈V (H)

µ(v)r(v)−
∑

v∈WA

µ(v)r(v)

≤
∑

v∈V (H)

µ(v)r(v)−
∑
v∈UA

µ(v)r(v) ≤ 1

2

∑
v∈V (H)

µ(v)r(v).

As irec = 1 + ⌈log(
∑

v∈V (Hrec)
µ(v)r(v))⌉ if

∑
v∈V (Hrec)

µ(v)r(v) > 0 and irec = 0 other-
wise, it therefore follows by a simple case distinction that irec = i−1 in the deterministic
version as well. For Z ∈ {R,B}, we define

QArec = {v ∈ V (Hrec) : v has a parent p(v) in F , and p(v) ∈WA}

and
QĀrec = {v ∈ V (Hrec) : v is a root in F}.

For every v ∈ Qrec := QRrec ⊔QBrec, we define

delrec(v) = (1 + ε)(del(rootF (v)) + dF (v)) + 3D.

Finally, we set
Rrec = (1 + ε)2R+ 3D.

We have to verify that for every v ∈ V (Hrec), dHrec,delrec(Qrec, v) ≤ Rrec , as otherwise the
input is invalid. We actually show a stronger property, namely that for every v ∈ V (Hrec),

dHrec,delrec(Qrec, v) ≤ (1 + ε)2dH,del(Q, v) + 3D ≤ (1 + ε)2R+ 3D.

To that end, we consider a simple case distinction based on whether the entire path from
v to rootF (v) in F is contained in Hrec or not. If yes, then dHrec(rootF (v), v) ≤ dF (v)
and as delrec(rootF (v)) = (1 + ε)del(rootF (v)) + 3D, we get

dHrec,delrec(Qrec, v) ≤ delrec(rootF (v)) + dF (v) (9.5)
= (1 + ε)del(rootF (v)) + 3D + dF (v) (9.6)
≤ (1 + ε)(del(rootF (v)) + dF (v)) + 3D (9.7)

≤ (1 + ε)2dH,del(Q, v) + 3D. (9.8)

It remains to consider the case that the path from v to rootF (v) in F is not entirely
contained in Hrec. Starting from v, let y be the first node such that y is contained in Hrec

but y’s parent in F is not. By definition, y ∈ QArec and delrec(y) = (1+ε)(del(rootF (y))+
dF (y)) + 3D. We get
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dHrec,delrec(Qrec, v) ≤ dHrec(v, y) + delrec(y)
= dHrec(v, y) + (1 + ε)(del(rootF (y)) + dF (y)) + 3D

≤ (1 + ε)(del(rootF (v)) + dF (y) + dHrec(v, y)) + 3D

≤ (1 + ε)(del(rootF (v)) + dF (v)) + 3D

≤ (1 + ε)2dH,del(Q, v) + 3D. (9.9)

We verified that the provided input is correct. We denote with Q
′R
rec, Q

′B
rec, H

′
rec, V

good
rec

and V bad
rec the output produced by the recursive call.

We now describe the final output. We set

Q′A := QA ∩ UA ⊆ QA

and

Q′Ā := Q′Ārec ⊆ QĀrec ⊆ QĀ.

Next, we define the output graph H ′. To that end, we first define the edge set

Ebridge = {{v, p(v)} ∈ E(H) : v ∈ Q
′A
rec, p(v) is the parent of v in F}.

Note that each edge in Ebridge has one endpoint in V (Hrec) = V (H) \ WA and one
endpoint in WA.

We now define

E(H ′) = E(H ′rec) ⊔ E(H[WA]) ⊔ Ebridge.

Finally, we set V bad = V bad
rec ∪ V bad

i and V good = V (H) \ V bad.

We next show that the output satisfies all the required properties.

Separation property: Let C be a connected component of H ′. We have to show
that Q′R ∩ C = ∅ or Q′B ∩ C = ∅. For the sake of contradiction, assume there exists
q′A ∈ Q′A ∩ C and q′Ā ∈ Q′Ā ∩ C. Consider an arbitrary path P from q′A to q′Ā in C.

As q′A ∈ WA and q′Ā ∈ V (Hrec) = V (H) \WA, the path P contains at least one edge
in Ebridge. Let e = {v, p(v)} be the first edge in Ebridge that one encounters on the path
P starting from q′Ā.
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We have, q′Ā ∈ Q′Ā = Q′Ārec and v ∈ Q′Arec. Moreover, q′Ā and v are in the same connected
component in H ′rec, a contradiction with the separation property of the recursive call.

Ruling property: Let v ∈ V (H). We have to show that

dH′,del(Q
′R ∪Q′B, v)

≤ (1 + ε)2(i+1)dH,del(Q, v) +

 i∑
j=1

(1 + ε)2j

 3D.

First, we consider the case v ∈WA. The guarantees of Theorem 9.19 implies the existence
of a vertex u ∈ UA with dH[WA](v, u) ≤ D. We have

dH′,del(Q
′R ∪Q′B, v) ≤ dH′,del(rootF (u), v)

≤ dH′,del(rootF (u), u) +D

≤ del(rootF (u)) + dF (u) +D

≤ (1 + ε)dH,del(Q, u) +D

≤ (1 + ε)(dH,del(Q, v) +D) +D

≤ (1 + ε)dH,del(Q, v) + 3D

≤ (1 + ε)2(i+1)dH,del(Q, v) +

 i∑
j=1

(1 + ε)2j

 3D.

It remains to consider the case v ∈ V (Hrec). Recall that we already have shown in (9.9)
that

dHrec,delrec(Qrec, v) ≤ (1 + ε)2dH,del(Q, v) + 3D.

By the ruling property of the recursive call, we therefore get

dH′
rec,delrec(Q

′R
rec ∪Q′Brec, v)

≤ (1 + ε)2(irec+1)dHrec,delrec(Qrec, v) +

 irec∑
j=1

(1 + ε)2j

 3D

≤ (1 + ε)2(irec+1)((1 + ε)2dH,del(Q, v) + 3D)

+

irec+1∑
j=1

(1 + ε)2j

 3D
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≤ (1 + ε)2(i+1)dH,del(Q, v) +

 i∑
j=1

(1 + ε)2j

 3D.

Let q′rec ∈ Q′Rrec∪Q′Brec with dH′
rec,delrec(q

′
rec, v) = dH′

rec,delrec(Q
′R
rec∪Q′Brec, v). First, consider

the case that q′rec ∈ Q′Ārec and therefore also q′ ∈ Q′Ā. We have

dH′,del(Q
′R ∪Q′B, v) ≤ dH′,del(q

′
rec, v)

≤ dH′
rec,delrec(q

′
rec, v)

≤ (1 + ε)2(i+1)dH,del(Q, v) +

 i∑
j=1

(1 + ε)2j

 3D,

as needed. It remains to consider the case that q′rec ∈ Q′Arec. In particular, this implies
that q′rec has a parent p in F which is contained in WA. We have

delrec(q′rec) = (1 + ε)(del(rootF (q′rec)) + dF (q
′
rec)) + 3D

= (1 + ε)(del(rootF (p)) + dF (p) + ℓ(q′rec, p)) + 3D

≥ (1 + ε)(del(rootF (p)) + dF (p)) + 3D + ℓ(q′rec, p)

≥ (1 + ε)dH,del(Q, p) + 3D + ℓ(q′rec, p)

≥ dH′,del(Q
′R ∪Q′B, p) + ℓ(q′rec, p)

≥ dH′,del(Q
′R ∪Q′B, q′rec)

and therefore

dH′,del(Q
′R ∪Q′B, v) ≤ dH′,del(Q

′R ∪Q′B, q′rec) + dH′(q′rec, v)

≤ delrec(q′rec) + dH′
rec

(q′rec, v)

= dH′
rec,delrec(Q

′R
rec ∪Q′Brec, v)

≤ (1 + ε)2(i+1)dH,del(Q, v) +

 i∑
j=1

(1 + ε)2j

 3D,

as needed.

Good property: Let v ∈ V good. We have to show that BH′(v, r(v)) = BH(v, r(v)). As
v ∈ V good, it holds that v /∈ V bad

i ∪V bad
rec . As v /∈ V bad

i , we either have BH(v, r(v)) ⊆WA
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or BH(v, r(v)) ⊆ V (H) \WA = V (Hrec). If BH(v, r(v)) ⊆ WA, then it follows from
E(H[WA]) ⊆ E(H ′) that BH′(v, r(v)) = BH(v, r(v)). If BH(v, r(v)) ⊆ V (Hrec), then
BH(v, r(v)) = BHrec(v, r(v)). As v /∈ V bad

rec , it follows that BHrec(v, r(v)) = BH′
rec

(v, r(v))
from the good property of the recursive call. As E(H ′rec) ⊆ E(H ′), it therefore follows
that BH′(v, r(v)) = BH(v, r(v)), as needed.

Bad property: We start with the deterministic version. We have

µ(V bad) ≤ µ(V bad
i ) + µ(V bad

rec )

≤ 1

2
O

 ∑
v∈V (H)

µ(v)r(v)/D


+

(
1− 1

2irec

)
O

 ∑
v∈V (Hrec)

µ(v)r(v)/D


≤ 1

2
O

 ∑
v∈V (H)

µ(v)r(v)/D


+

1

2

(
1− 1

2irec

)
O

 ∑
v∈V (H)

µ(v)r(v)/D


=

(
1− 1

2i

)
O

 ∑
v∈V (H)

µ(v)r(v)/D

 ,

as needed. Now, we analyze the randomized version. Let v ∈ (H). We have

P[v ∈ V bad] ≤ P[v ∈ V bad
i ] + P[v ∈ V bad

rec ]

≤ 1

2
O(r(v)/D) + P[v ∈ V bad

rec |v ∈ V (Hrec)] · P[v ∈ V (Hrec)]

≤ 1

2
O(r(v)/D) +

(
1

2irec
+

1− 2−irec

D

)
O(r(v)) · 1

2

=
1

2
O(r(v)/D) +

(
1

2i
+

1
2 − 2−i

D

)
O(r(v))

=

(
1

2i
+

1− 2−i

D

)
O(r(v)),

as desired.
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9.4.3 Corollaries

Next, we present three simple corollaries of the main clustering result Theorem 9.30.
First, Theorem 9.33 informally states that one can efficiently compute a so-called padded
low-diameter partition.

Corollary 9.33. Consider the following problem on a weighted input graph G. The input
consists of a global parameter D and in the deterministic version each node v ∈ V (G)
additionally has a weight µ(v).

The output consists of a partition C of G together with two sets V good ⊔ V bad = V (G)
such that

1. the diameter of C is O(D log3(n)),

2. for every v ∈ V good, BG(v,D) ⊆ C for some C ∈ C,

3. in the deterministic version, µ(V bad) ≤ 0.1 · µ(V (G)),

4. and in the randomized version, for every v ∈ V (G) : P[v ∈ V bad] ≤ 0.1.

There is an algorithm that solves the problem above in O(log3(n)) steps, performing all
oracle calls with precision parameter ε = 1

log2(n)
and distance parameter no larger than

O(log3(n)D).

Proof. We invoke Theorem 9.30 with input HT9.30 = G, r(v)T9.30 = D and µT9.30(v) =
µ(v) for every v ∈ V (G), QT9.30 = V (G) and delT9.30(v) = 0 for every v ∈ V (G),
RT9.30 = 0, DT9.30 = c · log(n) ·D for a sufficiently large constant c and εT9.30 = 1

log2(n)
.

The input is clearly valid. In particular, dG,delT9.30(QT9.30, v) = dG(V (G), v) = 0.

Let C denote the output partition of G and V good ⊔ V bad = V (G) the two sets returned
by the algorithm. According to the first two properties of Theorem 9.30, for every cluster
C ∈ C there exists a node vC ∈ C such that for every v ∈ C

dG[C](vC , v) ≤ O(log2 n)DT9.30 = O(log3 n)D

and therefore the diameter of C is O(D log3 n). Moreover, the third property of Theo-
rem 9.30 together with r(v)T9.30 = D implies that BG(v,D) ⊆ C for some C ∈ C. In the
deterministic version, the fourth property of Theorem 9.30 implies

µ(V bad) = O(log(n) ·
∑

v∈V (G)

µT9.30(v)r(v)T9.30/DT9.30)

= O(1/c)µ(V ) ≤ 0.1µ(V )

for c being sufficiently large.
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In the randomized version, the fourth property of Theorem 9.30 implies for every v ∈
V (G) that

P[v ∈ V bad] = O(log(n)rT9.30(v)/DT9.30) = O(1/c) ≤ 0.1

for c being sufficiently large.

The runtime bound directly follows from the runtime bound of Theorem 9.30.

Next, Theorem 9.34 asserts that we can compute a so-called sparse cover. The result
follows from Theorem 9.33 together with the well-known multiplicative weights update
method. We use Theorem 9.34 to efficiently compute an ℓ1-embedding in Section 9.5.

Theorem 9.34. Consider the following problem on a weighted input graph G. The input
consists of a global parameter D.

The output consists of a cover {C1, C2, . . . , Ct} for some t = O(log n), with the hidden
constant independent of D, such that each Ci is a partition of G with diameter O(D log3 n)
and for every node v ∈ V (G), |{i ∈ [t] : BG(v,D) ⊆ C for some C ∈ Ci}| ≥ 2t/3.

There is an algorithm that solves the problem above in O(log4(n)) steps using the ora-
cle ODist, performing all oracle calls with precision parameter ε = 1

log2(n)
and distance

parameter no larger than O(log3(n)D).

Proof. We set t = ⌈c · log(n)⌉ for c being a sufficiently large constant. At the beginning,
we set µ1(v) = 1 for every v ∈ V (G).

In the i-th step, for 1 ≤ i ≤ t, we apply Theorem 9.33 with input D9.33 = D and
µ9.33(v) = µi(v) for every node v ∈ V (G). Let Ci denote the partition and V good

i the set
returned by the i-th invocation. For every v ∈ V (G) and i ∈ [t], we set µi+1(v) = µi(v)
if v ∈ V good

i and otherwise we set µi+1(v) = 2µi(v). In the end, the algorithm returns
the cover {C1, C2, . . . , Ct}. This finishes the description of the algorithm.

It remains to argue its correctness. All the properties from the statement directly follow
from Theorem 9.33, except for the property that each node v ∈ V (G) satisfies |{i ∈
[t] : BG(v,D) ⊆ C for some C ∈ Ci}| ≥ t/2. To show this, it suffices to show that |{i ∈
[t] : v ∈ V good

i }| ≥ t/2. Note that µ1(V (G)) = n and µt+1(V (G)) = µi(V (G))+µi(V (G)\
V good
i ) ≤ 1.1µi(V (G)). Hence, µt+1(V (G)) ≤ n · 1.1t. On the other hand, for every

v ∈ V (G),

µt+1(V (G)) ≥ µt+1(v) ≥ 2t−|{i∈[t] : v∈V
good
i }|.

Therefore,
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2t−|{i∈[t] : v∈V
good
i }| ≤ n · 1.1t,

which directly implies |{i ∈ [t] : v ∈ V good
i }| ≥ 2t/3 for c being a sufficiently large

constant.

The next corollary is the main building block for efficiently computing low-stretch span-
ning trees in Section 9.6.

Corollary 9.35. Consider the following problem on a weighted input graph G. The input
consists of the following.

1. A weighted subgraph H ⊆ G.

2. In the deterministic version, each edge e ∈ E(H) has a weight µ(e).

3. There is a set of center nodes Q ⊆ V (H), with each center node q ∈ Q having a
delay del(q) ≥ 0.

4. There is a parameter R such that for every v ∈ V (H) we have dH,del(Q, v) ≤ R.

5. There is a precision parameter ε ∈ [0, 1].

The output consists of a partition C of H and a set Q′ ⊆ Q. Let Ebad denote the set
consisting of those edges in E(H) whose two endpoints are in different clusters in C. The
output satisfies

1. each cluster C ∈ C contains exactly one node q′C ∈ Q′,

2. for each C ∈ C and v ∈ C, we have dH[C],del(q
′
C , v) ≤ dH,del(Q, v) + εR,

3. in the deterministic version, µ(Ebad) = O
(
log3(n)

εR

)
·
∑

e∈E(H) µ(e)ℓ(e),

4. and in the randomized version, for every e ∈ E(H) : Pr[e ∈ Ebad] = O
(
log3(n)

εR

)
·

ℓ(e).

There is an algorithm that solves the problem above in O(log3 n) steps, performing all
oracle calls with precision parameter ε′ = Ω

(
ε

log2(n)

)
and distance parameter no larger

than 2R.

Proof. We pretend for a moment that the actual weighted input graph is not G but
instead the subdivided graph Gsub. We now invoke Theorem 9.30 with the following
input:

1. HT9.30 = Hsub

2. For every e ∈ E(H) and the respective ve ∈ V (Hsub), we set rT9.30(ve) = ℓ(e) and
in the deterministic version µT9.30(ve) = ℓ(e).
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3. For every v ∈ V (H), we set rT9.30(v) = 0 and in the deterministic version
µT9.30(v) = 0.

4. RT9.30 = R,QT9.30 = Q and delT9.30 = del

5. DT9.30 = c1
log2(n)

εR and εT9.30 = c2
log2(n)

ε for some small enough constants c1, c2 > 0.

We have to verify that the input is valid, namely that for every v ∈ V (Hsub), dHsub,del(Q, v) ≤
R. This directly follows from the way Hsub is constructed from H together with the fact
that for every v ∈ V (H), dH,del(Q, v) ≤ R. Let C be the partition of H that one obtains
from the partition (C)T9.30 of Hsub by removing from each cluster C ∈ C all the nodes
that are not contained in V (H). The final output is C and Q′ = (Q′)T9.30.

We have to verify that the output satisfies all the properties. The property that each
cluster C ∈ C contains exactly one node q′C ∈ Q′ follows from the way we obtained C
from (C)T9.30, the fact that Q′ ⊆ V (H) and the fact that each cluster in (C)T9.30 contains
exactly one node in Q′. Next, consider any C ∈ C and v ∈ C. Let Csub ∈ (C)T9.30 with
v ∈ Csub. We have

dH[C],del(q
′
C , v) ≤ dHsub[Csub],del(q

′
C , v)

≤ (1 + εT9.30)
O(log2 n)dHsub,del(Q, v) +O(log2 n)DT9.30

≤ ec2εO(1)dHsub,del(Q, v) +O(1)c1εR

≤ dHsub,del(Q, v) + εR,

where the last inequality follows from the fact that c1 and c2 are small enough. Next,
we verify the third property. It follows from the third property of Theorem 9.30 that for
every e ∈ Ebad, ve ∈ V bad

T9.30. Hence, we obtain from the fourth property of Theorem 9.30
that

µ(Ebad) ≤ µT9.30(V
bad
T9.30)

= O(log(n) ·
∑

v∈V (Hsub)

µT9.30(v) · (r(v))T9.30/DT9.30)

= O

(
log3(n)

εR

)
·
∑

e∈E(H)

µ(e)ℓ(e).

For the randomized version, we have for every e ∈ E(H) that

P[e ∈ Ebad] ≤ P[ve ∈ V bad
T9.30]

= O(log(n) · rT9.30(ve)/DT9.30) = O

(
log3(n)

εR

)
· ℓ(e).
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Running the algorithm of Theorem 9.30 takes O(log3 n) steps, with all oracle calls having
precision parameter εT9.30 = Ω

(
ε

log2(n)

)
and distance parameter no larger than (1 +

εT9.30)
O(log2 n)R+O(log2 n)DT9.30 ≤ 2R, assuming that the actual weighted input graph

is Gsub instead of G. However, due to Theorem 9.28, the same holds true, up to a
constant factor in the number of steps, with the actual weighted input graph being G.
This finishes the proof.

9.5 Deterministic Metric Embedding

In this section, we show how to deterministically compute an ℓ1-embedding of a weighted
input graph. Note that in this section we assume that the input graph is connected. The
embedding problem is defined as follows.

Definition 9.36 (ℓ1 embedding). Let G be a weighted and connected graph. An α-
approximate ℓ1-embedding of G into k dimensions is a function that maps each node v
to a k-dimensional vector xv such that for any two nodes u, v ∈ V (G) we have

||xu − xv||1 ≤ dG(u, v) ≤ α||xu − xv||1.

For our result, we also need an oracle for computing potentials; the dual problem of trans-
shipment which is a generalization of shortest path. Fortunately, the work of [274] that
we use to implement the distance oracle for our parallel and distributed results also con-
structs the following potential oracle as a byproduct with the same parallel/distributed
complexity.

Definition 9.37 (Potential Oracle OPot
ε ). The input is a non-empty set S ⊆ V (G). The

output is a function φ assigning each node v ∈ V (G) a value φ(v) ≥ 0 such that

1. φ(s) = 0 for every s ∈ S,

2. |φ(u)− φ(v)| ≤ dG(u, v) for every u, v ∈ V (G), and

3. (1 + ε)φ(v) ≥ dG(S, v) for every v ∈ V (G).

As an application of our strong-clustering results for weighted graphs, we can now show a
distributed deterministic algorithm that embeds a connected weighted graph in ℓ1 space
with polylogarithmic stretch. The arguments in this section are similar to those in [52,
Section 7]. We use our clustering result Theorem 9.33 with O(log n) different distance
scales Di = 2i to get O(log n) partitions of G for all different scales. Next, we use these
partitions to define the final embedding.

Theorem 9.38. Let G be a weighted and connected graph. There is an algorithm that
computes an O(log4 n)-approximate ℓ1-embedding of G into O(log3 n)-dimensional ℓ1
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space. The algorithm takes O(log5 n) steps with access to the distance oracle ODist,
performing all oracle calls with precision parameter ε = 1/ log2 n.

The proof below uses error-correcting codes. We note that the proof works also without
them, the only difference then is that the ℓ1 embedding is only O(log5 n)-approximate.

Proof. The algorithm computes O(log2 n) partitions. For each partition, an embedding
into O(log n) dimensions is computed. Combining these O(log2 n) embeddings then
results in an embedding into O(log3 n) dimensions. The final embedding is then obtained
from this embedding by scaling each entry by a factor determined later.

We first describe how the O(log2 n) partitions are computed.

For every D in the set {2i : i ∈ Z, |i| ≤ ⌈log(n ·maxe∈E(G) ℓ(e))⌉} the algorithm invokes
Theorem 9.34 with input DT9.34 = D. Note that there are O(log n) such choices for
D. The output is a cover {CD1 , CD2 , . . . , CDt } with t = O(log n). Hence, we have O(log n)
covers with each cover consisting of O(log n) partitions for a total of O(log2 n) partitions.

For each partition C, we compute an embedding of V (G) into O(log n) dimensional ℓ1-
space as follows.

First, each cluster C ∈ C computes a bit string sC ∈ {0, 1}10b for b = O(log n) such that
for every other cluster C ′ ̸= C in C, |{i ∈ [10b] : sCi = 1, sC

′
i = 0}| ≥ b. Each cluster C

can compute such a string internally by applying an error-correcting function f to a b-bit
identifier of an arbitrary node of C. It is well-known that such an efficiently computable
function f exists.

Theorem 9.39 (cf. [242]). There exists a function f from the set of b-bit strings to a
set of 10b-bit strings with the following properties. For every two b-bit strings s1, s2,
the strings f(s1), f(s2) differ on at least b positions. Moreover, the value of f(·) can be
computed in poly(b) time.

For every i ∈ [10b], we now define

Si = {v ∈ V (G) : v is contained in a cluster C ∈ C with sCi = 0}.

If Si ̸= ∅, then let φi ← OPot
1 (Si). The i-th coordinate of the embedding is set equal

to φi, i.e., for every node v the i-th coordinate is set to φi(v). If Si = ∅, then the i-th
coordinate of each node is set to 0.

This finishes the description of the embedding into O(log3 n) dimensions. For each node
v ∈ V , we denote by xv the vector assigned to node v.

We finish by proving that there are constants A1, A2 such that for any two nodes u, v
and n large we have

dG(u, v)

A1 log(n)
≤ ||xu − xv||1 ≤ A2 log

3 n · dG(u, v)
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in the following two claims.

Claim 9.40.
||xu − xv||1 ≤ O(log3 n) · dG(u, v)

Proof. If Φ stands for the set of all O(log3 n) potential functions used in the definition
of the embedding, we have

||xu − xv||1 ≤ O(log3 n) ·max
φ∈Φ
|φ(u)− φ(v)| = O(log3 n) · dG(u, v)

where the second bound follows from the second property in Theorem 9.37.

Claim 9.41.
||xu − xv||1 ≥ dG(u, v) · Ω(1/ log n)

Proof. Consider any u, v ∈ V (G). Let i be such that Di < d(u, v)/q ≤ Di+1 where
q = O(log3 n) is such that Theorem 9.34 outputs clusters of diameter at most qD. Such
an i has to exist.

Consider the computed cover {CDi
1 , CDi

2 , . . . , CDi
t } for the distance scale Di. Note that

for at least 2t/3 indices j we have that BG(u,Di) ⊆ C for some C ∈ Cj . The same holds
for v. Hence, for at least t/3 indices j we have that both u and v have this property.

Fix any such partition Cj with this property. Recall that for at least b out of 10b potentials
φ we defined using the partition Cj we have that exactly one of the nodes u, v is in the
set S that defined φ via φ ← OPot

1 (S). Without loss of generality, assume u ∈ S and
v ̸∈ S. We have φ(u) = 0 by the first property in Theorem 9.37. On the other hand,
we have φ(v) ≥ dG(S, v)/2 ≥ Di/2 by the second property in Theorem 9.37 and the fact
that BG(v,Di) ∩ S = ∅. We are getting

|φ(u)− φ(v)| ≥ Di/2. (9.10)

Note that out of all potential functions we defined, (9.10) holds for at least 2t/3 · b =
Ω(log2 n) of them by above discussion. This implies

||xu − xv||1 ≥ Ω(log2 n) ·Di/2

= Ω(log2 n) · dG(u, v)
4q

= Ω(1/ log n) · dG(u, v)

as needed.
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9.6 Low Stretch Spanning Trees

This section is dedicated to prove the following theorem.

Theorem 9.42 (Main Theorem). We can compute a deterministic/randomized O(log5(n))-
stretch spanning tree of a weighted and connected graph G (with additional edge impor-
tance µ) in poly(log n) steps, with each oracle call using distance parameter at most
O(diam(G)) and precision parameter ε = Ω

(
1/log3(n)

)
.

Essentially, it states that we can deterministically compute a poly(log n)-stretch spanning
tree with poly(log n) calls to an approximate distance oracle. We start by recalling the
notion of a low-stretch spanning tree.

Definition 9.43 (Deterministic Low Stretch Spanning Tree). A deterministic α-stretch
spanning tree T of a weighted and connected graph G with additional edge-importance
µ : E(G)→ R≥0 is a spanning tree of G such that∑

e={u,v}∈E(G)

µ(e)dT (u, v) ≤ α
∑

e={u,v}∈E(G)

µ(e)ℓ(u, v).

Definition 9.44 (Randomized Low Stretch Spanning Tree). A randomized α-stretch
spanning tree of a weighted and connected graph G is a spanning tree T coming from a
distribution T such that for every edge e = {u, v} ∈ E(G) we have

ET∼T [dT (u, v)] ≤ αℓ(u, v).

Equivalently, we may require

ET∼T [dT (u, v)] ≤ αdG(u, v)

for any u, v ∈ V (G).

The section is structured into two subsections. In Section 9.6.1 we show how to construct
a so-called star decomposition that is used in Section 9.6.2 to derive Theorem 9.42.
We note that the algorithm here is essentially the same as in [123, 55]. They start
by computing a star decomposition, followed by recursively computing a low-stretch
spanning tree in each of the clusters of the star decomposition. As we make use of
oracles, it is not clear up-front that one can simultaneously recurse on vertex-disjoint
subgraphs. The emphasis on this section is to formally prove that we can nevertheless
implement the recursion efficiently. We refer the interested reader to the paper of [123]
for a more intuitive and readable presentation of the low stretch spanning tree algorithm.

9.6.1 Star Decomposition

In this section we prove Theorem 9.46. It asserts that we can build a so-called star
decomposition with poly(log n) calls to an approximate distance oracle. We start with
the definition of star decomposition.
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Definition 9.45 ((ε, r0, R)-Star Decomposition of G). Let G be a weighted graph, ε > 0,
r0 ∈ V (G) and R ≥ 0 such that maxv∈V (G) dG(r0, v) ≤ R.
The output consists of a partition V (G) = V0 ⊔ V1 ⊔ . . .⊔ Vk for some k ≥ 0 with r0 ∈ V0

together with a set of edges Ebridge = {{yj , rj} : j ∈ [k]} ⊆ E(G) such that for every
j ∈ [k], yj ∈ V0 and rj ∈ Vj. For j ∈ {0, 1, . . . , k}, we refer to rj as the root of cluster
Vj. The output has to satisfy the following conditions.

1. ∀j ∈ {0, 1, . . . , k} : maxv∈Vj dG[Vj ](rj , v) ≤
3
4R.

2. ∀v ∈ V0 : dG[V0](r0, v) ≤ (1 + ε)dG(r0, v).

3. ∀j ∈ [k], v ∈ Vj : dG[V0](r0, yj) + ℓ(yj , rj) + dG[Vj ](rj , v) ≤ (1 + ε)dG(r0, v).

Theorem 9.46 (Deterministic and Randomized Generalized Star Decomposition). Con-
sider the following problem on a weighted (and connected) graph G. The input consists
of the following.

1. A partition V (G) = V1 ⊔ V2 ⊔ . . . ⊔ Vk for some k.

2. A node ri ∈ Vi for every i ∈ [k].

3. A number R ≥ 0 such that maxi∈[k],v∈Vi
dG[Vi](ri, v) ≤ R.

4. In the deterministic version a priority µ(e) for every edge e ∈ E(G).

5. A precision parameter ε ∈ [0, 0.1].

The output consists of the following for each i ∈ [k] : a partition Vi = Vi,0⊔Vi,1⊔. . .⊔Vi,ki

together with a set of edges Ebridge
i . We denote by Ein the set consisting of those edges

in E that have both endpoints in Vi for some i ∈ [k]. Moreover, we denote by Eout the
set consisting of those edges in E that have both endpoints in Vi,j for some i ∈ [k], j ∈
{0, 1, . . . , ki}. The output satisfies

1. for every i ∈ [k], (Vi,0 ⊔ Vi,1 ⊔ . . . ⊔ Vi,ki , E
bridge
i ) is an (ε, ri, R)-star decomposition

of G[Vi],

2. in the deterministic version, µ(Ein \ Eout) = O
(
log3(n)

εR

) ∑
e∈Ein µ(e)ℓ(e),

3. and in the randomized version, for every e ∈ Ein, Pr[e /∈ Eout] = O
(
log3(n)

εR

)
ℓ(e).

There is an algorithm that solves the problem above in O(log3 n) steps, performing all
oracle calls with precision parameter ε′ = Ω

(
ε

log2(n)

)
and distance parameter no larger

than R.

Proof. We define H ⊆ G as the graph with V (H) = V (G) and E(H) = Ein.
Let F ← ODist

ε/100,R(H, {ri : i ∈ [k]}). We now invoke Theorem 9.29 on the graph H with
input ST9.29 = {v ∈ V (H) : dF (v) ≤ (2/3)R}, µT9.29(e) = µ(e) for every edge e ∈ E(H)
and DT9.29 = εR

100 and obtain as an output a set Ssup
T9.29.
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For i ∈ [k], we set Vi,0 = Vi ∩ Ssup
T9.29. We now invoke Theorem 9.35 with the following

input, where we denote with p(v) the parent of v in F .

1. H9.35 = H[V (H) \ Ssup
T9.29]

2. For every e ∈ E(H9.35), µ9.35(e) = µ(e)

3. Q9.35 = {v ∈ V (H9.35) : p(v) ∈ Ssup
T9.29} and for every q ∈ Q9.35, del(q) = dF (q) −

(2/3)R ≥ 0.

4. R9.35 = R/2

5. ε9.35 = ε/10

We have to verify that the input is valid, namely that for every v ∈ V (H9.35), dH9.35,del9.35(Q9.35, v) ≤
R9.35. Consider an arbitrary v ∈ V (H9.35) and let i such that v ∈ Vi. Then,

dH9.35,del9.35(Q9.35, v) ≤ dF (v)− (2/3)R

≤ (1 + ε/100)dG[Vi](ri, v)− (2/3)R ≤ R/2 = R9.35,

as needed.

The output is a partition C9.35 of H9.35 and a set Q′9.35 ⊆ Q9.35.

For every i ∈ [k], we now output Vi = Vi,0 ⊔ Vi,1 ⊔ . . . Vi,ki such that for every j ∈ [ki],
Vi,j is one of the clusters in C9.35. Moreover, we define

Ebridge
i = {{v, p(v)} : v ∈ Vi ∩Q′9.35}.

We start with verifying that (Vi,0⊔Vi,1⊔ . . .⊔Vi,ki , E
bridge
i ) is an (ε, ri, R)-star decompo-

sition of G[Vi]. First, we have to check that Ebridge
i = {{yij , rij} : j ∈ [ki]} for some yij

and rij with yij ∈ Vi,0 and rij ∈ Vi,j .

Note that each cluster in C9.35 (and therefore each Vi,j for j ∈ [ki]) contains exactly one
node in Q′9.35, which we denote by rij . We have rij ∈ Vij and as rij ∈ Q′9.35 ⊆ Q9.35, we
directly get that yij := p(rij) ∈ Vi ∩ Ssup

T9.29 =: Vi,0, as desired. Next, we verify that for
every j ∈ {0, 1, . . . , ki}, maxv∈Vi,j dG[Vi,j ](rij , v) ≤

3
4R where we set ri0 = ri. We have

max
v∈Vi,0

dG[Vi,0](ri, v) = max
v∈Vi∩Ssup

T9.29

dG[Vi∩Ssup
T9.29]

(ri, v)

≤ max
v∈Vi∩ST9.29

dG[Vi∩ST9.29](ri, v) + max
v∈Vi∩Ssup

T9.29

dG[Vi∩Ssup
T9.29]

(ST9.29, v)

≤ max
v∈ST9.29

dF (v) + max
v∈Ssup

T9.29

dH[Ssup
T9.29]

(ST9.29, v)

≤ (2/3)R+DT9.29
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≤ (3/4)R.

For j ∈ [ki] and v ∈ Vi,j , we have

dG[Vi,j ](rij , v) ≤ dG[Vi,j ],del9.35(rij , v)

≤ (1 + ε/10)dH9.35,del9.35(Q9.35, v) ≤ (1 + ε/10)R9.35 ≤ (3/4)R.

Next, we verify the second property. Let v ∈ Vi,0. We have shown above that

dG[Vi,0](ri0, v) ≤ (2/3)R+DT9.29 = (2/3)R+
εR

100

and therefore dG[Vi,0](ri0, v) ≤ (1 + ε/10)dG[Vi](ri0, v) as long as

dG[Vi](ri0, v) ≥
(2/3)R+ εR

100

1 + ε/10
.

Therefore, it remains to consider the case

dG[Vi](ri0, v) <
(2/3)R+ εR

100

1 + ε/10
≤ (2/3)R

1 + ε/100
,

which in particular implies

dF (v) ≤ (1 + ε/100)dG[Vi](ri0, v) ≤ (2/3)R.

Thus, the entire path from ri0 to v in F is contained in Vi,0 and therefore

dG[Vi,0](ri0, v) ≤ dF (v) ≤ (1 + ε/100)dG[Vi](ri0, v)

≤ (1 + ε)dG[Vi](ri0, v).

It remains to verify the third property. Consider an arbitrary j ∈ [ki] and v ∈ Vi,j . We
have

dG[Vi,j ](rij , v) = dG[Vi,j ],del9.35(rij , v)− del9.35(rij)

≤ (1 + ε)dH9.35,del9.35(Q9.35, v)− del9.35(rij)
≤ (1 + ε/10)(dF (v)− (2/3)R)− (dF (rij)− (2/3)R)
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≤ dF (v)− dF (rij) +
εR

10

= dF (v)− dF (yij)− ℓ(yij , rij) +
εR

10

≤ (1 + ε/100)dG[Vi](ri0, v)− dG[Vi](ri0, yij)− ℓ(yij , rij) +
εR

10

≤ dG[Vi](ri0, v)− dG[Vi](ri0, yij)− ℓ(yij , rij) +
εR

5
.

In particular,

ℓ(yij , rij) + dG[Vi,j ](rij , v) ≤ dG[Vi](ri0, v)− dG[Vi](ri0, yij) +
εR

5
.

Therefore,

dG[Vi,0](ri0, yij) + ℓ(yij , rij) + dG[Vi,j ](rij , v)

≤ (1 + ε/10)dG[Vi](ri0, yij) + dG[Vi](ri0, v)− dG[Vi](ri0, yij) +
εR

5

≤ dG[Vi](ri0, v) +
εR

2
≤ (1 + ε)dG[Vi](ri0, v)

where the last inequality follows from dG[Vi](ri0, v) ≥
dF (v)

1+ε/100 ≥
(2/3)R
1+ε/100 ≥ R/2.

Hence, (Vi,0 ⊔Vi,1 ⊔ . . .⊔Vi,ki , E
bridge
i ) is indeed an (ε, ri, R)-star decomposition of G[Vi].

Each edge in Ein \ Eout either has exactly one endpoint in Ssup
T9.29 or the two endpoints

are contained in different clusters in C9.35. Therefore, by the guarantees of Theorem 9.29
and Theorem 9.35, we get in the deterministic version that

µ(Ein \ Eout) = O

 ∑
e∈E(H)

µ(e)ℓ(e)/DT9.29


+O

(
log3(n)

εR

)
·

∑
e∈E(H9.35)

µ(e)ℓ(e)

= O

(
log2(n)

εR

) ∑
e∈Ein

µ(e)ℓ(e)

and in the randomized version for every e ∈ Ein that
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Pr[e /∈ Eout] = O

(
ℓ(e)

DT9.29

)
+O

(
log3(n)

εR
ℓ(e)

)
= O

(
log3(n)

εR

)
ℓ(e),

as desired.

9.6.2 Analysis of Low-Stretch Spanning Tree Algorithm

We are now ready to prove the main theorem of this section, Theorem 9.47. Theorem 9.42
follows as a simple corollary of it by setting (V1)T9.47 = V (G), letting (r1)T9.47 be an
arbitrary node, jT9.47 = O(log diam(G)), i.e., such that (4/3)jT9.47 = O(diam(G)), and
εT9.47 = 1

log(n) .

Theorem 9.47. Consider the following problem on a weighted (and connected) input
graph G.

1. A partition V (G) = V1 ⊔ V2 ⊔ . . . ⊔ Vk for some k.

2. A node ri ∈ Vi for every i ∈ [k].

3. A natural number j ∈ N such that maxi∈[k],v∈Vi
dG[Vi](ri, v) ≤ (4/3)j−2

4. In the deterministic version a priority µ(e) for every edge e ∈ E(G).

5. A precision parameter ε ∈ [0, 0.1].

The output is a weighted forest F ⊆ G (in the randomized version coming from a dis-
tribution F). We denote by Ein the set consisting of those edge in E that have both
endpoints in Vi for some i ∈ [k]. The output satisfies the following.

1. V1, V2, . . . , Vk are the connected components of F .

2. ∀i ∈ [k], v ∈ Vi : dF (ri, v) ≤ (1 + ε)jdG[Vi](ri, v)

3. Deterministic Version:
∑

e={u,v}∈Ein µ(e)dF (u, v) ≤ j·(1+ε)jO
(
log2(n)

ε

)∑
e={u,v}∈Ein µ(e)ℓ(u, v).

4. Randomized Version: ∀e = {u, v} ∈ Ein : EF∼F [dF (u, v)] ≤ j · (1 + ε)j ·
O
(
log2(n)

ε

)
ℓ(u, v).

We can compute the output in (j + 1) · poly(log n) steps, with each oracle call using
precision parameter ε′ = Ω

(
ε

log2(n)

)
.
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Proof. We prove the statement by induction on j. For j = 1, the third property of the
input together with all edge weights being non-negative integer implies that the diameter
of G[Vi] is 0 for each i ∈ [k]. Hence, it is easy to verify that the forest F one obtains by
calling ODist

ε,(4/3)j−2({r1, r2, . . . , rk}) satisfies all the conditions.

Now, consider an arbitrary j > 1 and assume that the statement holds for j − 1.

We first invoke Theorem 9.46 with the same input that we received (Setting R =
(4/3)j−2).

As an output, we obtain for every i ∈ [k] a partition Vi,0⊔Vi,1⊔. . .⊔Vi,ki and a set of edges
Ebridge

i such that (Vi,0 ⊔ Vi,1 ⊔ . . . ⊔ Vi,ki , E
bridge
i ) is a (G[Vi], ε, ri, R)-star decomposition

of G[Vi]. For j ∈ {0, 1, . . . , ki}, we denote with rij the root of the cluster Vi,j .

Now, we perform a recursive call with input partition V (G) = (V1,0 ⊔V1,1 ⊔ . . .⊔V1,k1)⊔
. . .⊔ (Vk,0 ⊔ Vk,1 ⊔ . . .⊔ V1,kk), nodes rij ∈ Vi,j for every i ∈ [k], j ∈ {0, 1, . . . , ki}, setting
jrec = j − 1 and with the same priorities and precision parameter ε.

First, we have to verify that the input to the recursive call is valid. This requires us
to show that maxi∈[k],j∈[ki],v∈Vi,j

dG[Vi,j ] (rij , v) ≤ (4/3)jrec−2 = (4/3)j−3. Consider an
arbitrary i ∈ [k]. As (Vi,0⊔Vi,1⊔. . .⊔Vi,ki , E

bridge
i ) is a (G[Vi], ε, ri, R)-star decomposition

of G[Vi], the first guarantee of Theorem 9.45 states that for every j ∈ {0, 1, . . . , ki},

max
v∈Vi,j

dG[Vi,j ](rij , v) ≤
3

4
(4/3)j−2 = (4/3)j−3,

as desired.

Now, let Frec denote the forest obtained from the recursive call. We now return the forest
F that one obtains from Frec by adding all the edges in

⋃
i∈[k]E

bridge
i to it. We now have

to verify that F satisfies all the conditions.

We start by verifying the second condition. Consider an arbitrary i ∈ [k] and v ∈ Vi. We
have to show that dF (ri, v) ≤ (1+ ε)jdG[Vi](ri, v). First, consider the cases that v ∈ Vi,0.
As ri = ri0 ∈ Vi,0, it follows from the guarantee of the recursive call that

dF (ri, v) ≤ dFrec(ri0, v) ≤ (1 + ε)jrecdG[Vi,0](ri0, v)

≤ (1 + ε)(1 + ε)jrecdG[Vi](ri0, v) = (1 + ε)jdG[Vi](ri, v),

where the last inequality follows from the second guarantee of Theorem 9.45. It remains
to consider the case that v ∈ Vi,j for some j ∈ [ki]. According to the guarantees of the
recursive call and of Theorem 9.45, there exists an edge {yij , rij} ∈ Ebridge

i with yij ∈ Vi,0

and rij being the root of Vi,j such that

dF (ri, v) ≤ dFrec(ri0, yi0) + ℓ(yij , rij) + dFrec(rij , v)
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≤ (1 + ε)jrecdG[Vi,0](ri0, yij)

+ ℓ(yij , rij) + (1 + ε)jrecdG[Vi,j ](rij , v))

≤ (1 + ε)jrec
(
dG[Vi,0](ri0, yij) + ℓ(yij , rij) + dG[Vi,j ](rij , v)

)
≤ (1 + ε)jrec

(
(1 + ε)dG[Vi](ri0, v)

)
= (1 + ε)jdG[Vi](ri, v),

which finishes the proof of second property.

Next, we verify that F is indeed a forest and that V1, V2, . . . , Vk are the connected com-
ponents of F . Note that the second property ensures that any two nodes in Vi are in the
same connected component of F for every i ∈ [k]. Hence, to verify that F is a forest and
V1, V2, . . . , Vk are the connected components of F , it suffices to show that F has at most
|V (G)| − k edges.

We have

|E(F )| ≤ |E(Frec)|+
k∑

i=1

|Ebridge
i |

≤ |V (G)| −
k∑

i=1

(ki + 1) +
k∑

i=1

ki = |V (G)| − k,

as desired.

We now verify the third property, which only applies to the deterministic version. we
denote by Eout the set consisting of those edge in E that have both endpoints in Vi,j for
some i ∈ [k], j ∈ {0, 1, . . . , ki}. We have

∑
e={u,v}∈Ein

µ(e)dF (u, v) =
∑

e={u,v}∈Ein\Eout

µ(e)dF (u, v)

+
∑

e={u,v}∈Eout

µ(e)dF (u, v)

≤ 2(1 + ε)j(4/3)j−2
∑

e={u,v}∈Ein\Eout

µ(e)

+
∑

e={u,v}∈Eout

µ(e)dFrec(u, v)

≤ 2(1 + ε)j(4/3)j−2O

(
log2(n)

ε(4/3)j−2

) ∑
e={u,v}∈Ein

µ(e)ℓ(u, v)
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+
∑

e={u,v}∈Eout

µ(e)dFrec(u, v)

≤ O

(
log2(n)

ε

)
(1 + ε)j

∑
e={u,v}∈Ein

µ(e)ℓ(u, v)

+ jrec(1 + ε)jrecO

(
log2(n)

ε

) ∑
e={u,v}∈Eout

µ(e)ℓ(u, v)

≤ j(1 + ε)jO

(
log2(n)

ε

) ∑
e={u,v}∈Ein

µ(e)ℓ(u, v),

as needed.

Finally we verify the fourth property, which only applies to the randomized version. Let
e = {u, v} ∈ Ein be an arbitrary edge.

EF∼F [dF (u, v)]

≤ EF∼F [dF (u, v)|e /∈ Eout]Pr[e /∈ Eout]

+ EF∼F [dF (u, v)|e ∈ Eout]

≤ 2(1 + ε)j(4/3)j−2O

(
log2(n)

εR

)
ℓ(u, v)

+ jrec(1 + ε)jrec
(
log2(n)

εR

)
ℓ(u, v)

≤ j · (1 + ε)j ·O
(
log2(n)

ε

)
ℓ(u, v),

as desired.

It remains to analyze the running time. Running the algorithm of Theorem 9.46 takes
poly(log n) steps and all oracle calls use precision parameter ε′ = Ω

(
ε

log2(n)

)
. Perform-

ing the recursive call takes (jrec + 1) poly(log n) steps and all oracle calls use precision
parameter ε′ = Ω

(
ε

log2(n)

)
. Hence, the algorithm overall performs (j + 1) poly(log n)

steps and uses precision parameter ε′ = Ω
(

ε
log2(n)

)
, as desired.



CHAPTER 10

Local Problems on Trees: Distributed Algorithms and Descriptive
Combinatorics

10.1 Introduction

This chapter studies local problems on regular trees from three different perspectives.

First, we consider the perspective of distributed algorithms. In distributed computing,
the studied setup is a network of computers where each computer can only communicate
with its neighbors. Roughly speaking, the question of interest in this area is which
problems can be solved with only a few rounds of communication in the underlying
network.

Second, we consider the perspective of (finitary) factors of iid processes. In probability,
random processes model systems that appear to vary in a random manner. These include
Bernoulli processes, Random walks etc. A particular, well-studied, example is the Ising
model.

Third, we investigate the perspective of descriptive combinatorics. The goal of this area
is to understand which constructions on infinite graphs can be performed without using
the so-called axiom of choice.

Although many of the questions of interest asked in these three areas are quite similar
to each other, no systematic connections were known until an insightful paper of Bern-
shteyn [60] who showed that results from distributed computing can automatically imply
results in descriptive combinatorics. In this work, we show that the connections between
the three areas run much deeper than previously known, both in terms of techniques
and in terms of complexity classes. In fact, our work suggests that it is quite useful
to consider all three perspectives as part of a common theory, and we will attempt to
present our results accordingly.

In this chapter, we focus on the case where the graph under consideration is a regular tree.
Despite its simplistic appearance, regular trees play an important role in each of the three

203
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areas, as we will substantiate at the end of this section. To already provide an example,
in the area of distributed algorithms, almost all locality lower bounds are achieved on
regular trees. Moreover, when regarding lower bounds, the property that they already
apply on regular trees actually strengthens the result—a fact that is quite relevant for our
work as our main contribution regarding the transfer of techniques between the areas is a
new lower bound technique in the area of distributed computation that is an adaptation
and generalization of a technique from descriptive combinatorics.

In the remainder of this section, we give a high-level overview of the three areas that
we study. The purpose of these overviews is to provide the reader with a comprehensive
picture of the studied settings that can also serve as a starting point for delving deeper
into selected topics in those areas—in order to follow our chapter, it is not necessary to
obtain a detailed understanding of the results and connections presented in the overviews.
Necessary technical details will be provided in Section 10.3. Moreover, in Section 10.2,
we present our contributions in detail.

(Finitary) Factors of iid Processes and Uniform Algorithms:

In recent years, factors of iid (fiid) processes on trees attracted a lot of attention in
combinatorics, probability, ergodic theory and statistical physics [10, 58, 14, 15, 17, 16,
18, 19, 71, 72, 100, 110, 141, 143, 191, 199, 206, 211, 210, 209, 213, 228, 267, 268, 240,
253, 280, 292, 293]. Intuitively, factors of iid processes are randomized algorithms on,
e.g., infinite ∆-regular trees, where each vertex outputs a solution to a problem after
it explores random strings on vertices of the whole tree. As an example, consider the
perfect matching problem. An easy parity argument shows that perfect matching cannot
be solved by any local randomized algorithm on finite trees. However, if we allow a
small fraction of vertices not to be matched, then, by a result of Nguyen and Onak
[259] (see also [121]), there is a constant-round randomized algorithm that produces
such a matching on high-girth graphs (where the constant depends on the fraction of
unmatched vertices that we allow). This result can also be deduced from a result of
Lyons and Nazarov [241], who showed that perfect matching can be described as a factor
of iid process on an infinite ∆-regular tree. The high-level idea behind this connection is
that high-girth graphs approximate the infinite ∆-regular tree and constant-round local
algorithms approximate factors of iid processes. This correspondence is formalized in the
notion of Benjamini-Schramm or local-global convergence [59, 202]. We note that getting
only “approximate” solutions, that is, solutions where a small fraction of vertices does
not have to satisfy the constraints of a given problem, is intrinsic in this correspondence.
Regardless, there are many techniques, such as entropy inequality [17] or correlation
decay [16], and particular results such as the aforementioned perfect matching problem
[241] that provide lower and upper bounds, respectively, in our setting as well. We refer
the reader to [240, 18] for a comprehensive summary of the field.

In this chapter, we mostly consider a stronger condition than fiid, namely so-called
finitary factors of iid (ffiid) processes that are studied in the same context as fiid [207,
212, 286]. Perhaps surprisingly, the notion of ffiid is identical to the notion of so-called
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uniform distributed randomized algorithms [223, 185] that we now describe. We define
an uniform local algorithm as a randomized local algorithm that does not know the size
of the graph n – this enables us to run such an algorithm on infinite graphs, where there
is no n. More precisely, we require that each vertex eventually outputs a solution that
is compatible with the output in its neighborhood, but the time until the vertex finishes
is a potentially unbounded random variable. As in the case of classical randomized
algorithms, we can now measure the uniform complexity of an uniform local algorithm
(known as the tail decay of ffiid [212]). The uniform complexity of an algorithm is defined
as the function t(ε) such that the probability that the algorithm run on a specific vertex
needs to see outside its t(ε)-hop neighborhood is at most ε. As in the case of classical
local complexity, there is a whole hierarchy of possible uniform complexities.

We remark that uniform distributed local algorithms can be regarded as Las Vegas algo-
rithms. The output will always be correct; there is however no fixed guarantee at what
point all vertices have computed their final output. On the other hand, a randomized
distributed local algorithm can be viewed as a Monte Carlo algorithm as it needs to
produce an output after a fixed number of rounds, though the produced output might
be incorrect.

Descriptive Combinatorics:

The Banach-Tarski paradox states that a three-dimensional ball of unit volume can be
decomposed into finitely many pieces that can be moved by isometries (distance preserv-
ing transformations such as rotations and translations) to form two three-dimensional
balls each of them with unit volume(!). The graph theoretic problem lurking behind this
paradox is the following: fix finitely many isometries of R3 and then consider a graph
where x and y are connected if there is an isometry that sends x to y. Then our task
becomes to find a perfect matching in the appropriate subgraph of this graph – namely,
the bipartite subgraph where one partition contains points of the first ball and the other
contains points of the other two balls. Banach and Tarski have shown that, with a
suitably chosen set of isometries, the axiom of choice implies the existence of such a
matching. In contrast, since isometries preserve the Lebesgue measure, the pieces in the
decomposition cannot be Lebesgue measurable. Surprisingly, Dougherty and Foreman
[119] proved that the pieces in the Banach-Tarski paradox can have the Baire property.
The Baire property is a topological analogue of being Lebesgue measurable; a subset of
R3 is said to have the Baire property if its difference from some open set is topologically
negligible.

Recently, results similar to the Banach-Tarski paradox that lie on the border of com-
binatorics, logic, group theory, and ergodic theory led to an emergence of a new field
often called descriptive or measurable combinatorics. The field focuses on the con-
nection between the discrete and continuous and is largely concerned with the inves-
tigation of graph-theoretic concepts. The usual setup in descriptive combinatorics is
that we have a graph with uncountably many connected components, each being a
countable graph of bounded degree. For example, in case of the Banach-Tarski para-
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dox, the vertices of the underlying graph are the points of the three balls, edges cor-
respond to isometries, and the degree of each vertex is bounded by the number of
chosen isometries. Some of the most beautiful results related to the field include
[230, 245, 109, 119, 243, 140, 220, 244, 106, 111, 60], see [219, 265] for recent surveys.

Importantly, in many of these results, including the Banach-Tarski paradox, graphs where
each component is an infinite ∆-regular tree appear naturally. Oftentimes, questions
considered in descriptive combinatorics lead to constructing a solution to a local problem
in the underlying uncountable graph (in the case of Banach-Tarski, the local problem is
perfect matching). The construction needs to be such that the solution of the problem
has some additional regularity properties. For example in the case of Banach-Tarski, a
solution is possible when the regularity condition is the Baire property, but not if it is
Lebesgue measurability. In fact, together with Borel measurability these are the most
prominent regularity conditions studied in descriptive combinatorics. The corresponding
complexity classes of local problems that always admit a solution with the respective
regularity property are BOREL,MEASURE,BAIRE. In this chapter, we moreover consider
the setting where each connected component of the underlying graph is a ∆-regular tree.

The connection between distributed computing and descriptive combinatorics arises from
the fact that in descriptive combinatorics we care about constructions that do not use the
axiom of choice. In the distributed language, the axiom of choice corresponds to leader
election, that is, the constructions in descriptive combinatorics do not allow picking
exactly one point in every component. To get some intuition about the power of the
complexity class BOREL, we note that Borel constructions allow us to alternate countably
many times the following two operations. First, any local algorithm with constant local
complexity can be run. Second, we have an oracle that provides a maximal independent
set (MIS) on any graph that can be constructed locally from the information computed so
far [220]. Note that from the speedup result of [94] we get that every local problem with
local complexity O(log∗ n) can be solved by constant local constructions and one call to
such an MIS oracle. This implies the inclusion LOCAL(O(log∗ n)) ⊆ BOREL proven in
the insightful paper of Bernshteyn [60]. The relationship of the class MEASURE (and
of the class fiid from the discussion of factors) to the class BOREL is analogous to the
relationship of randomized distributed algorithms to deterministic distributed algorithms.

Local Problems on Regular Trees:

The motivation for studying regular trees in this work stems from different sources:
(a) infinite ∆-regular trees are studied in the area of ergodic theory [71, 72], random
processes [17, 16, 241] and descriptive combinatorics [244, 107], (b) many lower bounds
in distributed computing are proven in regular trees [25, 22, 73, 75], and (c) connecting
and comparing the techniques of the three areas in this simple setting reveals already
deep connections, see Section 10.2.
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10.2 Our Contributions

We believe that our main contribution is presenting all three perspectives as part of a
common theory. Our technical contribution is split into three main parts.

10.2.1 Generalization of Marks’ Technique

In Section 10.4 we extend the Borel determinacy technique of Marks [244], which was used
to prove the nonexistence of Borel ∆-colorings and perfect matchings, to a broader class
of problems, and adapt the extended technique to the distributed setting, thereby ob-
taining a simple method for proving distributed lower bounds. This method is the first
lower bound technique for distributed computing using ideas coming from descriptive
combinatorics (see [64] for a distributed computing upper bound motivated by descrip-
tive combinatorics). Moreover, we show how to use the developed techniques to obtain
both BOREL and LOCAL lower bounds for local problems from a natural class, called
homomorphism problems. Our key technical ingredient for obtaining the mentioned tech-
niques and results is a novel technique based on the notion of an ID graph. We note that
a very similar concept to the ID graph was independently discovered by [279].

Marks’ technique: In the following we give an introduction to Marks’ technique by
going through a variant of his proof [244] that shows that ∆-coloring has deterministic
local complexity Ω(log n). The proof already works in the case where the considered
regular tree comes with an input ∆-edge coloring. In this case, the output color of a
given vertex u can be interpreted as that u “grabs” the incident edge of that color. The
problem is hence equivalent to the edge grabbing problem where every vertex is required
to grab an incident edge such that no two vertices grab the same edge.

We first show the lower bound in the case that vertices do not have unique identifiers
but instead are properly colored with L > ∆ colors. Suppose there is an algorithm A
solving the edge grabbing problem with local complexity t(n) = o(log n), and consider
a tree rooted at vertex u of depth t(n); such a tree has less than n vertices, for large
enough n. Assume that u has input color σ ∈ [L], and consider, for some fixed edge
color α, the edge e that is incident to u and has color α. Two players, Alice and Bob,
are playing the following game. In the i-th round, Alice colors the vertices at distance
i from u in the subtree reachable via edge e with colors from [L]. Then, Bob colors all
other vertices at distance i from u with colors from [L]. Consider the output of u when
executing A on the obtained colored tree. Bob wins the game if u grabs the edge e, and
Alice wins otherwise.

Note that either Alice or Bob has a winning strategy. Given the color σ of u, if, for each
edge color α, Alice has a winning strategy in the game corresponding to the pair (σ, α),
then we can create ∆ copies of Alice and let them play their strategy on each subtree
of u, telling them that the colors chosen by the other Alices are what Bob played. The
result is a coloring of the input tree such that u, by definition, does not pick any edge,
contradicting the fact that A provides a valid solution! So for every σ there is at least
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one α such that Bob has a winning strategy for the game corresponding to (σ, α). By the
pigeonhole principle, there are two colors σ1, σ2, such that Bob has a winning strategy for
both pairs (σ1, α) and (σ2, α). But now we can imagine a tree rooted in an edge between
vertices u1, u2 that are colored with colors σ1, σ2. We can now take two copies of Bob,
one playing at u1 and the other playing at u2 and let them battle it out, telling each
copy that the other color from {σ1, σ2} and whatever the other copy plays are the moves
of Alice. The resulting coloring has the property that both u1 and u2, when executing A
on the obtained colored tree, grab the edge between them, a contradiction that finishes
the proof!

The ID graph: The downside of the proof is that it does not work in the model with
unique identifiers (where the players’ moves consist in assigning identifiers instead of
colors), since gluing copies of the same player could result in an identifier assignment
where the identifiers are not unique. One possible remedy is to conduct the whole proof
in the context of Borel graphs as was done by Marks. This proves an even stronger
statement, namely that ∆-coloring is not in the class BOREL, but requires additional ad-
hoc tricks and a pretty heavy set theoretic tool—Martin’s celebrated Borel determinacy
theorem [246] stating that even for infinite two-player games one of the players has to
have a winning strategy if the payoff set is Borel. The ID graph enables us to adapt the
proof (and its generalization that we develop in Section 10.4) to the distributed setting,
where the fact that one of the players has a winning strategy is obvious. Moreover, we
use an infinite version of the ID graph to generalize Marks’ technique also in the Borel
setting.

Here is how it works: The ID graph is a specific graph whose vertices are the possible
unique input identifiers (for input graphs of size n), that is, numbers from [nO(1)]. Its
edges are colored with colors from [∆] and its girth is Ω(log n). When we define the game
between Alice and Bob, we require them to label vertices with identifiers in such a way
that whenever a new vertex is labeled with identifier i, and its already labeled neighbor
has identifier j, then ij is an edge in the ID graph. Moreover, the color of edge ij in the
ID graph is required to be the same as the color of the edge between the vertices labeled
i and j in the tree where the game is played. It is straightforward to check that these
conditions enforce that even if we let several copies of the same player play, the resulting
tree is labeled with unique identifiers. Hence, the same argument as above now finally
proves that the deterministic local complexity of ∆-coloring is Ω(log n).

We note that our ID graph technique is of independent interest and may have applications
in many different contexts. To give an example from distributed computing, consider the
proof of the deterministic Ω(log n)-round lower bound for ∆-coloring developed by the
distributed community [73, 94], which is based on the celebrated round elimination tech-
nique. Even though the result is deterministic, the proof is quite technical due to the
fact that it relies on examining randomized algorithms, for reasons similar to the reasons
why Marks’ proof does not apply directly to the setting with unique identifiers. Fortu-
nately, it can be again streamlined with the use of the ID graph technique. Moreover, in
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a follow-up work, the ID graph technique has already led to a new lower bound for the
Lovász local lemma [81] in the area of Local Computation Algorithms (which is part of
the realm of sequential computation), thereby giving further evidence for the versatility
of the technique.

Marks vs. Round Elimination: It is quite insightful to compare Marks’ technique
(and our generalization of it) with the powerful round elimination technique [75], which
has been responsible for all locality lower bounds of the last years [73, 22, 75]. While, on
the surface, Marks’ approach developed for the Borel world may seem quite different from
the round elimination technique, there are actually striking similarities between the two
methods. On a high level, in the round elimination technique, the following argument is
used to prove lower bounds in the LOCAL model: If a T -round algorithm exists for a
problem Π0 of interest, then there exists a (T − 1)-round algorithm for some problem Π1

that can be obtained from Π0 in a mechanical manner. By applying this step iteratively,
we obtain a problem Πt that can be solved in 0 rounds; by showing that there is no
0-algorithm for Πt (which is easy to do if Πt is known), a (T +1)-round lower bound for
Π0 is obtained.

The interesting part regarding the relation to Marks’ technique is how the (T−i−1)-round
algorithms A′ are obtained from the (T − i)-round algorithms A in the round elimination
framework: in order to execute A′, each vertex v, being aware of its (T − i − 1)-hop
neighborhood, essentially asks whether, for all possible extensions of its view by one hop
along a chosen incident edge, there exists some extension of its view by one hop along all
other incident edges such that A, executed on the obtained (T − i)-hop neighborhood,
returns a certain output at v, and then bases its output on the obtained answer. It turns
out that the vertex sets corresponding to these two extensions correspond precisely to
two moves of the two players in the game(s) played in Marks’ approach: more precisely,
in round T − i of a game corresponding to the considered vertex v and the chosen
incident edge, the move of Alice consists in labeling the vertices corresponding to the
first extension, and the move of Bob consists in labeling the vertices corresponding to
the second extension.

However, despite the similarities, the two techniques (at least in their current forms) have
their own strengths and weaknesses and are interestingly different in that there are local
problems that we know how to obtain good lower bounds for with one technique but not
the other, and vice versa. Finding provable connections between the two techniques is
an exciting research direction that we expect to lead to a better understanding of the
possibilities and limitations of both techniques.

In Section 10.4 we use our generalized and adapted version of Marks’ technique to prove
new lower bounds for so-called homomorphism problems. Homomorphism problems are
a class of local problems that generalizes coloring problems—each vertex is to be colored
with some color and there are constraints on which colors are allowed to be adjacent. The
constraints can be viewed as a graph—in the case of coloring this graph is a clique. In
general, whenever the underlying graph of the homomorphism problem is ∆-colorable, its
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deterministic local complexity is Ω(log n), because solving the problem would imply that
we can solve ∆-coloring too (in the same runtime). It seems plausible that homomorphism
problems of this kind are the only hard, i.e., Ω(log n), homomorphism problems. However,
our generalization of Marks’ technique asserts that this is not true.

Theorem 10.1. There are homomorphism problems whose deterministic local complexity
on trees is Ω(log n) such that the chromatic number of the underlying graph is 2∆− 2.

It is not known how to prove the same lower bounds using round elimination1; in fact, as
far as we know, these problems are the only known examples of problems on ∆-regular
trees for which a lower bound is known to hold but currently not achievable by round
elimination. Proving the same lower bounds via round elimination is an exciting open
problem.

10.2.2 Separation of Various Complexity Classes

Uniform Complexity Landscape: We investigate the connection between randomized
and uniform distributed local algorithms, where uniform algorithms are equivalent to the
studied notion of finitary factors of iid. First, it is simple to observe that local problems
with uniform complexity t(ε) have randomized complexity t(1/nO(1)) – by definition,
every vertex knows its local output after that many rounds with probability 1− 1/nO(1).
The result thus follows by a union bound over the n vertices of the input graph.

On the other hand, we observe that on ∆-regular trees the implication also goes in
the opposite direction in the following sense. Every problem that has a randomized
complexity of t(n) = o(log n) has an uniform complexity of O(t(1/ε)).

One could naively assume that this equivalence also holds for higher complexities, but
this is not the case. Consider for example the 3-coloring problem. It is well-known in the
distributed community that 3-coloring a tree can be solved deterministically in O(log n)
rounds using the rake-and-compress decomposition [88, 254]. On the other hand, there
is no uniform algorithm for 3-coloring a tree. If there were such an uniform algorithm,
we could run it on any graph with large enough girth and color 99% of its vertices with
three colors. This in turn would imply that the high-girth graph has an independent set
of size at least 0.99 ·n/3. This is a contradiction with the fact that there exists high-girth
graphs with a much smaller independence number [70].

Interestingly, the characterization of Bernshteyn [62] implies that any uniform distributed
algorithm can be “sped up” to a deterministic local O(log n) complexity, as we prove
in Theorem 10.56.

We show that there are local problems that can be solved by an uniform algorithm but
only with a complexity of Ω(log 1/ε). Namely, the problem of constructing a 2-hop

1Indeed, the descriptions of the problems have comparably large numbers of labels and do not behave
like so-called “fixed points” (i.e., nicely) under round elimination, which suggests that it is hard to find
a round elimination proof with the currently known approaches.
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perfect matching on infinite ∆-regular trees for ∆ ≥ 3 has an uniform local complexity
between Ω(log 1/ε) and O(poly log 1/ε). Formally, this proves the following theorem.

Theorem 10.2. On bounded degree trees we have the following: OLOCAL(O(log log 1/ε)) ⊊
OLOCAL(O(poly log 1/ε)).

The uniform algorithm for this problem is based on a so-called one-ended forest decom-
position introduced in [107] in the descriptive combinatorics context. In a one-ended
forest decomposition, each vertex selects exactly one of its neighbors as its parent by
orienting the corresponding edge outwards. This defines a decomposition of the vertices
into infinite trees. We refer to such a decomposition as a one-ended forest decomposition
if the subtree rooted at each vertex only contains finitely many vertices. Having com-
puted such a decomposition, 2-hop perfect matching can be solved inductively starting
from the leaf vertices of each tree.

We leave the understanding of the uniform complexity landscape in the regime Ω(log 1/ε)
as an exciting open problem. In particular, does there exist a function g(ε) such that each
local problem that can be solved by an uniform algorithm has an uniform complexity of
O(g(ε))?

Relationship of Distributed Classes with Descriptive Combinatorics:

Bernshteyn recently proved that LOCAL(log∗ n) ⊆ BOREL [60]. That is, each local prob-
lem with a deterministic LOCAL complexity of O(log∗ n) also admits a Borel-measurable
solution. A natural question to ask is whether the converse also holds. Indeed, it is
known that LOCAL(log∗ n) = BOREL on paths with no additional input [184]. We show
that on regular trees the situation is different. On one hand, a characterization of Bern-
shteyn [62] implies that BOREL ⊆ BAIRE ⊆ LOCAL(O(log n)). On the other hand, we
show that this result cannot be strengthened by proving the following result.

Theorem 10.3. BOREL ̸⊆ RLOCAL(o(log n)).

That is, there exists a local problem that admits a Borel-measurable solution but cannot
be solved with a (randomized) LOCAL algorithm running in a sublogarithmic number of
rounds.

Let us sketch a weaker separation, namely that BOREL\LOCAL(O(log∗ n)) ̸= ∅. Consider
a version of ∆-coloring where a subset of vertices can be left uncolored. However, the sub-
graph induced by the uncolored vertices needs to be a collection of doubly-infinite paths
(in finite trees, this means each path needs to end in a leaf vertex). The nonexistence
of a fast distributed algorithm for this problem essentially follows from the celebrated
Ω(log n) deterministic lower bound for ∆-coloring of [73]. On the other hand, the prob-
lem allows a Borel solution. First, sequentially compute ∆ − 2 maximal independent
sets, each time coloring all vertices in the MIS with the same color, followed by removing
all the colored vertices from the graph. In that way, a total of ∆ − 2 colors are used.
Moreover, each uncolored vertex has at most 2 uncolored neighbors. This implies that
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the set of uncolored vertices forms a disjoint union of finite paths, one ended infinite
paths and doubly infinite paths. The first two classes can be colored inductively with
two additional colors, starting at one endpoint of each path in a Borel way (namely it
can be done by making use of the countably many MISes in larger and larger powers
of the input graph). Hence, in the end only doubly infinite paths are left uncolored, as
desired.

To show the stronger separation between the classes BOREL and RLOCAL(o(log n)) we
use a variation of the 2-hop perfect matching problem. In this variation, some of the
vertices can be left unmatched, but similar as in the variant of the ∆-coloring problem
described above, the graph induced by all the unmatched vertices needs to satisfy some
additional constraints.

We conclude the paragraph by noting that the separation between the classes BOREL and
LOCAL(O(log∗ n)) is not as simple as it may look in the following sense. This is because
problems typically studied in the LOCAL model with a LOCAL complexity of ω(log∗ n)
like ∆-coloring and perfect matching also do not admit a Borel-measurable solution due
to the technique of Marks [244] that we discussed in Section 10.2.1.

10.2.3 Local Complexity and Baire solutions

We already discussed that one of complexity classes studied in descriptive combinatorics
is the class BAIRE. Recently, Bernshteyn proved [62] that all local problems that are
in the complexity class BAIRE,MEASURE or fiid have to satisfy a simple combinatorial
condition which we call being ℓ-full. On the other hand, all ℓ-full problems allow a BAIRE
solution [62]. This implies a complete combinatorial characterization of the class BAIRE.
We defer the formal definition of ℓ-fullness to Section 10.6 as it requires a formal definition
of a local problem. Informally speaking, in the context of vertex labeling problems, a
problem is ℓ-full if we can choose a subset S of the labels with the following property.
Whenever we label two endpoints of a path of at least ℓ vertices with two labels from S,
we can extend the labeling with labels from S to the whole path such that the overall
labeling is valid. For example, proper 3-coloring is 3-full with S = {1, 2, 3} because for
any path of three vertices such that its both endpoints are colored arbitrarily, we can
color the middle vertex so that the overall coloring is proper. On the other hand, proper
2-coloring is not ℓ-full for any ℓ.

We complement this result as follows. First, we prove that any ℓ-full problem has local
complexity O(log n), thus proving that all complexity classes considered in the areas
of factors of iids and descriptive combinatorics are contained in LOCAL(O(log n)). In
particular, this implies that the existence of any uniform algorithm implies a local dis-
tributed algorithm for the same problem of local complexity O(log n). We obtain this
result via the well-known rake-and-compress decomposition [254].

On the other hand, we prove that any problem in the class LOCAL(O(log n)) satisfies the
ℓ-full condition. The proof combines a machinery developed by Chang and Pettie [88]
with additional nontrivial ideas. In this proof we construct recursively a sequence of sets
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of rooted, layered, and partially labeled trees, where the partial labeling is computed by
simulating any given O(log n)-round distributed algorithm, and then the set S meeting
the ℓ-full condition is constructed by considering all possible extensions of the partial
labeling to complete correct labeling of these trees.

This result implies the following equality:

Theorem 10.4. LOCAL(O(log n)) = BAIRE.

This equality is surprising in that the definitions of the two classes do not seem to
have much in common on the first glance! Moreover, the proof of the equality relies on
nontrivial results in both distributed algorithms (the technique of Chang and Pettie [88])
and descriptive combinatorics (the fact that a hierarchical decomposition, so-called toast,
can be constructed in BAIRE, [105], see Proposition 10.54).

The combinatorial characterization of the local complexity class LOCAL(O(log n)) on
∆-regular trees is interesting from the perspective of distributed computing alone. This
result can be seen as a part of a large research program aiming at classification of possible
local complexities on various graph classes [27, 73, 94, 88, 85, 21, 31, 25, 20]. That is, we
wish not only to understand possible complexity classes, but also to find combinatorial
characterizations of problems in those classes that allow us to efficiently decide for a given
problem which class it belongs to. Unfortunately, even for grids with input labels, it is
undecidable whether a given local problem can be solved in O(1) rounds [258, 77], since
local problems on grids can be used to simulate a Turing machine. This undecidability
result does not apply to paths and trees, hence for these graph classes it is still hopeful
that we can find simple and useful characterizations for different classes of distributed
problems.

In particular, on paths it is decidable what classes a given local problem belongs to,
for all classes coming from the three areas considered here, and this holds even if we
allow inputs [21, 184]. The situation becomes much more complicated when we consider
trees. Recently, classification results on trees were obtained for so-called binary-labeling
problems [25]. More recently, a complete classification was obtained in the case of rooted
regular trees [31]. Although their algorithm takes exponential time in the worst case,
the authors provided a practical implementation fast enough to classify many typical
problems of interest.

Much less is known for general, unoriented trees, with an arbitrary number of labels.
In general, deciding the optimal distributed complexity for a local problem on bounded-
degree trees is EXPTIME-hard [85], such a hardness result does not rule out the possibility
for having a simple and polynomial-time characterization for the case of regular trees,
where there is no input and the constraints are placed only on degree-∆ vertices. Indeed,
it was stated in [31] as an open question to find such a characterization. Our char-
acterization of LOCAL(O(log n)) = BAIRE by ℓ-full problems makes progress in better
understanding the distributed complexity classes on trees and towards answering this
open question.
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Roadmap: In Section 10.3, we define formally all the three setups we consider in
the chapter. In Section 10.4 we discuss the lower bound technique of Marks and the
new concept of an ID graph. Next, in Section 10.5 we prove some basic results about
the uniform complexity classes and give examples of problems separating some classes.
Finally, in Section 10.6 we prove that a problem admits a Baire measurable solution if
and only if it admits a distributed algorithm of local complexity O(log n).

The individual sections can be read largely independently of each other. Moreover, most
of our results that are specific to only one of the three areas can be understood without
reading the parts of the chapter that concern the other areas. We encourage the reader
interested mainly in one of the areas to skip the respective parts.

10.3 Preliminaries

In this section, we explain the setup we work with, the main definitions and results. The
class of graphs that we consider in this work are either infinite ∆-regular trees, or their
finite analogue that we define formally in Section 10.3.1.

We sometimes explicitly assume ∆ > 2. The case ∆ = 2, that is, studying paths, behaves
differently and seems much easier to understand [184]. Unless stated otherwise, we do
not consider any additional structure on the graphs, but sometimes it is natural to work
with trees with an input ∆-edge-coloring.

10.3.1 Local Problems on regular trees

Definition 10.5 (∆-regular trees). A tree T , finite or infinite is a ∆-regular tree if
either it is infinite and T = T∆, where T∆ is the unique infinite ∆-regular tree, that is
each vertex has exactly ∆-many neighbors, or it is finite of maximum degree ∆ and each
vertex v ∈ T of degree d ≤ ∆ is contained in (∆− d)-many virtual half-edges.

Formally, we can view T as a triplet (V (T ), E(T ), H(T )), where (V (T ), E(T )) is a tree
of maximum degree ∆ and H(T ) consists of real half-edges, that is pairs (v, e), where
v ∈ V (T ), e ∈ E(T ) and e is incident to v, together with some virtual edges, in the
case when T is finite, such that each vertex v ∈ V (T ) is contained in exactly ∆-many
half-edges (real or virtual).

As we are considering trees in this work, each LCL problem can be described in a specific
form that provides two lists, one describing all label combinations that are allowed on the
half-edges incident to a vertex, and the other describing all label combinations that are
allowed on the two half-edges belonging to an edge.2 We arrive at the following definition

2Every problem that can be described in the form given by Naor and Stockmeyer [258] can be
equivalently described as an LCL problem in this list form, by simply requiring each output label on
some half-edge h to encode all output labels in a suitably large (constant) neighborhood of h in the form
given in [258].
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for LCLs on ∆-regular trees.3

Definition 10.6 (LCLs on ∆-regular trees). A locally checkable labeling problem, or
LCL for short, is a triple Π = (Σ,V, E), where Σ is a finite set of labels, V is a subset
of unordered cardinality-∆ multisets4 of labels from Σ , and E is a subset of unordered
cardinality-2 multisets of labels from Σ.

We call V and E the vertex constraint and edge constraint of Π, respectively. Moreover,
we call each multiset contained in V a vertex configuration of Π, and each multiset
contained in E an edge configuration of Π.

Let T be a ∆-regular tree and c : H(T ) → Σ a half-edge labeling of T with labels from
Σ. We say that c is a Π-coloring, or, equivalently, a correct solution for Π, if, for each
vertex v of T , the multiset of labels assigned to the half-edges incident to v is contained in
V, and, for each edge e of T , the cardinality-2 multiset of labels assigned to the half-edges
belonging to e is an element of E.

An equivalent way to define our setting would be to consider ∆-regular trees as commonly
defined, that is, there are vertices of degree ∆ and vertices of degree 1, i.e., leaves. In
the corresponding definition of LCL one would consider leaves as unconstrained w.r.t.
the vertex constraint, i.e., in the above definition of a correct solution the condition “for
each vertex v” is replaced by “for each non-leaf vertex v”. Equivalently, we could allow
arbitrary trees of maximum degree ∆ as input graphs, but, for vertices of degree < ∆,
we require the multiset of labels assigned to the half-edges to be extendable to some
cardinality-∆ multiset in V. When it helps the exposition of our ideas and is clear from
the context, we may make use of these different but equivalent perspectives.

We illustrate the difference between our setting and “standard setting” without virtual
half-edges on the perfect matching problem. A standard definition of the perfect matching
problem is that some edges are picked in such a way that each vertex is covered by exactly
one edge. It is easy to see that there is no local algorithm to solve this problem on the class
of finite trees (without virtual half-edges), this is a simple parity argument. However, in
our setting, every vertex needs to pick exactly one half-edge (real or virtual) in such a
way that both endpoints of each edge are either picked or not picked. We remark that
in our setting it is not difficult to see that (if ∆ > 2), then this problem can be solved
by a local deterministic algorithm of local complexity O(log(n)).

10.3.2 The Uniform Local Model

We discuss the general relation between the classical local complexity and the uniform
local complexity. Recall that when we talk about distributed algorithm on ∆-regular
trees, the algorithm has access to n, the size of the tree. The measure of complexity is

3Note that the defined LCL problems do not allow the correctness of the output to depend on input
labels.

4Recall that a multiset is a modification of the concept of sets, where repetition is allowed.
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the classical local complexity. On the other hand, when we talk about uniform distributed
algorithms on ∆-regular trees, we talk about an infinite ∆-regular tree and the measure of
complexity is the uniform local complexity. Recall that B(v, t) is the t-hop neighborhood
of a vertex v in an underlying graph G. Whenever we talk about local complexity on ∆-
regular trees, we always tacitly think about the class of finite ∆-regular trees. We use the
notation LOCAL(O(t(n))) whenever the deterministic and the randomized complexity of
the problems are the same up to constant factor.

Uniform Algorithms: As we mentioned before, when talking about local complexities,
we always have in mind that the underlying graph is finite. In particular, the correspond-
ing algorithm knows the size of the graph. On infinite ∆-regular trees, or infinite graphs
in general, we use the following notion [212, 223].

Definition 10.7. An uniform local algorithm A is a function that is defined on all
possible (finite) neighborhoods of a vertex. For some neighborhoods it outputs a special
symbol ∅ instead of a labeling of the half-edges around the central vertex. Applying A on
a graph G means that for each vertex u of G the function is applied to B(u, t), where t is
the minimal number such that A(u, t) ̸= ∅. We call t the coding radius of A, and denote
it, as a function on vertices, as RA.

We define the corresponding notion of uniform local complexity for infinite ∆-regular
trees where each vertex is assigned an infinite random string.

Definition 10.8 (Uniform local complexity [212]). We say that the uniform local (ran-
domized) complexity of an LCL problem Π is t(ε) if there is an uniform local algorithm A
such that the following hold on the infinite ∆-regular tree. Recall that RA is the random
variable measuring the coding radius of a vertex u, that is, the distance A needs to look
at to decide the answer for u. Then, for any 0 < ε < 1:

P(RA ≥ t(ε)) ≤ ε.

We also say Π ∈ ULOCAL(O(t(ε)).

We finish by stating the following lemma that bounds the uniform complexity of con-
catenation of two uniform algorithm (we need to be little bit more careful and cannot
just add the complexites up).

Lemma 10.9 (Sequential Composition). Let A1 and A2 be two distributed uniform al-
gorithms with an uniform local complexity of t1(ε) and t2(ε), respectively. Let A be the
sequential composition of A1 and A2. That is, A needs to know the output that A2 com-
putes when the local input at every vertex is equal to the output of the algorithm A1 at
that vertex. Then, tA(ε) ≤ tA1

(
ε/2

∆
tA2

(ε/2)+1

)
+ tA2(ε/2).

Proof. Consider some arbitrary vertex u. Let E1 denote the event that the coding radius
ofA1 is at most tA1

(
ε/2

∆
tA2

(ε/2)+1

)
for all vertices in the tA2(ε/2)-hop neighborhood around
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u. As the tA2(ε/2)-hop neighborhood around u contains at most ∆tA2
(ε/2)+1 vertices, a

union bound implies that P (E1) ≥ 1− ε/2. Moreover, let E2 denote the event that the
coding radius of algorithm A2 at vertex u is at most tA2(ε/2). By definition, P (E2) ≥
1 − ε/2. Moreover, if both events E1 and E2 occur, which happens with probability at
least 1−ε, then the coding radius of algorithm A is at most tA1

(
ε/2

∆
tA2

(ε/2)+1

)
+ tA2(ε/2),

thus finishing the proof.

10.3.3 Descriptive combinatorics

Before we define formally the descriptive combinatorics complexity classes, we give a
high-level overview on their connection to distributing computing for the readers more
familiar with the latter.

The complexity class that partially captures deterministic local complexity classes is
called BOREL (see also Remark 10.13). First note that by a result of Kechris, Solecki
and Todorčević [220] the maximal independent set problem (with any parameter r ∈ N)
is in this class for any bounded degree graph.5 In particular, this yields that BOREL
contains the class LOCAL(O(log∗ n)) by the characterization of [94], see [60]. Moreover,
as mentioned before, BOREL is closed under countably many iterations of the operations
of finding maximal independent set (for some parameter that might grow) and of applying
a constant local rule that takes into account what has been constructed previously.6

To get a better grasp of what this means, consider for example the proper vertex 2-
coloring problem on half-lines. It is clear that no local algorithm can solve this problem.
However, as it is possible to determine the starting vertex after countably many iterations
of the maximal independent set operation, we conclude that this problem is in the class
BOREL. The idea that BOREL can compute some unbounded, global, information will
be implicitly used in all the construction in Section 10.5 that separate BOREL from local
classes.

The intuition behind the class MEASURE is that it relates in the same way to the class
BOREL, as randomized local algorithms relate to deterministic ones. In particular, the
operations that are allowed in the class MEASURE are the same as in the class BOREL
but the solution of a given LCL can be incorrect on a measure zero set.

The class BAIRE can be considered as a topological equivalent of the measure theoretic
class MEASURE, that is, a solution can be incorrect on a topologically negligible set. The
main difference between the classes MEASURE and BAIRE is that in the later there is a
hierarchical decomposition that is called toast. (Note that this phenomenon is present
in the case of MEASURE exactly on so-called amenable graphs. It is also tightly con-
nected with the notion of hyperfiniteness [105, 145].) The independence of colorings on a

5That is, it is possible to find a Borel maximal independent set, i.e., a maximal independent set which
is, moreover, a Borel subset of the vertex set.

6It is in fact an open problem, whether this captures fully the class BOREL. However, note that an
affirmative answer to this question would yield that problems can be solved in an “effective" manner in
the Borel context, which is known not to be the case in unbounded degree graphs [294].
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tree together with this structure allows for a combinatorial characterization of the class
BAIRE, which was proven by Bernshteyn [62], see also Section 10.6.

Next we formulate the precise definitions. We refer the reader to [265, 219, 60, 218], or
to [184, Introduction, Section 4.1] and [185, Section 7.1, 7.2] for intuitive examples and
standard facts of descriptive set theory. In particular, we do not define here the notion
standard Borel/probability space, a Polish topology, a Borel probability measure, Baire
property etc.

Let G be a Borel graph of bounded maximum degree on a standard Borel space X. In this
chapter we consider exclusively acyclic ∆-regular Borel graphs and we refer to them as
∆-regular Borel forests. It is easy to see that the set of half-edges is naturally a standard
Borel space, we denote this set by H(G). Thus, it makes sense to consider Borel labelings
of H(G). Moreover, if G is a ∆-regular Borel forest and Π = (Σ,V, E) is an LCL, we
can also decide whether a coloring f : H(G) → Σ is a solution to Π as in Definition
10.6. Similarly, we say that the coloring f solves Π, e.g., on a µ-conull set for some Borel
probability measure µ on X if there is a Borel set C ⊆ X such that µ(C) = 1, the vertex
constraints are satisfied around every x ∈ C and the edge constraints are satisfied for
every x, y ∈ C that form an edge in G.

Definition 10.10 (Descriptive classes). Let Π = (Σ,V, E) be an LCL. We say that Π
is in the class BOREL if for every acyclic ∆-regular Borel graph G on a standard Borel
space X, there is a Borel function f : H(G)→ Σ that is a Π-coloring of G.

We say that Π is in the class BAIRE if for every acyclic ∆-regular Borel graph G on a
standard Borel space X and every compatible Polish topology τ on X, there is a Borel
function f : H(G)→ Σ that is a Π-coloring of G on a τ -comeager set.

We say that Π is in the class MEASURE if for every acyclic ∆-regular Borel graph G on
a standard Borel space X and every Borel probability measure µ on X, there is a Borel
function f : H(G)→ Σ that is a Π-coloring of G on a µ-conull set.

The following claim follows directly from the definition.

Claim 10.11. We have BOREL ⊆ MEASURE,BAIRE.

Recently Bernshteyn [60, 61] proved several results that connect distributed computing
with descriptive combinatorics.

Theorem 10.12 ([60]). We have

• LOCAL(O(log∗(n))) ⊆ BOREL,

• RLOCAL(o(log(n))) ⊆ MEASURE,BAIRE.

In fact, these inclusions hold for any reasonable class of bounded degree graphs.
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Remark 10.13. The “truly” local class in descriptive combinatorics is the class
CONTINUOUS. Even though we do not define this class here7, and we refer the reader
to [61, 146, 185] for the definition and discussions in various cases, we mention that the
inclusion

LOCAL(O(log∗ n)) ⊆ CONTINUOUS (*)

holds in most reasonable classes of bounded degree graphs, see [60]. This also applies
to our situation Recently, it was shown by Bernshteyn [61] that (∗) can be reversed for
Cayley graphs of finitely generated groups. This includes, e.g., natural ∆-regular trees
with proper edge ∆-coloring, as this is a Cayely graph of free product of ∆-many Z2

induced by the standard generating set. It is, however, not clear whether it (∗) can be
reversed in our situation, i.e., ∆-regular trees without any additional labels.

10.3.4 Random processes

We start with an intutitve description of fiid processes. Let T∆ be the infinite ∆-regular
tree. Informally, factors of iid processes (fiid) on T∆ are infinite analogues of local
randomized algorithms in the following way. Let Π be an LCL and u ∈ T∆. In order
to solve Π, we are allowed to explore the whole graph, and the random strings that
are assigned to vertices, and then output a labeling of half-edges around u. If such an
assignment is a measurable function and produces a Π-coloring almost surely, then we
say that Π is in the class fiid. Moreover, if every vertex needs to explore only finite
neighborhood to output a solution, then we say that Π is in the class FFIID. Such
processes are called finitary fiid (ffiid). There is also an intimate connection between
ffiid and uniform algorithms. This is explained in [185, Section 2.2]. Informally, an
ffiid process that almost surely solves Π is, in the language of distributed computing,
an uniform local algorithm that solves Π. This allows us to talk about uniform local
complexity of an ffiid. In the rest of the chapter we interchange both notions freely with
slight preference for the distributed computing language.

Now we define formally these classes, using the language of probability. We denote by
Aut(T∆) the automorphism group of T∆. An iid process on T∆ is a collection of iid
random variables Y = {Yv}v∈V (T∆) indexed by vertices, or edges, half-edges etc, of T∆

such that their joint distribution is invariant under Aut(T∆). We say that X is a factor
of iid process (fiid) if X = F (Y ), where F is a measurable Aut(T∆)-invariant map and Y
is an iid process on T∆.8 Moreover, we say that X is a finitary factor if iid process (ffiid)
if F depends with probability 1 on a finite (but random) radius around each vertex. We
denote as RF the random variable that assigns minimal such radius to a given vertex,
and call it the coding radius of F . We denote the space of all Π-colorings of T∆ as XΠ.
This is a subspace of ΣH(T∆) that is invariant under Aut(T∆).

7To define the class CONTINUOUS, rather than asking for a continuous solution on all possible ∆-
regular Borel graphs, one has to restrict to a smaller family of graphs, otherwise the class trivializes. To
define precisely this family is somewhat inconvenient, and not necessary for our arguments.

8We always assume Y = (2N)T∆ endowed with the product Lebesgue measure.
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Definition 10.14. We say that an LCL Π is in the class fiid (FFIID) if there is an fiid
(ffiid) process X that almost surely produces elements of XΠ.

Equivalently, we can define FFIID =
⋃

f ULOCAL(f(ε)) where f ranges over all functions.
That is, FFIID is the class of problems solvable by any uniform distributed algorithm.

It is obvious that FFIID ⊆ fiid. The natural connection between descriptive combinatorics
and random processes is formulated by the inclusion MEASURE ⊆ fiid. While this inclu-
sion is trivially satisfied, e.g., in the case of ∆-regular trees with proper edge ∆-coloring,
in our situation we need a routine argument that we include for the sake of completeness
in Section 10.7.

Lemma 10.15. Let Π be an LCL such that Π ∈ MEASURE. Then Π ∈ fiid.

10.3.5 Specific Local Problems

Here we list some well-known local problems that were studied in all three considered
areas.

Edge Grabbing: We start by recalling the well-known problem of edge grabbing (a
close variant of the problem is known as sinkless orientation[73]). In this problem, every
vertex should mark one of its half-edges (that is, grab an edge) in such a way that no
edge can be marked by two vertices. It is known that Πedgegrab ̸∈ LOCAL(O(log∗ n)) [73]
but Πedgegrab ∈ RLOCAL(O(log log n)).

Similarly, Πedgegrab ̸∈ BOREL by [244], but Πedgegrab ∈ MEASURE by [107]: to see the
former, just note that if a ∆-regular tree admits proper ∆-colorings of both edges and
vertices, every vertex can grab an edge of the same color as the color of the vertex.
Thus, Πedgegrab ∈ BOREL would yield that ∆-regular Borel forests with Borel proper
edge-colorings admit a Borel proper ∆-coloring, contradicting [244].

This completes the complexity characterization of Πedgegrab as well as the proper vertex
∆-coloring.

Perfect Matching: Another notorious LCL problem is the perfect matching problem
Πpm. Recall that the perfect matching problem Πpm asks for a matching that covers
all vertices of the input tree.9 It is known that Πpm ∈ fiid [241], and it is easy to see
that Πpm ̸∈ RLOCAL(O(log log(n))) (we will prove a stronger result in Theorem 10.39).
Marks proved [244] that it is not in BOREL, even when the underlying tree admits a
Borel bipartition. It is not clear if Πpm is in FFIID, nor whether it is in MEASURE.

Graph Homomorphism: We end our discussion with LCLs that correspond to graph
homomorphisms (see also the discussion in Section 10.4). These are also known as edge
constraint LCLs. Let G be a finite graph. Then we define ΠG to be the LCL that asks
for a homomorphism from the input tree to G, that is, vertices are labeled with vertices

9In our formalism this means that around each vertex exactly one half-edge is picked.
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of G in such a way that edge relations are preserved. There are not many positive
results except for the class BAIRE. It follows from the result of Bernshteyn [62] (see
Section 10.6) that ΠG ∈ BAIRE if and only if G is not bipartite. The main negative
results can be summarized as follows. An easy consequence of the result of Marks [244]
is that if χ(G) ≤ ∆, then ΠG ̸∈ BOREL. In this chapter, we describe examples of graphs
of chromatic number up to 2∆− 2 such that the corresponding homomorphism problem
is not in BOREL, see Section 10.4. The theory of entropy inequalities see [17] implies
that if G is a cycle on more than 9 vertices, then ΠG ̸∈ fiid.

10.4 Generalization of Marks’ technique

In this section, we first develop a new way of proving lower bounds in the LOCAL model
based on a generalization of a technique of Marks [244]. Then, we use ideas arising in
the finitary setting—connected to the adaptation of Marks’ technique—to obtain new
results back in the Borel context. For an introduction to Marks’ technique and a high-
level discussion about the challenges in adapting the technique to the standard distributed
setting as well as our solution via the new notion of an ID graph, we refer the reader to
Section 10.2.1.

The setting we consider in this section is ∆-regular trees that come with a proper ∆-
edge coloring with colors from [∆]. All lower bounds discussed already hold under these
restrictions (and therefore also in any more general setting).

Recall that an LCL Π = (Σ,V, E) is given by specifying a list of allowed vertex configu-
rations and a list of allowed edge configurations (see Definition 10.6). To make our lower
bounds as widely applicable as possible, we replace the latter list by a separate list for
each of the ∆ edge colors; in other words, we consider LCLs where the correctness of the
output is allowed to depend on the input that is provided by the edge colors. Hence,
formally, in this section, an LCL is more generally defined: it is a tuple Π = (Σ,V, E)
where Σ and V are as before, while E = (Eα)α∈[∆] is now a ∆-tuple of sets Eα consisting
of cardinality-2 multisets. Similarly as before, a half-edge labeling (see Definition 10.10
for the Borel context) with labels from Σ is a correct solution for Π if, for each vertex v,
the multiset of labels assigned to the half-edges incident to v is contained in V, and, for
each edge e, the multiset of labels assigned to the half-edges belonging to e is contained
in Eα, where α is the color of the edge e.

The idea of our approach is to identify a condition that an LCL Π necessarily has to
satisfy if it is solvable in O(log∗ n) rounds in the LOCAL model. Showing that Π does not
satisfy this condition then immediately implies an Ω(log n) deterministic and Ω(log logn)
randomized lower bound.

In order to define our condition we need to introduce the notion of a configuration graph:
a configuration graph is a ∆-tuple P = (Pα)α∈∆ of graphs, where the vertex set of each
of the graphs Pα is the set of subsets of Σ, and there is an edge in Pα connecting two
vertices S, T if and only if there are a ∈ S and b ∈ T such that {a, b} ∈ Eα, note that
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loops are allowed. (Naturally, we will consider any two vertices of different Pα to be
distinct, even if they correspond to the same subset of Σ.)

Now we are set to define the aforementioned condition. The intuition behind the playa-
bility condition is the following: assume that there exists a local algorithm A that solves
Π using the t neighbourhood of a given vertex. We are going to define a family of two
player games. The game will depend on some S ⊆ Σ. Alice and Bob will assign labels (or
IDs) to the vertices in the t-neighbourhood (in some way specified later on, depending on
α ∈ [∆]). When the assignment is complete, we evaluate A on the root of the obtained
labelled graph, this way obtaining an element s of Σ, and decide who is the winner based
on s ∈ S or not. Naturally, it depends on S and α, which player has a winning strategy.
This gives rise to a two coloring of vertices of Pα by colors Alice and Bob. The failure of
the playability condition will guarantee that using a strategy stealing argument one can
derive a contradiction.

Definition 10.16 (Playability condition). We say that an LCL Π is playable if for every
α ∈ [∆] there is a coloring Λα of the vertices of Pα with two colors {Alice,Bob} such
that the following conditions are satisfied:

(A) For any tuple (Sα)α∈[∆] ∈ V (P1)× · · · × V (P∆) satisfying Λα(Sα) = Alice for each
α ∈ [∆], there exist aα ̸∈ Sα such that {aα}α∈∆ ∈ V, and

(B) for any α ∈ [∆], and any tuple (S, T ) ∈ V (Pα)×V (Pα) satisfying Λα(S) = Λα(T ) =
Bob, we have that (S, T ) is an edge of Pα.

Our aim in this section is to show the following general results.

Theorem 10.17. Let Π be an LCL that is not playable. Then Π is not in the class
LOCAL(O(log∗ n)).

Using ideas from the proof of this result, we can formulate an analogous theorem in
the Borel context. Let us mention that while Theorem 10.17 is a consequence of Theo-
rem 10.18 by [60], we prefer to state the theorems separately. This is because the proof of
the Borel version of the theorem uses heavily complex results such as the Borel determi-
nacy theorem, theory of local-global limits and some set-theoretical considerations about
measurable sets. This is in a stark contrast with the proof of Theorem 10.17 that uses
‘merely’ the existence of large girth graphs and determinacy of finite games. However,
the ideas surrounding these concepts are the same in both cases.

Theorem 10.18. Let Π be an LCL that is not playable.Then Π is not in the class BOREL.

The main application of these abstract results is to find lower bounds for (graph) homo-
morphism LCLs aka edge constraint LCLs. We already defined this class in Section 10.3.1
but we recall the definition in the formalism of this section to avoid any confusion. Let
G be a finite graph. Then ΠG = (Σ,V, E) is defined by letting

1. V = {(a, . . . , a) : a ∈ Σ},
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2. Σ = V (G),

3. ∀α ∈ [∆] (Eα = E(G)).

An LCL for which (1) holds is called a vertex-LCL. There is a one-to-one correspondence
between vertex-LCLs for which ∀α, β (Eα = Eβ) and LCLs of the form ΠG. (Indeed, to
vertex-LCLs with this property one can associate a graph G whose vertices are the labels
in Σ and where two vertices ℓ, ℓ′ are connected by an edge if and only if {ℓ, ℓ′} ∈ E .)
Note that if Π is a vertex-LCL, then condition (A) in Definition 10.16 is equivalent to
the statement that no tuple {Sα}α∈∆ that satisfies the assumption of (A) can cover Σ,
i.e., that Σ ⊈ S1 ∪ · · · ∪ S∆ for such a tuple. Moreover, if ΠG is a homomorphism LCL,
then Pα = Pβ for every α, β ∈ ∆.

The simplest example of a graph homomorphism LCL is given by setting G to be the
clique on k vertices; the associated LCL ΠG is simply the problem of finding a proper
k-coloring of the vertices of the input graph. Now we can easily derive Marks’ original
result from our general theorem.

Corollary 10.19 (Marks [244]). Let G be a finite graph that has chromatic number at
most ∆. Then ΠG is not playable. In particular, there is a ∆-regular Borel forest that
have Borel chromatic number ∆+ 1.

Proof. Let A1, . . . , A∆ be some independent sets that cover G, and Λ1, . . . ,Λ∆ arbitrary
colorings of the vertices of P1, . . . ,P∆, respectively, with colors from {Alice,Bob}. It
follows that Λα(Aα) = Alice for every α ∈ ∆, since otherwise condition (B) in Defini-
tion 10.16 is violated with S = T = Aα. But then condition (A) does not hold.

As our main application we describe graphs with chromatic number larger than ∆ such
that ΠG is not playable. This rules out the hope that the complexity of ΠG is connected
with chromatic number being larger than ∆. In Section 10.4.1 we show the following.
Note that the case k = ∆ is Theorem 10.19.

Theorem 10.20. Let ∆ > 2 and ∆ < k ≤ 2∆−2. There exists a graph Gk with χ(Gk) =
k, such that ΠGk

is not playable and ΠGk
∈ RLOCAL(O(log log n)). In particular, ΠGk

̸∈
BOREL and ΠGk

̸∈ LOCAL(O(log∗(n))).

Interestingly, recent results connected to counterexamples to Hedetniemi’s conjecture
yield the same statement asymptotically, as ∆→∞ (see Remark 10.26).

Remark 10.21. It can be shown that for ∆ = 3 both the Chvátal and Grötsch graphs
are suitable examples for k = 4.

Remark 10.22. As another application of his technique Marks showed in [244] that there
is a Borel ∆-regular forest that does not admit Borel perfect matching. This holds even
when we assume that the forest is Borel bipartite, i.e., it has Borel chromatic number 2.
In order to show this result Marks works with free joins of colored hyperedges, that is,
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Cayley graphs of free products of cyclic groups. One should think of two types of triangles
(3-hyperedges) that are joined in such a way that every vertex is contained in both types
and there are no cycles. We remark that the playability condition can be formulated in
this setting. Similarly, one can derive a version of Theorem 10.18. However, we do not
have any application of this generalization.

10.4.1 Applications of playability to homomorphism LCLs

In this section we find the graph examples from Theorem 10.20. First we introduce a
condition ∆-(*) that is a weaker condition than having chromatic number at most ∆,
but still implies that the homomorphism LCL is not playable. Then, we will show that–
similarly to the way the complete graph on ∆-many vertices, K∆, is maximal among
graphs of chromatic number ≤ ∆–there exists a maximal graph (under homorphisms)
with property ∆-(*). Recall that we assume ∆ > 2.

Definition 10.23 (Property ∆-(*)). Let ∆ > 2 and G = (V,E) be a finite graph. We
say that G satisfies property ∆-(*) if there are sets S0, S1 ⊆ V such that G restricted to
V \Si has chromatic number at most (∆− 1) for i ∈ {0, 1}, and there is no edge between
S0 and S1.

Note that χ(G) ≤ ∆ implies ∆-(*): indeed, if A1, . . . , A∆ are independent sets that cover
V (G), we can set S0 = S1 = A1.

On the other hand, we claim that if G satisfies ∆-(*) then χ(G) ≤ 2∆ − 2. In order to
see this, take S0, S1 ⊆ V (G) witnessing ∆-(*). Then, as there is no edge between S0 and
S1, so in particular, between S0 \ S1 and S0 ∩ S1, it follows that the chromatic number
of G’s restriction to S0 is ≤ ∆− 1. But then we can construct proper ∆− 1-colorings of
S0 and V (G) \ S0, which shows our claim.

Proposition 10.24. Let G be a graph satisfying ∆-(*). Then ΠG is not playable.

Proof. Fix S0, S1 as in the definition of ∆-(*) and assume for a contradiction that col-
orings Λ1, . . . ,Λ∆ as described in Definition 10.16 exist. By Property ∆-(*), there exist
independent sets A1, . . . , A∆−1 such that S0 together with the Ai covers G, i.e., such that
S0 ∪A1 ∪ · · · ∪A∆−1 = V (G). For each α ∈ [∆− 1], we must have Λα(Aα) = Alice, since
otherwise condition (B) in Definition 10.16 is violated. Consequently Λ∆(S0) = Bob,
otherwise condition (A) is violated. Similarly Λ∆(S1) = Bob. This shows that Λ∆ does
not satisfy condition (B) with S = S0 and T = S1.

Next we describe maximal examples of graphs that satisfy the condition ∆-(*). That
is, we define a graph H∆ that satisfies ∆-(*), its chromatic number is 2∆− 2 and every
other graph that satisfies ∆-(*) admits a homomorphism in H∆.

Recall that the (categorical) product G×H of graphs G,H is the graph on V (G)×V (H),
such that ((g, h), (g′, h′)) ∈ E(G×H) iff (g, g′) ∈ E(G) and (h, h′) ∈ E(H).
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Write P for the product K∆−1×K∆−1. Let V0 and V1 be vertex disjoint copies of K∆−1.
We think of vertices in Vi and P as having labels from [∆ − 1] and [∆ − 1] × [∆ − 1],
respectively. The graph H∆ is the disjoint union of V0, V1, P and an extra vertex † that
is connected by an edge to every vertex in P , and additionally, if v is a vertex in V0 with
label i ∈ [∆ − 1], then we connect it by an edge with (i′, j) ∈ P for every i′ ̸= i and
j ∈ [∆− 1], and if v is a vertex in V1 with label j ∈ ∆− 1, then we connect it by an edge
with (i, j′) ∈ P for every j′ ̸= j and i ∈ [∆− 1].

Proposition 10.25. 1. H∆ satisfies ∆-(*).

2. χ(H∆) = 2∆− 2.

3. A graph G satisfies ∆-(*) if and only if it admits a homomorphism to H∆.

Proof. (1) Set S0 = V (V0) ∪ {†} and S1 = V (V1) ∪ {†}. By the definition there are no
edges between S0 and S1. Consider now, e.g., V (H∆) \S0. Let Aj consist of all elements
in P that have second coordinate equal to j together with the vertex in V1 that has the
label j. By the definition, the set Ai is independent and

⋃
i∈[∆−1]Ai covers H∆ \S0, and

similarly for S1.

(2) By (1) and the claim after the definition of ∆-(*), it is enough to show that χ(H∆) ≥
2∆ − 2. Towards a contradiction, assume that c is a proper coloring of H∆ with <
2∆ − 2-many colors. Note the vertex † guarantees that |c(V (P ))| ≤ 2∆ − 4, and also
∆− 1 ≤ |c(V (P ))|.

First we claim that there are no indices i, j ∈ [∆ − 1] (even with i = j) such that
c(i, r) ̸= c(i, s) and c(r, j) ̸= c(s, j) for every s ̸= r: indeed, otherwise, by the definition
of P we had c(i, r) ̸= c(s, j) for every r, s unless (i, r) = (s, j), which would the upper
bound on the size of c(V (P )).

Therefore, without loss of generality, we may assume that for every i ∈ [∆ − 1] there is
a color αi and two indices ji ̸= j′i such that c(i, ji) = c(i, j′i) = αi. It follows form the
definition of P and ji ̸= j′i that αi ̸= αi′ whenever i ̸= i′.

Moreover, note that any vertex in V1 is connected to at least one of the vertices (i, ji)
and (i, j′i), hence none of the colors {αi}i∈[∆−1] can appear on V1. Consequently, since V1

is isomorphic to K∆−1 we need to use at least ∆− 1 additional colors, a contradiction.

(3) First note that if G admits a homomorphism into H∆, then the pullbacks of the sets
witnessing ∆-(*) will witness that G has ∆-(*).

Conversely, let G be a graph that satisfies ∆-(*). Fix the corresponding sets S0, S1 to-
gether with (∆−1)-colorings c0, c1 of their complements. We construct a homomorphism



226 Local Problems on Trees: Distributed Algorithms and Descriptive Combinatorics

Θ from G to H∆. Let

Θ(v) =


† if v ∈ S0 ∩ S1,

c0(v) if v ∈ S1 \ S0,

c1(v) if v ∈ S0 \ S1,

(c0(v), c1(v)) if v ̸∈ S0 ∪ S1.

Observe that S = S0 ∩ S1 is an independent set such that there is no edge between S
and S0 ∪ S1. Using this observation, one easily checks case-by-case that Θ is indeed a
homomorphism.

Now, combining what we have so far, we can easily prove Theorem 10.20.

Proof of Theorem 10.20. It follows that ΠH∆
is not playable from Theorem 10.25, The-

orem 10.24. It is easy to see that if for a graph G the LCL ΠG is not playable then
ΠG′ is not playable for every subgraph G′ of G. Since erasing a vertex decreases the
chromatic number with at most one, for each k ≤ 2∆− 2 there is a subgraph Gk of H∆

with χ(Gk) = k, such that ΠGk
is not playable.

It follows from Theorems 10.17 and 10.18 that there is a ∆-regular Borel forest that
admits no Borel homomorphism to any graph of Gk and that ΠGk

̸∈ LOCAL(O(log∗(n))).

Finally, note that if k ≥ ∆ then Gk can be chosen so that it contains K∆, yielding
ΠGk

∈ RLOCAL( O(log log(n)).

Remark 10.26. Recall that Hedetniemi’s conjecture is the statement that if G,H are
finite graphs then χ(G × H) = min{χ(G), χ(H)}. This conjecture has been recently
disproven by Shitov [283], and strong counterexamples have been constructed later (see,
[291, 298]). We claim that these imply for ε > 0 the existence of finite graphs H with
χ(H) ≥ (2 − ε)∆ to which ∆-regular Borel forests cannot have a homomorphism in
BOREL, for every large enough ∆. Indeed, if a ∆-regular Borel forest admitted a Borel
homomorphism to each finite graph of chromatic number at least (2− ε)∆, it would have
such a homomorphism to their product as well. Thus, we would obtain that the chromatic
number of the product of any graphs of chromatic number (2−ε)∆ is at least ∆+1. This
contradicts Zhu’s result [298], which states that the chromatic number of the product of
graphs with chromatic number n can drop to ≈ n

2 .

Remark 10.27. A natural attempt to construct graphs with large girth and not playable
homomorphisms problem would be to consider random d-regular graphs of size n for a
large enough n. However, it is not hard to see that setting Λ(A) = Alice if and only if
|A| < n

d shows that this approach cannot work.
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10.4.2 Generalization of Marks’ Technique

In this section we prove Theorem 10.17, by applying Marks’ game technique in the
LOCAL setting. In order to define our games, we will need certain auxiliary graphs,
the so-called ID graphs. The purpose of these graphs is to define a “playground” for the
games that we consider. Namely, vertices in the game are labeled by vertices from the ID
graph in such a way that the at the end we obtain a homomorphism from our underlying
graph to the ID graph.

Definition 10.28. A pair Hn,t,r = (Hn,t,r, c) is called an ID graph, if

1. Hn,t,r is graph with girth at least 2t+ 2,

2. |V (Hn,t,r)| ≤ n,

3. c is a ∆-edge-coloring of Hn,t,r, such that every vertex is adjacent to at least one
edge of each color,

4. for each α ∈ [∆] the ratio of a maximal independent set of Hα
n,t,r = (V (Hn,t,r), E(Hn,t,r)∩

c−1(α)) is at most r (i.e., Hα
n,t,r is the graph formed by α-colored edges).

Before we define the game we show that ID graphs exist.

Proposition 10.29. Let tn ∈ o(log(n)), r > 0, ∆ ≥ 2. Then there is an ID graph
Hn,tn,r for every n ∈ N sufficiently large.

Proof. We use the configuration model for regular random graphs, see [296]. This model
is defined as follows. Let n be even. Then a d-regular random sample on n-vertices is
just a union of d-many independent uniform random perfect matchings. Note that in
this model we allow parallel edges.

It was proved by Bollobás [70] that the independence ratio of a random d-regular graph
is at most 2 log(d)

d a.a.s. Moreover, this quantity is concentrated by an easy application
of McDiarmid’s result [249], i.e.,

P
(
|X − E(X)| ≥

√
n
)
< 2 exp

(
−n

d

)
, (10.1)

where X is the random variable that counts the size of a maximal independent set.
Therefore for fixed n large enough we have that the independence ratio of a random
sample is at most 3 log(d)

d with probability at least
(
1− 2 exp

(
−n

d

))
.

Pick a d large enough such that 3 log(d)
d < r. Now for an n large enough take ∆-many

independent samples of random d-regular graphs according to the configuration model.
Note that this is a random sample from the configuration model for ∆d-regular graphs.
We define c to be equal to α ∈ [∆] on edges of the α-th sample. Then condition (4) is
satisfied with probability at least(

1− 2 exp
(
−n

d

))∆
.



228 Local Problems on Trees: Distributed Algorithms and Descriptive Combinatorics

It remains to show that the girth condition is satisfied. Recall that we assume tn ∈
o(log n). Then we have (∆d− 1)2tn−1 ∈ o(n). Using [250, Corollary 1] we have that the
probability of having girth at least tn is

exp

(
−

tn∑
a=3

(∆d− 1)a

2a
+ o(1)

)
≥ exp

(
−(∆d)tn

)
≥ exp(−o(n))

>1−
(
1− 2 exp

(
−n

d

))∆ (10.2)

as n→∞. This shows that there exists such a graph Htn,n,r with non-zero probability.

Next, we define the games. As mentioned before, the games are going to depend on the
following parameters: an algorithm An of local complexity t ∈ o(log(n)), an ID graph
Hn,t,r, α ∈ ∆, σ ∈ V (Hn,t,r) and S ⊆ Σ. (We will view An, Hn,t,r as fixed, and the rest
of the parameters as variables).

The game
G(An, n, t,Hn,t,r)[α, σ, S]

is defined as follows: two players, Alice and Bob assign labels to the vertices of a rooted
∆-regular tree of diameter t. The labels are vertices of Hn,t,r and the root is labeled σ.
In the k-th round, where 0 < k ≤ t, first Alice labels vertices of distance k from the
root on the side of the α edge. After that, Bob labels all remaining vertices of distance
k, etc. We also require the assignment of labels to give rise to an edge-color preserving
homomorphism to Hn,t,r. (For example, if it is Alice’s turn to label a neighbor of some
vertex v, that has been assigned a label ρ ∈ V (Hn,t,r) in the previous round, along an
edge that has color β, then the allowed labels are only those that span a β edge with ρ
in Hn,t,r).

By property (2) of the ID graph, we can fix an injective map from V (Hn,t,r) to [n]. Now,
we say that Alice wins an instance of the game iff An applied to the produced labeling
of the rooted tree does not produce an element of S on the half edge that starts in the
root and has edge color α. Note that this is well defined thanks to our assumption on the
girth of Hn,t,r. Let us define Λσ

α(S) to be Alice or Bob depending on who has a winning
strategy in the game

G(An, n, t,Hn,t,r)[α, σ, S].

Since the game is finite and there is no draw, one of the players has a winning strategy.
Thus, we have that

Λσ
α : Pα → {Alice,Bob}

is well-defined for all σ ∈ V (Hn,t,r) and α ∈ [∆].

Proposition 10.30. Let An be an algorithm of local complexity t ∈ o(log(n)) that solves
Π and σ ∈ V (Hn,t,r). Then (Λσ

α)α∈∆ satisfies (A) in Theorem 10.16.
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Proof. Assume that (Sα)α∈∆ is such that Λσ
α(Sα) = Alice. This means that Alice has

winning strategy in all the games corresponding to Sα. Letting these strategies play
against each other in the obvious way, produces a labeling of the tree. Since An solves Π
it has to output labeling of half edges (aα)α∈∆ ∈ N , where aα is a label on the half edge
that start at the root and has color α. Note that we must have aα ̸∈ Sα by the definition
of winning strategy for Alice. This shows that (A) of Definition 10.16 holds.

We are ready to prove Theorem 10.17.

Proof of Theorem 10.17. Let (An)n∈N be a sequence of algorithms of local complexity
tn ∈ o(log(n)) that solve Π and N ∈ N be the number of all possible colorings of vertices
of (Pα)α∈∆ with two colors, that is, N = 2

∑
α |V (Pα)|. Set r := 1

N+1 . By Theorem 10.29
there exists an ID graph Hn,t,r. Thus, the games above are well-defined and we can
construct the functions (Λσ

α)α∈∆. Since there are only N possibilities for such a sequence,
there exists a set X ⊆ V (Hn,t,r) of relative size greater than r, such that for all σ ∈ X
the sequence of functions (Λσ

α)α∈∆ is the same.

Since Π is not playable, we can find an edge color α ∈ ∆ and sets S, T ∈ Pα such that
Λσ
α does not satisfy (B) from Theorem 10.16 with S, T for every σ ∈ X. Note that this

is because (A) is always satisfied by Theorem 10.30.

By property (4) of the ID graph, there exist σ0, σ1 ∈ X that span an α edge in Hn,t,r.
We let the winning strategies of Bob in the games

G(An, n, t,Hn,t,r)[α, σ0, S], G(An, n, t,Hn,t,r)[α, σ1, T ],

play against each other, where we start with an α edge with endpoints labeled by σ0, σ1.
This produces a labeling of the vertices that have distance at most t from either of the
endpoints of the edge (intuitively, the tree “rooted” at this edge of “diameter” t+ 1

2). Now
applying An on the vertex with label σ0 produces a0 ∈ S on the the half edge that starts
at this vertex and has color α. Similarly, we produce a1 ∈ T . However, (a0, a1) ̸∈ Eα by
the definition of an edge in Pα. This shows that An does not solve Π.

10.4.3 Proof of the Borel Impossibility Result

We show how to use an infinite analogue of the ID graph to prove our main result in the
Borel context, Theorem 10.18. Finding such a graph/graphing is in fact much easier in
this context.

Definition 10.31. Let r > 0. Hr = (Hr, c) is an ID graphing, if

1. Hr is an acyclic locally finite Borel graphing on a standard probability measure
space (X,µ),

2. c is a Borel ∆-edge-coloring of Hr, such that every vertex is adjacent to at least
one edge of each color,
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3. for each α ∈ [∆] the µ-measure of a maximal independent set of Hα
r =

(V (Hr), E(Hr) ∩ c−1(α)) is at most r.

Proposition 10.32. For each r > 0 there exists an ID graphing Hr.

Proof. Let Hr be a local-global limit of the random graphs constructed in Theorem 10.29
(see, e.g., [202] for the basic results about local-global convergence). It is not hard to
check that this limit satisfies the required properties.

Now we are ready to prove the theorem. The proof will closely follow the argument given
in the proof of the LOCAL version, i.e., Theorem 10.17, but can be understood without
reading the latter.

Proof of Theorem 10.18. Let Π be an LCL that is not playable, and N ∈ N be the number
of all possible colorings of vertices of (Pα)α∈∆ with two colors, that is, N = 2

∑
α |V (Pα)|.

Set r := 1
N+1 .

We define a Borel acyclic ∆-regular graph G, with edges properly colored by ∆, that
does not admit a Borel solution of Π. Vertices of G are pairs (x,A), where x ∈ X is a
vertex of Hr and A is a countable subgraph of Hr that is a ∆-regular tree that contains
x and the edge coloring of Hr induces a proper edge coloring of A. We say that (x,A)
and (y,B) are connected by an α-edge in G if A = B, x, y are adjacent in A and the edge
that connects them has color α ∈ ∆.

Suppose for a contradiction that A is a Borel function that solves Π on G.

Next, we define a family of games parametrized by α ∈ [∆], x ∈ V (Hr) and S ⊆ Σ.
For the reader familiar with Marks’ construction, let us point out that for a fixed x, the
games are analogues to the ones he defines, with the following differences: allowed moves
are vertices of the ID graphing Hr and restricted by its edge relation, and the winning
condition is defined by a set of labels, not just merely one label.

So, the game
G(A,Hr)[α, x, S]

is defined as follows: Alice and Bob alternatingly label vertices of a ∆-regular rooted
tree. The root is labelled by x, and the labels come from V (Hr). In the k-th round, first
Alice labels vertices of distance k from the root on the side of the α edge. After that,
Bob labels all remaining vertices of distance k, etc. We also require the assignment of
labels to give rise to an edge-color preserving homomorphism to Hr.

It follows from the acyclicity of Hr that a play of a game determines a ∆-regular rooted
subtree ofHr to which the restriction of the edge-coloring is proper. That is, it determines
a vertex (x,A) of G. Let Alice win iff the output of A on the half-edge determined by
(x,A) and the color α is not in S.

Define the function Λx
α : Pα → {Alice,Bob} assigning the player to some S ∈ V (Pα)

who has a winning strategy in G(A,Hr)[α, x, S]. Note that, since Hr is locally finite,
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each player has only finitely many choices at each position. Thus, it follows from Borel
Determinacy Theorem that Λx

α is well defined.

Now we show the analogue of Proposition 10.30.

Proposition 10.33. (Λx
α)α∈∆ satisfies (A) in Theorem 10.16.

Proof. Assume that (Sα)α∈∆ is such that Λx
α(Sα) = Alice. This means that Alice has

winning strategy in all the games corresponding to Sα. Letting these strategies play
against each other in the obvious way, produces a vertex (x,A) of G. Since A solves Π it
has to output labeling of half edges (aα)α∈∆ ∈ N , where aα is a label on the half edge
that start at (x,A) and has color α. Note that we must have aα ̸∈ Sα by the definition
of winning strategy for Alice. This shows that (A) of Definition 10.16 holds.

Let f be defined by
x 7→ (Λx

α)α∈∆.

Note that f has a finite range. Using the fact that the allowed moves for each player
can be determined in a Borel way, uniformly in x, it is not hard to see that for each
element s in the range, f−1(s) is in the algebra generated by sets that can be obtained
by applying game quantifiers to Borel sets (for the definition see [218, Section 20.D]). It
has been shown by Solovay and independently by Fenstad-Norman [130] that such sets
are provably ∆1

2, and consequently, measurable. Therefore, f is a measurable map.

As the number of sequences of functions (Λx
α)α∈∆ is ≤ N , by the choice of r, there exists

a Borel set Y with µ(Y ) > r, such that f is constant on Y .

Since Π is not playable Proposition 10.33 gives that there is an α ∈ ∆ and S, T ∈ Pα

that violate condition (B). Recall that the measure of an independent Borel set of Hα
r is

at most r. That means that there are x, y ∈ Y such that (x, y) is an α-edge in Hr. We
let the winning strategies of Bob in the games

G(A,Hr)[α, x, S], G(A,Hr)[α, y, T ],

play against each other, where we start with an α edge with endpoints labeled by x, y.
This produces a labeling of a ∆-regular tree A with labels from Hr such that (x,A)
and (y,A) span an α-edge in Hr. Applying A on the half-edge determined by (x,A)
and the color α, we obtain a0 ∈ S. Similarly, we produce a1 ∈ T for (y,A). However,
(a0, a1) ̸∈ Eα by the definition of an edge in Pα. This shows that A does not produce a
Borel solution to Π.

Remark 10.34. One can give an alternative proof of the existence of a Borel ∆-regular
forest that does not admit a Borel homomorphism to Gk that avoids using the graphing
Hr and uses the original example described by Marks [244] instead. The reason is that
the example graphs Gk contain K∆, as discussed in the proof of Theorem 10.20. This
takes care of the “non-free” as in the argument of Marks. Then it is enough to use the
pigeonhole principle on N instead of the independence ratio reasoning.
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10.5 Separation Of Various Complexity Classes

We first show ULOCAL(poly log 1/ε) ̸= ULOCAL(O(log log 1/ε)). This shows that there
are problems such that their worst case complexity is at least Θ(log n) on finite ∆-
regular trees, but their average local complexity is constant. Second, we show that there
are problems in the class BOREL that are not in the class RLOCAL(O(log log n)) =
RLOCAL(o(log n)), on ∆-regular trees. This shows that one cannot in general hope
that results from (Borel) measurable combinatorics can be turned into very efficient
(sublogarithmic) distributed algorithms.

10.5.1 Preliminaries

We first show that there is a strong connection between randomized local complexities
and uniform local complexities. Afterwards, we introduce a generic construction that
turns any LCL into a new LCL. We later use this generic transformation to construct an
LCL that is contained in the set BOREL \ RLOCAL(O(log log n)).

Uniform vs Local Randomized Complexity:

We will now discuss the connections between uniform and randomized complexities. Note
that the easy part of the connection between the two concepts is turning uniform local
algorithms into randomized ones, as formalized in the following proposition.

Proposition 10.35. On bounded-degree graphs we have that OLOCAL(t(ε)) ⊆ RLOCAL(t(1/nO(1))).

Proof. We claim that an uniform local algorithm A with an uniform local complexity
of t(ε) can be turned into a local randomized algorithm A′ with a local complexity of
t(1/nO(1)).

The algorithm A′ simulates A on an infinite ∆-regular tree – each vertex u of degree less
than ∆ in the original tree pretends that the tree continues past its virtual half-edges
and the random bits of u are used to simulate the random bits in this virtual subtree.
Choosing ε = 1/nO(1), one gets that the probability of A′ needing to look further than
t(ε) for any vertex is bounded by 1/nO(1), as needed in the definition of the randomized
local complexity.

On the other hand, we will use the following proposition from [185]. It informally states
that the existence of any uniform local algorithm together with the existence of a suf-
ficiently fast randomized local algorithm for a given LCL Π directly implies an upper
bound on the uniform complexity of Π.

Proposition 10.36 ([185]). Let A be an uniform local algorithm solving an LCL problem
Π such that its randomized local complexity on finite ∆-regular trees is t(n) for t(n) =
o(log n). Then, the uniform local complexity of A on infinite ∆-regular trees is O(t(1/ε)).
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Theorem 10.36 makes our life simpler, since we can take a known randomized distributed
local algorithm with local complexity g(n) = o(log n) and check if it works without the
knowledge of n. If yes, this automatically implies that the uniform local complexity of
the algorithm is h(ε) = O(g(1/ε)). In particular, combining Theorem 10.36 with the
work of [94, 88] and verifying that the algorithms of Fischer and Ghaffari [133, Section
3.1.1] and Chang et al. [90, Section 5.1] work without the knowledge of n, we obtain the
following result.

Theorem 10.37. We have:

• LOCAL(O(1)) = ULOCAL(O(1))

• RLOCAL(O(log∗ n)) = ULOCAL(O(log∗ 1/ε))

• RLOCAL(O(log log n)) = ULOCAL(O(log log 1/ε))

Moreover, there are no other possible uniform local complexities for t(ε) = o(log 1/ε).

We note that the first two items are proven in [185]. For the third item it suffices by
known reductions to find an uniform algorithm solving a version of the distributed Lovász
Local Lemma (LLL) on so-called tree-structured dependency graphs considered in [90].

Proof sketch. The proof follows from Theorem 10.35 and the following ideas. The first
item follows from the fact that any local algorithm with local complexity O(1) can simply
be made uniform. More specifically, there exists a constant n0 — depending only on the
problem Π — such that the algorithm, being told the size of the graph is n0, is correct
on any graph of size n ≥ n0.

For the second item, by the work of [94, 88], it suffices to check that there is an uniform
distributed (∆ + 1)-coloring algorithm with uniform local complexity O(log∗ 1/ε). Such
an algorithm was given in [212], or follows from the work in [223] and Theorem 10.36.

Similarly, for the third item, by the work of [88] it suffices to check that there is an
uniform distributed algorithm for a specific LLL problem on trees with uniform local
complexity O(log log 1/ε). Such an algorithm can be obtained by combining the ran-
domized pre-shattering algorithm of Fischer and Ghaffari [133, Section 3.1.1] and the
deterministic post-shattering algorithm of Chang et al. [90, Section 5.1] in a graph shat-
tering framework [48], which solves the LLL problem with local complexity O(log log n).
By Theorem 10.36, it suffices to check that this algorithm can be made to work even if it
does not know the size of the graph n. We defer the details to Section 10.8. This finishes
the proof of Theorem 10.37.

Adding Paths: Before we proceed to show some separation results, we define a certain
construction that turns any LCL problem Π into a new LCL problem Π with the following
property. If the original problem Π cannot be solved by a fast local algorithm, then the
same holds for Π. However, Π might be strictly easier to solve than Π for BOREL
constructions.
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Definition 10.38. Let Π = (Σ,V, E) be an LCL. We define an LCL Π = (Σ′,V ′, E ′) as
follows. Let Σ′ be Σ together with one new label. Let V ′ be the union of V together with
any cardinality-∆ multiset that contains the new label exactly two times. Let E ′ be the
union of E together with the cardinality-2 multiset that contains the new label twice.

In other words, the new label determines doubly infinite lines in infinite ∆-regular trees,
or lines that start and end in virtual half-edges in finite ∆-regular trees. Moreover, a
vertex that is on such a line does not have to satisfy any other vertex constraint. We call
these vertices line-vertices and each edge on a line a line-edge.

Proposition 10.39. Let Π be an LCL problem such that Π ∈ RLOCAL(t(n)) for t(n) =
o(log(n)). Then also Π ∈ RLOCAL(O(t(n))).

Proof. Let A be a randomized LOCAL algorithm that solves Π in t(n) = o(log n) rounds
with probability at least 1−1/nC for some sufficiently large constant C. We will construct
an algorithm A for Π with complexity t(n) that is correct with probability 1 − 4

nC/3−2 .
The success probability of A can then be boosted by “lying to it” that the number of
vertices is nO(1) instead of n; this increases the running time by at most a constant factor
and boosts the success probability back to 1− 1/nC .

Consider a ∆-regular rooted finite tree T of depth 10t(n) and let u be its root vertex.
Note that |T | ≤ ∆10t(n)+1 < n, for n large enough.

We start by proving that when running A on the tree T , then u is most likely not a
line-vertex. This observation then allows us to turn A into an algorithm A that solves
Π on any ∆-regular input tree. Let X be the indicator of A marking u as a line-vertex.
Moreover, for i ∈ [∆], let Yi be the indicator variable for the following event. The
number of line edges in the i-th subtree of u with one endpoint at depth 5t(n) and the
other endpoint at depth 5t(n) + 1 is odd.

By a simple parity argument we can relate the value of X with the values of Y1, Y2, . . . , Y∆
as follows. If X = 0, that is, u is not a line-vertex, then all of the Yi’s have to be 0, as
each path in the tree T is completely contained in one of the ∆ subtrees of u. On the
other hand, if u is a line-vertex, then there exists exactly one path, the one containing
u, that is not completely contained in one of the ∆ subtrees of u. This in turn implies
that exactly two of the ∆ variables Y1, Y2, . . . , Y∆ are equal to 1.

The random variables Y1, Y2, . . . , Y∆ are identically distributed and mutually indepen-
dent. Hence, if P(Yi = 1) > 1

nC/3 , then the probability that there are at least 3 Yi’s

equal to 1 is strictly greater than
(

1
nC/3

)3
= 1

nC . This is a contradiction, as in that case

A does not produce a valid output, which according to our assumption happens with
probability at most 1

nC .

Thus, we can conclude that P(Yi = 1) ≤ 1
nC/3 . By a union bound, this implies that all of

the Yi’s are zero with probability at least 1
nC/3−1 , and in that case u is not a line-vertex.
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Finally, the algorithm A simulates A as if the neighborhood of each vertex was a ∆-
regular branching tree up to depth at least t(n).

It remains to analyze the probability that A produces a valid solution for the LCL prob-
lem Π. To that end, let v denote an arbitrary vertex of the input tree. The probability
that the output of v’s half edges satisfy the vertex constraint of the LCL problem Π
is at least 1 − 1/nC . Moreover, in the case that v is not a line-vertex, which happens
with probability at least 1− 1

nC/3−1 , the output of v’s half edges even satisfy the vertex
constraint of the LCL problem Π. Hence, by a union bound the vertex constraint of the
LCL problem Π around v is satisfied with probability at least 1− 2

nC/3−1 . With exactly
the same reasoning, one can argue that the probability that the output of A satisfies the
edge constraint of the LCL problem Π at a given edge is also at least 1− 2

nC/3−1 . Finally,
doing a union bound over the n vertex constraints and n− 1 edge constraints it follows
that A produces a valid solution for Π with probability at least 1− 4

nC/3−2 .

Remark 10.40. The ultimate way how to solve LCLs of the form Π is to find a spanning
forest of lines. This is because once we have a spanning forest of lines, then we might
declare every vertex to be a line-vertex and label every half-edge that is contained on a
line with the new symbol in Π. The remaining half-edges can be labeled arbitrarily in such
a way that the edge constraints are satisfied.

Put otherwise, once we are able to construct a spanning forest of lines and E ̸= ∅, where
Π = (Σ,V, E), then Π can be solved. Moreover, in that case the complexity of Π is upper
bounded by the complexity of finding the spanning forest of lines.

Lyons and Nazarov [241] showed that Πpm ∈ fiid and it is discussed in [240] that the
construction can be iterated (∆ − 2)-many times. After removing each edge that is con-
tained in one of the ∆ − 2 perfect matchings each vertex has a degree of two. Hence, it
is possible to construct a spanning forest of lines as fiid. Consequently, Π ∈ fiid for every
Π = (Σ,V, E) with E ̸= ∅.

We now formalize the proof that LOCAL(O(log∗ n)) ̸= BOREL from Section 10.2.2. Recall
that Πχ,∆ is the proper vertex ∆-coloring problem. The following claim directly follows
by Theorem 10.39 together with the fact that Πχ,∆ ̸∈ LOCAL(O(log∗ n)).

Claim 10.41. We have Πχ,∆ ̸∈ LOCAL(O(log∗ n)).

On the other hand we show that adding lines helps to find a Borel solution. This already
provides a simple example of a problem in the set BOREL \ LOCAL(O(log∗ n)).

Proposition 10.42. We have Πχ,∆ ∈ BOREL.

Proof. By [220], every Borel graph of finite maximum degree admits a Borel maximal
independent set. Let G be a Borel ∆-regular acyclic graph on a standard Borel space X.
By an iterative application of the fact above we find Borel sets A1, . . . , A∆−2 such that
A1 is a maximal independent set in G and Ai is a maximal independent set in G \

⋃
j<iAj
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for every i > 1. We think of A1, . . . , A∆−2 as color classes for the first ∆− 2 colors. Let
B = X \

⋃
i∈[∆−2]Ai and let H be the subgraph of G determined by B. It is easy to

see that the maximum degree of H is 2. In particular, H consists of finite paths, one-
ended infinite paths or doubly infinite paths. We use the extra label in Πχ,∆ to mark the
doubly infinite paths. It remains to use the remaining 2 colors in [∆] to define a proper
vertex 2-coloring of the finite and one-ended paths. It is a standard argument that this
can be done in a Borel way and it is easy to verify that, altogether, we found a Borel
Πχ,∆-coloring of G.

10.5.2 Examples and Lower Bound

In this subsection we define two LCLs and show that they are not in the class
RLOCAL(o(log n)). In the next subsection we show that one of them is in the class
ULOCAL(poly log 1/ε) and the other in the class BOREL. Both examples that we present
are based on the following relaxation of the perfect matching problem.

Definition 10.43 (Perfect matching in power-2 graph). Let Π2
pm be the perfect matching

problem in the power-2 graph, i.e., in the graph that we obtain from the input graph by
adding an edge between any two vertices that have distance at most 2 in the input graph.

We show that Π2
pm is not contained in RLOCAL(o(log n)). Theorem 10.39 then di-

rectly implies that Π2
pm is not contained in RLOCAL(o(log n)) as well. On the other

hand, we later use a one-ended spanning forest decomposition to show that Π2
pm is in

ULOCAL(poly log 1/ε) and a one or two-ended spanning forest decomposition to show
that Π2

pm is in BOREL.

We first show the lower bound result. The proof is based on a simple parity argument
as in the proof of Theorem 10.39.

Theorem 10.44. The problems Π2
pm and Π2

pm are not in the class RLOCAL(o(log n)).

Proof. Suppose that the theorem statement does not hold for Π2
pm. Then there is a

distributed randomized algorithm solving Π2
pm with probability at least 1−1/n. By telling

the algorithm that the size of the input graph is n2∆ instead of n, we can further boost the
success probability to 1− 1/n2∆. The resulting round complexity is at most a constant
factor larger, as ∆ = O(1). We can furthermore assume that the resulting algorithm A
will always output for each vertex v a vertex M(v) ̸= v in v’s 2-hop neighborhood, even
if A fails to produce a valid solution. The vertex M(v) is the vertex v decides to be
matched to, and if A produces a valid solution it holds that M(M(v)) = v.

Consider a fully branching ∆-regular tree T of depth 10t(n). Note that |T | < n for n
large enough. Let u be the root of T and Ti denote the i-th subtree of u (so that u ̸∈ Ti).
Let Si denote the set of vertices v in Ti such that both v and M(v) have distance at most
2t(n) from u. Note that M(v) is not necessarily a vertex of Ti. Let Yi be the indicator
of whether Si is even.
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Observe that, if A does not fail on the given input graph, then the definition of the Si

implies that every vertex in {u} ∪
⋃

i∈[∆] Si is matched to a vertex in {u} ∪
⋃

i∈[∆] Si.
Hence, the number of vertices in {u} ∪

⋃
i∈[∆] Si is even, which implies that we cannot

have Y1 = Y2 = . . . = Y∆ = 1 unless A fails. Note that Yi depends only on the output
of A at the vertices in Ti that have a distance of precisely 2t(n)− 1 or 2t(n) to u (as all
other vertices in Ti are guaranteed to be in Si). Hence, the events Yi = 1, i ∈ [∆], are
independent, and, since P(Y1 = 1) = . . . = P(Y∆ = 1) (as all vertices in all Ti see the
same topology in their t(n)-hop view), we obtain (P(Y1 = 1))∆ ≤ 1/n2∆, which implies
P(Yi = 1) ≤ 1/n2, for any i ∈ [∆].

Hence, with probability at least 1−∆/n2 we have Y1 = Y2 = . . . = Y∆ = 0, by a union
bound. Let v1, v2, . . . , v∆ denote the neighbors of u with vi being the root of subtree Ti.
Note that if A does not fail and Y1 = Y2 = . . . = Y∆ = 0, then it has to be the case that
u is matched to a vertex in some subtree Ti (not necessarily vi), while any vertex from
N−i(u) := {v1, v2, . . . , vi−1, vi+1, . . . , v∆} is matched with another vertex from N−i(u)
(hence, we already get that ∆ needs to be odd). This is because each subtree needs to
have at least one vertex matched to a different subtree (since |Si| is odd for each i ∈ [∆]).
If M(u) is a vertex in Ti and, for any v ∈ N−i(u), we have M(v) ∈ N−i(u), we say that
u orients the edge going to vi outwards.

Consider a path (u0 = u, u1, . . . , uk), where k = 2t(n) + 3. By the argument provided
above, the probability that u orients an edge outwards is at least 1−∆/n2−1/n2∆, and,
if u orients an edge outwards, the probability that this edge is not uu1 is (∆ − 1)/∆,
by symmetry. Hence, we obtain (for sufficiently large n) that P(E1) ≥ 1/2, where E1
denotes the event that vertex u orients an edge different from uu1 outwards. With an
analogous argument, we obtain that P(E2) ≥ 1/2, where E2 denotes the event that vertex
uk orients an edge different from ukuk−1 outwards. Since E1 and E2 are independent (due
to the fact that the distance between any neighbor of u and any neighbor of uk is at least
2t(n) + 1), we obtain P(E1 ∩ E2) ≥ 1/4. Moreover, the probability that all vertices in
{u1, . . . , uk−1} orient an edge outwards is at least 1− (2t(n) + 2)(∆/n2 +1/n2∆), which
is at least 4/5 for sufficiently large n. Thus, by a union bound, there is a probability of
at least 1− 3/4− 1/5− 1/n2∆ that A does not fail, all vertices in (u, u1, . . . , uk) orient
an edge outwards, and the outward oriented edges chosen by u and uk are not uu1 and
ukuk−1, respectively. For sufficiently large n, the indicated probability is strictly larger
than 0. We will obtain a contradiction and conclude the proof for Π2

pm by showing that
there is no correct solution with the described properties.

Assume in the following that the solution provided by A is correct and u, u1, . . . , uk
satisfy the mentioned properties. Since u orients an edge different from uu1 outwards,
u1 must be matched to a neighbor of u, which implies that u1 orients edge u1u outwards.
Using an analogous argumentation, we obtain inductively that uj orients edge ujuj−1
outwards, for all 2 ≤ j ≤ k. However, this yields a contradiction to the fact that the
edge that uk orients outwards is different from ukuk−1, concluding the proof (for Π2

pm).

The theorem statement for Π2
pm follows by applying Theorem 10.39.
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10.5.3 Upper Bounds Using Forest Decompositions

We prove an upper bound for the problems Π2
pm and Π2

pm defined in the previous sub-
section. We use a technique of decomposing the input graph in a spanning forest with
some additional properties, i.e., one or two ended. This technique was used in [107] to
prove Brooks’ theorem in a measurable context. Namely, they proved that if G is a Borel
∆-regular acyclic graph and µ is a Borel probability measure, then it is possible to erase
some edges of G in such a way that the remaining graph is a one-ended spanning forest on
a µ-conull set. It is not hard to see that one can solve Π2

pm on one-ended trees in an in-
ductive manner, starting with the leaf vertices. Consequently we have Π2

pm ∈ MEASURE.
We provide a quantitative version of this result and thereby show that the problem of
constructing a one-ended forest is contained in ULOCAL(poly log 1/ε). A variation of the
construction shows that it is possible to find a one or two-ended spanning forest in a Borel
way. This allows us to show that Π2

pm ∈ BOREL. As an application of the decomposition
technique we show that Vizing’s theorem, i.e., proper ∆ + 1 edge coloring Πχ′,∆+1, for
∆ = 3 is in the class ULOCAL(poly log 1/ε).

Uniform Complexity of the One-Forest Decomposition

We start with the definition of a one-ended spanning forest. It can be viewed as a
variation of the edge grabbing problem Πedgegrab. Namely, if a vertex v grabs an incident
edge e, then we think of e as being oriented away from v and v selecting the other
endpoint of e as its parent. Suppose that T is a solution of Πedgegrab on T∆. We denote
with T ←(v) the subtree with root v.

Definition 10.45 (One-ended spanning forest). We say that a solution T of Πedgegrab is
a one-ended spanning forest if T ←(v) is finite for every v ∈ T∆.

Note that on an infinite ∆-regular tree every connected component of a one-ended span-
ning forest must be infinite. Furthermore, recall that we discussed above that it is possible
to construct a one-ended spanning forest in MEASURE by [107]. Next we formulate our
quantitative version.

Theorem 10.46. The one-ended spanning forest can be constructed by an uniform local
algorithm with an uniform local complexity of O(poly log 1/ε). More precisely, there is
an uniform distributed algorithm A that computes a one-ended spanning forest and if we
define R(v) to be the smallest coding radius that allows v to compute T ←(v), then

P (R(v) > O(poly log 1/ε)) ≤ ε.

The formal proof of Theorem 10.46 can be found in Section 10.5.4. We first show the main
applications of the result. Namely, we show that Π2

pm can be solved inductively starting
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from the leaves of the one-ended trees. This proves that Π2
pm is in ULOCAL(poly log 1/ε)

and hence ULOCAL(poly log 1/ε) \ RLOCAL(o(log n)) is non-empty.

Theorem 10.47. The problem Π2
pm is in the class MEASURE and ULOCAL(O(poly log 1/ε)).

Proof. First we show that every infinite one-ended directed tree T admits an inductive
solution from the leaves to the direction of infinity. More precisely, we define a power-2
perfect matching on the infinite one-ended directed tree T such that the following holds.
Let v be an arbitrary vertex and T←(v) the finite subtree rooted at v. Then, all vertices
in T←(v), with the possible exception of v, are matched to a vertex in T←(v). Moreover,
for each vertex in T←(v) \ {v}, it is possible to determine to which vertex it is matched
by only considering the subtree T←(v). We show that it is possible to define a perfect
matching in that way by induction on the height of the subtree T←(v).

We first start with the leaves and declare them as unmatched in the first step of the
induction.

Now, consider an arbitrary vertex v with R ≥ 1 children that we denote by v1, v2, . . . , vR.
By the induction hypothesis, all vertices in T←(vi) \ {vi} are matched with a vertex in
T←(vi) for i ∈ [R] and it is possible to compute that matching given T←(v). However,
some of the children of v are possibly still unmatched. If the number of unmatched
children of v is even, then we simply pair them up in an arbitrary but fixed way and we
leave v unmatched. Otherwise, if the number of unmatched children of v is odd, we pair
up v with one of its unmatched children and we pair up all the remaining unmatched
children of v in an arbitrary but fixed way. This construction clearly satisfies the criteria
stated above. In particular, the resulting matching is a perfect matching, as every vertex
gets matched eventually.

By Theorem 10.46 there is an uniform distributed algorithm of complexity O(poly log 1/ε)
that computes a one-ended spanning forest T on T∆. Moreover, every vertex v ∈ T∆

can compute where it is matched with an uniform local complexity of O(poly log 1/ε).
This follows from the discussion above, as a vertex v can determine where it is matched
once it has computed T ←(w) for each w in its neighborhood. Hence, Π2

pm is in the class
ULOCAL(O(poly log 1/ε)).

Similarly, the one-ended spanning forest T ⊆ G can be constructed in the class MEASURE
by [107]. By the discussion above, this immediately implies that Π2

pm is in the class
MEASURE.

Decomposition in BOREL

Next, we show that a similar, but weaker, decomposition can be done in a Borel way.
Namely, we say that a subset of edges of an acyclic infinite graph G, denoted by T , is a one
or two-ended spanning forest if every vertex v ∈ G is contained in an infinite connected
component of T and each infinite connected component of T has exactly one or two
directions to infinity. Let S be such a connected component. Note that if S has one end,
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then we can solve Π2
pm on S as above. If S has two ends, then S contains a doubly infinite

path P with the property that erasing P splits S \ P into finite connected components.
In order to solve Π2

pm we simply solve Π2
pm on the finite connected components of S \ P

(with some of the vertices in S \ P being potentially matched with vertices on the path
P ) and declare vertices on P to be line vertices.

The high-level idea to find a one or two-ended spanning forest is to do the same con-
struction as in the measure case and understand what happens with edges that do not
disappear after countably many steps. A slight modification in the construction guaran-
tees that what remains are doubly infinite paths.

Theorem 10.48. Let G be a Borel ∆-regular forest. Then there is a Borel one or two-
ended spanning forest T ⊆ G.

The proof of Theorem 10.48 can be found in Section 10.9. We remark that the notation
used in the proof is close to the notation in the proof that gives a measurable construction
of a one-ended spanning forest in [107]. Next, we show more formally how Theorem 10.48
implies that Π2

pm ∈ BOREL.

Theorem 10.49. The problem Π2
pm is in the class BOREL.

Proof. Let T be the one or two-ended spanning forest given by Theorem 10.48 and S be
a connected component of T . If S is one-ended, then we use the first part of the proof
of Theorem 10.47 to find a solution of Π2

pm on S. Since deciding that S is one-ended as
well as computing an orientation towards infinity can be done in a Borel way, this yields
a Borel labeling.

Suppose that S is two-ended. Then, there exists a doubly infinite path P in S with the
property that the connected components of S \ P are finite. Moreover, it is possible to
detect P in a Borel way. That is, declaring the vertices on P to be line vertices and using
the special symbol in Π2

pm for the half-edges on P yields a Borel measurable labeling.
Wow, if you are reading this, send me mail and I will buy you a chocolate. Let C ̸= ∅
be one of the finite components in S \ P and v ∈ C be the vertex of distance 1 from
P . Orient the edges in C towards v, this can be done in a Borel way since v is uniquely
determined for C. Then the first part of the proof of Theorem 10.47 shows that one can
inductively find a solution to Π2

pm on C in such a way that all vertices, possibly up to
v, are matched. If v is matched, then we are done. If v is not matched, then we add
the edge that connects v with P to the matching. Note that it is possible that multiple
vertices are matched with the same path vertex, but this is not a problem according to
the definition of Π2

pm. It follows that this defines a Borel function on H(G) that solves
Π2

pm.
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Vizing’s Theorem for ∆ = 3

Finding a measurable or local version of Vizing’s Theorem, i.e., proper edge (∆ + 1)-
coloring Πχ′,∆+1, was studied recently in [183, 64].

It is however not known, even on trees, whether Πχ′,∆+1 is in RLOCAL(O(log log n)).
Here we use the one-ended forest construction to show that Πχ′,∆+1 is in the class
ULOCAL(poly log 1/ε) for ∆ = 3.

Proposition 10.50. Let ∆ = 3. We have Πχ′,∆+1 ∈ ULOCAL(poly log 1/ε).

Proof sketch. By Theorem 10.46, we can compute a one-ended forest decomposition T
with uniform local complexity O(poly log 1/ε). Note that every vertex has at least one
edge in T , hence the edges in G \ T form paths. These paths can be 3-edge colored
by using the uniform version of Linial’s coloring algorithm. This algorithm has an
uniform local complexity of O(log∗ 1/ε). By Theorem 10.9, the overall complexity is
O(poly log(∆log∗ 1/ε/ε) + log∗ 1/ε)) = O(poly log 1/ε).

Finally, we color the edges of T . We start from the leaves and color the edges inductively.
In particular, whenever we consider a vertex v we color the at most two edges in T←(v)
below v. Note that there always is at least one uncolored edge going from v in the
direction of T . Hence, we can color the at most two edges below v in T←(v) greedily –
each one neighbors with at most 3 colored edges at any time.

10.5.4 Constructing One-ended Forests

In this section we formally prove Theorem 10.46.

Theorem 10.46. The one-ended spanning forest can be constructed by an uniform local
algorithm with an uniform local complexity of O(poly log 1/ε). More precisely, there is
an uniform distributed algorithm A that computes a one-ended spanning forest and if we
define R(v) to be the smallest coding radius that allows v to compute T ←(v), then

P (R(v) > O(poly log 1/ε)) ≤ ε.

We follow the construction of the one-ended spanning forest in [107]. The construction
proceeds in rounds. Before each round, some subset of the vertices have already decided
which incident edge to grab, and we refer to these vertices as settled vertices. All the
remaining vertices are called unsettled. The goal in each round is to make a large fraction
of the unsettled vertices settled. To achieve this goal, our construction relies on certain
properties that the graph induced by all the unsettled vertices satisfies.

One important such property is that the graph induced by all the unsettled vertices is
expanding. That is, the number of vertices contained in the neighborhood around a given
vertex grows exponentially with the radius. The intuitive reason why this is a desirable
property is the following. Our algorithm will select a subset of the unsettled vertices and
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clusters each unsettled vertex to the closest selected vertex. As the graph is expanding
and any two vertices in the selected subset are sufficiently far away, there will be a lot of
edges leaving a given cluster. For most of these inter-cluster edges, both of the endpoints
will become settled. This in turn allows one to give a lower bound on the fraction of
vertices that become settled in each cluster.

To ensure that the graph induced by all the unsettled vertices is expanding, a first
condition we impose on the graph induced by all the unsettled vertices is that it has a
minimum degree of at least 2. While this condition is a first step in the right direction,
it does not completely suffice to ensure the desired expansion, as an infinite path has a
minimum degree of 2 but does not expand sufficiently. Hence, our algorithm will keep
track of a special subset of the unsettled vertices, the so-called hub vertices. Each hub
vertex has a degree of ∆ in the graph induced by all the unsettled vertices. That is, all
of the neighbors of a hub vertex are unsettled as well. Moreover, each unsettled vertex
has a bounded distance to the closest hub vertex, where the specific upper bound on
the distance to the closest hub vertex increases with each round. As we assume ∆ > 2,
the conditions stated above suffice to show that the graph induced by all the unsettled
vertices expands.

Next, we explain in more detail how a vertex decides which edge to grab. Concretely, if
a vertex becomes settled, it grabs an incident edge such that the other endpoint of that
edge is strictly closer to the closest unsettled vertex as the vertex itself. For example, if a
vertex becomes settled and there is exactly one neighbor that is still unsettled, then the
vertex will grab the edge that the vertex shares with its unsettled neighbor. Grabbing
edges in that way, one can show two things. First, for a settled vertex v, the set T←(v)
of vertices behind v does not change once v becomes settled. The intuitive reason for
this is that the directed edges point towards the unsettled vertices and therefore the
unsettled vertices lie before v and not after v. Moreover, one can also show that T←(v)
only contains finitely many vertices. The reason for this is that at the moment a vertex
v becomes settled, there exists an unsettled vertex that is sufficiently close to v, where
the exact upper bound on that distance again depends on the specific round in which v
becomes settled.

What remains to be discussed is at which moment a vertex decides to become settled. As
written above, in each round the algorithm considers a subset of the unsettled vertices
and each unsettled vertex is clustered to the closest vertex in that subset. This subset
only contains hub vertices and it corresponds to an MIS on the graph with the vertex
set being equal to the set of hub vertices and where two hub vertices are connected by
an edge if they are sufficiently close in the graph induced by all the unsettled vertices.
Now, each cluster center decides to connect to exactly ∆ different neighboring clusters,
one in each of its ∆ subtrees. Remember that as each cluster center is a hub vertex, all
of its neighbors are unsettled as well. Now, each unsettled vertex becomes settled except
for those that lie on the unique path between two cluster centers such that one of the
cluster centers decided to connect to the other one.
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Construction: The algorithm proceeds in rounds. After each round, a vertex is either
settled or unsettled and a settled vertex remains settled in subsequent rounds. Moreover,
some unsettled vertices are so-called hub vertices. We denote the set of unsettled, settled
and hub vertices after the i-th round with Ui, Si and Hi, respectively. We set U0 = H0 =
V prior to the first round and we always set Si = V \Ui. Moreover, we denote with Oi a
partial orientation of the edges of the infinite ∆-regular input tree T . In the beginning,
O0 corresponds to the partial orientation with no oriented edges. Each vertex is incident
to at most 1 outwards oriented edge in Oi. If a vertex is incident to an outwards oriented
edge in Oi, then the other endpoint of the edge will be its parent in the one-ended forest
decomposition. For each vertex v in Si, we denote with Tv,i the smallest set that satisfies
the following conditions. First, v ∈ Tv,i. Moreover, if u ∈ Tv,i and {w, u} is an edge that
according to Oi is oriented from w to u, then w ∈ Tv,i. We later show that Tv,i contains
exactly those vertices that are contained in the subtree T ←(v).

After the i-th round, the construction satisfies the following invariants.

1. For each v ∈ Si−1, we have Tv,i = Tv,i−1.

2. Let v be an arbitrary vertex in Si. Then, Tv,i contains finitely many vertices and
furthermore Tv,i ⊆ Si.

3. The minimum degree of the graph T [Ui] is at least 2 and each vertex in Hi has a
degree of ∆ in T [Ui].

4. Each vertex in Ui has a distance of at most
∑i

j=0 dj to the closest vertex in Hi in
the graph T [Ui].

We now describe how to compute Ui, Si, Hi and Oi. Note that we can assume that the
invariants stated above are satisfied after the (i− 1)-th round. In the i-th round we have
a parameter di that we later set to 22

i .

1. Hi is a subset of Hi−1 that satisfies the following property. No two vertices in Hi

have a distance of at most di in T [Ui−1]. Moreover, each vertex in Hi−1 \Hi has a
distance of at most di to the closest vertex in Hi in the graph T [Ui−1]. Note that
we can compute Hi by computing an MIS in the graph with vertex set Hi−1 and
where two vertices are connected iff they have a distance of at most di in the graph
T [Ui−1]. Hence, we can use Ghaffari’s MIS algorithm [150] to compute the set Hi.

2. Next, we describe how to compute Ui. We assign each vertex u ∈ Ui−1 to the
closest vertex in the graph T [Ui−1] that is contained in Hi, with ties being broken
arbitrarily. We note that there exists a node in Hi with a distance of at most
(
∑i−1

j=0 dj) + di to u. To see why, note that Invariant (4) from round i− 1 implies
that there exists a vertex w in Hi−1 with a distance of at most

∑i−1
j=0 dj to u. We are

done if w is also contained in Hi. If not, then it follows from the way we compute
Hi that there exists a vertex in Hi with a distance of at most di to w, but then
the triangle inequality implies that the distance from u to that vertex is at most
(
∑i−1

j=0 dj) + di, as desired. For each vertex v ∈ Hi, we denote with C(v) the set of
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all vertices in Ui−1 that got assigned to v. Now, let Ev denote the set of edges that
have exactly one endpoint in C(v). We can partition Ev into Ev,1⊔Ev,2⊔. . .⊔Ev,∆,
where for ℓ ∈ [∆], Ev,ℓ contains all the edges in Ev that are contained in the ℓ-th
subtree of v. Invariants (3) and (4) after the (i− 1)-th round imply that Ev,ℓ ̸= ∅.
Moreover, Ev,ℓ contains only finitely many edges, as we have shown above that the
cluster radius is upper bounded by

∑i
j=0 dj .

Now, for ℓ ∈ [∆], we choose an edge eℓ uniformly at random from the set Ev,ℓ.
Let uℓ ̸= v be the unique vertex in Hi such that one endpoint of eℓ is contained
in C(uℓ). We denote with Pv,ℓ the set of vertices that are contained in the unique
path between v and uℓ. Finally, we set Ui =

⋃
v∈Hi,ℓ∈[∆] Pv,ℓ.

3. It remains to describe how to compute the partial orientation Oi. All edges that
are oriented in Oi−1 will be oriented in the same direction in Oi. Additionally,
we orient for each vertex u that got settled in the i-th round, i.e., u ∈ Si ∩ Ui−1,
exactly one incident edge away from u. Let w be the closest vertex to u in T [Ui−1]
that is contained in Ui, with ties being broken arbitrarily. We note that it follows
from the discussions above that the distance between u and w in the graph T [Ui−1]
is at most

∑i
j=0 dj . We now orient the edge incident to u that is on the unique

path between u and w outwards. We note that this orientation is well-defined
in the sense that we only orient edges that were not oriented before and that we
don’t have an edge such that both endpoints of that edge want to orient the edge
outwards.

We now prove by induction that our procedure satisfies all the invariants. Prior to the
first round, all invariants are trivially satisfied. Hence, it remains to show that the
invariants hold after the i-th round, given that the invariants hold after the (i − 1)-th
round.

1. Let v ∈ Si−1 be arbitrary. As Oi is an extension of Oi−1, it follows from the
definition of Tv,i−1 and Tv,i that Tv,i−1 ⊆ Tv,i. Now assume that Tv,i ̸⊆ Tv,i−1.
This would imply the existence of an edge {u,w} such that u ∈ Tv,i−1 and the edge
was oriented during the i-th round from w to u. As u ∈ Tv,i−1, Invariant (2) from
the (i − 1)-th round implies u ∈ Si−1. This is a contradiction as during the i-th
round only edges with both endpoints in Ui−1 can be oriented. Therefore it holds
that Tv,i = Tv,i−1, as desired.

2. Let v ∈ Si be arbitrary. If it also holds that v ∈ Si−1, then the invariant from
round i− 1 implies that Tv,i−1 = Tv,i contains finitely many vertices and Tv,i−1 ⊆
Si−1 ⊆ Si. Thus, it suffices to consider the case that v ∈ Si ∩ Ui−1. Note that
Tv,i ∩ Ui = ∅. Otherwise there would exist an edge that is oriented away from a
vertex in Ui according to Oi, but this cannot happen according to the algorithm
description. Hence, Tv,i ⊆ Si. Now, for the sake of contradiction, assume that
Tv,i contains infinitely many vertices. From the definition of Tv,i, this implies that
there exists a sequence of vertices (vk)k≥1 with v = v1 such that for each k ≥ 1,
{vk+1, vk} is an edge in T that is oriented from vk+1 to vk according to Oi. For
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each k ≥ 1 we have vk ∈ Si. We furthermore know that vk ∈ Ui−1, as otherwise
Tvk,i = Tvk,i−1 would contain infinitely many vertices, a contradiction. From the
way we orient the edges, a simple induction proof implies that the closest vertex of
vk in the graph T [Ui−1] that is contained in Ui has a distance of at least k. However,
we previously discussed that the distance between vk and the closest vertex in Ui in
the graph T [Ui−1] is at most

∑i
j=0 dj . This is a contradiction. Hence, Tv,i contains

finitely many vertices.

3. It follows directly from the description of how to compute Ui and Hi that the
minimum degree of the graph T [Ui] is at least 2 and that each vertex in Hi has a
degree of ∆ in T [Ui].

4. Let u ∈ Ui be arbitrary. We need to show that u has a distance of at most
∑i

j=0 dj
to the closest vertex in Hi in the graph T [Ui]. Let v be the vertex with u ∈ C(v).
We know that there is no vertex in Hi that is closer to u in T [Ui−1] than v. Hence,
the distance between u and v is at most

∑i
j=0 dj in the graph T [Ui−1]. Moreover,

from the description of how we compute Ui, it follows that all the vertices on the
unique path between u and v are contained in Ui. Hence, each vertex in Ui has
a distance of at most

∑i
j=0 dj to the closest vertex in Hi in the graph T [Ui], as

desired.

We derive an upper bound on the coding radius of the algorithm in three steps. First,
for each i ∈ N and ε > 0, we derive an upper bound on the coding radius for computing
with probability at least 1− ε for a given vertex in which of the sets Si, Ui and Hi it is
contained in and for each incident edge whether and how it is oriented in Oi, given that
each vertex receives as additional input in which of the sets Si−1, Ui−1 and Hi−1 it is
contained in and for each incident edge whether and how it is oriented in Oi−1. Given
this upper bound on the coding radius, we can use the sequential composition lemma
(Theorem 10.9) and a simple induction proof to give an upper bound on the coding radius
for computing with probability at least 1− ε for a given vertex in which of the sets Si, Ui

and Hi it is contained in and for each incident edge whether and how it is oriented in
Oi, this time without providing any additional input.

Second, we analyze after how many rounds a given vertex is settled with probability at
least 1− ε for a given ε > 0.

Finally, we combine these two upper bounds to prove Theorem 10.46.

Lemma 10.51. For each i ∈ N and ε ∈ (0, 0.01], let gi(ε) denote the smallest coding
radius such that with probability at least 1 − ε one knows for a given vertex in which of
the sets Si, Ui and Hi it is contained in and for each incident edge whether and how it
is oriented in Oi, given that each vertex receives as additional input in which of the sets
Si−1, Ui−1 and Hi−1 it is contained in and for each incident edge whether and how it is
oriented in Oi−1. It holds that gi(ε) = O(d2i log(∆/ε)).

Proof. When running Ghaffari’s uniform MIS algorithm on some graph G′ with maximum
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degree ∆′, each vertex knows with probability at least 1 − ε whether it is contained in
the MIS or not after O(log(∆′)+ log(1/ε)) communication rounds in G′ ([150], Theorem
1.1). For the MIS computed during the i-th round, ∆′ = ∆O(di) and each communication
round in G′ can be simulated with O(di) communication rounds in the tree T . Hence,
to know for a given vertex with probability at least 1 − ε whether it is contained in
the MIS or not, it suffices consider the O(d2i log(∆) + di log(1/ε))-hop neighborhood
around that vertex. Now, let u be an arbitrary vertex. In order to compute in which
of the sets Si, Ui and Hi u is contained in and for each incident edge of u whether and
how it is oriented in Oi, we not only need to know whether u is in the MIS or not.
However, it suffices if we know for all the vertices in the O(di)-hop neighborhood of u
whether they are contained in the MIS or not (on top of knowing for each vertex in the
neighborhood in which of the sets Si−1, Ui−1 and Hi−1 it is contained in and for each
incident edge whether and how it is oriented in Oi−1). Hence, by a simple union bound
over the at most ∆O(di) vertices in the O(di)-hop neighborhood around u, we obtain
gi(ε) = O(di) +O(d2i log(∆) + di log(∆

O(di)/ε)) = O(d2i log(∆/ε)).

Lemma 10.52. For each i ∈ N and ε ∈ (0, 0.01], let hi(ε) denote the smallest coding
radius such that with probability at least 1 − ε one knows for a given vertex in which of
the sets Si, Ui and Hi it is contained in and for each incident edge whether and how it
is oriented in Oi. Then, there exists a constant c independent of ∆ such that hi(ε) ≤
22

i+2 · (c log(∆))i log(∆/ε).

Proof. By prove the statement by induction on i. For a large enough constant c, it holds
that h1(ε) ≤ 22

3 · (c log(∆)) log(∆/ε). Now, consider some arbitrary i and assume that
hi(ε) ≤ 22

i+2 · (c log(∆))i log(∆/ε) for some large enough constant c. We show that this
implies hi+1(ε) ≤ 22

(i+1)+2 · (c log(∆))i+1 log(∆/ε). By the sequential composition lemma
(Theorem 10.9) and assuming that c is large enough, we have

hi+1(ε) ≤ hi((ε/2)/∆
gi+1(ε/2)+1) + gi+1(ε/2)

≤ 22
i+2 · (c log(∆))i log(∆ ·∆gi+1(ε/2)+1/(ε/2)) + gi+1(ε/2)

≤ 2 · 22i+2 · (c log(∆))i log(∆ ·∆gi+1(ε/2)+1/(ε/2))

≤ 2 · 22i+2 · (c log(∆))i log(∆(c/10)·22i+2
log(∆/ε)/(ε/2))

≤ 4 · 22i+2 · (c log(∆))i log(∆(c/10)·22i+2
log(∆/ε))

≤ (4/10) · 22i+2 · 22i+2
(c log(∆))i+1 log(∆/ε)

≤ 22
(i+1)+2 · (c log(∆))i+1 log(∆/ε),

as desired.
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Lemma 10.53. Let u be an arbitrary vertex. For each ε ∈ (0, 0.01], let f(ε) denote the
smallest i ∈ N such that u is settled after the i-th round with probability at least 1 − ε.
There exists a fixed c ∈ R independent of ∆ such that f(ε) ≤ ⌈1 + log log 1

c log∆(1/ε)⌉.

Proof. Let i ∈ N be arbitrary. We show that a given vertex is settled after the i-th
round with probability at least 1 − O(1/∆Ω(di/di−1)). For the sake of analysis, we run
the algorithm on a finite ∆-regular high-girth graph instead of an infinite ∆-regular tree.
For now, we additionally assume that no vertex realizes that we don’t run the algorithm
on an infinite ∆-regular tree. That is, we assume that for each vertex the coding radius
to compute all its local information after the i-th round is much smaller than the girth
of the graph.

With this assumption, we give a deterministic upper bound on the fraction of vertices
that are not settled after the i-th round. On the one hand, the number of vertices that
are not settled after the i-th round can be upper bounded by |Hi| ·∆ ·O(di). On the other
hand, we will show that the fraction of vertices that are contained in Hi is upper bounded
by 1/∆Ω(di/di−1). We do this by showing that C(v) contains ∆Ω(di/di−1) many vertices
for a given v ∈ Hi. Combining these two bounds directly implies that the fraction of
unsettled vertices is smaller than

∆ ·O(di)

∆Ω(di/di−1)
= 1/∆Ω(di/di−1).

Let v ∈ Hi be arbitrary. We show that |C(v)| = ∆Ω(di/di−1). Using Invariants (3) and
(4) together with a simple induction argument, one can show that there are at least
(∆−1)⌊D/((2

∑i−1
j=0 dj)+1)⌋ vertices contained in Hi−1 and whose distance to v is at most D

in the graph induced by the vertices in Ui−1. Furthermore, from the way we defined the
clustering C(v) and the fact that two vertices in Hi have a distance of at least di in the
graph T [Ui−1], it follows that all vertices in Ui−1 having a distance of at most di/2 − 1
to v are contained in the cluster C(v). Hence, the total number of vertices in C(v) is at
least (∆− 1)⌊(di/2−1)/((2

∑i−1
j=0 dj)+1)⌋ = ∆Ω(di/di−1), as promised.

Now we remove the assumption that no vertex realizes that we don’t run the algorithm
on an infinite ∆-regular tree. If a vertex does realize that we don’t run the algorithm on
an infinite ∆-regular tree, then we consider the vertex as being unsettled after the i-th
round. By considering graphs with increasing girth, we can make the expected fraction
of vertices that realize that we are not on an infinite ∆-regular tree arbitrarily small.
Combining this observation with the previous discussion, this implies that the expected
fraction of vertices that are not settled after the i-th round is at most 1/∆Ω(di/di−1). By
symmetry, each vertex has the same probability of being settled after the i-th round.
Hence, the probability that a given vertex is settled after the i-th round when run on a
graph with sufficiently large girth is 1−1/∆Ω(di/di−1), and the same holds for each vertex
when we run the algorithm on an infinite ∆-regular tree. Thus, there exists a constant c
such that the probability that a given vertex is unsettled after the i-th round is at most
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1/∆c·di/di−1 = 1/∆c·22i−1

. Setting i = ⌈1 + log log 1
c log∆(1/ε)⌉ finishes the proof.

We are now finally ready to finish the proof of Theorem 10.46. Let u be an arbitrary
vertex and ε ∈ (0, 0.01]. We need to compute an upper bound on the coding radius that
is necessary for u to know all the vertices in T ←(u) with probability at least 1 − ε. To
compute such an upper bound for the required coding radius it suffices to find an i∗ and
an R∗ such that the following holds. First, u is settled after i∗ rounds with probability at
least 1−ε/2. Second, u knows for each edge in its O(di∗)-hop neighborhood whether it is
oriented in the partial orientation Oi∗ , and if yes, in which direction, by only considering
its R∗-hop neighborhood with probability at least 1 − ε/2. By a union bound, both
of these events occur with probability at least 1 − ε. Moreover, if both events occur u
knows all the vertices in the set T ←(u). The reason is as follows. If u is settled after
round i∗, then it follows from the previous analysis that only vertices in the O(di∗)-hop
neighborhood of u can be contained in T ←(u). Moreover, for each vertex in its O(di∗)-
hop neighborhood, u can determine if the vertex is contained in T ←(u) if it knows all the
edge orientations on the unique path between itself and that vertex after the i∗-th round.
Hence, it remains to find concrete values for i∗ and R∗. According to Theorem 10.53, we
can choose i∗ = ⌈1 + log log 1

c log∆(2/ε)⌉ for some large enough constant c. Moreover, it
follows from a union bound that all vertices in the O(di∗)-hop neighborhood around u
know with probability at least 1− ε/2 the orientation of all its incident edges according
to Oi∗ by only considering their hi∗((ε/2)/∆O(di∗ ))-hop neighborhood. Hence, we can set

R∗ = O(di∗) + hi∗((ε/2)/∆
O(di∗ ))

≤ O(di∗) + 22
i∗+2 · (c log(∆))i

∗
log(∆O(di∗ )/ε)

= O(22
i∗ · 22i

∗+2
(c log(∆))i

∗
log(∆/ε))

= O(22
i∗+3

(c log(∆))i
∗
log(∆/ε))

= O(22
log log 1

c log(2/ε)+5

(c log(∆))log log
1
c
log(2/ε)+2 log(∆/ε))

= log(1/ε)32 · log(∆/ε) · log log(1/ε)O(log log(∆)).

As ∆ = O(1), it therefore holds that

P (R(v)) = poly(log(1/ε)) ≥ 1− ε,

as desired.

10.6 Equivalence of Local Algorithms and Baire Solutions

In this section, we show that on ∆-regular trees the classes BAIRE and LOCAL(O(log(n)))
are the same. At first glance, this result looks rather counter-intuitive. This is because
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in finite ∆-regular trees every vertex can see a leaf of distance O(log(n)), while there
are no leaves at all in an infinite ∆-regular tree. However, there is an intuitive reasons
why these classes are the same: in both setups there is a technique to decompose an
input graph into a hierarchy of subsets. Furthermore, the existence of a solution that
is defined inductively with respect to these decompositions can be characterized by the
same combinatorial condition of Bernshteyn [62]. We start with a high-level overview of
the decomposition techniques used in both contexts.

Rake and Compress: The hierarchical decomposition in the context of distributed com-
puting is based on a variant of a decomposition algorithm of Miller and Reif [254]. Their
original decomposition algorithm works as follows. Start with a tree T , and repeatedly
apply the following two operations alternately: Rake (remove all degree-1 vertices) and
Compress (remove all degree-2 vertices). Then O(log n) iterations suffice to remove all
vertices in T [254]. To view it another way, this produces a decomposition of the vertex
set V into 2L− 1 layers

V = V R
1 ∪ V C

1 ∪ V R
2 ∪ V C

2 ∪ V R
3 ∪ V C

3 ∪ · · · ∪ V R
L ,

with L = O(log n), where V R
i is the set of vertices removed during the i-th Rake operation

and V C
i is the set of vertices removed during the i-th Compress operation. We will use a

variant [88] of this decomposition in the proof of Theorem 10.58.

Variants of this decomposition turned out to be useful in designing LOCAL algorithms [88,
90, 85]. In our context, we assume that the given LCL satisfies a certain combinatorial
condition and then find a solution inductively, in the reversed order of the construction of
the decomposition. Namely, in the Rake step we want to be able to existentially extend
the inductive partial solution to all relative degree 1-vertices (each v ∈ V R

i has degree at
most 1 in the subgraph induced by V R

i ∪ · · · ∪ V R
L ) and in the Compress step we want to

extend the inductive partial solution to paths with endpoints labeled from the induction
(the vertices in V C

i form degree-2 paths in the subgraph induced by V C
i ∪ · · · ∪ V R

L ).

TOAST: Finding a hierarchical decomposition in the context of descriptive combinatorics
is tightly connected with the notion of Borel hyperfiniteness. Understanding what Borel
graphs are Borel hyperfinite is a major theme in descriptive set theory [120, 144]. It is
known that grids, and generally polynomial growth graphs are hyperfinite, while, e.g.,
acyclic graphs are not in general hyperfinite [214]. A strengthening of hyperfiniteness
that is of interest to us is called a toast [145, 105]. A q-toast, where q ∈ N, of a graph
G is a collection D of fintie subsets of G with the property that (i) every pair of vertices
is covered by an element of D and (ii) the boundaries of every D ̸= E ∈ D are at least
q apart. The idea to use a toast structure to solve LCLs appears in [105] and has many
applications since then [145, 245]. This approach has been formalized in [185], where the
authors introduce TOAST algorithms. Roughly speaking, an LCL Π admits a TOAST
algorithm if there is q ∈ N and a partial extending function (the function is given a finite
subset of a tree that is partially colored and outputs an extension of this coloring on the
whole finite subset) that has the property that whenever it is applied inductively to a
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q-toast, then it produces a Π-coloring. An advantage of this approach is that once we
know that a given Borel graph admits, e.g., a Borel toast structure and a given LCL
Π admits a TOAST algorithm, then we may conclude that Π is in the class BOREL.
Similarly for MEASURE, BAIRE or OLOCAL, we refer the reader to [185] for more details
and results concerning grids.

In the case of trees there is no way of constructing a Borel toast in general, however, it is a
result of Hjorth and Kechris [204] that every Borel graph is hyperfinite on a comeager set
for every compatible Polish topology. A direct consequence of [243, Lemma 3.1] together
with a standard construction of toast via Voronoi cells gives the following strengthening
to toast. We include a sketch of the proof for completeness.

Proposition 10.54. Let G be a Borel graph on a Polish space (X, τ) with degree bounded
by ∆ ∈ N. Then for every q > 0 there is a Borel G-invariant τ -comeager set C on which
G admits a Borel q-toast.

Proof sketch. Let {An}n∈N be a sequence of MIS with parameter f(n) as in [243,
Lemma 3.1] for a sufficiently fast growing function f(n), e.g., f(n) = (2q)n

2 . Then
C =

⋃
n∈NAn is a Borel τ -comeager set that is G-invariant. We produce a toast struc-

ture in a standard way, e.g., see [185, Appendix A].

Let Bn(x) denote the ball of radius f(n)/3 and Rn(x) the ball of radius f(n)/4 around
x ∈ An. Iteratively, define cells Dn = {Cn(x)}x∈An as follows. Set C1(x) = R1(x).
Suppose that Dn has been defined and set

• Hn+1(x, n+ 1) := Rn+1(x) for every x ∈ An+1,

• if 1 ≤ i ≤ n and
{
Hn+1(x, i+ 1)

}
x∈Ak+1

has been defined, then we put

Hn+1(x, i) =
⋃{

Bi(y) : H
n+1(x, i+ 1) ∩Bi(y) ̸= ∅

}
for every x ∈ An+1,

• set Cn+1(x) := Hn+1(x, 1) for every x ∈ An+1, this defines Dn+1.

The fact that D =
⋃

n∈NDn is a q-toast on C follows from the fact that C =
⋃

n∈NAn

together with the fact that the boundaries are q separated which can be shown as in
[185, Appendix A].

Therefore to understand LCLs in the class BAIRE we need understand what LCLs on
trees admit TOAST algorithm. It turns out that these notions are equivalent, again by
using the combinatorial characterization of Bernshteyn [62] that we now discuss.

Combinatorial Condition – ℓ-full set: In both decompositions, described above, we
need to extend a partial coloring along paths that have their endpoints colored from
the inductive step. The precise formulation of the combinatorial condition that captures
this demand was extracted by Bernshteyn [62]. He proved that it characterizes the class
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BAIRE for Cayley graphs of virtually free groups. Note that this class contains, e.g.,
∆-regular trees with a proper edge ∆-coloring.

Definition 10.55 (Combinatorial condition – an ℓ-full set). Let Π = (Σ,V, E) be an
LCL and ℓ ≥ 2. A set V ′ ⊆ V is ℓ-full whenever the following is satisfied. Take a
path with at least ℓ vertices, and add half-edges to it so that each vertex has degree ∆.
Take any c1, c2 ∈ V ′ and label arbitrarily the half-edges around the endpoints with c1 and
c2, respectively. Then there is a way to label the half-edges around the remaining ℓ − 2
vertices with configurations from V ′ such that all the ℓ − 1 edges on the path have valid
edge configuration on them.

Now we are ready to formulate the result that combines Bernshteyn’s result [62] (equiva-
lence between (1.) and (2.), and the moreover part) with the main results of this section.

Theorem 10.56. Let Π be an LCL on regular trees. Then the following are equivalent:

1. Π ∈ BAIRE,

2. Π admits a TOAST algorithm,

3. Π admits an ℓ-full set,

4. Π ∈ LOCAL(O(log(n))).

Moreover, any of the equivalent conditions is necessary for Π ∈ fiid.

Next we discuss the proof of Theorem 10.56. We refer the reader to Bernshteyn’s paper
[62] for full proofs in the case of BAIRE and fiid, here we only sketch the argument for
completeness. We also note that instead of using the toast construction, he used a path
decomposition of acyclic graphs of Conley, Marks and Unger [109].

10.6.1 Sufficiency

We start by showing that the combinatorial condition is sufficient for BAIRE and
LOCAL(O(log(n))). Namely, it follows from the next results together with Theorem 10.54
that (2.) implies all the other conditions in Theorem 10.56. As discussed above the main
idea is to color inductively along the decompositions.

Proposition 10.57. Let Π = (Σ,V, E) be an LCL that admits ℓ-full set V ′ ⊆ V for
some ℓ > 0. Then Π admits a TOAST algorithm that produces a Π-coloring for every
(2ℓ+ 2)-toast D.

Proof sketch. Our aim is to build a partial extending function. Set q := 2ℓ + 2. Let E
be a piece in a q-toast D and suppose that D1, . . . , Dk ∈ D are subsets of E such that
the boundaries are separated. Suppose, moreover, that we have defined inductively a
coloring of half-edges of vertices in D =

⋃
Di using only vertex configurations from V ′

such that every edge configuration E is satisfied for every edge in D.
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We handle each connected component of E \D separately. Let A be one of them. Let
u ∈ A be a boundary vertex of E. Such an vertex exists since every vertex in E has
degree ∆. The distance of u and any Di is at least 2ℓ + 2 for every i ∈ [k]. We orient
all the edges from A towards u. Moreover if vi ∈ A is a boundary vertex of some Di we
assign to vi a path Vi of length ℓ towards u. Note that Vi and Vj have distance at least 1,
in particular, are disjoint for i ̸= j ∈ [k] . Now, until you encounter some path Vi, color
any in manner half-edges of vertices in A inductively starting at u in such a way that
edge configurations E are satisfied on every edge and only vertex configurations from V ′
are used. Use the definition of ℓ-full set to find a coloring of any such Vi and continue in
a similar manner until the whole A is colored.

Proposition 10.58 (ℓ-full ⇒ LOCAL(O(log n))). Let Π = (Σ,V, E) be an LCL with an
ℓ-full set V ′ ⊆ V. Then Π can be solved in O(log n) rounds in LOCAL.

Proof. The proof uses a variant of the rake-and-compress decomposition considered
in [88].

The Decomposition: The decomposition is parameterized an integer ℓ′ ≥ 1, and it
decomposes the vertices of T into 2L− 1 layers

V = V R
1 ∪ V C

1 ∪ V R
2 ∪ V C

2 ∪ V R
3 ∪ V C

3 ∪ · · · ∪ V R
L ,

with L = O(log n). We write GC
i to denote the subtree induced by the vertices(⋃L

j=i+1 V
R
j

)
∪
(⋃L−1

j=i V C
j

)
. Similarly, GR

i is the subtree induced by the vertices(⋃L
j=i V

R
j

)
∪
(⋃L−1

j=i V C
j

)
. The sets V R

i and V C
i are required to satisfy the following

requirements.

• Each v ∈ V R
i has degree at most one in the graph GR

i .

• Each v ∈ V C
i has degree exactly two in the graph GC

i . Moreover, the V C
i -vertices

in GC
i form paths with s vertices, with ℓ′ ≤ s ≤ 2ℓ′.

For any given constant ℓ′ ≥ 1, it was shown in [88] that such a decomposition of a tree
T can be computed in O(log n) rounds. The Algorithm: Given such a decomposition

with ℓ′ = max{1, ℓ − 2}, Π can be solved in O(log n) rounds by labeling the vertices
in this order: V R

L , V C
L−1, V

R
L−1, . . ., V

R
1 , as follows. The algorithm only uses the vertex

configurations in the ℓ-full set V ′.

Labeling V R
i : Suppose all vertices in V R

L , V C
L−1, V

R
L−1, . . . , V

C
i have been labeled using

V ′. Recall that each v ∈ V R
i has degree at most one in the graph GR

i . If v ∈ V R
i has no

neighbor in V R
L ∪V C

L−1∪V R
L−1∪· · ·∪V C

i , then we can label the half edges surrounding v by
any c ∈ V ′. Otherwise, v ∈ V R

i has exactly one neighbor u in V R
L ∪V C

L−1∪V R
L−1∪· · ·∪V C

i .
Suppose the vertex configuration of u is c, where the half-edge label on {u, v} is a ∈ c. A
simple observation from the definition of ℓ-full sets is that for any c ∈ V ′ and any a ∈ c,
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there exist c′ ∈ V ′ and a′ ∈ c′ in such a way that {a, a′} ∈ E . Hence we can label the half
edges surrounding v by c′ ∈ V ′ where the half-edge label on {u, v} is a′ ∈ c′.

Labeling V C
i : Suppose all vertices in V R

L , V C
L−1, V

R
L−1, . . . , V

R
i+1 have been labeled using

V ′. Recall that the V C
i -vertices in GC

i form degree-2 paths P = (v1, v2, . . . , vs), with
ℓ′ ≤ s ≤ 2ℓ′. Let P ′ = (x, v1, v2, . . . , vs, y) be the path resulting from appending to
P the neighbors of the two end-points of P in GC

i . The two vertices x and y are in
V R
L ∪ V C

L−1 ∪ V R
L−1 ∪ · · · ∪ V R

i+1, so they have been assigned half-edge labels using V ′.
Since P ′ contains at least ℓ′ + 2 ≥ ℓ vertices, the definition of ℓ-full sets ensures that we
can label v1, v2, . . . , vs using vertex configurations in V ′ in such a way that the half-edge
labels on {x, v1}, {v1, v2}, . . . , {vs, y} are all in E .

10.6.2 Necessity

We start by sketching that (2.) in Theorem 10.56 is necessary for BAIRE and fiid.

Theorem 10.59 (Bernshteyn [62]). Let Π = (Σ,V, E) be an LCL and suppose that
Π ∈ BAIRE or Π ∈ fiid. Then Π admits an ℓ-full set V ′ ⊆ V for some ℓ > 0.

Proof Sketch. We start with BAIRE. Suppose that every Borel acyclic ∆-regular graph
admits a Borel solution on a τ -comeager set for every compatible Polish topology τ . In
particular, this holds for the Borel graph induced by the standard generators of the free
product of ∆-copies of Z2 on the free part of the shift action on the alphabet {0, 1}
endowed with the product topology. Let F be such a solution. Write V ′ ⊆ V for the
configurations of half-edge labels around vertices that F outputs on a non-meager set.
Let C be a comeager set on which F is continuous. Then, every element of V ′ is encoded
by some finite window in the shift on C, that is, for each element there are a k ∈ N and
function s : B(1, k)→ {0, 1} such that F is constant on the set Ns ∩C (where Ns is the
basic open neighbourhood determined by s, and B(1, k) is the k-neighbourhood of the
identity in the Cayley graph of the group). Since V ′ is finite, we can take t > 0 to be the
maximum of such k’s. It follows by standard arguments that V ′ is ℓ-full for ℓ > 2t+ 1.

A similar argument works for the fiid, however, for the sake of brevity, we sketch a shorter
argument that uses the fact that there must be a correlation decay for factors of iid’s.
Let Π ∈ fiid. That is, there is an Aut(T )-equivariant measurable function from iid’s on
T (without colored edges this time) into the space of Π-colorings. Let V ′ be the set of
half-edges configurations around vertices that have non-zero probability to appear. Let
u, v ∈ T be vertices of distance k0 ∈ N. By [18] the correlation between the configurations
around u and v tends to 0 as k0 → ∞. This means that if the distance is big enough,
then all possible pairs of V ′ configurations need to appear.

To finish the proof of Theorem 10.56 we need to demonstrate the following theorem.
Note that LOCAL(no(1)) = LOCAL(O(log n)) according to the ω(log n) – no(1) complexity
gap [88].



254 Local Problems on Trees: Distributed Algorithms and Descriptive Combinatorics

Theorem 10.60. Let Π = (Σ,V, E) be an LCL solvable in LOCAL(no(1)) rounds. Then
there exists an ℓ-full set V ′ ⊆ V for some ℓ ≥ 2.

The rest of the section is devoted to the proof of Theorem 10.60. We start with the
high-level idea of the proof. A natural attempt for showing LOCAL(no(1)) ⇒ ℓ-full is to
simply take any LOCAL(no(1)) algorithm A solving Π, and then take V ′ to be all vertex
configurations that can possibly occur in an output of A. It is not hard to see that this
approach does not work in general, because the algorithm might use a special strategy
to label vertices with degree smaller than ∆. Specifically, there might be some vertex
configuration c used by A so that some a ∈ c will only be used to label virtual half edges.
It will be problematic to include c in V ′.

To cope with this issue, we do not deal with general bounded-degree trees. Instead,
we construct recursively a sequence (W ∗1 ,W

∗
2 , . . . ,W

∗
L) of sets of rooted, layered, and

partially labeled tree in a special manner. A tree T is included in W ∗i if it can be
constructed by gluing a multiset of rooted trees in W ∗i−1 and a new root vertex r in a
certain fixed manner. A vertex is said to be in layer i if it is introduced during the i-th
step of the construction, i.e., it is introduced as the root r during the construction of W ∗i
from W ∗i−1. All remaining vertices are said to be in layer 0.

We show that each T ∈ W ∗L admits a correct labeling that extends the given partial
labeling, as these partial labelings are computed by a simulation of A. Moreover, in
these correct labelings, the variety of possible configurations of half-edge labels around
vertices in different non-zero layers is the same for each layer. This includes vertices of
non-zero layer whose half-edges are labeled by the given partial labeling. We simply pick
V ′ to be the set of all configurations of half-edge labels around vertices that can appear
in a non-zero layer in a correct labeling of a tree T ∈ W ∗L. Our construction ensures
that each c ∈ V ′ appears as the labeling of some degree-∆ vertex in some tree that we
consider.

The proof that V ′ is an ℓ-full set is based on finding paths using vertices of non-zero lay-
ers connecting two vertices with any two vertex configurations in V ′ in different lengths.
These paths exist because the way rooted trees in W ∗i−1 are glued together in the con-
struction of W ∗i is sufficiently flexible. The reason that we need A to have complexity
LOCAL(no(1)) is that the construction of the trees can be parameterized by a number w
so that all the trees have size polynomial in w and the vertices needed to be assigned
labeling are at least distance w apart from each other. Since the number of rounds of
A executed on trees of size wO(1) is much less than w, each labeling assignment can be
calculated locally and independently. The construction of the trees as well as the analysis
are based on a machinery developed in [88]. Specifically, we will consider the equivalence
relation ⋆∼ defined in [88] and prove some of its properties, including a pumping lemma
for bipolar trees. The exact definition of ⋆∼ in this chapter is different from the one
in [88] because the mathematical formalism describing LCL problems in this chapter is
different from the one in [88]. After that, we will consider a procedure for gluing trees
parameterized by a labeling function f similar to the one used in [88]. We will apply this
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procedure iteratively to generate a set of trees. We will show that the desired ℓ-full set
V ′ ⊆ V can be constructed by considering the set of all possible correct labeling of these
trees.

The Equivalence Relation ⋆∼: We consider trees with a list of designated vertices
v1, v2, . . . , vk called poles. A rooted tree is a tree with one pole r, and a bipolar tree
is a tree with two poles s and t. For a tree T with its poles S = (v1, v2, . . . , vk) with
deg(vi) = di < ∆, we denote by h(T,S) the function that maps each choice of the virtual
half-edge labeling surrounding the poles of T to YES or NO, indicating whether such a
partial labeling can be completed into a correct complete labeling of T . More specifically,
consider

X = (I1, I2, . . . , Ik),

where Ii is a size-(∆− di) multiset of labels in Σ, for each 1 ≤ i ≤ k. Then h(T,S)(X) =
YES if there is a correct labeling of T such that the ∆ − di virtual half-edge labels
surrounding vi are labeled by Ii, for each 1 ≤ i ≤ k. This definition can be generalized
to the case T is already partially labeled in the sense that some of the half-edge labels
have been fixed. In this case, h(T,S)(X) = NO whenever X is incompatible with the given
partial labeling.

Let T be a tree with poles S = (v1, v2, . . . , vk) and let T ′ be another tree with poles
S′ = (v′1, v

′
2, . . . , v

′
k) such that deg(vi) = deg(v′i) = di for each 1 ≤ i ≤ k. Then we write

T1
⋆∼ T2 if h(T,S) = h(T ′,S′).

Given an LCL problem Π, it is clear that the number of equivalence classes of rooted
trees and bipolar trees w.r.t. ⋆∼ is finite. For a rooted tree T , denote by Class1(T ) the
equivalence class of T . For a bipolar tree H, denote by Class2(H) the equivalence class
of H.

Subtree Replacement: The following lemma provides a sufficient condition that the
equivalence class of a tree T is invariant of the equivalence class of its subtree T ′. We
note that a real half edge in T might become virtual in its subtree T ′. Consider a vertex
v in T ′ and its neighbor u that is in T but not in T ′. Then the half edge (v, {u, v}) is
real in T and virtual in T ′.

Lemma 10.61 (Replacing subtrees). Let T be a tree with poles S. Let T ′ be a connected
subtree of T induced by U ⊆ V , where V is the set of vertices in T . We identify a list of
designated vertices S′ = (v′1, v

′
2, . . . , v

′
k) in U satisfying the following two conditions to be

the poles of T ′.

• S ∩ U ⊆ S′.

• Each edge e = {u, v} connecting u ∈ U and v ∈ V \ U must satisfy u ∈ S′.

Let T ′′ be another tree with poles S′′ = (v′′1 , v
′′
2 , . . . , v

′′
k) that is in the same equivalence

class as T ′. Let T ∗ be the result of replacing T ′ by T ′′ in T by identifying v′i = v′′i for
each 1 ≤ i ≤ k. Then T ∗ is in the same equivalence class as T .
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Proof. To prove the lemma, by symmetry, it suffices to show that starting from any
correct labeling L of T , it is possible to find a correct labeling L∗ of T ∗ in such a way
that the multiset of the virtual half-edge labels surrounding each pole in S remain the
same.

Such a correct labeling L∗ of T ∗ is constructed as follows. If v ∈ V \ U , then we
simply adopt the given labeling L of v in T . Next, consider the vertices in U . Set
X = (I1, I2, . . . , Ik) to be the one compatible with the labeling L of T restricted to the
subtree T ′ in the sense that Ii is the multiset of the virtual half-edge labels surrounding
the pole v′i of T ′, for each 1 ≤ i ≤ k. We must have hT ′,S′(X) = YES. Since T ′ and
T ′′ are in the same equivalence class, we have hT ′′,S′′(X) = YES, and so we can find a
correct labeling L′′ of T ′′ that is also compatible with X. Combining this labeling L′′ of
the vertices U in T ′′ with the labeling L of the vertices V \ U in T , we obtain a desired
labeling L∗ of T ∗.

We verify that L∗ gives a correct labeling of T ∗. Clearly, the size-∆ multiset that labels
each vertex v ∈ V is in V, by the correctness of L and L′′. Consider any edge e = {u, v}
in T ∗. Similarly, if {u, v} ⊆ V \ U or {u, v} ∩ (V \ U) = ∅, then the size-2 multiset that
labels e is in E , by the correctness of L and L′′. For the case that e = {u, v} connects
a vertex u /∈ V and a vertex v ∈ V \ U , we must have u ∈ S′ by the lemma statement.
Therefore, the label of the half edge (u, e) is the same in both L and L∗ by our choice of
L′′. Thus, the size-2 multiset that labels e is in E , by the correctness of L.

We verify that the virtual half-edge labels surrounding each pole in S are the same in
both L and L∗. Consider a pole v ∈ S. If v ∈ V \U , then the labeling of v is clearly the
same in both L and L∗. If v /∈ V \ U , then the condition S ∩ U ⊆ S′ in the statement
implies that v ∈ S′. In this case, the way we pick L′′ ensures that the virtual half-edge
labels surrounding v ∈ S′ are the same in both L and L∗.

In view of the proof of Theorem 10.61, as long as the conditions in Theorem 10.61 are
met, we are able to abstract out a subtree by its equivalence class when reasoning about
correct labelings of a tree. This observation will be applied repeatedly in the subsequent
discussion.

A Pumping Lemma: We will prove a pumping lemma of bipolar trees using The-
orem 10.61. Suppose Ti is a tree with a root ri for each 1 ≤ i ≤ k, then
H = (T1, T2, . . . , Tk) denotes the bipolar tree resulting from concatenating the roots
r1, r2, . . . , rk into a path (r1, r2, . . . , rk) and setting the two poles of H by s = r1 and
t = rk. A simple consequence of Theorem 10.61 is that Class2(H) is determined by
Class1(T1),Class1(T2), . . . ,Class1(Tk). We have the following pumping lemma.

Lemma 10.62 (Pumping lemma). There exists a finite number ℓpump > 0 such that
as long as k ≥ ℓpump, any bipolar tree H = (T1, T2, . . . , Tk) can be decomposed into
H = X ◦ Y ◦ Z with 0 < |Y | < k so that X ◦ Y i ◦ Z is in the same equivalence class as
H for each i ≥ 0.
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Proof. Set ℓpump to be the number of equivalence classes for bipolar trees plus one.
By the pigeon hole principle, there exist 1 ≤ a < b ≤ k such that (T1, T2, . . . , Ta)
and (T1, T2, . . . , Tb) are in the same equivalence class. Set X = (T1, T2, . . . , Ta), Y =
(Ta+1, Ta+2, . . . , Tb), and Z = (Tb+1, Tb+2, . . . , Tk). As we already know that Class2(X) =
Class2(X ◦ Y ), Theorem 10.61 implies that Class2(X ◦ Y ) = Class2(X2 ◦ Y ) by replacing
X by X ◦ Y in the bipolar tree X ◦ Y . Similarly, Class2(X ◦ Y i) is the same for for each
i ≥ 0. Applying Theorem 10.61 again to replace X ◦ Y by X ◦ Y i in H = X ◦ Y ◦ Z, we
conclude that X ◦ Y i ◦ Z is in the same equivalence class as H for each i ≥ 0.

A Procedure for Gluing Trees: Suppose that we have a set of rooted trees W . We
devise a procedure that generates a new set of rooted trees by gluing the rooted trees
in W together. This procedure is parameterized by a labeling function f . Consider a
bipolar tree

H = (T l
1, T

l
2, . . . , T

l
ℓpump

, Tm, T r
1 , T

r
2 , . . . , T

r
ℓpump

)

where Tm is formed by attaching the roots r1, r2, . . . , r∆−2 of the rooted trees
Tm
1 , Tm

2 , . . . , Tm
∆−2 to the root rm of Tm.

The labeling function f assigns the half-edge labels surrounding rm based on

Class2(H l),Class1(Tm
1 ),Class1(Tm

2 ), . . . ,Class1(Tm
∆−2),Class2(Hr)

where H l = (T l
1, T

l
2, . . . , T

l
ℓpump

) and Hr = (T r
1 , T

r
2 , . . . , T

r
ℓpump

).

We write Tm
∗ to denote the result of applying f to label the root rm of Tm in the bipolar

tree H, and we write

H∗ = (T l
1, T

l
2, . . . , T

l
ℓpump

, Tm
∗ , T r

1 , T
r
2 , . . . , T

r
ℓpump

)

to denote the result of applying f to H. We make the following observation.

Lemma 10.63 (Property of f). The two equivalence classes Class1(Tm
∗ ) and Class2(H∗)

are determined by

Class2(H l),Class1(Tm
1 ),Class1(Tm

2 ), . . . ,Class1(Tm
∆−2),Class2(Hr),

and the labeling function f .

Proof. By Theorem 10.61, once the half-edge labelings of the root rm of Tm is fixed,
Class1(Tm

∗ ) is determined by Class1(Tm
1 ),Class1(Tm

2 ), . . . ,Class1(Tm
∆−2). Therefore, in-

deed Class1(Tm
∗ ) is determined by

Class2(H l),Class1(Tm
1 ),Class1(Tm

2 ), . . . ,Class1(Tm
∆−2),Class2(Hr),

and the labeling function f . Similarly, applying Theorem 10.61 to the decomposition
of H∗ into H l, Tm

∗ , and Hr, we infer that Class2(H∗) depends only on Class2(H l),
Class1(Tm

∗ ), and Class2(Hr).



258 Local Problems on Trees: Distributed Algorithms and Descriptive Combinatorics

The three sets of trees Xf (W ), Yf (W ), and Zf (W ) are constructed as follows.

• Xf (W ) is the set of all rooted trees resulting from appending ∆−2 arbitrary rooted
trees T1, T2, . . . , T∆−2 in W to a new root vertex r.

• Yf (W ) is the set of bipolar trees constructed as follows. For each choice of 2ℓpump+
1 rooted trees T l

1, T
l
2, . . . , T

l
ℓpump

, Tm, T r
1 , T

r
2 , . . . , T

r
ℓpump

from Xf (W ), concatenate
them into a bipolar tree

H = (T l
1, T

l
2, . . . , T

l
ℓpump

, Tm, T r
1 , T

r
2 , . . . , T

r
ℓpump

),

let H∗ be the result of applying the labeling function f to H, and then add H∗ to
Yf (W ).

• Zf (W ) is the set of rooted trees constructed as follows. For each

H∗ = (T l
1, T

l
2, . . . , T

l
ℓpump

, Tm
∗ , T r

1 , T
r
2 , . . . , T

r
ℓpump

) ∈ Yf (W ),

add (T l
1, T

l
2, . . . , T

l
ℓpump

, Tm
∗ ) to Zf (W ), where we set the root of T l

1 as the root, and
add (Tm

∗ , T r
1 , T

r
2 , . . . , T

r
ℓpump

) to Zf (W ), where we set the root of T r
ℓpump

as the root.

We write Class1(S) =
⋃

T∈S{Class1(T )} and Class2(S) =
⋃

H∈S{Class2(H)}, and we make
the following observation.

Lemma 10.64 (Property of Xf (W ), Yf (W ), and Zf (W )). The three sets of equivalence
classes Class1(Xf (W )), Class2(Yf (W )), and Class1(Zf (W )) depend only on Class1(W )
and the labeling function f .

Proof. This is a simple consequence of Theorems 10.61 and 10.63.

A Fixed Point W ∗: Given a fixed labeling function f , we want to find a set of rooted
trees W ∗ that is a fixed point for the procedure Zf in the sense that

Class1(Zf (W
∗)) = Class1(W ∗).

To find such a set W ∗, we construct a two-dimensional array of rooted trees {Wi,j}, as
follows.

• For the base case, W1,1 consists of only the one-vertex rooted tree.

• Given that Wi,j as been constructed, we define Wi,j+1 = Zf (Wi,j).

• Given that Wi,j for all positive integers j have been constructed, Wi+1,1 is defined
as follows. Pick bi as the smallest index such that Class1(Wi,bi) = Class1(Wi,ai) for
some 1 ≤ ai < bi. By the pigeon hole principle, the index bi exists, and it is upper
bounded by 2C , where C is the number of equivalence classes for rooted trees. We
set

Wi+1,1 = Wi,ai ∪Wi,ai+1 ∪ · · · ∪Wi,bi−1.
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We show that the sequence Class1(Wi,ai),Class1(Wi,ai+1),
Class1(Wi,ai+2), . . . is periodic with a period ci = bi − ai.

Lemma 10.65. For any i ≥ 1 and for any j ≥ ai, we have Class1(Wi,j) =
Class1(Wi,j+ci), where ci = bi − ai.

Proof. By Theorem 10.64, Class1(Wi,j) depends only on Class1 (Wi,j−1). Hence the
lemma follows from the fact that Class1(Wi,bi) = Class1(Wi,ai).

Next, we show that Class1(W2,1) ⊆ Class1(W3,1) ⊆ Class1(W4,1) ⊆ · · · .

Lemma 10.66. For any i ≥ 2, we have Class1(Wi,1) ⊆ Class1(Wi,j) for each j > 1, and
so Class1(Wi,1) ⊆ Class1(Wi+1,1).

Proof. Since Wi,1 =
⋃

ai−1≤l≤bi−1−1Wi−1,l, we have⋃
ai−1+j−1≤l≤bi−1+j

Wi−1,l ⊆Wi,j

according to the procedure of constructing Wi,j . By Theorem 10.65,

Class1

 ⋃
ai−1≤l≤bi−1−1

Wi−1,l

 = Class1

 ⋃
ai−1+j−1≤l≤bi−1+j

Wi−1,l


for all j ≥ 1, and so we have Class1(Wi,1) ⊆ Class1(Wi,j) for each j > 1. The claim
Class1(Wi,1) ⊆ Class1(Wi+1,1) follows from the fact that Wi+1,1 =

⋃
ai≤l≤bi−1Wi,l.

Set i∗ to be the smallest index i ≥ 2 such that Class1(Wi,1) = Class1(Wi+1,1). By the
pigeon hole principle and Theorem 10.66, the index i∗ exists, and it is upper bounded by
C, the number of equivalence classes for rooted trees. We set

W ∗ = Wi∗,1.

The following lemma shows that Class1(Zf (W
∗)) = Class1(W ∗), as needed.

Lemma 10.67. For any i ≥ 2, if Class1(Wi,1) = Class1(Wi+1,1), then Class1(Wi,j) is the
same for all j ≥ 1.

Proof. By Theorem 10.65 and the way we construct Wi+1,1, we have

Class1(Wi,j) ⊆ Class1(Wi+1,1) for each j ≥ ai.

By Theorem 10.66, we have

Class1(Wi,1) ⊆ Class1(Wi,j) for each j > 1.

Therefore, Class1(Wi,1) = Class1(Wi+1,1) implies that Class1(Wi,j) = Class1(Wi,1) for each
j ≥ ai. Hence we must have Class1(Zf (Wi,1)) = Class1(Wi,1), and so Class1(Wi,j) is the
same for all j ≥ 1.
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We remark that simply selecting W ∗ to be any set such that Class1(Zf (W
∗)) =

Class1(W ∗) is not enough for our purpose. As we will later see, it is crucial that the
set W ∗ is constructed by iteratively applying the function Zf and taking the union of
previously constructed sets.

A Sequence of Sets of Trees: We define W ∗1 = W ∗ and W ∗i = Zf (W
∗
i−1) for each

1 < i ≤ L, where L is some sufficiently large number to be determined.

The way we choose W ∗ guarantees that Class1(W ∗i ) = Class1(W ∗) for all 1 ≤ i ≤ L. For
convenience, we write X∗i = Xf (W

∗
i ) and Y ∗i = Yf (W

∗
i ). Similarly, Class1(X∗i ) is the

same for all 1 ≤ i ≤ L and Class2(Y ∗i ) is the same for all 1 ≤ i ≤ L.

Our analysis will rely on the assumption that all rooted trees in W ∗ admit correct
labelings. Whether this is true depends only on Class1(W ∗), which depends only on the
labeling function f . We say that f is feasible if it leads to a set W ∗ where all the rooted
trees therein admit correct labelings. The proof that a feasible labeling function f exists
is deferred.

The assumption that f is feasible implies that all trees in W ∗i , X∗i , and Y ∗i , for all
1 ≤ i ≤ L, admit correct labelings. All rooted trees in X∗i admit correct labelings
because they are subtrees of the rooted trees in W ∗i+1. A correct labeling of any bipolar
tree H ∈ Y ∗i can be obtained by combining any correct labelings of the two rooted trees
in W ∗i+1 resulting from H.

Layers of Vertices: We assign a layer number λ(v) to each vertex v in a tree based on
the step that v is introduced in the construction

W ∗1 →W ∗2 → · · · →W ∗L.

If a vertex v is introduced as the root vertex of a tree in X∗i = Xf (W
∗
i ), then we say that

the layer number of v is λ(v) = i ∈ {1, 2, . . . , L}. A vertex v has λ(v) = 0 if it belongs
to a tree in W ∗1 .

For any vertex v with λ(v) = i in a tree T ∈ X∗j with i ≤ j, we write Tv to denote the
subtree of T such that Tv ∈ X∗i where v is the root of Tv.

We construct a sequence of sets R1, R2, . . . , RL as follows. We go over all rooted trees
T ∈ X∗L, all possible correct labeling L of T , and all vertices v in T with λ(v) = i ∈
{1, 2, . . . , L}. Suppose that the ∆ − 2 rooted trees in the construction of Tv ∈ X∗i =
Xf (W

∗
i ) are T1, T2, . . ., T∆−2, and let ri be the root of Ti. Consider the following

parameters.

• ci = Class1(Ti).

• ai is the real half-edge label of v in Tv for the edge {v, ri}, under the correct labeling
L of T restricted to Tv.
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• I is the size-2 multiset of virtual half-edge labels of v in Tv, under the correct
labeling L of T restricted to Tv.

Then we add (c1, c2, . . . , c∆−2, a1, a2, . . . , a∆−2, I) to Ri.

Lemma 10.68. For each 1 ≤ i < L, Ri is determined by Ri+1.

Proof. We consider the following alternative way of constructing Ri from Ri+1. Each
rooted tree T ′ in W ∗i+1 = Zf (W

∗
i ) can be described as follows.

• Start with a path (r1, r2, . . . , rℓpump+1), where r1 is the root of T ′.

• For each 1 ≤ j ≤ ℓpump + 1, append ∆− 2 rooted trees Tj,1, Tj,2, . . . , Tj,∆−2 ∈ W ∗i
to rj .

• Assign the labels to the half edges surrounding rℓpump+1 according to the labeling
function f .

Now, consider the function φ that maps each equivalence class c for rooted trees to a
subset of Σ defined as follows: a ∈ φ(c) if there exist

(c1, c2, . . . , c∆−2, a1, a2, . . . , a∆−2, I) ∈ Ri+1

and 1 ≤ j ≤ ∆− 2 such that c = cj and a = aj .

We go over all possible T ′ ∈W ∗i+1 = Zf (W
∗
i ). Note that the root r of T ′ has exactly one

virtual half edge. For each b ∈ Σ such that {a, b} ∈ E for some a ∈ φ(Class1(T ′)), we go
over all possible correct labelings L of T ′ where the virtual half edge of r is labeled b.
For each 1 ≤ j ≤ ℓpump + 1, consider the following parameters.

• cl = Class1(Tj,l).

• al is the half-edge label of rj for the edge {rj , rj,l}.

• I is the size-2 multiset of the remaining two half-edge labels of v.

Then we add (c1, c2, . . . , c∆−2, a1, a2, . . . , a∆−2, I) to Ri.

This construction of Ri is equivalent to the original construction of Ri because a correct
labeling of T ′ ∈W ∗i can be extended to a correct labeling of a tree T ∈ X∗L that contains
T ′ as a subtree if and only if the virtual half-edge label of the root r of T ′ is b ∈ Σ such
that {a, b} ∈ E for some a ∈ φ(Class1(T ′)).

It is clear that this construction of Ri only depends on Class1(W ∗i ), the labeling function
f , and the function φ, which depends only on Ri+1. Since the labeling function f is fixed
and Class1(W ∗i ) is the same for all i, we conclude that Ri depends only on Ri+1.

Lemma 10.69. We have R1 ⊆ R2 ⊆ · · · ⊆ RL.
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Proof. For the base case, we show that RL−1 ⊆ RL. In fact, our proof will show that
Ri ⊆ RL for each 1 ≤ i < L. Consider any

(c1, c2, . . . , c∆−2, a1, a2, . . . , a∆−2, I) ∈ Ri.

Then there is a rooted tree T ∈ X∗i that is formed by attaching ∆ − 2 rooted trees of
equivalence classes c1, c2, . . . , c∆−2 to the root vertex so that if we label the half edges
surrounding the root vertex according to a1, a2, . . . , a∆−2, and I, then this partial labeling
can be completed into a correct labeling of T .

Because Class1(W ∗i ) = Class1(W ∗L), there is also a rooted tree T ′ ∈ X∗L that is formed
by attaching ∆− 2 rooted trees of equivalence classes c1, c2, . . . , c∆−2 to the root vertex.
Therefore, if we label the root vertex of T ′ in the same way as we do for T , then this
partial labeling can also be completed into a correct labeling of T ′. Hence we must have

(c1, c2, . . . , c∆−2, a1, a2, . . . , a∆−2, I) ∈ RL.

Now, suppose that we already have Ri ⊆ Ri+1 for some 1 < i < L. We will show that
Ri−1 ⊆ Ri. Denote by φi and φi+1 the function φ in Theorem 10.68 constructed from
Ri and Ri+1. We have φi(c) ⊆ φi+1(c) for each equivalence class c, because Ri ⊆ Ri+1.
Therefore, in view of the alternative construction described in the proof of Theorem 10.68,
we have Ri−1 ⊆ Ri.

The Set of Vertex Configurations V ′: By Theorems 10.68 and 10.69, if we pick L to
be sufficient large, we can have R1 = R2 = R3. More specifically, if we pick

L ≥ C∆−2 ·
(
|Σ|+ 1

|Σ| − 1

)
+ 3,

then there exists an index 3 ≤ i ≤ L such that Ri = Ri−1, implying that R1 = R2 = R3.
Here C is the number of equivalence classes for rooted trees and

(|Σ|+1
|Σ|−1

)
is the number of

size-2 multisets of elements from Σ.

The set V ′ is defined by including all size-∆ multisets
{a1, a2, . . . , a∆−2} ∪ I such that

(c1, c2, . . . , c∆−2, a1, a2, . . . , a∆−2, I) ∈ R1

for some c1, c2, . . . , c∆−2.

The Set V ′ is ℓ-full: To show that the set V ′ is ℓ-full, we consider the subset V∗ ⊆
V ′ defined by the set of vertex configurations used by the labeling function f in the
construction of Yf (W ∗i ). The definition of V∗ is invariant of i as Class1(W ∗i ) is the same
for all i. Clearly, for each x ∈ V∗, there is a rooted tree T ∈ W ∗2 where the root of a
subtree T ′ ∈ X∗1 of T has its size-∆ multiset of half-edge labels fixed to be x by f , and
so V∗ ⊆ V ′.
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For notational simplicity, we write x
k↔ x′ if there is a correct labeling of a k-vertex path

(v1, v2, . . . , vk) using only vertex configurations in V ′ so that the vertex configuration of
v1 is x and the vertex configuration of vk is x′. If it is further required that the half-
edge label of v1 for the edge {v1, v2} is a ∈ x, then we write (x, a)

k↔ x′. The notation
(x, a)

k↔ (x′, a′) is defined similarly.

Lemma 10.70. For any x ∈ V ′ \V∗ and a ∈ x, there exist a vertex configuration x′ ∈ V∗

and a number 2 ≤ k ≤ 2ℓpump + 1 such that (x, a) k↔ x′.

Proof. Let T ∈ W ∗L be chosen so that there is a correct labeling L where x is a vertex
configuration of some vertex v with λ(v) = 2.

To prove the lemma, it suffices to show that for each of the ∆ neighbors u of v, it is
possible to find a path P = (v, u, . . . , w) meeting the following conditions.

• w is a vertex whose half-edge labels have been fixed by f . This ensures that the
vertex configuration of w is in V∗.

• All vertices in P are within layers 1,2, and 3. This ensures that the vertex config-
uration of all vertices in P are in V ′.

• The number of vertices k in P satisfies 2 ≤ k ≤ 2ℓpump + 1.

We divide the proof into three cases. Case 1: Consider the subtree Tv ∈ X∗2 of T

whose root is v. In view of the construction of the set Xf (W
∗
2 ), v has ∆ − 2 children

u1, u2, . . . , u∆−2 in Tv, where the subtree Ti rooted at ui is a rooted tree in W ∗2 .

For each 1 ≤ i ≤ ∆− 2, according to the structure of the trees in the set W ∗2 = Zf (W
∗
1 ),

there is a path (ui = w1, w2, . . . , wℓpump+1) in Ti containing only layer-1 vertices,
where the half-edge labels of wℓpump+1 have been fixed by f . Hence P = (v, ui =
w1, w2, . . . , wℓpump+1) is a desired path with k = ℓpump + 2 vertices.

Case 2: Consider the subtree T ′ ∈ W ∗3 = Zf (W
∗
2 ) that contains v in T . Similarly,

according to the structure of the trees in the set W ∗3 = Zf (W
∗
2 ), there is a path (r =

w′1, w
′
2, . . . , w

′
ℓpump+1) in T ′ containing only layer-2 vertices so that r is the root of T ′,

v = w′i for some 1 ≤ i′ ≤ ℓpump + 1, and the half-edge labels of w′ℓpump+1 have been fixed
by f . Since x ∈ V ′ \ V∗, we have v ̸= w′ℓpump+1. Hence P = (v = w′i, w

′
i+1, . . . , w

′
ℓpump+1)

is a desired path with 2 ≤ k ≤ ℓpump + 1 vertices.

Case 3: There is only one remaining neighbor of v to consider. In view of the construction
of Xf (W

∗
3 ), there is a layer-3 vertex v′ adjacent to the vertex r, the root of the tree

T ′ ∈ W ∗3 considered in the previous case. If the half-edge labels of v′ have been fixed
by f , then P = (v = w′i, w

′
i−1, . . . , w

′
1 = r, v′) is a desired path. Otherwise, similar to

the analysis in the previous case, we can find a path P ′ = (v′, . . . , w) connecting v′ to a
vertex w whose half-edge labels have been fixed by f . All vertices in P ′ are of layer-3,
and the number of vertices in P ′ is within [2, ℓpump + 1]. Combining P ′ with the path
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(v = w′i, w
′
i−1, . . . , w

′
1 = r, v′), we obtain the desired path P whose number of vertices

satisfies 2 ≤ k ≤ 2ℓpump + 1.

For Theorem 10.71, note that if a appears more than once in the multiset x, then we still
have a ∈ x \ {a}.

Lemma 10.71. For any a ∈ x ∈ V∗, a′ ∈ x′ ∈ V∗, and 0 ≤ t ≤ ℓpump − 1, we have
(x, b)

k↔ (x′, b′) for some b ∈ x \ {a} and b′ ∈ x′ \ {a′} with k = 2ℓpump + 4 + t.

Proof. For any a ∈ x ∈ V∗, we can find a rooted tree Tx,a ∈ W ∗2 such that the path (v1,
v2, . . ., vℓpump+1) of the layer-1 vertices in Tx,a where v1 = r is the root of Tx,a satisfies
the property that the half-edge labels of vℓpump+1 have been fixed to x by f where the
half-edge label for {vℓpump , vℓpump+1} is in x \ {a}.

Now, observe that for any choice of (∆− 2)(ℓpump + 1) rooted trees

{Ti,j}1≤i≤ℓpump+1,1≤j≤∆−2

in W ∗2 , there is a rooted tree T ′ ∈ W ∗3 = Zf (W
∗
2 ) formed by appending Ti,1, Ti,2, . . .,

Ti,∆−2 to ui in the path (u1, u2, . . ., uℓpump+1) and fixing the half-edge labeling of uℓpump+1

by f . All vertices in (u1, u2, . . . , uℓpump+1) are of layer-2.

We choose any T ′ ∈ W ∗2 with Ti,j = Tx,a and Ti′,j′ = Tx′,a′ such that i′ − i = t + 1.
The possible range of t is [0, ℓpump − 1]. Consider any T ∈ W ∗L that contains T ′ as
its subtree, and consider any correct labeling of T . Then the path P resulting from
concatenating the path (vℓpump+1, vℓpump , . . . , v1) in Tx,a, the path (ui, ui+1, . . . , ui′), and

the path (v′1, v
′
2, . . . , v

′
ℓpump+1) in Tx′,a′ shows that (x, b)

k↔ (x′, b′) for k = (ℓpump + 1) +

(t+ 2) + (ℓpump + 1) = 2ℓpump + 4 + t.

For the rest of the proof, we show that the desired rooted tree Tx,a ∈ W ∗2 exists for any
a ∈ x ∈ V∗. For any x ∈ V∗, we can find a bipolar tree

H∗ = (T l
1, T

l
2, . . . , T

l
ℓpump

, Tm
∗ , T r

1 , T
r
2 , . . . , T

r
ℓpump

) ∈ Y ∗1 = Yf (W
∗
1 )

such that the vertex configuration of the root rm of Tm
∗ is fixed to be x by the labeling

function f . Then, for any a ∈ x, at least one of the two rooted trees in W ∗2 = Zf (W
∗
1 )

resulting from cutting H∗ satisfies the desired requirement.

In the subsequent discussion, the length of a path refers to the number of edges in a
path. In particular, the length of a k-vertex path is k − 1.

The following lemma is proved by iteratively applying Theorem 10.71 via intermediate
vertex configurations x̃ ∈ V∗.

Lemma 10.72. For any a ∈ x ∈ V∗ and a′ ∈ x′ ∈ V∗, we have (x, b)
k↔ (x′, b′) for some

b ∈ x \ {a} and b′ ∈ x′ \ {a′} for all k ≥ 6ℓpump + 10.
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Proof. By applying Theorem 10.71 for three times, we infer that Theorem 10.71 also
works for any path length k−1 = (k1−1)+(k2−1)+(k3−1), where ki−1 = 2ℓpump+3+ti
for 0 ≤ ti ≤ ℓpump − 1.

Specifically, we first apply Theorem 10.71 to find a path realizing (x, b)
k1↔ x̃ for some

x̃ ∈ V∗, and for some b ∈ x \ {a}. Let ã ∈ x̃ be the real half-edge label used in the last
vertex of the path. We extend the length of this path by k2 − 1 by attaching to it the
path realizing (x̃, b̃)

k2↔ x̃, for some b̃ ∈ x̃ \ {ã}. Finally, let c̃ ∈ x̃ be the real half-edge
label used in the last vertex of the current path. We extend the length of the current
path by k3 by attaching to it the path realizing (x̃, d̃)

k3↔ (x′, b′), for some d̃ ∈ x̃\{x̃}, and
for some b′ ∈ x′ \ {a′}. The resulting path realizes (x, b)

k↔ (x′, b′) for some b ∈ x \ {a}
and b′ ∈ x′ \ {a′}.

Therefore, Theorem 10.71 also works with path length of the form k−1 = 6ℓpump+9+ t,
for any t ∈ [0, 3ℓpump − 3].

Any k − 1 ≥ 6ℓpump + 9 can be written as k − 1 = b(2ℓpump + 3) + (6ℓpump + 9 + t), for
some t ∈ [0, 3ℓpump − 3] and some integer b ≥ 0. Therefore, similar to the above, we can
find a path showing (x, b)

k↔ (x′, b′) by first applying Theorem 10.71 with path length
2ℓpump + 3 for b times, and then applying the above variant of Theorem 10.71 to extend
the path length by 6ℓpump + 9 + t.

We show that Theorems 10.70 and 10.72 imply that V ′ is ℓ-full for some ℓ.

Lemma 10.73 (V ′ is ℓ-full). The set V ′ is ℓ-full for ℓ = 10ℓpump + 10.

Proof. We show that for any target path length k − 1 ≥ 10ℓpump + 9, and for any
a ∈ x ∈ V∗ and a′ ∈ x′ ∈ V∗, we have (x, a)

k↔ (x′, a′).

By Theorem 10.70, there exists a vertex configuration x̃ ∈ V∗ so that we can find a path
P realizing (x, a)

ℓ1↔ x̃ for some path length 1 ≤ (ℓ1−1) ≤ 2ℓpump. Similarly, there exists
a vertex configuration x̃′ ∈ V∗ so that we can find a path P ′ realizing (x′, a′)

ℓ2↔ x̃′ for
some path length 1 ≤ (ℓ2 − 1) ≤ 2ℓpump.

Let ã be the real half-edge label for x̃ in P , and let ã′ be the real half-edge label for

x̃′ in P ′. We apply Theorem 10.72 to find a path P̃ realizing (x, b)
ℓ̃↔ (x′, b′) for some

b ∈ x̃ \ {ã} and b′ ∈ x̃′ \ {ã′} with path length

ℓ̃− 1 = (k − 1)− (ℓ1 − 1)− (ℓ2 − 1) ≥ 6ℓpump + 9.

The path formed by concatenating P1, P̃ , and P2 shows that (x, a)
k↔ (x′, a′).

A Feasible Labeling Function f exists: We show that a feasible labeling function f
exists given that Π can be solved in LOCAL(no(1)) rounds. We will construct a labeling
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function f in such a way each equivalence class in Class1(W ∗) contains only rooted trees
that admit legal labeling. That is, for each c ∈ Class1(W ∗), the mapping h associated
with c satisfies h(X) = YES for some X.

We will consider a series of modifications in the construction

W → Xf (W )→ Yf (W )→ Zf (W )

that do not alter the sets of equivalence classes in these sets, conditioning on the assump-
tion that all trees that we have processed admit correct labelings. That is, whether f is
feasible is invariant of the modifications.

Applying the Pumping Lemma: Let w > 0 be some target length for the pumping
lemma. In the construction of Yf (W ), when we process a bipolar tree

H = (T l
1, T

l
2, . . . , T

l
ℓpump

, Tm, T r
1 , T

r
2 , . . . , T

r
ℓpump

),

we apply Theorem 10.62 to the two subtrees H l = (T l
1, T

l
2, . . . ,

T l
ℓpump

) and Hr = (T r
1 , T

r
2 , . . . , T

r
ℓpump

) to obtain two new bipolar trees H l
+ and Hr

+. The
s-t path in the new trees H l

+ and Hr
+ contains w+x vertices, for some 0 ≤ x < ℓpump. The

equivalence classes do not change, that is, Class2(H l) = Class2(H l
+) and Class2(Hr) =

Class2(Hr
+).

We replace H l by H l
+ and replace Hr by Hr

+ in the bipolar tree H. Recall that the
outcome of applying the labeling function f to the root r of the rooted tree Tℓpump+1

depends only on

Class2(H l),Class1(Tm
1 ),Class1(Tm

2 ), . . . ,Class1(Tm
∆−2),Class2(Hr),

so applying the pumping lemma to H l and Hr during the construction of Yf (W ) does
not alter Class1(Tm

∗ ) and Class2(H∗) for the resulting bipolar tree H∗ and its middle
rooted tree Tm

∗ , by Theorem 10.63.

Reusing Previous Trees: During the construction of the fixed point W ∗, we remember
all bipolar trees to which we have applied the feasible function f .

During the construction of Yf (W ). Suppose that we are about to process a bipolar tree
H, and there is already some other bipolar tree H̃ to which we have applied f before
so that Class2(H l) = Class2(H̃ l), Class1(Tm

i ) = Class1(T̃m
i ) for each 1 ≤ i ≤ ∆ − 2, and

Class2(Hr) = Class2(H̃r). Then we replace H by H̃, and then we process H̃ instead.

By Theorem 10.63, this modification does not alter Class1(Tm
∗ ) and Class2(H∗) for the

resulting bipolar tree H∗.

Not Cutting Bipolar Trees: We consider the following different construction of Zf (W )
from Yf (W ). For each H∗ ∈ Yf (W ), we simply add two copies of H∗ to Zf (W ), one of
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them has r = s and the other one has r = t. That is, we do not cut the bipolar tree H∗,
as in the original construction of Zf (W ).

In general, this modification might alter Class1(Zf (W )). However, it is not hard to see
that if all trees in Yf (W ) already admit correct labelings, then Class1(Zf (W )) does not
alter after the modification.

Specifically, let T be a rooted tree in Zf (W ) with the above modification. Then T
is identical to a bipolar tree H∗ = (T1, T2, . . . , Tk) ∈ Yf (W ), where there exists some
1 < i < k such that the root ri of Ti has its half-edge labels fixed by f . Suppose that
the root of T is the root r1 of T1. If we do not have the above modification, then the
rooted tree T ′ added to Zf (W ) corresponding to T is (T1, T2, . . . , Ti), where the root of
T ′ is also r1.

Given the assumption that all bipolar trees in Yf (W ) admit correct labelings, it is not
hard to see that Class1(T ′) = Class1(T ). For any correct labeling L′ of T ′, we can extend
the labeling to a correct labeling L of T by labeling the remaining vertices according
to any arbitrary correct labeling of H∗. This is possible because the labeling of ri has
been fixed. For any correct labeling L of T , we can obtain a correct labeling L′ of T ′ by
restricting L to T ′.

Simulating a LOCAL Algorithm: We will show that there is a labeling function f that
makes all the rooted trees in W ∗ to admit correct solutions, where we apply the above
three modifications in the construction of W ∗. In view of the above discussion, such a
function f is feasible.

The construction of W ∗ involves only a finite number k of iterations of Zf applied to
some previously constructed rooted trees. If we view the target length w of the pumping
lemma as a variable, then the size of a tree in W ∗ can be upper bounded by O(wk).

Suppose that we are given an arbitrary no(1)-round LOCAL algorithm A that solves Π.
It is known [88, 85] that randomness does not help for LCL problems on bounded-degree
trees with round complexity Ω(log n), so we assume that A is deterministic.

The runtime of A on a tree of size O(wk) can be made to be at most t = w/10 if w is
chosen to be sufficiently large.

We pick the labeling function f as follows. Whenever we encounter a new bipolar tree H
to which we need to apply f , we simulate A locally at the root rm of the middle rooted
tree Tm in H. Here we assume that the pumping lemma was applied before simulating
A. Moreover, when we do the simulation, we assume that the number of vertices is
n = O(wk).

To make the simulation possible, we just locally generate arbitrary distinct identifiers in
the radius-t neighborhood S of rm. This is possible because t = w/10 is so small that for
any vertex v in any tree T constructed by recursively applying Zf for at most k iterations,
the radius-(t + 1) neighborhood of v intersects at most one such S-set. Therefore, it is
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possible to complete the identifier assignment to the rest of the vertices in T so that for
any edge {u, v}, the set of identifiers seen by u and v are distinct in an execution of a
t-round algorithm.

Thus, by the correctness of A, the labeling of all edges {u, v} are configurations in E
and the labeling of all vertices v are configurations in V. Our choice of f implies that all
trees in W ∗ admit correct labeling, and so f is feasible. Combined with Theorem 10.73,
we have proved that LOCAL(no(1)) ⇒ ℓ-full.

10.7 Factors of iid and Measurable Solutions

Proof. We define an acyclic ∆ regular graph T on some standard probability space (X,µ)
and then show that any measurable solution of Π on T implies that Π ∈ fiid.

Suppose that there is a fixed distinguished vertex ∗ in T∆, the root. Let Aut∗(T∆) be
the subgroup that fixes the root. Then it is easy to see that Aut∗(T∆) is a compact
group. It is a basic fact that Y = [0, 1]T∆ with the product Borel structure is a standard
Borel space and the product Lebesgue measure λ is a Borel probability measure on Y .
Consider the shift action Aut∗(T∆) ↷ Y defined as

α · x(v) = x(α−1(v)),

where v ∈ T∆ and α ∈ Aut∗(T∆). Since Aut∗(T∆) is compact, we have that the quotient
space

X := [0, 1]T∆/Aut∗(T∆)

is a standard Borel space, see [218]. Moreover, since the shift action preserves λ, we have
that

µ := λ/Aut∗(T∆)

is a Borel probability measure on X.

We define T on (X,µ) as follows. Let [x], [y] ∈ X, where x, y ∈ Y and [−] denotes the
Aut∗(T∆)-equivalence class. We put ([x], [y]) ∈ T if and only if there is a neighbor v of
the root in x such that y is isomorphic to x with v as the root. Note that this definition
is independent of the choice of representatives of [x] and [y]. Moreover, T is acyclic and
∆-regular with probability 1. A standard argument shows that every measurable solution
to an LCL Π on T yields a fiid solution by composition with the quotient map.

10.8 Uniform Algorithm for Local Lemma

Proof. It remains to verify that the LLL algorithms of Fischer and Ghaffari [133, Section
3.1.1] and Chang et al. [90, Section 5.1] can be turned into an algorithm that does not
rely on the knowledge of n. As discussed in [90, Section 5.1], these two algorithms can
be combined together to solve the tree-structured LLL problem in O(log log n) rounds
when the underlying tree has bounded degree.
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Before we explain the main ideas in these algorithms, consider the following setup. Let
A1 and A2 be two distributed algorithms that do not rely on knowing n and that have
a round complexity of g1(n) and g2(n), respectively. We now want to compose these
two algorithms in the following sense. We are interested in the output of A2 when the
input of A2 is equal to the output of A1. Then, we can compute this composition with
a distributed algorithm that works without the knowledge of n and which has a round
complexity of O(g1(n) + g2(n)). This statement might seem obvious at first sight, but
one needs to be careful. In particular, as the resulting algorithm needs to work without
the knowledge of n it cannot compute the value g1(n). Therefore, it cannot explicitly
tell the vertices in which round they should start to run the second algorithm. However,
this is not a problem as vertices can start to run the second algorithm as soon as their
neighbors are ready. In subsequent rounds, vertices might need to temporarily stall as
some neighbors might not have received all the necessary information from all of their
neighbors and so on, but this is not a problem. From this discussion, it should be
easy to see that the algorithm indeed finishes after O(g1(n) + g2(n)) rounds. In case
the algorithms are randomized the failure probability of the resulting algorithm might
increase up to a factor of 2.

This composition result makes it easier to verify that the algorithms of [90, 133] indeed
works without the knowledge of n, as we can verify that this is the case for all its
subroutines in isolation.

The pre-shattering phase of the LLL algorithm [133, Section 3.1.1] consists of first com-
puting a poly(∆)-coloring of T k — the graph obtained from T by connecting any two
vertices of distance at most k in T by an edge — for some k = O(1). It directly follows
from the results of [223, 212] — they adapt Linial’s coloring algorithm in such a way that
it works without the knowledge of n — that the poly(∆)-coloring of T k can be computed
without the knowledge of n. Afterwards, an O(1)-round routine follows that only uses
the computed coloring as its input. Hence, the pre-shattering phase works without the
knowledge of n. Once the pre-shattering phase is complete a subset of the vertices “sur-
vive" and the post-shattering phase is executed on the graph induced by these vertices.
Importantly, with high probability all the connected components of the induced graph
have size O(log n). See [133, Lemma 6].

The post-shattering phase of the LLL algorithm [90, Section 5.1] starts by decomposing
each connected component with the following variant of the rake-and-compress process,
which consists of a repeated application of the following two operations.

Rake: Remove all leaves and isolated vertices.

Compress: Remove all vertices that belong to some path P such that (i) all vertices in
P have degree at most 2 and (ii) the number of vertices in P is at least a fixed
constant ℓ.

Alternating these two operations on a tree with N vertices decomposes the whole tree
in O(logN) steps. In our case N = O(log n) with high probability and therefore the
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procedure finishes after O(log log n) rounds with high probability. Importantly, the rake-
and-compress algorithm works without the knowledge of n. At the end of the rake-and-
compress procedure, the only important information each vertex needs to know is in
which iteration it got removed.

After this information is computed, the algorithm of [90] computes in O(log∗ n) rounds
a certain coloring variant on a certain subgraph of the input tree. This subgraph can
be locally constructed given the rake-and-compress decomposition. Again, it is a simple
corollary of the results of [223, 212] that this coloring variant can be computed without
the knowledge of n in O(log∗ n) rounds.

The coloring variant together with the rake-and-compress decomposition is then used
to compute a so-called (2, O(logN)) network decomposition of the graph T k for some
k = O(1) in O(logN) rounds [90, Section 6.1]. We do not explain how this network
decomposition is computed in detail, but the idea is to first compute the local output
of all the vertices that got removed in the very last rake-and-compress iteration in O(1)
rounds. Directly afterwards, the local output of all the vertices that got removed one
iteration before gets computed in additional O(1) rounds and so on. Hence the local
information of all vertices is computed within O(logN) ·O(1) = O(logN) rounds. From
this description, it is clear that this procedure works without the knowledge of n.

Finally, once the network decomposition of T k is computed, it directly follows from the
algorithm description of [90] that the final computation can be performed by a distributed
algorithm without the knowledge of n in O(logN) rounds.

Hence we have shown that the O(log log n)-round LLL algorithm [90, 133] works without
the knowledge of n.

10.9 Missing Borel Construction

Proof of Theorem 10.48. Let x be a vertex of degree strictly bigger than 2. A star S(x)
around x consists of x and vertices of degree 2 that are connected with x by a path with
all inner vertices of degree 2. It is clear that S(x) is connected in G.

Recall that if F is a function we define the iterated preimage of a vertex x as F←(x) =⋃
n∈N F−n(x). We first specify a canonical one ended orientation on S(x), or, equiva-

lently, a function F with finite iterated preimages. (In what follows we interchange freely
the notion of one ended orientation and function with finite iterated preimages.) That is
to say, if S(x) is infinite we orient things towards infinity in a one ended fashion (that is
always possible), otherwise we fix an orientation towards any of the boundary points, i.e.,
there is exactly one point that is directed outside of S(x). We refer to this orientation
as the canonical orientation.

The inductive construction produces an orientation of some vertices together with doubly
infinite lines. The orientation points either to infinity (is one-ended) or towards these
doubly infinite lines, this takes (ℵ0 + 1)-many steps.
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For a graph G′ we define a graph H′ on the vertices of degree strictly bigger than 2,
where (x, y) ∈ H′ if there is a path from x to y in G′ that has at most one inner vertex of
degree strictly bigger than 2. Since, in our situation, H′ is always Borel and has degree
bounded by ∆2, we can pick a Borel maximal independent setM′ of H′ by [220].

Inductively along N do the following: Suppose that we are in stage k ∈ N and we have
a Borel set Ok and Gk := G ↾ Ok with the property that every vertex has degree at least
2. We start with G0 = G and O0 = X. Pick a Borel maximal independent setMk in Hk

that is defined from Gk. Add to the domain of F every vertex from the star Sk(x) in Gk,
where x ∈Mk, and set

Ok+1 = Ok \
⋃

x∈Mk

S(x).

Define F so that it corresponds to the canonical orientation on each Sk(x). By the
definition we have that F (y) ∈ Sk(x) for every y ∈ Sk(x), possibly up to one point
z ∈ Sk(x) that satisfies F (z) ∈ Ok+1. It is easy to see that every x ∈ Ok+1 has degree
at least 2 in Gk+1 = G ↾ Ok+1. This follows from the definition ofMk.

Set O∞ =
⋂

k∈NOk and write G∞ := G ↾ O∞. It follows from the inductive (finitary)
construction that every vertex x ∈ O∞ has degree at least 2 in G∞. Moreover, the
function F satisfies dom(F ) = X \O∞ and has finite iterated preimages. This is because,
first, for every x ∈ dom(F ) there is k ∈ N such that x ∈ Ok\Ok+1 and F−1(x) ⊆ X\Ok+1.
Second, F←(x) ∩ Ok is finite by the definition of F on stars. It follows inductively that
F←(x) ∩ Ol is finite for every l ≤ k, hence, F←(x) is finite, whenever x ∈ dom(F ). If
x ̸∈ dom(F ), then F−1(x) ⊆ dom(F ) is finite and the claim follows.

Let x ∈ O∞ have degree strictly bigger than 2 and write C1, . . . , Cℓ for the connected
components of G∞ \ {x} in the connected component of x in G∞. Note that ℓ ≤ ∆. We
claim that at least one of the sets Ci is a one ended line. Suppose not, and write z1, . . . , zℓ
for the closest splitting points in C1, . . . , Cℓ and pi for the paths that connect x with zi
for every i ≤ ℓ. There is k ∈ N large enough such that the degree of x, z1, . . . , zℓ is the
same in G∞ as in Gk and pi is a path in Gk whose inner vertices have degree 2. Note that
G∞ ⊆ Gk because O∞ ⊆ Ok. Since Mk was maximal in Hk, there is y ∈ Mk such that
(x, y) ∈ Hk. This is because x ̸∈ Mk. Similar reasoning implies that that y ̸= zi for any
i ≤ ℓ. Let q be the path that connects x and y in Gk. By the choice of k we have that
q extends one of the paths pi. Let y′ be the last point on q such that y′ ∈ O∞. Since
the degree of zi is the same in Gk as in G∞ we have that y′ ̸= zi. The degree of y′ in G∞
is at least 2. Suppose it were 3 in Gk, then y′ = y because we must have (x, y) ∈ Hk.
In that case removing S(y) would decrease the degree of zi in Gk+1 and consequently in
G∞. Therefore y′ has degree 2 in Gk. But then y′ is not the last vertex on q such that
y′ ∈ O∞, i.e., the other neighbor of y′, that is the same in Gk and in G∞ must be a vertex
on q, a contradiction.

Consider now the graph H∞, where (x, y) ∈ H∞ if and only if x, y ∈ O∞ have degree
strictly bigger than 2 and there is a path from x to y in G∞ with all inner points having
degree 2 in G∞. Consider any Borel (∆+1)-coloring ofH∞ a decomposition of all vertices
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of degree strictly bigger than 2 in G∞ intoH∞-independent Borel sets D0, . . . , D∆. Define
a one ended orientation of stars of the form S(x), where x ∈ Di, inductively according
to i ≤ ∆ using the canonical orientation, i.e., in step i ≤ ∆ we work with the graph

G ↾

O∞ \⋃
j<i

⋃
x∈Dj

S(x)

 .

Note that by the previous argument we have that every such star S(x) is infinite and
consequently, this defines a valid extension of F , i.e., iterated preimages are still finite.
It remains to realize that complement of dom(F ) consists of doubly infinite lines. This
finishes the proof.
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