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S U M M A RY

Visualizing evolution as a hill-climbing process on an adaptive landscape – which maps
genotypes to their reproductive capability or fitness – has emerged as a valuable tool for
studying evolution. The concept of an adaptive landscape itself has evolved from being a
mere schematic diagram to facilitating directed evolution experiments and predicting the
evolution of antibiotic resistance and the future evolution of SARS-CoV-2. This versatile
tool allows for the study of evolution across various scales, by either mapping genotypes
directly to fitness in the form of fitness landscapes or to intermediate phenotypes through
genotype-phenotype maps. Recent technological advancements, such as high-throughput
sequencing, have reignited interest in the field, by enabling the measurement of large
empirical adaptive landscapes.

Despite considerable progress in our theoretical understanding of adaptive landscapes,
many open questions remain. In this thesis, I address three such questions, at three
levels of biological organisation – the level of DNA, the level of proteins and the level of
development. In answering these questions, we not only gained theoretical insights about
adaptive landscapes, but also biological insights about evolution at these different scales.

At the level of DNA, adaptive landscapes have been used to study the evolution of
transcription factor binding sites (TFBS) of various eukaryotic transcription factors. Since
it is difficult to quantify and measure the fitness of a genotype, a phenotype, such as
binding affinity, is measured as a proxy for fitness. When there is selection for low or
intermediate values of the phenotype, the genotype-phenotype map and the fitness land-
scape can look very different. In Chapter 2, we systematically quantified this incongruence
between genotype-phenotype maps and fitness landscapes. On the theoretical front, we
found a special genotype-phenotype map that would remain invariant under selection
for low or intermediate phenotypic values and concluded that correlated genotype-
phenotype maps would be more incongruent to their corresponding fitness landscapes,
than uncorrelated genotype-phenotype maps. This knowledge provides intuition about
when a genotype-phenotype map is a good approximation for the fitness landscape. On
the biological front, we applied our findings to genotype-phenotype maps of TF-DNA
interactions. Here, we found that selection for intermediate binding affinity in more than
a 1000 genotype-phenotype maps aids adaptation, despite making the landscapes more
rugged. In other words, we found an evolutionary benefit of low affinity binding sites,
that could potentially explain their prevalence in the regulatory portfolios of a diversity
of organisms such as bacteria, yeast and fly.

At the level of proteins, adaptive landscapes have been used to study the evolution
of protein function. On a more fundamental level, it is not understood why there
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are 20 standard amino acids. The number of allowed amino acids at each site in the
protein sequence serves as a means of adding more dimensions to the fitness landscape.
In Chapter 3, we were interested in understanding the evolutionary consequences of
increasing the dimensionality of fitness landscapes, by changing the number of alleles
at each site, or the alphabet cardinality. We concluded that the effect of increasing the
cardinality on adaptive evolution depends on the correlations in the fitness landscape
being considered – while it is detrimental to increase the cardinality in correlated fitness
landscapes, it is beneficial to do so in uncorrelated fitness landscapes. This result also
has implications for the general field of optimisation. We also applied our findings to
three combinatorially complete empirical protein fitness landscapes with intermediate
levels of correlations. For these landscapes, increasing the cardinality does not affect
adaptive evolution significantly. We therefore concluded that topographical changes in
the landscape cannot alone explain the expansion of the amino acid alphabet.

Finally, at the level of development, we were interested in studying the probability of
emergence of complex phenotypes, such as the peacock’s tail, from simple phenotypes
through natural selection. To this end, in Chapter 4, we examined the genotype-phenotype
map resulting from a toy model of development, namely Richard Dawkins’ Biomorphs.
We studied the navigability of Biomorphs fitness landscapes i.e. the prevalence of uphill
paths in these landscapes. On the theoretical front, we established relationships between
phenotypic evolvability and ruggedness, average peak height and navigability that hold
for all genotype-phenotype maps. On the biological front, we found that emergence of
complex phenotypes is rare, despite there being uphill paths between simple source phe-
notypes and complex target phenotypes. However, upon expanding the set of acceptable
phenotypes, by allowing for some mismatches from the target phenotype, we reported
an increased probability of evolving complex phenotypes.

viii



Z U S A M M E N FA S S U N G

Die Vorstellung von Evolution als Bergsteigen auf einer adaptiven Landschaft, welche
Genotypen auf ihre Reproduktionsfähigkeit oder Fitness abbildet, hat sich als wertvolles
Werkzeug für die Erfoschung von Evolution herauskristallisiert. Das Konzept von ad-
aptiven Landschaften entwickelte sich von einem bloßen Schema zu einem etablierten
Werkzeug – welches zum Design von Evolutionsexperimenten und zur Vorhersage der
Evolution von Antibiotikaresistenz und SARS-CoV-2 verwendet wird. Die Vielfälltigkeit
von adaptiven Landschaften ermöglicht es Evolution auf verschieden Maßstäben zu
untersuchen, indem Genotypen entweder direkt auf die Fitness, in Form von Fitness-
Landschaften, oder auf intermediäre Phänotypen, durch Genotyp-Phänotyp-Karten, abge-
bildet werden. Neueste technologische Fortschritte, wie z. B. Highthroughput-Sequencing,
haben das Interesse an diesem Gebiet neu entfacht, da sie die Messung großer empirischer
adaptiver Landschaften ermöglichen.

Trotz erheblicher Fortschritte in unserem theoretischen Verständnis adaptiver Land-
schaften bleiben viele Fragen offen. Diese Arbeit befasst sich mit drei dieser Fragen auf
drei verschiedenen Ebenen der biologischen Organisation – der Ebene der DNA, der
Ebene der Proteine, und der Ebene der Entwicklung. Dabei haben wir nicht nur neue
theoretische Erkenntnisse über adaptive Landschaften gewonnen, sondern auch biologi-
sche Erkenntnisse über Evolution auf diesen verschiedenen Ebenen. Weiterhin konnten
wir auch die Grenzen von adaptiven Landschaften als Werkzeug zur Untersuchung der
Evolution identifizieren.

Auf der Ebene der DNA wurden adaptive Landschaften genutzt, um die Evolution von
Transkriptionsfaktor-Bindungsstellen (TFBS) verschiedener eukaryontischer Transkripti-
onsfaktoren (TF) zu untersuchen. Da es schwierig ist die Fitness eines Genotyps direkt
zu messen wurden stattdessen stellvertretend die Bindungsaffinität bzgl. der Transkrip-
tionsfatktoren gemessen. Wenn es eine Selektion für niedrige oder mittlere Werte des
Phänotyps gibt, können die Genotyp-Phänotyp-Karte und die Fitness-Landschaft sehr
unterschiedlich aussehen. In Kapitel 2 haben wir diese Diskrepanz zwischen Genotyp-
Phänotyp-Karten und Fitnesslandschaften systematisch quantifiziert. Auf theoretischer
Ebene haben wir eine spezielle Genotyp-Phänotyp-Karte gefunden, die bei der Selektion
auf niedrige oder mittlere phänotypische Werte invariant bleibt, und schlussfolgern, dass
korrelierte Genotyp-Phänotyp-Karten stärker mit den entsprechenden Fitnesslandschaf-
ten inkongruent sind als unkorrelierte Genotyp-Phänotyp-Karten. Dieses Wissen gibt
Aufschluss darüber, wann eine Genotyp-Phänotyp-Karte eine gute Annäherung an die
Fitness-Landschaft darstellt. Auf biologischer Ebene haben wir unsere Erkenntnisse auf
Genotyp-Phänotyp-Karten von TF-DNA-Interaktionen angewandt. Dabei stellten wir fest,
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dass Selektion für mittlere Bindungsaffinität in mehr als 1000 Genotyp-Phänotyp-Karten
die Adaption fördert, obwohl die Landschaften dadurch zerklüfteter werden. Mit anderen
Worten, wir haben einen evolutionären Vorteil von Bindungsstellen mit geringer Affinität
gefunden, der möglicherweise ihre Verbreitung in den regulatorischen Portfolios einer
Vielzahl von Organismen wie Bakterien, Hefe und Fliegen erklären könnte.

Auf der Ebene der Proteine haben wir adaptive Landschaften verwendet, um Evolution
von Proteinfunktionen zu studieren. Es ist unklar warum es genau 20 Standardamino-
säuren gibt. Die Anzahl der zulässigen Aminosäuren an jeder Stelle der Proteinsequenz
dient als Mittel, um der Fitnesslandschaft weitere Dimensionen hinzuzufügen. In Kapitel
3 waren wir daran interessiert, die evolutionären Folgen einer Erhöhung der Dimensio-
nalität von Fitnesslandschaften zu verstehen, indem wir die Anzahl der Allele an jeder
Stelle oder die Kardinalität des Alphabets veränderten. Wir kamen zu dem Schluss, dass
der Effekt einer erhöhten Kardinalität auf die adaptive Evolution von der Beschaffenheit
der Fitnesslandschaft abhängt. In korrelierten Fitnesslandschaften ist eine erhöhte Kardi-
nalität von Nachteil, während sie in unkorrelierten Fitnesslandschaften von Vorteil ist.
Dieses Ergebnis hat auch Auswirkungen auf den allgemeinen Bereich der Optimierung.
Wir haben unsere Erkenntnisse auch auf drei empirische, kombinatorisch vollständige
Protein-Fitnesslandschaften mit mittlerem Korrelationsgrad angewandt. Für diese Land-
schaften hat erhöhte Kardinalität keinen signifikanten Einfluss auf adaptive Evolution.
Wir kamen daher zu dem Schluss, dass topografische Veränderungen in der Landschaft
allein die Erweiterung des Aminosäurealphabets nicht erklären können.

Auf der Ebene der Entwicklung haben wir abschließend analysiert wie durch na-
türliche Selektion aus einfachen Phänotypen komplexe Phänotypen entstehen können.
Dafür untersuchten wir in Kapitel 4 die Genotyp-Phänotyp-Karten, welche aus einem
Toy-Entwicklungs-Modell hervorgehen, nämlich Richard Dawkins’ Biomorphs. Wir analy-
sierten die Beschaffenheit der Biomorphs Fitnesslandschaften, d.h. wie viele Pfade bergauf
(zu höherer Fitness) es in diesen Landschaften gibt. Wir haben eine Beziehung zwischen
der phänotypischen Evolvierbarkeit und der Robustheit, der durchschnittlichen Gipfelhö-
he und der Navigierbarkeit herstellen können, welche für alle Genotyp-Phänotyp-Karten
gilt. Auf biologischer Ebene finden wir, dass komplexe Phänotypen selten entstehen, ob-
wohl es zwischen einfachen Ausgangsphänotypen und komplexen Zielphänotypen viele
bergauf gehende Pfade gibt. Wenn wir jedoch die Menge der akzeptablen Phänotypen
erweiterten, indem wir einige Abweichungen vom Zielphänotyp zuließen, fanden wir
eine höhere Wahrscheinlichkeit für die Entwicklung komplexer Phänotypen.
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1
I N T R O D U C T I O N

O snail, climb Mt. Fuji, but slowly, slowly
— Kobayashi Issa

1.1 from darwin to wright

In 1859, prompted by Alfred Russel Wallace’s letter describing similar findings, Charles
Darwin published an abstract of arguably the most influential work [1] on mankind’s
understanding of its origins, one that he had been ruminating on for years. The then
revolutionary idea, that natural diversity has been shaped by the force of natural selection
acting on randomly occurring heritable variation, took its time to be fully accepted. This
was followed by Gregor Mendel’s particulate theory of inheritance and advances in
population genetics led by Ronald Fisher, J.B.S Haldane and Sewall Wright, which further
solidified the theory and eventually culminated into the Modern Evolutionary Synthe-
sis [2] that brought together naturalists, geneticists and paleontologists. Fascinatingly, all
this progress happened before the discovery of the structure of DNA.

In 1932, Sewall Wright devised the schematic diagram of an adaptive landscape [3],
to visualise evolution as a quest to climb adaptive peaks and elucidated conditions that
allow a population to shift from one peak to another. While his goal was to explain the
mathematical results of his paper [4] to a biological audience, his diagram ended up
having a much larger impact than he would have anticipated. Ninety two years later,
numerous theoretical results have been derived, various empirical adaptive landscapes
have been measured and many a physicist has transitioned into an evolutionary biologist
due to the intellectual appeal of the idea.

1.2 one map to explain it all?

While Wright used the two-dimensional adaptive landscape solely as a visual metaphor
to explain his shifting balance theory [5], the complete multidimensional fitness landscape
holds the potential to explain [6], predict [7] and even direct [8] evolution. Formally, a
fitness landscape F is defined as a map from the space of all genotypes, henceforth called
the genotype space G = AL to the space of real numbers,

F : G → R

where, A is the alphabet of the genotype space and L is the length of the genotype.
For instance, if the genotype space is composed of DNA sequences of length 8, A =

1



2 introduction

{A, G, T, C} and L = 8. Although this mathematical definition appears straightforward,
capturing the intricacies of an organism, by assigning a single number to its genotype is
unsurprisingly a challenging endeavour. However, for the purposes of this section, let’s
assume that it is possible to do.

Wright was well aware that non-additive interactions between mutations can lead
to the existence of multiple adaptive peaks [3] or in other words, the local property
of epistasis [9, 10] can influence the global property of the topography of the fitness
landscape [7, 11]. This is due to a strong form of epistasis called sign epistasis [12]
wherein the sign of the effect of a mutation depends upon the background on which
it occurs. A fitness landscape can have multiple peaks only when sign epistasis occurs
reciprocally between a pair of mutations, i.e. in the presence of reciprocal sign epistasis [13].
For instance, reciprocal sign epistasis can occur between costly resistance mutations in
bacteria and compensate for the cost of resistance [14]. This can potentially make the
bacterial fitness landscape rugged [15].

Epistasis or non-additive 
interactions between 

mutations

Topography of fitness 
landscapes, such as 
number and height of 

adaptive peaks

Accessible paths, that 
can help explain and 
predict evolutionary 

dynamics  

affects constrains

Figure 1.1: A flow chart linking epistasis to topography and evolutionary dynamics

A population evolving on a fitness landscape is more likely to traverse accessible paths
comprising of a series of beneficial (or neutral) mutations, or in terms of Maynard Smith’s
word conversion metaphor [16], paths comprising of mutations that always lead to "mean-
ingful words". The topography of the fitness landscape can thus constrain evolutionary
trajectories, by reducing the number of accessible paths [17] and also determining the
probability of realisation of these paths [18]. This enables us to understand and predict
wide-ranging evolutionary phenomena, such as speciation [19], the evolution of sex [20]
or the evolution of antibiotic resistance [17]. A flow chart summarising the connection
between epistasis, topography of fitness landscapes and evolutionary dynamics is shown
in Figure 1.1.

Since the definition of a fitness landscape doesn’t rely on a particular genotype space
or measure of fitness, one is free to choose the genotype space (e.g. DNA sequences,
amino acid sequences or a sequence of a few genes) and the definition of fitness (e.g.
growth rate or the binding affinity) depending upon the system of interest. Thus, the
concept of a fitness landscape can be applied to multiple scales (see Figure 1.2). This can
link molecular and systems biology to the study of evolution and ecology [6].
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DNA sequences 

Amino acid 
sequences 

Phenotype 

Fitness 

AGC…
AAC…

AGA…

AAA… UAC…

GAC…

UGC…

GGC…

Arg  …

Asn  …

Ser  … Gly  …

Cys  …

Try  …

Asp  …

Environment  

Lys  …

Figure 1.2: Anatomy of Mt. Fuji. A schematic diagram showing a Mt. Fuji like adaptive land-
scape across multiple scales. The genotype space comprising of DNA sequences
(shown in black), gets transcribed and translated into a genotype space comprising
of amino acid sequences (shown in blue), this maps to some intermediate phe-
notype such as binding affinity or catalytic activity (shown in green) and then
the phenotype maps to fitness (shown in maroon). The genotype-phenotype and
genotype-fitness sub-landscapes shown on the left have different sign epistasis
motifs and are thus incongruent [21], whereas those shown on the right have the
same sign epistasis motifs and are thus congruent. Note how some amino acid
sequences (such as the ones starting with Lysine and Serine) differing by a single
amino acid are not mutational neighbours in the amino-acid genotype space due to
the underlying genetic code [22]. The triangulation [23] imposed by the genotype-
fitness sub-landscape on the right upon the DNA genotype space is shown with a
red dashed line. The tree branch represents the external environment, which too
can influence the landscape. The snail sits in the centre of the square as opposed
to sitting on a vertex, indicating that the snail population is polymorphic and
consists of a mixture of the genotypes flanking the square. The black line at the top
connecting genotypes AGA... and GGC... is a schematic for the possible shape of
the fitness landscape.

1.3 from models to data

Adaptive landscapes belong to two broad classes – theoretical landscapes, that rely on
statistical or biophysical models to assign fitness values or phenotypes to genotypes



4 introduction

and empirical landscapes, that experimentally measure the fitness or some intermediate
phenotype corresponding to each genotype. In this section, I discuss these two classes of
adaptive landscapes.

1.3.1 Theoretical landscapes

The flexibility of the concept of an adaptive landscape led to theoretical models being
developed at various levels of biological organisation. While some models directly map
genotypes to fitness, others map genotypes to phenotypes or phenotypes to fitness. These
different types of theoretical fitness landscapes are discussed below.

Genotype-fitness maps or fitness landscapes

The first models of fitness landscapes simply assigned random variables sampled from
a fixed distribution to each genotype and came to be known as House-of-cards (HoC)
fitness landscapes [24, 25]. These landscapes have completely uncorrelated fitness values
and are characterised by high levels of epistasis and ruggedness. Then Stuart Kauffman
introduced a slightly more sophisticated probabilistic model, in which the amount of
epistasis could be tuned [26, 27]. This was done by controlling the number of interacting
loci, K+1 in a genotype of length N and thus, this model is called the NK model. Another
model with tune-able epistasis and therefore tune-able ruggedness is the Rough Mt.
Fuji (RMF) model [28] that starts with a Mt. Fuji like additive landscape and adds a
random component to the fitness value of each genotype. The relative importance of the
random component can be adjusted by varying a roughness parameter. It is worth noting
that while the HoC and NK model are isotropic landscapes, the RMF landscapes are
anisotropic along the distance from the optimal genotype [29]. These statistical models
can be used to establish general principles about landscape topography and accessible
paths.

Another highly epistatic landscape called the Holey landscape was introduced by
Sergey Gavrilets [19], in which each genotype is either neutral or lethal with some
probability. This model helped in understanding the effect of higher dimensions on the
prevalence of accessible paths, by demonstrating how higher dimensional ridges could
enable bypasses around valleys. Apart from expanding our two-dimensional intuition
about fitness landscapes, this model was also used to study speciation through genetic
incompatibilities, much like it was done in the Bateson–Dobzhansky–Muller (BDM)
model [30].

More recently, geometric properties of fitness landscapes, such as the triangulation
induced by the fitness landscape on the convex hull of the genotype space, have been
used to classify fitness landscapes, such that landscapes within the same class have
similar topographical features and evolutionary dynamics [31–33] (see Figure 1.2). A
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special class of landscapes that induce staircase triangulations [31] show the property of
universal positive epistasis – i.e. upon representing bi-allelic genotypes as sets of loci that
have been mutated, for any two genotypes σ and σ′, with σ′ ⊂ σ and a set τ of loci not
contained in σ, universal positive epistasis guarantees that the fitness effect of σ mutating
to σ ∪ τ is always greater than the effect of σ′ mutating to σ′ ∪ τ [23]. Furthermore, a
similar concept of universal negative epistasis has also been developed, which satisfies
the accessibility property of trade-off induced landscapes (wherein any peak genotype
is accessible from all its subset and superset genotypes via all direct paths) [15] and
explains the existence of rugged yet navigable fitness landscapes [29].

Lastly, there are also models of pervasive microscopic epistasis, that explain global
evolutionary trends such as diminishing-returns and increasing-costs epistasis [34, 35].

Genotype-phenotype maps

Then there are biophysical models that describe the mapping between genotypes and spe-
cific phenotypes, for instance the mapping between RNA sequences and their secondary
structure through free energy minimisation [36, 37], or between DNA sequences and
their binding affinities to various transcription factors through the mismatch model [38]
or more recently, landscapes in which genotypes are divided into constrained and un-
constrained parts [39], motivated by the existence of exons and introns or genes and
non-coding sequences. The last model gives rise to properties such as genotypic redundancy,
phenotypic bias, positive correlation between phenotypic robustness and evolvability and
shape-space covering [40] that result in genotype-phenotype maps with large connected
neutral networks – a feature that is shared by many molecular genotype-phenotype
maps [41]. Finally, there are also multi-level computational genotype-phenotype maps
such as toyLIFE [42], that integrate various levels of phenotypes such as protein folding,
gene regulation and metabolic networks and yet show similar genotype-phenotype map
properties.

Phenotype-fitness maps

Finally, there are phenotype-fitness maps such as the Fisher’s Geometric model [43]
and the multi-linear model from quantitative genetics [44]. Fisher’s Geometric model,
in keeping with Fisher’s views on evolution, assumes a single-peaked fitness function
defined on a multi-dimensional trait space. Though the initial model was heuristic, it
was later shown that such phenotype-fitness maps can be derived from first principles
with minimal assumptions about the phenotypic space [45]. Moreover, it highlights that
non-linearities at various levels of the fitness landscape can introduce epistasis in an
otherwise additive genotype-phenotype map [21, 46, 47]. Further, it has also been used
to match and explain empirical results, such as predicting the distribution of epistasis
from the distribution of single mutation effects for E. coli and an RNA virus [48].
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Thus, theoretical models of adaptive landscapes span the entire space of possibili-
ties, from being completely uncorrelated to being fully correlated, from being purely
statistical to being firmly grounded on biophysical principles, from merely describing
the relationship between phenotype and fitness to describing the entire mapping from
genotype to fitness and from explaining molecular evolution to explaining evolutionary
ecology.

1.3.2 Empirical landscapes

Creating models of adaptive landscapes and analysing their evolutionary implications is
certainly fascinating. But what do real adaptive landscapes look like? While small adap-
tive landscapes with less than ten loci have existed for more than two decades e.g., [12],
these samples are inherently biased because they are constructed using mutations that
are known to have either individual or combined beneficial effects. This can severely
affect our conclusions about the extent of ruggedness and epistasis in these landscapes,
primarily leading to an underestimation of sign epistasis [7]. Attempts to sample entire
adaptive landscapes quickly become intractable due to the exponential growth of the
number of possible genotypes, which becomes hyper-astronomical [49]. However, recent
technological advancements such as high throughput sequencing technology have rein-
vigorated the field of adaptive landscapes, by allowing sampling of larger and complete
empirical landscapes. These landscapes not only enable the testing of the validity of
existing theoretical models, they can also inform the development of better models.

Some examples of large and nearly combinatorially complete landscapes include
measurement of affinity of all 410

10-nucleotide DNA oligomers to allophycocyanin
protein [50], measurement of binding affinity of all 204 mutants of GB1 protein to
immunoglobulin [51] or the recently published fitness landscape of 49 nucleotide substi-
tutions in folA gene in E. coli [52]. Missing fitness measurements can also be interpolated
with an accuracy depending upon the order of epistasis that is relevant for determining
the fitness [53].

Meta studies on empirical landscapes [7, 11] have revealed some of their common
features, such as:

• Empirical landscapes have intermediate ruggedness, i.e. their ruggedness is some-
where between a Mt. Fuji and a HoC landscape. Further, ruggedness is greater for
mutations whose combined effect is unknown and mutations that individually have
a large effect.

• It is probable that mutations that occur in the same gene show higher epistasis as
opposed to mutations occurring in different genes. However, this still remains to be
tested systematically. Moreover, mutations occurring in genes located in the same
pathway show more epistasis than mutations in random genes. Thus, adaptive
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landscapes sampling a small contiguous portion of the genome are more likely to
be epistatic and therefore rugged, than adaptive landscapes that combine different
portions of the genome.

• Diminishing returns epistasis is a commonly observed phenomenon, where the ben-
eficial effect of a mutation is smaller when it appears on a fitter genetic background.
This can be attributed to idiosyncratic epistasis on the genotype–phenotype level.

• Empirical landscapes regularly show higher order epistasis, which can reduce pre-
dictability of the fitness landscape based on solely pairwise epistatic effects. How-
ever, the prevalence of higher order epistasis is still under debate.

• Epistasis observed in empirical landscapes is highly dependent upon the environ-
ment, perhaps due to changes in phenotype–fitness relationships that can lead to
moving phenotypic optima – as has been proposed to occur in fitness seascapes [54].

1.4 evolution across multiple scales

Biology operates on multiple scales, starting at the level of DNA, where genetic infor-
mation necessary for inheritance is stored. DNA undergoes transcription into mRNA,
which in turn undergoes translation into proteins, which carry out essential cellular
tasks. Proteins interact with one another and with DNA and RNA molecules, in order
to regulate the expression of various genes and eventually orchestrate the development
of an organism (see Figure 1.4 A). It is miraculous how well this process works, given
the stochasticity due to the small number of molecules involved in each step of the
process [55].

The characteristics of fitness landscapes across these different scales play an important
role in shaping biological processes and can, therefore, help us understand why biology
functions the way it does. For instance, a comparative analysis of TF-DNA genotype-
phenotype maps and RNA and RNA binding protein genotype-phenotype maps showed
that the TF-DNA genotype-phenotype map had higher evolvability and could thus bring
forth phenotypic variation more quickly [56]. This can explain why transcriptional regu-
lation, rather than post-transcriptional regulation mediated by RNA binding proteins,
is more often utilised in adaptation and innovation [40]. Furthermore, the architecture
of the intermediate genotype-phenotype maps can greatly influence evolutionary out-
comes and studies have shown that phenotypic abundance i.e. the number of genotypes
mapping to a phenotype, plays an equally important role as fitness in evolution [57,
58] and that explaining the direction of evolution requires both selective and generative
arguments [59].

In the strong selection weak mutation regime, evolutionary dynamics gets reduced
to an adaptive walk [27, 63]. In Figure 1.3, I show the outcome of 1000 random adaptive
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Figure 1.3: Random adaptive walks on adaptive landscapes across multiple scales: A.
Allele graphs corresponding to the alphabets of DNA, protein and developmental
genes. The DNA alphabet consists of the nucleotides {A,G,T,C}, the protein alphabet
consists of the 20 standard amino acids and the alphabet of developmental genes
consists of allowed values of genes at each site, as described in [60]. Results
of 1000 random adaptive walks on fitness landscapes at the level of B. DNA
sequences of length 8 [61], C. protein sequences of length 3 [62] and D. sequences of
developmental genes of length 9 [60]. The black dots show the fitness of genotypes
at a given distance from the reference genotypes. Genotypes highlighted in green
were visited during the adaptive walks and the paths between these genotypes is
shown with grey lines. Local peaks are highlighted in red and the initial genotype
in blue.

walks on adaptive landscapes at three different biological scales – the level of TF-DNA
interactions [61], the level of protein function [62] and the level of development [60].
The research presented in this thesis focuses on these three scales and therefore, this
preliminary analysis will provide a glimpse of what is to come. The three landscapes
have very different allele graphs (see Figure 1.3 A): while the DNA allele graph has
four possible alleles and is fully connected, the amino acid allele graph has 20 possible
alleles and is well connected with only a few dis-allowed amino acid substitutions due
to the underlying genetic code [22], finally, the developmental allele graph is a sparsely
connected path graph [64] with an intermediate number of alleles. Thus, in the examples
considered here, the allele graph connectivity decreases as one goes up in biological scale.
In terms of ruggedness, the DNA landscape has 2 peaks amongst 48 = 65, 536 sequences
(Figure 1.3 B), the protein landscape has 5 peaks amongst 203 = 8, 000 sequences (Figure
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1.3 C) and the developmental landscape has 19 peaks amongst 74 = 2, 401 sequences
(Figure 1.3 D). This differing architecture results in very different evolutionary outcomes.
At the level of DNA, while there is significant divergence in the evolutionary paths taken,
all 1000 walks terminate on the same peak with a reasonably high fitness. Moreover, only
a small fraction of the fitness landscape, at a small distance from the starting genotype is
explored by the walks. At the level of protein, a high divergence in the walks is observed,
however the walks terminate on only two of the highest peaks in the landscape. In
contrast to the DNA landscape, here a significant fraction of the landscape is explored
by the adaptive walks. This is due to the size and connectivity of the allele graph that
ensures that even when the genotype space grows exponentially with the length of the
sequence, the distances only grow linearly [40]. Finally, at the level of development,
we see divergent trajectories but also divergent evolutionary end-points, although they
primarily belong to two fitness classes. Further, as in the case of DNA sequences, a very
small portion of the landscape is sampled during the walks.

Thus, it is evident that evolution can look very different across different levels, for
instance in terms of its predictability or the fraction of genotype space it explores. In the
following paragraphs, I discuss our current understanding of various aspects of adaptive
landscapes, and consequently, evolution across different scales. The broad trends are
summarised in Figure 1.4 B.

Knowledge across multiple scales

Since the number of interacting parts increases, as one goes up in scale from the molecular
level to the organisimal level, it becomes increasingly difficult to study combinatorially
complete adaptive landscapes at the corresponding levels. While we understand the me-
chanics of TF-DNA interactions and can measure the corresponding binding affinities [65]
to a reasonably good degree, and we have computational packages to compute the low-
est free energy secondary structure of RNA sequences [66]; the genotype-phenotype
maps at higher levels such as that of gene regulatory networks [42] and body pattern
development [60] are less well studied and also harder to measure accurately.

Neutrality across multiple scales

Motoo Kimura, the father of the neutral theory of evolution [67], suggested that genetic
drift could be the primary driver of molecular evolution and that natural selection mostly
acts on the phenotypic level. While most of the theoretical landscapes discussed above
lack neutral mutations, empirical landscapes at almost all levels have some genotypic
redundancy along with phenotypic correlations, that result in large connected neutral
networks. For instance, the degeneracy in the genetic code leads to synonymous mutations
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in protein landscapes and the robustness of gene regulatory networks leads to many
gene combinations resulting in the same body plan. This causes the effect of mutations to
be buffered across different levels of biological organisation. It can also strongly influence
the topography of the resulting fitness landscape and confer phenotypic evolvability [68].
Prior work has shown that adding more layers to the mapping of genotypes to phenotypes
enhances both robustness and evolvability [69]. Further, even non-degenerate fitness
landscapes can be rendered effectively neutral in rapidly changing environments [54].
Thus, the neutrality at the level of the genotype-phenotype map cannot be neglected,
especially at higher levels of biological organisation.

Figure 1.4: A. Biology at multiple scales: From DNA to Development. B. Broad trends in the
levels of knowledge, neutrality, epistasis and predictability with increasing scale of
the adaptive landscape.

Topography across multiple scales

One topographical feature that changes as we go up in biological scale is the connectivity
of the allele graph of the genotype space. As mentioned above, the connectivity of the
allele graph generally decreases as we go up in scale, which can increase the number
of local peaks. Consequently, adaptation could be more constrained at higher levels
of biological organisation. It is also known that the density of local peaks is lower for
larger scale landscapes, and this correlates well with theoretical predictions [7]. As for
propagation of epistasis across hierarchical levels, for metabolic networks it was observed
that epistasis only gets stronger at higher levels and negative epistasis cannot be converted
into positive epistasis. [70] .
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Predictability across multiple scales

The predictability of evolution depends upon the number of local peaks in the landscape.
Many local peaks imply many possible destinations for populations starting at different
initial conditions. Reasoning from our knowledge of the empirical datasets and the lower
connectivity of allele graphs at higher levels, would lead us to conclude that landscapes
at higher levels are more rugged and thus evolution is less predictable. However, the large
neutral networks and bias in the arrival of variation at higher levels [59, 71] can render
evolution more predictable. Moreover, some accessible paths having disproportionately
higher probabilities of realisation can also enhance the predictability. Thus it is generally
accepted that evolution is more predictable at the level of genes and metabolic pathways,
than at the level of nucleotide substitutions [6, 7]. Mutational bias [72, 73] in nucleotide
substitutions can however increase the predictability of these substitutions. Finally,
predictability is highest at intermediate population sizes and lowest for landscapes of
intermediate ruggedness [7, 11].

1.5 evolution in action - case study of sars-cov-2

Few months before I started my Ph.D. in September 2020, the world became hostage to a
nanometer sized virus and strongly validated Stephen Jay Gould’s reservations about
the iconography of the ladder [74], that places mankind at the pinnacle of evolutionary
progress. The scale of the pandemic transferred textbook epidemiological and evolution-
ary theory to the newspapers, as we experienced the successive emergence of different
viral strains over the next months.

Following a period of limited evolution over eight months, there was a swift emergence
of divergent variants of concern — Alpha, Beta, and Gamma — each approximately
10-12 non-synonymous mutations away from their ancestral strains. Subsequently, the
Omicron lineage surfaced, evolving gradually in comparison to the preceding variants of
concern [75]. The evolutionary forces at play here included a mutation rate of roughly
10−6 mutations per base per replication cycle, host-mediated genome editing, recom-
bination, genetic drift, and natural selection. This prompts the question of which viral
phenotypes were being acted upon by natural selection. In the beginning of the pandemic,
transmissibility of the virus was the primary driver of evolution. Thus, fitness could
be increased by altering the spike protein to enhance binding to the ACE2 receptor,
as was seen to be the case [75, 76]. After a certain fraction of the population acquired
immunity, immune escape became an important objective of selection, since even a highly
transmissible virus cannot infect an immune population. Omicron BA.1 variant was in
fact found to have a higher re-infection rate due to mutations in the receptor binding
domain (RBD). Thus, the phenotype under selection and therefore the fitness landscape,
kept changing as the pandemic progressed.
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Knowledge of the fitness landscape of the virus, with the correct phenotype as a proxy
for fitness, could thus be used to understand the early evolution of the virus. One such
study considered the bi-allelic landscape of all 15 point mutations between the spike
protein of the ancestral strain and the Omicron BA.1 variant and chose the binding affinity
to the ACE2 receptor as a proxy for fitness. This study found several epistatic interactions
and identified compensatory mutations as primary drivers of SARS-CoV-2 evolution,
while attributing the emergence of the variant to chronic infections [77]. Another recent
study focused on immune escape and analysed the same genotype space, but used the
binding affinities to 4 monoclonal antibodies as proxies for fitness [78]. They found that
the evolution of escape to each antibody can largely occur independently, suggesting that
there are many pathways to immune escape [78]. On the other hand, trade-offs between
binding ACE2 and escaping antibodies were found to be much stronger. Lastly, higher
order epistasis was found to be prevalent but only in one of the four antibody fitness
landscapes.

Thus, so far, studying the local adaptive landscape of the virus with the relevant
fitness determining traits, has helped in understanding the course of the pandemic.
Further such investigations can help in examining the repeatability of the sequence
of events described above and more importantly, the predictability of future events
to ensure better preparedness. While deep-mutational scanning and machine learning
approaches are being employed towards this end [79], it is by no measure an easy goal to
achieve. Nevertheless, the COVID-19 pandemic, alongside other issues like the global
prevalence of antibiotic resistance, has highlighted that understanding evolution is now
an imperative for averting and controlling public health crises. I would like to conclude
by quoting words attributed to Marie Curie, "Nothing in life is to be feared, it is only to be
understood. Now is the time to understand more, so that we may fear less". Fortunately, we are
better equipped than ever before to fulfil that objective.

1.6 thesis outline

In this thesis, I address three knowledge gaps in our theoretical understanding of adaptive
landscapes. While addressing each knowledge gap, I also arrive at biological insights at
different levels of biological organisation – ranging from the level of DNA to the level of
development.

The first knowledge gap pertains to the use of measurable phenotypes as proxies
for fitness, as has most recently been done in studying the SARS-CoV-2 landscapes.
In Chapter 2, we systematically study how using phenotypes as a proxy for fitness
can lead to differences, or incongruence between the genotype-phenotype map and the
fitness landscape, at both a local and a global level, especially under selection for low
or intermediate values of the phenotype. Through this study, we establish some general
principles of incongruence between genotype-phenotype maps and fitness landscapes. In
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the second half of the chapter, we apply these general principles to genotype-phenotype
maps at the level of DNA – in particular the system of TF-DNA interactions, that is
essential for gene-regulation. We use a biophysically motivated landscape and more
than a thousand empirical landscapes of TF-DNA interactions, to test the validity of
the theoretical principles derived in the former part of the chapter. Finally, we use
evolutionary simulations to provide a possible explanation for the prevalence of low-
affinity binding sites in the regulatory portfolios of various organisms such as bacteria,
yeast and fly.

The second knowledge gap concerns the impact of increasing the dimensionality of
a fitness landscape, by increasing the number of alleles at each locus or the alphabet
cardinality. While the extra-dimensional bypasses [80] arising due to the increased alphabet
cardinality have been thought to aid adaptation – by opening up new accessible paths to
the global optimum, the altered topography with increased ruggedness can potentially be
detrimental to adaptation. In Chapter 3, we study the interaction of these two opposing
factors, to derive conditions under which increasing the alphabet cardinality can be
beneficial. The biological motivation behind this analysis was to understand the expansion
of the amino acid alphabet and the existence of 20 standard amino acids, that seems
to be conserved across all organisms. To this end, we analyse the effect of increasing
the number of amino acids on adaptation, in three combinatorially complete, empirical
protein fitness landscapes. Using this analysis, we show that the intuition gained from
theoretical fitness landscapes and conventional measures such as landscape ruggedness,
need not be indicative of evolutionary dynamics on empirical fitness landscapes.

The third knowledge gap was regarding the architecture of genotype-phenotype-fitness
landscapes at higher levels biological organisation. In particular, we study Richard
Dawkin’s Biomorphs, which is a toy model for body plan development, that was devised
to explain the emergence of complex body plans. First, we establish general relationships
between the topography of the landscape and the evolvability of phenotypes, which
should also be applicable to a much wider class of genotype-phenotype maps with
random fitness assignments. The biological motivation was to study the frequency of
evolution of complex body plans from simple ones, in the Biomorphs fitness landscape.
To do this, we examine the navigability of the landscape, i.e. the probability of occurrence
of accessible paths between given source and target phenotypes, with a special focus
on simple source phenotypes and complex target phenotypes. We also examine how
frequently these accessible paths are utilised by evolving populations in various evolu-
tionary regimes. We demonstrate that despite the existence of accessible paths, evolving
populations seldom reach complex target phenotypes from simple source phenotypes.

Finally, in Chapter 5, I summarise the findings of this thesis and discuss future research
directions that take into account additional features, such as changing environments,
phenotypic plasticity and ecological interactions, with the goal to develop more compre-
hensive and widely applicable models of adaptive landscapes across multiple scales.
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G L O S S A RY

accessible paths Paths in which the fitness increases or remains
constant in each mutational step.

additive landscape A fitness landscape in which each locus has an
independent additive contribution to the fitness.

allele graph A graph showing all possible allelic states at each
locus in a genotype with the edges connecting mu-
tational neighbours.

alphabet cardinality The number of possible allelic states at each locus
in a genotype, e.g., it is 4 for DNA sequences and
20 for amino acid sequences.

epistasis Non-additive interactions between effects of muta-
tions.

evolvability The number of novel phenotypes accessible by
point mutations.

extra-dimensional bypass A phenomenon in which a local maximum trans-
forms into a saddle point upon increasing the di-
mensions, thereby allowing further adaptation.

fitness landscape A map from the space of all possible genotypes of
an organism to their corresponding reproductive
capabilities. Often used interchangeably with the
term "adaptive landscape".

genotype space The space of all possible genotypes of an organism.

genotypic redundancy Many genotypes mapping to the same phenotype.

higher order epistasis When the effect of a mutation at locus is deter-
mined by interactions with two or more than two
other loci.
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22 Glossary

incongruence Differences in the local and global topographical
features of two landscapes.

navigability The average probability of existence of an accessible
path between a given source and target phenotype.

negative epistasis Combinations of mutations have fitness values
lower than that expected from the sum of the fitness
effects of single mutants.

phenotypic bias Variation in the number of genotypes mapping to
each phenotype.

phenotypic robustness The average of the genotypic robustness (i.e. the
number of neutral neighbours) over all genotypes
mapping to a phenotype.

positive epistasis Combinations of mutations have fitness values
higher than that expected from the sum of the fit-
ness effects of single mutants.

random adaptive walks A walk on an adaptive landscape in which each
step is taken by randomly choosing a fitter neigh-
bour.

reciprocal sign epistasis When two individually deleterious mutations
jointly enhance fitness or vice-versa.

ruggedness Measure of the number of local maxima or peaks
in an adaptive landscape.

shape-space covering A property of only requiring a small number of
mutations to reach the most common phenotypes
from a given phenotype.

triangulation A triangulation of the L-cube is a subdivision of
the cube into simplices (i.e. triangles if L = 2, tetra-
hedra if L = 3 etc).
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abstract

The mapping from genotype to phenotype to fitness typically involves multiple nonlinear-
ities that can transform the effects of mutations. For example, mutations may contribute
additively to a phenotype, but their effects on fitness may combine non-additively because
selection favors a low or intermediate value of that phenotype. This can cause incon-
gruence between the topographical properties of a fitness landscape and its underlying
genotype-phenotype landscape. Yet, genotype-phenotype landscapes are often used as a
proxy for fitness landscapes to study the dynamics and predictability of evolution. Here,
we use theoretical models and empirical data on transcription factor-DNA interactions
to systematically study the incongruence of genotype-phenotype and fitness landscapes
when selection favors a low or intermediate phenotypic value. Using the theoretical
models, we prove a number of fundamental results. For example, selection for low or
intermediate phenotypic values does not change simple sign epistasis into reciprocal sign
epistasis, implying that genotype-phenotype landscapes with only simple sign epistasis
motifs will always give rise to single-peaked fitness landscapes under such selection.
More broadly, we show that such selection tends to create fitness landscapes that are
more rugged than the underlying genotype-phenotype landscape, but this increased
ruggedness typically does not frustrate adaptive evolution because the local adaptive
peaks in the fitness landscape tend to be nearly as tall as the global peak. Many of these
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results carry forward to the empirical genotype-phenotype landscapes, which may help
to explain why low- and intermediate-affinity transcription factor-DNA interactions are
so prevalent in eukaryotic gene regulation.

author summary

How do mutations change phenotypic traits and organismal fitness? This question is
often addressed in the context of a classic metaphor of evolutionary theory — the fitness
landscape. A fitness landscape is akin to a physical landscape, in which genotypes define
spatial coordinates, and fitness defines the elevation of each coordinate. Evolution then
acts like a hill-climbing process, in which populations ascend fitness peaks as a conse-
quence of mutation and selection. It is becoming increasingly common to construct such
landscapes using experimental data from high-throughput sequencing technologies and
phenotypic assays, in systems such as macromolecules and gene regulatory circuits. Al-
though these landscapes are typically defined by molecular phenotypes, and are therefore
more appropriately referred to as genotype-phenotype landscapes, they are often used to
study evolutionary dynamics. This requires the assumption that the molecular phenotype
is a reasonable proxy for fitness, which need not be the case. For example, selection
may favor a low or intermediate phenotypic value, causing incongruence between a
fitness landscape and its underlying genotype-phenotype landscape. Here, we study
such incongruence using a diversity of theoretical models and experimental data from
gene regulatory systems. We regularly find incongruence, in that fitness landscapes tend
to comprise more peaks than their underlying genotype-phenotype landscapes. However,
using evolutionary simulations, we show that this increased ruggedness need not impede
adaptation.
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2.1 introduction

Characterizing the relationship between genotype and phenotype is key to our under-
standing of evolution [1, 2]. For quantitative phenotypes, such as the expression level
of a gene or the enzymatic activity of a protein, this relationship can be formalized as a
genotype-phenotype landscape [3]. In such a landscape, genotypes represent coordinates
in an abstract genotype space and their phenotype defines the elevation of each coordi-
nate in this space [4]. The topographical properties of genotype-phenotype landscapes,
such as their ruggedness, are influenced by epistasis [5] — non-additive interactions
between mutations in their contribution to phenotype. These topographical properties
have important evolutionary consequences, because they determine how mutation brings
forth the phenotypic variation upon which selection acts [6, 7].

Technological advances are facilitating the construction and analysis of empirical
genotype-phenotype landscapes at ever-increasing resolution, scale, and scope [8]. Ex-
ample phenotypes include the enzymatic activity [9], binding affinity [10], allosteric
profile [11], and fluorescence intensity of proteins [12], as well as exon inclusion lev-
els [3], the expression levels of genes driven by regulatory elements [13], the expression
patterns of gene regulatory circuits [14–16], and flux through metabolic pathways [17].
In analyzing the topographical properties of these landscapes and their evolutionary
consequences, an assumption is often made that phenotype is a proxy for fitness [12, 18–
24], thus rendering genotype-phenotype landscapes equivalent to fitness landscapes [25].
While this assumption may be justified under certain conditions, such as in directed
protein evolution experiments [26], it is often the case that the relationship between
phenotype and fitness is not so straightforward. For example, fitness may depend upon
more phenotypes than those being assayed [27] or the relationship between phenotype
and fitness may be inherently nonlinear, for example reflecting a tradeoff between the
costs and benefits associated with a phenotype [28]. In the latter case, selection may favor
a low or intermediate phenotypic value [29, 30]; e.g., an intermediate gene expression
level, [31–33], enzyme efficiency [34] or protein production rate or activity [35]. Such
non-linearities are a cause of epistasis [16, 36–38], and they can transform the effects of
mutations as they map onto phenotype and fitness [37], thus rendering the topographical
properties of a fitness landscape qualitatively different from those of its underlying
genotype-phenotype landscape (Fig. 2.1A). While we do not doubt that workers in the
field are well aware that the topographical properties of a fitness landscape can differ
from those of its underlying genotype-phenotype landscape, a systematic study of these
differences is lacking.

Selection for low or intermediate phenotypic values is especially relevant to tran-
scription factor-DNA interactions [39]. Transcription factors are sequence-specific DNA
binding proteins that help regulate gene expression. They do so by binding DNA se-
quences (transcription factor binding sites) in regulatory regions such as promoters and
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Figure 2.1: Incongruence. (A) Schematic illustration of how selection for an intermediate
phenotypic value wopt can make a genotype-phenotype landscape incongruent
with the resulting fitness landscape. (B) An additive three-locus, biallelic genotype-
phenotype landscape with a single peak (gray filled circle; pgp = 1). One pairwise
interaction is highlighted in blue. It exhibits no magnitude epistasis (ϵgp = 0) or
sign epistasis. (C) The Gaussian phenotype-fitness map (Eq. 2.1) is shown for three
values of wopt (dashed line, wopt = 0; dotted line, wopt = 0.5; solid line, wopt = 1),
with three values of σ shown for wopt = 0.5. (D) Applying the Gaussian phenotype-
fitness map with wopt = 0 to the genotype-phenotype landscape results in a single-
peaked fitness landscape (gray filled circle; pf = 1). The same pairwise interaction
from (B) is highlighted in blue. It exhibits positive epistasis (ϵgp = 0.266), but no
sign epistasis. (E) Applying the Gaussian phenotype-fitness map with wopt = 0.5
to the genotype-phenotype landscape results in a multi-peaked fitness landscape
(gray filled circles; pf = 2). The same pairwise interaction from (B) is highlighted in
red. It exhibits negative epistasis (ϵgp = −1.01), as well as reciprocal sign epistasis.
(F) Applying the Gaussian phenotype-fitness map with wopt = 1 to the genotype-
phenotype landscape results in a single-peaked fitness landscape (gray filled circle;
pf = 1). The same pairwise interaction from (A) is highlighted in blue. It exhibits
positive epistasis (ϵgp = 0.53), but no sign epistasis. In panels B,D-F, arrows point
from genotypes with lower phenotypic or fitness values to genotypes with higher
phenotypic or fitness values. The no sign epistasis motif is highlighted in blue
and the reciprocal sign epistasis motif in red. Note the symmetry of landscapes in
panels D and F.
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enhancers to recruit or block the recruitment of RNA polymerase [40]. The regulatory ef-
fect of such a binding event depends in part on the affinity with which the DNA sequence
is bound by the transcription factor [41, 42]. As such, binding affinity is an important
molecular phenotype of transcription factor binding sites, upon which selection acts [43,
44]. While it is commonly assumed that selection increases binding affinity [21, 43–47],
several lines of evidence suggest that selection for low or intermediate binding affinity
also influences the evolution of transcription factor binding sites. For example, paralo-
gous transcription factors often bind the same DNA sequences with high affinity, but
different DNA sequences with low affinity [48, 49]. If an optimal gene expression pattern
requires binding by just one of several transcription factor paralogs, such specificity can
be achieved using low-affinity transcription factor binding sites, resulting in selection for
low binding affinity [50]. Additional documented cases in which low-affinity binding sites
play important regulatory roles include negative auto-regulation by high-copy number
transcription factors in Escherichia coli [51], where high-affinity binding sites cause subop-
timal noise suppression, and developmental patterning in Ciona intestinalis embryos [52,
53], where high-affinity binding sites cause deleterious ectopic gene expression patterns.
Moreover, low-affinity binding sites are commonly observed in the regulatory portfolios
of a diversity of organisms, including bacteria [51], yeast [54], fly [49, 55, 56], sea stars
and sea urchins [57], as well as humans [58].

How incongruent are the topographies of genotype-phenotype and fitness landscapes
when selection favors a low or intermediate phenotypic value? How does this depend on
the ruggedness of the genotype-phenotype landscape? These are important questions,
because the topography of a fitness landscape has implications for several evolutionary
phenomena, including the evolution of genetic diversity [59], reproductive isolation [60],
and sex [61], as well as the predictability of the evolutionary process itself [62]. How much
we can learn about these phenomena from knowledge of a genotype-phenotype landscape
depends on the genotype-phenotype landscape’s congruence with the fitness landscape.
Despite decades of research on fitness landscapes [63, 64], these questions have not been
addressed even in the context of classical theoretical models, such as Mt. Fuji [65], House-
of-Cards [66], or NK landscapes [67]. They have also not been addressed in the context of
biophysical models of genotype-phenotype landscapes or empirical genotype-phenotype
landscapes. Here, we fill this knowledge gap by defining local and global measures
of incongruence, which describe the topographical differences between a genotype-
phenotype landscape and the corresponding fitness landscape when selection favors a low
or intermediate phenotypic value. We use these measures to study incongruence in the
context of the aforementioned theoretical models [65–67] and derive some fundamental
results that are applicable to all empirical genotype-phenotype landscapes. We then
consider the specific case of genotype-phenotype landscapes of transcription factor-DNA
interactions, by first looking at an idealised biophysical model [68] and then taking
a step further, by analysing 1,137 empirical genotype-phenotype landscapes, wherein



genotypes are transcription factor binding sites and the phenotype is a measure of
relative binding affinity [21]. We study transcription factor-DNA interactions because
there is strong biological motivation for studying selection for low or intermediate
binding affinity, as discussed above, and because a large number of empirical genotype-
phenotype landscapes of transcription factor-DNA interactions are publicly available [21],
thus facilitating the statistical analysis of their incongruence.

2.2 results

We first present our measures of incongruence and the phenotype-to-fitness map used
to incorporate the effect of selection for a low or intermediate phenotypic value. We
use these measures and this map to study the incongruence of randomly generated
genotype-phenotype landscapes, specifically two-locus biallelic landscapes and multi-
locus biallelic landscapes. For the latter, we use NK landscapes [67], which include the
corner cases of Mt. Fuji [65] (K = 0) and House-Of-Cards [66] (K = N − 1) landscapes (see
Table 2.1 for a list of symbols). We then apply the principles learned from these model
genotype-phenotype landscapes to genotype-phenotype landscapes of transcription
factor-DNA interactions, first in the context of the mismatch model [68] (which enables
us to study landscapes with more than two alleles per locus), and then in the context of
empirical measurements of transcription factor-DNA interactions [21]. Finally, we study
the evolutionary consequences of landscape incongruence.

w, wopt Phenotypic value, Optimal phenotypic value

σ Strength of selection

F(w) Fitness value

ϵgp, ϵf
Epistasis in the genotype-phenotype landscape (gp)
and fitness landscape (f) respectively

pgp, pf
Number of peaks in the genotype-phenotype land-
scape (gp) and fitness landscape (f) respectively

L Length of the sequence

K Ruggedness parameter of the NK model

a Number of alleles at each locus

m Number of mismatches in the mismatch model

⟨l⟩ Average length of adaptive walk

⟨ f ⟩ Mean fitness at equilibrium

Table 2.1: List of symbols
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2.2.1 Landscape incongruence

Our goal is to quantify the topographical differences between a fitness landscape and its
underlying genotype-phenotype landscape, when selection favors a low or intermediate
phenotypic value. To do so, we define measures of landscape incongruence, at both a
local and a global scale. At a local scale, we quantify differences in pairwise epistasis
amongst loci in the genotype-phenotype landscape relative to the same loci in the fitness
landscape (Methods). We do so by classifying the type of magnitude epistasis (ϵ) as
additive (i.e., no epistasis; ϵ = 0), positive (ϵ > 0), or negative (ϵ < 0). For a pair of loci,
we then compare the type of epistasis in the genotype-phenotype landscape (ϵgp) to the
type of epistasis in the fitness landscape (ϵf), and report whether this is the same in the
two landscapes. We do the same for an additional classification of epistasis based on the
absence or presence of sign epistasis. This results in three categories – no sign epistasis,
simple sign epistasis, or reciprocal sign epistasis [69]. At a global scale, we quantify
incongruence as the difference in the number of peaks in the fitness landscape (pf)
relative to the genotype-phenotype landscape (pgp). Taken together, these local and global
measures allow us to determine the extent to which selection for a low or intermediate
phenotypic value increases or decreases the ruggedness of the fitness landscape, relative
to the genotype-phenotype landscape.

2.2.2 Phenotype-to-fitness map

To study the effect of selection for low or intermediate phenotypic values, we use a
Gaussian phenotype-to-fitness map F(w) centred around an optimal phenotypic value
wopt,

F(w) = exp

[
−
(

w − wopt

σ

)2
]

. (2.1)

The parameter σ determines the strength of selection by controlling how rapidly fitness
decreases as the phenotype w deviates from the optimal phenotype wopt. Increasing σ

decreases the strength of selection, because it broadens the fitness map around wopt

and thus decreases the fitness differences between similar phenotypes. Similar maps
are commonly used in evolutionary modeling frameworks, such as Fisher’s Geomet-
ric model [70, 71] and models of speciation [72], as well as in biophysical models of
intermolecular interactions [29], including transcription factor-DNA interactions [46].
However, we emphasize that most of our measures of incongruence depend only on the
rank ordering of phenotypic or fitness values, and are therefore independent of the exact
shape of the phenotype-fitness map, so long as it is symmetric.

Fig. 2.1B-F illustrates the application of the phenotype-to-fitness map to a simple
three-locus, biallelic genotype-phenotype landscape. This landscape is purely additive,
and as a consequence, it exhibits no epistasis and has only one peak (Fig. 2.1B). Applying



30 on the incongruence of genotype-phenotype and fitness landscapes

the phenotype-to-fitness map (Fig. 2.1C) to this landscape can change the amount and
type of epistasis, as well as the location and number of peaks in the resulting fitness
landscape, relative to the genotype-phenotype landscape (Fig. 2.1D-F). It can therefore
cause incongruence between genotype-phenotype and fitness landscapes. Whereas this
schematic and our analyses below pertain to a single phenotype, extending our model to
multiple phenotypes is straightforward, as we later discuss.

2.2.3 Two-locus biallelic genotype-phenotype landscapes

We first study incongruence using the simplest form of genotype-phenotype landscape
that is capable of exhibiting epistasis: a two-locus biallelic landscape. We represent
genotypes as binary strings of length L = 2 and randomly assign a phenotype wi to
each genotype i, which we draw from a uniform distribution between 0 and 1. We then
apply the Gaussian phenotype-fitness map (Eq. 2.1) to generate the corresponding fitness
landscape. We repeat this process 10,000 times for values of wopt ∈ [0, 1] (in increments
of 0.01), and report the probability that the type of epistasis in the genotype-phenotype
landscape is the same as in the fitness landscape. We first differentiate between no
magnitude epistasis, positive epistasis, and negative epistasis, and then between no sign
epistasis, simple sign epistasis, and reciprocal sign epistasis.

Incongruence in magnitude epistasis is highest when selection favors low phenotypic values

To determine whether the type of magnitude epistasis is the same in the genotype-
phenotype landscape and fitness landscape, we calculate the product ϵgp · ϵf, which
will be positive when the two landscapes have the same type of epistasis. We use this
product, rather than a discrete categorization, to ensure analytical tractability. We obtain
an analytical expression for ϵgp · ϵf by assuming σ to be large (Supplementary Material,
Derivation 1):

ϵf · ϵgp =
1
σ2

[
2ϵm · ϵgp + (2wopt − Σiwi) · ϵ2

gp

]
, (2.2)

where wi is the phenotypic value of genotype i with i ∈ {0, 1}2 and ϵm = w00w11 −w01w10,
which is also known as multiplicative epistasis [73].

The probability that the type of epistasis is the same in the genotype-phenotype and
fitness landscapes, P(ϵgp · ϵf > 0) can be computed using Monte-Carlo methods and
yields results in good agreement with the randomly generated genotype-phenotype
landscapes when σ is large. This is shown in Fig. 2.2, where three trends are immediately
apparent. First, for large σ, the probability that the type of epistasis is the same in
the genotype-phenotype landscape and the fitness landscape increases as the optimal
phenotype wopt increases, in agreement with the intuition that selection for large phe-
notypic values leaves the genotype-phenotype landscape mostly unchanged, except for
the nonlinear rescaling introduced by the phenotype-fitness map. Second, even when
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Figure 2.2: Local incongruence: magnitude epistasis. (A) The probability of retaining the
type of epistasis, shown in relation to the optimal phenotype wopt. The black line
shows the theoretical prediction and the dots show the results from randomly
generated genotype-phenotype landscapes for different values of σ. The theoretical
approximation agrees well with the results from randomly generated genotype-
phenotype landscapes for large σ (i.e., σ ≥ 1). (B) The probability of observing zero
magnitude epistasis in the fitness landscape, shown in relation to wopt, for different
values of σ, which we selected to show the range of variation in the probability of
observing zero epistasis.

wopt = 1, the probability that the type of epistasis is the same in the genotype-phenotype
landscape and the fitness landscape is less than one. The reason is the nonlinear rescaling
introduced by the phenotype-to-fitness map does not guarantee conservation of the type
of magnitude epistasis, even though it does preserve the rank ordering of fitness values.
Results obtained with the randomly generated genotype-phenotype landscapes show this
effect becomes even more pronounced as σ decreases. This means that as the strength of
selection for wopt increases, so does the likelihood of landscape incongruence. Finally, as σ

decreases, the probability of retaining the type of epistasis from the genotype-phenotype
landscape in the fitness landscape is not maximized at wopt = 1, but rather at a smaller
wopt (e.g., at wopt ≈ 0.8 when σ = 0.01, Fig. 2.2A). The reason is as σ decreases, the
fitness function becomes extremely narrow and more phenotypic values are mapped
to zero fitness (within computer precision i.e. any fitness < 5.0 × 10−324 ≈ 0), resulting
in cases where the genotype-phenotype landscape exhibits epistasis (i.e., ϵgp ̸= 0), but
the fitness landscape does not (i.e., ϵf = 0), because all fitness values are zero. Fig. 2.2B
shows this is more likely to occur when σ is small and as wopt approaches its extreme
values of 0 or 1. In these randomly generated landscapes, the probability of obtaining
negative epistasis is the same as the probability of obtaining positive epistasis, and the
probability of conserving the type of epistasis is independent of the type of epistasis in
the genotype-phenotype landscape. In sum, these results show that selection for low or
intermediate phenotypic values can modify the genotype-phenotype landscape, such
that the resulting fitness landscape exhibits a different type of magnitude epistasis, and
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this effect is most pronounced when selection is strong and the optimal phenotypic value
is low.

Incongruence in sign epistasis is highest when selection favors intermediate phenotypic values

Next, we categorized landscapes as exhibiting no sign epistasis, simple sign epistasis,
or reciprocal sign epistasis. These three motifs are shown in the center panel of Fig. 2.3,
where arrows point from genotypes with a lower phenotypic or fitness value to genotypes
with a higher phenotypic or fitness value. Because the presence of sign epistasis only
depends upon the partial ordering of the phenotypic values, we expect to retain the motif
from the genotype-phenotype landscape in the fitness landscape as wopt → 1. We also
expect to retain the motif as wopt → 0, because selecting for wopt = 0 simply flips all the
arrows from the genotype-phenotype landscape in the fitness landscape, which does not
change the categorization of the motif. Thus, we expect the probability of retaining the
motif from the genotype-phenotype landscape in the fitness landscape to be "U" shaped
and symmetric about wopt = 0.5. Fig. 2.3 shows the probability of retaining or changing
the motif from the genotype-phenotype landscape in the fitness landscape for 10,000

randomly generated two-locus biallelic landscapes, grouped according to the motif in
the genotype-phenotype landscape. These results confirm the expected “U” shape of the
probability of retaining the type of epistasis from the genotype-phenotype landscape in
the fitness landscape as wopt is varied from 0 to 1.

Simple sign epistasis cannot be modified into reciprocal sign epistasis

When the genotype-phenotype landscape has the no sign epistasis motif, selection for an
intermediate phenotypic value can transform the landscape into the simple sign epistasis
motif or the reciprocal sign epistasis motif (Fig. 2.3A), in line with recent results on
Fisher’s Geometric model [74]. When the genotype-phenotype landscape has the simple
sign epistasis motif, selection for an intermediate phenotypic value can transform the
landscape into a no sign epistasis motif, but not into a reciprocal sign epistasis motif (Fig.
2.3B; Supplementary Material, Proof 1). Because reciprocal sign epistasis is a necessary
condition for multiple peaks [5], this implies that genotype-phenotype landscapes with
only simple sign epistasis motifs will always give rise to single peaked fitness landscapes,
using the phenotype-fitness map considered here. Finally, when the genotype-phenotype
landscape has the reciprocal sign epistasis motif, selection for an intermediate phenotypic
value transforms the landscape into the no sign epistasis motif or the simple sign epistasis
motif with equal probability (Fig. 2.3C; Supplementary Material, Proof 2). Moreover,
the probability of retaining the motif from the genotype-phenotype landscape in the
fitness landscape is always higher than the probability of changing it when the genotype-
phenotype landscape has the simple sign epistasis motif (Fig. 2.3B) or the reciprocal
sign epistasis motif (Fig. 2.3C). This is not always true when the genotype-phenotype
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Figure 2.3: Local incongruence: sign epistasis. The probability of retaining or changing
the type of epistasis in the genotype-phenotype landscape, relative to the fitness
landscape, shown in relation to the optimal phenotypic value wopt. Data are grouped
based on whether the genotype-phenotype landscapes exhibits (A) no sign epistasis
(blue), (B) simple sign epistasis (brown), or (C) reciprocal sign epistasis (red). The
colours of the lines represent the type of epistasis in the resulting fitness landscape.
These results are independent of σ, because they only depend on the rank ordering
of fitness values. Notice the “U” shape of the probability of retaining the type of
epistasis in each panel.

landscape has the no sign epistasis motif (Fig. 2.3A), because at intermediate wopt the
landscape is most likely to transform into the reciprocal sign epistasis motif. Taken
together, these results show that selection for intermediate phenotypic values can modify
genotype-phenotype landscapes with no sign epistasis into fitness landscapes with sign
epistasis and vice versa.

The inferences about pairwise interactions can be carried forward to multi-locus
biallelic landscapes because their genotype spaces, which are L-dimensional hypercubes,
are composed of two-dimensional squares. Due to the adjacency of squares, in the
three-locus case, the motifs of four out of the six squares are sufficient to determine the
motifs of the rest of the squares, and for any L, the motifs of only 2L−2 · (L − 1) squares
are necessary to determine the motifs of all of the remaining squares. This is only a
fraction 2/L of all the squares in the hypercube (because the total number of faces in an
L-dimensional hypercube is 2L−2 · (L

2)), which is clearly minuscule for large L. However,
pairwise interactions are not sufficient to predict peak patterns, which may result from
higher-order interactions [75]. We study these in the next section.
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2.2.4 Multi-locus biallelic genotype-phenotype landscapes

We use the NK model [67] to study multi-locus biallelic genotype-phenotype landscapes
(Methods). In this model, each locus in a genotype of length L epistatically interacts
with K other loci (whereas N is typically used to denote the number of loci in this
model, we use L for consistency with the rest of our text). As corner cases, this model
includes Mt. Fuji landscapes [65] when K = 0 and House-of-Cards landscapes [66] when
K = L − 1. For each combination of L and K, we use this model to randomly generate a
genotype-phenotype landscape. We then apply the Gaussian phenotype-fitness map (Eq.
2.1) to generate a fitness landscape. We repeat this process 10,000 times for wopt ∈ [0, 1]
(in increments of 0.01), and report the average of the absolute change in the number of
peaks, i.e., ⟨|pf − pgp|⟩, where pf is the number of peaks in the fitness landscape and pgp

is the number of peaks in the genotype-phenotype landscape. This is our measure of
global incongruence. We use the absolute value of the change in number of peaks so that
we can average over many realisations of genotype-phenotype landscapes. However, since
the sign of change is also important, we discuss that as well in the following sections.

Mt. Fuji landscapes

We begin with Mt. Fuji genotype-phenotype landscapes. Because these are single-peaked,
selection for a low or intermediate phenotypic value can only maintain or increase the
number of peaks from the genotype-phenotype landscape in the fitness landscape. Fig.
2.4A shows this change in the number of peaks, and Fig. 2.4B shows the probability
that the number of peaks changes, in relation to wopt for landscapes with L = 2 to
L = 8 loci. These trends are symmetric about wopt = 0.5, because Mt. Fuji landscapes
are additive, so selecting for wopt = 0 is equivalent to selecting for wopt = 1 with regard
to the change in the number of peaks. The reason is that selecting for wopt = 0 flips all
of the arrows in the fitness landscape, relative to the genotype-phenotype landscape,
which changes the location of the peak, but does not change the number of peaks. This
is illustrated in Fig. 2.1B,D. For a detailed explanation of the shape of the curves in Fig.
2.4A, see Supplementary Material, Note 1. More obvious is the increase in the number
of peaks, and the probability that the number of peaks increases, as L increases, the
latter converging to one for all values of wopt except the extreme cases of wopt = 0 and
wopt = 1. Note, however, that a high probability of increase in the number of peaks does
not necessarily correspond to a high increase in the number of peaks, as can be seen
from the different positions of the maxima in Fig. 2.4A,B (Supplementary Material, Note
1). For large L (> 10), the expected number of peaks in the fitness landscape increases
exponentially with L [74]. In sum, these results show that selection for intermediate
phenotypic values readily transforms Mt. Fuji genotype-phenotype landscapes, which
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are smooth and single-peaked, into rugged fitness landscapes, and that this effect is most
pronounced for large L and intermediate wopt.
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Figure 2.4: Global incongruence : Mt. Fuji and House-of-Cards genotype-phenotype

landscapes. The absolute change in the number of peaks and the probability that
the number of peaks changes in the fitness landscape, relative to (A,B) Mt. Fuji and
(C,D) House-of-Cards genotype-phenotype landscapes, shown in relation to wopt

for L ∈ {2, 3..8}. These results are independent of σ, because they only depend on
the rank ordering of fitness values.

House-of-Cards landscapes

We next study House-of-Cards genotype-phenotype landscapes. These landscapes are
highly rugged, with an average of 2L

L+1 peaks [76], whereas the maximum possible
number of peaks is 2L−1. As such, selection for a low or intermediate phenotypic value
can either increase or decrease the number of peaks in the fitness landscape, relative
to the genotype-phenotype landscape. Fig. 2.4C shows this change in the number of
peaks, and Fig. 2.4D shows the probability that the number of peaks changes, in relation
to wopt for landscapes with L = 2 to L = 8 loci. The change in the number of peaks is
symmetric about wopt = 0.5 for the two-locus case, where the number of peaks does
not change as wopt → 0 or wopt → 1. However, this symmetry is lost for L > 2. The
reason is that although the phenotype-fitness map flips all of the arrows in the fitness
landscape when wopt = 0, relative to the genotype-phenotype landscape, this does
not guarantee conservation of the number of peaks. The number of peaks is jointly
determined by the adjacent faces of the hypercube and thus, only very specific changes
in the directions of arrows in the genotype-phenotype landscape guarantees conservation
of the number of peaks in the fitness landscape (S. 2.4). However, in contrast to Mt.
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Fuji genotype-phenotype landscapes, the magnitude of change in the number of peaks
increases very little with L, despite an exponential increase in the maximum number of
possible peaks. Moreover, the probability that the number of peaks changes is still less
than one for large L. Finally, for large L, both the change in the number of peaks and the
probability that the number of peaks changes are independent of wopt, so long as wopt is
sufficiently less than one. This observation depends on the probability distribution used
to generate these landscapes. Because the 2L phenotypes in the NK model are drawn
from a uniform distribution, nearly the same number of these phenotypes will be close
to the optimal phenotype wopt, so long as L is sufficiently large. Thus, averaging over all
possible configurations of the genotype-phenotype landscape yields the same value of
⟨|pf − pgp|⟩ for every wopt. For sufficiently large L, this value is given by (Supplementary
Material, Derivation 2):

⟨|pf − pgp|⟩ ≈

√
2L · (L − 1)
2π(L + 1)2 for L ≫ 1 (2.3)

So far we have focused on the absolute change ⟨|pf − pgp|⟩ in the number of peaks in
the fitness landscape, relative to the genotype-phenotype landscape. For House-of-Cards
genotype-phenotype landscapes, selection for a low or intermediate phenotypic value
can either increase or decrease the number of peaks. We were therefore interested in
finding out which outcome is more likely. While one might expect a decrease to be more
likely, due to the extreme ruggedness of House-of-Cards genotype-phenotype landscapes,
we find that the number of peaks is equally likely to increase or decrease (Supplementary
Material, Proof 3). In sum, these results show that in House-of-Cards genotype-phenotype
landscapes, selection for a low or intermediate phenotypic value increases or decreases
the number of peaks in the fitness landscape with equal probability, and the severity as
well as the probability of this change increases with L and is largely independent of wopt.

Global incongruence decreases as the ruggedness of the genotype-phenotype landscape increases

Finally, we study NK genotype-phenotype landscapes, which bridge the gap between
Mt. Fuji and House-of-Cards landscapes in terms of ruggedness, as K increases from
0 to L − 1. Fig. 2.5 shows the absolute change in the number of peaks in the fitness
landscape relative to the genotype-phenotype landscape for genotypes of length L = 5
and L = 8, as K is increased from 0 to L − 1. Note the gradual transition from the trends
observed for Mt. Fuji genotype-phenotype landscapes (Fig. 2.4A) to those observed
for House-of-Cards genotype-phenotype landscapes (Fig. 2.4C) as K increases. From
these trends, we conclude four principles of how the ruggedness of an NK genotype-
phenotype landscape influences its incongruence with the fitness landscape. As an NK
genotype-phenotype landscape becomes more rugged, incongruence (1) loses symmetry
about wopt = 0.5, (2) becomes less sensitive to wopt, and (3) decreases in severity, at
least in terms of the absolute change in the number of peaks. Finally, the probability
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of increasing the number of peaks is always greater than or equal to the probability of
decreasing the number of peaks, with the equality holding for House-of-Cards genotype-
phenotype landscapes. This last principle is both intuitive and informative — it tells
us that on average, selection for low or intermediate values is more likely to increase
the ruggedness of a fitness landscape, relative to the genotype-phenotype landscape.
Thus, selection for low or intermediate values is more likely to break than to create
phenotypic correlations between mutationally similar genotypes as they map onto fitness,
rendering fitness landscapes more rugged than their underlying genotype-phenotype
landscapes. In the subsequent sections we address whether and how these results apply
to genotype-phenotype landscapes with more than two alleles per locus, specifically
in the context of a biophysical model and experimental measurements of transcription
factor-DNA interactions.

 L=5  
  
← →

A 
  

D 
  

B 
  

C 
  

 L=8  
  
← →C

ha
ng

e 
in

 p
ea

ks
, ⟨|

p f
−p

gp
| ⟩

Optimal phenotype, wopt Optimal phenotype, wopt

Optimal phenotype, wopt Optimal phenotype, wopt

C
ha

ng
e 

in
 p

ea
ks

, ⟨|
p f

−p
gp

| ⟩

P
ro

ba
bi

lit
y 

of
 c

ha
ng

e 
in

 p
ea

ks
P

ro
ba

bi
lit

y 
of

 c
ha

ng
e 

in
 p

ea
ks

Figure 2.5: Global incongruence : NK genotype-phenotype landscapes. The absolute
change in the number of peaks in the fitness landscape, relative to the genotype-
phenotype landscape, is shown in relation to wopt for genotypes of length (A) L = 5
and (C) L = 8, as K increases from zero to L − 1. The corresponding probability
of change in the number of peaks is shown in relation to wopt for genotypes of
length (B) L = 5 and (D) L = 8, as K increases from zero to L − 1. These results are
independent of σ, because they only depend on the rank ordering of fitness values.

2.2.5 Genotype-phenotype landscapes of transcription factor-DNA interactions

Motivated by the common usage of low- and intermediate-affinity transcription factor
binding sites in the regulatory portfolios of a diversity of organisms [49, 51, 54–57], we
now study the incongruence of genotype-phenotype landscapes of transcription factor-



38 on the incongruence of genotype-phenotype and fitness landscapes

DNA interactions and the corresponding fitness landscapes generated after selection for
low or intermediate phenotypic values. In these landscapes, genotypes represent DNA
sequences — transcription factor binding sites — and the phenotype of a DNA sequence
is the affinity with which it binds a transcription factor [21]. Because the regulatory effects
of transcription factor-DNA interactions are partly determined by binding affinity [41,
42] and mutations to transcription factor binding sites can alter binding affinity [48,
77], the topographies of genotype-phenotype landscapes of transcription factor-DNA
interactions have important implications for the evolution of gene regulation [21]. We
study these landscapes using both a biophysical model and experimental measurements
of transcription factor-DNA interactions. We focus on transcription factor binding sites
of length L = 8, because this is the length of the binding sites assayed by protein binding
microarrays [77, 78] — the data used to construct the empirical genotype-phenotype
landscapes of transcription factor-DNA interactions [21].

The mismatch model

We first study genotype-phenotype landscapes of transcription factor-DNA interactions
generated using the so-called mismatch model [46, 47, 68]. The key assumption of this
model is that the binding energy of a DNA sequence is a linear function of the number
of mismatches between the sequence (genotype) and a transcription factor’s consensus
sequence — the sequence it binds with the highest affinity. Further, each mismatch is
assumed to have the same energetic cost and these costs combine additively to determine
binding energy. This model results in a Mt. Fuji-like, permutation-invariant genotype-
phenotype landscape, wherein the phenotype only depends on the number of differences
between the genotype and the consensus sequence, but not on which loci in the genotype
differ from the consensus sequence. Although this is a simplified model, it provides an
opportunity to study the effects of having more than two alleles per locus and serves as
a bridge to our analyses of empirical transcription factor-DNA interactions.

To ensure that these results are comparable to the results on the empirical landscapes,
we consider the negative of the binding energy as our phenotype, such that sequences
that bind more strongly are assigned higher phenotypic values. We assume a phenotypic
value of 1 for the genotype that is identical to the consensus sequence. For each mismatch
between a genotype and the consensus sequence, we deduct a small positive value e,
such that the phenotypic value of a genotype with m mismatches is Am = 1 − m · e. Due
to the permutation invariance, the genotype-phenotype landscape is highly degenerate,
such that the number of genotypes Nm in a mismatch class m is distributed according to
the asymmetric binomial distribution:

Nm = (a − 1)m L!
(L − m)!m!

, (2.4)
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where a is the number of alleles per locus (a = 4 for transcription factor binding sites,
because they are DNA sequences). Fig. 2.6A shows this distribution for transcription
factor binding sites of length L = 8. Note that Nm is maximized at m = 6.

Fig. 2.6B shows the incongruence between genotype-phenotype landscapes and fitness
landscapes of transcription factor-DNA interactions constructed using the mismatch
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Figure 2.6: Global incongruence : genotype-phenotype landscapes of transcription

factor-DNA interactions. Landscapes constructed using (A,B) the mismatch
model and (C,D) experimental measurements from protein binding microarrays
for 1,137 eukaryotic transcription factors. (A) The number of genotypes, shown in
relation to mismatch class. (B) The absolute change in the number of peaks in the
fitness landscape, relative to the genotype-phenotype landscape, shown in relation
to the optimal mismatch class mopt. Labels indicate the number of genotypes per
peak in the fitness landscape. Note the symmetry in the absolute change in the
number of peaks around mismatch class mopt = 4, as well as the tripling of the
number of genotypes per peak for each increment in mopt. The grey shaded circles
are a schematic representation of the growing width of the peaks. (C) The number of
genotypes per binding affinity class, where protein binding microarray E-scores are
used as a proxy for relative binding affinity. Violin plots show the distribution, and
box-and-whisker plots the 25-75% quartiles, across genotype-phenotype landscapes
for the 1,137 transcription factors. Closed symbols and the dashed line denote the
median of each distribution. (D) Violin plots of the distribution of the absolute
change in the number of peaks in the fitness landscape, relative to the genotype-
phenotype landscape, shown in relation to the optimal binding affinity wopt for
σ = 0.15. The inset shows the mean absolute change in the number of peaks, in
relation to wopt. The x-axes in (A,B) are arranged such that binding affinity increases
when read from left to right, in qualitative agreement with the x-axes in (C,D). The
results in panels A-C are independent of σ.
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model, under selection for an optimal mismatch class mopt, reported in terms of the
absolute change in the number of peaks in the fitness landscape, relative to the genotype-
phenotype landscape. Based on our analysis of Mt. Fuji genotype-phenotype landscapes,
we anticipated asymmetric incongruence about the mismatch class mopt = 6, because
the distribution of the number of genotypes per mismatch class is asymmetric with a
maximum at mismatch class m = 6 (Fig. 2.6A) and we expected all genotypes in the
optimal mismatch class mopt to be peaks. However, we observe symmetric incongruence
about mopt = 4 (Fig. 2.6B). This occurs because a > 2, which renders some genotypes
in the same mismatch class mutational neighbours. Consequently, the peaks can be
broad and include more than one genotype, thus resembling plateaus. Specifically, each
genotype has (a − 1)m − 1 mutational neighbours that are in the same mismatch class
and are therefore part of the same peak. This leaves (L

m) clusters of genotypes to be peaks
in each mismatch class m, an expression that is maximized with m = 4 when L = 8,
thus forcing symmetry in the absolute change in the number of peaks about mopt = 4.
However, the width of the peaks increases as (a − 1)m, leading to a tripling of peak width
for each increment in m (Fig. 2.6B). Thus, even in this idealised genotype-phenotype
landscape, features of empirical landscapes of TF-DNA interactions begin to emerge,
such as broad peaks.

Empirical landscapes

We now study genotype-phenotype landscapes of transcription factor-DNA interactions
generated using experimental data from protein binding microarrays [78] (Methods). For
all possible DNA sequences of length L = 8, these data include an enrichment score (E-
score) ranging from -0.5 to 0.5 that serves as a proxy for relative binding affinity, such that
higher E-scores correspond to higher binding affinities [77, 78]. We have previously used
these data to construct genotype-phenotype landscapes for 1,137 eukaryotic transcription
factors, in which the surface of each landscape was defined by the E-score [21]. Due to
limitations in the reproducibility of E-scores across microarray designs for genotypes that
are bound non-specifically or with very low affinity [77, 78], each genotype-phenotype
landscape only includes DNA sequences with an E-score exceeding a threshold of 0.35,
which corresponds to a false discovery rate of 0.001 [77]. As shown in our previous
work [21], these landscapes tend to exhibit little, if any, reciprocal sign epistasis and
therefore comprise few peaks. As such, they bear resemblance to the genotype-phenotype
landscapes constructed using the mismatch model. An important difference, however, is
that genotypes in the lower half of the E-score range are omitted from each landscape
due to the reproducibility issues mentioned above. Fig. 2.6C shows the distributions
of the number of genotypes across all 1,137 genotype-phenotype landscapes, grouped
into six binding affinity classes. Whereas the lowest binding affinity class contains the
most genotypes, we cannot determine if this is the true maximum, because we do not
know what these distributions look like for lower binding affinity classes. However,
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assuming the energetic contribution of each binding site to be additive [68], we expect
lower binding affinity classes to have fewer genotypes and the maximum to occur at
an intermediate binding affinity class, as can be seen in the mismatch model and other
models in literature [43].

Fig. 2.6D shows the incongruence between these 1,137 empirical genotype-phenotype
landscapes and their corresponding fitness landscapes, under selection for an optimal
binding affinity wopt, reported in terms of the absolute change in the number of peaks
in the fitness landscape, relative to the genotype-phenotype landscape for σ = 0.15.
Interestingly, the effect of changing σ is small (S2.5B Fig) because increasing σ not only
decreases the range of variation of fitness values, but also decreases the uncertainty in
these values (Methods), leaving the number of peaks largely unchanged. The mean and
variance in the absolute change in the number of peaks decreases as wopt increases to
0.5, in line with the intuition that selection for high wopt generates fitness landscapes
that are topographically similar to the underlying genotype-phenotype landscape. More
precisely, the percentage of landscapes that show a change in the number of peaks
decreases from around 99% to 40%, as we go from wopt = 0.35 to wopt = 0.5. As
anticipated from our results with additive genotype-phenotype landscapes (Mt. Fuji
and the mismatch model), selection for low or intermediate phenotypic values is more
likely to increase than to decrease the number of peaks, although the relative fraction
of increase depends upon wopt – while around 99% of the landscapes show an increase
in peaks for wopt = 0.35, this value decreases to around 40% for wopt = 0.5. Further,
when we separately analyzed the single-peaked (≈ 66.75%) and multi-peaked (≈ 33.25%)
genotype-phenotype landscapes, we found the single-peaked landscapes to be more
incongruent (S2.5A Fig), in line with our results from the previous section. In sum, these
results show that selection for low or intermediate phenotypic values tends to increase
the ruggedness of a fitness landscape, relative to the underlying genotype-phenotype
landscapes, rendering genotype-phenotype landscapes a poor proxy for fitness landscapes
under such selection.

Mismatch model and empirical landscapes show different kinds of global incongruence

In contrast to genotype-phenotype landscapes constructed using the mismatch model,
the incongruence of genotype-phenotype landscapes constructed using protein binding
microarray data is highest for the lowest binding affinity class, rather than an intermediate
class. There are three non-mutually exclusive explanations for this. First, these empirical
landscapes are not purely additive [21], unlike the landscapes constructed with the
mismatch model, so we do not expect perfect symmetry about an intermediate wopt.
Second, as previously mentioned, protein binding microarray data do not capture the
full range of binding affinity, so the lowest binding affinity class in our data (E-score =
0.35), which contains the most genotypes (Fig. 2.6C), is unlikely to be the lowest binding
affinity class, but rather an intermediate binding affinity class. Third, while the binding



42 on the incongruence of genotype-phenotype and fitness landscapes

affinity of a sequence is highly correlated with the binding affinities of its mutational
neighbors [79], this correlation is not perfect, so neighboring genotypes that are in the
same mismatch class may not have sufficiently similar binding affinities to be considered
part of the same peak, unlike in the mismatch model.

There are two additional differences between the incongruence of the empirical
genotype-phenotype landscapes and those constructed using the mismatch model that
are worth highlighting. First, in the empirical landscapes, the average height of the peaks
is maximised when selecting for intermediate binding affinities and is lowest when
selecting for the highest affinity (S2.6A Fig), whereas peak height is independent of mopt

in the mismatch model. Second, in the empirical landscapes, peak width is maximized
when selecting for the highest binding affinity (wopt = 0.5) (S2.6B Fig), whereas it is
maximized when selecting for the lowest binding affinity (mopt = 8) in the mismatch
model (Fig. 2.6B). These two differences in incongruence are important for understanding
evolutionary simulations on these landscapes, which are the focus of the next section.

2.2.6 Evolutionary consequences

A key finding of our analyses so far is that selection for low or intermediate phenotypic
values is more likely to increase than to decrease the number of peaks in the fitness
landscape, relative to the genotype-phenotype landscape. Since the ruggedness of a fitness
landscape has important implications for a diversity of evolutionary phenomena [59–62],
we now study the evolutionary consequences of this finding. We do so using two metrics:
(1) the length ⟨l⟩ of a greedy adaptive walk, averaged over all possible genotypes as
starting points, and (2) the mean population fitness at equilibrium ⟨ f ⟩ under deterministic
mutation-selection dynamics (i.e., assuming an infinite population size). These metrics
provide complementary information to measures of landscape ruggedness, such as the
number of peaks. To see why, consider our results with the mismatch model, in which
the fitness landscape had one or more global peaks of equal height (Fig. 2.6A,B). We
observed single-peaked fitness landscapes when the optimal mismatch class was mopt = 0
or mopt = 8, and the most rugged fitness landscapes when the optimal mismatch class
was mopt = 4. We also observed a tripling of the number of genotypes per peak as mopt

increased from 0 to 8, such that the landscape with mopt = 0 comprised a single peak
with one genotype, the landscape with mopt = 4 comprised 70 peaks with 81 genotypes
per peak, and the landscape with mopt = 8 comprised 1 peak with 6,561 genotypes.
Which landscape topography is most conducive to adaptive evolutionary change?

NK landscapes

On NK landscapes, the length of the greedy adaptive walk ⟨l⟩ is minimised when
wopt = 0.5 for K < L − 1, whereas for K = L − 1 (House-of-Cards landscapes), ⟨l⟩
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Figure 2.7: Rugged fitness landscapes need not impede adaptation. The average length of
an adaptive walk ⟨l⟩ and the change in mean population fitness at equilibrium ⟨ f ⟩
is shown for landscapes of transcription factor-DNA interactions generated using
(A,C) the mismatch model for e = 0.05 and (B,D) protein binding microarray data.
In (B,D), violin plots show the distribution, and box-and-whisker plots the 25-75%
quartiles, across the 1,137 empirical landscapes for each optimal binding affinity
wopt. The large variability of ⟨l⟩ at intermediate and high wopt is a consequence
of the random diffusion of the population on non-peak plateaus, which results in
longer walks. In (C), µ = 0.1, σ = 1 while in (D) µ = 0.1, σ = 0.15.

is independent of wopt. Moreover, the change in mean fitness at equilibrium is always
positive, increases with L and K, and tends to be maximized at wopt = 0.5 (Supplementary
Material, Note 2). In sum, these results show that on biallelic landscapes, selection for
an intermediate phenotypic value decreases the length of a greedy adaptive walk and
increases mean fitness at equilibrium, despite increasing the overall ruggedness of the
fitness landscape, relative to the genotype-phenotype landscape. Whereas previous work
has shown that peak accessibility increases with alphabet cardinality (a) due to the
existence of indirect paths [10, 80], we show below that despite this increased accessibility,
results qualitatively similar to the biallelic case (a = 2) also hold for the multi-allelic case
of the mismatch model and of the empirical landscapes of TF-DNA interactions (a = 4).

Mismatch model

In the fitness landscapes generated using the mismatch model, the length of the greedy
adaptive walk averaged over all starting genotypes is given by

⟨l⟩ =
ΣL

m=0(a − 1)m · L!
(L−m)!m! · |mopt − m|
aL . (2.5)
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Fig. 2.7A shows this expression for L = 8 and a = 4. Due to the additive nature and
degeneracy of this genotype-phenotype landscape, the fitness landscapes have mono-
tonically decreasing fitness values as the mutational distance from any peak increases.
Therefore, the length of any individual greedy adaptive walk is simply the absolute
difference of the mismatch class of the starting genotype and that of the optimal mis-
match class (i.e., |mopt − m|). As such, the average length of the greedy adaptive walk is
minimized when selecting for mopt = 6 (Fig. 2.7A), because this maximizes the number
of genotypes in adaptive peaks (Fig. 2.6B; 28 global peaks × 729 genotypes per peak).
If instead, we chose to start the greedy walk from only non-peak genotypes, the walk
would still be minimised for mopt = 6, because this class has the maximum number of
genotypes that are Hamming distance one away from the peak genotypes. Recall that in
each fitness landscape generated upon selection for mopt, all the peaks are of the same
height and therefore, the greedy walk always terminates on a global peak. This is in
contrast with the NK landscapes, and as we will see below, the empirical landscapes.

For each mopt, we next calculated the change in mean fitness at equilibrium under
deterministic mutation-selection dynamics, relative to the fitness landscape generated for
mopt = 0. To do so, we exploit the permutation-invariance of these landscapes to group
genotypes into a lower-dimensional state space defined by mismatch class (Methods).
Specifically, we construct a transition matrix that defines the probability that a genotype
from one mismatch class mutates into another, based on the frequency and fitness of
genotypes in each mismatch class. We iterate this matrix until we reach steady state, which
is guaranteed by the Frobenius-Perron theorem to be independent of initial conditions,
because the matrix is irreducible [81]. Fig. 2.7C shows the change in mean fitness at
equilibrium in relation to the optimal mismatch class mopt = 0. Our first observation
is that the change in mean fitness is always positive for mopt > 0 when µ = 0.1 and
σ = 1, even though selection for such mismatch classes always causes an increase in the
number of peaks in the fitness landscape, relative to the underlying genotype-phenotype
landscape (Fig. 2.6B). Our second observation is that the change in mean fitness relative
to mopt is always unimodal. For example, selection for mopt = 6 maximizes the change in
mean fitness when µ = 0.1 and σ = 1 (Fig. 2.7C). More generally, the mopt that maximizes
the change in mean fitness depends on the interplay between the mutation rate µ and
the strength of selection σ. See S2.10 Fig for the phase diagram. When selection is strong
or mutation is weak, mismatch class mopt = 8 maximizes the change in mean fitness. As
the strength of selection decreases or the mutation rate increases, the mismatch class
that maximizes the change in mean fitness decreases from mopt = 8 to mopt = 7 and
then to mopt = 6, where it remains for weak selection or high mutation rates. This
is because when σ is small (i.e., selection is strong), it is costly to step down from a
peak and therefore, selecting for the class with the broadest peak (mopt = 8) leads to
the highest equilibrium mean population fitness. As σ increases and selection becomes
weaker, it is no longer as costly to step down from a peak and therefore, selecting for
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the class with the maximum number of genotypes in peaks (mopt = 6) maximizes mean
fitness at equilibrium. While this effect is reminiscent of the “survival of the flattest” [82]
phenomenon, the crucial difference is that in the mismatch model, the peaks always have
the same height and thus, there is no trade-off between peak height and width. Another
way of altering the strength of selection is by changing e, the energetic cost of a mismatch.
Larger e corresponds to stronger selection and the phase diagram changes accordingly
(S2.11 Fig).

Empirical landscapes

The empirical genotype-phenotype landscapes are topologically more complex [79, 83]
than the genotype-phenotype landscapes generated with the mismatch model, which are
regular graphs (i.e., every genotype has (a − 1) · L mutational neighbors). We therefore
used simulations to calculate the average length of a greedy adaptive walk ⟨l⟩ in these
empirical landscapes [84], initiating the walks from all non-peak genotypes in the fitness
landscape. Moreover, each binding affinity measurement (E-score) in the empirical
landscapes is associated with a noise threshold that is used to determine whether two
genotypes truly differ in phenotype (Methods). This noise threshold can cause landscapes
to have large non-peak plateaus, in which many genotypes have indistinguishable fitness.
We therefore modified the greedy adaptive walk such that when a non-peak plateau
was encountered, we chose a random mutational neighbor of indistinguishable fitness
for the next step in the walk, disallowing reversion mutations. We repeated this process
until the plateau was traversed and a sequence with higher fitness was reached. Finally,
we terminated the walk when a peak sequence was reached. Therefore, the walk was
primarily a deterministic greedy walk, with some stochasticity due to the non-peak
plateaus.

Fig. 2.7B shows ⟨l⟩, averaged over 100 simulations of the adaptive walk from each
initial condition, in relation to wopt. In contrast to the mismatch model, ⟨l⟩ is shortest for
wopt = 0.35 and wopt = 0.5 and slightly higher for intermediate wopt. This is because, as
in the mismatch model, ⟨l⟩ is correlated with the total number of genotypes in peaks,
which depends upon both the number of peaks and their widths. Whereas selecting for
wopt = 0.35 leads to the largest number of peaks (Fig. 2.6D), selecting for wopt = 0.5 leads
to the broadest peaks (S2.6B Fig), thus explaining the minimisation of ⟨l⟩ when selecting
for these extreme phenotypes. We note that in the absence of plateaus (i.e., when the
noise threshold is zero), ⟨l⟩ increases monotonically with wopt, because in this case, ⟨l⟩ is
inversely correlated with the number of peaks in the fitness landscape, which decreases
monotonically with wopt. Regardless of the noise threshold, when selecting for low or
intermediate phenotypic values, most walks terminate at a local, rather than the global
fitness peak. However, these local peaks tend to be nearly as high as the global peak,
especially when selecting for intermediate phenotypic values (S2.9 Fig). These results
hold for all noise thresholds, and are therefore not a consequence of the existence of
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plateaus in the genotype-phenotype landscapes (see Supplementary Material, Note 2 for
explanation).

Next, we simulated deterministic mutation selection dynamics (Methods). For each
wopt, Fig. 2.7D shows the change in mean fitness at equilibrium for µ = 0.1, σ = 0.15,
relative to the fitness landscape generated after selecting for wopt = 0.5. As in the
mismatch model, the change in mean fitness tends to be positive, despite the increase
in the number of peaks caused by selection for low or intermediate phenotypic values
(Fig. 2.6D). Moreover, the mean change in fitness at equilibrium is maximized when
selection favors an intermediate phenotypic value (wopt = 0.425 for µ = 0.1, σ = 0.15).
This can be explained by the average peak heights and widths that occur when selecting
for intermediate phenotypic values (S2.6A and S2.6B Fig for σ = 0.15). Exactly which wopt

maximizes the change in mean fitness depends on the interplay between the mutation
rate µ and the strength of selection σ (S2.12 Fig), converging on 0.425 for large µ and σ,
similar to the convergence seen at mopt = 6 for the mismatch model.

2.3 discussion

Non-linear relationships between phenotype and fitness have been observed in a diversity
of biological systems [28, 31, 33, 35, 85, 86], often reflecting a trade-off between the costs
and benefits of a particular phenotype, such as antibiotic resistance [87, 88]. It is well
established that these non-linearities, either in the genotype-phenotype or phenotype-
fitness map are a cause of epistasis [36–38, 74]. Moreover, when mutations have epistatic
interactions in their contribution to phenotype, a non-linear phenotype-fitness map can
change the form of these interactions from negative to positive, or vice versa [16], as
well as introduce or remove sign epistasis [85]. Our work complements these empirical
observations and expands upon previous theoretical work [74, 89], by systematically
quantifying how and how often selection for a low or intermediate phenotypic value
introduces or removes epistasis in the fitness landscape. Specifically, we show that the
probability of changing the type of magnitude epistasis (e.g., positive to negative) is
highest when selecting for low phenotypic values and the probability of introducing or
removing sign epistasis is highest when selecting for intermediate phenotypic values.
Further, we show that the simple sign epistasis motif cannot be converted into reciprocal
sign epistasis, implying that genotype-phenotype landscapes with only simple sign
epistasis motifs will remain single peaked and globally congruent to their corresponding
fitness landscapes.

Another key finding of our analysis is that selection for low or intermediate phenotypic
values is more likely to increase than to decrease the number of peaks, with the probabil-
ity of the two types of change being equal only in House-of-Cards genotype-phenotype
landscapes. This means that additive genotype-phenotype landscapes will tend to be
incongruent with their fitness landscapes, whereas rugged genotype-phenotype land-
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scapes will not. While increased landscape ruggedness is typically thought to frustrate
the evolutionary process, because it limits the amount of adaptive phenotypic variation
mutation can bring forth [4], our evolutionary simulations show this need not be the
case. Specifically, we find that the rugged fitness landscapes caused by selection for
low or intermediate phenotypic values comprise local adaptive peaks that are nearly as
tall as the global adaptive peak. Moreover, these local peaks tend to be accessible from
throughout the landscape via a small number of sequential mutations that monotonically
increase fitness. As a result, the mean population fitness at equilibrium is almost always
higher when selecting for low or intermediate phenotypic values than when selecting for
a high phenotypic value.

Finally, while there have been several attempts at investigating genotype-phenotype-
fitness landscapes in the past [74, 90, 91] – some models have been very specific to the
system of interest and others are agnostic to any mechanistic details [92]. We tried to
bridge this gap, by applying a Fisher’s Geometric model-like phenotype-fitness function
to biophysically motivated and empirically determined genotype-phenotype landscapes.
Further, our results on the mismatch model and the 1,137 landscapes of TF-DNA interac-
tions may help to explain the prevalence of low- and intermediate-affinity binding sites
in the control of gene expression. Prior work has suggested an entropic argument [93]:
As with certain RNA secondary structures [94] or regulatory circuit motifs [95], low- and
intermediate-affinity binding sites appear more frequently simply because they are more
“findable”. That is, because a transcription factor binds more distinct DNA sequences
with low or intermediate affinity than with high affinity, low- and intermediate-affinity
binding sites are more likely to evolve to control gene expression. Our work complements
this “arrival of the frequent” argument [96] by showing that low- and intermediate-affinity
binding sites are not only more likely to arise de novo due to their increased frequency,
selection for such sites also generates fitness landscapes that are more conducive to
adaptation – in terms of increased mean fitness at equilibrium and decreased average
length of adaptive walks, than fitness landscapes that were generated by selection for
high affinity binding sites.

We made several modeling assumptions to simplify our analyses of transcription-factor
DNA interactions, the relaxation of which may open new avenues for future research.
First, we assumed a single nonlinearity in the relationship between genotype, phenotype,
and fitness. As noted by Domingo et al. [37], “from transcription to RNA processing,
translation, and protein folding and all the way up to protein activity and cellular fitness,
there are many layers of biological organization where the effects of a mutation can be
transformed.” To date, our knowledge of how such nonlinearities combine to modify
genotype-phenotype landscapes is based on a small number of experimental studies (e.g.,
ref [16]). A systematic theoretical analysis could build off the work presented here, for
example by incorporating the sigmoidal relationship between binding site occupancy
and binding affinity in modeling transcription factor-DNA interactions [97], such that
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fitness depends nonlinearly on occupancy, rather than affinity. Other nonlinearities, such
as those caused by transcription factor cooperativity [97], could also be included.

Second, we assumed that selection acts directly on a single phenotype — binding affin-
ity. While this assumption is common in models of the evolution of transcription factor
binding sites [21, 43, 46] and is supported by empirical data [43, 44], the relationship
between binding affinity and fitness is not so direct, because it is modulated by gene
expression. Gene expression depends on a variety of factors, including the presence,
arrangement, and affinities of binding sites for other competing or cooperating tran-
scription factors in promoters and enhancers [98], as well as local sequence context [99],
chromatin context [100], DNA methylation [101], and local transcription factor concentra-
tions [102]. Existing modeling frameworks that relate the architecture of entire regulatory
regions to gene expression patterns may provide a path forward [103], facilitating the
study of landscape incongruence when fitness depends upon the multitude of molecular
phenotypes characteristic of eukaryotic gene regulation. Alternatively, our modeling
framework could be extended to include multiple phenotypes by defining fitness in terms
of the differences between a vector of phenotypes and a vector of optimal phenotypes,
rather than the scalars considered here. Incongruence could then be quantified between
the fitness landscape generated by selecting for the highest phenotypic value of each
phenotype and that generated by selecting for a combination of low and intermediate
values of the phenotypes. Our results correspond to a special case of this extended model,
wherein all phenotypes except one are exactly attuned to their optimal values.

Third, we assumed a Gaussian phenotype-fitness map, which is commonly employed
in a diversity of modeling frameworks [29, 70, 72, 104], including those for transcrip-
tion factor-DNA interactions [46]. Alternative symmetric phenotype-fitness maps (e.g.,
ref. [105]) will only affect our results quantitatively, because many of our findings, such
as the changes in sign epistasis motifs and number of peaks, only depend on the rank
ordering of fitness values. However, we expect asymmetric phenotype-fitness maps, such
as those uncovered in experimental studies of biological systems such as viruses [30]
and yeast [106], to affect our results qualitatively. For example, in our analyses of NK
landscapes, we often observed symmetries in incongruence around an intermediate
phenotypic value. These symmetries will almost certainly be lost. Understanding how
asymmetric phenotype-fitness maps affect the incongruence of genotype-phenotype
landscape is therefore an outstanding challenge.

Finally, our study may open new lines of research on dynamic genotype-phenotype
and fitness landscapes [107–113]. For example, whereas we studied selection for a fixed
phenotypic optimum, this optimum may in fact change in space or in time. Our results
imply that even gradual changes in the phenotypic optimum may lead to abrupt changes
in fitness landscape topography, which may have implications for an evolving popula-
tion’s ability to track this optimum and thus for population persistence and extinction.
Moreover, because our measures of incongruence can be applied to any pair of land-
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scapes so long as they are defined over the same set of genotypes, they are also applicable
whenever a phenotype is mapped non-linearly to another phenotype. Ideally, we would
be able to make inferences about phenotypic architecture based on the topographical
properties of higher-level phenotypic or fitness landscapes – as was previously done for
an antibiotic resistance phenotype [114]. However, because the phenotype-fitness map we
study is not invertible, we can only make such inferences in limited cases. For instance,
when the fitness landscape is single-peaked, we can make the probabilistic inference
that the underlying genotype-phenotype landscape is also likely to be single-peaked,
because the phenotype-fitness map is more likely to increase than to decrease the number
of peaks. In contrast, when the fitness landscape has multiple peaks, we can only infer
that the underlying genotype-phenotype landscape does not solely comprise simple
sign epistasis motifs. Beyond that, we cannot infer the topographical properties of the
underlying genotype-phenotype landscape. It could be smooth or rugged. Additionally,
our measures may shed light on the kinds of topographical alterations induced by fluctu-
ating environmental factors, such as DNA methylation [101] or the presence of protein
partners [115] on transcription factor-DNA interactions. As our ability to experimentally
interrogate such complexities in the relationship between genotype, phenotype, and
fitness continues to improve, we anticipate a sharpened focus on landscape dynamics
and their implications for the evolutionary process.

2.4 methods

Epistasis

In a genotype-phenotype landscape, we classify the type of magnitude epistasis between
a pair of loci using the following linear combination of phenotypic values:

ϵgp = w00 + w11 − w01 − w10, (2.6)

where wi represents the phenotype of genotype i ∈ {0, 1}2. When ϵgp = 0, there is no
magnitude epistasis, because the phenotypic effects of the two alleles combine additively;
when ϵgp > 0, there is positive epistasis, because the phenotypic effects of the two alleles
are greater than expected based on their individual phenotypic effects; when ϵgp < 0,
there is negative epistasis, because the phenotypic effects of the two alleles are less than
expected based on their individual phenotypic effects.

Analogously, in the fitness landscape, we classify the type of magnitude epistasis
between a pair of loci using the following linear combination of fitness values:

ϵf = F00 + F11 − F01 − F10, (2.7)
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where Fi represents the fitness of the corresponding genotype i. As in the genotype-
phenotype landscape, ϵf = 0, ϵf > 0, and ϵf < 0 indicate additive, positive, and negative
epistatic interactions among loci, respectively.

We use ϵgp and ϵf to calculate the fraction of pairs of loci that have the same type
of epistasis in the genotype-phenotype landscape and the fitness landscape, which we
determine as the product of ϵgp and ϵf. This is because the type of epistasis is the same
in the two landscapes when ϵgp · ϵf > 0. While it is theoretically possible for both ϵgp and
ϵf to be 0, in which case the type of epistasis would be the same in the two landscapes
yet the condition ϵgp · ϵf > 0 would not be satisfied, this never happens in practice.

NK Landscapes

We constructed the NK landscapes using the adjacency neighbourhood scheme, wherein
each locus i of a genotype of length L, interacts with K adjacent loci to the right of locus
i and 0 ≤ K ≤ L − 1. We used periodic boundary conditions, such that the L-th locus
interacts with the first K loci, and so on.

The phenotype w(τ) of genotype τ is computed as the sum of the individual contribu-
tions of all loci, each of which depends on K other interacting loci:

w(τ) = ΣL
i=1 f (τi; τ1

i , τ2
i ...τK

i ), (2.8)

where f (τi; τ1
i , τ2

i ...τK
i ) represents the contribution of the i-th locus, which depends on K

other loci τ1
i , τ2

i ...τK
i . We drew the contributions of each of the 2K+1 possible configurations

from a uniform distribution between 0 and 1. Finally, we re-scaled the phenotypic values
by subtracting the minimum and dividing by the maximum, such that they fell between
0 and 1.

Empirical genotype-phenotype landscapes of transcription factor-DNA interactions

We studied the incongruence of 1,137 genotype-phenotype landscapes of transcription
factor-DNA interactions. The procedure for constructing these landscapes has been
described elsewhere [21]. In brief, each landscape corresponds to a single transcription
factor, the genotypes it contains represent DNA sequences of length L = 8 that specifically
bind the transcription factor, and the phenotype of each sequence is a quantitative proxy
for relative binding affinity, which defines the surface of the landscape. These phenotypes
are reported as enrichment scores (E-scores) derived from protein binding microarrays.
In each landscape, two genotypes are considered mutational neighbors if they differ
by a single small mutation, specifically a point mutation or a small indel that shifts
an entire contiguous binding site by a single base [79]. We performed all analyses on
the dominant genotype network (i.e., the largest connected component of the network),
which comprises the vast majority of genotypes in each landscape [21].
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We used the Genonets Python package (version 0.31) to characterize the topographical
properties of the empirical genotype-phenotype landscapes [116]. Specifically, we used
this package to compute the number of peaks per landscape and the number of genotypes
in the peaks of each landscape. These calculations rely on a noise threshold δ, which
is used to determine whether two genotypes actually differ in phenotype. For each
transcription factor, we used the value of δ reported in ref. [21], which was derived from
a comparison of binding affinity measurements across two protein binding microarray
designs.

While characterizing the topographies of the resulting fitness landscapes, we also had
to transform δ following the rules of error propagation. Accordingly, the noise in fitness
values, dF, depends on the noise in the phenotypic values dw = δ as follows:

dF = −2F ·
w − wopt

σ2 · δ. (2.9)

To compute the number of peaks and their widths in the fitness landscapes, we adapted
Genonets to specify different noise threshold values (dF) for each genotype.

Mutation-selection dynamics for the mismatch model

We grouped genotypes according to their mismatch class m and iterated a series of
selection and mutation steps until the population reached an equilibrium distribution. In
each selection step, the frequency of each mismatch class Xm was scaled by its fitness Fm

and then normalized:
XS

m(t + 1) =
Fm · Xm(t)
ΣiFi · Xi

, (2.10)

where XS
m(t + 1) is the frequency of the mismatch class m after the selection step.

The selection step was followed by a mutation step, in which genotypes could either
mutate within their mismatch class or mutate to an adjacent mismatch class. The total
mutation probability is µ, so with probability 1 − µ, the genotype does not mutate. The
frequency of each mismatch class was thus updated as

XM
m (t + 1) =

[
µ · L − (m − 1)

L

]
· XS

m−1(t + 1)+[
(1 − µ) + µ · (a − 2) · m

(a − 1) · L

]
· XS

m(t + 1)+[
µ · m + 1

(a − 1) · L

]
· XS

m+1(t + 1),

(2.11)

where XM
m (t + 1) is the frequency of the mismatch class m after the mutation step and

µ is the mutation probability. The mutation step implicitly accounts for the different
number of genotypes per mismatch class. Finally, Xm(t + 1) was set to XM

m (t + 1) and t
was incremented. This process was repeated until equilibrium.



52 on the incongruence of genotype-phenotype and fitness landscapes

Mutation-selection dynamics for the empirical landscapes

The empirical landscapes comprise far fewer genotypes than the mismatch landscape. We
therefore defined the state space of the empirical landscapes in terms of the individual
genotypes in each landscape, merging each genotype with its reverse complement [79].
The mutational neighbors of each genotype were those that differed by a single small
mutation, namely a point mutation or an indel that shifted an entire contiguous binding
site by a single base [79]. In this analysis, we did not account for uncertainties in the
fitness values, because these do not influence our results in this evolutionary regime (see
below).

The recursion relation for mutation-selection dynamics in discrete time is

xi(t + 1) = ∑
j

µd(τi ,τj) · (1 − µ)L−d(τi ,τj)
f j

f̄ (x⃗, t)
xj(t), (2.12)

where x⃗ is the vector of genotype frequencies, xi is the frequency of the ith genotype, µ

is the probability of a single point mutation or a small indel mutation, L is the length of
the genotypes, d(τi, τj) is the minimum of the mutational distance between genotypes τi

and τj and between genotypes τi and the reverse compliment of τj, fi is the fitness of the
ith genotype, and f̄ (x⃗, t) is the mean population fitness at time t.

We linearized the dynamics by substituting zi(t) =
xi(t)

∏t−1
τ=1 f̄ (x⃗,τ)

, yielding

zi(t + 1) = ∑
j

µd(τi ,τj)(1 − µ)L−d(τi ,τj) f jzj(t), (2.13)

from which we retrieved the normalized genotype frequencies with x⃗ = z⃗/(∑i zi). In
matrix form, the dynamics are

z⃗(t + 1) = M · S · z⃗(t), (2.14)

where the mutation matrix M has elements Mij = µd(τi ,τj) · (1 − µ)L−d(τi ,τj) and the
selection matrix S is a diagonal matrix with Sii = fi, where fi is the fitness of sequence
τi. We calculated the eigenvector corresponding to the largest eigenvalue of M · S to
determine the equilibrium state of the dynamics, which is guaranteed by the Frobenius-
Perron theorem to be unique and stable.

Because the fitness values have some uncertainty around them, we additionally per-
formed a sensitivity analysis by adding Gaussian noise to the fitness values, with standard
deviation equal to 1/3 · dF, such that 99.7% of the sampled fitness values fell within
F ± δ. Our results are robust to these perturbations, with the exception of two parameter
combinations – σ = 0.1, µ = 0.001 and σ = 0.1, µ = 0.0025. For small σ, dF is large and
therefore such sensitivity is expected. However, the quantitative changes in our results
were small, leading us to conclude that fitness uncertainties do not significantly influence
our results in this evolutionary regime.
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2.5 supplementary information

2.5.1 Derivations

Derivation 1: Derivation of equation 2.2
The epistasis in the fitness landscape is given by equation 2.7. We assume σ to be large,

such that (wi − wopt)2/σ2 ≪ 1 ∀i ∈ {0, 1}2, an approximation that holds when selection
is weak. Taylor expanding Fi and neglecting higher order terms, we find

Fi = exp

[
−
(

wi − wopt

σ

)2
]
≈ 1 − (wi − wopt)

2/σ2, (2.15)

where i ∈ {0, 1}2. Let ∆i = wi − wopt, then

ϵf ≈
−1
σ2

(
∆2

00 + ∆2
11 − ∆2

01 − ∆2
10
)

=
−1
σ2

[
(∆00 + ∆11)

2 − 2∆00∆11 − (∆01 + ∆10)
2 + 2∆10∆01

] (2.16)

=
−1
σ2 [(∆00 + ∆11 + ∆01 + ∆10)(∆00 + ∆11 − ∆01 − ∆10)− 2(∆00∆11 − ∆10∆01)]

=
−1
σ2

[
(Σi∆i)ϵgp − 2ϵm,∆

]
where ϵm,∆ = ∆00∆11 − ∆10∆01 = ϵm,∆ = (w00 − wopt)(w11 − wopt)− (w01 − wopt)(w10 −
wopt) =⇒ ϵm,∆ = ϵm − wopt · ϵgp, and ϵm = w00w11 − w01w10 is the multiplicative
epistasis. Substituting for ϵm,∆ , expanding the Σi∆i term and rearranging gives:

ϵf =
1
σ2

[
2ϵm + (2wopt − Σiwi) · ϵgp)

]
=⇒ ϵf · ϵgp =

1
σ2

[
2ϵm · ϵgp + (2wopt − Σiwi) · ϵ2

gp

]
.

(2.17)

Derivation 2: Derivation of equation 2.3
The absolute difference between the number of peaks in the genotype-phenotype

landscape and the fitness landscape is

|pf − pgp| =

pf − pgp, if pf > pgp

pgp − pf, if pf < pgp.
(2.18)

We can rule out the case where pf = pgp, because the probability of change in the number
of peaks tends towards 1 as L increases, so long as wopt is sufficiently far from 1 (Fig
2.4D). This implies

⟨|pf − pgp|⟩ = ⟨pf − pgp⟩pf>pgp P(pf > pgp) + ⟨pgp − pf⟩pgp>pf P(pgp > pf), (2.19)

where ⟨pf − pgp⟩pf>pgp is the conditional mean of pf − pgp, given that pf > pgp.
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As shown below, the probability of increase in the number of peaks is equal to the
probability of decrease in the number of peaks (Proof 3); i.e., P(pf > pgp) = P(pgp >

pf) = 0.5. This implies

⟨|pf − pgp|⟩ = 0.5(⟨pf − pgp⟩pf>pgp + ⟨pgp − pf⟩pgp>pf). (2.20)

In genotype-phenotype landscapes generated by the House-of-Cards model, the phe-
notypic values of mutational neighbors are completely uncorrelated, so selection for a
low or intermediate phenotypic value generates a fitness landscape in which the fitness
values of mutational neighbors are also completely uncorrelated. Thus, the distribution
of the number of peaks is the same for the genotype-phenotype landscape and the fitness
landscape. Moreover, pf is independent of pgp because pf depends upon the number of
genotypes with phenotypes close to the optimal phenotypic value, and this number is
independent of the number of genotypes with phenotypes close to 1. Therefore, pgp and
pf are independent and identically distributed (i.i.d) random variables. Now as L → ∞,
the distribution of the number of peaks in the House-of-Cards model tends to a normal
distribution [117] with mean aL

(a−1)·L+1 and variance τ2 = aL·((a−1)·L−(a−1)
2((a−1)·L+1)2 [76], where a

is the number of alleles at each site and here a = 2. This implies the distribution of the
random variable pf − pgp is also normally distributed with mean zero and variance 2τ2;
i.e.,

pf − pgp := x ∼ N (0, 2τ2), (2.21)

which is symmetric about zero, implying ⟨pf − pgp⟩pf>pgp = ⟨pgp − pf⟩pgp>pf . Thus,

⟨|pf − pgp|⟩ = ⟨pf − pgp⟩pf>pgp =
1√

2πτ′

∫ ∞

0
x · exp

[
− x2

2τ′2

]
dx

=
τ√
π

=
1√
π

√
aL((a − 1) · L − (a − 1))

2((a − 1) · L + 1)2 ,

(2.22)

where τ
′2 = 2τ2.

So, for a = 2, as in our biallelic landscapes,

lim
L→∞

⟨|pf − pgp|⟩ =

√
2L · (L − 1)
2π(L + 1)2 . (2.23)
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2.5.2 Proofs

Proof 1: Selection for wopt cannot transform a simple sign epistasis motif into a reciprocal
sign epistasis motif

In order to have a reciprocal sign epistasis motif:

• No two adjacent arrows can point in the same direction.

• No two parallel arrows can point in the same direction.

Because sign epistasis motifs cannot be cyclic, the two conditions above imply one
another. The simple sign epistasis motif determines the complete rank ordering of the
phenotypic values, unlike the other two motifs, which only give a partial ordering.
Therefore, upon selecting for any wopt, at least two arrows in the genotype-phenotype
landscape remain the same as in the fitness landscape or reverse in direction together.
This results in a pattern of arrows in the fitness landscape that always contradicts both
the above mentioned conditions for reciprocal sign epistasis (see S2.1 Fig). ■

Proof 2: The phenotype-fitness map changes a reciprocal sign epistasis motif into a no
sign epistasis motif or a simple sign epistasis motif with equal probability

The reciprocal sign epistasis motif does not determine the complete rank ordering of
the four phenotypic values. In particular, it does not determine the ordering of the two
peaks and the two valleys. Let the phenotypic value of the higher of the two peaks be
wp1 and that of the lower peak be wp2. Similarly, let the labels wv1 and wv2 refer to the
higher and lower valleys, respectively. By design, these values lie on the real number line
between 0 and 1. We define the “neighbourhood” of each of the phenotypic values as the
region on the number line around the phenotypic value that is closer to it than to any
other phenotypic value (S2.2 Fig). For transformation of the reciprocal sign epistasis motif
into one of the other two motifs, wopt must lie in the neighbourhood of either wp2 or wv1

and it must be second closest to the other (i.e., Fp2 > Fv1 > rest or Fv1 > Fp2 > rest, where
Fi represents the fitness corresponding to the phenotype wi). If not, the reciprocal sign
epistasis motif will be retained. So, for any wopt, we only consider those configurations
that satisfy this condition. Amongst these configurations, both phenotypic values are
equally likely to be the closest to wopt. Let’s call the probability of either event happening
P0 = P(Fv1 > Fp2 > rest) = P(Fp2 > Fv1 > rest). We denote the transition probabilities
amongst motifs as P(x|rs), where x represents either the no sign epistasis motif, ns, or
the simple sign epistasis motif, ss, and rs represents the reciprocal sign epistasis motif.
Now, for the no sign epistasis motif to emerge, the fitness values of the peaks or valleys
need to be "separated", while for the simple sign epistasis motif to emerge, they need to
be "interspersed" (see S2.2), giving us the following:

P(ns|rs) = P(Fv1 > Fp2 > rest) · P(Fp1 > Fv2)+

P(Fp2 > Fv1 > rest) · P(Fp1 < Fv2),
(2.24)
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and

P(ss|rs) = P(Fv1 > Fp2 > rest) · P(Fp1 < Fv2)+

P(Fp2 > Fv1 > rest) · P(Fp1 > Fv2).
(2.25)

Finally, using P0 = P(Fv1 > Fp2 > rest) = P(Fp2 > Fv1 > rest) gives:

P(ns|rs) = P0 · P(Fp1 > Fv2) + P0 · P(Fp1 < Fv2)

and

P(ss|rs) = P0 · P(Fp1 < Fv2) + P0 · P(Fp1 > Fv2)

=⇒ P(ns|rs) = P(ss|rs). ■

(2.26)

Proof 3: For House-of-Cards genotype-phenotype landscapes, selection for low or inter-
mediate phenotypic values is equally likely to increase or decrease the number of peaks
in the fitness landscape, relative to the genotype-phenotype landscape

For any number of loci L, the probability that selection for a low or intermediate
phenotypic value causes an increase in the number of peaks in the fitness landscape,
relative to the genotype-phenotype landscape, is

Pinc = Σi>jP(pf = i|pgp = j) · P(pgp = j), (2.27)

whereas the probability of a decrease in the number of peaks is

Pdec = Σi>jP(pf = j|pgp = i) · P(pgp = i), (2.28)

where i, j ∈ {1, 2, ...2L−1}, P(pf = j|pgp = i) is the probability of having j peaks in the
fitness landscape after selection for wopt given the genotype-phenotype landscape has i
peaks, and P(pgp = i) is the probability of i peaks in the genotype-phenotype landscape.
The number of peaks in the fitness landscape, pf, is independent of the number of peaks
in the genotype-phenotype landscape, pgp, because pf depends upon the number of
genotypes with phenotypes close to the optimal phenotypic value, and this number is
independent of the number of genotypes with phenotypes close to 1. This implies:

P(pf = i|pgp = j) · P(pgp = j) = P(pf = i) · P(pgp = j), (2.29)

and
P(pf = j|pgp = i) · P(pgp = i) = P(pf = j) · P(pgp = i). (2.30)

Moreover, pgp and pf are identically distributed; i.e., P(pgp = i) = P(pf = i)

=⇒ Pinc = Pdec ■ (2.31)
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2.5.3 Notes

Note 1: Number of maxima in the plot of ⟨|pf − pgp|⟩ versus wopt for additive biallelic
landscapes

Any biallelic, additive landscape can be relabelled such that the genotype with the
lowest phenotypic value is represented by 000.....0 and the genotype with the highest
phenotypic value by 111.....1. Moreover, the phenotypic values can be re-scaled such that
genotype 000.....0 has phenotypic value zero and genotype 111.....1 has phenotypic value
one. This yields a monotonically increasing genotype-phenotype landscape, wherein the
phenotypic effects of every single mutant is larger than zero and they add up to 1; i.e.,

w100...0 + w010...0 + .... + w000...1 = 1 (2.32)

where w100...0 is the phenotypic value of a single mutant with the mutation at the 1st site,
and so on. Equation 2.32 implies that the vector of single mutant phenotypes belongs to
a standard L − 1-simplex3.
Two-locus case

A two-locus biallelic fitness landscape can have a maximum of two peaks. Because
the additive genotype-phenotype landscape has only one peak, selection for a low or
intermediate phenotypic value can increase the number of peaks in the fitness landscape,
relative to the genotype-phenotype landscape, by at most one. Let the fitness of one of
the single mutants be x, forcing the fitness of the other single-mutant to be 1 − x. Due
to the relabelling of the genotype-phenotype landscape, a two-peaked fitness landscape
is only possible when the two single-mutants are peaks. This will occur when the two
single-mutants have phenotypes that are closer to wopt than the phenotypes of both
genotypes 00 and 11. This leads to the following conditions on x:

1 − 2 · wopt < x < 2 · wopt, ∀wopt < 0.5 (2.33)

and
2 · wopt − 1 < x < 2 − 2 · wopt, ∀wopt > 0.5. (2.34)

From Eqs 2.33 and 2.34, we can infer the shape of the L = 2 curves in Fig 2.4A and 2.4B.
Specifically, for wopt < 0.25 and wopt > 0.75, we get the absurd condition 0.5 < x < 0.5,
which implies there is no possible value of x that will lead to two peaks. Further, for
wopt = 0.5, 0 < x < 1, which implies there will always be two peaks. For 0.25 ≤ wopt <

0.5 or 0.5 < wopt ≤ 0.75, the fitness landscape can have either one or two peaks.
Three-locus case

Here, the single-mutant phenotypic values belong to the 2-simplex formed by the
points (0,0,1), (0,1,0) and (1,0,0). Let (w1, w2, w3) be an arbitrary point in the simplex,

3 An n dimensional simplex is the convex hull of n + 1 affinely independent points. E.g., a 0-simplex is a
point, a 1-simplex is a line, a 2-simplex is a triangle, and a 3-simplex is a tetrahedron.
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where wi is the phenotypic value of the single mutant with a mutation at the ith site and
i ∈ {1, 2, 3}. Although, a three-locus, biallelic landscape can have at most four peaks, the
transformed additive genotype-phenotype landscapes can have at most three, due to the
correlations between the phenotypic values. So for instance, if the three single mutants
become peaks, then the triple mutant cannot be a peak because the double mutants will
be assigned a higher fitness than the triple mutant. This is caused by correlations in the
additive landscape, which makes the double-mutants closer in phenotypic value to the
single-mutants than the triple mutant. Thus, it is easy to see that the only three peak
configuration possible is one in which either all the single mutants become peaks or all
the double mutants become peaks. For the former to be the case, each single mutant
phenotypic value wi must satisfy the following conditions:

(wi − wopt)
2 < (0 − wopt)

2 (2.35)

and
(wi − wopt)

2 < (1 − wj − wopt)
2 ∀j ̸= i. (2.36)

While Eq. 2.35 necessitates the single mutant fitness values to be higher than the wild
type fitness, Eq. 2.36 requires them to be higher than the neighbouring double mutant
fitness values. On average, wi = 1/3 ∀i, so on average, the simplex area enclosed by
the above conditions will be maximised when wopt = 1/3. A similar analysis can be
done for the case when the three double mutants become peaks and in this case, the
area is maximised when wopt = 2/3. This explains the presence of the two maxima
in Fig 2.4A at wopt = 1/3 and wopt = 2/3. Further, the dip at wopt = 0.5 can be
explained by the following argument: Assuming the single mutant phenotypic values
are of the type (x, y, 1 − x − y), the double mutant phenotypic value will be of the
type (x + y, 1 − x, 1 − y). At wopt = 0.5, the wild type and triple mutant immediately
become minima and leave an opportunity for the intermediate mutants to become peaks.
However, if one of the single mutants (say with fitness x) is closest in fitness to 0.5, the
other two cannot be peaks because the double mutant formed by combining these two
mutations will have the same fitness i.e., |x − 0.5| = |(1− x)− 0.5|. So at wopt = 0.5, there
are two peaks after selection for a low phenotypic value and therefore the net change is
1, which is smaller than what we see at wopt = 1/3, 2/3.
Four and more locus cases

We could explicitly derive the shape of the curves for the L = 2 and L = 3 cases
because it was easy to visualise the simplices. For L ≥ 4, we can form an intuition about
the expected result, by considering the average additive fitness landscape, which guides
the behavior of the average change in the number of peaks. Because the only randomness
in these landscapes arises from the effect of single mutations, which as described above,
belong to the L-dimensional simplex, all we need to look at is the average L-dimensional
vector of single mutation effects ⟨w⃗L

1 ⟩ and the deviations around it. These random vectors
belong to an L−dimensional Dirichlet distribution with all the concentration parameters
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equal to one. It can be shown by symmetry that ⟨w⃗L
1 ⟩ = (1/L, 1/L, , , 1/L). Therefore,

on average, the fitness of a mutant with n mutations is n/L. As wopt increases from
zero, the number of peaks will gradually start to increase as wopt gets closer the value
of the fitness of single mutants. Then as wopt approaches 1/L, we encounter the first
maxima because at this wopt, all single mutants get to be peaks. Next, there is a slight
decline due to competition between the single and double mutants as peaks (because
these are mutational neighbours and therefore cannot both be peaks), followed by the
emergence of the second maxima at 2/L when all the double mutants become peaks,
and so on. Naturally, because the number of genotypes with n mutations increases as
n reaches the value L/2, the height of the maxima increases accordingly. Thereafter,
we observe a fall in ⟨|pf − pgp|⟩. Therefore, for a genotype of length L, there should
be L − 1 maxima in the plot of ⟨|pf − pgp|⟩ vs. wopt. However, the maxima are closely
spaced and therefore merge into one another and cannot be distinguished from each other.

Note 2: Evolution on NK landscapes
S2.3A and S2.3C Fig shows the average length of a greedy adaptive walk ⟨l⟩ in NK

landscapes with L = 5 and L = 8. For all K < L − 1, ⟨l⟩ is minimised when wopt = 0.5,
whereas for K = L − 1 (House-of-Cards landscapes), ⟨l⟩ is independent of wopt. This can
be understood by first considering additive genotype-phenotype landscapes (K = 0),
wherein genotypes with a phenotype w ≈ 0.5 are by definition, approximately located
half-way between the wild-type and its antipodal sequence. Selecting for wopt = 0.5 thus
minimizes the average length of a greedy adaptive walk to these peak genotypes. As K
increases, correlations among the phenotypes of mutationally-neighboring genotypes
are gradually broken and the landscape becomes more rugged. Yet, genotypes with a
phenotype w ≈ 0.5 tend to remain near the center of the landscape. When K is increased
to L − 1, the phenotypes of mutationally-neighboring genotypes become completely
uncorrelated and monotonic increases in phenotype along mutational paths to peak
genotypes become exceedingly rare, rendering ⟨l⟩ independent of wopt. Thus the “U”-
shape of the curve of ⟨l⟩ versus wopt flattens as K increases from 0 to L − 1. Interestingly,
so long as K > 0, the average height of the peak reached by a greedy adaptive walk is
also maximized at wopt = 0.5, and these local peaks are >97% the height of the global
peak for σ = 1 (S2.7 Fig), an observation we explain below.

We next simulated deterministic mutation-selection dynamics. S2.3B and S2.3D Fig
show the change in mean fitness at equilibrium when selecting for wopt, relative to
fitness at equilibrium when selecting for wopt = 1, for σ = 0.5 and µ = 0.1 (see S2.8
Fig for other values of σ and µ). This change is always positive, increases with L and
K, and tends to be maximized at wopt = 0.5 when K > 0. The latter occurs because the
optimal phenotype wopt = 0.5 is, on average, closer to all other phenotypic values in
the landscape. For instance for K = L − 1, the sum Σ2L

i=1(wi − wopt)2 is minimized when
wopt = Σ2L

i=1wi/2L = ⟨w⟩ = 0.5. Thus, selecting for wopt = 0.5 creates a fitness landscape
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with higher average fitness than fitness landscapes under selection for any other wopt.
This also explains why the average height of local adaptive peaks reached is maximized
at wopt = 0.5 (S2.7 Fig). In sum, these results show that selection for an intermediate
phenotypic value decreases the length of a greedy adaptive walk and increases mean
fitness at equilibrium, despite increasing the overall ruggedness of the fitness landscape,
relative to the genotype-phenotype landscape.
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2.5.4 Supplementary Figures
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S 2.3: Evolutionary consequences of landscape ruggedness in NK landscapes. (A,C) The average
length of a greedy adaptive walk and (B,D) the change in mean fitness at equilibrium,
relative to fitness at equilibrium when selecting for wopt = 1, are shown for (A,B) L = 5
and (C,D) L = 8. In (B,D), µ = 0.1 and σ = 0.5.
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S 2.4: Selection for wopt = 0 does not change the type of epistasis motif for any “square” in
the fitness landscape, relative to the genotype-phenotype landscape, yet it can change
the number and location of peaks. To understand how, consider that any two adjacent
faces of the hypercube (e.g., gray faces above) are sufficient to determine whether the
genotypes on their common edge are peaks or not. After selecting for wopt = 0, the type
of epistasis motif does not change in the adjacent faces, yet the number and location of
the peaks on their common edge does change. Peak genotypes are shown in red. Arrows
point from lower to higher phenotypic or fitness values.

0.35 0.40 0.45 0.50
0

5

10

15

20

25
sigma=0.05
sigma=0.15
sigma=0.5

0.35 0.40 0.45 0.50
0

10

20

30 Single peaked
Multi peaked

A 
  

Optimal binding affinity, wopt Optimal binding affinity, wopt

B 
  

S 2.5: Mean absolute change in the number of peaks in the fitness landscape relative to the
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peaked genotype-phenotype landscapes and (B) three values of σ.
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S 2.6: Average peak (A) height and (B) width for 1,137 empirical landscapes, shown in relation to
the optimal binding affinity wopt. Violin plots show the distribution across the landscapes
for each wopt. Data include both local and global peaks.
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S 2.7: The average height of peaks reached by greedy adaptive walks in NK landscapes with
σ = 0.5, shown in relation to wopt, for (A) L = 5 and (B) L = 8, with K = 0 . . . L − 1.
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S 2.8: Change in mean fitness at equilibrium for NK landscapes with (A,B) L=5 and (C,D) L=8,
shown in relation to wopt, for different values of σ and µ.
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S 2.9: (A) Local peaks on which the adaptive walks terminate tend to be nearly as tall as the
global peaks in the 1,137 empirical landscapes. Violin plots show the distribution of
the fractional height of local peaks reached by greedy adaptive walks, relative to the
height of the global peak, for each optimal binding affinity wopt. (B) Violin plots show
the distribution of the fraction of walks terminating on the global peak, for each optimal
binding affinity wopt.
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S 2.10: The mistmatch class mopt that maximizes mean fitness at equilibrium is shown in relation
to the strength of selection σ and the mutation rate µ. The three smaller panels show
mean fitness at equilibrium in relation to mopt for three combinations of σ and µ. The
value of mopt that maximizes mean fitness is indicated with a gray rectangle.
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S 2.11: The mistmatch class mopt that maximizes mean fitness at equilibrium is shown in relation
to the strength of selection σ and the mutation rate µ for three different values of the
mismatch penalty e: (A) e = 0.025, (B) e = 0.05 and (C) e = 0.1.
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S 2.12: The binding affinity wopt that maximizes mean fitness at equilibrium is shown in relation
to the strength of selection σ and the logarithm of the mutation rate (log µ) for the 1,137

empirical landscapes. The three smaller panels show the distributions of mean fitness
at equilibrium as violin plots, in relation to wopt, for three combinations of σ and µ.
Box-and-whisker plots show the 25 − 75% quartiles. The value of wopt that maximizes
mean fitness is indicated. These results are robust to perturbations of the fitness values
(Methods), with the exception of two parameter combinations – σ = 0.1, µ = 0.001 and
σ = 0.1, µ = 0.0025. For these parameter combinations, the binding affinity wopt that
maximizes mean fitness at equilibrium changes from 0.35 to 0.385 (on average) and 0.375

respectively.
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abstract

One of the most fundamental characteristics of a fitness landscape is its dimensionality,
which is defined by genotype length and alphabet cardinality - the number of alleles
per locus. Prior work has shown that increasing landscape dimensionality can promote
adaptation by forming new “uphill” mutational paths to the global fitness peak, but can
also frustrate adaptation by increasing landscape ruggedness. How these two topograph-
ical changes interact to influence adaptation is an open question. Here, we address this
question in the context of alphabet cardinality, using theoretical fitness landscapes with
tuneable fitness correlations, as well as three empirical fitness landscapes for proteins. We
find that the primary effect of increasing alphabet cardinality is the introduction of a new
global fitness peak. Controlling for this effect, we find that increasing alphabet cardinality
promotes adaptation on uncorrelated fitness landscapes, but frustrates adaptation on
correlated fitness landscapes. The primary explanation is that the increased ruggedness
that accompanies alphabet expansion is characterized by an increase in mean peak height
on uncorrelated fitness landscapes, but a decrease in mean peak height in correlated
fitness landscapes. Moreover, in two of the empirical fitness landscapes we observe no
effect of increasing alphabet cardinality on adaptation, despite an increase in the number
of peaks and a decrease in mean peak height, calling into question the utility of these
common measures of landscape ruggedness as indicators of evolutionary outcomes.
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3.1 introduction

The metaphor of the fitness landscape has framed evolutionary thought for nearly a
century [1]. In it, genotypes represent coordinates in a multi-dimensional genotype space,
and fitness represents the “elevation” of each coordinate in this space. This defines
the surface upon which populations evolve, with natural selection favoring “uphill”
mutational steps, driving populations toward peaks of high fitness. This metaphor has
inspired a diversity of theoretical models (e.g., the House-of-Cards, NK and Rough Mt.
Fuji landscapes) [2–4], has been used to predict and direct adaptive evolution [5–8], and
more recently has become the focus of many experimental studies, in systems ranging
from macromolecules to metabolisms [9–17].

How an evolving population navigates a fitness landscape depends in part on pop-
ulation genetic conditions [18–20]. In the strong selection, weak mutation regime, any
beneficial mutation that appears and escapes stochastic loss will go to fixation prior
to the arrival of a subsequent mutation, such that the population remains essentially
monomorphic at all times [21]. Adaptive evolution can then be thought of as a random
adaptive walk, where populations traverse mutational paths in which fitness increases at
each mutational step, ending on a local or global adaptive peak. Such paths are called
accessible paths [14].

Many theoretical studies have focused on adaptive walks in fitness landscapes, re-
vealing the important influence of topographical and topological properties, such as
landscape ruggedness and dimensionality, on the dynamics and outcomes of evolutionary
processes [9, 22–27]. For example, as landscape ruggedness increases, the formation of
maladaptive valleys renders many mutational trajectories to high fitness peaks inacces-
sible. In contrast, as landscape dimensionality increases, so-called “extradimensional
bypasses” emerge, which circumvent maladaptive valleys by forming indirect, accessible
paths to high fitness peaks [28]. How landscape ruggedness and dimensionality inter-
act to open or close mutational trajectories to adaptation remains poorly understood.
One of the reasons is that past research has tended to focus on bi-allelic landscapes
(e.g., the presence or absence of adaptive mutations at each locus), controlling land-
scape dimensionality by changing genotype length L [23, 24, 28, 29]. However, empirical
adaptive landscapes are not bi-allelic, because their genotypes are DNA or amino acid
sequences. The number of alleles per locus is therefore an additional, and important,
facet of landscape dimensionality [9, 26].

The set of all possible alleles at any of a genotype’s loci makes up an alphabet A, with
cardinality |A| denoting the number of its constituent elements (Figure 3.1). For instance,
for DNA sequences, A = {A, C, G, T} and |A| = 4; for amino acid sequences, A is the
set of 20 standard amino acids and |A| = 20. Allowable mutational transitions between
alleles are defined by an “allele graph” [27], such that for DNA sequences the allele
graph is complete, because any nucleotide can mutate into any other, and for amino acid
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Figure 3.1: Alphabet cardinality, extra-dimensional bypasses, and landscape topogra-
phy. A two-locus genotype space with (A) A = {A, B}, |A| = 2; (B) A = {A, B, C},
|A| = 3; and (C) A = {A, B, C, D}, |A| = 4. In the middle row, the motifs show
the underlying complete allele graphs for different A. The bottom row shows a
fitness landscape for each |A|, in which nodes represent genotypes and edges
connect genotypes that differ at a single locus, with arrows pointing from low- to
high-fitness genotypes. Direct paths from the source genotype AA to the target
global peak genotype BB are shown in red and are both inaccessible. Accessible
indirect paths are shown in the remaining colours. As alphabet cardinality increases,
the number of accessible paths to the global peak increases, as extra-dimensional
bypasses open up, and the number of peaks (shown with underlined genotypes)
increases from 2 to 3. Note that the location and the height of peaks can change as
well, because the new peak genotypes may have different fitness values.

sequences the allele graph is defined by the standard genetic code, under which missense
mutations can change an amino acid into six alternative amino acids, on average [30].

Prior work on alphabet cardinality has revealed the formation of extra-dimensional
bypasses that circumvent maladaptive fitness valleys [9], thus increasing the number
of accessible paths to local and global fitness peaks [9, 26], as well as the sizes of their
basins of attraction [9], and the probability that at least one accessible path exists from
an initial genotype to the global peak [26, 27]. However, because these studies did
not systematically fine-tune alphabet cardinality on landscapes with different levels
of fitness correlations, several open questions remain, specifically pertaining to the
interplay between cardinality, ruggedness, and the outcomes of adaptive walks. Whereas
increasing cardinality can increase the prevalence of extra-dimensional bypasses to the
global peak, it can also change other aspects of landscape topography, such as the height,
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location, and number of local peaks [31, 32]. For instance, for the block model of NK
landscapes, where each genotype is divided into B non-interacting blocks of size K + 1,
the expected number of peaks is |A|L

[(|A|−1)· L
B+1]

B , which grows approximately polynomially

with increasing alphabet cardinality (for B ≪ L) and approximately exponentially with
decreasing fitness correlations (i.e., B) [32]. Such an increase in landscape ruggedness may
offset any evolutionary benefit of extra-dimensional bypasses to the global peak if the
landscape’s local peaks are of low or intermediate fitness. Conversely, if these local peaks
are of high fitness, their emergence may prove no obstacle to adaptation, even if they do
titrate evolving populations from the global peak. Relatedly, increasing cardinality not
only increases the number of extra-dimensional bypasses to the global peak, but also
to local peaks [9, 33], so whether evolving populations converge on the global or local
peaks will depend on how these bypasses influence the relative sizes of the basins of
attraction of these peaks. Finally, because extra-dimensional bypasses are by definition
longer than direct paths, they are less likely to be utilized by evolving populations [34],
which may instead follow direct accessible paths to emerging local peaks. Thus, calling
a fitness landscape accessible based on the existence of at least one accessible path to
the global peak [24, 26, 27] may belie a landscape’s true accessibility. For these reasons,
it remains unclear how and to what extent increasing alphabet cardinality facilitates
adaptive evolution.

Here, we study the effect of increasing alphabet cardinality on fitness landscapes of
different topographies. First, we consider a spectrum of theoretical landscapes with tune-
able levels of fitness correlations, ranging from completely correlated Mt. Fuji landscapes
to completely uncorrelated House-of-Cards landscapes. Systematically varying alphabet
cardinality and controlling for the emergence of the global adaptive peak, we study
the impact of alphabet cardinality on landscape topography, specifically the number
and heights of fitness peaks, as well as the number of extra-dimensional bypasses to
these fitness peaks. Further, we measure the effect of increasing |A| on the mean fitness
reached by random adaptive walks – a quantity we call the final mean fitness. We show that
landscapes with different levels of correlation show characteristically different behavior
upon increasing cardinality – whereas correlated fitness landscapes show a declining
final mean fitness with increasing cardinality, uncorrelated fitness landscapes show an
increasing final mean fitness with increasing cardinality.

Motivated by this observation, we then analyze the effect of increasing cardinality on
three combinatorially complete empirical fitness landscapes with intermediate levels of
fitness correlation. Using evolutionary simulations and controlling for the emergence of
the global adaptive peak, we find that increasing cardinality does not lead to higher final
mean fitness, even though it increases the number of accessible paths to the global peak.
Whereas the results for the empirical fitness landscapes are qualitatively in agreement
with the results for theoretical fitness landscapes with intermediate levels of fitness
correlation, the theoretical fitness landscapes do not fully capture the behavior of two out
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of the three empirical landscapes, thereby highlighting the limits of theoretical studies
and the need for more experimental studies on fitness landscapes.

3.2 results

3.2.1 Theoretical fitness landscapes

To understand the effect of alphabet cardinality on landscapes of different topographies,
we first analyzed Rough Mt. Fuji (RMF) landscapes [35, 36]. We generated the RMF land-
scapes by adding a normally distributed random variable with mean zero and variance
r2 to an additive Mt. Fuji landscape (see Methods), where the roughness parameter r
controls the relative contribution of the random component and serves as a measure of the
level of fitness correlation in the landscape. Thus, a landscape with r = 0 corresponds to
a completely correlated additive landscape, whereas a landscape with r = 1 corresponds
to an uncorrelated House-of-Cards-like landscape.

For proteins, the most obvious benefit of increasing cardinality is the expansion of the
chemical toolkit of the amino acid alphabet, which may endow proteins with enhanced or
entirely new functions [37, 38]. In the context of an adaptive landscape, this is equivalent
to introducing a new fitness peak, which may be the global peak. Indeed, in RMF
landscapes, increasing alphabet cardinality causes a monotonic increase in the global
peak height (Supplementary Figure 3.1, top panel).

To study the influence of alphabet cardinality on landscape topography beyond the
effect of introducing a new global peak, we hold the global peak constant throughout
every alphabet expansion. Specifically, we confine our analyses to a subset of the 20!
possible expansions of the alphabet in which the global peak genotype is always present.
For example, consider a fitness landscape for a protein with L = 4 variable sites, in
which the amino acid sequence WWLA is the fitness peak. In this case, we truncate
the full landscape (i.e., |A| = 20) to a landscape with A = {W, L, A} and analyze its
topography. We then incrementally expand A by randomly adding an allele from the
remaining set and analyze the resulting landscape, continuing this process until all 20

alleles are included in A. To understand the general consequences of increasing |A| in
RMF landscapes, we studied an ensemble of 100 randomly generated RMF landscapes
and simulated 200 expansions of A for each of those landscapes. To enable comparison
with the empirical protein landscapes in the following section, we present results for
RMF landscapes with L = 4 in the main text and L = 3 in the supplementary text
(Supplementary Figure 3.2).
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Topographical analysis

We first studied the topographical properties of each class of landscapes, namely the
number of peaks, their mean height, and the number of accessible paths that terminate at
the global peak, out of all accessible paths (see Methods). Except for the purely additive
case with r = 0, the number of local peaks increases monotonically with increasing |A|
(Figure 3.2, first column). Note that the number of peaks also depends upon the size
of the landscape and therefore, it is important to ascertain whether the increase in the
number of peaks is due to the landscapes truly becoming more rugged or due to their
increasing size alone. To do so, we also computed a landscape-size agnostic measure
of ruggedness, the roughness-to-slope ratio, which measures the deviations of a fitness
landscape from a linear model [39] (Supplementary Figure 3.3). The roughness-to-slope
ratio also increases with increasing cardinality, confirming that the increase in the number
of peaks is not solely due to the increasing landscape size. Further, regardless of the cause
of the increase in the number of peaks, more peaks imply more sub-optimal endpoints for
the adaptive walks, which frustrates adaptation. Thus, the number of peaks is indicative
of the outcome of random adaptive walks, so we focus on this measure of ruggedness
throughout the rest of the manuscript.

While the number of peaks increases monotonically regardless of the roughness
parameter r, we observe that the trend in the mean fitness of these peaks depends on
the level of correlation in these landscapes. For small values of r, i.e., strongly correlated
landscapes, we observe monotonically declining mean peak height (Figure 3.2A, second
column). In contrast, for large values of r, i.e., strongly uncorrelated landscapes, the
mean peak height tends to increase with |A| (Figure 3.2D, second column). In line with
prior literature [9, 26], the number of accessible paths to the global peak increases with
increasing alphabet cardinality (Figure 3.2A-D, third column). However, the fraction of
accessible paths that terminate on the global peak, out of all accessible paths, decreases
with |A|, regardless of the value of the roughness parameter r (except for the corner
case of r = 0, in which case the fraction is independent of cardinality) (Supplementary
Figure 3.4). The reason is that more local peaks emerge as alphabet cardinality increases,
such that accessible paths are more likely to terminate on local peaks than on the global
peak. In other words, although the absolute number of accessible paths to the global peak
increases, the probability that a randomly chosen accessible path reaches the global peak
decreases as more local peaks emerge in the landscape.

Why do the trends in mean peak height depend on the level of fitness correlation? For
completely correlated landscapes (i.e. r = 0), the mutational effects of alleles at the various
loci are completely independent of each other, so increasing |A| has no effect on the mean
peak height because there is only one peak in the landscape (i.e., the global peak). By
slightly decreasing the level of fitness correlation (e.g., when r = 0.05 or r = 0.125), we
begin to introduce interactions between loci, yet the truncated landscape with only the
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Figure 3.2: Topographical properties and evolutionary outcomes in relation to alphabet car-
dinality, for landscapes with different levels of fitness correlations. Each row cor-
responds to a different value of the roughness parameter r and each column to a
topographical property or evolutionary outcome, which are indicated by column
headers (these also define the corresponding y-axes). The number of accessible
paths to the global peak only include paths starting from genotypes antipodal to
the global peak. The coloured lines show results for 100 RMF landscapes and the
black lines show the average over these landscapes. Data pertain to |A| ≥ 5.

global peak alleles remains very smooth, comprising only one or two peaks. Expanding
the alphabet increases the number of sub-optimal peaks (Figures 3.2A and 3.2B, first
column) and thus, the mean peak height decreases monotonically (Figures 3.2A and
3.2B, second column). In contrast, for landscapes with larger r, the truncated landscapes
are already quite rugged and thus already have a low mean peak height. However, for
intermediate levels of fitness correlation (e.g., when r = 0.4), we see a nearly constant
mean peak height (Figure 3.2C, second column), while for uncorrelated landscapes (e.g.,
when r = 1.0) we find that it increases with |A| (Figure 3.2D, second column). This is
because in uncorrelated landscapes, all the new mutational neighbours introduced due
to the increased cardinality also compete to be peaks. Therefore, to be a peak, a genotype
must be larger than all its (|A| − 1) · L neighbors. It is well known that the expected value
of the maximum of (|A| − 1) · L + 1 normally distributed random variables increases
with |A|, thus leading to higher mean peak height. The same constraint does not hold
for landscapes with intermediate levels of fitness correlation, because a potential peak
genotype does not have to compete with all its mutational neighbours; the existing
correlations already ensure that some of them have lower fitness than the potential peak
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genotype. In other words, for uncorrelated landscapes, the average threshold fitness
value to be a peak increases with increasing |A|, while it does not for landscapes with
intermediate levels of fitness correlation.

Random adaptive walks

In the previous section, we observed that the number of peaks and the number of
accessible paths terminating at the global peak both increase with |A|, for all r (Figure 3.2,
first and third column), but that the trends in mean peak height depend on r. Whereas
an increase in landscape ruggedness may frustrate adaptation by trapping evolving
populations on local peaks, especially if these peaks are of low fitness, increasing the
accessibility of the global peak may promote adaptation by opening new mutational paths
to high fitness. Which of these two topographical changes matters more for adaptation?
To find out, we simulated random adaptive walks in the RMF landscapes and recorded
the final mean fitness for each value of |A|. We initialized the walks on all genotypes in
the landscape, i.e., we simulated 204 = 160, 000 walks. In each step of a walk, the current
genotype was replaced by a randomly chosen neighbor of higher fitness. This process
was repeated until the walk reached a peak (Methods). We then averaged over the fitness
values reached by each of the walks to calculate the final mean fitness. We chose to
simulate random adaptive walks, because they are more likely to employ indirect paths
than greedy adaptive walks [9].

Figure 3.2 (fourth column) shows that the effect of |A| on the final mean fitness de-
pends on the roughness parameter r. For the purely additive landscapes (r = 0), the final
mean fitness is independent of |A|. For landscapes with small r, the final mean fitness
decreases as a function of |A|; however, as r increases, the trend flips and increasing
|A| leads to increasing final mean fitness (Figure 3.2, fourth column). Interestingly, for
each r, the final mean fitness curve resembles the mean peak height curve, except that
it is shifted upwards (Figure 3.2, second and fourth column). This suggests that the
emergence of local peaks may have a stronger influence on adaptation than the formation
of extra-dimensional bypasses to the global peak. But why are the curves for final mean
fitness higher than those for mean peak height?

Basins of attraction

We reasoned that the curves for final mean fitness may be higher than those for mean peak
height because the random walks preferentially converge on higher peaks. We therefore
computed the fraction of random walks terminating on each peak in the landscape and
used it as a proxy for the basin of attraction of that peak.
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Figure 3.3: Basins of attraction of the (A,B) top five and (C,D) top ten peaks in RMF landscapes
with varying values of the roughness parameter A) r = 0.05, B) r = 0.125, C) r = 0.4,
and D) r = 1.0. Lines are rank ordered from top to bottom based on peak height.
The results are averaged over 30 RMF landscapes. The insets in (C,D) pertain to
|A| ≥ 15, showing how even at high cardinalities, the basins of attraction segregate
based on fitness rank. Note the change in the y-axis limits across panels.

These data are shown in Fig. 3.3, which reveals four key trends. First, higher peaks
tend to have larger basins of attraction, for all r and |A|. Indeed, the fitness rank of a
peak and the rank of the size of its basin of attraction are always strongly correlated
(even at |A| = 20, the Pearson correlation coefficient ranged between 0.7 and 1 for all r,
with lower values for landscapes with larger r and perfect correlation for landscapes with
r = 0.05 and r = 0.125). This is in line with prior work showing that genotypes are more
likely to have an accessible path to a higher peak than to a lower peak [27]. Second, for
any |A|, the difference in the basin of attraction is larger for landscapes with small r than
for landscapes with large r. Third, this difference decreases with |A| for all r. Fourth, for
landscapes with small r, the basins of attraction of emerging local peaks grows, rather
than shrink, as |A| increases. Together, these four trends explain why the curves for final
mean fitness are higher than those for mean peak height. Had the basins of attraction
been of equal size, these curves would be nearly identical. Indeed, the difference in the
basins of attraction is smallest for landscapes with large r, where the final mean fitness
curve most closely resembles the mean peak height curve, although it is still shifted
slightly upwards due to the segregation of the basins of attraction based on peak height.
Moreover, while for all r, the basin of attraction of the global peak decreases with |A| [31],
the basins of attraction of the local peaks increase for landscapes with small r (Figure
3.3A and B), but decrease for landscapes with large r (Figure 3.3C and D). This implies
that as |A| increases, local peaks become more important in landscapes with small r by
attracting a higher proportion of the random walks, thus causing the final mean fitness
to decline.

To further illustrate this point, we computed the entropy of the basins of attraction
of all peaks in each landscape. This measure takes on its minimum value of zero when
the landscape is single-peaked, and its maximum value of 1 when the landscape is
multi-peaked and all peaks have basins of attraction of equal size. Supplementary Figure
3.5 shows that entropy increases with |A| for all r. However, the rate of increase is highest
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for landscapes with intermediate r (e.g., r = 0.125), meaning that local peaks rapidly
become significant attractors. Because these peaks tend to be of lower fitness than the
global peak in landscapes with intermediate r, their emergence brings down the final
mean fitness. In contrast, for landscapes with larger r, entropy is high and only increases
marginally with |A|. Thus the basins of attractions are more uniform in size. However,
entropy is always less than one, due to the persistent correlation of a peak’s height and
its basin of attraction. Taken together, these trends explain why the curves for final mean
fitness track those for mean peak height, yet remain shifted upwards.

3.2.2 Empirical fitness landscapes

In the previous section, we saw that the effect of increasing cardinality on adaptation
depends upon the level of fitness correlation in the landscape, which is controlled by
the roughness parameter r. Empirical landscapes usually exhibit intermediate levels of
fitness correlation [9, 14, 40–42], and we focus on three such landscapes in the following
section.

Data sets

We used three empirical fitness landscapes built from combinatorially-complete data
sets, i.e., data that characterize protein phenotype (e.g., binding affinity) for all possible
20L combinations of amino acids at a small number L of protein sites [9, 40]. Following
the protein evolution literature [9, 43], we assume a direct mapping from phenotype to
fitness, although this assumption is often violated [44].

The first data set pertains to streptococcal protein G domain B1. Wu et al. [9] created
a library of all possible combinations of amino acids at 4 sites in GB1 (204 = 160, 000
variants), specifically V39, D40, G41, and V54, which interact epistatically and influence
the protein’s binding affinity to immunoglobulin [15]. They assayed protein phenotype
— binding affinity — for all sequence variants by measuring the relative frequency of
each variant before and after selection for binding immunoglobulin, defining protein
phenotype as a log-enrichment ratio relative to the wild type (Methods). In the following,
we refer to this data set as GB1.

The second and third data sets pertain to the bacterial ParD-ParE toxin-antitoxin
system. Lite et al. [40] created a library of all possible combinations of amino acids at 3

sites in the antitoxin ParD (203 = 8, 000 variants), specifically D61, K64, and E80, which
influence the protein’s specificity for ParE toxins. They assayed protein phenotype — the
ability to antagonize toxin — for two toxins, ParE2 and ParE3, by measuring the relative
frequency of each variant before and after selection for antagonizing toxin, defining
protein phenotype as a log-enrichment ratio relative to the wild type (see Methods). In
the following, we refer to these data sets as ParE2 and ParE3, respectively.
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For each of the three data sets we construct an adaptive landscape as follows: Each
protein sequence of a given length (L = 4 for the GB1 data set, and L = 3 for the
ParE2 and ParE3 data sets) is represented as a vertex in a mutational network. Two
vertices are connected by an edge if their corresponding sequences differ in exactly one
position, i.e., we assume that each amino acid can mutate into any other [9, 45]. Each
vertex is labeled with the phenotype (binding affinity or growth rate) of its sequence,
defining its “elevation” in the landscape. In order to reduce experimental noise, as well as
impute missing values (6.6% of the GB1 variants failed to assay), we smoothed the data
using empirical variance component regression [46] (Methods). The resulting landscapes
comprised 17, 5, and 5 peaks for the GB1, ParE2, and ParE3 data sets, respectively. In the
GB1 data set, the protein phenotype ranged from -8.28 (for genotype WPGI) to 2.52 (for
genotype WWLA), while in the ParD datasets, the protein phenotype ranged from -7.78

(for genotype PIP) to 0.19 (for genotype ELK) in the presence of ParE2, and from -7.74

(for genotype APP) to 0.13 (for genotype DWE) in the presence of ParE3.

Topographical analysis and adaptive walks on empirical fitness landscapes

The results for the topographical analysis of the three empirical landscapes are shown
in Figure 3.4 (columns 1-3). As expected based on the analysis of the RMF landscapes,
the average number of peaks increases monotonically with increasing |A| for all three
landscapes. Whereas the truncated GB1 landscape has approximately 2.5 peaks on
average, the truncated ParE2 and ParE3 landscapes were almost always single-peaked.
This reflects in the mean peak height, which shows little variation for the GB1 landscape,
whereas it decreases for the ParE2 and ParE3 landscapes due to the emergence of local
peaks. Finally, in accordance with the analyses on RMF landscapes, whereas the number
of accessible paths to the global peak increases with |A| (Figure 3.4, third column), the
fraction of accessible paths that terminate at the global peak, out of all accessible paths,
decreases (see Supplementary Figure 3.6).

Also in line with our analysis of RMF landscapes with intermediate r, we observed
that alphabet cardinality has little impact on the final mean fitness for all three empirical
fitness landscapes. This occurs despite a decrease in mean peak height in the ParE2 and
ParE3 fitness landscapes (Figure 3.4B-C, second column), a trend we did not observe in
the RMF landscapes. To explain this discrepancy, we next look at the basins of attraction
of each of the peaks.
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Figure 3.4: Topographical properties and evolutionary outcomes for three empirical fitness
landscapes. Each row corresponds to a different landscape and each column to a
topographical property or evolutionary outcome, which are indicated by column
headers (these also define the corresponding y-axes). The coloured lines show
results for approximately 10% of the alphabet expansions, which were randomly
chosen, and the black lines show the results averaged over all 5,000 expansions.

Basins of attraction

In Figure 3.5, we show the basins of attraction of the top five peaks as a function of the
alphabet cardinality, averaged over 3000 alphabet expansions. The results for the GB1

landscape (Fig. 3.5A) are similar to those obtained for RMF landscapes with intermediate
level of correlation (Figure 3.3B) – fitter peaks have larger basins of attraction and the
difference in the sizes decreases with increasing cardinality. The results for the ParE2

and ParE3 landscapes also resemble the L = 3 RMF landscape results (Supplementary
Figure 3.7A), but with one crucial difference: The basins of attraction of the lowest three
peaks in the ParE2 and ParE3 landscapes do not increase with increasing cardinality
(Fig. 3.5B and C), a trend that we do not see in the RMF landscapes. This explains why
despite showing very different trends in the mean peak height (Fig. 3.4, second column),
all three empirical landscapes show similar trends in the variation of the final mean
fitness (Fig. 3.4, fourth column). While in the GB1 landscape, this is due to the final mean
fitness tracking the mean peak height, in the ParE2 and ParE3 landscapes, it is due to the
sub-optimal peaks with very low fitness not affecting the final mean fitness, even though



3.2 results 91

they significantly decrease the mean peak height, and the second highest peak having a
reasonably high fitness.

r = 0.125 r = 0.4 r = 1.0A B C

5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

A B C ParE2   ParE3  GB1      

Alphabet Cardinality

Alphabet Cardinality

S
iz

e 
of

 b
as

in
 o

f a
ttr

ac
tio

n 
S

iz
e 

of
 b

as
in

 o
f a

ttr
ac

tio
n 

Figure 3.5: The basins of attraction of the top five peaks as a function of alphabet cardinality
for empirical fitness landscapes of protein A) GB1, B) ParE2, and C) ParE3. Lines
are rank ordered from top to bottom based on peak height. For each alphabet
cardinality, we generated 3000 random alphabet expansions.

Indirect paths promote adaptation when the number and location of peaks is preserved

Our analyses of the RMF and empirical landscapes have revealed that increasing cardi-
nality increases both the number of local peaks and the number of accessible paths to
the global peak. However, our evolutionary simulations were more strongly influenced
by the emergence of local peaks, such that final mean fitness tracked mean peak height.
This led us to wonder if there exists a scenario in which the emergence of indirect paths
to the global peak clearly promotes adaptation.

To find out, we considered an artificial scenario in which we controlled not only for
the emergence of the global peak, but also for the emergence of local peaks. To do so, we
began our alphabet expansions from a truncated alphabet that contained all of the amino
acids in all of the peaks in the full landscape (i.e., with |A| = 20). This was not possible
for GB1, because the peaks in the full landscape comprise all 20 amino acids. However,
it was possible for both the ParE2 and ParE3 landscapes, because their peaks comprise
only nine amino acids.

Fig. 3.6 shows the outcomes of our evolutionary simulations on these landscapes. We
observe a monotonic and non-saturating increase in final mean fitness with increasing
alphabet cardinality. Thus, there exists a scenario in which the emergence of indirect paths
to the global peak promotes adaptation, but this scenario is highly artificial. Under more
realistic conditions, the emergence of local peaks that accompanies alphabet expansion
has a stronger influence on adaptation than does the emergence of indirect paths to the
global peak.
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Figure 3.6: The final mean fitness as a function of the alphabet cardinality for empirical fitness
landscapes of protein A) ParE2 and B) ParE3 when the number and location of
peaks were preserved. The black lines show the variation in the mean fitness
averaged over 1,000 possible expansions of the alphabet and the coloured lines
show the variation for 50 randomly chosen expansions. We confined our analysis
to only those alphabet expansions where the number of peaks was preserved. This
was true for all ParE3 alphabet expansions and for approximately 68% of the ParE2

alphabet expansions.

3.3 discussion

Is dimensionality a blessing or a curse? For fitness landscapes, the answer may be a
bit of both. On the one hand, increasing the length of a sequence or the cardinality of
an alphabet can lead to the formation of new, high-fitness peaks or to the emergence
of new mutational paths to high-fitness peaks. On the other hand, such increases in
dimensionality can do the opposite; they can lead to the formation of new low-fitness
peaks or to the emergence of new mutational paths to low-fitness peaks. Moreover, any
increase in dimensionality necessarily increases the size of sequence space, which may
slow adaptation if mutational paths to high-fitness peaks become very long.

For proteins, the most obvious advantage of increasing the size of the amino acid
alphabet is expanding the chemical lexicon of the proteome. Different amino acids have
different chemistries and adding to this chemical toolkit expands the space of functions
available to proteins. Indeed, our analyses revealed that increasing cardinality caused
a monotonic increase in the average height of the global fitness peak, revealing that
the primary influence of alphabet cardinality on protein function is the introduction of
protein variants with novel chemistries and improved functionalities. To probe the effects
of alphabet cardinality on landscape topography beyond this primary effect, we studied
an artificial scenario in which the global peak did not change during alphabet expansion.
This has the advantage that it allows us to directly study secondary effects of alphabet
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expansion on landscape topography, but it has the disadvantage that it puts distance
between our analyses and biological reality. An additional limitation of our study is that
we did not take into consideration the genetic code, which influences both landscape
topography [47] and the likelihood of various alphabet expansions [48–51]. Moreover, we
restricted our analyses to static fitness landscapes, although real fitness landscapes are
often dynamic, for example due to fluctuating environmental conditions [44, 52] or due
to frequency-dependent selection [53]. Finally, we confined our evolutionary simulations
to the strong selection weak mutation (SSWM) regime and didn’t allow for downhill
steps and crossing of fitness valleys. How relaxing this constraint affects our results
is a direction for future work. With these caveats in mind, our results have four key
implications for fitness landscape research.

The first implication concerns landscape accessibility, which is usually defined based
on the existence of a single accessible path between a source and a target genotype [26,
27, 29]. Accessibility, defined as such, has been shown to increase with increasing
alphabet cardinality in both theoretical and empirical fitness landscapes [9, 26, 27],
due to the emergence of so-called extra-dimensional bypasses [28]. However, because
these bypasses are necessarily indirect and therefore require more mutations than direct
paths, their probability of realisation can be very low. Moreover, there are typically
many accessible paths emanating from any source genotype, and these often lead to
non-target genotypes, such as those atop local fitness peaks. These observations indicate
that landscape accessibility is more nuanced than existing metrics let on, and call for
more holistic metrics that take into account a greater diversity of source-target pairs and
the realisation probabilities of individual accessible paths.

The second implication concerns the interaction between epistasis and alphabet cardi-
nality, and its influence on adaptation. Past work has suggested that increasing alphabet
cardinality may promote adaptation by increasing the number of accessible paths to the
global adaptive peak [9, 26], but may frustrate adaptation by increasing the number of
local peaks in the landscape [54]. How these two topographical changes come together
to influence adaptation remained unclear. Our analyses of the RMF landscapes suggest
that the latter topographical change has a stronger influence on adaptation, because the
outcomes of our evolutionary simulations more closely tracked the average height of
fitness peaks than they did the number of accessible paths to the global fitness peak.
Importantly, how the average height of fitness peaks changed with alphabet cardinality
depended on the level of epistasis amongst loci. When epistasis was low, the average
height of fitness peaks decreased upon alphabet expansion; when epistasis was high, the
average height of fitness peaks increased upon alphabet expansion. These results suggest
that increased alphabet cardinality can either promote or frustrate adaptation, depending
primarily upon its influence on the average heights of fitness peaks, a topographical
property that is modulated by the extent to which loci epistatically interact.
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Relatedly, the number and heights of fitness peaks are often used to characterize the
ruggedness of a fitness landscape, and to make predictions about how adaptation may
play out on a particular landscape [6, 24, 55, 56]. Indeed, in the RMF landscapes we found
that the average heights of fitness peaks was a reasonable predictor of the outcomes of
our evolutionary simulations. In contrast, in the ParD landscapes, we found that the
average heights of fitness peaks decreased substantially upon alphabet expansion, but
that this had little impact on the outcomes of our evolutionary simulations. The reason is
that the three lowest local peaks that emerged during alphabet expansion had negligible
basins of attraction, such that our evolutionary simulations preferentially converged
on the global peak and the second highest peak. Therefore, the third implication of
our study is that the number and heights of fitness peaks can be an insufficient proxy
for landscape ruggedness, particularly in the context of predicting the outcomes of
evolutionary processes. Alternative proxies that take into account the basins of attraction
of fitness peaks and their entropy are likely to be more useful.

Finally, our results may have practical implications. Recent advances in biotechnology
have enabled the design and construction of living organisms with expanded genetic
codes, i.e., genetic codes that include a 21st, non-standard amino acid [38, 57–59]. These
expanded codes are commonly utilized in biophysical studies to elucidate the structure,
function, and cellular localization of proteins (reviewed in [57]), and they are a promising
tool in evolving and designing proteins with novel properties [59–62], including those
with therapeutic applications [63–65]. To date, nearly 250 non-standard amino acids have
been explored for these purposes [66]. By increasing the chemical diversity of the amino
acid alphabet, these non-standard amino acids can introduce new high-fitness peaks in
a protein’s fitness landscape [67–71], such as those representing dramatic increases in
thermostability [72, 73]. However, an important lesson from our study is that alphabet
expansion can induce multiple topographical changes to a protein’s fitness landscape,
and some of these make finding the highest-fitness peaks more difficult.

3.4 methods

RMF landscapes

To generate the RMF landscapes, we first generated an additive (Mt. Fuji) landscape of
cardinality 20 by sampling the fitness effect of each allele at each locus from a uniform
distribution between 0 and 1. The additive fitness value of any genotype σ was then just
the sum of the contributions of the alleles at each locus i.e., f 0

σ = ΣL
i=1 fiσi , where fiσi is

the contribution of the allele σi at locus i. Then to each genotype σ’s additive fitness f 0
σ ,

we added a random component x that was scaled by the roughness parameter r, causing
its total fitness to become

fσ = f 0
σ + r · x,
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with x ∼ N (0, 1). By tuning the parameter r, we could generate the entire spectrum of
fitness landscapes with varying levels of correlation between fitness values and varying
levels of epistatic interactions, with r = 0 leading to a purely additive landscape (with
no epistatic interactions) and r ≫ 1 leading to a House-of-Cards landscape (with many
epistatically interacting loci). All RMF landscapes were normalised to ensure that the
fittest genotype had unit fitness. We used the same Mt. Fuji landscape ( f 0

σ) and added
the random component x to it, for different values of r, in order to generate landscapes
with varying levels of correlation that could still be compared with each other.

Data processing

For GB1, we downloaded the raw data from the Supplementary Tables in ref. [9]; for
ParE2 and ParE3, we obtained the data directly from the study authors.

We computed the fitness of each variant following Rubin et al. [74]. In particular, for
GB1, the fitness of variant v is equal to

fv = log

(
cv,sel +

1
2

cwt,sel +
1
2

)
− log

(
cv,inp +

1
2

cwt,inp +
1
2

)
,

where cv,sel is the count of variant v in the sample after selection for binding immunoglob-
ulin, cwt,sel the count of the wild type (VDGV) in the sample after selection for binding
immunoglobulin, cv,inp the count of variant v in the input sample, and cwt,inp the count
of the wild type in the input sample. The variance of the estimate is given by

σ2
v =

1
cv,inp +

1
2

+
1

cv,sel +
1
2

+
1

cwt,inp +
1
2

+
1

cwt,sel +
1
2

.

For ParE2 and ParE3, two replicate measurements were reported for each variant. For
each variant and each replicate, the fitness and variance were computed as described
above for GB1. The fitness values of the two replicates were then combined to compute
the fitness of variant v as a weighted average of the two replicates, with weights given by
the inverse of the corresponding variance:

fv =
1

σ2
v,1

fv,1 +
1

σ2
v,2

fv,2,

and the variance of variant v was computed as

σ2
v =

1
1

σ2
v,1

+ 1
σ2

v,2

,

where fv,i and σ2
v,i denote the fitness and variance of the i-th replicate, respectively.

These values of fitness and variance were used as an input for empirical variance
component regression [46], a method to reduce experimental noise and impute missing
variants. The smoothed landscapes were obtained as maximum a posteriori estimates.
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Enumerating all accessible paths

To enumerate all accessible paths in the landscapes, we employed dynamic programming.
In particular, the number of accessible paths starting in an antipodal sequence (relative
to the global peak) and ending at sequence v was represented as vector P(v). The i-th
element of P(v), P(v)i, stores the number of accessible paths from any antipodal sequence
to variant v that are of length i, i = 0, . . . , M, where M is the maximum possible length of
the walks. The vectors were initialized to P(v) = (1, 0, . . . , 0) for the antipodal sequences,
and to P(v) = (0, . . . , 0) for all other sequences. Iterating through the sequences in
ascending order of their fitness, we updated P(v) using the following rule:

P(v)i = ∑
n∈N (v)

P(n)i−1I [ f (n) < f (v)] ,

where by N (v) we denote the set of all neighbors of sequence v, i.e. the set of se-
quences that differ from v in exactly one position, f (v) is the fitness of variant v, and
I [ f (n) < f (v)] is an indicator function which is 1 if f (n) < f (v) and 0 otherwise. The
number of accessible paths of length i ending at the global peak GP is then given by
P(GP)i, the number of accessible paths of length i ending at a local peak is given by

∑p∈ local peaks P(p)i. For computational reasons, we computed the number of accessible
paths only up to length M = 10.

Adaptive walk simulations

For the adaptive walk simulations, adaptation under strong selection and weak mutation
can be treated as a Markov chain [18]. We initialized the walks on each genotype in the
landscape and used the equal fixation model [9, 75] wherein, the next step of the walk
was to a randomly chosen fitter neighbour of the initial genotype. This same process was
iterated until no fitter neighbours could be found and a local or global peak had been
reached.

Entropy of the basins of attraction

The entropy of the basins of attraction of all peaks in each landscape was computed by
normalising the Shannon entropy by the maximum possible Shannon entropy for a given
number of peaks (np) i.e., log2(np). For landscapes that only had one peak, we omitted
the normalisation and let the entropy be zero.
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S3.1: The global peak height (top row) and the mean peak height (bottom row) as a function
of the alphabet cardinality with A) r = 0.05, B) r = 0.0125, C) r = 0.4 and D) r = 1.0. In
these landscapes, we did not control for the emergence of the global peak. The coloured
lines show results for the individual landscapes which are averaged over 200 alphabet
expansions. The black lines show the results averaged over 20 RMF landscapes (top panel)
and 50 RMF landscapes (bottom panel).
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S3.2: The characteristic curves for a set of 50 L = 3 RMF landscapes with varying levels of
correlation, with the magnitude of correlation determined by the roughness parameter
r. The first column depicts the number of peaks in the landscapes, the second column
depicts the mean peak height, the third column depicts the number of accessible paths to
the global peak and the fourth column depicts the final mean fitness. The coloured lines
show results for 30 RMF landscapes. Even for those landscapes that contained only 2 or 3

amino acids in their global peak, the expansion is shown from cardinality 5 onward such
that the x axis remains the same for all landscapes. The black lines show the average over
those landscapes.
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S3.5: Normalised Shannon entropy of the basins of attraction of all the peaks in RMF landscapes
with different values of the roughness parameter r.
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S3.6: Fraction of accessible paths to the global peak, out of all accessible paths starting in the
antipodal genotypes of the global peak, for empirical fitness landscapes A) GB1, B) ParE2,
and C) ParE3.
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S3.7: Basins of attraction of the highest three (A, B) or five (C, D) peaks averaged over 10 RMF
landscapes with L = 3 and A) r = 0.05, B) r = 0.125, C) r = 0.4, and D) r = 1.0. Lines are
rank ordered from top to bottom based on peak height.
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abstract

Understanding the dynamics of evolution requires knowledge of the genotype-phenotype-
fitness (GPF) map. Here we study how the architecture of the underlying genotype-
to-phenotype (GP) map interacts with the phenotype-to-fitness map to influence the
topographical properties of and evolutionary dynamics on a GPF map based on Richard
Dawkins’ Biomorphs, a toy model of morphological evolution. We treat two distinct
phenotype to fitness assignments: In the uncorrelated map each phenotype is assigned a
random fitness, which leads to maximal ruggedness. In the correlated map, the fitness
increases linearly with phenotypic proximity to a target phenotype. For the uncorrelated
map, we derive analytic relationships between the number and heights of fitness peaks
and the number of novel phenotypes accessible in a single mutation from the peak
phenotype, i.e. its evolvability. GP maps with many low-evolvability phenotypes have
a higher number of peaks and peaks with larger phenotype evolvability are typically
higher in fitness. These relationships should hold for a much wider class of GPF maps
with random fitness assignments. Interestingly, while the Biomorphs GP map shares
many global structural properties with molecular GP maps, it differs in how it shapes the
topography of fitness landscapes. For correlated landscapes it is more likely to generate a
multi-peaked structure, and it does not promote navigability in uncorrelated fitness maps.
Although using the correlated fitness mapping significantly enhances navigability, the
navigability enhancing accessible paths are seldom realised in evolutionary simulations.
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Finally, we show that this difficulty of navigating the fitness landscapes is significantly
reduced if we expand the set of target phenotypes to ‘similar enough’ phenotypes.

4.1 introduction

Evolution is a two-step process. First, mutations in genotypes generate novel phenotypic
variation. Second, natural selection acts on this variation to enhance the frequency of fitter
phenotypes in a population. To understand evolution we must work out how mutations
in genotypes are mapped to changes in fitness. This mapping can be represented by a
structure called the fitness landscape [1].

It is well established that the ruggedness of fitness landscapes, measured by the number
and height of local peaks, influences the dynamics of adaptation, by determining whether
uphill paths to the global optimum exist and whether evolving populations will get stuck
on sub-optimal local peaks [2–5]. These uphill paths to a given target are called accessible
paths [6].

The presence of accessible paths in statistical models of fitness landscapes, such as
the House-of-cards, Mt. Fuji or the NK model [7–10] have been extensively studied [11–
13]. While the structure of these genotype-fitness (GF) maps are meant to emulate the
full genotype-phenotype-fitness (GPF) map, they only treat the intermediate genotype-
phenotype (GP) map implicitly. In recent years, there has been a lot of progress in
studying GP maps in isolation [14–16], showing that many biological systems exhibit
similar structure in how they map genotypes to phenotypes. For example, GP maps have
neutral correlations [17], meaning that genotypes mapping to the same phenotype are
more likely to be mutationally connected, leading to large neutral components, which are
sets of connected genotypes that map to the same phenotype [18]. A recent study of
several genotype-phenotype-fitness (GPF) maps [19] found that ubiquitous connected
neutral components greatly increased the navigability, defined as the average probability
that an accessible path exists between randomly chosen source and target genotypes
on a fitness landscape. Furthermore, they found that the prevalence of local peaks was
highly dependent on the GP map model. In addition, the accessible paths were likely to
be utilised during evolutionary dynamics.

While molecular GPF maps were shown to have high navigability, this raises the ques-
tion of whether other GPF maps – such as those at higher levels of biological organization
– exhibit the same levels of navigability. We investigate this question on Richard Dawkins’
Biomorphs GP map, which is a toy model of body plan development [21, 22] that was
recently shown to share many structural features with molecular GP maps [20]. As shown
in Figure 4.1, in this model, numeric genotypes define constituent vectors, which are then
combined in a recursive developmental process to generate the phenotype. This simple
process is capable of producing a rich array of forms, such as those resembling insects
and plants.
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genotype 
(g1, g2, g3, g4, g5, g6, g7, g8, g9)

= (1, 3, 1, 1, 2, 1, -1, -1, 4)

g9= 4 recursions in total

phenotype

Step 1

Step 2
Step 3

Step 4

Constituent vectors A B

C

Figure 4.1: The Biomorphs genotype-phenotype map A. The genotype is a set of nine integers
and is used to define the constituent vectors that ultimately produce the Biomorphs
phenotype. We use a fixed range of values for each locus (−3 ≤ gn ≤ 3, for
1 ≤ n ≤ 8, and 1 ≤ g9 ≤ 8). B. The integers at the first eight loci (labeled g1

to g8) are used to define the eight two-dimensional constituent vectors. C. The
2D Biomorphs phenotype is constructed recursively from these vectors, with the
number of recursions set by the integer at the ninth locus, g9. For example in the
figure above, we have g9 = 4 and thus there are four recursions: In Step 1, the
recursion index i is set to 4 and we start constructing the Biomorph with the vector
i · v⃗g9 . Then in the next step, we set the recursion index i to i − 1 and add vectors,
i · ⃗vg9−1 and i · ⃗vg9+1 to the end point of the structure from Step 1. This process is
repeated, by reducing i in each step and adding vectors i · ⃗vj±1 to the end point of
each vector (v⃗j) added in the previous step, until i = 1. Since vector v⃗8 would be
first used in the fifth recursion, it is not utilised in this Biomorph. We ensure that
the vector index 1 ≤ j ≤ 8 by using the convention i → 8, when i = 0 and i → 1
when i = 9. Figure adapted from [20].

Dawkins used this model to illustrate how to evolve a desired shape by many successive
small fitness increasing steps. In particular, he demonstrated how to gradually steer
the evolution of Biomorphs towards particular desired shapes by manually picking out
mutants at each generation that most closely resembled his desired target shape. This
echoes Darwin’s explanation for the emergence of complex forms such as the human eye:
“...if numerous gradations from a simple and imperfect eye to one complex and perfect can
be shown to exist, each grade being useful to its possessor...then the difficulty of believing
that a perfect and complex eye could be formed by natural selection, though insuperable
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by our imagination, should not be considered as subversive of the theory" [23]. Inspired
by Dawkins’ explorations, we will study in detail the frequency and properties of such
series of beneficial mutations that can transform a simple Biomorphs phenotype to a
complex one. In other words, we are interested in quantifying the existence of accessible
paths between a given source and a target phenotype in the Biomorphs GPF map.

Analysis of the GPF map can build on detailed exhaustive analyses of the first part,
the GP map, including the Biomorphs GP map [16, 20]. Many GP map concepts such as
many genotypes mapping to the same phenotype (redundancy), a highly non-uniform
distribution of the number of genotypes mapping to a phenotype and high mutational
robustness of phenotypes are applicable to the Biomorphs GP map [14, 20]. These
properties lead to the formation of large neutral components in the GP map [18]. Further,
there is a positive correlation between the robustness and evolvability of phenotypes – i.e.
the number of novel phenotypes accessible in a single mutation from the neutral set of a
given phenotype [24]. Moreover, it was recently established that the frequency-complexity
relationship of Biomorphs phenotypes, like many other input-output maps, displays
simplicity bias, i.e. phenotypes with large neutral sets have low complexity and outputs
with high complexity have small neutral sets [20, 25, 26]. However, the Biomorphs GP
map also has some peculiarities, such as a sparsely connected allele graph, which encodes
the connectivity between all possible alleles at a single locus [12]. In the Biomorphs GP
map, each locus can only mutate to its nearest neighbour in the allele graph. This raises
the question of how these different properties of the Biomorphs GP map cumulatively
influence the topography and navigability of the resulting fitness landscapes.

In this paper, we apply the genotype-phenotype-fitness framework to the Biomorphs
GP map, by building on two extreme phenotype-fitness maps from ref [19] – a completely
uncorrelated map and a linearly correlated map (see Figure 4.2 and Methods, both
adapted). We then examine the topographical features of the resulting fitness landscapes,
particularly the number and height of the peaks and relate these to the properties of the
genotype-phenotype map. In particular we find new analytic links to the evolvability and
establish two general principles that can be applied to all genotype-phenotype-fitness
maps with uncorrelated phenotype-fitness functions: (1) fitness landscapes of GP maps
with low evolvability phenotypes are likely to have higher ruggedness and (2) local peaks
with higher evolvabilities should be fitter on average.

Next, we focus on the landscape navigability of the two classes of fitness landscapes,
by checking for the existence of accessible paths between source-target pairs belonging
to different complexity classes. We also relate this quantity to the evolvability of the
phenotypes in the GP map.

Finally, we study the evolutionary navigability of the fitness landscapes, by quantifying
how often existing accessible paths are realised in evolutionary processes. We find
that although the correlated fitness landscape has a high landscape navigability, its
evolutionary navigability is very low, indicating that even if navigable paths exist, they
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House of Cards

fitness landscape

Uncorrelated biomorphs 

fitness landscape 

Correlated biomorphs 

fitness landscape 

Genotype, σ

Fitness 

F(σ) ∼ U(0,1)

Genotype, σ

Fitness 

F(σ) ∼ U(0,1)

Biomorphs phenotype

Genotype,  σ

Fitness 

Biomorphs phenotype

F(σ) = 1 −
∑R

i=1 ∑R
j=1 ( ̂Popt − ̂P(σ))ij

R2

̂P(σ)̂P(σ)

A B C

Figure 4.2: Three models of fitness landscapes. A. The House-of-cards fitness landscape
ignores the intermediate phenotypic layer and assigns fitness values directly to
genotypes by sampling from a uniform distribution U(0, 1) with fitness between
0 and 1. The uncorrelated (B.) and correlated (C.) fitness landscapes are based on
the Biomorphs GP map, by mapping each genotype first to its phenotype and then
using a phenotype-fitness map. This fitness is assigned randomly from a uniform
distribution in the uncorrelated landscape and depends linearly on the distance to
the target phenotype in the correlated landscape. P̂(σ) is the coarse-grained array
representing the phenotype and F(σ) is the fitness value assigned to genotype σ

respectively. P̂opt is the coarse-grained array representing the optimal phenotype
and R is the dimension of the array. In this paper, R = 30.

may not be used. Finally, we study how broadening our definition of a ‘successful’ target
phenotype can enhance the evolutionary navigability.

4.2 results

4.2.1 Defining genotype-phenotype-fitness maps

The choice of the phenotype-fitness map plays a crucial role in determining the properties
of the fitness landscape [27]. In this paper, we employ three models, as illustrated in
Figure 4.2:

• The House-of-Card fitness landscape, where each genotype is simply assigned a
random fitness value. This well-studied and analytically tractable [5, 7, 12] system
generates a null model for a fitness landscape defined without a GP map.

• The uncorrelated Biomorphs fitness landscape [19], where each genotype is first
mapped to its Biomorphs phenotype, and then each phenotype assigned a random
fitness. This ‘worst-case’ phenotype-fitness relationship [19], is useful due to its
analytic tractability.
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• The correlated Biomorphs fitness landscape [19], where each genotype is first
mapped to its Biomorphs phenotype, and then each phenotype assigned a fitness
depending on its phenotypic distance from a fixed target phenotype. This is closer
to what Dawkins had in mind, when he evolved Biomorphs through artificial
selection.

Our computational treatment of Biomorphs used coarse-graining of the phenotypes, to
ensure that only visually distinct Biomorphs are classed as different phenotypes. This
led to each 2D Biomorph being represented by a 30 × 30 pixel array (see Methods).

4.2.2 The link between local peaks and evolvability

We start by analysing an important determinant of evolutionary dynamics: the existence
of local fitness peaks [5, 28], which can trap evolving populations and prevent them
from reaching the global fitness optimum. We first study the simpler, uncorrelated fitness
landscapes to develop analytic predictions, and then turn to the more complex correlated
fitness landscapes.

The simplest approach is to directly map genotypes to random fitness values as in the
House-of-Cards fitness landscape in Figure 4.2A. For a standard Hamming graph, this
has the advantage that one can directly calculate the expected number of fitness peaks,
which is known to be aL

(a−1)·L+1 , where a is the alphabet cardinality and L is the sequence
length [29]. The Biomorphs model has a ≈ 7 and sequence length L = 9. If we assume
that its topology is a standard Hamming graph, this would lead to ≈ 7 × 105 local peaks.

The next step up in complexity is the ’uncorrelated’ landscape in Figure 4.2B, where
each genotype is first mapped to a phenotype according to the Biomorphs GP map. The
predicted number of local peaks will change compared to the House-of-Cards prediction
for two contrasting reasons. First, the redundancy and robustness in the mapping from
genotype to phenotype, will introduce fitness plateaus: if two neighbouring genotypes
map to the same phenotype, they will also have the same fitness. As noted by Greenbury
et al. [19], such neutral plateaus can enhance the navigability of a landscape, and reduce
the number of fitness peaks. Second, the allele graph of the Biomorphs GP map (see
Figure 4.7 A) differs from the standard Hamming graph, and this increases the number
of peaks. This increase can be understood by realising that the allele at each locus can
only change by ±1, implying that the maximum number of mutational neighbours of
any genotype is 2 ∗ L, as opposed to (a − 1) ∗ L in a Hamming graph. Thus, the expected
number of peaks in a House-of-Cards landscape with this special allele graph is

⟨peaks⟩ ≥ aL

2 · L + 1
≫ aL

(a − 1) · L + 1
.
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Therefore, while the existence of fitness plateaus in the Biomorphs fitness landscape
decreases the number of peaks, the sparse connectivity of the allele graph increases the
number of peaks.

Figure 4.3: Number of local peaks in the uncorrelated fitness landscape from Fig-
ure 4.2B: Distribution of the number of peaks for 100 realisations of uncorrelated
fitness landscapes on the computational Biomorphs GP map. The mean number
of peaks is shown with the blue dashed line, while the analytical estimate of the
mean is shown with a red dot-dashed line. The analytical estimate is of the correct
order of magnitude, but overestimates the true value because the analytic model
underestimates the evolvability values in the GP map [20].

Despite these complications, the number of peaks in the uncorrelated Biomorphs
landscape can be estimated based on one property of the genotype-phenotype map, the
neutral component (NC) evolvability ϵp, defined as the number of novel phenotypes that are
accessible by point mutations from a single NC [18]. A NC is a local peak if and only if
it is fitter than its ϵp phenotypic neighbours. The probability of this constellation, if the
fitness values of all phenotypes are drawn from the same distribution (regardless of the
distribution) is

1
ϵp + 1

.

This expression thus quantifies the probability that a NC is a local peak, simply in
terms of its evolvability. The NC evolvability takes into account the combined effects
of the allele graph and the effect of large neutral plateaus, which tend to have higher
evolvabilities [24]. The larger the value of ϵp, the less likely it is for the particular NC to
form a fitness peak.
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To estimate the mean number of local peaks on the entire fitness landscape we simply
sum over the individual probabilities of peaks to obtain:

⟨peaks⟩ ≈ ∑
NCs

1
ϵp + 1

(4.1)

In a general GP map, evolvability values in the sum would have to be found compu-
tationally. In the Biomorphs model, however, we can use an analytic approximation to
the GP map from ref [20]. This analytic approximation is possible because the ninth
locus in the Biomorphs genotype determines which of the first eight loci contribute to
the construction of the phenotype. The contributing loci are constrained, since altering
them alters the phenotype. Those loci that do not contribute are unconstrained and can
be mutated without altering the phenotype. The analytically tractable model does not
coarse-grain over phenotypes as the computational model does, and so it has a larger
number of distinct phenotypes than the computational model. The analytical model gives
a parametric expression for ϵp [20] (see Methods). Then the expected number of peaks
can be estimated as:

⟨peaks⟩ ≈ ∑
g9

N(g9) ·
1

ϵp(g9) + 1
(4.2)

where N(g9) is the number of NCs with a fixed g9. Equation 4.2 also indicates that NCs
with low ϵp(g9) will have a higher mean number of peaks.

From equation 4.2, we analytically calculate that there will be 2.5× 106 peaks on average
in the Biomorphs landscape (see Supplementary Figure 4.1 for the variation in the number
of peaks with the maximum allowed value of g9). Our analytic estimates are consistent
with computational analyses of the Biomorphs GP map with an uncorrelated phenotype-
fitness function: based on 100 uncorrelated fitness landscapes, we find 1.86 × 106 peaks
on average (see Figure 4.3 for the full distribution). We expect our analytic estimate
to be larger than what we measure computationally because the analytic model has a
higher number of phenotypes and lower evolvabilities, as compared to the computational
treatment [20]. However, the order of magnitude is correct, and this analytic result helps
us qualitatively understand the tight link between NC evolvability and the number of
peaks.

Having analysed the number of local peaks, we next turn to the heights of local peaks,
which indicate how fit a population would be if it was trapped on these peaks. As
expected, the average peak height is much higher than the average fitness of a phenotype
(which is 0.5) and the distribution of peak heights is highly skewed towards high fitness
values (Figure 4.4 A). Further, we expect a positive correlation between peak height and
the evolvability of the NC that forms the peak (henceforth called the peak evolvability)
because NCs with high evolvability need to out-compete more neighbours to be a peak.
As explained above, for a NC with phenotype p and evolvability ϵp to be a peak, it
must have a fitness higher than its ϵp neighbours. Since the fitness value of each NC is
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sampled from a uniform distribution U(0, 1), the distribution of the height of a peak
with evolvability ϵp (see Supplementary material for proof) is given by:

p fmax(x) = (ϵp + 1) · xϵp =⇒ ⟨ fmax⟩ =
ϵp + 1
ϵp + 2

(4.3)

Thus, peaks with high evolvability also tend to have higher fitness. In Figure 4.4 B, we
show the relationship between the peak height and peak evolvability for one uncorrelated
fitness landscape and juxtapose it with the analytic expression in equation 4.3 from
above (see Supplementary Figure 4.2 for the distribution of peak evolvability). We see
an excellent agreement between the theoretical prediction and the computational data.
While this expression is specific to the fitness distribution used, it can also be derived for
other distributions.

Figure 4.4: Local peaks in the uncorrelated landscape are high and evolvability-
dependent: A. Distribution of peak height (orange) and the distribution of fitness
over all NCs in the landscape (blue), which is a uniform distribution for a single
realisation of the uncorrelated fitness landscape. The dashed red line depicts the
mean peak height. B. Peak height vs peak evolvability: computational data for a
single realisation of the uncorrelated landscape is shown in grey, a moving average
over the data for a given evolvability is shown with blue dots and the theoretical
expectation is shown with a red dashed line.

Having analysed the topography of the analytically tractable uncorrelated fitness
landscapes, we next turn to the linearly correlated one in Figure 4.2C, which we can
only treat computationally. In the correlated landscape, similar phenotypes have similar
fitness (see Methods), and so we expect a smoother landscape [19] with fewer peaks.
Indeed, we find (3.0 ± 1.4)× 105 peaks on average when a simple phenotype is chosen
as the global peak and (3.4 ± 1.2)× 105 peaks on average when a complex phenotype
is chosen as the global peak (see Figure 4.5 A). These numbers are lower than for the
uncorrelated landscapes. Further, we expect the landscapes with a complex phenotype as
global peak to have higher ruggedness. This is because firstly, complex phenotypes
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Figure 4.5: Correlated landscapes with complex global peaks have higher ruggedness

and lower mean peak fitness: A. Distribution of number of peaks in 32 correlated
landscapes with simple global peaks (blue) and 37 correlated landscapes with
complex global peaks (green). B. Distribution of percentile peak height relative to
the fitness of all phenotypes in the landscape, for a single correlated landscape with
a simple global peak (blue) and a single correlated landscape with a complex global
peak (green). Dotted lines show the distribution means.

have lower evolvabilities and are thus more likely to be local peaks and secondly,
due to their phenotypic proximity to the global peak, they are also assigned higher
fitness, which further increases the likelihood of them being peaks. This result for
linearly correlated landscapes clearly demonstrates the importance of the GP map in
influencing the topography of the fitness landscape. While one often imagines single
peaked landscapes when thinking of linearly correlated fitness functions, the resulting
landscape can in fact have hundreds of thousands of peaks, if it is the phenotype, not the
genotype that linearly influences fitness. This principle is illustrated in Figure 4.6.

While we cannot make analytic predictions as we do in equation 4.1 for the correlated
landscapes, we can computationally estimate the mean peak evolvability for correlated
landscapes with simple global peaks, finding it to be roughly 17.4, which is slightly
higher than the average evolvability of the genotype-phenotype map (16.5). On the other
hand, the mean peak evolvability for correlated landscapes with complex global peaks
is roughly 16.6 (see Supplementary Figure 4.3). We expect this trend because peaks
comprising of simple phenotypes would have larger NCs and thus higher evolvabilities.

In Figure 4.5 B, we show the distributions of percentile heights of local peaks for a
single correlated landscape with a simple global peak and a single correlated landscape
with a complex global peak. The average height of local peaks is higher for the former (0.8)
compared to the latter (0.75). This is also evident from the tails of the two distributions
in Figure 4.5 B. We expect this trend to hold generally because as mentioned before,
NCs with simple phenotypes have higher evolvabilities, which implies NCs must have
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Figure 4.6: Peaks can exist even in the correlated landscape: A schematic diagram of a
slice of the correlated Biomorphs fitness landscape from Figure 4.2C. The schematic
shows that the structure of the GP map can make the landscape rugged, despite
having a linear phenotype-fitness function. The genotypes corresponding to the
phenotypes are shown below the phenotypes and neighbouring genotypes (those
at a genotypic distance of 1) are connected with red lines. Neighbouring genotypes
have similar looking phenotypes. The difference between the 30× 30 coarse-grained
arrays corresponding to the phenotype of interest and the optimal phenotype
(shown in red) is used to calculate the fitness value of the phenotypes. Local peaks
and valleys are shown in green.

higher fitness to be a peak. Supplementary Figure 4.4 shows that much like uncorrelated
landscapes, this is indeed the case.

4.2.3 The structure of the Biomorphs GP map does not always make the fitness landscapes
navigable

Our knowledge of local peaks helps us understand where populations might become
trapped, but it gives no information on whether a global fitness optimum can still be
reached without crossing a fitness valley. This aspect is quantified by the landscape
navigability, ⟨ψ⟩ which is defined as the average probability of existence of an accessible
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Figure 4.7: Landscape navigability: A. The allele graph for the first eight loci of the Biomorphs
GP map, showing the connectivity between all possible alleles at a locus. Follow-
ing [20], we restricted the alleles at each locus within a fixed range of values
(−3 ≤ gi ≤ 3 for 1 ≤ i ≤ 8 and 1 ≤ g9 ≤ 8). B. Definition of landscape navigability
as the average probability of having an accessible path between N source (s) and
target (t) genotypes [19] C. The navigability for uncorrelated landscapes ⟨ψuc⟩. D.
The navigability for linearly correlated landscapes ⟨ψc⟩. The error values are the
Bernoulli standard error following [19]. These numbers are based on 1000 source-
target pairs per category.

path, between a given source, sk and target, tk genotype in the landscape (ψsktk = 1, if an
accessible path exists and ψsktk = 0, if it does not) [19], i.e.,

⟨ψ⟩ = 1
N

N

∑
k=1

ψsktk (4.4)

Greenbury et al. [19] showed that properties of molecular GP maps such as large neutral
sets lead to enhanced navigability over a simple genotype-fitness map. They found high
navigability even in the worst-case scenario of completely uncorrelated phenotype-fitness
maps such as that shown in Figure 4.2B. Will a similar enhanced navigability emerge in
the Biomorphs GP map?

Unlike the case of the molecular GP maps, we find that the Biomorphs GP map with
an uncorrelated fitness landscape is not very navigable. By calculating the navigability
of 4000 source-target pairs (details in the Methods) we observe an average navigability
of 0.06 ± 0.007, which is much smaller than what we would expect purely based on the
GP map’s relatively high phenotypic robustness [19]. Since source and target complexity
correlate with the sizes of their neutral sets and could be a confounding factor, we also
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computed the navigability conditioned upon the complexity of the source and target
phenotypes. The results are shown in Figure 4.7 C. We observed that navigability is low
for all combinations of source-target complexity.

One reason for the uncorrelated Biomorphs fitness landscape’s exceptionally low
navigability is its unique allele graph, which is similar to the path graph discussed
in [12, 13]. As shown in Figure 4.7 A, although there are seven alleles at each of the first
eight loci and eight alleles at the ninth locus (not shown), the alleles can only mutate to
neighbouring alleles. This significantly reduces the connectivity of the allele graph. The
sparse connectivity of the allele graph makes biological sense, since each locus encodes a
gene and it is only realistic to assume that single mutations make small changes to the
gene function. The effect of the allele graph is to reduce the average number of accessible
paths, by limiting the total number of paths between a given source and target at a
distance l. The total number of possible paths is reduced by a factor of 1

ΠL
i=1di !

, where di is
the number of mutations that need to occur at locus i. Due to the structure of the allele
graph, these di mutations must occur in a sequential order and cannot be permuted. Since
the fitness values are randomly assigned in the uncorrelated landscape, the probability of
the path being accessible is 1

l! [6] and thus, the mean number of accessible paths becomes:

< nA >=
1
l!

l!
ΠL

i=1di!
=

1
ΠL

i=1di!
≪ 1 (4.5)

This is much smaller than the mean number of accessible paths in House-of-cards
landscapes with fully connected allele graphs, which is equal to one [6].

As predicted from other GP maps [19], upon introducing correlations in the phenotype-
fitness function, we see a drastic increase in the navigability amongst all source target
pairs belonging to various complexity classes. The average landscape navigability with
the correlated fitness function approximately turns out to be 0.94. These results are
presented in Figure 4.7 D.

In the next section, we study the properties of the navigable pairs that were found in
both the landscapes.

Navigable source-target pairs

In order to understand if the source-target pairs, for which a navigable path exists are
somewhat special, we investigate this subset in more detail.

To compute the landscape navigability of the given source target pairs, we made a
conceptual abstraction that allowed us to find accessible paths and to also make analytic
arguments. This involved examining the fitness landscapes at the level of a network,
in which NCs are nodes and the mutational connections between them are edges. The
network of NCs contains complete information about the existence of accessible paths,
since any genotype in given a NC is accessible from any other genotype in that NC via
neutral steps.
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Figure 4.8: Statistics on navigable paths: A. Normalised distributions of distance between
navigable pairs in the uncorrelated (orange) and linearly correlated (yellow) land-
scapes. The distribution of genotypic distance between random source-target pairs
generated by shuffling the navigable source and target pairs is shown in grey. B.
Normalised distributions of the number of neutral components (NCs) encountered
along navigable paths in the uncorrelated (orange) and linearly correlated (yellow)
landscapes. C. Normalised distributions of difference in value at ninth locus be-
tween navigable pairs in the uncorrelated (orange) and linearly correlated (yellow)
landscapes. D. Normalised distributions of the mean path evolvability of navigable
paths in the uncorrelated (orange) and linearly correlated (yellow) landscapes. The
grey distribution indicates the normalised distribution of evolvability of the entire
GP map. The normalisation is performed such that the area under the distribution
is one. The data is based on the navigable pairs found out of the pairs used in
Figure. 4.7.

In Figure 4.8, we show some statistics about the navigable pairs. First, we start by
considering the genotypic distance between the two phenotypes. Since we perform our
navigability test on the level of NCs instead of genotypes (see Methods), the shortest
navigable path is not known and we use a proxy. We compute the genotypic distance
between navigable source-target pairs by randomly sampling a genotype belonging to
the each phenotype, since we start the search from a random genotype belonging to
the source phenotype and end the search as soon as we encounter a genotype with
the target phenotype. The average genotypic distance between navigable pairs is 17.4
in the uncorrelated landscapes and 18.9 in the linearly correlated landscapes and the
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distributions look very similar to each other (see Figure 4.8 A). For reference, we also show
the distribution of genotypic distance between random source-target pairs generated by
shuffling the navigable source and target pairs (in grey). The average distance between
a randomly chosen source-target pair is 19.7, which shows that the navigable pairs are
closer than any two randomly chosen source-target pairs. The maximum genotypic
distance in the Biomorphs landscape is 56.

Moreover, we could compute the average number of NCs encountered along a navigable
path, which serves as an additional proxy for the length of the accessible path, and can
be obtained directly from our network. The average number of NCs encountered is 12.35

in the uncorrelated landscapes and 11.35 in the linearly correlated landscapes. Thus,
accessible paths traverse similar number of NCs in either landscape. However, the linearly
correlated landscapes also have a much longer tailed distribution (see Figure 4.8 B).

In Figure 4.8 C we show that the distribution of the change in the value at the ninth
locus (g9), is roughly symmetric for uncorrelated landscapes, with the average change
being -0.08. For the linearly correlated landscapes, the average change is -0.58. Since
g9 is a proxy for the complexity of the phenotype [20], we see that navigable paths are
more likely to decrease complexity than increase it in correlated landscapes. However,
this statement cannot be generalised to other GP maps since it could be an artefact of
the Biomorphs GP map, wherein changing g9 significantly changes the complexity. This
could also explain why the distance between navigable pairs is shorter than average,
since changing g9 is a quick way to significantly alter the phenotype.

Finally, we also looked at the mean evolvability of the NCs encountered along a
navigable path. The results are shown in Figure 4.8 D. While the average mean path
evolvability for linearly correlated landscapes (9813.2) was higher than uncorrelated
landscapes (8327.9), the interesting finding is that the mean path evolvability for either of
the landscapes is significantly higher than the mean evolvability of the landscape (which
is 16.5). This means that navigability is facilitated via high evolvability NCs. This result
can be generalised to any landscape, since high-evolvability NCs have many non-neutral
neighbours by definition, which means that they have a larger number of potentially
uphill directions that can ultimately constitute a navigable path to the target phenotype.
Therefore, landscapes with high-evolvability NCs will have high navigability. We can
formalise this assertion by calculating the probability that none of the paths between a
chosen source (s) and target (t) is navigable in a uncorrelated landscape i.e.

P(ψs,t = 0) ≥ ∏
path∈paths

P(encountering a local peak on path)

≈ ∏
path∈paths

[
1

ϵp1 + 1
+

ϵp1

(ϵp1 + 1)(ϵp2 + 1)
+ ...

]
where, path = {pi}, pi is the ith NC along the path, ϵpi is the evolvability of that NC
and the ith term in the square brackets represents the probability of encountering
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a peak at the ith step along the path. If ϵpi ≫ 1 ∀pi ∈ path, it is easy to see that
P(ψs,t = 0) → 0 =⇒ P(ψs,t = 1) ≈ 1. Moreover, the total number of paths i.e. |paths|,
also increases multiplicatively when we encounter high evolvability NCs and this further
reduces P(ψs,t = 0) by increasing the number of terms in the product. Thus, if paths with
high-evolvability NCs exist between the source and target, the source-target pair is very
likely to be navigable.

4.2.4 Evolutionary navigability

As has been previously observed [19, 30], the mere existence of an accessible path
from a source to a target does not guarantee that the path will be utilised during an
evolutionary process – the path may be too long or just one of many uphill paths
emanating from the source genotype. Therefore, it is important to additionally compute
the evolutionary navigability – i.e. the frequency of reaching the target in an evolutionary
process, given that there exists an accessible path. We will start with the strong-selection-
weak-mutation regime, where the population typically occupies a single genotype at a
time [31]. This regime is not only simple to analyse, it is also a regime, where fitness
valleys take a long time to be crossed [32], which makes the navigability of a landscape
particularly important. Rather than using a Wright-Fisher model, we represent the
population by a single random walker whose steps are weighted by a fitness-dependent
fixation probability [33] and we restrict the walker to neutral or fitness-increasing steps
to focus on uphill paths only (see Methods).

To assess the evolutionary navigability of the Biomorphs fitness landscapes, we first
simulated random adaptive walks between navigable source target pairs. For the un-
correlated landscapes, we observed zero evolutionary navigability upon simulating 100

evolutionary walks between navigable source and target pairs obtained from the analysis
shown in Figure 4.7. For the correlated landscapes, we observed an average evolutionary
navigability of 0.005, implying that evolutionary simulations between navigable source-
target pairs arrive at the target in only 0.5% of the cases. This is in stark contrast to the
landscape navigability for correlated landscapes which was around 94%. Figure 4.9 A
shows these results in more detail: The evolutionary navigability is very variable between
different source-target pairs: Most pairs have zero evolutionary navigability, which means
that despite the existence of a fitness-increasing path, the target was not reached in any
of the 100 attempts. However, for some source-target pairs, the evolutionary navigability
was found to be as high as 0.5, indicating that 50 out of 100 populations reached the target.
This trend is robust when we segregated the source-target pairs by their complexity,
showing there is little dependence of evolutionary navigability on the complexity of the
pairs (see Supplementary Figures 4.6, 4.7, 4.8 and 4.9). We also looked at the evolutionary
navigability as a function of distance between the navigable source-target pair (see Fig-
ure 4.10) and saw that the evolutionary navigability decreases with increasing distance
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Figure 4.9: Are accessible targets in the correlated landscape reached in the SSWM
regime? Histograms showing normalised distributions of A. evolutionary navi-
gability and the causes of non-navigability (inset), B. local peak height percentile
reached by unsuccessful walks that did not end up in entropic traps, C. natural
logarithm of the path length of successful walks and unsuccessful walks that ended
up on local peaks and D. number of neutral steps utilised in successful walks and
unsuccessful walks that ended up on local peaks for linearly correlated landscapes.
Distribution means are indicated by dashed vertical lines. The data is based on the
navigable pairs on the correlated landscape out of the pairs used in Figure. 4.7.

between the navigable source-target pairs, highlighting the fact that long accessible paths
need not be evolutionarily relevant due to their small probability of realisation.

We investigate the reasons behind the low evolutionary navigability in Figure 4.9A
(inset): while on average, 32% of the walks terminated in an entropic trap (meaning the
walk continued beyond the threshold of 106 steps), 68% of the walks terminated on a local
peak. In Figure 4.9 B, we show the distribution of height of the local peaks reached by the
unsuccessful walks in the latter case. To put the peak heights in context, we report them
as a percentile of the phenotype-fitness distribution of the landscape (which depends
on the target phenotype, see Supplementary Figure 4.11). The average local peak height
percentile is roughly 90%, which shows that the majority of the local peaks are of high
fitness.
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Path statistics

The average path length of the random adaptive walks was roughly 31 steps for the
successful walks and 21 steps for the unsuccessful walks terminating on local peaks, but
the distributions are skewed with long tails (note that in Figure 4.9 C we show the log
path length). Thus on average, the successful walks are longer than unsuccessful walks
terminating on local peaks, indicating that longer paths could help in reaching the target
phenotype.

Finally, in Figure 4.9 D, we show the average number of neutral steps employed.
The successful walks use 3.6 neutral steps on average whereas walks terminating on
local peaks use 2.2 neutral steps. However, the distributions again have long tails and
some successful walks use up to 20 neutral steps. Compared to the total path length,
the random adaptive walks do not utilise many neutral steps, but there is a positive
correlation between the number of neutral steps used and the log path length (see
Supplementary Figure 4.12).

Expanding the set of target phenotypes

0.93 0.88 0.771.0

Width of 

solution 

space: 

0 0.10 0.20 0.25

Fitness: 

Optimal phenotype 

Figure 4.10: Optimal phenotype and example phenotypes within a broader ’solution space’
as an example. Decreasing opacity of the phenotype shows declining fitness and
increasing deviation from the optimal phenotype.

Since the goal of evolution is not to generate optimal phenotypes, but to just produce
phenotypes that are good enough to ensure survival, we also considered broader ’solution
spaces’, where every walk that reaches a certain fitness threshold counts as a success,
even if it never reaches the global optimum (see Figure 4.10). We investigated how this
affects the evolutionary navigability and the path statistics. The results are summarised
in Figure 4.11.

In Figure 4.11 A, we see that the average evolutionary navigability increases signifi-
cantly with the width of the ’solution space’. The fraction of walks terminating on local
peaks and entropic traps monotonically decreases with the width of the ’solution space’,
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Figure 4.11: Having a wider ’solution space’ gives shorter and more successful walks:
Plots showing the variation of A. averaged evolutionary navigability, B. the av-
eraged causes of non-navigability, C. the averaged logarithm of the path length
for successful and failed walks terminating on local peaks and D. the averaged
number of neutral steps for successful and unsuccessful walks terminating on
local peaks, as a function of the width of the ’solution space’ measured as a fitness
percentile for linearly correlated landscapes. Due to computational constraints, a
fraction (0.15) of the navigable pairs considered in Figure 4.9 were used to generate
this figure.

with the fraction at local peaks always remaining slightly higher than the fraction at
entropic traps (Figure 4.11 B). The average path length of both successful walks and
walks terminating on local peaks decreases with the width of the ’solution space’ (Fig-
ure 4.11 C). Finally, the average number of neutral steps employed also decreases with
the width of the ’solution space’ (Figure 4.11 D). This result is intuitive since the addition
of phenotypes to the solution space will create additional solutions closer to any initial
genotype and can be reached in fewer steps.

Simulations with polymorphic populations

Finally, we looked at the evolutionary navigability with polymorphic populations. As
expected, we see a much increased evolutionary navigability with an increased mutation
rate, which allows the population to spread in the genotypic space. For N = 1000, µ =
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0.01 and T = 5000 generations, we observe an evolutionary navigability of approximately
55% for a subset of the navigable pairs considered in Figure 4.9. Upon increasing the
number of generations to T = 10000, the evolutionary navigability rises to 61%. This
increased navigability could originate for multiple reasons, including a higher potential
of such populations to leave local peaks by crossing fitness valleys [32] and their faster
exploration of neutral sets [34]. This however also comes at the cost of an increased
mutational load due to population not being confined to the global peak.

4.3 discussion

We explored the architecture and navigability of the genotype-phenotype-fitness land-
scapes of the Biomorphs GP map under uncorrelated and correlated phenotype-fitness
assignments. We found that both the uncorrelated and the correlated Biomorphs fitness
landscapes have many local peaks, with the uncorrelated fitness landscapes having
≈ 10× higher number of local peaks than the correlated landscapes. The number of local
peaks in a landscape depends on the features of the GP map, such as neutrality [19] and
the allele graph [12]. These effects can be encapsulated by a simple relationship, wherein
the probability that a NC is a peak in the uncorrelated landscape only depends on its
evolvability ϵp as 1/(ϵp + 1). This implies that GP maps with many low-evolvability com-
ponents are likely to have many peaks. The Biomorphs GP map, where most phenotypes
have small neutral sets and low evolvability [20], falls into this category. This dependence
on one particular property of a GP map may explain why the prevalence of peaks was
found to be highly dependent on the GP map in a previous work [19]. Note that it is not
the phenotype evolvability that matters, but that of a mutationally connected part of a
phenotype’s neutral set, which can be much smaller [18]. Testing these links between
evolvability and the prevalence of fitness peaks for other GP maps is a topic for future
work.

The importance of evolvability for landscape ruggedness prompts the question of
what determines evolvability in GP maps. In this regard, it has been shown that high-
evolvability components, where the entire component has higher evolvability than indi-
vidual genotypes, requires a specific form of epistasis [35]. Intuitively, the argument is as
follows: if the joint evolvability of two genotypes (A and B) is higher than their individual
evolvabilities, then they must have distinct phenotypes in their respective mutational
neighbourhoods. This is only possible if at least one mutation in genotype A generates a
phenotype that cannot be reached at all from genotype B, which means that the effect of
a mutation must depend on the genotype to which it is applied, indicating the presence
of epistasis. Contrary to the intuition that epistasis always increases ruggedness [28, 36,
37], this type of epistasis can make genotype-phenotype-fitness landscapes less rugged,
by increasing the evolvability.
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Moreover, we also establish an analytical relationship between the height and the
evolvability of peaks in the uncorrelated landscape and showed that peaks with higher
evolvability must be fitter on average. In the Biomorphs GP map, the effect size is small
since peak fitness scales as (ϵp + 1)/(ϵp + 2) when fitness values are sampled the uniform
distribution, and typical evolvabilities are ⪆ 10. However, the range of evolvabilities
may be broader in other maps and this would have evolutionary implications: since
low-evolvability NCs are typically small [18] and thus less likely to be reached in
evolutionary processes [34], this would imply that higher peaks are easier to reach.
Such a positive relationship between peak height and navigability would be consistent
with other examples of fitness landscapes [38], even though the details and underlying
principles may be different.

The analytic results so far have been for the uncorrelated fitness landscape, but even
the correlated landscapes have hundreds of thousands of local peaks. The ruggedness in
the correlated fitness landscapes is due to the structure of the underlying GP map and
this is perhaps the first example of a GP map that exhibits rugged multi-peaked structure
despite the presence of a phenotype-fitness map that is linear in the distance to the target
phenotype.

Next, we turned to the navigability of the Biomorphs landscape. We found low naviga-
bility in the uncorrelated case. This is consistent with recent work showing that the path
graph allele graph reduces the probability of having accessible paths in uncorrelated
fitness landscapes [12]. We find that the average genotypic distance between navigable
pairs is shorter than the average distance between two randomly chosen genotypes, indi-
cating that navigable pairs tend to be closer in genotypic space. We also found an analytic
expression for the navigability of a source-target pair based on a simpler abstraction of
the GP map: a graph that represents each NC as a node and mutational connections as
edges. High-evolvability components play the role of high-degree nodes in this network,
and thus promote navigability. In agreement with this theoretical argument, we found
that navigable paths pass through phenotypes with high evolvability and moreover that
GP maps with high evolvability phenotypes will be highly navigable.

To study whether an existing navigable path to a given target is actually adopted
during evolutionary simulations, we computed the evolutionary navigability of the
correlated landscape in the strong selection weak mutation regime. Surprisingly, the
evolutionary navigability turned out to be lower than 1%, meaning that simulations did
not reach the target despite the existence of an accessible path. This is in part due to the
evolutionary walks terminating at local peaks and partly due to the lack of convergence
after 106 steps. The successful walks were longer and utilised more neutral steps than
the walks terminating at local peaks. Further, the local peaks themselves had a fitness
percentile of approximately 90%. This indicates that the correlated landscapes belong to
the class of rugged yet navigable landscapes [38, 39] that are characterised by multiple
local peaks of decently high fitness. Thus, we revisited the setup, where only a single
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global optimum was counted as a ‘successful’ outcome, and instead allowed for some
variability in the target fitness by tolerating a few mismatches to the target phenotype. As
expected, doing so greatly increased the evolutionary navigability, while decreasing the
average path length and the number of neutral steps utilised. It is important to note that
downhill steps were forbidden in these simulations, and it remains to be seen if some
peaks can be escaped if this restriction is relaxed.

Finally, we also computed the evolutionary navigability under polymorphic population
dynamics and we saw that having NLµ ≫ 1 significantly increases the evolutionary
navigability between navigable pairs and this also increases with increasing the number
of generations we simulate. This may be due to the higher number of genotypes explored,
or the higher likelihood of crossing fitness valleys, which was not allowed in our random
walk simulations.

Overall, we have shown, how a direct link can be drawn from GP map properties, like
evolvabilities, to the navigability of a landscape, and then to the dynamics of complex
multi-step adaptive processes. Future work, should apply these calculations to other
GP maps, to find out whether the high number of local peaks is a feature only of the
Biomorphs model or applies more broadly.

The analysis in this paper can be extended in various directions. It remains to be seen
how the landscape and evolutionary navigability results change when the correlated
phenotype-fitness map is modified for instance, to a Gaussian phenotype-fitness map, or
to a phenotype-fitness map in which certain features of the phenotype, such as the length
of the branches are more important than others and are given more weight in the fitness
function. Moreover, the relationships between ruggedness, peak height, navigability
and evolvability need to be made more concrete for the correlated Biomorphs fitness
landscapes. Further, the recent work on the likelihood of different phenotypic transitions,
depending on their biased appearance [34] and non-Poissonian bursts [40], could be
used to study the adaptive trajectories. Finally, the role of neutral steps in enhancing
the navigability is still not fully understood. Whereas they have been invoked to explain
enhanced evolvability, here we find scant utilisation in the successful random adaptive
walks.

4.4 methods

Generating the GP map

Following [20], we included all genotypes within a fixed range of values for each
locus (−3 ≤ gi ≤ 3 for 1 ≤ i ≤ 8 and 1 ≤ g9 ≤ 8) and generated their computationally
predicted phenotypes. This computational treatment uses some coarse-graining, to ensure
that only visually clearly distinct Biomorphs are classed as different phenotypes. This
is achieved by projecting each 2D image onto a 30 × 30 pixel grid. Then coinciding line
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segments were merged, the phenotype was placed on the grid and scaled and centered.
Next the lines contained within each pixel were recorded and then coarse-grained based
on a threshold. The qualitative characteristics of the GP map were found to be robust to
changes in the dimensions of the pixel grid (i.e., 30) and the coarse-graining threshold
(i.e., 20%) [20].

Generating the fitness landscapes

• Uncorrelated fitness landscapes

The uncorrelated GPF landscapes, which were first used for the RNA GP map [19],
were generated by simply assigning a random number sampled from a uniform
distribution between 0 and 1 to each phenotype. The target phenotype however
was always assigned a fitness value of one, whereas the source phenotype fitness
was variable and randomly sampled like the other phenotypes.

• Correlated fitness landscapes

Following work on RNA [19], we also created a fitness landscape based on pheno-
typic distances to a target. For the Biomorphs, we defined the phenotypic similarity
between any two phenotypes as the normalised Hamming distance between the
coarse grained matrices encoding the phenotypes. The linearly correlated fitness
landscapes were then defined, such that fitness values F(p) depended linearly on
the phenotypic similarity between the phenotype in question (p) and the optimal
phenotype (popt), i.e.,

F(p) = 1 − 1
N2 ∑

ij
(1 − δPijP

opt
ij
)

where, the phenotypes p and popt are encoded as N × N coarse-grained matrices
P and Popt (here N = 30) and δPijP

opt
ij

is the Kronecker delta function, which equals

1 when Pij = Popt
ij and 0 when Pij ̸= Popt

ij . Thus, our fitness function penalises
deviations from the optimal phenotype in its coarse-grained representation, and is
bounded between 0 ≤ F(p) ≤ 1.

Analytic estimate of number of peaks

The analytical model of the Biomorphs GP map gives a parametric expression for
ϵp = 2 · (9 − nu(g9))− 1 + 7nu(g9)−nu(g9+1), where nu(g9) is the number of unconstrained
positions in the genotype, i.e. the positions that do not alter the phenotype upon being
mutated and it is a function of g9, the value at the ninth locus [20]. Then the expected
number of peaks can be estimated as:
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⟨peaks⟩ ≈ ∑
g9

N(g9) ·
1

ϵp(g9) + 1

where N(g9) is the number of NCs with a fixed g9, which is twice the number of
phenotypes with a fixed g9 due to axial symmetry, i.e. N(g9) = 2 · 78/np(g9), with
np(g9) = 2 · 7nu(g9) being the size of a neutral set for a given g9.

Computational enumeration of the peaks

For an estimate of the number of peaks in the various fitness landscapes, we first
computed the neutral components (NCs) in the GP map – i.e. connected networks of
genotypes that map to the same phenotype. We then used this information to look at the
neighbourhood of each NC and checked if the given NC had a higher fitness than all its
neighbouring NCs. If true, we added the given NC to the list of peaks.

Analytic derivation: distribution of the height of peaks with evolvability ϵp

For a NC with evolvability ϵp to be a peak in an uncorrelated fitness landscape, it must
have the highest fitness amongst ϵp + 1 fitness values. Since the fitness values are drawn
from a uniform distribution U(0, 1), the cumulative distribution function of the largest of
ϵp + 1 i.i.d uniform random variables f1, f2... fmax is given by:

Pfmax(x) = P( fmax ≤ x)

Since f1 < f2 < ... < fmax,

= P( f1 ≤ x) · P( f2 ≤ x)...P( fmax ≤ x) = Pf (x)ϵp+1

because fis are i.i.d. random variables.

=⇒ p fmax(x) = (ϵp + 1) · Pf (x)ϵp · p f (x)

where p fmax(x) is the probability density function. Since fis are uniform random variables,

p fmax(x) = (ϵp + 1) · xϵp =⇒ ⟨ fmax⟩ =
ϵp + 1
ϵp + 2

Complexity of phenotypes

To estimate the descriptive complexity of phenotypes in this coarse-grained representa-
tion, we employed the block decomposition method as described in [41], which is tailored
for 2D binary arrays. Due to the axial symmetry of all Biomorphs, we analyzed only one
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half of each phenotype. The block decomposition method was applied with its default
parameters, except for the boundary conditions. Instead of the default setting, which
disregards boundary pixels in complexity calculations, we opted for the sliding window
approach. See [20] for details.

Landscape Navigability

Following Greenbury et al. [19], we define landscape navigability as the average proba-
bility that a randomly chosen phenotype pair have at least one accessible path (i.e. an
uphill path) between them.

• Method 1

We use a breadth-first search algorithm in genotype space from Greenbury et
al. [19]. This algorithm has three possible outcomes: If a navigable path is identified,
or all branches of the search process terminate without hitting the target, we know
if a navigable path exists or not. However, when a computational threshold T is
reached, the process is terminated without a certain answer. Thus, we do not use
this method in the main text, but we do use it in the SI (see Supplementary Figure
4.5) since it can return the genotypes on the navigable path if the target is reached.

• Method 2

A large fraction of our navigability searches got terminated because they reached
the termination threshold T in Method 1. Since we did not know whether the
terminated searches would have resulted in navigability, our landscape navigability
results could potentially be biased. To deal with this issue, we decided to zoom
out and simplify the computations by looking at NCs (defined above) and not at
individual genotypes. By definition, it is possible to neutrally mutate between any
two genotypes belonging to a NC, so if one genotype on the NC is accessible from a
source, all genotypes on that NC are accessible. Thus, we treated each NC as a single
entity. We defined a graph, where every node is a NC and every edge connects
two NCs that have a mutational connection. Then, we used a breadth-first-search
algorithm on this graph to test for the existence of accessible paths. As an initial
condition, we randomly sampled a genotype belonging to our source phenotype
and then identified which NC it belonged to. This computational simplification
helped us get rid of the termination threshold (T).

We used method 2 to compute all the results in the main text and method 1 to compute
the results in the supplementary. Both the methods produced identical results in examples
where method 1 gave a clear outcome (navigable or not, rather than terminated).



Source-target pairs

For the complexity specific landscape navigability computations, we randomly sampled
the top 0.1% and bottom 0.1% of phenotypes ordered according to their complexity. For
each source-target class, we sampled 1000 source-target pairs. These were used to generate
the data in Figure 4.7. Out of these pairs, we selected those pairs that had a navigable
path between them. These navigable pairs were then used to produce Figures 4.8, 4.9
and 4.10.

Monomorphic simulations of evolving populations

To simulate monomorphic evolutionary dynamics in the strong-selection weak mutation
regime (SSWM) [33], we simulated a random walker in the sequential fixation model [19,
31]. At each step, we picked a mutational neighbour with higher fitness with a probability
equal to its haploid Kimura fixation probability [42]. This genotype became the next
monomorphic genotype of the population. We continued this process until a peak was
reached or the termination threshold was reached (here, T = 106). For the results in the
text, we used a population size of 100, but the results hold qualitatively even with other
population sizes such as N =10 (see Supplementary Figure 4.13).

Polymorphic simulations of evolving populations

We used the Wright-Fisher dynamics to simulate the evolution of populations in the
polymorphic regime. The population sizes and mutation rates used are specified in the
text.
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4.5 supplementary information

Supplementary Figure 4.1: Mean number of peaks in the uncorrelated fitness landscape of
the analytically tractable Biomorphs GP map as a function of
maximum g9, which is a proxy for complexity of the phenotype.
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Supplementary Figure 4.2: The distribution of evolvability of the peaks in one example of an
uncorrelated fitness landscape.
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Supplementary Figure 4.3: The distribution of mean peak evolvability of the peaks in corre-
lated fitness landscapes with simple (blue) and complex (green)
global peaks.
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A B

Supplementary Figure 4.4: The variation in peak height as a function of peak evolvability
for a correlated landscape with A. a simple global peak and B. a
complex global peak.

Supplementary Figure 4.5: Distributions of (A) path length and (B) number of neutral steps
between navigable pairs found on random and correlated fitness
landscapes.
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Supplementary Figure 4.6: Complex source, complex target: Histograms showing distribu-
tions of A. Evolutionary navigability and the causes of non-
navigability (inset), B. Local peak height reached by failed walks,
C. Logarithm of the path length for successful and failed walks
that ended up on local peaks and D. Neutral steps for successful
and failed walks that ended up on local peaks for linearly cor-
related landscapes. Distribution means are indicated by dashed
vertical lines.
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Supplementary Figure 4.7: Complex source, simple target: showing distributions of A. evolu-
tionary navigability and the causes of non-navigability (inset), B.
local peak height reached by failed walks, C. logarithm of the path
length for successful and failed walks that ended up on local peaks
and D. neutral steps for successful and failed walks that ended
up on local peaks for linearly correlated landscapes. Distribution
means are indicated by dashed vertical lines.
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Supplementary Figure 4.8: Simple source, simple target: Histograms showing distributions
of A. evolutionary navigability and the causes of non-navigability
(inset), B. local peak height reached by failed walks, C. logarithm
of the path length for successful and failed walks that ended up
on local peaks and D. neutral steps for successful and failed walks
that ended up on local peaks for linearly correlated landscapes.
Distribution means are indicated by dashed vertical lines.
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Supplementary Figure 4.9: Simple source, complex target: Histograms showing distributions
of A. evolutionary navigability and the causes of non-navigability
(inset), B. local peak height reached by failed walks, C. logarithm
of the path length for successful and failed walks that ended up
on local peaks and D. neutral steps for successful and failed walks
that ended up on local peaks for linearly correlated landscapes.
Distribution means are indicated by dashed vertical lines.

Supplementary Figure 4.10: Dependence of evolutionary navigability on the distance between
navigable source-target pairs for correlated fitness landscapes.
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Supplementary Figure 4.11: Histogram showing the distribution of the average fitness of 2400

correlated fitness landscapes.

Supplementary Figure 4.12: Number of neutral steps as a function of the path length segre-
gated by complexity of source and target.
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Supplementary Figure 4.13: Histograms showing distributions of A. evolutionary navigability
and the causes of non-navigability (inset), B. local peak height
reached by failed walks, C. natural logarithm of the path length
for successful and failed walks that ended up on local peaks and
D. neutral steps for successful and failed walks that ended up on
local peaks for linearly correlated landscapes. Distribution means
are indicated by dashed vertical lines. Population size N = 10.



146 evolution of complex forms on biomorphs genotype-phenotype-fitness maps

Supplementary Figure 4.14: Width of solution space = 0.95: Histograms showing distributions
of A. evolutionary navigability and the causes of non-navigability
(inset), B. local peak height reached by failed walks, C. logarithm
of the path length for successful and failed walks that ended up
on local peaks and D. neutral steps for successful and failed walks
that ended up on local peaks for linearly correlated landscapes.
Distribution means are indicated by dashed vertical lines.
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Supplementary Figure 4.15: Width of solution space = 0.9: showing distributions of A. evo-
lutionary navigability and the causes of non-navigability (inset),
B. local peak height reached by failed walks, C. logarithm of the
path length for successful and failed walks that ended up on
local peaks and D. neutral steps for successful and failed walks
that ended up on local peaks for linearly correlated landscapes.
Distribution means are indicated by dashed vertical lines.
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C O N C L U S I O N S A N D F U T U R E D I R E C T I O N S

And when you have reached the mountain top,
then you shall begin to climb.

— Khalil Gibran

5.1 conclusions

In this thesis, I addressed three open questions motivated by adaptive landscapes at three
levels of biological organization, ranging from the level of DNA to the level development.
These landscapes had very different architectures and comprised of genotypes of different
lengths, alphabet cardinalities and allele graph connectivities. Moreover, they measured
very different phenotypes. The range of questions that could be addressed in this thesis,
highlights the versatility of the concept of an adaptive landscape.

A common thread running through the chapters is that the topography of an adaptive
landscape, measured by the level of correlations in the landscape, had a significant
influence on the answers to our questions. In Chapter 2, we found that correlated
genotype-phenotype landscapes have higher incongruence than uncorrelated landscapes.
In Chapter 3, we saw that increasing the alphabet cardinality increases both, the landscape
ruggedness and the number of accessible paths to the global peak in all landscapes,
however, it only aids adaptation in uncorrelated fitness landscapes. Finally, in Chapter 4,
we observed that the Biomorphs landscapes with correlated phenotype-fitness maps are
much more navigable than the Biomorphs landscapes with uncorrelated maps.

The biological insights gained from this thesis also tie in well together. In Chapter 2,
we learnt about the evolution of transcription factor (TF) binding sites, particularly, why
we should not always expect to find the consensus binding sequence of the TF, at the
DNA binding sites. The binding of the TF to its corresponding binding site, regulates the
expression of genes, which code for different proteins. These proteins perform various
essential functions in the cell. In Chapter 3, we examined how protein function can be
optimised by including more amino acids in the protein alphabet. Proteins and DNA
interact in gene regulatory networks to orchestrate the development of an organism.
Changes in these interactions can alter the body plan of an organism. This can give rise to
novel features, that can help the organism survive in diverse and complex environments.
In Chapter 4, we saw that the emergence of complex body plans in the Biomorphs fitness
landscapes – through this multi-level mapping, that connects changes in DNA to changes
in body plans – is rare.

149
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While the quotes that lead each chapter of this thesis may or may not be autobiograph-
ical, they certainly tell the story of the findings in this thesis. I started out by describing
evolution as a quest to climb a mountain and elucidated how adopting such a view
can be useful in understanding biological phenomena at various scales. In Chapter 2, I
showed how we do not always need to explore new landscapes, to find answers to our
questions, sometimes, applying a fresh perspective to the existing landscape is enough to
unveil the answers. Realising that there could be selection for low or intermediate binding
affinities, is akin to such a shift in perspective, which led us to a possible explanation
for the prevalence of low affinity binding sites in the regulatory portfolios of several
organisms. In Chapter 3, I focused on how having more directions to move in, can open
up new paths, both towards and away from the goal. Yet, when the path is fraught with
obstacles, as is the case in uncorrelated fitness landscapes, having more directions to
move in and changing direction often, is imperative to reaching the goal of optimised
protein function. In Chapter 4, I showed how the classic adage of taking the road not
taken, by traversing paths that have a low probability of realisation, can help in reaching
the target of increased phenotypic complexity. The final quote that leads this chapter is
indicative of what I intend to do next: discuss the shortcomings of the adaptive landscape
approach and then suggest directions in which future research can move.

5.2 caveats

While the adaptive landscape is such a promising concept in principle, in practice, it is
virtually impossible to measure, especially at higher levels of biological organisation. We
can only ever sample a small fraction of the space and depending upon our choice of
genotypes, we can end up with a very biased representation of the actual landscape [1].
The lack of consensus on whether traits are modular or omnigenic [2] further complicates
the issue, since fitness can depend on multiple traits which can have trade-offs between
them. Thus, an accurately measured, combinatorially complete adaptive landscape is
a lofty, distant dream. Thus, conclusions drawn based on in-vitro samples of adaptive
landscapes ought to be interpreted with caution. Even if we manage to obtain an unbiased
sample of an adaptive landscape, environmental fluctuations would constantly alter the
adaptive landscape and therefore, conclusions about evolutionary dynamics can only be
made for short time periods during which the environment remains constant.

Another shortcoming of the adaptive landscape approach is that rugged fitness land-
scapes have been considered synonymous with hindered adaption [3]. While this is
a reasonable association, ruggedness need not always be detrimental to adaptation. I
noticed the limitations of this generalisation throughout the work presented in this thesis.
In Chapter 2, we predicted and exhibited that selection for low or intermediate binding
affinities increases the ruggedness of both theoretical fitness landscapes and empiri-
cal fitness landscapes of TF-DNA interactions. Based on this observation, we expected
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populations to be poorly adapted under selection for low or intermediate phenotypic
values. On the contrary, we saw that populations evolving on these landscapes had
higher mean population fitness than populations evolving on landscapes with selection
for other binding affinities. This was because the local peaks in the fitness landscape
had a reasonably high fitness. Thus, selection for intermediate binding affinities resulted
in rugged yet navigable fitness landscapes. Recently, other such landscapes have been
reported in literature [4, 5], which further strengthens the lack of a direct correlation
between ruggedness and hindered adaptation. Furthermore, in Chapter 3, we saw that
increasing the alphabet cardinality increases the ruggedness in the landscape. The trends
observed for the ParE2 and ParE3 landscapes confirmed this result, however the increased
ruggedness, which was also accompanied by a steep decline in average peak fitness,
did not impede adaptation. This was because the newly introduced peaks had very
small basins of attraction, i.e. the fraction of random adaptive walks terminating on these
peaks. Thus to summarise, ruggedness due to local peaks of reasonably high fitness
does not impede adaptation, since all the alternative destinations are almost equally
good. Interestingly, ruggedness due to local peaks of very low fitness also does not
impede adaptation, since these local peaks are accessible from a very small fraction of the
genotype space. Thus, ruggedness need not be as big an impediment as we are used to
believing, and the existence of rugged yet navigable landscapes should not be a surprise,
but rather an expectation.

Another common limitation that I encountered, was in the focus on the existence of
accessible paths in fitness landscapes [6]. For instance, increasing the alphabet cardinal-
ity [7, 8] is considered a boon for adaptation, due to the emergence of new accessible
paths to the global peak. Moreover, the navigability of fitness landscapes is quantified
based on the existence of accessible paths between a given source and target [9]. While it
is certainly illuminating to quantify the number of accessible paths to the target of choice,
it should not be used as a metric to quantify the probability of reaching a given target. In
both Chapters 3 and 4, we showed how solely using this metric can be misleading. Other
metrics, such as the fraction of accessible paths from a given source to the target, sizes
of the basins of attraction or the evolutionary navigability are more informative in this
regard.

Finally, the majority of work on adaptive landscapes has been on the genotype to
fitness map, which overlooks the intermediate genotype to phenotype map. Prior work
has shown that this intermediate level can be very consequential in determining various
properties of the adaptive landscape [9]. I demonstrate this in Chapter 4, by showing that
the topography and the navigability of adaptive landscapes are reasonably influenced by
the underlying genotype-phenotype map.
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5.3 unfinished puzzles and future directions

In this section, I discuss some possible directions for future research, along with some
preliminary results that I obtained in those directions.

5.3.1 Trapping in changing environments
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Figure 5.1: A. An example of a population getting trapped upon environmental change that
alters the optimal phenotypic value to 0.8 from 1. This results in the global peak
sequence "11" becoming a local peak, resulting in a population with sub-optimal
fitness. B. Condition for deep reciprocal sign epistasis, expressed in terms of
the fitness difference between the two peaks (∆peaks) and the fitness differences
between the lower peak and each of the valleys (∆peak, valley1

and ∆peak, valley2
). C.

The magnitude of trapping increases with the length of the genotype and decreases
with the step size of change in the optimal phenotypic value, which is a proxy for
the sensitivity of the adaptive landscape to the environment.

Changing environments can influence adaptation by decreasing the fraction of benefi-
cial mutations [10] and preventing populations from reaching the fitness peak [11]. A
gradually changing environment can be modelled using a phenotype-fitness map that
was discussed in Chapter 2 with a slowly moving optima, such that the population has
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enough time to adapt to the change in the environment. The advantage of this approach
is that from Chapter 2, we already know what fitness landscapes look like under selection
for a range of phenotypic values in a given genotype-phenotype map. Under such a
framework, a population adapted to a given environment can get trapped at a local peak
and end up with sub-optimal fitness, as the environment changes the optimal phenotypic
value and thus the shape of the fitness landscape. During my Ph.D., I derived some
preliminary results that suggest a necessary condition for trapping under gradually
changing environments.

Specifically, my preliminary results show that "deep" reciprocal sign epistasis – which
is an extreme form of reciprocal sign epistasis (see Figure 5.1 B), is a necessary condition
for population trapping. This kind of reciprocal sign epistasis can frequently arise upon
selection for intermediate phenotypic values in additive landscapes. Further, my results
also show that the magnitude of trapping (i.e. the number of times the population gets
trapped as the optimal phenotypic value sweeps the entire range of possible values),
increases with increasing genotype length and decreases with increasing sensitivity to
the environment (as measured by the step size of change in the optimal phenotypic value,
see Figure 5.1 C).

To the best of my knowledge, such concrete topographical conditions for population
trapping in changing environments have not been quantified before. Moreover, many
questions remain to be examined, such as the effect of increasing the alphabet cardinality
on trapping, formulating measures of trapping that take into account the difference in
fitness values between global peak and the local peak on which the population is trapped,
allowing the population size to vary to study extinction dynamics etc.

5.3.2 DNA methylation as an extra-dimensional bypass

Epigenetic modifications such as DNA methylation have long been identified as a
means to acquire phenotypic plasticity to cope with variable environments [12]. Such
modifications have also been observed to be heritable over at least a few generations [13].
Thus, the effect of changing environments on adaptive landscapes cannot fully be
understood without taking into account DNA methylation. Recently, the effect of DNA
methylation on the binding affinities of hundreds of TFs has been measured [14]. This
data showed that DNA methylation can both increase and decrease the binding affinity
and thus, TFs can be classified into "methyl-plus" and "methyl-minus" classes based on
whether their binding affinity is increased or decreased upon methylation of the binding
sequence. Expanding the TF-DNA genotype-phenotype maps to include methylated
DNA sequences and their respective binding affinities to various TFs can be done by
considering methylated cytosine as a new element in the DNA alphabet (see Figure
5.2 for possible allele graph topologies). This will make it possible to construct more
comprehensive genotype-phenotype maps. More importantly, this can help us identify
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Figure 5.2: A. The DNA allele graph after including methylated cytosine as a new element in
the DNA alphabet. The allele graph is an intermediate between the fully connected
allele graphs of cardinality 4 and 5. B. Distribution of number of peaks post
methylation for binding affinity model landscapes of methyl-plus and methyl-
minus TFs.

conditions under which DNA methylation helps populations in dealing with fluctuating
environments and perhaps also explain the patterns of DNA methylation observed in
different cells of various organisms.

My preliminary results show that models of genotype-phenotype maps of both methyl-
plus and methyl-minus TFs show increased ruggedness upon the addition of methylated
sequences in the genotype space, however, landscapes of TFs of the former class show
greater ruggedness than those belonging to the latter class (see Figure 5.2 B). In this case,
I also saw that the increased ruggedness is accompanied by hindered adaptation and
populations are more likely to reach sub-optimal targets in the expanded landscapes.
Whether these landscapes aid adaptation in fluctuating environments still remains to be
evaluated.
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5.3.3 Effect of sexual selection on the emergence of complexity
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Figure 5.3: A. Frequencies of the male trait (in orange) and female preference (in blue) allele of
a complex trait as a function of time. B. The starting phenotype and the resulting
phenotype after 1000 mutational events.

Explaining the emergence of complex body forms such as the peacock’s tail on the
Biomorphs fitness landscape, would be impossible without including ecological effects
such as sexual selection. Upon incorporating a model of sexual selection [15], by adding
an additional locus to the Biomorphs genotype encoding for female preference, my
preliminary results showed that even traits with low fitness can fix in the population
when preferred by females due to Fisherian runaway selection [16] (see Figure 5.3).
Female choice can also increase the frequency of emergence of complex traits, but it
remains to be seen how often this happens and under what conditions.

5.3.4 Effect of neutrality on adaptation

While it is known that the existence of neutral correlations in a landscape promotes
landscape navigability [9], its impact on evolutionary navigability is not clear. To examine
the effect of neutral correlations on the accessibility of a target genotype, I analysed
House-of-cards (HoC) fitness landscapes [17] of various dimensions and randomly
introduced fitness correlations of varying degrees. I did this by forcing a fraction of the
neighbours of a chosen genotype to have the same fitness as the genotype. I could vary
the degree of "neutrality" in the landscape by gradually increasing the number of neutral
components that were introduced.

I measured the landscape navigability between a poorly fit source ( fs = 0.1) and the
global peak target with unit fitness ( ft = 1) and averaged over 1000 distinct ways of
"neutralising" the landscape at each level of neutrality. I observed an interesting trend
in Figure 5.4 A – the HoC landscapes seem to belong to two different classes: those
that show increased landscape navigability upon increasing neutrality and those that
show the reverse trend. However, on average, there is an increase in navigability with
increasing neutrality as predicted by prior work [9]. On the other hand, in Figure 5.4
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Figure 5.4: A. Change in navigability, B. Change in fraction of accessible paths to the target
genotype as a function of neutrality for HoC landscapes with L = 4, a = 4. Each
line shows the result for a different HoC landscape averaged over 1000 ways of
"neutralising" the landscape.

B, I observed that the fraction of accessible paths to a target genotype decreases with
increasing neutrality, which signifies that the probability of reaching the target decreases
with increasing neutrality. These results were robust to changes in the dimensions of the
fitness landscapes.

Which features of fitness landscapes lead to the clustering seen in 5.4 A and what do
the results in 5.4 B imply about the utilisation of neutral steps by evolving populations?
These are still open questions that require further investigations to be answered.

5.4 outlook

Despite the many limitations and criticisms of the concept of an adaptive landscape [18],
its continued use to study evolution, is proof that this concept is here to stay. It is an
excellent tool to develop intuition and test theories about the evolution of biological pro-
cesses across multiple scales. There are still several unexplored and interesting extensions
of adaptive landscapes, such as those that include epigenetics and ecological factors, to
generate more realistic models that can help us solve the many unanswered questions in
biology.
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