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A 1.2 mm2 416 mW 1.44 M mat/s 64×16 Matrix
Preprocessing ASIC for Massive MIMO in 22FDX

Darja Nonaca and Christoph Studer

Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland

Abstract—Massive multiuser (MU) multiple-input multiple-
output (MIMO) enables concurrent transmission of multiple users
to a multi-antenna basestation (BS). To detect the users’ data
using linear equalization, the BS must perform preprocessing,
which requires, among other tasks, the inversion of a matrix
whose dimension equals the number of user data streams. Explicit
inversion of large matrices is notoriously difficult to implement due
to high complexity, stringent data dependencies that lead to high
latency, and high numerical precision requirements. We propose a
novel preprocessing architecture based on the block-LDL matrix
factorization, which improves parallelism and, hence, reduces
latency. We demonstrate the effectiveness of our architecture
through (i) massive MU-MIMO system simulations with mmWave
channel vectors and (ii) measurements of a 22FDX ASIC, which
is, to our knowledge, the first fabricated preprocessing engine for
massive MU-MIMO with 64 BS antennas and 16 single-antenna
users. Our ASIC reaches a clock frequency of 870 MHz while
consuming 416 mW. At its peak throughput, the ASIC preprocesses
1.44 M 64× 16 matrices per second at a latency of only 0.7 µs.

I. INTRODUCTION

Modern wireless communication systems leverage massive
multiple-input multiple-output (MIMO) to enable multiuser
(MU) communication at high data rates [1]. To enable efficient
hardware implementation of data detection at the basestation
(BS), one typically resorts to linear methods, such as linear
minimum mean square error (LMMSE)-based equalization [2].
The complexity of such approaches, however, grows quickly
for systems that must support a large number of simultaneously-
transmitting users. In particular, the complexity of preprocess-
ing, which computes the LMMSE filter matrix every time the
channel changes, grows cubically in the number of users for
all methods that have been implemented in hardware. Besides
minimizing complexity, the preprocessing latency must be kept
at a minimum to adhere to the stringent latency constraints
of modern wireless systems. While approximate preprocessing
methods that scale only quadratically in the number of users
have been proposed [3], they only perform well (i) if the number
of BS antennas is substantially larger than the number of users
and (ii) the users’ channels are sufficiently distinct. Therefore,
efficient and also exact matrix preprocessing algorithms and
hardware implementations are crucial to meeting the latency
and quality constraints of massive MU-MIMO systems.
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A. Contributions

We propose the first fabricated ASIC of an exact matrix
preprocessing engine for LMMSE-based data detection in
massive MU-MIMO systems with 64 BS antennas and 16
single-antenna users. Our architecture carries out the following
steps: (i) Gram-matrix computation, (ii) block-LDL (BLDL)
matrix factorization, and (iii) backward substitution. To reduce
complexity, we utilize the method from [4] to skip the otherwise
necessary forward-substitution step. In contrast to other matrix-
factorization methods, our BLDL-based architecture processes
more data items in parallel, which reduces latency. To reduce
silicon area, steps (i) and (ii) share the same hardware resources.
A comparison with existing designs reveals that our fabricated
and measured ASIC outperforms other designs in terms of
throughput, area, latency, and/or error-rate performance.

B. Relevant Prior Work

A variety of algorithms for explicit matrix inversion exist,
such as methods based on the Cholesky, LU, LDL, and QR
matrix factorizations [5]. Several hardware architectures for
preprocessing and LMMSE-based data detection in small-scale
MIMO systems have been proposed: Reference [6] implements
matrix inversion using rank-1 updates; references [7] and [8]
perform an LU and LDL factorization, respectively, followed
by forward and backward substitution; and references [9], [10]
perform a QR factorization followed by inversion of the trian-
gular matrix. For massive MU-MIMO systems, reference [11]
provides synthesis results of a 128× 16 preprocessing engine
that uses the Cholesky decomposition followed by forward
and backward substitution. References [12], [13] implement
an approximate matrix inversion based on the Neumann series,
which reduces complexity but sacrifices error-rate performance.
In contrast, we propose an exact 64× 16 BLDL-based matrix-
preprocessing engine that avoids backward substitution, which
reduces latency and complexity. Furthermore, we provide
measurement results of a fabricated ASIC in 22FDX.

C. Notation

Boldface lowercase and uppercase letters represent column
vectors and matrices, respectively. For a matrix G partitioned
into 2× 2 blocks, Gij ∈ C2×2 is the submatrix formed by the
elements of G consisting of the rows (2(i−1)+1 : 2(i−1)+2)
and columns (2(j − 1) + 1 : 2(j − 1) + 2). The Hermitian
transpose of G is GH, and the entry on the mth row and



Algorithm 1 Block-LDL (BLDL) factorization [14]
input: A ∈ CU×U partitioned into 2× 2 blocks; N = U/2
for j = 1 to N do
Djj = Ajj −

∑j−1
k=1 LjkDkkL

H
jk

for i = j + 1 to N do
Lij = (Aij −

∑j−1
k=1 LikDkkL

H
jk)D

−1
jj

end for
end for
output: L,D−1

nth column is gmn. Complex conjugation is indicated by the
superscript ∗. The N ×N identity matrix is IN .

II. SYSTEM MODEL AND BLDL-BASED PREPROCESSING

A. System Model and LMMSE-based Data Detection

We focus on the massive MU-MIMO uplink, in which U
single-antenna UEs transmit data to a B-antenna BS. We model
the frequency-flat input-output relation as y = Hs+ n, where
y ∈ CB is the received vector at the BS, H ∈ CB×U is
the channel matrix, s ∈ XU is the transmit symbol vector
with entries taken from a constellation X whose energy is
normalized to Es, and n ∈ CB is i.i.d. circularly-symmetric
complex Gaussian noise with variance N0 per entry.

Data detection deals with recovering the transmit vector s
from y and (an estimate of) H. LMMSE-based methods
perform data detection in two phases: (i) preprocessing first
calculates and then inverts the matrix

A = HHH+ N0

Es
IU , (1)

whenever the channel matrix H changes; and (ii) equalization is
carried out for every transmit vector s according to ŝLMMSE =
A−1HHy. In what follows, we focus on the preprocessing
phase as it dominates complexity and latency.

B. BLDL-based Matrix Preprocessing

After computing A as in (1), we factorize A = LDLH,
where L is a lower-triangular with 2× 2 identity matrices on
the diagonal and D is a block diagonal matrix also consisting
of 2× 2 blocks. To improve parallelism, we utilize the BLDL
factorization from [14], which is summarized in Alg. 1. In our
architecture, we partition A into 2 × 2 submatrices and the
2× 2 submatrix inversions D−1

jj , j = 1, . . . , U
2 in Alg. 1 are

calculated efficiently via direct inversion [5]

D−1
jj =

[
a b
b∗ d

]−1

=
1

∆

[
d −b

−b∗ a

]
, (2)

where ∆ = ad − bb∗ is the determinant of Djj . After the
BLDL factorization, we can rewrite A−1 as

A−1 = (LDLH)−1 = (LH)−1D−1L−1. (3)

By multiplying (3) from the left by LH, we now solve

LHX = D−1L−1 (4)

for X, where the solution X̂ = A−1 will be the desired inverse.
To reduce complexity, we follow the idea of [4] to solve for X
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Fig. 1. Top-level architecture of the implemented preprocessing engine. The
bus width of the input and output data accommodates the size of a row of
the channel matrix H (16 complex values of 21 bits per part). The bus at the
interface with the register array fits a 2× 2 matrix with 4 complex values.
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Fig. 2. Schedule (in clock cycles) of each preprocessing step.

without computing the inverse L−1. To illustrate this idea,
consider the following simplified 3× 3 example of (4)1 l∗21 l∗31
0 1 l∗32
0 0 1

x11 x12 x13

x∗
12 x22 x23

x∗
13 x∗

23 x33

=
 d−1

1 0 0
αd−1

2 d−1
2 0

βd−1
3 γd−1

3 d−1
3

, (5)

where (i) we use the fact that the inverse of a lower-triangular
matrix is lower triangular and (ii) α, β, and γ are the
off-diagonal elements of L−1. The process starts by solving
for the third column of X from bottom to top using backward
substitution. This is equivalent to solving the following
equations one after the other:

x33 = d−1
3

x23 + l∗32x33 = 0
x13 + l∗21x23 + l∗31x33 = 0.

(6)

Once x33, x23, and x13 have been computed, one proceeds
analogously by computing the second column of X by solving

x22 + l∗32x
∗
23 = d−1

2

x12 + l∗21x22 + l∗31x
∗
23 = 0.

(7)

Finally, one proceeds with the first column to solve for x11:

x11 + l∗21x
∗
12 + l∗31x

∗
13 = d−1

1 . (8)

We reiterate that this process for solving for X = A−1 avoids
inverting L as the off-diagonal elements α, β, and γ are unused.

III. VLSI ARCHITECTURE

A. Architecture Overview

Fig. 1 depicts the top-level architecture of our preprocessing
engine for LMMSE-based data detection that implements the
procedure detailed in Sec. II-B. Specifically, our architecture
performs: (i) Gram-matrix computation as in (1) using a systolic
array followed by buffering the result in a flip-flop-based
register array; (ii) matrix factorization as in Alg. 1 using
a specialized BLDL factorization engine; and (ii) backward
substitution as in Sec. II-B by reusing the systolic array. The
complete schedule (in clock cycles) for a 64 × 16 channel
matrix H is depicted in Fig. 2. Since the matrix factorization
step (ii) dominates the preprocessing latency, we utilize a
BLDL-based approach, which enables higher parallelism than a
Cholesky-, LDL-, LU-, or QR-based matrix-inversion approach.
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Fig. 3. Architecture details of the systolic array that supports two modes:
Gram-matrix computation (blue datapath) and backward substitution (red
datapath). We illustrate an architecture for U = 4 users.

B. Systolic Array
As illustrated in Fig. 3, we use a systolic array that supports

two different modes. In the first mode, the matrix A from (1)
is computed. The systolic array consists of an upper-triangular
array of processing elements (PEs), each containing a complex-
valued multiplier (built from four real-valued multipliers) and
an accumulator. Since A is Hermitian, we only need to compute
the upper-triangular part. Since our ASIC (see Sec. IV) is
designed for a channel matrix H of dimension B = 64 times
U = 16, the systolic array consists of (U2 + U)/2 PEs. In
every clock cycle, the systolic array is fed with the ith row
of H, where each PE (m,n) (denoted by PEnm) sequentially
computes the entry gmn =

∑B
j=1 hmjh

∗
nj of G = HHH in

B clock cycles. Thus, our ASIC takes B = 64 clock cycles
to calculate G. One additional clock cycle is used to add the
regularization term N0

Es
to the diagonal of G to arrive at A.

Subsequently, the entries of A are buffered in the register
array from (and to) which the BLDL factorization engine
(see Sec. III-C) can read (and write). The register array has
(U

2

2 + U)/4 entries for the 2× 2 submatrices of A and extra
U/2 entries to store the submatrices D−1

jj , j = 1, . . . , U
2 .

In the second mode, the systolic array computes A−1 using
backward substitution. In the first clock cycle, the block
diagonal PEs are loaded with Djj , j = 1, . . . , U

2 , submatrices
computed during BLDL factorization. In the second clock
cycle, the PE at the bottom passes the result to the PEs above,
which multiply the received value with the appropriate −l∗ij
value, accumulate the result in the internal register, and pass
it to the PEs above and so on. For the U th column of the
systolic array, this procedure is equivalent to solving the set of
equations in (6). In the fourth clock cycle, the PE at the bottom
of the (U−1)th column can start the same procedure described
above, which corresponds to solving the set of equations in (7).
The computations continue analogously for all the columns
of the systolic array until the first column is reached. The
backward-substitution step takes a total of 2U clock cycles.

C. Block-LDL Factorization Engine
Our BLDL-factorization engine implements a processor-like

architecture, which is illustrated in Fig. 4. Specialized instruc-
tions, along with data fetch and result write addresses, are
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Fig. 4. BLDL-factorization engine. The architecture is composed of four
arithmetic units: MMAC, MSUB, MINV and MMULT. The units operate on
2× 2 matrices and are controlled by an FSM in a processor-like fashion.

encoded and stored in a look-up table (LUT). The instructions
not bound to any data dependency are parallelized to minimize
latency. In each clock cycle, one row of the LUT is read,
triggering the state transitions of a finite-state machine (FSM),
which provides the control signals to four main arithmetic units,
each processing 2×2 submatrices: Matrix multiply-accumulate
(MMAC), matrix subtraction unit (MSUB), a matrix inversion
unit (MINV) composed of a complex-valued scalar inversion
unit based on the Newton-Raphson iteration as in [7], and
matrix-matrix multiplication (MMULT). The latencies of the
MMAC, MSUB, MINV, and MMULT units are two, one, four,
and one clock cycle(s), respectively.

D. Numerical Precision

To optimize efficiency, we exclusively utilize fixed-point
arithmetic. Before feeding the rows of the channel matrix H
to the preprocessing engine, we assume that the entries in each
row are normalized by the maximum absolute value in that row.
This enables the use of 42 bit to represent a complex number
(21 bit per part), respectively. To demonstrate the accuracy of
our fixed-point design for a 64×16 massive MU-MIMO system
with 16-QAM, we simulate the uncoded bit-error rate (BER).
We use the QuaDRiGa mmMAGIC UMi [15] channel model
(LoS and non-LoS) with 1◦ minimum user separation and
perfect power control, and we perform least-squares channel
estimation followed by LMMSE-based data detection.

Fig. 5 compares the uncoded BER between a floating-
point reference and our fixed-point golden model. As another
baseline, we also show the performance of the approximate
inversion method from [12]. We also compare an alternative
architecture in which ∆ in (2) is forced to be real-valued (indi-
cated by RD). We observe that the BER of our preprocessing
engine follows closely that of the floating-point reference to
an uncoded BER of about 10−3 under non-LoS conditions.

IV. IMPLEMENTATION RESULTS AND COMPARISON

Fig. 6(a) depicts the fabricated 5 mm2 chip in Global-
Foundries’ 22 FDXTM FD-SOI technology. The BLDL factoriza-
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Fig. 6. (a) Die photo of our 2.5×2mm2 Mothra chip containing the proposed
preprocessing engine (right) along with other designs (left). (b) Clock frequency
and power measurements of the preprocessing engine.

tion engine occupies 0.2 mm2, the systolic array 1 mm2, and the
register file 0.04 mm2. The ASIC also includes input and output
SRAMs to perform high-speed measurements. At nominal
0.9V core supply and 25◦ C, the ASIC achieves a maximum
clock frequency of 870MHz with the critical path in the PE
of the systolic array. To measure power, we create mmWave
channel-matrix stimuli to loop the preprocessing engine for
7ms. We do the same for accessing the input memory in order
to isolate the dynamic power of the preprocessing engine by
subtracting the power of such accesses from the total power.
At the maximum clock frequency, the preprocessing engine
consumes 416mW. At 0.7V core supply, our design achieves
420MHz, which results in a power consumption of 120mW
and a throughput of 1.44M mat/s and 0.7 µs latency; please
refer to Fig. 6(b) for more details. As it can be seen from
Tbl. I, our ASIC achieves significantly higher throughput and
lower latency than the FPGA designs in [16], [17]. Our exact
matrix inversion attains a comparable latency and throughput
as [12], which achieves poor BER performance (cf. Fig. 5). It
is challenging to compare our design to [11] as (i) they only
provide synthesis results and (ii) the preprocessing latency was
not reported. Furthermore, their reported cell area appears to be
unusually compact, especially when considering that matrices
of dimension 128× 16 are processed.

V. CONCLUSIONS

We have proposed the first fabricated and measured pre-
processing ASIC for LMMSE-based data detection in a 64
BS antenna, 16 user mmWave massive MU-MIMO system.

TABLE I
IMPLEMENTATION RESULTS AND COMPARISON WITH OTHER DESIGNS

This Mahdavi Abbas Kumar Han
work [11] [12] [16] [17]

Algorithm BLDL Cholesky Neumann QR LDL
H dimension 64×16 128×16 80×16 25×25 32×32
Precision [bit] 21 20 16 32 –
Fabricated? yes no no no no

Technology 22 nm 28 nm 65 nm FPGA FPGA
Core supply [V] 0.9 – – – –
Active area [mm2] 1.204 – – – –
Cell area [kGE] 6 030 537 117 – –
Max. clock freq. [MHz] 870 510 460 103.8 275
Max. throughput [M mat/s] 1.44 – 0.54 5.6·10-4 3.2·10-3

Latency [µs/mat] 0.7 – 1.85 1785 313.5
Power [mW] 416 210 – 1508 –

Norm. throughputa [M mat/s] 1.44 – 1.59 – –
Norm. latencyb [µs/mat] 0.69 – 0.63 – –

a Scaling by S and by b S−1 where S is the relative dimension to 22 nm.

Unlike existing matrix-factorization approaches, our BLDL-
based design improves parallel processing, thereby reducing
preprocessing latency. Our ASIC achieves a throughput of 1.44
M mat/s and 416mW at 870MHz clock frequency at a latency
of only 0.7 µs. When compared to existing preprocessing
engines, our implementation outperforms other designs in terms
of throughput, area, latency, and/or error-rate performance.
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